From c41888d9a60e2028c120bf8c4e1b87c5ad68a1a5 Mon Sep 17 00:00:00 2001 From: elisno Date: Sat, 6 Apr 2024 04:39:30 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@e0b7615c1169c6d8fcae15be6477bd7327e82e00 --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290603 -> 290603 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 25689 -> 25689 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 131825 -> 131825 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 78419 -> 78419 bytes .../internal/issue_manager/noniid.doctree | Bin 90559 -> 90559 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 75294 -> 75294 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 120431 -> 120431 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4492 -> 4492 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/outlier.doctree | Bin 29292 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../cleanlab/models/fasttext.doctree | Bin 2465 -> 2465 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5009 -> 5009 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 164172 -> 164172 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 91933 -> 91933 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 68105 -> 68105 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79104 -> 79104 bytes master/.doctrees/environment.pickle | Bin 15401157 -> 15401797 bytes master/.doctrees/index.doctree | Bin 42320 -> 42320 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1876 +++++------ .../nbsphinx/tutorials/datalab/audio.ipynb | 1290 ++++---- .../tutorials/datalab/data_monitor.ipynb | 486 +-- .../tutorials/datalab/datalab_advanced.ipynb | 320 +- .../datalab/datalab_quickstart.ipynb | 130 +- .../nbsphinx/tutorials/datalab/image.ipynb | 2776 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../nbsphinx/tutorials/dataset_health.ipynb | 42 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 582 ++-- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 195 +- .../nbsphinx/tutorials/outliers.ipynb | 426 +-- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 1038 +++--- .../tutorials/token_classification.ipynb | 158 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 60582 -> 60582 bytes .../tutorials/clean_learning/text.doctree | Bin 232490 -> 232490 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 336294 -> 336296 bytes .../tutorials/datalab/data_monitor.doctree | Bin 145209 -> 145209 bytes .../datalab/datalab_advanced.doctree | Bin 199380 -> 199380 bytes .../datalab/datalab_quickstart.doctree | Bin 149271 -> 149271 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 398341 -> 398347 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3292 -> 3292 bytes .../tutorials/datalab/tabular.doctree | Bin 119428 -> 119428 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 154241 -> 154241 bytes .../tutorials/dataset_health.doctree | Bin 324921 -> 324921 bytes master/.doctrees/tutorials/faq.doctree | Bin 210677 -> 210677 bytes .../tutorials/indepth_overview.doctree | Bin 222087 -> 222087 bytes master/.doctrees/tutorials/index.doctree | Bin 3139 -> 3139 bytes .../tutorials/multiannotator.doctree | Bin 137376 -> 137376 bytes .../multilabel_classification.doctree | Bin 64488 -> 64488 bytes .../tutorials/object_detection.doctree | Bin 140179 -> 140179 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104227 -> 104221 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 106980 -> 106980 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176661 -> 176715 bytes .../_modules/cleanlab/internal/outlier.html | 19 +- .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/data_monitor.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/cleanlab/internal/outlier.html | 15 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1876 +++++------ master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1290 ++++---- master/tutorials/datalab/data_monitor.html | 8 +- master/tutorials/datalab/data_monitor.ipynb | 486 +-- .../tutorials/datalab/datalab_advanced.html | 6 +- .../tutorials/datalab/datalab_advanced.ipynb | 320 +- .../datalab/datalab_quickstart.ipynb | 130 +- master/tutorials/datalab/image.html | 50 +- master/tutorials/datalab/image.ipynb | 2776 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/dataset_health.ipynb | 42 +- master/tutorials/faq.html | 8 +- master/tutorials/faq.ipynb | 582 ++-- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 195 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 426 +-- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 1038 +++--- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 158 +- versioning.js | 2 +- 175 files changed, 10583 insertions(+), 10451 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index b3e404dcd..27de41706 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: eb916e3a2d32b2891230aa98cd1dc2b7 +config: 1c1dcb741825cb2c57a77fc5211166cb tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 30941b69c71447ff98addd3754da3aab7a54634c..43982360867aed21f6b839b8f6c43c1ca7f4d2ed 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO^Hftf{enn8}fSz@wTa!N|FVWNp;N}_>LqN%Z^g{7HEl37x+X<|~E YiHT*hSyHOu<_^XHPBOG{axZ5D07*q79{>OV delta 117 zcmdlWxj}M6IHO@no=RiIJ)K<_^XHPBOG{axZ5D04#|i=Kufz diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index c10eabcf80f968f00f747216664fb9a469100696..d0be6ecdb0767e0c8f7bf3552ad585a4d6d3dcf7 100644 GIT binary patch delta 1464 zcmX^3o8{ndmJRWYhWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfL>;FtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OOhGxcT21!Qd#>q(*MnOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= O=QKJaK z;0mXOkT6IK3#^;GE!wz>mMsd(X%H-h!l6Kr#6{<(RNHyx4|ty6`@Hu(?>ToWkvo;h zoo;2$o?drVsG}lU?hb_9p>R0l47fbuK*hm8hN z0GYn?(=jpLtZKSP+hQy$W4_eU|2&xgIwY?*R{Ti?ljR=6k{;SuuVGYC^1H--NQ`gElnMqwGd_^o` zMCbZ4F>R-DYvCbBwUdjbz+9R&cN&pzUYP4$j>FnFKdf-g-75yneZ6`K*3PVrAcw*1 z^Guw@kb_`qsYqe>(W0p)gIQqm=S&uc$?+U^7bdS;*&~=-Zf751a%>x$fXRt`Rt=M1 z7O*HlCOITeV5nZqVgU5d_Mmq=*cX`W-Nm|La!V;Y4wF5**(6Nv-^bd(HPA>c73^yv zw&xpZ_7oee2E?1UaTnR|v5P~1fgG@N^fQOIm1E)ty*HUj?~iaF@c1z&ZNuPMEq}EY zufQgzo4JKny}S&(rp+>JBwbD-uM#r{-MqrTXMq`L;VSRjj){F@x`1nW-=&h=Zs_D82>EfXEY~`{w4J(ob9Yr?d|B1?Iwos`@zKV3I6HoUjnuuhpc8ZlK zW5^@Xv>|D87FiZ%5;4D5t)=n9%6Kc-Ow*x`61t+?z#N)LwqQSyo@9XMX$2QDxJD(# Z>IEBCyOU)4(+5%)n?LC!fAmKkzX31K3=jYS delta 4197 zcmbuC%}Z2K7{)p0-tnuMMia*rAqu50$+_dlXeJ~WMISn&HE3q&j8mc0WNDbSNYp4o zFu1~LAtVga!UF3iZ;LjrqGgMMavB6np>QY=ByrKXCDnGG`2(Kk_df4^&wI|Dj%7{9 zvSwPD))#hO?g{kwmsABiE6Utjpwq8alwNT9UGCC=ztZI@FAY?7lsmN!%^fInmAj2m z_8ySwJ3k&46V0k!ud;73R+MpX;^==K%-09W>y1@kT*0LJsxMogT(TGgtx5`H(e&IO zb3jU;5gcg8y54U1ZY@|6r;0hNs_BCxAwwOi0nmT-x_!hB;*G(Po->JS<($kWt`gpS z7BoWhy{VYC%ecAtfTP-}r6OQ1&6>N6;8zdK^{hl;?d$JWxaRPx0drriorkrv>!ZkF zF#9|kWf9~cm|DtL*gdpps!3rMnEWY~b;9Im2D<~3H>~U-OfJb}A7FB18=Hj5u^d(n zlV9Yr5I`n5B#&XJUce#%^!N6lw>#KpnC#ib!Z5j|h#i5+RlC^~OdiVh!P8p) zaw}eeP0TcN3$1y0F?dazW!Ol%97A3uW)8Y>iGNE2GtlBy-n$(Wd&NvHw~Ov&oo!<9H6&OmFJU*|S)`zMcr1|$vI(*g13 zfy@&zhmuWiRAo#})4c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL0`7fxFM delta 3571 zcmX@QLh$Gc!3~~_h9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*Mn4c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL2lQ7fMS diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index a503f0c3c7f968e10d4bdc229060a91ac5cb8ae7..e026dffbb7d44119645a73b88cbf328690d47f9a 100644 GIT binary patch delta 475 zcmcb4g7M}F#tqSohWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfLq#7;liFtC7uN^HruUCi1jSzQEc*y3WmwY|~gs*EYG4EoJi>?mlL+ iv<7b8!=FY@xHhr{ZeAjIBY-Sh9e^Rkzxhv6EF%D{kd)H^ delta 475 zcmcb4g7M}F#tqSoh9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*Mn?mlL+ iv<7b8!=FY@xHhr{ZeAjIBY-Sh9e^Rkzxhv6EF%E8WRLRz diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index baefb026087d030471ac0ef53c211853f5a227e5..ae3d6a5456a0dc04b30e6cfe595447c70aefbf01 100644 GIT binary patch delta 4228 zcmbuC-%C?r7{__vHFI0qvLEI}WC{JcQEQ&I2x(GCZKA7<3=((FnaecSNKIDK4U}%PktRnUjZxD7v{Xj zCQ^GfF1gic&6R3NRwXqOQEO$FCnDDzmg|mq+#boLNQzn~D^Zurqe@CgExSd20GK9+ z8`!+%WKrQp6V>J|PAz4R1GJH7W17Rh0YVj4<8)gAR1P<@~JCS~kgu>F%R%D+{^nPatg_>5_o$iOI^>I%(Y8{WeQES(= zCe(VS-;Y`k4h#TRW+eWiMrF_o7&UVpq}%r_z&em@gtZJUA~zGsUS{t`ej-^-^u*{5 zB&&%A$D*h;m`tG7OQ{TMeWpJ_tt*c#C_0?(LDA8PMl@?|@;z#un?in+HFG7{^jp;G z$b3c7z84pPL&r#V5H*&+3ZZDx>r+6pV!8qLxu`N*2F~F0Dme$r`OaS?w*~X+ zyZ2KYk5W30JYvOZSt~HIk>0JqJJ`X~duS2(1-XduX&WxL>Xlwv%;U#t^*Ux?<)TXO zR;Ud>cZO&VyV?D^V0ZD}R$7J~U4L?>oL6+v6c+wJ-q1x?ZG}hYavvQ79-q44g8ceT hnsF8`)xAjpKYc*EfPLcv?nicQ?T`Fs?w+RY^dCi(E}H-V delta 4228 zcmbuC-Aj{E9LG6lZMiLN*^7A*S%cng+>3iDLYfp(Zs^L9L88yImu%t~IU6hK1xZ3O zWDnzkKs3W7W)VBY3BqoQYGmf}N?KRl=#6w=MCZxBz^{M6=lA)2f6wonovBMEb;~%O?&ahW<+3b?t6K-(0JnROuM~Wn?xU>p=ENL+|%QDb%#g?({xHt&jV9QR_s~i(2E? z0;u)efFHFUO{W1XD`ozoMtRT&7!_?D+_&%PfOQ~+2x}W!Ms6ljxXRv*{6w;9=&8{g zNLCGPAB&;Z_G|{VUdiQA>#X_&wXQzWq3G~}L0?g5AgaJ7_g_bp6?9HM}-Tb6EKQcvGCN88;rCODQ@AJU&&ywe#yY hY2LDNsp`uL_~`>02lkB%cmUb8^*{34xp#(k(SK`51M>g? diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 519a8ccc22b037253bbdf6253011b6a7605025d7..1893b1e1852c543adcedeeb54d9b1213b7babb64 100644 GIT binary patch delta 62 zcmZotYEs(Z#$uRXU}lk=W{{(AmY8gooRX4km}p{|l4xL*XliU}VQFTPWR{d{nwXSk RVq%$WmXvC^xtyh&2LM%Q6374m delta 62 zcmZotYEs(Z#$s5KXOLTvTwbnknVMo|Vs4n6l4NLRoMw<@WNw_CWMO1vYMgA5Xlh`X RXlR~nVq|K*xtyh&2LM;h5-b1! diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index ce275430a8922eb108d27086be7615bbd8393f40..b1a4f853732805511aae6fa9a2331f1126bd1de5 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|ChWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( TNogh~mdR#GsfL>y8KWx!>fjY` delta 64 zcmccfmGRD3#ti|Ch9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*MnLqN%Z^g{7HEl37x+X<|~E RiHT*hSyHOu<~fW);sAJ|6BGad delta 62 zcmZ2yxXy4xHltxlo=RiIJ)K<~fW);sARE5_kXr diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index ffa79ed2507043b93e9fb0d2a9304606ae1549dd..77a23973137d0c8a7752f02fc63ba689741a07a0 100644 GIT binary patch delta 62 zcmdlUw>@q{G^1gDftf{enn8}fSz@wTa!N|FVWNp;N}_>LqN%Z^g{7HEl37x+X<|~E RiHT*hSyHOu<{rk?x&V)R6b}FZ delta 62 zcmdlUw>@q{G^1fjo=RiIJ)K<{rk?x&V>i6LSCn diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 56f6aa8e658cb32f4c8f34836c59e3b29424de91..d4fdd7a78843cc59f87e01553f0c582c2d726cca 100644 GIT binary patch delta 72 zcmey^%JH$4V?!#VVSa&`MRJ-!j=ou9vRQIUO0r?1iDgQnfl;EVv89EjnMsmaQnG1c cQksd0WwKdPs$ugq#`bB9jN7L%GDR~20C$ZRxBvhE delta 72 zcmey^%JH$4V?!#VVM(4rZb5Q+xxQs;ikXSIVRA~6p_y@-L6VWVadMJ{k&&r!vPGh) cfnlPdd9sO-sd@7>#`bB9jN7L%GDR~20Cf=-8~^|S diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index e4144464cbca06179d332fddbf923fbeeb2290ea..23368ebeb46638a4cb6a12a3d7b0f0b2e4ee36d7 100644 GIT binary patch delta 117 zcmX@AbyRDEFQZ|8ftf{enn8}fSz@wTa!N|FVWNp;N}_>LqN%Z^g{7HEl37x+X<|~E YiHT*hSyHOu<~qjhf@Ek*6TZ&~0Dq7qV*mgE delta 117 zcmX@AbyRDEFQZ{eo=RiIJ)K<~qjhf@Ek*6TZ&~0Akc5D*ylh diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index d625400cf10c03a7da7d4ad3584d58fbfadd8ca6..0805f43d51bc1f6a196004cde278382efaf0e922 100644 GIT binary patch delta 5702 zcmbtYZD?C%6y|ihX}6@eX-a8>bLmF9POGMwZEUuVcD7|5t7~Xk80(fcO&h9q?LKVj zwq~8^Cdyp9y~-<7u|M`lm|8iw_lFY)`b!WZI79^%6qK=AQ3~S6@V&W1`ulm|{(U~q zInTNGa2G%DEb3=BMJJBNnlssku}CbPiDia|GtqQod^p{(E#35Jyg43g9EuHPn$knr z#>RLiHZ&3y)3gMj%Io*>PeluepoYp@uTq%^SjRAB;jOITO3&4`FuaO;yazz@TD^*Q zmL4dA)vNg-{{XID&6@*Hf$Hq76l);k$G9!X7<7uS+H=jx)z{KTwebMmgf|=G;HudGfjz$%_Y1X^J8st;J<>xiMaRjGh0N<_V;lDaV5Ej z^E(cLeG_f1#eB1E8XI&)BBbcHacjCd%sz z6#Qf&fX&{8dwZY7y63=`;nJ)5^<)m4x+83h$U%$W>z~2Bmx{A#TYQ$f1J~d(40P`0 zg~9V^3VsOq_Pnm~285p=mCk z_V5d*a%dnNBcWO6b?~tGb2cb8c65k_GXr>89GYDM`^xj@zAgrp=g(RE`^#(4Kxnwg ze`oWBxohAo_{J;U5zIVa`1Hdd1{JRHB#8Fk_Q{XhX%m0-{ak zQg^+$JdgZ52+l$HZ`)jR=Q-@I=o9ve%}syo2ZO}+$}AS)9x+&B$>-xV%BTLVUIz`- z<)|tq?6xVu)k`HbX&cCEe1()%)MdcYvx!17-%h`%r-RgwCDUz&W(uo`4V1(Nx{73c zBONkuqO_Cyu-$OyvK*$YNf8=fCTDtSr`l3Sw+uq6&PHg|#EHiHRW3?7)I`2^z0#Y~ zYJitd?4lJgp<3R7m&h+4r#=IY#XS^KI_14+EF2@6B&_ng@qjzc)Fg9gw*NP=)JaD;w?`(n8qm&OUZIeJ9C){-9|r*f5>pb6n`}jaEg=61>llvBm~4g1q_&@-t@u_HNIYukJdNQC;gU#AQYQ6R VpjB;qk-|PGk^7YXAN%dv{{WTG&>8>$ delta 5702 zcmbtYTWAz#6y`){6Wz^Zvmqo)ts7-yY}0lxakGg=5}O1gre;ZS5u=;Snvk|hye3A? z8cVCC#hTQ=FuaUA+`B;YTD^=n z7w*b~)yw%gZx60s&TDfn70V#w2f4}57<8O3JUxQdJI;1_bRA-klzCb#RFN?Kgq6iQ?)U z1;3o|VY9d4?#|b+?pg2!xb$-VFqy%oZV8(rwAN$P{)Hy!2}g;zRAun7`-SjJ z-S%Shyzp}`I0xZVkgIRB0^i#p}o|Ght^Py z1JvRGFExIp^o`JOa9<3YHrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqOhGxcT21!Qd#>q(*MnHrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEq diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index dc97b32e541a7a356d8546f8c724ca84b1ab8f90..96340a552e05db9dd749fb29cfe9046ad7611f52 100644 GIT binary patch delta 1137 zcmZ4agL&l-<_*4#hWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfL^D7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{A5`EJ|* delta 1137 zcmZ4agL&l-<_*4#h9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*MnLqN%Z^g{7HEl37x+X<|~E fiHT*hSyHOu<_5;O%tj<@)1Ul+U21bCYY7hkL0cud delta 122 zcmcbsd{=pcKcituo=RiIJ)K<_5;O%tj<@)1Ul+U21bCYY7hk9)~1? diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 26de69b4499c7265ddb1dcaf3213a093b958c6bc..0f272e72732eacf88dbdefd3c74eb4057208a5a3 100644 GIT binary patch delta 1125 zcmeBu&(!;#X+t=pVSa&`MRJ-!j=ou9vRQIUO0r?1iDgQnfl;EVv89EjnMsmaQnG1c zQksd0WwKdPs^R7iMoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~0e;a`6M delta 1125 zcmeBu&(!;#X+t=pVM(4rZb5Q+xxQs;ikXSIVRA~6p_y@-L6VWVadMJ{k&&r!vPGh) zfnlPdd9sO-srlv(MoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~0MbX11` diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 6a153866674d9ed1c54565c8ff4150d95ebdec86..6feb4347cbfa02d86e270a32fe89a181c6d115fa 100644 GIT binary patch delta 62 zcmew$^+9TbE0bYLqN%Z^g{7HEl37x+X<|~E RiHT*hSyHOu<}#*VTmXhW6Z-%F delta 62 zcmew$^+9TbE0bYKo=RiIJ)K<}#*VTmXon6JG!T diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index d090a99d750436bd713b87c2cee0d6bceae16245..ba37c2984386ce8424f3626aa45b900fd3471e69 100644 GIT binary patch delta 2628 zcmccdp5?}SmJQL2hWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfLq#81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<07Vf+@Bjb+ delta 2628 zcmccdp5?}SmJQL2h9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*Mnk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0Fd@8yZ`_I diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index c3f51197d29d25930f6510ccc8d260c0cde44cb2..dc864283883be64fd16b6f678a580c8f7f2f6e79 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7w)q8S7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfPL~`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1ORH8Mcx1a delta 2632 zcmaERn&s_jmJNZ7wk3H6xdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*MnlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OQ&nEaCtF diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 57f382c29b4ffcd8e5d6aaee50b82e62ecfa1ab2..0ca529a5b86cf2b8c328c03d80a071a7215a842b 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7w)q8S7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfPL~`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qOhGxcT21!Qd#>q(*MnHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qLqN%Z^g{7HEl37x+X<|~E RiHT*hSyHOu<}OAFVE}6963PGo delta 62 zcmZ3axkz(EB%@(To=RiIJ)K<}OAFVE}DQ5-tD$ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index b0ed3c9f1ad6bc0792cbc09f1f46f60b8daca002..e0107abdf887087b731f34fe558e889cee666226 100644 GIT binary patch delta 2506 zcmbRCjb++5mJN}NhWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfL@o7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NT31tJgt delta 2506 zcmbRCjb++5mJN}Nh9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*Mn)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NSI^$D;5 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 8cdb8b105523da00df19547f2ee3f0bebbc9730a..4e8e56702622281d635460cfe440147c5905f535 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFhWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfL@Y7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>iKqRb!w delta 3034 zcmZ3sg>~5$)(xJFh9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*Mnh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>jaWv)a3 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 10ec91135b51e8f65b0294e30824b648b826f5c2..b4cbaef8cfb764124b7871911ed2aed46a8f251b 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#69ftf{enn8}fSz@wTa!N|FVWNp;N}_>LqN%Z^g{7HEl37x+X<|~E RiHT*hSyHOu<`%|>JOG5+6YKy0 delta 62 zcmaDV^HgR-Fr#5fo=RiIJ)K<`%|>JOGD26HovE diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 348cc6fa1376e0a495d81044246ccbaaa8505f5d..61d4a8a9cb0e7453ea10728ff57731680a0dfbb7 100644 GIT binary patch delta 2704 zcmccogyr%RmJObahWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfL@Y7(bGsZSukRrpau_z>E9d7XQ~TNm zq0LgwIs9a5&z{b`IA$_=1^%qbK;4^-X3iHR)AIK^Y?EWHxi+s^txul!i#FG7-%4Io z7fr6)uCtkG&q7|Z91qeiJ$e0g?#(%;T6xGfV)OdzOqyhApS8V)k?{w44TV|T?YS8f z*+{o{`$a)UGj`JT0kh?-$>&mex8Ij!oJWSeaQ&f*jD>t;*$-+D@^9}jU_8wT0Jdjm A3jhEB delta 2704 zcmccogyr%RmJObah9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*Mnu_z>E9d7XQ~TNm zq0LgwIs9a5&z{b`IA$_=1^%qbK;4^-X3iHR)AIK^Y?EWHxi+s^txul!i#FG7-%4Io z7fr6)uCtkG&q7|Z91qeiJ$e0g?#(%;T6xGfV)OdzOqyhApS8V)k?{w44TV|T?YS8f z*+{o{`$a)UGj`JT0kh?-$>&mex8Ij!oJWSeaQ&f*jD>t;*$-+D@^9}jU_8wT012f` AI{*Lx diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 6d651cabda3c708c7a86fd8f296b36eac1669674..794ee7ee27283129b0ebbefa9d7e9eeaf4ec68fe 100644 GIT binary patch delta 3004 zcmdmgn05bQ)(zf_hWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfL?t7_XC|ZSuwidDCylGxASnWGN)wR*?3|3%GAy50}1zfY3 z$GF|aNOl5PSq%%7O+A9<-RmjrbIQf4e z>*fr%SOK!Nb8M~;XCg1@fNU3 zUqu6%Uf=woYCjX%4wu+mS=U3R&0vS0Z#Yef?I|rQD6#!o+fhnvPwncU#P;ny&6L>A zGQpp`5(AQCWT%8uqTOc39r7H%V6uEM-{$YLJIP4zn>Q|yAWqlU&>Dm+)*3c%n{$_Q?THST|e0W#=R> z=peyg-^sn1^?MO{&dAs*z_^0E@+4!b0HenCN*2aeUb37I(l5PzlMrJ*4+Z+K$}=9+ zAWMJKc27^nhva1%aLVV{{?w200l5a831Z}&{Aj!I^dEkVPTQ}AFs5;l<&C`U!1nVK FMgSVW<%0kK delta 3004 zcmdmgn05bQ)(zf_h9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*MnAy50}1zfY3 z$GF|aNOl5PSq%%7O+A9<-RmjrbIQf4e z>*fr%SOK!Nb8M~;XCg1@fNU3 zUqu6%Uf=woYCjX%4wu+mS=U3R&0vS0Z#Yef?I|rQD6#!o+fhnvPwncU#P;ny&6L>A zGQpp`5(AQCWT%8uqTOc39r7H%V6uEM-{$YLJIP4zn>Q|yAWqlU&>Dm+)*3c%n{$_Q?THST|e0W#=R> z=peyg-^sn1^?MO{&dAs*z_^0E@+4!b0HenCN*2aeUb37I(l5PzlMrJ*4+Z+K$}=9+ zAWMJKc27^nhva1%aLVV{{?w200l5a831Z}&{Aj!I^dEkVPTQ}AFs5;l<&C`U!1nVK FMgVY3$U^`C diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index efe907f6ea9fcdda87990cf810c7eaa4d00ea69c..63a3b6e13fa00884db6e765e89a1ecc12953533c 100644 GIT binary patch delta 2688 zcmbuA%PT}-7{(jsj5CulB3Tfp(Aa2^_d6s- zlQh3yb1I_jSBgs%w@dcOlBi0m=2p~zD9W0ob~_!cDp6z`c8>N9t(^1UJbNtbWy|I? zI!dZB!1yFYhUwapY=lroTefVhZirP191Ugoc*v~dJPqdLW2Y6OO5qz1p3a1Z3RZ46 zL)pW`6`rF9zECuYRc3VUSV@2aGjhA;Q0t8Q1hw+=4q&Cnvid}@=Zkk1F#c{Yqw=Z| zwC89|H5z!L&WECN^>;|%)7TjEHsz43u>-lozc_iD!pJHAne%A1gCTIp=~&;l%_jz37LR66Cbfw*lc znQ|k~$ZN0Lb^L7k9r>nod}BR@f}7K*UB~yg50aqnGn5?-0ymCMW9M0rag0TWOe}n9 xq1uZlWZsec1$w{f1Ku=>+?%XmXyJt;-%|{oan~zPdvBR0&>sEbDfDrh@&j6XY!Lte delta 2688 zcmbuA%_~Gv7{(jsj%zYTBn#pe8XL{rd*{wY8ALIq*dWQr%tawmMx#bPlCscf9I_xE z8NUoCRwu)R`PZ87kK6m`1O09^Pcyd>m}p$k}*^%06VQ9RSMsD@C+t2RIqYe zGL$_;T+s!3;ETmmSY<{x_SFO^Fe62tN3FBUDQe|QcL6IsmenVMJzv~&fbn;G8I@NB z(4J#8)o9?!IuDA@*WV+7&!XeZ-IPmmV+V4Fe{pg*g^*MJGw0J<%LyJlp9iB~zjnrwo6~wK} zDU=s}MqYc}uH)w`@5nc$?K*z2bC?8mpQW6LAGmRJ7QM)ZjN>daVq&2y xGu2)`A@dH$7U}(V0C>|V95Y$K(83Exo~I}}sT&mLr{tx`4YUMpiOm~T z8_4xFNc%tawM^tWeshBM5=v~osC$u2n}JDHVspOX3QBB$Vtkhp+xyIID6xII;$yJ(-T5?690~v+7Dca$Nw@F1}HmOxq!G|KEyh^XFaF-K5{Lahe9LXJif0%mJzMn8+jRD gl9zp3w<`!Uejr2dc1HOhGxcT21!Qd#>q(*MnsT&mLr{tx`4YUMpiOm~T z8_4xFNc%tawM^tWeshBM5=v~osC$u2n}JDHVspOX3QBB$Vtkhp+xyIID6xII;$yJ(-T5?690~v+7Dca$Nw@F1}HmOxq!G|KEyh^XFaF-K5{Lahe9LXJif0%mJzMn8+jRD gl9zp3w<`!Uejr2dc1HLqN%Z^g{7HEl37x+X<|~E RiHT*hSyHOu<`%|>JOG5+6YKy0 delta 62 zcmaDV^HgR-Fr#5fo=RiIJ)K<`%|>JOGD26HovE diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index f17cb57f0de78051445d4746b3a62f7718ccc32b..cf8d998f0b274e72c30f89c03fee36e1085ae1b4 100644 GIT binary patch delta 3483 zcmbuC(MwZd7{>W(XIgU;Tj|6SB#4O0Gn)r@QFt{_D2Ity61APR7OTvKyQr|C3#8P- zkFkqttX3fu%zAMjMC3)$mE>-sn?)n&qMO(V>Y^B(&zrp6vp?YXKJW9q@B1B2WzAe! zGcWZq=h$VfM-QqOIyIlJ>4AXm^ts#tpW5Z?KIHCkYc9X$*SmfGpv&dfHUC*BU1ene z<4m36?WS1uf|6XY*eRfVH(~Tk%iLywEQen3bib9ZH;y90H&sYO(E>2wA4n$TxZRa5Xapi1S?5%kKNFU_Or-i{Q2 zW{u5H@!n$%d?0Q&o+umX(KOQh|1u8xb2GIsj>q=MqA$4Vj_*#fFd zTzNHT0r6coth}_U(3STOk^R9jY{U5EmkHJ`mM^j>7=kbgJjT{{T8g(O ay>Zn1Ixog=vWXVRz5F$56pIho@Ya8k;!z_2 delta 3483 zcmbuC(MwZd7{>W(XIjTiY^4)RkRT!|&o;N&Md8&zp&TY+Nt8Rw7DLOG6Dn-z0x7ld zW9*_Dt5paEo4vRXBJ!f>N^&>R&7u)>(M@awby1AY@g{Hg><{?8&-*;@`+kR0UN@H4 zjhSv{yE>+fUREb3+mD?0yE@!9)$g;p93zU)?sllYPP^UdP&A_3wlhnpYUXSi^%_%WQB}jpYe1Dsfn(^EH;yf!>D~$D zfo8SMPw=i2b-Xuf(Vi$Xso^Bj{Qojm`gPrdB)+*s`_%91%vh;;dZ>yns5fdxCb8Ls zclK}<9cUA=()jHk)#lK*kOl`zIZidelc;Bq3mR$gL8=zS&!sH%`Dq!&6_1HTI!XSGeG*uNA&L~loL{|ED;~SpaU<0G3{N-g z7OO|uSL|>%__)SPBJ5$$8}KILr9sw@<6_ro_F)Ic$G=RlRM8QF)hth2L3LDNbyG{pkbXq4lL zj+&x}U>K>GH+7K68MH5Apb$iY1igMRruIE+N9zyR)gSQN@4l{cKhLv;LDRyZX{3^D zHMNdhx!hW{$05lM+2fIIlHKW%tb3*Gea>8`!|ryt^P*PIq3uzi^+v$}YE3ID1gz|H<)9Uf zAFlfRW@tomnIt!qOX*3n({IY3Q9N9D%5nDs6HXcB1Fo2{*wb%tZx^UYW~t=#sm3>aEjve1ZV{$l3o zxex!ti|M&&?)-iPjc~9bk*AjW(E=B5S@_(q0_2g<`w!!qFi=)fMtXu2_?K70e7t74L#dg-5aHEV rwmm1K7SD77*kOGQl;W3UTDdzr0+g>QW3&vOLgn5oiqo0`^fUDj&@1T5ZQdA}<(J03g z9W^Bn!7x%WZ|WeCGiYDLKp}_(33~ltOznHtj@BQrt3Tkk-+f)@ex7IZ1IGCQ<8U=e z^|jWTI@#;pwfkIUex5^;D?L(v?s==n=E#*j1vZ;KS1xedt&&@E$ayxqLv+&|K>3|M zQE#wtd8~{`SMU}{JkDR^w;3Sx4O5bWp@X8#YT(ASN2!om$4w(yW~?loP7{S$W;SfE zF~S2>K;$_0NZ+v1LVT^D1&bWw@Sdd@Xy6ckD)gb&%KckoLF@J6e$<*#S^`+v?{uIQ zjUA~2jKc2>apv)}XwHTc8&Rw8WIJj#pPE5ynmH2y2Ign-r8sbl)>nT-hE)TTqDM;R zn3~>rz^n$QS*>qF8rIPrUI$Q<&{4VZ4rYDJKbi!Z^+szeW}RkJdl8!Turljn$hE zY40~s&=S3Ld1-$TLb{!KMCh?^J?!zj{Qvp>?;JMsK{4||(XmHJ zKj0LzY<8o=AX;pqt)jw~Zpp~5uoyR3GB;*tWs4bB(Q3=ISnU}Z**4Kyna<6E5`a-> zUO6X4?v4C+#SoNMMxTI?4svUByi?g8g~8dav0>vn*uD5h1g0vPj^k&#VNiJ%UKV>L z9Q9i(PKKlYF5VlCdh)7b^noo;HZ8!m&SR+)=*$XHM}~DO_NI-1>ZA}$FyFHg*P330 zv+!#lz8DS==HU3H}0A4OGT2iacfM$F3;N^aXXf(#(T`(f`o zdUG^4r^irN;|%@&`Bh0l*J;w4G^GAk&r54tfy{Ey)q~_U=xX7DBQF6($#fk#TVm+9 zTWYi|!`yp}!l2>b?p^4!lU?X}*~v3uIFJU>v$avL0CV7MQSq8)D+)JyKY_wV??N6p zSBf5v#;5e{iWkz_e0M+t5(Af9bRh3DDMakJz9=c4;2q%&MGk(>1C3AXs4zc@gWuEt2hD>Y;D?9Z*AXM6 z+%pSxpp6jT5NKBjP=!eAkO|H&5Wp`Edq8rKkJQ1OcpRlP?+8q3gjkS7x(coDj!yUp z$7vR>rh#+Y0_6z1yGxz$#!a-kI=f@Qf)bJwH{AuyCuksg`~y6MDHS!`uwv}Q$V;>;th zU+S%wYSp0zQvO5{VlOig(=z&jvP7Z`LMprSiqNCqdf4OlbI$$FcQ2d%pqT!kxU*L< zx$2E|4qHQmVM|q|d9!G;Ra#Bvbi2`-CZ^l0nQ3Vm>9)*@45O*SB-%EoWr*A&C;=GV z%_--^$bFFuR}4XEP0Vo!Sxat>j(00NqcAwTH8yPAT6QnF9)YP!rsMd9ZU|JKg_o_o z9FF?URZZcjzl-;Vqn@<37=2(XlEi3i>pY$^fzGTj>&UQC#op9mP@NR!63q8(#I@o` zI19g;^%{epWJ7ilaMgS_rx#mxGpFouU}l?nPwoU@R;r)_{60Sm%VZt(7OQEiH;KO# ziP+3_+*>>dsKvipf?t&sbe<-ys3G-_MqYNH4ah79osW>b2A!>(fA|%kD4BMVqcxUh z+)|@u4{`TV3WJ7c+y&^flU?X}dDEFN97u!c*?LN^0CV7IRq^^3D+)JyKY_wV?;`GR zFGUYW<5T(y;)T=>-)+!<#K0vNYLWMu6e6y@wm1e*_V^oTJLA%g6UgWu|1o}k>m-ml z_V_aa74K5IE9{9KZf3svI9LQJVAPvBsg21nSm?kzJUn%^IH|t5<#b(3a2$4U!%BsdnrK(w=Q6R{}8C@_xGJR34fm2fE@gs2l_mvqr%)M4*oR#51O7|;D?9ZcPCaz zzHbp+pp6jT5a?70P=!eAkO|I33*Z-rJs>&AMe1NqJdToEb_Kp^gq0wPbQN0PZJqED zj?*k$P5tdV18pmW<@jxB&&LW%Utzp3ihBuBQ0axdK;mj)9nvv!#&vlj6 L(gtdb!qSMp%5xlD diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index f25a2cdb7f98fc8f7ca38ff38fb14b4c8e184f81..734f70a560b561ad84cf12329e83e39e7804298e 100644 GIT binary patch delta 1062 zcmeC{X6ox^+ThJ-m|tLKk(_3bqi>d&Y?hpol5Ci0VwsX?V3cTTY-wR>W|Cx%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je{Yc zV3=rVo@`=dYQDLK@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je?UXs7#kFH&O9E^G5isX%%a7KF-paF&zXx*R)fMJD1vm6 z5k${r1S6sm1xp^H-Pp|tx-q;GLeQ-XgCKU*okHi8`~%LnKj8Czo*&=$eYflW?YjTN zm`}ZTUpJh*GIw4Vj_%}gjw&=WCzPbG}F=T8I?=EUB7pXtVEi& z+R7Noe}XYw8ll&r0w5Mfp5J!9Ld3$D<)0@4ZGhEE+~fz*!EOkhq`~-}cap8d_jd1? zyVN{AwML#NI{;XYx19WejyEn^Fy3OnYuTHH2 zMv~~>^b~6SEqVZy)m#s@lm%|x=|lV6xH}3IdpM%n++`#NYS9jQPmgQNP{Rxn6{9>* zBIKiSkKpS|?}4JFotIY%*pxH0ywb@_k4{IyzK2s0)?ZAcc8Q;TS;YQ3g&LJpeDci< zVz&|sH!54mzFpKccX7N5P5lTDt~p3l{^3-ubx`m68Hz0iIs8chXK>g^wYHDk@1sgu ypWC^2ed2#AaE}19Pshi@yjq9s^5RN-{>vDWK#41xU2+Rt`Ubvp8CEvmb^irLM9tv< delta 3077 zcmbuA-Ahwp9LJf{p%a%*b`vxRj13Yz=j`Pi4c}n+l4P71qg0HuGZ$fv2F8Y<2-1Z{ z5dAJC7!pYsEcp@bMsG&ojp3CLf^J?Y1hK2`6grROA8@|?0iWmdd-*=kb69pBmYrXQ z9r9d8dj7)9<+{3OQqiy~o2jH64W*@|qK3?*rYMn+sTmPTHe}TdD-o6Rj$@~NjP&3* z9W)d$lK;5;xYSD@+!;V@Xlee`ypD(sZI;ij)i(fEJ@}C4d_8RtI!Qf&Q~M9%5dZYKhQEKYl=ZQi zC*-5Cj^O)?pMj!#uWtIlzWZWcj;>9kc7fl1pT+(=i7Fd6`1;2g z#I6S=u5272`?gTa+{%F>H1#XowPhkv`G-@n)I=TIx5&TXV$U}ToWW%y#nL%)zppB( y?KE=7_Qd~GU>yNwpISyeyjq6r;^GQC_k9>ipuna5RE~3zK1fftf{enn8}fSz@wTa!N|FVWNp;N}_>LqN%Z^g{7HEl37x+X<|~E RiHT*hSyHOu=B-S}xB!|K6k7lQ delta 62 zcmew@^;>E~3zK0=RiIJ)K=B-S}xB#4b6Tbie diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 5bc7a56534d5dd19281f08fdda9f8b7eeced34e6..857ba57a4dd73e26d7098e82ad8159e354e18ac3 100644 GIT binary patch delta 1253 zcmdlng>Ag*W3#8}h6-0u~hf+c$SGwlV?$?gDy& delta 1253 zcmdlng>AOhGxcT21!Qd#>q(*Mng*W3#8}h6-0u~hf+c$SGwlV?$N#1Tz diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 07047da528daae13bc1e3874f333cb10d493c45d..14559053d1c47f2040476adb1467d3a03b0040c9 100644 GIT binary patch delta 13101 zcmbuG`*VzE6vyYhm#|4To2&b!4PoMz6|zmVBoR%GMhHTbMD8U*f}-M5X+zKwY+gvPiIobZBLL= zR6JWQwH5X&qL#~KuS~X19_nG+Y7X^*D#%Br=N1>E(nm`Z&|K?29EMU)Et`l^%Zp=C>XubcQEKSw zK`7O*b^uDfv@Qju{!$u^QV(v7La8O6HlWnNEtx2_+vg@!`t$ZhsPxv(X=ttwcFjYn zv^M~i+P;FRl?Pzz`v>8jGwR!Vw8GbU2wJAYhvC^&c62LBy>om$Ds6x2G%78qgipHM zGpkUl_3R~dT@6)m4|h6$8Kst9*ns9*S@R5~rd-;BQpJ_KD7EYLX(%0|^Vc8ZPJ^ad!N%r(;} z5*F{6L2B!k-;~?KPUPP6=yl*Y5`}Bk(IROP1&HSbbQz%A4OkkKx`ASmS4<{hyryMy z-ACk!l+O`^w3+9D#*l5LpFk~tQ%c+0f@0Blkc=X>Lh}|M7!?Z#@2AngcRj~4vhtGTbS57JZfY{Nw<|+zA3!hg6F8086jlaQ9tlr2XjT6;f6XM@8ZnC|(>jS6PY1;3zChn*{;rfOFI|u0#Nj0>;;y9V=gL@=sC%1t-@xIEJ}P;cX2aO z4H7v%>Q2ywrArj>GZ^PX!sza5dvq=eDfZ^ZAa#EyFm}6xo9Gv#-gd=+KO3eV@^;DL zYNG1xN*UaQba3Y-6V%!^t^^`J&R311fhkC|%~S8YV#U&GVi(LI*%^W;QOjFyz;fmj zT!pR`nt?rct5<;g2B^lSIzAi-*m8`WD zU3RP9;^As7nU^PNX7sheQ7V>(&q7=c$xB47lN}insQI&uYr9J!2^o^pkVCCnZZH@e z%kI8~9=G<|^yC94wI4cyc=1=AEQY)uNkfal(xCx;*l;dx-feA(DEOl7?rTl( zTZ(5)bzis(q}a%1QF=iiumQxr8G03{<;I!%+7YPOi2!Gh4f*;$c&qQWw>GQuJwCYv+DqardhqQk>25t-4GEatFDVNscV z!YxsuS-F{WLg(bpo1K|$E$IEa^#Gj?YqpD24!6}SZaO9vHQn7z*46H_Fu84!p;X1B z)eb-O=P_i}&e@h2rqBJ@h}OVPV)p+ih$CNyplf z0u|5ZOKkc4EdrlsX`LFDhL=WdtgnGwmgst7+yKl&a23 zM5%wyhI6f&mx5BiUoa8P^>lt7Dm}lX5S2b!mW<|F_hAA`J-uQqN-Zx;M5$ZXJVUAB zMg35!VO<1Dy}W(`O8uoI4y7L46pK=eKYfBy1Gi?O)GnW!Q0dP*7NgQzyQZSKKG;1U zrP96tRBHPQrdAw)sqY_zch0bH>(L5d=K*M$4j+bRQ`ymNDD}>X4XCv3=`*M_zXCq# zrk`DdQmyAMqw8v@gnPKdg)1nv1xQA4Q^dP7a_-lzX%dr6adT@}-^2 zJJKqYTk{&NMe{Xup#qfKy&G*twc~@S2)U@U*J@=i8ijHfnCTFz{V{@eqjfe#QXIhL zf@nH}GVA)$G=OQpMB+RB=?j$GBbElCTvI$*Q0|QcibuJp-lmbL_Upm49@SnSO6V&A zR}CZdd5W)$pgdsziMV$um*pjH5FlnLMm`kSp>uit1PJOBkINt<5V2EioJ?&Q-_Px#S|c34qctcN4F}065|3%#;sc`+$-(<+IPhK1v5YLe zX2CshkLfy?1P>{v3I2fC(YfYIvcSEQb4ix3G(k<|zExBPoF&f6Nt-fc>p6B$;|=l< zU)IvEKm{C~D-Dv2pjen6lY5f}YX6W*&>mpv6#{qP)dt#+ZeAh92KIYN=ixf!`zb9s z*Ql(46Oayr5wX3Cg(;mpd30OF6K!Swt+R3gZeUBGvK{!!>Ky--QHrTa3zb@wop2!1 z>keFkzA?&LWCa|%XwX|qA}SW=rzo1}I83%sr+1WmxQ*>LENwnPrlDh)NC$sW+fD!f zJXoHkoI|5w>2(c05giptTBvw&>^x;P8iS*-ENvDBpaafP(;>x*a47~M9lUtHRXNoa z4dmo;#n5D%v?y1i(SBp;)g2a3Iiu`Fi@_VtDrPUR1RQ@!i9ydvR%;bDgJeKEsa;EYG(Ac!BHxfhR;J?4arNyu9qDd8mRfRjBAHWAqg3h(~!fh+Vo&B zIF{Xg3q5Y_wdu|WPH8{12l3*sI#~>PJu(R`21|!0=);C{adU5LOI;~}K}ZKLUU6S* zgx^x^Lxzo{hroxAV@yd0f38;a69#ZWxRp`w46ns^KKe%Z<)AS{#x7qDw!wJmPy&y{ z-O;*FlLz1&i+%(>d02YgMthRIV{~7*3#8b{WwCmGPp|<*=?uLR)N;d2ecfPG-14xV zj}}cxv61~w>gUkMKc09&FNCLn6npTjDt!|=0C?3cJs58M@ca4$V8?UvQ~eo|v(%;X z#pik>e4*9L+s%v9J=}(%E6&oP9q?BJ#|H(Glr3-Msynz9dNjXV?f+0=`8ShmKK}tJ C$R diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 71cc119b8e3908d94bff3668391d5f1aedea30d9..348522111b122b164eca8eb007e26e465284b13a 100644 GIT binary patch delta 1676 zcmeDE&D8swX+tohZGM57MRJ-!j=ou9vRQIUO0r?1iDgQnfl;EVv89EjnMsmaQnG1c zQksd0WwKdPs-b>LesZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90LsK6i~s-t delta 1676 zcmeDE&D8swX+tohZAqR%Zb5Q+xxQs;ikXSIVRA~6p_y@-L6VWVadMJ{k&&r!vPGh) zfnlPdd9sO-skweiesZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90Gh`U7ytkO diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 0b0db62131d385e969fb17bb24f2bb3730fde532..b4a3022b4a4c5e80dc184220e1994356038002ab 100644 GIT binary patch delta 117 zcmeyW`Big6IHO^Hftf{enn8}fSz@wTa!N|FVWNp;N}_>LqN%Z^g{7HEl37x+X<|~E YiHT*hSyHOu<_< delta 117 zcmeyW`Big6IHO@no=RiIJ)K<_<~y#N3J diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 94e924cac348949c66da23314e66b266879db4c2..6706644d56e02a1f1a1555795acde96f4b9fa79c 100644 GIT binary patch delta 3290 zcmbuB%WD%+6o)y}rt}df(NIi%MkLrSqmw+LN;k!A7lPnQAyL7FcbY}kbLJ2DzTa=|z31L3u5}gH zx}K#Wn#roeW-2l{sOqL_CK6^;SG0s4iRnXeZCFzkLp97H-AE~lW~xRq%J0Bt0%ncX zQhc;+SC8|=4YV$o+Gwb?5DHlRVVTDQFe?;re3OD*u7N7X)3YJs;WPn;&9(^mJ=Wg@99 zzoL(QO zRQSaR{3Z-tGkM|=$fLw$<|)A$=PZg(j(0le?7|PN<&Xzw%a9}7P%Xjto6t)Y;FsHQ zkqU3r@0*3at^|PxaK)7%TY;^v1ZU^qwJSkm9yG%9*4o03=TIdKc}sAQ!(YkGDLjvm zCeB?MZ&cwE;nA_{mzjV)xTgl4gr6hZkY|yv;A8U*@Uur%F!1CmM2KzjC|n;2Pj9nG z_6G#;?p~ JpOb#|{0C2}7N`IK delta 3290 zcmbuB%WD%+6o)y}rt}df(NIi%MkLrSr1Qw55ehAeAi8K#Q4o}7@&K_mpr#Ozrhy28 zMC+heEhrMSU<+!ma1cyeAE587~tLJ(XjBr3S@PP52*PX2)J`~BwLd+wdwT3c?d z?L`vQ%NLc=lrcWu8;Qq4fv{@CqH0J_C{Zn}8__;Z3+hJSNKjEn)UXlIf?<9SHWM&& zu$Ip0J>%{iaP?DorC^9(hU6<)4-f!@H&*S80V>3q&NPfJdkV?7%0 z_CF`$e5~h&gS2E;@@_ug%UWnSUk~}6MD*do&$QGm-+46DMM}-`=J<)zBy`ejU${yn zBa3fnB%fJ2K%3%8ZoZ4q(40B(Vak4AK3G0N4eVdOZ$D66I5~cOWANip{pei9|C!Rn9Lk`IAfnh@yU9teaThA-~orfQX{AE zJVKH_ z&pzkuIWtq+6H(g}aU_#P6|Ibkv*lTqPmIa2#n|k2TU1VTygkPfA57_otXxyS2+h}-ZMkeQsz>0T4G0~A*%+^Tu|0uW$7rjWkWHV>zy~? zfFEuC6-u49bvByolwZD#Qm1Z*1|wGwC+^5VsWWyyM05QopM_GdRz8DL>-Vfgsb5wl zpwz!q&q1kYe)Ba-wb#CeQa9BFqSC1cD^TgrkL07dZaelSO07R0f=bIifT_n$z|@jc z@XpCUeIKo`b~Y6)lXMO~o79HGD0OjDIVyd-`64Pcx4<`@`HMX$HM8|Hx~^Y+3HPw6 zy$z-A>ZnC?y?O0FD7E7HA(VQfs~e#5h{bG;bKR{{6ubA%EC8#Irj

Q7Y?&ue#e` z{|=>2@0*I|`gDIYO5Hz@1ybn{V_$(-icuIkCekF0-9)*6HZruMYEKSg$m@)lF=?rZ z%|*+cXJ!VJ8xqRQXsJF6W4lpp*a#MZYCFT(0IIDR#bVGp7mZ;ZD7SAMTa3Ntl#=ok zt3Ase*n7NZJuBb`i&zj{S;}I)aR{S^Wh@zWAQ8h)QL!t5FgpAyd%`=14XfEE z(4mNG*05oU=g;6IR$vYAb%Sf=Z0~Pji-6mSSC5kB@!AyAAhqmfMSdWjKXHKh@a9_92pW(ua1H^*{H=4$pXa4ZGpOz~n-6r2djW*a zCV2V3J^r3fXyj z3;v;(-2{?vAmQ*l+=3}4=?uD!X-BZs z?(ccxB#L++jCc`^iIg%CvEH`rC8BS_CrVbhZCkC<4PY2@Z}{nP(i^~6t?r(`@}d+- z3ua1>V7zen22OlIy7UfGcYVhQv5_`rNiQP~vrDB6%FU5>BaNzy%a=%%z)?p+yb;-# zLiY+4mPwb8`%RDd{8s58nl2aO02;hq`bCK6o0In(kn%WjX5wpeq;x8;k$wyWLc+#6 z7QnmOg?`&Cy^VB=-fKeaOP_op#i0(gxlO7Ea(3_W#w*g405tK6e@V&kl_tc&wDN&u zvw(P>FOg`0`~rl9_BRa_p1ndWdKSlci5K z`g-MXK{jMrK?f2s%+o-ztDNCfmtaVL$_oc0RTLQ-kbC~|f*84Q2&Mj?8A>O56Nt;k zpPNn^d}!D{LzCAb{m*Mlonc(07jgO0)XxpQ=#8lNJQoh()X{2a91aFTmR>^{ToEA- zrldZ@U34gLXHhp`Fdo04IJ~QcaPgylgVFAZQ9(t=58{AQ=I3^R%H+u&$cEi{!Dol zD4;8N5-yj4`Atu}`?liij^OWI%0{3G^azB@PT(XsepKBKbi6=jQlp|ifOq-}CKdm9 zv^7}uL#HPiK3cT{>+F6%5#j(cN2&q9TOG}|s_T)blTUlq1+?&4H7?ZiCg-|%beamC z^18TnuG+I4By%AS;`tw`Nti*YV_;?g6`WBUktGx1m(f2O)L7(()5T4V>T+b#*Tpyg zswTqZwhJoq%VpPkm(jHrwH_wVxu`CHb6$8^O@YZ7ZR!q~T-mO+z~qrvRpe(H?rJaX zRFUtt-Qro-)%9@BuXm{>z>VQ1zk6G~1{W;qu8REj!A(ANU%dyAN%Z!3INbve)qTKK z$7jpha_WAhB7-Rj@hae|aFr>0SC6XfI6~rv07CsbK9Q8VQXWrOCj8>1mL2 zv{r?X6S6crzhTj?0#}DiOWBjOe*+V_`1_!hAF*o@{LXV)B(Y~T@PDdq7ZNTzfc(D~ zMi6gG)rPviE-rmZ`v6#s@B5MPn{M>HvLq_&3ru}3I*FpL9p^doapcMLw{2R?G~6JQ ur-k|Kq`V7S67T@{T^QNdwb&>x!XOdGhh9Z+;%T3}7$|}a5`W$P*8E?RouuLb delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e39ZKN@L=H3}722h%taBL6Ha|Di1NBh>#dsjH1hk ziCUI%mYx(%Si}lS>vLjuQmxczYY13ONEAbZSgA_UDq3QsM0(~AiL~WAiFNNR|j?hGFx@v8k=dAVxKa6GM2AX9y)R^ma|iC`B^Kr zSo!unV>hGHPk-L$;d-S-$ujIo5$zZ?!d$&*t}AEWo8M|)DG#1oCzq^mb(U^+GF$1 zqD1>LX!APqJi1~(5UkB1Rf}^_X~3!hG}ro)Je1l}Is>Jic^%HRr7Q)dwyZBgbG`ir z9Pqy4}bMX43n4x-fSUEKhchb(5R?Q3tAqS!sRX8~A!G_CA8fl^s7eAV6h z_75m^dS48h>r?&BD0SaJI!L91jC})QDNO9 z0!+u{NBxNmd4STjV_sl;P;PM&n~&yOlFY0qcU}rhLAmo%*>k8iA)W0(wR|B%J{ORf zsd`c7scg0q*n7NZ9n0qj3Yi~WUdp1}aR{P@Wh?=8AQ8ihsMwJ}5FL7jJ?5Un`VzJg zbSR{n)ohsJ`ZG9*6<7^?-QZZc><>4yMZoREt4B$5`J!zsfIp~US6mNTHy~kfMn%Q@ zIO9mI_0Wabms)nQLN5@{AKTA7cyldl1Pw?S*oS~({?=LM&2v+v8B}+Q%?G;1xd6gu zBfR|IpJPV;ZWC(*lOSR6nm-_RG%o*hfmp%7t1Jm_pzba<6gVxNy)VSxwDTsbLUx|s zf`9B~H-O|HX^s3CXJ$TilafO3+-G+OpYgA-qnBE5suUEeW6Y@`k8(o2ZL>{2O}vNEMzNTcfF@+DFwaMY0yZ$S2? z(7j9rWzt3De$yj9w?#UDrptxchX!wxejVWY=Hxy5rCd&&nfRJaDTT^wq+bAmkg&0i z1@Mk`q2D)4ZzG+e_nHuU(q~^u(WnD$YLn`LoSl2T@v=142Ti=<-%@*p5@5_zvcrdPdQ`Q`Fh0Lpdous7x8U?5$6Yrecs_T~dMP_gxcK^Qb3hnh}5 zJlWt$^(W=K@Ytz4#C#%mpc|a)4hKG$y^#g@e->Ogc=BbLl9{qw&J3F4mCpq#F)KswgxxAou*E1u=5r5J>&68cHX+6Ntmc zo10D;JZRWnLzCMf{ou8^&M+?2jkr81=1W5_dL!yR&xJ!Ub+j59hl7ETrPojfS44>Y zDZbBe2OSEWS=0>}jK|I^Huq{FT)e2?p!C3>1@vQNb&xXNy<+W50$TXA8Xf3*lXG1>I$4EI zd0pH(SM6C2lDQE3@w`vec+8;GHZaqN@=vRc$dZZh%jlmCY7}zA>EfnFbvZKW>*5=K zQ{!NA+j$lF<+5YF%jjy0S`U-wTu>LlIWN4VCc@;@Hg!8pu54FZVDiW-D)KW8XSJ7h zs>pZSPVua3>N+^**SpkW;Kp#0-@Bz=g$ovTM@4@7;3OZsr``p~Bzk*1obLVy>R#Zg zLWCXwp6f)Be%qq`!6njf6&x(qv%4^fbsm zTB}0HvFTb4zi!d409S`YOBvzXe}IWx{C&{M59eqh{Pr_iD6ywC@PDdK7ZNVpf&70G zh97TA(uO*}E-rmR`v_Q!pZbyTn{ITyvLq_&2~2$sI*FpL8Rt6lQRE5q_pMswG~6JK uCkJ`#pxpCXJn#VcV;C9Nw5TvQ!XOdG$8JS%{3(yzNGO6-5`W$P-uypKVFwNX diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 6cbf64550de13729785a20225cdbd1885d1ae6c6..5e2f01e0b3b3505fc2d58f4711d5bb49ba095019 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#hWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfL@UG4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7c!D$y delta 976 zcmX>#f$7u)rVXi#h9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*MnLXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3bLXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3s6AO} diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index a176caf5b08d064aa8be8274adef3c98ca5817db..f1c41be9cb881d643da52e3c39d36d095bdb59da 100644 GIT binary patch delta 117 zcmeBC?or<0&uExmU}lk=W{{(AmY8gooRX4km}p{|l4xL*XliU}VQFTPWR{d{nwXSk XVq%$WmXvC^xq-2pnG9_%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?OhGxcT21!Qd#>q(*Mn%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi6;j26)V delta 1690 zcmaDdi}lGY)(z2&h9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*Mnmhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi6X4+X&h diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index f3298c577d396ced99212f5964e58cacd7f9f182..e9865319119da64380e2c3921f62d9370db0e53b 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfL?pFtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$OhGxcT21!Qd#>q(*Mndx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$r0bS9LG6FXUplf6=}ZdLPbPGl!#J6l+}ysMU-`(8A`p|cl`mM@Av!ro!_}|UPMeU zBBm<}Sy&fzE%0r$Z_0NmK9{e$+UHQ5?rOz8UnwkbFL1k@UYFNbsCYLzoo=7Y>v!Z= z*ZCUq8|oUj`ur^H$z{Fdfg@%WNmlZVgf9d`wbS>hg`G3hV>oY1x@^Eu)@RM&?@}7U z;8A?oTtP8+-e(=coo&2!(h1O62DkCk8FLb$;LXflZs9Fc4`N+c`Hkt@vAR|MW@aT; zv&uisT86p~&F%tS&#j&dl6<^<1BzxAoI*=g3R4oGsZe>gy8@et8g41BwL-2n%u;ON znWdRny-}RaU1etdWgU0`sZasY&D>so2-}4!4^*{aRja&x-5p@Ic-UhCFnK+we1&%y zMTh-2k&#qF$K*j}<_7{9$XF_&Fy9dDLprRZKez5d>ebPrrU>d9*{%VuTnQ}(Fs6s~ z?}jcR9qm-_qIE9XzXJ^%I#__Z1`ju&uIG;}1-3cQ3GYh*4i+U8;Kl9JK$KO&$6UW8w z$m$16xZ}f4%(aB)d~8DwMcvi;1?sSlPWiS3*agvApMT$i)_UW|FThpnNgz$yYmMfL zR!Wiqb0HOu*nzbTd)Bb_+;QTSle{&?!LKYLXVWlV+q;=0Yuy225XVc2niQvsQCzGf z(AdacjAls_-Bo0hCC)5sd4=32f0VL>xq+OBBTAMg z1xBJ&Z6iIv4w3J==-On7?q*^z<83u*o*F4vbNSG?Cpw-q>RA=%@lPs5Z)`w$Pl(vHR+w*Rw^gTrr?gH()*{ R@GwG4u$NG!kiWx4^fz9yMwkEq delta 5860 zcmb`L+e?%|7{-~=wawMtR!i3m%u1r7+=GX_NF$IgI)IjDc35`T4O}zVOs&=qpOu}7 zWulKok|Mh309FHzQIXb7B^417Q6fqOQC1h#MU*w)8cN;mv;6_T=Xu_D-Z?NYLWUP1 z!xa}lntJXLO6o@0~MZO?aj+zajYT!&|&E7xjs+44O(_T2pJ zsya_Yc0*m`R*#njomuQI>9a+wBFPG#8uNu7xU+@VOg;fR%itE?o;oiU3f{u3WhUM_?I6~5h2NO59jja6Z)R0s zH7oqn?B%HI@SJYY_1v2IAjv0MH=<~o;}lw|D>oqqnhJ$y6qI8VQO!+7HD<`Qnwg4p zJgp=Rt2d0Z`Kyg=ptKVYAQj3Xx`kWI4q>}c;l9dNtZIdKtiJ=y77scN04A>og|Bpv zpy-JACNh$)z%hAH8TkQUDl(R?K#*_r_ahzF(4SlPAoXf!VN(co4Q*EeSMCZd0WhY8 z_3nl)Ar0+P?xA%q-oFD4960DeUHyj}P}lRvmI2$GX9o8r00)aJ;NwLd(?OJFc&G7{ zOEv@M%yxAf*l^cZjOM$#XH3FS=6|H;OYZxz<@JT}vcC5zk-PKyp}UA{{ZJ_vuVW`f z?#Swgin;B>PRzBKXMQ}59EzH2&KIb|8anmcQeYQ^YkmHG3tH=qAHM)swKs+|sjpR< zCE6&72h4?3IAR6XHt1Z-I$SAvv3b@#@}M60i37h)x_YAxd17Dtd9T zf(ztDw|0!utVg#F1$ABqNj!EjCflOsMKIfk5ij z1+-c$I73Xp)ftA>j(bEe1}>A6z=1KQkR&oX$s0@L9UW5uhFoKP>g@r!68+ERWXQL( zxOJag1195dDT|o0M&-s#8#R)C30Ua^ai##FG~!nv;Z(4 S7kC(=#n?-zLdf6YLi!uAkquA) diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 813ffb0ce41bf02170c3b0360198138ec5e49c63..a931ae84070cf0e4fad9e2a5691b07afad1c5794 100644 GIT binary patch delta 1199 zcmey>$@Hs}X+u1tVSa&`MRJ-!j=ou9vRQIUO0r?1iDgQnfl;EVv89EjnMsmaQnG1c zQksd0WwKdPs^R1bj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGnCg>moz delta 1199 zcmey>$@Hs}X+u1tVM(4rZb5Q+xxQs;ikXSIVRA~6p_y@-L6VWVadMJ{k&&r!vPGh) zfnlPdd9sO-srlpyj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGmCm}S5K diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index bdc124e4a1290a86b506841d0d19b2f9fc58c255..4b43af4e26c070c60add4044e6b5c73972c0369e 100644 GIT binary patch delta 2927 zcmd^BZD>L$*pcRwN{h0jW)J2by}UJwPl)M8rySkZhCKan_P2m z(se_tKPCtfy1p5MA%4JqZBkbAXW$%@4H<3-Q8p0v#h5slW0QffF=6N2G->>pqxriZ zIk}wszR&xd^StLd_wG;hjh|`5F~eKE+MHoG?T#s)&3xD;Z}cGE!-qn=8+CMrkn4HW z+1|Ce%hSPmIKC5c;f{_j-opuQI7)w4Le_}&#Y~ntT}nZm3ip*NxL1C-q{19rs;tSF zjjW-x^vtEoFG}N0D%WS+%chyqD&zFJ%q!KOmMuO#Gh+R?G}1yQQ}^z=#aDz8>rRMO z)n{&R_gP9$hiiR*TTZBaEH0?56B;(x!&2cHa18Z8_h3B?_D>rkj&h0uN2kCBjT9xC zf@!ffWr~JSJdP&QZ={c>kEETVEiz(+^XNHP*6g4I@aCWcUZ}9Zxq&KLf)56|A?R_? zK0IGj7U?aArd2f-JI2L%+l+9STLC-w)xdRsHU3Y~r(pShH{9L#$MQLp92*Hqs)nL` zf#IQNr{SHU9_FGEvMue*tZ~L=wayZ94Pu$t*e}}q6WjvrYfq*9L^Xe>M4g(A-VW!ts4w^k0NNe%`)6OYL_hcre9JgYI%%5;lkT;d zoLTtT3Ra?L{9y;$Vpw~BoVppQKn+8e+UZBHB1E_u?xLzD13~uDLBOi$FO0?@DeodXb!4-0c+k~ zKFr%o2v@@0Fg?1Y>2Y8>SPW}|E2|sw7gXN!vifnz>YkT{_qYpmR@eHvuJr}}CKEQp z`AzK>-i-IEG16v$?>m~84u_>zh0sXuZiNRSU&n$3)|{z(M~h<~+xsIJ4-~;cPZbvS z`a=slNfy?=q!=W>g^@Mn*0b-mVqc#iyzteS;P6g1u|FPz8KDvS#wwW!Gi+JA63%*? zn6qZ6-tVF(;Of{*c&rxPjE0M~FuWNC_t;_DSq^QXrEo?(Z@qy5BL)K=ZjvXX{*-xH zy2{YTj7`2>*8B~bzl8@iWr?D3frzi-4}}PMaZ(kV@D&re1D9LM=zAMR>pYh~>=wp$-oMtiNUUAMIi(BZQp%N||lnCru?To2ckwgZZ}Nfz`iVoV%pA}aBfi6s92cWu)Sj9Fjw{&&CL z@Av)wKL3Z@cfX+Denz^tbthxl3%VCkAfNWnW)eq^bnf71db>k`#7sQU8%+A+U7=ti z9`5Su2`0j^9)BPf2qn6^dO~m%-KrsL+VZS?gZi)*L7WOVv-NOKd#EPiIII}A$c)~u zt1Vq#F@9T{Z=&2J2kMrn+LUp6qkPc(m1g7V^0ei0ZKioyZd~Rzt_ahX=U}eBNnU$; z+)#TueDlgb=opy8?ePAA$KdaMYvARKaCV!En$W|wZ8kIsjv*GV^thpaumS8Q7vkac z=q@^u-s?M~yo(-1VM(9uK;j?I4gZPZyol56@_8C4In|~v35BU8sG&v6E_IuHO z#dbusjR%(NZOLFY#kIAd!HE@&vSr(8#r9i@ZE$-xCyH*(*lncbmh#yvl1W%-6*K}n zAhZqO2{05Gel{b-a;cmIQi)K(z!i;hDm!a|Rs*m!#Q|n+J3%T{=%8vDGIe%38pVA^ zi~MmX_^HCoC%6+Ie7s%PSaw^r8X|;k!vmJBg<<&p_2JDGl`u4w{MdT(mQ$H^O4Gi4y z_)6HzI#t+}CYpB``{v?eUz9ZZz|v=#^19NJ7b+my7;rSPuzQq&Kk8Ykg#q(KFXdt2 zd6ONkj5hn#gmqh^s_UxhTUEBkDunp+6n3Ug(DjN5x=slUoCyUDJTb+JkL%#a?hbt_ znR=6-0aMt8kFOV6N6VZ{9H;y>olDGR`5ebdzz8;Kk&yA4gb~btfmBl0H{1(bsRgEd zLVduHqmP18m)oi1YKNy8vhT^+x3xHvjTM!YL(1s^bIOMn;K|fZN>=p9y2XL>sh5ce zZcf`G9wr6b@W$7|@gz<03=F-bKJE+Aa8&%%avS>-bvk^xL+g$S1|k H>|yjT=6uBL diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 5a0fa3a44115f417d845be341be1f8d39968b2ca..639590fe539a0f41a24f17fe2d40b1d3a1fd51e4 100644 GIT binary patch delta 1705 zcmdlyhh_5|mJP*>w)q8S7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfPL~`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dch$6J`Ja delta 1705 zcmdlyhh_5|mJP*>wk3H6xdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*MnW4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dd500#*P3 diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index c83d4921e0aa978cdf428981c605ef3b6d8eef2a..895c632fc8d1093da788c51fdc5a82ec4cf50d34 100644 GIT binary patch delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaMpyNE6`QCOj?&YY?`ql8JRf1(!vHp8QWqQO6Ek# zmMmoO6>s)}Guv3mUfA4aIm2KyPL{a@f;u$8sep;`2N4qIEQt`mEpvas!yoWGpXZ!= z&-vc8V~fVIMdP(1mfN(~QQ)t&HLP>^{0@I0;Lr8hodKUM&$m9`S>SZos~y$;^}gy_ zyWQz`RM+GxEo=f%OWVCov{BlUw<2Adwl>PN)U8;( zL8;I938MyO`|8aowKl5^rM|Xy2SAn6)*(QqOk0D}nLUh3KX|qqm5$h2QR&b57f|U_ z&)1;RXEwB>XX@D~0IIaOq5xUsOmDvEMWtsq??>w#+_D{|p7XQ;R9WJkL5bfM=L5t@ zch7I%hf;5pLf?w;oSxc&+@eU}Z+312YLzABQ)r#z6;%K+5_YW0hf>F?yHM&8bV z*xi9rGwbsJsyy6q4<$Ybx&dP3V7_ZEL8-U)uS2O_ZyrFY=UeJf>gBfvQ0hWkCrY&* z{uH1}OZy;740P-Ui0XBym$gScTIekpl*OGdqtx8v_g8_`%RN09H7KV<2ijrnsRfkU z+gpKBPkek6rOuzNN2v>a7g6e_ewgaL)Q?iTuQ<_K>#zNVO8=G3sMJXC9d-{@BGi)d zCRsRqG71{HGFdh9t{#&rRU=y2IGPv_$z96pQ?XJzQ-^JfW%>MX6K0TZTVs&!knRaw zuDC;5y3JTcBIY5^c$tyTB(q zm;qb-u5dl+qIH&8#g7l!KX^^)R2gDrD@dWck`35SlPDw>EgLQofEdCz!^@~)l79vCfK>4~09AjrS$@HaKj(RzQ0W%>`gi^b5aF>Esa6eO7NvJU z{WyAfBF#SJSJ6+4YC delta 7878 zcmbuE`%l|d7{+rBYm2nfmiv7R&YBQ(y>MM7t;-ZiGd3h669-sY*gz;_BaWeDPLyoP zLIz*)WEY&-#zJ;sbBE;}2BUGZ%q0-ip$Sd}OpHH>kT_>ag!pZl`vV^Sfam!nU$|eETjHN)1a4pBAB9IeiR9u>7NM0x1+CnoVZIsr8tw@(rbU|sK$T`^I3Nq1>CG41sPycX{b-#-FKtJu=Ze|^sw{EOqQq~D9RM-Z z-SgY`q0}3t(6=Hur>Axxw7#q8-+pT12UR zeHAG6#K$*L>cZK2l)Bh|5v6V(fT`|F11PoUNA$iWl^O`X!>-{#%LHB47Az(gf12>-5qU&_037 z6<0t*w;8L5!#uGp(5afklbPd1j*fcUhkSD@6pYNVU?%uEIe1rNlt3bIgd&MleOtMC=NvS37N< z>9NJ{4Azq(+UA%={P>XlgV&Tol>t_^iWJ%#8GQX}`q7)gpA>iQvKXQELq~rw9u00m zYKq`bgLhS^+IUJf@pGVoa<#@t&&Tm%aQTMx5vjZt9oD@qI??3d8d}ccd1w)jO|Ea` zCnB+Hr36hrE9QC{E8+*iy%jVe)g(Cr4xy*gSNSoVucz`#-h=8V4n~pR%frFZP=fk^ zj~`6}>(4xtBA)B#v6TJ}pGJ#NO{nXAUZBT9(57yF6g|MM_e}KSY3@UpL1I6z2esme zRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VOhGxcT21!Qd#>q(*MnRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VLqN%Z^g{7HEl37x+X<|~E RiHT*hSyHOu=6XgY4gg(;5`_Q& delta 62 zcmZ1|yij<9AERMOo=RiIJ)K=6XgY4gg>45$ON` diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 20fc2a45cacfe00a31f9ab1e0411503c842b19e9..6f63d45520add1acca71481b504af9af01261561 100644 GIT binary patch delta 117 zcmbQJK2d#xH=|*Gftf{enn8}fSz@wTa!N|FVWNp;N}_>LqN%Z^g{7HEl37x+X<|~E YiHT*hSyHOu<{HMuY-DH);Be#y07Ky;9RL6T delta 117 zcmbQJK2d#xH=|)mo=RiIJ)K<{HMuY-DH);Be#y04F6O3(IVQx=s@YBWr9bKAEqCU~K>fo{Pfx+r8nT$YMSGhz)=%nPwX zIKixwH9vv$`jp@@KhQcw2!yQq=9X6JLTdLj5 z$h_CX+Kbj}a8eq04ExDKLmVadlVnpFTeLqaK+BEnk85DBguJxz`yQN}C7TTD-AmcL z_ors}GI3Es<_ebMY7Mdv7iJIRP9?f{7^U=+^tg^#6J<=>KY_hsVZp444#Y%=j{PGr zvQx=8@|yES7+Kq$v$7P*pih>f`tDI#ip(&TrKlR2kfpdh8k42yco3DP=o$;lQuLBm z+)!@6&SDzyfSL5rH@FdF>G9KrI4N086%#KtlcmpPgE5d`h-<{VY5lk!lXfg?xSpSz=@Y1~8bQDIWYE33ea+l6_9brTHXHeueta14;ils8y4!$l+k7d?m} z%jaV?@CkYDPVcoR0hxwAZnDA?sl%_@0U3h%w#S{&Cq;121vZHxte|Zk$RYGCMNz&{f`7e)(ul!1qfzxGVQU(T;8hyVZp delta 4131 zcmbuC-AmI^7{__am%U}?R2G#^YBWsS@3*-ZW5O=99Ow)d(M2I{x-7GjW`+$?%nPwX zIKid0uPWWw!+m|W+KzTtjav=3hg6p%qJ->jM>yoM+ntWEr_HITZK^w5V|Th)KitaA zUPcm)Ue=nwUWt>^mdCJ{EZCzcd4R-xMz-j9l!KO=*dNcpZV7o&-S=HMIg9yz%+}v9MrDe+ObBM92OS zn3y{jMP75J2or0*b4r%NHRzY6sJMGrmST07%2Je%OvqAP7>&qMbUbL6rRW+9$x>V+ zO}L@lew_uh#S0eFP2b=~jK#-K+sf8?kHj=riIL?J7r>l?vY~*PQ7g+)J z>sfa(4wxv3LTc-To9yyyA7X!}*NX69weQa8kO=0LJv0`B^Q`wv6>>2$^U4q|MgnAV zO-qigenr9yHGBANHXkMT)6-?3BdN_?w)kTS*Z%(=8g}$|18(+qJXmV8{(xK^8v4=% ztw@i!6|6+pyN`d|4>P!j;HSc*nwOP>1-A<`2J2=R!fnEgLGcklCR4^BX@PS{0xo(G zL6*5IRF`gnYKrr&?7}~&jYH&5SG$rFQkwIB$i1j ze_sb1xEv8JsDKjEK&|w4J-kIiq&?QAFY?-xu#5!}mFTH02pT@w1O{B9rk9$Y3zsXn zaP-qc6^iIU59rCps~dc#6I!r4dfSN$r!HJbW>BUEA(xA&q}c74#t<&UxUfvW5Cc7Q eAGD-;)k2p?;RXJg7`QN6FrW;)T>Q0XbN&KZAp?j2 diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 6307b701e502c3534b4bb8349d821fbaf84cc08a..415e9820c865cb7cfd501d460db56caae8662e6d 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`nVSa&`MRJ-!j=ou9vRQIUO0r?1iDgQnfl;EVv89EjnMsmaQnG1c zQksd0WwKdPs^R1w#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y)Zk5Sah~ delta 1709 zcmX@x#dWreYeO`nVM(4rZb5Q+xxQs;ikXSIVRA~6p_y@-L6VWVadMJ{k&&r!vPGh) zfnlPdd9sO-srlp{#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y*FD|9Sub diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index b7b98aaed5b3cbe9a2124a0c5cc95b17fcf5b23e..feaf27584289dc16007f659f84b51c69a8d9d50c 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVSa&`MRJ-!j=ou9vRQIUO0r?1iDgQnfl;EVv89EjnMsmaQnG1c zQksd0WwKdPs^R83MnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgV(@bIbq$ delta 1200 zcmX@z%W}GxWrHuHVM(4rZb5Q+xxQs;ikXSIVRA~6p_y@-L6VWVadMJ{k&&r!vPGh) zfnlPdd9sO-srlwQMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgSj9XPf{4 diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index d9a8481399599af918f4df48844b4e475158da34..40d2751692b8cc8ebb37bb20360aa43e1d515dc1 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVSa&`MRJ-!j=ou9vRQIUO0r?1iDgQnfl;EVv89EjnMsmaQnG1c zQksd0WwKdPs^R7uMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFftf{enn8}fSz@wTa!N|FVWNp;N}_>LqN%Z^g{7HEl37x+X<|~E uiHT*hSyHN@eoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6Iz<||tO delta 139 zcmdm@wnc42A){SMo=RiIJ(feoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6LHrz#@= diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index a633c8e9a0ab9f5180cfa1fba45ba4b84333e288..470028c131609eb3e5833ff491929e9fd5170ea5 100644 GIT binary patch delta 760 zcmaF+p6Ts-rVZ|lhWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfL>?7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~v!UpP2 delta 760 zcmaF+p6Ts-rVZ|lh9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*MnMWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vj_l(8 diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 734ffa11e7ec5748bb8a3906d3c108433a014ffe..28f13d22f99c91974a21d7f56811b6bc9b6a9f70 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVhWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfLql7&nrk%Yi3o@&=|wOhGxcT21!Qd#>q(*Mnyg_K&uExmU}lk=W{{(AmY8gooRX4km}p{|l4xL*XliU}VQFTPWR{d{nwXSk XVq%$WmXvC^c>-fEIokY~_i+ONKZGNM delta 117 zcmeB?>yg_K&uCbZXOLTvTwbnknVMo|Vs4n6l4NLRoMw<@WNw_CWMO1vYMgA5Xlh`X XXlR~nVq|K*c>-fEIokY~_i+ONBFG|4 diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index a1eec772b3d99e81b05d0196316e853b605f4da1..324c5174cea69c7a76d7671527fd9532f8ae9692 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfLp)7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0DOKAMF0Q* delta 1704 zcmdlyiF5NL&JFI2h9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*MnHk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0Jk3gCIA2c diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 5c0bbc265fab671f784bc2dfaf306891ee5be12f..d00e099a600001770e5aba1ef1b4de59529b7652 100644 GIT binary patch delta 2442 zcmbu=-z!659LMpVi7^>wMa&{X3>$OoSjg`r6m}<^omnmvZYL*i=$jlcBRx8 zPsxRnlKcfOXrf$9i3_<<7XQI#f57YWKF|5lxmz*Ztr(7bnPX~Na;bj%WVNKIlIruR z4#g?^6nl+QS1Y?@$?286YMtWsJDsvBdB+`mkrALG?jin|Wa2lvT};zM!n_WnvG6h^ zmnc2?D+QvfbZ*)~Zg0fBN_0e_!Rzog3DCw0mX+Y3t=V6{CFXC7;Y6+Z7ns`Yg;M+O2F9dsLqP zfsSIppm1CIYwuTZh6JRWjrtg$X?5KXy)84SEpKKZXU^Sp;fs*VwCnz=Y9?+wf7F?s% zgQ7XKdT-wYs{ywJN_tg>P-=FWQF`Hi1t^6)4H3}i=BL}5GoZ*r9zV6#w?;zMQF65C z7LYb~?{-4eOC!NR97g#_Fqe*wyUH+58&8k1808yJnUwOrS&VU`-NtO9A&d24kIMTu z(3r>WFdN)Wd7%nSQ%!|N!W<7v(Dm; z=@*t5w9YUqHX_0!CH2ZTC6YnD@-5Yt6+p}w)mAdS@yl|KtPgg=A@W*}RN{jXaxOCNJX< z-fY6l%SxWjlO3d3H}4h_U?)%eW(TPVa^h&?f0xM)3xzi;$gFN5&t{+QCCYDk97n>YU7p+}aDuG{bHG3IfQr*}F~FW2_7 S=8TcLWEo(z9auz7VFUmrHpDpq delta 1369 zcmbPxj&<%i)(yUlh9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*MnAdS@yl|KtPgg=A@W*}RN{jXaxOCNJX< z-fY6l%SxWjlO3d3H}4h_U?)%eW(TPVa^h&?f0xM)3xzi;$gFN5&t{+QCCYDk97n>YU7p+}aDuG{bHG3IfQr*}F~FW2_7 S=8TcLWEo(z9auz7VFUowZMM+> diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index cb40decdceb353824d7d86c2231d32f064e566de..03a2fb40369f8e42534bd0a4833038683059aa99 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#hWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfLp)7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY D!_IDO delta 2066 zcmZ4ggKhl}whiu#h9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*MnP|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY D#zb1| diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index b00219e6f6d41b1ed916f87f4e4312b89fb590da..613056c7e0a54375a201c5cd54c9758b213de08d 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#69ftf{enn8}fSz@wTa!N|FVWNp;N}_>LqN%Z^g{7HEl37x+X<|~E ciHT*hSyHOu<`%|wGPF&ez$m&oklB+P0MZg9M*si- delta 121 zcmbOwJ4<#$Fr#5fo=RiIJ)K<`%|wGPF&ez$m&oklB+P0I+r=4*&oF diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index b57591e5eff2229968471e2a8ca0210ef682d2aa..5eb1fb2183f9f4a3476ae533b8a604edbcb43e2d 100644 GIT binary patch delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8temNFbSR(FKntw#)`fI#jg>jts8RHwh&`Br z){%BGF%@)yEV}G;L10lRLqZbs(#>FcE5hi#g7yq_c|D(h!0-FkT6^ua_MT7V&L?so zv?$JwPIq}Q>^N59_6Oa;P$=m1yF4MkW3#_>i>KVg*<36^FKP^!Ug~hvgqj3RwTH@bD52=8OA{#C6KexdVT=C+Fxf~Eare3fMH_B>08rt-4Le%yyapUI zd7iqrAMK*({iCSs=|^V(SK)k|gH6+jn4@=qW2Qv)Pi~=kUY^{Fx^_K_qOJokDo|J7 z)F|qzCz7bEX{H->UGb_4b^S35kL{{tKDL`1#oU_-JG3ksh4!_z-8f1Q_bN$bAxo}> zmim-vo^eyIG_rc$*REt!eur`b*sT94*iI^`HO6C*m$!k}7ApBXZf46U7E`>|g{T~~ zGBceWQ+f|TDs{T!rit&iG8-R?$)HkA%uS!oECrm6Of4fvQf^%i9FE3^D%f%=DqwH% zAT+vC$h;aDMCX{s9otzJjZ`odyHj<#6d@^c4Y*h&8+98nLDKE%quC}F1$vw0Tlc%k zc*W9h6Ja5D-d71}I7?9cPm9dxyijRPy3r(rH(E4?3J z&AEX6pYO$b`gno$I~Jf&Oy(&zSYup)WETBk_6_vXu7;3F{5Nqf6SvZ*)v6DzAIa}o R!6xI0%W+jn@;4sO`VH3c{{#R4 delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8tei7m#wefCKntwV(JrJjj%g(`+NfFdpol$~ zf!2|BF)wg+w^1C41D-xT2sUYgt<7pr|?r}Omw5sw5R&K9x zvDaw~SK7qhU0S+%cYfT@cJrqNYOb((mu@yMAdf201VY0iG&sgUl+LxI z==5*^JE^dkKHq}6&W;j_uDLXUqTSIp02PkdPXLpR6c%@{+fdYZ;{$+-z-`#kcIP$V zn9B3iy#r_$MeZL%T~9wc1GozPaRxR`!(yJ^0gkB>)jqj}=6QK?8|vEmEP}cYyeLCm z{Zpf;t1%NtT`jX+sOzd%6{zcvIe2VW#Iv#8Tqow=OgN!sQ75#ots(O$J=~|nk%cU| zMq2JyB3b55xl+e!d0$9Lr|fp+1h85EQ*fMA66?&zATO_vSLZ6(JZ5DpC>m9~_Qj|i zvNJ249aDM_LMk!yY8u`>rBipro8^{j+GTUi1)8<|>4j-=d%3^*K(50$Z%l$XQa z;z4M1C6{?MFo=#Zjk|WRG#V*mDt4!83@JiVNQg_nTJ~j@laGr#@gzfZx zfHhw&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7OhGxcT21!Qd#>q(*Mnw&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7OhGxcT21!Qd#>q(*Mnjdq#FcIHO^Hftf{enn8}fSz@wTa!N|FVWNp;N}_>LqN%Z^g{7HEl37x+X<|~E fiHT*hSyHOu<_^YMMkA87=}(@(BDUF=xt<#UCJ7}E delta 122 zcmX>jdq#FcIHO@no=RiIJ)K<_^YMMkA87=}(@(BDUF=xt<#U12rSp diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 8afac7c3a3a10f7bbd83d6cea11bc47d712e3561..9e5e3f8c150fb01369ce3edbd074e2e24961c08d 100644 GIT binary patch delta 707 zcmX>!f%(t`<_+$QhWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfLp)7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-AepcM( delta 707 zcmX>!f%(t`<_+$Qh9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*Mn9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-AJvY^s diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index d57f4780585c82412b3334a4ded102f5ac4ac00d..c820b13e7d0fc35c80d80f14a0f0a0ded5464dfe 100644 GIT binary patch delta 1009 zcmeC2!qPc~WrHuHVSa&`MRJ-!j=ou9vRQIUO0r?1iDgQnfl;EVv89EjnMsmaQnG1c zQksd0WwKdPs^R21##dzMT3F(<`6-hN6M0&vcXBZDPu|K}NS1cr$pKt^lRpRwZ$8SV z$V!nB;+s2pHjxu*3rk?G5Z`={uZ_HL02{ISgW!D1Tp+R8Sfqji7XX7&Vza;aZ5A?v zvO!8<^A4GIJ_@v-)n4pDy7tWrOSbTmu5I$dlGM$wo2tCY(&{_8K$L&;r*j_c6lgzw Q&DD@B?LOOqS*L*!0KKk3lmGw# delta 1009 zcmeC2!qPc~WrHuHVM(4rZb5Q+xxQs;ikXSIVRA~6p_y@-L6VWVadMJ{k&&r!vPGh) zfnlPdd9sO-srlqO##dzMT3F(<`6-hN6M0&vcXBZDPu|K}NS1cr$pKt^lRpRwZ$8SV z$V!nB;+s2pHjxu*3rk?G5Z`={uZ_HL02{ISgW!D1Tp+R8Sfqji7XX7&Vza;aZ5A?v zvO!8<^A4GIJ_@v-)n4pDy7tWrOSbTmu5I$dlGM$wo2tCY(&{_8K$L&;r*j_c6lgzw Q&DD@B?LOOqS*L*!0LjcZ)Bpeg diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 08f0bd71469ac644637982c6c8f2c055976f60e9..b2149f0f801908ebc7bf1d7461db64ca48eb99d9 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#hWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( zNogh~mdR#GsfLql82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dbFKnBf2b delta 483 zcmX?gh4IuC#tq(#h9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*Mnn?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5da!clmP$$ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 5ca0fa723ededc43c47ed851e82a2329e9081ffc..d9dec669c9f42e8ad9b918457a36121ab1971c68 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_BJftf{enn8}fSz@wTa!N|FVWNp;N}_>LqN%Z^g{7HEl37x+X<|~E fiHT*hSyHOu<{6CZ8I4HRrayTfi`?ev%*VL_Qo$xq delta 122 zcmca7cTa9ZI-_Apo=RiIJ)K<{6CZ8I4HRrayTfi`?ev%*VL_FYP54 diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 28e325cd82cff1f734f7cc7407ae423b916dae58..c001169fb282eaa0a9bc00c01b713741541e20b3 100644 GIT binary patch delta 699 zcmZp_#@v35d4oHnVSa&`MRJ-!j=ou9vRQIUO0r?1iDgQnfl;EVv89EjnMsmaQnG1c zQksd0WwKdPs^R1c#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OTLQ*|h)w delta 699 zcmZp_#@v35d4oHnVM(4rZb5Q+xxQs;ikXSIVRA~6p_y@-L6VWVadMJ{k&&r!vPGh) zfnlPdd9sO-srlpz#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OSgR(q#Yu diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 07f874773b8137c7db071c70e669a69f463ad1e9..71dbd62574d69cffdff5d78d4825fb943feab0e4 100644 GIT binary patch delta 1013 zcmZp8#nSMKWrHuHVSa&`MRJ-!j=ou9vRQIUO0r?1iDgQnfl;EVv89EjnMsmaQnG1c zQksd0WwKdPs^R83MkaE!ZDd-*M7nL0H!{Ufe#=@*md=>T`?v5<<`os*EXf|jN|6!b zn>Bb3kl}5h`(dsS-#nXtE_p!!GeTnX8=+PTT(Ox~bT*|fh>@saCO;@Qm&nYb!~?73 z`jg4D{Z5Pc=DSTrWZJ&@PK#g>nKtkJCbYTdyCRu3PX=lC`MKPZEZaf3hi7}gF=HVk E0CIstt^fc4 delta 1013 zcmZp8#nSMKWrHuHVM(4rZb5Q+xxQs;ikXSIVRA~6p_y@-L6VWVadMJ{k&&r!vPGh) zfnlPdd9sO-srlwQMkaE!ZDd-*M7nL0H!{Ufe#=@*md=>T`?v5<<`os*EXf|jN|6!b zn>Bb3kl}5h`(dsS-#nXtE_p!!GeTnX8=+PTT(Ox~bT*|fh>@saCO;@Qm&nYb!~?73 z`jg4D{Z5Pc=DSTrWZJ&@PK#g>nKtkJCbYTdyCRu3PX=lC`MKPZEZaf3hi7}gF=HVk E04(=8?f?J) diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index 7cf29e947e9358503834c15a9765c8004473b6d9..9ea4f1f5545f450d3f09aa8cf9baf7c7fee7d714 100644 GIT binary patch delta 1146902 zcmb@vcU%=Y)IR>s?H9P0Te!U!P*B0{+E(mcu&-V06|i@~iUk!NBzCcj6&n#N_O95m zqpq%X#ns)l`%5yz#oh1w$8W>CpOxgyWS%@Z=cG+CxhE!Vk)D{oMVhjqTwHwRpL+Hw zJ1C-ZOwYNp(BugsI6P;POjT2z#)Pl}!l_W+O{DS%KHd z*a0Jqu%r8>foooHI4cZuvTM3Jm{Ne*m{*FO*P|40&MoQBuJfqDzB7%SC}j}Xv43tJzCPsmha|a^ne-GMvv|}!K!UdovgA)I2g8Ow37|=)Mdhf`nV^YWrEAFZm)xF z9Tu+XIjDC`?4Xz)5qfaMCH_El`na( znBm9dOeJ>G^h$_% z02>ynW>=Rg$p)1UW`!M%j0;>g_HnWE%T#BFbhdyx8KZ6N39lzm>C32R+=$rW?2a%G z;{gvXKYIkJ$)M$fkg{yFr?M(=_=w?gL;J@J8Wzz%wpZ`b?4({LnbIKUaO-f^6IK@e z3k9k>b}{Sj>tOS{o7wYa5Vfs&RkZGvR`!j?L0DHA(nz6n{TCSzh}4nIwzIh&89Tp6MUc4IEoLVo z8_(|%iVdier6!9xX3?G?ka;)H$*u?~4c=}TZ3Oc-jy4OD9jw}8kz(?x$sP;_3O0_G zfbJEVmSinm{n_f5?E>UQ%&g`mnVO*X^{|?|_JuzPV}3B*k1T5R@MFy$4O^#o1V~xx z6l0CBN4uJ_wvqQakV<$BDrqTBN%k%lwtO#(uOyn(m>V2zFviWsce7&qGeKZg!!1EXDT!s8A>)U#b^1CPH;5G7 zb{DBTr>hR6e7+@S?{~NUU>IC+e$Y32q+~F56l7yuZ4fxF69|Q?04U-BL*A8hDgWs| z3pxgY{J>69;9Wa9NRZ4q9ZJmAwgr8?>=sXHpUuFKHKW~u$%-Q1>Ju{rxf^Fc^cbpk z5!>`2cI{}Z?tiN#oSE2FU0v+jm@vi+<}cb{M$d5$jD49s8{)?{FJoeRbh4p*tK%Aq z{Ch`(+a9d+qMSM3!F9Nmr=t4b)z1xD3Pxfj^8UeB`Lf-DK}?0FCD@c6VWb(65g6Wu z!NiOOHr5@c#qQ05W2B|J*tryYthYqY&(mEoQ zQ6v#*6Ol?Q<`d~Gk?dtSX%~@t_vNH(MADApq>~9m?6Hg!lZiBc{{jN@fJptGauOht zto~whFP%u48q}cJ4z&l3o@NDTPQ0e?H{I zSwy_}g_AOgWUC-1Ngonv;vN~1Qi;^zmYhg?hyu3NPjJ!;B5Ch&(s?2^J|99- zE+x|WVI_%ln@Ef9ancqdEwqJ_dyq)$LPHaXxR{7BmJA}@AX4{RL%v|EttHad&Hmr8 zbc;w+LzwSaT1}*3AG;9g9+B3)ghZM{q-qU+QTIV9XA-GIcTT!WBxl8Y>I8gq9uXVn ztkqy?36b{9v}v)lmq@V*XNYv1NVVP%4#M|N6KP98ERpsTDXQNoBAp`Ajn`9jIAsoz zN)&kYSlU4(LD?0?K0hHbpNK=+BN0icDlKfW=u zo?Vq;0G5sd1>0hXlF4H)tPhn$gomU5fx4q0Oq7~3U=2HAM@{zCu)gfVA#V2Zl7Z~V zq4U`zL)x(;N2%CDGqh|2U}A&Unpx+tQvN9ea5FzIwPbQ{Rz0m5TWz~iHYl!d|6#-X z_hjb}30W{=0h=>o44b*lLY{k^X$C1fTWWDm>)7N~joE`!`U#S|k%zOV>evUHJ2Sr^ zsXiMwM~AX>3sVMcA_?z}DJ@8@z}8N4vazFeY`X<2HaaPYt(bwrG&Q?+w3fX&F^pA? z2}O_WV$;V|Vos93576HVY^|{+7(jsjT3?dsg0iT`#*UM-cgAU0CaD&?CoNQv9K&CB zAkoD-$H@>>I$Li1J|=^GHNFnh0A~-JAHqV|9uupvYbW#v`PXa#?AoL{?5Tu$Y@LMq zER#@&1FJ^3Mo+b}JyOEcGK~JHTdhn0RKGd(SOe2pWnyLKCSk=ctbiY5{U=pmHzZc~ zDIo|^SV>Z>Pl{xxZRua6Ej>GS@^W9oLTzRL?}>Fx5uep;k&=VtDFblVg>1;i%&f!i zpZ+s*2Nk&ii}P!{K#jEA7I8=-umwp2*=kd2vq*>R#~J-u!xW!S2>w;L`92<4GrN~p zW?Rmx!2X(P@;Sgol49+IY9yrsV=gzN>d@7hZ=(|b? z75U=ckv)F2e>&ThZJ%ypQ$c;!Ia@=`?Cu`FDdR&u}xe{da&IVm0_0S zy358bQUrGE)<3rY@NV70ouPM!Bva8mV zW7$=8NCOwOR!bClc})d&*>WRFl}et#ZnkHbnvGg32GQfYI@n#ytFTeaRR18bha}yz zydqL1?%FZ+=vfunnDvzr(0y_jX^SnpGL*G%i1>dh#8mG2G!^g{^ihL&4VwJV+qjPP zY%Go1xk{`e(a7ETChF;r8<3;ODaxT+63aI+a>PDSn{6y=1bAIz%j01Jrh8=B0(K^ALMh9#-&UL1+)RJ=@2yJq%PtvvZM~cQ zb;$sBWTuy(_1xBv_|UJJ;S6p$ar19rday&%o3pCrGWODTC1UWDeVAroyKfF)bI^0s zxAbElXNIHevr$LWhj~ogI((;smF-kA*O3<(*zldTm_?*4`8(U9=@0AJX$A4qhWX(l zPb2-)h+WN?7i^ay2I7&I8jK+7IM2S_;zVxImRU+3&mPZtEOFr;6E(zGs_U(60SE{W z4N!@bCxMo$r^kb`@U{k38$3k7SEu2t)6oSyO28MA@P*+Z=gmyqV&c&PR#(pc;o!~s z+j6!O9L3h$KLG@q=1JJb`-Za(vL~?3_D*0g!3pe{y%WIejVRU0eIwZ8*$HgUz6tV* z;qkG35s%|+BY|HFkAma9Vw;*|XVcg7KJS0at z%t6l%0*SRVG;DrO0w~ywK%O1_i|u++&i-~{6#L+)AN&0981~WOuk8I}iEOtciR^>J zC_I|T-anBD@~3B@2ab#d-L~A8AiN#yfRiKHpU#YCb54(Db5D(C^H08Ex1W)-d8bCB z`^(tbGaO|i~K!F{yxBerJH$W z2YTwT)vo9zcql&LG~4dV&&>K=3$F}g{`;#yP`jQ+zboq6U|mdds2Xq2EHF! zT%`0rnuW_vakv>vKS~xRdyK9FddL5!LtJ9B@VMh%qbjB zlyG4K8S@@x1*!)yu()~cQ7~u32rEI$j3_P^3}V(|UY(81(c)q~G%-VwZ9p3f+!hDH z%~hEBSd}%aGqhd~5o#=^xb0`A6At}qGy9OK;fV&!C8P$puqpEtF)vWngnipF z@A37{otSLuqBz++14tjtNWcnbdo8>k!?eIE$Atp@dox;4pkU0fcONEILaQyD1w>iY zz@+aDV?uB!8q4%V+JpTjGf#0LqLP?_0kkKo_Co4IGMO9H+9ALn zvY0hk@5}Zvk=P#h4l`XbGCZa7?anhU?2=fcjHna}w8FE^M)*p6@Wn6FY4zR72n z%TYMz1@jk{r~bjz!Rb!@#pGal#y2J(x#ph!0tRbnphR#1dummgKuoO}r-3O2KL!b` zeubVI<`AR{X%$W2rg;QyFyGr@0z2maFg@QXoo$5_&!RK8BXK}bYMoF{P>q(t{IqHH`T#qYT*)2`=DWv zFp-uRf>pvcI^jW@;Wj1)5kh<3av#jXxs;X*h52^j4oVWC06jbcbax4rbb25F!(k1# z@El(hV~Fqy@4KHX3NNZS*SuX{*ojZjps{eGh`V~dxv(-HwYCyk_&U+3jj%I+bAal+sDXt^Q6rabPP5yHMa zf_RMZ1(zUeobV!_^uc&x4u3y0Q8d8x~H<929-4DdG?jV?%Dr7kYf;P*9bLfm54<|1dzUJ#pV!E&|EzFEn z!d{%Jz}L0H`Lr+*>xEl+Hm^6*v-vYasN>mKwh93)o7UTeJ9rq~PI@-BUBdT#q1;)* zd9-X=LE(NL#=ei54S01x7y!%f7gpyh#KZ%_&3v@lA>n$yyl;;Pm(mg~b4(aU*%!yd z4=04P`BJ8y7A~RXaOsRNnX=`KhhNSK2lE`pUKFO%a@c-J7(lIu&R2YWne;lnE$ZG7 zZlvard`q~J*F%lF!WFc778e zNX?I2&P0gL@CnwG6K&>45Z$VXIw-jD%$a(khcYg@zj+~1nAB2qioe>eqo_O&wmL?1 zg$J9~Q`CgdEx)&@3?H@k6CLCeyy`C+OY?RC`9LVli5Jb{M@yYXh_3QOx>{33DSQF) zXNt1<1e@lHrt$nD(?oA2Tv_TY_m$haQWV0MrS%4pji)*(L-dM|PTV4L^3mivqftD>Ztu9JD>6TBcf_Nv$rQiaz5&RRwU;i3%($_ z%$GuXRb=9?mb)R^$%DPm6J6u4-nuLL#B=!dzNn_0D_i+zqQ7{As=td0yT(7?h(_^` zO?W3->&K`4CVI#r?D2{}@>t;l@peAx?_%*${^}8_IG(3lCqV4s6O0TL7fvW6)#B@X z+7PXHA)ofVK|Gmq+}Q?RwTP$k#_Q)1*9_oDXGMsAv2syIGx1kmFJ+>{`)FP{AdiYl zyFXY8W7~?Si@4f(wvCvtos~O^Pg2q+s37)LtP;-eDlT*jX%BH>jeFQrJb~9zTtBgd zx7qZ;;>hBZ1Efq4E5XXL9kpPdqvAk#YnWKV7b|0EVX<7J#m{J#8+^(_nT+9Gz&y!U zqW6=1C7PThR`4ZCPZrxK>v|MWeUFuZgDb^S@MY5gE$qUI7m2yavfpBHnPS001iOwe z#IQBKLNs3|uEm>Wd4{+rUkLSfaVqbMSy|$IKEa0l;y);j)e<;Mi335z&2Ii6{A`>G z);}s9Xyp9w*{woD{c&4dg0j!!GuVEru@dgRC+^8pF8xS6ldm!-e-&@%uTFn1zQDJm zy*`K=`g7ImfKZaiSGwjZ$?yEtW>(1n3*8tZ3KV3B)F7hgAU|B_7_hjCL<^=jmncDv zQR49+s;VT6v+mrgl5N!1C7B%l*i8X%M@kCY=B&DsJAC`Jy1t|%Z&yWAiG{W%fcOhS zKafy9eko`kEunld73D*bfNB-v`+!R=B}cFh^l*JEiNKFe(V?KMt6_5()kPwp)FMG> z4Zro2$OY)#W_rW;AZYC)iT7jHz&Y`f36!lOg6$9=4XU?`?*)w`Bo!!~o4~Y#pGQd^ z^EQ1mMly$Y<~b83BHqPUCrYYOR#5W(NCpZHNwuKC;CKxPf7Cz=e*V}&11@%`uK~3_ zc4!PAPnUF{bf16W8{wJRNUL1MYd=qtz?a~+`I4@@ueJk{29$%(P!RvEVKeYCAzlmH zu9Q5QKpn-HRKX$s_%$GK`g)eQ*XkXgzEv47^ zw7>r1OS`6{FKx5VzO>4&($jp}-+KAduJ7YZ8`aO3Ry{zP&Zj*Z?@K#rs4s2Ua9`S2 zBcxmSv>D@lY5Ps|rBx^T(q5e;&E(Uj&hVveJR=B_oc0{+L!k38eiHK>!dk++PE#gwBg%)X>V@#rCq#3dXMh|ld`4KV$~~% z>Q&of*PLK@{+RSMUsKkdlrG`jD*C+C#YZP!md>VTN-B+fMLiuDP=k)(_@cV(4b6Ltm^@iHXwgCD0Qq8h z7@YL8>?Ff%hm9g-P7wQ{vx1qBV}HiF-H-?<1wHIg!(faEfehv8Xtv z%JRghOdn>-5{d;Ro-K<*6$y-(C(A4r(5@7jK!|{{SQ*W>m?Cp!rOIaEDqlNI_B#eF zyF`{zEM|R|$|7(P!Acp;{x2UhFk!VU0B%T^wZ`;5uabSh^xm(NZKk9LQ6sVxGuynm zm^$0MMfN8qvno@znvx7|(d_W@4%xWkx%lnfvL(2-jey0hZHxEH(4Ly@p!|N>_+pi* z#sSV!m2zY>D{4Ob!;VK}9S4Dj4DSu|=Rp!IjzO`Pui8(DXJz3n^MIRy$` zjC`mbg{cPlK$I@aCf90^7!)DzB}d_ypX5>uH>rl4sxKJQ*RL%2T0hqWluAD-xcIkR z3lr+d_eu-P->eDBm%_6D09L@Cqvh*R{|kTZDF2{B;k|)!qLy`o@$v`>x(-Lm zPx_;9;$(Rz847RDk_$}~*(3Ewq&3P7gw587sU`hHhz6Wl#cwuNfUcU~5Nz+HdVYSWF2M!SelM`%CUo$-hTXhX zC%;@Adb;=>#NorPemii;cK6##Q38lcuoUAf;{CGAQ~C?YFIX)H@l#|{Sb2?KoX>0a zZT0IWFFxi>=r;wcN^#JSQKB&LoL@6s6*}MXJBNLtsox z{3~Iv+tSdVc->D;{9j@(@V53RUiPt#KT+kScK$?_bARE&<{kZi!lszs&EG^hF^Rz5 z;+M8q<^)@l{AFOvXMZiMH_(4HYOKMeCPp2wO!C)oYW+6JKbWQsC2B3q2BK_CH2Y3{ zD6nj*e;-^qL7G45YvLC9C*szqV3q%6tk$Dz{Qa=8E@b#Su^NBh;eU_99e86s&gP6Y zYrlVQY^;Ja{ztLWcU|I)RqKlXRP6W1Z}~UEq2i(cI_&4Wp7`&?VV@VA5v#xAjHv$I zzdnAx{X737^z~rR&2X?i$zKAI!P=S%8&170paZpqa(T=ED7OT3#=Tdckbu^>Nc+kJ z{7%!~Aa5U;wl82N%qt&|g)K9$V!%CYk-;?su2NcL4%X@S1_7kvylop`!WGBAcR&~> zT6s_au|dMH0AhpS(E*jQt~*Z%AQh=xLI9~q(n$fNBAuMfh0~^TVZG@A9dY`Vvjav` z+Xi{M2ego*%0$|zJ#4^uH8RkuTBtI8UJ$@nreW&>^b{%}eK@YOBnu@pZwmN=8!E## z&Qt^U(3>i2UqCHfuObg{Ru(VKF*BEZAdiY!dAltJ+XHw|jLVoI?* z`nX#`JbIj0K|H!c83nCJqYj~7B?ajaURG8RzrI&raSqeWXr{oUWvFYVAb#DogM#?A zsH=jsEwG1z_;qqG1@Y@1eH0-${mg+1JB|OM3fmAmhA9r9%(HRw&%K zOe@wX7SWUm^&8wvKDc|cVps^X4!?A41mdqKwo?p-&`U=%NNA+=2N}!FN{~|7-45Kk zs-T(c4{4-q07~SP3xc<=DP&aM*htw8?5S6>E6B}L*eFVaC`1D1)jTnXy{~ZNjq5>h z@h!y;A<|OQdy1{afrJRM3{7YB4^jcp_N!tf#ZU|U3r6=;u|*UTpFE%@QCCDkDMe5x4af?z$k(pX93RLDQ=AZ2ZyKbTh89Ruv_5DiES z3YURQRxN|UO_kGWblLK6WgU>vR_TB>n=3ET)WSjpns?yn*(RWDzLI=d5d;slQzi>R zcVP`R=+se3^Om&`&<U0fqf~R)BG1m8V369Bi1NL|@Nf1w!v6$|a@jAO5=gVUiTKCC{Y+qaioyf(@ElR# zLS6&tQ%lNTE)MpW1241AF0;h)!>cDM0hdx1pH2VYy zhqb!EYt$T!#=s1o!xeMj^8fD7Tu}n8f#_3J($s`I0^@06es%`t@-Pl>AZ0@l2O9+k z-lg`8<0S*z@EQp%MbDvC>A+1iFF}w=TY^g!0wv&MoxpIovs~a(O5?VK2xbM%+6Cg! z6cqHz^@s241YV)co=0e2KX4o6sJbb*a2d@;Kd#VMgjvl4)2WGI7!C+8O%k;)l?m$+3ZAUJAY9r!R(Z9Exgk}bxcWS2jFQNl@^qpr8L9*wkoR6tS~l2 z*j0Gu{W_~6_)+-A9;yR;fk*UGp}m}>Jiqo=rSS=7$EzOj(Q%_x8~JF(iK-nu*k6-X z{b=4nkOHd)=SqQIH>v^*N>b5Q#ioG3OqUKfgM#UvFgS9iDw?`hAS^Mk#pTLj^nBHI z>RRE00SHD6YGt}~;Bc@}3UgW2YaLw^-V|2dq`FK?2~OXldZ4GwIqj&*A51)}l7jqx z7A=T4j^>EzXAFbk?BgntkknYv=vbknUOuG?q3j}>;+!DL=`hz-!4?-)nY@Pv=Bf_) zaUOdAwrZ7>i>5qM^`NbBC^I?uc?2?c;!D*gAvYbb^+uIl4E7u#K!DP;nIRGY-m6IC zqk_BtP`%}ASk?z$y_@n$70gwuJ=to=-=8E=@27mffHf!vEBDr%d);4`hdH&4B*NnO~al(MJ|{MFV@HTo8dv@SNcI*X6~>QVp1 zwAK=Gvr5mbghJy%fAV91o@aINq^bvBTqNWDEX`f!zH! z#qin)bq6um>y8>*SV7{(sc+CY3F_c@*i#eKNqoE2ZHD>@%~vxBjDL}OgH@+6%vt>I z*T%-Z62qAb)g^@>ae`3|jxJKuygfwke!c7fj~OmstVRPHlP z28IL=*5?^v{u;FkefpBDQA1{Iq1+=91W|iL5(4azOSP3`ZFiFwWXN48j7_gh?M=%FW@9T&eARYpa1ES+JcSr zn%IKU2G})9gSMidgo|2hJ~%<|51VZu$}hYW$Q!QNM^~_5pxT~i!iP)x!+?>Rvr3Rw zVv8F7HdWI{#6`Q#)S&Ny$yHafra2!?n5!AdCy=n3KN&7Tz(P$)K0$rpOS@*VW`=}I zP$ONl!N5h|Lk$`U5Zpc4n!|i_+J4PhKHB}D<_I4xe^@h3!KFQYUh|p1dhMbH9cn`m z&gW|O^U+0DG$;6I>@^MgfPo|^dqaa9kVJdrX$J7cy!TXtPGTWfTfNY%lW|emJI!|f zvD5E0d-&+wzcg+6QoR3CME#p4mPe>4(BAOl5G)F9AO7kBmDZ!;uAX#i3rn2j*8at- zZ*B=K`tF%zB04`2i;iR>U>o0P=kQk>e9-pf)9(AMjo|h0NfcD*$R{O1RrrjR@}Mca z%dR#A6}o`a5~SxI+tAP(#3%hFB*+{j&`@5z^`e6!c#oah zF-Xf7Vq>?U>%8{n4i1Xsi9Hw@WYBVjkj@I)!!y4yC+Iz&;0g%JA zo2P%RX{Ou{8cESwJsfUyf{8Fs3cEfC>Mv&=z|+ryHVK#qpls-113Rv>3NCpWRFY;m z_O2kP3Uu^g)(iU+fC^0M+{-F?jths53>;%l#eH z23~w0MD-pSJ^YL=&lU?;==jyvqaT6-MGOE}z688KRv%}DDL4VN?%T(`0~L@xR1T2r_yh?$~mjgG9-xwu7|J1X5b zA)<3TNXJspDMSl}X1(qcjbe%rju>_ESTp4=H$l00{R1lDg(b) z(MjNoO1i%RYAAcX8?;0}&l{ayTGLhfW3Ned}3E z&bNBEq4g~e6^w1KQ^F~2b$u!QfhUJxzR=%cF!Lg(r}{P#lO zQAQDpi1V4!DLSe%=@3?H_zvjCNDF;t-wNJm*p#noxNW7bF7}&0R_Uldyu<^db8@{h zYmKf8rP~kyN7g!BS;|V@8t&etLr1p*sNIeRFDU$)iN;eX{IFAZ4u{8g>vrOBRF-Z# z4omFSp)XYc{FtpffWxf)-2MIsx%;NWy3_djqa5934+?kxszdv{0i5|%x0SLH*9n4&}HNA=c=K|n3N445bB~u7M{mFZ`nd~zJa+%eP4z2qcs)u#fzthdfCmU3ZQDMn zN5@w8)(2I~pg*;`u;gkG+oiB_ly0XVi~V^+2mM+)ejjADHHWwTB zYd8J6;`3=4qwifD6KKGv75WOmKGP`yH)8clIIoX>R&ffb0r#TVdE`i%eX zq7Y&Bq3L4Lb5o!tO+Oarowi87i6ZYIi}iod)CZJzZ-{n)-J~=?Z$NsgJ*)J|G(Prl zn|=_yzeP{82@ax%Q)n_pWo`qaPwB<*b2jJQqpQmg5{{rD9 z^l_9PPqeHCQMdIH@Ez}dwC3rT7sq01h_LQZ`=TlrwX0>HAvUNgRD_?O=vPp)!B`Ms zQL#a9%m>4acls0&lg=%Ff2$K-5$yS(r(Ap~k#;IC5R9nabQu1W4E+%47DE7Vf718- z?@b&Sl4R%%HJ|lC0wx`n_^O|dNWyK5p&ZRX8-syCG6PNDL7x4kqbw92kQ?R*k*b;~ z4C$050*g}7c}5GBhIKSkNJM1<*NuG%GK|1fh8hhNeHT{lGVo{Us`7AfX+uw>KzKRAfKJ9phklg|BJ62_RSZf$6xwSWO36{! zqzM;}Y;Cwk^P=S+1ZWy~1TcYH#QC{{;WtDTgmg1deQ%3xKC`>w3r%B#SWE=g`(Z(_ zQBOljtf(Qq4d^TFbXc{o0iA`Ip4HzVz~qFn28tamoJ01DGf*vGB68DU^iabd>}8S> zhAg_uISmdSX`uQBh7i~}#*mE(3>t5s`H@Y6achF%A*Fey!T3aj2)79%rWj7rYT)fu zLlniJ79#fXIPXWZ3`c15?vQMFM_G8@Hv{Jx=3t*(o?<{J1f+wJ3k`c{*`ObvraK1= zw>atkmnC4^Duan@tqsc!jj?uO(rGIP2MH161ImtrM<}(?um`t$4>ud0eGy~kOTAuOHZJeP!0APs6L=7LO8t7;7{|R4M9Mv4*-$5h95SrL$q;y z64pN%_*cGQpqjV&&>=!c!|n8}Yla-Gx+B*O7jc)7l5dzJL81LO^h0`dZbyvd2QDct z%kh5lm2hBz!Qx}S^qt{6Mdiee>%V}>Ms?`;+n~gws_@T-^SB_NzZfdv0+bUP%iun- zo6K0B+S|&ij3&@zuOS>xQ5toW^|~)aFiE&oC8j&CF}{@|Vu#Ge(lovG|y*g6s zgWw+gshkonXl_i$G%K_;(vCR0fY(Mt5DfdpXez7^U{*&XKg68Y$w)gqg>7`Luki$~6HEFVkK(Y)KqI6aER&gs1Lh1hqE~B2)-PxTl*5gy|9b-g(e}1m zG}d^#$`}v6t}{8{*wMy00wx2>#u-QBaMA>0iUft4sm3u_PM&UTiNpIdj5$ISu1q#= zDprmlVX1K_7?)zCSx+Fm?P;jGlJjPw<{PIWQs8>3k!EujMuQ0LE=@&256=TBEm~RO zjb+B#BE-VDiiQP5K)on63ZQMBF&CK!{Jz1M{onlupu7Q$%P{8Aw8rG&z%9men82NF z#=W!zI%OI)*tcSL8L56T2N4+q>+dtZb|8=nw~bYhHQ>Pe#)&w5@yOT=hgE(v&cI>L zOXD3JE-Nr@z+t^VarMrCPd^$L_@i))*o00d%YZlJrpY+$pfr)^*K14*uw2z(LI>Ps zz%;k1J(hnD;nEE$#ictG!KG_i(Ue28Qvwxc2uM7eCjp=9p^urGzG{xns;ps}Bt}Xm zUEZKNrr#*d#Q{SEY{b-q8k>~3ZhM-VYGeKPZef~_um9c36pUqCJ5w{1EgaB^OE;#A zsV=^MFvb*&uRrc%x=QoK@7om9Nbo)0M84ND!{lKm9j?XXCBfpMCM`&rV>H9ZBTe_H z%K0O@l>5eM<`~m(T+(mjOqFn0aiR&eBK3fX;h6sifKM~RA1gqla>@> z&nO)TO*Uz`LX??f(&NkZQcM(YIv~>2cC7JL3pu`hfoYBu$$zde^`+^1kaLlC{~R-& zd%dUHU|LI2ZBf5d0tRd}B~wfcSl2`g+hT=3e6z*WkzuC8CfiIVDRYw}w0Vzd3nig6 zr5Sw~bRka+k7Swl3PJt>ry9=MXDTn?q8ARB%rp&cxpL+bu-0J{`jh}ef+j~zG{3)# zVE}@u4@Vy}O%idO{7#$N^Yn(EHKE^kBc$b*OjK_j3bSYjsw&J~!OANpnv>lMQL2El zQ_TTjf1Zi&ZYNzeec{v!=H4{XoOkn2Xo#TK(zKEPgaP3NCK;&K$gKso?u;LFJT#4z zg0Tx+I=JbXX*6%O3NKAGAIAN^St((oSEi;kZ~p#?1rcp~0B7(nUrbKU_Iu`<>+xRj zSY%%If1@1-_J?s4)#@LN6);+91{^u?L1SKBY(RhjU1s(watQsXrIp-`YF? zy)?niXys1kdwc?K7jsK7cXfIX^BD;j?cU#fl21@&pm{YPeKE+4zVjvsJ7Ued`P@d1 zHoxY5eE0;jouUr`|4?9Q*nG0N4b51=2Ln-4=M{1~@1JDO&S0B!iZfW~x0tL;e8+_OCKiEo*2ji=b+axe3-yrw!)!6wM1_vIrmyecEZI99GFN zx20)73CaYy*8<~rm@6m{9Wpe%b*n0z z*pX|@AKWl2Xj;KSK6(!3>MipjY_HyNbmJMm{t@z*L;Sny(dy3Rkc@ zPs~)uJpM~RH=m(C6Or2e(tN%6q~c$jD-}ygT-lNf%;?PLl_2(=`9|?cmHN}Xf~LPg zn%c*$xt{)HK7m`Px!-9$`zUP5SoD;tISM<9EYGn*>Pan^=@fDl%H$Thg*A=kDE!^u zas?AOqNFDH2)7PRKS5{9(maNoA(`s}{Saslfz ze7)rrmMxns(uY@OWSs%RwA|e`yIvgCiLJ*76J& z(eS5*>KjwyI?+O_1mukKtcEW>ThQy=mGI+Nt_~jg&e52`SoczUCTg9;Fi>XQf{_pS zSr<_wy@|Rk15tf~%`j4JO~G)Nwbrx#V926n{0Rz=9oF>}Cc^V8HhQWNeso&ZG~KHD zqIEdf?y=JB1w_xz1sCdiLt(jK>uVvC4IH7?7Zjx+KnI_g?eJ-s^&O4J6NK)KtTLEh z-s({xDx?+3t7R2pUU%zQX(lU$s7e@9&)R{e87f3@fP|Y?6*#=a5DG3gu+q#63ZaT) zsW6aO!*K)zJ_;EIa!)$DgG+ilI{dGx6>Z4L24`DXX$BUA7_r{aXe-qToka-R*4Etu zMCEi_>)B#CQe1oMS!#ok!st6%(NHfNJnu|zE&`O+)k-xPDALNt80!U0Wn?ca&E%~J z$lb?Ufu<2d2=hSP2rGYpMw3C-y&}X%IE2<=2wEtFL#-butuzlJJ__u%6GmIl)A|O1%|D#?!mD6D>?Yh ztE{0kLv8|}zsZVz?4`2H1P^bqUd620?N&6x&xZYWSkVYS8&kB+={+v&W7P9Ipn`iSzl08P>2emlOWTRUa$H!E7d+F1hSf(7!6}@ zTAv~~*!I440RGcsZTV#R50x$k*U5jffW(UqbwxVtF`BpRB{mhDf>^2+fURkNe z_(i!ye{v|H@OSHZtkc{AD;n)*!^}UdrD#U`1U9|rL>AN+F z(gOzmuQQ3=ezw*$GYLet2rvNV1=`R|A{+j!wV|0rHViP@&`cs5eze%eQ`YE#Kg=XX zd2DNGW)g&D;ePCK1_ic2gUgL}bHO&24BB zkqxJ}v7t#sHk5R*p-DtGJl@5ICK1{2T@M?YL}bIeeQfQi-E?k_-2rZm^UQ=x2iwpj zA{%asvyo~)bO=YI>M&b6H9Ts(!~jhqX2KF zV$7DH?&ui0P z{};Skez4K3jDUaX>#t9?(>$+BUu`s>pZyCk{=2OUWsA@23oV^kKyJelt)N6|KTI@tDKF(uUCfu&(P zc&(&;hJf^GpnnOw7DR5cnc<33_6VBylcd-rmz?gU0^o*l`%?+m`K+j9A4@ZgB8d5K zY>Kq{b}3$X$f{uQY-78FX2@1( z{y=cBX6RtF=46-AY(GXYgFwoZkWsKsS9?3kzMCL~<6rlH{d?Mb6NPDDejhvfRRS_D z*gDXDmsjJGIC~sr)foixdxZ9e{-f+0XyzQGsNKtz4u=zF*yDL--;(VyGLB^YLi=x0 zF4}Lo9UVwdsFz=9N4vI2^kcf+!zU=S(TmUYECih_2?zBCO0tOO8Q1%5n5&B%|4i;GPj=i;nnG0t;w4;y5=EC%+_6uU>&JTILenp)Zdgqbn zfVW@UX*MQ6SAktm(@>!2#)Izl9q6QM{QJ?CKkVy;Ag8fS4X*rYr`dy22v`ax{B6HP zVSYdm3f8L?0Pg?;q5x|sp8P9e$M5zGF&O&Hs)I(c1GVmi=MJf3FvVb`C>OF1?5WH# ziCTYzEZMuIs_sz3NPmYcqS%xG!lK#5S7-naw_64+wOkW%n(AHKv6Ge-a*M(2Ny}N_MQhgX%pIF_NmQ<2T-0WIgG<1;Ipco5xo4a(t!MO%Y5&U&nD?L2U*& zcF~%v2=L`V$J_q{UOBN2G`A-0P|}e93tskN4ywrqu|FwZ!3m)p9vb1;#q*jx+Cg(P zNf979fJ!^oQJ%UnN4!kjzO5yb9Ox%6u)g5oDUN*%7o9cDai3;5%5gmH(1Of{C7j$o zs{?a=IXq19<*;ReqgL^9NdIJA4C^iRf%jkT1FyK!(Ucy%t;3FIKo)@3eGWtKMqdt% zH=)*+Q;>a&1O2WHQQOn4zI=CV_gx*c!!eO&$W*AoKrk=IZs%S=cRb)w@-`ZC$d^Oy z90wYb5(=`Tj!raVOPm>0opv1N(euwbsJ@UVq%#9;O86kxfqvzPkXn7!VWoD^l$#DS z{`|uaq)3OWfb)X2BD{LrQAP|xuA$L}F5gj)X4*)IVr+;uti3~h}qI0S^ z(NvK{zt?i2sUnH~-O!1qiX?iZv9qvV&S>gHQ$=$1Kr1JjDw1f8_D(caB+*ZuoM@^@ zqMgH2N-Hjftp_^?$(ST=3KaLCZ%Gg_(n&kr0_h*}3}gidju_=!N7Fx- zyW$)K=7qW)Ao?$7S1@CwGpO1r`eS_&Tq-v+3LEEKB18o}G0}OOV)%i8mcc=Z&I>eN zhaR2?-Yj;?U_p{|iUP49E9^5CI=>5$Fk_LEW?vabg$T7FrJe~TC8%;7eUZCzkL$;U znla0q4Un>6&PwM?5em1gb)FKVaQG(Y4F-ixw>Z&}>Phh1Rwr6wO@b%3JJAlgBzR`0 z^CV860=aa3v$=HU{am_-2S|zG!^6(SRNsH{iX^OQCRfBC;#qf4R(fy?0eo@Fxtv(w ztn)CfQv{uNQcbFeN3FZ)T!snMx$Hdj-w8m3L3QpD$-CEe=RTabBhPvKzvm4IM&>Oi z)d~)Ic;{UwI$kab^n2huMoZvBzLRF|2H!q%nsIXw@RYXhErauaa~{JOZC^U~(el6h z%6S@NtSfNRtn3jzmifa;^-0bSk!vZ49O*T|%)gy)QN0DLzfjc!0)%v-fYrV^X$~R= zK7>6_T-UHq>=U|9{&$^1gtM4t=;6yBdStFsn7~Uv7u9ki)+tfN)Bx9KnwGhU$}fSg zOiV?tp{J66AAKabM(f&FJSvs-u5Fmg6Qhg9)r-nB+U%k_Z5AQS!c$Ow{p+&JHHd2c zOXNxbPA2b%^{-x~Tpg)at}s-}4W|mC*&p393P#91eAx`6>$r~53@ngV5!5{yZ5O`6;10vGz4DGAEcTvVGI zIS1k374SFULVFvN;O-?Zw6`${rY>`Rr*=D3i`3w7&Cr4H@LJb?ni_;UufG55HpW?* zt|~OEivIu%fOGe_&^E>-_P=3ZWgJwzb zA29p}QNP@Fp%0?a0Q$ZQ?PW}Y)qiuLy^Kk)!W$Rb%a{be7P!bj`}iL&w3jgne)#A@ zdl{49=x;8xmoW)e7P_n8suU}8qrHqtuzdiM|9k(5`{4wT^Xjq~93F>$%e;%mU6V#r z1SWU7M+OpihYo-TOzyYTY%;HMUp)Hz z`^YV7nlz~CEVf`M z{Jt_cN&v%R+y{AOeCX+>net*l&Ws%xexGcj04>i^Iw3mAo8kb6s92$ zb47`dbKmBPbQdN;=$4H6t!U@Q!j{=h^s;b<@m@i?H^LbJI+Zf6z_uiS89V zo1jTCnDQG zZ*Wqmtc`9z%KmUMAPBoRyI-Lb&5j5)VCS}C8mV`tyBTFKwm2=s6$Ix&_fk$Zu=+kX zT1mxS6qForSD+cd{la4Cb71t7(S<=%5XkmVD#J zt#!7(?#p5HP1G51nKi%VMr)lUU)>#FzWI0Y)%XmN24>uM7tpMAlG>Kj_<@q!Dq8E; zzG67^zLOf`xjzqVId4^Eb6o|4ItEL!f zqUV-!%W%uhh9l8^Lp*31jzrgt@HC^fJ2?F6vIL?j*ACvFCQbAdR-(p< zK4z-Po;2DlVEhaZT5Bg%E6nyJ(Bgp1H%=Kyag?+GbPB~_7_h+O;b9|FJ=xT-1&tpB zg7i7)``MREJX?g|fK8->TUL1H^6G86+C#M%PFf8Do_Nn204uKbpoMUv1@#6GS_mi6 zw;Mf+D4X5M5Y4qL4A?c-)(EWJ<)Qf%D>AQ)-0MLF-t7sbX~d4Wys;oLF4zIm>v+3@ zo6tjZZY@EHI^^L`t39~aBNl45S_zg`M&7-RGsRqj=g)l!;7eb0+G}6hx^GaE#HCGt@3|x7qRAgT zwP@a3A<{F+1RO4sd;K*;0~_{Q(4n8iMb6m0H1AXp>O5G^>7|-oqlc4u#dQtw?&8bp zF6}+QYwJxJZx8e%uE>R9kBZ*9e1fd1UK34qN7<$03Pv*%f7sOv$c|pJ@(i{%@JeB` z2HqtCPJ4eh^3rUnMW`#`=q6sOnK*ekpt(1l=WsB}n@Lf@2u#hEUaB3v)Uy0HuDmg(!Y4ArrzY?a-F={JcrL+ycB1_LIl&7rtK!#8+&*s^Vx6i<=sSUhTuNl zQ+$2=+TXi{7G}&q?|B}kU7VL@`za~Z)p#$}yc*TBNg!v6*UfE#?=aH4gYN?@ducZ0V=Rb@NA-HQh{)dQ-rYQr2{WmQU_FOH|Jh!u zZOcV$R?qRG;U(z_dZ$o%UJ=&o`QFNueKhf#fFD+hTP*gDrflmcft6i?C3tW0P*||q z+mB|_MG956y;lPgD!V4Y#oN3iXklPZw)Zb7=v)d7JkA~QHl}yuY;O>ELQDQ}FZvLY zbdNXBd3(?d-bn%D3vTj*ckLCgM8a_l&-0GwhaCIwc&P^OK5&Qz?|Gbi!T$MPG;SxP z8$a^?MeQiWxM*8=F!vp7>X2j}Kl-GXlV8v6NjAtcCA~1S^pGH3QX9Gcwpq+2Dkwtq+a_t;YpB zV8Q5Ms^tjeuRfF|6h-2n@5^lkJ~loWy`HbxO;FZ5?qP|%K!y} zyW7DD?(W4)k>I>>THrT#?(C-R>-$enet-0p>2l|}&yhLf=W18g2_zoY)$QQigrE{T z(sgw=Ul=?!=o^iF0^bSKgOHOf%j?|W*^D66T}iG*MmmrrMoLn}?>?_B2}%?7308B1 z9v~;g7J`*BFhAQ%FTpW=eOelX8NCXUZeJdxs)Wb)gs&@uW^=PGUlW8Gi*tqdgqrJu zP_ruwz{U+h^qw12$$-s4$U&=Mp`P$|OAu<7W#RI_?Ll;zlX2O)GYB*56`-JOS5R!F z>~mmm&|uCZuPkVJWx~Lo13~+FM45D?GA* zA94D1^g_@O-kcg-MK>n_@MpMsEeMsWQ?R&*u=KYeVb&uA!_K#Z)+6;JV!gN%^b)hd zS;1!0{h)cAO^ZL!h8Nk~dKmN>%Lb@+gSp#udR9rbJbxZ^8##huMrtnJ74>)*M0c+Q zOF{I9Ai8@c6t{m0I)k~aWL9|rS-2y}ep``b1&5Bak#K0Rv6CFeY%Eq__iT01Q<$jL zfKqqKCH{s{UJ|;u$>eD4BcaHw0A=+gCwZ4&8X`%>1~)=+ z+KcnMmEjU$ekYiqR3$-ePgN-A_3faFQ>y#pB|lk%+%rgAASX{!j%{y3i!A^O(?c{EnQN5L zL)cqsZua7a5-&QF5r}SSCV9g(v#q6M2OmlgYbT+5qwImMog_4A5G%g#Dp_6WhQads z&?EA~2P>ZTm6)5K`v8lt{x(n&fSlzD-GAc0X1d}B3>-#FRLJS>KS5ogh&XGwf2XZ*my_2^YzA>aSPUnTUWG<(DT`Ia_3u2dq-N`?0t7D*ab z?qxJu@x-0CS4ikaDTDP~EzwjCR`*L?hreyYPTXk0-nUs&QpKuVJm)%Zk7O~Thh+Pa zul;URhYfors6#jTcO`|SX_*8wmT&D8JXf5kT{<8+Y(r(4eME8(AqE9n47tZ7*Dy0Q zD#0XiVz#zdbtx%x4X#3*+7!^kCp)U~|Bdeu>;{GBBzGJr$NOul`V#xI5--{$Bs2 z@a&U>Ui2s@JN}fM#1d%qRdNDtf;ZnKdj$d;tb;M@D@=%N+u#dm0x#@?#|i}cRtZMr zZv{%AyDhDL&Mg>oE}8Lf>dh+dIC!HARAP{%ho3DZf`=@vYO+>Ht5Us=fW58gs0 zDXATdX^dvD5LjF%7`1U$fiR|iF#WJVImrtS#vHM(0D2`2evNUA3WR-O!8-&h1LT#Y zQX?W5wQp8IWveon=I}2kU87N+CIA7ob~{WTC$dNgb|L4c)}-G#6EchT(gu&lEIu== zvh-jN;RtF+sGAks8#B&iFbng8*|!vi!1V^fx6m*xn+I1Tk7w8S1=2FOiOYWvgh1KE zUoh5Ntq=#x}Z zN`h}tr-!C4gOpxGEQd^IX)@Xslia1|i-?|5T)rP6JhrMP?SoM>^Vf~}7uiSGy24+9 z(r`>^v zmL8=C!u|Srf#(qEB3AT-Lqny)%>XJ0OdKw)%ByW2DZNXt0|>t^9w)7j2`~R*w=PcF zf;c^rdM8YJj8Aw)L63=-J;|NvQU@41T}m^PGBX%vNipMYipV|qdx;b`DW?eRbMl+! zNRMzb<99o28hKMF?0>xK;X|hwuJ7q=;GY-{NQ8UDE$?te|~T z%%#Q(@hT>V zdrWMn2&?~g2=z<3v>Y>Zq%fubN>>#6PI?eC$6-)Hx+3Y1o{TGJI<9$$=?&{kk@1Dd5F1ySjoL^ zZ8hYDguJn0tf3$*WH#ser#u9;ZOL@X-{}hF5h23WGGRz?R23pzEfb2%qeJ2_11+=Z zX`*FK$RNyDI%v4-{r{ZRHpmHSg_+e_0D*qMycgGOP@kNNw+-2Znc4mWhR`X};1s$atxX1I;}&|AEApvl z=uob`fqtPeTzmU#h2phGU*S*Y)(I^@3JetBF<0E|pwLl%IGmAiHZin~v(;XR%nG$b zbW((Ekk|ecTAysr4n^!Qk^2opCy{&l&_Kw^4ZVS)z!5NuEcES%#2xmL#?bn<^uwF= zJP9-i{runc2^6aqW@tm}ts`#zLdDb1@UeO5PhO<@b-GyJsW8;tM&vZUPbg}EjA8@D z?uS$?BjyG@2ZTPZjA(9zB6yPT`p_06en7Z4DKvy)23^ctY-|1M$j}FNqH0c#4?X+e z%_TVADVRAi6g81&l^aeDrLzv^GP>f>GguCe(?e17cgErD%+ODq!!;6m3Cm&moKV!P zopHD}FVv5_>9^9*8(0pP7KNfd8!zf%X=ps>P;F%>=8O!3dABO`1+uA}g4=6D-*Q{r z-w=8ctA`DnLQ!iLOn^RHLun>4=95VfdJN0KW@o4skA}W`Loq8tjLmQRLhU)sn}eYz zv25UQ=pxK8-Rf=VIq~Fnx09jE>_xTIy%2fKDW<$q@9k3F$ zU>t8L)|nVa^Wrew-2El&1LBB}sGGAS%!|kug*n36IbqX9{$$5&uAs&9!hS_W+6ri( z&^+Wr!BPwR`pYfF4=XH!Y+V(WiCObvMn1PA%##c~9Og*!9OAsees|b6JJA}|4^+Y% z1z4c4bbXU4yXmnox>UxB^-qLt<;C)oVS_MBw*vDL=j(1_`matm!*U!%&c}WaQ;P#B z@Oo@{q0m133}zf?MhGEvxz+`0xP;T26-=~Z_i(yq%Ze?0!s(hV zE9O=UpM&W}*n2A0Z2uP+egxyc|A66Zwo@X*>6$HL=N=PI*KApFgf^V6*|OrGjBv9f zre=kk-NGp+oUYlj2ekR&bj_9(_caQqYqqR7q-i)^vt`9KEyL-WEi2A!8{QWk{pdHB zdqa~h;i&B*v(NAkFT3{+?}o7ig9#iGUWJ%C1a*NkgTg!dS?w3Ef($7R$6S^aSGtad zyOH8);a?CVls5~)Taoo7+@4hX)6W~CW`vhxVyPJhv)o1NjuaWmJD;-(E<(>{G1SU%InIuR>}qxC;(d3m!ZOs znUCymF^K5GsGxU3WupZ_+sY~>Xf!;Q%TQY|W@^zeAW}9_pkf^*!+daF00P3e^`2Vk^^SsA~yKYel&-HM(Ka$~B?8o+6mJ>@mnlWsKlXJetbv;d>+5FVr94 zm&UT|7&tmYYE25)hSSE~RpvlGf3WtRb-IlcDCm(5ON=zM6JumZM^udb$2(kMTqoIm zj3O;CK&b{-3PBJyK#Y;iy31-IT+K|z7Xo|8ItjsRd@tFq$^a1xJ#HkF#YdmPoXI zjx4(})M~-x+(R5l1ijL+#bFNkV*F zw^nu)gG57rUqT0r6JXO;*cXEsC!?-g}8sgEV&^L0Ohw(1HcNjg{^B=fz7vN zXE1Hw4C4rND0mi$K+kdt!@k>3WpDqx#{#9W&m6T)R_f>}$9&~vMx9~wqcff5vE;M29C3ETQXd-n$_vQ@nwcfg52uzBTPx8PA&P0|L$!TBtnt=$oaRSRiICR+*(xp*gEpZh=yqf%_8co zy56(2c}@@@l|SkL14VR7qcc=lpybhr)+=~iSlM5lDAG?SQ(^RN%B-X=3%|k z6a>BjlN|u8aJ#=p55~$Y)jpiBKdyuejDzj>&w<#&rak^E9Dp9L+3%IQbjI;kRkK{Z_NiEQsc0iTMF@yi(be9u78|AJD6_X1!6b9nD zlZMmib=7|$Pq)ZhBlrj?aB{2sFv2Pp3Yfh``r-zp=sRs!9;Y=v&}f&ui;dMSQnpu) z*(@-l1%T&%`6kTBfFZctl{+AWjn zw@PX#5MMb2iZc?~Lll8+fMSrKfMK;2OL4X+f=hK2S~P)!^%cDZ0@1;WC0GIzq>6q5 z#`jRgKrDtdT=7uAa8qE6AQ-a*fH#qTw!b=!y zunzup6Ge#~9fpl-sklm;D70v&_)7l~e(IzchB?eEC<|KlQJ|7SFiq3SRmu4EIll0z zpQ4Vyt;Wv^JEXoMplF2R3sPSZgjTK%e~wa2MjaQZp@<+!Qx$AcbNSkYG2Og*#gCHm19E@oJl}|F&RcK zQrIAaLPOGXmBJfptx%jnvS|nuK_+uSIIlweuoV^ln$lZzmKrNtwJ!D#<*dc#jCc$!T5zGhPjJjCq6`rK@flo_No>Dm5TkR1S0Qa|`>GvjHP|U}@r3UGJQGwZkxc@+*B&}{K?8&+z zEqq}ACB=3dQud*jCyc$Oh_M!nXKpAWFrB#>95dOYbvuY7p=Gxf-Ru|2r?MJAfV zi+6NDC7PknM+IhP%k(hqlcEWxW1^K!B)nRLBk6A6(i_HpR~UWBZ|=Q);i-4T0i<**TpGZMIweo)F!&}d~f*BDq^Rf$oKGo2uDm$ zKsBHOiWnU!GV8xCf_@-{wN>qgh^3tG+dUDBT*P0Oorq}TBo?b(jv(|y3_`mu`z>NE zuQv2n#9#b@iH{>3d9@{PBidEr)xJio;MLCCL{i-|1W%X9DPCBWY^-s;CIkjXW^?Ne zRYe}eYJ)Ja{c(}=eMM&74Uw(HPyu%uL6(}`H# zOXz#6688&{Ey$`JDj(9#ONrRT66ELt9^T5T-l9U|B+98ch4zLn!OELRUG|12A9MwZ__@Yqu=Nv{Tm6$6Q3}(AZiJ3S7t$dijz9ddL8LNV$@yeq} z*Xj)lt+FNOP@04{!^LFfWz5Kr=`TB7*`9OQpNV(JH(5&5T#a$)m}}9)H9cMrPDbVL z=q52WU)i1O!L=b?54uK5nm~nxOP9vV-dMM)(?m(H2s4;(&6Joq0aI*vbLAbhM%J}d zHsTz-+bA)I#~Fu|wo26c9IJe)y@f+$CnaKfD8$^}(5AEUETV-#>u$=uTm_1rconoL zRHBxN8TSLdm7O_GH#X9JV1ZG2Je%Sb;|o( zoz*rfdt%)xbd%Cf9DtLgt@v)V_qIxO% zlqFboE2(34Cee(>G3_addVo3e!t@1qQaQ=gG36_K3 zr%Jfv^e=P(Bu2+^UzLb6(qgl`@J)%ja>xwX$V&B)bI7$-t;XtMww>xRGBmUY-zutQ zoWm(+6?!aZ=c*dQVWzvQ(Ea984^=(hZ(jFSVfNIRVtsv8sE#C-5bt;2Y=zg=SMCFh4jNT9uq8i6J9084w2N-ns~Ypy2bxsq)k|Z(>L6ML zTN_x+Q2hrLdVMJCN7Yg;%GV~U?pSNOHd9^YFz=eH&?{zjTdMG@Rcl(S=q@^Is*&wf z)3BnnZ?DS19GvMjOx2s6o+r;n>F$yB-Bb>s@22X+DIM*h!mJih)WKk1sM^7U(78US zkjP*>`>9rOm{S8$v5dhu4OY$KFdK*B8s9KgL!^p-f`ZX1nKj#4A}dF!Xm-)Jku~7J zSQTmkoC@?4ku1}>fntK{ye;z{@R*`PohPGUjfk(^jcWFmH}34igrH z%7j*~2Hk&Eox&UuqzG+Divzl0kiAS*6|sK_6ycrd8&I-N6@j@WK_T+Von0y?lI2iO zPKtJ_ZXueofC3cdH+#{hCl08Vb7DnDR3GicU&o(Pt#iepo5;=&y1o$ln`$d}n^$*K zRWV%(rOLoOfZSI}Fk?3X0klt4s2n2f^|Z1p>Hav`m&l*0e974+>7GDKKRJkc`t^N9s)b!gNfu^$09 zSyUZF%Ova->widcg58l(KHO#RMMt4r)(qwW6XK$R5h??U5RHkDwBAp|qg|3ctV)ks z%hl5%J8GC4Lha1;U-wVy4c8h+t>ii>ZjRH58O#l0T190ebV67Y**iexLhg*EO{8C^ zsE-&JM&!=)Bp3Kx7-hsX5i^1p-0Tzek~`jS{iEnTROXp$21e2EmayX1pQEaCE8H0t zb&c!r=%}b;nAXi+>`@%$1+^zf^~6#KiqMcV={Ga#Hm12SCQ}zhxx&3UQTDvM__zS? z8bHAspv^gXeUuleJvN5kUr+7=|63JR11l6zC@UUeO1DOJ!hE%hDd*Lzq^eMQGOCfN zX<~OS3Ny<#W7UGH=cB%IVnNrUnxp+k_b|$r6o;jWx|($_Dg>=73KdEdV6X1(1wTKF zYVC)NG0@yPdN-B?p_P5fhPr9?V;(1%my6Vnv~S`;|W0nb1zjo0yWK`a$jNXaiPPK(Y4naI`l+`YyUt@EDm~2De*B z_p8D*P1<&i#w;!}=WaDQxfT?5i|)#!=kxB-3wZSWwJ_R+7kBiIrg_boS>^qskBYyp zup1QZBL3(%Ci*)Ekc^A2R!jWVxHS4K|5d&``Z88;Bye3c&1kwN+6_DL0E*CpyV8`+ z(dH4=&s(E?-T!;5fdhx4H({vIdToVq>{{4-G`ftdZq%jdV_Zqiu0${9MYn6wdwKEJ z_2?+XscT4n7CjEblGbZSTDV1ZfI}~$&vUIUeQRMkr~{d2S(<_;Xy z$q!_(U5qOk7L+1~t2QyUFr)<-pfG)F{dap3kwbcl7Pi!j3BkUe3{Fq+AckHkzQq4% zG=V@#%u8|boDYIIYr;i6Q?z7+KIVNT02uKpFv}Pt zaTE=D`p1~toZYS_F)J~%stY}1dXNBPERCJrV%*65DJc!1f47)W#Gy!_ShsmF+TT0I zpAVp(^^dvAJ@n#`nA@1?DFto{>d`Rkn5*0!qF2OB;tyP09W#tS(0W76Ak46$_3YTD#B?*|07!Pmpi)1W5xj}6FvcFj zj>J6RmJd7@vx?8MZ=8);<0J|=>qg8TH?i2}Nz4TP^aJspG-m9P5BNTP?^36zc<*>akz!ADsWKpxEKABGYcF*c)7wA7W#_ zb5S~|W7lxI*3F1*j1;9KiRcq!M@)lK9e_57+89TrQdGdW!jnd^3T_%{^H?5UwzrI3 z!-?-{9cymCtJ}sZ`L8e9$8O|WSl=<$myc*KcaN>g74p~5v6r|O?hTLq%B#H`8T*j8 zvp>ei79zDUK(OT)7%@F|17da!Q~`%MiI@ek{B$%dUl{w0OSE{gMWW*?V`<7T)-yRk z>`gAw+g-8rJ9+F^&wa7w9L)JJP9oa)o6yfkrIx_2XJR{JMmJ`JI>TmrKQwt1 z8z2tsVEn6CXN;}|T&VRawxK8?8TmC9GeBhYC=C5*&{3T|O#K#HZcPf;^zed-R&l`y z6B33vJS=SroN$N>M5~MX53W%>&V)1kI}Dam6MhUYDru@ zWVg_SP=xB+rE$)fC0wef0+RqB(@dQ|+-)A$oW~!1tGI`l zhQP*0XQ!kMgs?7g<~=~K?s1qsZZnn-NP5K4uhOzGqVE;=5#wVFY~jE-4|4piOb#{! z;%Z_XjhTSLl!c0PdM$~2iJex$z0GlcSQ3O*c7)+u!ycs?|5ArVe1wD89)=djKg0A4Yz_Z)=yfOfR1*IaCZL+H=vIe!rST!YBq+LW z7HPjNekH=QggeHB-Z6F~MQv`llAhb+%MmD)Q8oI_qIfkKRu*qh2J~y~1MeZ;9w}V~ z7UrOxnM^A&gT<8t@kTq+D!;BLi9Qy;z7o=Pf|rM`gxeS5*K#&UMzH1pRf{t&GA&z!v})BAjn(2oELBTsMqu2uYT&!n6BL{b^_6~xlx_IT&;w* zHPtzlky^xpoB(x;Dxx0u2CHK$#jfN^ye~`+R}ZWdFNU%}t{!VI(u$8($5e_I321wx zDo~{jt`sj3CNNPwRU}5fB&+G6u3&Wyc%7nNP#JelAXD1ja3K2|tL-5$Tdi|tl9Sbq z%r98@gL-D=$O|t3`T}~kh&gEgpVX6i(WjOAyV=FtsWrAGD`*qw(@E`ZcJ^-cN3qt! zLbVMqe(tND&Wc_ze~|h(_wfEdt5@)%e5iUNfA+)(OB-1-%F;%Ljj^X?CJ7-I}8wR2f6DfkhzsSgJ0wnlC0*`MyxS77>}v z10L5Irsj6!Sa_2_sJB>Mf*h$-C4a1~UYA51i=<=fHEM;G)qH5VRz1hw>URe%sait;w2so}Tb%hq@bPtH_M#NUrZv zS0zuEB(@-?yJ~M3bXZ*v6D=5^$2m1m)zbWgx}zCo=fUSoYI!-YRmzDvy1`o*9~luPa*Bf+*{#IRu)ObO|`iA%FILtIzz=GlS31yhp zOe+_G&{k^Fw#!nDI)^8ixZ%4+Bp{urNN9hKup%~|Pd(smA=PnlaH%w?=MJ&o% zBv?C(#iY&&)ttm)=ROHr?D+$O6Mo{wxkU-J?8IM>k4b1NIsqh3NQe>X!l=m!Y5dpg z#R>EHvtvpUTph(~OBN(FL;B$evT_OHA{fY!NG764>_*Dt<$jT#0 z(3%9yZ2{_1BT47A3CI4s#6au%WBGz&LxPQiXzA4L301jYbv=+!i+jbK!wEO7#0SP4 zO`xY7Sf|k7c)}}l@nnL8KRfYE0zFs49+-PB;SW~yg5nDabnL-??R+VL&LUY+ay4NK zFFw7VK)1ozugh;H?Bm6LcM@dWNw@r-(3-y@=uyHq{yFk9S=T%Gm$RAkhpJ?VQ4NMH=4>Ycu zNLOCjvrX$KnhlU4NsQwUObto2;s}ev63_5whszRCAG*AMDzP7YjY>S=$s-!M8k6Wv zJVqzh*q)ha6kkMIWhZv~@BT>ya6-WyiAO;q-QdVc%oU>(xn)YkOqnf!Kmn!oMKxvj zPdvh-SKyGuOFSytj7uEEf1NxjaW;>NF*6c7ay_muNmO$$`#d)>i~m}%An_7rh+<*J zL?sg&Bzg)1AI!=kg<2{uOBt3WP8XXfd9yZgJI(@YVf6aM^`dwrb#o%-k{6}47S?V_ zjOQ>PwkKl7)eL6%4htLYp2X2up-T5ArgAoK%Mv$YVTukW?&mP3qluU+XH2La$1J+B zK9z`AKm-c2Ms!Cq|2(#FtlfSwkxu-C=s}iTO~icclZg|5JuwZlGR7)5y_rZahBFSP zJBgdHmbr5`(G4?Lq#UM@z&@_dq^yy~gFJtn=nFR=Cr-6757~x4OLXTtDt(1*4(t_< z@W0oIo}&AJ&$~oF9&i#qCx#-a4+ak_&3-f2Sy>t}7K5jq<}CNq*Nz%ws~JovxEDPN zQP&<~oitTA^L$s$9A5m>Lqm6)S?}}FS2G4P{G<9GOkTo$4{|Or-ySqIHOW?H)z7G< zsmWDeR!4(uZ58M);8joK%&E&IntZPR;xNq`H1*df5?zSAZ8v8kKiRW2X`$5IG}AYz zG>tiZh}9rFu)&1AVc+MLZeSg+QM!uiPS4Qn;*xmeXk57@a--%5Mv`eQG;?5YBh7fT zCqdIDn$Dd2<>nehCjb=lH1~}jZ8f|3z(d_$qvvF2chQt$CWzEy`oo=Gnn(xp7^Fro zv)|_r(v0S`9}UHNOn*Yr{pp9#G~rx;!cm%Lob|2onlJp<$CEX3J|vdR($IYGtRb|V zs~L(BOPFbrq*9F&3|pj;+M1nc_cBd&Ol-Bl5enx3Lsx3dqv+%{n#0^0e(N-QkzCm# zkho+66SivByILI(7tw|v)F3)EVp&8ZMcr=DC6<`Ft;udbgBJuRqx{x;;9XH#D=z15)d zpjyBP1#^Ha?=?xH-a+zN6U2)@{iW$t8Oz$vs;#XGovpPp&UTHR_9!Z*anVIUzbaZ2 zXE?w`YbLwSUAr7fwhcV;)zTCnf=0=Ts#^=0*?m*J8#}RLgD1jX+$Q#?v;giFYv0PPu^12QCJK;vICi>RZm?=41;_EB2YLUB`V5p0Oo z-b1RR2$JHoW4T?fskKOXilA z)3hBphyIybOjaufvoA}FN^8w3N9(nHIES4^ye(|=wWze#jKhS6T61vr{t@q!%^Pbm zSv`Pqc*|ALzByh68(V0xk-P{}TWd#f4p-XZRS?)-OOHb`uYTT9+Zz{Uiom_I_MQk+ z(oKsw3B=5r(Orv5Xw52L>8Yiel$j*P-dfE09|lv>M~g}k#45}BTR5y3sKuPmVlb}< zX)y_{#Te0ZsFq%=V0ySa9Ipq-2rVkBH4}i0(hlVug2v)wW$$rX%;_iSH9nCeb39Xq5LZ@j*aSr=t;8ox}i;9A6l?!KUOE`zjU$u*{FmvW~TS>5cdn>AhKt z%4N+|Fln2%9XEs34t#{p+*yg}cxSg3IEUr?@b36&zn12*W*+tQpcZp0ifP2@u$Jz^ zF_@@h_zrZ~aa1P`(@tvX7AbrE@iQ2o6n(4OIXWW5Hf+U3?KG~*3zxNsj}?m?>R#2N z(pWPyB;3$$;vBx-#OpzSTRR@Dhq3px^yo0NMcxDLVyrq#|DaP!Y~|yRsQ@B})=%;M z#rkJjR4!{~i@2BCy_|#n8!hHS0E21yKUB9ZI@6tZ+O3?!l8^Wx@&1$cG7rYQ<Ck=WEQv0bcV4$cbW5=sQHJSI`K*~nmdh*+WO{@Su@3>gB6U|# zTOz`8(8oB7LDnSb(0%7$i8@p&YdRnu0Vj02x!jt4Q}9l4G*w5F6*Ax2nW4j60A>cc zlc{sF6=A;S>X6$EMUbc0_2g_$8+Dj#zKqRZCQIC~Yp6pn*A+C6&hh84a?Wv>rtOb*n^wwc+(K0dteRTBTAajiB{dMT|vX%pM__eAJ zgLD%(hvFf+U$HU#)=(WPoi)`%8`4UpbtLB}>-b(EO>9k%BQv$M9H&FB6;z-G0F2k2 z=72LNVFRQH2$UvGLc+-HnT8E-e<$ZXLr2qPGr%(?*p~Tsz}mBQ^|1S4%oK2EzHYoN zSsUEU7k*x>^FU5!I426`2=ZmRt74}BzN>X^XnJMqbnayK3{_i@Zq%W+_b=EdH5AfU zXOP(Kx=#pqHv?27H2?K*$lakEg1ITcV5S_^c>&FYy~Y+v1SrB%(R(2Eq%I9}2cI#y zy-VdRX2MRts{0+uhESBjAi1s^V9y*H*5A?5D{F#pL;K%#G#xf8c7LKf=8AhoBiQvp zr{Oq`f9X)UB&ooS2*q)St>1KN%+QY_w1y(Pq}qtNCD6)M9Ysxic1xmnPMK0JdnC2O zq-J9Qboehi51B6m$$TGD6knz30)H0?Db>71LCfNhIp zV`NlMP@9sDa$L`bNm&1ED1bS`jvtaT(K;L5BI!@GEF_&~0?zD1&tNt0pF(p28=~jJ z`F2VF<9fQ(F=@6Nt_e2;nhHCDH{r-3l~57Iaf6$~lG(G=nC*rd_ub|WOf zCMP=iwu8pSNmkg#vx35Kr+GCiiROG^&R9m0_?ictn482`sp0MXB%1%4J#cez(tR{@ zA^$a@`LEjntWBzeWlkteHR!h?DUowJxFrddM~SsmArm&CnXuczhMh?}IO4#4mGBXY z=ncUKlA2VpDrhj#AHKayoAKqgeJyr2X~$( zIf%LKkBT2~asAI8}wyYqOx!Z~@2A2Q+y zxvi%|YQ1C~nodP_Y=<9`-5^4mJkej&)v46vA23F&(>l2op^35EfnU?)&D_^-v`EHu z89>1nqdojznXzwnPHuxz)*_GrF zOjymU^m{e3dccFGiZ{X;TMrp$`J zd`hNQNm;SUm*jjz!fZC`1BGjf2F;XK_7PKOcXdyB#8ukHH^t0XT{Xqb_eHf7nmU{D zJyRp4Iwl`Ng`$Q0*+BDW=cAc39XAb5nT5%pZ6=ZiJJM4WmEqv`xBS`itQ1?(;*i?N zqC)>4Eh;?QIECiVW-8p!G$qdm*#>~-&qiI(W@6LI9zc_RpX771kijW5?Jgr#bx6uV z)Z9##+MMj4PVN5-G_z1!!OLRclKMcf@Q5&s!-2FiRnSM{yK$Xh%Frp*ge}xB5?0Xbx>w zyz?f7=Fn!vxqqe59NMhd(K+=uE>eMe>ML%k0Lz_LYxqj*}gmgf8$uNP1*6RmR zajAFB5~x#YzHCONdUh(!m(7Z+en`E+Y0qey`km8W(ma*s%VrO>?3~&gL7ULmw}4i? zQ;kTMY(Z${>Y^Q*4@#w3vKgKEMXBaE+;3zm%@4qSjU1C|Zm)skQfZoO_G_C7sWeSC zE7toZm8QvN#q4RRG)*=u_9{)KX|h?d(UR1!yjt7ksWeSC`?bm1)QMQ(NyN+)s$_3n z6>?6NT7$SxkL?XU+fz|j_5^MI6VL(1>`A4U>ln`m2U7WgPiSyBm1fdrzZ#EPgzk4b zm1fdrzi$04l`mq$!aJ!nlQ#Qx-~Ckc%w)%7w9w6gX43XWt?&v#h*qvcXcBFEnEN4h zhIr!uv`%TkRYa2gz0-n_=4ei63hYU+t!COCG1`!&brY%H zadKFZlZN@Q22g}em_=VI+z&zy>>co?Y1$T~dKiKa&@9?Cl`&I9T$?nSK${iAI;PPp z&8!&QEp04%q)ank7sJ6JY4i@P07gnjq+#dcM988IG>bOBY63Z9(!OK7UKrT`O`A>g zSTRni)6+0p>1=>RVSJ$3j5L}tn<;B#Nt!dp*BMwv#%$BPw7Te#CWYAos~4oz3l%xt zIi6;XFd%qdPbs+68MB$Xeyx)JKkj@BoYQG~ z8usg2*L0dOn-%Z-rPGYrtoYbJoo38t#bfo;C79&}%IpWyJSE+YWy~ftV|I72PDsCu z>52s`pjhX*DBARNnlYQv>z9|l*ab0Or;v?cev@?6x1@y1gjRL|o0jP`SvF(h*e2b) zaC)O{I!%_%eqGryeH|tX7<)ylg7{+SIw(Ddx9Foo(=mJfW-MnyGiKYv$zka`x%Foj zrCVXN$C@=wdW~OcWf`*Jp_P9o9`F-=q)WitGPAeF`u7eopVt zi}U_UpC}f$#b%7=Kc2S97{H4S9Ws{jqLXvRINqujyJr06DH>sNV8%jj4{dP9VP5oB zWK814jWHRUd9jZ+V>K_zGcsoJ;$?ltCtkeWC}S9ZMYqNoyL`yra(bybp?k({JFzJ1 zlcBOFfga6#$=rb%{9^9nK^bnCApq6b2ZWX0%*hxkCR&;^Jj0E9_>M6dm}5f}YYfdenP+AW_||!uA&f@tc?ni++43DNzNHQWpIU7h~6DU~Y#qm@Dfu{uE;nxxYCBa~O@mD7R+p zK&x{hWSCF=kKC293~SQcyEBfVIW*m$L36hVK1Ko#W?)XhF+KD-l(7WUZPLmeVg1RB z88+m#9nFmJ`Gh$Dk2;%i02w?w5{l>uf1J-4#k-k-m(2kU9Is{2&w8@He!#7as+eg7 zCEc7v+{%bj4xT_uRGESxpm><^4oSZP+W`(e&Nwcb2j)G^n9GT0 zzRsw_i-X>0?7=MZG8xJ;uiL@#&lwqLrUC*P`=Duc*!5?|x+-FaI>as$wGPKP)ppBt zgw`&ZkyuVZ5x$CDJL%_|$@}w`KAFccwx;8{XcAE;Q%{V|?Hhp1KXX171}Kcinx-;Z zm|5rpBkN^0ak4r9w`7?EFa{KfH7PWagdYmqL3d>)>STo(<_E}$&NMGSYhyDf^ZDVe zgiKrRfNwOJwJ@@q&FVnDt;=vA3lf_;kkW{z-f%cI^S&J$c)_mhOeqGN(J%a#nJ1i# z@rD(~%(c;oIBJF|0OzrpU3t(LHzBi}&z?s7l6kkP7&Lk<$;{$y@8rr%`o#toN+zt% zoXv~MwV9iE@!h)2jeH$=+g8i7eYablt+m7Q?A@K2>-n<_%J{SN#OA?F!olnhTb@0B zBy%%=_LtKZ+?=x(+_&c}&u+Vrd5w>R=ikUY{QrZJCHFG_z-;*mN(O2x`aNr=Gp%)& zS-)|%S#j0GUq{r;q92E24_vR4W!5jLmu1#(Qc#vzzt+K7Yq=iw%Ph|hQ&^r2j9O-g-zoVO)Snvs2*0s%j7IStTF_w0@%|s%j|J+Z7mv6w$J*`JuYQvRub39 zjFA>83r1U{{Bw*&%Dv;V=5md6nqql2xY+XS`DvDCr_ac`#5L0Y*Q_y^=_)lT%U~7= zOO|A1`&pHcX??x2Nc65OOuo;GG;Ot~-Ka{M?9TcV(Uvzg%kBcN_GJAJGkv3#M-h8} zLkkj@ljA~$3(S> zY11~kb(;=RQSohK+O&^^Qyye>!;Co?g5p}sX7Ja;tQUe%EF1r~@~oxyl-QEjS&gY1z+dmPoE_+2$FEsY z!e5PTcBU=;JH|2lnDCt5J=?zu{oA=(_H)b!iz$uv#CSf-o%C4U$ALsF&-Nx?r}tNb zpPN#QQ1=jisiA{NCQ^9#1)d_vp-Y60(D~cOiahZIN$Tlu11O;n4HPE4ZT{x z!<6h&q1iAc&dJK&EzoV0myJpC{11Fba_>-Ed)TYbZX-BM?fmS^R`l=tg6!kM-+c|U z4AR0wv>O>z>)-Ssz#J0>{ zi`m4tAdn|#`?`^?J+emD4M9!W${y8$*0$xg3~ZVWJ?D4U)OU}_M?D?2o2Qy49Qv0Eu7m2vmvMG#O zp4}sW-0oE1OJ*;l!L9IGb`4M+$*xiv2M}KX8;@nbv1fXR&1bVEq6wh??qp{=i^VhL*>zo6ar?*Y^Ze2K-?NLo#eW~^okQ;@36_QUsyRPP z#NrW6&PA~qz{=E|FPy@boSX?h;sg4YIX`)b#a%sfqD9>819RF{5r6DAB8RGi!JeC$ z^O(Q)*!-Mi%vMx|+6xC~SA&u3bM`ri8gIHGhiiP~_MB>!aq?P(Vf*aLImq?#cyEqb zp&Rz+jNtl6K9aLaEUx(TWDf1n1l74*%<01aecZL2GngT3g^bj-Jjuq9*@5urZq95c zQP9}CW?}4cy510JY=2O z!sYo@h|9|A^`V9=w*_KgHY0Mr_YA`VXYy)o^{Ql}W1b^Cip&kOa$jNlfB)B|uEYQR zU-Ow#!z4dq)u*8!#Hezw+FP9$XCIB!x#-yk<6S(HemwEarGl2^ufqN``mCU`)K1Lx zA$EzmZ4nx=nt3A_$`W(?U?P=Jnb67!ibhve4f&)SX5 zJ;EQjIV$%QrmHm5t1zr5DJagJZM9BlgIT2H#W{D9GA$Q9pk%(>sw~%?jEt$i)zR4?!^K+kizburUKGfXvd$||oqyuOi}VM|s9t9>E& zPHt>v8c{V8`YOi-l)vY`5IqAT9_2oFU_yiJW$qJRlzhmgpP3L;0e^lJA~7po_?%1E zi&?Sw&)m6am7jOa^CvIpKoI`0%8THlh1lnz@+Jw&0*ZK@3$)WE?HWqgZs$&Fh6YqYL!y>5ihW zIk(RHfDAxGV12thdTx)g8rmsuEGOtwnD;>JRKRgSUOeYoFg$Oyo%pQln7rRH6D#Hf zKbPb!aTd+cWs%totrq7EMLQ}*bb>xB^Imb%eKzF%&Wjzk=hfl-XYb3~&+XEwEN=rZ zN)P7IAr8~P%|m(gBjl_&{YYNCt602sF>f3Hb@AoA4_sTTuIKsjSDe3-cb+S5)1y2O zuA+<2^71fK5)a516lSf04r+Rl!Wey-)fu4QP`1G|D)XGljkNmphBuiPr+<&=cJ6o6 zw}9GeeK@9B2$cz~Y%k6;YWf&F$(KYu=7=SQBH}15U#l;0Am`3yd6KQ^`ZGA0N+CZ} ze-)!vN~9D%X6uhwlfe9JFLE|dKOf5>!JrRB>a`R?^Y!PfMLjq*)Gxtu7}`khftX7Z zribQD_4Kq6vxTm?ekqp2mKOTtv|>)>~5!Dgyj(4L7$H1klfkA!Ka%ZF+vBb z&bF9Q4l{#KFZ~X#g4=yCuNSSE-A}(AGvTHjMvyxLThNt+)y=%&^bma?S5jV{7E1!89EXCvuwgaIY` zrB#@u5V25y5!0hk-L)j9rTSX1VYxoaMpRqKs=uo(XtjP2Qc@9`P-q8oc5h>QXuLsx zn=3G5v;MLbYr7D(RezKht+(r!+Ka!!9(@;Ev8X(t--}ro^}MNX1w|+H_V%Kdem$q3 zfoWs{4xu>piD^iLJ(ORxxIyzP`cVkI14VSP6Sdvp*59?=@*XY@P{0xJ!vj72tc(y3 z;kSo+)WI0$5JlbeevtNDFL4s}HvEJB3Px`gU|&A#=|`a$voU|^J0Mgh#E6#URncWX z(!WGs1J+m@LTyEQPwfpm(ewmF$aXSJ-sF z5R;$bGXkJB7#fp1OXz1puU9pU#c0Tk5Jo*{-dSX~2^haQe) zYPljept9WxMrUgAh%ne-Jei8pnG~iO__E}+7{gI+sr88lR7zqF7y!0fgB?;gj8Xs` zNHWl`Rxt(TrW!CSS%P>##rufqe9gKEfWSs;sat)I!rng>jtck%9)Auv&ZX9fIB;P_zgWy4HgQGWT z+{52@dp`r+jAY~{4KSc?unUHx&~C6~prH@ejesIZv6Y3_^Pv1{hyit4lY1X;<>!YQ z=m*k8t&B8aj?`7S^Yc*#_sTiYma&Ed+(u(27*KVC3=m^?bu392){nN)26*Mk4UbVgtS7$TU)K8J@$W zl<%jPBKspN0Xuv3Ihy?H10q$X9%^)pQ9AH+oOz=FZwV^9-fY;5$0)F#G3NFpKvQBLrv0Y5i0HgRIU4(08QQBGFlA)wH>&{1^na|4ZA zxu?$@X53>X{@S|8IF&zOHNjYqKM*~|ctz|Xz<;_?jdZ~#aCfe;GiTI%nejSSM%cf? zNHgx2efRf*ert@2cqu^;cV51ll2!;Krn7r^0D#^12I5GiInFa{9AUQ;y^@kJj-3Uvvp701r<0Ulhx zWTe?nSWsJh#Yi)>uwtKUMlCX^amCQLV$RFZXv6@VNO-xCe{W>|AI3~R26_M3h}j3S zpaMnRgX~;6uRD*7o-p~P@v04JRnOmx^!uL?^|>C4paLMFfPUh|rHgNk1JEIY`lJ(K z3}1dRz7~BDUVSyvqr%Lt@ZDnK@m8jT{MTkSrnS6S&CWCp+k^#ob0YG_*PS5K%|ugP z3v*#I*3-nh(qb=DbL2Rf>z-me!z5qRbRKXN)lF-8tA1X~lyAB0-{VZ(4*1mK3WP=5;Vl!#EeK{IauYBM;acx|tSZIe7Ij4Mua&_cHy-IW*~O zg8$9|1Uq4dI<#JI(En^|hxE9T{^Xc~_(4dMRxaFXdZ_rFWiOf>%x zbK8QW(Uum@hQG`+@jKvb44q~#V9y%w<78Tvp#f@9FS#2k-+z+6zKEX)Se4a{?1gD zkMKOdSd4Y=PZPaG!Q^gcm7m3*-D;O#6LAO#ti1C3@*&^En)!<`)}auC#4Cz71M^Sw zptwVt--)w~l;`i_j`o)#AIye|&Hu>FcRC?|39nX^mcInke%R>3wCsixDb35T0%bY* zxfq*SV1UBdiW5=TVa#{sljW<8@@f7-ru$n>^E>fkqn7zAP#t!c{P9FRQ!j@Ho$~bv zzRZ+wyl? zQ!2xE>sBfcoGF%z)R-A{7Rm&u>+kCXh;$^=kRUq>K4=ZKyE9HFOexi3SCa)A{1j zsMlBW*HDLqc{lS<+0wtA?&U{f;+C1SinLgDqZ(Ow?8oX*P@X?paCUb4{n^X>x|MO* z3SfKjEY8k1`6sD`VD!6udiVV?H2IK!RQOx_Q+^LjcTpk1l>Pb6L{+a=4M_Nw|IVVg zK~@ESQ(Q0Wf~d;B2I3qG_R=@N2j_xAls(zyTCmj023oomR2767;9gKmFv~3Of?LAh z-qi|F-wUk}PEoVK8H@o1QnOqzsZPNUn7Q{qF$u+VfFY6sg}`%dXaO@upYVb`f*cX@ zg64voO;Ht`6aK$NbisPzuWM{UitxKBvEYpG{{h+pX3V#`f|HopwwV)){eh%yX2Dvk zC*oP0d3z+`WK>oG`Wk3bcEKw|ptPD(kOoV03ZgLHFH|OaeF3KHp>@+q&t?TGC^i%< zw5588Y*4TdCjkRWfQ1bU3Xo!Oge5-~Y_X7)b^GKkD8)zN(^W9Os-AARE#P zq(Bl%0)Z5IheVJbl3VE{LJ%TI2T>7FK|~agGK$jds0gve4k}nsl&JWk48G0^*Bt!8SOE9coR+3e*y2R44 zIuX`Qs{(1w4ML45%ALa#{lWMLF4}f^{-((me6Hv<(-I*6?R%GHOl|!4<$Em~^$==_zfWL3eOK zw~E>?TMD&$Ja=k1Ji-?3F<(3RBUveGdhD*fmvn>l1V2FPHBy5VjIS(Sq)eJQamIux6DN!*nK5BjY09{gF*7DlOPM?_Wybi@lu0FH z#!tAtG^KRP^a&Fu-;S^n*$jRT8xcQm#^i~m(`4^vh1`ryB>s#!Q%YsqStS!^mQGjb zCDTe%W==01n=(PRFHLdz#PpWPoe*V<+?<@0>EkEQoH#b+mQs8%z4Z3!6K)*LL4B1eJ5t~#R zG#Wjp1P!rZ&%nl=zgqwQ-ydE7@BNXIo3(1;ss*d&uF5Do6O30Ve861yUDI`QG=RcW z(_^9N11v+5VZkS^0oLF&4KS#;9fuc%jBPENbdB zhh}%x+nlE85#tl_@+5XlSZkn=x4yGAN6$VDl}Q7W;IiZ}|LC;N0Yedq9Ada4Ndd{J zNcslR($gv+;RrSy0x1?>2UY$4I^NF`1HC#gan7j3{MT* zbvm#XZ2J_0+ow!}kE_z4($GNKBsf&j+4NwS2GH$IOGv|5)pOgCX4zTUhhP03SZn4j zWq;!H(p1RZZCQlnF!fkrMqo%q#21!sdR)R8M1Lb3(G%s1BtxhO+h1eM=gnnUvUmJrQl zmZ$24X!k?vP-{0hGY_|cZ@sf=b?#mu5j*dAEiYY%>(gO4? zXP~lE!MK1eX97XnP`?CjeA7Jy_Qu^F2ory@e6M{AHyyNOihay#k>@RAv`VRP?wTzD zA<;*@Yo(vh$h**UVZ_gt<<;@Yrql$`50g2cPxwKCZv{@3d@gK_K498p8~4f3t!{oU`%wryup})6N^e+B z1g=2l@Zt??3$c=kL3UjBU+lO}*-?hUDVnvkMi$(-^5(kmq>dsy#6%$bZIu9Szr{+Q zg@*n9478mRAG20uKUp(GJ?ou-cDS3mOmTQsL7q&pxpBR6;Om6M1notL47T>wo}=^$ zhvsA@#_@EI!pM@U>{-kxpWa*o$+fLd`py2^YL@+Beuy;+%C1?n*6g+Ype{u0vn0UA)z*;k zWF)>cm==7-tSUQ7D_??91N4?OT|W=01-)|NP#ru>nmA#9UFf;S+O)oGTozUj`HYfJ z^3O%9$|CB))G%w4qy!1$E*2yKMrB3ZdVX(h2N81{ShZ(idz7`Y zc%EUL9bhfho|Y!BA_|rxXZ+N!k2(*zGp(KV4d-d*C^j%6m0hg^^v}=J3Xu4My&&qJ z{uk=|6m@MB3{J4Nk;LUB(t|j5S92(?AC#%1hH^sbsbL&eWF9KVS>xe@IBSLn^lY59 z04orwCKNx~EmEI}w90zt>C?_b-jRW0MAQYdC(RBBmr#!m*jkc2LvM9KshZ6iNmcdC z3u*z+r;zS+fvo7#GhN~p+#FZd*rebZlX$rNP=d9uo^k<-%2C4b3vNlZh69F+ab^=W z?IBkg<0I*_N!EJ;=OP#)BWz8?Jl2e4y{jr&A9TywqoK70bKcr&LN%LFTG-G!KyZLG zv_8WSeT))an+Dq&S@YwV*PF_o$AwXAKT*MmlKl(EHVBFJ+oEE7igk&m@45iFORPoy zaiBcS+Aod`Pd7sh9k~x%2ge#M509HZ5J>s$_9@yfEkQd zODOr`=?hSvJ8(Swm}8wOUh_t#Y_Rn&l?}GCx1QNR|Kcy$5oJvidl(8uhR^@1B8vSF zc7)6Y_h6UHT(AqfO|Bvi&b7)#6iNf9|5CB>tT)w@RZ+d7sA~5>Nk7a1NR$>54WefF zN0li2d#EJCzZW1L?rd*O@qkiPdigI}WYjmK^jg0x7}vqNMzp`^*+XlhZx;9!M1Hdo zt=T)W-G+|V?*j@hspneWL#`*#sA0QN?AQtv&R<7nR+vc5vAZ zS4ajW#=!004^GvmU4#|i4{j!Ac+;O!75#fW=*Pq0g2D`~FTBvz+7L`01N1c)Ro^_u zC{vHGQj~p{FrK=o@|NnGfWFA+mA7IO8C8^gazu-OckoT_pNXmBJ#X4?RYm&~MLPh; z6_jsqww7kubf?u#-0b<*7gf)DbcpPEFF-uR=XpV?=d+P8e$J9TU%szTp8g!Vm`ts! z(W7J$@aSKv2nfIA=?p-rHB>^4aaS?*ChJg5Z*d8V3i~w{Em;F{fs9L4xIp_$ZWlP* z+uBuca!Hj@O&Epp->lhC{QB6Ydch?%Gz-~V>ZpN=zHdhjyW}}E75!Mq8Ic+sfK1@* z%PHOTX_u4(%0QYpg;ri-Cjq>Fio@Ak8}6qB$k*Opk7fB}x156KF|`bSH=Aln)pPrE9qkA337nhjx^&m8Y?9~fqua-Bm=Ebp; z%sqih)%O??%FeP>t*XT<-xelS#0|Gz3($9?=vc7E`=^aDFwNE{j@1!v##nz*$$D5a zrjqp+`9vk_FW5g-m8|HxRI>i3*t*_t$y#3Rl2z7`x4{#C;)aPHw^+}JtIQ^5?fSO~ zbt$v--{KhzWn-;_gt%-DAhU|~!?-NuvZ`W-l;V6ll{KR(Hu*ADv04LIFwQzfbn<$y zwS%Ht(VhD+IQG3!zP3ZsKlP4{Em)kPRV^zc6C!gxU&N6GOq!9Vc>(IZ;*-u zuP#>+JrAJyv2xY!18oY{n7bvO+&%O9WmQ>tu#lC77a$(aPO;{DK&i4Qzf8eYdj1!3 zYLTYHKQ8rhW?H-GP5)8#<<@BwII*rs$1eyYTj_)UQFTiZBQEO}ZIGLIj8FAC{2!xq zxesp4!qP=iH%g19_>xMC>HnxcnaN0#+*948eXEvvZn>#jB;{9oC4wP0%_qR1`?xpV z)&GU=(;jrSrm*o&Ym$pB<@+;7X1BzRS~Q{X=oi`fUVwO5c9*rG2b5CTk9S#f#1~91 znW5rXV^`2CLtmeBx3$27g!CURR4S3Lzj9d>rY~Jq>1Zvwr7TS0vMNlkdot;z3ezhR z>KaS5JV>ik4X&u3NW5Y?BaM#uD^-k+rdM3iU&`t?m6pim@)G#sp8RWO0WyAtxnJKl7uuJGRku&zj~xUtxpqiLT(&JtWO_m7BX zrzjl-n;PrU@cI(#DDk~FBdI_`Q-K&i!b0Tn)EHRzkadrCg!si*!H>$ASe8oM*2L3w z4_gc4u1M}w#axw7RK;Ay{;sNu!Ld{Mu=Tv(0_LR}7BKix^r(otiem7EF#1{&WkOvV zEd3YQ)q^3YJH^7wE37R=QZCHVX*CetXHhw$b&gDRU&>Al?M`n;OtekJx`oxuZailyOZ7Tm&Y~5 zLz@p9U&gWrSL-B7cpz=4s0Q*Hry8d82E6&9LH( zYlanPdDEU&747+ow#$S_npP(b(x&xLCn_d9bduKd0>s1GXRRe3P%0*F{|_d@7noRR zu7Y^h*c}bf<01F%+;-4&bL~hy_nMl{quJ%!miB_|g^sYTG$=#|>`|GUS6x+Q#Q%7b zS7n6wPD0J0a9BTQbif6MP91QjDkEL@>VOlf1H=hN!Sv<0>qalszixU5`Em^8ZL|8> zNtJe86)1)uBYE;;PTt)UamP%i%w}p8=P0(6^ZoCzw+zcr)na9mke|xQiYSy&(=zQL zW2<#eSebm^29B?{))NyM5mIM-73$1#tFv<(RxxG>Gpd-ej8J5` zwWHtw8fztzvhgXi@VZ+US;@q*0BGtD^Ix_07tb)lq$ZUZej8kc`7QD0Alqx!i@N^m zby~V;K2h@DeVvkjtiP{rn8qrsSN-Px ztu@U3hyJmILc3Li+Q2h!TVE1Km}$%vj6){WrOVQPg|WOV8rHpw>jmdc7Uu4WI6sWb z&Rth!z_j_f!>ZG^HheaMq(RpNkm z<06Je#lUz5Fb8_6gwjAiP_g49>nKg!=Z%*$p_@RnQV}qZy_9*YqQNgXm(!oPK}UMT zI`*34z~f|V|0(+U8!C4d+<;9Ni@NHovFqeFwT3%gxeIr2Jdl|au>D3LtSGCWB0gl~ zY4ZNQo4oJj{R?bGpPmX}@Nf9ZPLh{XY=b;54cG#HMVzz8O47tpMwtXZ?56BHcR#HJ z*9xHFF#iUt-L8WuZnU97v+tATDu3VMwJi$(nHxnx153U zxPhqaKa;hD7a$(8zOgp*fKn~7;2WG>tY%`Nrx(Ps#;#aa zb^sE;wNCb+K>6iv+3_7=%KNwjd(I76(6xe%Fgd7V*mu^OH1Uon?Oy6!*qgPWXp%iq zyvg30W!*QmpuE%AH1QpKOXk{JmAMX*xpW*E^tJiRTDXLY%Q)-yxkiSn>hy~^N#Acx z6@PnEzMv@k`mV0Qirv<>lJusRt*vz=UGl_849JSK*%MNw3&RpTRgyiybu9nUy4(X` z7IZB%)AOklSUc7UAqTuj5`|k1SUba${~>MvTjQUs9sIEW$=U**Jn+9Y4nBx$SWGBD z&f`S!|4r=JpREHu8cW~NU&DTyH6l;?4OOJGq%Y;`rRdbM*v49s_uw65GL-oCG2Y^@|#uIabnG{LLtn z;1{Z*tm`DW5m=Snar7Zqmt2mQ^w$$~6!qG~8JG7qiAjIa!?QlAy4F!3;axr@XIurqWOU}v#r zWV&fp$ur+AkBqRA{Jb+Io_+2f+i}mBJz@^U>oiZ$Ho=tB=(Ec;h>Wt4&(buZoJr!Y z9ztJ{Q0}vE;*9kNT$lUgEDr14tPM&3NmbH+=a&BHIcrvuS|@xqv$**(*8z(_rBROe3rX!4qnvRSJfT?Hf-aEe|WMefQ*(;xB!_+`qR?-al%x5E`CBT?= z(QJf{6@1U2dV;{%~+sJ)M_ z;lHv5@?arrAP&%kZGZ=WqQLb4RSH}|l8-pDpnj-rl_+Ksp&mEIuC}{2_gBiD_q6eL zgi>n+!zH!uFx0w}y&$z_Ri)PbUTRG<)EZ%^<-tO#>w`>rBD7XCDcRG*73HtwVUBYye(VwWo<~%Ubv9q*FP;vP;D=S zH?Xx%HbE)!wA{}x!Y$#uGU z$+j(6B?r0lVf`x5YeB15+b2MIBir5LJ#RkrA<#5zv>J;Zl;}fX#ak)1WtzU*WEbm! zTY`sl%NhouN=Pm_F7dzylvwh{P z0Uq8jGhjLnh|1JD9ii17H9HMH!1H(*-X@^SqcU_f=_GCElm9y>H`dU`o>2LvhrZ7J zD3`TpU2TL+4Vcn!5vTFII&#HSUP=I|=VJOo!{)Z8qERp+kU1JaYJZz?)<4OF$|pG( zmljvQPLaO=x2A>d^8$Z#XIGzY)fQkm?*9mtw-(mLXxG9wL-GZyDp)A{%OC zk%{VV#x2>l#$nnFsO)CDRi6Ej^Wl@k?-rxh3Uv~8-!5lqy1hPDbm%d@o-t2n1)_JXLly}M?GGBO?De3aY(q2)uyV?Q$+zX<&0O4Sbk_XR0NY1_gOCqw z9A(Gx!#KK3rVpr1*;#qhP?x=KeM{Qw$M2#ctf1QV()z%s1-3S#59f>KioQ((_{i_2 zbkOr^E7$s;!L})49&1(u*V6G0YH1)zy!=Ttl;Ky~Ce#Um42!K2$Iw3(Tc&t{@ss9( zDK|&wXxu!nl6e9uFd(JI#^PeF&DO4(zNBr0x^`Pvv5_;Cw%O@zn{|fxYYp4{xXPZh z#%Y@hcdfQ}!-spsenz7vhT3Ox;)dFAAvvUC^iW%vrr)RylZV-Q2(6CkyKYaq#!RJ) zI!=5Y1-NfOG|9Wv@)1^i>rx>+*HNvqkhn8XR8qSX^JfphL+h{LtL5dk-*zSr&k=txrQE%Cl=s?s)oXzmMruK$TknX29Ul*<3scH$4Ip5mEwP#-L^}*SC*rx_ z!(0G4K!WOebWzj%l)jS<(agaC5maijiZnHxJlR}_x8QN^QaD>35 zDYhR2dm=}eDjXd|KI84OnbsZ7PQ|1zs~mk`U5X|Yd2>gX#>1E6@qm9sT}LXsG0j$; z8&IhH=?pWcW8m-1*`vjxMo9p7>JCb&ws<3ntbFFqu)Qayu~s#Ry4qwnZEmoL*|t5} z<8W{`mS;~ePHyu6GtaZiJj$a|2ct*5Sb~dk%S-l$!!IHBYTIWeoSkFC%RxAQX`c#j z`z%*FJZ#u!aJFLr+;kT%Abr7_*2GAkxfyUHy>ciZ1SZe5?F>AJd|*_OqougOIJ%96 zS9Z94>AEtOt0=s4o-MPwBklwYm~U$)PH>jeJ`o{a{_}?t|2M-v1q*D?h$a%L<^xVo z4N;i{iF4b~Jx$-YAlDe7nfj zR`llFWFVR#0eo2H8>06JQRAw^V#h!+mo=+_%jkES#JOFz#odO#jkLxV4Dm~B2efD4 z!V+7qc#bi3TjnWlnQdelia?dAvi4hQ>r!0JHnf^izzq4y?GsI%nz6RcX2EDVY_*jiQBW}BhSMoe&z6J@X6)o zE^pI=L(RCZ$Ar=V#iY06SzA$c&80)dbGCLu=j^1pnn?gR*A1pa&!E^4&9K(z&)e3E z&a8P245fDnRSO?iJ?ztCZyZ*dFWO$!O5n5Aj2Ve3s#uJxePLT&GWX{5T%T64^?9^>=oN$v63~biKUhs zma@a)t>zHiHotWU%-&{uC-5EQ13OZj&Bc3+quW?-abtbr_N0PWZG)@pNw33Aui<3= zb@s->deDY9@$*YG464BJ5L?gB z@QSR*hF7C{uHl6XXM?J1lzK4iZChhekF%3T$&~lzH_YAweZP@LJPi@D=CDyDacDrEM?QIXcZJ&u0C|!gGQ;(*-4{xl>ly(*f5oE zq9A8K=KEo+!H4P2f?iGupf7PX`#v-Y-uv1%R=W*S_u@j~tT51yjz|-CFm`B;Qhf$D z#l2zbn?I(o6)T->^eJI#tH&h#ch1nBF=gYuwV4p6zG6GW4QFuWD)X9sZmQ-kqp5lFzv-_a2RmN{}?T zrzX-nbuVJwaI=4XF@p(n&C;w$O;?TR4B8E&hj)7RaN!sDDekF*w&w!xMV1ixth1T8 z-%|ngm2$qMWz2LQ33ty8&FX5$L9DJ;9;*Ig=iOjCY)cV$bMDx^Q5(H&F-NIoPTgjO ztEBnrFE$%odIm2%!KV`OI-^vB=%$tX;ismG75F(bPYe7HGJ<8VJ6nsN7)w`#(|%y4 z``t9%w%$YQ!}X?C`iK$)*}vOzs~hn4LGUrG;`edx(sY+4fVv&n*Nu6;Qpyt2BnqxdJ$@6o}<@zWj-WA6+kEupN8M)(I^DIJz?tvXWlFdgk>je zYXWaZfnfKi&P>sliRLo5-YbG76#V@lBcb3diN2>qK-k+wku~{>qVr_tO!Id>U| z#!3J;cQ-?+&JoH%2c5C)6?d>^HE>IPrb(Pztmnk|5V(HM_M^4|emIXc)h5QzZKQSF zNG~ZPc@=gO$6;Z&tsZ_ttm$Vb{qYFccokjgaW0Cq*!$iVTVp7-(y&8k=(+gN}*&SbK_q*Xs`HE*@e~836+j4T`tV zO!39km^NaTMq!hRiWB*2!m~g0!wI9`oMnUQW!(w4ioc)qM6-nGa zJVC>4Me%rykP*S-smODp+(*TEIuuVW%4I&>($o*A9 zu9n(9tl-Sw!|KAFgV5ejM8o<)_GV(8H^0X@zvmUd0PG9cv}0gKlrKZr)Y6YqFfS7~ zWwrWnV3M{SB3ju~#fRRE-sg`rvKQoOS96=`Lr_F{0D2gEDIEO-em9MNj!sCTqF z37C&?d93AWCM*rQjS}D*babL6XI+)?g)P${S;v>KkL+a>;`k9?{`!lCvO=#U)pGm+_X4F9gJ*%yfJqP(IP| zg}_)kz91S%Y&y)81SQ|$DX#zNZok7fr>yB=Unr7gYr_jEr!+7DE~ZNtS3jq0ddArk zdi1eHKt`T@h-hh2XNkoR&$7%|l~^|J35tWx+iT-y!N&%U5c!M%C6Dg0D#c)!$}7XO zdsWcFvwMrev#_yG_FxTE_K1m9*+XKh>@itBWx@Gg_MD_l`OLFNoCFva#O#q%f%~U* zP0VCq${qvf)TvJPa2v3J2iIvPdGslH2I1a5_A+t538vEv$z}IR2+13ye1f$EN~zwsHtr{MYZe!XB~Kf!j#csRQM7@K%gdQm@Cf0~zGJPmmAEzXG7<*Tqx<`p9BJ-g_5t)s3S8$Yp ziX!qENtz<^S@}c}`D|Pj5xLn2`|Z9F`9CAo>C*dZ7?FP-y+0IE zZnFo&{89EkqJhbRg=IgC%j(CgusnV=rj%^fOa@~u6M7cg2jc88r_>$?PZ!&77Ja;M z^qb;g({E$ib2TgHIcx;~(isa6Zq}NJF{~B#Q*)4aS!*}J@>@*u=Wnt16L&L2$_IDE z;}6g}+KDCX1<}VBnlnAXS*fW#r%V(aT0wjPXDA+s! z=W1Gg6N<7HbpE$oDpXu&3@O9JFGlDFLrIxC{V20*hJA_nhKWVWe5I86 zios1~elwIg#@>=LN0>6_s#L~E|6du(a2}+L7a$&fo^2l}IFyw6!jCeS?yx@~8aFUq zpQ@Qg4OBJLh`lhi>3|1XW!H3KZz)&?s#tHBi$vbTT=;(V7_Q$sd)Au1|?ei-2u&?PJBgOi~(e^CZAE-pm=!x&|th zZeaMN*%Mr|&8B8DmFj?s;5mJP3E{&)UbVUDqhD|bk>m$?a z_u3bWKN%iURflKA?+l7Y!+Y!31V?&6-ErYY10ybI31&BwR@b;zBEj8XvieLi14EPw z44mcSg?6V0H|miihN|D1s#4j&;~$j`ECRbSxJ;x}Hsnhwscg7OK2h0l6aHK!oSToA0a}#L#rpFUGw(W0CosqBm$ zDii;9_CmJSwm{J`98h~0+?|~DE!gT7`vAp%miUb!5!GJ|su$P`qWX)Z8V5axL}my* z(eyNvv}}r`^*MOyfxK0w3gb}XpM>On5 z+qukgW{O8LM`)rwlQwUSy_yGll`|x)^5EFUByG$}Zvq_Cy-lz&EA1sAd{)X@s#)n! z)`n&S4hf(bR#uVnxP5{qW-t_r<5Ln<9G}8oU|h(AZ6EY+81O(M-d^xQ|5WiHdrfI+ zA>?kfn}^l)m5ETJfv)}S9pj*`EQcsmak)7_+i6gSrt!jv~SbI zF(wn)?1*8rBkTp`zWL$PL)JWPZ>nESg!HHFEyQ((L1z2MOPxANWH#vij6EyHR3}o! zQ)B>@J?kV0A5J?$ae4QDp0PL5QgEY-y@^Om!megZqk6+6mT6lWY{H+jr!%X$*{C$j zxscVo0P*ndbN2f^grRSv6Q9Re(Vqz*zm0mJQT}QCg1w^$lo~I7!JaQh{I89BZ?-?| z(U|({uxEd*f6;zU7Yi6M>aV#;%E#xj7ua9@^wmjfrxvgml=fC~<84yL(-I*vXGBwG zz9iL4NS>|}aiQI+2cK+D8O3r7i;W~ zcRaLz!~U%w)`b`9bcc6ex67lw|Ap)6H*wOyWueO9&LmaK;n<{F4u1iCqusbW-GN;r z7a{QX2x(cQbFw)YsBr2a0V)tCfLYAhlT|V2WcV~ptx*1sYdTbtOhXjApH@W%%U5cn zo*2N|p+c&h!yj`*4CB7<4#{rGsLtUro9Y~va9kyaO#f8ptd-=c&Ur#UQJwQdausz> z-w&{Bd_ICU-)?_Jyw1d=I%k^+a4}u_c+Kma=FsDhBK#Wkp}kmqY_ed*jvvNlAEA9^ zu@mu;{Z8=%YbJ{cZJ#oxyeV6&grZ$oKWv;eJ_uSqf@k5A7Rs!nDGXkfy(sOeIZ{L{=ruZIZG4lYajk?+a=Sxx;L!uyR9Kb3w=*RHSznLwQ@%a{gZ}j z;`c^F6(wH9*0?2Ga3Lv5ur6~ASUGMeO4M(J@=}y&AfG5oG-%{EO8n;c%A<#BIP%TA zDUR*4pAv1P6#Vm8wh3?vzx3bZd7wBaVa1`LWAQy3Nv{E1#zhngjf5Q`ZWMX&o|>OtIWwT8i|_5F?1>gO};1x1X# zcR6mt{ofQYTmsPC?R|zxq~BJgzhH18{kB2+2lm1YM)=l6d($3g94wzzZ?rhaP>J>_ zMY~pt*^@}yj)IxNE{wf2>7O#`(*&*x^HZ?vg=~4SqhBOo4b%j#c_TG}lh`WSb(NfZ zLH#54Hc5FB%7a@=rV9l(x}+qZ3oC;gT~gAYL1h%FC(&FR)A%JNKF#Tpk|jr}l94U- z{1mknnq$fUl$_};U=Ne25$7iTZofs$Fu^L$UH#oYLfp-u#Aikd4EzdrnQ?RqbS9qw z73dfrxxEVShkqzGB#xQKH5TP?pg^)tGNVAUUOrJES)W3IB#wO_cel&Lc5?gG>&NZ$ zeJhW<{=`q^6-<7rJYF*aE;>t>RzLo1I&U8iogR#chRl=r;p7vOItu}Qc$V!-Q6a!_ z${qz`4(|PQp0YcyscOn+VJ~w3wigDJr5Y<56WN>ccJ^^vDof+DQe_%XgTlc`#>&w zA7ri2KaEB2{}?juHf5qk@6xY%r+F_} zal_u&)sGv498HtWeypb=Wowf_uZI zUyg7%$T2{0hP1GeEh!pv$cAa|UZXiAA0<>Bvbf+1sxrXIpdPzH%1S|fqkN*Ez7bOE zIGXt`mA_NR@rZ9AUsl(#QoPMnra=CN32^aTy0S)ryindBC7`o#+%7&dsk1=thiBQR zX)2H}A33@KbUD;E0_bVWGa&=TK}LmQ_>a=6E$Xh;j619$a<)j*zE`&1*sxb>Too)R zr0+&@J|UeoQ1!~TG*z!iY!%Z*V|>~TIpK~jNuNq6kLj;687Zb$gga6+5h>ev#Pmo< zHDkK6Ykd!{VT?R|Zf?c^H0l~l0F64dFa_H4QI7XS7lucHwnJmc%Nvyx!r(MwMwgGN z3&Ud^S=wM&5`&jF6)_Bo9fPo?d)_p>u^Di6(HP|Sz?ep|2^p)l8mS!`^W9DOm)l0f z)4jV%pWayQuARwHi0M?$bRIEn8-N|8cGvncgz|VtlJMbV?rws{YIoD)-ker*PERvV zw7bcdQ)9I%$XQW{_X5Pj!3K^z4~Zzmw{5IKd}EYHE`_BuRw4d-CKq+=w-Vsdu@vIZ zHdZ12Ji{l8o#uL6Q+miAqVJl2qSP|P|IS*OA^wOV)3>Hf6yjSnF*}ZAN|yi+nF3NA zZ;2iZ52+g8HM=kRtnZVo+u>a* zPd9P2O8Re1;Y1Tm7#`f@Zr+ZPV7{K-#NGXrEBHXCT*2avD{jjeN)v#0q?D8^-jz?3 zE8fL#=6=7c?n-ye@J$x;GaL)WcT8JK7JE&Ai|Nuu)lU}mT@`P@i-0x{Ml^sHEgYT2 zuO7(tnivEnjoMk(Si>KOIQd}o`e6@Zp49YaNAQ`2cBre3e9S|>m( zn(9`;i&Do?WaE=MSOYa1_yVS8IcyOUS!IsylIKy_m*vPx`b9!{=GenTr*^j&S_e$WSO(OlfL-Yh*8I ztPY-cYhAdjjUz*UpecyXm@OV;C=`YkqP5-GVr5fWWy5R%K7OSH&D>5RBaYk;7 z=_$=H+z*L{D_tCMBCQ!(+v7`PGuAaN-Hg2KW-=nXaYke}FF-t0baU7Rhmze6d)aM& zcgJ8cl8GekhNsdN^l)^CrTGr|t;qz%LRL>lnwaB-uMcgeJaZ^}QQ6aRr&z`SG6jV` zECF;-U2~q8(d>> zFNOb63a|MpI5hAXM1ztpS_};CDMfjH9W_ zXV#{woavr!IvHmBOY0j&^$Yrn25_ z3MsvU!*y%ADrp9@mS_lL);cg<$<-y@Ef?ik9v>;svgjPlB+TnOtZ`5oS?_Fwo*pNk zj5RmOPp!G7SCMjmEpYfblk(JH?6wLfty*X^0WSVEK9h3SJUo-~+t2+IU|^A>yZFRp z!BXyPCe+2aY*)HUxtSKn1aZJbz#m4yM7kfl1W!ETs#>1aF-%p=ZKEqI{6ruNmRUZ|EVKG3-oK z(7JDkhUp_5%f#(oY?B#VBM~rKYOU{H)`o`mJPDwojs8PBo_CCLY!>Sn9)+~WGgRf67PGf*@~<<41#@{ zP6}*p`XDJ(t2t9Bta%j*85@6&D}^{0QpgJs5A}Z^U>6*U`&-iB!0NJ_MN1}uOc)?H zxp?3r$#{q#?-=9(C6oNFOrounzK1{Im_gB1o2Oi{xIs{ees_k7{G%Bka*q)b;BpW1 zJMEp#)kOAghEJBcgIi{ivW%XZp(e63nyaWkg|#xH{-owA>W^ryqCUz*6WP}oHp#Tj zN2afC$GYw_hDSD%ziuOTGAP-ICbAq#U5;yy(J*R?qmgz1?wNvjsUBqQNV6ZgX2;xp zzHzD}H_05HF{*6g^iNK8lz50io${ff?KY*YcDL${oO&4|g!!XddNe~LkM=a3Y}5if zh^CV%@`-X=3hw>)Go73OKh3~z@jlyEHqCS#5S?UeBhFH8Yi9ynOl$l>dE0A0#KI%9 z9V10wlR8Ulet4GkX`#~E(mNcx#3SwOCQ&}1D4$|*qI^J7j)SiA9r@xaduftC;3iL>o`){L zAQ_u!_AM0yk(p|zO=I>#(%10?eSF?|uOma`vbQD!*;bll+kK9iqCZ0+$~PO7hp-n! z8D9|PlRF(LVjO#GQkHFzGFpbF`c*gsRUrLQcb^J`HBc2uP776mNNiPstdflT!&?tH z+9dUnP+ozwW(K9XK3%82)>GC3n7=u+I*Y_K*LMwoV8}V$KUe^xz2HH|U1BQ($XF*{ zmH>*seV}-W<0rA3VNe$PBvU2kPuL3?(&)y8gPF$Hltb(-g|h>hEQK9M%gYTls}P81 z4x(R>*nF-pnaJrCXF^HL3lI+n9(JUApi#8@IFqunwgWak;@B<{TOxf|u#t!P<69~v z;@Jy|%RT$YHPf?Os-JMoWp7D|RxOzlU0S-8z+dac&C#Y7Ml~e4NG&)Q(!vW64}Yw{ zwW4xitc=p0nWxk=xz3eTiat~K!Y1OJ2`@AI=sS4*p zs(1n7A#{zSrw1CTQtGKneZUpP_nAzj%G-u2Z?hMsDwT#R-?F!)%GX?#pQ=_ROyx?+ zMXJKNkSbn)ct~H1VUI&el{Y!rqc9DXo}; zWwol(!HiN*a*?WVE~JVVARZ>H$8{GDB~@y-@^G*v8*r_0G?R&XWw@craP~r~vPNEf zF&$-;7hlX|FG-WBT$6cB6I_31;nBFQPs^8J#sy8T~)4D5EDyY?aX`O2+a}*RI?c(4KR|z^UMYQAy_| z8c*>DCBR5LmG3&TfqoEVny2uClFNSbZaA5t;N4mIag36ypQWYAQ6H4Zg^OCqPmGfWL~*NrB?rN+{KiCY5xviZPRNO{9y z5wDqSn78_2UiNC1^491#9j}ScSu^t1U52-QXn5;kZ-k!=Z#~UkkhkIs(_62xx2Cts zwsH@-Bre^x3h~HY-#`jJ?#db{cU_yM3Q&oy+%+>>x(3|!uA_6(s}jn+a~%^4z4Hl? zE3wVRFLcZ&z1w6l6mm>P#MPtHsN|S^iF-IM#r2a<uV|0teEDpN^J5q(AbIKxB;w<#tby{>q1nn)CARX^u~ReCmD)#*H}i$v@PU*?kJ3_or6p$jMkA)g?o*S;bM)>xYNca)WRqYx^A#>jjPgbw=7~skB6`Z%0uesC=Zd?%0nKKPp#plO7xIy`OG~eK>}PJBG12=KlHPLy+SuB zfRW!#tj>(uW%5Si5l&H_H+hZ$XwC3x37~m2n%cdNseK3w_TeVIj~TkGmhn12Y4J5% z@aOU9_Y?QzsM7x->?e7X+Pm_-aXzhrHAZ!e^J%Y34CCb7(>YZ2;!oBhEZ;*~S@gy- zTe)1Z31W$-?daU1Ck3i*H$0uJZmmKRITL-X?;IrFpq3mUhcko`0xU z-Tq>vH`Y)SYsH&*=A!UtEIVd;V@)-&a!c*8u;dW_yjo)5zzF%&Ry^#D|DcIa!^n@- zr1Uh5aFk=*q=L21=g;DYDY!2vp3cDoN6yWR1=Z-iobE`HR6?6+@#z( z2(}IhNfV>I2@T_f#=8lfjdpf16pn?Q5vjq7T+e{{NQut=-^(b`g#8{yNnhHU;!gnj ziahz>TB+(5s(69cR)40o`X=+7H>IaIrEQ9mv>8P*vYDGu&)aVAsejfQimp1Eh~3_V zKH-GEQ-rj4VD1G+KQDm}mB;1>oIu@jzfNo>PI(hL&I$c(N_0KJ**^gN0bY44Hqo~W zrS0)5nbb=tTvQuR$H3o3`S7~2Aze>uLyjhutkUvr+ZdK_&nQvwZ_Oz6Z1cYxen=Z- z_+j3J@V5-zB8^pq{)^r56Hwt*M^kZ+H<>#bnZ=6Cf3f;T)QhbClsBFAjLyrZIMV3Y zeamm)9$Y>aaUrKU{Zxwhjg3%uhSPt=NG7k#`zBYd>3p55)^vCjp*0;A!+6N28Oa|~ zNXl==%m#khjn56`m5wkoZC6yz)w8LSx$<-2?^6q`zpkud=-O4eDW1*pz_r}ZB)LJ*eYKwlut46P>8cdQlxz5`Rb}^ zd%$lfZ;6K_hLON1RXy~QvpU6Iq^lQ_hK!!$dAZAC&O)ZGjSL{uR?0dFptNNQjAsy6 z>#idThws-~RIIM&bZW5vm}3CecX{E?CgOcYNM;}HZE0uYcX>W-tAfnJwxAt%bkW~v ztMb_!tdTpP=|3ZOgORD?FndcRe_|y6G)c;YCP~tz7d|8@3k9?@vQSVv)5eq}wRUEb z)Wh4Uth*4-L_510VyY}8|DbC=i({NE0@9Hl<)Y?{9_6B@oL-xDDkP#GP%e^0=+00# zF`119v{ONGkT$78;> zmO%2Cq6BwXijZv7xFVK}9uy%DNLeXD{v@9$LjHtZ>K!5JLS;)s=QO`zvJONya^5K} zGQ}xYo-+Y1&Px~8JXY2NoUK|!P=OZ50~G;Jwo?&MVyg&PET3wFrKz)3 zQlNb15%9EWQ5gYq;0yVSo8u%J4}%eRO|MB9tOuXIKct=*!^z6fcNYUt#eRnbQ0PMw zQ^j7G;f&M**0eW*$78Go1&>u|L3hdiRC^WVircG7YB>^-Mf-Brih>+Pkav(MMUeN{ zYlcqDWu|vnNQjS{<0aVI4>`q(nhP3irgw1P^u1vA>iFz%gcYsv2jke%m%2s0MH{D|J9~d_^ zC33vq+rfLhKjn?O-bAJGUIjB6@3XM6&v<7IXuNA9U{fcjEkYuz;r_LJngv0fota6~ zyTN06FBv?-D>memb1(>U>)d z>Zodu+8s?|b&`9w}W0HyGo+V8Smr~L=Xk^E=qm9Fy^~FK&b|mwcJ~HWnGK|+@@0O2v~}gPZM(tzOU*;H;bx0yQ%j@85IjUM0{5pe z_o)~?%GpE{shv$vr+d7%jdr#b%^8$BJr%ka$9SXEx!iX$wRD_wkyyjzq)hRs32^aW zx~c~AD0!(d{#Z;pqoMbBr$anz@?kl{5BIWXI?J4q2wBBJ^z z7!sm`IIC3`6+9$E%0nB`hb zYTtzxRkYtBe7bW)%oWL)EMtUXq|A=N`|yeQExs;PPIorf3gF6gXO<}RW;T#98|G$~ zJkyyQ<;x6;XF8LF4;MP^|LRO|#u*bgl-aq%$m9S1-@H z&ZXScZB#obp6mRudOu1@ks_&L%RSD`nwA94`S@GS4H-k46_Fs{xW zd_OMh+`?#6ts$?@#a{#Z`F>|N!P?NzU?!QaWe|^I%~vdRF2PSLNsF9~#XSs8`ElYR zWVVn&DL>u=R~I?Qcwoyk#_VM5!oIVsEbKZ!VMJI6lfrn*rJ&2<_WtM;8a2t&u6ue3 zop0p*lm92P8*gu{hVnX^$@NI9%RZ> zCi~F@xOmp&Oe@WK&a80;!fjvT?yd=X_XN1H)Y)B}H2IjBEY=VAvJ>#(!_FB(?`Do6 zN?+H}-{idK3jSM$`}O>`MU%*1SUZi}eDW7-pr-!&Aa%LZ7AcWc`pT9(Pj`hy%bnRt zCnT7stN&ptR4#X}5nY&w6pT7b00pBHU1b7k4=HwSmhQlx1w1+;O$=f9G=yy3*eJcF zn;NCruzV#hlofVU^YMYK5k;UKlcxpa4-L}CxQ^Xacx;Dl<$S!gCvq=!K_L^|)yHKh zAXQ6G$QI;SPs%59tS7rw;aE?s!4Ggg2g=5RbDnsEaVEzqHvulDOCPRbiG+?7$4aE| z$DMt}PLq%6SaE*1mwnvLyF~hdwIv_hhaDn)>>K=7`dAfY$j3gx#y&pA8mJoSW$Y<= zELvhKCkyV5PoKbsC!Ot*K9*4KW3MoY$j722HlNLgO91&8>SOv?tM1CjvKc=4SY~(T zW1YH_kLkhq?@DJIJ-xefvc{~HJI(1S-IbSxcUN8(imjxV)%CTqdtTHl-| zTacGcmrvwn(;@XKuk}s*>^lM8eF|4SyqxScv6S&7|5|JUTmY~^ql<i zk_EZx%(||I2VX*teJFo?PX=R;-3E>Yu_DE)v-LBb5KMUlp@$b!QRE* z6%;#FL2d)ZE;j6q*t^CWSxutRG}FbHgcReG^k&reVxp-U)0>$1(oFegX3xE6&f%K( z`yl_|b#``UcG~XQGiP^pN9}&O58dTSyQi5Os7VZQlQR)T2AptQn_lrJC88D0^)?{hg_<&5LLJryldzW!X!E(;;mfkqsLG3n^E_7n!7I2?`uibJrw8HZC6RUA%Z__Sdzxm%+iR#s!&ht;p$|6z#G+cnY3GvKbB$%`}Kk zU=2hxQxToR;6yax{NzDI(kJcrBQgVJn=`P_vY8>JdD^XSI%N5>&N;DjVFyx>7d43vjhRWd8fGmr^pRdawqMfv0g7 z=)n=;+E)l4Xc3qmn3>YN0b2034F3QgnA4E~C4~(9MM)t8Zshcv6l#B%Q&cf2{QJY4 z-C`OOl#;?E6X4}p<(GsrCc`_)u-~EPkS=@K_Av~0vB`&}2S3~k77bMC;q4!CZWh~E zHwuT%U=v)6t{D(2?5KBv#W0gR&KfXsbZDSV@;qzsg$}k-CIJogNmJT16AxGwu+r{{Iyg*@EN>2T!g=Q?2Jc%IXQPMZSi@|-MaXRfkE0ze|SQB z8eS8Hh#xsw3>z`XWKUrega8T~FpU{DEe5HuX~pm{Y~Tvbqd(@b&rdo7B1TR*sNEYm zP&5iiu`=QDy6u7)0Scajk9G+p8j?!Tg5;|2paczW*+#Nhg2rX0`IM>5>&56tG@njK z@)SBV@E3*7j6pXDow-;1g-*9}2%U9IObVSFWvS_&KePaZdF6dFkOtO&8cEUwPXN_sAdSD zhyoi?MD_n8XFhx>ckGXxCL)=k(>#=z%;upqIIkX}Nehv${RvwheUsG;)RT3hAPSo> zD^N>T>(OS(YCReceR0QwOGxp^dXCwZi_}Q3zgZTN6=I~R(xm9-* zi9<|6il6-^z{|8s)tmT!EKYaS!s^Y2vVAp24^d*WV8P;talw&f6)YzYrxu8pSvQ(> zo(BuytaAeX#f`KZP#`aU3_4fvV%9-<@m??uuBQ-NdGU|<>oNJS8jkicNANfI;@c3w z<^*}NlL##B7vz8!jK8urdTRT#rlY^m2Ae(T1vj9{l;X*874Z|}PBoK#gB{*?;h{*; zd&$kK@=y%i>f0#i(;o7qaICX*r>D8v%jQ-3X^!kg#h^d2QNa7mUN!dwcx_1<}(VE(nv8YB_evaf90ldGUwb_Im1I^=(%=>rPL3BL}mfasn1U z<^7nfs^NzYR)wNNSua&6ie;U12CK5pd90NJbvCDY^I$dY0Zppw1e#PTT7hQbp{8vD z_6)8r<0l2g3u!01n-e``65UxlSH0oWkuuhKa>{0%=O9LqG6Swn^~Av{HFO-TQbRi! zQ{Ozd_&38QHJ?U+SIzXUFLBrOYNd;!9lvO>sx7SNNY{S^b=7lp5dUSJNg-Fc?0+fQ z1HjQ``SH|*$hL@1UT(Z6{(i7*)xgnPe9!2RN5}0dXd|MASUp+?^g0b43oYpMs;dIw zuR%aOO8EVr%0L^54xItHlYXMVdpNF#&;w@LQ|K?m2PFq{$`?Kb#8Q9HJ(T z*)1I|ahY|aN#kR1ADlGahktR>xB&&4G)_b33X=xwpeBvShp0&dvDKszHWYrHmi5~> zdc?emP(EptGKuKCnEfHyFN$dFVlH~12=PgK$4G`k$8s=AfzX@M0Sumeq&*^&k95Fa z-9jnE)^Us@w@ik3i$X;S=f;-5oXL z^%vpHgM?ANtI4(P9TD6G4$2Yw4^@tU*vb+1;xC76+r`l}CL4cqM@U3~xq3(_eW;70 zqb3e8Fl4GodHRvIwPlTNjyQ22ZyEvjg#J~uI7Vhn4h@p!kF^!D=kB(V)ZbVp$W?XW z1lN_JZ@_>4>JZ#{2?2=v;r!gU2mQ-Xh5H-6h;SW5z z`_#oR`sr+v-|&NN`s({T{BV)Je)QlMKlELc8_TNc%a2>IB9#h$&tcUQl}OA{EwiLY?8KoOIP9DAs?X(MK*Ne+S!>jO3pDFRe=ZDn_ zv50asXZ!@e3OZaR1(kw=HU)8Ui=x8yog?JVjd`8rfhmrK|Nmvm-T`OHm9bh7Ts`poR7aPP6(-XWGBZ0XHR2w- zm5P+UcT}$)BzL?XP*YzrLUuZz)j_tn*D*&tWfG8?s~yc{N#APm;v|ED<7DvMN;XgWP|q*`2%-Qq{eL#bJv1MWhBa~#b=YMUY`Lq>K%2oJZAkurZE45H>pWxvPubJ5hRNF7n+3~T7CPS3 zR?6pYcGQzA7dc|YY9=D-d^y+oR;6?8E_rFWqpLi**wMPGA)_xHDSMsDiV0b2ayC?b z03lq}i;SVnH&os4b;l_2nAuNd#c^vKwW=)D5tEfgYX@J54VG^fIm)#QsI{)*ea4;? z_AXc0XIx>qRh3HnkNkFpqeIAlOrD0SezvRXj3NIiLsdVogzb5eVg{6%RU#P_y)ppM zw1udH|Uud+EZOu^|~IYr`D#5yCw; z)fmo*6qO{-ZFIaYHk$qZLC;-hva)C{{d!!m+_=T@b+seFS04T4?npU3$k{|3Wnz%# z9^smMmTAtLX6wk4TO9S}J$u~|RnE0EZ9bqB`G6^jp~zDR;flP^7~S25A}5D9Ulf`^-?Si#5Ly++=I{M0&b~`SM)~SF@i{NT9>08IdwB{xNMWf}XtkT*C7l-}j z3ws=6MNgBsyn56zG1?Eef*z@AQ~HHs$5D~SdK^0BXe|$(%x$No(te~iM8@xRWQxgl zoI*XItv;S3!RcNt8hFHVf0)`*d37JW;n-?z%+i;ps`7x_tPMs{-BQ`_zq*%46??T8{@W^K&Uj}ZANndk^_B~DvgTg!}JlA*GJaS#U_H;XUrXvE=D#o;Gw zW0w9Yafp`X8v>h)YH6mWNs|{d^?}-_79NQQU^n^pgN{ie){ad&t)HeUDcV|Fvvg>n z^Sx;-y{xUqWj@#!3LHUUFseRsM__Q>8=3#;701?q-l^4P{+&^AA>2oBof@ylrQ+^! zCwa2m(W)Nc8C%FxkT3q1N{EZ=o@*dqyT=h8(*rShj5T43D*3>Xpq8^Unb_vUvw%Tq zIW#j(EoW`$#_DNcA{3i__RkqiS7w1?9%DiXO*qrq-7(O*C zPL>2}5!w`4@{pseekx6sbiBrT!lPiC{&JdnXZu8&+JAfuTms5DtWvIeY;0;Yvye9n zVP2q(u6pSpD{XYu$6vJ3RX?3JxV}!i)T=o?C?4yq2in(v^5y$hQGj`{> zuY(Eja^1SW%DJznoPE@>NFWPxVY&+h`kH)l@YAwGuW7U;U0Sz zNebtL6aN)8Wnv5wNOqNly2k%j-+xz>vS_GgaMwB6TZh^ zgJj_|j$Sc|_?zc}woD?*1MpZhPG&#r7$UB*CiB_ocLt?oa4j95jh2TnbQQkEV>?&k zb&>b!j$EdWeCs(!V8~UIrxC&pGfck)DUv0Iu&9Sn3gJX~@`U4ofbJPa1ove46v16H zSOgEuFe6z1K3yJt$k9bl$WS5Nj&-FFZk?e*xL$?|;iwE1!WJnhgqd=^!G!KjA-oL9 zQV18}FACwJ47FFyLRiMV;P}ZNyswBoOek8j>@)#hR$KQ~Ic_`SqhoCu__AZXxX0w6 zg4Ykrg1a;9Z&IIT-6(=-7JUNLkMGqVgMaaL>J4a-$KMA=q*;(7DUaU@rtr>!VSs0N z{O9=VK6(5#N4J=}@i+JQZA>8YczQbhmO*LHu6#vMbs6?y^-3J`;B{f8z4{jJUzvOi zSJpB?KqCeFTsh=V#3NS*mC|e!lWF*JBi4a@xj`oLtJYY^5uLaOTIiFe~~Yb&-Cldg)-%=W4+y>`^x(NcHASD zG4aT&7nuMr(|^RPJ2X01TfYAv@aoMb2lDDDKP(G2$+EW{w}^ub*L3AOK>O&*do$I1 zbZyYkq2eh!YTVqkb{Z)Albr6s*0wDDaWENv74x>W!I&NJ9DkVZyyPdIcZ?C=*)b`o zzRFZf)9cpOEFBt%LCsO7tI+_)jZGOub`;U4l2R zw^XFv_Y;^^ZSopB#&=f4ZhzS^;0D-7ZP+x<{P#LG2w~KXHT25wI#yv8?kp)(T7KpT z4e4!iHB#3Z6T%kKrw~f1Yg495UEhGQXd(R_>p-dNt5Ga<{X9yguEc|Sq&7-ruFpoP z%yo(Nq|EivD3!TRjZ(Al>!Z{xY>|>O7xOW15-9-5D03x@23aX{b;4hixjK!$(L(ym zuc3ae!Y0C*?0z-mQ{O<%(+H%&SJOjGfS2{w-Bp{F%YSeTR5!d#{SMx_J53I1R`$cP zz%g3Q%HP+W9V&a*bdD6WST{436^vG?Yzq7fvvQPQTC(JdMzcHs zct#$$9e=syFXfJoF%JCA^S~e`4^7In@pgzo%}F^SyfRl!(4-8?8y0fFq&h+-?af{$ zo-`q*AB$rMB|mn^vcKTu4Cgh+i{cGC?vB=au>Q(u8NSmMBg{s4_S!xsUY`7~qjRl~ z5d0y$#mv36;G00WKEP3@-nv^?-HHVR^rUvt?1yhqy2|pN8J#t-0v>})Z&AJ;O$8y^ z?K0|TN2kam*nt#ST~Po5urfL16_b)7LD(<-YRU(Hb~M*?dFE%xOx3cWui>S{Ebhq} zon?N2Q+@A4>}q9s*?s>DR0H{AN7X=#oy?4I)|GMj0d+(L=)qqd^Q@vB?J*`*e-S(d z5AZ(*+Kb3a(n_TE7i>i&j0^25l9-gfWs&HQP;Qfi{e8B>Uf`p}xd_#mj0 z=CTcKsv4SpI|K#Zq%#KFjk=*xi~?pEc=&_HfqMTeCZI>`VQ8joyR5R6i3jaybRYPA z3_2&)*(!tql*y_nDP8FrH4o1;2zjw&NEIzlrCg%x5krooJxXBiXumhS9j<%-tO z?p9;nrN*k4fJbR#ldR!F36%w_H>+Wap@gbsgMlca>iCNis-AtLgu17?)6dSt+(74c z(Ga`yTw2!zc)3<}X9CheH~IP&c*5CI+OeVR7v#(kZA><5LFk8X0bH40(>Y%ZV7O)$ z?USvtXixYTpKbgS$X3g#cG*T66X89HiKCJ!rUCsCu!b+2KAWx5+YI?! zxU)s%O66mW7NWT6=YY;)0ViSJk7F!H)9q+tWlo+4TYsV zeI0*Mp1uxKA$*K(-9d)84RKH_*<5}Z?@XynJ5$OVeI)BaVF%Sp!VjZX5wVFo z8kXj1@MoS;Az6TsP4j%Ek=Ry1OX}v(he{*y2bM<4^ybbg?7p;-SlTp_E!RO}C_jtC zHy`vur8RCV(l+W=+-;%lrMdV(O3$`QxRRpPZ3Ma?Bxrf|v8F46Pz69{2Uf9llV7%Q z4iG(Y5TupPQtRL}s@S@jQ2d1sxOIG`7yt6;y!^WI+3wC-ve5~+0s7aL&fL14E3zmU zl4F1G8GfHLsx-fobFVH= z-MFW5)TE_n{03K@;voy_%R9O{9hIn?Sao;I?)@Lul_i6mfika~vsNf44+UJ0)OX3k zyx|eSGiOhnG-KYa1s8MV&e7xR+wkt}JaVqKS#Ip^ObgN+ppyVcb(!}_@8L|H#&OEm zNS!gV{K3U-8(X;fH0d=!9eL=}Mv?MZ4`*WC*`{Kc&JEWG^%|}ZzsU8wM4%M4;g8St z5#n?GR@7EN{4XNG_n{+H;U17FeVilo9*#X{CnV`z9awgo5%4)Qo_wr#rvQ*b?pQD{ zMLyaWyf7PiP##E!FEO2IX`@U4{`yCP;*J+C)RybIH_4aP`a81)V<9^obH+d|F zi@7FedFerC6Iqz#bO#iH6;?H=-bO6v&9^uw=}R3nMHgS47p`w~;Ccc!v(l@F%dZDI zC;k6Bl3caY*;gJPPzRY%k9vjr zw0ERDGT50OaXX^()$d#xHpH21;WWqPY9fC*?CdFCWW)~@yV5|e$e~~}o1%7U=jDZ= z&Tis8hJOh)^bQl|QzncKI_)$T>Keyw9TF-N4?E#hq)pE7$O1p|O&xC21j(0J>>49} zWBd&H=8SM|v&grz5DeLFq|+@zoEA^(CwCl*43Zbuy9VfU9TKv@KW)^Mf8m>rD_#yZNd`<&6Gr_-DdXksAi zNb=vC;hZZ*FepTdA^((25P6^z<&TnieFAFBi?dY0ilo1R@|Drf<`!(ycKs~pKsj@?GZ-H34a6t1oGuF@3EDT?xlFpV2+@?W_8kv} z$jC9y@jgMfj&UB;4;qRF=`(}!8d#{Iq8pj|GV(Ul7kJR2O+6z^zt3^jt|pGNk)Wz0 z&91f8X3tYjvP|i6kMl)Myl%sRRwj3ib^n2unE zt2+hK$#4@*<>Mt&oULG!`>rX@wjzr+-s0>kS8l1102^2M&_o$I&t<;U)Aq^draC*Y z^w&s9G+h2M)!E0wi5#Bp-I&iCLke|(Tww8Tnn9*4*7tM6`{yXg0nH+oSEYLQmZ5vf% zrL0~5Yg93E*=*N<|2oQtu2A2`)HZ5#5uAmYYxkzD1NDPqThvBG?ru`2 zbmTJUCt5%e3_sX9; z>IdCsoImQuIPa|QgSEz+S@q~! zI=hN^j~P>F8+q`vxCD5!;LE{n;aWEQj%6Rr)>NAQ-Z58GTBosZPUEEuor6QAcGnbK02BmD9DX(mGcD7)f2At_J3^<#0qt)(o zHu5E&iUv%MoNw24rbk(Y3r6FqfSG2F$7>a{z#Bpc3%vCuZhXv!Lp`CwTVDYFG%hM2dHIIv0dm5agi)8%lY5X)8;6_h-Xuy62-eF2p`#6 z%aZ2;+v=xb#N&b8$p+EEX>XV)-Wk3sXRbm>rpcH+uz2~_BrHMcZRE*aA-$vhuq*fm z3_sHqBX>u*B4xK?XM6D*>#OOmi8ty-r?du0=Q$CUYdUyRs4Ghk$yM(uf^t>i%I$kW zrdD>WW;U$6Ij%7>ZI0_@k!VNlYeW5gE-d3a*3S%+@T;qE*zvPWd^)A^1|u&^bFHmb z@H@C_{JQyZf?-K;uO|A-9ysvHH6nXzkAl!p_|_IMjdvyMkR$%rI8d2>8=vKN3jtJe zoo^7Ihuf>BZXNRI2ab+1BW2nEv6;zFAvCsUM!SGpb75`WyF*h^%$qR>?t8&Pt*yh#3m;ucJiViW8-*puDQO5eGEn6BidlfrdHpjklIIT z;%O7kb_rg9AyHa?i8ter%Gi)jiRt~M5QdYGU`?Z7-xrn#xZAGM() zJgN?szqbjfFIQ}EwbY~Y)UpZ=)q2o5*+LOqW|!V3Pt7*%I8oGWt302x=-u;t`!5kT zm)SA5e_uZgo6v!7q+pfEEIbGrJBZZ0-)931~T zHvZi-{;nb1tK`AQoJ}Lm;TjK^$P-`Gah^N(xY}|+DQt_u{Q-|KmiSm5YZ5bJh!HWK zQGa>d*+V>Q>)6QbXdK4DJE|w`(r2E4b)k5Tb)_YFVTv9u!~QiWm~l5Q)#F4kmXq`u zd9>u#rX4=?lv5L5Gh(Fh&kcot&KlI*{_l{M0e^z7=`^~V#xe&+UH{H>9Xu9&t*gz= z<_u~STZcJUq;f7`NJS=$A#67N>`51Kj7QROSj2xWcN}-d3Wg~u0&kf*t%c~!uqgs@ zBxpvCPG;nQ`0Xy(n0^@^S~--c_BsKp>l7PR3mSF)^n|me1!^XRyua&ww2|A|4+6?K z0phaPMiOk)vGjZCf6=PLstY8g3OKDP;J@0HP_VGrv)1I+rPPqI3WT$9l zCtyc*V(bh%JY*C7=MB4*gXtQtm(FtRrTy!TX*(r;aoI zYvDM0y0PZmhtE34RN~>rB5$LBi6F_r#>7Q> z7-gxU(LX#F1MuNQb znW{j<9Z$HLa_861E>?G}^^r5Z%Bs_&^JTv$UGXBC34ywc=#2pGjgctQKrKuj`qtS| zwuy8N6KSl|Kc_iuByrNi^3_N5URS)B5)&-nc_^Ts{NSXkzD)QYUdrz1>k5@`JniZy z3wQMomIEFhVs9}(jYARog2;UR6rA||odU$uEwWkY=uC_9p`w?Gw3;5kLcPe0#N z9vOJ9hP?BU0AP2%G9?+(7J9Su@9-l`&9uqf>H{H zG52arZ$93fin@&VGZlfp;LxM7t|0l<>}KKrkRQg6mq%W6H5KtpB-CHzU$jaT#1zb3h62q)`B@9Fy5lkXVSOLn>r!tYq?2-hL9&7Cfov}va+X&l?>>IYMa zZ>P)8LZYBAkiea;u%Db;()=K7-BrbvMnd~@LjHQ*)kQA+8H!x*V#CCprnCblz_+^j zM|gfWrEr6I+N3UNo9c=2@@N-V_h1IU+QpR(rZB(aJ;xep7mq&dhjWasJ5%(d;9FRS z>qqW_lJOF@m)6PYzdKvWWrycQ35KP%m-ddw?WK{?w5_Bzn2=j7+-j;eLGFlvr;_wP zoP%RZ5X_zCb|zKHAI?J}WP%xY^b-9xdzYFF&-69{ z-eFY5Pc7`K%XXg(iINvv%?X#MTg@3GvQ1_ZTqR4-oFK2(c16n$!=|+s6Id%b7_`!5 zF{u-jpZJlrAZ3EjPa<(0C**+-UBSv@7{2nDt`qDYvk7^U$Lusb=HWos;FuHybC2o4 zWCM@sC~3L2k3q?8y4(8|GYoPYM#!sg90R#c2_lo*9K~PcHb<4)MEP@@?lP>V>*G*M zs!^Nj-Gg1z#OsVV+4^M@;N`t_OBHj{L&CK|Trvr()bJsU2tU2NFhT8Lzws$N1O95o zN(VQ01&(%mA;MA~g4mK~_>KA}yeRm7- zK5s={?=oJW`Qddk$JO)(yz0t>Kez(51G1!nYq0*u#NvkTHsUWkgX@ez%}Espqb0jq zMphimM73ALM?-rx96)<6mO;ao*bvcj5@^SW4ce=z(C@)m*Ah!VST_xqVXuV- zY7^B~&EC?JjaTUmQvO<5>K3w_NbQvEtR!&Qvoc0UYlsy7+Z-Wy|R?7iK~7|`Au$QJ*F zr-5Lo>MhL4D;^=2{NZY(JuMG4cQqH!vaaOgrA)S${K$6vPglHOWzZHLXGm_r0j67U zD7nRDCI-0$$H0Dj65TT`!zpX!N|tZ6bYZbw{7TsLv-glITf<{DhZ3h6lWh*jF-XEK zy1T&Aj~tNhMHvh>hnqs+n|4ULJ>`zkaFxcMiL_&=twq>Cebq#@VaQX}(RQx1Xr3uS z1aEqxiE{`FMHA;x{6!Pz(8=nX2|jVk_!k^g<>G}y8pyUCTnqipoL_cu6^n6fkTi38 zOn`6Z+*75QbE3R6!L>y!G6}1hbKYb%bIzWuX3mp`YxWV_85YfmTTHA=!S1EvFhiiF z)7_KRT>1oSpq|iRuFhXzt-c8rJ~uqn-IbzyC7}8A1BOZS>3OMjhxznt2B-P-JayJ) z<3Gl!1%8xQFl(|}w!Pm29^h#@WmsxD&6#Xptc6Vh`%&9jSq2$}Bp%d^GWa?;GwtE;drE13%m8u=A0q0(Q_7pk2uDg|(!x|_t z&75Lp>19*s-BL(BM6%4ji3lNG8u#Bg{Xc!F_w!5;^j1S)a>z2W;TJ|0T696)KTqs!I9f=21@5|e`x zE$>$r>+WLj(nM0N<&S^YkKST<1KB@pIkueYCpprQWT!9Aio)dBN?y-%wZ=`&8uEeRu6q7*WzY!MOp%C0 zji91j+1CX4a%B~64T9(yBO8x`{iPivUGqhbNnIt((Nig5!Zda?#pM>WSvw`X=~M9$ zbAY&+HBgF#26}EtpGvF#C_i!+q{)+Mu7^~DV(ltH^_WTtimmtWMjn))9+I^)Tsg66 z2;ixymnns@-aqrLbFDaLf+g(xpiDYw&`u>(Vg)~_Q!*= zjXxfgZTN^N+i-xHZ8(&&&3GmUWgCt`*@gq4i;->S|6M=IHoTviZQhxxvdv4Nj^7*u zHLxANyyXr>Yq4IY#l0b308T_}vBSul(#`$&i_*>g({7Y*PUN}P`Q0n6LdJkSsB7YR zrUFV!Crp4>=Biv~224EiK)$O;Trdf%O|5g&RL1#&HBiQZ2Ff^R!JBa3(~n36XQtu8 zXs_B)pFPpLmBmn1@_A~SeRULC0P3dX6ICF?GFhx7YDU(8a>d*V33c&AjKfWT0 zYl_&wI-sjZ`^7C#hj;dz<@!SGXFbR>_Z6r~bdM~X3)`{P3!$2o>O2^`jYioKFQ2sDN&Qja_CIxkglCdE*-} zoYCCjW>-s#P%wj~#jHdzZZLTD-Q&fZUEOuDor#Ojd)gLRxDvM3wlH|vN|!?%VgS?! zAkJIm>TgBF$H9GeJn9PZ$b)f;Esr6Gue1&`!yfJ6%o0Y2JvMe1mE7g3_cVln?H5HI6W~ zXq3x7AK`Pp2WvI4oRy|;*-1mp8nW#RK`4h?pXOsI@{k3P3 zl`XP8`=_f(WJTEw3v-TSVGbZmeY6Mi7Ki#QCE7Dt$jls#%*6rb>iRLOy^NC7QH&bd zDs856{xsI0vMv@6Po8NM4^QRIsF8_GBXgBTY?F>E9yXO?e6$P+o#y$)4G-!loYHdX%`hP1?)Bon$<=7uEc zo5n0`sWz3#;agQ!{$j6E;B;0Gh@55Ap+?S9b*Kqb;nJd|YvHv#6j7cG=mqU&F>0S# zmMEjoAhjN{ti(kp5YiXVgJ)3@kR{lz-tY2MVovY$nyVkqnyi|MQ%)l7xXtdwa`8hGOMvYY-$V_nZU83#@CEm3Pv|#iBgAap;*HLu$#wW3Gp*eFZFK<|nSk z;v2@?r^7F-I{dF69rk*{m0d}9(=N-tPr_VxnXx8kt1;W=Y!}sFKAfcr%leeM@N|h-vWp z1-^*2#OVHKU1KY&w7&Ae9^08C11gzBKsLHpKA6o)f`r;iL|Z=RY~pDnddtem%)bjTgm5wWY{-Q*I&7d z@F+g@J+tMhZ(t7D!(<}0J#AOpE@M#J4Ykpp@F~`<%4&Pv{K1-PmHlohd(eK-c(5Lbt4`2kXMF4S#tSom}#n_zwc+OBGB)dJfy#fLR+kUqeiEF zDObJ@pZU0D$?Nby)dJDjzE*_5pyv}xQ zl){Z-ok>`|YgtvO-YV~A4fK))8qBxKhghrct+I}N@rtFJQRkiH!A8mPQGO&ZD3XQ$ zaUD~yTv)r>=b2cjc0Fl-he|$QMP{_?d8SZiwsObFPv3Tph$%uaH}w=I6qS6QX8_vu zoNVuMj$zQQC!^t2bU{&}+V#AG$h7NOj=yNvv%Jv0>q(wL55SWPW&A1Ec=^=3u3P_U zhsl4>HBtU~9^M-V&jDGC5FlR(Gy&crRK+!c(?t<)(xeS=_^#{F`|y0+k-@1pAXX-Q z0EGqh=g{_dlpk3N>dEl0Ttrhf~Q-`30UQsWVmg$n%# zV1!uFdG8!n(fN`ct89)+5dUEflpvsiN;ogE248M~E33&dytJv}KTSJjml ze`wrV1kDBQdKY3?#`zOb(C)>5RM|80))b{4NN7UvX;5H=oor2r+I5fuj{Gp@NBTJ%PH8hn7XH$fGg912@VL&T3v4B9>7 z7}Sp{I5`v+J;q1PQ$U$eK&MZfTUyr0wMP^6=7GAs2_C=ouQN~W9@SwDrn=kCQ|fNd zThX?yp}}~G4iEg=Z?O5rR3UBJHYzHC7rn5rz{@P*OrJ-(&$RPPW&GU4ucGRic}<42 zQ^gn>J5_TS1KOzq*=TQ(q1yHq;ePYIe?ST62G*7Qd<~OrXGLAm&Z6lRrf9U)#rct2 zaDeF+97=9+gh@ee!7;EORd8}3R&a_k)(zh}2#!JQsEm_Ck=>r(-QH6cEB2rQPTs@x zzi_a)@;^y?YWZ{3o?6CSwWpQ}VT5~XJXKM}0MC>xJ<+5YF&`i_X-48NnlvNl+bag@ zOjqx7YXrJ)_cv931#r<033$T+KZ$B(0(?{DZIz!YlY-pW#2}NVni~hqS8q@I$jnf8 zw4{}NHPGZYTV{s1`-<%h?wdY!?1f8f;y=8G zaesiEv!rDmaX;%pa@;dtRVO^j8i+SEP<29|`RY}yAJrA~p0CO_uhe!Ys9BU@sU>>T z`SvCH2gr%$(NE{A723rxcSdY)1oPRnxhavQZ1Y18zUUi@x|5D27c7nS6z+-${gX?wrf0+pbf zu?G5TqK_=7>uxRjF*v28UJK0BJXB`Zb9WP;qC|Yw4Z%*NOQUQPxKL{5Tzu1jHdZFq zhl4Zn?W}SctLYV4(JXKSR>qtQd~wdz*2upaxZ8?#b`Gl;hwa26gbhYbxsm=@P;%v? zq2$T|ljlNxv^%N7gHjI%_)?EZ{JVaXe|SGL|J=1ut;lvRR0(JsXcJdt z+@B}`RX1(mjeiUyN!n!vKtK1Om^%>6lhOtz5fyTN#Q?OKwcg(4bA~~iS&W8P znJ6@Q!A*<3UZCMG@&aw~jW@H_FR~SK@`^ejKxqmJe}K3u82a_Vcai)pq&qdez~F^(vHGEE$~e9rub(f{>jHb z58|K0_@@&d9Nhu`RKo*QHT=^H|8$2x3yfQGS`{F%-mcgV0eyrI+B5P9G*0 zk8t-At9_)4;1!zNxQ}Rs3B_L+CtLF?zZ8S}h#JcBo$g?H^GNq|Y5u4$sXX;dJKc%$ zqs4h}zfX$$RdLXi9Y>TFb0-3LnqvHAS#n;Kj7xK07mu=jng8)Lktc$42g@TrbPLm- zk_Xb=1H>~7W9I?)1no(*Kqp!Fwx^-~;$nOS8Hc5{;d0xDp+bK2LT+vOS%y0&!j!U3vAc{M&aW=7<+^7< z)P~J+H^f%DJ%SOI=mJb2VVuy&tO4E{UD|xCJHMJ(#5j|?PCMgH*H!FN;cg!zNf%VVbjJ7%E z=cc-M=!=XouP9o)N`5xYovIz9;cAOydVzb6MQGb-4dxZpKVrK3>(Dn$mR?cvXTV3@ z|1sfA{S9Zj)ATn?^>2q78&W#JNa>86UFpV+CU!AO&(3o1)5LWvKW?qMeytTHS3Ho} zIzTLibpC$FR&siwyQb#Nw0DID!-bTG=C~_!gMl~e)e2#~eff?cGJ zk~}ugy`ow`XBZ7#VbFQ0D&hNUo4c0$K5Tj|S-ui}J-fu+SN<|6wY@wuVsfzjeR+O_ zuOVB5d$E>6GIcFA(*Y&ZF{lY6nND1aUfNkZCp+Eab{4Ox)P5OgXa!uGl2ruHccU0L zbi9a#2;h?f-0(BU-BYft1t$QcETv+h!#Ov*HL;m>1$R%CN0wJ!oDEhkR4_EWw0wno zfuGz_<)W1hRRj%Rs!ARI8qhdcKC;36wH~}oWw(%Jrr4ySAep$y zodS2BblU6g0$u}|Ew_@&(W=S(UG8{MjqyN_iEM=c?lIajRWA3Zp_Wry+!>na%lcJS zEqX7L1y@Na1YA9>+5})FPd=SHKulsxNg?@4AyB;q3enFkmKn{)$I8E+%rSeyN}iO3``n$xlZ+Lq$SV?ogSor_+CDi0>JxD(mVSlPmWiNkQe=@BUtkk|Phe`-r+l z)|k>Gi`0rC9;Yj~%mlU7sps&za{Ha`A(hltKF=85cr0PaE|MJl{%7Abvo z8J(9Y|8vOwuo%kvT370NW|6!z-Q8b|W+-TRJ>3{hE{!IR);}<}xFXxwGv3f5V`auj zkVPwCCYus^b!%4Z!Q4pIdL1#d8P$4i<*NJKDbakwhC$Opyv$c_WkvKoXX(X<+#57;o^=5yZY>M-fVTSEU0^f)`m*& zFoSM3y@sf+Y@oN*tKDp+npEOmEaL2_iO$LGpw^ELbn9SmL^^QfaM_daw)CZ=a0W|X zI|d#TsmDNnJlV}F|F))mYRY~0yTj#=kGZo%w!IS#I@4e}!QM(tGZoX(kGngIId+VM z^OFam%$(=gC)_i{W;-TvT5oXLYi}h^>ycA`ai6`BMuuHEm#xP=YsA0osD&TT_v!GI zy^)watAt6vttk|?9T^vxXd$6 zw6>$3JlCR~wp=+z4|`*rYJ^g;D4FO8ZzTrXF_4qi9KJ$wrx<<_EfeDVj1qZv%!8{I z_!!NwH=_1**K$_1y3~$BoLrn!l)U+6&t|dPj(KoKLm#I@w#H)BMk6W-3uz*b*bv|* zO&HO3A0K+hb%Th{f6cQ&f3Zj&aOTDfhJ&lgCi;U#a!z?RoM*c!Fc`N(>W96Eu}(Y5 zA0pQmgAB`z|GxD`~o?^X9AP5i*X zkZ00jt|EXWGFV}HTcF{(7`w7aDyYO#*y<9xjp zYQfupwbDW+TIQbxe`~gap62O$?f}rJx?T4AS$CfZQ(|Kup_Ux>Z+D@E5l(Bd6%d(( zi)GT@>}6sIV;{diH%$ye0L@!va+S-|LS~#!A5^;VZTFYD$Y;n&VV*QScZGV>m&+Pp zh?($4y3=`hCBKNl!+U!s!I9%MxK%6YotXBa%(&q05NXP3TwMWl>CK*vZj<6ATKj-~ zD_~c2u+~!CZl^94^?Ma{{ln!lXbeR7b;@+{n(vi!A9FL?=rre zWMbj&Rdi|OMRx~XTxA4Fs9B%DiCn)jC<>)tT_LZ2;(o@0PRb;q)bWiAOsg3e!=Naz2mK9hDUXy#=gx|h z-~Rj41bMpdz15}Tb9cCfyUjxl8f=vCat7|dfeTRMzkoBhb7WF;Psh^TU%2aPVi=bZ z9Wi;Oa>QiTfWsq)@vJl)CXcm}J3_|Ap-o*$?&x(G7GMq3)=#oL`>VU5uu%82_qb}}wAo!! z?7v~C{0-JX9+kLvOiOL0T(uLfSNM!IlE&c$1#0|?sqsTW6Pwmy&eT$g3*;#UR3Lxy zE>Tn7`IEb;Rztq<6Zm?~Ri?ud5BO*~z+-GTMZ&EHP)z`t=Hs8;JQbL1u*y?#HgP|D zGDK@e73PU#nRo@Zk3cH=CYhsC)b;q)ohbUSK9maHP=3R)$;y;x7}T3*(tpG4mrO8#>Q2-`+SVAF7=FL$CVkv9IDApIQR+|)SSNoE)Jymp2vH}B&Va|YJ z_%=qfY zLl!jj;!@ev6RKIjU|#hFhz1*6Eny;6i-A&De`%UH%_ypMfMK3DSc7Sv%Z7PAW38l& zOG+76Ze*Tr$~V2_ZWmJ+vWtbf&n^|9_xAy297=X6Z3_v15EFsy!qF(ZEN|zDv2-@g@+vnA zEsN#k_MTV8R7R9cGjXkooQbT#G)>W36* ztOq!1{JIlY#8R(a1g}|E^g_a42>DzON@yZ1|s@ALs|+ z$ve~1;MWH|V`PVZzO||agP8u<-xF(rQooDsYqSv$F{U`lTF|KTCj(%f=Sg z$qy1eFN-sbD7n;|>r}A6$r{XH|I~1)&si&3@DpXh@*BC-0Oe9Zom`4jCzlFbZ@RYW zQh-h_#nFAit~XdO54QF+6EUnW3ZvIsuhx7m*54=-o8pi=S?K%RsRHz+A)YM3p@+KV zjS|U>J=uk0kX>eV&ud`mM@9`x?9on)`5&EITKbvxd=2$&$r19|;jmy_#^{kf7p+(J zT*Mkkg@t%D*Y@?s(Of%OGwJXaLx;C39YXq^lVVx;3{(~c`eac~A1n%Aqx@PuK^$dd zO|zm*xEAJpNKyDeTM>HY*1jDqP}ie@=EV> zJ7YJ4%j8qHJ|A9<;75cxE9fIaEere-YC%dSRS(t&t)Q}XEm4*^Jqa>lTxeGjw!ueN z(tc-i%4DrXEmcu-o7CVDs54Rn)5QccbRw3xp>2Xb4;t&kmi+?O3i^dH zpNMLw!B^TS-wHtbZVV}T)gVVNqIi351B-m1#MZKW>F9Qx5BP$yIBbNJz>#GL0MFns=F)=YYOUybT3 zrKgH6KUg^pkiXtEH(zk_FiO7JYG9Tz4riO?b}X$o)l)w}gl#mv12aZI$VRxz{9>)T z0)Fu4qhxvJov2{8vQJeK1Z|YzW8i($l@_`EMN8I4>7adXa7YkBNmo~w%kVoru`=$q z>Jjqi8J;IaPiqhU$Tv(e=mrdOCv=pe%6`j-58v1ht?i@|AZxQ!+EFZQhs^tU#u{WFefV{Ev?>%}zX13oO`VWPGb4Z(Hj#G9cDl4=Y7Z7H!NzK11m+X_M^KEjLLA zU26Aul9=TTC3`Jbx@-fONStJXlF^QPjRrsd)@UBZ@F{MzcUd3PXip)O8I5vGxI8Fl zS1;YY)dSbpe98Kex_-FD1N9sXislPNH1Bp1)aGsVydw|J^n_Zv+tiY+r2Gt|#6;C@ zhi9K2x>;>{ZU6P&WD&9193}-`Z8$R4Gf&iJa9`kwW(tCzlgyXUwj-ek;CsDM{D8<_`w{H+t`tD(NQ zS!JH|tF2p!%dC&-#4jS$aN<&!C?RKGV~FIn8;{b2_3iE4ynx2WU^BSq(9Q=_4R z>S}5{lhsv3;+l;LIffZK)vzOfc1eRF+6lH)eMBu)^~4o2UmKfbEfdi_$?94NUZvty zAXLGH>toZSE})X=gVp!&7k#Su9vs#O`y)kIp-1=aLJ7jiys6T4)blVe_bY{RzfGF> zk?Gm2^t)n0eU*N9SE;r?UzX20FXRi4do~GuE68TluVAHLlpl5lTIrc5aQ3dpkinT$ zjURmObMz@siWVk!mce^2s_;v&BkpL>w4DWws{4l7(Ws&<*@8&bZ{zHUR4wM&s%p4q z*;|Q>NA5fc@=y&|ksX7o#jrnAi+Lrd3b;LXOyacD;B>dWl{oE0PJP8udm}Nyu8av4 zzrAk9BqlE#OwQX|iOI`~$>;V)VuD?LOjd}$>_|lax?p(uP>_=zwv`Tc@bCO`+-shVdbO>p=8eUNs(Jf*i@oNp8mgaa z-i{&HYVyGAp5d_?LV3;Gw=A%!=FRxd;%Td>sq)dK%`0Cdmr1w4L2@y{+vQ+st z^%TCjd6j`F<-=EyyTlm=r6nDrd6#svWZ5atZ28A&Skm$Cn5<)8!JfQuj`20B%f4sC zaU&q)8wAjF1Wtyx{g%FZ))Sft zb3TBLjn>=L#>=r=Wab5T`$$tr<4Z&!Om!tT!m3gzX`4|gG{{bVfFhr2lBd!#f8=S0 z%t9VFCJ%lhqJkM!+BO^hEKRm z4{G2yZO5%i`0_FQ6VEUf0LHm&YzW4tB!gfMF>C}+gocgiE)CCR&jrzXyDb8m!;wWZ zvm1)$tbz8z@D-8PulO@hQ!#+Gp@H;1+i3$`gZDC@dAfn1Wk12*uj!>mEg{gR4Mf(R zHuJ|a0Ieah=m{#IfBeGRk?@MoM_wPy)Pa@oSU_wPXa^v?0%FlU06U1Wl`)P*&mCBniIh)97mBxi>TlN{FIvxq)>hkBDbhqaO(W*T}}ru0xTQjD*Kfjk+7lP9C> zWE6cy(E**_dvSErD)$;zIn4T!G(PtM_gmX$SUQARmxd|X_X*2=@M&pf_GZIQwx-b0&`RJISPp7os80k5j2eg=wuX*PQsW8tpCpc$J%$tM_D`%`#d3(YywFji9kX^=siJt z4Mn7eqJSV*DQZ9nD2jXq!GelNCyO8@QlvMLqjwchsvy0IR6#+(uDr9ed$;pEchUEQ zKmUlw?Ci|!%yGyUX!OGKifdby1jOQkY9p7!z_mTMX0EpiL~~12zeQqD?4N+r*fx zJr!+2(af{2Llc*cYFOKi|?aIM**W)d7wD$p@)oz#DA95H+8bKP%7mq&W7N| zZ-dEd6RZ&_#voE}vJCC5Ci{EO#3Bwl_?MD40{UnpN*`>bHhy~%vf5BWCXvw5I?!zS z#Y8YPA;ytmfoe^@Na&*`Z6qsL>IF1uCQlB;9lQ2jl#Qd3wJ9BAhvL~k_zan*mox!4_)>9(E5~0Mg(NF8m1eL!hR1a5c%Yl6USD zvL&{i)WO!L!459V6;RaG=X_EH$69unpy{4)l0ZdIFb{*;3c`UCiZ0qk@^>Y~fhlrX z6okPw`5-B0L#tpnu$XUBWk)H4g-_LO!#x6n=cYS~GlRfGwOM^6@fU4#BB`U>{FlAW z)d-qyb8P~}HdmV}+f30#n~Bkt5S4jaZAWtxWWkkS-DFih+gBsa@vy->gax+MA=~O8 z@K9~7EbZH4DzWb{Qb)J7hk#Q1zC+M-TPG1Hw)Gv=R*G(Gs}f?2Y%9oOGp{OF<}Kx}x$)Bhu<2J%kQb#xW69LstuI~G`zT=|7E)!&IIPSOH zB2aAj<*9th(q7dp=(vr5y8|1VILfp8qz*RWvTtx>2Yl*9S=j2tOtX3QWnRCjW0a+e zO~2}_`ZrR)&~Tf6l|};H=WvFjqQM&57=_iJrh*3i_{X48OKQ0GG_q0i1gWDnTw6f3 zhHLOOEgXwkUxKR@{2YM_1si>N#YY|K!PsJj4<49uh)-+Pmv=`D@1Q*!ZVL0EI zJ|KmcZsTYcwo9mXd&A=RW5;;2xVdYZy!hb@(rUc;Vb3%<4j!APKb3_!!@jnT=0w~& zvOS+d%U|x1Q7lUb4pp*anvk$ApLjVlBJoR!ZILcumqYCw&Ex4}uHR&^m?^e~;{OyP z;?~e#;umfW{WT45u?*fDD%Zg=p6(5as~{Tj-#a+IVDULnTP=s`{h?S54eSs7hs#J| z)%ejIhoclLRW z(zu&rI9p&xMJ~CL%g6RY;p?-`CNeRU}X`)Pw;Vzj&cYQZT;wG?F#2;TtKuwu{De$oI>LY$z8{&N3pLM{cQ+)_Mom&hbP#gjJ@a_E_buHL}OJaaa z;UG<^J({tE6r}ncBgDUPAS%n7O>?LV06uxnQ8J7zAh@`ikjrJJpGyiL)9-9<;J8h* ziNG<%_i-7sKjr++DY!l=M{LtnM+>7e)M^UQ#a$X3UAaGT7VL!=0Gzi|Kdq==4^YQl z8trJBJWjqSc|8TbPsri`osv9{8PHNO1Ey8<3^)jy_#&J$rBL)gyfC2nblnex|5?zG z%$IpasZe-Fbj|Ic{fGZUz35jQ z9WC|1@8mv*IUB4f*3@Uh|HWohl@X5B277@t0i7s&x^$v!QXr;_xEb~KbY<+Zq!e9g z%yj8WQ>Xh~$!6>%>GD7xjZMjGV=p0O(b)K%w-8BKo7U0R4uawa7KI9(<3`kOLLT)_ zv5+Eu@lT<+5p`lZZbY3T)$x%0*Q(LqPRB#?Kji37{wr!XSJxI0s>AfAZZ?nk(vi%6 z=zO^)-}{auiVqs&C~RpddJIOh-wFTF;tzTY=8=Sv-sUo&n{GA#6K^|yHdyle+Wpb| zCEu6kFG&gl=6~dUW&YZv6wROhzBGT+_wz8n`jQ#QqxmU$ZT_x=tTsQ?X?E0EGJ+Ip z>r+AqMe9>&!1{v-0aPEw!nz-icdTa=il0cpizX8wn!ib^qxDCtHcxmz$ogb7Ro}o< zs^ca(CR*48f&yDWn1q%QO-!lj9{%wA0Tbh@+;lFp{kOPWPkMvPRk;&{iC9l!#{@u* zGCmk(N*U%)V5b~M8Fr7L;+og(50a}Hs^RwmNqn~eesA39*3i5K{KcZ&Em8?rn%tv} zT4urwe(|oO94kIUyBzvX+zjbEWoGz&=kPC%MuHl;N@!{g6}858YV{Sh$1K#0TiiX< zQPLtBC{C@$T_*yA->HCk<$bBXWA6vlhs$xp2uoDoPyx_`bZy_tS&mlu*>r-3-rT8Z z0)yK_a3gstDGc|;V`g?C82i~pFiE1cMOLHJ1tr788PW~ko54%pgNrCOEp{0BSpJ#X z?5GX=#so$qREJ4Q1L`O-Q>i17l%hHwo+(|X{7k>g2z3ZmBy0c833H``ZZl)hF- zBSIGyV*2*1a&$B-=s4WBT;piZ2d)at-3^o9SmUtLwJJkN@V8b59P4eb6HTS8cc_*N zIh&hfW=O9aIwRn9cr?F?B;c}#!j zuXD@|p8me;a~x&MiIVj6cd>^0Iggw5pN>b0=}J6zPk5>jAGN{pD%-3%$mwqgmRXx- zlIiaeQUhE}-Gz8yraZ2A!Cs1UMkvMSNx!$3;+#>`6$jP!%_Q^R0v}jBS+NQGK(dLm zmm(V|MK)#ZrE?>Pv@oD5<%09yMs`g1Ww;YiF==ZrL?-nVlPB$^DT(0Phg`IQ!l4nWKuqW)d*;??r4L0pJvFCjV^@Bm)!?`gdm141q|e z$%KQN!|fonaJy!!0O0rl?h5DZp7ss=!m-p~X9yxDUnf40(eMN*fN0p+y!`=A;C>`< z5eJR$dG2l4(Zq)l{siBEeR^{Y5D|y%w4~~)exQ!iI2(1D*%zCoVr~2^5LT^rVXTdv zC1Y*MEV&OfhF?77s2Y+yX6Y94fnCWUD4w>XP_#o6!X0N+6a#a#d|x@LGYZwoQzuec zgmViTR*pXEXl8+8WlXNU|5~}lG5CCeat4P`XUJd={5E{lDV~2YkARxR{Hp8Mjz>-Q z79oo^etnj-@#~}@FyhVhTVWO{MJv3otng7@R#1n@1bH!6vXBp0Aqa}uGKGRdy0K3Q zcT^LF3x^QM0wvhiov%w3}8A7~dQ<3-cZ0h;QOI zj-w{4Nr<7ztIw7uuTBaACT}$x-nn>XK*b1Bh<&>yB-e2KrpxR+x}7?N1jI2-ro{D( z>KQ^6v##hO>C6CmgpbfF*gf#W@gOMr2!*1LyhbRa$|wdJN}_fYH6&1?kA3fWJxD^13yu2-k5KJPkS;-~ zp-ZI9Y?xn2qt2N?G!Sz!r|sT{9n^ zBj;l!=4eO7`Iz{Q+>D@m&BG!72-|-Ip;%IEf0&Q_OUua@(Nz7{}=2XN61QQd7BPcP@o|=voCRD&_)pU%_ zk%{r|vjZx`>DVlSjVhcW091uO=kJdBMm`_FdCUj3i}U0^VbZ&q)YB7^4Rd5)-9SnM zef7{BHAo&IrKq$6s-0&7?X(S&YONE<-wAitVs`TUkG~z+=G{5y-aixS7zlrq)QyLx zxt+DbAkpHJq7o9Ot#H;S!?5On=N2djP;F)~<|lLHJZ%k77Z(PeFq}6HR(Y=WFs+vI zbER6!lhS}%n#@&d$snbumPT`>W44{^_a&j0SluU!%QUS#za8$Z&Fs{rR=jgjD}4xY z)QVdYHwFf2B@}~B1)U`=3~WkKlBCWJCFm=o|z+*75A zq1sd35aDbXwhFW*_Ee2kJcc<-!vCr~+msms%%oU!p1nN%m4@c}>F&e5z2P0@7+f?qO^AL{Kp%}^)g_~Eyc z;49_fX8HK*LTsF6-VncVmU&}t9<$8opL>M!z8RN`@lOjo2L;bJ|5wEM8ozJ}ZZI4_ zzEysH;oGPPc(lP8&ENYNzIh4D1qMO;u=lmz0u#|m|7{}5qxn-sdB+&%(=3+o#2fiT zu*-_cm6Oo!vChv}MN$L$kD48p&6QW@r{t1}WQH9z!&R}W0b87}cB{=Y?S*2B2SIyM zf-`|fS1VDD^|E7#DXYME*x8VGs$;~MlAF3FeW)E>Y^a)p6}#8%rO0luVAqIEvKIoU z7Mc(2!2!=M@p+$Me%<8?|n>n6pB-*iU# zC$T$z#>Mk|=;KqX_#Jr1$r%qi%MAENK|VXtnLl!;rmd!br!)jFt%*D?05~3jqloDr zcO8B{-1ldabGgCp5o}Br@8rrzdxsQ2r0r}L`Vi-U>_ebN=Vt{zlrc8$LyWQJHXtD8 ze_sg#sIdYv$O2`Y|Jf+Z`CqjURSd6Tr(Z?UuP^DtjoO3DIID&vk6ERKd|>7g1jRi$ z3dL+3_vE@05is?lXqc$>DCeBaC^WDq$Iq2@`VZJxFrZ!q3jnh<@xY_`Jt#)(jD44j zUz_-hiq8558&9M_%Z&X{T4pRM2#kRr`t>)Tl;RjTSLts>UiwoL7$A=c7A3C}`Q3yp z4$HVRCPWgMJguWM`5-7}@)R0K$j=e-sB(&h6z3T2%J7J31&dgiq0uJR9@2o_{#OdV z>dvl~%Gzj+s%xX!I9IS#(MEggLyOUPYPxeft1wS@4zyXBdD3QONP)1KyxOnfJo)KE zV^S(?X4L1+9&xreADb8GQZZ@0$`PMe8~8vTZAQs!n>h$sZ8IT~uo~ zSCpGC-KiWY4TONk^Hm6KN=mT}4SDD0;7)Dk%Pd$%&|*43tC=ZK<#(<}rZGw$&4$}I zE<#q=96klS*TUJ|f-RET#2~_@bxj|vg4Q$HOBy1VL2%CdDuE)0mwf9Ub9Of@=z>L( zW}%)6AS~2V0i{Hv{a2FB_v>GHNY1$GF^mkHA`@uICpv1gI5MaQERrktGu8{?Fw@*1 zeqpA$VSdO=^Y`G?@<@AUE;~Znr?)Z=XlNjV%=u3lWHVms^OL3cgiJ_sFKX&?8zTg} ztPAsH205prb0hnO)Bx90r}%!7>P+b#UefqM{+?T^W$E}l$l*HvrTKClpWw)>Ywvt} z)^$lR#jLCB0{C@_FYV%NlypHrY1Z|HmQAkXb9gT7FIHL9QAtT4srKdr9unq;*EB8`9a4-heiEL8g?|O~Ao@vB%|$&+(`x|^ zTk$S61a_@O8Q3sJ3rr! zr<|z7bJDh{r5(2mJP+##clsw`>wuxsuoxS5M%2lDZEx+b;zRpe%`Zz)y z695dx&@FI;2zNVgvRecX$M);sP2!vE>!biPWn&>`%3%w&F)$Omzd&ZnQLtP%xo2$y z>Wf5K+em#dF9?ef+Cn&x$p%4ldOKTNa4}?~yHp_}2%TEcaF~vMJYS3j3YE+8)Sk|C z*7#p5t-uCz_c@!0W`i^Ol+t>@&Au|mZR>j&vKcL?^KzPM}m* z{70ZA!fg_@+o-J<%H`r9XEzH2v<#lBi1|pnCHe%dhtgFU>?{>rIi={!k$nHP`7QaX zY|NHJS1x&=Z3J&O#2Ia&pe=q>sd$%GF`h3VJyedz+3&_h#M5|B901SPcM}c40lB;Q zg#&W;kAer}(Jwg57_<0-7o1Nd;GIlzpa_J$i4bmg)a;O9O!Rdg>TG3%3BaVqQP*B| z3%U;R=h>IxPe1Wzi}Oezesei#t~g+xZc`0bYUawo?%) zys@3%nFkYxj1INS@wBv-g&yFARSPL1%rJH{Df7)AK3x14oZ%p&av&5k>3O&Rq| z4Kr#HZ`QDD1AZoXSd3AUPkh_C?*Urx7pYEIp+zG2H>kkiN5Jb2H*#ebtu6r6RQVU- zBeOF0*;Fzz!xqUmiyvBqk6Zixc+c6wFrMX2Cpeq2 z{)B%(J5Lksm_y+`Zt*aBRh~W3IqW}askdKC@WZO5x9nPSE8!iB-0asR{IF{Bf?bmvR0GyYP5Ro+aKi1JcS*hfV~yR>4E-9r z^XgMwe9z8u#u?DrUY!logQUe;ZlNrGyL+oNp1TyL#LL4XuwR-L7W+N#qdCq&|4CnQ zi&g)G9~OPZ))xTUKVwk}J~2F8#P!4oW3lwWv)R=n`2BINsyum$Gm57SmjA5JIuMem zO7U`4>_vNsZW~P3uO9t`GlVgG!ug5_&8>}ZWQ0C+uUa|oE(}RXh?tsn@gw<;^I!9w ztD-CjJU7;C!0#?_{?4WmAwl2j4d+Q3D#XR{aQ%M_(J48u;(WF-qy&F-ku#Ic*DN?P zp7=y~gZL1Pv*s<9GyhtPotN20QZ4s&*AvD%p}zL!8nA|V#u+}pdze=*-Z@78aux5K zpC@nb&-f@O+~|GgxqMOVh@Hd%D+#y&lJO$TV0v-Gj(Nq3dHdSa#U(TRh0NM7cP2Aq ziS{Ox@-J(}=)!49vLgO^d4;nQD{iY}#x0Q>V$d`^j+lpTJZ-x7;)iNBF3Jz>?G?^D zz2Z#d8{Mvmd<#K(elcTM9N%;*Jc5zx+}P?&HODQMD;(#)YZSq=<6TvwMGd*a(Mkxj zke68Ptd}%TKxt1HuhjyhD?EwIYrO0HlC`G|@DEu$%{%l#5(peZ{Vr30AG)2IpS2+j zL^9)B`myr~gFQvS*w0qwPhg1xh(fDZa!KWnLCp zJ)lh^hEF<3$B5*ma$f>u$FHok>}mz$52aDUOli~(fjhC`fz(I~_~PB3rSW^I#zY!y zNT-VVBCNPzrg%PX*$aIbArZnTnZ{Bcx!Ku?Jx*vs3;P%yZH;p*&BHDca-ELw@!N%f zMDNcuf7N!uvzT2zcfMk5Dv@uJ4)CgC%nWJwM=`vHb|jm(jbLMsW1qBfmnK(>M3PNX}}a_ z@-h;4sx8Z_o2avszzNMjIcYPrARN#PLNH+lg09S9hp1j<0iziP42!7699F_D`P>%= zMMeZvp{%g#m~#jt6hd^W4(8xxvR6G%NQz!%4x)+}v5a=9L>(^F<_+bNd%_75IzkRR zRQ_dwK!=}}jaVWV>IN*~cj|eYLvX`o!?mOyjykIaz(4BXS}rad9t11mvf*J;L0fS@ z75=ogBCa6r1uKXZ#7{|8be`KI;q>*+Wm2%!%lv}j0%F1C0rheeEL;Hmg5ecP?(@!r z`B-U!h*WXkFKM}S$s|$=F4@_vy&RXC>k_zb#v{v#Gd5f99|TKZaaNDjHc;ovlDOvz zBv+J!m`W!FAr{xXKH}NUJ=J|>uR7n%$NFfvS~L-l-stM;v0nFb@s3R?KB}TwiTAqc z>}d{P&hKQnN^G#atit3Hqa5iZ#sf|=W4t$*s=_ z+(uP>ioBCjjps{$bWSj@E7IM6a<*jO6B0=JJAUsc=Lq&4f!j!{TiveuN&8anIY%01 z;T2NFn|_8_V9^!Y7m;kVufs1+ufd{8fsL;EiZpTs)v@pS-<;PBR-aTudbRl{e>h9C z+5`?!ttWr#4_G(Gb-_%dHlOyVbBP7V#!~r9x@2h%1aR0P+O0wnmMB)F5nk)Ws$AQ;bK!rY&oCP+y2xT1QU6d={( zlIkx6j#NbjNfk`eB|Z=1=Q+1N4K`PE>rY-{5yS(a7p0mzR@kT3qJo@Smsd(oK*xdvYCO)#Jp*PjNYGP@t{35@Z=u&aHCC5FAZalq|t0e12=!xJ=`xUP%JS zW@NuOxF%0;>>`V|X`YxO{jo~nQ(k%bR*ZJ>`elV*9^Nvo9$QWbAmJtaaue5VwuHcKgcBs;g@o`{W51x;haDl+klaDO zqM2(lJ4oO*aw>cOf{=^zg|%?iF^nIjpntSatHXXF6a;1S?rPuFmM-`d`7SB3(N>?N z+$OZ+`PZ#nOU;BeGM}9Nn5z{_Tw`(POn6znNo!XQD^B2oGVuv@B~9EKnNCXM`KGsV zy=}1Oq#7!r2_N3h^-^RL4TlU!tSL-*GA)Crw9~;$EDxDY*2vI8@VSk>a>)h(_M1$ak7F;al(jHm(WjCp%aU>l?tt46SpZl#YU-G-z9 z=|Tb0Z9@u>uBbujVq)nfSXkZpvD~TfbH^NQIKe{hFDmYDlLD*`1;{;z6d-p|LvhC) zkUTV*XO{LYD35^9xxpnuNFf;Cv@=`$A&4cd+aQMA~zhQPkzh`O>;fNPLk5Y zfi&j_0>v~3(D7qP3%W>iP6$kFv^pnAg}^i?YAs->AJYTe2Pwanq&c5e4ONSc(c(ZH0n5e4?An7WnqyT1 z$LUI<|JTYHKCq@io0ns0UU{Np^@R(izjKJ|f|a3Iw;!aM>%`_71;qdA@lMfZ1fvED zOy=XMuM+d%`Lz8)U<|Sc#4il82iE2>n@@YuwI)Q6^;LSw6>G4o*0!tJ{3Q(yMA;4h zDayj9VK2MhU_WcZB-DmrmvwKg47DpW$LHr`hr9N($WNfH{z;RVZWsJS#>En(03#C= zU}UOD3PfarCs+@^=4x-|`-FtsW&{ZXUSmbJBPl?#P=I6|qyWh_wvxqY`yxTY+Cx5( z(bmr#=J75zo?s#Kv5NTzqyVc!0Wx1g3Xu8O0Q21a-Q)Sl^64J7iy$G{ZHnw+Qh;Qk z0Lh*w1xR*VfGlp%371{jjv}uqm6d>7RqyWj@rDWCjo7D&slC88(4S1vg z$wC2;jpw)D%3qGPA*F)0DXNLZfqa5TLq0KoL_&NXu9fH5^D8(g8GA@|Irf}`ek{J~ z4D7zgh#GS2c}WQL>snrYoU2~aJprbJ&js!JYK0JTEW~dE$QW*}ah^LkL1XsJLIRfu29Kdu;&H9cvdnvsx zKQ#R1D3%+FYEey9-K;xn9p>xtGc>wC@MOKa4nH37#Y}R+Qu2C@p)*`UP%TBQ{bz!M zozA*B=JO>IgCrsClSeOc%>LTW6<0Hk@PgA^&$1(=Ffe5E6;pBgfTQ)1b#k<}V2aUN zvsddLls%5t`F)^RI$DPb0FKrWB4M; z6U4w^Z4Ls);xmUqq_p!KSDUc6eCp|rcSwnD&6~6}Q*>)46>*e{)f!bN1_tpPb6v?6 zCSuY?JX<05*UZ#1#PVEMLKs`8;bi+s^NE)8?lnHL4Dr$e*8=lPpZvb2{z6wzcGyk@ zr<4bLeBu&Vj6Oh0(S@#F@Ra8hbDR};#}Cqr@Z}!?iAw}YxRr50*rYjeesx}dpAUPJ z`8g;G?!VxL7rU02_mwoq7Q5Um-+Jv;Xb>TdVekn{Ty>d23PG52ES><6vB3uqb2sLz zR+{02yHdnolDqLapS#Sp+N`-=YGL4VS2tFdP||#BNxrp6VW1zeHUx^yYlUR4Qtq_% za^nBFP)&Nyr-Moo0hM}o`*2IgSR-9p%(@AZYQ;*Q+}1&_zyMf8&$z{N&*n3#XLQ#+ z!+1#k#=MSpWu4d2VSsdG%h(O5v5VoGghX-Ns!)LravIOLv=K~)Sh_Wm^ zceoPj#1ze}943CihXVEZ-|JitG9?NeE3a)i&nVUl$B9E}c*bpqSXICU{e5DZhO@qN zV$8h6FZx`g!=Rn~LfJ9+T>u=~bhN3&P6<)5=|}mU?rvCPUROLK^SFkJUm{eFd;UKp zukcj>kN)Ch1V7Z-%lO1Psoi+eM%RdteE!2lk%wQORfQMc=C032?s=iOukR+;9FzU3 z+k!33=~aUz3K-2SXoIljrYo?PhP2 zTIkHCF^2-|A4CkTTEm@P3{)}s>y}2QS+20U-@EkLCy}jZm^4_DykDt zc2}_1KNqO)SBgH+T?2>~@7fl=o&d!q@ww|Bu3}Uaztj1Jm#deIr```@VVYK9gFMh( z_M6s~`1y5?@SN>%CS~7OuI^D5baA}9zVGRyu4x9Vv{CyDXk1Op%V}sJvaNjZ$fmU% z9S7g}rY&sqIIE{waAb_PPNkx z4d}-D*^#_fB*$sj7&g*|WDegbXM^KN!JSJm|AzvcWX`Y_RN{EUt*9neAwdG17~ekY z>dQVRs6tG0r6RtA6d-XZ0OIPg_k-5bO1#srEn66x0Zx(KtJ-9-YXlP+e5)AzObUW=`t@${{I@l2da@*fiX4h>lKQDa3XlU7AP3jlHf33T zYpLQO>M9P{2FE9DUT0khDssqF9NeS;IY0qgV4$@?5f{}c@teLjBiLI66^XyDh)*L0 zNE`}K{Oo1!6gJOVsyK+clmo6(Y$mA4VZGw8j}#yWC_wQ~SPK+!QH>IRx8RUY><&Ri z;`=kJgLje+x+8oNXq8cUM^as}ytUN(Q;;EaZX={-JBn}0rn~W!8DzfI*QYF5q zOF7J0>vpiG2r6>ut~fkP3XlU7Xbvw~ODpk=&23s3ngK5J=Mf}usb%){*6KrtLq2!8 zA`PH3jLVN>Z||vDpYYYE!izCdAC6GEQq2_DI1+0u&Ks>Gc!c*#Y5rXFkceneSuVIN z5Mnjp+wQs2lj;g69R^Z$hl3dieD2_D^fROfY$=<%DeySa$2xK zs1DqjRqa78bg;zQ5^NFSIeMG>6?TLGaBSNCh7l2YP(X1IfoO~OD<}WqdckD32=?l} z?o9LgW;vC1;U)nq zwFLf|;eOo$%?*Q=y=c0hG==_Z5@9K;%XnWN(o+$R-7)o4Kp->~OPe*xOsw@$Rvt81+A9OCI{4 zD)kSyIjoLwS0(CKTl0dUP(NiT)E`9v>)`_rV`#E(0CRr`H(?OoLW%e-#5w{Lii{Fi z>L|y!r}*IfZ7T65`Q0_kOnr0e=&938b@EJnbdD2JLR8tc)9p5?Y!4wT>}ssw7Yn-| zi_8Q4R51GCBJQL7VDq#>7P+ApW|q>fs1|Q*O`cz-sBc=VyQRUutC|`uer_<>&x8fK z5MB-RH-U=gn?G;ik#X*^R`fV`7F;?T8Sk#aify%Ypc*`TRz@8&dMjG7SkSbh)K*x` zdM4kK#k9=ofC1$~k11oOK*x8s zDLO`>?LYKl{N=xTmNMVn%HRL1XIb_h;f=lE9jU+ID8#p76oOu0B)cmT)uqH`mik?$7tWu+8E>p`?_c^P$_ZjSYA_kgf&^EPjO$tN@@_kXw4Ilr!Nx&FU z03Q`Qh!*&}5#to<&p%A4gMEqC!A{z=Zrl94Q)=5*{8SBp|AYNy5J}j9qN5#bfCN4* z-Mz?yhP~j^ZL$}9PJ}^~@5)2vhf(FhouG^y6ewHl1QZ}tZ43~E)t!4du)=AK+wMjN z`<;k@>i$`&`)5)hdxF@-FT7nIQ;6Pf>j;tCF(StXMdT7Zy`HwQ>JKi8z6zd^s{?CqflXVBb$3#y6dtbL?DcO1M?E-6@Ia?yH>E#)!W#V0UDhG z(C9w}8~vH4?s^7WKx9Cp=WdsMESD5OHr3JCzy~*TS7Mt89JT1nOXyEgiy-v)=9Vl< zJ<==~iJn6lp%QI?1m3iTdx`}Om3Uby@hXuAm3S#HdG6$)#46JJC|gt_1z?bxy`2sp zzB8@dE`ycWq1_)97{7zZGK^&st+mEY;+F3BicG`bCtz`JyC`z&Y}E+_7g;c_yO z3Bx6Pgp{WOKiCmEZ>Zr{pSBG#_+)&ey*v{??Ci|2~fOg-pLw1}Uq(DzY zPVP|Ckkh0XwR!v>B)=TcrfnutUy2Sq(ejk1%p6{5m`*(~5HO7$(g3su8o&lfz^}L& zg~BLUjt?3ZkUvD4jxP1vA+WqaOJsJum7?1>~rbGqGd{JohA_5|J})G*$S-kHZVcEV0ea(4Qa zg4L6=bca+A!PC};^X)mcOIalmQ~nf>yE$7x7>73cS&zGQ2qoZZgOAh>rNZKTWusoP zA!?`8Y*>qr^!|hH=YCZv+9EUd*{!6{*5IG^abINL6B)3}-qCOVkWaTFAMC1WL%BFcx$)rL@lKa1V8bV&1^zakH9A=G%x}~9UOsa9ZVE-;=r^q`Y?RMqYycx=X(7aUt&6qP+48?g}JX(4wN@C|fj~4UoVy$_)tT zr(bZ#Sem7+7r)!mKQb+77*4kib+@!Y(FiqObiZd*=38EL_heNG4IIZS@;g)VN`&g{ zRvn?xFn4=0|8MR$f|du4$uu`-N;fetZN?Xq%nO_4XI=+4%g?;N1h}}G^jRVV4wSeC z+)qG%ghLEs#|=+s%?3UMxk0F(C9DnT}B%ioD;6QlS_(*}P?iwFX2qAZIOxt)# zU^F-T?GA{FU!-lZBcrGrsi=7TYxhWZL_YSl9UD))AK5K?`Vms96O|jgRibi}6k`Lg z{X+wPmJNioPb4a2$?Y*|8{oy8%x+tnQKpAld4{maPqo#=zz`-->&egJ^9IZ-5sL{A~bX2-{C2|`<8}j z{MC2;va4@6d-C(++}RewftIo{ggQ2$XU=%{V-{oxNagrT<6$N|-HNPsUV8GoAewkwYsfq3(eA&Xb(Y)tG_f)o)G7t+cB`3M7v&|IhkAq==%jbU7 zwgn&lb(@mZx%N|erjzopE#7vPa<2N6EZ%xT$u1UejW1+Z+o-!5et|`| zih#cS)<2%^Zjtza$H<~S0|*`?D=dEDF|xv+;q|qVN5#PbT(&>HUViOgF2}t!)IkJz zvTVM=DhLXCw@4jCD5If)g9uyy`#}UR-#YRI7%*nIove;#K@K8>V4PL^GkOrAJ*kH~ zoUK2TpU=1ChnKkF#JM<#(8rGCwj$v{gjZ}x20Vi^$6bewC2-s-9rl^r>78yZQ2Ve@ zD)wOw#s7!1u6}Ga!4yIoaG#1Gy^X+;^l~JvP9f~KmMZ#yLh0ivgewFS>3<{X-z9LQ z|Ba%LhY-xqwXLC4(FYVt|JOBbo?;~lCelyflU9NJl?YtWHxl^a#h`RNfl$|4sK_UL zZXu5c5IPY|BoBw91bHWcBl-4%d?Pl%3RjfdQ_54=n*<4oj+R8H5I7PYEoH`I2f5Zl zMR_!(tnN10NHCE+e2gGu-b3I>ew~#0Yb#t)UT39@M-F}5L6FhCugJ2^4u9E)K1djB( zQu;%!rIq-o_Jdj&lDygSGkL3G9)Td#VS{?$^g)LWNPT(Opwwp}4;zTe^02`?Ayz%U zWxYEiskVU9!v-n3W38887Pi^ou4G0o)@@O9_}iblr?b@>%yA4}%qMMzq=2Av7$#e@ zT?7%6GCZ5Gm`~Z_-eSRqk)cDwasLM~_!+j4@WitT-w*%_A(B0IUO+J~t?lz{cgLFS zFM@~DpWpV#4DUBmfT_2>YcXc8Je5#%FHqCtOkcCe-aMwENqc1uJ8zFXm2g@Rr>7DG zS1~1|TybV$10>*;i;)CMP1KMGBur!{m%zh5hs1`|=9mR_YCFClfAw>BP1b=>5UG#_ z7w08a_qZRiKxH0vbAMUp`q#=;_PVWY#LBl{TvV0~{@2R5RzYRQ`Rvboa6W7P1l@6b zx9YxI``qOXmP4qaStsw6W}Qq5bmG2buS(pPkz$!e8yc(m#OEYWL=s=Flw zLt#Bf==K$pu1ZAm9|s^Hj#k>Ct%Q9z_M#ay`OYv|Mq*A=CU#JUTC}Zpw6o49U{e`7ps3QSi6A4h` zN0i2okOJ8q;7EXRgQxuHF3WC`LhKCJq};*hM}7wFiiK717;z*ZRy&Kjp74mY7-gp| z7Wt)iOx+hiM2x?*j*P$l69I57+{br8&Qww#bobp7A z+W_i70EME(+kYu7o=GG^i?_{7q9?!1BND2cW+)4^I0c}^585nV|95v=gN-HGhc@)9~XpvJ*}S@I2act!9M9f$HlHQE3PJoRt) z0t*_dafedlE+P@Caa&#z?axb%>Sz{ajB2C+RO9e3tsUpE;elfnKNAU1jXx?i{zwXh zSK_gNi2d?dK;(Yy(5T6R`}1(fc&MQ|4xS0n9;uFm06!c>C_mkEsuD)J=Rh6oIkXP; zoWPj?BZIs1ds10*QXd6vl9!JKh8z6zF6!c7F6e?^E$C;WI z^3-Jmi9~4fth^)|wm*-aqmFk{4rp=;K$HJqGxG7vA_1Cw)_&P@W|0D&u79#$ zrRzRY47z-z5P1~+ivl&xkMnBC4yoGU>|Gsb0siO$l)p|SjuW;47l22#jA&0uMysGP zYyg$;Qz#6I>U6*zE9Fc(wFE9MqK+h$X~us)+9OVuW5!QVWX4~$s3*}v4(%~xzoiSx z&EAR!bYDVqlszELQI-^Fbu^$*|Jt-E>WF|u>!3bt0JYgmp%{?59guPTNkSdH^N9m_ zbZqZ|JiJq#nxZVwJ1GFQQTl*Y8@S#3E)f8=@s`rYTcjYM4L+j;8X@2pra%{ppy;Rw z8$fOMQYdCixZUfcyu`$uq5-u8j@!KyiY~efxMKyHD6+xO9&;YMGS|%6-Brgog-~Muj}c*FG2s>0*yikjL&D zL_VcgL`|~;2$SO|!#Wc3x(V&_;L$@j!MM@Q--I}x)~j@W!Ekkno^kwk?UACw2_5nB8^Z^P{tQad)%sF`U>Gu%#kN*<(hHEE%lFwh8Ju|BS3u;x+p z4NCM)cKUEpL`cJas_Ew~dd6E-(#*4^vc@wSGDe`q#DAN4I#gzEI8VYMzo- zg&T*Y!ov<}pG1Y<&x2~zp@6^SEj22<+#%_T6>Ox& z)x+Uc*dL?=V93}$KAgcN8Sv#qGxO?!Kqti=Y%dW)B8x>$mw?Jn%Au3i_C5WG=jr_H ze|BWtz<%kFjN~toQtWthzU>e1Yc%jwHYXh7J2Jf0*(8D@v}wMVSCePTCc|jDr=h1N znTgbv)7F=GWFyZ6X5lH$M(t_jd4jDbY@kt@uzmkxV^6nWY!L@}Vq<@F6^J96crtUh@`cxS+EH zBlu#qK9j7ts1t~Uk#A6QPq%!m*kSF!xPzNW0J!L0jDPSLB#{&m2MJt+s!p&`mBsj= z)}E|Lg00epf+g}7;c;y|kFX3Q+M3>&$w^@#Sqj zO<120Sf~{uiqJ|+en{Mpt8LIkdQ9|TaxqQO_MRQ)8;9j3t9ROanzMHZdF%+;6{ax$ zUI))|Hii@lwG(e_Bx%3K(>r^bo3Fy7_2QzLzcW2k&BcoP%8t;)6@&y*S07h4?c{lj zEhU9E`i&)hct1_iFMZD$=R4oU)6(!A=;B#mu%o21rhJI+f5MZ+4v|8%>8i5M0=$1$ z_^9LxDMG^@;y1f`It5p`eW+bN{#-XtCi^wGN?do(qrp{DVCkN3>ZZHZAs+sur)n^w z=vI7bcZzuCNl&$4#5z4ZJz4c5+LeXK<{|J8(JyE-Z3?dNbT3a>KT4~mVHP@TGydKq{RaabUz8*6yM*aJ7$5H z`x(ar3~!3|;sJ&+;ujuZ7;{9vze^4<@EE73OxQi(U#dd8<_TCLw~+jY60)vAA-=$S z&3D-8ffslM0Pn$>ASjQ6KY@F21ccm!Bg(Syf(F3>@4*p2#636-{;#fik$0w)wp;@t zKD|s4-!9|#(51x2Vj1r7dPWx%4TM72EP2&@jQ75Kuq2<`VrUfK^s+0G54w90?tSS# zw?O1BAvo$`%MqS#_U@3moj{;WjBn$HJos@9@lGzky=YiCPxKECq#Atm`MeLR~Z zj}Sh5@SbiRk`4<9dW(9Co{Ay|gueYe)A*D9JS!tF{6lqhty@ra-{hw~+l|QY|Dme7 zSIMwkGJZcwwf;9e8{1iFEMkZvH# zvXHMKe*JlbAIkRpY4-eT+Tq^KjP5*oh^KQ{0T6%tng;0w1$%JObG-D3AD?_XMECxhAJ{I7WDmwPnh(PzUS7WR1K5{39R{2v};@x0-g zfUh+3QkRkn`j-69bJhsk53R#%m-hQ^kMN8(%%8r>ndqp)?vch`{K8XOsU|#)7zSI2eS9qxsf3-!2 z2!12F|HFLZ7|)aZ_!sc>?7%UeDfv2p2z+kaV<|jsj3=5;xacX&Iufyj7V(wqc1MX8 zdmP0(mdxm*{L}renmnb5H;HGPa6?(f;9~{&+(BW5c=Bk^gWOdinqfS~2fqW^(qlvr zRA_$zpx)n7wYS+(yt&FZbgTys4ZKR~Vb>R3r|75luJeknjF&Bevh-z3`@h1=mdt%B z1d7|1%+J7;++CZ=_j5xyde)~vqEJr{uQ1-TBxG1v^T1(&gJxdlqb_yI@0&fr)7xNs zNGrii>U8984HfOh0QY~ul<|Wr2RqquO`Ri8yrC%s&#bSH$}5zcP4WD~ZjowWkV@by zVO7lQ;8Je5B`x1J67*$Bv4;W-4CG?WM>IN|D#@S?~eOCOZo95(E@4yjv#^ z^Wt&0Ly_Kw`A&j)`SRF@lNmwf&|_20tw-g_wocn+ysZ=~kmaGa>w-J{lV`MPQzz+b z0jGU?hjto>W^jj2&g-57><6pJFz*yM1#h=kzNyimONtZeYd`eB9O zrTXAvJ%_WHuPuJrlDq4*W=sHa#b*0a`ucBGD{`h;@oTwSQ;`(pF7iBKW_&G=pfx82 z(6Ra&P59u|o`xI;t@dBbRj%vDF!=o+=hVZgKAhD`1f)m0REV zH3xhxU%nhjvo02-9fmwxiKe;CDSlF>xJRgJ zQ{2%FGw$bQiYRFcix|=r1SCx{!)gjVaWc~9nQ5|$$1R?pX_h^%HjzjHv_F-v+B=gpVRAKwGMuhPK&)VVHY^fshk5bxW z)Q!JZZs|{SD#lmu^h_~xj`P6}KUtDn&J-o(yxp)x*sSC9T+tlDKVV#Q=5dm2Ek2IB zVbIY62Z~~~AnJ~u>AdTwu%0%Zki(2A2yrS%CNA@tcsVm7QEfk4THz09-2E9W%alGY zH`4sQb7XaIV}qR|Y_NBpQZ8|d6iA;I9~=I7Tz+hLmz0X$Y2K#o{2Pofw)3H(_<^Ao zUEOU1Owf@C6X{5-*a?e^s$)xlk6ZZ!pQBJ6|0rIFPfY1m+N^kjU##D&9IH$SVB9Fr zSMT+Q-&!Y7urL^}cyvxwg`%M(LvN&L5v3XqD+DPTbVNY`-Sw)1&jbn_$0wgbBHyFZm##N7r zqr+riB=nU&;+bHwTp~C2ELB*~})KO*o3BKduo=L%& za|;yD$4ed@lE!Y@$Q#>vpVP2VPK80k9z5-N1+L_7f5y|2nJ2Y>qI>XJ^b&NFT2SI&BRSy+iq9*np}keAPTjryfhgb7N<#nm9~ z&(Mfsfi(|<&OGl)Hdq7F2n?WbP5e66oIugcX$N0q{FjTK%9aX3PU4j6WD)frp3Yq( znA=VczwLAgsNVy`XQ;jvmpmUD#{YQd%bxOV1gV7TeVH3)Rqr+466&ojq6+Tf4LvD0 ztcQ|1hp%|Lm~&3bZOvR#0R63xI1b_`W-bLJvHcCya2FG(iIBu7HL!kJp4}&b@e5ZT zFK6uHKV0*aWuFqVDB})I);NeVVt`4x_IQ0$3Mu!E;pJ!d4Uc%Hb=eJ=6JNK}xlHK% zr0HC^{&*t`9r2IS4g0hWW2eB$TGcDdqE1=8(kygJ4?FPn)THk`wNa+!r}{JsgC_Ee z-!!$h6}w%L=Jm_6YJ`~Rb|Ch|?>%Mgnn~pszV|dTn(?F`pfN2-C7~3vDV3mumZ0A$^F;(!CEgQ)#AAwyFX?O6e@x=6C#=EI4L&>dY+WeNQ@*R$OJ&# zefd8D^*fySn3zXr&d=vN`6KuPn_{mbmed}eprJ$nm>6~57@o{XDULxoFB{duJ_1YJ zdDMV=rFC5~t?p|spnCWi^&ossq^*g%6PK0g9i{!=&z@QqW@w?5$yt@zUcy9JD2~+A z67w;?crIBfh_PYZDY?J$zf%GAiT#z(0fW!|&C{0sMEFg5%$pe+*Z1V_9!!H)gBn7HyVz=n#;G;iBc zaT($b8!E2T%(bH;)ela~b($6SQX~YWdYxvo9R=4j1Oc(0;co%1(;Ty-BCo@W*Cl(Y z`wf@SgkGk(W5?)}S-J&a_&MRqNgf*4D<>_1id;D%sB-0`(rMeuNwh$gD<{ck;1_(; z8|7`D)J#C>x=B?n8La-Mb}d$5TGB(tLk~T~?;I0STF92z3mWN^&y zDWKR*tDKf=E4SmkB@8yqik)e`a7Io?UmyiA20vkp;};U(_{(?#$B}m|?_AEC&bO~j zC}~bVBPSinXXMg~7FS&}EU1e$0ZJWHdkVm%6$?Pj=QkY~%6Q2ZFC_BwsooCedY~kp zhS*5t(Fy%JBGm3PBB6%_ykl9fqm&j&Z6*>%{*@I1lGFLYf?RWR;2B(0;ggfRf3RDG zF<2KaZdRJRP6|Zsii4AJRt-*JXSJ80{_Yb|qs|8OhifWYSoQgw;34!!d7%Dm0JWw< zp)hoHVpRxtF={0c41dtf0JAVl$ zzYz#X8sSR72)LZGtDN_U!CoM&(F)lhlX!_Ln-t)vjms%x2voG+1azDQ6Ld8To=#A) z_u`rg;NzMK!PjdlYze93Cy(}`=x8q+Ab}68;yq#!8bio#LJ)<>UOk8v(?D%AKBAhp zwuJ!BLZ3S;R~(e<`s9kkbxlFUh)nac(%NNGfb%ZA-srEha>e03DaFL<4{G8<@Y;r0 zae&T`D-POu)jQe11a(cAC|xI?)15-=8t`$&f#BO$93D9*R~%{+0w`JfIpTaxrDS0c z=;e|_DACYPloi^E0&vNJ0#HLCmKfMk7|7M>Q0Zv)2z)e03_#PUK6)g2!QjN zPsA^r*L=c9xAT^d4>hfUdHYYYGfa4zY9QdJ5<_HiT zP}?f_Y=S?5lQ{xHPUeWRESyOR9(X`a{J;Zh4}SE82M(5$vF@(Jv7W7Bix2k~D~Xg6 z@?{vt%Dh@oG!2U1kO$LBIoecaKMLWnwKw^s=V9jnpJw|(L&Yx$T;%T-I9^~-Ifs?6xTNiJWD2rtBEZ3oR^<()+qhAbFa^lD@Y7<7euj=mY6H+P5|GQGs_@VcoiRBj#xZskVFB=#0-G0)WXoPiv zW{RUnW|s?m^)7gZ%N3sh4tBCW`48Tun^6ivW;v&~ zJ{v;#rf0)W*xY^vs}|*UGY`5T&k_x|AYX-R=<=>$OG#bqT6nakt-bCdT^EnmJbOXz zI$fBM8X+_%-Z3*fA}|pjGBevj+XF{yh>iVSHLL9fd9-Gz*E`(egP(QhG|KSv^-xrl?YaDky#mtMk>mXx17!!hVmT^(8xOD92-Nqg!)j*x< zU`(-#a>*t7qFQn}^-K?zW=EY^qD)mFhDT`pn7HE7+K!0}B`s~J-#zPnpSkU*xC+wi zqFiwqXfH)VP^yqJ6!4M6h<()=m+Kva7gjy)5!YOBltvs!~m{Zayc)4 z<-5qY-*crU8R8!_B;F(*Ca+*>I@o*Hh`g*tJ}>sXOLO=0keA-lU@<^t8kc<+p7$CC zBlsxNlnYm?KIj9PHaA`Qd7HxQ8_n1Uq5B7e<^M)IZs$1=45EMUU6vIl&^y~f!2JB( zVcs&q*cmBsUrEHOt|I$ zLJ<~1^BcnhghAf2uXuX|lf`e3_Wh3{Rv!U3=md$1{D%kg4u*?` zIt(M)X%rs-Uxp^+ufSK03?PD_J74wYSSSW!a#Fb9kA9|(pcDH+axWIoHWLvsAmifM z1_8xs5kv@lyDRQBZ|?XzW)TmlkRsb$p~S8 zw=RI64VqtlgUe%)MEB?Uo%F7iqbNijWa&G>d)Z{~5;1g-okF0ZYvmJYd~mzIHG(U+ zUg%wm&zu}^LW%oaRG$Wsg!p;+PFluo_yX2Ps7o&s3&Zd7JyX4ngX!0t=H18#P7Tlx z1FHPcyG4?NQO`H*TbAFP7C?;>0zf+doyg7~fl~ob73ULAUWw%gCwdF=-?kSooR^5V zLWzi+tHwT4KA7{XvCl;Cr>8@Xu!0BJLzBLn?rj>3?S8*sBNp?m_Ee0D@A6ykhf)A2 zID)&1JyV&Lu~k8VDmMu)5zM0cOm7|j?hGo+)|uXH3t}KNBZ^H-P znFi}X1ORWTz_a&wtFW#Fih&r=_<`B|>f7V#aV<`D70DxIzJ~6jwLEh<*H;Ok|=pAa#`hFZOC??DuV7l7^_DMj2k?3lS;L;WtRB77eMDU=2DEwA3H_=v!i4J> zI+D;9y~6BrS+3^>p=U42SBFisq3085ymTVO%is!$eVXtk8+GUI!oT0-eazZg{1_SI z?OH-Q&?Vr|*SXCQZi0y8vf5{)3U+Bg<8!8jYV5C5`nBW(wgiL;6R3C2*DV!H8XI~e z6zS-s$Pn$kwar_V{b|Do!8`BrmgFhRI}`|Jabaf>NI0)(uNKlnm5d$Uj=|X2)|6oE z20OhO!Pq0G_v^%J24jObrLonAUyCTlF}Sx3#!BAp?HNpScGjQ*eEDv8&9s}X3Q~-k z+3y)krBH!F`6KBL7_--X&@awp0|{9jvR@=nv@f8^kZr^7!e{Q$rWIHitqB&1*8IJ_ zI_{2|2OE}?zVIeS1|iER&6W`%&@Zt{`~8r?k}4Pua8-c}Q|ci+Ta)AXfCJvUY&W3` zVLFw+chLJh`;tH{vAVmt`-%+H6J4>4&t2H>J@d>JjMZU4insr$U$%v2C>x~6frAQ! z!TLOeOBt*$9Py?ZtiV<6n%HK{nZtPJGmtZf(ZZwN)nUn3A+A*^TaJ|`B^akMTTHr2 zf@+nkm@S6E+>%df@OWdh_*I!P7uR)F3>-Bmy0X!N#~g=A*rU2sgg}*vH=~q0UX`o; z5UwXp>HdfyEW$M-gl#c9?5d2}q(L%fN7^CryxmFfGnSU4dNcO)sA@h0Es)CVbjtgY z!Nw9CRLjR})$AyjAvYB&rDQV^hw3$nEGsOm8tPc3<9;-1t<{Y@Qg^@UV z&bAZcAXlb2<|>AID=JP_;L6fU=FzKsZlzvj+1I2V>VEFhRq8| zuuMwR7NJDSZ{-b;cwXY7_d7-qWzRxQzb-Xx?uYpq?3|hVzL7f{8@`cSQ|kaO9`;DS zW^-ShASMc^e}Wj;H!~YtlLeLhlzy1s3po;voul> z?Trt4RFf4`KIvV~O#FYWeRp70#qzM{+=P-1q(Bl%0!gT$qyV9}gx*2|QB-=#xbg#5;^U&0%w7+Nq*`<*_MR@!841 zAgwF;s~f=rpl${W#Bb%P?k|Ixv78JAr;EnP>16?`+8mj124Z|1G1xe0sP-V|15y3b z_J0+%&?2M%2)K{YN8!^oLazAjw=r_{pTlcvwPd4nMFT{liKlG4DK9)zuknZ3Gqi>> z>%T>5M_~a^`=Fx-uI#Qv-4|tT2me3&uF;d}3g8v2pm;W;0)#WcnJt2EoE7 zie~1SF3sY3@Q(EgI#TFFwJ7!G!e5knbN!)SgZLAJ$#kUfBvMO}kByz2lR!|FeDVjI zi*JIY0j1jDhf1}<$?%fPMMr0jN2bI8^no zc1iM^q(spSR0RcY0#?N@&4hoHq0l5jj1yfav9C;gIlZ2|x2ltJUKN&YaHeQ)0mEGV zjXz|}czQ4c@lhdGO`Bd4S3p4#$in6qmYPL^JO z7>CKiXn6SH(jV&K2P+0X{2=>ms98f!ui%_mCGjYTSqJ|~KC0e+h&3fQ4md^0m`G<5 zJ^c`8A!fAr5xKFVvn1gQW&@x{Qwq>h?hZeU%rb&7v)nQRxi*7;0-0rmu*@=+6%)ft zNctR9T(hO-F1b=Tv-HBF^zuUi%2wdeKzQ;86axI=9rg0VWTZe&HcplecT)OS3^0NC zi?YAI|Ajl8+WSo{ty( zrI#a~wGsd`!ZCMToJGPIaBzB+7&+_kE!UIF^^2Pm$s{-`>GcQ>@i)_^8?;Pjy0eI$ zkSM)Y&G}@Q<3rGpUXS>&RIBNnsAiPjWsdk`dc*{LRAEQ#59P*>Ah^;L+!1b)8ujMBp<(E-Xp7 zp2r%fB~bxA>6l6uAA)vVS(u~2BP9=R$Fq z)%xF9?~q}==l#|z1z)>a3lo3B!gBL{u53{Se)&5Bnr->L37HV3#7$ax7fbk4J!TRC zW}QB?hCKF;8xqcY+%@H#T^(a@*nAqaMSEv65zb^H>!l%p`4De`CV-ij{uNZ$i~wlcyv^$aAfo7d4kGYvXJ!JdAU||B6Cca+0zn`Crxn z_sw!+J?9M#E7}NUyAezbvfcf5+YL1ox)oy4Fdmk+?cjV6z8=Hs{cjAn#Au^i<)QA* zT>miFby8|X>4whEiW;0eeZ7mbt=Pdh2MqUCD8qeR-UTyd;^NA`J1WD(7p6TU0F4`P7JNW1sE>~Vl z6MzEJ@^1BwuN(T~gFD9CH$6=jGH0vP6(59WagXEbbkCc8ox8*^R%1XL2vDNjfTah#TsUEKBfp9*KXPTPBY6u>#QLD2NOkP@@c^Cj!XZnZ}vUy$T ztQ-?M>j2qx$PF#e$crnulkQtvTawclxdmBeq z(RiwdR|GR=%8@Q-U;X3>xz6Rx6J@sgOm`#Ae_Tm?)I=<2%&* zZf1qa7%wzS2ui_pH$>nn%wFlbS2Sk4v`x;u$OZ_YPymdFaQw(uT6c`InkKq2#MxiE z^7JkzF>sq0!QcfyxQ&xXLrw2uXjY0U(I<>%3a@&$kt9sdJz0( z_!Hl!znRg2*Ky6$Tb@!! zv9np#g8DA?+?AenD#Vtd%PGA5B?lu7|TZ>RihD9W1xlqnN*kJM&5Yx@a801bPuKA*^gwUPT>4kr)ysZBit5oEQlicBLXQeoj>SIC)erK8AAL;I;xoR*TECPOXD3kF! zO3#Lgd5j0ecj=xh;M3hphOfMu^0#ZsRQ~o~tS-s7DwKTdm3(r+T4&>G!K5Q+=G+R< znK^(wvulHK@fIj~7acGDlnFy_U9R%P=Zdo|m8rql9y08NEI(OLje-U0HS=kX2FkT;d$;sC3#m!4PrUbYk#C7o1hj zTI%dje$K6aTAgFS@sQ3j=%>}Jt1}9LSyzJ-?aQ3?L^>;^Nw*1+k1ZEvg|zc>XEsh+ zG~p`Z#^X4;JhBT+0Op=N_O>JuOpCkE$o8*$Gb$ zL3mbxFnr9f!ScAmXzjF`WI1hfRK!NYQPI*!;7C;%0OHm3kX^$SPG^|-Hxq>d`=)am z52dlH6xc7VzS;@z*1Te?m}FKo9^+yakIK;>jLy;ju)3P;x_E3@X{8eP6is}=$k7P# z*=aRGe8vjQ5#q>cHA4KsN~zg@4PnVM0ZZBj2;)O}z>Wq8#?BZZDxWbO*Bl@Kp9Tnq z&jyI3GirdS%j%MNwdLmZ!JIzr42@s*@xc_1nw2x7@qq(qe0b(g_ff&2*u^#Ybiz`I z^N*4fV{lxiyV0$2$pGJHa)-lv8zy0}oKds;LkyqP zoE<{V1xig=Pt)W+1JRPyCvWa%GRWy-BWGAyFC1ijN)HFS01 zrMSfGaF*7_<}AMN&`VE&|8dH-u)(z(2T+ecb!Y!N7N|K~ zjAv5Na8a)EnNOXoEtPS&(CeI42PA8kX6|-2(!^p;2W>E4*Z;FSmUfZ zfmrdZ8v4Tkj&su`CM@~Gc?9_V!JM1oBkanAG~9QXC==R!1asywuxHE{GfYG4t` z2;jt|S3ajCJ8w!xlhQzjNRstOfJL$?2b|w&9y#zEm?C@(odk1*5^ORF26yi!e(TIg zG`oy(wq_I~wDntX6AmET4p$Ou{pFgIIHkVSH%140(kV9H;Q-l~R`_til%Q$lMdU}* z%1ii*rj?h@sZ(rhS}C3N0|Wzt%_#eRbY2wiGO1}s*SZ&kD6A3FfQJAPE9M7es*pZzq1-N*dK6Jf~)qg-PCganpan7{)+F zbH(LzYObit3aC01P}U@o6$GXU?J_n}2btemiwQ8;R5fj+$hM*vYFY4IFa@!(hoDZN!nv0J+`5Hu2^M7 zE!0*h((4(VNUu<&-(ql+^a>m4PRE@S#FtjoLipe#N&Pc}6Y0H*^eF~6N$*vpwS#E) zLGdBHfl@qQf+O&GnNmEgf=cmhg^>qRJT(wo&CGSq!!P{v;ibjVRpgH|_t%%R%A7Gt z`w)ds)7ucBoXE)b{7~jRC+Z^s!?$Rb9(jD?jm^^3DGt2rtSV9%ZJ4FwUjNJakSFe=G{ zUxu2l3Whqeqx)_Ps!b&0O+YRZt$4OGVmOb8tq7obWS`8M;%X>oHP*Y8F1Y4Q(!>FV zO#9|9&#Qg&m#l!M{DGS5lH(MpKo?3*^I{0c=qJvHhzVXkui`P_#3~+h^gP95mc8u4 zST96k3bpDoCCpV%#9uJol%}-U3n7RmUr?6{>&UVS5Wnx*Z*YBG(KSLba277y)mv|S zLFH81+bOpWMY%ht+#v|jcsXfXT$(=Yf(r7Cuv5N06lGt4^6E;imPi>R28J0ZG(owP zSr=3;<$g{WEqq@n!gHYpCQ|C0r$h>z!h1TxmE^Z?AmoiLiz`h_%i;=)11RKe0bt1c zRVE9qFF6J+$|!@vp|m)q49W-pSeY^?yfTKZ<;6&H5QdRnoL%u03@vL0{b7ddB&SaSfaj`o2+V*qr|d6hk> zvB}j^6Db!>U#5%?Z)E=RkIM#t*Fi?P|;Tny0%dR(-1tduzpQffP&FqV6t^9zU{>)JH=PCN=va}ll za+LeCh#v42=Y^D_;Q&g}Tmz%v!%f;H)6vWn&6QA=7ng#&d$fw?a5m)b z96;_~3%ty5cZ&D#+2I9T}iB#_O)GaR@H%^0ekCL~dZLIFsh;r-@P~Dj9E!VZ1G@ zz%<@xe&g-q#b~_Uf1~1ecH@0)7_W0v(|BhLl^DUG;nbG-hS)ll1?QJ|H~G`XoAtYq$Da2#pjBR)vEd{pRu zSQELjHNK8fw2gI4f0^9D)z9%1h)kbJSZOExLDzOB*C$%5$P}n+829(#lFyrRT#j?6Ui=%$A-gkR98nhki?h(>z?8; z10YuiV90Ghx^`PoX>jb&H842BTdY-bT@CCwa9|@BXjZynIs>j90Q*|5tDObgwvsk3 zz%$|Dp+je8=?~ppaN<6l5zOiV_aMxzjPY7&6S=5|Yn|xA5GnEAivdWKF7mVfuI3g* zY6AEqLYQnm0G8&D_arsZ7Y)!#7bUM|3Si{eI$n`k*~4@6CRgawDh$Dpun`mt zyCug_?@GArd&JdCPrgFmDKA}n#C3-zmNG$YD%SQNn*$XyM3@xDx~alhO)elP1!^x%Cm;D3(F~M$U09ct34{K40QDgs5*Y2Yp5nJGR8Jl zjSt&E*acPH^aMm7#8uOoNY!c#K&lG(_BJ#rM8pa5O>=BwfI zrSnYDN*Ay_KVX8|6g9r<^NykD<%_OG;%kOZivGj^r0Ca5QI1H8F1+kY7iA2a-1cij zQI2j?G*!9nmxiJsj!jWR&K-uLZ-JusTxE(Lxau0MiDuVKSF|Z=qHRX-K!X~`Iy8#qHD?!pE&&~SW2Dj@?P0V7f zZK4}#(R&Ti^ESGVi$x3_&lG4av_r{Xr;1bvMW<&j;hj1 z{K$l)D9d*UFrzH3<;+*zZ|N7Vsjb%~hE7|r|H5|?gWdpwM%fkSZDm;!oVli!8)q05 zb(mqc)=E!;>)T(IG!S)fst}0s(W0ZaoIN4fawbi&2<*OqJUz(4$pkOBe=rSPKTMGo2OyR8i4H*=br}FtcFL(sb{gt}YfRb+A&# z3Okqu19qo1j(nf$VPUBM|lHIcTRnF z=qO4-*_C7Xi?S=npr8L<+@M_29ym{TJsB*;GWuTESrMk0{zNI3n@m6;#j@sqkz%0> zZjfRbE2^0+D7%snglBOq9RAuhIj**RWTxv)k;bY}xW0j0J-I;xJHO+R?I?u zvO)VnRzS3&fM_pf1t#su0opMSOoh<$@6P^WofWfCf5D*rCMzJ?P(ZXlWCbSe7Xq}k zVV*cyZ;tCxanOocsDE$JKEVozHWU!;%dEhp{XM7sfQZvgw*jO=Jw{iiuEz?9EEEvg zELIR8i`8~L;_8R(xa)wYAU?P!z$3ZdVe;TSSBt1Pkgi;Mh1F8&l}m6fGruHDZfX%1 zAy>_JB}ZdDm1r4>g2c(s=DXS@fs!qv2j@?siuptuRg%{z@E+>rZ3?{abUnydB&HTy-3~CCrhe1gJKvVe@j*s~j zIsU1@Xs&%A7p-tj7aYeXi;-C2vQT2>Dq~0!+$99i1Q%O6`f1n0nyBdjh>>W+NQ4$A zb5^+$MI3`uAOf=~dX__Oe#O;LwB)52^UZKbZMQ4P_25npIr~#c9*opw!Ja9d^`;J) zGZE-FWfUmndovXLG9^_EVFk4A7#xc9Xa}u39MA{k?D*T-A??kYw>JJCljn<5@8sU? zkZbz;QpI#T-8)0keMr$okvHXg+jFv;4}%I%JLI8veJNsG*c(Wo*dRydRvDm7U>TBvXg z3N~{91)H0P$%1xMGeicfY6hE|hJ|p~c44w?gNNKTbEJDP>+eQ(g)^dXGY8=6NRI{Y z+vm;EqoC2l$E264>`D=ngCc$-!sNa$p@l}U0_td(UD585n_ht%KKJrMbb-4<3I1@H zwVzE5qkbm)ZKi>Qy4W)S!!EX(Q^gZPD??FzDa_WzfGl+}_@BBMW>d6xWX|g_D7V#Ie;A10zgMS$D|=ge36ZOitd6)gve8806#}K-t5tGG{yNPI6hz zfRAgP;goBzy;OgA&Mml$8yOYOhFqKj$i;_3>l-e^o=i`OU0S)aOE1?Jy~ z3Tpn1VAUxL)vAI_c@Gi+tyuwWbz30a^0!vH!j8sbI?6x+d9+0+P5mgd}%SvMvB~h+0sUvelC0)*oG;364l(VjG5tW1<5vWK=G=sSVXgrSu7guXS^^ zvEbWQ&qgwZ>A;gI6B$Vg1)4h-BQQ6%qD^h z)FgqVig=1uLIdfuD$3bkOsr+8LxE3I8Y8nZqoT}mxZ6nlay@(xaPx1j+-fG0A+nE< za^Rhs-bWz#Il7`O*fufF$gS*W%xxMQ`HFpp#*|$7jiHmqCl~-U9;o{j=9pH6qq1t_D;Hf0MGb~d8YeRV zX$%-jV~$E1W70)_f64Ub8kJSca!k}S*6frW2m{I$TeTw$Iwa5hZz9X3_}c+aN)Q%>5YWTbSC{6 zyYvQo4@vJR0_)|wSx;0+mtBm#O?)F`vb}OCjI?lx=W~XN2^VH41NAc|&UU*v2F_L` z&g&pfApfF`hL75~`zM*LV+@&WdN3|`PK8<8zY6}-oufy>#xENFzoe^>_<0C5&rA4b0O#2A6PwU9)P$;BrM2Kx`&j@odMk|R{Kmx-o ztr!V2|1u&%I~HWn*Rfvp=bq6HskMC%1ScND?s(-p_& zGCCUEH!*@+XsB4h@W?n%AfTLamc_Wgho}7}$GV$|S6LMjeN!mgysadL7182q?hLl0 zH&QY$GfI?_;Q;8r+Oi z8UCV-OfwNYBjc6JYr2;Q$;gyWspXEp|cPo;MQs7ZTy7Y2CL!w;4eM035 z7P11Yt=%UVCA&L{XBgZ}6+kUa6)4hoh*B$3p}xhS`aUZls#_G*FBsgU3bjnC@se)3 z{AtB3)PFZfUt|SD8eVTlfh$FtEoPF2TAVc9bV;#d7Q!-qR5N#Lk-^|($fQV>HtEC) zOwv%wNzk*1}D;w z7*fB$3QW>ailp@-FbpPpg8LUs_S^#YE|=_KwN$dFqp&A?u%1fx>_X*slOB>iLvG-q-B$RnC-$);rLdsKMom{#t1O^*6$ zTx6-Ml^d?89_475_W1(=Jnh2?QQGG`uYzfxo2oz+e})1^Uk6~Qv=2vxf!aufcWgtW zCoMA1N5bdHT$6+iv!|@vHh@I*DBHuaaFN5LHL^VixNw2nG##0Q0Xal>21Q{UfTprN z9G@nNTWqNCywUKE?&*Rf+5|FEK3pJ5`AlV`a4L-~K>$sqgW>Bm-?@FpJ(>j!k-|=o zS5eWr$5{b|Oepj7LKPKudXbkx$V7jxN{BVdmMRpl)Aq}pS?(_Snks5VvW5|$pvk9D zfKln)tbk_pk3&)Zx{6xuKz~q)AE1qK6K#zw=m`TgeIM~;6_xiXvy(j@itHstR^K0~ z@;(--U9@U)QBOB~Z?UTBjwEJGRWd;Nld^SXNiTOclB1*#kfWpzH-MS+X;W1tecEyI zXy0r_zI*_#TUD~J1Fb+wA0VufKAeLYyLnuu^mW%3mgdFS8wXG*-2%Y%&sZiCt$#QM zt$!%z!=bbnq7Nlr?HlN67FJY`(mlK$?L!tYezXYU7!(QT0801#tEx)(JjbdALgD(F zP&V9Hm15!GqZuRJg{;3D*&fb^Lg5^M3om_66}1U?2%N{v_8eehP&o2SSu)6-D86KH z>RXuX(N9%Xed{zY#kM~YO76?5?frf0XjRp>jxqw&x2i{}z7-#3bK2Ob5Kfyc%Z9kK z$*E`~0i-D;3I7KYK6=|IwSQ=DC)+v{+3rLZ`$7RGe1IAze1t_{f7VC)QXaY$Jk??> z^i&QYPqhHhQ^zrZ$Wu86c^oBuIFvjUlRon8+e}a87+8<;Jsha2;k}ucZx3BfrFwWh zTHwDtl&X+#^Fs1%4j|utJxclZ8%#OVw_jBzFF!uK6BWX@jWiGEL%z)cY43_u^3yOrOyuYd>RM)nFL zPWg&P(JEh&#_3|Nr$Gq1EoI6C!?P*XL-`6IPuo{cJ}_kJs2S!fESjMwGJuirVGv6A z=!fA8Acpa1U{DulCNOEqc*XF&9?X#yvjWq24;#jt!%NY44~9^3vBh|^qRDu&V=?&~ z+3h96ZZC6^Xt%W?NWLD-Za|rGWCmr^WT+3C%%TsPj031A(sdaQMW55WD20(HGyIOf znpMW6Ci@*X?01|Ms6Yq2tLF%hfk)Sl)lLx=W0?1$w(tSE2i!r@S}`%Sw!o3ce4=x#MoMb;hXPfIXZxVYtn|*6P;LPTvotqH^Bw$ zr38fjQ8vxpIH-Ko0GuB^oy7sv0Q7Vghf)I^E#Cm8D#vyg6On8`HAeaFR8~N~OG&nc zF{g0F~C>;8^3q0DXWTm-*@@p3vN!kM- zD(2VxsAk7OV`9g#7!x{96$S{BTdNgoIyUg_DN-2#S?aZ7=DW(KZu8m_PG2|O-b~hu%e5*WaFffN$FY5%%kb8s!@|NEJMyL!pd

x0*2C;qmsUKcPWG6ld5nw^?7Jqj%`!b_;6`#b=J5yRkt^;A?y{Us(zuGEdFpz zZ+~Z1$+Tj|+}5^6`pBbnrCi!{hE2LYzyPRg7-Fbg8ppMX->CQ$e3!8JE-t>OocIQR zCt>A4Vq@jYW=pAD+S`o1O?o5kv9%Ohs1=15YtK#?o)aja19J1wPTnRoym?1vC-`&%S!o1Hw!4> zMk9++Pzy=Cu{1PJ?RbZ?QlfubDEeNaAK38%dD>`j@`1@;G-qV##!{0wWr&(_%n+Hf zYjJop@dQJr5Z^KcFmq(f*S5NMYa8VQZ@HU@%?zDHULQ*2w@74IS+3dUZq9-s#?uTJ|<17kEADX=hnI z>}eJZGiAo>;X+q`-Z1epWnz5-#OJO|$gzaB0ntdB@$kAoX$H<`Ce0ehLnElSNAZ_> zdo(_H(#$8He8(O18q?kHy5a3nBv6L#Jx;2(M@>K=XZAn2#;%&K^8d%MEixhw1pX$Z4E)VZdmf!!!9g_s+vLt3vv#mk(1?gDX!p_mb%lVItfcQ3BQQv}Fy2wKel zLA$&g%KwnROfT|8>PLVnUSTLFb^bG{;nMy7krFvP(^*rCm*c*KfuKf0Kxr9}9A42X zIT&mco|<3^z9!2#B(69L>z{!x(N9xTB=D8m$NlP*7vNOXG$AK_<({Rrmt|kM`-_f2 zdAAM0yQks}k56VCaNk-j2xE1ghbxY=cw#xs!>qOFYS5|LBjJ(wZ`@}^5fcd~T~;|v z>BlQmVrLqwLT4nVAb>{we3^2>tsY5}7rt|UEfz6c+NsY=P&@T`tN?cEuj?-+sCjc8 zFTfr33n9$&T7t^GpifbN_+LN)=gogH3g*1IJ3-BxpRrO3Z+sep{x^y~m|r{P?xX{C znl?H0z_h8OTDWJnsD;5M4xmV}1%OkPR>O2inyNSk%{Jk`xZM^)INQj_el|n5yox!| za41eR5OV-8Hx@dNfIg5WkTrjGUlnb+40!jdl`Q!UvIMOd+>8b0*HH14LA(^>DS7hH zDR+nmh=$crhvpB(tLs;NYpB-h%ZN}|a4O8rc>H@BE1-sgw^&0`pH;(j1~aA#JgCh$ z53|i$)lh9_Q4-sX1E>LRIp%)a0wrr^p*(Hrt~_M!7yjwag zR*zP5oT=H#I27GNZ(5TU%vvp(wbs*Cj;aZ-{DTkBijI$^fb4(q*BqYN+QwYb#jQtC zXhpXHf6^i>Gx?pfY2A_pcOZK_Pv?9)1{~^hOYV z(mTBriN6Z}1U~7F5cWxLEGwo@IUm|HWOgEG};&~G~zS0g2*?IX@_v}ijJJ5Iq-T~Ho z$-P(Mpx!Z*p3L#9%-QUr&xuFm{cb|>7drghvDbeJ%>Q}$n)2IeQ>w~?*W8P*Z=G|y zygH|0CBej#(VAyY*fo$+mMqc|f=WK`x+O1#4=n$tiR!gXBV|40%S)_=0KVSg5{=G+ z%dInCEJ$)YgJ=f_a${tl1_nHvE?%ud4 zs2yIrZac`5dY=2$SH=fc^sK6&_p2orMUC~~|JwfXMRMW9x)Jids-CfOvLiNDUadML zT3-9SGr-pX;i2j&kEVjgF?HdXB5%Bl2PM*AK3++wmt0nh^Psq{T&_vh9r_1$M3McgM8PLx*qrS znyF50!?ECp)l9hv;AW~_TRB#Z+T>WJTT?vsHE|28cf)2HY_hPJ3HGWHrTgo9ga+x9 zLk&Fb#7xGP>@+=;ogP(oa)4U}wy81lRE(#RoHWT7Cc8HBWL>BA^gH22q1K*saVL|8 zdgThc@unJ@l_=xAP-~o56B}8z8@AocCI^e{>VDlgqBOIar>3TTCHpq_bQA{|Te97k zp=|dvv)!Ht`XtB&>7Ih?G#0!jzcK@CwU==xTm5CX)ow$RPn50X3z?pkqEe#ipEqhN zxPm*ng(p`B2HaGonJqn)H7!H7Zv_K=7GsE3f~QKMlG+HB>x>-|{he`Cw#Rk77D|(| zT6;1?8sm%>iXDIe-W3}v`RgUBo;bISr;a8@vuZbNp%DQN+(PnTf4E$+roHETZH~OJ zgQu~0j4>rEJ^VLTTB@w1M)j-F1}Ypwg`+D@L%;(jIpS?hVbwPq?^?lr9S zZf8%tCbqI_H*Bra00)b;-Y(9MDBYXmX`;aYF{B|liHhxfP*S?-8 z4dQ9}{XFeON5+vxr?yEUX270M05hN(*)P^eknQ*TvgN{+`zyk8o1SXdX)wK2k{Z-o zF+pgcx)lMu8)g~$q$jDRR;QnRQ)Qijo~dFSs|((hSFM|U(J@BV)zW3xd>D#g`2<=2 zHuB(t)CgRa=Bz8}tM`UgL(bSVgcTNca4X1*IBjvqf-))@pNB}0&l z_WL?YZLnvzc$G;6W^E#OE{<%Ux5;?Pkxj;u}^a=5tRWWQw#QFc2SM@Y!{|@QM2*b>HJGE7&#MGZqWz(!{|iwJvhaE1oQwJS4of zhIkK(p$vr>4>1^zVFkn(3W)KYtbiCpfnOoK1rit3i1N?~&*G@}!5C(W;T5?nZeUyl zGZ1)is=h8sr5IMHd7Ib38Y;W+9P-6KRd%7|vHf)@yO0PCWcB#u;jJXOV7Mv*q9FBEw`7F!t6m9oaMt+JH&+&|(8P8|GNp#E zk(~5VQB(0ggJN6j+w02R&%oqoLmwmu+#RqBBJEh^xz~y`-Sd&`a*sj+FF+*9oLMM= z&y=28Q&d9}mpEs@*S5>6GdzhFnl=TEh^|e+xYA1hE~=_UR!a`Jc+KVi8lNJ6n(28) z)Hb0Qmg^)JuBlc@=I<@4B0E1{bO+pa$)D}{MsJ!dNADX`ORtu!vR;gsv`JC5yqO^s zo2&hdp#^|C&?dwz%xEv++vlXyQH2xC|UL7L1wAHCqMnD=WU1ZnFX>S)|)Dm zo+|0BO_uxS!P0yxD}-4zLr!|SYin(iESc}=P`%u);J##d^~M)=Ypgj$8K>iYvdIG2 z3vpiNsIinWA@A@dt3$pV9lZ8d@w^Q)3^8O%BJ@9oyR2l)DDj33)d2|d)LTV8IHnBr zUpaPBz^4fH;5Hap7*QPMddi`T1MaE$w;0I?6+Gp0=|fXP1i;70QyV<39I(2SIfVlf zWao{Z{%qnjj_z@#p5F+2WDX$t7dk696EhjxVDi_5Si-Q_a+Q~Fh8@JBf2f-vSAS7C z+ERDdUa)(7s=8!@^9r0FgfC~nT$8JR3STFIB(V08%zw*cJb(V4l|^?+i_BdJ^)E8v zBw@B(|9;bove~PiuN^<7R*=zWhNp@{ysGYX=|3ogRx3B397|PqGSQ;iorBx!-=wO1 z`!|fl=wrUta&_$BI=Z8tI(-pd&-A~2Z+P6gRxiYkI;x(^xFZ8PegO<;V z9iC>)@r|Rh;%JUnRUy)hK;?TWYlTpjs)jJM(6 zGMAGc_71mjrx^~eG&B)kFpfA;SkTC7s~+**V}S-L%en6arZ5Wz)jKxFdz%GHJ#KP6 z)ySjkse=q3)loTiwxyFLk9qUr*+$eKxPWj1ORv|c4<112^_uvL((5(lnh!h;BY(vj zbQ1danlfwfB(H4$q35OYag(MWc}|NKSligbnQ@bJ6Y6I__vIT(Pu?suKJhFOIVNEh zHwnV2xNChQZsPpZvr`OVRVdCdxV{Q-xLE@_3ic5nNHviSPzJA7y>cgZ!kW>3aBO&5aY9~ zfEYu8pK(l;sZ&MO24*WFNi6~bEH9tY4mIZI$)~L183Uny*<&? z#|Rd1rZJ~rU&#S95Pkwx@qX`zz#LEXb)4osA?h>)1^wY9Tu4S&?kBW{s7T!iRz?Ht zXS=;qL@fp-Wm-2>%Cuz#w2EuhFoZI>4MQno>~kzUP#F#&WfB@%lqp?*6eb2SmWe=( zi0uM5bYuSXBu0A8LbfUvGfc3grLni6S{gHaTnaZ8Hb8Id$TH6@n%KicFzxY)vd1T8A-Bgt6Rhm<2}swg zxVFt3nhI85Z58ytV4K6CG;eR{=AA4qGNLr;b2Rd;`DZ;7ER{*E4^6emXFodU`9#!h zWb@gD`$h<@kvcG3n-$V-V-#MiZrRAVR-Mg?ajgYkVlO-I=}>-Q+@+B^jtCu&u2q{I zE>2DKwSgh-pg2Qv6B{5w*1hO?)PjbpX>hLcynk~CT@rT#`g_ntaY4ETdOMy8-PC}c z3B8YrZjMmX5$YeIa6eEQdBrnJb36$e(_UZ&uLgSoO@`3;xkhR$0OPva3M^@)wgO8S z1=tD{>f0Nsmuhyf0x~At#|di8kCicD!J8G~O^~ztdF#WahfSI{5pV5Pf-lH)eWYoo zeyEXpQsx&%HwQ)jDFof)Ok{jfMhB5;b72$N*u8`|R=byqjZFul1-GMdi2Y`a+!^N0 zR&sZ609Co+jkwyvM!rx_Ypg8N)K0lkD9YK4a%hVTXsj$UkkLhp==~Jk@_u_;W3v_g zCRvm`v6eD)Z@t8@!4yW3Y%npDq%)YL9niw`5DGT|?XDKEM#J5eHrH@)JmfsR5qIdJ zVguuD`tmx2T73EKNN;CNyvwj@qqTzpX!M|s7Kc*TA2`!nS-xG>+gSg)vCO*7+f01J zD#FscR^??5J_y#s!`lZJ5zMY&OQXutPJnz|rYe#6(YruUih8@?K~ya&Z< zroFl0TWLc5{O3M@gB!l_&AiF7NuqbO*l1FxU0+-fcEuZHRFZd}c%R|Y?r2w<+U|Y9 z3TV>-1++Ul#0qHB0R^<_*e-KYVL0DZHEpE0$dHKaIfHDaCZ;D6StuZ~@vMNzLV-!P zKxD9Ts@SxNEZgSoub9$fiM<#KG40kw>2fnGz`Ed?IVs+b!pY#o6DpWI$uzbt!zyZ9 z_5pIo0t!ps2!Q9kFg`O@W4$B2hdREXsQW(!rY;x!Nq`TaedHu-byGZmQPW3}0=@Yye|R#-U`7&kcKg$q17@_J*>@k0I@0 zY{@J<&>kE>_ITQA4>_)@_p+$iESR4aEg9FNPy$dZE z=60+lBS_mZUXT2WvKJgmD&5p9;IOn`xdOhA`;|Xo7{>I)A2Oz=*CjlhJO&jgbKyj& zzvt3UC90QqvgVlG%-E?sz^maRcV@E?eQ#bfwaA6BPHk1DH&a`c>5K$zRi1067UnOo z0$OeTD-`X`&1mDNeIPgHdpqbrnVu7b|KT~o9{R`4)QbF5MvzwIABG~hp9xDVav(*U z6fSH`XWsz*IMBu`jVBpx682aq+830t4m3pIKBEH&t9=URK<0>PuFO%bx#@<;L5q@y z3cNwK!AZ^k)*9K(l{MNhdbDF}8G>F;bF=0A#=z|f+F3oh_@Hg9vWi`66D;iCXSo9NR(6BXPJdlPdWs;&YRj1}!o z*x$z91Xt@PZ->?TFEV;4tk!?Evpy7p^~nJ1v|+GX|G%;xpjS+Xydta_DyLihQ4dcK z(e&6KbokF6k7nP9SU2m`F9A#u<9|N@R)$2(+*`K{-Pbq z#Pm=*luw=BXUp$UMjj~$mv6efFNitJ5au@JK@;j1V(!`-+@|<%$t1{m9`86IO%^Ic z6@+K;@^m9Z^_16pmsroL(1QHMbd~XWE*(EfJVCr~N7!W|&;mR-548Y)5-OKlfU^o} z0X{R`T!1HH6}13Ajlb|uI{FG{924cfh~I0=x5j#_C4v^#75Qug7zAF|trnQqMc&muBj5e*$`%dt_FDhm*Iq(c@1qAT*IjcwO^V+P2IWE>fD2p`gqP(3)~TPcv*< zi#{1jmls0mVl2%q98ebyAYJZNx@gVhp+~)K<-);Qgq{X4nDQVF4X|82E(1f&L&c9w zEVEU=L#V%1X|}60!#iISXBalkb|)FYob5Q&Kig$#73J)iFws@cG(C@2J8)Df`1RLn zGUY*UHa6<54|+40hZ<{g#)f7(_BV^db)D_43uFJN+1~o1xt(`fDBf)Xywe|s(+{RY z{r~cYU}P5LWJ%=$JKF)F*bWV_yxgL`x=~zS`8-mtD z#w_u+7DE`ELU%o&LjQ>!gqsymqznouQl=;-%J7BW>T>&=wW8(0zuHxlCzpD&#C@z1 zimBbBxXfj6;&Km&*JmO;>g8>cDxPAc#0pCNtY}RT+(>Fo5Dt~gtqE8KwI(>0X|4&P zv5Hy~e1yNk<)=@0J0*hEtxJI8X8TLJ0YkS__aIsszNz-Bq`=&)1D&sD2>|YJPmJ0L ze9B1D%wKPX_pJDVK`}Cy^gROj%+Ko8lsVIi?-6CJjyX%5Kq$=;dKR1eBU_l75b~-2 zOcpW&P8f(vtca$54xp*OehW2SHsqK%^{2K7u|vpgp#pOsfrH^u2~!TxqGG^c(JC1pwsWu`E6n)@e)Qf5X- zWsJ$+!UL7z08(a639{Q}Z*L14ohN={v$wsd$Ebo~^DJoO72{v=&a*(Na-%KY zT#@~cl@D+6*0WS5qnuJk(e)PU2*EWN(#HF8@mvF*AUKw#UR9x)kM(1PE>~ zEj^KPz$c#C^2(du{^Dtqh1y#N;aR-0r7;m6-RgZzY++Ssa@irfh?G z@KZa^hjttzbM%W1QU9r>%14#40-CCzfF{Iitbk@ID4ms3n`Fu!@?cnzw>qtK{fi-ZqI~66-AW2osA=^rAuK}7HM4ox&wGNvmF z7aZX^0LK8W7^xc<*1RA>V7vM@lOr(HYg?5%TUntwXK^U$^p&C00fvrq7JT$3v`#;V z(#e>$EL>104j`RMgXlyV6p?K@TtFwiVz!#TDw?Hiz?b)ZZcbl_ieo)PRbxE|(DcOt z=JeIZWTB=njz)&0cQ?bL zLH1)4D+bS8pURF8m-#<=dx>8eDiJ)Ctp@5dtbk}h0S(kzYts{HpoRh(sQn@wY*;H? zu07-(B5E;IA|Bsb5pT>2h&U7w@z$(>h(m#exHt^ABnC1pqTA1)JDe2|T__;BV_5;w zg#tg_m^;VE%f-KW2Z;w67SWw$&|S<5h%OY+=PXyV0-_5A0lIiz{!NBJBwsT~e#i=l zBovUS`&j{zgn|G`6m{4!5cLGZBDzNnx|dl2(S-t{8_~wrZcyN-oAPQ&ynO4p_f}Dl zVG-TBZB&zGu>ztC1w^+CD?oYS;8jYoPpunt@Clr}l4 zlT6|iE}molt)5k+dH5lO(mec3HqFDb`Z@0};$L=Tnuk}(g8zCGtE@5$;hy#AyBa6U z{H)d$<%i=T_p$m+PEEO~K-62_yH#!3@Vxgn?JYU$JjD98o7E)cDBqO3G#^dMyB`94${*J} z)<&hX#xEDXmfCA_(IvRHRgV5Be9_+l4?ura(m;f_1(O*oE{d0GZA0vYquLU2eS91G zh@B!ICl5Z+uc8J%o9ByLUZ-8QqfuMqdqQb;$_+wMZfR1c4+??A^g$tu=rm70t89UU$ZHSiCKMB8#OnxCRTH^4Un+xh;NqQKw31cL`&!DPqtB)_FL+{H+3=z={|^I`gKd?&{cI=rV<>`u`U#@1 zAw4{W;1`nom`-7bwNp9$3hhikqZ1B#yAXaB-A*O-vA0lCA82FZ-A|jE77dQeE@p6Q zT3ZXy11RUJ_y%h5&Sg=oXvL%;hngPcTPiv-C_0n_&}7vMVRbF|bWfk2ABl>lmI$D( zoEw!Wf6{#ka=JFAs-+Tb$??4r`JGV-w({`Mb(2_MV+$fkLoba~l#j;xnuy6Zk)TSI zYQARnD#nW=50=Ni90dCovD}8Jw*q5-F|n3~F5PUOjpGjOg(|6VAGb8@q5SWMY+w}4 z`}?mmD4I#%&`!M{VnZJ!J_>?KkBC?>@dp35922aFH0k7v4byl@L?+cztz@8Ho8hS~ zII2xeQC>~FHm~2^RxPys!@ylhzSkTgp*?fwz%Wp)y&49pnWg?YWp9e_DLtdTdc!=+ zELVd;^Y$S+Lx=X(!62=@8Vs7JkaE<|XgnX>UXABBGtx976oeu@vb|+I*MT(Nbe0Bb z>Sm}Ab~C1s>Shc88d5h~($M#VCLZAY@ok@{8~bv_;|xmO2GHc8gHcK4@lRdu6(JX- z`C7=I8k^k=@w3LRZBQP6ViR9iu`w9^36Dk8wcz_-+DMTbn*>Pf544vxB*fRalp9(7BL;>FccFw=(x+YdySr{*4JkddQ^C!$we>YE_F>s;&Y6rQw=j28a zX0ht!uYf-IrIK>*ChY8B?d2Ofs9rv-0~v#k^Bw4*PO*KMGp>O3rSy7;nb z)fqU=rvqu~qqja&b@t+nz)}yXa=0_Q|eW@&n)$O)YVPC@AaoTs)=KzS*~^+Pmq4)J?i<6R*zcR zQF&C~KIBojh}7PetNZ)viJgol*=$<~n|_oa$TotT5+f!?rAA-Yp+C))}VNYe_^AWcq> zCdVdbCRa|+0Tj6702;;V5^8%c4vfooLdKgdyfV4Q^dPRWyU^ED6C*jrz?x!cCpFj% zHB0@jv8hS@`TCumlxy5=maEa`j!@=#K$$17!6@lOz9C8&1+qSEL|1fDJAxJJh$@f<~iG!Y~+hK4VfrcgnM%QTX(| zVLq<~N<+`Boh(C-{O@qzd*UxEF=MnpWi-Gkv((=JBS!lEqepgD4N$eS)j#102hHOP zatgXeXKUZA&{_4(w?_E;W+Qp<^zh~y9HlAp)fX-7gyBSKP{JJ*VSk*Vy$+PAkHT?o zr>~1vC^tKyBi+L2QHLKy^vVyCqvRr&FB|>j(8#GRkQ#MRLr!v$S#2t(X?H2Q_t@!9 z3qkk6a&)P88g$7y(CFwK%;?HFY=8v$g4fs2f<|4muFqE}USaL}F)DOd_Ba+A z$AZ7_tP%qED_tldz=CNiA;2PfHJQL>LZC|*08>JsEB>N{Kv#H6BzQvLuZg~`?GgU;x?>qgqzHKz|AJq&wuW#H<%BAbE=KxZ$I^|CF@S{!P|5u3zZZI!n4@h#YhS? znF>$Z-N&k6%odIXrQG4`uTSfu4h1i_moMh!@p568_F?k5X}$un!G@{71nt?(oh`Pp z0*wA@FUf*?eDQM9%cGLTC#;Ynz)(2dr@rimLeL4RUlJxSX$-Y%Yrb)JR^DJMiL*$weJR_Btn1cXIKA2%p9(lln zzHdZ6gWBpDu@lBiy}i2mA>U42j0jyZLPaBN72`@T&GGfq#JJEEjRT~tBE`#Ru^P1O zq~U1>LTPyNb}2pdn{SCGR@f0&*LMi5t6GCdv(P^UMm$oqN82LT%!ifaYi6;eiDk3Q zTB%~<MZPZjrLJl{bHz^cLV#xZnXsbNmcUF1BsJk{fh1`rG(-(7RrR_#Y89N4 zWBM#bJCkxktW}%lsI@AZftJBQn`T3UHqC|-?2oe{v%i`RIiR4-mubPEa0fl}JeZ4v z6Ctlxwj2T*8~_uj@!Ipe<DoFA^r%2m#+10NyeP_p5U zzkCm9kISo1LQrKMqd}+I9t~wenWK*ALF;6WbPs0THcIs(&W9en;Q(5cFU7Xc)fUN= zjlPW1-~a2&(Zo(BfVorKmZQ4DHnY^<6{0p4E!7X?s8>P0HOr|l=wB)E%lp=0@-4F; zd=3=wi;|x+3S=FM^IgtSalWgpl$PTcLz$;iu8Q-4c?z~n?WhBNT99-4=w;eAx$9Yo z4>8S@lW_n!83&k7mYK_Z9-WM%k;ja<=8LvK={enJ{$)Cuy~?uwV`}jl7}%0?{~fx5 z?61Kc3QorFmG$Jj=X{kRfkN8^jzO}KLvm=qA@zH5<+Ue$y~MptLGsAEazk|LhjT-D zWUTT?&WJpc185EUW)5vo440HA!^bQY8<_y6N3P3N9=Xme^?T&rf|}8C)ET&v)wN~) zT>V23YtXn9@v(`ieDnQKihN=E4s8K;<;pdA<9g}H69**5Q~8PwkRZEk@b$2uk#=iy z4ed&y!?o8$L^tL;fvsCU*}plqQ@+nerO!>x*SpDeSt&F?uv5 z_(IW}ri7#sfu;l?NYjlWWnj92PiqnBg?7?&Ly>;UMp{dhv)=Fp^ry)Nt&VNWtghOY z11K=U0cK$29WD)y100Q7-_cENz87^>XO}>YmB!vmpV3tvHN6K~D6qLI<0J!{s}l${ zRxgsSfS-*TGeXlNyQ}1A)$XQKQ42Phb0c6#^a894H z(<_Yzc*aiqsZg}nnzX44S*_Ap+o^C=Pz3*D5=3E@J;=)Dz3{``RYd(aJJp{< zQ9Y%oQWKgXbr2R;Y!*9XPZByK3>))-5RInO)ZMs?4;3jrOg}Z(=5-Ki@$P5-@$?2_o&?qTdvjWx3pGP**^LogVmnWo(d{#=X)V~LHhVtu?+vTB;jkWILaSdY4 zO_1@hcx#!y*LSmp9pzZcA+}&FX}45mpYIPbjX`a@CF8+uUXOA!8F1?dFBihI)}KS% z1%?KCgNf~NR2YM8ApKzk*wU+WjeB1k-Y5=PQxxNQ{6$fW=fQfxqZmJb>H9a2VwA$S ziYjSh2b157V7z5Q{jBG{c!Lp)sKdT`a?jTgzT9I{SHX)Q?232y;K7T-tO~^i4)#zd z8o%$Mq8FF#2Y zKy-T;bce74q6-CdD9+6ah$IvsNqG4jTq8@auG2jwKDcpI^kOe)T`qdTDyZni>pfWX z0;{O##S-McSH6D8*C7$CZH->M!R$%*uHa)^N5zv&VDR<orDz&2JRFzkpo5lX|(?$U$5`Ic(pYdapEp3}eRDHru0 zml$al`j=)H5ztTeRNJ63vs{G)j?0p&V?vx=zXXjL2Iu6!&gymdKY$8uh5levXojiQ zOHJ`{y+B%idM&0`h$+5qFEzz4>8YXuK$_-V{2vcMwdtk80`2S+vqMqrW>Tb}08qkJ znnl>aQcWM)OGO5TGy1e%xGfZYZ!fi8Kx@!45E#%r!>vIpHfRf4v3&E8&WN^T96&*Wz395?VuZF^?hGH}j}%;HQczDi z_2z9t>!mg?=gmTY55YizR$Y$12-}SK-Zl@8?H$5{lY85GN7de{cT{C0$V3z2KqhNEBP*Xw>u+ zDd150n$Ug!RFA?1tQwtzS@=)2RLp=?GruwL%OF5e9r5tK{>Fd3fm%hP>ke9w1 zstMld9m-3Mt1g@oc_|0b=IU%OwY4S>eODY~yv>-wk>1KVkC>%?=d{HP9DUSQB)pH+ zPc==(R2mZ`yBXCdFwj!S;7V@_8E8jjOyx1P1>>lE#s)AV1{_Li9q!H4%8<(<#+(v8 znM|f`xqZ|_Ai1oRwyPXqZdZpfG;&6cM*SW#EtSR?hdFk`w1;0>`2@#;T>Z_SYAOFZ zbQxo}+EhLt-Y8Z)&dCP0taA{mW>;8-;rq&J%ldpDHJ`0zwXm~l|Btojj<2Fx+TEK3 z$ZjB%gqA=;FCirK4gsVjBqa1sLce=U3LqU4dhalTNV5wn_|%}NfIju9JPBe~d>|IA z1jT~-=|FGtHyT3V)rY5zbu7wl&Q{4&-z z2Fi@}G(!;)2tN}O+>-BM2a&LD!vJI@tjLL~8~fpGZD#|Sul`^u;(u2T>EA8! z$w`nX#ZE3hJx7$PR)eZ_oDH-Zsdg7sBU8&sVK7ms<7_V`GRjnus?1b5d9jXA@a2wL z&W2hif6DF3ql^_alX98bEoJmn#z;ZO`I8$}9=T~ga9MuZu z=JCD~_`ad@w8q&{jv9b?nz6KU)W|f;)BG0G)nx&f_oE#3^;CK1+p$!i;wVXFt8SU3 zvOJ+IQ^eGby?obGFqeDn;+NcOPopeVV;2RBOeG%9HgoogCa7Em`$%4|4MkrYDeCpw z#qq22?^GPuaf09SNW|qO0|nK7;!pcH{L@DK`7<8>T*p7Njg1xVxMR`wW`;mpLny1M zdG&1L7ktB2G*M^ziti1Ahv z2q#vJG|2yMW)vK19JBH0 z68uvtUgBjRC}#S^dnN0|q(a5k&T)9_JrYiaUXN6$s%}pcvrsae?0&euBeYH!oP4rN zaz$YiJf*uAwk%Qm!=C4xBxq0jWPJkicRBk)(lfQgGoG}dWn!)$bL*9Zl)lxX!T12* zh0IHK9u7*~b?ekm-RW!t^}aX4;L+3}HHx2U<7}sB=d2Mxe1pPem$~ zjT6p(YDB}}H)dtQ1ovef+SeFf1&+TltBZcoB9%rT>nt5Qy9s#PJKJbqTTMcH^u^A~ zQ1a%i#-hC);%%UQd&s@x*3&+kvrx zns0swNV~tJb`wYSL714n)UdG@HK@$(%1n7MB3!LHNM4T+xk?M~@;7L?as(42EewwK zZ8j;WMK|1*Mf*Z=4`(z)p6*_wxNa9`T}ACO2)0ylO%wk=b$>p7w)^^!aL~FrkB4OA zz~T9khgxZqme2k2;NjzsbK1~DY>2;r+2&I#)ew>%pVQZw+G3BVUJoy4LF_VtQaHu$*SQr@k{*Eyus0^2&HMx8ZoFgyR*K- zG#)p|nX9=(PYP~Nz=2`7*q+!aGr=)C9qYVZ5*uoBSTkB^syZ{hoTsk{$Bu=y2ohy( zMGSE$4;<~B83&0O&PuoTEDkacH@T2_g{d8(tE)vY6{We{RKEmNQz_9`R=Zz^m$%nl z#scjMlZaLrbjs^H0j1^7uY-VA>0L%S>qKZF8J2scY&0^|J2K=d{SMYZewQa!>9sQC zD!mSCCAW*tD97y@Wsuw1hTLnqGp@QdlJ;_OfSg7Cr!&sDj{C1`u-1ifJJ8+8a3BiA zRUcPZW4I8%(r5r1W;mN@gBX7Dey1FiC{}Uwr1nP32nN8J7GGhDD_-Yx&Q-KYj70v+ zBFA+(dus-R#^2}6P$t1?7p_YIZjj`1{X9BF9>l>pW{OxgPM;l=jyDyZy7ZuK2BVM}3 z@eDkaHMJfTHdC7y@15_QSwX8Y*m7KQbHASERn?J$MbB2nk1ln#cW8}SCmP2K-M01C zS}~{?hte1xUg<2dVbd^1ta5gMjFrA&AmW#+oQ4gN$Szv#oCfPx5u!=4`x@uoK*YcH zIh$#d1NpCA>+BVXOj!pubUnJ*u0ZTA z8=S2IvA1tREmMkLwm8>nKQU}{q3$~$bA&=^>+sN;KVyrT5q57> zmJv1{Y{fX{qLrnKHW)0|{e{0a4_DFaFdU{ZEYlq$2rI==36*p>t6g`FXrg~OUAq2nyPT=2mdX*ugqFJp z%V|RxlqR24_;!!8n+=L0Bs7x7RGZRQ8}w|>WJSM`tEhMggy8Ao&Ys96OM0k z#s*TZu@CoCa`*Z$l~j0epR;8kqIgzd&_0e>xZgR?hDeVojqEU!)g0Nu132UON!kGD z5qyzhlUt_3>Vp`6Ikt~BBpxIoOtN|Rp=vlHDU8T|=0{d&fs#*-E~abdDK(`(_0MGf z)HKuIpG+@kL|7?~I5b3d&Aw&+RE+*~$f3n%1#uVU_?Du$@nusQ>6s?-zLo3)=D5{d$ zQwyyq^VcO$tC^SH^ z4$z)qP#WOl(D^xMYa2ExPlN*a&$GUVL47<+#@+zBBKB$@1=9WIxU-XuZm{^IMr*tg!w=6JTa}H2{&Vron&Zy$oUvqYIXdBqreQOyu<+qfq)m(9XV@}O zmh5#c)m~-TB2dES1Jx@+uM+2E_3#i`Y|CsN{($lxWS@1`6);jBBSsZA_T)5|BYK1@ zZ_N;Y<(cDNNmwcBQlxuys-?Vc=bV3qYE_5c+!0L|juM&sDz-iha(eYI4EP41lpr_Vdr*|7Z_ zEK%yH)lg81b6dlYpE`#)rVqvIsrG1fAm=~G%I!zg;l$>%y(-qx@Q1HzKtgo7;B;$? z8B_?NI)@6C%e0+Yr;X%16;&oa?>uQJWIc~JULU&X+~U|>Cc)^>FiF|xN71pTOalDD zC1?zHUcwc@zR!Hmn6d}nxP%1`j_9WW({y+H$?@OMoqssaN;zVo)|bx4+Ix%}srMYf zm(FbcoCPO;E^hRdv#$c(za%m2i@t9VH(=3sZm4;z#vYsMlSEpCSxyqA#d&r5ssF`lnK)Vb9h4%X`gOXT(8OD!5v;mk=EplfOlaa5ISiMq zZ;WoNjUHxMnP#petbr@TA*-Sh3%%0YH@=;EPIWm-y9`wSwt?h>dpmbWQc*d{ZG=Gm z>&_U++t#2)aeAq(w1ldfUf_8=R3S?NbPNJHOt^nYk5XVDlS}O3K~E$-g?QE82UktFJb<^VOcWSeoO)o%7?V-aQOb zGN+}eJBC5lCC>n8eX(^o#QyF)6Y^h_0vd-6s7FyodhT?#mYvD|Kg2b0$x_A74ulNy2Jgnea&y=%2hyZw}$Tx!>zRz*jGgm z$1;%EKoix_zenTv&9WQ#U|+TAc@n-8?j} zYX&&=q#%m!t{UmLt!TWywwc3duVr$HgkER)>or}DFLk)w-{}%!Jfp2{CQg8lcda}X~q{jMPe#RIh3D@`_VW# z4p8PuXDIo(6<+yPIVwCl$ed=}HB9anjjv=Z@tcbeR8zY^!*Jt%?HU`I*kZ{jwE(`I zpjEfE6J$NVVQ}qHqb_`}8Cx}Ngypid?^0oeJYMb?Aur6$`#NHT){tRgh-eOZs-vY^ ze}sAUDQhJf*dVVyWesBQ2CqI%sbbWD+^^2W(Y@(v85g`0cbqngp%a(F>}Cn*)bxh^ zG}cH=hM7!eu?Av-HmYI_5~T5yU(t}Hgbda;FeGaLYfReruvVgt4K#p9SOd{sK6tO8H0w<)=o_O7DY*N8Z#f>|=2a48 z|LXi)ixS=W%vN|TvGVOs4`H>p+gMj)OvDybv7@em-%f1Az%&gcFaS*hh#{u|j%rN< z;jz{<&bp zBcP~W!3@Y8zBr_~sHrhR(XO&CVmC|q9+I0IG1~VGE;h4v&Qn^cp`$<k#jI#Wb z_Ocwy*$-OLm4DK-G7AoYQH=0zp24j|lzDG@py)4F<_Ojw3?s{mF)|9an z8(J#j(`jmk4`PGLPT=ZG)1o0g!DwO|5L&1?EI2>5sg}aX3Nr=iJ+PHgXzMLJ5#CDh zIYE#`Bc`dcJts`0<59SVcgsR_+q})>Zs(62rF^W)eaPCgIv5jd9j!F5ZIe6$G||A`|E#qB+K!RmgSa> zl2w7PM#?MgKIv>!RkVhqt%r#Ak?W6^`^fcK1MMRhHVtp(=r}qIjx-H#s&!_~WWx5N z%X#?vjF#sY*u#hC7cM*!+K4@VQF1Op=43?1oEvd8V@gI8!ixQ2hA)lC0BJx5ncTw| zWW%EgGH$EULYv9Rk~sr=7xgsi*?N;XsU)|8^(J!$_9k;Ourw$9?~Y_n-qA8=%xIfA zq5Z1Kpgqq>k~NQ+);z`<$eP*W>ctYYX7aani> z*4wh@)6$;!s>Oj+!~8Jk=Q!Dl3ePzK>#dfI^u4IiPMgfQQIySV)LqjAuq?>tAD#72 zb@3SaCQ%_nC(SJ^PjhRf<|1sGgZw7lJK)hhae;(3i_yZAH$%tImBqLeP;C# zXWyo(pO!b$@8n1|Hd0y^)U!OfuAG+`J1nR5*qa(}lYmx*>R8J+X&&I6(1Fr%MVniGxoK~j|AO;=ZUoMXo&I<4qLD_YK;GZC3e(}c zeV1i90{XSQD-ueQ!!$@3Wh82;|C=n$Z%j`joiP_0ub4jdl=La3L_QaE2Oe8;iXMG; zUQXAdtQ@8+c{XsRiPzwzM=cVP(5d{z;uoFDUkn$=7)|si1ahe;-{AYb$wTv|!~C(v z%wRctyK$I00~-_N?At6r8Qb+mx1Y1?u>R7R>M~t_++qQgO+GqSrt1%mW$F5>3`=ID z8{_a3_7jZ`+B>X?2)r~_rn;Z829b`c*g)qj%P3Qd{s+U7l(7(?{3>Zz8fSSu(f-w> zU6VBsZEPr`ZRO}m42x)QuG26<87I^K9;}gQCybMF4`K~O8ym`KTRHkvh9%|RHONPM zCTk?xIpbuCUc?%RHa3*erq8wnvAFR7RCO8$%kp!EA@lQ%V}s`B4+~b5pC1`#=I2hs z=oIsSP&m)eH!}-ReomFgV@y(CfegJ&gk`hvh$%-W5k8w`Ow-0P^fK!A&Bi2{qx31`J>>DJV5(U~weXOwB)MWGOdb zXlCzM78z?JI5-S8{}mbs3l|$nkh+L`hxAMf8jdJe1x=S2r)^SNL2$!(nQgBv-dt#0 zQM9@fEI%h})SMu#QIj?JtkHUcv_>*(6xP7+3m({HbPcSNbe-@&jbSEg$d`=4_;O=p zF^*&mA*V0~!=59T( zXs^yk|c_Rk#EQp;n#%VGXIV0q3q=DUrpumo-P+H&#Av9L0%$ku$?byKcsI@I4rlc}KDDC@1I={aS*&ALlt#*Q9Qfhy`Q43*VgI-{6Wcj?Od z(R6~hrw0}DPAO((E@oNTC77HvKXB$$c3}Y1mQ;3OVELd@*<~`9O_W_2n%SGmE)485 zW|%TjR?*Oy;%W$W6$V^U$+&C0tYpj_ZylXdXUXN1MgFIc{r%@WUV8Kz9L#6Iy?*)oT_&RQwY!Uo!At&n4RKIK{1KzUXf zamqd87#0!lHF{ctk|Sv+vPPmElOt(&V+}+b8_H;l94Cyj0~ZwM9ebna=U6H4dkJ?Xd=xyWXtN1iqC*4bAXK~mRS3?S5{yb1@7 z8-@+hQr3k)>{p*R?zLh2qzCu&zA%MkqhB-{1|sgie|0FhUNqXm^Dl7h-~6$~Fk`J@ znrRvvCf-T#<%|VdgGtsCLivMuAyBI?pp>Y+QJi1V0V+uTsv9&-<4rd%G_y{@0`jDZ^^&tb8 zGdN{v49qgL4U8-WbB1R2Uim7n1Q-~E!+`cGnTb{ptkLZAYzZ!T7+CJv9A(VP=}0wA z-VyC>)-*dzlIdLA;#031gYdK-qehl{+qB%!F)&#TdX(I(4;hU2u?%)b8cc1AZ)=L>K@$F3ED!2WqU8bJz?^f=n4&FWBl10| z`g{SEPb!8Mu^DssWVso$o8i-PYA2+8X_RwN@BYd3_(ibC4>L5}k7=)L72V7a$!uga z#ik5i#gC16;p${2YSPXvS*^kurX}rLTw3v>F(h4C7gFr`z|bAqH~w8jDMS5ovYcnW zWUW4L{cEzEXYQC{xekr>Pv2Op1sv1}hvf5kbdU{|He{+bM}iK zCgNvIHVjffX-$|s6gLtXfZ|3ISa88;YC|OVqkWoQf!MhhjR$Smev(AXN6b%>XxRUm zQLK$(^n6aPWiu$rG)l@8fKB^11%cT57r12P*g_^2bj;V#m`rK%kbCK3e6R68(skaF zuA|1_6&00`D3Ch<-Lq`ej)tzkAtZx*x$dhb7qAx?? z*Z6q6oMv9J^fDrgE0#vTEa;vTe;ndYhdacd3q$bFdHiEtu_Vye5Xx$5W>+jxXSzg$ zI{z+s3R$XF&uBqHT|J(ha%%_a=mMY0z3exX;Hl=fg_Lx&g^<#CU;O!2?1<4>!Hr`7 zfOaMRA(o!UaQXh%)WV8FE!g)>h+kCT(SH>~CM8{+0!4MvAaupiH3mk6A91T}{m5HS zGw6z=dRL6cGlCJGdh3L9j=2(w`;{7Rs1Z?9t&!lDYTq9l4^@6M67eKzkKc?odOT}J zMNDrC`@e`wQl`@Kr`ntTx8JmcY`ppbHe54$SF0hq@}+zfT)bv9_2Zaz39G;De>S>@ z^hJCaKiQqA_w#2;7f$ppk7=f0+BT${=wJE$xjln%zWj@E-H)?1)){iFMo_lX%40i= z*y8s(v#%TNgYkUmI##5(enI)&DALz*Hd|I1=}HuQ^1Cs`j+!6pO^*#wA@>8w8j>4T z{N^7{=O;(?m3aK7o{5Pi3ot_Rf1Y|Xulq{*7{9$ah>efKayHpNNr6ZGe z!TrW;q6Ul^N_XT>fxOQzpMyo!vMWMs$j^`XlF5mMm^0P-IZ9EE15Z|Os{hE^$cf3H zekjkde_H;u^K7-|%(Ujx9Rq5pYl9z4(qioH`~i*{)9|C}(b=u^=xNroCHN*n-o3p# zDAn*TMpxGw0s4!>e(^IxMlo%bF`Nn~@5%40^Fe~2woFu;wocud7X^inWHod2K-$S4 zw{EKU;xe5rDo95ME~@0Zm3KzOECPEPdMZb7rsnNkHjp_LZoI7-t0x@kKG}S6X|m=D z4T1e%ovQ|)Xwmg>KH6NxHC>%LO}xQ0363}`hQl|JF8rR&`vdAi>s1By;6kKps=96( z);0<{=o`2e#Iz;6MG5&FdBXR{T;26AId`A-J}XCirA&K8j;NaOM=jT_M088k zPw_@pS5y5{E(YmNo$jYQygN+j?gLYI@78f0)1w6vi`{>N?y5sda~Iy678+VnzGC)4 zpcdiA+daZze5~t~(jDs8b0z9MxgZoX30uayzKFGZ_$kUBoN!7q#X}M6jiEE+GwL^1tAf`Krdg+}i^TC77zf}&0x0<@%Rz8IT&0NX) zg`kptQjVnGNT2bojC$Pm#HD-y2V1y0>mP7A$antqSHrvhgL~WbolkPz1$yL+zx^SM zfcRGUtRow)!{X9bu24noI0GJg%+*Wp%=!AJuJ)pCnm{7{l{zwYF{{+_vinp9oO88+2H z+{~Jl;iJQ@IPjdVUIR{ko)HHbiLON0{B*Y}@bO_+eb%t=boIL0W+B^oOnb&}hs^(E zbk?_WVSW1EcoTi^k@{AlSs0IJ&;Ocu@>Rwx>Zv5e=?#Bg$t9zAH_j0N3(sdb! z^_O_Bzen9Cq`H^;sryR*jLOB`y1MEq>en-%1*A>lWAvddLL3;J^B6f4l z*K*1WOwUWDC<{dd?TrgN{9iJhsZ+NO-U5dU)mYg7Os$s61o0a)jCqN5qk}9pjq%gu zOQoOmcHQN-Jf)XPclB`<>yx=y2Yz=?&X~v`C?F;9i*Iw)nshN!hyAl=Pu2?4>PN=$UmP_9sfU(EIP{vKeucAFvsjGgBqh0-a z`cU;LKeYN4CXLriI9iV2ciKr?hx(_yg$Q5^ef?-q8cwO-@n(ELn!$xEwYTUkwh@&= z$Q^m^e0M#bw^)?1nKmd<541rUREbWxLD}t5cYKvu zD4}(=>6`RosLp%gmvN@Wt7DvUtMbC5?%I)}kKCXfETotPIhn3bvH1eZ-F6%weEcAM z(Vf=k!~G;rhZnP4x4b?l4@x>xP*ESk>5A;G*geEGP0^=txOl)~CkqHkYQC=-&=tlH zb7krUH|c3!(;3*a({R`4df`oanyI_3r`V^{xARVC&l&0376B0tnvq|eKhmYD`V$-{ z<=cXE^^ifu^N2&NMXosMCC8TyDxd4Gux7E?oT8q>7O_tk5Y^A158*|z%3#PD>q@9@ zY0LbQuHcA!Hah1B$?c66b_l&KQ0uF-;dZd^gp!Uoh+8vX(OU)Sc0}qwd^|qxHb!L? z9QbIQD_q4AqbT0kQK+Xlcw+~nBd4nm8*=OHf#M4jT@Hud$i;*pg~qw0LgQEqQ)nlb zRA?90EEU=TTY@UIud5t|ns0?5N7^*w9L2?_@?}wd4Cf^DqzVy*1#BIJ1tK_v?lY}l zJaL+9y`txFBBaAJ*@^mG4y7ts9_*iiX>0&Gh(nP2T7P^8B0^Gj$RK-?jIa)vU+Me2MH;NGx#OX&20I#3rU~#B|Yw*mY53UGgl_0|sm4sr{OoJn-~7^u0X}UhKpP$^cB1(4YtZ+ zS2ukF2MeJbhzJ)iREZ7JLtN+uX^SoOC@Wyo64xX>M z)e<+m1uz}qSexap&JM+6@?X8&)mIPmFeb#`f$hW}e^~slZu2&R zf)%c&aC$l8@9+fW-%#?uVdr1Gf2FIIqIcnRiDic}miWVBNkbmH+BHTW#KEG6+95b! z^Kz{=9^bgdeO_$BF%@Go4J|ktt#zGLbT?<@=bYwsfB{`0cRkic=JTE;d94kuRDCH2 z3(1xF@cahXNISlt|Fn?W3*@wSqw9TrHz!%N$u(I&$RRZK?uH(lU90Sf8(TS6sN(v(>2bH?>CCpK}JE-Z(MePrkL((&c1LY^udtg-#`SR zhF<2FwAQHam1~Xqti=p3^kQ{KuRPzYcV-B*+ECg<{sXR9x@at51=q(*3l4R#0T=I_ z(U>jaI!n=!FHPs1FI#bp=G{2BXB42U;s3+TyaSKdu#UW%Q@#1s@2eZ}jow;&#+@JTNbfXWp1YI3x zBqTDdJ`l?z7 zW<2KVqpXI*kGWFxwSE%QwwJn6N*%bHza35;!6|DnoPXTampx!TrO?Z;AKoGov5ZkQ zAMAxsxbD;r3pg(ZKF$znGXU~tS4dLIV}GoS{m(~S{erR=-;h&L4EoghlB2G{_~!GO zqpo!QZGTRylh~>V5MU8R0S6QZqd7Epx-k5cia; zcQh{;lr`mJ;Q`O=K-_$_Nwgym!E_8LMEs&-Kp}bZ82nXnzJy-DzBWa^fF1eE=unvd zv};*lk*jlYpJ!Y-iXJP-loj8o%2k^|u#Ku*w{dqG?kv5oCoq~++o~Cai_tO_-(T6gz7WE+?fMhE z#UhW*W#p;s7~H>E*)b6<6i{~Ly=2+3MxIr6tR?!$vg3Inh4?3ZO$l-izuOGn{3f$% zEIvc_8f3HpTon~GtQ1iVlJ>bT`3)l-3O^rli#5m*aN*_2VfqD5lJZS&jr+pkg?HU6 z;L4GL2ndgo|J-vl~N21^r0&&c~Ht?&v!3^oOo@^)URR{An7T0vA%;NQcAF; zK&Av+SPNTVJyIYSSch1%EI&SkEkPGpPZ!Vv%Yjb~q|6!Af(^ZzG=$(OR`;BztmxVx zwEFw^B6nvy;;C)!P5L=5kMJWq4s{g=e^YF_Tt~N|B<~KM5N1+$aQR>A8 zp}{@&rORVSB)xRt(vV&PyCz+BwXk=k=ku}DoF4js|408`Ut=B4Mwaw?)zYhY!L)en zH?F3N?%@PUug;mW4(Q}9lue5|puU8IMc$@j2g)989jF+%h2v7C%enIhS6$tPNu;S1 zcppbEBTX8&b)Y=c1|f})zJjMdY+%y(3!Erv+=fG4_m|>94I7v=Hf^RX`JgA#E4dF` zb$z9O#_5s5K9vfK_>{GnjwrHr^_Q7Y_^PL&#+v0LdaXQ1RAajS}c?Ir}wLTRZVf#G59jY=i>Jj@NcHk&!7U)(i6pi*JBPkgGgTE1_N z&!!%0n`45>)_hot`&Du`QS^?SA-PW5*)pKEWi2eArp=ZCHJvrfr*$B<1P!PoXWIj6 zHA`f(>e?2Ry6&i*J@kq;1<)Mn;f%-$Q9|K_5rGmy>8dV`)uP#urRF!#m+_t$*<^`g zNqJ&!m`x`JDef0_8`!Xh5hy3>M$8hNvj}j_qjxBGD0hhe3|kvb13RkV%EbnzXF16< zWLX@qRn^^FffaSK>)=^*ce?%}7oSY?oN1cpSc^50R)STLqwA?}&xVvsGaKmdFeGW9 zlJZ9WDKpTCs-qh*1DPLHd5#POCw~a3pmXkGPQ_TtS&@lQQZf<8H6=Z%52*xU(eC<6 zMQ9T3Zls6b#eAL?AYpfv<4HB{DqDc`sOfH6j+k}v{PB%i?ihHYCQ@&~sf(!&ThZBk zNK|558y*WFNG zUJfo&K3mt_UAY^o#30&kjz&7%S)LB>_vx@nth))D9?MK^`Zzb8T*TQRxO}%dF;q%Mhe1e^uV-ewL$C16Kyg zGI$_U40JIXCrM7M&0%gxPApKxJQGB|&FK{yJL=EDFPoq0AFs#ru41B*Z#K;#FAl7Q z;t9+~?zS|~EJ@WGF%wua(lo;vOB2{2WCC$Rhi(I(nl>|CAIL=#Zg0n-uHt$QJNRhy z^bF-LiZA#cYkoVoc_Hd*TpD9d9}im-EU#{+2B(_3r|1hg8%o^f3CNEkqr}9G-o6Fw z^mVwAWX#mOsYPelCi9vTJSJ3QKC^uB*03 z5yT5D-RCmLC+|H{)0?EsEoTnyKbOK}1QnIUrS2K{MIJa>Eh`oxOLD3*Z|*3cxQ=sW zRhw$wR!B8l+nTMS<{i67_TUAAGH<$?5AjdAQlfcQnSL!owx4qCiyg3_dbe^4x`V0!p5|mn?ZM znQN6iBSjxs@@zT}f9=}Y)7?52^<^(|7I6u&$eCC?zo)yFs<#q-uA0S9DkZ1|o@Q2LZJg+&=cAk&MVW^LgrdyOxw1T%ndbgde}yB`8spSFxyCrfTCmVLw^oRbXNHV6fi(m8|b z*%9%mPnsSvpE)1}?ZB>sGTr(1uC(NOah}WykE3wncC0AnD0}~#fh`pD18O)099}m zs^MIvYHScv&7YU*R)J679#|0~hP!LoyNHqE`zwOKJad4fr85V|aP;EL!9(-phW7nv zn&Z=2<4MbicKSVh2;@C?3rLyw&>H2L`O*!Jaa<9>m8Whp+?TB3k|!LY;p&Gu5jt=1 zh?H5JH^3G9*$M96suXdoe#M3?7AfCx>1dI%X{`IW5(a7G+(~-H1jjLu`OXD{l#MnYs!VZT*H^P9p!m6bf%(n_+DnAw3wiYxG_E>22YR0hu zjHfINE4G(#G>Xcn{m`z=aA)h6IU0%e`2rc%f8i}e09&kAGeQ>P0Ly}-71j}l!g`@O zs4M3uPSayKE-|USP%>%BTLcrOHk@_4JL#QygGCtLLG+QUhUr3zSui2j-6l3)Kq)SnAAcOjsnFgiy?*HNlRUl4?Ri|fZg7gU zH99!oysPPbMVd>9_g);p)#hPUdeF0m7mIU8KyNY)v@cq|)?u6>rKq|=$KyVZh zgL9M-!v>*<(SMG+s~wTf&wb6MpPSl%9y}~p%mtOKnJA zg>kS?SBc&`cm9m7jNTtBUqmwJa<|22Z0&t=T7sk67j?~PKax`lp*26D*ygVabk7G@87Km9~&MeSkv0N@r$7w>FfdzMK9x$&FLw>X^#rd&)yk49a z)$D|T!l!K=Xdll8Ax&If=N@B6qy#2+y*oi4!zrUCGc*pM?$I0EG4}4l25`@MUpg10 z6CI?ri9%C^W3hdTXtc@wyS|09q^Dtnss0VD#e5p_-qxF{4=jfK!`=q^L#$oe;J)%~ za8%krnZ9!?R)Z}Am|ObDkqp2&G6THE8Ib{mh{6E24rBlugfzH#o4cbOk-YdKCrVx% z*!9irxE8j7eOt4Tx!q@hbUO}lB@@`Xk_pyYCZL>RFV5N`r`WJi<`ioevYevH682{4PSF)ocDo1Y9XS!oDcT7lz14n8l;}mdJSY0PjV^J8+ZXJt2o@ z2L4#f-^`owI5T*3A8v`-AoPHG_v6K0uW+{HBsN6L(l#(nb*rW3=2)7ee8#qTLPYas zJihE>Cblw~--INT(Oeh5D5JT)q`Zvg>HFMkgJm>JdST^l-Tm&BdbL8NQnoUnw5BqH zm?ErSed}or9ij%^ENcGJ30 zzEM6n03*%9ptXE(E^IB|5J?2A<#{i;makOE*7Bl{T+1&MzZycNL+;+OD7<|wuL(ez zj%h7V_hBsMV9Y|&VbHvaw|LI6OvR76E9*-*-J2hF+`>_5mA_d)_$oh;TISmAAyEAZ zj2ZiG(%r1D1#~aI`-uA^MStujUCm{=tt;ghr+6ot2wxNsnh4_x*~z_6IHCwhbv z)9#pv4_Jd4%Py=Nk%%w*)1JzYtXYP#AFw58Qt@XYO`Q(3ygayPY0f;e_(7ozPMoJ) zV%Z=xdC-d22BzRtr-*qD%{w+6>PjnK8<--@yZC6Fot~n;jdF@S!1a~;9la-~M?t=8 zkz8YSWi6&+dd(V=s1!-X3}?-9wVMUWF9pj3CKi>e7xP_U!BPZm&Qj{d2BE>x($fYe zy)5G5kX~#!mR@XNnvXjPxsxFqa;pm6Q1m^6x)Ra%#X=e0ju*1%dxY~Mr+Z95%AAg( z@0&$3`u>~aQh0j395uZ!)ub*&R^siUR|KBC9^o7>E7Zn9tVoT76r1Mg{GsIdCNe!8M zb6&LZ$N_TWvD#8;9c8I+;1oh_^Me&a`E1MdV1>{;AwPxCeDRAyX#UdjLgkZM_cVPMV~(D=uYuEdb+X3xh&va4sx_-h(6pLMZPgLuk=bD}=^~J~D(}6Tiei>AeBG zfVK(boX=>q<6BRSSR9N!q%ISHvXEMIEWZMP*F`#K5}OT!C&%` zdxoAI1V80t_qqW5M)2py?p(c3Ab#;HpSY(h_71dvW{t&+@3yfB%@h}Z>UJyoSWeVW z4QAED)|KLWF7HHBnOi_;D!Y3ri|=bWBE_+l%VZo|$y(UlwRf4EyY{nY8OQd((eKJj zj~-nnr!RC(8RMw^1%VmsTz;Q`WbKv4H(uD%`w1V`cURx@|{7ivrhWT7hh{C*EwDwlVF6SbS z)t|H>iY)sHE}a$OU$Y^K2>&vNkisa!b1-v-k4;xN&wJ4jKfK8hzp}eRto4wXX*TCZ zF`fe`#w#b~$e*xAP9felMNo*(+}lXwO9W;mE5g@XfnbX8^~EoW@by=e7vZC>yAKA7 z@PA#$fouWpEF|&*-;;2lw%|J|eh} zULk|~@D(z+&kn%Iw=gKU2j{|q`#>ZS5Zrk$8Qfd1u!4J}=p%#sLGf$gj-#H8Sd`r! z%aaA5OvRKQZ|>>J2KSE{Q}l;<8|BE~&PcrFfKFMJ*Y7n}$^eMwlL62gy1A_*Sc++$vy{`k4MI~71wb2^rujBp z9-8KDIMy_81B+>1{T}^WB)Q+LU=eU6r-we%J8H+svh(t1Bk-(fsW^2t6fRcs#6%2b z$ZRHbnY!|@W?2w$mZz&ZY zSNe2CN$*#vJCXFhw?amnb1PUt{1@j#PWXy|lsO><#7iq>K>UK^l0RK6Pe)gzj?{z5 zOB}U5zfvBx{g9Iop-_Dfr4`b>vXV=O7iO$t&P#&T7LYQ*tXPC-s z^ME^7$)}}1??t2QgDpXymaJ9wrzO^UTFiGjIWKu#2B%JDYOzWVy!I;Jz$p~kCJG9L z^kG6ic``j%v2eBEK(TO*_(idB&8i@=5NXDRHZ!VC4TFuwT|J`d&IWT@E~6ZZUqATT zNKrzIbK*Sx6h|l`i|?uQ+$v~q5`XrI`%m`ZAL}bBqHzs1uB#E-M_ z6+3mg%`b$|-To8ox2xhOP{xQWFX{G7A)c{Q{HY;cL8n*Smx!}ObmDW2IC?>+I4X&9 zAk~12L;^^uY-=&Mwp)Rd!PG(r>InWCGb$ZEXyi%OUlrpgjh$S@KCbdI10#ZP)%BBa zeZfE_fI)Zmi{4>+oSmBO47Hu~KWX(+D7c|kL?aipoAg*F4 z#wEyZ<@rJFxf-hG72vV|M=Dgs8{f}%^CZKG?uX+XKOo_gPj*SJD8vxo>wzsx)c!E7 zwWo(RUhpE{7zsyRp1$(CJ7X-U`1QBAM%r7Rs!)*RITc}}4k^lP{8~z~=d?E8;tEy2 z&&_}{gNEG7nkwZj9LJ2wp2`~I1Vt}-ql%N;dMc>e8pbGVN^S#~+TP=JY(r}wFKX6R z+rgTTy1Y}BEu_qyk2%62u4Hyqb>C_+p*Dcb!J$>b(a|%h+G^2-FTK{loQ|FgHcmGV zdK$psrV;zKXBdOzJM()$$!^aYbT0@$3O}K7rHiMJjn1jP-hpuB z2{kk(fGZpC&f?r8c)zPBMZL5dlH0iJD3_ppH&1WvGGl)A&Abfd3o*LhYzX1Lh+qSVQjevV^<4dlFU08sZ}U|NUN1qE>N@zNsdO|)nEVLMO+cwv_s z7l=>PR|dn+yGLyW&-C-O3G8&F^1~rJ_o#iLRXLzLBALP#r-|a?Z`n~&)iiC z(3LU3(?ZpbFiGeExN@JmMLWiz^Z?||s8#_=?pNnKM+ zP4_%yBZi6}rG3Qc2$>zo4vsve#>2A%Jxih1V4MTE1j&OvBed`QIwAFogFP`eMBg)3 z&+=4rt;7b34?xl2*j`%5TFcjI63v`aJG{OP(Ryagd7=)SJ(O9!xM!AUo2ph@E2i!k z*sN!@uT@?@$ZUCMZ8+H}BD8qyFwaFri(_m_x6Tos46PZ13f=A;>FKA&t(96GKhiT( z=>%s-dg>~1@cl?nr$8#LkE>DW0zA;;mym_bOTe<4mI(H_r2jHlIN)k4ZbJu2c)mv0Xl?zNM@s zQ5;AFt~&eFwo&uR5^EW?iJa@0EUO{^yO~iiJKOUG%*giqr5+^Xbb8ky~RPHl* z_4+~>iqPgs=HJj&LcJ;K&uEJqoqW#yKeQc;2@yQ*yfHb%P(go=Xu6 zELm`(Ih!8UOIv1v;J})^Vd{c)aJ740TE-l!p)5YHUw4}p-(1syPy8=xb-0o`BTcprq}thW_sS#o@ZT@Cvlj^ z*3rp%?G4tD(l?hH=!5Pbu!iJ2y)My%&dfiBUPiC}wTB2_!ju!!!5Cf#pY1JT6>GV*oSKy<--lx4Jo zEpK}0K%|@?dvBn!jYe{acZ`jPp$I(fyZ#+dc4ajI$yYGf<1xd8FnpS8&ZHB;Sx%2* z8I&@#!bkL5%+Q7a&M%cUKR!{#W7m2fQZ<7yNO&i-Jgz;&TDR1~wDi?&sEe03z|kkCG|^sRtyPzLJHe3`qY{); zeok{{0~EbErLE0r;@{8hqHKVa+$k~I3yg~8lwXxO<=3p4obn4l`acDC%D(Cg*zlOQ zj*S7DqB&&O3T>%81SxlW>e@z_^SHNV1RFBOI4T94xZCrGR&%5E?3CrrHQ_%az8(pA z%^hvD`mEi`plfcFtK7VMJpWKzZHeovCN)t}VH;G`nuVs@=XN?fbN)MJXz z)FW5B@drKUw4;m*TI)OQSq89H>s{~n>`{-JHu~Xy&lUA`X(Iuo%z+c~8Hqi|W(vln zz)Fmm#OTZ6_X}T@1qC{KG5i+eoec|_5!F>&ZAr^l{zqkQa2S!>a*+@C-j@}Hh8 z_2gz5o?l{kR(KW%WSL&^!xCFw@wBtK*Oncg&gyfUDLljcm#O|nk-0E8vW4UGGLwDD z=#$Alvy)a!%Q2atEh2LnZPbDc%If{5{rC{cejGq1c;R0jkH(=`NNWsZUiTzxwYK>A zGDoA%VQ+XE+d7jS4v-zx0~_e5Gk!Ui=I$d?L&Mb#8)%CWYdHw(9l=*^a*eR_!-OV| z%q_S*_r~bP+7KoInJ)=TEJ_9xb@bu~4HraI#V>aMovTz)VX?_%ZjkJ|<$Svsix?xq z)Hz#3NoD#o?|KF*A@|~_AnUU+^|gI`d{{<7ZTxyUQ0;+ z#M2Vunv_(8xAx!$Mt1*Ux42?=Lt(5^5#KW%_kpLs223h6sN9jLc3ePt9N!xsJ=A}xagU$bzu}JlS@kKd&_4qEhHsVC!7X2Tp3%0kz8HiW!I@fmoOTa`iXfzH zgVM`rBtPuF+GBo*>b9+N*~>Bi7WY;+TjGl{rLvK%0i{R!g~La$4v2v`_t$Np>UWqY zeYzF0I?rmYU0~9YO+Mi^`6kdNSHAa5xE-6|yH7v;;OVG+z!=l$Pj<-+t0sWlm)|u< z^tNe`3ZgC=b_gl}(Mp;hRXTg=fCz zs0t^4@|;u#LeVu$>(ZEPq~QMBtcgS&j{m4Nt&Pp=TaC&c3KRPe3%?yTJNj(Hne5Ai zIvV~6;`-AC^e1uklvx<>B}b-ohol=gT|D@!=Pqpl>q^V7yx&86Xv-Lsw7mc>{^sds z!~T1;J=fHB_iZ+9zi4EJLrKcC5V-RX5AK|+-b5(<9@FYEe|Vl#pF)*7yfq;4Qf@=- z873=f|4FX>lR>oK|G%DTx1)IFaTxj++Wm3HnY3|XXuGg#0{9ct`XN*6c>d&u=aTj% z>vY@mvxwX3B~yhDm#MJ$fa0B?C=ojy-cDMT?UrwldbI79bK?Cp7bCrGs|Q(Nz?sT< zePMBkx6ZAqs`R5~m7qtcx2aZv$v}z{ha9T46i}|I5GV=t_Er`Ano<*QYv>c^ou~C= zUH=w!;Q^X5F8uNCSrQ!%_g3`2tW1NPN?4Md!5EX?rf|I#klt+1^nrTbHjwvkT#20w z_tw2trO`?(8;Ue0d2nSJ)+&sy8b_nf0UoM_W394789gIzi2s8L~uN(W-$v)l0)!RuohX!s*=%B*%?K)FjkBS-xYQ@7cD@-nrnysJ1RQe{A1 zs&<`0#R^xwx*Z1B@HVici}mzvFL8hH3B^q@_>Z`7=>9;z`fw%M+a8X6`D*Lmq5 z&BLk+AXj<3kcThe>)|~&Vjs6>WR+0JtK-el#xX*Fk9Us_!jvnwD2?%Ma4f?S9=K7tI^0__x`wubNk!YVFVvMc%;()(`=lhR!j;Y|nGyNuMPctI7tJ|H!hgAx~j4QVEU_v-tXyCo%_ym=B z<|{{n_9>Hq^!E|d-{m0s`>v7qR!)*)Zf@p`@4*j^y^XZ@7-LI+zx(U&oZpb}Q+g+x zc<<3F@3h>z>M5KOq8UI;2@b@7`0pHXHdNwtyK{o7?Ubw5k{z~n)Z*70Yf!m`_q3xw z@-BIAbW?30lM2;4McHYs2h^eX5C6p~1-7IFZ{yqY(G>V20d<_hxchWmeX4-+NuY;0 zoUS|Nv!A`O-wbUY>wCMdNhJ^UE{hF!%G~=ahQoks4m<{&gh9PUL$3z=t~nB9Xe(<- zQ}#o*WN(sokjW(+R^7{0dN_zmF~e#Dg-PD3@JO3mUn`Wp;-~~hTW_Man@M14^+kWJ zf;rsnrdGYbIlS82tS=R8mJG>nu6@Ly;iwBrSMM3Ek3}8mv_nsjuflZ&c|avw z&D9`N%}vtA`lF8YLlxg-)Mhd)d8)$?Yf}&JByAnT5^R-Kkk!-MLEFXP)O!`kGZqiA z20CMb4Rpq$OwRxI@=n!GGAttdyd?V;gA>{3O|qY`1|o|MHnQG6-j&+V42#HKm1G@v zTec#yS52~2Sp$*922OToKh!}BhD54wa<@Fv(}^_@S!|$#CjD3gk;R5GviLp9XviJl zovBS^SVVWMN!P;~h%Pn|-36?H=wd?|T{^%L#0QNo=pdK9YvA=Xd<3Q~pB<$!EO~&X zA&3JkgQMx}N`!co?4aOOS^RqRZct9=R)@Rlg|v<7A{5Lg(8iX=i?0syeyeCtav6Om zFP>viD$G6!n+AK=*sv*>oeo5NEz{f8hUlyJf+y4KJ8t|WJe}ozsT{^+fmRK z*WYP=w5O*&UK>1S5<46-~k?h>seTl%X^fN;Yo{ibG9`s}{Pub1!JM zcKbOjxnPam(gkZ+t;OhqiHh2Kw{*W`s|9@Sr?%S77Jgk3HK_kJ-!1*GIin%{ug1t0 zj-k8p0PBmX@!D|KOuO${ochGwRxI zjTYKZOf-6CcxUqciSu&3_RiwONmbOIciqSp0du*HE=u_XPFEdrWU+tu!I7 zY&NnzTsV@R4Eq=8bztnG+_7pBnnKKvZ5Xo8L6t@{j#gaD~HB`1!vqy+(GdVsRLfn^ z3gj+~tZ&J-ZeB>RaWiWu?qV$8XHQxR< zM3O1;_sNam@M>RtLB!wIcrybL#Q`PQyM`lPU+W!UL!<~PPVd0JwLV0(-yS(YE+l#y zRx)vbF}?wsHx#h}@-uu@h4Jk{t+?|BZw*Czf(_MoN=H4kN6sUMSS!sVCGj(MtFPfL zO5*J7>#Wr`aj36wv;QA!&mA9C@x1Sa1jt?>g@l$sLa!mAM5UR~YaoDhfzUZ1*8+A3 zD1uU>z=}V*AWAP{5RoDsX`y!k=?Em)zKZ2HJNxc--rXtR4}AS29<#GEv$M0ayR-9l zkAw8yo&!^Jc7Q!V<}7bN&FwjiVSab69Om~3ah%g`Q@X#-{fAW*(8V!n(8Vz+a%Hhe zVo=g1p%143bi?aD$f#>VlOytgqk8Z>W#Z_r_PTw9t^n$ZTK-YEd}F0O1g zp?P_>FZgeB!Lw~5@}ZykoXYnNG|!)FD??nHaZwQw0Iuy7PJ}?j7BE$BG|${|;}>MC zVRwlDs^e}N9e0zIs*VeoFFP)9zOo=s$7veR-IzhXQ7Ah9A4bievh&!Vgb8X%^dNl0 zYhRgBo>e70aOSOOA|KAvR)HE#h9No-XyXcq(pJ5AQ}!ZlUE+W2HRy=IPRv}Ik-|(^ zV*TEWh@|~)@8DCd)M-m`Q#DloHKl%B`ixkX@wdjZ2r;GqH|EQM^9CtZ`u}h~cMKm? zIhYhG^+T}Cr2ZxUpngck*|8YH1;alx4;^ibRQy TmUXOjz6JU-dwD`>Kr6Zn_?& z>!MAHsuk4&|mq~JH93((YKzyKv}6zy&Y>IR7D91R{W*4 zo+-;zxTuW11b?(HqqYf($qt9l7l`8a^%-UO*mYPLb4@8_Y+B(BuuY>-tbFKVfoM?~ zo|MZiP?k?y|1T73e4f$9L;;o4=HD8LoZD>7sA;Mvj8c15bZQe^j*H9YVvPNwxUAJO zN8aL6c#gVUhrLPopt)k8<23*bW#lF>PU z-SNg2d7=7^1#D ztSBE?xtLln8jn^3OMat#;9y31Lr=*Sl3D^9=vRq^@Cnu|R*6Uww-Z)>@dO~OKSW@_ z1s``IEHx#GC)6#JRC4Bond4@POGENRtcsHG!@07=BAnqPm|8h|cV)aA$hv!RgZaM z`C;h2aq)1Rd>nk6Pa74-(~{#^Z;mG^$M64vV6Z6H_*o~ zlwUMu{aQ6xhmL_SZc==EtUY3-K(?FXbVh5v#X|hRDJS=IMu^TTEmDI>Sc6_}5npj2 zBZieD1!70TFP-(cXUNr$IG@qPgacAalOfx&TGC|7@a^X_K4zT>Met&&MA8JqwjlRh ze4!=Uqm|)d7c-g=B!gOML`n%Lz6kt4bc@pbXhdiY(JFjzUfF9^pCLoGGx~RiCp)Y> znYcBJktnlRzcu4oaF<7<3dXxnphR#P?#yZ*wNSJQugh8_e&Kalix%N^S*)AD#^GI+ zUrDeJJhhUvC z0XpNwz|y?Y_ZdT3uHqmM!VWFMgD`DB&%X}enJ#RUoXl<$ByoZga21WEsA1zSOL)XP59TRvZanlqjSBPRC4m(K_JD27 zXx+UE+vm-67iD_PFVlt37N{8E%M{uuR>YJmu81iB7jN4hW^^^7fkQ~uCoPt1pqCfR zHBjbavQi8D7@C+bCiHGb4~Wl}bpdtv0bYd|`>_mBlr!POjaFs&xL@f$uExi5nMTyf zMPytnB@pHJUM$K)Wn^o9^v|l`9Djv1rv5RNvKQ-NMg{-Ys3&7oKD3cP|C5o;GQ4rc zI*nNg6xAdyMKnP@7Bl{1X)$k;D!8l3@@nNY*-Ae~6RrBsc;$ogzw`)ZAqo&Z1h4mC z)4R&1YnikE1S~RIq+=JiAx4rh?sluzeSGbo8L3gbh0y5O_lRHU*!O(=4~~81Um4@P z9eYEb`FDn$eMcIPuKc_LxOq;=eqvWXYmw~=`$dsN->p4F1@qW$fu;5P&gATmBl^0e0FTn40FTm}kOFa(4r_(9KwCRO7EjXs zwBC9TBors<(}Qefr5h($=*G2EJU__RksPEC6MWE%JK%#rage@dPT;fA_k<>>7e7N( zBfNOdy@IxK8he$93A;h#i;-~zDz=jPt4nzPt&ugo(VOu;g>B-19Fyx`<2}&tbNTW^B*I(DD7`Czu$(2KwIwBlyW3A+?Tc_g+&K+z-J zye0D3GLKNf4Td<#0q3WM+bXf>rBKV` zZNYn%fXDu9MlNinrP6a!(s-r_r18Mgi}XOf@ltsLnCwlqAtBpFk_{nb-KXY27{gzb zFgT>DJoMO$HG~Gmv_mzB(+&loKkZxI7Q~w`3QXkRjlUhl-;J^rG1WpJcSh*3iGC7T zisR)0#ciwD1e4sx*Vp>ErLybBsZ!&3dG1o#Q}b1cI$nkYERQbX0LydX*QuC zdr2HFZ(nL0E`LLc(f@B%wDp5hp+!szHO`iSK6aHaePIRHq!rxorhb)B&-(`}fUL$(*Ms4tr3_Wp3_N;)a zxn!;W;xZn$YhZcS&4do&qRz|IDALoH`TFOq@wQrehh;JV+16AYR<#K)1_bJ@mdWM! zv&-bdRtngQO*3Q55G0#ymMw{g*R?HWAA95C!gc|HqUv#BOQC32_IkD|dXCY=FG(G= ztBtgYJN-8?Hpcq3Fk@V%7}uauHvdVojbs!c#+^RbX!vB=aBVC0((EbmVT{cBYHb@u zRzB`^rdVlV)Z%v`H!f};iC?(5eYET!7PptqW=8S&ZGnY(XnosjKFi!?x%F)tEA}bS zG3H`i=7uVOoBfn|PrS?(X}d4-*y@2rd9BlZ8IM0;3*{k=Z0A^Y#Ye_1D#L7*HL$H- z{!{ODZ&Pp77ran0fwvdI!li9Di3NFGGm>qin2VHSn8Nm{ToaEY1y~UZa7{d&6kvKO z6kvL(Tg0%Yw(0Csf`xRK7<9iN1xObP@DjR}&1_xSE>eobq0~hDLUY@2c9CEq@v{c; zyQBb#Lje;1;7(#J`;C+$aVQnUr7nu|)K<3MEc`Ro^+>zOXHp@tq(IQtitvT4ZIFUN z;7AoJP?0e^xFtbCs!a{5FOmYJ+LVX3vo&M`2pp+G1vgdPdib$OYdJ6yvGtg6F0i`X zdJrrbL1LeJN08nVoN({){%3OUVLcz%A-bGU7TtS<5ba?E3BQg0h{y?Bk7jH!0pPCV zqtEz=e7HrIVuB9<5BN&$C%j$37&~kBwl2ar;fI%R59(ywsLy=Mcx;f?$FOOe9O?0FGN^33m_^dK!!xW;x)V4YWi~Z zoFHho`JY{3Z*Z3|UUVX35MlfCXY%xbaOC3jpqMW=Xa;_|LtBYD#S6QA@V#^tm6P1V zrfV#0Ikdv?a;T#ji)>~1)Sk9h1xiB^U(hJ97K! z#>OaNzvXgC*N>FCH-o$N*O$v(#hav5t?6E+s+b6tI;#d5j6pu}-i2gGqx;YEC)zH_-;sPFcsyMxj_BI$+@y6z1iP{#El zr3}4eq)iL8i3KB78!i|rKrTE)+BAjYf)UfEefoWlnjSXDP;n=++lqa0FQX0z)Qi{eng%F2Gj_3ei zTLIc=h`zMjCsx^gO5CHah^9i=)ER{gfU_>e|3tr`IFa!-NfAx-S zg}E{s3^dd*7<6B?C)s{wwFog~FV$Dc`LjAH#rYF2L~OarxC^i~DaKB1zKU2(=T*Mb z8(xT*vP#}@DY%H~hH^n|PyjY4=J&u#CN$K>gekUU_A-$H=K!C|$y04zOqJ0(J&QPf z@+z4IGL=xmMbW#oHGGx-gX<53$`^BiX9`~_+^DwdzmRk!^+iWgPBq&YUWF&8T4z5xUH|oY7%NnGgVhh zJFQAe@dDE3tK~hcElGjUh1QfO&bN^))U?%Tq+UZ=T*a!v#g_AJ#(kB7kk?jiP*>SDNv_ufsaJ-+(C-$q2JQB+orq7|!UdIA*#?8A7z$OoOYn}?pTjbT3% z@z7vI!XJAmpmH0*^Oo4Y*F)FH1w!~5Wvw`9imV~7EP9PUE5Q#DgV)GdV33J`I~EwQ zM)uW1u*V;UrRWbPW(-Hf8W;M+|F60fYED$xK_GXRrU(O!PaHc){XbuI!8+JN@RCeUUo|#-fyj~AEQh$RrTIl z*av?|*x0>`f!>p_#XIenZnWKCHwYALEHzr0rI8Lv>V1)83)I=)q{mnH9AC^NQ9M|2csvNk(eDUB zF^+y${K7c;-L?M^M_;+u#(kpa{Jnj)S6P8|s&_GZ{)_^+nNFGeRMGR!;?|=uUTeUJ zU=ck}kMhI98oo}3L*u`-Rg>XRf+fSDkJe&1G*aDZP*uo^;n2j{2W{!m;o{#k4*DnQ zPPohvX!=X`kf%yQT-(m8FBiZO#q(h*YbgY;sgiXDATx7f==q| z*2xctHjqltQsbQp@YL?+>R+#uyHMI*JY-$5PVPci5E7u!LE1Vwzn>;>TnHW~RIjX) z(>tN+4wwO5+|N7{8@Z0@xeMdfM=|e6My)6&_KR-`dv{0 zHR)x^dD~uA*&7*80m~C8t{U+akV3td0S(q0%Ya6tCMw~1o_?LKhFh-prwFkUh*n*0 z#Ca*h9hYoYW&((HYb;WidMLWyqX%?k)L@h&Bg4?`Q^bHrM>a+XkB)4t_=S#a?D~Ij zWI0!CpZPknWmjQS{UK2TIMc3h>Mc1i&*V zKh3v(0>X(iCtERlgt!$oiuZndR9Qw)rKg>~-uvLG+y>|y^t9DB$b+X}@7VfAegvgLh)=-AxkVG=#DF&xk0v z1ErPWE4DV~dSVdw5;8Q=yMv4(<~{yrNaH$8$aps6+5xGH1Ef&t;=0tuO;U)u_})tw z`TwMg?}#oAY~cAVt)+trF;oR*t-`JpDp%GbuO;$xWnicZiiUb@_q(kZqfqcusoGw% zK3tD%r&xVL%cBoH>2tY3OCqJH5d6Np)8}%|>q1IBbDrMubF%yF^SPY#s)_a*_JNaL zyU*pM*N)IY-;Z}mjQ(7PUSA=lLg#uWB|iRh|Hh{Sah&-manH<$jS~S8+Bob33P3fk z((Eo1noy%&=X1FW0K3W-Ul_h9)GD)k^k&e#VzZpGfn@f4Yib3g4&n!V`vlZISTS$? zhSBO1aw;cA18W-bl|yv0 zu%jQr!?iV1dnlKM%>E*y0JQp=g0iusiQedGJWl1rv3hcQSfujr?nzbnQ=G{s3%PM7 zpCW$YOg?4fKg{IgirD?kflW5M_B6y=xbvp zt|PZQ1WQiBb2oZV!oLefI0@@t$Vs?Qq`hzS1_8!?H?C`+PXxlu^TJW~+8PV~0`UF^ zb1x_=&UkjKpdx8ZzGW4JOuo?qibDn(t|s65-pF{$pY(;{U`eTG#?jNhknXQDDMk0! z0d(T|80e)hr2Eqa7MXkXwqM9Y3c&;&9U&tf9Ra9$H;F*iygQCSak8OkIPX$`bdX<2 z2bll@iitO;to;D{gwRnF&0<3ji%F@{!&XBN+esUOf_k6; z)WeGMcB=^uH_c5d*c-F^L`kP22|U>fhd`su6`JwOzm#XpN5r1h?Yr4~-nckPyhEUBlAutW{zU>P zJd1>lTu7>5x6h@GT<*V-kpEdibQL-a<9S2MrC+@LB}M_*Rd3~RN2;|6He4?W)+Ihy zB_m(X4#|HuWRc48xZSewbT~U)5d!1va8>-m+2LxA-`U|uzmF-+e&W3we5KNbcc^C% z=2^AvAF)4(>Tovsj{>;Gp7KB97Rc+@wGWQ+!@(N7NlpPT)U#KRQvkt|Q^3OiUqCi%miqz)}QA! zvbRg^qu_3dr+oIrRwNREtMi1omhE|mmx4O8v5GnuW>nk{JL{NDkO1S1EX|W&tsKU` zE8Vgyn?>r0Eqy>X;NWM-ACnSHJk8!D_w-XYiNxaid`3`k@kqaHupjguo6uh1s~IiL zQ9?Yb5LRfWG?$&iTn0pgJm$XcMR?+d9bYOqNT4{~;Y$T42o$58@MKmqdwFKU_Iy#6 zJiWvdd{O4na%Z-muoH(fIb{b1mDJch0{*>)y*c}t0AP-YcH&p*6`v3l@)xcamx9F5EuuXk&)`t(sOO>u^OvGsG_LIs{w&xFVx|O+S&7cu`kyw zSdF#!!q)42DNo2u#Qlg?NS<_1(f&?_0Xc{e#2LBcz>>j{1kF9vtUvIL9qd``Wl{l- zTAH)Iu%gFhz3WS!*2z{Z&^iiG__#?6N)*6ft9K}+4)?d=-!Fj6 zMr3$5`-{;hgjjSU*{0;==v>rG9QR2PUdey-tENxxE_&Fzvb%(0b`Llx|C0c4{S-2= zRpWqyn;{WmV5`ck@Me(KGY`VELH2pc&+;qj#!fpR0uWQ4ZP}&RAA$}Yu0WX28`P?y zi31LA@lIK^H#!jvbD>+wWn(=Pe~5gn{iP9O0*E$v;!AmwQtFMMxvY&hZt~HZESLb* zs<8!uVyi=M6fewQc{8XgL^W&ng+bMiU|@Wqw`#R+-7Mn^*F`Jj#tHiR=$N3Y(Mk`- zEee#?!hZI0i~^ANgMRi-+IY$KZEv<&gzYrRmJzl*qrbgPnSWyn^MBiMK@Ci7#flZO zf$|5~ji^)Y&2mFgOTe0#tORi7NoyoARQG_ACJ$fZ3$bw!?-9Rn5buG@(Qa8QdSA0L zjECM1Ex^0&YY`zI8@M>g-qv?aUw%6XKF%lFz%hMZ0o)=?dG{&DG`urki05rB7{ObN zglI+lRS>N4Z#}~K;U3My`3t}GXw806Y~@Ex4>!wCXbOAUF-7{$tE=SjOHHvQYnV zh6soL10R}cNCZIFQFd0TCw3hs6_v0&uV@IF>|F2{`qdzI#@vxBF?D6}6j9c($2vj*!3WY9ft(Vv$FB&aH(6O_k zwvf)Mu*J8t;G)s8F{HDM^%dnX^i_LHMgiF9KaEEJpc;)kaAK;S_-t?_88U7+Vhla9 zOY0@1N1xVP{6e4Bdy8M6Hk3Db1LC4yFQzoeiF(t%Mq{Ih8qkY56u`}X%BN51#q58z zY?t%fSoEh5M+5TX^;-_IhkRDaic<-ac8# z`@L&VV%rIP(Ypvwf7?EQ9V2j9e!d$fo;#dU$o^{m0VC2~u9;TYXw8GI#bHV220<5O z^ux$EieLUds4V-5lp=GZmj1P}M`V7OCr`9L%R&hpn0M!SU0c?Dj06=(9bXA*lTs={ zGJz`zD)59JEyGzVDFiWw@Yp|t;{HJl(cqNT_LgqF4kdL_9O#Jj8iVSw(WF51qr1Y} z1dfs{<9OoP$gs0u^e!sjsD2uHiSlI8&zLx#|B`Ls$FXJiM(C>Q*T(ApR z_O)@T*wN7~+q1Kz_}{w!q@;F_pkr%KB739zACXd&!KhVutGWAisFgAigey)89^3y0 zvFfCbuL#eRQYu1A0(aK}5z0#gc#)Jo)&PX?!T<~f+elrc3_XGd@Fpoh128H~CUAF! z{3-VKYz`?v3jj(c3phW={ytkzu+RclZrjyXF1Uolq(CqXSiO~+z-3bW zFD9U0Fv$Hx@KJs!$o|A`*nqxG^)*W2t`K|@rLBU%@WN9;5v(F9e5@6?DLzjs85ETqElDBj!CmV`QlR8W zVgm^LaorEHC$F}*(%rg!lhhS7u|V|xWKw{=@2)Y26u4_(?=K?-*!xh!)cf%-wS0?h zCs^nPwrrPf;4mo=&4$~r$87?$xIo~7U%-~_r1#lW7YFUZf8DA<4!Wt|7jWTTvNjKhQ@5#y%sE|%C z{tZv=>L_bM$AHiayX|!Y>Ujr!=^w)#%h20y5{*oY9$-_5b0H9*< z&kqYD_-9guCxGsQ@2yBaeLtLQk2OgEpO~n6#>SA;gB!OKa<)uunX0i5Nj(hy&*aGm z?I~;~fuq4JCjbL6;gG$T2@%Z&UsPAzgJo!bhR}t)YpeKFMana%paM^~^(d7yHM?cF z#*Qi!js|e>8(u5j(T^P@1wt$jhi}c$ro_*ThiCBoyN5n$pgFvBm3La*iC{yvsc<5QXll3G}6tNS(aMu2o8QYH$ z8+ksIRpJQ8=j=5?4@OWm{`Gl#f;L*Tq&APeV2>^CR2U|!=~uj25}$g(o=^tQgE2m% z%+L7N7Wna$CFP6dJh)&ls4Db_uK!88{aA*v1r^d&czzM(8r<~A@&k*6k8oP|}U_9j~o*=76 z_&v8vMh6K$j?qD-f5i>I+|S!NE6vd$pd*maelMUL>*P&7m5}f4hy22y?Qx`gJ>=mv z`Hlr+m``i+Cf2X0XYP_$1dR6P<|N#*B)1UK7*HPE5D*h-_0t~EPoIK)Obj6#s>JM; z1&f-17z3qZIYJ!`Oc*%V&e%Jz6I)E=6C>G#CL))!Klf@Q&Ih0WTQyA4qWrF+yl0r@15$uyd6#JRxBtd0%gKQXoX{*O zCuNplyA899*iD9kxa^_mZW5!7+5K3%RP4|$PwqmytOxYbE}!+LUx(69@k8IsFg^4Q z!}Mtn8fK5((lC2@v+G9L4U+60W0`~_S|;V_u}lg?%cKCbObS5D?AT^neKwH@h?Ysw zJeEm;Xqj{Vtr}V;t%8<$Oc;)F6R2UCIqe_Wi)d^sA*M`o^KNOHn@K5}=CR$0xD$~J#-+va~LLt&dgQHJ`S$J(Z1Cu~#OJgcLlVL+)p zhG|Cc@iP4qdx+^*@e1)yb~E8u9sMi2qfGAWwJGAR%(bIiY0L(8O9gk|bEyJdQ>+g}bW==gt5Y5r^>|MJ>tgF;+E%680t5apIC5iCHxNhu_G@#Rou`{ z-`Cj|vU0Oep0x(_;H@ zP&~#=2}5+Al%dCYQXo1{3P9VW0Cb)&{a?X`EQ!d6CP~peCP{&4lCA!&8k!`ng46mq zp=LF$;|F9njYX*V==#)7dF+3Dr#$w5ov=V_#c#)65m5JLN`4%0y5%r7!y6fo{ihJ9 zXbZ=Wt|=7FZ+rc;!u-wgj@W=D`yipWetdcM38{%TzgTu#zec0O;ju*V6pblhwc{;E zIkJa0uBxD%{(j3*hfx43*b1%@U`3cyVvKBfTN z62CA7;MP9BDFD`4WqU?>5}K;=gc=!)H@MuQxOY}SLteSE!^X7zK+s6Az@&gbm8#qV z{m)XH7O)b8oroa^6x)xn`^KyiDZxXaVm$j<&?P=j61rdIR7d%d&{}lA_;4Wx`cfq< zmEirVJHqr9`(;S?{*Hnv(M1Ipnzi)1YOW0F_M6sXDCsPcUjiZ=82xNdOoRQZq^0nZ~BV=?IJytN05s+|fsqopAU?A_D2st1#Iu{FtJcswAF=8Uh z6GoAd=yp8Dux=mqhG+viz&FJ&bbxOj@aq7F^1+QAb9}vBix(W{*=(W<^mgwnfSc+6 zBn65Wp5H8zTT>hp*(${X)1b7^gnHWPOAp8_C_Dt+O_1;qbjJaC2zs0p;Mp$}q>EgL zE2Kc2x&`bI9WLJ3!*rM*N%6m&g6a}7(g@`1jD22OPc~ao6hPe=l zq~LJ}p&lWclS*!CN{G&+)FebYDR5U)xezu|`q;BjXcy)}xV8K)sf?sWfjAB4qySID z-8Ghy0(T8O4c|Zt@HiA|;BhDz!j3b8(~A4CMe7pi)PFn=J!Yc#-<*dY=7}90?V|j1 z5;JJDHkGgK=;$cFN=nclek&)>`8Nx8hz4QIljn3|WRUVZpFN@yi3_F2c5+l@0SA?B z;hX|!@;sE{gX{QTornI1h(XRnqlp|i7bgDwPt)>H%DFeP{=~gLBmUns&qz<<_X;$Rebs3F=+3D#xZCg!V%oK zJO~w0T<6feOW*Wegr`qg$l=e?S1gQ6)4X^-!_Q==b)-yA-S|6_3#|D!NY=` zG&YaaLk-X2*)KU#*c<}K>+{fB))1(`*5@4LiHG3enxcDTk5DogQ~0cdxL1yRU(s>9 zc57*_4R%E5Z0+la(%4CbfajoEE{{)lq_bQCS7O~HP!uZ{KBzlxD`i6WCzdgB9(uf3 zmvZ4)j)ffZ8ZCtn83&^9!?TL;$H_Pl4LtNO3djKkK$p}Zq_8!$4)L^8_A#s$De%X` zI0mgQc|`eD@LP^b!hH^^v|$__0w)YhQBLT;@f@`JVIwS6lkyW`sj7tEvxjAP zlkk)0p#HdFSn9zc3`=zY@)(v%^CsV(kniP(JcgzGkT=3oKCQv9lup! zs{R9bCviW;`9m@Ua|WE7xbgQKA*Etarv=nx$2Jjzdf<(W`>?wNs`g7D8;?dbJe4aO>6b2yVSB^pXI+?%Lp{@+#EK$)1*a$nnX7T-Diy zYL<`c;vxB>hvbWrB>76Orw}kMpo;YsZlCDrE^j1|duR{U;gk5d+tw6qcuwpjM++@r zIP6KYKMOfCc8Zob^QDLx}>lFN76>A^CwU_vFR8Tr3{v3N3{u~j1 zn!E>pUJ!oyfzS6|ak(z8-$zb%t}rRU~+)(!(71g;#5&_Yfc6!vv>1i)D2_u~sy&k30BSgsW*E}Gp^{8qH zM|Jjn~nW%2rx zv)EC2WTc>8C#UF4M^}xVRV|S1I(k44jy@xxG&)Nf%5%STMCLr0KsSaaK+uY>ER|HIL9%?AGer~9IXPPjt21}QT=MN5=TL7?9z>bnUSGd4Ez_YUpnq~ zh6R)Z)VQGqy8Gj??f)FjEwn}45tz}Q=)#c3OBYc&)8{%YT1aEX+^vg!^BheJv;sH} zJJ-HAKR9$`S>7RkWe97da8WCKMv+1ZN=&`WQC#)}6ge6+JF5rQtQBEZdNICPZOrE_ zaP+iL&fYQ`nBFq;tk2S_1UNw(iRWuoW|>4DY2EPpfo2yHCGyL!hlFwaBFB@YM!U_e zK?som)U&QxmHvKBd&$$Ac1^xu{F##Q_~n2o9(u4*v7CkB^ZHj#Ch!?M8V2)iG4W5M z6eVaG4KDTg)KS~=r4r@{c4hcQ0iiMY)qGV|jpXob z@9Ouxs_Pq$@|2E)Q?#{4Z|Cb_+8my|0&;?93s4MS_(h58+WSWFtMR3yOnqrA*|Lwy zJBdDA>6qfTXJ`J8dbTt_vdVFh)z3AJ^=f?k`*=XL40lWpa}lm z8b>N?t(b{XT#e7@5?DXdj|kRQeBD~dr>rlj0K=^6?3%GPAlQM=pLWaTaoIyM*vnox z+^z>y*Ifz=zu3i>Pp5mMW|h*b>ysrae0LT5xnmex=8c5(KF*cV(~aJxNCHanP0?8! z9W~faZhYfE6zfz zh(&9ho{%d}4HNl-2cf}YJ_zOY^9KZnw-plL^DjuQG-NtJLWc*}+pB^;e2uoBLYK#+thPSUN2}b!R zD1t(1q%npR=EmF@`Z`N9b4#_P3cy35mfE>8Tr(gG)U>v8aAh`LA&7A_NFQ@dt`DXh!)Sw^pUba&F~ zp0%18lK;)%D4xC3(bNpyG1ygscldTdRkoZ+fOgWcN`c@=O4ZYF{(rk1Ys_@OcH8TN zq|V_MHOFB`d`{#ZM<0zH@urK4`PNX(x2n`o4Blw_J+!`)wF`+IvhurqW3?B zH%jY$K_wy(lL`;Vi`%5z9ut9>T0Eg&NL{wqEJdnimjFC8#<{piTD!{aryP~oHG+vF z^|I_R{r+*!NKM<2*-*c59Ipi}enwR=xwJ*?JGanJf{@~jeivVN2F~cEOubm?6DG?` zwUiJ5w>Tn2A?MCn#}utV62M{EG(3SlN2;J)bx%kS(&Plng+pcg`T=#xP$?!2D&YhV z4Rh7BBq$O`xbh6$6pmcaL3bi8P;gPR5A+YRzHNd4?fjxEei0G=s{*trqFCiOs^ zf)FIm8w2)K^@Qxl5+^+UD8fm_sq~#4wMG2G(AAa`7`lqu zD5~TMTfnG<1zw5Rsng}yq4 zhfvPO#?}Nfy6$NnQPG^e`Q^iXjqU8*hmJ{_-s2>0XT|?_EO89y=k~OU<{jU6R^}sj z^)1P_hYk!gWT>_wLfsCwXpQ zMvCr&-uioFd`|t}U>k2)Pb;SX?r3Y-Od;75t?jk-Jm`_5vl$g!dV9X|cWDIzOJ9GI zUyg9LH>05_Y2Ko&QKE>wvTipF=<@V(!J-FJRyf+|T>&X&cuT$0NwK3#;r)t421ofZ z1#220itBrC{N;GZ%X}7v>-G7Dza6=jGN*`w7X3bAKx!!hfiiRmvz~mAL8s(cY7&|} z{RR7g;(oYTYn+0aMBK+aM|ZBZG&R*3Xzi@Oa0>UZS_60(!5PI9j*jSR>E(mf&5R|s zuof4^%D+9Nvu-nEUHI79+cKGAr3;P|PvQR6GKZFk`r1UETiDsqvWymhQ?0^r+Y0r> zw$&}^ccEQQ!FH$Zx9YRO*$6|=L^Ec zdEUgJik2{1s;EO{MLkN~jojQ)jiM%2b#&2B2jR8Imgi^*GOu)6ZrK|E9kFHi-_vr- z9+KBRV)lg05I*hN*&u%Jr@p}jYC&sw%1hPDT4+VFagVil9-pvAo|0Sm?RnjUc~6Hk zf{zGwvT#vZZs7+Bx!|9C$IpFh#eij*{djSzv$%G{YH=9$o%xFWt>d{p@oFru^@pPj zuU;jy2;V-fB;yytoJ}pmO>GrE!9^kH6NdA%;m*!xRN)gW6a1il7vW4bqk>;(2UjEq z20xkm8_195l?$>ArMxg;P%1jJk^b>%-Xl6Q#j=zZi+L_$o`B#yS3oY37M+%{g82j$ zP;l7<$TC*&N=#;Bee-F)DJHXtWedUNUPO(p|0YQ^(l1fop`^i zmgE0I(g;Buc^t`)EO-8eNa%*X-AZCVe#jLQDumI1EcRt4-{16@-Q$m6$f7LaZz+tIF zdF39rwr2?fg56hxJJOw%c*i3hn&#Xt;|$O(sT4cqF05SIoRKk=HlzeP{go=QT)eWS z4?ctMd{~B(a#(l{8K?~ug34rLoY$Raa&ui7tfQg76P$n2X2%!*& zJ!qq1c}xYEM&38E6MJZQVJnE&-|DPk`G}U`P<)?Ht>|=`D+%q!DD4`#T9lt$)xB5A zdBXAqB{}Y}Q_T3ADm!1XtfvKDB#qFBiR33$oWE*E`TVNR4whrIE?P&aYR=J?vlJ}E z4**2Iu-WR$<{G(y);OMA9VUmnw8oB`!`s7M>ZhtZtDEtWLwpTqUH(ROCoWA67^1J z#D9X z<6zb1NzSrnFjmb@a#r96>iuigglC;o{8UYjJygN6^}mpM(sRyubA7Oq7kS8YlB=){ zb1@41{`1asGZ>>q&!5Ff#pv{$ZS|d#G|SIa3heKEqrdY>iP7I{t5tZ8_xmv|j>o=Q zrJf#g4&QUL6g@}mHL?HD0XjQJdcNd2e9KK2KIpKkv0m^TKH+95NUPbeJKN}q=kN)8 zOC4Gw{F+{i5^QwNV@g;0X4V!2#j|Z@f{XHocGg8(gmKZfNaHd=P-|mSoL9|=pzHE{ zdJ~vD22p`f>%R3HHg&c$*GH}2r&^EC>D)UU`#9{)Ys^2XwJPZ&Re==DJ?{gw|3}~3YJwAjFZ_?p4Hu%VaCUy6Vn5R&NhlK z`V&6Z`mBd@mKk5nWn>v###jc+mgw_AuaFotTX&Trs|N$g)Cd(ronX{$c1FIom?G!J zwSxkK^@KARSJi6rb^V+P7#_D2xIhdA*KC@As5M&>Png$Wx>lAa_HkCS#8Gq{GBFp3 zc~rmPF%OKCm%M_7L$4qwFCUWrFCBBAAR(_FqommYu&h+?f)EU}Hz*rdjZ$ zjH?$sX~fkFLd;IY)f+|$vJvpd6IT}y5?2>xR*ZOw(6F_T_=94XIwhjt={zsP`G%#w zz;bWH(9)m1$Q?hpBKZZIvyRq^huUGjd{$uL7z2SIzLvB{>;{j9%o;Gf9vDqy~mE?~yolo%U{RjE$%JJ>i^y2*Jc&CLQ8RaZuG0_jx2KVC4 zMmu8*ECD$%^dCYIg7|{kZL_%LW#`C{-9pm6;?MqzLA=kZ`mMv2@W%FTljww2#Z4rP zP6u4RuHb;uyw@wvc2RE#I%qQZ3(aB%^aZ3G>oYDIb}Fg}J54+zuusAtkDUq#u~SiI zMXsV9)&;!Z>&`swPhuXwdzr^_ppE7s_=9 z6Ht2cLPX(O4Of&rcxipfNG)tjs7Mt-YN6ipk~)FmQ$vEEBlN{gSCJ4R2k^!O zLlem8h^Kj1!C+XOXU%k$kO_wN56TtGsrR;Xv!>fG$rBm)zjktDf1dSGm0*4;t5-O; z|L{^6zdY~TnnLt`x zHITO~EKFYv{}3lL*C#n&d6KB4Pix8q%mB@GXq#G#!4G4=fnjrJYQ#qGZl8Kdp3b}n zJqf2XeEVwWD{Mchh9;9Ywh$aXJ>j*wz5?od6jwZmnRp43OGdWh+kP4v$lGnI7|g8$ zN0ksNt;DxYbo8!qv%ui⁣B@B`1$%v^hWn)_ z%y8CXcZdwA)FR(`jisAL^R5|6tx(C8#zzeu)tJY=@0<}*PT->(jD(KDbnA=nJ3Hz% zzJtg{}bkLI92yk_er*Sa)@HB2Ds8XE94ZEaH<0Aby1nW>fV~+Eom;1nT zxcwhFZ?N^|wi$V*s})qJ4qg0*Pw#)xvy|j(TMrn@b|@C2Gl6mRkOol-=;mwP4t<5E zbFW>>EHNvqe_{U1Jm(^ITA}jXMb0i78&H&G&f!{V zer2h%onU~ni1R?!g(3k*y`#aPzq!C*0HtB=Yz>&5mI~S(J+vY9Hi}OvOGdouj3K_GS-l zcwW6H`;nHryC&elWqA_Fv@52b>!Llt>hRTD_DW}`C_knQCMAynw^eY(7u^XqG9}14 zXz)PWfSIuJS$8h57$ddBAT6hV_MJTVvsZLg3Kv!6abLV(4*!%HyI`tjKeK|^-;CAH zPgz|eteQbWUWLN*4aX1O$k`=oqe-GP_%%dS2Xf{NnMyM zM7}Q`-*vr$$9Jr|9~$8v8pgp`mn-rBFHIqPMskxY5N?9|!MQlV(?;?u8=Os#h!Axuby z#v9r;G-cMdNJ##g@WQnuUR}0XKyga|W{dYgH=Li@NMmQbu`%uQ#1)=B%^Gb{g)o(> z1GKy=cxJ&Ks&e6d2kG~(kfqljS7Z<;{t6zR>36PR5Jx+~6TfzrW+zDHb zF<canNcY0WnT`;`&AloJZJIemuX`1fd{`18 zBUS}`ZE9eGR+}$6Ko$mi@>MxMLzBe(T*j*U!`Q7+KHTw1X1qxra0151dbzT*wZl0n z-#|#44I})q*RUT3U6sMsL8{c$5#z4Pj(AIzV@GIXy#$|n)zlZ->!KVFGOO!?34~i2 zVFEh?cZc{ukFE`b^iskQJ4Bo$v2_HBeL>NXrA~o~Lbr z)lSvp&Mokj+>PVT*Fv0%fT`zS2V6+CV{fW*T$|%4)L;Fcc$JCYn}%R9G6apRVCVNT z7g&6b5}^jDQJNve)4K4`)6RA=s@xEtXzY^8Db{{8*+`8uPWUWzE0I>&$mZ|mnBA;O z-DB440PxiJcmT-GC`{Sv&>q1F`U%?VtKZ8*K;cWpA>h&P@eq(5B~@+Loo)5sK|P&D z#IZj}0lMb@5OR>~k$%xxPmAZdH=K0@F>xSeB9?zqth}Hp!ZVPj5YONP{qhoIIS{DW zrx{0pEdCl98y#J#zBI)Fpb3ft)ZWPw1dl$2Uf&O^Yxxhl8sPQ;1P6F9ZB8o$3oZv~C;vCQf^|(a6 z-8G`}T72~#=R|gk67*>NnxXM)s?@DEgh^_$Od%m+91*gC{6?!kw$vZ(Bx-pummCk&QBB#ou)VwG*y;H zI5;#&qZ*0NiOq9f*4T??f`$>MUB~l5mZnN`-hSw`2Cz{IB154^PeoE6WgH1PuJf=t z!@#nBaaLk)dDls(`BJdOA)vUPYjTChtr=7^r}D4P0~(u2uyN`r^Bd5ZOQ53R`poNm zTzBV43qdzVt2lLJt0_L%j=*2u!#UGL9#oSWuKcGVdp2Y|xt`-$zg7*_p&bx&NbyC= z5J*ilD_``7v$a0tx|k^xo)Uv{9n#$>{stPLPhMlfJznd z(7&CW6}q7;5Os6nZ)X)2N}#BlLO1-*9|q&V8!{-14FoB?8fai$#Rdjk0^{%5Hl-1_ ze+}QIKs&=uJCkN_ONk`&j`45;F%~-Sq)K&S{ll;-{{g;F`WDuX;yb0ySLF9CIWQ@B zzEc`tZVtRcUIE^I7eM#wAMY>yt6#{ifH61V9Y*8^Rv$k!HiRcDn+P0;NNg=gu{XwQiMc*-A5EAe6_T(xJf3J8|* z>cpF<515*dgu3F%$f+vrzAP^q=89)!2~jlVcHa)D!CDfiFl9Jx&kJ+SGGTj-T7zt9 zzN47SxF5U3O&pHAQ-tfCfFU>Gp3XgbDV|l-Rha)3;i^<11Gw|QM&C`-*k*1aySBejlEg42=U`y;%0|WWrsi3(TqzIccj1P-)b!N1RS91*7aMn(n z<7d6z53o3eSTf?QcNNsld&>JyA7}lD z{iO&?cH-Op;(pj!{{%C^@aowZ*HTvO7PQCMlZ&XT9(qegKrOdqfHI}5t3RvZja3Ei zf)clt);AXzfj%h3AYv<83V}Wy3h*m?H}N%buI?Pv^aE2 z9$FkB)p24FVG;dX=tj>8+u2*VA=6gyvDI8Xp5lzHIlsJfK#;bMJF2@%Ga{Z)S8DWK zAqqWyS*>Ktfgoim&GL(a7&@5WdvtB~mja^>^j~iAlQms^8No*$WfTwNO9H|JCO3FD zE+S`ZysKpZc-ElWuE{L!HVEambP<@!+BmNOe^6p{4OWE|q4$d8t?Ia{gpexk`SQWx zus~jNsLQE0yv?T$b)~Szq_Wa`{o6$Et!}&ZzI~W0HA0DQgcIX#bG-4B@WV#>V#eH- zJN8nydHT#@kvWr+T&*?m<;R|N4X|V=NvKXoDKP3(%i#B)b2Sd3=ss5U?rmvRlSyUO zx{0)PvplT>tLhM8Rn0SQ=FH$D8@ODI@bhk+foN5&gL$B>Z}X#W%N1QmRw|gsH*ytZ zq}O?JBiDGgp9rjG|2+bVv;UtrWlVK?V^=keUGv7qt?A|4a%*~7mAW@d_*KFmx8-{2 zFI6trOTSaS6uKkVODk^4pz1HT;D*z#reYH zg+oo60f%D5VJ{liaqc$0LYGszm8+Ju7HP`za3ZyeCDFIt{31Yp(|}&F}zJ{S8#ym&>9!fJMT!N*li{` zNZ&!p9q}@XIq+|hVJrxON-?q^gck-vgeL~#1Lf6il})%_YqMX8K*GD3aB(ZWw1ca+ zh0rxjEWRW3b+rzvuL+722>Y5qjf&XUrSE##Cc%@nv9Bpq^>x-A>F3;iUAVKWvBr`q zNq1js4f&!juIP}4s?gol3GEYm>D}-0xLpIwv!1G44%V)BNjDF?i-R>_1^T6dgDn%3>-iNPtx4n-8I0(NvY-eyB@XR_VP3g z39-H011=b@!O(W{>^?4;=F7gKjD)gq8?;G4-Hs5i!Z^jldb=vIGXxz*!XW(wRnJwa z9^LKBj!MO_gQOO2%JzeVLZVG~iA23w(I1F0c!aSCs9PAZC(D`G*OeO(Q0)iUxE85g zp4A}LP^c{PwN4}8q5%tqdr@Xjs-uXxO0Ic8w61pqDHr({qSp4{KnlAj#{ znO%fDh=XY_o@IshHlH%o)r7r6II4MfJZ=7rALy#WU*lt~uC^u-y;f(2mSPDn%y|37 z>Uv~Zsi4Fku+J4(t|nIUwIf^${h;H5ZjUc|;S5(ABh+y*5Tp7oM)n<%ibPrTm>;Bp zS)lde=9ir?<-(02riB1Bvl;K#sV0jgD{x|JYOD9R5D&L{&)kDwxYc{+p6^xa= zu_i%(O|y<}9EICJcjl5|!&NWI1kS3LWCAB#{Cvgfx*cCwP!57Wp7c!tA?cf<%!;Wz zf<9i~A%5WX9WQ0No+eYE8W*{Q<;;0Pknj1K$Wy?ahZ{mgcj198ahr!|7L`32Myo6C-W6%EsO!9PU$=H_v(%qQ4df<%tlFLo)+&yIK1W$Ot$ z?E>tXPJ8#$8W^SGHjR~_d6BPq=PlO-c9&Fx&gu4qa`3Det&o08a?nnKHWz|=*zeva;GW#Q>l zUDpc?2X_2O<<613?=)8w8%el(>}VL()61wQ{p3B7wpx+r{dBSr-!^G$OaK%P=oIZ0M%fBqkVl14UWrpy}{;@YQl*`yytD4AE|0W zE$}iEnvh87go{TLKY+V}r-OBge9p=DR6b{vpHXgo4-m!eD(}v8jrZ~lnAO>7mg^L| zPDBE=8qvlp3MwQ-FZ~p^hl2ik@nr6Lk^Q6yb7Y6nMnCMVKi)T@jY%K6zF@%*)F??G zm)S)RdLW~X`U4ql#Ct%?5iG|-R~NmE!otMH1g$^^R-a%Yt)vGsCfSMDJhop6{^zvJ-`HGIO`DOKs(+Y=;Scs9Dac>#nxTK5CxaAUkOCOM zgY@-zYO2z==kb&TM?Ec12Ci1;$z8CZDt5t?YTVGw;@rNuPozargryQ*rBV5V%ql!@ zT)$``C1539t-=?6)Fzy7`5?1$$YoOn+?3r?AY-j5)>fDE`1C=pXBnvga>1_bcW-pO zZ4%INYvzS+Y|Z9vfUTLal69loW@olFQ5SPTjOs2Uf0Hy@_H)j*jjkw-Re;s8d$c$@ zWR~Ne*gPB!j>&N~V+jO9OnNd`szyFhdHsBuE7d&@(-kAFioFpW1vWhQ^U=}1{Ei&2 z8OVS5C^J*NfvMoLj{ zc-H+fZO6KN8J_FTJ05nupfAXm`98z9VmD)Vi0GWQpO4!CQI2oT6bI>hDY27Ko7g=N z!`PfbEd2&dMM7>d2Hquva13BdtPgbWPM6h$3x-QmV*ey$aKHpY$2SG(RLN?}5{0LV}}iL}IO0o~P|~C9sNwkjF~lx%B+Ka88U% z{8|r9Mp}j#sd1exVQ`P9pLW$UvHXA5o&&t9VrkB~p=EC%g(Q$3dQTytmrzt{AX24B zLQ#kyCAXY_QY;if2nejAQY_d2gQCHPG(iysEKl$Wf?ZSyO+eZ|JA3ZkIp-@vlBFif|Gd z=q>}ZD&kGqN}pCx41skoJr7^n&va>!(WGCt-8Jf%T7d;(gDcwlB2*} z;*uji{A<-OhzxqtS>CCKt3M<7C>d!g&HJ(9cmepe#l(3%UEQ@jp$NHALt9z~jo|^E zjVHpPi;q1kU3@G_Ko{S7-t&e&`>b^F2T7`O@tIuv&Q~=bJ!^6C>1U;jPbV3{egoi2 zik$C@>aZ6G9G&}FMGKa7Q-3JRb_^+p7tLbsXrlwMP1@b@uoJ!X2WVqIIx8Pm``Aun z51|1Eih+g>-I>P5WeO6rw~UKtR35A#qWq$Q(DJJaLZD^^;WKmYt60|h=c1Mlc8Lgp z!5q~&#mg8X&5uK~vP&n5bd6O$=XV_(n~`qKd<~1_gyXJ7i&!+t0+p`=FIiL!$Dlez zrjX2a1K47p2;0`dMOyRn4-PQVD>mo7PZpK3)`TQFL)JOz3|S-rox!#nx!*bI7Pk{T zzgy_J=hV1D8_uU(EXsmz9=pe$=VbSI<)rE!XSJ%@NOzr+dyzd>ievSugqS`HvO}xK zBhD7J(18~AjwUU%rYL~0CM|&9nt{+3=ZeNzpsIt&I7d2&=KQYnMW3>Fh;XQ{GE-k= zBmwocXsGKA{c}@GUy@X%rGunk8XONJTKYt4iG4ycipry3fQ0XhYO_luLDU}oJRzn# z&ZCxeU-bcUqWb9K{~wA{dHM@UiF*8bsqn<}$`g@Pt@FxydIL#HDjf1-9in2P)`c2` z)~Onl)&rouuNJv1xJv7rrPlSO<#PMtVi?Pb)tnj7sEc6xbeIwNw=Yg6qGNY7`Q!w~ z1Q7ZKnCYD4xP5U}R?Q-P!FhPbYD#VPD9Iyif%o&yr$y%HCnB>ejFNK>3sx*bel>joW5-qm5>x<3_iHK?`;DDfyO92PPFI);ZcwSyN(n^F+ zV75`Auq}ie`%k``zZv3M7%UnyzoP3~c7lisr8J{4KPjj`8uP?W2ediNLi_O2hYm&a z^wAS)@imoQ-Pk3?LdIosyh-h16wt@F@ZxzhEOV+(kE(o871t(K{ZA+(3`Z*zw&FPH zXMf7rOyxgiZ01 zGizw(d*X~TG=o9uJBgssmgMsABNcCE-Ah%9ZI?zmox>DaGc@yXoU5EoRA4hSBLFa( zsL;z7no$_Atl>KutIgs=5@34$fJ(*uQ4{?6%^PTET)^%tcDlm!*F8Wcr(!uTOLTQ* zPbfq?Ni+PgT#}3lPEs9-)i!dL>}thIZ%olVWV`-vDL%pW+?a}asCK8M5*<`7o}cQv zJuyH%7Q0~N>u16TI}?n2{UD&&n}90Ol+(Hd zl0$U3T1`GX9inMC!L5H$PU|jU;7h9^lFXx*g0SdhDPeyn8%Ci2Ec$h;5(6?|^eb0^ z}DoE$~Vz}F*02%H?Mz}GT9r5W@`D+q?@?&VS4r9|UvE}9{Q3%*-iQW#%?oGmOmtqI2OSz=t`nk!in3S2&N`lggiAl5~17DYAMbIx^ zko(hK%7jDj>@1N9J@nK?>7l1c0(vOBBt10jlJaTv(5gJIrAyrHl_b41_L9X*D~jaq zx}Yl@l+yJ(Xdo01Yg1fXWU3vJ0xKj&rf3Ev-m|r9iiNm}67=Q$+PKnL9wDTBppUIg z!!B9;076TCKQIFTgtZx3A`sCfnMZ_w7v?t4M}R4o%qoPN)_2tkDLdNEwOV5j5pje) zpiS?bS_17TkHxJ`} zcuB_dsD!qPVPcXJn~|FEzx*CeBQ-S@m_%v-Sw?CCbBRa|YaA?>7S22Na1CH24@PT9 z1vf(i&cEbN4ROOc@6^*(*${o~X>igUXz}Tnk|P2;q&+Gnk+54bC%| zz;ObK(VL>bmWyh4WAG{|`X>9k>i`=eSh%o}I*7l*ArMLc1UXIFK19pHv{6 zd=CCg`Z-mBYIXvkul9F!cM_=S5BuHT_Usf9NR9zSB%2_^8)~qQ6#m7Ciu~9BSNkAz zFe0v9_Pd+%t3W#C16}b!NaU1{sm-GP8Hw==$JYo#qO{oCk`EoE`dblE3>09`VAos= z)Zd8d1OCGCqpvUFad)^5vYtdJ>`HFEEW46hNdmeb#y>_~mhLx(q$>Bzzf9ck-pf|^ z8-7{FiGI5S%YdFY2VlbU=2^*&)gPjimI9XF^MDL`p7`G%`FQ!VjC`!O(|M87dDEnG zY^1A&4*7-iaZ?=hJ1G11vqkZtgo<>#-^NA<038J`gHbJ^rb|ltRMIY66@A+%*W2tg zA&QFr!&LMiBmos|3Cy+Bu1JluE6M?t#w%YT8jrqW)wtt|tndz!729$Q&o#Rub(Tg_ zvDP=CG}{0Tp?lOB5X2=3N)Qz%$|A-Iv@EK^+MthE(3F3ku&E7Cox6y1sJ6*hq<>B( z38*$aZocq}dE9&vNybt=LQD0yEEP0Fc-nl;ghAn;=e4;LZqo&QQ4~sF6(sJt5_%jB3V3gP6;T5OuQoFl`w&rv{2{o0_vOZoPKW7cQ9d3pWSlVGCEj3r%pJpUOS~Nt8@)CLj#HWH5o|s zp<*C0$&M8#v9zCf_=Bzqtff6YQ&ACNs~ZSh@{ns$$k!mSj9QUW$*9$~t14<0F7Ra3 zYP8_?HUIiyS6bp%0*dor^DVv|s{C?0QQ5#bF1Y_-JP{EbG4Vs}K=AcG27}Et5>*rTj@mw3P`H1UL_5?x3mU#I!*%B`&3D^=J$g34D9=fQ= zb6V8xqHnq;JDS%C9yZCZUL&2?d)MU2w$ax(K1=Zmm`1e6f{SR6DHp7xlXHurLkUR) zu6q@cbmgqw`&P-a3c2?3ZyEi$U}hjPX36~{L( zlXvm`NMu4+JbqnPu;U~FUGb{viq}a3y5eP00KIAjUXba@^10##(-j3(;fj>1-xUL) z7}KG+wwO+{3YGoU0ejTRIh|Q35e#XIOZY6b(GA2-AxGy5m3it1Bb&3Xgp%I{v`+ls z%QR5crvlH|>}lb1gGAy6<{f-g*vaeQS}_Vx?ZMIO{`No^fluBs^$PP48H5eAseJp3 zFd3gp;KBrsMIiOsITh=&5|Scppe?isywYL@ZJtQ(u1~GNw_oBvcP9P3w%LHDGMC173k=VEnwcfN13AqD8O$4Z4wfeF%i)! zi_2{mLe&sM$?4E(h@qr$jSO(3HJh)AfIf>9P}yJc$(vjsIMQLo4{ei4@Ueb0*LcLs zF7t3nd(Bcm8f$#XpRU_jeUb@Bw{LL?RKlzSplqHL; zlQ6}erm~ysXa9cJH8<=#0)}@4x^%0NzDh4%5h}NUiYK(ZTs}@LpH^!oho8oo~A4uE)p(}PZ1m(u?@gMdR5OUa0q`@u%5Kz#^ z!+zoi9`>8K%XKr0p8kVlO|9ogU{~NbVkbQAsy{9kUU3n3n;6c10K;}T@#lcD@q-Nq z^ycE}ZdM?K!;%i;8M|G%xpyjn_$6xY!h3Ii&jLQ${b)CLG!Osya40{JH;VC+mbC}* z(R*A)L76>v^US9Fa=1Qk{-rCcY{rK!xDt7$Dhn@&a_1(@5CA&RC#B{6K5@nHzI$Ek z*rO`nijQ5>*mCu^P!j9}TN_o4ANbhSNqdxs?{ht-KdwJSD&glXk01;+*n)4U`<$9TQBH4t$MIE*KTYH&JtFYn_gek6~QCo4m z_Frh`kSm?)`Ju9%`8L!0T^P`7d zD}tKwzj(Xdr=DB+t9yFDVd(F>H|L}N?K;cmkT{~h&#%Bc%+p%9_=k16n!)b7!$35B15u#iUB}6iiy5@V=Ko((76>ouSr@@Ql z)*e&()tmE2u*P=WH6J%<3L!#d)7qX`%A8I0kji}1E1~V#t@c!Wa=d|@`vk+^Iers=XssHsXYIBA>)_7KLPjpJ@7&t zPap2?z}NgfqL#Ls_dVsxV;`y5bIOED?rv(68qFH=xV|V?sV`t!y39DWaz~1>z+i;f>|R1pUS`d8$?mAHFYGaWzd?aCKkguyxvq!jAWCGPr+(3b-O zrDrodLghlITJV=^8+(`tU~?*Ss}9Y#?Xs&2tP_A5;Eq>Tz_f}yW2dKi*@$KCZ#1@! z(h}x)Mw;Up1rKhHtv+*XQ<%~m?-FzDwV7iJF~>8eIVdY>4gwM8_{e!e@zD9{Rqj+? zow?hxGYV{4;%=Ssk8~KwlN`KXb+G8R(9jT`?0_C=lJ54~L(GHp6BYTwC*7%5F2Zyy zrjl}2X==gX-Vk>i3j-X@DdU-kplB)3cyUj=4>_AFlC&r-6<8J}yjLjWA6If`2IT0< zx(7psE5aAAhEiAPO{IEe;Fe;w}9Sm%ys zuag9DkXZD9Z6Z#}%62T@bCv2+-Z`oFDii9b^qjUR(@hUL9 zWRA+pXKk&6Ii05z&@qokx!-k0sC;IZv$ux3FeDzp%L{tP^1ji~WF;yj(#zDUEPI*s zegh%0gPn{6I$D1G)2f|GFJo>Dis0|YxJNR=&u(KAk;*A-te3(yNqZoi1J}(KY=I{1 zmYVJejSV6)VUKbT(WQ$ zzbDb%*-8wX!^4Tt<6lis^<4BxHy|-R2@FZ73+zSu0$>*1*G)-Cgw4 z(4#^u&2dtU3x8&#*q20X?D0Pn0M+AX^N>{cpN?`+?Dok1sq75F7yY(=lIrvdbovnb z79DrSx8An;3D9wtH^F&A3Tta6I96|I(n|S#a3pl37@%Lt zm(+K+KoZy>1WGA3Y&eGdh~8-@I@B*949vz^s0sns{@{&ggs8AlBc5NgVw0Gkh(i4O zh8g6K-rMx=E6cd&XP{Z1t@5^19Lk;`{Lxk`1VGxV3`S@Bb!{{3)rF4pO@fJ5dW}lD zO-hQjTimr)LwUaWI`u{<@`36-CNTKnALywbI6TkOnEi_+p~I)V_XXoWr@6D8Bo}rU zb$Ipm-W2|5n$@)(g3ZB*9*wLSu)Dh_-HNMktimUS!1IYC`+HI>V%hp_vji^_>9Bbm zk?DTX8Clg|9EcVE?(M_k6hw7la1qd!7VgoEpxawF^JpPuQdaL1OivFV?3t^# zugaeo?CHTes$|kGwXN!Nbnv6@Rk7^_M<3bBJt#`qrjBftGOO|qcX;|R!pSb2iAjaS zruPLHK|(|wp79KC1C7DS5I*~&yK}5%BH(iety${B_Ney~+iN%qCoT>O5;7O3UJ+n`a1AdepTpiI( z6TkS9m%@JO@rq#dqWHWj@Yln~UAU-ng$nmCYgi}}=VQV=cOe|}K_DWd3<9}uo%jg$ z7!DRcL^!zZ|04FOB7C*1u_6c#!&JFKAxxn8!Pn}{tRhMcz!N;9RiEyBL09)J>|0SL zRK#IE`xdu(_uDrLDt-wqE}VGtfk9tP_*ZsP5f*g z;1t#spZcMd@nz^JCAhiH867HWYXUES*=Q1LA!WKRzC*5qOldKXtKcK z!K%dN0!qWcR1}`~i7Ofx5S-7c+@W0i*j3EdD~O;+mJsykK>zz(OZ9g{aScKIy?vi6 zju9d}wW%kUa5n==cJ3V<{{r*jD#9Tvzg&3O@7N%BubZtoKK0~;QJ&zy-5QPxYL6}d z3wx}&%U!_ned?Gy+^|4<6_hC!53WKfwbeBXczNlq<`dNES0G%LKfRzP$G53Vi(;$s zli~LybCrN^Q`h0CBiyZ6J*NCQqpt^Uf&QRgI>e_if|h)wFhWmbJoO7#CjVqpUMQdF z^u+Od?sSj-uk;7S8ShABmE{A~@WWrFgn6U72mp1iI40K^VnHsk#_;sR?p3@^fqNAj zMDk*F44=zj-{>g!O|1?2{a*;E_g7qDV$d0$eT0$bZpUpr{cxL5K6Z?|7f%@D-r%?& z;3F5oqtG*nFhZAj!h1T^<$Tm-Mo3`}l4P3q53vL+`^*@z?@%^t(xs&x(e0ZwEGbT0&_Xps?GL}|s#l%&q<#tT5Hlr=EVvZ_y_hTFEm~v^% zDc6hMv8T>*wrZ+_@To6XZOcBgr{a3iOCYjv8r&`HlYi@U_iXl^9UpleHF=fWQ}f47 zXbN|q;tJR`d*ZfU_jHBCKu%+4xM#4~Fy#VLqhi4?DomEDo;?*;uA;)ALwhAOnwQUX zH()L7I61lZbcHv^iA_$=a!+Ty?RZ$G?k1<9_EhB59XLh&+Bur%Ka-!z#@TUjaj(1L zC6tNFWH<68TqgTXyFH3uYwX40QwYy}$Q>Gz2U_Fr#}+0tl2tSWwH+5aV&k#6TLQ6iVY2)BjDcigyz#_GV(Y24& zmsKOic*bUol4{Zzzz2;%_()?A02<>%wu3SdcEA;_y#$JO*ugiggs2?FKE4tf=x+!j zY7BSu?cfWZbl0|EX9(J8wUZ=^psnwyCgNhPE$BA0ne$eQ_-HnM<6#IX>Wf!KGfaSsW^7PR^G)es7t%2AW>uH#w= zW>B)W!d8<}vcSTMg)BCla7Lw~!Nw3MvKh`7JnNod!M3r92*L)P*;~!;%(%Rf`n)?^ zV~Ys~;mq0sUb@bm5Vk zTMnQGmu%Im#Ryq`I@2>iUr=4v9a1h?cL>02$ewz|{WQBw`3mPdddQo}9O23(g*`$9 z8XvaZlN*=;9V*(ELBCv`gd#f1sg9o3ESo^lQJV3T zQdq8|*fuui`_>jV=qU55`yB&sO)L6JFvNs6-A(!4H?ZpY+a?{*v2CQ(v7;gY)4r3- z+~2VEcBZybgSlInI6~zvUjlwiCF}d!*{C zYRL-v9`CmYLfvnNi^awoW!K(zS8=ctBpZ_ZiRW*1H)B5$I5g0;`P*Be`@BM+sEPE| z^%=kOeQ4fj2K15*0$MG?>b`IcuF*DkUkf&pe}0=gm+yaH=@=>Z+3s#)!9~j0%w`5s zPTk=iWykK$x&sT^?9NpPCf-7|A03Aq=3s6SF z2kz!@ge zr*0R#SC+mXde&H#Dtj66@}w5U4}R&Ex7Oe|HZ@YlDnvgsCAR0Sq~4heV-Tb`0MR(Y zOh!7D1x-YYl-Mx79ARk~<=ejXKXZ@LSU(~i+Oc<}9253d3BG<5H=dnZmfFKHE)piS zV;!liP+?&&r`=^Mmn#xGI_y6;eeSHoQ@T~E4mW;6>AUN|3)?=zOZII9V4CUif4LuL z%P2R|w~hD;T9c;;6x*I6;MMmTnZN8rYS z^F#ow7&!epBcNpZ)snw`#C_Ni9%XI>h>Y?(CmG~ai}DY0B6UFZk8$ut?9eDV#tBt< zePbNBE!>d>8Sqq6OO-CiIGKuUgq{;6HwCPKvbj4rfSBAR6ojf6ISqky961fOQyoO9 zj*(P#bHayYapXkE;>anclA_~_VHLs@6?X(UqU4T%Gm&yffKW2-2w1K%$+Zkr@=^gM zO3o@f_@nz4M@SjKc}|F@344p=6B8qT>4ICnhK<#Gr(YLsPPj8_s5;w7wk(^V@DUM3 zO&R>~&vvo-#P_fd6DXP<8@Ww<#Bc6FmMp>nqXMXJh?46qS--nqWT)-4L|aGlm@iL5 z9_S=m$p_zGj^ax;%!@8t^N0HvEu?x4DE0M@o`x&}ep%+`VKw}I6`{x1@HxPX@0r$}*A9Jnz2U zf{lX(?N1mi%q7@<>*^D0$fz{sU=t`!>JbF8n9A(jE3J6Hb2N!3nXa~u*dLa;I`H&? zj*9xTW`$S^bq%)2!1ig;Dy>-9JR;T-3G!D1b2G!v0NG(PLv+wAWs5Jtz9;=4l*_-3 zAt)mM<0@=pu*A(wwz*E+#t{9B;ELNAeigrP8^f=>^qRYV>{LfDE(5-kJl7&gzbu-aZ(9(@LIEY)Alp ze#53PO2V@icLgMh^AQ6;Kn$L{?8z8B9{}R`gXcck@YVE3?f4jIo^LXH(w>Te=J~+v zc)`F}K5cB{RQ8e`2RQ--D@T90`9}J^VYs;lFp%M9l2wMAFV(Pzo5KaR3^#uze%0V> zou14DFrYQqd_}oe*(s+74i+2{C}#Mypql4x_9Fpc+jNAxt9x>t1Q9#?WtEqEG_68~ z3VholJx;$AE!W*Hlk8$~Pp-RN0L}VivK3?GSQaFu>u#5YY;?``NVII>2xmE@4Z!?b zF$LMg)`7i|p4)g_l&65D#;5{f>xmO$MZ(-1Lr9dBM|pZVSQ^QQ-3UI(*@{3>J!$-0 ztY@zU8+$4L1L=HatVe{?{7tt5DD$2zit0NF3v&R4d)G$9$h~VL2`|4c;Y`H#Bu_gT z-X1Sisec8_AFbR2BUQ1?iz?FipYfiN7U@)3W)k{lS*j&^ItGZfUVkh`T6a0gp(I*D zBw8KJxKV{c1ly48DY6JAdatAaL}D12Xy8J_b|M986$fEk1r*!!%QeVC!_ibvSB-r` zvfw=CP>h_%98w9sd5n0a+;I+UgoD^W6@r|?z-uKw{c9C?ex@f|sDJixcYAoT5R%Me zGr#~RFNA@dybypndAYs5XE{rWRep*l!Z*qr5-6G|g+JcF(;*OByh+YGHb74^5oa{? z++sl#3QklCHV+_J}kt}k|e<^MBwt@ZYip3$t9W- zKCH1{B>nbSS)nOun@nbu*CG>6iQwhOB#-$X$Y*5{%{&ufiwThfjrv%uH0on2!Dm!! zkXL(^Z%XqtV4D=8n*C@Sc;~jBj1?Okp;*ft@5GujAkkuBl=r1roB{C}%{`&|RNv%B zOjAAwT%4wSX(c^YJ7}c}&n5`p(Z1s0w|TN0FF`&rPeGEc$|HS<08Ag+ z)xxuiIcnN`XmOUOBVz=LuHoPfvOV1cvBk)jf0CsP=BOzLy_BxaU}jL)B9Lr>TY6Tr zY{D9y2!pyE2o(KCph^Fs8PI<|ZKcG?t||S8BH6?-gTEGW(0@vV_Pc1Gad4e9{(4)_ zQ8tZ;f$rm}Dc#4T5`69>9z%zFc}m)Q>at}jSx#$9YLebmY5XoQ8sk}UTTXO5yp27X#k{`g=|Pu5$d%3eu?g!S%m z%IWn%aX5w!GVn{0v)dfr{tghDFtU%GO+<@uqUC-edZhFhmWnO+Gy+8(Oyyq; z^E@4hEgBgDoJ@Vd)ZU85sJV+l)KB zO9YiZCk{~r&r$}5D44GAjZ=Y#%GcJ>A!Iko0~bQtIf?lN8OAo3_OKA- z5hqe>@Ghf0W%^J5oNI>UI%AAy8$0(mTwC0LYgE~XV?8+zU5{6Vy@6Wzl<}VKF=WQ* zZ-OGCa1VaD$5UO`)~_h`-0fHoEO7^Z%I%#(`K3>~*W&qu zJk9v^nMGmn@Lcz{eDczcp?tzL&q&8-fV*~9Q4{tB(MJLEj@A#v%if{3_nd>>+cNm!_tk=rJdJqDUPryC({`JF z6px$kwcTamGdytQxMG6JhAuvNrYGvZkq8diraua!`rUl?ENC-!f_w*$$K{p9&W6yG zqiF&tYc9Nx*_`l2Wi?J9%4(e;lm$ELPYFZ(a91pU` zcrqdFcv>jGKG$<1^ejtUBRzu+%#yHVCJ}YKi8m0lbd)HmgUn9Ixjc zprDWF1`^b~$6*^>UNF>>#Jl^ki3C*$ppEC@k9%6O z=>#rFIL3qAxR@~Cn$n2l9`f;g`;(sDx=-R`_2Y)KX9ym|9ZVK|NdmIy04%T&ZJ+U^ zvJuu~lMiI}^U)GTiQ4g!N};hgbi%bmYu+n1@z-}mfR0WM)KeJoR}LLlZO5O`N8rx= z)z5h{!U4}*MOh$3h~USb^E6KYhqksbmsI`Yo8I)M^G-87-?1e`YJc;RaM9j8Eh1QUSnO{zYhy{d?{6Uh>q}*rx;=`II!$ zL$$qdHLWLs?Inq+x5EV7dW+OgU>}T@{6g?LkMfSye*lw;l^q;+oJqoHiM{}UVz>RV zBpLPEni`THKd_goDBV)Y@27q4EavM8F`vf3qja&ZIVv zd&4tde<+#X*998XId)DDP);St3HC)Ff73HKDv(3647Sp81k-{kkVOmKyj}D?NisYL zZHqlL@~JH>w@vQ{IPqMkNDn4iFl^fH2j7s2UcP03ep=7%; zZd^1t`kWML@;M|GTAWRAg<9%vSdw{;z@d7y=A~Pso9b(bY8@NF0vPcXwFK8=o=TDH zF(-FH#3_%X&2hi|Za~F`>q9~ojkSwV)IXEP@-ne?4Ew}WXu%9tC(WzWh+J|` zt$*s7!y2Y4w?(P&*{^g06}+^Dyxo3SprzQsSeX~0TUd$e|6q!*`hzp1l^r_ZxkG2e ztV~Rg7@R6SVlYV+9^oiT1v`tA7;ciHd}2zfs&0;%0#}^G@cYEXRM{9zB$<_CaKJ~$ zc!DIOV=O0R^=DHpJ(>fE$yhz5irxXGK<}WXK<^*`vyby0^1Q|N5WZ*zJQ%Z|K+z0) z`02w??nJDpKHa0JhBL$J} zgr}KUZJRq`Iid&@U6<9Cr03aV@laC%;je5ro(`w7wT1pae z#Q4bj-rbIUwatF}Q<99;YHw{-TlGV=Eq&~6SnY#b%lNgQRr8Jam6ZcIyszvGA*Wh^ zlZ2+@3gG%%0NkexWU=es4Jqo%vKn<@IwP(ui>aeLSBMCgP(?Vra@`+?vnh4_l|Q46 zH`5{Lh%Q zKrBC6?is@<6g_0pX=orO5J`lG#1J$(CTM=f!!0DxZLmY%P}|}Zp%c81Xl#jl4f!i1*>6Ve1*?u6ZwPctTmEbv=^*jvm4o1z?h`=8apHbL z8IAd|m8gDLDjvqWI8+3R=o`-h0UXwyh95YrJ8P$O%0}s`pOP5a=|BlBXv!umDDJMm z?18)M2`TIg2*B(MI$rVo#!~AlPecpii=K@L6zg~@|NW|`cOW));Ozpjf4kBFJ<;f-zC^m~@>+;Uiyh|+T!C09K zlonRdR%wq2dvwuoVv)ulba-d7$E`d}r(9N7I^{BwDnvO+2~Y^ix6~%HNISfh8fEIIu)AahU4X=9!hf_1Q6d z9Lw zE+oO#(#ORwTrGXP9BY*NCbxj=WI;e1%!~Kj1l)ZC8Zhi7tpE2jNt>4V((Ebt$Up{g8b{vWQrs_Bnc% zyclJFJrYJfWykz22qs36E7u3Dn_(sqhSVMPNo?9j6r;$=1QprC3R^PNv1SC0k<9q| zX0WuKHN^~K#@AOtOx?!;W61*uK62qReTakBYHz9{@C7F=T+mg*b0!KD)0~-wbetSABm3?hZHhH}r zj28yT&k}rOb4s$&8d#0$IOSu50rKkBWRuOQU~JaBIJG}(Nbr$OUB09t7``QeV`=I( zfPus`)|Pd%rkEV+Hn17qe=^`kzOTa9JE10E_?n=~@b!z3qQcjJXNIq*3K@3tUz&JZ zBtSi~hOb{C6$HcAxWs4>v9X(4liOK#0CaK9O|Wp8zNDG=B%4E^{=A8PzGeiQ=jMhiMIDAHRtts_DolU=%q#B+2IR za7qhrI~le<+(7p6QybtV%Gw^Dp5;wsdq^G(9N?7XG?2t8$yt)D#F$*(*)go+7Zj)0y%|Q8v zhWx;0Pa?B1k)eC--+X!(xV`R(ozr2$>1V>pcLQL@$UsIswHsWAP5A^PaIe1t6=aL&EQ@KRTof&d5#7i}vI<6$R1D%bZ)DcKbdrLu-IOos<#X+}jjXk= zAwSq1MuSamMYEz;<5cfeZ9>rnb8fz3}34*%B+lx*P^uS=PlIOajRhFjOvJK>LVl-L$#Mc ztvJKKOj1;KEEtwu|Ltr-EBt=Uh5ycby?!WYeklkI^7D$J(!;Y)^ilLN7j z4Dmj~?heG>eg{-dN;_E9G{g8rGM+co`zD)7=qZ`z5~z^L0cd>nzar!K`(G5r@$zBd zLNsSEj^>dd%5jru489KZ6P|yfN=TV|g!gHUy=G-?I?Kk!vR&9nQqfuV3J(x*{e2|G z?=1R<#IlZm*}X;I)mX;$cahA>T~11ODJO~OF256^`d>D80aDUkC{1)1C z0Z4Z#8!`qeB1>wb{1k12;oABHivE(s6Ym0l3BX2wX>G&SlbXoj3`GxSKJ)Yxkqx^w ze)ewf9@dXgRbDfMK!s#_za~7R;L)T&bSy}r4PEQUZ!7dZVZjb2nHf&ENG9UWuQZm? zh*x0fC7xH3F~;RqE~Y;%X(Ih;2}xBk#tlu-sp^N4ROM5zG*PVu+(UbCk~hmCdTLxf zd;y9K;b-;&$*TIDgFqO^ke`!e^r`)XsD7l0zX`&ZIDjYy7=ftldCtQR?0GKO>71o> zw5EPK*!2J%eAa>rhpq|gK-Z+|K-VMy8f2{3)aIEOWNb#DX#aXm;e5TP7Yjfa4IgJ7 ze{Z7$=I_^FZOVpe_Di8&3npH}O)-OciTQ#JDFFH}1{cQ@LD79NxHyGCv0{zqIn%sL z8O099sius!SU3rPT-3zxkK#5Xer39M27AiN#B|5Un@V?loTQ>V9>}W|&hyXaRpdD> z>UME#ZfXwj-z13WKd&`aPN{E`b~i`(`bHQc{pq?*2QFx3$^}OmHb5+&KGWNoQ7D!h z1NqCFT1r(mZ!h|&=g^6$GcVesz zRh!B9{i50E6j-@%Hq`>?;cP0K&{NemgAjFe0$j^S`Ydcg#oJ~#l(YxPHub9%CYoRAZ!&L#39M)J+E!vW*7Hw$* z#PWL|@s4K{iXI=bz}uX?N~91TA5GB6h;hvVZ@oYY*u8AGQK%V|0?d_o-o(mD79z@} z%B?QNzk1ZWj{Rh%YRRm$+9t^Sh z<=bZdDh9h0%{QQ4H0Mxo98%{EWN3XEPhAF~^#Z~aBOiAPfQo!%^XfHHHahNW4%*ot zU!Tn&_~^{jnv?oAPpSvIwCiz$d+5+~iRL3_s>()+f|ne@tMs$hL6dhU5E3!}WxU{V z?{M~p%E3{v*OXvo5R&=Wp&j6VJmpPgpAk$H=~F7wH-3xhtGso|^t85YdiV0ytGo@^ zUP1&-g5&Em1S(9T?`w${6Y zHMAmjzT# z@QcrR4_L5+@iVUyv+xrG_np$luSpy0%Nocf6H6%0=XN6AE|yFTs|;|@C7hj0zCji< zwAh#*e5GGhS>}u0WQRT{O)Z;52hGRddd1r#h6E!0&bbX%M8r!(PYWS%wPcm}g{vj2 z(r&z30;-pH_|)3qT^4k;5Ke`=)4*`z{`?E+Y0XD z&pFEq!^61d{8tQL_5h1Wfbv@d+?z;|Ai%wg`Z>lS=LRIw&+>fO>!eVQc8j z698+&t$ciAL@ha7No^*y}v`!KJ#ha~z&h=Uz-)6Mz7e3C5MQSD(=>tm&t z)AYyEVmT!0$7Aq*!-(_jzr1f$VSv_rR*{t`x za2?QIB8w`=Zds1qB+)-4)V||++aN&m14+bE98;w@DNCWX<>}vg+v(q=%lXzfB#VDY z2p3tW?tosoN(Ly}42Sy%gz)Bd>TWY|=!ncP$AjP*7+x2I#duKrhA-La?W94Yw9{Lg zH6@f#vWAL?){<}9<;~VXzqrK*M8aVp3y@8W1+`pBv7en{Z$fdXg`$uN=WmoC*kFLZ z+q5CoD%#Knh~<0sc#{}~Vp#nFA_SUBgw>-7ny)D;Eae+NgupsU67j=sY?+lp?hP`( z`jI!oo>@-v*t&m4;px5J+bk5o+8gw@GvtQ&cL@=&^cZc6(x$#ULx$Cbjs0Quq(W79 z%}_omT)Ygh6NuapjCKZYnWa=Q;w0VlT?hMH_0?7T+K)dj2Z~a3OxD}p~@EcxtX3E(B7+uW< zMoDi-d1G`vJr9%tgKkGIxHVpk@;hOQTWx+70MgN9^NOkN^Nz|bOn<1_LirKeu3`(~ z4^b^F{-Cvx{-BXe{ubBK1Zd(UyctRMx4C*FLfFv?aB&juZ*+k+`UTLIlkoHxk`f(# z;V+zp=MkFH#|Sxnn3U7s{t6;u8qNYF#kqKqkE+{Fbqb|A(@Is-_?jP}AEq>g$3{$Y(|?2>_ODF2BkEUhWuKw&dX-Yb84a~T0H~qL&i~|%)3iPCrU1+;J|g&7{tu|6 zpDR24>P<^fEsYub-%fH*{}rbH6oB2puLMJN0|bqf47&l6B)fsjRtmY%1cPM8Zh$0_ z8WWbKd{I=o8&D|t9XcHwh1z`UOLdyEN8&$pk22@)B|`pdB!CP89?G)pkY3DRuw3nxgkv*hI)!M2mZaMiqgV=6y#&U>re zb0!B^e&S6g-!VmMAOaT(lWHx_9u$c=V|1+5aLY~PKX@$6dZ7Sr!J2u1*amNPl zc+q>4XXx=piE7QPhpOT33^=(7PjQM5Y=Ws!h+AV|>QJE&CKPzdhMpJCo4;+;=C57y zE@E4Sa9G+ceCTH#`7aoEvV)2!-_*tE$Y+hYqYB@A%bHvD zPqM_*lyI2-iuZo~c$R#h5`bbCXxJwzADmV%xmGcSFTLu0hMiS#A$2!ip45@?DGwTO zd3>jsW(oU5I_}S@ETbxo5=QX20izZMMbh5a!y}NF7)Wfo+ zpik?Dq1VesLA9{5OovfTa}sJ$gww9Bd~t{o9a~kA6B1!-2(s}_w|480T3ICG=0+l& z1?}MTS#i8YMWZ-+iz=|f;M*%2<5^$D11%WaTLBaO zQ`tyk;}lqG6*r{hXUo1i{Y|)`c!WYxw0TMu<9RkuCGq2}jZ}WRit$vH2LTFRIhQZ5 zYP4c&?Kl^!8qxZ)Y@QJ^t!A&n$3^lJ@EP~mLPvVDjAeyS!XFED@#|^vtKwY+6N<(z zD_kx9V3P~(9Xp{}I{eF6=9ZfDvzr=fv|*b8&F9=G(pRC1T|+y&Ov$crlgK656}~1u zt9f%~)YKnDHN^AL%&4P1&gU{CQ=7rxX2u+N_q4Oq7#pRW&b)2!V79z;^;4(u2>XG^ z()lf;2QPh9uSoKkCr}{I@qu%q`Qb35zjnq>*u0txkWR-HNAqFf2IC)8GqP(6%`L3r zDj0=2SvKym!j*#GlRUDz(YVSC_zgxlz>iOzS(DFtw>X?nsBRSK;Vngbdn^Aq!bpl# z;+qd5gz>e>P@#r~8?kz&mT00bQfHwpg^3DFkp+BuRVZWtT38hXFzq20L@N}o5{#u~ z{4(SnDz3$UV@5dtGu(JoZ$f0idb`|FL0q2;xv>H_kl7oyB)V(|%zSnYrc3iKcF2Re zOo%dac~O*cx88#=Bf4+q=iygtSmv^V!i&)OjaXJ_7QVfu@H=lif3H2r--|Ocg5-&hH*(q2H^{Ry-neAVlh?_cx?*jW`r0NQo@g{; zualfm74ZdExNQ_XtQ}udxi~_9uch1pU;1ZcJK~GkQd1A|(Md)ZMvB5qlZ<}amt0FW zGT2wasDDnVA2+Gbnh&Sgo2M9cgRvNsVtj5b1=yrdqN*6CFjU#-VP!i~jq{p*6}{^& z()+ZM(vu9LlZxSabq#lP&~}>tyRPvitJz99INCQ_0f>E*>Km0D&iW)xzA8I%eXolA z+vh{-@dFpSGycbJ2LvN`I3iZmW(oX2BcmhBRCz>WJw|Wdibq^GdO6y+f_Or5^%S1} zMnn>Ssz1Ejc%+SyL)6t(mZ?6!yNS`u%G{1$faE`J=H?J(K~lKDByxQ)GLCxhdM z8QDfFeH_Rq20Ht)jS2b=Ke2%=jaE(~6AmBx5Faw7CrT*;r97uOj)6W>KN#7ZeMgw0 zF^`(Y{QYl@nJZQEHBW16>~ems2nC2?ViGZ=ZDzDHe$|{+TKgR~OZXt1WZ4T3^*z(U zNM_+GO$`2S<53-rN&43zTzjQb6eBtL$XPHB+ttzdQmevOb~4%ql3kGlwY{~KV0SHv zKb!-Gs?G2B7!7Vrxmjo9AW**EIT&Rru&axa$?goK|5q2I_21Hes;luM(0`ztk#3b- z)C*$KegSS?*5DQ+O4AnccDEWi&Jx8xi_iY(vATR#LV63v6<7_=v=ZL>HX|*J<}pXg zN56TYJwJM@5ek7r93+do;Q+sJcf+vq5REn8-`!}hy~mwBj5_Rn!U{YpjZc0$r=|W* zYuQG8)EXRbT*wg8gZ7t2Drt=yvaHla=>t(0wib8PwW|M!V1+&X?Ez|0O`Y_${=JO) zy7M&6kgZb*qeuelJ9Ta+t=vJ2z3t4gO|m& z@w>L1yI_@myq}Sy{{}Qgl|I$an5H*qBj+vv#1m{bLbds)dB!BxCMdN>Z#RbfsIBO4 zEYo{PV%l$fQ-32fNRi85a3pIZc=`aNHXBK3iUNz*(ZzN61AKk!_%^a{h2AfT_Zeu! zkjBwh`WM^-4b95P)|{J|qy@;5&H42~#x7ld7!+%5&Ibn=RQ7%&h8mkPO_}BTyo!U{}rT`{A z#|UfDJi{`K-!zUBZD@Zxag@=X*yb*&z>WN!QAS!2Ra^W)Q0fQ<3Z;` zRjM4{3^D~AV-fJw_eLmR*uF+X(msuoO3!U8n=%U@Ta7SLiGWxmqWNd{7=LK9__hhg z-K5g$ew@hmC>U^DuPn|58{%>)I?S2_Yt%vq^KHj{iV1qh|WdHI}m92~@d9 z+B|TmA56_`nP-&gSEN21K!qRwu&B9{kP8^eKM*KK#v{h48}-Nq%NMrfMaPw`;|9Df`!*34i=Ur&M^)bS31f)< zCN2JjCyYB_CmOAL2b;_Uor00 zzAj6A*3cY@9wBzI_}nKxGsWit@p%|NJaL^-hu^u*=$7afFhhK%i_Z-4nJqpK!H2H} zyq04ZhE6T;jxLz&8b9e?h_6G!e~@&Alyuxbko1QaV3yYCb;0co@hKCZx5Vci@p(^t z-WQ+k;nAjpeSkad4A2w(k*@tl6L1HWax(Y4hdf_6E4 z#ug%*bN`vmHp%AL-?J%Ou)#>tv#NFk`cCnwEY9#V1~TlEfz!KBfq8=SS^- z)ga^jJ(B4aWEvCH9kOt>lHXry+;)R5>~N_uHa6&b5i}Rq>Lj(~lh1oY9Wd}WS2E!j zJ|r-+hX_pHDn7r7Hs%-cNfUoI6`!_3`c~pINkm&Gh)<*l7*!Xam12^^#ph-5=L_Pq zPkcTSpENNgZz?_m#pibMnJzwt_+*G|&D+d`Z-4Q#pZF{nW4EQ^^SSu*fcWeX-QoN2 zSs2>T<#tV)I=)~+qh+~;3k7_>_`E7U>&2&*Xoq6Nr;_+M#3xfopC&#<;?K$A^M&{v z6rY)K!bM`m=T`CQiXO5Es_p&D8WsxW%tyt{L#50^h0I4~%tuAcMOb{>{<9+q)FmTw-E4az^iun$N#4+}I83o{Q3G9L>u4+}6Kg`bCl&npx% z&qI01`wnPBTvS9GekTlxHmolUi8jRPH`)*vA%qQQ7Gj(ljfj(cG~!yn5qFATXvF%$ zYG}mXej`p5znTjxH54DTVNdZ3ZHRLowBcR>6E-Zw(dW0q!iUAD<~;%!DL%R4(_MVf zs1J%?Xw-G$7aA2uQE1ew0)|G#3WG*1^c(eK@e6Gl;j?LBhYoN7{_C{{@V*Y%q)8958U@QHEmhmN@ivbd>xaM*N6~Ayj{?40U zkALnR<29YVq=@o@t;UON69EA44!mS-R26>5`^Gr^rH-;Y{ME6Z@pdmfmAGP?@qoU) zqnwaHs@Uk~BorY<#5-RUBymD&J|#&?!qc`J3)weTrn11XhZR)(!X6W7@kI}3#PeHs z7@OG%g&`FsF08Mk_?dfztb{<>Rk&Dt)SSFzr|~koPN)@qg4KW1dHdYvE{ z{S9s1BkiA42}dendyJp?BfC*1l)gnLl-}7wQSK;LgTl{LDRA`a1pCvf7G$$NDxIhP z8{$MgI^q7fsP!SR)1&Itv3HG`G_hbjj0gsI5?f3&dHGWjVf^XiRkEU#ip>+Xl4%ql zc?uSyfHOb%KxhsA>|SFPn@ISe(g0T|t^Pk#8o%_h(J4i3k+2%mr&&HbV@^CT+Go7Q z<`RBrwYNuB?#UJtsE|UN%ddW7bPvSNpEA4>pS&PFmM{Jk0^n-{^EvlJxQcKIaC7s? zKO!mLzuy?s>@7jd<_gi$UkEPv3w6}(*3BVKx;nZzlyCU6uu-J)RC8YivW16Bgrfp)>8K@NK`Ydj z@Iptekb|mg7~rTkC^TRDdsn)f$7)o+<@wd_(17(lY@BuuP%O>DA6pe!k(c)wTZtcw z?wP<>9yXfr_rEr3X?OC&Uqiq(U*(Vr8Ga*$6q*W2>1)LD#BYq|L>K1vkpX$`aOjh=+^(4N(xfBe$3d)?>pvid9{zFM}Mpcn?_9uZ(flv zTHJ1k<9qNptxAU$>_>$p?Rfk~c05HL8{*WN#E#|$9b|0!G;o(bJ>~~v0IS$pX&LqQ zvD8~&;~TWZeDaS*r{uqBeEFw88lO3n6{n6eaPrAdMpM>6fn^tsfsNpywU>)mX+x5h!X9(1SOqJrrgT&ugGO z&!Z3nJ?}qLX^2#Q{mnSY<`F7bj)!D9oDZo4)BlG5VH7%^>Rg$BJp1W3Y?VqEu4gWb zuI!8rYh*z0|03UZ(kLcfej}-7$s<8`8<%Br6>`fAQYN(NI4xH$YB2#SltKd5w~g=06;!b#Kuse0zt zvO|3MIb$dz+&K8o7#7mSTJf|)eCBy$omDK`@Yp0tT%MQ5702+>KaHueWYA2#i!b=O zMmE3qg3*mNAT0gUhUmHqs`Bxai^gb{t&(Kj6vO94)njHzLsJU;;H+tByx}DX!gcS$ zm$ZUKn5;U*U05GN3N7BV3r}lZob2qW5==AXpJ`E%&-}}1t`+c&@E;qkP`FmPc(gvU z%MJSYiCuU>ba6-i)n%hLF@^b-V^3c0DDFZW)r8;L1y@9(yDC0J6Y2HfA*|1?7z6c3 z%>s41Y7Ama6|x-aFE$IbSS9#c_u-)x`K{NCW+Ce!jc>aCOk?(BT+u-@3rb zdUq{8Q!j49{!lowK)>FoKo`scjkuZ~%3pO9r;$=+%Tj$|FO>;D@VBKZD+?*EtFgqc zw%S#TXICoDbkv{us>(Di*yS0>ssKt+mS=`NpM|b^C z?slL`@$ICFnJ#LnV)#1vfU3pitbmA$HQH7|Ti>XH{u)}Gr^DWJte`NX3E{(7aeG!w z=m`(dJp42(PH}n^+*DgfXK@?Hqg~-m#4JZ9TddNh$`;&6WlxwYdm*g2A+dW~DX7P; zG7~=4RM{lO$6iBUtX7<_zh#!FR$8%>XH-m_4i#5vT~`I&U0p#1bzNQ0cq?AG z>aO?iRaH-Sbx-#Upx@8u_XqB0VW_TGRquXvJ{5wfDdfH-7(J$zC$+R=xC5%~4S+`_ zkAN<27w!s~xhJ;^Un0DsR;K73HAC-hg5DMA_V!_RYEeefdkmvj#5aKrIJ+btVP-Mb zNUkJh#&zp?;Q;@ujB8rjK-e4@H@hAW(dUS43$SdRQ({2TJc80 z{UFpvmHS3?LZ!y|@!tjq-?0+My_Ize_^OrZMYB6(cX-B|HjD|E;C;WmPU>5>F9;!qRsa>-EYUG6Rk z_hM))AARmWl)UGX(_d|mHO&);%BFd;`kj(-f?0olxj&t0PWFcmUl6VmnC@^K+Y=G< z6J|OgexpCi=@%ZW9UKm3Q}O6Klq#CBtmqU?mais;nIr(-(LX#Q&sf{&Il-@fy!0G& zNom+A+`|l234#lDs->!`;a_ClFdXggd+b8gc|h2k{Up?+Jl!}ToF^Po0cjZc_)vUW zwY(#vKO?CmK1wmoJD`Fvec=~{oSXi(s2gKfWI$$cG~Ty~;c>Z!=%U-i@GjxF+5?T- z$&IW})KaxybiXzHr0|3K$uQ6#OEF+upn-k|dw3pRCU-%MyxAV^CA7a>r%`QDsXJUK zv}MYP+`K!wsT4hF4=0z(IXGZ5fjYgkf4~N{L1s6nj zp1FI_;7h}w)gHs6cme-$7{fh_|0u!}k9_>c25c7A;y>=h^1K!Q@ge@>J^aT%FxcPW z4>jdIZmy9ubvO=by%&D=*HfYL&BqSe#8|Bp}xHw70qj?82w+S1ioPxx_ZuO zZ|b4NrK>uja~DR=MXwDFFN0^f$6OxX-lEemXu9h#RJD79yEG5~qYL~IOgUT85`Q8V zQQoL)H4OW%?&#~?%P-6`7;06^Ve}NjE5pM6PT!{D0u^Ll!w>nC0WQM#rAzwa?)tzV z%6(~EqTH7zpQ@l&wAJ3THVaxum4E3|B;7DF{8meT>@c+d>B!h2V{jvcZ1aCV+1jDs z{`Bv*=$_J5Il?I1FyYlGG-5)ysnCZD$mSmNDcO6KcNp>>-dL4q@~!#sMkjjss_-2` z4byJ(E8)?(5w$>V4IP>oo@erD@TBm1;Z_w2K{NElrXF5gN;oLL-?>SxHjLbxl%`J( zS93YL*mCahk|Olul<>{M{c168Ro?x5Yif8gw+oG#7M>w6fapYZcr?>xS4tgCmxFI@ zyew}cZk14u#T6A@e#0VT6c5Y@-Y5UvxLPW1T5>ztY~pXjhGSK1j2pUn%x6{>)=|1b=p z(uuu;gbqw8;S0Vx%?W71oba0(5FPRQ84zgwxcCgd{}t%OxcEq6fWBdJY7$;!T^x3k zsV2jTQiI0u!ksj3UU(}n4A(b>XR7C^vSXp(5YH?QUz&HRS{sv}MEM}?_yD%_;==F+ zoZwY!AfQBVwD6(mU|}v(s!$>e>Y}30vkEmpm=;X`R@(pc%>Dm$arh!mxRL2e<;2ZQ zsnS1WH~Z@~;bIMlu6KEb?YgwRlVj8=6k|jMan?wnm?>arm(MuK)h@v zTD%h7$)69QJa~mZidO);oTTr}f%USX&hj_%tUsn%525ot=Q z`m;o;O+%zJF+V-%{b>eRodQZU z&Df8iH?9vi35T_GAD#QGTA*qrdb<%kuJNZCH-v8!-czBdlC^tdLy7PiQ>rkPe{VRd zwXdF}fx%4bu8LzLMTF@Pi({U20Tu@I($$G~Nc2y8o>Wj}Qt+D0UsKYabab(aV5F6{Q><%S_rprS#|h;qKY| zH6sx>Ffz^%#G?lpeIUFpi?1Jv#y%1sn{U+1Pz3~AgdT7|tmxrHPlg%OC^Psg;BT!F zDIZBd&Ji*4DJ-}Mmoh9ER8eM#cH^*cOjK;%{Mpue8Ek zQON6VQ&ThxRy(Q#zQjZk_4ZUTq;3#JRbg-e^mySHS}c$m}uyeDFl&Zf=tEI zM+tIrYMS1*RZKgi(u499N!mR z{9Jg7FddIYPr`h~^;gu(B%GqwlcV`whr{0r^VDM1z4TJSR~mp5`Y6Ym?>`cLM2IoX zkRX&q>kUk)60dME)cu9RD?=Q3DM53tIjn-GTDOYpFeP#}y$Jh$Thxj)S|YvQ z#gwYOZ$TT6hWi80=}W|@LD z1az5#Em6TPemQ)DN#yy~%i$k{&$Q@{F8Ek2Fd*M8NOa!k%TVbKtgIcR_x=fMG6Gj& zAZh9xrecRIDonp56zRnj7!2fIjk4C=zN&)Huh1xKH{7wYsp|}%R8zP8_3#AVB?HU4 zYG;6nt`=74b+vOvI$bp$J&8zi4Zlgd-UwImIWtspkrkz4RQ`6@DumQxW`Sr1I`Ve- z);25*^PY;ZTn|*erbIv`?}nEP3*m48v4O<(CP>R`Dq!}e^UNNrCw?+nx4lbOaeNtwnJ7!2f7Ez`mc75v4cH9A{{ zJ2qyT8$KyIE7gA+ewgDY%FwdXUdccc&XteWE3JF9$qd4HdwVm|AG7e+ig%0pzDI2rNm z%7c6<(KDIe{?;y149N`kw~Z*%+pIC_Xz(PEVc=QtNfA-hl8d|ulSu+A3ut!+mI!Fe zF?s<#Ys?=mpv4$3!#OTNZ;S@LQOpo^=nbdnwM5*AD3(uos+)awWN#~O9&Tlv(M-3Z zpUjRq=unRcq;ak4i3UFxwFv55HHg2IbsCF1&`)-Uk4cdmW|n(79D}j>`BvLPt?4 z{WCYREeo!L0$3TcRK_|Rg00elp>3@;4$zLEjFYbE7TLhTn^4f!AXGRpl4m%f-k`L_ znh1v94-4pAfi994^ja3Dng#Ox%!HUmL zk6d4C$R&2$H-;}9s}ZptxMO1x>k6L~5tH7qMcQ+`M~0Tg%gI0!a`ham7q6~kO`Nfz z^uR$A*d^#?{4J?CKWVUHqQ!G?v{-cmDte)|kO>q0WA$O;ECw|uOnlN6+0Dnsnum#8 z77g{n6uwgW!W}t}-gKpn#YE16$sYwGuSK}YZx2O8k^$d znb?peD2)x-5=8{09|lEw^1^eNt!hM&Vy3&uV`SPm8G~1l1>&RxhwBSAj^RJnO5+EN zJn59TnPFLpG;c6Oll)oZs4UCU_zMF~r18@fX>69M^hX&x&ydLIEaCid>FG7#^yuZ# z(Cg5km1FoJGRE>g(O}%MvG!gJpA_vy{~8{d$xm0vbxhbgvNZ!ssCD@`qPv2+zjrb6 zj*WD0SyJ^!k?Z4;k%64hkbzu7PLEt8G~_zA48&`@mRxr*DC@*)vxZ!JWuyVM9T97T z;MY3-&kEtlE}O(OLnyZ+g>suQ<$9!UvN0ONLe^d@Mq%WU*M7^gRS%?yf+(F=}` z{DuEzoVn4PDzoE93SWuZpR;=qnm-{j78SOLwn6W<+ua}kb2{I4y!kBIt8ZoSRgpXS z{PDyR8qRs(V0NVkK&Re`g2jo8AJ59ck!=1M+ip&w7QJY6~^%44zP3~XSQv8dU<$b8S zIx?@=@Dr|t1#BdKCq~{_x_%NI)M!>4!p)EFu}`TgpZ9!QtpN)3{E}Sh=f#l-Cw!%r zqq=J%dxih91@#g6q-V{N$UOe5@u+fIczO;4GoHTWqjo2s^<=t3MOz|6m^~C0GZI+j zu_X!_z%a}RcbBAPk#?{&dZof0Jj$ME;jxX2guZO4GSvPrZLH*qr0iJaN=^f~e`sum za4`eZTofJ67hQ=K&I!Mf!*oHBVrVEI_+-b4$QjH@SJE?>QB>A^eg5Yw>A}jB>SVLDL|2_OPtH`P)W>Hk zk+3e(n!61V9ze@it&cb~1IOG#KWQtGC%c&DQgq@n1G*5q^6iF58%_u?VD)tH%0p9Fcs;ji&agM zkBPF}B-UO&CVI~V;#|&G53H!5@-a~sls<0%r&}VQ@%$qb@XR9AT?LTOi826bO(Ank z^aX}igm|wq1w^2r20a|gRwYy+mzh4%)#qM7`?f|F=PvRPBO zqp_I3lW;hBDlKO#Mj`2!bo*^v;2ShjhRBhfJ^Ld6<@v{Ca5^i`d4vVW2lDv4uF_95 zx1h!QBl+hr)64>OXTuN&B#w$zW#HT%^)#u8Q2g*KEU#C$fug z3{4FOPH36|r$aC({XQ5$ZM=e-_jp5E)G8=y`aQ5W9*w-x3MMfRJgwOSQ*Fg_RLJK~ z#HT&+5ktHK#w?7@1@!TG&k4AF{T5io#FXVRW(#ZtrX`&(pzU?hi!ULE3{7^x$n-$g zhomMwO~;1GYDSYPrK%r&$ld{Z=3>hxLU zRt}Qq5@=aNEi5z^O|Cnd^?9Ttv!mZ}5*15h%V#)xqNTkIKPiZf&>)6Sc5$;bh)rjQ zrjx!Y8pIBM8R^S$VGUx-SZIQnPmkD?NvCXiGT?NT2B*vmU^^!17r?eLh%pObfB7ad z3(fv6l8<(N2fM<5`!;eRdcxXNh&EfBic$Cfz!Ckv`0JYgMDoze?;>4LsN|kJWU)0l z(RJTOx}6&Aq3lb2aru6P!)m zP@-e33p&@?)E8akYU+ZPx|-UdPCrEQ;6dZ?bUPmu!jryt?hk{^LQ8wbK*2M=uO)M}1*;q2hd>bVQi zTR#FB+y8VrVCU9sT)DAsW6efta^J$^EJKC6YCAC->FQwTDT6gJRtF}ji-?S7Zj&|B zcny(NKf0g7mMBI84g58-MQA-)^)7fmny-%TTE$)|Rp@LtgEG`;l!2VxJAbkgTVVgv z3wLS~wH3iP#dM)wT=X5jT!xlS*F`Ke)^NV>WPNZ^H2IHK@#{5MnW#8(2BHeBKQ}7k zTN&+`BSf=-q_|AyUp==1F8|M>dJ<{tDWnIQ?>x zTxpXYc1p|WxBOj`%{}Su3Ir>h42CrnL(AjWb<`gQn?0Gjj^8Js#h(Bbr8K9J$S z=v$(1+DE&zXsXJ>X^2s)^P)w9jj4wlXoCSkV~*p88z41uyQmZG8Pn7@hiQ-wyQ4bn zz4EZTOd;=gn2j5jzg+06?dM&XYivR~cZ|+A{v_SnG5RSd%wh&hkh(uF3i(QzQj7uw z0GD-wc$uk9N6c6wDV5nLWsM%!=JlB#@%PB! zvN_txf)jJJeu~~4HBR|I38fBW+}LX$FENDGS@Tz9`n{-Dq095={T|UTg?H6rvaZii z{#7$bX?j7_$q8RFpoGT<3xUVqGo_fveQ~vA33ZjaM*5&Ti=uY)W1*sq z{Fk67J)>Jpy6ZYsr&dsXZE>_$YV~*FN{7(TpgMl0Og4Fr5X(n-X_SYHARIY^ky-5xgK8geU9{Ul6U+z!A=b zFN{tSA`BeSzUk<~e$iz)OfMkc$&EFZ2C5#xFS0-Rl}7v2Gq>B3*8*4Z=uv^3 zJMf51G;lL~Bk{nok-PdzUzbL!IquICT2?@bg(eEPW2#;OH^Y@u^=9cwEjDC`a(=>? z=~o*}!UAR?;Nz+K$o~V1pl-JqZ#V_d&XO|D_+cC>$-iWV=fy);L?sQQ6S zRS_L?XfCHVW0o*$7Uie7W>N7ABX6fgXA4|T)E>X@KTQoRnb7NiEBXXC9MdMvoTsf! zo6Bh%mD2y*(ViR!7O5B6{s1D^`lef=rc&PCTALCrV`O|2)k^C!}e5o!D;1i#v3@IAxva zsjz|w@~M;gixe_{M#-#O%tLpKj^?4^mqqX7&zWvM9kI#d$(l~aQzY0(KCEKYP~rpcd~vEpMLD^6W4l6M|X zPA!I>f?6;WEH6c^+~3ffnL^H>dNRU z{*^SkGDF|M!m*$$AEeQhpaNl{D~~gL(do)AGrruVH;tak2=r+SdK{^9Ize_>pD||Q=1z~7BJB7vpN@Klpw3-rqmQTzucO5nI zP--ZAr8Hq`w3Or51MX%ESoJy(^wYHHJ^c0==C0!g1%g!v2A{|b!)PjC#sRO61E;PE z%M=!zj4G@>Jym!kg-x$fGMlJ^&1DIBJbpVwQ#PN?$QUfR6dtC;IM}*Hk-#Dv_WKL^NFJ0 zX}9{Ue!E3hj!>prL^<})H1`vKkukq-riq`}GgI#;n#}mHLC1$vR*nM-8%|R>no~&p zHYKrMIr=V+zQF&OMme65hw@(vUx^ZL-7^S{xF$LowYw$??}*MaSBdBKu;(v{-p6;F zWv&vhC=ezp@vX5+yluvcH*~Bxb(J`%@Zw}tg4{qn$$23Y_)b9Umqx9dHiyq;rWxaA z5$@}?0>Y=-0>9tu^Mu3@D2CnX4EUTD(dqJA0#2vL=}JyBteI*NtylAZNfE5|>Z zMpM4gfuOr;qnr5G(rC&L3IwYu44(Tjo)yeoe6tx(Zqf1N)OF-Tg()YaBfny|p&TsC zykL8-SMTX_yhfg0dc)iFK{i){4&9t?CGl+e4o+{{NTqby?51gFa~=$qW+kzW9<0-X zrsuL@-4ejY8BRU&6o@2?1`oZVFBARt^kV-$is4a?msDk6yJM~(F#pPvavPqq395F-%eF#L^yR5y*P(yF-2y^7}1_wEck3!6yEfnt?%5A>h6tx zmE%{-Q`#JB)F#;{Go*-eC~l&LpZM(n?k36-d5i2u+^GpauZM36Kc$0vqeUFNmCrKt zE*2Uylv{_^-xp<1`(5v&%73c-?3ErdzXmaU%b$BigV-^4Xu2(%7g)s5e;$bL;l9w| z^%)CH@Oo8`*9)hKmx-K?`BU^Op`%}wQ$_rQ?o25W){dyv!_oV5nA$1wa=J1Axp3`ZIYhKpK5Ov1~H|iCp-H7&(U!?Ozo7OmKgPP5|SC!Fpyk~_rr}v^<~(c zS$H%iqB$MDDWZvTe%gB(ACsYFTN7rXiLD9x^|ofZp9XaFU0`PS)=>87AymUpioP{q ztn`sGL2j=WxqI2+>BRGHikvP)mRcW*-qVtQ)^9%DTO;%0Z~o+TPj_7WDIftpE`A^G zL4REQZhwlKW{!*Rzytn0Td%7aK`|rJ&srk=kcLR#QzB`CTX;aZ>+{izvmnL#p?A_n zORvgf$qf)Os+8V58hs#(>x;p9pz41#=IdWPVrCCISak7C+viKw|BODu<8TW%kXXOn zVHiApp};1CC*5B7c>%&8{?`;){XQ*s{-fj0sYkmnD(oR~g0Y#B8vh-=jT06C*^;uL zJ96@i(u`6?K2DWhak8>OCY10Qzx%-5K!}+<%W)m<)5IDyP&U%QLz>%tUj@hQpwO~4 z*v3K=Yp@z9t$mcaA@G0VsoH8V!%sADM>Uu|&yG!J3ZBzo_H5z4>p1RH4Q3y)&;+xW zQZRci@JHLZt{S8=&vrTl^|PIJLDhn*$0nqHA4jj|_0$ z0vMX8*~RkkSa5PF9{Em09}=!Nhb%XOJPCh&xrXB~Gq@0KJ3rBj-wBWKF;4qV+_QFI|_)Ib$V(2gIXbNTELB@AREh~G0(2r+aah<%|)>_d=X!?R>8la*FZCK{QAaneU4 z1U0)nIC&NzvZK?XRtn#s8GSTT_DghDYrZmM9*xYEC9NW45{--q(P+epd(cNCrJ)o> zVxo}?@qm9%G~#2_z>G)@S|Zh@AyS+YNgs`539+hk_-!F`YqnP&$L+L%O6f%VSpOFM z{*bvfdqNMgsY|T#9R5(q+?pLzKuoOJZIl)KD)?LL72|375XCfM_;BiR$4-S2>Ee!I zJ!88#;X9@`n6>mq0~$9ugkP9avI6v72tC=j>9HK9ddjrr6Qx@P0r^#t?|R1`;e_1T zO1XY*6-xO*ur6(;U^g)iZ4#=Vzm1oV`7ZF_AuIU<4pEUU%HOd{f1O`tHJv!7s_OlQ)Z!gEJ zysl>&35_t#LWExMLHS6N7KihU{|Mh_R_WzgY&CUCu2mI0>K{ zW)me~URR2tu>)h>`KpwOqT%?dX*T?%pjN0sEpq_%x7qpt>Zv4ZGVs{f!d>8j*fM8q zBlk8s>Ws}~UguM%FMVWQyg|X?Dagy#3_@#Nv4i|qv(1f8e?8bU?$|Q^x7ozz81Aw- zk`S17$-`XCI`M0>)c}ei^;4v}$yzZ>QyM?9C5jlJ0cEkHLccjsz^?k)nF4GmvY-YU zb@e`b4pTM7QVcc{Ub38*bIm?0CsgWMg;b2~E{T1RGfFK_Y4b9pHp%i#qC9qp6XvL} z^!b}=rhp6`YM?#K_xUtc$x04+ePs8gG3B<=9Moe-tT?qIetksPsB4&;gSerwotoNY z$@K2jigPcIU7N!UH3iL~Mre{)(~xb7a*Wg{2Z=S0CLq>)9-e|`V$J99kW3W+8TdvN z9|vTTWq9nL9RHCFE-U`~EI3j87w71`-!niC!_)1oW`;D`OFU#9Z^J zW1a%RMjZ@p#Td7N$Wj+&Gpx0ln-cjkQz(}3X-t6h+PK(N*}}DeXwnAgRw|aArf}9^ z23DeelVXz#Ja(7EVzpWcldlRhb?IHxkhfl_HH#Dr3b!^P0cRwdAxSF z)#~&4{0_TKbhraH(dqC7{5Ffn=5$G8Z(p~SEAaSS7Ms`a^#(&hyDen(y6i5G#}Rb; zyl}kMk51fN-%+akd+ar?Fhk#V^z*FP=)w%$!VD*I#L~wjmRf3R`W5zsBPVW`Xmz=Q zUc24z_js&XpU$+P| zh|AWA`58JsR=>f5ZmfzG76e0Xo73-gz>zbH-DUH;Lw36d4%hfXzCh69k`7gESd?Ah zxA|OfqS@j11#EVoE$Ftx(Hoa5V6!@5gkE&)y7jq|r9=I0uD}I6u-M@UwBPEoyX_XZ zHskg9tPZy$8wTi?yv^$Yvkdop(6OECJ09q^>ISaXo|Z-K zP)`tw;gyqTR*V@kbkxiY;_21a&OkI@&*}ZpmBVZD3Nj#tie5h48+{##om~KY^}~%N zuS2u~M@7*auvtPrzZFi51iV3!RXF%(Kn&Wwfq)N$&t>%n?5=I>NdHVyW1D=!TGO%%jU9MZElO(N;ST`VZ*fSe7n!(cLe;-pvz+i>*8|; zyl%HI;WJV7z&vRHzm-EFb?LV*C(a@$=&pW7=k(wd*XdvtVa zy|vJizGEO|Q_O;XT^;LM;0w5dfQZc+3vDPl zkL`EIk_IG0$3DoRxk60eC*sC#aHAHRVkP|?E=J|tHkSxP675#_A6$O$*?c~*O`3zTxB#^l~xY|H^_V{#KlwLUP+S=(U=1l5b=N{>C+J7uYH7-Boa)Qka z`aB+xN$?C_kJo1R+g!nr-Ql+(k=p>q9(%Zauf^~2`NRO6X!P0LLD2&h>>i6RAi@D) zk96qHJ=?f~fF}elGZe7daH-4Uvj?%VSp&{c&}ns2V#=zPwr86Ky}1({T>4(EaBHh6 zHlW1mbjTjg=5}Cb7W9MBvxG3gviXIo3V~Z73)&d6E=7JNQ4$+U%=`0og6uX-% zNZ&Cm5lyWZ3!G^?bs^x3i00oP>t0~T4%+Dm_<~jkxGn4mAnFK#Pr}B*LUo*m9v+9! zYxTLo4+6OzPSNdz({)Y<@D&>IK~?Oqsh<-qK|5RlbvQkK;Ih-|b@*&Hr_UhBQa@PjH19`u3r^BkQa^(sxRnb@d~$3;S6ejIy~LqR(cvhTJ}f+wSu^Js$9O0Z@Cd z&mRi7CGcE}vh&klH9|#;R=`^|57g&KiQVgKxY`U{3TRa*gNW*CXP}r3JGq7q8#?z$ zix=9zcl`wgL3_~cbbA~SZUyZSXLwycpTq9;g}~eSy*9*61D8d4YO{gS_j_zXCxkXO zFo(b{i$CadTHSsKG>M0o4jwwPn#&J5f*~;ofu}P7hTP%yc)`@dKWq@cxk2uTA0#1V zhW;LsPsnb_H4~T$DfV0E%dpu@%OkO(skR#P|)oPxt)F+oPHKXtHUNr zC!UNg%r0=+!AaR{UQfsi$b!qU20U)?40ecjLLu0wKe4j2RJ{n60Sg>{G3d9uLJp_R zYIg)&9=8W-fJF*fL0XeSnyFt@2VSc%L$?qFV&C@Ou~^Rnt1Bdevb#J^Kim&>+TCzr z8r&&_wk``$m1VvQbcoFc!g;IA2^vUahfYI#}C72dG$rVEU3_+y@ z;&?do?Xg2d2Y2eg<~Txle&83SV}T=2a`|aH^+5*8!`2>YyMxpaTP>S5#af{M{5w|C z-|4DQ!$~h({DuRyaPbw!0e!;1eGrehML*owuu$fJzNNp`#DtR>SYy*_nm@g0TD7$^ z(JL8F7G^>UEgsg`2e%z`_?&KUFbMNCpFQLUrv)La1x_79uwo5(SkJ4j&%87s0$kp1u`i z>ie0`V&e)j^oocPopU_arU1OE(;Kq;f?y}?)?mQxgE<$(e-IJwGcQbT-64+%pDgwOh&!IWI(^tPI3P%-CPtpV zrSIKCbgjUWuIHc)hxryX{o7d29u}K36oOl(Kx(_q3L^yf2G+vnhoj&Q1XE?8B2hFy zgu^%__kxA=!mJJOfq2pD588rOh!F5RM}m-e4_Dx}IDMGWR=*YIZ+@rS7J|9D)dh1s zuL!YZ(o^5VW$3**0Dd}@p<`kL-(9$_16uG)tXHY4)Z%8e&ILZz12b$u4-6QDzAjH7 z5VU|n^uvE4c@mf5Zj=OW8-mFUTykr5D1(6dwY4+QEFk-~PCe4%g9=|h+=ouzoFG!* zyI~sX#E4rw_;i23?R9{mw}rei;%=+QZgKm;B*B!$>V%1o73OVlfy`|I)pjy7w|pna zgw^8=!n7P_H(rZ70Ff9_(qn^pu>}VLx$<&JhOS+xyiH9-VTP`0G>P79Q`4#d`x8)jFd_0fY<>uz#SknJ1zccdpned%THRN$ z1X7)~ZZB705glHi#bI@e5EBQ%`G>>+1h*h)Fo|*!Z}0@yBW`&H|$h3UJr`Ke2L zA+M%S0XSR>tTZ{?Hn+_lat2|I3WjA3SRs^z3ARL{tpW&u-9f80=zt{^yB%DfBV_Ty zR2e+87gix8P@N|s6oz#mK+NiNKm_XWJ0Kzs1}vflmQ%do?lIROvi@nsy}m!P!C( z+Jme@Feo)&v!OaWA6DVOMZk2(;ROkXc*Ys@di*YTzzuPk7d1y|zHp|c}C@u~jGxQ3Fm~ik|;i>6b;DD$ZCc0qR zd@w|OGu#7~^@ooPeElfN}A9six)o zoWQuC+X^v@%?{=VmNmiU!(x>~w8I^9FnV1iORsGZDW~t$f`dmfKYgEyo?TdKbC$BP zBShw+!()LdsLus!H?Vppx?mm6>Gs3oj5|o3TArR zfo95Uk}$_ji=7V#kyFu!!)s=p*#$VW3vgx^K;5J|vkP!$7vRh;fcZmWXLbS3>;jl< zKb+YGpu5~>b^*@p0-V_eII|0YH>l3+0-V_eII|02_Kw<_U4R?8GrItqt%oza0Lp2} zObh1Z=+>ECfHS)QXLbS3>;fn|D5ty&aP<8>Is8p?$yHdR%)1r!sdo(!Bo)s^<%8nu z3)0^W{2ql*ik0AEQgk#a(Fqo$d4C^^Pu=#{bchf0a^lh?2v2wST~p1=aZf zi>hIJDP);H0M2;8F)TP+<%RcUy%xN|4#&WpupbZiE8xT&oYC>afe#TaE?rfC*8TK) z8+1?Us+{v)#=VnEVfYvH4KI!?MX^HPFev{TP^r?^p!bVDnv1-LH&*4Dd}}_u(TQ>^ z;wyx+s+8u@;&6O)-Y=T|l-9PlU)^2mIXeD#PH4-3oT#nsiE=CBD}_9!6dIC~*nd_T zpUt&J6((DsimB7FVo8U8S!z#ex^X&93Rcyi!Pc8V!>9_ zjl2WxZfCmgP~EKfIEKG6wk&^7?1=}8nF1AUMJl?0w3DPxQ-x+`oEUwk?VfZzZ!`e8=|0R6IlmfzXviScpr5J1et19%7KRz_II!^74ZuG}nb1$Q0%})dIMVgwJK*cI+ zd!-BrFd|p57OzBi@*F6lL|_6N}oMDzLn#}dH6bEsD}!0fdRnaTN^Jc*{GNY z0~(JeS~r@EiDdsCM#t1gF<^{3d1x0*GYIo8mnl$rhn}d4?-2a+v_>U&mRi8neQ{oV zp2?>%^W(P(5fus%=8TL?)7X zz=h{=w@LGndJpqC_zdmH4-XYBjnCuwPvsWqEmPqmZ3|`mOY`)XOrM)aFFYE*Xkv&4 z;)?64OqhMq^7vL0aXPU)zEtQoUn@=poz((WoD?oJ(3b_$SGs|)N?II=58wo=+8!0O z=c8b~2QsC^Hd@ix7}!R(HkLC+Y}QiFGF=m~DP{@`2HeDQ7U${a;3V($@#GVh!VEkR zbDmCx&niy~YUATME6fX9lJjMw=C`_4Lkm)g)QShNMXmDm>ov%H<+^`gOEL?M~E+3 zz+O%ldM`*TWj*0@Qp(gD+|ur~@ew>fWC6LtU2Nn({z2(Kn8H^|*KU9)jGwT8T--K< zIHrSG(G>rY69=qq&>z~9=}VtPX2<+5lGljj>)YSX*h zY>7fIsruIVa8B5ODM&+gYDP-8#><72)^ae9%|xDluTsxV@m(Yp(l2(F6UaI!4JgAYlseJQmabI z&#B-v3TWOQf379hg@RY^h>Yl^04d4pwTvh9D*Uvu9G+lI+i68NIe{MoPva-1K=lby z)!z8!oN(zvog}@r4`x6km{KB1m!kUn;*&JBwSiAXiAnFh4134pAkX`hYO+=0%+=gt zf~Wkrp|B7S#oQ&$gU{GlNZkJTP7WSM#59s0RTi$(!j|#ZEYxe|yoDyOSQrkQc%lp# zxiuJ>ykfyvjE5HLpRd_34bFFo1b#qX-SYrgkusharCvktzMNZqdi$7e34nTto~W^RACd zfypujT)0J=JpsQm%k*W(U#uwcaH6$7g+l(K6#u}y>eda$l(hK!rz9>;n@54H#ZaA5 z6m7gbHcZshBGWuQndVS3=^l1NrEBUo@ePagFRiFlnj?>-j>1=><|Vb?@J);K@2jW~ z3-u6hb*Zc7cB0Bh;_OTOD!@_&fE7iC4{?PL-55!nla>WR9ShPw=w`$NpTYzBWEd;p zs+H>!uD#l1lCmva`?T-@GY-6vmfNfrF!udeq_&w8zEQs+vIg}|tTrh8$dsyUP#bG% zEBS90p^s{y7Z#8>*;nJWLxgjyRWT$^7OF3;tzE3C4*je`U2ALcQU+;VS+2sZKQKAo zS5sZ*Na|%GF<22d){7}n(NyHSQDb&V((#eiO4zx5-_X{0=;n@OD163_1RLEFX+wRj z!1DpQ0eN!c)wWQ^S5)iW$Ji%9&8!EOM5R0ry zy?=e}bHc3*;QHQ)-sr8y+6#s4Oet~hw<6ySwN;whI-YDd=msy%WZ=mz4NsI*)cmt5 zW7AI$NKgTyKoEdyw!$=)#%lPL~81q!MiJvzlJoWR2pA>=n zlaaSkaOBz}@77wFSJ7ugg|>^+N}m9q0Y{z7+4aBmwJo^*q$QeewR(G`fO$S!wRnG# zIds8dlNUwLUrb*V?SOmIzbGm!PUm}C;<3xKjnncy4>RIp;Cob}LCOo3Xfx6iZ7L<2 z&H+g?w$$=jTn%oDedkZ5)mQRxA{4$7{WBNRjg)t7vP;vp)s|%8JP(L(06 zK(&=*zU*Wx($70;KjFDMRM<^lM2(r1Bd5=aP_m~coxYYbi}%Cd+F9h(w49ox4|U7m|U*BH){`&{z}$S3;WJGBQ*<`&PtTl=oC8HkaTTr#(~MJ-T+Zq)6)+WEPL zpQJ7C)&4t6cu)l+o5)PadPpV!1CH1B^3cI=Za-UU@p0`0KIfncJ{Q$JxuFQha_71x?Oh}wTvyS5Dr(*mvg_3T3Q_M5u~3IEmu;oW>v8%*a@XzjThHT88v{F}iLNu16QTV>tB&r*|JK%L@nhr`WJfnj+d>)dUP2rl^S-eKd0Qm9w=AhL_Tz>) z(AksWC+W$bYk%T|Weg!z^2V7`G6`CSuKlgnlUn<&-)b*MJ$@sTSz58FCb2k&X;qfc zZd_uZa3|BODxu5J{aoT6P1`!gy?=U)`&7d?oEnDzhn8`F*OFcD7M_OBgmGlnyDK|! zoa5iqGVUF13uXM_6vjP`8P|hLc>>&!Ep%>W_(>7S?=^U3b_+R6^=_fnQWY`PEudhl z#6iCIQgg5Hv&@K|6uuHYaqaDc(1)!PpYzV8<}nH{=k`&+hUX;i<}Y7r?gv^a5GH=0 zV5y-WXtgw*A7IH!;}o_;)#2v0i8l)j&s8WqIDihd-&u-Uw@ZYCI8a057NTl_YERJH z?Gp2I4L?aU+b34@LX!%ncMF9wJs5Ba+`^lju!8{t1s*5tVG4*!?m*w>C0@{1?1{E< z*9}6qbF;KsKO1Y8xoyKU%7vDZC95YWO6#;ozwv8h%pnvTE?ktcd3?(<@>x zIBA(gj8Vj&@)NJ}<;%Z?vqsHbU|Pu`j*d5s=lrjhJF z;{lmVwnQ077go`}l7xeQRc=6*?3c9-l<`k4(}xBU+TYj6!x+->WCS~?!7a03pLMNX zuzz9jQUzOj_`<|JEntWD#K=UN9lCikNAlnVGH6Go)ND)iY{^}K!Hl!)sgv7AJ#2JP z;-(hdKniQRJ$H`+X5w%w4$kN&tWB*wZA7BKrnXLRo;Mg238xLkPEp^N zHL``1N^u7WbCP@7f5JmC*O&+3GclR_M$!m5IAr^4*q`eO1H7?T=(WbY5<24CW{pW*YVn$5_ZaQH){PIW5sA zi=VgL++_}svoFn|4OBvQwHq%*U%eFVvT4w!7HI81_7zA+XC*pi@v-IR9(16-mBlM= z%tOxdn|h$aQZP>IZrYwF-997Hm6P5HCRTI&>gDE9?&V5jCPpW?oSv5&3x8|Hc=+;k ze7hXekm1{@uXHCfA4Vb0##ze^by_+yH}Nws9AtXa8Lq2j3>k2GRB8Nz#N)yX=75t7 z08hfW%+Ms`!%mqbembrdu}^Tn<`(8d_?#565@}X-B9G^@!&FFVQohzBkv}o+sJT!A@;w64qnCOq;@?N#fks-8^N@jTv zd9O{}f(lzi+o0gJiEaF(u(<+Vt7`_;EKj_^&k37rNv#55q9udFs%vJ>D_j^(Q4wa% znvux4bS}u2sO-Hcns`ZQ!u&Q~vcB>31a-ZJnIw87nTj5iiy!! zb%{*^-zj457k9{<=@>Ebi|r$H)AtwLgWfTImnuDsWBdk>nK7`ZeBfvcBQ|M?H8P@j zM|?~pqDrPgdZ(fAIaR@>57#Anp2N?Mm^;U0YQg|*pi;UKC0;v+Umh`60e9DM$DU_*?7mhDK79nPJDJm@EuCPTk+VukeHTyH1A2U@l~R zv)tPq`F4R#_zTmg&g)raJefwwGD(Jsts9B2x;mipdlT2Sd0A~8dL`@ixAmy&CA^`Q z(?x!~UJoaUuHKy}H3E8mccPc@g%J?{GDy~uC0zxkEB&JWMJ9;!VlcyjJ@utZh<}+T zRayICTQ5YGVW=0^5$*pI%u{9C);_908l@_03!js+Tp}IVm#}eg*n>16NBb9O8z|%R zqI$7u8~vkgTZIO<%wBk6RPTkaWDsM#FdSfQ;HuH!2NTBUGOm<)v4DbCqV4>O&$&8G zk@1E{FsA4M;IL{Hw;ltOp~79YoeXCaUIofTN2{WS-u6nF(kbUuSy3U5HiPhlFoE^X zBQu@z{1Lys8jYBbL0_WdY%@A+Q#&fD8y71V3xl1*AuPBtF*gwD1kdK9ILtoxw_DQA`y>W~EUe)!CIs#!a+@@v=NPbvJRX z!h|%_BDAM_-BWF1YG)b?-k_E<7CeSJ=hqDs7$ChZZc@5dkvNGN(PoXk0$V(W-xE_p z3VclG9y}oP+0ah-tk_`$c6i37qPlLIW-=1brv zDQJM9C4N+aFtNmNicj3JW(cZ$G~SY-^KqHZzuOW&ae9_`YK`8`OrliMTjJdp)Qz8c z-e(c+Ec{>1MruZv)R>3#f0s$JxW>dPFRam9h3;Y*V-Y66$XJVT%2xTHJfhRK z$~#l2btk2k?%*c9Iq*apnf#|bl*f`XNp23jm_{bw&_fWb{7xE~d{2Qek;z9GnPleT zcc$gSRvi~k-7deVuz?=TG&CtneENyTZjku&m%rWAi|-Oo8pfjDJBGH7tH#J+uGIlP zYwaSsWFr_xtK5ie7zb!uDdW4v^@gznI<~pa;DCT35+}2L^Nj{S6T8UV_n3yfsE)nk zGnv6nZx)xv&CTKuG8?X@@UmH46*o7Fzv&@}S= z#8E2O51sg5U7DT5p7L<|(l%(M%3Xw^j3-ScdH`~nssaO~nKTVhpiInSpIX&bGiI?} zZ93=F1_sSCoE4pw7mh3$~;`GW4Ki!p?RB+(^tAmF4Q?hTkvY`;T#6Vz!yv|pA(^(nj}c5GhL_8H zc$c;z&)vVpP{v|7N)JHHVs^qjS{$!Hn26w8#v=HPOzPil7bl&9U1SLDO6c|7o*??J zH;kKGtoUXKUzsqE4rj?Es7RPZha(dD=+K@>r+^}igjK*(jt-~DBRXwsSeHVbIHitZ zba-3B+%+$fhk_`)JZImNFn7&M^$;XFd@PL&#uNw>8QhpKG=uT9T!`wpaO!4ouEK^i zv-SfMR(#6|UooBOR&}paT2Z9}Prx09aheiruEBc2?v}x!>PesOMcjs!SL8cI7d$m8 zLf)f5$nFg}e16F82fw{O(GdjqzOr6UDx43gt|7T5B<_X`uaNQB4M`gzZ5re>7a_x# zC@ubNC8Uvr+;}dJBP9CVei1U8JKPq?!0d+ z$wEj(oUU6B&9^nNQ+-jPC**dAAhA~vveH35YKzC}w%Hsm8zh=`+8~9PoOKp5R|Opo zuhs7Ww0)4A)d{%-y^y>a=mjZjX$~uzH_YvZ^z1$t_F67mHd zkS8qQfd8x>Nc#raOev#iQf^CV?jub203QE7F*B{sTEyf2ofeDNVBfVl$?QO z9$o6K^m3|8O`e{B0T)ia_2EtRoeI)p=TXwPx?Pa=GX&`&Ep`jZYi)J;f#pDtkOgN; zOJ*+&;T-0WoE-9adq6RLHb`a{^oD{Vi!ESbv)tL-{$K#|216!T$UE%vLNYv@o*uHn zLjGc#8$puSj?&RjVy|-r>AQBLL6-XQkT@}Y*Cfl`+m`xs3qb!Nw;tqJ_t*k3Howm* zy1-1hJ&*zwGOp8_RLJip=| zF5eH@=5{(DU2PDO;(0+k-9Au<0O)}&pvP@>J0MRXB(sLh=OBC8! zx-|fuV_WABiXuo;!0pEQX03iO^k8oMH0x)96Du7E4o>I{|A8@w9Kev;F94b2AyF+> z&|Ee_xjj9nf?Bo9Af^s&ZC_gYg*+tV-R$+9^3!96yzd-2AGhqa06M+^yp{_I89~$B zU`{-cUmg;OIw0jHI&pJ-GD*450f}7$IPI?wa_(9n8KVnQg8D-)5tGe9yO73*>l1B1w!((S+`r=de47W-wz?r5CS<;Z)Ry3Zoqji@bcF|U!T(A{p>@^S z1?~V&E$e^>b3;zZsT+cHwUCd}8gl#mE*s=j-oFD9cpfa;u#fBEg(UGd3v@2pLF>HE zAY_=dy2M}ra#~xYqMz43!4; z8@O6<*XekoOIVj)9-Tg|dO_;!bo6p!^?Kz6P_OhjAuyi3Ns{DzJLr=|^twV2s(=K6 z1qUQ85NL!%NUkgGpM3=Q>GV5-q8rjDg9orfDsPVs(ujgZ^oc%a$m*aW0L|SBng-Ma zrv_Hk4q33lU06We{Vu;1qK6>$YBYCi`mX&>bkWlK@r4=sCSlkB^v=@ycKMKQJLI;8 zEFm{^<@EZTe!D#w@cSXzu-z7*fh>(EA$A0Fi6dwbW607Q6d?&Tco9DcaloU<=U$Lc z8z^Bg-~}6N_qjqoKez_J2MntSiHy;X?x$_eVbSa5l^~~Ay)2e$$SPqab?YbLikBrZ?isT+BlRzMEdw4EwG ztv_~WcE+9gA^Cd{QZ$P=k#i8_DCo06yx{Oa)Bw3%DT8Pv2`<+a0>rE$AQu7wg`_M& zr!^GvSX}`-dSJ(jT&iuMvSUG6Zh=V|7~WtITq*IQHc(TTGuyxk``uFAXX|m!XIKId zeO7SJU=tw*@!4I#MwbO3z`coR|En==tO%An4O?{1EWI?^bsc%QC)7V1Ak_zcRRB~pimjr4s!L*8fLKCDmo|!TdRJ z3+(C0*b<{x8E;NKwK5l-=o-#NYaXnRnY?zG|EKx`os4r9$~hy+gDc6Lk>nrn;EOhA zWSinT$Qfz%E)C3GluQ~~f1tiAmy7N=P=8_G+wjc#>NfKic?12I%n9}nc$auLLY}#I z4%C-%%TYI}et1^5x)!MXl^1)X)lz-y*|@#Ns$6)Yzp)AfH&!*l`+<#B%i%^;V-?h8 zvr0PQpH<`yFBkqrl3}^=FY>Is2md0kj1I)V$TMJN_!pezLB}2}uFV4M(F3pN7iE>e z`!m6hk95yMg(a(U(7V6A-d1}3vHDxi=EqR7GwCL)epkB5V$wMBJXPQJyis^C&=Z+6>u9=3lW!#5!|1$aY61R5&UZpDL;J$xDPh_#JvIuLL()LRmMswFm-~7G)d@hHnUWXQ+SW?krCa%h+nPmG!W1nA= zE8X>M{W+Yli)oYe^wz=#w{SmGN_yIb<~~>dKn_!zcGO+%NKQe?bcEW!Ssy573UI43 zw#ngj0CLOu4qw)GIs_ekj&IFi(w&|~KdM%%BbcC{j?{lFG^@o7$v$OD2_ntt))(q8 z*VmqeE_tE8H8%>$b+)`%zcPnuks@2HBAcH&79u&7h~zu$u!0x~CL@muT9^t-Gx9ut ztlpW$7q1|B`53%=835?=9U9O$CEuZkj)_Tfq>jl+yI`6jyvt<@Fd-@LP{F_I_XrbK zKmk=6BGtL$)B>ii`?dOi34Zkxrf>>pFQ?tJEl7~6@Eo3BOsT<$*%c{ushF|A%24q@ zh!#v>Pg|2$-q(!3ub5xAB6$gAFut9)29Hxl(!0Nby`^yje1bO05P3lRleg-7aV0^E z&*g+YT2XXD9@~H$wladE1GX>hE*Bi(vB92=+Zwc3r11OopYu}Td-dX}0sW8X@0CX= zpXa`t8KGF(P{wUQMIYC9WRAJtu!5elHGa9&kV@!~x1p-o@RLHoB`E|f+|gLfzp5qR z%gpd}1U#A~Ae;v;krJQQ|BK_l(jxac15J>7O^@8s(?rfhI9q;EzpKDd#udDWpynOz z`=g(}s9z-%)$2q)UoB8YUi#|G`g%?npnhZQk&7uMwq^k8d!l}yrgrm*`YX_jUnlJm zeOovS+CyU-v%2c5_ChawQ{PLNs%@A8@dN77u?trB(8KgZ=s)!(!U8iG{8T{>gFuQ? zxsfU%i$68RPkvi}OjyaZt9q|BOesb^3#y^%uXiX;t&e>W`r^AJ1!&cE_3a9Bn5I)4 z(3+G%QOm%NQqgaP!8e0o%NgVj))TAEWRO!WbK@AQ5mQ+wmta<)b z%X8jU$x?^D+8PfEpQt6&T9TyC@7B}IaO#k@rM4>%31^1me@-)`J5xca4|?mt#VJMn2dBb$N`_Q5tmMMZ1}1pcO`|BP3u?&4qG4o zq6Ym{8An4p+iEy?Vp}ud71H2ElA+dVP>M4{)1efVQ6kBL(AWJMp671UpoJJ%f>wPB zTG9U-w5l~|fzz$vp3$K7S7vBBv<@ZFBJTEiOM{E&-qqms76VN1`bP?0hfWi(0z*zJ zVi-gF-w1a^Ut1o_maeE6?VgOhUxx`uZ4;M|I8Vd4Qgzm; zYSaH??>pnGD7uH;4b3c3T0$qGcStXE5ReuKU;#uSRg6ecMCn0qZf*~OkO7g7^p3Lh zDySe$ELa{NuvZj&#dq4>Jv+O51M2_xetG;LH#2i)PMY(#1 zK$&lvm*$vRwVO^C_f38E65yM<6;j{SOz*hVqGRBkq*3-bm05r?=Txo2C{wxu#~JTCbHfxw0VyRtVf?5Zp6Pv7%0N1ktc;$9-Y&%QilOpL>|=m?3@_z zOs7B@40LMh29zJ!Z*GRc8=!5~{6 zq?6@nh9&xN_!s?fX%vz+I%=T}l|9dv6U@3&8_K1#By`%i4z?^Rt0^tIIxlK zds_0u`4Clft>)B7_1j5~nX;mSKK1bQFeoK>MUZCLM(KAsaHR0Sv?$bPier!&{LmCf zKjne|E~#kjB2#_w#f| zTS-ph(A>qv18C|C8WoAz8lup(nGU-zv|D0N{Xw*4m8Q#GnZa~#=Gh+FVA30~FArRu z?U<@ONYDia6P=?MSQyM5=t}cPaFj5|@xJo7-V#{CEKo`<;c-+r*U`heHEKK8p>0q- zj%GgP=u;JRYm#{%E^~k+k$G-YeNYRe2O31KeGO0EZIt^i(uwuVwjEdLa=*RMQB#)B z8Rh;efTnWaW0L!Jbgc+aq^8e!0BUsX*%V+|rHOo`fw1zYfM1KmDc~nSSnx@DRru5t zHU7kzs=mL(u|Et|`^4E_|5*k7RpO{B*Kmn1hIOAchKuWV7iC|DT0GzJOclAQOMEh{ zgA|A$E0;L_s4OSA#B?4y$f_U++OfuAk>{(bOMfy9vU&W(tk8P4f_!JWU15o)Cu;F? z4!kQe7Sk6rBHj0n1Etgw#;UKZb99%gg61X-f7wREiRa-%=sJSWHaf(wY=A}_^7zWJ z`8&AHZ*)AVlmf)a)_qKgUI07iGx6(uk__GI9qJj>$2L1^OUfp_L*N>Afl|tlO{nKq zM_Y4iI!T@|w{E-5ky#b=ZQ|a4IrjjnY)$|L78HJLup^vic8L6y%P=Q=PLQ$o4WHmD z%{QR;b~qNw72OP&PYJSH2d1v!s!N;_KB2l>$$ER!5_vWySXOEN;aet?9?#>C1}g0c z7TnWg?z8P`5Mcah<{dkUP|xpnjFgm40A4>+=>Rva``nky`xS)7G(J5qLYbj60RaDA!>0bY!R1$umlAVp;nWV*M=A|VkqVof0xMRv`l!ZzXXVj4!c<3%GNW-U3 zP>K8#26ge8?Dpvm&1}Sgm+}yMfzDlY)I(k0aMVRTUUNjE=wEyh zX#Wq6+Qy2;a<0cdj_A%&&SK+apw1JQcR`0QI&xUb_-{L`Yft{1Bu~YBGk)h(7egPh zm+?P4Vl*_Gp}(U25$LU-9o4n6SlQ_j^X2IM4bu9fR&5sR7>^!!fU~UrcCzh@$%C@( z%w$_}eCCwgCvQx+!LK@%pz6Ola++D1pXN7)8vI82#&ysn_ za^79!5>;pX$1$&h{AmdBjT1o7QNO>YTK0kC-7xv*5Mr9H!P$uEytSD2c|vVxK+dx5 z3|OK~BO0&0_(LxElT#hXpRTAnKXcqIDb2hFX`5!bc^q%h?~TlIWd@qu>DH*-SB^vSC=QE58EL~n2umZGJG|olU1#sVJr%6@ds9J? zSDXqQj6AEUASR8xlg-RbPDsFy=JS&CQgN06{CpO_qfg1fkA`E>g#j~M<+q}9!3wYa zToC+9)Kag_T=0xnoC_SBqo%oFu2F;j#$2!p=-A(y3(lLEd?u(v+@B1+G_5Y4Z}D94 ziTt_O-pB9asC>fUbst|1`F?iPN85gKq#3=vUeQPX4fDv(@9!0R#(w{#9PYFC>_;>R z8<+8+*V40}v6Iv(K~jIivu_TH>P9^K34;?T-?R7hiMGXVvA0ef9$Slar=_yd7QGsJc8OgoI-G#}@AO*+}RvpQVJlvGy># zH`t>Fu68b4^}`a)ZK|Kg7iLPzdQ4$(y4Dv&+d(N^5UoeICKVQ&Tc1cO%s|@`3$^{P z^=M*pVQE#+t!aJxASWB3MdyTQP+$@AJ%WY?w$wt^QVRp+Y!kfBwh6vWEp#bY0VQOc zAo5GSKpzBMNh|EF{GnIrccH+N?{SVe?1CN1?dVkaixTeFS*fi}^~+-E!B74Ga5fi$ z0v#o7(w$}aL=O3UuhbG%?^>uGW;G+@TF-@zaTT2lu>rJFf9+cMk|gzDz*7xCPPcS*}BNGN+Zc<^Re3&ro^ z-W|O#sj#EEby%TCLhrr1C<47Psjw~iyG)YK69$?xdg=_k#!)`Q2FXD69xKdNJKS5i zNU35G35?=9f0X4-9>YJv;uM zT(i)2(#9(DJoNw_Q1uDa1H^S-*e5(->i}BeDy&MPb*vv-_(QlffObNy!*a==!1;G) zAQDW!6FD@8pRwx#JbKNM%iLlrT zo(z-rGgw=N->rc`g$DvFWdf56@V~|nOFbD(!_Nmn*WL+bvyY~w)CSx zmfzXS@*5z_R_f*1g}Wr_HZ->w+Y6uclw#dr=%n|vi67qt{_RQc4J%`&lyzgs@%`J* z06AfsGZj}^So4WLJcSa9jeD*FnpaeK2pu^zJwmPfmuIS8cnV+Z!5rv<3U*A3vNZPh zxqR*|wlVg*ikY$ZAV`SDo?0Br*pmoJ|H#QoniYrG_|PQ*w4} zQZ~+-nTV6XV486jPn=o`Ckf5VRb&1rJ}kwA95NTDw7XD*QwoM2Gn-{=8@#6QuISW+ z*qnHr2`eQHrw5G3nQ!BhvrEetCr!j@v2eySy!n)q zi?f`?=Hc8~sW_AI%KEbo<3y@>2Pzfkp-RJfr*N9m>@0jbk%oDZl@gD4tPssPS0Jsx zDOW>|8Ot(|mNO>4GqyaotZZgwl>2>Qo3?2WP3id9{Y_@g!nrroa27^>YYWXb zoCz+N8?hX+c3harawB4)<`OaDG<7(oRtiqP7K;@$Ee%UB6Q^M|Bp=O8ip|FTCMV#O zgCsR+CQgKgv#`eH#;20Z+%Q98Yzj`jn;4ghGY2Q*B+2oasktdxIB7J_?u-+4r?KpA zEbnjV@iS59Fz29{a)xFJ5?iKph^0csNl24%&S{+Z5Sw{o9?mX^w?VUW;&8GxoC!CH zWxH$`n;e&o^P%E&eR0@b;2d;GX{kx^S$X)>EGZUMuRSYDrFp8O6XQ~na8|yQ6ik0& z7S6hj`9cz=;q<`CIPo~iCl<`QUCzh}OkG2coRf!kY%amlNp?q|A!`cjqKKCYyEMv+ zOTbCX)5sYfPU)MLnT^xP#i!zIh$+cA$y`sj(|mL}DRG%NgJUvI?wOW|l`$
n$i zNwczXB0HRO87Eb&#VJd`8TjIpa28pd-Z?QRJ|QasyTth9p%KVo zl$AF&r7UCP(>0J1j%&+t_Q%j$ z*l6y75<|Z2a)gy)w7zomRIt@@*ph3F7vCxz@W09Jf0LW# zg!;e94aNljo8104xmAcRZ-V*X_AEwkCQUf%s ziL;Mf|7o;kqPs(-aridBuOqrL(On143-i^LGSOd6oW10L3tbKKb(B6sk2Q71RjxG; zH;W&ShKzbM5&gHRv&x(XxCE!(z^_By`J@wfekQ)^>dp_~>q+kX&+rbVJD)(gAJ6{@ zfA?lqX{-E>_|JU$z&V!uqEEcz$S?Y$B%b`DSLGAPFM4k`k^G`(WJ%-~-S^C2hSQDA zLT~SE`a~6;A!8LPSyjD}l%ZB=?tHU~+31`cm>8Iec6KAi6 zIvsUP-ONK53Z{2N%ey+`rAp|vuFe#tN{J?VH1}!e;F>yoJqBN)1Py)Z@t%>A-jWQ? z#D;qIa5g}nc60WZ8lt%F&cRBw-c0PUKI^c4c^wXy64AmQ&Mr!_eP293Nql*IHALHc zI(9fV0}NQw;(jD{rfp1BxSc=iZc57rDIwE8fG@;ZTubdaarQN8*K<9WvYeIWdU0-8O_+bL^h&)ZqXC>5af|M*e zXuJtjjZ1f~ljL7YSb`Y6DbL;lxG)b131Wa&1etA05OdpniVb)ps}FI9jSw4=-ZVEI zbeusU4rK2Q+YWV3P}{IRsV1lYWU;;x}9#QK1%iY%``QiDZP{x|t&!cBjO~Jqx zBtL?+L;EZ!eSk&tta#=JFDBAM#v+0zcXx54o#J%`2d>8b(6fhDYP&V=X_CB}_rOo5 zRv3HeEc@n*d-sm{?6?IywTPLSga@Y6uQeGspVy3sYy>vpe&@<)3q>>toMv0O?*Z(! z-vF{8^9eeiovAd^3oV%U6nmrkTF6HDebil9wbU2JI6F$pS9()AH2}ZG(}}>&m;hmk zCI*5HbzC5yNZ0~uP#~X(uG&1Gh_Nr~8E8I{nhey^Gw^&O0F){)%_h=x0mg&dBg-bz zRxjapw<;oBZn}VF6VVak*+f9Em?Vl2%_h=41VXErMgUM^8j&haCbB+K9NPC2%pqVbW>(E$iAgF#>JXA*L!Q0BU{W&(pX^QQNnEX&6wR|C zBi;eGs8VAGo#lcBqD4KqAe2Q}Q$Q^$+PaSGTzU;tMv6l~>co*X(pgxWr#paMveR-{ zqA??=*y#=RY!vbvOhh0Zh2DP?i~hMLQPuvK!CFl-=`GB#RJUn1iXU~F<}uy=Q!fF! z{Ug)uW;#l3%-sexjw*NcQrnp?y`34BY4IJ?rFxII zfV~mfOflu6kTXgR>YZMyNfcSk7z1#%uHNc0=Q{Zz-T_zdJYxr)$&q7W!mK=n!2I;D(5d%H|P}M<&kCThP9>Q74vze z%!I8U!$LyYwOCl9NdO;fI$e_TIzfOrYdZM=BlX%TLZoGfD0Q9lDeILgI=9YwTKNeK zMJH3T?2Y_hFC}KqyaaaoYQ zic<)1Q1O~}qO7zBz2UgM38D!Wl0YdPqy0jZ`M6_iRnQ!+a_d;|k7{MJ+7 z07p$Z%LpGFm$gN>~v$k^N1YFw?^7#e%lsmjNA2i(LC8$0MMZz>Z_ zY;{>E6SJm(nV4lAdilK58G0d=eh5|H=j?!%TyVOSUjV^_WE16CQ^2A;>pF}qoeGU9$I6fLt{^eWdmm6{ z`Tjt~*;#%ML%;hSJ<-^2oa5C8esK<=iCTDemfw*0QcGVyg!42CKeJIX5YEmrLB-v? z6UH7Od{pKbL;n6GOjZ_&&$sk`+KT<)lr3E~bTY!wGs_*FwZBJ)$@LeBPw({3(zVX0 zcQHSz{sCD&?0O%CieRCjSOg18H0@G1|LJTlDg74d7Ef(B0~AmL>xW!_IiEH(6m0l0 zP6rqVPt@Nj<3Lx;n@B}nlu4kJ4loWS%SCbK*6)q=#H075BJGrA9Eu4m$~H6d2=#^>cy zkrz`YWvJ~M7oDvwN8x0P#&@i`X}m3hJepSYN0i)RvAs35;x8-Z#WvRT*CI=6`h3y9 zU`=T3u%b0KL37>VMK38?nD*dG5o>*KG|AseL7na@>a08fs<1w@2|VULy%b0qcS8N` z%rLf58oJd}sN~_5wbZBXF8V`Op4K}ghbc|aw^P?QQ@o&*TI18G^~jZvC;70r=NMc+uMUcRrY^emN4M?Ful&Llr)(qb+fe3PQ}+){E)l57=mNG^jzt3UsF7Oais86HgoF5wA?T_Y-47(Res7WUhT2}0 zq=Py(w(7P(XxXJJ1F0SLh6{mMAr`&l^7ZeUi5iR6dd_Ryy!lI>eHNB^_CdCXze8$ z1y*~{wQ#lWMgM!O=n*-Acfh@9tg(a6a)TwJ7p=AAU-zQN4TP0%)AuhCz33=F8StXf zCyT~4lBX`Qk9l6_z2>MTp<*6`{xt6EnHUL6G)+*?H*+OQ%8Nv_)_dTebMzoMRmgIT;~TWH z`PN#fdP`TSO-!|~rR#+91sIveROB-Y(kJNcR<1PV6Huu|RgoX+rFv9_3R=6yTUV)4 z8yC(8s64CFNLNWUK>@W+d{L^MtH|82xw+wx_O7jlhJqR2!tXsoT$vfe5={)+3|5Ie zjni%(&}>M9@MHplq5cFJ`(UUquGY;sJ=Qfx&gC6&GtL4XNM~GK@MI-yM)!Tz#)_?R zXR(lV9mbW$y446>H<-E&yxPb2Ig(uBy^3N+qIQ-9GUUbN#Kz|&XC=oa=i#?!De-Zs z$+^jCdH8)B{_txeev!h`B9+^UrbXKHEIp3|*(CH?Jop%MJwcFVlOR?LP=Aipz-$u5 zoU5j65b#M zH3pxd&P&7B8>Nb9M^D#q%b2sZ0D^g-%n%B6C3%-Tb*&nL`K%WV?f0YnqO80Qd zP6TfVA}Hqxtd$HJXfn7FJ5Ms$dHJ*2przuh)_RIlQ?A$wsGkM^1q3FwF-t8cwf;*(O={4`umBB~Xns+% zi@`|hw!9|V)*E~EU6|IOl~MP<9~4mczYE``bd54J6ukOyO~zVZd}}H+9wUv?9$1<| zIHzUx`7go5-lf0Cq{Qx#A=JfrWvgNPbs$O}vdlg(+a-b=oaPFTlE*Bw z56rG>AT~Ojy3A6Cn=HF29kvcy(B2Z)R-3?S=6u(S$`VX_P@lEHDGV*Ej3zw%W=B*o zq*i4G|E0Cj*{7`sQ38C60Jx1i)CzM3?eBIcb^S$e=K$R zlpbJY;fmP(W;lLNzr%9ueTSoU%kjb9-Jk=EVsmu+3Ri+M8kACk?nck9z%L_UYl3Di zeNq_1ha0+_UF#pLccH6^x?`p5n5@j!>)1XdJ!5o&QZi^e(hM6oz1dwUX3DtCDV<6S zOWAG*y}k^ty^88=a6O@%1-%jp0qATFeaZ-Z*GAV2=|gmW zqw6l^V*pJxs9VXY4$4=cl#1tL^!6rKJ9BHQ!E-k0`u6d1rf;xcfpa+=t1CgQR7_Jl zS&3PpD>>Hs=ICmjsqK|kpp>8@$E-l_Y;v_VG}m-r>15HI?hM1;1%z@rLJd|>&61Zb zCzDZZ*@=nu0W*W5zyim$DQMC`DO>?cNJQ6_zyQAy)LFrAsF}N5jU*)>;40YGgB&FQ z$Y*j`g83yx+K*Jm`mC+bNG=+=XoX>Y<{*RGPv&!RHJ$TlUiNdlU4MqlD|iolI$vt+ zp|k8>Ax`IWSFkC@`ck+x33Qoe?cvd^HBPvCnp;yBaK)na zNmm;~YwB^o7aB&8(SyDs97X@sw~hgbs1y+VaePAPZOr8ES(sU6oAda2au6fSX7~bOsVW{R9{wCl9;a#db^1`(()W* ziUwyB_|02s8Td_K87lCDoMnd@utZY_ZSnG26|4an=-FoOk7DIqO03+Eb2LpY63EtO?(2|a2y8sFYMIHsIY z@s`WNnH^ilCB*X_F0nZ{$53W+a%>i+DJ?N8GY)5_A&E~?vvIDWEH*w%c#@WeQ=nj? z;uCXl+N6{`oV+GA52x?JNs*HBGV|1-+m|1fqA>>&vtkoslag?Tq2z?Dth}VGyp&j+ z`vm7R%FYH^T%yYxdq;y6IB!zuQBmX3PsgD@lHI)IL%IMoSON; zQ6p0ERcH3RgNgMCpTH7+;z&xHJ zg06FeDI(|}Q*kK@$r>AzXb1LxbuI-!3;o??fyVC0iucxaYBB1TUiVQj%7 z;vTC|=IPS>D4V(~r%RL3yjkw;$|${ibY-raXOXy9FD1Wdkd3<}StO!t>gL8d8>j>4 zxba7%C+pCtXH8EN6r13TRi=SbJknrkvKsr8yN+bj+-qu%{(9Qo%+R{=7Izbt31TT| zJ=Z}xN9P^x{~B7aeAzp=K@ZZ9#Nh*ZCJI0f8oJ#bh0eWR+Fw>zp=-lt4^;Moei?hn z(drARy4#(K&YzOQ8|od_W|1=Ja24Bj*;C}6B3(f3UG8bhMbP06mwRvx9lkDuKSw(6 z74@p#ko*dYAg=ke`pDsSdvSJ^Y97pwFZ6bR+1EfRW%d{7OOJb|p*7(L7@lWc_@vz7 z)jmG=ZIV)RHAagbxwS`xlA1atJQv07tLa{a9Vs;HgAT;W2kfKrP!|W>`I6FJ7!B~9 z=a>M1tLX7jQ&^(2Fev|~*p_%+hC7AMftIvmLg@`!5G_$ZE^)_7%H5zCYx)S~eo#R8 z9zj~*f#~+#-6S!?-DuATrMHQYJTb#W0bIHp{Z{IJ%FvpKt*Op7o;U&^h((V_0%jzdnbBjhyLYQnEtQQ0%T3uCwuC^br-coX z%qW=&;1B z=nrFU(6-z3L=3Ih71gFgjcTHYy8ArQ7TTAutNRd^!{hg_ zpLQx!2)^8TF~3e;kxtf2fwpwrfVIW4N}vX2Yto_N=znD^%tEJtJw4S zTb>ieMN&WfvWBI8(0g2F>JgJe=^(G;rCMn6tL}#M3l8AXz7EbaM?k(1hggf{e~_9n z@Ql^d+n|^s&L+SMudyANyp+c&mqHJG-3-odKtNPXB1*4hcuPfcLEsZDG7`S^o%yAs zPdH&4iyTCoPRCW6P17t8(s%~SE&3qPtIV^H^Qd+giRTUs4~t_uSo*re9*^;u^0pBv$Ri#w^E_>W@dOc575L9 zr*z`DX1}JF@c5f(_NnKnW;fIEYGv-%pxU44c!7KjI(#s3gn@Tdw`ukV=_dxS={6X; zgZ}Xu2D>ljhAa!G) z1JKa*s|G?)s@E;oih3Qr7H;~3NeVJgM}SOH%`B^ezBGM?fu8dB{Ku^o_xy7iS=xm? zn*5>DH}2o6&enOc$|m{4jJ0C&hupQMZFcar89)q*>Fb$fW3Y#=xpD4?4P<<<4$x!TZ43Z+b45S}|nnx2>UDMeu`qZnqN>{z#esMn{N33H(7I&)Q>vXlD%J-8=`L1%w zfMdxU(!kn~Qf-t~mC@xrwHm1G<$fX=o{LIjtkMOPQtl?Aul~dvi`N z%3#o1`oY@=(bxNl>)7jk6AXR5pDn_Whx=0E!f!kc45R2cJqaMFZr}mZUUGh8Xl{&i z(pOk(Tcp}G%yU{&=7BEtffj*MO8h)@xT5DjhSq{=1@nDChEu0zZ6?TD*|RUwGBib_ zs(3CaFB(zcE0?2sDRCow7GHd;XMCh(m0B;{gEN}EtAl~0Lu-MX zdpS43V8nJK)!MgtM#;+WphwD0n%X36y{=$XY`?FgsZ9*c^B*ZF|!E-5=6G&Obqu1fIOYen%_QV^adpB!r=9WWz#@{n01KN4_9gKKz%F9 z6DP?Ja%k=kasV{-2N~K0A=6+`rUe- z-z0e>zR#UJ^8s*4S&u^A;Br{UI>=B*HuOx8<^7mO;{mh|@}3CNJ;rlcl25M}FCFS2 zA88H_OSO_6}bY>EU0x+0;* z%{*sAFH6(6vIG}bXFH}U6*d^`hr0qvF9lu4w7{;wvPxaq!qZMt>g!;@6*L8<)D__E z#8#d{>(;1ED-T&}@`guRdnOqg3O?fx&UkySZ;xZsi_ZKLT;#n*IvBBP5MDf?}zcTm?bx*3Ni6lj!quo8$Z*X-d&`^Ly z!#a6McBB(p5C(boepcu@_Y?6$a3NJ)oDUxI(Yf}!oS4r zsW-xH@Xn>lCefipZ?e?xu8aKN$#UmS_8w&xCpwjNkfHu{k0(D&9<<3m0C9*QS4Md* z$@1t;_5p}b0|~NLcvYRWiFgqBsyccTZ3cWP3QUM4QyKX=9l|$~2eE-c5$7a5q85 zdMez-D3*F&D2$^=Y$P^Gc*^62Qdpw5L0%h--DO0b#>hVg-cc3#m#D=q; ze#&p4lnfz%w;2sO=W!XD3x4K(^B6qt2K>||tofOb3@Ku0?wiIq5eIng-Dr!gpQ(?l z^pLwv4g59R2d11?P}kQy@p32L4fi-Hpd0FOnr;z2PW>%59>S`-zL>=`A)NIWE8)NSfZM z_INUa_>tqBEup5gOoA`pi@YFvyY=Wi5Pv49!ni4qj4$O~(GzIa#6s@h0DZCJ(LN)O zRC^vh&v-;99N?Fq`oPmEOn!5Vyxk+pW6Lskf+>G@+f607|JtYKtcQ;OSqZ6+0D$Ky>f0QNhAW=-hXnR!ScLNw0mi zMMJ;$WQpT6M<0IgNl@+ut@Uw+NNv%PA3VL4hd?#&?13LW_ZvDB{Nke;?K)j?KY0!) zb3tFiDdrS2%nkXu>4qdOG&{|*tp-20gbZpOPc6b#x}WR%t7oLFa$xS=o(I6xyRFzN zdbdSe|84K~G@(iKZj`i7jih}9uoJx76-Juq-SAi57gdnMw%L0(9~ZK_6hfN^y`j-2$WRO zJ60aP&ED6k9H|V}U51K3-`+)%bGF(0x&1w=I-RIuQN%i1a{b|yIAF(=GF8eISbt6I86)QJIN$btA>wxIta8H1p;HJ9aDl7ugO|6Oa zHmoI&-A>&UNRy)nVP9}T+>hegcpH(!j8ijW!OqwyQqFfn=Y2c9O6|U6B+*@U+aAg^ zIupEsY20)$_94&~3wK3%Rcho_i9N3Zj8|eX*1Em-rwDobcIu!&VnCf&6M3SoEv$o# zJN3kXYR5agPgbT$j@5)ayakozqucG>R+-R|+IFD#y$Jcjc6+~dNCSa>3kYhXASk(P zyXe3IA*JLMq;&HRY#hfibgVY+KJQdnsklSe3F?E0S5YEBDfK}W(eekpiH6q1zm<*g zc2S~1W9r^2B3$0Y&{*plbs3{MES%_Q+E{N>LqqB{Um5F-MbTqvL(*de!7}LC>Y{3+ zy>-!N)hpg+fGo-Mj!^CfxG==kJF>h^$riQ9>gqyeG8uXYcp0i=lie*0-Y~7L%5$wLhg_MH3p46cZL!}H^LGihMV`f>6#ou zt&iU?^45}+Jzz9p**HV%Mni~Mz4d|{U2%Io%4?uM?2Gu0={dbr-&axJ_IMwVl*@V@ zyEKsF^A1ox1Es{L$(OO>kgv$V=7O7YbA;h&?A!pBXbPw8coiFRV$t*8jY1LgC zlz0X2R$LWS(^lxQV()3W6$j>CsyP6rUaI;oQ6p~MW#gqR5oZCUWtB$LVk<92NgH7# z?QVdb;H8E!(nK%y$O5l3T%NMa-b=0Gf|$I^#!F4W93bo5QDg+sOAXr<$~=Y;e1Un~ zbl|uIXo-cFqC8q}mJ4FIc`x;qCI{xFEcIEf z`n-3ttkiv87dnl5wnfdTf_Coq#w(3M6%BssqHe19m;r>IeYD@>J*^~w*7Ufg-(K&6 zFx)+A{8dPmYmSya0!15;3aPhLqi;Pw?g|~^2RD}nY-=%vUixFwZO_a&PvDv zHhaJlZ644(ZHghgj-ET{`t!jlM9SUYC!8Q;9q9hT7{<3CJ~`$6RH}`3eC};1@d>2X z3py;FKyGf1qsi$pW|JZNo&1#Sl)E?a&)${PBPTX|Mga?D7{F) zI-}T(nRP6|mWW^veC!=oL3*8l!8E@5md9od!e&m{@&dZ>_JYp%(Yg@$mV^{YKoH2y zPbm&fB5X>r)Nr->SKj)PQf0R;emXzAyRP&}r5Y%u^TYjV=s~&4ZWen&7-4!istv7o zOE0f?{Kh*-j%cg*iyuhLyIwH{t-pq6uLQjuJjQCfo4suSQ0Rg0yjkd-YeD~q{WZx8 z&=%GE-rG!p4fTWmdqL;)pua8J@q;(c(3<*Ide3z{Xiev;wrKH>c*=x*Q@=g-v8)!T z`;Yq8Nn2F?XYVvaLxDTT?YI;9i?>8l%D~VV{bR~9P(a0SaNK=$(7V5RC*W`I4fx%A zmk81Xo&McBUfCtW75(Auk3lZ{;eFTuBKZCjX8ib4$5Mq*+w0z$Hk0dt>)x$4S4!sm z<^8C(b$$$xiyQbk{-i!hCh* z>+4D86KNd!I?NXF8 z&cBXtsk`&X;pMwK|07yki03AE{(I#2z zsWIWc+zN6%l`cC#;*;!ul=vi?3=x6WcW_p%QJWw{X9V&KyL6WLBw9~=Vr;?Y^EODT z=6g8Ox@vAU-wvg>-Y?qGFfcf>r(QsQ(XgP6x}v&onyd`d>(Jzwz~BaLNCAC#uCUW- z0FC1M2YCLFES2RC$pP?l+xWPj7>g#?@$vj2dWR9F4po*vq)C+TxH22`bhJ%z6I7$N z?@q-DN^$@EgQ^>9`;w*E=yGje3jY15PK{^oo2!?~43lY(PC5`s%A6 z*75C;luddABt7bHf_k*^B`do?DaK&1vI}hkArMqCf-lR;rvM8bw{Jix8B+dKWv<-RoFX?qMn~>bw5+l3Zn0mS26K<5m5ho{ z(Z(je*9{E?Drzz+KBQDcS+W@my2`YnK)JYRpmOa<_2o1L1%x)Pt3j2li>-vGG`R!d zDJX6ehEEUBVxgb6pd@` zd!|9@E$qDwaa%OAgylHsw$>2xd>daQ>mih4GeYayVyVGyi7=Y#I^WDhJmw>28&8+A zZVz>6;AyuG+QJOV(xq%@?|WO4)jec|k=IZMXk!7;bFuplkT1nTo~C>$XBbW(g@Qgr z3L64+gNUA3`!w`yoNtrzIba&`f6<@l1r|Ehhkal#bfbZ2WmCB(>b`FJEajHHx`j~P zsrK&tR!S96N_FQJG&|8Z($JcS3a~GO(FR9m*%&gDe5YhNW-m)mqcdZe34k)ADeS>) zG-I&zwNnv2Jxcez!385d+3iB`=RUFVDIZLal7_2rADt0RN9^k4s~IMb;Lv={csGC^ zI?mr&?zvZt#?$t)<&pKfUrQ3u(b>NINb9OW-F@q9w4h24-wTQd$b-&;MS20yg0?+< zVUn^)uM=m%0>*Oy&3Fz9KzBh$Ec)kr+QJ&*F*saj?-oC~1 zStH9&17ON>)x`2`du^8KmdI0XH?^!H6w;Vr9;B=M>*2rb6(2VI2KVQQNNhuvt(Dr`5dXjykilk9GI{NX(I#P8s zcZ82EW1H$<+S5&H5fkri`?!-V^*xKf2;<*a6-^rG>uW?I3Y{I`>&ko2{B&bI6jOOd z1ls6-w*8HQw7}OJFhauv9X*myMV1@cRjylR5;$vSr5}r3HsARaW z3%dO1!s_6`&5v9`O&@iHT1fLCm!p?kuwIJ0M>gsSE-c`bxx;XP zJ0>|HFEutPIW99TGcz$KH#sXYJ|Q_iH7z$cIVUSADT#eKs@zuO%TdxC#?l^-&ah_b z3yh^R367Q@kD5km?ocY@YsIW-HsO9l$@EriET)JrG*Hi{ecif;x`|8|7DCvyjrC82 z^0)ZB&5F;P8J~sSCp-cA-ov&X+G>w5gidg)ReRivlOIWMQ`53E^OHsZ^z#Vc0qOH{ zl==(@(v@0xKz5AK#XcaVbQ%y8!)6;XY!JlIDdbILD>>{9%7N}Tm17dG{Vh>7MVVtv zCK0or3f{sb=0qpp{L^_@_v7)W(-IS6v*L3yWAk$3b4ilzwD?qJ5%J}MvY*DL zmJa3}MtT}S&(a!_Ne%pzTFibn`I*e2A*SXZnZxTrG5k$)7;nYnhZv7VbJ&sTdq*zZ zPY?DiHTz?R%u@_JL%l8A*G-bkF!A_Y&l2KGBLq60hj{GhN05@QP z8=XVwF?~nvAv^x(3H-l#J9s}RfE%%cpJB*C!(SSTUEXg9fB!>}vJQXWv6f7ihkRei ze}s?>&w2K1P%<0xeW{WhaX>tA)fk;#nZL{rf}oM(ecR=R2gCzc9iqAhVI!NLh-~n? z^B208PQDS;|1OANLKAUpXM2 z`s?bE%-MgE!DpaBQ++$-cbE!Vt+&&=2oQJT{nBd@tlIled|ez3#wGsbV>d?r&f;Hu!Y8A^uV{crI7(psn)M##K~#=u-E$>AoehoXnxQ z_9Osksy)#MMeV75@ZZ*+(S)cQ3~&L@vk!{vud$3ki>Z8eOm1Y)(>M3Y*KzZAItunFq!DI=WV7b5)skFnG)=yuqD%P)z4G_Mk~c z!0Yk*iAdN^It_3`Ued7$tkNIg7!m9KTa4apV)TZfCh=v+&`Zs0S7<`7>$BFm4*AHck^hKcIE?Vw!Kg zZDz@f8<~z460+!4dTZ3})U;8`bbHP%h1HfYAP;JOnBZ%*UVtXIsmC6 zvO^rDXViuy(51djsIj=zx6@|BZ|p+fLS;KZgKYTK-l7-45ChG6d1HOGpv<>GQV!`& z=)NC_Ty}DzK`$(F0R^yIwn3J@$Dl4Wz2dtDb-6@_v{sila1~V-I{8dl>Z=r{KDg8u z9fmVB2DPSA!N73P167*;n3U#?kV<1o0aF^ws^IQl`n!ZUo@cf`I{KV%7)UXzOZ~E$ zb+`)(N>V1{TLc8u>Ifn|nAr^A!44febxN;>+O6?LqF+|~?ycJSux7+6%bS+`7p~ft0VWBJ#sXK^1T!}knB|l{lWs2ZP*W4>#J5*dXRv|p?QI6_{&D!Ys56u zL9beXa+c5(vpD^b9ZN>>ycm!r^aunL=!%FM9rewR2FE3Ol_tjREFs&UM}1EzO90#G zHu)mG0Dyjd%=Zz_gsRtp1JWI!l%9NSK!Fp!QHIv^KsWNFZ<%u3*qR^chP~vQCT&2o zUh@%T>j>GkPM>7RYC1kZvSxbkss0UGyy~N95zs z(dy52K(D;++pMG#e0j7)&&QJV0t@C9qfE50mipsczE36eZ0#{s)gRvS{U|AYbtuty zmT;8?9Wyb30*jH5K};kE1irCHInAfqv4GRU3h91arHd);Jzs<(%`}K<8UUtZ$~{8G z1a|K3M?1dtHIVb~LsHq?7?4lL5^v@)EvqyMoi>nUvm*@x_O(aEfPHn4Fk>9~*X~8N zQS2AKL1Af$v8Z~ozZSauwXZgs_@ysgPQjsisy`b2QO&QQ%U}31%V|_wI!st)y6va? zuh+Ol4=`*p5UTDUg4|#GdKkKH!iVn4PDVD>@b|E9)L%MJ1w_)-Hxh3Q>O;RL4&AaA zzM8S@8($~G&;sf2)$%thx6$=Z{%ZImO+>{|LCMM_tKF~kPlMwVfg~iI=BYIQ} zbP0b@gX)s$Xagz?`@|zG(Oik9Lf;YZ z{{CVz{w!odT6SVia!PzkT6}g|a!PU*l72nqF1Haq)o6#V{fZBY$f*XnVyjE@7tYPr zM{U-AEslz7ziLNqHgY2{K|x1G&NXg&+4mhsh6vzqF?qC!$s-w)#ckY94gHIx$I;|p zd@w7a&XzEq>*Y}fo`H_u;r~N&5@rqu_h@y1TSb6V(f%p;>LKMmIi|DZel-osW{EfP zsIJUlvv8!H2<{O?aPzCXKQtN8)m^jD#t>=9g;c&jJ!2BkDQf{8YU-aS;cpDs38(?* z+=pC1>ZHGXvLyX%FQFy^1RB)BKUJ!XG9^E}=&XyhwFY1#oXgh2Ib{$I*u;gbyb({+ z!73G#4UfV0etPHN&&!3zc9XkHJ0<*NEoYRWMi zpOc7b`$s+}mZNoZJ_oS-X_4IpjNO(l=UKv}5c7IZj?H4$2lqQT#ggPVUE0ZYNy(RH2|pEfT%J}6!n4IDX^2mEI|r4?{+$AVz?2vGyF!}4j|_TQAXFSWfY9! zYLrF#aX6ElfUex`PnJ_t(dAD5#^|qV{wgGXYiV0uOO7~hzn3_Q6B&M-8YGR{ii5+n zMI&qatKzZBzV^A%mpD|js_BAa=FF%nH#%;AYLz37f&;YC!M=jTG(neZ`A3PR9pnzj z?KdPRY8^wZ0nu{h2^KnT5`$vn{zjS%@?fL zeAZf@$y!hTB7{D_!m;_3>oZ;K$-jqC=W`+i^*G82dv$(OgRoKOj|fF3bv|n+g42Qs zZr(`0ZX4(Ht)aX4T;=ygJzbGx6g^fp?^g>Fy6F&AEbklnMSFnohe2)aTvs3qTb z!rotfz$qQUFyNbI_oU(oix1Zp9ZvBpWK0@-*;euBYy1g&PxqBL7~LMTq>aX4G1g>t zkY|R_rk}Mzpf&;a-+jU|66=l;|5v=@EmjHYY?h_~t!*Z)*vw>N=^8V$;uBNi^Wt*T zViObNbFxz7;xjW-;!=|0GqV#?)A;S)a$8Z?`0@$+NURFaC3oV4O(b^ggcyl!HZT&n z#toRBf8-ivj?B%uM!@4=Og#S4+VZGhtbWqoZfbH=Zac}BD>M>oa?)P;>xvN6FUFsw ze$jGTiU~rXp6Os(0`w>+EmiqPI|+OzNZ{r@V^vKAH{uza8}d(A#+&3R1DKk_s^I4*zN(?q`{YI1{@Ea!N-+n$PcjPhIW zwhs+r!oc~iSAPOv{naIX>+4<-lx}^E)Io*M(ddv5XplB@X#7i-j;Fy(a1I3msf)3P z0=ap|Ga!f(KElG8&CA()&%Q~=GtVS0zqPpfjq;DfhyO%emiOBp;%Khr;<{5$dWu%u z=O4ii8`s?DAB(?Ud;>C^DD;PBj`k0hPU)bwGMuVG+Q@LVwG90)(f07;H=#UKBry># zT5wK&-~s=BN%bTJhde+>) zjp*f$B7<7e-0GuW4&L`&nX{o!IKkcea>qTmiryN)(`YNy=|TT$`Ed?A0398-VIYL1 zmj)hqS-jhE&&y1<))(|Fai=#2tc8pM5BV>bbD5)57wmjSZz>Snm>BbD?zoT?*aM~e697i zFRs${_VSbdm2xfz=9iMP05DNpX)ubL?uQRR`o0oMZ!M8$cakitwCf7^8y_Soe8voa zn5_5!%a0}$H%A4pJCl@BP)fz-Lp5gm=Nnq2CZYe%(M9b;56$&=G&Ur8NKVZ4Z$P)t4L0OA)($=8pO5<<`ZU&Zh>1?- zH35?_+>GV@gY5-v+WGgiX^%mhXzJTKrwrN@dCFFsYTznen+`ku#c~`6=GxQ&08=+u z@092UYn)o@_$uJ-pq8GC2L z@Ai)1oHpGog6w4H{jfw6zsBJ2Zj!+#Obk9|&0zMK!uLZk_%}}ayFmuC&lG+Wg258c z3a){$&lLU@g2A_HAVCHTuhK6O2E#8v9{aa=dppTRe)G4s5>AUc9DAA?r{yX#Gb<}O zDJ>-@E-yAGF)blCD<>~CEioY>K07lrH9Ibi9vw!P(+bT?oKaUEblQFqS(~%5|7n{= zWZ%=`A~F`0Z1Llpl%|uz_Lv;FXu0V-Th%!-M794Gi)WfxJdLqf+z+|(#HJ|p&_;hE ziv9(^pUK+jzf)d#+TLk2;h4>5-DMzrMW_pk{nb|sUEl1-SHh$5|7gaD`o)tR%ezn8Z*z4FLJ&DvTv{x~-#%UK?@e6`*h9f71+2w3RS?_FuQlsy za${@F(5@-bkjlS&-~Y8qs9#tLRb9E=KU$J2y=pJUP8`v&SE+(!sB?GvPfBv_SMBA~ zO9VOmyuX(uw|v!JKm&syX!33=0p0SdrGUPm^0Zk;LY7kh9}P>){vY3xTO{Spb^d{00SjciK#pX%IKfiT%{8hVW$$ z8Phr#o{6jU@P&R#bqNRN;maZbOv4w)tK!w~nP{aFXegPY7fZZZ^kP}1k(6&BseBDS z@v7+gj{&+s^r9U0Z>}T1A3}pCb0NITI>=BvU-A#AD}NJ0gHMPce_r#?t0VsvLWAq^ zgxc@gXz(R#4L-&gZ3H(BrkOElqY{C&ibMZbLhc042Ux7``z%(~W}VTrE6`x^wtMOsb^D79f=g3|gdZVMj=wa^PJ9QQ^fbz5EweH**K zf|}eY5GyMwdV6tl*vy3tx}=Z$)bC;f10iM?dt9D!)-V%ICJ0&2L=$ioor!h~D%dOgIUJvaJOGYPLQ~I* zYv>7QZPw71h_hM9vP$!khX_sLGDIisppmqF07c<_mC8sHmLclN)`6b4%5R^wzX$XZ z7si|DLPCJu0}{UPc9GO{u6>w{Am&t8&zh7ToPaz}@ck$6{*M4n3CXC4a|RsmWnz-zo5NnB3`{ecV}J1aWr@bP1COoU`9^ zXsLlfM+^2GnxeVA0-fdC&xy)e`CKSbR3IDyqPY15!mUBf&e8=!bZEtnM?+(J)l~23 z9at$Tv%%nW|82s+K$7AFrNnbYkY-pkG#wuPTEf8bjnVnOft3bu>Ud(E6S^sj1aO>h zIJsY-(9l|NJSiFpIy3M?`R|nNpf5T?#(+R4We+H&u5CN|Xh2|;p|wU1@(c(Bk5i=W z=+A+HEJH&9l{5=fZomh2H+)@U<-md=@-?ICUnNLeyT31SRZ#U?p>2Z$U(4a=ncZ+7 zSoypTOnu<@CN=vK>$_#<9ZP+<5g*v!>eCXGv`!p5{=75=U?;f0L|lbQ6W!nGVSxv3 zmG3!kzjrc>%VGHW;NA)Ge&D)E#(DNhi7sRW(fuW!4`p+41YcltH@%lK5GVm71{I1!FVJ_nk8cb1H$CB=j}aT@S6~;SqB;FnC!rTFj+lMJ)h-~@LG;}5Cj|v zs~sN-xFog3LxH9E3x4>Csqs6!`i|{Rtq6ROUoet&UDc-FT*jdS50ql9~746Wl&Jugn)HkhLdJcmY3nkguu&H z>tE12WZ4*+>Lnl>L;VY4HilE?euF5{Yz!$BCCh9KuUdezYz(f+ff|+ZCu1-**4Y@& zTYz##&}utb@w zH(-etM$8PfP~4!D&KGmhrI~@A=GJ{@1zMolGxhmmE;>0Y(A&^Zm@j_kbOF@Z#tkR{ zxMHm7;k#4?tB;mkng*8V3ksS^#|Q_t^a_Uw;?{G<0bGT#S5Y}9=KpLWmw|QrVPs}LLen8+(1_On+p|R6E_#+*C<`ugduJ&R7S%cfu3k^ z-Qt!?ecU$49_t;3I@td58fav*5eSK68-cJy8%!g&CX&AIT@z(F1Kx7Nu3u5f zyj8VOOi^Hv%_?$kQQ%Q!B%uhbA|vn73xF17x&o&pu z0MUpl-xuhn%mSs_h# zBp6w%{xV#pslGaTULaeN4{~U({QCejRsOZFQRN3)_REMOSmms+M4u_YWtFB49SCJ& zET9wkwUNLt0E$A;^eH1yvwq^tt!j6UbGLIQn*MeU9<_B!Ypl!E8;V%W2$oU+Y`}hX|F!k}nUl+}2;OjO4j-_fbA8%Pj^p6EN2EuFt z9Iz`?iY}ZEi0?T|7;Tz=7h{}C3kL1E6}|k%sWcQ`AMbi^1eAg}2Mn{03g)Fe5i5};@73d%-$zW(9xn{HlB;9TT1Va9BHEeEBLmFdT z|7c4ydH5T_xij-iN1t#qu5}ERj;l2DQg3@Va6yvCb6{>?4*_UuUw6MD+E@A;HuhzS zJ+m*%D$Ty)31OBo6s7N3jXrwQb1^_sh@r|Dftro+80xmmfi<_vd)}~*p*nMkyzqui z47C%pfqct!85u#0p~~Jc*&PU?77%>F#C_8nPl-TXLNe+rBcndIXVfQ*QR41Xy{`k) zE6P>y>4RMm<>0tfe3MTmEB{d5_i zfo}8Y5xIDLGs`N?YF;8%!(*W*-lV#184JD2ku~;4VQDN>#9%EWf%9fq77KYQ6u(my z0o2(})^fcB#6svzF&28=+%Kk!;zVPiT?{A7Sm;d)SQZQAR4$$nE+2nWjD_B@fZ(Ii zSmaTDW?t*Xi zd{?XZ1zCBE`FZZDtGuNHQ&;^1wg=;i;wx;Cmd68@$TL@MS*6ic%|KWAp->WP+_+c_ zh2k;hm^RH#n?s=<`*qF1XO#Q_zU7rGCmKwa608@lmIBeD*^s4g?>TYd5L{N9Kr~(ey?!00s%wPSs)S= zs2UEaVf*5;NXwuAz1+Tdrp=mZWQXF%l@kC@8Xp|f3-l4xE**|Y1iN!Mv4e7e7VN!82s-IY_9j{+ewAHJ_L1pQJ=heQ&&G4PVYkjeE=LgZzZ|jT~)&mW2l{Sg0@oB~F zC8;w5=96eD0H%{@v$yFa3igZ}prb>It@ey9k!O>rWfh^2(v?luG!AX{v2*-1oINr8d^327Yz)PN}N60ARk|&oi#c-km zRyxxORGh?gh~8!|)Qw zvPv_gw}>IJC6Lq?#f|xY?7ew>6vg%jN_Rqlbl8)yg)9US1!49@QCUTSK){7X6lO&N z$f`mJl8AyqAlpnTz#v2s+~At4(0Wx6*Q=s{`vpaUq986Hi-HL6R8`M(bx-#UQQ!N$ zKe(UIjYD;vTF&yVQ>V5v?I#w#l-i~&jF6J0{M!hr<^QRKht_T z3%XlQVP--8z3N%ex6y?|*GRj_dj12XU7C}i?=(p1B+a>N(`;Xi{(ys`B zM@@v#TpxH;p=|J|Izrwsd$fJWc5t|0=EDArM+LhBYOk5!S!dy!?H%=~*px_Z;*?2c zaQ=M|u3rLmRXnqsj#^}Emj~sLVX&uwYQN2Fi*`>go0F!E7h?;`^fq9BR#5hUFr8@> zS*MyRCuk_5NkFaNe=1cxG^Ok)CoGWjs=X(R)FY-i8gc%*d{eUMzq{;nPI!bNr;F+{ z%B~Ztm{jaXHOJXNcga4=38=(U)&Z5>U3LSSHnXfnbQw?1EE^^~p(=xWL>xY=3^skU zRjOPpn?{R?i^X(7gCl(uI!s)weRCjAv2$NIrc7e4@8T9|+veM}f7CX`!}pX`ar_~P zTC&cA3^lRN5BI69^X+{))~VTiYMq*&BG!2m?wO{Og*(Wl!3`TS_O$s@w|_0+6OhW!+EtgqeYL;|dNsJFqc}>^ ztX^O0IEp>Kq_OdKm{V#;vE`Rh5X5+jDVXnn$5R~2sC`U%`xNqa>&trrmAArE%u&6$ zKIS&AQKLRHX8Ep5&ZhrEduD?8@*gVeh)N!UU(Y>M))XCF2LH@nQkIrv=w)y?ov8Kx zN7|v+mX$R|zu-)}#y!@Uw;9lmPQiAlRo0Tkq-3+jVX~sy5`dHv9`Tr_ZLnf?Dq4TAH} zaGN-|a$uh^?w4PsVlgs)_E=jqeOVbiM*4rCl<(%1HBT9H6Bx+rs*s$&8MKoPlEp{gX$AvBHDNrqBVRb^>75z=yvAV!(5$m0I!{YCHkZS&Rqgn zGvnL;^zrU92JgC~gOz1L?i8h!M(33wG_&w2LcWRd#>2=Ap%iZv=iYS&=-pDPRyDU}`4Q@r7~%<1wCDT~?YX zl*```d8V$_L^M^XVN&Jb>cm%4Z|2I;_S&-XI&_<2(1~LnFMEoMChYY@*+k)WO~U<8 zl-&Rof=Dt@s}@{0=7Gx3Bpxz-qcc|~f$1zTnoLo?!fKe0QZ|;2&GOs59*@Zaw}CsX z7B4)_VzRq^Uc2AzvN#QHgIHhq!1TmShsW)7`#c_x-)6A*>|UqQ1n;+ad~S!??zN)2 z<7?Bz{IxrmaakUZ(QP(+ttOk#;xYMLHoMVhbGa-ohrw<%7{%jv79HiXVKMB(wT5n{UWNq=dS-WlN=#0J(`WHHt?+n)(FJ#$!(+xapV{uPo6wE}WohC> zVcqz|OuNnJb(*|3r`KkIn>XDCm%;9_nmtB%`PgF+TU!@w=Q5o>kKN($o6JU+*W$5y zU3RzA<1!kpCXdl;LG?dFk0-XTc!tZ0S+C!T>OOkLlo6{+^xU2z6T0iAvMaLO4vWj| zFnE1dhsk1v=OBzGi`(h48+>p{yV;7k@fE4!b0>>#Ps}oV+%}WV?K7IJP7syF>2P~J z7PH4>ayqScFRE+0E=_#yrM1s+nI4DJWOJI#UU+ZEjm z-{$oK_sveX72X*0o83-mI53$iT$a=6Hu}A8ugzt%T1+PJGp*1EpWgtQX>i#@=-s2- z!q`HxxVwN}+>}3dLf(jhgN9A8#?eh>ZeMJ!nY!H36Wwytg7mC79YRLmqRY^+!lI;1 zv)Kkc1@60y7ONXf&1ZKx-7dEQF6x2%UPrDePZf9j7TuAU;jw}d+3bEhSf=B?-D_!w{uxmhrwvGnT;N+(FM3cm|}F9 z{T{c;Wb*jLoO5N{pu2IZt@kc6W}9PI2sa{u5~GFZ%UYvT`^vI2p=Ptm3AW^is-0%H z+iV2{v;tp!KC4Zvs9iK8G0S2$dCg9n!RvLoEpEHR4d0!9qr(TUqx*~wv9=R{MwZKI z@|k^pqtOfZ_NQeJi&HBBKs4h;FtuaB z%2f2nl0|KsI_x%^sh81$K5SCnF3WB8I{aR*!Q%q3^8rv;tzN6uY;!^TKwQ}NQ^i(u zcLFS${SJfGW^_3Lt-U^*+hPKBbvS)Kn-?C4kSs2aoNP)Pild%ZW$rlKbA~N0J5Hxe zXy)M3Zn$h4fTG*vvl;v#Pn!qc9kcn(9s^vLWpjXpB&-2&aky+oi`n9HSj<+x+vYVp zJYJUr#Ov`}D34%t1AB8hfHQWp$>Os)Ee@m01rTcV!KGU!ivjN3LfqB|;NHWxi@xBp z=u{N;D&(?uKY4Wv&~iy$~jg9 zcu$4~uhr~#+ueT9JFf-CHW=G2CYRf9GXkLr?D$++dvV6}q9^QaBiN$5dsnvt(f)Ciy+9u_fH?S1` zM+n;*8Q%;>ugzogT0z@DOeUKP9z=DST%cvpNxxSt`C=!is1y2YvYMfLeuD)r;Dhhj zm+`s$7K72@kcKwD5sEQ@-vwxH@p|oUlgDrO13Xwg4zIw%c@0*#+voyU*8?{L8oX}1&trv)0qstgQJi_O2)uir7aR*1 z1dU!dj1dMH+?zAWSmM->n%G?onuysxX$a0D8K)LB=lUziZnFf%JMc%Yz~91m(fVaHJ=YW zL<@Ax434thZGp8J=5|A|5bT-p?(JEh(?k z2c{lN!~SI$VxwEE3{pTTB?Trg4qqB`tO z3mBWt>@@&z66bk_zw%kGGx#V5v&#kZHy4cPP5>6K)#)*s+`JvjN16CYRM` zGy;P?FzA`Vne>}XR_MLOY&41^{YBfjOp_U$V4J}QLp-=8W+)ZrOgcrP?WZ{)8eJvLVHZvIGsuhi=&RJ>0NB58U5IO++y6Bo*k!O&WQWy zfJvwoUcdH&OK7peJR79xvY6nZT9BQKAa|;mZCo@Sh60#-+brM^xWR`3Rykmf=l6s2 z0#hC^QgP;+4?GIN5kOV9#|*P|yW0XL=yEwN;C#VU!(_AB0lD$$zx!|zOxI#p?Ikvr zZH!Yb9nr9nWg7f`ugeNB==59RNl6GNfZ15B;2RqKP6ujbU64k*0+A0FcrP$oz{m#E zPN&=NG5EnCVf=ELoziH4(Zgml0$PCo>37-OFtdYxd%-t$dZ8neB1RUwVjQU0^^h@6 zrF1+vu&p9F3#KvPH37q{c8J{={BDoUZTCQM2K+~Z&5K|n259!hLolJSIXq6Y+2wV> znv=x?h+wdKAi@K&ABYnf#F5Xfg(;iS3!Q^Ww%GxLF}(2vA~8B`7C;TR*Xg%KM(2%O zW}KSqGS(Skh8nX{lrw&jG_alhw7hFir;V{Uug3@Q>ops!K07D~OgBvq8y;l+*b}yj z#@>}Mrp0+ZS%euKL`GuE$7fU;S{%J}D09bQnU~DdCRMb{jNKo2bFK2qEbxt?sl z4O|CA1oy-Ue0Ldv6*iww+);o#4S3`B8jMC5%HeWjCrnbnwT1}}sHYcRGDHxil*X`3 zyAzx$m)+_E-x|C(8_d@|W}ngO^>~eTKdNX0icV)}ajN#vaV%cd5Z;l-F&K}nRzFl~ z^g*34^gz7B4O4EX-E4%1ekfkj5G44GaAmXEZ^y18IQnJ>cqM+&JQ&H{9ufQ!P)!Rw z2}9IPc$r)HX%%!~!lM^Oq9&icW5C(!l*<=L=(&M6&v)y}Oa+U!e zJp@7=5HIptj3$^^gIHk2lGAqp{wqp7W z%G~Z)e1q5pF)|20X2zVKM+733x7MJV9Fr({2DKuiXof2eUX(5?3o*v7SsKlJv1^s)XT)WM!3ic`c9?X7g9N|bev`)y0W2HDWBe|^xMTf8GZQ=8 z;Wbn6U>xAH7$Kr=hk@7c@R=aK=dw8@BeTI^Z1CG)qGuO;HNEiz?-cEzYqwy{hYaACRyma&mI_*Fhj0?S28O3nkw}gg1~3x@Xs~5D z91#8m$OD{!k<0}1X6i8X-BJe25IzvC0p2JyK(Gr2cpHq>FyXO+hXLc3T^h*B?TcU_ zi&?!9)k35u%NwU=n1x)14%}UC?qxUjvaxO>fV2U8a=+Ve_W_7NCwtg<_5s}x)H1@1 z+vW%PLUi6`ce#yDDR2OOo5O@-77##(cmljF36lhXR};)>4Nlk~BTvcv9uNdL!d~on z!jc=F=sG|}-Cm>5c6Ww3?@;cy$czz{d|fvX5>6)q2WQGn<+ z8qJQ(F>&k$+(`)J7{KENC&*}rC^^g&9S~V`AsDLKiwEA@3BfuX!m+@5pa&+dun^>c z*dDA*VK)wD>o#dni&M3<5M_x|D-6v>M7%~f_GV3XGdLUIKVZDD*s!@8?KT&zD6vx+ z@RDI@_V|G3cx}*Oz}~qX{C|trVMIGzFqL`snP<67m&@h$L4*s!jur=mfNf3)Uctl} z+)W6iV)P3~b>dV`I|D(Om=$M#xE3}(Z`s)ttsYjM)63q=VPafI9NK|K*a1N?Zn>S{ zS%8-em;ymGi;ae`rQloa7fz)(zazGoR6|=FB~|;6u~}!wL))Phi_){>^oqv$(Q}h3 z5<3IN!xA=h8yqiyOnA4|05b$Dz_{DvMbAAB6XyKt2Vi9L8X;%^fNFweU0Azzd0;Yb zGQ!XUE~UvQatF&H^k@U`6DIC{1BCn_v;tvwlO5vZ7|vkA?xL_uj1E?8W7P~!-`R@c zS^n6y(xHJ2Y;FhwL)^^={ua1PAXEs|S)C9n2d#x59StL7!hGEAb{KrHk_I6SaA3SP zaA{x_!UV3agDw!#QNaqcS6DQF2W)Zd-vEz=fSwp&xe+U=-%EQ!q9Ivvs-{u?*fmQ_ zgv60F;~~xf3-PcH4?Qu!EX@dGtHW(~!qO!05U)HHFRj4dh7FeBJ+R%t=!W143}f&B zFDzm~Fdf#aeRORt69X#vZU&fT;?R=Y37ZeRPRQV}!-5tnxu>E7jiP47tC@^%rr4Fz zr8U{!oV_eY#@+zZ0qF5Eq2FPF2&>EMgK-y@2r-U3eH7+1W53-g!Z^Q{TNp<|D%**p znX25edFFD5oyg4C{XrE?E4tw&?8dMq1HX+7TRcn-hv4v)Fq_>k=PacNr*oyX2l*ejw47b*bq2{xTYEQzK}H=KyADy#9_9=guv^Bpd;S* zl4Z8R>XgUtcbQxgKHB!AK2Ihgaek;5cYj;8{2FE#Vu(V)+z$o~9W``e(Vn$+T zqty)&QyUC^0DL%3Z1>r5NDEe>d|p()9e|M{h0_B#0$woqZm_iJ@Ib5>;t&vKg*A7t zokaV>16rJ#{bZRUPR%1zDjhhupWe^WZR(tB42G)>hMwc^F&SW+5a2^EE9+9?y*Fm3 z6(%lt$^r;!b@}X|Qm|*o>GDZS^zq&}f^el`_7+EKs`z~zO;xQ8#9<~`%6_nIC9KcK z>KJSTfR*fVXh4?=*QJeGmo{o$+Nec05vnF}mo{oCH;7%@sC8+h*1}60wJvScQf(2t zv{CEQMy*R5wJvScy0lSCv5`O3 zS}wcY;PLukKak($wc9Rj)Vj1$i`^b}X`>cC#T#cg)1{4Cmo{o$+NeeMiCx;L71`W& zX`|MqjarvBYH97KyR=bD+Jk&)qZYeG?9xW9OB=P|T+OA8T9-Cz882QiD ztf@@r4}PWp;^8;Z7j}v0c*l8ZsQaUpH^jN$>=Wr`;o3(lXJqxm_j=Kr)iiGSszD=H zY)V6e)>f9aYp0zPjSPhPCXuJm=ZVG_77gZFlYiXXq*0^c1^2;UxZJw7V&mSVCi|N- zTGk5bG`+MJ_cVI%u}TXUL>C^b?8=!?*T*YuTrIl&@yek|7vLJRWt~t? z0qS&Rpdj}{_?K|+WZ!*P&GOBdK5I^(;AVJ$by><(*grq@s>!ow-{YGdC>V;4KVE6- zd=TEtTh?OwJ#(f`_RWfX+>28?+>0t!eAa<4*p6;rUzx#)Xzu#TD>_bwYj~FlUe~NC zS52PgnuN=8;iT+)(bV8)*?d6}`f7b;Xa2XZ(7E-M?HA(SlomYr68`)2HvBiZ9sf1G zhX2<77yrdQC?zc~C5NI_@(YtuIPlZk)TK!Xah@GmPgsvsNx zB3Iw#;9s}wgg;&IFY?}aF8)Q{cJ7LQktYr>!@tNoh~4ln@@B{7_}3kuT>*c)MQUsa-a2;_!qf)uLu4G7s#PK|IS_56l)LM7FUWY7V?8pvyGK~h5k4LQN2E}fwXcU zGHmUTJp6h&75~E5Dlc>Oo-=I*{{QqDa3sWUnA#gI9TUr|Gwz5p zg(_yW|Gs-M&b0vk%q~~~_O&2TfKy6mOKL(s6+o?Mt)X!NbCWnjD_qIe&_FA0M=5gFO(i!{y@ALdtMXM|u&c}2{T`p(RwnO2$<1G*k?-8oFWn$#XPIfdY+fhv*Z)@L za>58X2Ni;gu_^m0M1gQ&g)-7c(U8cIM6vx2FhCv8=T$%X|j ze!L3?I$;x&4E^qc`d+!rCTw9+N#{4AxA#=u8lAg%g(DF?x}}W)P2E$O%sq~z+@F0^ zxlWNAvnp2>c(15NK_|&wo--dpkMUoBP2hof@YL8JF0=q0~*dtns&V8hL&t`N%U5xDO9Ylgyv zBJr*{)20TbqKGj?yrrgHu6@~_mZA2p5ue_k_AMKXNryz&HoXTADSW0@o^LZWl;{1a3d zTm|a)V`XZ})e$HvjVXx5DnVRL1kre^YmRU3#Yy6~uq5cM^D%WgFPj5tMUb^*>9cuU z5;C@_iag4fa8O}xtR6RlPe4r{j6sJ|s=fwrCbW{NW+-VTQ*C-sji`+d#zIuh4iJ0I z()<***SsF6Zr{ANVr9!JCnwy1+af7=#QBlO{yc*uPo_u$c3qi-Xt2w(DfkCykjHrx z{F|uc0n5KTB>suV+f6F0!2KeA;}z(-_vVcgHpJoI z2#J4>Gx^9g;l}n=8-y2_RN`vPC>YaKc!fzN?%)e(Wrr$TbnXMggT2u89jd~9V*-?i z&TcEnQDntVNv3R}BcofiA7OVcU3TYK;nJJ^*%Vpx|L9b;G);4mMyoQa&IpaZQE3;B z52XDm_fJ+G#AQ}Z&C>i7(cDQ?bJu28jo^fK>awxh&S>sbsh>=dRCAdGx%x;QvlNdgXzZ)!bh2Nw)kxU8*K?d6ZVN{2@wONqcSIs4c(OH?b^Vvjf!f zH9tlARwRPuPvnI;4C`RF+!giRKhGo-F{yYC%+L7-eXxICO>-tY1R~1MH_k@;zueeI zSfM14CbvL!#esSEDJsD#$cUyyLo{F%>EgaCs-`Ch8<=wCDb;2sl~~0F)TCF{mgw9^ zdQ}ZXo34sj1-Ah$>0M<}WK=b1kw$~?{G)4ZelAt$%8pOgbmY8fgX{ll0_IC7q-vN22tk{x9l@o(Wp3PV1O+imhtBVER_eoO{cuvOS?p zd)3r5%}?T5dsRw;aFa|Xd)bVVJS)kBDMJJ$na&BL8A_rbulA|xFHB%kiGGY0$6i~N zt<0{H`{w96C`K@q%6*F1(F;ns&wDVBTTJCAdAW;lTeRg~44)zxA->bMswKy*RR}+% zB$kB#@V9D^DE>AUNNDzePPnu`Eg4X?PDl8C239>P>|yvT&#*p}Q)Nb>8wY{#H9v{( z4yqc*35R7eP2qne35F>HN7vGk;oSN}@%h13@L1q!rVLPnQNnp9flSd)e~Y%b(5f((w;xhW&n<^^mBk33 zWM%m(4?H$LU!s`!}{17{pVLG%NcgTc_w-k3`<}vq4j5eY@*7@1Yb4e^WiBlDa zzo|TkJ~9W1&);v={H@pK@3l3{f93f_}dm4a+fw`m|Ra~qVw=;Lpg0!aJqHv{1N=9?-VvV z;yYa%9R{BwHi|ZNFShbiBx1=#?@|&=CVI{QY8126sE+s!Q158QUMZ9XNOv zM}@9dbWBHum=}D5->F|2t7Lk|*l6jrs-g^j^LP3-+E5b2eAamhH`#P z$X4W64N&(;Y+!1oehibqHbZ*-YkmTYFxuPgb5_uaJcCD9i;~7Iua=?EAep-@xePYT$si@aps> zxCV7Rav^3$CaajtbFxLaxlA~+Zv(@Tc}o~Y(PPo4N)~;j&!SzFMe0!G-CtIJ%&|x*qEI=g} z{#lqw#obcF4C&oYMep8Kwva`cw`uRxD3g4$YJ4(xm}++4S@YXzB28yW8ix++Ak9Hw z0!Eq-aV=`3c^mUX4{6@OP5wJblg?<09+xr@*Ej&cFU^`e9MM&Rbodlj0>%ybkPDa+ zI0r6ff+lXvl3HP<^!eh0jRWfwxSL4DD0^pYwIk zX$qz^LaO7In2r#^@R{&m?%$?C3S_VjlwOHAXgt5SpKDe+ls8f2rd)VX9Xf~+vx{gOKT6G!j{$@ zC3Fr1(NhJFG{?VcIXf*y0$z)<6bX2EO#+z)Si$ zDcsMJp20!M$_BEy>!RIM&n6O$*5vmm32U6S;3A%*{lG{G#@nwC&ZjK3iaC0(X+q7FX0-HC?@~ zVKTzvXjkt8Di{8xC>^bfC6vu7p)?$Ilca|2KSEG9E4F&~h9~araG`piKshgTKPqd4 z7Tj4PMa%gJ+-cTisb@@O6#bY4x%No&Z)^;DABmgo==0DBZV8$>R7SrC zaZ|LN%@X(|qo4K0zy)p{rIj#mjgnTvywaoUVZ7w1PAo^W?G*DgKSjDV3U^EGY?9vX zR`l)zWeZu*dyn=`0eUIAH2{U}KEidYq42$>m{YkIp~p>PAQS6xI#d z2Ss20SnU%*|w?!Mq_QI#Is&+>U%L2{O2Xg`fdVWs8$e)pl8G>@AtR0%HEJXsegHigh7wdzT z6Q|jYivhIbT7ZT-%3XnS?vvrV+fTav%!NRi@QEdMpzsT zT4hu&{CxPY60~N=63PsfP#O+emrD&B3}aec&>D=m>(;hKBbEmK6nov8Ld|I<#CANNk}M9H0;6zL?HJ}R5ZdQvXhM>X*L zRvGA$#4q|;e{o>CB$eWybwFnUZ~^;ElW`4d&~g17%U`+^xA*U$&RvYk#N?A0;S-%f z>NBd2GD?j-C85A7j{o>)eShh3sV%!{0r}$EM+2~6|1GG5-WvZiYLcwlKrzRk{8@hu z`h^IIPN41sDh~doDCMk+DT~c2Su`AMLJ?sQuu0YOkhVS%c!E#s{);5{V6R48Bm6%& zpoh5k=j5P$8v}C%L->2a<9M^pwWz$dZBulI6HVf~|AKbxoYPT=6aiUO{>zR?J7n#` z*pw9;N8TauCz_rPB=N#6$`%Yns=b;!b?QjdtOH%XDNv*nvU_n;;4a}_b#-LUI$KVa zeN1u1=D_mAln0q_lyj{nqN&0%Ihomwo%SiuCiEydSqlvxB`5!gI!ewRMfPoheEyXKsBhoR&c#Z6J)jJ?U?rvCK7jZ0lAnpSwOY@Uh@Z3qD zH(tE|qrlsol4$1fIe8g9aDMhsFH;aMpY7~ZX;7mM_X5tlF>voy>)uEOo4wa~mvqkeUAYZun*Bm``vapG=}7!wxQTX@S9^1r1coVLnKDOx8y|;6s?-tQ zFy%`peR(DqmcIDNfj}xJv}KZwUsPX)iZcvmp%arTGodXSe=ty>AOXJJB3z}Dd*L^M zf)u6#%CcNp6{PdNOw*vJV3qlZocA4coFD;nwpJ#U&igW?V)3ECs~mspaeC5M&MKYs zWwIV4M?;vCz8buaI_WzlMr-=h=_FGOk)gJkqp?Qp?$_zvmdB72Nmc@3LU{4PX|^D-G5b@D;X=YE|XJb z!Q)>9!Ap>F-#k}t>`Y5oo|4mj5G*<;hn)K3Dzv$IJ$xeEgx!?g(Sa?6ySO_kt;EaQ zm9!Es2mh*$Ra}p_ra`TMnr71p8{_n<0@|gX+mg<$P;~AQWdm7Nd6;%iJ+0mMQsF1f z;G!SQA`(wyV$CvmtfK0@@mHOh?RsDVUKB0Im8fU74`XiVEs8#bTP(wN>{GbJ_mIZL zuu@dfreV(N@o2w-NBeM%+6wRmEkr$|9hw|G-HbbnOQF#;<_xaPqt9tWexqf;lIWho z`;&R$1ew%oQXElHyp$FEq#57o1ew!jL_EI&xsG!Z1>tCP^z7uXumo9k4Hu=5U&Io@ zrTzgwb~jC6{US~AknC)9v90wklkC0n!k#7N`xtdpW=@wa5xoKSDc4u-oY5tHj5 z^3f~577juOjKNIw#Hqpz^w!D39_YL=n2VO4D(r-opD0X6t4;9FFU`SDXz;1RY?N`L zFc#^k#%@0oo$Do!oxfEME1x7wh+ZEe9W+;~)L4s=C7 z{Z=^k?-o>d+45Zeb!v9Z1_ZhJ-PO%Me5UXk)Z^-4I_h$+usyo}kHRd}?`mk;cV`RR zCe!BQ)}t9`fwd1@9c+W1KMNTHR|m6D>p%WFajOM^hXQzgmfFup)bg2qDRQI3hqX7K z(1~U}b3$`Be30g67yFoVE3B&1!@z8cY=s@J4F-e@*sx@rxK=qI%IhPsl_`PvKyi$w zzrtwnp=%+(Q}D~t(a?E#xq@%m!`!(1_Zlt{M?hoN_%UJ6?r#H^0T@heZNBd;=vJ3_+hD$~?b%Hya032favJ9u6g4_ymmD^cFY z_XPV2UM5vm-tlPdJ;C8A42e44lJ{R74QKjW_ zDpS_6xxuMvnxDj(^Mdas2peTGEm-?nYC2Pd2++`%PuU_9!oaejw4pdy)|{nd?&Ltjii62qdqRUqSb7Wky(BnKS&s@8>Z4mnf$Pr)AV48} z&$J~R_q1TO4a+tn#RSNTa>`l;QW%;jIew#29RVSRJ2LMhQ^F$(TipSdF7WBUg+XXf zMfITM-*iE!6?~FG=syn!J9B(*iFgRAsHz^SB9<_y{cmavYV{j65A6t;W)EltO#9Qr zj|5L=F|kmMet&{m|7US8G;!jlM6_#J@Ls`%`^mU0G%9wdoT^dCA7rr3ik*o=^_NXc z6-TWIuHuBba(Q75WEM8^lBBb`Oo?=*c*i}Ke3O0%eFYci8D`g$zqkD! zHf9HPuCs9HxsAbWbnM2Zsp9bU!7&_P`MbWqVUa{rMhncZ zK2UZ2))mWb94bEgaBC5YO5pj&f7kau2B-=UdpsT7!1K@luJ3)^945hx)!2Q!>~}dF z!N}oWNe)prXt2ztH)yaa5e! zD)=ooGl??P3_XMTbSutDVMwB&W0BMqrbZeWViGhUy;LD$a>T#zi~>6D!%fmg^EvQI zh7NLdN0me@K}WfgSb~nCGitYB4#-tAPORDbi-C?xMaSYp$E#=5(D5IpcMNp!Zv-Fg z%zt)9A1Z1jQG84b$QP6AgX1&#?_=ohIW@`t3&8?-X@TmlX0XyF9Yp{53>yGq<|ez( z$mqaKQ2s;nU#tqZ)0DumCg|EzPukFo&MR!fIwCimnv3QqoCz=c=6$7g;|J;5c4gOIQ8tlX{d|dbO}+YQzp{E~ zGk)J$^`>5Vmi?V1hA&|GPxHo)Pk{q?Q|}I3gL>)nrL$2pZsy95t+>6iw|`yCqXZi3 zZh2obIs$@IFA$UK3R)s=WOd|paLOOL(r*Tz!idRW$`pI`)&veVY>ljrI!Yk3skd}A zwL2{&9~tdWv=v{xrn+|`*N3z~^E`oEz}2b(#0hYptfl#DCYMwiX-iRc%(kG}Wt z>ODMcC?m=_1nqdPaHxt_LYS>lg4_JZKaDW=DtZ-vK>qCy^?-ab+&PI@TDZ-+V`I8_ zYj6JCpe3gbalEr~tTOUjkJC3h@ zgcGL5E+V8+MEn8sF@@;ynOnZ}TzJ47`O1TXl5wrt8oh{$i$)B@QxmG6;`qlTVrkS| ztE856`jK;LFj@qn)^swpS&BDab=CY788tU+-J?MI_fe#OWd6NN*+h2K+(|pA9yLGk zRu4($e}<)|Hws5;?H9@uC0QKB8kGTW8_|oh7+pJz>Zey<)9w>ogL>55c`g<*zl+<; zAajF9&F2_J(HJ!ekGlLB)&at!tUq;?AOk*W44VsQRX^I8zwS?cqdzM(;~H8(zF0fA zdR!7e;!k~}PmzueMo4BatbVXDKjBY(qtA+vutv|g;*LM*0NEA(s~jLR{){Dt4wxm3 z7#co6o`}eS43KG>`YeuFQoWHAs+ih{Urny7SSC}e^ zbFDd^qREd`7o=&9qmyeUL9Ran4@08QASa$z=sb5`SLe?|Yr{I<9j&gc{+#bD5lgt& zQAsS}UebBBj-3Z>*Tg-|*3;R7=BG%%;zclH$>S)7WW3jC+MFV_iC%Fe@x;h zpVyx)+#w0We_m&{-~kTcjglj94QkvQjQRztGn#fUU^YK6(}jV!!HmT<82D~uR7C^$ z$U*cqN+zw+XA+`JQf-#pcxqiW&%bnDANN*Ct=LNG^Tm0OSI^=3_s;9%-V6WCCd@wj2T~IW!#ksv?4*8zy6G^eYNel~1&$ zUQpO;>kGQ}+5$ew_L}}|^$GqeiCD7NE0x5Oy{2Cv_R6rP1?u-hvYo8aj;5Vd8?EEH>ZhCX^DgKc?QTgL_g>I3+S$McY_t<_4QitujX9#X zyZIK}+`nV8;Y&U+do@f}=F=u6pPts|(?-fCmEDR%Ua20^n1Aa6#X2O<@wk*XTXYZ%|?I|BBMhjj<%LUL}c!8*P%* zus8pt?uw?yi;wK89+x0wHfqYsT|L{mDN>ZI9(XM+OS8<#&^Ce|?ab>N$k%a4Mt@RW zEc8`XP8X4{l~Xm`fm`vB-c-@^Y4sbtFkH?`y_4IRgot<29A^WaB&)j!)h(~S3T6DS zdTt6s9_6isZ!Tb3L%kIyL8E!fn+s}(7LVW;G(xWLc4ctV1(SuiiQ3b&`)E6*h23xW zRsX?POT-fTRVj%j^jp{n^|PS1%zXI1Mu@usY24zi*?Nk8nx7&fouqYX0qNh{%Kp8f zY$6MMuhIUgfv?4ZYJW5SASuQGo34X7nh~@ak}iJT2-TL>Xk2OhWh2!3qeri9_g`F% z8vR~tg!WW~IAo0gIEM#5u8sMdCA#8f z^R?x&KSD=191VnUUU=q$_pjkNwU)NxV#%aAW)LHj2A}rG`*&C<$Y4d@tk?<;`yt_~ zlr80G7$+=YswR^-a=lX-lS;rP`%Qlv^ahXaNnr@0kmOXj6^xFNh|wDfXt}UaRj6vO z`fnPqNFAo7KR-R(#Pg}*vd#BlX=}fHi1u2k{XWElhNVE{1v2_7;x0G2|WwZ zjn{#rT%N*FOI(c_j+*eXR6h|nno<1*PoSDgjnjdn2(#``GHaYZvqn>9shu%@TeO(x z=aFJ!VA8cxd+w#Bq3JuR#@+WtjEHDCii z%c}x?UQMFBQX6!2PxKzgl_FO!#NK8uv*|IZC5tJ2zW8k~)Q9I*;dw zc8J4Ad9gh3lL?ys-t!SM9V1>u<-tuyeJzN6#dT6lS$I{lXt)ip4hw_WaGItKi%(h6 zc0OglT$yy>g4~Amot#V$T#$>9_9viz@2=^nBvS2@el1)#<4s_PK)V%a*VU*6`|12l^HZd2 zU+Z-3X=T?oDqF|S&ek(slV=_1#v9Qv{%ul9i~;^TNg!{~Lh@1jo6rmV=Y)*TIkc_? z$@@`7Hn<5YdWyRe%@~4``0piZ-I>RU2(=DEyp~81n|qdUpP3)8PmDrqX1$o@G+i%d zQzF4jamp}sXJa9?vC@Q89{hP7RZY__^Tkm}Oi1Y=mnogdm^j>fFpA|bxmECDj39kpfS^r)6jS>KO2 zo7P_964MdFr7R{v?peh6vJiJ-U|V$gqm_eon0B2HZPqym1laIgJF+i_ItXm}^eQtl zl!mV|BmcO!Nux%?3+{uz;2zdiY~0Izg8EHHHonWR}nWMqAxRRnFzP^t*`6|PmWX?G;9g3FLIpf2mFhiSviV-k%i44@h?~n?cS*1C;XEHB7ere$T0j1{zY{B82$xfqt}{Y z{sL~V3SVp1c`ACnDW8~xai31|m`!{q#?dGDbLLWH;s#}D*ptEz4R~X2olEU)4Cnm%8xEJRkGfPta z5E`BVt(C655h%nkm7{yYX^H{7Y(eQ{n{>9x=Q~LPjg{2mp) zzf9jHnjX2Hd^#1?E=I5LrzG<774zUKkn7uIGu`bLMTzQ{pn=SVU>ZzSUkC>K3@geI zy*fyjaZI;fSswN-@8v;bs1{4 zeLyl(&IpZih?24;NB3YXXip?65xEVFn@lPSuXFfu^J&+y*+g9z;eqc^j^s(tD@Q@@ z0a}3MNH0_uFr#c?GC!q>I%4C2n=5f-U;8wqW=~MxO1KY9`_uMHv{Fap)2h(p!V5~V zP@qk#lT&4pqx%DBO0MQ7oQYf&HVb%=k6Le9aUI+@8d1=zv<&DzDlKJsguHgfy6fP& z(Fi%?Ys>aGKZ+ccRHKJejxtS0b+gy|gcEX#q}7i#Pv(y{A>I;$2n(Z13?oAE6U+MY zO#rdOqpPOHl|<8HHBRH_jza4OJ~&Hk`6FsJN_^-jT04qwCzTcf2&N$qMHfVrD<5Sa zDecQ&9;EHC{=CM9A*N$Ax9FK3|Y{xw^KNpc2e%%0Aq%47BP6}@*>w*V(u^Y1;nTFI92;1e4 zDwgbtW=ZRzHT$^(=-AMju_*^-!X#87uE|074y$=sI3g$Gj!73>PfvIj?wZ=$rXwoO ztLc*fv}mT4?;tRR;My53d`xTKFL89ATx>K)M~t4(1id=E=0l-HGlh<^1%5&cOm0R* zl%`oAW~+4J3d2gaLJ6)uMzy(oTk&9iO-nANyIiTniOf+ow+jY2nc>8{qiXtd-BHTT zHKPQE5ci%Lkv@y!z2r8xqRV9a9mk*)Zg9uEyt za(XP~lzPE6aZXLoH0~bEfKkjQeYx-XQr~Bxb)_}r0vY97*3*;W*2ri2r!>J=aUFw` zcm-o21?yQ<*KdO+gva8U!&b&V$wsE%O7A`ICaEo$hkuDJ8=~0qIAx1^C1&Wdng>!~ zw9-|;!%|aT2`k{pl{LegbGzdxVEEpO2wA(0HFu@J=oVW6uaHjHzLKn?fG^*K;VhCRsb7NEDsKwFX8yk3zxt*X^-BdxsKqW|A*jiJ=@dg3oX;gGvR^Sm5 z@2;Yyl(P-CR7IIf1CgQt^SR+j@n96YODLn%Na1{~W^WsQO}PKconkWIW=s8F1?6h) z6oUnD3>bn87$rIkxE~twxA0=B)Rw=D7avA3=Y4Hm?DbiVU*Nxwr;8V)27N2(qS*dm z&7c(i_jt;fB^}|7(0%%I%`ky)nj%f|^pvr0m`+C->!XzMeH~f+S0#&vqsH$MVO$Jq zOi&zAk3ZmDpQ1*MJ}H{0QTu02Y7#$&a4rUF_$AKWN=wNXorx<8;aG>nan+_7S^bOE zbUlQX2O9J97)fcm7^@?6ItV`sI;eCp`lRTLvke4}7qm{!$LIL7Q5=7Y@=669Tf3|( zs zHGNmkO6ClhB5E^;OtvUOrlXt9nyYp5gq{?Rsie?w92p?B=Hk4MM-?Y`<7@RK=!(*D z_EPq$Jw)PtaK&+C^n}#d1(J-2^TAcS5y|TZZgC{z%j;c10$vXP3#DE{5SWTq(9=fYUiamM^_z)WM zw~*p>sWE>UDKcBAwXjnQ&Cx8Ua^>6IczcUDKJa2`C$oi?k}pnqY2~oX`5Osc3@7-o znyz>K$}QdaF%q3>bBHXBq0+t!OAA&VnSQGFn>JVN(t`&9?w zs8&2t9gfiHi0U!5sFvx8s)2q7*Yqz3kj!Nt&=uSNFe zpnmpMnwJo?M0>`r>VwMrE^op_InL;D;j~I&W9}cl&F@}3)+&Rp^n}0 zB=xJ**bgL0(NITyJVE`TB9lTL$KwgAaWfk5`v5Ei7J;S1M@;wLQw!<^JwY`PI+{28 zOVH7^m3mmsX+Pm`^VhbLu|spxmM$^iYA9FJ>9Ds_I~_TYqN%Ex&=OWv z8w?vQrN%T2Hkdm;?vCQl6v`cy>x;nY@QAy%uKJ@5TKL3D7yj9#Ex&|tD+Z2yoJ`f_ zL0W1)0w<(Kod4^p6K&AxohzS}f2O1Ch4WMR8j1h92xFBtJw-|c_v8-ToD*%tyBn|e zwdJ1-i%<`2Y9d9jI?QmT1h}G{cTdq1;aw^bHr!R&DY59{T$MAzMW7ASm9L`&{H3OV z#hWu$cTeJfk0;PZDO8}RB!P+-x~yK2#5ZeA%|=&j9o2M=uUvhyG2cO=)AcH?5jq`N z{Td~!FZE>AK)@NEa`Aw}0N^mR&a|2xiEnDHi8q&-S9eS0ePIUZg+oS53~;yB!J7%K z)p&Cgq-f&J4bYOmg*W+9V;Y7x40Ed0%&DTxQNfMqAF}#af&Uj_P7HYYMQYEpw3K}D z%iC6OOW|LOr;RP8{f`m4Hr~}=2>kA_F!Yea5TVo2#-~6^O5~{06Gpj87!5~`!x3p* zjGr>1`9&ZHBdR8_&sm|ziET7JO6sR%w}~?yy-i|WXIhH1Bx59GF=nF^RAiE$(odq( zU6Pp`rb9cntfnqLUX)?_*Ae&6go?KmcVZT15^?^&zc4csGy5VJW|%h3QS*Ez<(Ar4 zSzomJt~UJgFcb9VIfW7vmf~VH=Q&FvOh_h^9cG1QrVc0Wh9>Mw)HHZ_-C z*4E6+D_8%R%zqwFGn1s9%b!S^DWWy2cMAOBc&gb=O}Fo<)gLAEzlWuww?H#EOsA`w zdm>U{Rr6&XfxM^^NW+2TLPR1L10?cyT()kPV^m2=IaN%57FOLeL?(O(i zsd2pHLu$H5azhWN^Vt%eu3o0MqTcwqwmN!wMy;3M=*i=NN*)bIkvnP7zNNhdAkqE-@`^_kR@1UGg!^a0Vgwj*_ufhySRoo^d zNBCw)4A=|hYQ{}IPbKph#sk@*$AN9olD~x=lcmNq3_BR^v`ABHqmZVljpy$OwQ0^> zj#^I%O|WPjGRQk8HKi-1XCLE)jdf%8AlFLRDLnD@>L%#9+>n5Z57#837rmh?#PhR4 zcP62A?FyTVi)V!nCUFi_w<4sy3Y^iJ0!6qM@xZ*$?C6k0=}4!NN{5-<6p@@dcXFvclQbql-kFXz zSBBoxIj^(4Dzqt0^9&^#5eW59B0LJ8t0n)4I#-)?0=TxU7us>^v$p8Ati7GN&DAK> zgByf;qEJunC>o1GLkHtbr3IVe*i31`AlMjMT5uGn+*5EGY-T~AdqGkGYgxn&wB;`|;52!eF^%zWtgmD0$GjvBDip>W-~z2BGH%tsBhUiq1X}>a8Ft zNqcm71~gAPwIBspnOc!?#oBc7g$<#}@X8!hDyeJ8lc5DdF_TK_Y8iSa1?4^!^6+z^ zrFauRONeXiEY~Q_V3-=y2}-1~DUqI|@~1;j2pgFiBdp3=FQ?*P605>JgWcx)=DFJG zWJ0?S&Fv^&|7>VpqOeUahjR4LbD<*PZ6=lUvaT*Pp4*06{5v!&nqj-U+A*eT)bG1cy7-?L zLqmAsT80qB%4*4VQG{UVg{Zgq)XSl%oNyaMi5tU>LepOj6$qo4bljA-vflNjB@S;# z5Bm(2bIRO6b+51KByQan3ML3eat7MpxzOK==aV}K@FUXSoXfxhe|kOC9}Rsyl+1NR zJL*Hj6L417=X2XP##v{h0}r%GL$AIOx*YX>gJdH73uhv^jT^_bL+joSnT3BdrQ^c5 zx#+^1p~>2{3U5Z|HohIYK05dGH$yhzv*_Gcy%V}wk(=20rguWm35VI-7*jU=H&hPI zx$fPNQ9+{Obbrd}IWakHd@nSLK?O-VjG}_lIs0%A<4N`gJH%;(NKjVx2l~5QSGF5)c?njzzJiR0!d?UK^uPxJto}3 zq~ih^o1Pj~AhoYt*2;kes(~Ay`;P3=h@7G47k0o9fG-Q)(E|+nT2@U4zQNW=<=ebtEct5ofXY|%li2D)i06cx zamAA7MNF4~#_dchG2NSkyVk&KoJ_Kcvrqjs&i;$#EI!Z*7e}y6UC8o9Wi>_cEy7gs zri3*)9JgA*)f$$XaP`3`t`_~HTt%Id)~pm>XZWNV!ngl5KE1{A2_Pnq`&z-LFWH`| z`1C)PPu0!VtmNROVyw85?ww+3376`lxb(k&luP0eVND`d zmQ5vV7U%JOI)ySaWs z&?}wR?9~}DpUGJBme49gq3_alGtK2xdBha=cV2TZFJ#K!@VuDuRq|4#6T=KSb;=K9 zuj#`JJ@qMDXi(x13VJek%}JDzy9Un+iN|y`I^A_m_W#4)cgI&zY>&GeN?-y4N$4a2 zLT@)cA%OH25)yicR3LN^r3#3Y08*rkf;YG31}O@*RZ#&SDheWCLu`P6qWA>6BJ!J= zox5{(@9vGy_x|~PKHoo#mzi_UoIYizpw566=_6+1$72}`>lr%ZYc1?uj4;jcke2qI zcvA}q`0tkXVLCvn?kH`-n^`N6F*c`)P~K@}Zz#))8XM+RV(6AxClHqn2JwS!?Jl%V zFF`X*pQJ~RfKn#QI()vJy@L+gz+#iYW>gmOI|t@e#gDbO=gWJ7u<5@s09Z{~(ZPOP zLazd5nDSr3o=)~O^b#mnJ7_XnLZ?9~WBnz(*JkghgJ$#M=s5dobO}P!dGXJ2_Oa4S zI49ozj1GlL8!HUb+(cTIBVWQR66~W|y?BrR0!@L_A`pl9CGP%lc_pP`B3b$ftJ*{h z1hV`Ve<&6|nq+T5+Lp`&V1>4FqsrC^v>H=6Z1Y#Q#OcqYt)9pLRja}`# z*vF$RfX~v<$6f53<$+D`mSOvPfDmXGNQ_VMfyan6;U8FM#^IcIBO>smZg#Il25NAR z{X?_>utCJ&8EC#J6{PX_?)K@Crd7)4-R+%1&?bR~nP+zHZ6Am*C}p0x34h+(o)-u` zqmMlqJrM|fyN|s%5c;XZokyWVfzW;X5$y(W!Y1?A`)bKY-qeI#hqb#=AS4~`;=lT7 zkkTd`H^BZ#AmEJwWB`0KkbwmQ?F$2;XLd>NhNA{Tvd?GO<8^?B)Y6li9;%#;d17IS z*4t>NAE3K6<>9ZXWl-_ zIO>UwQoqdwT!L)MJDZkNAXdIkEQ_-b;IrwBD5Ge_e$hBGe;#+yNc#bKH4`!58@@<*YAJ=;4p$B4e3sQ=T3e$>G3gc{vMTrTi zNh!9xwB&@;l>EYk_|!stX5iwr6+>-FTwGuN(XUMXegL7&hqy9t5Ej+_0ESC5z9XvB zAKv`PN}2Cd=l6e^xYr*1k{R~xOusmk`2c5zT7?AKf4*Cyd9=~7W1@M?>Kt2{mS+!@ z9(SENeBh{GA-@`e!kM15CF~Rk~@6Btxu(~=Vttke_ zl{K~)tP%9Ak(n_(nlb)ij9ds%^k=G~4V(Y*#XWD2rEXpgcR%}3B)(^seWm<+MG^BX zXYUu4W;V{<_x6L73K==fw(pj!$EfoX!wD6UkX|wph?;BvRBp)8EF|~Wlw({!z z_STZTxFSoPHQ?b13++C6eMOe~SVOb0Q~?oBpWCux7^uaD8Dk$F4GP2_fe(JN zFkA^=Vs9a#7l_RMLVn>I zFHabZ+8A3JyQ2IhsU>Ske4Nkxinr8^R;1#Xnln&@Wn;?D)%G<~NJi7p9o_FAh%${$ zyt>wYNE%>l!ha`RpNg80zPIO_&(v_~I?G91^m_YbvS|SD!j>HtC>J)`=a8K=ph8`D zpkEU=f>P!{3vkUX_RfLO^S9W0Bc}nn1|{mBm~X{RAGU9+ziQixZFE}|yXy}&YM37V z80awS%(#N#?H{^CBz>}Bu>59I-Sp@f<CtBpolTG4 zYHFMw9c`)xyZOD=rm_8Z=18q|cj3h~+CNyTfpeY|-=wNHvlgu?sS`85rF-q~$;8bW zHkYh9#AcG+-OMOiRT2Q!H+EY~X5p{W0sC2t1&pr`*mt8*lqLUgTwA~xE=oa||8}mV^GMXjO)CG*?&)IG0eo)F>d={?$yuGasnk}v6K5rk6N+9&}_I2b1t3e7` zwu7`8^wWxcG%D3Y_rYUdu=gV4wG(`_E;k3i_5 zNA0_G&{Q0d)H66&pEgsI`p1HVu(m>y`p*(-++6s_!DIFjC>9hj?#SZo>-NSvKqkwc z*U55JvH?1T(8JPO8Bu}oYu>PDq5cMVsWI;Kradtbdh?t1A!tk>beH4yu7S|Lma(+A?KvT6BWQzZA?D`3E@%fRWjfoaWS*iQ>>#+I zY5%pD>nduxv0^(-R#MOlpb^$IQ_&Gn%9@>y zeMol0J^Q}BHTnjWvZc}P-%Hh{OE~!hd$bWH7C-cXy*>W)eKtOV(9E|C4P>L5vBE12 z(2;o3%CIV=onJpBHjl9Y-0~4wL4{-uIvC1z@Oi~LID5{XE}@>FA*TKAzgDV@?>TRu zg$9BuY67`uthz-O;uzW=&fD)68_e<8I0Ymn5xscAr{r7ROwh6+GmYd80BnV1rcY$F z5+E^29=%|nj@E-xCdA5ET>H}F4e+ELc~t{(9=K$$il4b?Z-MLv#1KMX-L@9c5J75> zo-)8oD{-YS$+q)d8}M^b@H-ss*`-Rkf}D4zbJyPq=C@zL649r3p}?8nhkASg=-^o^&;MWR&Tm!|20dwjm$u>czu2P! zseg87SzmM{5cZiG)q6O6RP6xB3)V<7go{;-%K*y@-e<#wRAT*e?cS+xFl3e zu-)7gLsS~sO08<8wIuTF9YKS~!vw|?1`PaY_0o+JdCIGLDLWm8@C;NM3GPD@s0TGv zi&d4uL^l1ZN*bA{)9FYYy*_>%-tzR~7;srW&@B5hVij*SO8=}Nlqa)LR*Gwul09@! zQb!1wl-g)M}ZG+`1t^6U!c3_3H5?Dsh zyo=N^&txAX->6rb9wtX~bUr6-4AE)Ok!Kwa#+Je-gYRl(5p$-jt1)L~ETV55ky0OheOm>KKA>YY`apq*5T#*!X|hy7_`Rz3r1pf; zwdfG_2xIicydX*iZOx#~L)4AP!J*pVEz?{PN_pRm+`%CC&K$i}ML2norh)K2}(UV4NyOw?; zq3W%LKGccTJ*6E{9Zd*~*Bym1$!TD&UEa+W&Sw<5; zlT7}Sex?0U5h$gMRH9(G=EKutbqH*!W?BEz3upmEpnHs-8c^z!Cg2eROV{a84BV!0 zZpT!_?W-B3&&tRSnqk~JvPyfRGEmC6rC=(z5J7OOKm?6jJ1)v8-K=ZFz-=1m_OT$` z>JL6;`rX3lxwzZV(hcZyz=*+d(|KC}k+0yw645)5U#w5*p}V`kwrg=a>}<6>R=(9* z*RlLYTecX?{Y>ga$I@^_>5G-*h&C!Z?^tTL0qATrce}N5H1~6Bi=M?)0JUc^t2WZIy8PXernyGy73N`VPOUd%sF4TbX{U zbcrM%<(jtqLR_V?`T@j`hbNsb{YgIKH<13)I59%5siDC>8W?B~GmyNajnS1i2DQ$5 zgLVG%uf@M{MZD084I86_he0Hc`!FRO4^|Y<27N9nul=X>C@yj2Trt6?-JD~Gz9N5m^%3;ka6Cc&i zh`BPB50e5#xWyT_X4J36Uef2wEdP|n4a&(@)iXb{mUqjk5n}aJF2IAVElj&=~ z9zCEm(6!T}VX>xFTJ}oTNmcQB)E*7-Tbp4Q*X)K3xUMR|m|X02u1CE2S@+e=}2_yjt2&LY3Qz zxY5>{Vq{S&h-s!BTbYfJBTbFy&tzc$ijc_T8Wp zt>VyqvYjz>_xeQxp{pBk;1#z@r{R0P+g}5R-tCwtzsckd60whPGaXYYXDfH^b`(qU zIffS`Vs{$w@WtAWPvx&Un&kx7qoKjh69gt{@>G-rKRCt1bLI={WqS?BsC`@7D%k%=9|SwG-b zTCY;}JFA1?1##BT40x)uKE=^2yO*neG<+u9VRFgaS|YN(bD7H^EmlH-zJs``@>GPQ zu4LY~;Pa7=4IM)T-yWRtfzq>eO`tb`4ES(_@7A!407*l&x2Q{UbZw)e)gyr{0(<KIy7KIyWNnv&sVghYQP0To0dPZl#15o>h+46o;M=hu{ z?eADzMLG%0mVqE1v)Xe3R@>jfqC+<2S?!Qbt2A*o>BOlx$Nkd5=#@WmnJ~z4QZ}BI z*>yCdxbf~2z@+zMeGnPRe)PlhjiXtnvvNNg-ZH{r zI$EyQ(b)O^$aNlY-~}j_C9_yiVB$DW{)d{LL^#o34?12|l5w42%P2>ikfgX|<>(m4 zc?o~>>W&)NJI2w_Uv^cJ7gl74=eT0-<95L9#yhep0ZfQ~r%apR$d<%E_f8@?M_yNv zkzO_ujmvX1_j7et!fgs1&A>lniX1iMofVnzn4hRHVUIrR+JMD}dH6<=BNNPb#xqdM z`3^AK-?8HfogG;ozy12gSosv=oZh>_7R^o&Oo}FmWWWOi5`Or1lEH^M(JYby&~$CQVy?q@4|dH?yqD7FgAZmnF3D{> zRge!p<<@Pb63JH5XE_E+ayr8ck`KN#;Njb|9mnMij%GO)|5ihTV{ss1ER_)6f?cyy zu%S56ygI%C1;7-_JjXHf;f=ESUPqXORub_+N6HV(E*GVMSoQlH(<4o*l=b&HN<+|2 zfu?>!sx=8uM{ZEcJ|U6A%tNJ}xM;CsY8XJNOHQzQn_}C>1?`anaM-Txo%q2ejw}=K z+e;j+(OZGw%a%IQEExI(KtqOpe!!7v(!!Xn3p%4407qp=`DU48wG`My$Ffb6kZcob zU9rp27k^QU=3ha!~Fl@6a2($W@+o8Bl1H&?qlPJ*~v zCQwGLa)eg&mGL)xF!{-jc>ik0eW(lISX)DhOcSNR5w@&xOpi9LqCjj6+5qRo^o+o^ zwT`J|&&AHQj!tN#poN)E8kRWnw%2Msb~h2GjxE4<(MTB{T<+VV0PoByMo5 zk@g2aj2>}#(JO!jVUCwXsW6AqWGitMbVAgr!FOYuqXfMNN|~>}wcRmQK4DW&iwEE= z+2NRvzBc0Yz>eY435>C$Szt2<9(RmGw~Z*{?2cZv8Mb2$He;}ijq43armkx*eaw+V zE@X=nal}3b-rDI{jAB43@g$#AAGdzoF*XpI@sVFX)_=Sofc-t8B;`JAQyc40CXn2L5sl7 z^kL3y+{x`29i3O0oR?HoXe&xi%u6gxP0P#6wdLg}=fxK$<;N$cDMyPRnN=w|Ki`&? zmYbH6mX?>FXp7Iw%a4mMNQ$$iBo`H=rlcu1x2|+Z(M8F*c}XexDJl8MNr}n1g?Y)g zI9pO&eo{(qT3TWPc8%H`p=7_Y-I z`MF8)DQSeiqSSPe z;&S5?lZujUN^R$=BT{ryK|*dSk=0h1ke8U2nw*;)pOT-KlA4?#zR8dh% z9zL^XOQd28U%5|elAD^EUqt>(wI#;q=I15HC&U-#5~PHpgrp=zdj7#zrKsR7UGkx3hb5Cj3{+L_UMV3gM0TGG_e8~ zH9+SV1XWy7v+?cmb8#o@Mpqyd&b_&%Z4^;netcR=ZhUfHVPZ-eu~SN7LSb%Pd~Rw= zD*4D`-yErApIbGqQdDkgLQ-m8zAY}1K%}MS7RD3Zq{O9>YXlMtZ201$2T2?`POg`t zQwc~xa%yT)K~YkoEwLasF2RYc)gj5iD@yW@yl!E+tTYNH+vmh=t(Uw*iZ%a!d*)lIL zPpRGVk=exef}X_3u0~5EvF*UhFlG6kElWxG1vOnlvOfGOaMvO|bOnk`rQtVhz|y+W z6-Y+IuN6KpU}+ML`Pwn^|N6ZD>+}Av&(nrw|JUbL(B1xDpZ9-#-v6h4-t6=T(r|c3 zXKi_199{KPH$1i$FD8jiJl)MElPeE>9i?MG5|XnQt(Sj&Undzze{o^Eu)Q>6jvgzCzKQ)BUfve6w_8qiszC$t4fN8 zkn`3h#rKo*P$k8?$x)J$;^)Zj^pfH`WMfrH@kR3GwxpQ0Qc|2umN`m_753LbX^K~K zUZOL3c0BG7{l%UMd71tqmya*ItN0cAlijNND*eSSJ3LH(u^R-A&|mE6=TZ8L9pib8 z{$eKx{zZSWtx?D5FZOBsb^42~`MyDau{FRq=`XfwcAWmA%LDU^OUb5HeD3My3qq*{ z$&$b^yv1ERN+Rz*ra0dSl|Kb81D@+C`Y)gB32S%0E*{XsS+mZ^lo$4?mi{6P1U%QH zhfqIdT#r+q>#1i|dFI7OlJKFP&fTa=yw(8jG1Jw1$9t<$gearUv+W?)l{3AZVNw{Z z!&?-4a~#&kITAG%D3nZBd}Gv%YWUec#0?|xtv=2kkSK2YjXSF`VNzZ0%;1mqga8@` z`#KLvUGR*4&dsPBC~unQ&I%Wp{PCU6@#?|i6agt1$A|knXGueGrvc7UXt;pD23q`8 z#~hVbJyTjlueq~EH^hYlomn-CDXq`Q(arJOioeCV1D&1m=|u}`py}3a@P`Vg{GB$g zWH{$ZEAZ$+&IM?tHA((9*|NVuQh6%Vxq&RYTNC5&dhH0R&zm#csn|9nydf|lHv}|c z&N#9Pv^?86BqZ!v(PA8Rnx^>9Q0Hv)vM5%aX0t0i6dxYu93ef6>kfB%O%T5t?tB29 zF-3fCgfmBemMpN4t336XD_ZW0!57}HayOnZ(%A-GHKM;e(wQeU!%Od5&`Lg52}^sc zgx7#PhvFW&A(43VC}*UeFq7r%DCd3Xj*%vl<4BfF5Wc8 zc@jk>h!EZ4c4d+Km!BK!Y=s(vazjMb4WOqGbBvWxXMn@vl(G5ec;_G~89z1ASr1Q| z;H(;!EWo(IwoPy@M1w^!FxdEs&KwoH3HjeU6P*vE0#m>}lZa)Lv6SoV30$Xs0I&Gy z%kF|mpbQYq=W?BPv_?-}{q7e1kSG-hT9S!X&vXR`B71O~%i(x=zVjtiD#)=^(L|)3 zPAbcg7ACLzMBw?KK2lHlq`-MalJ?=FMb1G$&V&FYCTDX}kt#w$y`t#(sm?EDa+?IhRli`PFZ8(axYl2Ls>vr3 zj9;<;MeWv@e4RJniexGUzInf=xB|Nj#;(gz;rP=>@RDd#lWVGo#TPxbJK%*goikBH zqKFCFZDD#qKDxFjHSvJq%mbPS2O3M1m5pof-`GuVmng=A9mIH0xWOdVqI!Z1-!|QJnwxdL&$=ATyr?O&EIW`ZKm-W~@RCXsCL&eE#5_porlzA2-6*%P=P%ex89$;tkwM65Vq^qiM+VQW0 z&py!_@4j6=Z|lBS8sM2*os+`u2;t(e>y5W#Nrz~-828Ua<3qVusiZV1m>*F90^>Nl zYjz|k5CN);+V0#eg|$u6LYj=Kzw|Z7c-CZyFg!KVVL=t^Ees@=*8@GZbAj1K=hz@b~-bpaX4d_bAk?qMec{Y zoZZkufX5~Ov%L=5(2IW`$QbJxO|^*E+MOm1qGrhe>jszETG@hcWvaa zl4wrW;`uUd(>$Ipk}4L@?6!c&GUvn)`L1LYo5%BQJvNW$Ye~jUxEIL>3F}+zOl4qE zUDvcK4v$;CDHQSKVDhhh$*R|L6l`jyiG$=5MbvKYOodEjOULc@M3k0+^fsK~klqbKLVe z=f|>3Z~am|GPnM^WTW*TBqLUO&2+%QI3SL2US{|T1WVQlR&hQ*k!;N8$ANV9CEn#_ zE9An6BeHy%$r-SlR~sEFkRod;@-jPv=#?Fh;HI!9*x5w~*AE@J~Ayvj_UULosCyNEG zaT+bS-w*U~pA(JfFPAvZtrW2R7g&k)K^54h_&>BwQi{t{4LNH7|||{S$9q*mqA*pc)5n*S25k5 z3sl@c1>Y=k3<~Q!kldBSu3wE$3AU%wsAu!O0@pa}d>z?|bbM8dro9$;;o&vyP#Gv? zS%!e&t}U0x=->^xWdoN3Hvczr%Og57(dFHUDl%@@lo}i@79oa{!#1QF7vTJ>a{5r?xuKb!Fo4fLpsYX}! zrCPYMDf?79(j-d5blZQuUujduOD?_->TB02yEZ=R(LcpBnCt z?-oacBlRNo$NEw6%~39sGmm3c%gFuGn6rWd8TT*@i?feisDgl1x~NvEJU#c`!UccN zEL}Ng52UgKhmod^j?>4uUPdqKTT|DuVxAYJA{}T}pRQg{6&oCCuI^qOwsLr<)}rRp zhkAc_k2YnV9!`@gkskVtcXg^Peb2FZdbqB~=IP;FfW}W#jW?Ey1IEy%GN|dnv`SOL zN}YHXJsmh9(f}VV&@GJC?QG`l<^2j>k{sW;f_|=qTey=-BwHb`tGnloLk(au2d%`;s;B0!z3%YZqpmrD(pW2*)g zgvXu`bwzpeY}ZbU(7R`j>s0W?=FIoiJLJa9b=lEbz&l&IIfZlPxrU=tpqzH&F(*WU zP^0Fu2STt^b}FxVP@v~^eoc<)lUqrdd(aM@-bz}XqMHZokEF_DqVCArEba)Wg@rWHrvS*A;hdoi@ctdh(~E(Mc5N3&AaGUQDZ2+c}i(Q zszgdb*fo^AA;+=#7$8lL&2vhNE=Gkn>0*&nOxag+ifNT5*&v-{7GnV53`Jdxv)z1E zJT0Y=?;^Xl?t8iR)-JDB!zXvSCWS2#(ph~LSx5xazlE0HC0M!uLb2XA8WafAYEllz zIRke@;P>sWUr;&ahG!bOeFgNEW4OBkV(e?8GQ!~skUgM8}wq`iAO>MtPJ*USi^;!G|^?`~|@ zVZ9y#R1ov;6l~eiJy#l!AM5B|h$ad^Bh4&MbL`)ssod=3&Xdr6*3<@bYI9X;k)|AC zZ66=#Mf|b>1*v;dcE!6dq0NRS0b&ks5+brB4GN%k_(}JXx~nXS$>0K^CbN*JvL9$PjxdU>2jhe(~o?n?5l$l(<&+>JHuZz zCg3l60e{r92$S>;RX}5sM(OT9kX+{;s;3}HdImSi-S=1|>9Bj$B>fw0#+amUbPJZG zzoSh5S4p}EIE?UM8wkvX!(P z_o*uKJg#BOB>jaEZ`mk!$13tlzh$hF^iLX|MUoz;T1M`FkI_-P-xJI%U8#nES^hzi z_Fvr7tecvoO}$*Hnd=UfkOG=B3`cA5vl0MZO(gC-_gwV40WnHs*SiA|$rjYl>>ZUC z^W7gx=yQO|a{PIGtD9YZ*8=l6S9#~}Yg0xxu@ZO7}g8kscoLpfI}%VA z>6fPd{77ILP&IX?`!_TeG@@;;DoayO;>3UNInrMjhs0VEevq7KZM+JPT+loK|#OIkghTiRnyKF73*%EdJeWp-e7C85@p$=j%Nv1x3}1B*mO_Ds)wOX@Ae>40 zY_0pUgmQ?a{(NglfRi|L0A1aYHE6w?+>SgEV6yqRcw%odsA54gv4?tq0OAf!!<6XP`jr>^%CYyTAMaw*bU3B;Uon$uoG%WA2{yP6=XAY-0-Z zV?jpQuo)CUd>-g4bb-zuQVJ*Q=wNN5R!_?mR)bWD6c+Dx|5RCN;da-kBDd!>cp__~ zr@<3hWKWjJ!1vS|SbD;3a>1Rc3~C-Tt0trM@}JT?NKdCqOT;BKg2OkFO+gNr;3 zl&HP#GqOC3i5n!L?dCR}u9C`D<~`{i6Cy8XcxpoHWU_re^PmB*U)8(XsP9;RsvLaA zJxan&rnO{Ma~s}zSaP|JPUK>KQr0|mm{ za8<>9**q2Oc)@)couux;2b*k!avXPi(LEU*2jw&cM87Ty1a-~WZ?oW5;$CvcNnw`( zD2|KX*Boy-U-<7M39Wp_&iz>QxIPjan+#?`?AC@|sXtj_h=HQDSrneblv z@akn9UZl!D6=|*Pdetq-a(j;L4=g>lKd^ckM+h}~S&R@&Wl$r_v`SO<7dr7QA`2{; zkLYDwG9L=W12e5z{~|e6p2g%05>Z$DzN}KoR>r>WJ}b$~8D5Yf!gV8F*_&>1;pAqH zXE{XpNyCFf1R&s4BA|YQ*w9|Vh6g~sYUqFh;ZFGC+wMK+2sN{qjq&RtUlFAM;rA2n zKhY^sW$e*HLe*IZz*gNE6bN#fy{m=7u`YXA|6U?9$YV0T9K-a2IN$lnDx@)avbHsxM*WYa25uxOoN6+3dr-bP1mM|k(gDRAVt z58cOPxgQfVh$FY)_UNrr$yOGA?2ZqSM=`u0j@-$J*Zed09$B8k@hm%m&VD@dD689K zw^I)ypZc*fzxDh^l(d~;g_wYrR+<%&P4tV{S?vrRAbq&}%?8XN# zyL+MCpqvd5%S3@_S+n!NP<-ar*baE-757Wz)Z_50?!)MWz%Z_(4&rKhv$wi7drW{r z;_MW+^5a+TUgW`V0YVSjWutFE0qfT;;cu_G+vx!5;1A5{GkLS0_hw5K_~1A0La8dQ z_pN&>s@6v+LVx5ub1+A%jOYB$C+xD^2cKzqIs*5;?*0(PSmS1M+{SubvZP?c|8~`B zFMUq!-+0H$^p*%{ft-$Zb)_p3U>@yP8nA?#TR;KS9v_5`)`cMLD%txd!~5uZ${|z) z^ZYWHRQV&YHJ&I92vgp@;eJe#XL1s}yPT#c!L!WBKF02Ha372A(o_yL%a~Sa-dCs- z(IU%$f!L$e7{-C0KAYdep?rvg)&&IcJyZz^(q$u3(j=PT$ zrWv;1ad$%l4K(GbzUq7)vS66cujc9n0?-Mp?YUn(p^`KW-;q2?Xoi8XG!@ql^TcgE zeWf51|H zIkt$ot%|3!B<;uVR`qm7Pk~yhRcWsoqZ@d;<($#4LOqLR^cKK1FuIW=ybc(B&B&-9 zsN9@U{CSw?JNf&*_?;SLE%qj8j4}G18KawdyVp3Q*K2yn_c+u~^EG3y^aw|&+D}~= zuGCLk7zQf!LtV4r^zGW7??dAHk&|~Nq3uxuXpXHCb?V3Nf(Dk~#+z-|Pqq9T;hqZ; z$^?j1p#WhAM;O5Q>?`;*fg)tt0yeO{LTrCdlIG#_^*!Cue9#hOaZUh>kMb60Fcv!~ zzc%nZ8xpojAo8QYG0UgLAS{a6EU*TJBOM6atrCH2HzK=LCN^17(**xulqUxN(ZoX| zmaOe$NtUkM`3GTq!^CPd-NuHY_&(1s$tgv4}7az>Tl7Zn~I=z=%!VgbVqg4 zS#;=NdN{DZaoW(&FC9nbOXMY;Joi_Y@~N2SrzGCw2ArhgXDbgSc|NZ!-OCiCosydXmv{fXBL|f&uDS41yabcL|)$NdvGH zd8TJwK|(0Szul)~I2j5!@%7=J$;d4LjRS&2PO|iGkc=PcnTuYurj^8LJ*U!&5RigB z)4e`^xuE)4UvzzxXFhsQ&{03=ZXE5IggybK%*yZK{$o7pI%tEHQ%tPPK5>9{1*h~E z`krgn^GRi;fyPPYpG2*u zJA+KwSNkB-DowIcfs*ytBs==cvOd-Itij~flTBCa!T}t2F zJ5Q?WR}YXY2j+VsCHY&9&Asz$JvR5w_XE^)a-fBGn#!Phr)iZY-d3G>79%7u&yU16 z7kP|J9(6L9n`#@^*uMJquQbHRKX^M0pMT%eDy$s=;rh{StOul9Q_{V{#G~(XY7`#Wn63KmO-11D$uJd*IHc@RCO74;^R}&w#LdRuV;azbn|*j$=5_iF-SkywYoa@ zSgI1tRwns8`$FU`T;rDeJ^LH*u(R5>y2{Qy9yvsI`ORgu>2sKdY|$AmQq3h74Klj$ zgrK$>Yp~Tn*z}pqc`M3LH+`D=zjFI2PbJAbA1ZYZdb&#JGGK+xEH2>vPkUye3!t1O z%32r5VDcAG$`U03!{xOc=dd1n zY@Wk9WEvfyMW#g#GnGNjVWw4@c&jbMo1+(Rrk+7K6rJW5Pd^krc*OIQEI-W11PQ^1 zxmDJwRI-&e$2{Xgp5oR{S%IiBTE)UDxJMBkcBbtpP7K>5=$gJnvf zW_8p73WQtXlP5h_(dSf~BCGNZ0iTFcfDm(vj6_YVG#kDUXu~Vvn_}f#dK>;m>6^Rg z&#LzMNK`)UiIe1rEY-oei`LH4VRIL~9iXM3tz6Vp2GvDPt2FVB>cp#fB-#z6aHZz%a3^Sq3HBQWGFgJh-ftw%~5IFURi_i=I#$y1%uLba;KN|pcIIx zx(6r#)?WXi=TeNR=Vok8_?ek{u8K z*fSA11cq_gc$P=ZE-HG@dXEZ7NL#%Red~G8ljP3so}YMDqUQymx^R$HZ($hz>l2R+ zy#lJ(>cR7P?Wg4X5JaJ?2Vn5}9_Qlein&l+pLu%9=nK$@=xe?LrL<}Ji!62F2Z9^g zexJAf32QsjR0F0fD}L1hd$2Ai5)=p};?0*lrz$W$u^qi8S=sWXr@*2M#?`NQj#%u- z_~MG^J(Mt5_zdfuJK?aeJVQ|@P|oHV?L`6L@|~|pLNcw=JnX72V%doJWZzA((inX6 zCy#cu+DJ;?JRc1sRiev$>KgeZM?NMoWS)*@>yddn8aLS3V-6dvMy2`Mtf?3*Cqk3LNTgqKk}Pr7;=MB=G8lK_ut71S^)H=-#w$yvw_gt{_t$oK^s=k>hT8> z0Bg*hVnBf~lxB@4RCCBz}yd9*)xW44=A|1!WC2w!(2;M1qQ>AG9p5z@Q)x$Be zccio(FOa<%(!=4osS$2f$vde^I9cS| zFdyGcIzOL0U6PM0SN2XoW65-5!}#3Exl?E210QK(f55;0auaZPeHa!Ij++!k9>yqH|I zRZ@JM+|yA~e1!dtCP(2)itDkz+sUr)lH!Ni-`B{V)skX2*-TVYyp#QH!>BbPY?l;M z=1Yq63AZK1l;@J-^JIKlQrwimP~J+48!Ti0I8XnIw^Dv4|14(a{DuBv7q9@3h<^cOp?aEJbSw8t{?_pWU6 zhiw6q=r6WUOs2osx=0B9#lBHgqQBUOjmq>FTVJU{f3a1Vs`M9|RfN)Ctf#9+f3fbc zI{n3RBci{kTeG)UaQQP0#^4(>=eETMzT2CPn$TL_>yc6Z0Bjo`Qdw@8%`V?prd0Q~ zm*jTjU-Vey>_KvEoc-LQ>R}BjmYQ$K`>=F>)L~CrHQeF5y^%OQ%p2C0`Z1p$?^)(Q z-etb*Gbha3F_b^WLf&;>Cilbt4)fYjhQ?VRoRjEPM|N5LMX8^M4Ws|dw_!f5;k^$p zwKYR>>#VK0W1A>TYLbvhm`od(O8-owe`e4>v*@2W^v^u{XFmONKmD_i{#lH#-RtWM1(vq-F9iT2xN(Sbs*$(5gk!32sG+Q$jcc%iL6Urcn|pc0_NL$ko`Qd_<%3PUX?6BfewcLh z7vU!0-5ouI>R(5Q{5dZ^GPRynC3|-#E86=iIxiX!4pZ+VQA&R?rBb2?9w?b=SvjYm zK|`f(Q}0AM>?Xih@9J_lC*JwHC{`Qm{=HOPzL~9bi1pqpA%KOqT=Ql%Ax(0hh)@?w zAYV9l5$=Thw)B1})x~XFd7Gj7IhwNYfqC9$c=-?OE8(TByj@TkTSGbI%vvv9l{q1fk+lUWp;~25TklXw%2DMQDnL{@BHDXrqA{S9iXaVDK5g$Mr(Yqsq5XQQ+6GtD zKAw~2ZH!;*=)Ej0!sVU39nccc8q=k{|DjM^&F1ZnR)Q*~OA71Pr4Kv3xsmwKj^0P= zuiB;_Hn~A!s~8eAaLHd@S@5^GRC>gFizHMAm|*<9pWvN~_JdNUqcZGF^e)yx8yat* zs>mf8uWM=|65stF%>gdSZL4$19u8L|e)s)t147=*3B@tR3kRYPj4Yj@E%gM18d>@F z7b)IC={wvf)mx0d*OTduProf!2cFhMCGxEhBl2s3B0P;+`hZjkH|y+u3{@E-0*0td zB^oZ=H%cWc4`JKItO+*8kEMH`lN${o?}qQQp(cRr%{yhy@cu5|G_?(AKU!_SL51xr=el|O%BU}B!c3kRm0nMkUR_fK1=yKuR%d4^(H^N3^z^uLpGzpY52i?`z+YQ|ZN|}RBQWE-kmr6Qtss-R5%~Y;+3@}GaAK*O} zwoys?4DV(bxpv7z&WkS4IVBtBh*6xV^8sWVcWeqiC6#5=gWQHgO zndrhu?=*|5Nu$Wbs8C?32CntVBdyU4P)ZFPLcs9y#0?{L@P-hYsLBQTP?f%6jQ2xH zUS+QI+yE@54GW%g$9w;UN&$CT1_E}RXHK#?l|q;TrjKq>9ks>#MUTd2dPb`y87uXq*AqXJUNm@+(7)YZ=cC4Oq*FS(4;;Kywjr zk4NxS3yn1{@RmoKx)wfH;N6R=4AVOkdlOQW0avDpv( zENTHtsV~V*hOt-s0>KYV@y6mBQ&@szUPlP3`|$%PFPcgy4=|z39^ZrD1}A+?^$jQn zrg>f|E%t7fP%a>;xfV#5yG+nox_oiE_h%W+0_ZGVelp9OitY!cEM3mRGiH0!bq zZx3ik&HIpV%@L`M*rd+GvJidGOnMZ%=6Z*Km&`;a*&RTe5MY?}B{TAbEX6cUtNQ{m znex;}%w7OulFqmY9RUTbAASMPzSr9mB?v|1<41(`k=A2{l`OV4_>tIYqN;wo^7c2p?ieiA0zi+b6f2kaSSdq$PbxRoSyhxhZw z@&}Aez*Z71{xcJ~HO>yV*h=#5aQ1by?jhQYaVyC)R3%XsCruAfo`oY+u#ocNbL z)D)K40l12VqR7#Kqi4O^7ltY$EF&m{RQV%F9L7@yJ?}k-q!yG)z-`DvO_w<*%~T@U z%I?>^-9pKerUWhEbsmBCn-Oio32$Civa6J!!3U58Mh*V3Lo;%-1^KoZ_!M9C2=!|< z8etqPgs3PM*0_sm23Vtly&`7j_)Iegzr|6cbdm0G(+|9R&?0?n>O5C;otZ7Um>{qG zofO($_vi_I7)-)C`){M|nvck~sHP*=Lc12X!41!OTS^C1T%JGo16-B@9t%+MmJx6_ z#{VP*Bn67}nNFnhfGtDlf8-ZQzY$~jCtj~4{Z6R_ap^AH1iz?6vX!NudBbG6`bc#; zW!MTOJhZP7PrBe;C&>*to?#z`z{}C_EIj*1?%7`isQsfr&#o(m!N7;ed^~Q~EQ@jJ z@-MyDC6qBz!~q+B^}}ym@xF-qfpRulyD`9C2_LxXZHuR0(MF+izmeG0WM88|@Y%(q zV)6N_8l=<@-};KI_yo|62`3-L-}&0x8?69MvcWJR&W5ZIM?YlEob=BEr-*tPTLox? zyS=?|3@QU{Yh&9eVXaxb9k+nXR>#I$zx6hj&@-Z3^zs0Iju}219H)QhT`S|Kt_w{a zRhr!J_LR_3KvQo5^bx3HvjGB&=ls#NaUjyfAH41HOE&>|eB}r4u0X*3KYDlL^*?BU z@=>mS$cI7w^8&?Ey8rAQC!z3B!mrfD5zWqxKoxVja6IoWbxu zzv=ck<9F|F^Esaq`iHj>ITi}oW3Iqf5C)1;kleT2@=lL7tEBX07FQM#e@1GHiDj$kpV@(%=B;}%j`U;NgC zduz~NL*$*D4DS;#AjA5Em7|Q^?&49w=IG{fsB?7FI;C|;Sy3f))J$<8zI=g-<7;&d zL(9IA(Yt2&K=Drm;{P4RKc!dv!iO^D>w3js0~#}QS64}urg&vYjj}b8TzRx=Hm+}Z zv@jdf_rC-5ef58=?{&4x>PzMUf|c53pQ04XlNdSiy?cqGR5&P>!po*dn^tMQ`!>GV zVn&4G3@=+Ep)5f~T^Ak@SvCxf0HtiMoP~dlEGyDM(}V&1;azS|*tVLluhlIZBcYjk zk^uv@+$7RK_xTL{!;B=si%%lKBbzLsZ!a9kd~tU$xL} zq-o&-kwwmn=ffqHdfByxI7Q^ z2guas5_ylkZy7ux-k$7M5U2CNP~4ntX6*_@y36XNB6+bU89U*%0B~o>ar0HtjI;47 z?aKZYDq}__$ZWhCe+_8c7>n8XmNDwVj-|92<7|BX7&QvapJbm)nHFj6A56z(&K=b- zF`seWg89G+y{3*^YwC4XQ-(7gN?b}=&r0%Fj7-2Ta^dMiI4_q~D%r}f>1Agt$-i+8 zTh3kzjCehIl(nuThmKWeJ(jbV`!zg^*~`T-_~0{SEx_QWuLrfsYX+O72Y+(VY*L=# zHww<_S5{yi&&u2V$~H-;-&o-REOqt5&kQJ=f_i~+Lqgfesoz81@9R<8qh1#QYMM|Q zVp~R8BXchBq>Ku)$~GE;+J_hRWYJ<~8tt3Q0?L7TS2CYeiL}x)vuuXEjU)54vIQWs zu4L(0V^=btNcum{D|WNI!el$9m+dHE&yZJMRb?~gmCv)w{%9y)U}S>i6(2X_XJak$ z%K5QsUU`EyW6UeBjt!Pq4pFB6tGwdyyRdm)p_-B+u z&no+~zC>cJYPPs{~8WF|7w!$#asJ!O~blO0Bs zacp?VOrX84p;;uBw&T<-!h$_=?is;qv2SvyY6Evp2md2W%5r(xT%vbq-OW$dvE(@WLLFul-+lcay? z9P0?>!92UXLaO|Z)f#twqby(gRK?}V7JG$=`ae!CwWvtOu9!Uu6*k^K z9Akr)YU3?Mt3s*>6=QOF_pP$)HRRTejGA1)Eycov8*n?ez|t>e>Mg}R-d=12$GMx) zn)G@#X*0&;Qe}KFCk~-Z11AoC8r7_Sti!pp7_=}=jng#cDtMw#b!$b9P!(kyvo!yt ztaGTmfKdrDW?98qnXgjGRxW;7b~02h;R?1Kv$%|SExs#@36&r78%BTbR2b$}4G*Rk zV3)bfF7kx&#>_Gzs8NO*jPegM%L9I^u*_1yjQKo{`!FRO|LfPXUFaRqHk*_!KU&ru zeE>>X_IU@l_`R%aAoQl+%X;Gzzm?H#R~)dzA7wptfHX~kne`WbR>53Komt=dqinZ? z?tr$nl~l0OaxoB}&8#aB`YW9K{*I3L?b~GqsKEqX6z~;@x}sF%OZ@m>Wz!?gtD4*? zdkfhF7TuRI0i}WhrV`usCwy@_II0mK(QjNL(2BZN015<0^cTC=`JpIlG$ZX1(i?>wr!71bD32Le_|NL#vy!!duyv{Ee z$(!9A5z2wez9}+t0Ck$VLk<1{5Fq(?lozghE{i=~^0HoeF9P`ugU9Fn%41KLOsVdh zEXyD0wRaX^Gwr=<)ZX(GEcz}W39!04;Wn@HD=tPSl*KtuaAVn>3C26w{`5rbTK6(k|IM$eb%%8C2W1QIgv*ynv&~BC&Qb;tdJ+g-LQ6$FrP7CTVyu zAp-&HOf+7}_9ypQFsBEfzMy*5PhYS^3nnGIuJ3&b6%jE(XBw~u*u%m#qfLowaorEc z?cWxG;~MxDS&Yn%H1Pc!tu?mJJ~ONmrNVh|<3_&ek>*wQM!wgPLtv>%tQ-{3Bqlp1 zZr|gx=>QE`Y!sIkG@}M0C=e`Z(oWF%EPH_C6tlZFLp?!xG0$ShNtMWAzG#xgzT(I{ zi(LlDY!G>RqOo&6J~3DtGv{7i>@=-YYBuv7kWkG@Ce8u6LI0a_kcQd~4vh85GHPsw z4?2xm|4iNUb?Ro9QnFVW(kAJ8j%3=pxy}~;n-a1g8?>Edio@z z(i0|GWIw16jR*3nlx)I`HLoL3tUp|>6RqOxw`7tr`z`c~rptc#sdanm;vYKsev`K| zIfG=t4csb^sFbpmnQ^}RB-zLCf@Hw020T12!FOAJo}*bNz+D=eMFQMJWYphDxp0!| z?dAy(YFJHxutc+ml9BBDB?Ns*?JQ;!0SU0&!bdGqkuBZ#jYY=m)Wvts;+syNsoPw(%;(9MG`ov#{tCBa@($p2&d6EarOU8e=X!H&~)GXI@QorgivQ zU*FRfMmf;W_W;^p)FU%Wi6|9HQXcQ`D+vkP3F`0`g&YMLHpn*;xkWKGNLPGg)QoEQ z&q2Pvwn)z%*x*>q5ZdSjLwY?)s26#-i2KcY> zzG4gL{(;aw7auUuY}$1WiUJ^r_WBw5;t zgl%Xk8vjw`E47e$|770}b=l&Mn!JT{+3Mv4Y-sMkoPhl!@NxnLcbeuK8FCjnM)2gU zk`8jeQQN=uwyzpTru7>pO~(6cm65$wRdMEYUq9(VynVW_t$b$^K04hur0QzowHrFj z#bNz?9YTu>i4rzM6yXCMK8lcwpTdPRd`Zg`Qdm+Pm|5knX3Xm=Y^tL`sUEqFCa9|Jzi(?0Cir`iq_KI7xr8y*}^IUu@6FDf)|j=X{s` zBE$2RcNL$eKUwd0hW=tH@GSksvcY@w*A(TRnZ9NcxlkujXR&nxd-#h4zDak+oA<1)dd>!Te+1M54Z5GnHm>gH0>pK@JH_E5o zkGd2Ij(pGhua0~-#z*>|Z-{T*I9an!{d~V-=r7WN1swj?L#RW}cKQ79w^b!O{GAl{ zQD^+XQr|GtN3?=(miYK`PES!vf3beGozndQ-_;N_RMg?P2YuOSEGS?kSk4}bKY7sC z(FolPC$A)}&M-r%K`9eC*{SS*;fr~f>f_>NzP&iANp#IXLjQiq7mL@e^wE>ppjl=5 zDl-2K16=0ggRhjw;@zu#Nob3{;VgM5shzjGksdzxo5!2t5Ig7Ml7g~>t?NPptRrSOOWuX*7h)^+BPz* zl`}a_b}&;=YOa1Yf|PD<_rZgiCb|zen3-P@!|`e}fEF`sBq$Ju#cQzdIkZf#Rvy<& zL@7Yn^QdoU*u$U-vjAWRF1L$f8f94_1WrA02@tTs5qqlqg4PtG;L5VR-&~Eo1K?H1 z1q1}U^cOo+mQ5U2`#dksMV@4B_*X!}-l76;7f95XDePz$hpHipGt ztSujjB1AFnQBuBM4lBf`O3IrD!Yfhh%9~24jUJ&7-n72_4T{Ca^Pm-@O{e@L8_gu@ zCC@|AgMXPg=N%tB_$R`MpNrM2gJH6Rf8!Y@IQS|l+PA|UIQx8C;iOI{E!VW3?m;43IYQ& z6X}k}(Zhw(7gPlQmWi-WX_FQ)`7x;zG5Ps>WGP4bO~vLR`7^|3A$gIwZz2u{uWNr? zXt6|Q&bhioW?sj`F|)o-s*0D$niUz-O>_|xP5ZP>E`e-~U;fy43OCFtZxxnGs)bhG zcsn-mz*SNamO}UT1ou8h7X@3Af)c4qQm{m84yS+Wd%CV^Z<3E^ZpF#C>$&m;XeMQl z4b}OGi_P?=iBjPUO7!Qx+)80fKphRhrg;A)vJ(D~C>Bu|LV)p&#hoMZjV?o~B7jPV zna%J8sk|Bf?2><=#c$zRg8%x`cTxwWEEA68tG+DU;fkPZBPoG^ z@44!W(}UBc104F5Z#T}q%D_p+?X%-+-+BVQ;cMT3KrSvCxTry;BHqo0xJ&WDpO!7b z4Zrc-t#60*z9YWz^+!J%@TDcnZ{LunbuH1(H%dz;nQeH`Lc6F#wT;((IWj_%g%z2q z!a)Hasy+U_Z+;j6gk4Sx0M5D`G+FI(0^pUUH+}6T)LDlOK!I>M`ire)C+Gr|onS4P>|ZOS+fTxBDMuFhX9B4c`6uxg-{C6qQjX3O z&?1P=5>OElMxTHtOb)hQXfA*{C@`<{3zwm$?$`eE4VBSupjl=)FP| z36v6O9zb3^PA16*ppYIk{!lF5)$vd(bkc~!g2SsMhLn>>zW@@Zu7uCa<$OApC3$hX z%H^dx7=x!~TYBp7D&;#Q^oPFjEcutoxNm5AI{F1vF!`dEPiuz1t?F-F6^(+ot5!ZH z5d6u|^7e4nNFh5_FTWNB2$ShOodxzmqIiU=91X9~}p7r-;;1z|YUOgMIN&-AeJ z!>B(X$)YeD6wo$82!wja1O%mXE4;CWU(hV6KYqDp`TQ^d!x^_FthS+h4MgSsQ}E3# zyBq47H&|u3CF7fFm7hl&07=7eVPqiY--*}px_G4rY2_!T=;GB!+q8&R52+LJs)U!% zm*v+uI*-@G5S_*A-YLd-^-QrCFqns?U7_Lt-4j8WaWz&6AQ|{C+ zKTS?6O{F>t_?{*@f;rqA@>HgwY-MPp^6s)+m*E9`PZM}cjCd%j{CP=k$?@n1HL&+i z;H~xJ;kcM`lgFX&5c%}q)2>YkHh6*BWrLS!SRy>aukWom=iP`1Tz~8CjnU>~89!tz zT>GWf9r33c;_0cW#yN30bpo>sD$IFTMin={vt{x_H7b z@7>=WpYFdd0e9NBKc4<-g`)?q3zMrAR}f+^atl={RznP@&vJCZwZ7lqiBgHdr~e;& z-yL5?u|4i?LfuOzp_7CJ>5yIsEdqj+5Q>0O6OsU-gGdV{0zx1ledrJnZohP{5Tw{? zDo<332v|@M6?_)J!f)EWduDg<4fy!}_j{jDe3#jC&YV7HW@l&2tAp5;$ak8XH_0_A zJwKs$LQC(G%h{5U3PD@1hm=R7BhCHf#+-`g&9)kdr@T~Xc=2fj*lQVp(wmy2(VPQw zYJp{pA8FjeBOAc(9%vdCjIc#@Cy%lI!|IezqRmcO>4(+hi7`Ba)knMI%uSRbpq0dp z)DOkQoA(INcjL`N(d9T#)bN_6AF?Ny2a14V=zRX~Lg$L$VkgKarE96Sy`i(3Fzq9B zRxmH%=WIRS()^kv@8Re?bX*XfhR*sN?NGD=AMRqfG22+w_bQAxufjo9I!U!Y?t=I>dEyq#jc zBb7jvx|-`4e%_!uxaTMn4?TC2_U5sY6vS}nEH8`$w~(r668|FcZjO(*_(_cmu$FLv zfj??s1R0viz4%%4Cz9!zQQk=4uO*gtHpeMl)MmQMDm{bhJZE020C4T(s5}=2^!6x& zLsj8ZN$*Fp(gdnIiG3q$8cX=`;pL<7GcrK9&viAglcYrqk^A=oh)Df=(kQKej~eyF z{kx7Jl@I?0dmHzU(hd!Km{j80OxHB?M`+O{yhq{`l&jEiZRUL}mbf;vXOzG41{e;P z?Bu8r*y7bcI^D}WOSwn-*DbyLrnahefZN^M+&DlfIai~4-I-o(N=dCMZ z1trrjEW<|&b$Tf2(}&yC!Ov)2fvwZf9rc2_mL#|0=-hddAUbuP`lGdVMIE#!!?3O} z=A9)+<7b#xx?a#$kgIs-$sVnBo?$>XkR3w?nLA7JY$~LmI=v$|M=qn1hPFJvrWLw3 z#Ee*8oZWX#GxE>v@-j-wPyNtML&{wx-P~M~w{kq6rF$O_9?`Br={^mMj7xV=Ea2>g zA${aTsBcy*z!ud&F;x4+F_*89G zeb`+(+q_OT-2l(n^q$U=e^Q%S_Pv4nk2DvG;Pf5x#$Z<*`e%fv97&aLj7CkXxmt># zbm1U$l(`!koFjm?tnP|103}SI(WAVe44)eOxUZmxiwHC*LIe7Yq0 zeGONx5oM8OBWy^hT3G5NJ>piB66)pD)Hn>C8sA z#+$b(S%52C<8?sS3T;YNwNa()elWp&Mph=N&yXfAP9HR(Cev9H9s2uV%AEc=l=*BlRsXZ&5%W+6eZX zTLf675gY;v>?ek;guixHBRnV%_1i*C;*IQkF$ zCb-QgcZIoai4pi6M*-S%?_yol;@dMN(CjaEn&h1R=dNOmqO5@mF8L{KP3%q(Zf!c8lq2Dnrq-AI(}S<*LatrnybtW zXK%)u&Cekn<>&OrYXJEbmyXAWIa+Dm@XS7`gl zFS;JJpZubu)&cU1j&ujfFPcEz_*eBD8pUsrM(U1-$S-UibZ&3>>;SAr6uGQv7~Nbp zd$sw!((>7{Bthvmmu3I^&1GQ?ZPn4BE|-GX=CV_S13Gq+UpNSLo6AH9mL9KQmg&tR zz8=!eWiz&#=O}-u9iXt6Eo}cu@ULns`9*W?m9Z#g*3R0fU}j($_iKgbX|hscoR>R> zOpa}>jeF-iKlnx`Kn-1Yn1kFaUN`?Co2sbTV_7&JG@BPHwbW)5R>jg0RoG}Zq4gF# zbF6~OSk31}L}@pCJT3r3rJJA%>4 z-R3xH3VOKPoT^L%Jy516k7Ju@RrT}hSb#3DyOQfz;`W-~mX@RYd-2qDC7_e?HGXxw zf1i1ovL3Wzw@8&&GL=+Osq>pPUK_{0#4k`WfXkF-H~wWEFwc?>qHhjh#@|o@5$$lu zL7dHxfmYh#8@dkpH7WZap+k4cH*l4vTmeLBS7{Trnb4-+%%hcW!6Vw=63t*NI;}vR)41h3_eziVA2Iwcj}icknm_1>`G^t>TCq53N?p)Egb2V8Y(-lG zS`Sqi??^;V-^5xuMM5>T9D(o*>Udkm5py<5tZ1>eZGKy6i{0v&(PyiQrGK4Nh| z_wj87t;A0F9QM*5nERUmG&2j(O=qSX*cZDu;noM{3zGZ>RBPGO<}i@gy68};xZ#kN zIska`dS7gFgB^XJ(~dk#u*!KN3L835%57np@*IAIY48nwb0P577M1sRHtT77Ol5CR-qbx87yZq>wxOxxx)M{O>crzj%` zhphBaD}#_MwbcMWmu-b?chTHQQeIX;iG!ypvp@q)R~Uk&D-9@1SIROCy!0}v`Gpyo z05l)Qzx=}7O4$a$>4^C91hg@}C`W|XjJLB`006OAi8As_^AyQ+SS86vce6STD1lKVAik@kbZ^MB>4E$^%j8J+jLf?r(aP}sw80Vfe{D=i7S>QZ! z+dN;A$8l^PoTC9Y2~G*ma(*(yVQk+$&f*hm3}4d$L4b>~0mAs1Crvt_ zOvNum2T#&2L|2(a1ry(5SpGJ@i#|138z@cjV~_WqJ7BG^-(cEklJ+G=l}XGa!8gxA z>Urlt9+Yy)GCl}2sKOtpYq>8e{YdXT@zcCL1T;{0!4NEOYe0G4o}hupFN|#gmYya6 z%~MUoKue}F7lM-s-xq^g~@sSY|0}wXiixTKZu6V@q1z73pj8%wc_= zp;OT}OId!E6*nYH((OK^D3(-ZA84mBG~}gWvC2u%O7wxDtC}pyTIe)%Sh0BOZ447w z&XOU(OekkbLpBqHsa4)GLV%&Y?k;cXtUT288i1KY6{?JAtcM@EF1wXd=_S>SoXeDo zmgn@)TR4-}nfLKdZF#bXtBh*HrXG&E=Lubzj zjW9s%zMpS)@ZvhUST+aYTf@D$Ykr&&0yZdkd+ol8uUVIvOmnV2J`Bu!zWbtP!!5&jCe)Y>7a*qrHITh@!B|(zkcX=)^Ef zGP-oOTX{VuVOzPSVM#!*fbKLMQAdwCYi)L#@|Olv>Wk#@mY4O=Y9cQGvd*?GCg4P@ zw=K!tG!chtP~^Uo(X*8;Q34Lm#H*BO2#GT>=4baLOKlS%4ij-F5u7DrjI&^}rMW)7bFdFbu9~U=>T&1W$gg+392;PQb)pD0@mb(f}_-p*{0)1F(NJ2ixe_N5UKVQ zpCZ-3k31rQ0i<7^rE!3qOv&iBcBlz`1vf$>qmt$>G2gNxK<-BIbo)3|yiHoX3i+0b z0rEhOr`h?b;#s|TJ_eAuDQo}U{sx&F=fr-LBKCqUfcTx0QUNTv+xm z2MxrV126CJ1R1V#p`w+RP0DpqF1At|@}=5p5N_|H<)aF#y1!XvnJXzjtDtPP z<`2+7HH9IVrZk{@f>dUzs%io+|2zf#i7XBi0O$HTzt+-FsRiJP(g=LNb(S|oc#YQH z=UM}Tu>`hZJsx~w07=XOTU)5Bdgw_#Hh+2K-e4JpC)D8^E#sBWMpUY*R8Dg$9j3CE zL@6pfR5E)>^z9}~7j$HkrMff-eY(jqTp6N5tFIRU^)sCM07gB?kh=TfW=jNKj4X!M zSx##rqZMpO3u}PfF0YqQqvIg-b7WBo_qak!U&*vg?HSs1t=ddqI!epXOWQ3!h~OHN zexx@FU9OJ+{X@O-vEoxPv69`=$EFI2^$20cc&s>tA9)gML$`CM<%%R<;Mjb+@hQNj zqs57-+N^a5tJQE3#+Y+9To^yYoYE2Sx*(O0RT!{WT1GwhS)$i$m{y^3-7cQ%kRJl+ zz_2mMZn-DPwWbjz`5898=k};Rjp``PUH7~tTb7$rJU_$6Pg=acKC^s@w^?#LpTov) zUOYH#02zabjNQSW=!abIQRrOUj8HJu0J^0MLdCey13}qz!~HnQEqU9syfW%o7OTLA z2aROf(Hww{emG#sl@}MMVu>FozmTgK{czCojl8iq4VTiQb$Y{+Av=mwaCtA94+YOB z3T`RqOhAQ)EO0@1%47QZ32M0dbyUKKbixL zRf-DVvAnAE102%9j%*bR>7%x)HXy%fdTD@q*2}Hx-uJHMtYpdppu{BMXxIB#@-b>N zAD~{@si3$IEM0UMVaV};r6IcfzDHO*;u7HICoL^SV2wQ*ad`o^Y?c4lla>$gX+1g? z@D>~}LNzf!r_&2S&p`U9K%Dc%SG*4^P7jy&Pxp))*B$t}Cepd_u;Idwyu$`6`=RAs z`7Fonf==w7-WB4~LF3?b?V#bB?qkp}=A8{1#?L%fO%~+xF=&7f5dN61UAq4j2&Nk` zD$Xco#CV3AqudN(#0aB!enyPWT0AylL~%TyBZlWTj&d_#LIVPpouU2M^H;8Q-H-t^ z%Z3clVBkW11XX*#V39K^&)!`E=~xp!d}uIJl6K&T{K9fZo>QEr2XKwe^k{m{6-%rn zFE38h=^8xL^r~gATv(i^}Y%rVISTQvo<^B%w+A^w*xel`4NYgYDr}%iu{|c*yG`B$;V~ zhma3da6XfM!K(`V3c%92K7FGEe&o$B?uOr6?2;70ka<-a29RljDVM9&e2LsAo?zzc zW$G!&lnU6=EP{6hGJ(``>$atXB#j|dbk`86Hdw@Mki&?ix%d8LaY)iEf~LD|Tt!=< zMf>cIrLlxJgnzfRMECDm%Ind`_g$N){H{UAHwL|T-_k`7-THwAe~xnB8<-gI z{Rfs*6W~f$J=wYOfRJnk2^tKf-XnN5{Whb;Oiv|1ZwhKU(`TqQ!jEXE(!ds`5y_*!7%Ol>VN&LbH| z?s;Ka4Jpl?6=81&#R9DaR|02~z>4rJRyC#5CZ0rRM24a3o za|0TBZc?DzQr>z{R_e^sWEiqR9#rSI48oCaOSoCd+DbAtQPKI*QLif2hDwauOebRH z2%IOu+(GBwt{j9aPWma@;xxp_Op@W6SJ9>01YY9gS6w&qbBy_rlwYQR^r9nUS8Lqaf#&8$ZwB}37RP`C6 zuZ=p^w&K@Dpp|6i01U>~X(7DlJyuzKpslqr8e7}y-NZ2!ZL4E#W&+T<4Er0G2XMzS zEND>KCBJAg`cnuIddu7))H57sJYEYOB)l8Xwf5mh-UN$wKWhzlUklWx&0ZGp58mk)-^cE-Y>>-(KK;i{4inS^<+cdI;`>MaeWrds=;FB(~UqO?}lVD>d{a1Sfq ziNxFL$xl5OfOXF)tW##%l=zQRfHsJ#S8(5QWHwzgC{O7vv3w+G0h zs$}dVL~Un5vf`t*)Euo#1kT|(N{Cwb&?IYRNe-P;OvLu!2C2iSq@mFtZf=Ff?ZzQh zp`|qqIeS?7`8`LH@wgjB>G=uP=e6{1wX)umQ#hK>)s%r=G#^u+npke}=&ZmwG=rK* zfsvl`pyX3et(Nid*03&^;sdihN_?h2rZFbyj4_s}Q4^nUl|k!MaD3KVfa7xk2Js)C z^RQ&%IT~Z<_?zBor3?WLz#DP5bU@5u7dRHSw;ogW5@!6w>$raxuagBu();l~qAuW# z*E2v1ns`0QbjUwp!Gms8fc!nj#+xV_&FNYeAd^Uy&Y|U9tnj75N#-2-O%%qed4xcn zFNjoppjOV)25N;o!$8HuYp^6Y$txyM3%Dg3GAe0qJhaZiZ?-6&pMYGU!9#fT{7de} z(R>EvIxm`!fUJ+@69ckB9xG}7*HLowV`@5Ar|D@-M`9EXIZ*~(IC&}wU7UoYa0LeO zABC@Bal|N`miIVOXgo~1FZZ>^%gURidp~jKFo-+yxuSd13)b?Ia=I9FmjOCiHZkrDG>Lajx6Yz>4bgKMk9x@HF?ll2$ zUDbbtivoIMZ)v&=wYHO#T7V{%eGX)+XG)6%5d zE85be1DY_>Xcfnpakh$M{LCZN$AVDBXS^k^Xfxg-k7Pn=f{xC@6N*7&tUb{2<uswd@1*kkS>pMeyTx|aMVhF|mM5B)jT`n&u-NAo#n z_{M{V(#IRk8Mb2C#RZ;4%pSUA2z1U$63}4aSvMck2!H5|@GH|0Ooq;tSKls;wobw& z$(Vo44U}?oRp&IGGL)UGoihANHQ{5*0AylQ2GF1i>0UJ1`jVt1lHUE~!aoc$z$3)u z--71UyDFcbD+FdQAiJgz>46`qftfnZx=EJDa%>)$qX0Gy%zksVGyNV|b%ry2L!Gei z0V0f_c_Oona2H_lk-2uRHZoUxL=z&@jU%%nKCzL?=qLCp^1H-bj7l29!Pf^}eZ`uJ zcCBR7{FZDE;c2TUzeS1qiOgUvQ5=~K2+a`Q4(al$Js6KxZ*DclO6&I>O^R#u#!@2(I7T{_$ zRzpC88mr!+t_itby9&Cq(3-EbC(QVX+(>Q=K#|S%L4!dT@q!}BRhQCGbbXP!VmAmV zK@+nt;zuNA-Gz&-J!EMb!{gEVGQgwJnlVostuJEjJ>h75Mi8g?Xx*;!i>+KJBt$D4 zNAE1Nek~m#V)}W7`5ZUIAx4M=tlPfA`m`jSr7AK!Z&ZE7(L+ms2Iu%y){mqs41bPz z=BSF=*Nf^SA`fDD#faR>jqtxlu$2f%E~zPnYv>bysH?^tqf?eGX2XfR($o@%wo{T8lclL9?(;H@+PB~1Ot;XeobU< zguH&fFvKI$xpD2i3O}MlJdUh}?%eIxQnI{{WAmi38(`Cy1-}lNFHfl>(;^7|UQ1QOf ziFXP6uVGF!=KfJ6TOmm1BPW9Gx8bOg%LeXVFR@QOnOJX$B(3rPzIm4*zwr-ZYQv!ZUmn~WX6^n4`f(Z$6^bx37cPl27?H)Kc*p;XbrK5DGg@GpV0JUxK!DWpLjeA zBt{_GR=jvAKzth?lZUUQF#MqQ1238n_xi?bgId77K72yzKl>=^ z2OA}l7idS|#09z$co!PtxKtALUwk?V}k(uT=l$ zmH;H#Bnvbc^bt@B*FD~S=#@HcX@VjX+PCUF{dVkX>p@3T3?r>cT`-TrzSM_qQWE(B;1506sK4V z7W$ik0M}vbcc4M_CHDtkSZ@a?cZrexIA~kW9iZ_j4%$($B6iRoQh6l(t*!zn`958< zG=4-~la{@KUt51JBQ;>i+%qEpGWE=g`C88`ozGPC*j0To(Vc^OhCWjjwg1`r5_)d& z#B$_Uo{~x!@}tFZ|4xgOwOVX~{(g69goLkZ0ID1Tw4s?nWC^OQ`is?FLc-H?g3MK! z2au^M$LLgp&*9N)WBN<0#drZ;h2iC*V`$R%N3o5I*HQr$~@CCmm zZGBMWU)GPM3k0>dVS3o0#d4OiH9%Ybwoa42Cs@fS)I7VIVI8;4i|Ql9Phk1P5Vv!s z|F0#E`7t$JeUVnvL5p-XoC6(|Y|o%A2k=CpIezRJW57fKOB>7c}=V#LSrUnmTXWA;S z;b=bJWWD1-BMLMu+{R%U#lr1{C!_3>kE!hUbjp6)z>!uC!JC!;Qfx`+lN9VsUli+1 z7j@3`_LGtCKaVM2*~QvGDYaNFsnoiIq@?Dkpn|P28d|}YA%`z6#-%QD8;3G-JUcC} zV2eOk|MKkTx>nJ)NRFkX{CL?_Eh(C^FsX3Vw6d+Q+<_DDIRU-lCEz1*)xla26IZFl zPiAf7hsU(XOFDZ@U9o#sR{{Np{;qC={r=hj;)Q<8}+DTtBcQ99b3oNX!cuJ zPx(0+`1IBMoXhxBkNlhu@aH)BImhXL2jEr6{G9Lbwvqgt-t_lj0guo#-jmJ>2LDf&5X4meiF8d%J@O0JsqE^3kPLEh z+#S4;F-L@8?j_-^Z?;iE#*gwE**-GWDp2X7sMyWjgR6rU{EW`yqyl=|fctV|n@Kh` z0ubz~fE}^6!KNtKJfZK_4ybpWtvf!#tzvWA&mt22=0PIxWX-xOznK8`jOeAmADv(I zTtI3;X%w0>t&1rQb`bXF#_m!#)N`RNYURh@R;r^?EiVEXw2_n+< z?{`M5X=95qZHG978|hWFI^Nb+1gG2&ZD5Z@$?>+b@=uEq2YoHU)=C5=3a_k6Qi)0O z3RNE(ipEu{HXC%Qnw{Mk;I<~(mPn@00SL4EOV44uUxm%rubVrfTW4(eTly}x4&?|6 zc2@eaT{BcE$<_@0ebiE3B&A`l3S;h*M`dn7E8BCDDR2pJWUnGku$5{j5G`qAix$BN z1GQD{1W^W7fA^I16!~AyQ%l%+Iet~Nv#o8CWNHrk^V-K051R=a(!W=R)rc`1l2l6K_>OHhYi zwuvGF(Pg;mAd&j6sK>M0DWsaHaGUFSx%x%88&Cp{a;@Kgh^3%XrHAP}Y^JuvfM`x^K|c{glaD4c?qPpS*JHA6^=0X{ zSJ#Ok++H$3A|m@>d-+J)5>tuSK(vvJ0_eT!gI+jf%c}-5EK?O0U~lrS+S8*yLbvCK z%k^F(Q$p|86(OW!R_&3IS9>;BZTuM1;a^zfjJCDLCpmHod{Hk^q>wB}yrx|rt^JyA zeKbTp7u`?{lsC?v<3nTpC)m~%<3Hok_3f3Kq1F>^8KyB%x72@fK#Ny=cezQn*|KQ{ zc*e?|Lz8V|O><#0t>>n^Yp205764IGY%bGUh(yQ08SbR1wtkWU!kg1< zBhb|;Y8H`aU_Fu(QU&4~2emQZfCAC*3WqIT5xu^#2l@uRyWyPZ79SGMeY?eJ{8)91 z8@aYW%F4GyxA;z^kSu?qbBoij!L?rC5r)iDk0?g2b5O40S9+^1(=Mx2TE+zvR(jpL z7TL;6a_BTTPP}m^B(RB5Ce+1-3Pk+=imDl@mj>FGV!eeW~qNIhA8+mgm&Y zzV%@FSS@LQg%ejxDlLPnCE&t(sBd})Z82)T^>}KYrBm|^12tEISDoYeVZm^8X@#vr zwdkiuzmyyq*)lS+X=p-pLPC5@TvGG6Bvkn8yqZ!mFxQ(esUag^wiu()?H8uWRorag z#&yERI<%+S^roo%DqGvC(X9*^nNW5~LtJMT4^;~fQ3d7jA(M0?26^Ld$j&{#?DRv| zR@mAYa}pM{qzb->fdDi#Vs+$8EhY`(6AsqN8^w9qLk}|^FH7mTs1aCiU%m|8&EC=t zYzUe0$X*r!{mz?jJV~m1p!9fdc2nnOHw@eiFWGEaXX_)$@^Uqr!8;glfORj+52t_V z3Fj#rY{wT=x2I_O1j+M0;a8b4d{Fa2z-U=VsUz#m>e zqi1#f3e;&Z@4Aa0tBw|M+%`t4h$bAz@3Fa`m0Kw|YO;J^=Vy1HxStgYV)^hhP#m;e zsjaUQFxyxzos-R6dHjRY=z~x3N7oZuVsA?W;sI|1w7aj=zAH;u`6S%!_`9~fKE}xf z@7dNAGw-ypdFROYZLgb_5*a)`OXr=7L5tUX?inB0K9o%x!85jS@$zZBV*NU7rc=m` zNIqk0D8kdV(0*rZ&zKHEc+XmBjI_~R_pEK2Bw}ft{Q!4%$R$nd5wOL}w|BTdB6tNk zms+~Ue3kDEyh3>Lom4O3$JE#97OZbSwpjzD`yOYfA0CMK$?{h#wK???w>{W_1?H26 z{L}elF`|7Wh^C&O`t&N#ph1HG?x5kpt` z7&iX3bl(!`LWEDny#KmBadwN6&B+<PC-|Oh#{DWBlq;8mf49 z-mK81q^OM8_^4qSaoJI^+37Kfu~E?pF|paP*$Ih>aS3tgT$dROi-%esJEOWhpX!a> z_71iitEIt@+>7yd+Bd_#Byn zz!5Kv8NF(9&QqoEyCQm+J%{nSf;T|E1A+CgG=9KH<9j_`B`j5-D&N}PlRu>I) z08QWPo3+sH9>3dKOCmUZ*LCO*Tcqg_1gBdJmZ0|c@B*&DjApoO&ea5kc@%$&6a0ys zxGZ0zCh@MxUm@)H887i;bvQ}+)7D6q?{f-W5FIc@0(ih&tsPA+t$xy@$uojnKH>xv zaN%pT#bM|gqaaz`+U}BDttlo(p5xX?Vl>j+<0N~iBzLEHeqyAD1`m}Au&7;khz)Lehpki-l`V2PH ziugmcS+TDc;WfcJ@?Qq)I6>F+(B;3WZ+L_C0nm}bMD7p#mzZdQ*T0>e!!~x%Cj|kEXN9gLFLt|w<5#EAzEG4 z-7CnRDVy>LUxJ^}5houuQ$Nc?dDZQ2itrjgTl6peY?)vMa`ddcn>z=eL^*->4E)T7 zAA9}Gy|k9yD#<5B_j*sHkSy;-TKBS{Cp{``6a*{Yz5c6puRBaIy?d?v=>0NiQ>cBY zQf95!!U#AP$i^ktY8MOcJf1%V8TylZK|On65~Lj&Ch8`^uyrkRj3?J%~9y^m==Y^FLOfF2#JMavu6*P)i#4a$iGG#nf@;(+d8 z3TKs*#rsn`vKz-OW?%=^6x0XWtuj_6XkllVD_es_K$;g7+>W z{P_0X1^6)?PUxE4)eiPSvb>X1;NH7kq>wDXwodE43$Tr!toQyY2v)rJe!NcWy=R$Z z2Hv}_3-;a_rEuMQ1BhnqycsPV+cQlm zu$ek>5^CSa-arFSuFFGx>`hI*A$;KxOLr*=)p_1NNQ9@0*XHN#hfG-zp7OuDuYEm6 z>e|oVOhlqg(K>B9L?TQDVD8bfxfMf13{7ZNG*STxtx%|0Z;*IP$KU`|_)Xm^Xu=Ej z!$F3d7*V?y?Kaa+$QIpC>VhrH>zqwR<^lEu5pd6;ZQX;m13)hW?rsC^9q`s;@QiLf z23D=hMS}Q~vNl#&IwL!>_NrWfg`7s_pR`cVtIrcJv^7EVm&yT%C3dwSt4chz|zk%fphL60`B?{81=UKiYia1+jP`mXrR}e9Mg54P)ZxBUXD^f_7=jlYu-QZ&gFcjfY zr0Xn5SNst0?gs4;@Rmn1j?6#jzCOjiS^knr=x60TmAl+!MkLK0FwI_Cl7FUneioYg zXzGpZ@LyqQip=p2@jk=0d4{0_9UBKdr3r%lvuQJ{g1oh5VV_}Qx^!Ib^-zE-})(R_M+z8B4h*T0R$ z6TRNK(O>-qecX@NyO%5`6Z&eKfZJ>8uT}rjGuI0S^d3MMyGiiQDAKcU?`)1Ad%Y8t zd(Cc^yK@5EIlG7ilI8eKTIX!O>HlQZd0i(UJA!b!DB%>5LG7sXk|5!GE9~3lm7;{p zL;}fju1><2{-uOIDzBQW?Vp!09VY#HCXuvwsk^~mXnG4a(+w9DH`-UohcQzp@#cL2 zOOxdG{YzImOf;Q_j%>2O5RwoTnGqM6oe>?AkQtkiot_vOnVFe5Y}l~$==AisNcV}? z=Z^~vNzaT=&yLK>$c|6PFW-}5lOm(D@vHZw=%j>%#JDU}DQ;#}ciNUSizU3pIw~VO zIxZ?IDJCX1F(WcPI%8O5OnPh-rkxlc9p#Q{KKHg1;=kKSRItk8f6SL!zhQ$p_NQh0yj82Trj82b=N=V9xOpK03cUH~~a_{~%cK{Y8DKctUVrEuW zc0Arfkd>VtmysP8nGu5pkBo~>MCW!auj+1h;5EAx5+9!)ADNwv-j;6ym?@NOW$%+^AxE-Q!qZAI-_hHKB&P?e*$r4vSBUjl~L2 zkBN&NmKB9%OHa&>j*d@Eh|Y*ag|l;m+@Vo(2L{$n%!5=u z#AU`OBql_;rGd+jNp<3*<050?lj0)d5+Y-xv$K-2V&jKp$7d!b;Qw&Zf{CAdw_N;y-0ku42k7yc|7}@<9yji^7%$ZF?>qW(3jc3G0$7e)m#>Pfxre_a} z%g!1WnVy**8=vV;8MkbFU`R2$JluOqZ`~}-F2*J?^>BC3rM)nudyftsyA3JM8AWKn zYKqJnR&P*KRB}^pa9#iM;8SatHAK6gn;C~fzu!_0oj-2x^8e%P|Hs+?k24;XPc+WP zC(lZeZ_pv0?dmez_>Z8W1=9w z-_14~Z+fHWj~FhNp{YOG7n=GSv(THdfX4k~zb$9#IOuK6!H+*b9tVkcFbA`ZImqQ4 zw76?OE-%q>kZa5V)ApPc9+GBSh&4HO%cg}8l@gujZd1WALN?8VPc%d;8W1Hff!$G+9hW52RsofKLa$n- zvH>a{Jyr!l1$l)>je{JkO@|;ox_$p3Xz>EOn*}@0O9AJxal-E8SE*(QgdgUW531qr zRNe7Tfax_#v%Tp{*g{{Fe1`Vdb|h;+$%~cRbsUY+i?x|SIOx_oj@lYfLRH?1 zxujzNwjBq}s_Qr|f<}cn1|g*`Bs2A?&9bjq$xy*ao(IK!iZb3^9YzjAZfzPm`G(dN90+Qutx02PL=+#5z(p9eo z;)GCUVpewMxH0J?$F9ohvlSm-lwY|u`mTYaW@Xg}>M}OkpehX=iDIub5T`bD>@?-T z4rw5cZR98jz&x@*tkl?XI$%2f7Y)QV=ze2I9|Ky`n>a3+3UstyZ|c~i(i+{&@i1Vc zN^4^S3 zHQ@bb5D=(mK!BEC83~R_KBDMWf+JfhiFzhFR8ia6Bl zImcL~yV?OhV%m{ft&7?~e$jH3(AzyLf27Zc6EbVmbnocmc&>z!sp8|a(;OWTIVZg~ zrohMWs?6CzH|X3oN3eTZnq$4JOe_YQAJe754nmuHJGuqDg4rae+9~ryDyeujfo(|- zwF8{+L%JZX>+776sP6NQ|4JKC<-U%4%4U%glcusN4L?&0?*YK{>8Wo)IC}z=npsRKRohU6tElLo47w?Yy=pZ~<;U z=mJq&otfdFfw1oh0`9^QI1bs#U`kt&Tb;KzW8U5hfMIVBa;FY+L`q6`&`dSfV#%1M z%JZO=`apLSmF0-kLyyntAE6A_Lz}W4iF)X|9mYf`)AZ0kXFFQ!p(!Ve_0U&`JKE@> zDeX;q=nqCXq6KJTxNtRmTIke+)lJvmC(K9NaeHP;|Wy!C>_3gd5+^x zNq(1OdWTzJ^f(<7syN2c0UTo{n4cbF=3YF880<0-5gTl<@-=9nwz`aFjdNsb0qda( z&;_Mir!j9H?-!9I&?&$F-T;`lTrVk;#jS`upMLzJbVT9 zRU6dET{F!w%J>PIGtIGH8LuL-TuhENQ>KDeV%q==Mo%>p;EBC}b4_A005*uigWb*< zjw&)fo#w<$$4CG^Sr1MV5WrW(AiwD8V|h44ydTYZPal(Z5&hP|bsYU})vw$-*mn!B1fZ&|JcgNd$wy|cUrgmd);X$1v-)M$O$og zpa$tpA7FpsEdZp6?hHZurRC;YO%YdS+L(*Gca2 zeu+}`b)VX-gdeHee0qUnoFqqbY_85`A~siNjn}p6tn|8%tqq3UQ%x2lm>F~C{qC6V z#R)-FzM-OggG3IYx4g*Y^KR;7Umv?qEOx9fE9X)&toW^Ml%jVt51)qiSRL$~`;=2N zBEdH=FOw(9)iOvg?1SG@_!D4;_2TQgeFs76*>?R1`%TGAlwDtGxFfD~O1G$y; zLX_)EO}j-kIen|i#?+*}f#6OjXKi=LMn_{Al{quLoV)TyM|)X5L&@s)gm_bF_Y(Xw z+LMfGn)~8rN5c~G6|Qd0H^eGlH7(w>*B!Zm@{b-fi60TGc#XYyRO5Ur6fo0!)J*bT zozL3*+Q_W2QA@uc6dM`oACHmf_n#q#k>H8r?ybKR0w5Uz>Zq#poE!u=W#brV zP_vV}*>1-S$uv-9h*!g(?r}sYnQAkuh6nDTTOSkvk2L*v6JpnQg3_`CZ&6{c3p^8nlk)=4* z7N&?DJJ^v=D#;;wk{+JukxwUz<0)NFfK^MA-HxUu<#QY#*OZA7YPVT>EKj%e#HZ`U zbvsW_;8E;VARM1Tk6U_br!Z#yO>|~l0X)Euu(kMEOPMDeYf!%vj$LvMPJxeG!8-*C zeB6?EYR9byJ05%7D#jbdLw<_ilGlExc1vD6%sUp*J8aSKaKC%U@tx@fRjNW%_}-}q z{l?F}JGCFswA<-#C<38{q82*G8&@Lk{_i`sNycsGaBWGrfoY4Egq=@2D#-F-(HYz#Hg|^YI%n9xHD$c<8fc279`2r`CM?Dy4vXU9 zlW^qkMDe~68H6>=bwRx0A3H`$(o^W%Ib1GtSN~f?=F;8NNq7DKM!NTibaYXn5o&X4 z+KWnKvwtV~h&xFG07nz(=JSqEl|;}=hd#Pi&59j7JcoQt_7@zM(v-`LAkGo{^%Qr zRS&)6TgNksVgb%cmMO2IlpBt^0`!DxuKMV;8;<9cIvVJ5gjekD^i$pbsNGkN7ZCc+ zQBFYD2>z2^a5hK+O&HkyS0QPrXH0dl2qR?*;m~-bY=a-EBjqnQ9b4o<9JvcRr{J5r zMO>CR@RxZhKRBv_lUv(Z{LPdNrJ(b>2*XES$9^aXNDn+&B+9lx-R=997H6n<*K#fB~+2RO|bO+(|ZAQDOetI=EIO3mD)d?zL7_=|7uWR+~q<(XL?R zTK$!c(+JaG1;g*@X9knw?qR@#eJSccqM|-2w7Lu3(=_7P%Tc)MjbnXm?r_=NqzA0p-Q41F&KZ?tOGQt1Csl2Q|Dk= zNwcd_W)zJV|6Md*6%0$yjTl1};eE-FLpnAN$Km*q8jd5PocJZ@s~nrh<6IG&yX-i- zHXeuD|4-skJQjm~_PtLOZ@0)G3`i#w4^57Dj+4(o>AIE`ak+2@biz69PdXm|AZF86 zAXL1+MDgy6EJE>qXX0rqkSZ;mlgmogQB*HyGHN$*2E21x4Th)q_WU4+j{>B!gB2kE zkY2O}$nV_R#&Pjq!t?)9fZPYM;6qRNO3AP!b6=j1+J>;d9J1`MkLK$w!8D`5_rtQ+J*Oks~E$z7?xhn+(0Rx*+X*&xQaI2i{>La zWiWflsSa)EJ?mhhXKal2L^Hq`k6&|mzMs!CvzH}?SyeS@FrS3z&T2Q*34j*bM=6}*~gj+rh}a2CFKev>)Cz;RzO!8 z(4boZ08uqCUB+66{nBWHd0? zINN|c6aC9(xpmiMI*%z4#ZYh{yocYdo?f z<42yLYv`^p-1(^_zsQmC$Rb(0YLI#EZST~2ce2w*?lokd&HfA@dF47T$mOFJ0xv1& zp{P+#n0WJmaB4S0rVi|xokz6LgHgBXUYhs|llr;NnF5SPzOM}AdxR|Ty$~(lQxFPVo=iaZ1?3Z-jZ?v^ z_>r0lewpRGD#<%IHZL-_iP$U`NJ~*(o)fNizUq3?so-}(I3KA1O#DA`X{SYJfOH@i zeE8R?V03t{vq1iyis~m9{Kf6^Eu)l%#y>1*h33q6wnL$%@MLO0{Uy!FKfB5IDJehs zK@Mcw8oZ=Byo$3?nO($GcrnV?HjOe~G?*WN*k56>#fi}w*AvVQ6;RK5xmDfg7dqz! zD)GBOl`LPYm!A%u4N!HD>_QA!-yY1f(ABfZh(z< z!RG~B-c=f}KI?{C3??5LRg!KJv=gUX-!ZmL@2&6N->$du2S)1a&McG6^fKX&w>jp_Z@ibPki{ zwW5ftMQko&o=(JRyL}8Eh9W$Qbo~VBiXS}Q+N~Wtj(No6$oyEdBX;Kn`7#yL&$uy& zJL?5TBn>5x+tLbE{Mp$8{bhHCqL0n1gV+dir@46`Ya9BrGfcisDf<~lvb2;hxtvGk zzc`xDVPvcq&BrkEDOP|uj2z>BXFPQUmZ2qP1ZXgbsFwwMRO+;)htvYyJ)kZUG~MGf zmKxzl-dIAWU!5nV&J34FQb!S&yIIs8Z6r0?^Q7G@kBFsRDx%U&6{MRiatOm{B9l(L zQuOsfXUj6uDoO>7Kbdd*He?Yu>+(H5R*IJHVJk(`NiW)!qKSL_6$;}B&tP%lv0qiq z<;)S!@TH~?1U0?uTTO2O)rNAmUT^byG}aOCFwV>G3uhowA||8 znp1TU{8CHWW^(m*fBCkvt>mt8*11`dOYAMCrNI{M8mjNH7MhGz!&O3hMLmxg%sOqkK z*_kgZd4M;}Y&|q~RerRR4_XPw0T>Kj3$9pO4^L`A^x%p*XUuaqy6P+;X(0!rkG=#z z=Uphbsr!+AeIuC$L;WqdR! zzfZvCqrro{+R@;by-#{Hs4s};qv!xjJISc$ZDH{$5wlLE6Kjq==>@^)$J@?#}w09S-;;cmgdj@lu*1ssC60kt=z1%`ZrBXgfRDk5{AvhCCQ z)V6(3+NXLD=?p3iF63QN$e%<$p^!f?A+>cz;5}!nGWe^)6v@@gaKlA^ZsM~0eUuob z_OlY>zoY|giSdJ9OMg$;{a;Fqo}4-2GXC@=r4RwhE(p3dzF)`?P)o`9kwFA{%M66e zj3(|aC0(5)`gIR#lfJY9EkL|adP~wE(wm?9qmZ-xBI`|Ce;{0cGVef$bzz1O1tDvadHu4}Tg7xYF)UAm%j7_^d6w;Tb(Hl>?S=b){X zU31XjU{`rPIvEI+Ga7VhFKSZFl`KHxovve*FZF;))m`-kKrdJ5YBiTN5Pzd9y=eneY;frA- z0WY+~tApA`Xn52}ecC{3QoR{32qIM9^^T7v$MH|QwguCDUCe<&{ld<-qtW9z-;Vx6 zcfMUoge53wh;}u0H44o66@NaQ(r#A0fLZ3!XxGtIbxYpIuOSPbL&u)K)HR?NUT^C$ zYBvzpizVUv#^@ zll-EuPF>^|U4Gp~e&Ixk&g~7KU784rgW|B~WRstpxQ>>V-#)RD(s#@|3_pLkGM1)`!;3o(8$tJ!Y(vwZD#=GVzKdK#|yA6supvZ$Y$_Cw1 zTgfk4R(|3>m*9FgQ2A4Rh6-D`#w!5_y*v^Ud=)pnwX3!K=K-{}wQGWaQz@Y+wGQTx zf2FOk3<-OrNh}<;czN)mRmQsDr%N;j{hxbYAkI&&XrMwIVCO#lx2>y#tR$-KD1C%0 zO=$-juqdfgBD(#I>$n!M9=h1xm7(+!p_5Tw2Ul%5@gNF&v8bUQ=j9iR+MwhPIINEo zJrUvs9bGR7fKpshf8}M7ZYm*pcu-LX0h02&&;XJi0|F(}D4ZW!BItx3;q**rmrdCU zC=z9ctCk93mV$`XCDRZ+hQf7F4Fm8oqlzD<$7d%&uI=J7$?{Q-?>&qHI7xj2)JkI< z?Hj6J%ow;!DqWaP#h#Le$k7V&`QliN@!^cd0fCODx(+FKfX2KLRP9H#RgEAVmZ48i zt%=&0r_WOUQ6Y%))kE|+g_3R|m{J2U7&}e@!fQ<0p0N%4q?$!V&Chn0>Y_cpU3JjM zzcs6mDjsWJ7U;E;0V27(Bpi~`2VZxrQtynEelD`4w<}yqrXBHJv!+BM3CkP@wClui z_!*{=?4HoaRYH>bFhn+QF!h9pWY4(V+N~|9;?SNUuDT_`@_wlL#k(={C}jm2S&U%) zb%KR%&kx6o07Qcx!Dd1J3Zpl)t4#0SriI=NE*QDdydj$3-}SAuUJwpJWGdWTop3Y$ zZ-g5Lg(IgMNbd`By#ra($aTUa7hOV_HqbRvmaYkcU4htCu#-B$PW(&3LX0hn{fi#- zF@c?fv3sa%Z8d{5kVA&U<2ke9(DLvQeWUXdsC_07Ibb*DBNzKxt}ksR6~`%g-9_x*!13%-&58sEl+yF91@CgY|%Q za$M^Kz!N#HZt{Co^Ust`pOr?l7vo{0)YC;40QBg%nZgPkX`1I&z z&A_tM0F@q;y0vjp629C`@>PBzc9B_?utaY z{tD5C_@Yq)WsO2s8z_X7AH`&2eBD&ITm@B1EE=l>9~QiycU>7>Oe|`oR0a<w})a0TXlGK-B^U9|;#HM3t z+r!$`(uBiswG>o6#*DM7$M_j$m5!f#pin+m;KAmpIfu37+)N-D*fW;YwrH$`Z>dZv zV#|8r>d8lHl65mftYIY5P~&z*pGo+0p_HQDhVXA{;HRV%^^venQi_rh*^CZW?$l1+ z@gTt!cOcSAERy&lf97G`YJ0F+VM2YfyPRN)*9Fj#_C?o~?}$~|9G=w+KZ6FE!oEYj zIu?!A0^-9i%k*!fNJT0-ho1XvQENT)_$4JupogiGnkZE?DDrpMjmYVckQGfpeB>h_ zf{Z1b)46D-k|_4WgD)2Kd#NASIX zpLv51?Mhu*3U%&QGz`UdE1D}!Wn_31PKIP?6s8wxqws~ICmw}AK z1W}mZqbOU#0`&A3g?E`n-e4rs(8RQ&52Z5%$v6uC(7?NU7Inj?reb(MQOM7zdZWlk z6du4LiBY(Pfx?Aze^Kav+~^)iPOhlpuGFXKfTWZ;qJ|Y&=&0+>7TwG6Qxu@*qx9*h zxqDRKqApTE?IUp0Ul<@nVymjkyuz8Uc?9Rg%_-HYsU+aU2BnXCp{6@*U{M=M8Kr`-g{k4_(4eA@%5cz5 ziU%}gkhdm~haW+ezS>v=4PBE_N()&JwF^BPp}Yq0sjS1%>>-$YNLRzXiE}@UaUX2V zJw2cn7|bKHU@*F-_2*EWSKT5X9niA)A_bjDFN#q1fk%WDK(xG(7tk7ZLPn8EQa%Ex z8V9Oqgi7y(g&eBM3jd;8D1(J#D(Klnw~w&*^z4PK=_cvaM~b_FpV1UY=jf-iio#{N z#G4GAr#AUbfKF4}Pe-(=?Zy!{@)@tK7z;qF3?C!KmXSqkeXO5#%PHEVBoLnX@QA$x z4yE${~g7D$MD~A{C5KXy@mhY#((eNzjyK9d-(5t{PzL=JL!&`cxqp@ zfY;yTH$wojs#fvp2)-GjCThIs)ECN5z#E+~xIhC{>rPa(_*63ikWS2w>j8HZoEj?t z(mdF1$*In$Yr!e+RCMQ?tU7^xYcv|A*9%|C&tH0Kp{(2jo#RgGqup`lCdx0MmGXWI zy|?^SOD%Lg5^liamb3ughGt4PXbk7i>v>P;vuX*Mk)z&<7n1GrM8mQvgd9y-eVUQDQU57bj$De5K zNM3`LSla%KNjm3K=5d{18}u}rROs` zJ)Z=Q1ZvAs8Jp5kyPc=YpgWsSZI-?zTGDOdP_^_tXY4CREe)N{E^Osa-Fhlgl79DU zShrDBCEz&^(@WrT)}{f3fvV_X$dYoXU-qVM)Nuux1`>)^E=izzi)ONqRtGcSXx~8WGTaWmRXENXkx!V4`_ZY_hKs-Wv z|1q{7ZtPDY*Ot=usHpS80M3Rw?4hnnVMA?!v;UI~z2Kb?BBHS!4QCAn$tbaIDjgw++nHcxw+2b=3T5q3+)JyT;tXcX=F(j8 zfM+Qu(riy7>%ElV9muOK&$@%Tz>%=Cco#JGvG;MFn+M&5SN;iuJ)=YM? zRBE=y+l-$lF3(kauiU5ozK2Hp+|e{{ht03zG|$CTz{KdvQ_^B*=?j7;2e|YY9gXC1 z8r_PneO8*Nv2s5`yx0_V_`Eb#Gl8R$2+fL0KQBF^teyYZs#KK!xfF3((U31n(|jt* zBCZd-isBs>B&}<1YJ-elmiE`Y=i4>icf_xisC+hkGJ%(GH(rPr8WFL1x}_);qWi_gu*?@DThag?!`pmp&!_z*_e}LW{zl z8on_J`CNPDA>X0Bm4tli!>1vi`fncAcKfhai6L^T8n#a!>($-oyIPT}iVJ7j3Q?oQX#57VMRu`pz3*j_fLpbH<`60^Rgr|7>@lM{i z|B%Ch3J#yFltag%(ib!@R?FNA3g(`~%*6yI<*6Gu&k^CV8Ut_=13+hOrNxjz0U5A3 zmFxi5a0G13B7z70W8aVVsYy1K+hjFs02UGs^^B8Og{|4ZH_e&@vibr-*UC$~`_z_M zf5m@kf+u}ukz5seb)QcT<_aE6CDwNdev_j{aYgryF2Y%h6R~pmo zV0LOwmNqlnnyXFAHl%4&&Dm+XG`-%Elbx;0&B`&5{6<{Wwa~VSlN-Wiu^@D~;AY!I z{ zU(@jL&`Y*9%G#g2 zWb2F`6xck^jfH1WpRu;y%8CT`H6?71mu+(uwMq1gl$96ZsF)wIENWZH1jjQ>JvUF0 z+yj(IfV0-;hCXuJ{BAU3gyd6p;jvT_we5u8q^K?I72D6kG1{0#ZAbXVIBJ7;&9+Un z@s|$n{Dyi6_46I-gQt<3`fnb_KJ;M>-!w1!ee07r5x%XQvj;w$)th4bQH*7+8EXys z)+8YH|5k2v55B1+AXOjw-(l+$AGWGrX}fk;Eh6zWImTITYNLRl?m&v|$cRVE5B7ftRag@q&WIvi}u}4h4&vsc8X^EWh}a@W>;N zpn@*~T0sUlr3YL`Fb^e`Pfy^YsCozG`WkYuGJWkoAJ`rJ4Y1n+>M$o&iM}>FDA(7J zgNo3E3(!TTtN6tbZ zY1tYoQMqO7yG6D*Q8P;VP5zw6bHy&-oF4R=xx{uuGo5Qm`@#>zCL`NYTUzjB=|^@h zt@ScnvSx`yrZ2+4+kne#<277$x_IJaRGM{MZM=BafNJR8?z}{w`m&|Vb8)WEsL6{c z>zCW!6g9gzP+7QeiLH7*P01-Ho}!$st3Db^zUpxNpwHq^fjg~a*>l5h(z3VkZQB;{ z7HiEGhZ}rrvN)VLC|?}hppn>LDl+TpL#K;_`fo5)vY7vh*^&prm8=om4l@p=7u)nJ zR!*$TB`cy2`I;S{tgsq%+1ch?t1io;GZ^q;46VUx%t^~JXXfZ~^f~k}Mzyt;;G;|? zWZht^B3*HhO|bzFQuQo`4*&8fm!^n5q_Avm(@`H7^H|(}b)M-qr*!|7yq{B(cQ%!` zZ1aKMeAjkdC`1M8Z0e~BKX&ukRN6cPHSnL`exvq1n;5wlQ2*1QRlxVg>ngs>?&u%Dw~OazUz44oeH|^P&JQ|-S69CL`?

m2nxhhr1=Uc&y$&(T`XQZ7tu#N&>I)TU=q6iZWo_aQg;Gh^FuGWAh~{7U z!N}ZU3==ia3ytJ?isYR<#^1>2dQSYU6Cnw?HcOFwQ#_bTTv{XejkvTWTWnY0rX|vj zIkS#@JL1feOXbe2QE63Cy!ycZjz??d!xXv2x43y>6Sz`|=WHZDLfM(q=RKT(A522? zw%a}v=J>ETi*HQW%U7`XeChw(SEu=KR*9450;6rE^1x^_<;(a4Vfkj2{y7JsRfMaR|?{wQOY z&4OC(0X{W0Z}&W(oP!EP+xGaZ62JVf*zEpy*yKiH!6T6`w?<$93{YhYUy+=@N&hSUp81FT!BGznT6qa2Ex_rp?OuW^YX|ZNz8_ni4lfh)l%FND6HCxP9Lt3UOOQ$V4KXz%p zUz|24Gd0y{-U)`Pd(1)m3d_uKrd(sDDK|G;tIf`Xm8s)I46 zrRlOu)<#d=BP1C0x-664V6p18a9BAv&7#*EbBqS7A=8{|(wcQ8Yv)b*Qi!j**HmP6 zP0__?Rox?Oqt|Fr>*vaH7%{c}`W~#-gHCuDxEVaRuWi=a1)*gLz4~#6wWYKG_xjI8mnn9~KWa>;- zt5IjNWLZ8^b-8H9@+sQtdPPEPu?}_aT^5NpjhzyzHE2yK zsg@UBZZmdRqp4F{B{VWvvrU0W~M34YSCLw#wovR@h0OG=U5)V48VzfOmOoh(nNST^ z7F5uEZZnK+G#kx&V`fgKE;GlFX3DgJD6&kcaQWf`0CZwLaa6?H3w|WYBT|$KFye!3%?n)26*J0 zor?+zW=57|d^6=Z%x*P3uNhX>C&64zr^LqMwfZbjIZK)e+=L-Zp9S`%)8?dQ8!g6M zQ?99G#__T-pq~b#9v*+2b=Dl6A=hj+8?&n3GlVvui=B65el}x<>7_?}uW)rvu7%!e0s+nmbE8m1DJLrNJQq1Kc--0na@>_X8oJn!YnJ zSGu^Wd-a-L1nRV`EV`wRvpQ3jHa9a%n{Cx)nhmKrW(&Ati{1iyV@cJ4uh{qAYh(PX zef6RwU7Wc}m|o3nnS5=iN(IeMGx*l7MrN7V;%3!b8WmSHLs%9~(alLyYQ`D0Svfkr zHq)4^%?2--W=X{dGPFjk!IEh(qw_t=B0RI2nQ7E(wYfT7w#kr_3d;tpR0eBSRxT`6 z=CqQ;TZ>^y%Z2y9tf>G8>S4$=Wtp?}nQ5u8u4TbGr!%9(`-{PXvB@P=-F2=NMb|Iu zAD>orwjQnNElwjQ0bPlz+?f#1qE>@2$2;VGLh#tY0 zXXj+=Q*+SI%RI|jLNz@bY0Own&v5lA#Ec0hZFY_|E7hpQ`e@PRn2kmwth%rmLhO}m z(v@ucY%$CvunNA@0yXu9Gzf@6)3Sg~omHpRnoP*G9wL{{I~IQ^#B0Fp0yNW;M`mYko92asSu6mbIn$W`5_E3Lqw7d z<0LB-VJShMnPq{1(*ken8Nuy=&g;ScU9aFdaETX8`fC}jId)cWak>PvT`!@Ms#c0OwR&cP2QSL zz=-GP&KIUvJykir7F4BrW^1jo+SSMm>@5L3^~BVOglbr`VuO1gogGltQ# zmhj)*nR09U@9ym1-PympGx=Wn-`&~2yEAD&`0wtl%2zi2-JSirJF9YM`0wt_o7k^r z3-kZ?-PsW2y!fFX8mM_ERBTX&&!NHB#Nl$9B$XR#dyiFnN=J^!*Zb}L>`IQvpFCIg zb|tso%{yPVGgAG_EcBZ>A)@o4Ie(uQK*V`#_aG6Ni(zk0c>DSXc$SH#aW@)1}Yp^n*Y1$c6j;afw{g|0FJv zO9BVr5;>Up6fTk1Gza1mc~jwOTp}kt0|((EJWQqE*ujE?#i)h3BGQH-qR1uGx zhpkIt&;MQ6PyZ@Q74MaypZ+Q{Y3^5!8$xmK{!QE!56d1ELQ&U;Wshs>*}YmpMq5u3 zLMTP8Yp2(&RwaPtdG_m?5$o6)%%u9n+=!~PZ_!u^-*>sN$vQNGdqg~Kf*pzb$}l!=sh=+ z&FFykN;TL_CI{Q!(YPcsQ9*9bk`xW;oaNQFAFpu>N8(LV$9wfYgutX1n?huUA% z#FukM#JVkb`Mq>bACf627nnYrmBzzMm3ot}!|Z!&w1e9z2zTfDEKkvNmh}KPWG08( zn`=67bj+8gKSvq?IV0@ z5Q&s?pdgXH=xUt(ai400&EfI(Bvce9p`DMn>wT<2mCipl+h(7dhna1bZ)^x&*Rw z@&cpA&*7sRebKjx_8ev1XBydy(5OUj_ku#mt*DTTsE{Mog)FyfrglD-H{-DnBGK3; z_O~=fer#Z}jV0%sqOd&BQ*tJYdu zn?{RU+27W@A^k*sJNXjYI~)~jrs!ZFLgTAr-_E(x{&diMU($!r#7`K{(g$lKu?|#e ziQj8!%wsWO=1I+l!lWy|geJO3PoDeQH078T8WSPwLpy&3rwx7r4DuF2Qpuw_`-g&f zm9?hF!8KR7)(~;E6AwG&r@?KGN{&mbkDeR^uZFYdc+RRnEgkNZpOy}FN}PGFj1A4` z9`Hzu8E;H|BPs8c|09nK>WG|a_69Xm&29A-f!fVZQ=h}{(Fh7o!Cjz%QFqqzFV@bQPd=psUFESXL(H|tSn4Haq0FDNq>g_m#T9s z-G1&LY0YEE($${zk5p$w5Bsyessp_~g;i&UpSqrCyV-|||Bo=*7bQ%e94vMuT0yTy z?Wv{}?8{=6Xhm|(M;>Y2TE+DL7tW>PA8E+{)UR}}L_?ed?dE2Ar@@sDdxLzed(i)b z66h-SVOoQ4#^o-UmVC)pk1yfhrsH1rX%5Sm?_DyX&Z^!9;MZ01Hb*t9sf%At$-S6FI_lNnR$cR%n< zc?SY}QTQ-nCE?qc;r1O7e2D06hAboOD>Y?!NHnX4H?K4lj6Wn%rBD!;@H@3Vuh4I8 z4!7EWt`U5Kt4coNEPE^o(S4$-@ zx{*t3;bAh&*yrudd~2rbcQqlO3)Iwi$yvkicAr4MJ#T-ul5xEKymuT>v2LFIjxYF< zl2wT%`jK{jLDSwBou&6)f6@MhALbE_s+}E$hL5s0R_{vFk8h86@h4EH(e@N&?YBom zVjxRdJ8q0UU0%B>T0F+yMl()XyMDgCgHLT)T>c|9KYrrL8$KEyAUAexqL4=?1_lQIS@O-w32cWOe@)X4c_YU{D zzZ8E@QEW{5^18$Xx3`si>l6z=!5Hb*33ZxmA1StHjhRQZaE*yaZ0eSK#8`J#@6oD{ zo_a*p-%5r|wKozp&*6?eeh-^p7CJV~en6AO(S1#%cVp!o&}?3(Li>j`X1NvFyty0} zQNGz|@eD}H%;xAsRYx?3M_s?nuxm9dxt~~*DX-e|e43D~&_~LOOJ+i%kjKX350_M+ zDI5Q*ZkpzrE8kppWO+ zAM>e5#{E0j5;Ir>pwQVRaN!teGsweFd#wVlUFX!qG9Vlo9Ri`99Xm zXzfyam#6}%rczbHm)Qrxw{fK^R8>}?uik(h-71bQ>!c+c{9B}xNcB$Sv+5a{&#aQi zD(hF+Khb>6b%&o`ar)3&DXX%-;{sE$3uKGjsl$?=O;K6odYe@`;a9n99Du5$Zm$AB zm$^%C*^7ejOZ?G=OXGJ$Qezsy;pa#950ll4TS7Xk0Q1XN{UZ`1?XfZF=iO{FdCoUC8w>N?L=0r)$UH`-_YA|LE~n)KyezXo9Wsi*$>!B1rUA|ZX- z_wC*N#C+D8EnuU#)_4JfC-=IK?BU#P@%>Qxr*?e5zj{c|>#=trG^CHLL~gKE@;De9BxyJ(B#!VvmqtKH%QjIEY4qXqxvOf2=C3HVH! zc-(g;DmYonlCW<0Nt%h?+wDz7@s{sQ+~8W1nK&Vz2?#AdwZ|%N7pg?ecvsa#{Wq8> za=XwPAD*hu!A4iebFlR*7-Ot)zvB}d1oN4+l7cVn_5Dz3(X`qnAy9mZwUd3+MrwD#+pdzmdkV1a zyLYc&QPtj^7dqLySG^(a{Rpz6<>4jEj@a)Dnpc5qPh>}If;`5W$5Dw*Ks9O;iu%Nc z-jUT8UPTGV?LB?av0+G$HhR}&H?MM|FM&fFD{5-?$id*Fxo7MxHM=-EiH=+x0epGK z=;dDr;0xj&d4%2~J17uJH(?K+x2ppE5M%G?0|DF)K)ug;jah_B=VI-{eJbI8P@i)? zm41q|clW78U9zXCHfZU2-n|PgxC~(y4=PP`U*!-QT(J-Fsf{O&3ycHU#FbRg!1xns z7L?J>lRwx+Q8P~7O99$)6=t-6qmvn(!x4!53eamm*+(lXqLx2-g&`E6)z@ToWJ3;O zLmqXM3^`JL$nx09!zibrGy;m?Dc)5GmE5qu8Lyf=@+JVTAnUb>Dd?j{8*?-+o>xyU zDWY7WO42MDbJKpihUTpF8_foFTvD2%xx!J2%+8_)w_$UnsJ%BR$Pb0|8=s8!{3c27 zEP8MoREVz)Q_&Pn8M7-1@Ep?^ zg{OGM>ycsac%Q4nrEf}gJ%$~JxVMtjyh`$TaVYup35G;4YWac#*y zyW27OKD*ThWCeft^BEMAJf;dsh_DJ_GKw8-aw*7^!+HOH(hj#$YH zs^ru|`$vNKxmQx#GA8xVlyI$ysMaY&wenac4|7!|L4&y_>c7F1l1QSn4_DPk5|@t2 zBZ>1IYo4dMa5{6SU->~%{EP5dMaP>JKYS+~4E)buD8zTXF()V76}Yc&&;wV#S8H!5pOZtc(T za_=dxo~UzVxkXufaa4IQ`Z%(@m1d=~19KD%Q!#jGVn$~odF;gc<;{I6%6wb)e`&3G zK6;IBpBIl1-SE0K7ap~`TPug3yl$=J&4%TT1@Ss-&Guhcxz@y5j~OF@hFJyAZqjaq(T5}SwCw7t(xA#r&5p>R|jHK}$< z)8XZ=aJaM(aAFYoZpn!0lM}cvdq@^si(MG$LEJd{yzW-)W-6bw`C)|DxV>0rhy1Nfj+U}&|9kS)Zi&z!}5k2={|S5k-P1$keL?qQc!y6q^_DvxKnj=JP$uf=6HNV`E5aft=FOQ z7%`8T<6m5BVvaw8G!3X8cLD18?(EJwI9V7DvTKC@wicjf$@>GpdF)>CTq#ny7RHPw@^0ji}{Voxoe5_b2Z- zEq?S`@t#4Bd77{JF?sASe!oPO?9U6(j4%op+&LP+!w{*e+#HkG*m*Q+jyy#+-+P7ov-bP6__FVpOo4WL;MA101S~+ ziK|#8z;qS2ZL5!&8lw7d&=)bpwm$q+Z-}WU<%Xz*aeI6WXNaBZIqqqMUYJG2M~@_H z?98U&2?~-?@@2f^f<_odB!lt~%~gE3UTQl^-ZrY0V`q>sinc9WvNlb14P5DMR>>OJ z4OsMD1GOisS_63j(>Ru=NRztH?ARS&wfZ+h)*~xYP?^OsP_rKEgXejtNBbk*m8g>T zmlU;ibobY6mwsa>HSl%zyErP@n{P)O(j85dwSP}{3`D)s9p3nLd&$Nwj!?m;rpyI6 znK1cbQ8VHxUKx1J^q7y@;k)aF->5Y(E4qb8t!_m(;3ukZkFRM_QmdPzzbMp3*74Xf zm@NgJl3Ej6x^q&#sNFbO$)ct{aB55Hzd>KbmM;1*RlO~lPRVV_0OMA%B^qO9U>?=0sp?~MY}RbU>Y^~U%@S2IHI!H8co@8g`-#3lxWevu zM)R#i#_J6^VN?e>Z7+8c_ne~3Dc6#`LC8gjYnb5pe(7?`Q@s45#SX^@m2u^Cd=;tw z{v>@JmUvOm>#*bxu~#+u_&R`5d-^|B()igOXOf(ZCoOm&^ow8oNHZNA^}JUE)icG zic3Um0>f|-1WMkFh5WSTsG|j(IzUWi}0Ft!6ip0wD18CykZg>P-;_u03XrcRiFOZ?h;fAI`4=QQYoSIHz15Y6&FF| zB6OzIQRjT9y(#tbEua=&aMTk9Q$o!jfiR(UqcCQA&rx#2>bQs!+!`3>M|yXJu#ys9#C?7FSw(%}eM%Vprw4QgC46-e2<^XjG#2(# zLTW9*Sh&$0EjTD)A)bNGR~+HODNJaH#$0ivEPn{K_Fi#>2|vEh z{@fIRwmy5Lq4)|TPsj6fCG$v(_!^^3`Uxm2O}%4~_6FF?QbxXU7RYbiaKwvi7-f7g zun_&TBTn4JD4nsU;3*P6W0X&C17)|neN-mj1qntDB-uj9?vn# zTUaj_-vSlC&L|al`tCQa2p8`$${ny2H2oLQw*Vyk1}g6U#nDL!r{$;rf*3;uDyIH{Jm@9@L)9NH%Byl){{WY#Ut7CJ52xMl&}fgI%)P4B}~Qo@ZD|L zWoA->1?whhGKLb~!u&bzK-W_!;U1PV(cZa~Fc!;`G+99jw{C*M@BXYJN?1n;dH12l zmb=i)R!W$GnbrOQ8=5aEp#i8i9T^yl^O zqS4+T>-w`P*RvY$VE0=4fupn7iBawo_x!-oRP4nlTe0t{tvlLBe1=hCu@5UBGpRL0 z%VqRi*By-QfAW_Cv@gO2)(g^auo8%yt@N85`F8Raha=YNbk`n32q zql9AHZCS(FUfjqix4@v5Yh5*wqlUAg_z9!Fg`HL}Kj&a^AER`_>OFeP(GFrcqddUY z^Pif4b&^poW3SZu;L%X=2Sz!BefJms&L_p&jB*(JZWMhiN)XZcU}r~^n50@6;(l%T= zi%Yw43E`6M^mHf|!=;C~v<#Pm&p>GnE;YcV&v2<3E-lBU zR9sqwOPz7)Brf&Fr8&4X7?-}rrRQ*I36!Siy^M?Hm^cHMKE$O(xb!0~t;8i4F1?RS zpW@OET>281_T$nXTyo&j0bDwTOQ&$@M_jsuOLuVT3tXyk7D}6ODFl}s({V8t7gym@ zGA>=fB@-^~!=9*6;B=5TE`EcFKjG40T-uFG=WwYAm#*W|JY2emOIvX%;2f0B<5D;-y@5-K zxU>V8QgG=IF15p@Gr06PF3rNFr*P>LT$-MVi~DhL3@&|)OH*)ZH7?D?B^xfSz@_(b zX&o-PacL_qeUD3D;?jIvD#fLXxO5DcDsbr%F1?9Mw{Yn-TzY^@SN*0#QF9)OWtdnW zmsa9ZQ(QWMOL|<|giD=psRWmL;nG{U^b9T?#id+adJmVz;?j4xRESIO;?hD~I*m(j zCqX{m4j*G)^X)P}0L229qzn8~kjV15KLU4b- z!h~jpI-e6}W3Qn@g}JUsw5G$+P~`0Iswd98fRARFf@fe1a%N}R1+*{s-8gjffU`I3 z4g%{rw~OywK--$T(na{KAb4H6IGOz24kxr>uK-=Z!J~c8I*kZ#8Q`UQsi)L1XA{w; z=;Yu9WSxXkP|=t0(#@-=pIDKB9*=Z3fy5%THKV=fwHmZF(%BsW01S2Wkzn+BeIX8Y zYA-~h$D^E~;#Gi{;OxVV{0iwNUA%MwxthT^818fRVFY%>h--Po!ZegVb!V=y+U`zzMIb)N*So0E{M(sOE8nmx5=m%hh zp=;kC(V%v39)gT(mP*BN`i35}7nnKRy_eVvpW$Gq?}C8` zC&98mP!;z{HC!T-zAcnS}DbmzsE&PL*=d{5h@o>q)?vW{-osEg`;T@eYfv6_TFQp4Zotaui+(XFb7LeSwl z0^i3usSmWq;7mdz_Sa~DGP<~e;EV2R9h^|>fQV{k8)u3ba#?Z!kUHI_g-LXda7IuC zdiEY;0~KnWS|JGk-j|!-0Qk1Mvx_vf1s{N5cI%wY#ST1fTRCn<=L!v4sCQc6bD1(o zgA5X6F-^?l(Vml|fgF0mlQ$WVRR%bml^h0F+>H1_`_6eeIIPx# zWbNRi9v*JuaEl<+w}UfOsE;f0Iud~iavwl6JilK-I4bJs3>JIx-8?SuhUj^rc62EE z@Ki;Z@R+=ZE>aI-<4cG*VQ^@~3I759952z}Kgr)G$lvYIg*`{HQzol3$T*z~<;mA!scke6^V66e1TEkC{C7_2R0|QWOH_#-=I{41Q zDb+4qdgvmpyE9e{gR`KXKmfLKiI00Gnso7Vcc%_=b3o;1wicSv%h^SgMr?f&%zw|c z>_BusASety{sc^ICmy)H9C*(_2xE$$3yMPLdItv5vBQVSeETuV`#Jv*1m5N$Fx$DO zGfI4s@8Sh{7r*s{+~Tabp34U=5nY zV@{A`#|}Btq|mpRJTO;;=ga z-J5yXOxYt0VIurTl?e4lXkD~s{ak;cJqGC_z%4|D999@= zw+&_?dgj6?q#c(Oh~gH&$c?lTRvu1BsXxk{ZeRRdBL-}nKxfIJ$piy*edH{GW%juS zusV&9pgFx9hN)(hk9S>z(b_B$rot?Y0UIaSMKWv%?;4|<+0gkyRls>_fNQ@6Z*Zno z!$36TrPIMECD$1Y#!c|Ql;NYTwZWWze%@Ih*w?MX>Iut8^C$ zsuG5zIY<~35`c!k*en2PUvvkF;c$S(cN-acm24w@CV-Gm9K>Fya z-bctNXMHhUf!tA!?2(Kg>Nwij5Uien7Vw}&U14K0#%U5qE8s@T;fVk3nh!{8Dbi{l ziEP3Or@~am6*wcsl?uE!<#;ou!nVK5OU^_{8IY0LI6P3jPU1lY$k%cZ57FMK1zfe2VX;Ki3Tj(5YRA*G)t>8^hkG zuWAo)#bNE6PPRB0rN_{4?s@HO(1fDRI5CBDXsxf2 z92)0mlTqkw*z-Zyy&rNRU+fMIN4sZ&YwGK53Law?Jd^H4n{wX&2|`I1yIn(T_f!9j z6Kk=rK|K8u*L=-uu&EuR==nu&&$!jdvd{+XG4E2Y?Y-H~rs85n*9)$peeZxaT=N9x zWYchejO?%y$EPkwLy+yV4Yjd5A;5>mxVqr*_2XTIdqP3g0MqB5>th{)Q z%nFtPOXQJ}tgamfF5VBG`3GFbmdWA`n20dsw*b;Ce%Iy6Ojrycy_qg_qrk}wxcN1_ zS!##Izk0+X=CR$8_e4P_9=&*@Cs);8fo`GbqVYO~yECzZ1xNkGJRW4~v->r|A5*L~FK z%VnSehZG&Oe*=p-d3DS*mWL1^?BXD{{0HV>rvhS!7h>%P zY_o%-%MZYpKaG_wu0|3#xqdIeqoDR5f;WdC$U8A#dg z=(pGPlBtdU2-bsuoARmkBb0Oz9_jE--1KO80t)#Q^u4tL>D|rFR${UOsku7Rhg(1x z848frTVY}BtpMqv4r1O0d-Aagke%CLB>4)EQR*PI^TQiao>nN39^DSZS*AcLQb+3Z ziPIo{rT{thiL^t-?wV-GvhezJOs5oZ`JaLne5Zgrst(ud?eOLl>7fGY zuM$X@+*cs|p^jAhGf<#Lx8w>m|1)Q@5RY^_oo3Ew#}ES9t8zLdUtAtjpy9hVca zY&tu4!-D?43?K}(+2d?1te21VU1_Ys8dSXBnc!Kuw0q%XqfG&`dM|j}gYt2FeTxeV z&Y~CgIkyTIC^Sij!0&{8sf+#2exl|VZhC;rF!bU9*q{ZX^irn|r-!*Is)<|&oG(HS zw&PcT-H22{kR}QfexWP(np-sL29c1i3TgKwxW0VH4G)nBz}0BtFhn8}htC_roLE;`}NBg2%pi=K~yc2efT}xD(LXa%Unsdk}^? z1=AIKwuxTgXc!+!wH-YKskTiXK>UF4KVHaAM`F;)a%VH-G)L4zBTm7dWP>X1I!vW| zL9zH3k7pzs;a_dAM1IHPANAlbu^p|4_68lPg}x|rwigboLc=YcD$r!lUbEbpBKV_y zZcyzSzml{C2x9FY z9D11Sg22f_d*IB(2o%mtJlpsHw8jnk_5y{<^+M@lU9C~)-N&L((P4P{l%>EM@hcJ{ zTwR1;JwhePk6lOLAixR=w#*AQrpw_NsHM-}kAyGVh!P>wjG4ghG1A1L(03(i);cBvaqskcHa zPUar_h!rpLaOXU5WDdb^G+a?TG8m2e3Ea_X370d+6Lk2;ymBXwF8X_Cj2LoTnoY6x zZI5w#yj&zI-+L?={h1BA7z9-z7s=rUpn@yTo+989vB2=v#4>DdWNozf2Z-68V4a1W zD$oetzRtgNtRBkw5jIYb(jGX8bOs715%NT<@G9ubSO%5w_-YQSK<|t}yN`io77vPy zL^p3iB50HXH19Uq){D>G_UIu@Uj|xu4eys2Zb&3*V_lNNMMu4237r6EI&UUMB%mIhYXpgh72P?3!pUYy z7^Fl0xCwjw8h7ZNZnf6bzzKJJSPA^~&9)#L!b8T|$S5@WCz#T|6rlGQ55Ie5LrzzP z{0gy`mf@0tw)O(={T0prjepcUuV_}~w`YDn6Az}iSJYph$52ni|Y{kg> zOdg~C@;%8Ekqp2`r{Rdb=65OV5{gO0BL@C1-&56uT3A}1ToFDT^;cq)=T(N*1cV)O zOa7heO)-*eDkLr{3OQ>>1)w@zftTh`-*?KJunyP*I1u%z z1Xq;UPl45k3_l&N8%Ydw;qy>BCp;{wcw7Nqp#uJrph4D9R~Iqxu4j^TL%@gTYg{_?P9QwLUR28!D%QL! zpC9oqF-b|LM5R9pay1dm6fsSK*jv;qaN5XmboXIyY{9OULJq~r^x~{;>28hkUyMpX zj@mF6!xdmd6=3-E&hK?xt%Ri%Y_S*2dJX(=9S8XL5#g?Q^k7O<7^)rO3KAD6VCTwV z$r9Zp)YV?tLt(%0!p?{V*J!Kj(jsl+`VHazq0j*2co|?nQ^0;IhlK-@vmxhA=Ho{% zqV^paC`D{rKO8L!cZG@HE5I(w!N?dtj&QXU8~h=y%W!5jG1Ao?47-!9A_fhq1y-{; z(v>LG!*oTI6@sa3lh6~?4Ij1y%fwy*=_4UKSNDKQWl<-MtByzS74bgOH0!Nz3ndFaDIrxC% zVB;SiCr>(C8Rvr6miW$2SJqh^niua1gV!O|gmg@`3$j=FAi;s3souT(FyBnks_ApGF$LKz^7&e5mIqC--Y_)RonBJPJB37<05^N3%=&ad}Uh;WrJ0k(M@EtBR z@VuXRkqYA+6UN?sE?AE7Asl$18;G`+9!o@71D^>KPb(yH0w|mol0#edTe+Hvwg051 znIOENfd|IqEI7d(eh%D-_I!id=v-*SC=|aRj6MJ=`!14xe^MtbAZs78u%)ks0}t&| zTn4c%LnZ;1iHDy4(A5ZaZqTq53WY~AmTknr46DYf9|Bx z{^g{bJ+91eeY6wKQ{bc5(y^RHWHiiLpG-O0M4V6X`MG`lPoL8)L`eCmAf&B4D<3gd z03;N(80l(-w3{0yp}uRwnVU&+mtpq`SH!GP-9^yIP`*R?!C3*&Z8!`dZ+*ynuhFZkF4cJdoqU zN-zM`Zwt5vimT&rM-Oom+%~9lJ6ANkujqy3_ERm9)dJ)39qIG!U1q^b5ufD{+jnq{ zhkJh2a0aR2?CI#TfWIXi&*yO7=;WFpysnD#nhb|%YJ+r_0Uj$5oShsFh<^Ya(2ovA z3Hx24@XS|jWFN~A$z1Gw%oUBwm&04UKTz1q9PGSq0DB`KI-H)7xS$FP=Qx#u16ZRN z@fS7L5qAe^(2SlijpW!inQMT42@Y`rl|QZ-j0tr4l+8q~$6Z>n3j-u){5#1Z_YMc; zzUesD25FxFA+(o+Thzcw^whTptomaZ_}=E@6r&wIj%rXcde-5JfE1T(+_`GdM7|4q zxl+V;_;J65>++%?Bi@6*@tI`sG34*p$lvYIu5U?LVU0d!LigiiAap)B*Ix{O zK(|2o2amRe4=3*%tOzUWJdpdU@uHEmV#%yj+zO6n*dT3vY9}niH(NGnNdiH9Tisx# z3uq0k`%7YM3u8Zt;~ z4Ry5>ukh%XIP@{YTw{gvs+ea~F^M0#`7ErM;SZ%SSqyzh7h^JklBA2vW2jFO>p*Sa z#aQ!@#!)f}Tdd$Z(s}HTJocjTo>@G10kDfSiGg(g)=trZS=A0Oi%mpDsc`Q43&zK1ln($3Ll9_!-y0X+6pfj{qBA&%?UfQ2|7?E*3ESQH zgj>O7*h}sn2Y&B+g4l(_14VmLI41#c9_}=zvW4~pIyaF7!(`?HUI8rNhs<0E(iM8v zDl$Z3*&+5=6OGPlPPlJLW7Bn0M?jOapCmVq+dnqWonPAz^_+hIm;Z(brJgklXOVv`Ll5esMBkZ7!RxA zZ5)a&Epeqlw7qt_i+`sh7^*a@7zrDb14~`o;r&?ny^9D`U4^R)>i2<*o<1U3hXHSZ z^X<=Lo_GWHB5*9$7qgcabI)?Xe1T#D6=MoDkTu+$F2b|YPnpj!M5ZbK3!NoY$;ta7^gjc8nXfc_+V zhhuLIk834K@1$=brBJvMa#FuC#G4%ArXWB}s0fW-F(W=0g_zu-aBP)yD0{8wDyEuI zLenuCELiV5#_LxBUkRva0|-7A_QJ2bx}hz@Ay1OjgLe-h7lFa(xAYyy5|M-G_We#Tr)&cvMS3d+?xi@m&okrSV2s?5@D;D#s&It@AD< zmnTuY2|OOyT1%9$F}@`#9N`WXUsm81$nnTS#GdcD;)IP9?>!!G^kHy@+V$Xs)+(S@ z%c01-Dq}Xd5`-fZ%Edz^eC&D*i;lVhv0Q;?ljD(-9O!*lB77R0=#Kb+2dujb#)hXF zopr_s5-%YBsX)CeM}=j7f|x=91;{ac1c4BlV2|pg(B&x!|D=e9nqn$*uHHE&In0(@ zT(!x*T^z!|A@Se^zqti-pBK+I?oX+L_pb^(Nqn8*LL!34&BB3@%221Pp@nX9y(I3a zi3--Z;SE?X3{1{20p2K8f!QR%h*y}q0Fxx{;!A8qT|}^Y^5<&&XL~fSsgxTfx1~YQ z^(i&^NHnM!xK7w5gA`@1^IlEKcX%Fc*IY3zp&s!c_(;^J;IQCqTZv~81gubW>QmPM z2wj2Nmy5?5_} zYOo|o?sUMFDzqlBVsZd=wPZ@+QjX`u<^jaFax(%~dwm5X@JVRfqq_b*dLXwO^iWXvs}TDKERxdvv}a2x4_J7 zJqTg+3vBs}tYQ0D3@ zo>U+mmm!g(5ktydjYW7r5N|3(4g8PSIU@YNpSa-&P*P%ZNcg~Acko8BY>BHGNS8S8 zJixL%PHe}p%sdtuRv#A(D@_5Tm&1^B`G;;ump{+2a(FDb`(>z@sel zI7s^%4Ls)BE*=U*x|0w>0U7rqegGdI7<{B7TAe7p@Pxgf_$R~8*E`t@EO!;yx8ZE4 zXMalOY5obAr`TF_o*Kgcc%A?u48e*5vD4&6&C%J8@DeO}LK{^}ZZmLM;0YHw)QQht z5>5PMM^?l_?9Onz^0>oKyT*v=6o_-E9c$59Z-@F_Ca#cJ%BeGuRd|`f!2J)> z@HU=xjTT2MU`EPeNcO7hxkixT`L&rpIui?*ldffet9igNLm;v%nujYMO`y9{ais$P zO*uYcdE7lh3fbyQIkH#kmdi*X}!FV?6v1HV*qH}Q#0?_oY8aG0De?W3FUoqBEY^-^xpq88M zKk)&<`S)D$;yQ*_Owb0Q3>&}g)i#J02O@VMr4Pp5;w@z#xjC9K? zAU+n{-9f%#h-}j`x;JTv3O{TTO7>Rx@QCQ<1I9R9p9PG*qiS8logxkhrgq&=f|WQe z?$e|mD&E(G1yOzE*ge&-AqSg9cN{Yq_B06_b~9bMCxw&ch_9$25*ar6xe46P34xEe znZbT2!9tQK2W}*mvA$jn42CyNJjo!AOAs)!Orb&!;Z}nnt|lhfog@a@l^bZUyjA2 zjP>9g+o4xDaF!*VXi7HTyREVM})h(h+vTwBKP1lJm$s7=G9gpb%k7r2oZ@c2~Lk=jxuLym5bj%)z$8{kaPeKz_(q|qZl zf)q=An8!QPc)9T7*V-OeMz&xB8@O8t%}~EaAbU7nzHOzi^qPt1rX?t`e>oM?BF@FazWWB0zWo{399o!2*Oh_OxCR(C%!Ofac-va0ERbVH`VAsaGCkr1@#1G_%L=`{?k!bM%&)#gK zD(rhQSQ0nvN`mJoH%~VWMkB1Qy72gbi29hk7m|Y^y+B=-+c=`yi%ZrEF_ghgz)%9} z(sk4i{>SSmQH6|8+%c%Qg}Vtl*9Tw!@dO;$?po;SRjue6tupQz$5>YAx&1#o4PG9)YwHtqk>99+k*oZ(%dI8s7$hLll66 zbSchhn!DxwFxk;P@y*LQ`0-?Dm zjl8~Q8FdW%7weuQJ;l@zwgY>~bMuiFg{HaX$)eUFl6xU}$NQ=71o5d5x=QrNP1uQ! zb1%Uw(|hZ>Vo>3}W-U;DPy@PIf@l{i@j0VjAs!z?X8d-VyOlVdAx@DalI>ULCe53p za|7WJz(fMZspfc0pwWOhHUyoY2pLv5wvCSlw=uh0iklelf8@X<4XLfsyb(z;Luv?* zk^^3+3QROVx2;<*e#d~1%7O9o5(L0tSN)o^Am*?f-KmOB(lsBpcc+T}q10Gw!2j4- ziF8S9PLLf#o7Y1}Iza0Akx;p@{-p{{l=#<Xe|#-63|6?%@fdrPJr5)qH@-n z4A+f7!kv>b*_g(rgA*9R5Qp)IWa7wRQ@Xfg#lZ^1rxl1qxPu;bYsG~OaUPEd58|0% zL*_MSnWi}k*jehZD;|S@^K%AU!o!k>=rGV!dg9>|1>!b!#N*vzpjQ~;B_2^4=$US= zIPts!@r(kIthP}-V6}x!N)K2tLs4iycXvAP#PbnRZjOwGt1RJ;CZP`gU9mUSV5-s@ zu$OtFm%Ax^w~~N&0cL3F`syC#a>6 zQR5u8~(@s0$PTmjAz_0h&}4b9YlBBoZJgSl0vHoyA9$b)_wxt9*&QW6JMt7Iag3X z29yr-J!2?|>DCT)&lEQ@g!g!ay~Erui)$4KtK|sfGR7{$-4^i(gMn#z}+> zCt~4@?aHLqQYJ!3!oMqwvnfi?0?YP_jez&a1*V5E+(8^}{B!P!!c(e1{ndbAlxFdD z2J{*SBn_}I1R_)?oVo(lQ5)cNHQf7ou-NSgr%$pZw&{^&%(j%*+MLK$>IAtYU744p(+KtU<|nDx)D?jg5iI!S&*Th6OS9D zO`%vTLY_PFkD%eH?{rlZz%tUFp;~y<9{98((SxmrT@6H|0x;DJxNR(`L3afIv3m`> zdMqh)!jXRH{g>Uz;yBjFOMD-28aGdbd&Ol>3SMN$UKr{-$Ae#Zm%*&zVc@wBJXCoy z30_!jl-vM4oB-$W-cg{wOwn99;eiD<@rDXF!8I+)^MhW0dv_GY1bDtviX4Xt0LXpLTVcM|6?v{@Y5 zgIC=%;rmo-Xwxc1TQtl4nD_}p+s2{gzviARY*t14uu?StIqqKKd4_g|L;HD-yGS^x zigvtGv;}kB?ZrA#bpGI!#}d!{!7Nx&$bgnC+ZKp_Qp`t9OqI{a+WGEML%YVI&0gW2 z4j(7`{|Gzpz$%LF?{f!8BO!&B5E2qvs0pE$KnlHu(0gxkX`zFZfCW)n5XcBh5kx?w zswmQh2NWrR+d!o0BZ4Rd62r=AlYuIQxpKSU=+&3Dx$7>sKnsk5 zx0S(rzkNA}wXy_HGX|$x{`+?>H*(BSf=`vfBZp$>>el+pU0Jq;F~P{7e37#8a(zq& zpeSsTjNnc1`(ayF(-*8W21mo`6^!>&$n$#Xdvj~1(EK}g*1|YrWKb0DZoy~#t$_ZL zphNGWwe!Rh{IL=oL$1__g%wN|Ks>_HHR#ll%N9)LY( z?0r2J8+I$PUGuz70Plds!R)Su`h!L#l_4#JiX4Oaf-{%J21)R!^x_-#VUQ~U8##-i zkmOI*-UX#GiOFqRC!QBu=#Icx2>otyvBu_obeT5p-0tqhSA2vnez)?9G0wE`KEB)+ z3$g7e?Zw*+)~39gu;fEI@Cke<^CfPM4X!0$(56lxk2w#kIm;G2-3+FT|NW-`@08%} zW-$4YveWBS;zPS2eK$6!wQed-L1o_p%K8IiJiWK27i=e&YuYZ2I zgX6L-^I{>BbQcQ+8FWV(eCgufM~TLLutMDD3YYPgf-E@)KQXfL9D{#Rw2Rp$4Kyo8dldmtS8<|CqPoPs!mFE zG`kbo3sS_We;1Lv1|mdRK}}c~bDfAGwj#)#7jY8qyfsq9n>rD2W>(-?@7AeJ#RZk3 z9eAlNn0yQw|GAvNzL4N!IxzgWl-70m^?AM^)Q@)HgGMmv6zOl&DavCudn!fzp%X#n zF#9m_%NHMsXrbp^{~!kSz- zk1CjYDYa`Psz(S%#VFNbS=>c+2vh`DH`or(OG^ynyJHgld4)@^Ack#0O>K#=7`52b z^vgfImt$EgiA>WY=?E8WEYy^>ut1u{Q1_HI#`ac9-cUAIxC(=mEnyS%umu?yYQ_Fx zEtt~+8>7J}Q4vEb7$LmwHPi`63wp%1sUlC3Z>&mJb(@7objmF|6r-eTN)NfqAp4A{ z`ZmTVF{VV_a~+L_>oU6E$moI)!3W>C+?e?+F?AQF9gRl3coX%gKi~H~I@HDZ?e9eF z#A#iG&{o{%vZPYH>%+v7{M&-W06zCSlnjUR@1iErmEq?yC7u>0D{azp>lbWKnS1+k zIjpiKVaaA;a!>jI9@i=!@LPUKA^hU>q)?uhKU^%~CN-LB`2A)$ssGeHsQ<14 z|G^AbOHVk@jl2@fZ!JJ7)qK+(jtwR4B-}JhK=iY?>;C164ExKGGcf{pQQj$cWnV%K z4{}+4G$F~KANmOgCxlism-S#Q0Tja~R&`fk84{bS$C?uT*aNiOQ!Ln~7A#rtI}a~c zV3QkPtjITUtk#Jm-Kt>Fvf~?jh#fZW7 zP{ptxC0kSs)2m~?CheP_|D8u{M1d-zIp1_CDTp7td(n@@#3}ZykC$w$!q>B9-4j%&E)Jb9fm4Y_+rn|Gk^zn(r`c?+L}Kl| z0f`I~igS*VWBHM?7!6N~V_K9a1~$Hn6nRiz!lfD9If1-Q(^*#8u2ipoi= zqONi*0lg{F<-)($;{_g1f^r~A=6F{*zU+E(0I&Q}$#8VJ@VkCoIF|T)D4!J0qTxV1 zqfBcl<{HX+#w)t-rei)R?rQAFB#5q>=>)8@jFsXO5{R?f=gZJ@w9wE(37%iZ70rM2 zcSWIpWs1vm@j^Bdr^Krb0S&oRBDZTu{+~csIdr2;q|LS@YM=ZRId*!C0s%1P?_i#ZRr%xC&8`?SauX2?#h7b9)+m7fE`T33U3qW znJoyOg`S*+B8AZP5uhX;2o-ZRej^l8YKymeRo38>BV8FxOF8&Gdh+0KS7`@2I07_K z2SNj{g`=OD(c8?RuktSidFaas#_Kx9@lyDzMP|m!wu}(y-GOe4U>wjGYMy9-?L1B2 zv)9bQQK3C~*>Z@>9fk9~#u5ITc332BVqh;%W17(SRE~00V5KT6*&ADZRnV!a8lTh| ziwrtv;*x(8>JJgW>(e<%ys*!vHKLL8(re=6K+>3cemtm>D+1FXO(}fTmP_R#v9c?QJ(k=@ z8kbZ1=wW47Q>>9T;qKewC?_v9sEE&Rh~n_NLR+Mx(b;CG%A@&%ttjDx8zGi2 zo8b#=;iQ=vja`*sbt#q~>9{bO)p$;&D`9zqn)vgOlW1-2HDh<#VyX1J-V`?ddj)$- z!)n&blU#~QOcnk(Vw%J z+yv2!h*Y@8Pa|7xN&|PKnLEsuOCtcs(_NLtUL+z3R_nNMd$h+n!KM#iZVRGv{!J^i zBTgxx6FLyu5g9lH*aSLc4-$*fZ?$pNa6D2#4|E_Lk%pP1RjyR!`R}*#=f{3V*1T`# z-nHdY*8HQVD};x(ca>qW35pqx=H0reDyIyZeYaj9FKCZ~7Abzxm&`Kag{5TDgn_ah zUDa79$!xD<(xGd6nnLk=BkJQc*dI~9-Fn^<6W>ML+n7aQ2L&4u)J1C4*;Sj(k|L(- zM8IEOf*-$tFC!6~3hLoVzD}S|G1Dj6(y>2AH$EiORflbr^vyc@^#hkm@V9%os_^Gk zuVByn!gSwgroUrLSITadt3JCd=@)f$xJOIyc|WUhhlr9qw^VAF@&V_}BEI@}5l6ba z8nJ(*h-W$x7y;<-_|r`K-IkQ?RNs>>Eh?#m`F z56jHQ%%wloBtD*ip}gzm>-#H7yuen@JhL3KYdr_J;@L-1&R(;etZ&fVAQOkL2;DSG4s?`%~qX?Zl01xChwqTzbjO5AUFAi~4WFa+3 zpDYOXqaLgR6DPH!1sBcdHLPEnXAgzD*}sO_1y!tu;)2q;Ik0oR__ASW$TgG1#*!#H zOL;ZWiiw%pP^sQn0}C+O0wfKt9N{X<#z^2u2~3@b_D5L9`k{RMNHoTWSzv?hVM|7# z!?9YzR!SK9gw=Rbdvr6u4{%4Y$jrwV{{JW2!4B_pLmWoK(Bya#SM)qfu%y^+IgmP?OeQ~ zO(mQENmF&^!Ex+RCiWZ4xg(cfI*tel`V~;0*HnEeq`pTuIp}f8uzPN8~zvQa&C0>4Mx=XBkd^FuPgN4>o^cBpz&4gwa+`NQ!2_4;$ zc{g#&M~mTCBYEmfG_(T6&-z-|PrOiST`Yo?L~6GTp5>~{QY5yi4h!FS34Zhwn7mE3 zn#J+nv%zg-=GM34(p3NHFS@F*v64Gl$Gy-8C6ZDgcEr`Pe9|0nN0_-o?YNXPmd!=O zBTsTy>9{EA%^bOA(6WC8Et-#VbW(zj>p&=&GJ-d2UkT)6auC5IX71-2mw9U{9z$dV z%2uCJ4pBUY|Lpb_E~$(8>0)`tu#!+@sE40om@0RKr!;{~gMZIzDf742^Mxwz)iy>~6 zt+-sXI4X-r{F+B9l1@uWCk>LqPvZolT?;&c{6cfIE=gRDU-JlFdvD8n zu+A|T_6$RlZ^D809q%>=13}a}j$7esh?S0buNZBep3Buy^-QzZn&rYEWBH;0wNpWK zAOI=1AgTp6TiKdYnuirYVbA*FaPig}S63ONbH{2hu%P2jvQo%Jb8#{yfv2h9{9sIw z(7*-HQ%dj-8CYvO*_Juc#H3IEXtgUD`;Za%T@{?Y#x>co!4~qi38HTJlIXw+Me*4e zREU9Y&IN(s*Upjd#iJJi><@GnhpT0T&1EnHbxsVLx2Rru{^Q2X<>t}%{3Y)St! zk?32eyzQzd=J>yhe34tccsSDFm#ofo=_FIH#>~>KDBPBSpWvihkU7x6CQW{FjQdNS*~o7ArU5Scg3*|64F*e)bFm!AHJO$z(?$Gg|k)` zQd$x0=PKU&YdW@?G*x-hVK~OF*s?u#Y;;Td^Pxx3wiPDMi~(t9>qwWzoR7_RI^)_#su#Ph#G z_dE*vft?n!+b=@-PPRiNcixhg#rc7=$l#@v|1mY$!o=GQt<-C&ed}wac3UZ+ zm018;I|!)2&z?i&oMsDeVS-bmv*0`&rc)(1+ssu>KwHNITcp#3RP9L+kIhG4ev{;` zH*?jxqAKsdxn&t;TxXrF1pcoQT3&{P^HRduf0uB$DSVmQIL{edF{eyo)I1r)yY@}@ zHw^LpB}HP3IK7r-CLOv5VX`pey|6G?ysb>1zp2&{FfDa? zCm*~h@qC!iP>`^Jkk4XYRD}ldzjD$;`J~g>nl1MVI$}NRD;cvJPcDS3s;$anji#NTS_3T6wXg!wuNn%S*;x}`tAdmD)|$1DMR3t1&-*=X;# zQ1WgG->HLZIcU@EmVW&B59$7VehMUPH%q{VLskhiE9vwNR|2~x;a7BUT5y5xTr}T% z(^V525P_gKW7vSmiZn#pj~}U;5s-J=Rgwi@BuQ8WOc436q2@4s0s_cHV&Xsb@~|_J zRUS1#1HMNCu%VQInIlFCYNIonZ)%+p%|ri-zG9LYUR%5{H#bznQ<)8yaLgt#!pY_w z|EVSRGq{66j)7)wKRYh1Oja=pP)ArgW9$?^>D7D74oNBH{RQJSWgAikVx<}?&HsrmG_;X6N&MCW zG@!#8nw$S24NZ-9S|cA?;A+5HNmiO<-70VmVl6C$W@ZA#rsJ=!rYu_$CP)G{${EI- z7Qz@?!t%$i6t-Rx)=2`knvlBQ^gmZE#x1PXW|l#{IF_szG<#N3&q%6Kp%vp&m4PC5 z%7Q;(#?wlczyCm7o=E6p38l&Y7{lqn9$7FC%os|uYER)MslqQg+!-vsk)lBCC?P+1 zLQ-le{%v`T28e+|7Td_I%IHQWRg&Qv^|vbl&3uApN~mVD!v1I(%&!k>9m024#qiRk z=OA~oklUNdx#QZ8!C!cQ0|OWImZn%S!{@yz+xrRaAut_cO^9E3H!YcyRiWrG8?O+ zj;DS_g>ZK?W)j-5F^k2@Ms}f278-~V?lNf3KPrt99@a!D;iS>Jt>OCb!jTjUvQY#> znwSfBP!nZTvqh5PZ-d(=SuBTzn`xmoB^T?Th}}W5)oDQ?Jhy-Q2>xjqcQ|WnVYh0c zx_~HSe^?e7dxipVN6ishp8^Z;>h_!sLvwZk?_G$oHj`m z##}LtHoa{G4{L*(b3+t(>n*%>W*#zDPd=u0TWp43-W`m^$OJtvq0~tw=<%BPm)+5T zp0z;Fn4uKOa}`h={#JN@DLk5lh-x!hd~-3rEe2)yi3RuA7WZYWyF9!&w<|!$2~8Cp zYc_%6Shrc*KtAFNZ#b*c)U4?Eriv9WOi1`qUw{*bcs(T#i!n;@T?y`rd~duvigmM4 zGR+kFQg0=9S$J;Q&78QtkhzX z#&%jL+szajsor<@Vrh6`C_>jv-`0d(u~0l_3VqhE)sf4vw`4LbF*aSOrCMSwr(LRn z|0phgve-%{-b!0pnC66~33pFxVjXf5g^hg}RJJ;U4X2QboP4|;EZLP>SZsq`8Ek|k z{i~4QYr~d|QuxC)KG!rHSF#=Enb!du`!U$C2imcrqime)Oi6<67}RL%JlI+7uSD=Y z8J=+1XglodwpdXJ%O$&`;Pxi=;X*bU_KJMLs(NI|06KBHl9- z>)vWxf`>K0_hXj^8zK&${r@SDMKxEN#bui-Q`w_@AXLQKN$jESl=B#Qu_mCz7BReC(-q3+A#Q)g8kgTY!(u zKn&hx@#u7SZI+Ot_%rskQp+yw`1~;4-4Xr_ytNeDSn<|eY^ht_u9dqQ>zSf@F?2{d z=n&28wszORA{9GsCymRTO_aJ8^`lzX(n>3g8;NJfIvP+?2HyAgxLi2!zW)Bjc(yS` z8F*jV^Kuo(J47{&y01-9tKImKo@{nPM)|1t-*z}1G+ zAAfayxL9LolPsU| zowGRx)NB&45ay{omO3K%y;&KovtZ<*E=l| zc=$kf6TUZhR0;U2NyAVIX}BA|)!&`UH`LYUt%!5a*`$_A@#)e?F0XcsCx~v2!C3r@ zI51-yKQYk#k>gcGNNx{D5W`PIAFaHj-C&P$ZN^pN(+~am-oftj>{BTx_br^y^|4vR zzLsJEcVkS4qAqFCq3){es!Rp1E)@_O*>AVI43xTh=@h^(%timqWljoggesCE z`-me5N9EApL!UZIU`7K)c(*RXQ>VCuN!d5t-JM0ID#>wunoH*MGO41-=<|6*s+!M9 zWho=wiL6s$T`c8A_y|tw8gMHU&aO{7)!}KMAhubfP%s;$nhRz!Nl9mkm^Y`4 zW)r*l?Gb@Ido-$oF;c)ty#UlnS!|dEHrN8A%zE)!mjFKYqfTLb@Xzj0wptQb>WNfY z4jc>nvfP4QV!=`zcRG>5Pe|BNJq#OYV2>Q}{n`9#GCw*ForOad>}U4aZ^t9oJdoJ? zIxIB_H%xFhV0SI7AM9B-C!%E$ou(AiNS-`REvBR~Ch=0-- zEo`qjP1b`#NmRCw5kzKUp-`Gw`kT?#U0650-M9-j4|#wEzx~scEOnuyG@W9k7%WpQ z)iceItBOr^*JE>KlyTHXVU&Tv1d09dR^6ED?vDPWDWX%gh&r;W#v*UX8CN?7)8@ngFAVlS}{?wkcayD zBE&rVMR%$=>&nQ*;Z{~I`RtF(ao1pVCASVYbH%Y3%jcqzR8#rMG=P*K-ezb?K-JZq zd1#CdlF0sMB#JIh61_d3EKmBmOBsG=KGLC&Exe~4y!ZmZ-;nUvY~ckhze#Y!c z%oE(Jx-WtnDM)#AJqL?pkO&+KE{8 ze~PHizLMb6wqT@8JYRYT>kv-b(vREHsc_?b+v5DMMqQ(Mi4oE2<>7?Y%aF^$~jUb?F zUnr*S+o;3$TBPifQZyODfu|iWP@7rv2d2y6?oU`Nbb4EgM+X{5x*-oKxa$*TdQ?0^f`+) zld#4**tZ8z9;wJ5Kh`yf-?-B?oX@+9D0h7qCaQsk)lHsF7H?&rIg!7+ovL8!)sNXM znsQRiNS&CvEs?J^F^PSz1o5F;U|ELQN*Jt3V2Q021CEbTH7gT~#t5z_bSo!kFmIBA z*Xsns@OD54+b(suK6SD@A1s0nV?J~bWU*MmVw{#4jbpJz zkNBueMSQfHin1YI*z;zCB)q>Kj#Ai-^|5e!O0HHSXgN*NUUvodhUC1a=U_#(%mGaf4tFcdmwt-nR}pQ^Itp#8=qR|YYO|=9_~B>hCAN{+3_Vuu#RT%O zd)=z@4S}9;mTJMKSg@3gUw)2`#}tX3q{m{8Z#o-q;f%HCoIecCM#*`{#KE-33f)Wa zkB`9at+f#IG$QE)=}DRLmo`dABXTTFzor9MZnRZY@%vcp>3@v^>i6`&!ov@sFri~D zoPc+ZqxoEPT!& z+=YS(OA8;LN270b>m)if30Rb1EPqw7bVZau5b0B|;2>Yor}998=u>%T(5KQqdq*#K zR~KW9Z>N0q&YAe?vBc14z|lC1K(`N0n=>eN%VqqQ$oL^>IL{jEE|YhodjfCzB|dnu zC3>$a(G%%+iOe{S?)Ll29m@_$-e-EA@J)ah&5zybUXE|NjPm=51-jo1CDSnFYee#{ zg#Mt1j%RMEn+5l~SLb8SA*$b5s5i}2%FT<;qY5t5Ua2Lq#P2+6N&0daekG>!R`dwq z4cr)@2o*ouG?ejHn(xA7Aohxj=vHS)Hu}JY?7fR&Z}#4B2U1ep`m1{>K7TT{(1fGZ zMnF^X)-0ggCHDk2NwTr}uaMm}5XPJ`YTBNwHF>iyQAv)q<&M_4?4@=}_Cm&>>@}jD zlD(!a%WtF|#j&vfhokLouVk&v<@r@GFG9r4)K%Z!Ud>(9ul~{lM|i%B>Ukxq2#jT5 z;hyrmAgyObKDZki3ukR(c}9z+*dE}XI;fk)ulZm$|CZdpbX=_D4CZt8UaiQxw!@Lg zojPs^ay+qxKmHeZSAO# z&ap#MJM5pEXou~S$lW^RKR=edn&sZba^J<6_~ zK03LOm^O2tsBDO#`FF=(pK!~(Y;_kX{4NgVC#4q?Y6 z@~{qxjeCN5+HWGue{|K4hkbk%y`6{9&_T1919oDl1J&yRI#54L_&pt*+I1!FyG!SN z)Vqv=y<^6HZ--T5AJ3vXDHV2E+(pew<SO7i0)u&cnJC!nsgP`Q~(_3Yd~V4==S>RCPYwNR8# z0R4Gx9FCzM_$R1mEYwqGD#i7DT%Q0wJZDiU_LoFI(W6zXT8lll03Vrwq@Eeipq_-z zG+vA8Ms|vyKN6dc4E-CijK_Q=qt0VHn{-YSD07~}g!BYWEM4oSr|vxmJyD7d{RbYk zObf7+8Hmr$TJw&lB3meV^YuI`^u#O3>r;%6JBREk*73197V<1J8Sc|*Y`3KD)Kjrd zKrn}^z9HLg!E7~SNH2SedCIeEl66JTqCA9JG?XtW?ulj|3-GcTNWG37ex9l9sYcCz+Ow>(k*GM+)*wL~XKRT*mDY-U7)xfH5Sk8D1nj!(muS+`3W zzAr?)C{)jh(jK{o#deOrGq7zYwSdXz-uQHW;qZIuM;9YmuS}&qx=|d7k>CANDMxpr znHr^Cu^Fh+<)IeNg?WAbd5Ln!*fV7;rzx=nM($a0p&Sx#vN@^~wWzXjnQDid{GDZ@ zJk{BIINUnPjWbuoCm;JQKSpVcXASEc$tQ^srZG|Z;aI$FN`bd+u{2QfOQ$aWylJ#2 zhFy|Ty`YQgjsJ>)l3{%@9b;BsjFwcu)@Waw>0kbT=$SE~KbQ2Uw)DhUPaGC=o1*y$bp5g1-@vNWKxdE#QrSt8r)Y#bX8()&bA7=RqGw`#jp3;sl6iVFz>WQ$& z%#_1$1$)L8O`JAm?5L@$okjWHXpSev#6lT02WI0N9Bq8M%NK7lIPbsrDO?=D~&| z3;LlkSqquAn(|L#6i(-Yu1t6_oJAFM%i5k=thdDWFk`8qUnj|f`CoNB6&zU_QKynF z;%x@&n5C9o6&%6GCwijT%aXp}-{{R9^K8K{n!(DfoVxJ9?3K)2X6A8!RM<*FJm}}g zQ*ZPu!N(^fH9oKvvCS-k7V*4N&y&cmOA+6gMC3I`!$p&jo6^6eGTqW=E5U7+K$h)r zBTocJP;8smz!S=Xx+!|a2>>Yuy)J0%sipkiI}I`QvY7I_X<*eM-s%;gim1*SOE7l( zw}4wal5KH`g*Ym?$S~x=h|5wZq*JH!r*{2fWUkDXLME7nQ0oavRhhSIhS)nbak>mS z2D?n_TxTtsdy?5YN#tfCyoPo8(Ea`8RMgcPQI{cCino|h(oM~f)Gz}$k`Ha^3F6I~ zyZe?6Jf>GUFEfgkfQ%f!Lkaj)_@&Mkbw| zygA)dpT&1qaz!kU?*ywz1)W@T^D@wGh~_6U40V1akMC^#?DMUVmop`)la7>=p_G&= zc_)w!FSLe&;D|CJ+t?z1X#?aOiJWDJax2s+CPYBZ^b4krZ2v!eDSwv^5~{TxjK8AvNAmsbwuz>z12br>1f=D*&6+)4oKn! z6ETcd@X`Re@Fi6FPg5=m7H>0{CW3NNa98A_3@HM$iu5A-!jVZYOe9R2HjHG64_a11*z9W%q%}AQk9@i5J%Clu+rzK-Fse%~Y z3pLMIl6l(9q*GpyrlEYp#sO879a&D=(y_aeq*LaB(v!s;UTm+1+@K66jW6lNEcOCV zG-^H5=?DQmm29-UoZ93l&KC|bWFyv7%|^=jct1}9tJzb@3kl+%Wkn1G9UNbR*Lr1J zdA^{(ryjhS^t(xK*lm9ZazJcPLnb>mz*CR)k>H+YFqT+KaBk5dwfK#JC|liZ>6vCa z)oFhZLZN*{(ifWPv>NewHrx?my@yoiN6TIchmX@P?sLp^s%#nzMN563r0+JO17Tgno^hTfGK;v$T6JT{g9Q zSNBqmZiE1#DmER7BF55IKFcqhpLpyEhB{8mScXN(T@cwxODvD~G8DIeFa@36l_~mz zOi_f7;It0+!bDF8_MIj5ZpzgA)~KE;*(j4`_{wSM14r=i8EVlbo~of97?+}-Or!YuKw?0EDkKvqFS>W z=G*NjhAx(SdQ%4C&#PSuEgSulHQQABiLy;XW&CEzHb34|vrVwlUHV#ym!P&m2cKd! zX1Law6IljxDz#W$7_0W^{xV1HNpEYesn|y;;uUZgMI6B+a0DY(*p0h{9V1iYM(7tW zMD;P3@v?msmnODpndcGvUctXLnRS-b4tnZ}`JOhct%cCaOrSyW?{Yk~*=&iKp~ujg zpS>%g->e%WD)XNfU>?C#3pLwJB@_JcL(KMmea^^IJZhpRguO5MTl9RKO-dgh%L}Gs zl^F3iS@`SCd};$6n?EuDb`kzUmqh35(S!d|(ls`({wPfNZaTtWSrc;JflC}()xh#0is27>7UmzIGFyq< z|DA<()54fo^1t}TI8#k^YKl$1>@S zC?^U1743o$&gX9OG-g%$o7EZLUoB>oSo~d2Ei`s0csG4;awa%8V<;xm!stYiOK0u- ztA&ePMZ31Z!M0Fg&DXPNV558!93YwZo+pCMu>faTfRx7$Y=sTjtpIoGfjBfKc#YFp zkxydI0AAraCfshfK(}g8N`HJgrGG5$*Dxa<2};lZ^i%ZFD;X!d>9^yh3h_@NUg>fO zzchB^Wxrc=^IKt}7S1Mw!(ibD&`IO~(h0)e>VOSjYkoJds$9J{z^s~x0ZIiJ%DWw) z3Xn83@|>XEQnMyf^y1=QNxS##k)OGa1Rh?N+IV)J4C9(9+c%t z7T9<*j0T+M?e)atpc>+AEacSO2b=Vc1+mtQpii2+AML`63gTQLVsbr1CE!A-B%aw5 zHvKCL?6et1zMJ(Qd+OtW8j8=Kg)ql-!1`Uo45GRhO8G0q-z~)7EW`tzWjL1R(#L4A zR^zv?YnrD$hu44V$#hg!-kX}MapJ9Pu7(a!YDHuV%3%d4C!)l+Dx)=5j~w(wI$jWx zWPkR{D7Cpdicq?S;BXAtp(hcx-Pn@|;EqF{Qbj`+`|$#&=LJVezTl9jbcFjgKj|lz z4ZrzKboI>&mU-z?$si*W|OxH4lod3q>IJ}12qdodOX^5QW;*b z@IyZw-9|}vQ3O%G2MEVQ9Mf8 zwr2_&<%+)*u3oZ$lw z<~P6aG+~tonM-KgAf+zUSTqUM{>?d0C}#18UqnXrAFOEuJox!? za9ryAViWyovmRD#uvstI=a}3BnqJ5bA5G3rz$rrnZJ>id`F9BknYu<%GDPa5Xe!y!WiU9N+QR$iVP26c&r zwAeyYzZA>)n&d~}s3F1~(&6yAwRpjfV#WBT{XTzwz)cue8tf6^>x-9InJuw2Z$5QhV-e;`dbTSh>A_vVcus>`9UiNN;DXzo#> zDZ)qaq}x#Zhn6VrkWqXe8%~MV3wTtwyasbF>XvDsc&ne35+q*8Sr7io-xz2PXP{El?o!ldC|=-3 zJmD{#qtJb*NUG-i(2qDm;pYKZ@!yp~nr1t6#=oJ)9KRz zDhjn=L@xeG86B3j-V0icFu&^3LwrGp!dE5uy@hHQwGk(0**c0DPI!1-orl5gVzzpy zT2X0wJS@}gpa>wR3jq_su@e|pNdMr$9%ipkiP5%hz?>FSTH;X7!nDN3TEA!xkb4q- z#|+=|z>|*YEG7_6=G1}k*-d!C{!t~A1X!v3NYepc#ks|bYLq@YtB&3_a&g{t_4}*x z$OCwIu7FtkGV3$e<^i7f<|DDk^0RAk39i6U1%y6^Ua+hH|B4x{I{v` zlunYANfIrGsr59~t@i`HmDtQ-O2(XKl7)TBWcor@9ZYtisF>grZQ;}~uJt?oEAI_c zX1o|b1F0Ly=?ji6o)N^uo_NY(){7ngZ6luy2vUkHMn&;kDi3jME61sDey^l8k9+Et z!)dpOqH7UdAEp`%Dx1ZJE9Q|6=eK`%_vPdOD*4otigO$7V)aak)!yB3LE-llo|_Zs z#{i{xeIwqb@)$qOv0w3TPbJoRxMIn62djSV^x?wR>X)3fuCdjnViZe@h{) zj)QtU&gwPrlf^yxOQ658y!Ici7`B$U3$J!_e5f#N#WrY-W-6#lWgPQ2U}nPWmgp@K z(L+b>N(V9iq!rTLG68oE=kf1jM}OK1cAR4dhK^PYi{klfuo?gM;pVDlEAi9WX2eGE zBav6~nuJ}Eu;anrI3D)jpUUyHx*${C$kVcGO=goj*%GTlZgL1mgipo%l%muW(Xnl{-f&A$& zSFt$yUZ|g(OyQ9!{B13n;n9^5a8V!WQuv|*rqjF6jZkN15O#c*_te#@Pc&ErKNIGS z#fH>2ut%!893!ELHR0aaqUA;g@=GrTl`8IZHuNvTbKh&G&i05MDYTiwH}%I34dr-x z1XPO1M(}kJ=%bb9@sZvpx`>907a6SNNL7mz$G1y)>#}xOkSba!6uN3@Z+#s9VG5mY z8@gc`ZzglHp<5NBsQ{3l=C)c%e2s?`DVOvykQRgnmKgx3~w`@J#iLJ zS&#JkvAr4s4U#BtDmtj92z+2hC<-d?Ezex~(6`EasUZxmW*t_w!;eHFapt9)ZLivwF&&Eim=9^-W;48u2uDuXm z5bNz>#!j=rz9X}g{sO`=qn#fiT|@meEfe)JpO-43}|Up zR~5b~9!0q-e>cwCwNy3nABI$|%Hu0}OPA6#cScGWMP4AWe?f#-Hj_&#e^WF0kz%wM z>L_9kzObfO??HNQ4o6~Jwr}Of2PMu9mmZ%49cN%oSUF7V07qx# zFrx!6l--|Om8U>rd_!pg=)Lm$~)SXt7Sc{`xlbz&BSU%itLAtWbe;$#vIvGqYGQ}A_G0# z=uLFoD-0FEXKwN~z+RE2l*4|$YSOb?Sb`}B*90Mk&#oe?)!;Eo)`j>89=sW~Pv98J zzq-Woqc`bhO4JtbP?n?*Kcta&G^=e1U&9jqc4u#6zNN7@nRVBPPi*3C!n#_*ceaG5 z8mC=T{P%Qy_^VA(qfW7epQMGS)*RB4)N-OwEvah3x-jX*Ix=N;N%AR=+AaUULf$sU zq8WBh3#X`tePs!ETE^%kX87s!vhMfQwfM2S7yZ~nJ>=njZ)5he1#-_G^3pm?LF`(? z7mS%4$J0>E@c|J$D&0F0^EXbU8;WPJc#*-hXdq!5^9@6HHRQP&UOz`e9ibot%{MHC zF%ob9lq68nB0;EVzK0JJMYGvt>Q4z%xn@CrDo#qFC_S96_NJT!)Md6YFBp=vOIvS4 ztTI$XMeuLiqD_KzE5>MG-3p?C6W~vD)~sZ^+4I$Lw>>(-`1Y_=ADRg}>7bD+*lc*(O3$u%h?qtBb&Xc58tJSw*y;Y3BS}n z{H-b8&g>I?_{d(~9&EoQ{2u%8HF92Qpp>jDddRijUhHsSfn2tS)ZF<>LnZN^>LJVe z;@kePK>lYB`LLh26^li-7cG1wemHO6-`f#`km17(MKe;o$Y4lEDp=456|8nhS5dGo z_NHot%4_C8G~9bjmKEzv%y`>L)d5E{RV~siRn|6V(4TbIx=>yLnhGxlU=D?rW1^!^TXzAz!*B*fi z@tQgC6;ojJ;WF4?c^HB7#)c-Zes%T2)$>*>b#^h{Z6X?e3#L`Ux%Z>J;b;$?80oFg z9OL-VlD@VaX&S*ZN1;>x+$`m(os^Ml6)E)$QW}_~6ipr%$Wwa0R!>$q$$Dvv#&}z^ z#Bt{GUW?wOYs#Rn`uS~=$Fr+14v zZym>KGk7H*KMwWNNtz5358gwzK6Fx zD}yQHCgV$Q(wQkd*{bIH@KL?I-B}Y$_=fi3HCr`U5BavYH;oOjK>BJB*&BvUn8Ft7 zgZ@1OdY*3yI%m8g*?yaeg7vOG-1J%AM7F^a?rkaZEtmwIjbAX^TbZ5GhcEctTZ5gj zgg>fu6GLN-|WjlZix9DF2&*#%o<@63|~YU zA)zpYthB0Fg2mIDbQU|o@Imv_mNubE1N{_LYB&#E;BCX&Ss1PD8MPL|HemsfjC45P zztG!|IW57*Sb|gcGWCn4P5JYe&=kwnF$TTtZO4{b7;jh@)FoQ@ino{JBVF*MSG@z- zUQ6&@T5xrfH_=%by9jpOs|)^M5lo}Y54TTPfyPQxT`(TI1ZAg@ zC0u=alg{c+R6N??P{z~ZGI<9|?hATUg%6O+M_EwA3!{K(=Wq)wNAUj@8_ts<|TX_2l<3ZsrI9Al;dsd;n=hFvvya|i#wgkQ; zBXdDU1~5}(NVV%%c_W$MBuy=tkq9S3QGR=k!HH00l0hx4x~-_hcdYUTvugUVFRVce zA5(P@R_8dtES)uI(8uuf^{`zasS(jxoILKW!g}dh^SHN`Se0#LVcjiQ3|f_eHGknO zedy3#@E%P!hn`XxS}{%&l&HW~&@)U9MeQFLLt(6@|EIA2T2mL>XkILuU!EP7VtziO z_InPJ7+vG+0R9C7snuRLdL#zjuzDn>-jE)NY539Nk;uYJgGb`Bl7!Ej)=e}g`sPcm3n@bYoW77T=Bm59pwWR@s8^QsPhcO-)F2M`Cc)ZwXRg#Ry zQXOXNR_bY*FpJEXSlYHq^w=DGbfHCu4ZTbeTBqe5*@h%6v~uWEYVrSIJ4(|zbNs*3 z2|lf+qp(ltPHJIeKJZp@JT!;>*)FVVSc>ympL=6jnaN6lMh3uCAJp9NA57k5P-Uoi zk%9e&r53ev)I=XRY#03Q4b6e;QDAmDTPZh4iOE?$u~#z{Bjhd0ollkAxo?U#b7SHj zZwoe83dos?sjIVztxMJ!lMTr#awdCQ3lYxuwt$g&%N(UON|fHj-V3^RjOK+osz+o^ z_WAM0`@QurcifaNpV@MXehmNEZ9QUeBd;I-;$!bH906oPV0$VgEkjhaR$OBqxNJ>B zrQ2F;ilQBSe>i^#-wc1}0Fnj0HB+PXxiKjUa~P|lBTzjWZwVWVe_4$+RWNxlP4Dgr}yzmB5q!1I|Ff(RF}}_L~~Wze<0rIZqqs^JD#{D*a%J zYNgZOEY{m1r-vek1x-~F3?C~JjNM0O67}L<%urFitaZNhik(U5^I!iPE%~=CxVNUN zX+=3{@K@eOSh}i)2pf7>q=o zJ_plUlrOvt9U+q8eDZm3KUQR#Sx0{x!%n{7or@XCTClbky*{r!G za1)!r4{my!v0?ha3vau9>P7 z!;gn+#qh9Seh+q7GIK_t93Hgb4gja@LLqDxyQckjIB)(1`dL>jK|J&(on1y#T34+$ z`4M06Tp#|-kKVTIsU`d$mhj}{+S!l~jr2u@B{ws8)vECLdnh&WJo_FzX7Mu=ONFlq z=OI7ASs%;0-8D2~qQ#305j$Da68$we%R%RZ?t4SA%!ZiV_~H9-J9pDFhyCpBfs?cZ zQ`i3JG(+v_B>w`7Ghc*PX4-LziQ|E{J&yM_#bg%61U(M%p3{gSK%_2H?A*f|hqkpTwI{;h0n4-U}F#2SM9z606 zaeQO`hWCF(tJ-J&2DkDJmvr9%n%y_lYN@1fXsykGeA8oeNrPvK88eM}-OVAz$?sY; zaAqK%Q)_c4o>mUO2hP+fbMyba{h8lPDy6#KMNyviyEZj$&+p!mtkF!_R1$e${1cSe z`bsdJ!s^nSbXI4k==oIql8Ofig8;Fvl5Z86N!;6~icfWV8SB z4raqGQin*XChcCxATi;MjM{z6EUM@lBv0DG&4XoJ*62k(dIppIrXo_8J}V6AQ}Q{Q z8DHqrXXA6YMvqxydRWHvAf-<_TcIV8uGBbouj%Tm%^sU0${x*JbIzBJn@)kqJe}DC zi=_KAg@IAFb)rNMXv@RHd^p*I`O32RS>`MfJ1dX}KHEH8cGzP1u%fu3z+HNfcI2zl-Ku!+kYa^lV-JONj98Vv)1WxueW% zwSuGEG2r}`EcvPZX6y1uh z6hf%0ff%XUqi2*58{>oy_K-+?1=FVv9)mZO{z=-dNvY*7`+7Vb4EQr-BeY=3P>};G2M|nWMF%O-puGY6zi80)^>|-Xwn&f2uH;L_Oav2R!M`Jx zR`yM1JM@S?ReUoY@0$@@j0nAx{==%iZtR=^QO(!K@fC&8egA3W_dol4Yc0OF7P@#p z>%;z%;A@N-My4;gqZ9wVF%f!{f4?U`_6F+g&^d)Vh~S^p@C{|bbIe69klu(T5std> z0G$>$x%SVLxU*{cTC$dUWLRxqYu4O?Y@#5UDSV0c?^lq;V3?k=tB$Wa8*HHru%~#3 zzMsf%B_fqx(L>Ube9hQG3uL|m!D*fJbuG28b2L{{kmi9^kEWwM&|PfIcL(IRVTUFA z_h=mDanOQ2FvpN{|K{&2V^i#!7A~CEtM6;Wu2=$lWSlPZeGPrFg?mfRzOt>MOrGa@ z%Ac)$8SJTr@`s)hht51rd&sxVd|8gybirS3 z?(4%|u>@aeAN*j7ufAwe7fNr_0@-4lCHQ;x!3VbVRl~WMTJUQveRbGbOYk#VaI(-y zNTpJkqqtj;Jrs*QM=_4E+q7whhc<0%%IgN_`#Hk-yRD(2f^9gWwuh7J3Vxqzgqj!v16u* z)5XY22+%4v_F49kpIZUrTJRYKqD+Lvm8%;!4zxRGA__=)#}u|I9>EVFhj> zY<5>)9Y+H*ELnjeMF>_xfnii$L|&P|@%|0X!|+F7ekTX!4+(0_ZFI+IL&EVy)zwO4 z=c`tM6n?(DFB#jusG%ZwUwn~ci8(HdmAJf${n*Z2E}R-Yv8S)DW1lYYA3c4Ius4NB z6`jbP^9`MXQty6HFGN2j=#q{wySJ~kmYo!H?p+ta-`!s-jz64_3aMs}w&;ZZ zX~%$_iPEH3&QV&wBr#)vuPckoG27#q9G>11{onbDKA{Nl0T?_J$))J?G%9D+aeMSw zWq-aaD8Dls55Wz5eMq5ftc5!|N7X20{9}XBLs~*X`tmMAP&F*J1bLO-q_dZD42d^l zs4tQ2mO<|i_0?xPEkU;by8S5VzmuJS$&`r6nu7`*z*I2P2AiDNuCGjGInHbluen_n> ze}|qB@`7(DwjD7M+L#H(nZ0bHhA7Q{&G4pSuA2$*f*C=o{Kx5Q$5v{gBlxCqzAh-P zrqD|YLz7C7nxvBJQYB;i(+WB`=o|AL6EKzZD~U`QfYW|X6HQlKPonv(xFJQo#O`YU z9L_h*^R>enr6&2`De`YFFyyAw*}h~}Vxgi%h{7&alYLECz(RAuC{AzE8N%DvMJ!Pd zq1H|<3#9r&HP)1LH>RT1nW+yqWSTFDb+UwOFNL?k9z8k_>iCCe8}d!lQS2w{A^%KA zR+(sljI)Qt&V5o3SOopAFqNszQl5vugz5$%lr{@1_mWw; zrRhyN3r7=Hm%bu%;J9`zc-I_XW7fGI zqy=(ZfxvCLa1nZN{l!f-0!?W;=rvz6%*E8w^wDc5?7v!w4<#|2hzvTV%{)p`8zj@TcGp0xCJx_a;^~fAm=)9E9U%6+(MnF z#I2n3OL22J4~bil^NhF!I*%*2ed6Zlyd`c$o$n}5pNm_7^Ibk_sjpR2k+}!0c2>bD z3d1O?4q9E^d8(|Vh?A9b6d6VNRlNGR0bc!AT<+j9%8B_%OHoFb7vtN%kF8hT+2W9lH%7#Gx`i}!hk>T)wvsdx3z8Fv6)hy1jjW1v3tD7T~D%cL3=HM)f%P3N!cvT4- z-8!p?OEp|ZksihS3fRfi87nSvxQrs@iT8nvvAahJTt+#C&cv(#hz&o^h|5>FjB*Nf z5gNM_jhG_O5H%ySeGPr_>DI!ha#%IcqToRRuRXL-X@ z1;bOU;VI7WR1UdI2o$z2*BNDaiZ(pO7@l$}8Xn^fPn8W%RSi!Gh9{B3HSr>=YfmDt zizi`$b1AcnCz1Daoqy%bC`vyHqnYb`W_WsTcq%ee|DVkG^kOlh2)ml=EM|D}Gdu+t zo`POP1tMaj1PnI(SkmwmW_S{%QiKzwG?$8}_9Tj@coH@@m&&R3BnqtdgaVsGkHQk? zQqdJZDo>&eYfqvKizi`_bEzL_5qU38&!UU*KR0MO$AedeW^I&=dQggMimgk95~gn`qZgr(D-gvryMgzeLwPRgeoC4K*6`0m*L5yK8XfYE?Hj@H&G?$k{Q;Xgc%l3qT0m0C z3#~l~Q>{G-n_c)ceQC&;@soxRnKo&}fi=D~2inN#dA`KpV=o65K_uqE#BSkpv^VY3 zilOe{pJ;EsX-{t+YHv1or8hOWFEL8ttT~D5jan{coxhyG-w#gkZ0?JfKd(El{rv0K z`1`l7#m{kNMmZnPD~3wXsbGG?gERlro7`8!QDr+~=qx}=ICtQ$RjX@=1#8u5#agCw z7hYvLck|k7eGTIF(!-1)Mes_TyOinNhc~Y~_u~ro$9%zBUt&qw!U(4p#ua{eEj)f( z`1fmlJuq>(@j74Y(pw=+)NsjHAhhV!BB=B};49Yo1|^@RU#LMX8WGBqsKD?f8q~On zstLC`Xq60eavt-x?^VYpzU6ISX5Ah1Q+4N>acG;AorFu`3|!{T#^s9_sTHFHE{1w$ znA6AO-|`_%d+>=xT9W!@qyW*C9YuJ^1Y!Z?N9i0p9!h>wP@}gwe;# zmHeuBd4X5nfB-xBlnr>g#}9A7zsOe50bXt+KKlqCx6wDoag4h*`o=p>^0ZC93XX62 zpiPhyr=>Y{_*T$2rpXZBEWoDeP`Aj@o&5M znD^kzJ!KG$JT=vA_vab>@ z=cU%HiA=`jX?}r9_ zD=l$(ITe?qX}Ao_z-3-5T-LV6<&(C!q_z_=72OXJ(`p^@D!xncB00{QUGe9#EL^5` z!zH5!E~R>jf6k?Uriv1&`x}lS8%8}90hlb>wr2+7vUWHw4M*Veg}C$`jZ2dka5?z@ z*gEfkD39miiv>=pVpmk`4F$zs5bOm7>>aR0pIES$XiklVQ!J=3b}?$KAoea2V~GXP zsJDA|6Ju{lG>P?{nY~*s-`{(G>^}RM+1=Ul)SG>t;TUu?Fc=btfy)>S7Ew@fJO+6u zVlZctnJS|D9x8O*WMn(0Veo7L242Y+Y+jAQhZGFXZzA30cHQ(Xh!$?c;Kwu!F6_bJ z?mp6>`z9*w-62Hfj$lys3~@TCV>=4tc|4YHr%1`X9Fs=IH4LiXBrUqZB0-6Jh@N5K zxJWm=@T?wd&@C6q7h%c>e1SpZzc4uZ4ug-m@L1H$9fQV2>C&9;%ShL^B%+N@0KpFUfbYqT<)bU+HXBpu7GvB33@QQ! zdp2NT-H3t5Rt!F-W3Xfo25a|Y@aI7c`W(XG#9<7qM=%(941<5qVX){tRr9;uF6(7P zwXYDO+fFjo|2m?gHwdZQ8N+-KuX1AfMwAp9+(CuycQJVMh_vX=lz8tKh;F~c;K5rA zGCz@Uj$JrCH{Mj3^UzI&x*0MGQNo~EWRPw*TTJ1%<2mOrz{IU@Uigoo_K!TW8tSg7Jk@c;b%P- zJ~LVP#AM+cD+`~NEPPh77{KMEa7ZU33*RhR_z922%ujeM#(EYU<}isvI?Gu2*^b4S z$J=y@vG9W(i;>0KJ2=F{FmgJ(SooQa#W>E}862MCke=sQ_;HQ}pXShZ8i!_jmSf>Z zITn7BW8num7JiOn;m0@@zG<-Vslvj~a4h@?$HGr=;`srNg`eNV^LfC+M|cY#JuQ4# zwD3{U!iPf(AHOVoWU?6h>9Wki2OA3?Wh{J1vGA>dg%2NiCBZthi(7a%w(!1b;hoaL zJCKF<84K?w7T!H9yfavM)?0X@TX=?Bcs^Tr-db?l;&UwvPg@Jm+IXI{@jPeadCJD~ zjE(0B8_!Q>;(5ASc(%s#WR2&!8qd#U;(4aV^E|ciG>zw38qbeo;(3n7^Axqv46T+c zo@Z#hK@&87f>Fx_AIzY0()Soo$K6iN&#DPUV0Ur+O3s&^)*AjaGYud5$^A=TQ&&5_vXocNe(?XM*BOmYYbTv3w%Z!66UJ_98=W|~ z+eyuRk2O+D2JUfE+qK8qQA=F*I!QY3wRW;MY9lpj`&0}D)1Y&w9h{*XwF@%$TI<b_!;{85r51r__-x{G4sr#)_I+5>ywVh6MJK$6r z9I!UCTf2*_wOz$v>+8hogZTP2m1jHL zJ*bCZJ5)JjZJ{M`&WXc^obr5fPJ|t{w$gbL4(my<9kLEP6eXB`>5`s?a=F}Q)#Q56St09E7w#_pv!zCfSy0*O#BP=Fsa0Jq%}I%a{-r<_)(h3 zPld~y91<9JOiv|%v&Zzr1Sodg+ST4DfHB9dt##t~ack#7PDOuej8(O5;sS4qi1HA6 z!s_SiB<9R3~M)?a6f5n zq!S%aIu!sX^+*6bIB9L{Z0DA?Xvwi~7kv95+L_X;Xwm%3bw|WyTHER}Ph{%B0m%EK z-i-iy{HS+IfNeiIsl9Sm3p-^EujAASRk~8u7^od=RyRy4F`WR7UX;eMQbZCZa?W>NP%5HX}eOu<+PqODbVw@-mg&2IpKE3+RNU`6c~EO+FK{ioY4op z6sULBI!H^_pSAYXiBD&(5%ztNEl(VdmN&(FNY${5bT_FQwhhLf)1$c!&N?Ujezr#2 zi`)jYezp$KiAO(M1MP{qQ2M;yf348;yxx1Pu;9Gz2rK-4-a62p#|jY_be{Dv>VkEs zU9ui-Ua*eUiEbCIV|3!;Me9VJXn)B%Nhi);vQE~CHd#&uWMo;#X-T8Y)^YYZPgg8P z=@r-whwzOvzgY1FoR_UZTC+;F^=qA2nQa}Z6P{PBqwGD)WeiQhGHzj@diL=K-Lr>b z!xd|+J>y}>e^r-q7^Yvfj?j|VSGB>1VfZiB30m^-7pFYEuUSWFN!B&pF^8eebtlQu z>w1P9hUzzT&mIQ2;UsajT8G=)LDy|Y!Gmb{JPcGj`X18lNP;A*9=Rm=Y_*QEcOqTt z8G$EIbHfSh#Ms65Np1(e}0^LAcF2*15zvKVpfMPr-d@ z?E#^Gm-fslvB^#AaGh_*P3u=WQR0@9#B$4O*c-<-emIXMcE8|gT=`47aW|pFZN0DE zgvqz9gYBl=q{h{|hMLc=LFid)1&F*+uo~P;x#9|u^-8(gYrYAc?&xm43CHeeGj2k_ zU46N76PDc7JJU^gch?%D3+R8(I#?&p-LnqSiMscl5-Ins(e_5MZB6f>ZRTGcjk5iw z8#NCqJ+OASmog7#KG4%}9z1!VYn}&@zv}5R503w;$7CJ^|K^lu^>4a`^Ps>(>p*)K z(S^NH;Vsr1_YRuh$MH`;ccrRhwC2HGRMl3r``y}4CwBa9?V}SOkDMf;gRl@MEL5l-VqYv?qh45z1T$P@x(gOZfGJI3Z~q-jO+O! z(?#Id?&p`U3XvtMd202JPxX$M2xp(_T{00upXr@75%xZ_8ahwK=S~uMu6Nc%aDQPP zYacAG{8SOF{GXz^9S7iIm{bSgEZF!$&*Lm8_);InvtaZ~eSpsb`BL|07PNS!ha?Mj zzj9J5^;*xSESUS+`jx#8=$^~?rW)4kR~^Fs!Xw_vkrhk8>jGEx{*?vMZ>$5H^{q8f z-?KK{D<~?!JxfLGGw-YU93z|sRsPT?g)B(;Lr+ky>`iUV+_8?M%@cxkn|DCLKlNqH z4*2>{y=&}%D}U-DcR>BWbYphFhQFND+}`SWyaPtP)zfJQTz;#2V+S;P=cJbMPVeeF z;LAIwJTZS;``U+#?n;dZtwvyc?xVF6E{>~evd`8h(EgL&r=P&?PkN6!0NJ0ktp_0Nvp&rpfD@nfUU2{#f3bdJ zFYN#v`;w!U)JQl^#s`uPim6(up-YYc4!8)%$@~D+$}L9QXW9WWyTLd#J8>NCodY0y zZUu+g2f#0na9j`^fTTRaabi9IZh6Hp`>1gl^Cx2&m8UsIZOU{#YR4fduNZGP>p1x2 z6Ek!I@(Hs}ly((!bYh#USfCS4+{99yxaQ_mKwp!Xr6s?a#5{Yu=sAXAO`vuyf>$On z46>kxufCW)o?Jl8)%g|{5Hoe6h`X4r6DjUalByoUF$Bk9yN8&f)v9|sNp^aQX<8EK zB^>ux8PM5FIPPjQV4at6T*zm@pI*Xo+noX7-okOumjRoc6Cb^W?<`*x>qxxNMR?NCKh(G=|*AEqmDZ2aw(hkU@0Z{I_Ar;eR{so zV<$tRgfI8U9Kq$yOB&VkhSybUx!Wx~1uKdO$IbpJcvwVqu+K%#eC8--9(CMN_75j? z*|(s3QQ^2Tx&=u^h2w_$7W`IJIBrpIL0~bb#MEMV z&o$5!E>8$_+_2q(BE_|Fw_sp#;kYln1!={FL-JoOezJ#{)7_=@a98Xk^!Ge;y{A2J-N#S@#aSXgm=~%T9h%}#@Me!6w&x$dX! zN`qT|qPcwzak0-$d2$))1t7MXs0kinb#R@s!-B6%i!f)^qwc6W!V{wEin7Xp$g#oR zg&nu0T--EI)ba9C#f=WHlQSjLAiRw3g)~@R#;L8MjBq@uNrTd5MW}Ao;IeuE(_nX5 zC$)EFomv&g8%$F9y#qSU(TuL;+zvF%83x? zlD_z3Nl(kc`ZA)X$MCoby6Moiygs0$0hD)Y=-u*8rPr*Wr+FGotKcL#UqLt?Af!R5 zicW1CT2Vym{y1LIsUFWtBEs3ckqyzjAi3;HL5!0`KGGVpq;Dg)RsckgyX?m z8uX~i)tm;pdUdCnGOD_8Jey2|L)D!MaH*m9q|4x6LtAheM%ECHM?mzX z+~_+JyQ$x(JjubhBc;@6>|e;r!$#)yMLzzLcn7#im!&d>i0heKW zfVTNEybcgG>_-avch`{k->%amu9fHmWUuA{gw+&|8=nWTwWdD(Jb+I%_37sU^r)qe z;SbtbO>^)XLpdkXm|h>Y756hlLxS{ zww`+r;7)DbkD2hPw&-ZDCley-2*+csOxRvW4@4&XRmVxKO|U*`X2QB)J$*9aO|Wih zCbX%mXG|s}*L6~RQrD@pCiO&D`y9`tZmoR|`|;E{8lDCa-7h5P0Fw!i>p5j?Twm{9 znGj!J&(%z@*4NF=gsKhn-jxaF22N^O4Mb<>nq9A8%}4P?6`WF*da4vY9kS4KgM(8!UU>rx|s(OTZsUO*%jjDR7ttU zP7NB}SYJzI!q1JJ+Fh!NQ}>T+qNh_PTy&OHZ0aZa#t$Do%GTMG{)p|3(} zIhj$fnN!V+o9Tl{CcJ7U9REvXLe~)CcxsjjhePyi%Y+Keh2uF_CM;?0RNB+#`tXto zZA10k&4jd2r*^o7Ipv8Ba~i)xVNT=V*+L%!GNDfkrwNwY!fEP#YT-2I;Vqr|cvVZ` z_=6)8Ubb{9Agq->BxS;!R!#+6Yo(8NnNYU1(?pAFtxs#2aIm$LZF$@1>yk`}Y@?59 znXs~rlLarF)f%;Rs%LgveZIj_ZtGN9@peu#!)WJZ=wauCsl7h7WWs>O4!qJzQT5E`^Tax_g(x z;&9Qxeh69$m%{alVJY}_(xwPlbmOdiYYIR-`uL5_F2x zJH#c}8>#ocOW+lyccM!$DoP*oFTv#~-Qky@W*2SFC7A1+xZ6e76Az!e=t&n35nXj@ z@sQqCpXB4AP&d67#>0$mdXI_+n{%RWcWpsDEbXrM&vD|9-@o=SQ$@!JRSe> zH-0??CnAMEEUDkw6C!#=lyV&S;^9*d-DmO8x~HDY@vx+)9)Wmx-c!%McnIy~)Ud=} zPPISlrF%0T+VmEVhokXupttU`c<}C{ckX!T-$x9x&kDA<0eV3g!_lQdJ^2l}qi4k< z_`Q!lUOa;Oef30m1POihS@03ua8CI5(_``&n)lP~cnr(>iFP&AgdMx zWN(T>*}*tG?W`D;2$eOoQq5+N4BFdI#$$n#uv!7Z5`~66~U#P zYDyztH~;GP4obi$jsf_(8S|tb-p(x!LIvYOO}H{pR0f}Y(#zS{o8%-nAD!fAc0jp3 zJ?j0Z6IYS@TzkkKDC#*E*_#~dOhHtnKg6u>R_H&Oij$|E8}u6_>NsaAM!t7XgJI?n z%ye>)@NjP7d-BP<4Yvo0AZPr7y!67M%wSQ=xu|~Rx7V?us{h-;qOfzX^d*13>FCeL z6FwmrHpF%-1~Ff*l`iQ#eHN0(-)Z#tV>O61cf;qj$vyMJ*B85a7IxOWPHur~n&pEx z5%{0+>+{|6gE`N2-~Y6ECwUEygBe3aO=tVRBR|5iaAJsPw% zHXz&7-LK?-CgVQxXRL+(j64Z=#-8lkEg!@b>|P|mxhFzU#~9Pz-e<=59Wbfp;|ba$ zE5YfnM3{YgG4V%_NTUQgL{iDgyLvTt+zYX^8hJ`ii-dBqq7+2N_QDSWP44CWAC(01 zqZ}CJq*ANQb#F)OxRkNvWm&tceRzES?B!?gFqVdq`( z@E$Z`NbIN)u>)(396fl*h;feYp*0Q0J#^G`zSSa6O;uDniR0kuaM94-Y9?pMjkBd; z@6XQfde`@J&ai?UJS(Dar<$O3AnaA|YS1b0dI86j;!^68_vdc7Vu%LLg=Z3Oi%y|D zSW&h5H2P1jo+vS@z}H`kCiY3ig*6}t(yhbsTNwDi%)RJ7`R#iQ3lEWFX+68W%M$|N z%HBQ!`oRmUbVaG*JsCEP5cMHuPoDz+6%Qtd)Yow&Zc)OiZ*q})>U0dasSvimPw;=N zT}bjm5H?buRJgVZ=V;N)S>2PoXO~0Y(W0%r z^H_Zo`O`j4ag1glM2+j~2R_iZkhYrj-lK|f7`}|wRx|z?op6nw=zFWI4%muG)q&)g zYwQ9ePIR-I!6boPba%t$IMLf~HRDWj+C8!dR*%D5JD(oW)tvL3CuiO)NEss{1Dp!K zgYLb?+Cz@I#~#L{5|hiX@%9k-jTIg3wJ`E0?_aMos+QM(xATDXbgVXWzcY(h_c(v(b8THlc%IH7)Fm5mF(s0BgGF-5a-xa;F&Im9FmQNkTG6g|1haV zuF2J)_yp0cq%xdwqrVVuM`vXozXXVFKFA+JPd_THN1xS>poZ}bGA4*t_Q}Ke135Sc zpo6o@T_3Jw4XKhGJj8KAV5O$y09~ypoSY!4!jg%ilzj|U{pc8Nq?NFjU@RifXk{Mx zL>ga8fOVpt_KbFr-*gG6JxPSy`-yQi@}!;zizbOS_VzIb@~s|?zSZ{j&3rJl0>s4) z%L}1Zh8A;-Jgb_?1N$a~OcovO7l4eP1tFdg>!iA5j@mG_YW)0A(!n* z@OrXn;B3^qdWb`z;S{|Ouy!Q5b^icsr-=6UF=c!J9lecE^zT;t(sXk2R(-LK`XU<& zPSqDsOs}L|jGs%;^EPAq2EfDkXh|vF3 z5{MGR0-@7IS$iAF-`#kO-tJC2PC9wJt2SOG@no1kT{N`MaVBHQ6}~(AuB#bT18UzI zSwoLLt5hII`3+F&ThYWm_ZaUc*ZDK(IZema_Z<`Q)3SpIM&>7%wI-{e=C{-z@6E zYqKb3?`syW*^j~p2jR#}Q3oRG#TEFEJ%5l}fBQqqp3%SLDfr*^_9ln_R5(6Ev~w== zI4uD{?9C!?eXX?8O&h-zi zC72GTS)#RlBpENn)dfad$G{j~*_c!#Nh=PF8!&m6Xkou0V-kdG4~%2i?EPr0xvn!T zpbVbZUDXZQr&*$keFm_g2rf`CJaJuu8pk3KHD+v)nvQF%Un%bau4 z^mF3W zv=qYV1&wFx(>#+~v?$^V#3Q!X$N2tR#Ob(9!ckvs$CWXQPol)Ai0dX)HPvwOguR+M zRLwMKJV#$PF!`1=zQ=FZbB2V{P_E5{GL9l?)rH|gt1NQPP@(R+$crRi2EWe{;r8jn zq&}_4cv2Yp%@bAl8}hn~S^O`q)i6rp5)EbIE8Mc1Nb5K7E@jtT(b_(2Oy1E#jup6& zLz&nJX8zKyGJU1Ji2dNgT3czQ$2#acPlTCO$1+aCwI9Yz{0KE?o?!GxZzFP6AA+$l z6oUl!PNN4;7%`;vsPSW`EMJBq?Xy0t!LSC(NOoEOvVdLI$;i9t(Vin^hjS%m*KP9` z^hM7Rv+K4Jv#<0Nbmh*Gva7U`ZlG5oTQo;HH>ZNRBz-f@Sz7K}^afLTtt9;& zmnG)p{XAbw*Owvjw+M2?>^!M5ABI?qC}uY}3CuZ(o3IuWcI(*#Z3KG0DTc1o8cy-I`RLH&o__R#b zv6Q6W^>>yYvFIwcko5i(XX*Q?I&U^fr(-(DJbqTKN={|#_uymf9C5!@I`bu{ouIA9 z=fF9MM=%l-cI){8b^ZkypnF)Rc5|jjKg$}lP}{tR$<{&=gfSkprm`K;xBj)kyA8ZJ1glrl4j#ob&ixTY?br^NqzA`H%Gc; zL4LEN#rl#lN6c4@Dl=b(OvWq794TLgD5<&%!RwP8DPM9ZDPLLOC5MyrqV5kfuk+%o zik!@RQK2%ciweBR$dU4ufs(2#1H4kmk@5*$N!1A*PxU#{N4jEOM`pM*#dCL#m`~j* zvpRMEN6IH+CAFW3k1Q5ttEyF9da+mehHiBJOmL4IJNm29agH^J#sP3yB1*d?LfIu^ zsMqp@{JC%)zVSDWN-`{4BFYs>K{l*`@js%UmxxL(o8i?GF#zA>+&NJ+^QQAJDsDsl zdCL=eL)21ylyD|d1iA=#mngzbLMfy{hoxc+!edLtHyAZsCgx(4u}mal6t!F|#OUsF z(HWQT*GdviOmuR_f{(+PB+(J!@g&h3qhiUTKSmRh#UPAivgnIZJrG}Ev=+orjPkA! zF&GV5!SK=wVPLA^N`@;}iXoW#qEa!dSmoR*(G*`7kZ-l9=1nJktoDv-4?cKahyJxo zgvl2b#;q0+7@b-zT47{bBRXN!V~uEy(V8__)Go-o7OU9>L)MCc7@b>-Ht&M+>sT{x z9ky;4WKgsjyw-~*-gFUxwf(DVYYk)Cd6j@gmqkH%`J1OZoV+6P!l*l*9(k4ofeDv^9Lq}6JBR7e! zF_+wgUArAxZRRpotLTr-VlaM>ujdaU*0fhyS&6J{i_o-13}!nZD)Vd@9bC1n^G79!`J}X*mB9;A$GqmIP?L3)`6h8+Ku<6Tl~3jK^qBx)_ep zt8_6?71g1p3)J40T^z>j7F`q?6YK)!vV}{-=UywO4=vPN^5s*T$i>#y9CtR zj}s>W7VQ^Plw?jF7o0d)W3>aK3reOPz$tYXZXFQ8-gJeFBd|vGYmH^)zAX&j9u)bZ z$wA?RO5q1Z3yc;Y6rmVpAH?neXn068EI^CxFz5D#`Jqf}>7RU9G{C71aP1Iw5&{UBRGiwh8`6YFuHY=Wi5}fZ0|9al|9a~q~oFws=PkV zDm_o&pa2{{fd>4S8DL@zW*s{CWvU`U_MN(*rO-sSgo}p1G@a~kD zhS9j6#5jx|{Ujz~6n$Du!APp8>lrZvQ`gRjnHcprE0$pN=&V?P(YSNMjM1OxIN#Sl zi#V5UaO-Cg;!XDoSn+2y7|}Qwr6BEsXbLmVivp;$;5^RgZSeWL_zt647sM=#@?FHC znG0<$ie@IdoxlRzVZlWahTqG%bWyZ3Srznw(wDHqtT5-2n2u4NEVRZ7i?i_9vmRb# zi9V+FO0yJ1Toy?PA6^zaFiOl8+c9c-MeM@p`4y3l(b}tGH%1Y^u*!#D#7<0Yy~a`Z z>*5DYeY`F$cJl!TsAJkOX}p#9R8phX+_n z60H0cTag4|zhQkz@Y`=o-pANHYEv) zKIT&PJr?UQ)%A(!>bi(39SP=V_-FUVKk*@|&&@LK{Eivynu+k`iRjKLBlw~VG`m{{ zU*`K1cko4U^(mTi6Q({By-YV%gJwd)M-c=W&+x?b>a}Qzop}>tpJO-NgwM~#YK&IB zKtpaqlb2!xgx(bS;QmXI2MJ8;FZTb$o_!){%HvKh>bq2 zs?DHA&vmokszSN4vH`CB6-7-%(5#%AZ^cCz$`jif%C4RrW;rSyvg4QKXw(j?qImxeTKzCb<$qf5UDr zmR~MGurAU>?;LvPDccm- zp$y2iI6o}9fd3l@t*cZBQhj6?&WRmx+)FM(&2VqI5F?v6+JI|-d>DT6!7_Ki!h%@C z4k+d;mtwTtmto^Vavr9BEX1<#!g4;QtcB&b_>Q9RU{%!RVi2averc9BX(2RZ6f*MhR^96X;b^uEyxElAKyt z3T=4;{(jh6Tz}&ymwHfr#wc2_GpaAVc9VgSou`V4YHSBtrDcB96QyNemn%@WjO>;F ziZU-`F)aLuySM+Ms`y>@axyQ-GBV8N0F){#yB468FgSKCu?^X|Y4Ge?y|4`jz}H{y zM$Mo6adsSl3FYJgi~`Ctyi;E8!Bk=exgVpp6*=|3BF?4*u%(jR?!k*}c%e>%ap3dW z$%NkdhmRXKVaPbD;!9@zudsOTg@EvYj^} zw07`fzJ}TWQ8nZS=;S8d;JfPb7`|pIw1&)ZIi4IKPh;XtfV_aw(wg!rMnh`JlNePF zls{thBv78kXm=1tQ)&e^wXP=*WAvpSr;gU=>Lxdk zqwuX(j~d`!kfCf_h&^fkiJTYC1b9JY6InC4u`GbSnE@Lc%E_qh*9do=3|QGneuGhw z#vCO!ma{Qcv|fl*3RIUS=i&E#B+HmfKgM9#s~o)9?;qk7G`l-gm6N8 z*#)C>?PWKNN_UX$FdEuH4!|!CobDh)3eYnw%3cJg6e0 zo;N-otLF`2gCu^)BV5*Y9Ym`f(x7Xkj8Q5B3ZlvY{16DKght6a;2kC1u&`oL*xEFh z5hY_Vx*x^0x9h^SZ|}mXf?c`V>0Q~*M=FZy<|vw%SA6kzs-4$Zq=9dD&i8G1hn*Fw zq7fBv9p*?`8sfU35lwqYZ>%=Fhcqxc*n?{**As^-4Hos}+TZq+V=*tZDvt%e-jKh;oCftaV zQ!t7g<=|2%7UodY@(c`q(yI_ zwCD}$ul_#tuwdMTf#?^7f7Vb%H79Y=YbN1gE)xn&mQz%&x_2;F-8)X^KcCFzznjec zG-?VS$1~y46i!7?C>=jnLJ&V*~z@qz-~ z$G?>c7(M%zHHVmSHe|vBGaloywKH%(;eJ|{A0Jg?fXnq{Kj<)%8`y8AoT$Y2JWz}Q z%p8nk%!ATomh`|P+RegU8egwDi^sI;cie9)zT+0V&E^(Qm@UVl%9Giw(r*qP@iO7$ z999XOi}O1ZR?X$HaG%E$YwSEO^X@#{Lo=acyc}ll=IUrg(dsZ`w(JVo^Y9X*sD%x! zYGKXg7B1|I1~p`v$R$jvAdFC*J9bl zoBq_mBTJn`-t!H(vKTL+LYBx7RG7X5=S4F7vjoq@m`X&r6pkgz8YcR)19LTlSBZEb zwiIeFl@S=tT#9?>Qn;`b&#X(qZy9#hQkcC=HpI7wA73Wxndom2%oh&tm*K%J8~QGn zolW%b2f`@Wy&Q)s8_Fl4EET>>lC4bi4tkXJg3C!bsOXNLjQx`e`;xH*sZa&*sFVu$ zz;ZA~rWJVjOodS^aELF#%@s1zo8DcI*@vsvO@OdfIJ}`FJC(=VN0J%O)?i;fTLUpE zcwUHEE%7VnBRhG*y5vqCSVqt)yfi@<{#7{nFF}LVxMN&`L#wgUOHg+WN9k*DUd2PP zwRrs$uWFl?m>(8y!mi)7PWoVn$3ym7%oz_+>#(?ZxV8>=n|O#_kGoAg+*DEb6ud%; zhhI`~CyIy24J~N_>L3S$1@fjvf>{VnlQ_Su$cX7xic}9;D-8(hpqz>mP7uiiZJPaIcPs z$6K&BA3>+BvYiS4E~5U!l@D7P=H7;fh(|DK8=l!7!95kV-;NhHk73PrS>HteGGT@z zVB3x-pvTa72j+VW>vzb>uIfJ~D7{nmG|@Kdoq}mQ<#>0Nu&;Y=_^?w>Qh>eOU%>QK zIl+T9*uVXcf2e7r6k&&UkB>BbCBWx8y1WOaN_473ul7Rxb~}Up*(t!s=p!L)CrWpv z;S_&4K=}A_sqETL0ctdYD|_%Lv~rg$>-vm(voW05h4Y=Z(cEkBW|!>h&Jy-%KLQcy zGTfH|d$Uu3<%CcZ+4~4e(XVzy;pYja$sup^(%I4s`vYV%;vYI{Ddj}G4#GdPR+t_ElI5gcaJE|UFZ*>aLlxC_2 z&}ZGP;N<8j_Wom+_4mQB>o68YGFal@)1-2<-#P`D+deL&;X62XJf5uCdiG)O*Faf9 zKI|$dd#_V~IU`iPepe-K^djWVyAQpa@ufjQ%?^i zWY=^GP}p8oba#j-uDXvM)Mqt^X8W-oa!^;8UDJ<;Dx1kQU14@gk3o-h>QvOuoBXk- zj~X;~OrM6&cx8K4E&HNVfYo+T)kaqCRYDcSj_CW^fY%-@h`i73&1S#zkhWAoiDj>+ zy2HIAvYM;<4;Z|U$_6Id#+{`YbUrHk`m%(5&ndu~dM&HH7FV?&!6|(EsBGxY3haJf z4g8PE{vHh2**pRL(T~Y+AU|^tenX|f9_C}=^)cB~70piN6#So}OT)c7F~8!t?WB~2v%p} zVSshnQ@pDI{eP65p~lWW1+X(%z&_%Gq2G@ z-x3h_6V8K=Kgs5<>;k?W!cNN(p6vHc0h$x>Uq!#<{{4&l-lx%EFK`NI=>M-)QHWXG zH$OVZvoiaJQ-I3h|D((<;toZ24yOPWqyDQ{9Lk)P6+GEboC4H{g|KM@0$}P{*}zr# zBf!D4vW1DZaf%EEmveHOFH6{4oC3@?U1baZ8E>)7JEAKT;y0`s>^V*Ws!Y`?kt#oX zj#Gfb@md%N(Nm&JxpNKdM1BVX&&y$M`>BV}ZG7E%+1#5FXw4Ya^>~%{-P#%u@&uoB z-#d*LszI~26oHs0vZOEPV$X64up<0u^Z!RzyPFr{H&PqyXifp*Rdk ze^L6IekMce{E`o1|GHcnhFp}vjL@8^kaAHDcD+Li%b>s|+0;baC^19lOLC$+OW67R z1YEu(XDGmK=hdK3maON>o)`usWyuEKw2gV=RU>;rY?iDH?n`BUxO+w7gTn~}OS-c@ zyP-dY(91H!bstq80JAU4P!nxq0gK_{W!c45`DsAKY&4j*QL-GOv*loSmaq?cEy&82 z13Ve9_c;cTbsf*&ud`)U_C3d4gT?H1egt-0kwZKfu)q0-T;O+A4pb$ub2$c(dIg_{ zl6SeUDw+Js8)1OGTMJxr55>REugSdLdhchakv35O7ul!)ZKJ81m*yu!I>WtgLrb`` z0y~@UfM>tRI9~?rW=;W?8>`C=Rod)q4si3D9HF$?rJMrP9;&q~lNWgz4}R;f!S3bH z;No>TTouBu}+;QyfB>%}_eyTk7Dn9@l ztg^oAIvTlbxNVhHO|*@TJ_epbhPktZ{mHLFZ-H094A_1A8SE0WwF2xoz6ibu*;WB| z8Q%+0QUVxWg5?B@4Q;pHDHUeoNN%rfoF+mf9zpLs-_xQjmQckGToAWO>)C)XK@Q z@0M)rP1~q?U#Ygysx@#1vmQH-kA=wFcnQpaUBxRv+HKiW0d^AKjeiWv?h3Fk_zj4= zBV!d{_iuN&bq5~=avALJ{UIHW-IY-={nN;z9;z~S_+AW0@8VQqMRxLD1A+HsAC;5+ zy8k!`WA4aKuyTedr1aRIyLa+^+)p_lJ948-;(gi2mjU~2Q-FQfL$xyIfeeBdd#s+S zWOm&iaSVd);r_Gmfpk}xUAO-^rz$KFHO5{cyKXN8?_Xsb*Wal>Z$RH)Wkb095TBKz zTg0z;E@aLw+d=U8SA5pGfD{Wsz2ETQLfhE!?hyBz?Cr}E_R^*RZLGQM&F*5$GAibS zzkid3Tz{pU*TLr@KFg+U%;^h}4`m0}>m;cUDGz0!H*KS&*fPFC=?Y=rjx7r>pW*}Z zQNQEgqcfI|E#bj$-Zt2IdmDuOj@Kky0()uy4(orHk*>=73f}%M>v_{Q7U{2wjDR*YO+@^jPA$+L&=(cnakl?6*w;n&0hz71L*nBJQlle%$xr(<3=h0ruQJ3C3eN zz;zC_W*THYmQ75wjaAoxf=}ddUzV`XHU(HkGZ+&$v8+1fq(70RT%S_jI&kF)-ony0 z=B)$ep2|M1%I6DaKE>-)+D1tOIQbNhaV%lCZ3?i|{;JfIv$o`e?2EX^ym~5exy@X> zJ78V*;idp}dy;N-kk9bq((X9s^;|adrfsYuRP|Z3(i;6jR)HBMC*tZ#)@9#r3b3HT zPAcTx?amtP*S!@&Uf|BafIYg?V9yIY4&rL|Tt*vs`2r^dZDV~Mq1H=TMoAh#mzOx< zSZf4WUdr}r+Z)77IgxW1(8vvZDot($t6s^*O1uLFMDksP~|V#(sd=}7y)sA$#EvyM%9_{>@OL`DdX!7ZV)?pXGIwHR(4S6ez+Un z&Q0+L+gmw9<#&OYcXGSht_D7T%ehK*a91}7YjmRyWdAKAO*g2jt;5~m;^?W>AnG4k z-J1~Bn52wrO~zG%UH{-Yg_VEnVXytuKeDqcqkRzduiT`>wZ3wL8LPhO22t;2ZzWEF z^!IXs>n5rS|2_F2`?=FL*6{<@0Z|^dVzA_cbcgdF@NS0HeBu2EIZ$oign=LBShbBK z{84UE+Y?~kC%Ig07l(46Ws*r!6(yFqfxk<3OK|xjYq%4_nvPISao$){kc+JloC>kk zbYtz}-$7!2TQHpaBKxcSL*}|cdY2mwlZMy~MFz}sgE8H1w15&Wwq6P?h~?h>#o4g zJhr|{;o?#^h>4mT08R4R+9~v6Iriy*xqh%EukCAveoS(M&Rgd;hu-;Y9Ta+&>;}z_ z%q;^y=d<;8<;uE4Rae_$wS60oyV{nk?M2Yj&6eoKI`1~XD>qxJ={8yS>Da+b9!#xx>hN#|^6G!Ty@^K^B9{o;FW+ z;%Js>ISy%NL0bhV;Dw{f+A|NU(H!Gt>!R{+IpGFz<{Ne4i%7VMbwF6Qw!@G7H-}sDl2w4ZcOt7z_2*bm&vW*2qNL*h8VPx`=I} z=@*hbeuam!BTFM;cu`wrZ$hZh8oLk=;9*d(n5`US6t$IC%7^dS_i@i+ww4P0{lI>N znOw{^#f^)s_8Y{$lYO8|aa%{FbnZ7dm|TBZ4ai31%1Za3TnSr$l|ej#^n$j+u(E`$ zj*^DKl@hi{m3bsuxcgdi320H$7No=iCYQ7gbX`mhxB~Y|;@(HwX!#HbEoE!VDWmKk zc5C+{Qp)p^{cP)%wAbHm;Ii*V5BTJVbApTdIiCr>?8if(r8L&W=mcbx#)07N29Upu zt&>vq$ZJwYO)6t+u22umeXWWx0gxQe}q2?|bvI*?k{R*4as zI|poKZJpd$VTT)p2G|0ik3a6YOj?*s5OL~84g6vnww4jTl%*W*Er+PYO|ZF~t%8ZR zv8ZK`UC!1uj!Uf=+MN_6D!YwuMT(2R2l;opWRH$LbJQ#dc5$?m*3|wqt60D!i&{ z+po$94l+T|g!R$jULD7W^X)_Q{O*k)m|xu%rgE%-E7j4OpQw3vA+CmPtckXS}^3wG#rNN^@J3E9Yqi-!``$QQP=$Td3`-Qq3D{g66)P+d_1ht-TVPAuY_d z+Ksb)jDg4&wk=BcJJd~V_Cs9=ZfR?*&_FaLu%@**ENp2DSJ`*M-Ilf__p@Z_>QUJE zhEQ()mb!3q`VaZwP%B%Ii9~2|EqL9^HdrYR8H$SdMw!!FD#7g5Hp7jxcOMR69c}fX zdK=vLnJgP+f|z3kBur1C**6KGBj}Q&5p>UzCZL$ZWt0S?3 z7VRKt>K1%>+76G-jB8_g1;5#X3;WyK+AFjGk!{WvKbX@VuMJL8Gcp#KU`ooCdQhr^ ztqLPFzaw<$fQLp_h#mu1`q>)8;|_STU?L#2qs^?cpPptn`c+3;s6xjP?VfD)gRbG& zG|tg$4o?5KTWi71aGacseuL0XwrL)`9XSUZP%HwnxlD^&qck=D54xPJVcQd+{VuIKhYelbl_+73P{2Vb;SGdyEmgI_m zmC{Q$Ms%}9c+)l(XHku43jW<}e(-xYJn6C4n~hiwT~^oaZVOT9n=K}FS-q;eEzXU# z-tB~fJ!~74JYts#2E?S+f#*H&@{Q#Q`%MtKIJFrh^tAOf9ii%*Tr@%125AkTd@nqV z6GAK2LZ@DMEx-!-52?X_)C*5ROlm>x-nKC+doX6_8Jpy5^M=(u@$&Vr-ZnoaJbKCm z{g0n71NHmhj>>skz`{PZ2}<1KoC#izx=8Y&966fd^rDKU=ITE1ZJtezti^`P>aWx5Qkk0(1N0nVZF1F+W@AIsj)cqhl~& zfNhZyueoUg^LN(9P%GNjPKi@sTC{Dd62HLQ85b@GL9G~DVRIs`e=#T+)?hAvpp8;&caK@g7IYY}E2#`923R z&UiC8pn>pZa7cqZehiLiKp(ckI*t*b#Y+Y)EJl#w09u(d-McqLwsS(_B0Pc3D4K6-s zVA8<*C4&MQ>{Gx)19-(6UK%|Amw}H4BR@0nHEZJgg-Kxzyzx^XXh=~F*10e!uEBd; zDTW#)HSlz0;HN=56N54u82K6aJAm0(Qh-T$2Qe;rFsMjiFZI~6!VIc70C!k5N6KhX zki`KS-~ux;D^PRZSR`ag8)^Wg6An$^qE$Hk3mD7ko5O%q5o@;lSa}A+azG^p zUu&?WGJ{bXw5-Blj0QheXE1)D*)r@hG%zn$Bter-wOM7c2Dl22@+{S$NF4@A8sKU;(paIvaAoRh0<;{C zU-*C;>l}c`B?VJvC0|mPOW5d;8z&X`L4!XO*hT=TNc<=rRl3swxX3g|%9zuT#pxP! zXvAQT2Ac?&@pIam{H9b6Xb_HHr^7l9X+WQ=LvTa``a&IoV;X=0Cp7q?z)212HRCKl zGB8t97Ax|TR=KRe84VhQaGrA-)M~@vyas_VI|@9};G5p8@l1oI0~ox};9N9=R~p=mAz(J%XwqO1tNf`!^&t%2Y7jS+ z!QUEO{EET98tfj%;DZMAkvnYtCj#53_4MKr1i2P5aGd{gt0c;cjAnUW4Qk@I)iHys z2Ggc6Flms9-&{wH0tDt#9RbrBcsc-gus5Y><)U%G!eUfdv{Iy3QI4HJEUN!D0I$ ze5j5zn>1T>W@Y8}=?;Q>3TZ0Jh5y+yp(o3%B{QIkeaAO}jQpUC7 zoZ*oML4FLLXfU%PgJ&A#sl?!g2Ky9vr9qd*K)gYicgTFPP z?+>EJzZ#UrZwey#pus!^K50N-9Yl>U1a|O_fp6(TklT!lBbjjP^Ey(-`Cyj2YOt;m z1Cs`W8#5@NLGLCEJT%zSl!2E9ejyBeG-%)4%*0odr(p~VYjC#(gQ6PDZ^fXv2L14} zgxHjl8qjwN5%>{!LXD+Yk|8MT0NmDcoZ{=>rT8U7lvi-bjme!DRMOzR0#!8F(U~=> zY0y4`K@AO_D^OE|9+9jOs6nnSx%vLHwk89+vP!T9g}O1Qr@@Kt3>s)aUp7SB8)-l* zrx7&KKq%0Rz!mC_d;M4=lz^EC_eTp#9w2!Yd}kY$(Aoi5+}4pY-VI=Jdkw5Z8FbX3 z_g4%$X;5Gog9r__DiF1p?mxNGVFs&o)hbC}Gw7~Cn-L6pYVc+xgWej@Dr_{ouLc_w z=&ynMc-Dy4!2F#ev6|5L60wj$1dda8;M!~gLmhy-W0)glWKCzWp~0uQ3`S^Rp2uL6 z20`%*;t-fs9a)Nu)hcEStBltmXg-698vL<y(SNp$_5R>w{f10 z8r)N0vj%&1vc?t-s;4s8ra__tJ2d!5fm8x!?hpEMBO0Q0#{GRHHXA22nS6vZoYa6m*N8>_NZ=L~c`J*- zX$RmU&pJ}Z2YfFh>i?`k%ozq3G!s6dG zXliBfSc75@7(CVB{zC@O3Gnjplh4%t_sT)IjyH~!G4%y!_)`P=>Lc3pR)e>%8T_rm zhJ1NQ<6jMiyE6Eo!F>fjG2rvxJU3SPqE+ZCkXVQdF7>t>T7W?w4d~;KsF6|Pfh4$0;uAx!LPmy3Tkkt5Q9P*%qYyDhz3zb85Gl? zXfXyQG@uVaVlAZzn0Xv(m1I&{tHhRKP*#J4(hSOJKrbi2LMmwRz8r%}8kj3EsGDi&K4;{d$x4s@i9Ps3R}SOfabBBX!uOM^8l7|hn7*(wHeHF&<7LHrWB{$oSyu4OV`t2AEEAVC9q zD+IQ5kp>kvF<3$%lN$T=4-A$$05>+tkuoy2vKSpI?fUPxsr_%ICiQl(%4!Y#Pcm4m zL77Yj>orJLV1oute`Jk~8f-YlV6z7FiV1AV76fKxdE6N$+q4RO*Ai8BXh1KUK#;1z z)1Mja(tzGIff~CtD0Gp*UJX`UVz6I>Wm#(fJE%#$%dB!(1NzJ*mU>i!3kn?9fZk1k z8W|eU7cLQGYC!L&KyXR}`miN})4c!j(Cxd)PqoIOfjal?L=8 z4b*s}f%%drlRq_yEy&=l233nO_*;XJ5)A&;pnoX_A2itQ$KaC&^~?OfuFg9!ilYDj zULIQLC4iKWgkC}k9aMNIQap|#f*`_iz!9r2%=OK4-gQL zW&uP*;F2pTq##&Ol*jsezdv(3!tegr`OIr(XJ%(-XLe_A-Yej54ZesIVDmzCL0tla zF35me2TY zoCNpQVA@0heKpuJNx=OCuQNqzpd-)z%h~^vNRk6|c*rT?gEaVLs(=SI*y<86RD)LY z1Ps^UwJZU4g00N7>5~FRT7Y?ajnVXe$#9CRqflclAY~e7`Q$^P2!51c2jf$19pEtw zNc_hwpE2rr37(?CEi6hx{HYqa7vujYAk#Ei@Uldip+Ow}A&nR_HFyIrEC6N^oM9U;3EWH*@53Y1vy4?l_~Hm0{|y1ASs-(dGTm#C$0G!c)Dlh=&G@#xKumAI!P~QbnE)aanQt)dA0N+?ZN^#lp8B}*c zuwMfTy8z^CKrt79pa#@%0SIg0rDzLCp(fO60VvjhIxPSt8c>%7piBemvH)DufRZc# z*EOIP3&3|8P>TiN2f6;_V5z_Ya#Kg4^a{Yw8c=fu;1>-jw*qim14^s_{H6gVRRI3b zfGR2ge_6n5P&)9lLAmd14^U-RMLR5C;(M7pdJc9RSl?w0#IE8 zYM=mkYidI26Oh^(Q1t|$t_GAl0f^CnIwt@P2oAHw@Cz3JjVvH7ritY&#> zl#(SN19cP%l>iLZfI=kzLo}d33BWK7s7(U!kOmYb0T`hHMM(fgYT%_B3CL(os73hbo zbb=Ku1wUZ|Fw+83idmM=pkxSw4Gky|0+6Z!ML_`OYCs_n{{JkUWH0l;hfo+L(*lx* z$MP9e`#|sl4JhUT@C3o9OaKZV1W#K)5_p!rAcOg>6a+tK0R$ue=Pj>66%T~Jr~y?x z02UFvz!VI81rlJ11tf!|md~JQ2ZCQEz^wrOh=fn504%qF#LuSh7=vHA=9TbO7LoAP zmd~Jm2X@cZfchN(Yc-%^2f!N|P_YAGg9a4r0NA7fMLGaB6Yv%i3$yXD7Lct%0HhS# zET2J54g|le0p&OVc4$By4uD-6P=W(sj|NoT0C-;ms%`*y_i94L4G^CORM`O7uK|@c z06rqXU8MTT48UOvNWqU-K7;Za2tK9(KphQ$Jc74b ztcLgs4nWWXQmin2A|Sz!f)ZBWH~35tKqaq5q=KqgK7%?K2(L=;GIywl4-Nvu3xGI+)l6Xm zzBdHW+yat7OUq|a*#g0>HK33MKwAwcWWoNgJqaESp=5!N6d_7S3rLckEuTRp3j`+- zTx0yM_%0DZcMC}Tp7ede;A|D##{v?3pXD+sw1A{A z*zy_Fqd@Qw4X8l@FiZn#PyjqcfF}`jbv*<)EZ~(SM_FE@S3e1VScBA_0>)`jtCxTY z8bFwWc}&va^}Yh8Xz=lU0$dt2xL?4GY|j5nxjL(SlNn_@3kt0YrV3G71*Dv*md}7v z1%uNxcx|wN3=P&lD8QpZp#lpvfNX`#|35{7=TcFvV5-krKr;OgeR#;nzuCr0lFwT} zf?u?J)T!X!i#32s1;NW2*hUI?RfBfk(L$DM0=WwAvx49oW(u(i0@DJLX^!PHAWy;I zwHkcj60lwaC{!@UCJi>I6yGB7Ze||w&q< z1CK|*hZ@|gve-{>g?U1@0>$zg2Q4C*9=3eOz0XSuM>T*>1&`yn29T*BIHdtZDhNK) z01_1hXEcC71;LjDm{Y;=L!W}=f<>eh7cHLwbqWSw)&SZR1bG@jnSvmw0dy${3N#p( zBcND=z#0Li0A5v$SKknFO-K1f73&58W(-8Bf~o#s0V(HA%V*5qED7Aw09qA{e_I16 zRS^8H0dy*)|M^Rkf)6E%4JrvLQ)pFip9&gWQ86kLyuxBZu7WYDT0n|b-SQdF?U&$M z8bF?c@#|W^E9w*=^(|s_J|a=>)d1=g+^2~Ke*^?H(;)t=fCLRjeNG*Rg*=( zNRnw9K+1wCWM}{(3j&V@hyRoq3pMCy8bIQLd2G-iEmpvr8jNZ#V2cJ>tpse-0D2cpW4i|LwebqsrO6-d1-z$0Fj2r> z4W8^QV4nt1z+kE$X#o8Tg2NiDRY!l6;5e%zG)iI|U%~O8MC#+D4zJc-!avnuZ4Uuo zXt1!ifO8t0=qunW4IqxeQe4!aX+Hs%HGn>bjQ@F>ygopp1T|QqK!FAy50n_i8mu2I zpi~1$W-#At8njjidqabJhf9nf2)t4swH5hEN1=WO68S}g2@3pAgG(bM#vd9qQ`!8j z0d+KxMiiF+t6FcMVpP=N(x@u({-X-XX`Yxxqh+6J7LfB&gT9X#3>^(7S=#~Q7TR?^e z&nV#aXtFL>qAb*af*Hu;DS|LF&4=0rz_S*RO#fr~3}|IA_<0SWltFNZNQR2Bm@(Ee z#TDMY66Ix!NRqEuJ_8yVOktS@P{;uAv^BCd`enPsS)~C~GPqNY2GGbLSW9q#*+Ls{Z11Mt<9M|BWU%)91AdbNppG80n)`Y5k z&gdvN%r7_jdwB5z^Pb7L^;QmEc+$5^Ie6PiA6{b8`Aj)@8%ZDD$>hWR7L>hpX1=*O(dOl%E1dj`i?4xe-VI>Z}H)5RnC{n z;d^pGzNm(?SUGq*NFU$)!QuNpINvIVZ&BdGYYZ=4zMX)>Hw17v9S?`|;cz%*4TlrY za5%vX=LO|(@)tf%^1{J;V>+C&gu@v>IGn|U!^t-|oRosYsU|p_LGr@o#1I_L_rT#C z4IECrz~K}N9L|%#;UoeaP94DE!#o^5w8PeEqDZ)GX$Nz?&)+z^%ZGKV7ILDThZ1Cn9H~L``cbI&u{U!k6s#~;!UXA ztyB8k!M25N5XjakhNLoudOXuRqHHn9(~8(JUe`(3h90wS zPCY7gv!?U5Bf-!oLbu&b!z%6@cT?waiM#bq+OlqvRlD!p#ZBjSe{?ivrz0gpZXKgH zX)lf@A$!URsV2;6|5N;gZ08Z78}6o4P72)jVW@8e!v{F z3!0LNCqI*-V50m^eC|_)KfV*koBem8at`0g+C_hOr#C*k+1W}w)kp87&9XO~k;6E4 z7mexV)Mw$){~w|+7fka1Q?h3G#MI}K)DevfcKhSab-PirPwr;t$S}Vj*&XqcYzIt< zzUJk8BwZa(7XGj6`*CX<^v z-0bCMIXC&-OyXuAH%Ga7kDG1WOu@!$tfP6AoB!ix6gLyNN#-VP-MPKMjmga^ZeHf*8*a99GaQ>` z)0S4AkvcOam0t$!=QH2)53|{F%<%jEj<#>injiR;ChyW%^V#38#G$92@`1mD=*TX` z*8(c|+g4G-#?tomH8yKU`|F~YzW#x~rR{=QXD{^OIB+a&YA!#$qA9*Dm1{n}*WXHn zAeYuN3pTE;j}C3!Ui^EKqlYfGJ-%Re$NnpJM41AZ2FOZXCM3spy^|{V_duHmkrJH}m5G3)`9(KlC?kz%lO`HRi$LmH&0L?qd+iA2*r;gG=Wml3p&TQTGLIAvhe$XaBH^$P zS9>Jw^S5sr*@Fj*Kn|6<5dU<YU9RpQ_8^EbB&$w5}p zg#G@O^&(kv%++Z3!Mv6X5a&UnJah&ac}js z!-`Y0@vID~RW)yO#dmzazw|-d5Oe$AXg)(s|KI*T)rX)u9d4WBux-%_bC*4;Lw_Mh zZH`|-JS@?}P+e2{Y+=Z)DeES5)|3?sfi-0{il?>rrM$%R(M-gC)zQ#q+JfZ`t4f-U zY>r7$Wok;i)`s_fY{Xg);WcILhT@vCs*km-pB}ZW-yp80LZ5+#n(^kM4=&{SKDdy7ycQCE zqA0&ztd#e-y%>tSHJusm8J_8Gr}ahNA?C+L`K=MNq$s}|oW{lZv2c19=eJYUx5ef- z%jygN8qGs{saT>ND$Z{PUw(1^zv0AQ&F8^9dNu#Pno=8mDmdP%fb3eB19nwuf$M09 zdGe}cbK`10>!fx`K5L~XZBBTzANPTE0*P3g5cA-|@q;m}=E)*cA1DeHGA ztto2=B-WJmIkeT3_1k{SDuI}qVoyLtO<6xfK20o-?^;Rz;|)=mp?~Ff>?(ED+1?+8 zug#BMIWuRu(o@|}IA_nDi^JfVA83D33TnhcQq6eFx8<+=_LMNrpt(njt%!$OyDV*fq67rOZGA_sa~lg)=5ocAu9S=%Q-2 zca&pr6bct_)*e=;xtvYY!9$G)Z7sm z0B7`$K#$&1V=L?%P`p|!UMFX2nrnuWRU4_!P4=Bu**iI%sqVS__}&on(2l^pO=a)* z?fVg-hT7XX%au7x#rScDR9~%~QkjW6rG_0l1MQIa0_AMn8R)=r?F{gGyp5Qu#_HJ| z4bZ5URv+P-=1xVn?s+QBq+NmdIOghzw>c6RrKS~ST3VWX7jTG~jz~yu`7SwA@9zq< zg73;MIg5Yo3h*-Ox?76z`0fBNj8)2aWOpF(0Y3Q}cF0#L^{l_3N~Nqh{VXd0#VEz1 z9G3OcXj;B@djhuxA;q{`a$xpbf#LA2ycHM=r~Fo66r4W41O~!+`WGqXx?cjk;Euql zA=Meeq2aiingdQ=;x%0J*FYki`+k)MH$(ZB{~EXt@XW6Pc25;edv?>gTeoTxdC|(0LGXQr3r1Z&Fr!s5B`nq^)-$)MRY%oxL4s z&2rsp8RRKUXcg?PI^JA+(IPXxOP$y#w32691zWY3!@B8cWR+;>e5AlR1!ENynv|6X zX(nTv?~7K!lu=b=hjI3&&2&#N&OFmQ$Paeo>huJ=BCEBYAWzyio**y8+nyk=&e-`u zHlbnjgY3%}%n$Z}vtxd+JDkG#!NhpZS{U!YfLz2H4`C*;JjUSv*zU<%VWv-S(#My) zAb5*yXYy*vYT4=_$EO77QEsIy-OyUP$~A8((GabV0R&0@`V7lU={b1KGo1bRS9 zedrAc0U0ZOqb~;6C1LmPDuo_^lUO;#<~OQxh~<8&a){T;#>ycMIj5ELedQ3Vq;{21 zV)s0z*~^cV#99ZX8)cP1;zn7ULJ`Yj#GI9y{jqmK7vF{|p^Loo=XVXU5At=DoB~}# zJZ)9Fg;=J(-9l{6^SVi4)^!VYS7Tgbo1+ODkD1gZA;$c%Tc}?9MJz|ZACZ$-uRyp) zSvgRw5zAxDE|J{#bZCbg(C?bp@uhSRZHhtq)rW^3R3~DfeIiaoe{kPSyt4|weInRQ1>9$IjATGd z70`7}sGeM5j?p$py6IgLYGfv_3Gpss!5Ws-e0z=5qJK@OTO4QCjG0YQPO)mYv8)ws zY55Y@hR(7azaI?oth72LDU3f9N>o>|$G&8d`NMs!6L=NxJQQlF+Sm&Fd7OuYXIj@Y zzdsbJ8^_r@qss$GQmknZPEl64KP_MU;ZQGLkQ1(l5>=H?vghKMx|;K@wvLg?PEU~Y}A#AMBsF``AUbwA->+Kf-=l!dFY(MFIE<0?f zdg(tCok))plE%yw%i3vJ);h>?sL;*O<1jw-JsA^DeL&UWDEpK}W}V3$y08ut9uBj| zp8Rl_&HoMMgdPsFgNPd&cEFi4Hhe#vcgBWC!1;A-cqp9ykA(ZddG?X;fCo4qYE*)r zh7#i#4IvF>#lB)$rO?t)tjluC8lFwd_s1jQF?EsD$mB53d|I;Py(>A)#(OzAJY1cL z8TMqHiCA;vn;m22a&XKFa}YCUNyH*P5-MIrNJJy$3bPZN2q&IX$HrmEMkvLJ8V4hm$1px*s^*@3ofCXVUJ4)J<@8ie zxG|hnIpG#?4&;QHm0vl(<%FA8;}og`n2!bN%36e#=*pUi73j)pkEQ3z+Kn~mVtI^<*cs() zKRwm=XNQ8JFQYII`U==A3||4qn2o*y-o2dl6|m?0+gHF|s?)v#-dW7rSHRIIcb~*O zzpsFI9ToN$aG-3nzo4VKM?Dwi_*U-fozq-d(`PxS&vH+n%_^L?zo7n@LKb{17M!b9 z<9}nNxw1B3iMg^GueGdcSW~XpYAhyK);k+5s~?t+8->10`wQl=&l~<@0SE3yKNhef zIsIb+`;3Y=3ns#G-Yj5S_1-Mto#Puf3)pdfakGFo7}stVG?^%M{ImTp)O<~z`8z+~ zF3s*9o1+rjWo2m>{A#M;Dv_~BnoByKQB$T{K^To5u`MzOJTas``#H}~1uflt<6^|T zgK~>C8>`iowFb-7mGxviKJ6``>k}<2s-tDOwbh`j#op-_u{=iOZ8*K=?sk{)q3q$q zV|*QcE-2=eTf0IbAL+v_`Da82Fcj#2%Yi!jH zTM;|@`L-hVQ)_KSoz$iIqWv%mQgwRToODl?+nF9IqW!3&4jV$Xe*zXp3Lj&03`dYu zTFUdtWCx2@3$F*2<;D9mWi7{hDrNP-1emh+;l5NXPi5m6_D1i!JnU%adm^eRu0Kka zGoXmq>EQuItmCo)MeWsX)NhVzEKg%|`E*BP8JO-LC^20F<%kx+H&!Zls?CvRm9HXR z1*-L@NAX%sS?6){uB`7cv8AkvnA1^K1j@K~Y9*EaIt|t(+wr zi&(42Hx_kKU0||31I24(?&&zHkrc1#rlNrjvo;lR3|_gZ zh_}B-l=JPTB6cw~-xMe5&7ywrrN1esE$7XmcIvk94V&XME26VGrf4+#si@6Gtha%i ziv~B7xnu_<9$|}eEW@RnMt7>IE z?5{x6m-ALp!&=R9D%$Sh5A%MQ2usOy{!@NlA!k1*Vn25M138A;dy5*5m)ad>e-sB> zHEphYR$5lql(~_P$^MuTBfsHU@hO?{u6Q}d^wgB;uB?># z?)aIm=~-zR@o6*Tvu3&D=eVY0w$&Z)PR~q9O`8km;%;WB=Hm^$S!t>64AamUX{$;{&3nTaTcMC2YxUAn|)&Pwy7 z&WNApMnI-}Zf44~RJYDzhI^(9%_@HW5T+fETZj0}Ij+=HE3Zh&??@fZFKvNjnU*ob zEytGBsj4KH9^cojaiZvBsV*OCZ%!1>@MEWoTFE4j-EQ|rPGJw++p9&pPhY3yd*gJ` zgDs@J+nd`TKm(|SHx*g#3@1vQ<;HQb$=I$JHCC5ksy!QVD$jAHr>EeBFv60q7u}1@ z9=cw{A!FwCqPR!Y)njwCuzHW!pO6=t$2~@sTb5Phf0ote56imsmt`%$+FaSgV@$!$ zXiOV_7}v;m^Lo+dc~zyk#&Pn}957&9Ok?p6w9i1vs!dN#Nq4IAC5?SbaU&F~Y)Ww_ zwc8>4C)h3F^0)>ZWqUh|d4u(sv$(CQgJ0D{W=(fyR>~aQPC3&(&Y4L}X@j$v1IrO- zvAS1tjIcQ}aDZm#ZR2Ict~j-rJ#FWylH?dTeWfB++8i6%(bST=HkQqqiH2&8`cV6m0ZOgI!Q*oq8yL0zp9N( z9*rOOQjCf;kshb|CPz8k46ko)jJjAqHbQ4bInqh1PS4D6&PQ8TcVEk0#T?&!u3~o9 z-?-$UZY!tpv|>Id^qN-8Cxa=|id(2#_0lNE|B#dnXkTNov|8WW39F=))db6!Fo37z?45bs8(6mGv2xJ}c`g);vc-vDjHz4`G$Fvb?`weX}z6VqLScvaq08 zSzWP`Sy@R~!mO;A?v_=#r)AB@YGoBVzqe&=#qwmuzQ?*`Wu3%=WM!?xN@Q4eH0`xm zgRI~sEIwA&lUQ}EtW{WTtgQF2%vf3Hu)bJX6R@yYERWIA_u2H~pE*>`Yp@%Ox&-@acO^f%(HIuL31_WAag(Olxpg2IV$GC+?$Anjm* za^5&lJPbRR9w_dlCLk}_gXVV!ikp~I`(3P7Lz<#JjLA*82if{qLo;CPd;;!C5umo8x8~y`pkCpWj))*^m+6>F8oorceVtKI&t$}64 zkv+6^8Y_tv8;2Fc%IcJ1S@~I(m4?N_2<02ID_ABh5k1C>iw+zt_8mBQHRM78bDNd) zk~9~Xvc0JyN zk}jjH&tg0Mo4ac!yS*<#*u+*~JV2QF~hp{$USuq$bU7pIlBfF6GT=N#jzUlj==M zIbI|-DdlN%H!0<5Ti&EJUiIo272ZhFZ)-RwCnMTNWrb+3pj}h~kJlTC+UMcTv zPb*(pp5zdnU&=eUHuQNr!4@p#!&{G_#2yz^B@0URY!8<9QWrqqC`THHoLKX@^Z3UD+Ez$*doWbW zN2|G^Qnu|4p;DgBQwshNDvh-5Dis`VTs|_&48wwLwX}Qe&zAKymS`(h-&QGNjmM(w zNIa~@7RzHy@TG-IC%=e1&bZ5XcK+us(mT*i)jX>u8d)OVB1 zc)rdhm+=gJ3r7v2A4fU9WaU(I&d6{ra865GsOPdSL^*CCNRIqOERN$nw%kEj9j>fB zSQf6V9IOXdR>dUCT8|arif!y+Sq7GTEB57smGFNRCWy<*_v);&+Zk&1b)Nm1MdpTv zMjX57-Fan^nW_)%B~m5xwiykj3%i{sb=Wdr4*4v1)b>hle zg9YNs8jh9WVtI^FMkU^v7L1p=*J3|uXDtwQ>jlWQ;Rn?nTTh<`_yH2qb{K-#Q zOYp}&WwpaU=akj_eard{E5Q{@z`xnV@)&J=M!5Wac8<;dEaxCI^3U?b1nDD}*bhic zGwkOPoqw0jG=7AM?iPOpnwQbk=liq#W()Ov5z7bjO#IoVGnQq`pK3D=_a&*Ev{sq1 zzN-n>I<;4wXRLiW+D%<^fah|IA}j2lf;2S?c3!L3BOOm3xbaT5<}ts}^O&Dtg|=GD zeNS1$@)(^8B$Ev z)?WWludz3CetNBC2dTtg9nGyA$5hA8c(BKOUj2yWF;>-JGG=^!R{W|Sp31(9pI%#l yrm@oTEskL2+;3ym6GU&DW4e`2omlL>hUt8Q#n;OEv~$Gr7%w+tiXP9jPX7A-(6+3op zt82y8-F0=Dwazq-Lq_^a=m(1E?c%jxn7myDwHl0SEf?0@?|SjTA0^c z?z?GEJ;4y0y!^P4mB$XQIAG5~`*2~a(p9RKspKqC8vU1+BI_A9Jid3oVQDEAASda&zhd!wKRsC_fChA1tiGWgKkT@E;2*ri-t zSY7UTj}VZtHBZXb>SYBBw~h(pB6^e(go6(|1;x2G39d!q4o=dEmdWW|fh%3iEU<9L zcIi2NLvjvsYBzQPyFIoDwF*dH8x0FB!T(V9Eft%a4!OgXbD#4}3S2j!f4elL3 zCM`wPYhZlb;DK>Hqk9b*Id}vXDQ-dWa$G5|Oke<$e-#z#7zz_#XXG+7g$m4RxY=M2g%`Dq30fzlxdWH&|z_d2c)Hx0K2y2l|cHI1g-^P zQQWm|7J&=62KMm?hy|*0J-h~i2Yi?o8^$g2dVy=(7=tjy0a}TBIk@OPHgLT0$Z%nb zm20)m%H{MZ0rGFy6o{zE9d?@qHf#WpJa)K@%P0{FGITC0sw)x<9oIcFBrPR)#K;jt zhV_dZI6Rst&D9F?aIq0CWY>lHrf{U69khBBURs-$qV@~kJ8lGuuMym;QdU7RAgEKS z80Rb=$z3a90r`8Q#ey`h^wkJqiW^M6HNp-O$H$4)s3!mI3H=6+;L1dn6F5QK%_>gr zaYwH}&n=ACF6v|esXOzqfW*?35#a<^D@VDx$B|~Pb=PLx*T@i1u)t>IoSmgyx$Yir zXdf#lj4Cb&10Vhx9fod*LIQcC_8f?M6zQ`gjVxYiK^kyw8)FovROB>MD=z9&hFjBJ zN288wg~H=w3EltOr650ey;Yb(y*{Lm-LGw6T8b}Tcn>1C`J#lolMsO&N=&HxZyUs; z_Q{7Y2+6){Sd^d!Ia?PY$^5~>)edvvQh2n&AAVeNDW}f^$jj;K^=4tpKcWRimaj!& zpAav(L2ASdH?rWd#v_YyPvVM^b{L$ZER3RrxS`ymNNf7GMHU>BDE|FEAq~L{G|M)b z(KSAB5J8(@D7f10ZfNNLAn16>leX~Vkq&_!e0Y5kqxm~9)LYi>cvp`u@qv#TcbPrk`cxDp<%$3E zpE)w8`Ng4lowWaQ!b!4T5^f>kdM3Ol+;zg`=zk~N0mAj2{s-Zf5YAKWKZh~O6T%H_ z!*e$YcXl4ny(Zkk44&JaL|AZ~XZH|p*h2w<$s}9@sgQ6-2v_2$oNx~bSIQYkxbuWN zcT-8Yy@b2)C(k`2T<;;li&aE@*k^4)F1ReEkG+*!hv|IBk&2v?z^i+p#OaP6LX2)9`LpCnX$Ep;)%E+t=j z#zYVR3;opxRZUW5e^W}JBH^@ zATDW+tl@9f$(N_dmp5lMCfs(yl|RyiaH|N{<1x=|CESU>o0IP#;cA|bBitpzxsLQC z+%m#BZuTbJQ^KA6i|5v1E=iW!DV}_}hJ0D|O9J866K-$MzJ$9$xKH5&3HN|-|FI1s z+#U0W+?_v$6K*r%I+PnpxT}Oq`d*)BXA(BE8_yjh+|?zcNzuoI z`=k1J!p$I@CvgJdP7<#2_lbmiNx0u!lL$ATaE--Dgj+zk!8dsBIpLg1?|Jq#VGsN{ zixizkxZd6r!d)cXqAT+Vw~cUbzAhl#Ji>Xcsf61>ICo+i;dT)&P`a3KhX|Lro98kJ zH}ygi&;CN#2fNZq(JaE%XuO1Q*@WA7lIMOVT=z#jca3mo?<^%HUlH!myyb*TBizaF zJa?CH6YH%Y->oKGqgE?;?Kcs2LUGR#+-f7Zgge`q=MECCahujRlJJ)+3H#uA=uOP+B%EQ> z1j6kn+~@i3Tll+F!Y!?Kf^cUD$F<|R4TKvSWV($@<`b@h_!{Ak60Y%>5qbE#IfPp} z;nm&v%7{%N?AQ&6Mci@19UKyJA9KGFPI0Nn3(UPBTvX7cm+@SFVq-xbw`Pk0SUL%n zT#KP974E$kq!mwzj*3G615GDkBp15L6PVf`_vHASHXzP6rx~|=r-Ew$Oq_0$hYMY= z=8|S>IqB@?T;<{QxY^rHT=5Ylxa462xMM?CqMLEYk8h60H^*}UqpX~Mlbd_BVj&kk zs+2G#f@?L>2zul+)o{;twB#IFD(>eIL5kG=c#J?datr5m=FV}wxcezxNOiH}#2~4W zO38`0*5y`>>L*I=zl58(%fQ9X)Nl{R=s5k@^4x+krMNoj5uA8JB-d_{hKn612U$H; z0qCasf}32%*b0K(}q-jX6y__n! zq708g)DR%%{2Y_-9`1E=S&my=4vQh1Ral5vD`4uXe_P8tsV*v58(R!{1rJu(D_Gbl zpM2eU|6U#@P|!_^07PP<-1LMC=(aTGTF2s}3A6{M_zOWYI+O6Rtcb7?Cp zaj)i-qhHtNG>b~3saGhH9S?(8_DV!{=RB_h+4d(adwp)wyimdaw;Bipjh+Og0&jpZ zVKVN={MB68q&h_Jck5%3_;^gk;-e50rgZVu5X3!5RTA%k9{0jsT+2*57nYiU-5^-Y zbz5WLa%ygh`dsPZa<0;1tzR}i z=5vVMxy9oJxBeBl2rB~Vq^)czbdIDMGl1h+B^MK@|Y@1I6XN!zIptO`7A zV_O#IdMvR4b+NL6+#=9hfyZxrxf|Fuba4}I*>WA%ZAp}16{%^+5~Z$t_kM%>jp*Jz zDse2T0uSj#t=SgRxYILCsP$LG7Lnlr9)I_JX=%YfI*@nEni5zJ#No~YIgQlxa;YB0 z{UxsJDg&3XM+Zu$j0)h4D=KlRd!o558#Lr1O7dg@s9HQf_-D1RR%CKpHq;eyi*T#u0ozUx699lE%l+qEi!tGuZ=*I>6Af61NA zP;xVds!>>~Kw{(OA=scdkU<-AeKMkP2Zk#Xru4_L(Umi11pnjCAcXjUAV#f;7A!)M zQA#kITeF}scXLg;49_mGNIkYkknlLO!p&XVZbr2lNhHnWMyx9-IL576S4I%c#ci^Y z`caSU<*<1}*Lz5@8KmoLxgneg!)sleL*a{J9M3LL6)9!8m<=c?Ss94$P~cexzFMAK zJ+d)~>#?yM5_LXR{wIReV`F)OzW}+s4C>O=z><5%$d%qAMwf8~t+;)g+n~Ny&E;;z zwtG&RZ_~}1;D5))X##-n(T&yMvg*|Sc!q*Sh~$TwGV+8l5|Mj1xBUm=MHI3gGSWyg z%aX1b4*_ARVgInP68B1|_HEp^Jx>29gj|f&$Fmz;OBi=7%M4mX3`khvnAMvMVBw=o+~J)%R3%c9HfbCHyO3ZFIon+RTV8-e$PWpE4AMZN zb}NBt^sqo&_7~2uyS)O>iEyRioMX2YKOn&aQC%*3cY7pzHoCP2H*!xi1)d(^V$s~f zJznm}MwQ?i(rcvP)xX;VzO~HSstP=v!Nn(Yt@aND@B2>EBdzhQ249>`E;{z#HKU7o za)U3<^j(yLsvl;DqAm_kbkH|k&cP92_2#<@t}`6Xo!&o=Yp{PJ7js}DckbtjT-Afg zT+5%waS(l8gA)bixnl>$a)%Enko2is%%O=~jl%)l%ba*F^N?j-!@~jvp1|M=XP^pu zgPr#_nnBY8cNIb+7P;U?_Z~&}4ot7RC4}pKGKqV5JehlRG?{yNA{q3UwMD_bJUWJZ zgugfz!1c@do$H3a$k>i##9wqjE$3bwAI)_`cXd03{vE^8%;EZ<9tDQ%yesEo&%WTU zoEghyos)AfPru~yPmc*K*S&O9;^02WFUPrq=cWjLsJzP>~6{Q4#OuQQ&>nT`6b1G91`uUr=zHFAe8b zUs7;ES8akNT+Y=pXpVvZ?k0aT@n0DoanR$%I$YIjdMQpJ`k&$2U#ls|+q3xEaKZon zC==AK7oy+O^2Q(mf;fD0o{Rwk&GQUs{uj7s<%5L+a6EBTBW~2Ay$nED7Ov$DB~UNU z3k4kyHi`q^DmM=S0|uezg6_xh43J2+ZhQ1keux?G1qUYy9o&f*8Ep4==N`S&an5i0 zJ@#K8N#1}Dje^}pHOym^U>NT?(Az4AD=OS9o1itd=xe*+FDmHo zZo!VCA}4qShj>9@xnhD%zDkM|~GXd?$(OODpTZIuKIsl?5z30T_% zM6iRYq(^EBXuE*s+Jdco7{Hqi1V_buFm7lnxW!iqQ(6k{@~s<=ZZCL73k>Wm*utz} zZd#rJWDF8W!Png#wD4w}poN&I3i`zhw4gvKFvIu+L7J4+g17>RDyU8ce>+^Dr)20j zY**Y_!7)<=x2QVZX9_w8vDOy5P~d_C(gY_hyb>dK`ji-&CAh_GB?9|7TdE&d>aOzayYa!^- z%B_J(GlWl7JUM)^aKC^jYXG5;7KmLcTuZNtmJ9!+R|8l13)nM+kBafPsm==1DcHVS zLWPXKdgX!eG)36>NO+NwQy&XeBEG=dXTn(wZUz6+EQQT9Ez$=J(gXFy8YcMkS79bE z5y*HeoX(DChsWOuvsfm|NTU`Y)gY3CSHlKr!TXk713-;Gg=*kD(me<~dZrA7h;3p9 zV3kJ)S7=1bcz=L~p`v6)fpL8**j6Vx%#s~oi6KJxiTd)hSu~%~mk}`EF51N?LrnoI?&GgUO3ig16H|LWkmqN}uQ z>;lm;MmLfGc7Ovfh26l?X;N*ql;zBOc5oB#3lceZD9lO|aWarN$rA$Ftq?J`_Cz>k zrRXhfGszjEK5Vg)2xqMk^%jBr%}AQ>>qV)oFwq-D+o?2fH?vFg`xcRocO0;67Xemj z+UyYRqA%ql)~6^Cc?ijhz3y^#$6Vr zvD#th6;Tkg9lBiek7cr(qUEeI)V(Fz%q&C79norPhwAr5t5{_i|3Gw{*%uEViAGWx zdOuN3s)TZ3-Z2U}p>AEL2#GTj5SzKgUVV~)@azuUwIX-9qDC1xDNNCk3u z$SvMN`@>OQ@kvTH4Hu(l8ze*6R9vi~GnaGG;&ZgXx-#NzbOzDAlDMOiFMF<@__3TP z4>tG72xqnupP^T~cM_MSU~A*V*C^QZUg9RSw)}W;DN5S=icv;PWO&n0JdWi#28w|Q zn3E`;LuX5!M~bi0DP65;;#8_Y{%rAnT43vZ@pLL*OuG1kl&`+dO26LL)#7lfOPft% z8x?i(7V#TOPRbNJDYfOE8cia zT$M`p;gncG$-whs1-&iolK3jsLUvtjqF2k@67Qy9pYp^v=+!&-#b2ll&mM|vpjAnn z0G53z{(~Y^c_;P_jlaJakEXXx{3u=@K+Ap?Kjsnkc_n{QtSF&mCoTF;A~{a49+OED zskn85BpzB|RItRCV#a7BH)+{$tz1ZbTM(t9nrQ`t1BMB5yEy1I=gM&e|s-YGvaFp*4Kem$y#C#h)-&R7~XvI#F(~O#s z3UqK`H;FGgWIZLmhWEIaWFj@zkiHTrb={0Xk{D)nS`L+{fVylaGgfB+yfa)PrRr=M z=2OQtM)HzniGz}jhO3`W(=_c3K zmv*8qRW_Acn43c4B~bwQvs~hG&^%Vkn8mgP1SPXV;y`evmGl^|{)X04Q2?8vBS2|a z!{)GMSE-QEfCQlp{N78d5DFGTd4hCW0Q#JlD4odI2@=He;BA?P$Q6%xai?GEpG_DyPf_k}r4D!Ws^lZ<5p9CG+{Bqeu3qfmbZ9nk1H#3*|Zk^vNdA;Wq-7i-JoTkb?}#6*U4YDSr>mNc|w#^)W*}v!d%O08Mx5Ladf7u4<{<80ZzwEB1vfUJSM25d?xwZbX_t*K$ zuG%2Wp=F0;`pZV`@Rz;4(_eP!F4+S*%FWy_lNG5ALDYuY6}i!bf!x7~QlLFYL-Ey% z2E7De%UPKf6ilz61xali$UuQqULNF}lHK5=Z^LQXG8%oc7iBI=PPrUsaR8XL)`RmnV+` zEjr2_AYY=0gp+H^PYVRsVWSwiQ;a_Q)st7jpX(aQ^YG_{=JMezE3Lk2Se_Z8duxH< zO>#Z|Tzg6<`LY0HH(R`%@R2S)$&nA0Rj`(%7fsh40#(Y-q$tq&se-q8|2#BKyoEr?AtyfgQBR}zG`VK`1gEv7ToME@Z ziv_EGfLB0#h*#j3BZ@HWh@caSJnZM^rxaf>pMPHQGxq1w%Zgy^ur0S0!||u>v7$3F zG93F-af@Xy1+s4gP&!s2hsbB+gMA8ilLb^}iGClP3R+YFC$PYeGyyemVA>1;#8c0W z0mM^hECEE(w~hd!=xKMrVO(xn@c=Or1J14#Fc%v@S2bWL_V~W zit7S~;IPq{M(E(d?E&2sMaP^C1EykADGvt-ROmDKLO?Uz7`ogGxPW7!_*33A-<}2B z#HP6ZOTZEQx#(p;B#x!SZvqCfJbEC}o4hKo9Eeo}qK&Lcy|wVxr+_iOr~#*b572^~ zNQD`uiUUirWQG1JAgbaDjvuEo@EP{I#2o0vEj!#9NaE#(JMc6^&H;zk33?%f4~hkD z#3q>*5%>X{a8%{M3OMRA8wQf7tK1~;HI4#rn?Mp}f3*!Hro7TVkeG6Q2mZ5pr@+eC z6*IaAnix})Xn>+6AbqLa3AWD+l!MH#fm&E^K;RhEU4zL@j5=VM92mlz_50+&FqU4F znAKMeMAevBcK-TNVCl5L1l%}5dLS8XhAat8#=TL&n!u~rtjE^{24H7h+7jr*W_-6R z@Bu?OP-i{e&pT_*!N7Rztb%ia$Fb4(T;ZKn>ssJ69QP;h1UAB-%Ey5laGdXX9=IES zCcNUESnUn(M9sUv`uP5zJ_a6RZwK&p6xca4PzsU5+L?SEr(PG-k=aAZ6f+1aEJ0oH z_>~YI)CQ|`pj6O1mH`Jv`>6B-L9=0A*`RFfnFZy89$=3Qsu6UZ(IfM)O@A~9A`Rz5 zyC4&8IDzp&kyy}*1A~YUl71_>QzvZ0pWE;C5h_?^_3T}m|L1D@q8KT zS}RFhck8GmaV_qqBz+6)sU&fo(pyR5x@Uqi9G9OxKxt=*U({e5LdS6BAyhd(*DM&T z3}DI9FcLsWayV{+vOLyh=M*KGf{mW0BvY`CGnHftmNZvMhSU!8mE<{F8BVzvN8y>p z%00NR7{5yC#yYK9r(D9K6B;-8$9!<_Hs$be!2$f(u@OkTrrgOe8A6X8&G@*7K(J+{ zSp`xny4!<0*Oe^U{?JCM1|YI~hfsL;hEmQHjg3^@!M=LMyMf$1rHw%wBti_xy^$vY zgC8p0cx!toTzW^jON6Y{^nr4FQ6M3LEX6Vy{Y$7IXnUp{#W2+Z{{^G_MVYBYYLN`; z)<@+$mEZvEEmUPn(5FVOLNkd2@K=SZUI6-x3RV4zd81yHEJL45ZK^aOzV1}DQlQV| z2-WZSzERPt&iM0MdDUPoo3Y*smMj(|Gy*x@ileRjoyJN)E(p_uYmHSbF@?g@4q`Uu z1%e7`Lx+Rp&?t1y2&a+5u%@aRELOaFM^y(TwNp7@jpnK=EbY&S!1DYX-P?nY$|LPn zDI%bb8=(Q6JE>S6t|F|ya875{Q}+kJ)VULa34-K^>*<;kNvRL5DCrT!%-%RUAK(1TwAsdiko zgjWqbJFS|_X7avJepdB}u{HFC$>&wwsN3IPRIx0?Abt8m!(|oIJ6h!CQ@N^MRE8?o zRV?om5SX4fR7aWZaNw2-?ZhNaQg?^N7ZAx%jb(B{WZ!UKg?6Ho>OGHCi&#UUMZU_z zEJMIkRScD(^K;c~Rv9M#qH5351GM^6)rW5vNpDnt@U0Zg_{bCw2x|z;{)Bq8|6L1+ zZvKVZq0twXPynR*;a^p6S;7(Doc&#e-e1Szuy|@P%aSCK;GiJ5EQ0}f@#l$y7gH;s zHz!%fC?Z2YdGH)&8MwgUzEp-FRWQqXD3PH`aPVbTPryx@;2l(kgwSA?#eE{fdR_1h zW*Lme;4M^!Yv$mU|9edHE)BK@qc=}UClloePGp6t=?u=LFb;1pOFuy@(kLwWK67N8 zEFRpJS|p+by9}*M25)6~Zh;hN1+J6}mV&?P1V_Q$WrCM8I=2->FsoRW8;}f5K}JGu zApBG(_!?vN6rp+j;2kW}VIsq&t0;l|Yn8q{%x)f>!7K=dfe%^+e`k64O9UzSs0sph zZ@3vw>=OJwke}C1?ie)G9DHHA)NbHBg^W5kr7q+N!mn^cC+USHYP_Ld*hcgZlO>s>S)pV2}s$h%D>MRYl7E4ppWA??xeKC%;y2<@JEI-mCW)L3$n#AV69A>~JXnpVXxDQNz8zsnOvnq=jXF z_P4vKU({iIv)Z>`1L^mZrJ92*j|gz9LP|+M%R{#%;9T(t6Dagm50yqpeYIJwp`FTl zjphhzNcn4mFSVL@Dtb4Q#@D5kuxJeQY8$5py+}oLx4AXhlzisVRHpq%sp6UuEa}It z+L~CfTNBk4ooYBw3}N~qXK`wFtq{&9W^CEOthvHAE)G7(xL8**8Ikz z`@iax!J1_?GpJXc;5K}k_1zs8p;YtYMSMEQ2rH6<9-gs94;0)AxdURQI7&f`ip z)UZqk5!e8Lq?W>(jWp;DVj|hQCVqK;ZswOaCRUTjIMZqhI(E|p!HjmAG%+uE<4&41 z*0BO2uw&GSC3x-xeA%|PAa;4;$zc&|91)RUmkR*AHymkT()Id$FcCdd)&qT?39U z(Xc!KM9*uz=r>)=aOF}BKH>&J!9y!FHzb0aVBuQL6NWJZLxKgH^NcWmoklGNS*gP` zP_S8(Amqt0TQz$Fc(TSmjljZ_Eps(qT435Wjf;}mH#BW1g87c-qLMHB=P#P+BA%T0 zO7oExSomJ^S-@Xi_CZsUBHaF{K_^%f8HPwgHqhI`6d~y4P;%7}7}8Ke3#daLS_H58 zZQ+YchU746&*k*i!<PiV|PRXSCA){ykDHrm) zfG-fVIHWi&P#^fqu3H*1OUf6ho)NOiz>}X~2$}*A+~T2c7$wUd z4VkXw%bvX$@|9k_aXADXMMDrS=7t=kDXj%xAg??TbPhYY3&<%QZ?0X%|5 zsZF3)7pb)#HNF}G&p5R{+?j6eAJlyFi)qo@%B14B2(3?EPYEqLHj-R@T~ga#!IP~k zY6nr=+$!28f&A4H^|d}rzGG-1CNBLFrj?A7>by}%KCk&DA8?M%N3+Bn}9e%;bWNE+98m8{i?(vn~r`=8M z7;wOEv1{tk`|bHRg2z^Co;^ru0;=^3Hkh{ z_Btic0Py}hYq23Iu;W;jGDJzY-lu%*lC?YwN#1C-9v9u>&+h&8bbwpG%D19j&sCuET0p) zmr8zVUg#%U;2H?cqpBUu2#u>D$oxMoKBhhlWm$ZDJi_P%QTy{`u-l{1ehNV*Jo_?q zt5Au5`iAz8#anP!yIJ6}*P+E(reYrpLQ4q*M}X_M(5DQ80}`+p$U1;5FukHX4!qhE zHEF%>bXx}Q`av?896OoSPIXqR%4wJ;XH>_e1J>)Xo94gB? zg^p#R&M(WA09_k~fCUJk4LWU3=i--X?x}U(MZ9%hh3clVIf(#9K(k)=h0#0|;h0gE zNbOU{qMKGEX@*;Mzp_e$&hpcthxH_Om$`H-kH>v>j)1vt-Cb(pgW*NQ`cO=lQxvZU z!k8%CR}shz>ZpUUWpxv%k`K!3SaL_7l7Rrh%E7xzIw^crK{tri?l>@cEQqiiMT5Cg zS%(s>&bo5oP8HqTBE(W4@Im1@yDkBqucnJDnime#*4bH--$H|D<>sov`vj!j*7~|1 zMbgd(C4tQw>X?qmM`E=H(VcV(*uSN&pO6o)m#zHaHL@*hc=51c+)p|coZ3#;hcP6m zbO`2emZy0>{j?CpldC8)XmLbJAPS>Pj1klxw2adQ!*acJR>lZw4~E>yH9;Ia%&K4n z9DWjjVkQBW>Zhy7^0);VwmbZosI!Vm%z&-KbXt)6BNQD*J+?*&Y&}xfg7#3mMze-c zckoLk6g@}B=zd~Uw>#W8PKS;<#p3}Co}^1)H2h$&t%@!R)S04t_rEt-h-_7jZ5%YDQ|92(u^rH|(%m+`&R2|bfa|o*q z{0MYoWqj})SVe<}OZ}#SJ67xJ(%2EM)v-JZ!}#EWLa)kRr|ZfXIt0Lxy+K!+p}E7j ztva-{M#9dsQ+G$elgeE>bW|?6D&M0+c^@Hf?A4*8t_e9aTeq5$m44Qtry=C3;(#ub zlBW;)%Z@$lFB@@Ghmu}W_O~3}F%M6ke5OO^>XEBUf6=XE>OQyX+QNgs>S|M6l<#yd z0}okCqL;HgQug_VF->WcuG9yCZ;SObS8)XDW9S?$QKjeD0^1L2hr5FHt0`WbR?o5( z3@hjp(hk>z>Kib&eI5m^$+v{3E&3KLt7F92laAk3!VO+M(=Hr80%%b`xG8K|On*kf zW@L1HRJ>jSf@(zEPSf#~KKmThE6*iPx0dL=|bew#4}2mnBl9SfK2 z)Zbwlt0rGY;r(^LKfF8UknlEi3<1UydX`5@1hK?P{R9@J@XY|-tOB)8>selTKmh*? zZ@B8LekhG9=LM$7Mu=14po>hA4bjc$G+YwY3$C&RH6YbLxTYV%64~hHc+m1L`bjAi z-sPb+Prs7UEAbG)++*oLkqn(c^r_n_a5qz58Ge1PU&SZ`h3P*^-x5xKsh`6l4H{v{ z(t`tT`KV77gU}IijllOhQRTtD&w9qi8?-iZHZK^Atk#sgIi>-LnT82Fgny; zW9R}yzUtAES8`ZS4XpG{kJh3Ic|>4vu}rTqBp4_+F!ZT_+}oj(JOUn480LwHAfS`d z!1C%0!CI1r&M;c6GHhVTG_f>&fUTE-=0ksn8b(r)rWg$@!_ZNfL2|xBSA`W152ilg@vdVrr+-& znxdQ0n(0pl4RAIx)CKwH)n(zJk_NO?O9Je1w4u0!C(RWMp9DPVsATxA;K``k1`8!S zHSv=(+89o!2og^JLIt65JMT32Os~X zb?h+1J{qX{k%o;$l8cye*eCAR)qP#yEZ?!l=!L-6DR} z&~NjN8tzQPX4*U7+i5_1@JQFOVVA!b8Mwz#fn{olMC}Wjow*$Z8~kiwdS9#%;phQF zAj^A22w@PYnrl$Jx;rec`LM>A2)=DFIpDZ4#(6@pZ3WtEY8-Dw?<^B? z;Y4GylqcQOaML4KSIjWhrsTU>I0(trohim;MUnv|EjJDW<5P_+51fc5_H-jn;aV;< zqCN3gF7Q0f$g=MZ140CNpQR0)=DS?pfYK*_eh5eN4JTKBQJ98NvY*Q2!_5vcO`%sC8%)jUZ5!RDhV<(9aQ|(SOZacQ9PPg? zuDprqXNr*thJw-;^U#T%_0UUVP2V&}$97gXO_m7G^Jg&)tYdn?=xQDqB48s`!`s;O zUBDZnTvJmS>b{XJOp|E=SsN4j`BP%4QteIEB|JHZXq#$cdH#cB=WzkTmGW=H z&06U9;jYDgB}N0&L>aG-WVPuhmSGRY9~p5j2=?+X7O6Lx)-!Yoc<(q2+H6W;NK&|6 zlPp||Re|t*rm2$v+>`Y(a`#K<;piPE^akD2GtoBCG9ao1*tXA<$tYU7%B%!Am-8g> zShfkB)%*;OJ7B6KM4yKbnIc)b^HzDLZlM1OlM0l+X41gLM@{Py9H@HS#4uq17!4w{ z1!5%9mouh5ShSw!P3f5b>#~VyB>$I)EDzogKr){*PrhzK=V(3ylWv>V{_ie;2uQ`U z*8|`w^&5fg}KX7`?K_Jm!rcX_$ ztIR!-P~c^Vd3RAE?XY{OndKy;LdhVK>NW#(+Q(983pe)-^aa|oGUkPh-2`!k5;&halrX=%*)2zMifWkmD9|TtV7@0n zpIjre0o4V!wK0!F!41PZo8RK=pT)ea7}P-@@064KVM9PZA4e@$avq z(@d*?BP-0TD}S6i$%aof-N(>!TrbU&K+X-N6ihhYNDeKl%}m>i{tW{Tt}(Op=m=#8 z-=kMuXLgD~Y;sEt7_iCwj7_m@SaFNFJxd>l1X%(mD!dk$xXWBl30{wAp#yggo6(WR zbuDK2{D}FUkeBZ2F*8e!LMnK`g`w>?C(PSfBFc{dYW!u^fSd;wHOOt$GYWc6o3}9Q zj77qLQ-QOZg(b5lE==Uyq0pUcmPmLbRldp8iz2LS_~@2d$GcoIT%vPk6kI+k1Z@?DaNvz;loygBQ+w-Aa|K#1YB6%Uqg0He+`pkEVUSFfT#w* zcRX-u3k!NLf|zA+tOe~tAY{eX{yGG0{a4SmvoQU-F;Qs8mv9Z-)Wgz+WdI}y$q5#e zm*81;WpDT_IKH3dftU>caL`~&0dwy|V96XiW`yM@YL?BTE%o`12!0=LNoL6mh|GiM zT0+yWd9`rJ6w6o)*O# zL3?%xx$>UHLknDeVnL@)kgKg;ShiC#_>INRPrYEx50*S?fMUN}S~161tjH<_IpaNR z;j6C}6^#hRcYm|J`ok~Y5`lFyb3LfLlfYoPHIr6xF~B;D8Ekc{t8&mXAux?~9MkGheY?z2bb!4BVd^@ z>st}XkU2CUI>LIFK@);?__^5*e~GkyWN9A+p+_UD9A=cYdX(VhCx;H^)v}7HU~lSJ zSu!LatO~}}vohuSJ_H9yx@}d1qst5t;A#VFE~}N0jz#fSBuK9AI0k~BgbxR~r=2~( z6}=supV-ujw)+qd-fdxJnaLD-a9FIB>73I-1Z^AZULh|{UOVdnR!fn18uF9%Jj<|C zD2=|8^%|AtuP#=W=WvBs>D{bM`AZ?f<~ZvmD$R`ER+e0{5X+rlEyvQUA%q2B$Ve+a zk)+8$>(64|UD~0n!9xHeARK1>%;>HK5Q(IuQ9N&q^$=U!P(jL$v;JTe1ltB3t}@Yj zmU`-A60UvMJN&@CdkjmbDdQ_q+fE-$gH^q6}pXFAbcs z$cmB^-0Q&RY1S~7RTG2sa1bp32)YtLkm|a$sQjn`Ld;C=f?(<*0o^Ack@+^zgKB)WE zP`KfkHJesE@T3*JB~EIqdD>rv^sMzRLxYB>3Y|1PAB~vRZdf}pP9)Zn)4Ji{+ty#C zykzkYty37pq4s`)oElT$u)xdDtm{Q&KnLfaTD2fH-)e??Us`+cZ5@Wau`*>AyjyWK zv0of2D0*kTNUfV+U`06wv2M<9RtrmxLBM0eh3K6G;)`oHwLRyVBl&cU@VYLlpY3!(m8GM>D+GAVKlBW0& zRA@2ChTi!h;`FIvL&*st@6@)T@Q7;=xP6+uX!Pbz)ro`LxbLV2I7vEle5e z7q9VfTPkxssJoK@l$^|l#m3n@w4TlrY)p%KL~^^vx&V5n`oVshZd=3{^dy~d!0q#F zXn){kKE3%m-^QHYlzx_H;g8zu>avyrsd@GQn3ZZ9#xf+j3hZe5yVTYMEX_l%s(IAb z4QyR$(}JBxZ450C`0(gkmQB-a@6ayMCms!Gvcz_eVfujqArdg2#rWjrm^C(ZG@&Wa ztAnMs+EDUC#HqdA#*+LH{Se|HkS}*gA>3i>%xv~TnEWi;H(oCIZm$iUj*3Nuzwfv8 zXL|mEed-4X2wa05%d#V&(4BbY=>M1}#T>Uar8Zr0%EmIo^i?tyRy<>4%99Ea^3K`N ze1Ld(^+g*?)>epB`Lc~EPbx&n&$Zp4(ww?(JH{CPxP4BAy>Hr>@}xp(M(5eCP-%X; zXJg6Q3bB5_Z)3`n2tv$9+f4qQJo{7IHa^$}=WF^zS^#^zvE88t zYVzK8nAKfGnhyoGPpmxyLNE-$cJKyJfgt)WzAKgyCIVJzrW+ZVEIJ@pBa0CrxpsllX*u1VQ8`wZr> z61h47B;I<6)~Oo1O#j&Oa-+C?mXHivpkFb&7Q}3|nc=Du_Gp$|q)=*7RZfo*L2y%) z9c3kCq*+zLK8|JXRS28^-lj~iZvXfXXCAVBFi|8G>DSAS zQW2zH2+U8gqhE(0nrP}X~*v;;)zY!)pq=rGbaDau%o1ekfk=;QBp$4?U{Cz zln`>jE;~v}2)QiVj*=2WPCa06!W^*3;eFtO9D5qG^$@}U(9+}{1lymrM>4~Zw*UQL z#BjLxiamz4Dw8N0raTvK&O=BU*@*_X5WZ@ zhGjrg4Y>BZ{U+P+MgU8|q(ALf7{g%#DA=e`lD%y}9Au3E&YKz)?DWIF1)G~}d^AcN zXhICah5rDh+%uRapVwbLO_M~MV00!M+W17FafH&IbP6ck@sSc z76cOwl5GMxT-Dq0joCJZFiCwJC#k#I_IK=IZCr(buLn3j{9lkOXRre$*(9iE4*kC& zmwmW{HAk5Mhyx&Sc zc=^?irtIMD9Cn;LSpZr&Itsm;{WUb+ih5h#K=w=rdQMDi^~-jDy}Ne$ua4d2n8dPt zL^?5K!C-)9fp-4+bf-fO^n99BHui|WhT1s}G*cy4<;NYJ*?X9?j-wPk|Gc9fD-OsC zwyEHwTnGA9Dk9X{>kcb(fTrGdnDLIf0N@l2Qv>HEYk7G6uA`I$nAqID}muG2YDvPj5Ole0N*9=%N(>YZM7QZy<;H<^YA81t%i?d{jlVRZo zo&M@P#c1IaQ0b&o16J>I8Nty{lCE&<3TFe}I52m$^B!70MS{UY>z(MwZV5SUtMfEk zb;VaZXFAb|_JmaJz>!PHn>(E!d41rW-Og-^kOBR-jo$CSE%KoMwhxD#@9AwHjyh+v zym*T2K=ffrvPgK~{3<&mtc4K1I^$gFbIN%q!w)?I5+k7(olN-^xp~87=L#xA>#NQk ztZ{njnv*HDA~N*8={!JXh|Y8FWtAc8j+1GDhsdz|z7w6whhqzjdE{hC6$s4dd?!m% z2hq)D+Fe+GVQHUyC@g&8JV9aNUpu$5TJruI=UED~ufVyD6{gg0PNuh-c8OifLCh$x z31P8AD~rK1g;>*qTwjZ15ZEEul|`j7g|JJL{}8<`x=!mlP&8>O>RmgiG`|~N zEWuxBn=xir8J2MuAR(JDzG))b)y&Jo2z;j6~3i!wYf(Zh?aTw2B!K@d%Fb6Zys zoi&{5=(<4X2WvXJ&=1LysX~{oF1)P~&n2R|yU=lEg#6IMwT%xJxV@JP9sNhHKJ7;l zLSW7S*A`lK+#o+fvmt(j;Guqm3&UN_s0_u&x(2c2X~f7`LRSbV7}q@zygg7(oxZC{ zD5!c=rUuEi zWmY0~uFIci!u|7H$He>;bipDQTGb@@rgRrmib;$_@s;oeaN*6B*s&*pj~;U|9goV_<9`oKan3c1WkK^_F!VjJ4tHHBF(uO7dFaAhEwP|YU%2pA zOH9^%@4{OxF{%9E@=fn={N}=2E%8&OiTia@2*O~(eWNL>>A>(!5%_0JZSB9Z$y81$mIUOEKQG_{0m+KV6M~cW*I|} zI|f3O+C~cmXZh7eX$dz&<_E|tVe0RBUSPRrH-U*Iifdu}lI~(+!C5$|w0o0SaD~T5 z`TQyd>l6H#A9-$we*W0X(wj|g>z)Ft@Af#rpswz2plUsIX3@j0ZkG0opq8eOcSgb| zRo%BmpnGst4LD!Z{hUEB370TRc%HDI$KvJ#=- zl}7Gi60o^gRUN3*1ZiB*$gLp1c{R0#8~u7a5q)SYCYPg%H^C3B-Q5{xWDwmPBPP|u zYaQIXS(0o7@iX=%%a%)YFZN&r{INQ$r4UBOxerrgeD39DdASJ#@_t+$?`F!h3lW<3 zbswVA7zenIFh&(bQT39+HK0(C#3AmxRFKZY+$R|Y;msl&;buy_3#IXncHgAZ1dMZ^ zD3Ub$#=BWk@PF7Qev*3?l_qqu`{yD_vv-R7DeXo!&v3K6cUWkpCbQfxDOTMSH_P7K zLablrxtVfvf}sBHbVKwU3q83by-b%S>PD;45o>$Bh$?(=>EX6&`Mfc zV$(+|esk;KWzEqMxiO6c;Obx9A~6~JA$;qu#vCLBo9t%2Rp4GjN9|d^yHUnW)amr6 zpDg*88zs-=>iaKllspr1+c!7bC`8Cqq31oze3v*fA1x3Rp4akH;qf_A8RYRrN}kfw zlf{v(%6R61{FRnae&Mj4$Pc9G2#0Ysj+=DVPLhg+83}u+` zK~%*!4a0bY?pw~U1g@;>K?xTT!rsV(5-vif#(Ge~MaWqlJSgEJWa~~IlyDK!)Ww4m zE&a&tXNtT-U+y;BZS9mOpG9k($E1}*ZScjO3cOqypu zGi*lFN5LRt9(w=x^)gSUh;PrCt330md7G~FFg+(B-39?qe&7v)<=1=AgAyXHW|Id! zC?VvB&7LKU{q7Wqk}b4b_AsCKt={9wUFI?>il2;fyv>hyB>7X zJT^4^{h{ZufG1Dn`^kk*JlpBjmd`x1C47NjfAtrDul?loxBjwq-=jW>FPrhnb5F#R zDW5&HSRQI2p=Xm694=9K14FO{^l-n$i&oP~jGVK3S)QpN*afhR)60}#qnlHx<+_D? z_fTcsCB5j!Y=}MIm-6GH?rHNyZ;{^8)gw8d>oM+Z%Xg zuvr7|GHSg)8+lo_^di*Na7+^~Q!-9&4r=brpfVh8>1A0*BQP~ud6|~I$<4Rhc+nA_ z`Ntzez^3+ImLqNnOvw&jrtF*CT&A;kKefZxt}HS@1k;D5^Cs0BdwQqP>bLdwZe{4` z2uxUl7yU*QX^-Ffc{5pI#t!gaq%iG=cv-f;5^1g{dYMvd)XpY@oT*+n|7vH)QQlo* zK0K`BnL^YD7zsB|@QPWSRERJu$$Nr&s>>8F%L@S*3nKNHp70h5^79PuUMk4M+024q zJ4eF6xn8Di(}mKko##apOcHtVsZ5bqi1l`%w<6;pP2wi#9}CYdmU_o9_Vts&>aJ)# z6zz>31`F1D`?6$QM5)q0c|$-_Mb|{Qbcc5&D-6up@BKr@&pa+1^EPG=?|GS~?|yKIrtf)tc)@=8 zUNmzjLN|Wm{ewABh;z}l^e}!~!QfZkGmNh3``_!F4gT;}V@a%$zJ*vpu;o`T%C3o~ zr@nhpc1=i56!x56oh=JvIxvc_$G^^bM-`UBI3+~lQW(0YkX`GAp|qQjmd0Ty?IvWC7GWsu zCS9t*(fNzDohJM4GmL@LFw%_4Gb9-=4I?~BGWg9#eg>B z!yK?+Oc>LO1d3Nb3d{M7^!`5lj^q;)!q6iItQJU44m-nOB8oQzYNmvpW9)#iLajjR zsxY(_055Dt_ihsaYHo2kfLdshz$>%E(j{PQExQhmTM+gg{iXz#clM$%#w5#MoeI9@ z!kFIGq*@c99iV!daQegEndxEmczZ&@vaqL&8L?l$A~~4uDMl~h5qo`JAI36!#hPYs z3@cZJh#&I*u=d^YO&rhLuQ6^IH*C`kHYJwjBFUCqWm|IZl5A5#2h&0?hR}=Yfly5I z0s#!BcS0LFhR}O2p@+~zfY2epJ9~GMlka~S{r>Q0&yx1JXJ%(-XZQAI;qyxWIa0GN zU*k`S#Vux5XPrN3c4YzBxWOOavlCP@aFahVXyq-`8(wYpC(W`fT>jeTj|-gwmn}Q| zDYIS<1?4;aqpWJ5{d@d}NIY`N{g+$g26pfF-zRyL$%m}zp}pbDVgG{?)P>{ztE^#_ zcG90Z{R(2CkNo?I)33wl{D(>1snKO}cjACU;qn!KQU+4q;v&M*U;S~`BUn$@oBot- z`W0BuZu$R7dB$0R@bg`Nd}%;n)8=<_!;6yLxbOdg$_7xo0g~Btd1|Fv{`kZHCNY8$ z8mYDTuB!WMe|&VsbpsJ^{qfNizuflT{}knoDYMG+*`n?K_FIc&DTbTq6wsx|E zlxK?-*naKLd+>=`Z76kW37U5$S)0)B~zUnL!3_H{BC844Ci+O-%^c?^nj{DIWKPdS8Qk97b9y`N#q(D zCmSFQ|Dcyq=XrwV0+m7b5!n^W)C?tsaJ z66!Ib)r3?z#=A1L9g05cfsC?oQE0Uqk8rT1Hu?G|GCTrzE^G8mc7TfU=ua7GswJ== z_fmF%6UcZiJ4z*R?~RN!zY+*MeJ?x732gr)J5D9gWlyrezny!)S?;~UyaEWjtf9VlKmui) zsNW-C9J?JEARQc$;}ftMB`K*FKfkm;%hAya3@Ch+%NGQNRr{OxxB0HQB>C zn5LVx4QO8VzdJ%eHj$KQT##a_($^F4{m$Qcc)-)`F>Sv9Pcb}58y4V4nb?_uYcUvu zM;YTF@6M)OsWX|47#*Mh*P?)`_BM0DXM8{(vg>f46i_k0>oPfDE%$>$w!pyY0VC0& z!KzsSUgZAA;i0G`;2Ih|w3r)k+XhSRPXR7uJ=e1d5GFi5VepcGGZbsVn5S#Sj7HoP z+hRk2o-(cZ7gkm1vL&Ds*V$jm`^a%5{go z{p2AOr-*76ra^x2NG^A`u_+Pvhb9EcDUWaXv2JXkwDTsf1Lr^W~(ej0Nap zBY6_V!y=W1?D<^W?QMSTvKY3tlE=FsDPc^j-A3-o7UjrmLqs?EP0rP`r<^k7HQ&h< zR`!yU=DijK_IEG22isUVuof$SZPyBV^_8cgEy33Q@_yK`5I97B*~X@9+c5biEMW6+ zIXbp77&1~Gz<*XYTK*h66wH_)52rYf|KYJNTHc0Lc_8FC#<%c+vf%D}TtYQ+iP)?h3Tde%gMe^S{ zl?zMc*Q}y4cbS|v`?gTowNieYQ~7C){Hj${+O3n5HcOzvNKV9iqkJW&vUijG6p;$_ z*&=^~eS>x0EEL2OlSO9IRe0O7i}M z`~oEm77&VWxj4b0)AC<=!z?-{r(_AQpwjDtob>v01%m0aNG0eRnF_r4RsIWEAwrtt zwKwHgxkAR>Az7Iq&WozOoWS^-oHQdwgw_ApHTvW>A76bMs<`nfSoLloV3voD2VV#@Q$h8c*%S%>dw=NB{((5zEQ6TAfjHSLgEgZ9ak5zkOC|>5 zWU~x<{un64WZ_c+ak5zkU1kO1WU~w&%?ZTGW*IDB5UAv#+@-QWoNSiC-sOSa39&vC zn$nW#M%)3~eO(|a-Hm7#nC=E}2k3f=!UcqiOgDXZ2X3O+Cn|gl3q256mpQjnRDmxC z1N~8lVvmYG8Tg(!Cy_9RbWyl~>)F7gT<=#d1diqH(dug88(!w$3_Q%+tJeL%I+PuN zX6kjA-Q&Q<1pi_IfWRk#yLfNE|3~05Zz|HF20^vpTiYOKivkB$3ED?ipa5s<8g!ZK z?pKeXDO_h=st2WUoo%QaMAsQ2`>=WSgYt=z0s=hb>iWSyXl8X9$Y?kn7u4R_=0^z2 z2(lxLDq?D-dhdh2VVg382oG*pLI0r1?2aMG53;g@u2CqM5lCwo{e#xAjkAKJHH^`w zpl>R($%%y?3>pP}peR)W^o6xeg7QhepnuR-@qNvAt%F)sWBDG1-q58_kejVY?1z3q zgtaI@Ej1wZg8o6fp!dL_hm^1iZ@PUmhKF z&rVdx@gIUtTh&stCI!(Z)RwkxJS7No5easqFAgHj*(_L&GlFQ7YD55T%95R2VL_zX zy@kl~xk0okwFTkId<&Z|r9q?#z6I;T;vmw|^W1J=)s%H3G3y7pyO6y!NH)#lt|s?RnQr6Gj)&SLCfq#Ej2h7bdJCVv97?U^Fdw| zFDz89aXH9Evf_wqq|PnCxL*$hqu^LhK7Dz*Fh=pWg;up&G@F_d#zc9!1dKwNF6~5{H*xNX~@A zY&{W7@~#4f^R~h7BoFedeK5tJ2{2n6gZGlvFvK|+(}W3LY@loKNorGMy9bY;%mYz? z9sgK{s#i1EpR%1CVb-&De!f;eg6Rj#W&KIPn5#zk^!AUzZwZ@kn4p`}EVvp|E)I5t({qDo zi2T|1Ig*0P<_G^o@U#`sfY6f5hy0}$_TMbGT)tgl5oF7%;B?CRmmtWQ?ZF;w_`zUD zmg5lZ3HG~!zu1YbQER^y*2rN2VKJYTpzIb$g7LL#;qsef!CR!u$H#*QQx{T045y&lL(461JPO9$^TOSiJPD2^y5IFoxTTP)>&hP%(Y8Df z##cWC@L4Z|TT&*&f;{LDF`Gl4?*Pd97~GWLk>H$NNDoS9#CoM{gelMkYF7=xHys37 zirqr+O$Xt!jaLZ15+Yn?*9@6U89DG4Gg$cm-)#8HFXRx#TFnU3uAr%5A^0M{z{xE# z1YhJAE=TD?@I`*%a&TIR+2WEjLd?xyB`XA9dAE>G6vdfM!%jSg*{v|72N}k1ScntL?d;zT zP7MzEuDVURxHo55aR}u_Md59XdWS^ug=BMhO5I!^HF~wgZ!brB^ ztfCDIo)bdJDfe<=$Y^oq<2Ef$lpx6>Z%C>?8 zdO-QE5Fg(B!iLfp`$C3rb#y-vGMv^PJs1KyGQYDS_Av98kVIn3RKV1L;=>{J>}<;6 z=My2vD1C*CX<;>kCe~>2{ii|aLY!<-Kcg>(Q1S){E&ljY2xXfD`}uar1d+wY;R+iY zXnZ4NC~vE?w?a1lccB2`8c`Yt>rI1$zlnCDzaK(56i&cc{~)A{GO}RhzVO!{AyZIz zD0&`JnX>SMAU#>>+Yna>eH}u2sf8l|BDnK55IWDn_aXHO0?nST7y`v#Le3I`v#rw= zgDv;>vsFY=7V*y=R&-{$5eirM=&T5~_yVoF0{6m{GjC7Ds{d|Z%!10YYan!AF9m6_ z*#ZLyBPXcn-$eYxK{KGS0yqEdp>O`P&|aexvk|Eyy0M~Eg%cb32cFZ6 z?n%iy!TEaZ^AklntC_5rOq7my@e1VbY;TI<66#BET`N-+q&EY&;82vU(2_eQR;~j* z4TxaovfHR&)--|}b8n%rhp$Z(KcYRrkIfWUDR4Me7qC8SL$GsqS2(Z_Z!3AS>$^gF z!OV7w<-AV{iZgZ;on+v5Bq#Z=o4CM)E{eMpO@pR~?*vcXI3{Y&d8WKVWDV9^B2Z7n0@kpxPOobzh zA14g~fRR}-rnrHksM?j9kMCZu_#SW_C{)buLiHeJac!$s03YZzI z3cQ=9xNIFv@oa??j3}Xn2Ni4tm~ZDOk}R%h{ai(+HPq_D@=}G2+#gX#bz$gYk&uwi z;L&15HP+`&NNxC9rsz+0Yj=*E_knt=6_dGxT(?$nnSzAAzdyr>aU%S@MNww)h+Vde z9x-_r$s-D=HEUtSSh`z5%JXJHU<=PGJQ&U%-Pyi*H3He0eTuUL)BhLV7_D_d<0LVJ z!cbAmHTLKbC2j(wl+5FF?-SIpa0X01Ne%}4!yot z?tfsGToWTe2-Bg^S^nEiaC%{G9EWgwtn9{G&B1Bi zlRqp$9>2!jS=@Qp{HY*i?GeDs-(qaavK2Ax?^lW^)D9(}bTKHpv#)Oy7txe>IK_^= zHdFL|r|3rZO6&i|hz$e4L9pbD!V{g`R!~kPJe~ktX5DXNb6H$1zJ0WQ5L;SBIe;Lu zuw;BE`C3&N;jCP0YjYVIx+yi4u>96TNqO;n=FcPWsF$wFDE7fqN!XlWsSl04l}5rs zkOhDf@MEQ2m2H@Vm(rDOtf?eC*)qc=Kz1$VAyg3asH-GQdraV>W^V=jIuAbB%2-Xz z9LH9#EV2ftZh|t|4#h1Y=lDbrzHH|0fc1fzQ?ms)|t5J#FhTTK?F`xejzNpn*~i|i>{w{hJ90&3c`r?Zxn_ob}+G6>?wkzA7&`` za&z52N4bHs?Xp0L@7P?1CX1DSIor%+_5bq9V8!c{KmB(*5_iAf*`l(8AJ!||RkE20 zk2fk^2zq6Guc4ECQCp>AE<5llVqLAK?8#TRVX7!NC3cp|BDCwqIt-fPP5 zu?<=H4dqBH^d8O-+7(i7Dw7HJY*BtVAWQ*aw?hR2CxU6opDHN_A5~~dXhUJweas)q z8kJE)c`ua9tYHDTE>+mtE8elt@)QR_(ES>)&BnjC0(>r4dbNp997G#Z@D>6svZ9aq+U6z z`f*aFQ$2`@WsoSCAC$QBMN!L0gfvjtQnLFpt7$DA0*CX zBkHLL@s>rT0=Q6LrL&I8fp1iWoJvH1YKav_Qveg?D#6`<4N?uV3P>KJy3ZN8s>n^m zhyDU+8>%X|#)1prtXkEAQwfexm0Bg!&`8x6Ym7G;s>Z9f66VwvTZv#NYhJC&Y~vI@ z&@)w4WF1!9Y?U(%H>ix(1Pu|8+gSC$nih&+h~NsxnyRYtSV#y^Uo=;h*kR~6p{?pN zc64adQS}+WgjQWtBPg4v&AvJU+V)eCvP@VI7$VeQCr)(shWFpA>T{O0hpOzX(V+(v zjZ%HIMu&L%%P3Vn_%uc}g|eN&ESv{Rn5Ob$nPDa+L{3qyvWgNQR*W?kDhTBcPfAob ztRlj7kTvRR~+o~d^m@%t6LO}TuRJfyUCam49igLDL zYTaJ|faJ*KL|UaYo53qIhXX6eUNZwS6VF{PUC%;$q^vxg>E7Z!0E z&F1k*l?N-m=hYU}CsfY%OkG8p!S=Pm#D0^`sTR=gQJak&)}{;FciXEvdvRVxdE5Q& zJ(ZfZyP>j&H5XLJZJB#rr3Z|^qKd2}UY@$93Z=vpW?ae)7wdKwFw+y&#Q%PKCcq4Qs`4c2uondWsajHrwM$i2W4B(Y zCQ&&!{H01Kb9nX|qdBn|`n^+8=I??YroUG;rwngcIhWmZXzK&xzp6}L%qd3c4Np8n z_Y)gd0CR-!nxO-|L@VDN61rQm{fVKW4PC@f_r!;mHJ~Y6!$OCJ)?@m|d7kX+m_GLK zce~Kd)kWq92ZlOQh7DAM1`swPOr$qpT__&BB6L{YhR~%F=~uf$7grTOU3M(AeHHPt z=EYEEFJ6}a8oE}hHvC5D-_j2zJq&e}sx5gH+R;g>_BnKgRPC&7Sg51;sYlhYsnw`@ zX;^*&Vjc=8*URZPT8x-Y^?NAOPp~g}tUU0oH5Ea*l+} z`tO9n<7gPBWk#V-gi&^FV)f4AgYn-_hLQFs?T=9Bu?5G&9N5vzVbbz!{Q0n6oYdM& zVKe``Ow0la2$@XLC`W)PH^Xr5b4Z*RmEH|IM(K8l)EJ&U2-{T^k-}IbT-kjUhVPLa zVg+w04aS9Q%n;BKM!yUDkzi*3K$!O-tR+eaZ~qRPjpf$KYJA*#2*N6>r}Od`2Q}E4 z6)??3eS|W8Soku$TMg!RF02h(wO!-IdQ?*rp4f5r-N4;bUBeTZ$z^KF(gI=>Lbm|* zb)xzT;ZdL(7k&=0mLY1&N|-=kp+ZesBNQrsRH+AW0)5r$GFlfY#7uT-%0vo~z(IcR z@zH8ZATIDf9HTx=G^avP>C|mGfoTbJ?VnFnU!(+h0{hHVbtg_>Lpt65US_CC(=&m< zciEx_ju_|~sA5w8M(zO9^3*-K20k~UYe3&by_;kF{jGX5)rRXgS7TPjL+sC%YRW@X zL75?~)wjrsSl3qFgcGoBucjQ7ED%WQpeC*436)QD5((7rqFzYVV*9S@(}d0d1wGVw zQqLjg*PAYUn?7pNLbD+J{z7$EP9XSux*O~>Kz*9r{C5Ybb2$O^P`WQH9Hu@&&^{ju z3*pX4b#G1}cQjoCv&X1^CljbML5(|14zbdS>J?P`dpt?~mfQrRr>IA80yf2J%9A@m zi<#5aPskd$JWC|dgwY8sm}3Qjp!w=-u7Lpy>D_Q^sro2c1ND}Oy`b+hx)9w0`F=HJ0xf8IIxY_ECxkp#CxSNAkV*o>VX9_ilGa zP1tQGI`lPX)q}_c4qs6B=LBLe(?^4%D{4~iQ=#epzNTKq2`s;%rlhM7Fy7s?VnFV4 zN4aJonF1i1dKChZ9jh#z<$hC@Y<)szek0>;@V>f7X@F#nnQ2p7Kg3-!;`vAEYu zE281&uheHbf%3QN%~S%_-&Z4(n!?4Q&SCjr6%KB%~CGJv*w!NR1(Se*Fl@T&Af(cnk=L@EXkm#;?;P zP+p_J`g!cuPE8e-;m}aYigsvj5PB|00Yv%L9;xiuui3^a^*N+*;QtRgq1od?1I=YS z-s<~9(65>;XeMy`mL`BQOdvf0$sO2Tjf@g@aRksk(vb3s2)D<|F0ALnL~o{iqVZ;@ zo2PmJUbS*Sxqf`9`PBx?&aX60JqVh@4%LL^7HZtsl?DkNVXIwuZHhJC)raS?wjSYb z(9Sh{I7QJM0T6))c97&1{s)&zRXw~KW!I=cXHjf|mVK@p{+yr|GeA`s;upS*n_@j# zxDz*|prG&zoZ^>|@GwHJV*>K}rU_MGS6H|gM?4!5PBKk1k~>U{4i6xx2@oNI;`*>& zE9TxY!5&tnhOgxvwrOVgR9AwY1^a$6AfXVhGz(wJwNccXrVTTaD@3*n&m?Gr30+~& zKuuM4Ydm&^@4JM*qreD6Zp}!j3LpA}n#;b(b&_-RnMBUks* zq2YnNJUt@(Ay?YAG2vGz-B!4hdvSO*s5d3NH!oNrfmryL^-cZP|Ne@ z2{oYfcz6?3Fne=4d@Qw>Ay8eYaW?!jr{sMlyeHXU^!LNPS#fZRsG`|-!UM@FLZ~3l zr`yx;!so-8*Z{ClXE8DXSq2@q=!cR1_vBA%1|y!+_Ha=2L# z@x2q8a-;4Mlw~}jPqdqoSQq;Ai0ICJ;*FjWn5F?Ep*|6Hc)7AL;(JcjcR&Q6(!!fT z5$?Fr4eZB7xbgq1Pl%A$#ZtdC;uf#(yFB7|s$Q7ix(F92UK8O;odf_PwBdF#VpD_= z@^s%4;ZMl_0sDW6_?bci>viD4N1Wp2$*U15 zge}96_%vbyg&EfC$lADucZOe{MV#e2n)OO#*5i%H%W?6 zL_XlwcVJlLGs*-I@mhd(Y^0IWxV$nuzA|Y(Y#1MT-5F{8I3rTd{o9t=krO#R-Mq*L zys7?-PudT%9g(E`3T6aPrtcGJ55b2b@A0;E zI}*8rPg#$hj@(rR%W>BtPr726|0wbo)>?H6gsat9|n0Ge|>ioGG{3K$o7)Fev9)n2o8l;8?pw28t~WDmjGf+(TO z&Fc`A#Q(q9DGJly9D;@4MfvlP>|oER050txL!<6->CTRfa^dBz(NS-BcewaNR1s0i zfxKnL!KfKg8wk@+KmiYO2C{`we481REQB)MKvJ!8Xy+gyvxa+{oaRsc_68+K;RzMDTzy zRiiN>>>==SkKV(b-1$1urTqWGdeQI5$nCOH(m^YWZb)><%^4!p+9r>7rmRh(dh%gv zM069PZu1#d_G0>WDfUnl8~q!%{0{Nae{rARG%5NMFZ0u*hY^BECQLd^-$ti#Ybt3K zJ(e0GAVv+gVKmOFj;@d^Pp_sZ5I-H)GG6;gZMGH@>D)o$} zJa{z&d4a4~baie{@qMEmD9s@tEgBT<&W^rPD8Y7MbRCLK32H}}@*w0=uq65mb&3Ud zHbqybGGJKQ5k_u_{=#XDxE=kTo7TX)(K6m@3-3i&;^pG|(Up0*{9$xBcU;$BMB8zv zdiPEAZ63+({}Sy_o;bHmO2wD+cWOLgl2=SHdFG2S)gh-&4ByEQPJS_weEdt0#mu3c z+9tH|{N|}s;DIJaO>sJA1Q%Ey9rK!V`YAR>SkLPbA9I@9Uu$ zp80&B&aE6QBV>WTkOz0i6 zo7x-LhGnVipzp|-pSU}785i>-)tw=b2UD#}wTIC0F&}vg22YGh;8xY6IOcDP=MWZ~ z7lmA{0`E&=T2b7g`3=ij@VYc6(A#F6_>yR+tuZSJV)Bh}B(k}2DrSyVZ2Zr}I8fH^E7;sT7qeDkGw))|Y^&JZxfFAT zG6YqyX?HbdtHefjJ*LDeHa%~|)TZhN(2_4pMBr}Bc&mu~`CAO>jh+g%^t>N4P-64u zVGJdcMFp1XaZEAAZJ80WApd#H0Y?^jE880a-^ZM=rp2?^)l#i1%>EeD!&c}LQ0+_1 zd+E}rlGc3rjlH&gW$_2BiuR~<*~d+L%trh)%R_ryy7c$dE|)HEcxl&5mp@h4exQut zX0c=0vkup4;mx&b=uk(SWsTG#7G(Kq+c=4O+!LUUvWi{Fr5JCR5~3Ys6)yp0p;9~E zUZfQhp^dbP7CYVXS`9#@4Y7)s2;�ohA}v9}~5BaB+aPHoQpEF0{s+W0|hgH3zn@ znbscsGPQaaL2|abiTMVLnrdfRN1opR@CM5zyB^R=J4L$mYN!1wU4GM18!y>)VHd5J z+1h(pKE2;ZYb$;Fp}%&9bUA;pr4I}ks$C&jyK=a8lJtXPqbxsIGRD$LMvSv`l86bG zPV)K(?GUNj$SK+ZlqIN&{xVI8AW?@kV%nr4?gFWlE zS?k7{Zq_a*j35;>bGK-{DK=QJF19m!;T9{#W2{^oYX`NrX?Im(xnJBo;K6on56Z(6 zGpr-Kx>H+&Jy{ahhUMPYdcxp?+J+Q=App9c(Mkz7S|8JXS6QIQE}haYC8&-A0s?ll z6=BAm*N!H_Fof}i-50bEBubmFY6+=Lm{~?&`1_i+FQp?O0!Qb1WEX zA6ri8*I2m-c!#OOf}Xp3gL6o1uGH*3LSu<0RK&ZWBdiFEt&9(;c*onF68o2%c)71} zY->DVnSZKi6I;nyyiDjCTeFII*|lHnW_#%eLt*B)#UhU|(*bbrzK-|RG zNRcj#nG%~KeR{PxcE0r6aV4=Xj$*YX3u9Xnt#B0ExHOis;DG8K#cnT)-A%L8QD9gR zt0g+ZQ4q5#HilSvH1l5*JDtXQH0!!H_Q-#)3#ct0Dqm1-h_!VPTRM4LYz@h-y6=yz zD_OGJzqu?opZH~$t}Al<_MLF^al2jP!nKTEhtPh(Zm zr=y?6_LF{V|1uUQ2EyIk-o$Q@esJbp>?G;3+s9aM=?BH1Ez}o%wNRgJ6L&(oMPJ*v zCsMT@_HoCg%QUCBm(pcM)woO2rP3{Kn{@fcBd(To3qS8ToV^Hi=GTmSC;eclPn?;r z+%L{g`a!b>aWADCxA-Q`+yH5^xM=AI(*omcB!tDmai^r;j#R{vj$*ufBJO+m93Hpd zL-1$pa%7w*a~~U5ds}*(NxThfml@aNzgs8c&>C-8b{F>+?ycaj#@m&9o$8~ZRXE<^e> ze_`AON_b*nCWy)=HH!1#K@a8V0EAj9E=n1f#mx{qD0{g!j&dX;Vy%U->*Lmo;<4mS zag-BI1(>y)<6Rnpv%d(mip>5}Q}$afCCvxpl6Eq62aJ zB$(X8ag-%s0cQIVi*72Nh$Ac?0>Z2j&5p3Q#*rj14sDlMVyCdJmB>@uDaxIVn4(M5s420cbj;$$7x60y=P~{ zi+&h9?BY*LHu}Obp4elCFoeeUt6ns)ho~y?P7?1tm-xBTe^?z*!xetGr~Unf4%MpXOEy76@+wU^hAC-$=n?5a?$VZ5_MTq%pslXPDk9KVK4 z{Kc`js_e8+e@Awwiw}n3b>j0_8+H73p*g^)iEk!J08#P8(Q61Z-^3Lv#l)*!#33v- zEqv)3y2Shw6nMSV;@w=pm zL)$6dAW@yuExwd8FGPbG0Jr+aV=~PiUEI7`?Y?HC&l?;+RwDgiIMrYVFvRu&&B*u= ziGH6k@hv6JH-3o!D1G{HO1x5vgk`hiF=Mw7skNOKKb#^IpI)+r()cPcVsX5@vN%oL zwJg3C#id%n7=k&#@RjlA&^d8U{6VQDs;`URLu4u}{)nqIFmX%#dKViI7tTf=h$oC= z%(5cILVI2FVB;bi6tG>@jn!DlzA#K+d?LY>)jJqpKp6H5TIiZVl|%6^Lvn$8r zDUS+;8-F|zkK4t7JvbA8m`I)>hIC$DqjT|xN%J-?Mg>gyh4_7ykW|rSQdQ8NZIJYs%gD1vGV4K>EVH-^l9vCrtbM@pujoup1BK znKh&Ucpt7G;S7`9SMj90mKHdMa1P9OM_YTi{w5v|KL)7&AwGha zIe*6wvZhfh&#tGd0bMKU6c)N`>~x1ou1u0%fMhjxv~_`oPP$~y^1G@!f$ah}-8LfI z_VB=4hq)p|ow5}*be?RHhpsj(s;L{oKlbs_krriJ=-RVuemYmkt)ojMc3J_!kF^_+ zQ2!tP(UJju|eXrGPJ(#8&6b7lW^TC8i^v<5TUz6)I|{_MC-=$7CEBT zQ4;N-*%v{BI2|b$u~2!kPB)1YsFA3n%wq+N{z*DYE@CEB{+goe%n5W(*R7y7!QKoV zDIu{yAi|)-bJ~EdGSQo$a-NQqkXRrvv9V6@#kSwljj(ky9VJf$Ac0q0_$ICC!f$M& zqx$S3NG{Ng;sg$LpbPKUNryWaaWMN%M|$YMJCR#g-5rkcqPuPx)eO^m>PWeW1uMAJ zTZh?jf$0l%%c%rP`sqlSWds6>0U`l5NJrTiCt$o7tfS;27Ck}l;X2F=4(!ZGx&~yU zbfkpD0(&+_hv_eYd5@?2!omqU%JwDbJ5h)Et$;P1Om~Cpr|3wzhy~$;rt8LV0_$he zg?FBfLQsu&(Hva~ClK|MjN;}mzXZAiPTygL|GTwI z2b@63Ub_9g->1Vg#K3+%prgECBq*ZFL0v6A!T9C~eMB5_lr$v6^y4}izxVc26blqB zspc6B=&1cibzV1}D{%is9pyoWpuh%~b)*c$LgmW(Fx=GrK-R$cJG!l$ zK-@juCaM-of5+(`wer!2$Q}vgJ)sW->!0dKX^4d;i2hTzhZA`FLbshNMBBee!?0+< zw_fYEZ~`;m(LKSN_qvnhSz+NP-8oJm<%^Dz2v^YJ+OIlNE@Gi_TqXT=PN1fpeiyX~ z#@g%Y(XgkJ{uw7=Q&qo*N}#uko^FI6-1P4`fxoKh_frXU^wN`Z5erT5wz~cUC-9<{ z{vee=Cm;PovLE>DtH-qbz!ulnljAYlhWY}I(aB#=9uH^B^ih0FIu)p=qyiR{sSehY zauExamn+21FgjGf_rJFU^bONrB0Z7d)6#d*Vk7(%t0#|#f5+)bX^1hN90kYp`gyzs zJ0{Vs;Bc}Yv(@1WOPZeY$W~~CTj_e&%82nSTTgiwBVgnh^!Oe;u-zs-<#kvA~H_?;w5DNq%o9Qv(DzMTP`lbKf8pQ$bbxS=d53xXCQXBnbPM}7Cp1fpP z*j`UMX;&c7sFS`2Cs6*Kp1fjMv#Xwzj94J>V|TF$UiZ|Kmuj+m>oFNIy7#_%(%w++ z9DMufpKuJP0ebS9Roj7j`jXMx!TO1uK+!P$8mcYc7_KKJBgU3!&)R8pj_m9dz4WLJ z(-L>!LxpLAo;ZWAfb<3UL4T5?jh#$&eIgnl!Rs7o?R2W|`X?>VnR?803~Wycwg3GS zt==4cL+WEDLH%%Rf&K^XnT6+fL(BB;#E3&;g>a6bT&BN_m|(YB?@MM^zE1DP=FHS| z0Qp8e=~4MP`-H|k`*0eI+NOU`uy8X#O@`@W#djV$ZVSP2gM8<0>6NvyK z;2EI+n&bM$&O{J)bEn2xOk|vTS^t|AC__MYRX@-k`7FGp$85#`O@7m3He-O+kMvha z8AI$7n!wJt`gl78dH+dI$|s1rZo&}64YqvIYbk*nA{0Q8T|zy={132l4M(K^*fjz3 z6$2b}Pw3-8(6ZnjNB*dH2h3MoN;bM&*YN((J0w9x>C}SRB7!^XWVF{*@9I9h;% zIsr5I0ld~E$SAu5IV_aMCWI37%LGnX*@a=k;*oGCJ|T{qT-}re%vuZ(kdc5{ivd1m zC1g|k8QT~Z-W#;J35U5++cZv~+F@gkmw36P?RI|kK1Dr;r951 zvE=^2^B1#YUA#L&v*H9BYA0ENFx*yd&rZN}Cjc8+0;Vqp*fB2w(-#BWTabY1ivdoQ zCA=h4<>`wVrZ4UYur{GSl`2D+n(+OGgg8!U)8+(HJ|LkN@& z!qmhwAh}_pp3J2pxv@jjL{|uvCrgR^hC^Q46t=(BIYy(2xf_x_za-ZyhO}t4B)vu5px;?G+dd8IgPPL z9!kWV#`wD>N<}_BadnXeg5Y@pmBlm;-rxR_sr}*VUq7WKwyp$M2RWR$_ zFw&m2dzk3LvL9)bu;G59j2tO(EI=&G;|cKMbs}cQ1UULO5tHNs41J%736B9XKPDCs z5*`b&7^qy5;>q-|vX_|pxVu{tCZ7e!_f8Tx2GvLsINq$8gsG1K_S8-aq`bW^I2b{r zn8G*~*7_&WvLW)Bq!~uaggh)Dsb5{H*&tR5Y)?&6k#&a%)&G$RS(%YknK!bgiKsy5 zZ$$;}ZI* zZ!~jS$5tjy<({wE)+Ee=3@~bY5@taLaNd)IS&#w#I+lc4kO8KhO2RD20KVswmQVr$ zq}!?Fv#v7hvpsSfc-%-DNLg9V=fvTu^75(ELHprAMitoJ>HM<)wj#!H)wnU4XSGLr?5 zIk#ytW9kzAX(&4?-luWiYsm%jvg{{`p( z<8~(-ILQn9llh|{NIsa1DUkv6hehE!olM4*$N)=!P3G^oK=G|)Ooj^Iw`l% z39wo9Qz#)BDp~-N@*;0-kb-%Uam4UX$)}17nALbEB{CDZ2q}@ThNfUjWPq;WDVP!& zmv$0UFeNg;k(3l?3N4$QlmV=&ELsUGvQj7q5C9_lOj*}NnVRxs#@pd#i5%y= z37{R9;zr3uFGL)e|F|QzHq*>VnMP%U7+%nFW(uZ01}H2^@u8TF5I|O>KF*z=(tsQZ zAd<=2#(oI!WHR7`yg(9t0kQy&BT z=#+}7j{&ASr@HWRzDp{mJ_a~fJrz?Q16=V*#ni_D@J(tYWm=64nzGhOsjfomV}_}Z zdqSny)QgnCkYfR2;fd$yNmElX^)W!FoYYNK3D$yOO<+Ou)Qgn9$tyFgTor8FrefA( zd~{KeDl7vY>yV0Bk8yVUUFsf6awh?~U4Be4bRV3W#rx*A;i;6T&1N8HhN+M3;rNKu z9lYJg7NvSn)FpIK%w9~(OwVUhLh9qiGg2}2F+k&z)XU_RXv|pL2BRA0x;FJkLdy%i zn`b>%FQitd*rl*8eaGu!751(qrUOjao4ScIi?};Hts|U1oT|WO zEb+;#`){es(YP4=o?1*06al-zZ}(G&Q(OmD9?IP9Q{15Tqtw0JC0u)%I+?4h^PAL# zytMm}I-Zx4|4yBU<<@|-S^VGKwrLZ1nc|SPm6so@q%qz@X1Jt1@xXGpU)n~lZDl~( zMPAyf(&qDWQDoWyUUtx>?c}9zTG}#R9yFvmau0N>N!nD7)2dn8aWAumVtc0DL^ma> zOVKY)!=v4T!D%K+uSSvI64d;1ZrX71)x^0Y(_Fb>t{j)PoCY)wDo;o|NNF!*F%Cvd zOdH7!=F5+C0xhPboh1{vGcB!<6KFIet(2;Pl{3?FD33Y>4XiE^3DljNw&cGP0K{lT zzPIgyw1t&Cq4NLxf0LaGJ9X~ZyJtbyUbDKHR4lQzLCq4J)4bTn(zGW3ofi{ivs;|D zl1#3{(llXfsKbgh%C1C#K+lzFq#am7<@>ACin(bFSeHh5Z&$#$v_9<<`V@9!P?vr`d4vv0EOCxjR2rRX2w_33CQ`$Nl#KnPfm|Z$) zHA-Mr&o$i<3aX}uQCR^Zd^Qi-?0c7VDbqn)uk@poHpcKPf`!&kH!xFc`$nMfNnb#P z0fdR??bxefdQZM`c|(ytkkWo;PT}w@EPXMhw_6YxBGiGDi1f!iepg1NFW__kldRc}K>YsgFXH#x52YXA-w!=0ey=?(et++b z`2DhT=?{5)I^|mW#s33E$?l~8PIOqf&;TBYEYFjGFj=-#QshxsHz3 z&k%Gpp<#xgqfq~h{aiFQJpF%$I6G@Z8HRmkarNJZO|#hjZ3Q@o{`I?9Wz>#CTXlF&C_wBH0vg0tme`- zn<{=^qgedDe7gAk=$RS!xU`*r%9u@=z+qDeS(^M{$&!rB>Ncm?^#0W{Sj5f@N-D#O zR8(hYT&uyF@5=Z@=tn=d%(H@%Sfr+NXnS>(rbGK^wK_u6A-W(UG^`*jszbOsA_@|J$>?s! zl&uXOY|qh*0|ZGBVKOVKYvTwh$1|!^Txtb^->Hm^l|(jo&SX$dsHwn;KbJAlR>Zn; zF=Mt>l7(GH%NDWLUCSu53d`$y#u5<=j^4_sMQMK&asbO6*xnwd-plAg8Sl*qjx2O} zW+V9fe#SFfR`-s<8@@cwSZXhb3Y%YKWQeu_Ro`ZOl0L2ZIpZ4#@dt*=nNgL+%h`^Z zApM}VTc)#<`03!9nKvlQ&PcBlGo8(FV=ZS5Xbi@NneW_1dM&~;r%EmHAu5yDsuK3G z7Y$q>Atv*KXmXGhmpPU)VhC*ScxTpRMfY-@S-ZT}?ySwiLL=Ny$}F`LdC$$r+$Hhu zl#@B1WAbk+(ejC0D2gI8=HAz z&OYDPnTsfd`SD&q&b(HYDWCOqV#SdSnzBA^GCTiwsF|Y{c(S4+nROwmZRT3SlVuA4 z`>t_&SJu5(=4fWV!{x*_>sWo~+N6 z%-Wzil<7nmQ#meRkE!oqGY`s6XGWsB;o8~E&bC-4T+D3ch~ZZD|@m8os{m&n$BemJCwD9mrsvpx%0dIeJ*PV|9{|>teb>b z)GULFZ5*BH$Ayy8`sC+EKF zeb#GxEH{45T7!3nR#mcpvI0G!yCHjn9UB~D?+vO(*`Fw}^1o!R35Y$( zMUWY~b;!o!OSt$D-6R5-&IO%r29D(7tzeTdCUlVc89&-`b7NJ|z9% z`k3q!gb~Ohy3nvc+brgtD}$vyKjX%dre~7_H^Exlm1n!L(UA>0va{P_sg8Uo&dzSnt}aGsF{Rlp?NL>;mt|8D zrv3}k7aFX{u1;{(?0;b1ug*SR2}%93E_nYRF{~;B8A{!G5EM{9zWmBe`|AXdnCc6P);$^Y%nr!5@rnTV3wd}OYNNRdMI^>*N z*^$=t8v)avVR&N?>ff@Tp;<^}$ zK4q^aEBUNrjt^UZps6SPZj%$rGn@3kf=r;#I;U$b&X5%z8Z>Ivr+lCqr(a^4b&4}a=^M&|6~%s-FK`HL`95v(4DmgFpPmgur>i*r0#@x|=g(5@_J zIJp54vkLTEne&{p?XV%|FJ3m?mJ`NV|FAdb4A*>%% zaxz`8Jb6Cn5dVM1#TH%XKyq(vzUqQ zo^bRv%4=@579VqtQ-$BU(cr-8ZFewqsDfpkYKA|!*iJr%B3CRY1sYNaQ*efHMPJq@ z(ooL&CXcAgOjVS@Y*3Vea#W!3YycxCSLVLpnkSndZFoZ%5AOCbw1IkBLkPvbd1Z!` z?U|RCu@?InXQ0ISh{D8BDNkp}cd%K?mZlnR(qt)xymZ55O5}|!O5t6m;ZP+cuqVer z$yOy`#2O8LL}ivjP@Vzz5G-XM8yPlJH88x1!JRTg71+0KVZhBTOPQ**fs(aNz}Vcz z(21;pM+JrhoWPon21@!mfj~%SLn@g-VpowsPNXZ z6EHHrH*BL!Yq9burd!+62Tl$%^m9QL!t&s_i3U%$v6;bXX7Oha7&XaoiP*aYa7S>T zV!(XqOJT?~gD25Sd$5HihN=)b%P@z?MM4-@Vp!@V2@0W$4Cg7s1?sIW%Ux=y3mcXj z!fnlZ3taV2z4@;;3?@n|f-?knV2kA6+C#GqhMQc2k(&&^+hFOl1w9^?e{D5vvBz@7 zZo`nuST@*iI7L`CWFFTI?V#wG!5+cHVDqOlhMAQ9#E}>xeZz8xh1$d8^M($bxZ#pv zCPCAHa8>Qh`t5w73p5s>Y>6hf@(f+_SkTuGH$ijg(_T&C!q-%dKwwKo~j;z}Sr4T7qZ(U9Djp zPiZ$Zf*(C76Kscd)TK)T?83v|~dz99BtWb0few)had~fyVY!T?5KV2k>vP4vYm6L6pVx3y18!c+_$umx;8L*_{j`_xh*0IqyG2$_xLg#MT%(%`f zHs#HYj+7x^(C)?|Mo0D~Fn2KAD=<2GqC@5Z;I{9LLnRxUJkZ#iN)N$ZVaXt4KdK=C zBFL$g8CI6u^7COv($2$w_w%#Ejd<3v&}frK8&^`bf<4O@{upC)v(AJzk2mg@+GyNF z<7%teJe*{#VI7-oQ;e@9Ham-rlv!j&XP3<|mQW%eM3^S7DHP8!nk0|>Vu5inO*agh zmm0ef)xzM%GUEhEBMq0)IZR$|l#w|MS!Mi5;vidVTt?Ny%ymW`nZw+T##s^v-Dcxb zDu>luNC6t4QPh+??WCRbW_Y#BNIRvT1(d-C)r%qp6DE%eGxK(vmlTu^S7$f=A?*{$_N5Ue}BdL_p~DyYWxTycdP+ zR?_624>&zBW;hGvp#2+TZ_3IF$6}^WIQ|UzVAK+akZynoYCCCAWbC8Slig`xtiAOY zQx$uW-z|I7Ov2U`9`SW!>%2`)Y*96IRc#upl#tI#EMc0; zk7b6Ll#mc_+DayaFkRpmy{Qf{h!VtcXHQC0T9}q@T2Cf|dKF-*!oEz?XyOPcv3a^s z6$39!rghe_K^SN7%{LVh{Z4acYG(3*Zt)6O>?Bnvs*0eEAKQNC7Nqz(xqL4+;1tpI`RA5uFNGq*AZ|gf2pe3 zLq3YkHTUISF}ak!YzB6P(c0XX6wk&H0I5xvMBI>=n<_bDyR6(lq~@!XllxS<{9?#m z=pZ`obxm?prE0bZx%pW2e_=wb!ENoSKc`5o1@$%1=xi2Wg5K7aHwcVUsg@x|Pb%04*bB$(i1kZNlE+jUPhzW>k zk_Z;>&wVR-B6cXZjwIK?lexCi53ZigT}H@P#smrUEw9#N^ZR|ThHiIrTN7KR8xvs8 z_~qHN_&V{P@YB8As`lnK+Wk0JDb2t>J-4*c|Ub}}|^iBzp9C2t9(>+q4hWW}{AtTZRj3CgqbvMDWPMgc^rj8jkX+3|K$o{Q8x zmz(6hkyL)8MP3)_vPs*#6{PXHTiy>$JIkPidtLGj1j10zE$=pVbx17Cd*m*5SM8X* z-=*aS)wI0EQX9;gmA9XgsSGvJ4DgxaNE@4*;?vDPv+}C4v&+zsVObu@L*t8%fV;k` z5Cmq6*IfICwL6-pW?xn#g->zWUXZ;qkF@veUs&@9V~rW0xj2BfSevJ`Lp4qOIqw%M z&{lUENIh9^V$W#DrZxkh}HM2;D!DsW@S!4RiOx>`q4@^Fv*T5Eq5wHFn$$M?l z)L@(Ze`u<2rTlQ~Zv)Ye`IxxmCcJgd|Ajlsoi6!HZ7Q<@kKQ#|AKyk!tjIP0Eq*`H zEx#^rklCL3H+WfCGoN$r%r^uAkqOGP(FSCPPdI7$(bCah_{~ z@`YCE7m~l5w@#=szcn|oshWJ;LVXk3MC7mMrAt(P68}6mE+4nF-vnP>zR;?#^!djr z(`hp&!Q1<>4(a)8+2vN58EpP;SqK}GkxzaZG9fenIl&v*%*{_>t{3v{VRcr%l4Ad6 z1V7fpkWblbi~y;ucguVY6dUswRc2?uW_qy1M){Q8zGkdgSkyQ_pD2#NCKi@_o4>h| z$mY8i`7>zBO$C&!Eu}}AMXAf$b;!48ad&f-FuNc>n&N3KSb$i=?byqMncnbMmwaz~ zn;8sOXk%9-_r`m0%|qkw^IzGCm(7OeH*yd!caP4WCjFq*#Qf^g5B@)G?;Ti0@dS=@ zmjYxHNJs+`LP8A$NJ4Lc1d(2ncdt-|(1b@95k;kmfEp=^jFn!yL1-({^@dc5iRrUCV6)EAUlNDazxHQc^5<%2rgt zaT;HG zQl)>SyA1!h@A(tru3V27>c3!1g?*hG*To;Mu|27Ms%Wks9F|vl-xgb;R=VaUJUOqG zDfsaQF?sr_KVfEzJ}KHM3B%4(rts5BrbsAw#nu{j?XJ^JI}N+{_v^36;@?ohL@8mA zq7+6^%z*UbumsO@*IR6@Je>0Np79W~#nxDBCD{yu!p!g}4`R1Dw!77H3alI&ou~Z< zaUa<_!i=}IC|L2jEgOuNZGUQp>^Vdqd|K%+81}!3I^^_AYOmjT8cww6lc7ygI;_k~ z%G1Z2O3bp9XbcNJwTbFAl;}u^L^lbo%+l*<=JURr@ugV7YqlK-K&DD8eZXnh5Z9}K zM5mdvp?LO`o6~c1a+;;LY?%(D-m%%>@2l17f>>)y$HSE*_j*(A z^`=pz8-XNaTEpXK3Jb{G0I_+7w65v_Q)RycFOFOp<8+#@k_OD3J z(8r$vZILYx@>g}w(M(R$&%pM^JzJ}Zx4dg#+_(PJR!d8Sj1O!cPU+;|Ced_Q{ekTX z`H#34Y%aal8Lx9h!Yc=Q=at5OWV=&~oHSw5t>ee7DX}$D0itUOmP?;~Y-n3nSC zRrLhLe_q%4)h}#U^akxExDEbqmV0^CDpl@W?Us;xX1UK}RJwC@rn?Q)|I#+MVtI;+ zfKn)U?twlK^R>+;+>%?ljCbQ8W17(ua$c z%s*iJB`AxhD$ZgUBkzG?0nrjCe-szJF3!X2^412gN z9CE+QZYmyS6qHTSOY}8mu)S%oeAqg-aRqWAcm#}0=pRfBEoIQypf=f6DVt1Q^8@JTn0014D18jUeqJv z!^{1K??@SBeAcHxKZJkZ>E8;P{fMJpTVk1hjH5mfTK-|H;4qO;dSbbkOZl?C1^PE- z5VsI3_yvzv%~MUwPL2# zSx%wK8*`fCqP2m7Q??#nTi%e;Dhj?mWjm!k414~xwGfYT#?pRkLfP+W%YG+L+s0MK zVh=!cnXN_i0~T*?u~+>qw!*YniD|LKa@!2?iPibPvDk;E#Y%iFMzeM4S=&Cnyc`O5 z4QwpVa?a9ZXF{3mie<90%%TifdCrzs8N2-ftIyk-NB?07VA(CQ)?a?J_E*zvKbdA5 z{jjk_G?ZBX<*ZHri)JmxGU;gAH>LY7+Hy3lA840s&BXxDPTH!^Um>Qa^Dmm7VLDFl zQ5$L}<42ixyxZ;^7EWbv83JnWuN4bj&QvPIXg%TjE4HT5_^U!5BUlEEh@a?h!2+e5 z-VOiCsoM9d?E!Iz)%m}1yxS};K5;L5;jE~KjvA+MQT2&tv=q;9#?qD>LfP^~WlI_A zu6^I9_L?wbU}fCy2}lSxnnyoj@#j|C?QgY5O?|+$T1td*S{$%CQ;mQZ!}+=EmsU5A z8BVMoR3P(bZc@)2*mbO4UHz>xD7rAXxBeOePxLN;(KQmIl6ZB2L}l&dE-i!d4|^3u ztYbz5JX+0wps9XarBi)0oUd*i7HMa_9tD`fo8x6Z(VYj?wV+a4D(e0NmJeO9W9o`F z+KZMJ1I2cwJ)(0`5Vr0XXJOSx*QdhyXk&u7j&<9eW!Sauuqw&Oh2saSrf6N%^R~`O z8KEfc4(~kzX0$T$Yi1**l1TdPhq0^O_t1uKH0KY+j=mXs!dWQZZA{9L=Qu92fEkXsm(>dqwpezPnLtio~z z+%E35AhP-%6unde$Yqkw!tOM@FYD1-#!Rt};ca-|7^FXjDx5A%jke&jc%9rZ9dlk6BXTxD(W^smi-NJ&5w#Inv6=~Eifd$=r$P*Vg`V6H0gwa{weirtp4oDT- z8G-$u7+6rgmDo)G?kw#Fh@-5P$R7$p{uhh<{`N*|NxtZEVclp(9!pI}Uqh-VSIOcr zM*2joJyWU8K_O*@7Xog0yU?A2L%7xA~jMJAQG57Ta`r@-taB{#{(dchBeA4I{ z65wO>7mMrNjBdESuF*ggaCB+CJlK$G()te<_jm+F?t2;=PX-OzFI6gNFM!L{ zjaJaKsqwa`eh%4tiXm^*jq16zOU*-qGf8=Ap_x_Xu_Ti@*4MU3%pJzk{ukgdB< z_9PA`{^?ni6hcNT1=K|{0V#m@q7pLxL7C4dKf zS|zPvPzv~(f4>JU3^U+wvLI?kZO0&mAxkY^{yiP``r_rHum_>$TmG(Z)!P z*==+qF4AQ$9X(E6TCFkeN0o%lQ$mFa)tH=i?|CfCR45=UMZqy5; zzF>N6^RT@rO70&i8RBz)@}Gnve^8MR!-)nPzR?;&de6w3$Yp(jks8f(FuelDj4A*& zX38r#fV^Tw4LW=K?b9L6+Ur-*>o)JP1$%ev3 z;~R&KMtqvdV^}kd+zpCF;K)t6;F)SPlNJ3$$Qh9l8HP-td`o(szW9Qg!AtzfE(%3< zrI#$tU?h9IyOAn_i~XEO>`ngkpAAL-WiS2UVrzCs5{y1LCNpd=5?Ai#PyCZm#1AUs zzV0SXzoEcLiDo(|e@kj@QTC)+H%4Sxo$1*)^3rwEE_hvs%CqYK__+Q*Er2x8csxx8jN9C8`mAb%)@XsZ5pP12&Y5ioOzF(wH9nxRI% zSYweS5fEoUJ*(X`SzU`F?d^Ak97kA$p8O9Dw-zb8 zukWS;`Vckuo6`kw@D$oZT+e+wRHIi<4RcA5%d!(aYLZ?UvBhC zWW|WrQ7%gM~iwEVOHS=VdqZ0s4Coj6O21V8`g~~-0X|0!p*v< zD%_eAjbWm{KUQySl@;z#-v+b7#nx3vuTO;8lZ>|FMt>A4a}kBgTx3IKZU{lGGPgdG z2`F=UFSXMVevx)MVkNq&b03mV^`Yw&qh)HUeCBm-RSDpAF70hU#-LQ^M*8=A*upUD z+!rl~s<U0ENcLi>l83ahh?r_=Mrn#>NL1Rju}c)qp``12oHl<3)9P>p!4{@Cbr9 zX|<~;bsSX<`j+Z6+E#9AJcNTJcO8yM#6i8n+{lVb48}^87#u()#-y8!9?=YHmKg6{ zR3*kPbP`#3&Y5Lw6OI41Y)IvM1}wZ8%l8Zm?kPT(x0!?W&)I@xSl?%k1NRkH%{Cf} z?iQljt?2^Aw;Npo_Zs>_`E9t@fO^qpO^1I~SV%0yLLCk-G=)lOBrd}2D&SR+^f8D(|Aad zc*;Qd$*ne-wC5G^&HltUh9Le*0C7tAjJR1~X8fy0pN)$eeGZ_}uX?AE<~Mwl#B6sO zIpQc6Ouj#tSt*Ip@WeGY`hEGGa<|Fqq5Mcole*->wric@bo3=ESKq#ZV=r0mMLUKu65yFwv|}hYuk@@-YM!*@__Dxgb}7U>>2S$+o-~$-gL);qGb|EZ z87hs^E-5i%E_ubI(rBF3N6r7@05KOYHXhM#hqSwmR^m>ME~UIJl$1-Al-fg(zr@H* zjg(=4mqD``rTdo{L!ueLoVGWaG8bDidvkkj9?C4kVr{hQoTvjGml;L)E1vf*Go0de z#z}_7cuN*MRUvo%U%3P`zqk%}#6;aFxc?rbYH|qbaN_;CJ;Yu{(7Pp;6ub*y)sRv; z=UyX63p;$ttQta~#+Dd!#jlLGl$Kd8K}pMc!?hCQ$FTGNKXhd^lEhMm*EukyS{rUL zm(h$=lhlw;RFl-W9J(fv(?q^1*|frVAZSgpxso+Wy_H5axU$kXDl(-&0X0b@3+mCR z77L(aTbEPkPM~U zG_P)Cx)E2D=|(UDmg$z5rd!5ZX@6vKDDn?@$&=}jJeiJ>H%-?INz2zxOf_XX4xpN# z)<&b)&jM5vtlx;)>DOIRYx1|{EbRy@4O|ny zp+@95zR1E_h~T5^L_}%N!m8(uapE^$R)eB{mH^KjpmJcvCS!A0_*HXIBCq;6oPITg z!^K|pI2;YiRdZ0TGLF`uWL{PN+}xjhlThT_ddbtEAbA=TM&8_+`PX8|?51{RE?_UY zGxIYJ99BunDmjqvj%Xpqb5Z2R-WUn+G0pmI#%&!QVKsJpD2YNLF0^>Dg55o zjYor~@E0qY!q2>A#KGw|j6>o)GYGC{%##j(Sx}EcCI11>VItxh>dz|%I^ht6ojd%R z%HF@fZA=v@tQ&1BBwth83h~#1rtdcX_}Lcz3Hcf<1V<}(S49c|xtsS=ufa~i=-q}p zPGYOnJz73hy$0Xy#+Sn3@*g~RpRw!;8SfhJiU|_KV-I=O_O!&{UB+4%X4;->K~&nF zBLOroPhVAOd&3^%99;Rxn{xD3*Hp${W%V_4PU+mAiU(=>3)f&_O8>^Djs3x`$i+Uepe*6dwC>t84?fh*{v z*pFTjjfUx;;E4*!MJ{&zxY)zaA>zItIyMj&7z0XcXG3YARe_>xS34bhF8rgolc|BZ z?~e?i{5PYoUZ)Cl{T)lflqwP4p(47;RUmi0J;<@%#unXzKZ`w<@uiyq#}ALo49lw$ z0SkL|Y$Uq-Q|}UrdS68yc70)V3zJfw_@R4BG_yw;Y{==C0X2JcY9vN+vNDs#4zmfV zaK>pP!{3MvVESpJt3Im=yl@&7p3VEpfIc&nNb^mRrhjQ%Pa@SU!*^0XBGIW7^g=2R zm=~(@fCH#Jc=ju!NeqLcvleHkHGoTB8O_B;E|{l0Nc6$>%m;YzYh!veZ;}V22kOhw zY4H;o{XUE`uiILcetrNCk-*gNtQqrB6)3;SkrMNf#f(>J+DRxlh?`A6Tg_^|{1D1W zWy(nS=A3q$zOMosYL846-!lSMIZ#c5;<`gKM3m;|bdg#Jr%TYtnUQ??Ge+w$BnvbD zX=13yz<} zx%e)}mva$sZV4WI_Imw*qB7pUL2mX2BjAn7`bng6%9$a4X029G{z35w49aElt26oD z-VDmfWdA=yQiLB9dssCcKY)}$IZF5UW1Zv=+>}j#RcDNLVVFl%P)6EXxidwVe^XqE zYtlN!z@5LL8< zjK@;Sf-}Xb(aaJ&9N)yKQu&$Q`UwH`Ph%iqJ%9#C#$s&=Y&nfeF5~^=@GlM}&I2BC zWGu$TPfVGS<|~bi#7VDO18&XJt7=W~k_OusISO?AMb4tm_!oVawj|%RRFq`) z>&lS3bgv=3`=m*{uJej?6|AL7M}Gn6fM3vVr5FA&Ue)zpVX(WQy(kpv^{1}ulf)`e z@4#cJZEZJ>lx%6Oa)W%LwaN`)uxf%U_$yE>Iccpj`--tX=vrk*CD$tJHQbpya@F`r z+{!FstyONepdO7%{u7=l&5RVNrP(`+r4|co&oMCwWA_r+r`gwtCs+qsuRIb4Cw>~% zUw6DOY1zEh+fCZWN#b#J` zI95EL#iol~3qfr*sbx^a52*m*^-8gt@`gztY|juw zN-cZ8Xx>D%xHj1`l@G!$kq-D>G*|3GfJtj^7S8)waK`4S{iW?Ac-%N0*t?8A{A? zV2Zi4uDx|VYYLhhX*P=xerbAaa9Rw9uwjJdsdjl>mNKS%0h{Q9=#dq6rr2+Y=1pp; z*)P@JQHc+bJvAL6`!^K*+VYBI@-P0+`<=Xmu$QWSnR{B{Bd#WY|Tf)P_5zaxW zgCv0GYsMR9evT(V<+u6zC_Id}YgDEvX8qA5gS3&5o^9`6fgzPb!QpIsjTpue1M2pk znPY+)U|ppQFhzZY-#FLau!g=Q5_azyH9=cay1l#Ip=n#7YJt7I*vgd49bq4 z*GED|k-Zi4>uH}Sjf9*w!T0om_IJZaAtR_g+R;=LGnQnQk=!hky=FP~y1glk zKJs-uOt~;MzJdnQhC=s3dmAy7F(v!lDFNI*PNe}}Ae3HYUnf?v4wW&?axd9}VfG## zXW2HXS`@4|?EAxCLq0IM#E~i9U>wOVuX4NWQFaOY7$@w_eu*+eu z$ejx`rFOtVr@gD#!FZE-zL5ZKo)=9$wn+12mpqV7* zJIr1~3y-UYR@(HgBTvNRlP9Z?m1XZAWe$v!zSAT;SspQQeb3w%2krg$1V^iEzhM zd)*3-hISUZPO~=>XBkr(hUDsg!%$}G@TckRdDHD%M3%%dtG!Bu0xc8DXW-%uY4bd? zYo`4gUM{xlCfpCQGfvVfTA}Ph$C^~Baf31p1%dpIlary|+#%JWtk@n2*Jj%5LW`R# z9xn&LpEu)&+yj^l(nz&t_!|k2H=`c%w9y^*Y&bXD{+3wGI#tF*3q7QZ=2;nKl&y6X zMBHZY03Y9KFA3XRJp%G?u7(#3-e!*%FEGwzvgiFwR;o;8C3Ec^D(Xki zz@*#l&BZf}CzZm$ErrflNL`FKepVvfX;nGQVB5XuH294W^Bua#sQ=yeA8bQ z+|Ga6$6;b&#KZO@+C=E|2zrg1v7>l9ff?jxuR$!Q`M%{-(a`(Z{^W zHPbS$n3mb`r2S=amUXL)Wy(y;yy9b-vL{uE#*Xas3AfKdWglGMJsO7Vh#BJ#R)w^5S5>(5QpFb&AHbV0 zY^e`lzJUwf`iz-0O0DZ8fX}H^ z$-ReOCq|{Pzq`2B3K#2D3Cn19FKwR%)}Qt$`0^clcUbw3{ZVZmWbMR2ynyi}v)til zmU}&Bp;Xpt!a@9zhih2++`r3S;T^kMq1SHYeJkTlR(jmuO0$(FHKC@?4G%PoVZJ*ogiRO$Y z*=3Lf@F~_*$=;}jnqs5xPp$^X4%u%NQ&?9m(=n*$BnhDRRF!*&G8Iz4Z=L{s_S*}? z??jqV{7OV^*flJDsJ^TQ#I1KV5ce|PGwqJ?cmmDWQmbpwp$W?MhsLzg7Rh#XYC@YY zpY!O};aYPgA+GN2vaus<8y^v+PpTnb_I8DJ6MIDjVop$)@*Xs8jC}5aA6U~kqpkQj ze||Du!07|_&+tY4Ti@VP?j)0*#`(DH&NgOFd&l|sw-tW>f-ib$h>tLCG{jYE`ssW~ ziTzE$5T{8@&t8=r;uHz^kB2xLX|f^iTvH8kSH@covEH#JtL1vt^ci2hEjHrW2TVWv zj@o;~w~(Fru(qtJ-ruLxw1zYgt2R=}7+#dSW1(`k#m=O1`%s40Vb zx5)MSv1-4Y_dzC=dh?*ALis675hu9$`ogY1?MLyv&DztrxEaQTp{U`6@^hZegK>D0 z3-{rItZi1laVQpQyk1nPEx8yQGWV>QQ()n->=YQ~9#TU{xW{hN(6w%n06y~uE5-1W zWqQN>ez|?0xR>>+gwttDy|nqv%%74R1^@hwCEDmq_Uq)+5N$gYox@t`CB~R+_#(66 z+scOMfmEcWPQ)T@bj<_!lR1@qf1_>2H?zonGviLi`oiB>&nbnTF^x6%ANvR5N7kz{ z#yak$?PshSu<;W55gO|;Jt_{aTtd%}j|ve8iL6khpm3w|@KmD#qD1LBAZ+(8GJSuPA1@CjTOcluPd67`G(^O^PC1;|A@w08%t6u~$^;B$^YJJ~lc9Z;W;f5GO6_P?R}jTv8Br?jLddHG3-D zQ{VBh_?Pu4_`zw%i(%1Q2Izm)g5u@){`_=1M?HA#k(5~Z)Kk=oxBOb7>owxlmjs9} zzYGY)Fs|IOq~_1a%lb6nZrIShc48Fg|B<}`?$8x9bl77huKF6FyJYz@Jk!w8A@xTI z<-YYf>t615WS2H=_z^1(}X@nwZTHH{9eHq|c0}?+C<9-Z0bIV9jk>OZD(xyjmi4$G?LdS@DL%CL@_&EFp_^gBz&R-drpJl5K?-V*x_5Ja1q|kvMUi)+Uf^#}*aVjrzGz`Tl z0Y={y9Vu-{ALHGoRfm1=4rrvGi-)B)JVAEBpUGLqM8nSnTRYm}z3_#(jur_)%oYJ< zw|7qQkcZ>Hj;Ic4b~IO=1SqgO8jF+!G_|>!pn*wFum(nJO!Rdem*EaaW>6jIn+I;K za)%?CelE>tv2Z(EYQVgY;?f>J!h&@#?D%dppPX!pY1CI5 zo9ONY^>yzQ)=1h+7#q4d)Q1=P#CTfLYc2(o*QMxq;>!B);uXe`Cf^PTV3Ti;whuD8qI-YI zFiFGDxrRr)8tz}{=&FB$ZMfASK46`S7vYqBFG1}w>`0(*1mp&CH%AY_Bg6h`&OwPR zIC)~d`$s71?kG%3OhgIkY<-e^qO(V{bvzL@Zxoj zDZm@(3>R6FUpKqiLElnLiv;r zlY2RGQuE|9&m5T&VA>5cM-Jfe-yC?jx1%Qv@9kJFma=wAA?t@aE0{to`&Bi6f^sn< zPKVM$!YUk!H^RL@Uzi#}d`2YYSoYAV-T@mfX=w?l<9t zfpM*@tF3AP8!HQG7a(yko`=5Z&+8oL6_(`Tl~d?w9v{dHolk!K?XQlNgR~U*uF#Po z>Lpn&Kswb)VmdYT@+m8FGz!JX%s^;EpA3XaWr+U+Ez8&M)cz^Q6ocwgJ2E!bft%F&L@(;I^6|ot#6rpjNk3}h3zlKvzeww`z z<(HpkKaGFApTj-LWFxO!CjrbW_vmjY!HJVbW3iK=(m=e))%e)562;|GY?N{NCDx1L z^0p);&blNOm!F2R;TV_sq@lRXroJaay7OTD2#m{mGRjDCIZQrLTn2 z1*`|f<-BASmpdh^`afliqn8-!how1S_ZVE5-^k$m@50pp&hhP^x)NdPSVtoy;~ag(a)veY2bW3taRw#I_nMS7QduYHKC!-`)4(3qKy4nFcw4C`83Rh*sR#7xI4;z1@7>9IoT zv4X=<4=8LkBQtDcZTuc`eM$rIJZmORp5dCjWNEVf@6k<|Cgzv1D@;u|7fX`>Xp`BF z{(?hElM=2;HssynxL2HHa*;a6l{&{c+^fz%9(Dd@&7{tGu1NpQ|*#lN7XL5yuqta-#X^-^k>adAFVfRU&{By z93fRQ7dOa=awTVEsT2TRa;KxK;83X&{)jtr?Fczr#tIEh1ojSeDWu-Mwn|)$YpXok z0RMXP=xQcA&B9d@V9mn!^%v`?G`gK(l9n&{Y5At5rOc#w0VT?#UY3hzSZA3{wI^j` z4}Db~F4J)FE5jpke)1KkJ+xTtSSGG8G~B`)BrY-l8BYE{w-0oKCp^T}RpBANt~J`E z556&8!AGrLU9Tg`2$5<>*k2yw( z_ZSWp8#~cTcRAaM{j5P{LfqR7S2#8Ch{nf)%&Kj28beBqIB_Nj5UY@*g6L z4OE`w4~feZ39OZ9V=HC*`|7H#%n&A_Y(F1)@@#*i<$%N}E{9x^jz@Mf*-K=V?0ZO_ z^WpGAjuxqRNGMPCH?sb;BE?S%b07yCGoi~6+yuv`d7=-O8h183SI!-Vit8CcT8h5; zFiu|=gVIveDFJ*b%KKR*!(`TvivEcbK*0*V$$O{DM(r_&CYCT{isp+_V8bUjq(*VL z4CbQ`;KtszclxD;J(7Z-*T2&*Lp;WCC__OCD;=Imp}-J^_J&=HV;Ut`;+uP-i?C(p zzj>(wAG{Tnj6g79t)sj4Haxr5(M9ZJjl|_m&gEmpMe6|v);YS>3giL1HsZRPbFfkd zhb~<2_}mAL65#w4wX=6e3Yq)v3IWi&inU9=ImLwms6&p28!i751*wQ9Zi|lJbaYZI2X%m0nj$jITrg!M29*~K8NXd1e1c^ zW-dsH65O|l>|@V6ItCC}vkBLY)Bcb8zrD$EzfXS}yR&{{m$b$4mo6S;6lv^M;As%K z^|FFDm>%C$-++hP{|v{*Rv+EKC7N8iO?Nrv!oasv5 z*|5v8ReZo?r1Ixo3*cc}@<^r1pZ?Htm;4pFZygbk_ghgSEPdB8S{$(WsA?z(WB1qf zR5i5hJ;z+}2kSvK$1gZK@ADs8zZR>FSozdegr!-&MEKWy@C!u>L!eqE zIn9?Kl{#%07LmzLQx#MJYoPAfV3j(9Su2$~*h-}iN=q9XA@rqE=UY^jmpZij&N`@# zjknRy4!G}2MnQU~t`*d*>^V$#(B_b~v?Kp91} zyWsR*#~dGQd;u^J7W|oAk^2C!DCS-<=#HFfVgX}}MbT{WGy{-mTNuDAn*MYeWc`jC zaU5NqLr8r}qLT%}RZ!*}uzb2xe8LD)1o%(_C<378Vdb<({|Q|}ZkPVTP$>fZn8qSN zd76pESKjiE$_{K3W=xsdrReW0Gmn7ZQB@Cm!b(|5`OF8()Yk>vuh+pzwv5Qnu zQ&YtV}P~>*8k|`n5b50Uoa#h`>9FxC~F|H*g$0e zU=2j}Q(v+aw!+h`AtAC=(v`HeSOby81}ki(vsMaQ*h*mwtwdofsDbMPg)Juv77(^r z2Nkxupc-LY`q1en-iM+}p1*uWtUoR0e)`ohMl4}alJDl<93#YX2KCB^-&ZvM z9rG3MB3ae5ScRzo##ouhr)F$Qib`S@@=P|jQD4Q17bQoE72D(!#foj{3GyyipO@Zd z+{>#^C##^vDaV4qlHu$reEa<|Q-Vr{_bq^je@RKDVoScfBO?|jopT6SdD<~l9JE-d zY9R&-_uow|2dsrfhPtf1F_|fr8N&@-vDQ3_{y1g z;pCCdEU}d{r)1#MVHoh2qiyQ963U(VT_%up=F+`?Io{AjhU{a;&sBdrDtIfHWwkhw z#we0kK6cKrE+)rmq z&6e1tmHCRCGqd(33`Uf)YoP>CcEypx?Ai{V{|9%uCNex)p^eJ`EoVe(6o<chkWSCnL^B9gy%i3IsyUMmJ@pFvrmvMoe0&$ldO%p81&7Zd&hlFTL0w261 zKwA>aM^32@YcDyn^z|8PYxGHmLcG@c@!G<9#RuV~)_0thwZ030K6nLJ^&Co@r^S+I z54|u0Rz(c&p=Gd5>tjqlviA`QVD{dl|C^zznad27RQbnO6+N1TbmZ!DC_0d&2rPFo$vg>p&G&p9ZYL!r{k@ zdhr#|;D}l}N+r)j)puJqj!_Y^r$t1bc*M+X}&T4RJ$B=l~ z8|}1t*w~YmQdg1A)0iui%pn!g=fePrqHc)4pLJ*YY zNrxlYnML&QDph8?t5mI0<)NWfv?}sH_utX@KRO1+=%_&dE{>oK^pc1Q^z|Cz(-C+s z*4ZWXkc9F;zlRA*fj&FVnXZY3vX9TZtssXxcN{5Y;6j%{^hMki*2 zF{9H;0nDruv(GnFCuTSMGu!CL>=la{9hwcsjCS=nGb`!`K%FVh0w2Ru)bAy^_R!lk zRIA3;_}BZc@>eDzjq*O{fI`E_t9YCPgS(!gH^MU3j1g}dRciz@-<&p zUSxbI?w?me{p2ImaM6`9A$dAU0F$R3+@9flO%yRatc3@Ofeb(vqPLYCN{M+!mzmY! zTmxr|uOo2qXUo+8#T3Rh!Q{bt(&+aiia@uZcWUHy0m>kJ=2He? zfyWcdWkjV6vRBGV8RRqhL>c6>Mj(2O83kycj^V4+akP<29THomjzY=v0u0P? zwo3h5LV4;q#+0Q6?~FU_{h?N_bD(fCS>;ir&i{pplR0yPaj-JUWCo=kp)CzF1^bXu9U)Ia}#(H-^!9&SqjKYb73UavmRhc-+~|*)l!| z4^_Q$Evz^m0R6ZlmOC6uW#IhAo;MU3`S=qCzjbo%5&tr&$Xw@@xz2OA$6R`iCQz@P zvxSIlf;KP<2?}}9Ftd-dHSE&ywJqIsUAGCv@<5|iQz;keE29N4l19VVilg!{ytVb` zljF~)o0pHD;kB z2-q;|#(DxDyiP#9KlkZPJ~pnG^Dgl(Lo|JiR6oz*9@Vw=u(~&Ps@arLN9Cg}<)fR* z$(g(6^T=qtqi|avXI5OC#12&dys19tWU0@gq`+BA0sW4~?6}r#jn&5a#KtQBjmN*< z5~z?#O5tgs1hDYb4%X#PpBpy0sd+YSD(gUzU=k^0-V#5jsj7ksk>}r|8$)`}$eQ|i z#E@J1#jGoB>EF;)Nj9*lS2D`XJd#poW^p}|iHDiFVTAit90@3o)te^CCv(S6vQj&C zO+zH<2{63S8RRpS^uim$A+5+cUwq8uRl9W-z#~Sbzg3BykGplTizZfst?xSHVUNw( zO&qlNm|J!hz{A-6ZBw<@d&+Q55~nQ$P`hJ6DR)yb*slqE>GSAT7+py(6V1d+7Z$)x}z{58> zv*RuK&Ale%MJqeb%L;7)(0j%@NBPJ_0q;3w%^7cNQTj8P>T|-E$2rSHm1d~6>E@)` zWmC1wOm0=Hv~1|Xx;8kj?I$nD{$5e+V9O{@)ZH#y@) z8S6!AoZ@Qy>mBggvz)nX9ww+thEpFu%ULWqKn{iem8svmNOlS5oIS-bi-pQ&L3p}{Hdom!e6I6-F@yD>Y&NC2%4QRrt959}?am=$nLpNI zG>LqvyoNQb*xp=)*6ELj9DM(9^3EQg28wM z!zB7c6n!^?6a673{V8ua)5Wci$*|!0=n8H(;|H~JMl?UuFIqg$$YSR1 ziz}ws)?znTFFV;wb z?sOK*Y?rfC-To~8#ZMDzy&E6Q9MH>hUA8@wQ zQI!qC-Z0*6>0(w-%^(g?7tX@cB>-CdAZ{yjDCyFqg^w=NRy#|?JSG+`73V5l=5n}K zmj{$Ct63xIvXbkvHl!}*!Ek(OD|O*4NS6hV&Q6SCqzSkfocTVeq{)yRey9(QgM z=`H=dD;2gsf!>wM;a*+ZLdIJ3uJ){vbZOm^c~?GY>w zXTzaV7p)GgT<`3mnG;3d;CxujWKz+vOjW8(<#1GmuE@B%rMe? z_4!0G%Nt}NRpBfwRRW-mo<{HDP*TP1Q3W$e5B&>F2Y852dq)QTjzE`VyorHG9^~Vp zkxC*Km_4qLS!n%aA3}ts9+p1U<-iZzVU{=_eybZ*taxN1nsV zKbNd_$Hw3X%Kr3?+m0L+*mAe z%~Z5d{y5|riOV}Lv@q7}aP~-I#5{v5txXR4n8YOqeOx|~gFcQ{40U?!OiOioZ0JkQ zlAxaYz<=SXzn6WT2=~A2JS<+dbOG|z9Tvc&Ov!)8bKa}YDdK&Lg<1&&;pyIEy6b(V z&X>e@tOvR4x2C&(#ohI+Kh_!3UA1g$NXcEX!E)D{td-mqTghFKIJs*G@yK02M4kce z$~q`_-GcnE6s;|>mAmFirt+WUuAr5DodIVe2gIfBktp2TUX%dSA1zm$hZJckXrmuf`D~Z- zQ!(4pLOJP73*b@XzX_+r^VxTuBgJBig>up$Jl%I?tC;%qdl*w6Wj)AA*JP`h`am{| zsXP3!wxWsUa&;GLAScBJ%Sk_Ht>mQGN=}Nz$w@!6%;GV+t_C5f$^ z^s;&|EA3EM|Hj`uP5K;v!>NZw zUHMWFcJ6{4p=@^I}{znb0ql}qO$eE9OX|d_90~cKHR35;g3GW7o9vL z1XJ>mo=70TLs$ppAJr)L+k%$wAG)$@sigOd?wrbh>ux6I^6St8iMps!cx?I{jcOe(btY1 z3OxFT;>JF5QmM-foO=c33o4eH1zng(@pLzcQtzjNLa==~?ZL+@`b`9${-+x0NLbp*^$8PGt4x3)xH^}BPNRs{;moa%Su z!fGH^K|+nz`d;ju<-%W59~sqHznlvjYL846ml-p96_dX-D@SVrIj3+1p6O4w5u@9h z(Op>R>Lf|hnZ)2E`zewG{7Lp{-}%P{i_`d;kT#Mb(>){xP#xS^QgPi_h$ zHPD2s?iIz zws?*p?yR$kc+H>I%Z%2$ik2J=`qEZejT3W*9Y(3P&7R&+9Py`gkWu>CE7ggs&b~pV zI=(#-FF$V$8?NC#V3jtOmyn8=En->}oVbj~llH>C3(o#wID~MbyOHAW9*rPpjuE$} zVR3!EK^rv!jTlwwdwO~sYnLXhRU04Y3pND35QT=I52HkzBt01={Lxxd!2dY}y1R|a zB2)Z{P2|LGA!7e?43?ub|((8i+|XhrI&Z-Fv7`CGEe5J^BX5})lLo%EtK9^Z1dz98Tcu^U6QgtKx-r_8Phi%ECN~Smbd9`Rb7UPP9sD91j;l@Z; zYthK!qY_;Z#_on~Rif)$)iqvpW<4m;wQsAI46WO$5|1*S%^z!!g_Y6BHB`9$5hhp& zRQiPwgtAx@>>QBASO=BGqT8x0Cb3l(1Nqbh!lGTxQya=>p2ccNfVDWt0s6hXCm56t zU;bC45G@{Mq$!QKVF&qL)V@Wk#F0JZAI(@qUWgqA%kUk=+b=YTZ&BXQv zqd~#t)3z+Q96~h8Y=HEcu7u%|ExCMt+ZftWGrEth5i6<_}@F2rs;%O-xg~K!QiNfI-$gS^c z66~hsPwKmZoHM^G9iw5j_LfIbGz_-@9vjfy*Y6Efy*e2I1*WYOeyJ z-VnbGZ^?R4AZ*rNRs48%u#sz+xZc0Lz}vpPwF^&sc23Gj3c-bje`?*Tus+ijDP}V!6z}e5 z0E&0_N&v+>v^2%LkD9sSH2t~uDpYJ@9Vk>h+n$Arm)l1`u47IcD9dtn)t_vyg4&a; z4+S*}8G8|zLdNH;nL@@VjHG_By$Tss~--?4d730p*0}V?-04`HN@j$!S3K&qyg7P52w+6HWLVI)to$ zo^0z1a)+<0o$GcnhiOSOewGFBu&wkRzV!35lk;5B(CMDoc=)@$3qQZN_^4?ggt7bX z4rk07-gVGwkG8f!>Oj}EwWMpZQ zUuFQBM|KS9+SV zqudX7G^a*KwKSO5#}xz9`ry2K*&lVAA8JWoS2Enu*VRYt^+)|kq2f7smE1_=XPtyAxo&py+Mb*DpD^y|OZ7?j>0 zO!x11nPJe(i0_1y&3Q>PBUS=vW=!v>W=5+{YG&jxR5>%W7EoN|vOc&C>)c6A4(%c= zD0Fq!@Dy{AOMSzc+{o(eH4sV%yB8U~@Gb#F?4ieYQioV$O0FB27on6D+OG8;Yl*V7uG&Xa!H$T|LAijvwi007unjM9Hc zxin3*;gU-C$SlTK(S<=tWxAZK4ZK>68yEpyruPod5d%YXSvSVj+owzU7?)j)3WYt^ z)zSx>?gFxg-#h}w)F~|(=StJW97a%Dyq?v^yf2yc;g|Z%uwsOF%3+A5<<)XYloHYk z`9uk61+1LlY7+EL9}FS#*V3Tnjjok}yH4Q~T}#AsOiW5BPg?*F`;yg_Txa1Aj@N^! zkGkr@+ml>QQEIVJStSTh_p6;@!gt;Ms(j`dV1op(HB{-3Q(dbyagBkgqS`mzRpGZD z9<$*Z_4QGa;xeO+$;13Hw1h5}Ae2GkB!FTVnousFVD(JbGol&8qjR^7yQp)wjd_DS zO?c!c*GR1^be@HUY&X^@mmYX6kamZQ-jURTqMKdqFxf1<*)<|QMk11d%;=2d>37il z$Y(*{*{)_aMoaXg_={~LSG)g+gbla265!#d+sBA8{tR#MGK|yk^{`_3&@Haqpe$)& z=Et%D(9HqO=eSyEi@`O=l`EF`b6Lc=tn_fX<5pMOpj?W7ACVHpNYJsu!US6)2h#aL zyqx3?T<6ml{Bd1WDOv;ndcR=Y$;i;~y(IxY!&g4nH8<>Vmk8K*Z*&83gms`1Imkr+ znM4n}*f|2$pB0Vh14iv@iD2I4u#feYbuzvNwgi03N5J7CzAK92Q=CWuldUb3wTh2` zBlBEuSL~N9y94@oYH8yIuIDwpu>XsNt}KzmxYBC3MOSMDpm*-7R=XGB^deU)Hacc@ z&Frcc=b4NOE&0g@7TkqCV1pO#LLaa*4B}JB`P|^;^W|b!+gg@;d-y=@yIqT-85{g% zN_m^^hj+W$i<=p3N>}nWTP(<2OI&$^^^u`xP+9=-Mpk$H%&+KlvjnKW)O9m{?6i8R ztD#tFH3MBScXBE61P1k{$QX(1`HAVikh|2?4?bDuit(W#gX@Dh(|42aIwhgNiY=bar-do8>s{3w{PVW<+pFU zhFowZm$-s_0{cygYpy6`)}Xw0$^v-UR{HDL?AH&~f*Y1&g1Tl=S1BzBJNMPDETtvn zS(A%WT5O(5X)$@~hPt2>VE0PgBG9mJKt^NuDx>{^BZ3E`;v}}pXa({~%Y&<{T-m8t zrN}&`{l;{l6MLKc_v)#>tQ*LLr6|=;0w@xoQj}z{Je`A=Etfxt4(ev;G_@w=u_=6W z9!+7rAWvSR-9{gSjdBft1M5X=_~CiVrTXP5m+Fm(at+^;A?|_wR{2COwKXrKOT|Boo6iAXpB;G^Yv>OdTXL!QEP#h?$^Dfqm9ioZB*{`~jQGZ) zu3RbzJNE&!p|?ul)Ka}CXt^@HIn^!a>(QkO7&^IBUN_67wEj@O-qlX8 z-A#E^Cv1}*)sA%{k80gb?RaKD!IK!X(hyHNR0_i*hhlPjMwU!19cr;eCWpFPK9NJ+ z-7Ta;wSGF-8{eOvcFhrM8C!CwM=gMdZKdD%W>-BRVC=K50pbOVx^k!>?A%+rsm+|i zjrjWFJ=TL9YG*eUqu%T$H*=C;+H>3FWQ_Oe(oWQ#x(4tE(nz$UYvolNae!_FXR7cj*h5 zQUxPTn>!5|Kt@fGE&=4?TVTOf*Xw$>?rLu*pJCG84umeD4pJ2?dsqS^xJXwg$pUuaU!#m$LHKzpm>L?FzGHymppy3 zd?HU@+&!eHk9x_qI52cJf7$i0c!Ehtp8kjh@Ng|zUdhn8;>Lru;hkN0w&BPtxJkdo zVxinU2v7Is?#kT{zv@~j-eocwWMdC)IFx^daWMbAj5uwG1gXtc zA4#b+W~1bp71BfLUBo+*I8DZ#@`)zn&is&*@u3e~LC(?IK6Je<4l*%mGJb6VJZvj{ zj&|i6hyFj>zB?eQ;|VzLouIOyAc6%@z>W>z|xen~6I7&q zvqgJ9DL~pcOWKbUIMRj+f;K1ulrlOxpyE?G#-DFM^OfQcsUYLeTd6Ys2y7XDz7#ya z;WwRuwZ)eLO5@KdVor=d_1_)$w#L4va*EH?Ymy|4E_dKkZYcYPkUf<(Zh6Qc+O?4rS2 zxF5kWRRdBF13-PO$1$1y=t(DoPr&i*-apdB#B)#xl~cTYN7Ur)i5`#;1309>m8UbZzpM2wvVXO=lX!=7*L^W)Ok zM#Vyo#sPSGHVl%Zapr&Fd(hH!fAcBxGKmgHtIfOz>u^^wQ@(DlQEc*^_E9@O@t ziwHP;pVXJVLn>gvILuSN7?-KtEdGHV&ft(n(NzeE{bUo=uhdUS1=&yL0yi;h71*+$ z=!4#@Rn@Q`Ggpo|@5x%h=0WjW8i7&r&*+l!U^$y9C9JPyjE(8h4T8iFvhn>d$a$evhIqdq)6vo_&K!?|7Qjz#-vr(64wC=`iTq-ZS3u zM?E=Mj(VSx0vtU~^7FsIsCSXTv1b7MSMN}ISo|IxU4?+yGwy@>m3juLAbZ9Zus8IK zSb;5jMzeJICH||v%G&J!*iv@7HG=&Yq6@^5t&uZ5yz zS4kkWv8(hZ09@hq5CH5d`*_*aar?DA-u|y~iEJ!E#6B`Qo%E5Sbh)YBY-gIYtDX%- zqKAwib+CsFOPBj$J<{bU(iIRz@1SB~?;xu2I;-#=97b*tRIzv5Dt=+_xHY}XVPvGk z86ZWoRxRgJ_9&4L`^duz;ALCm6wQlTei*;Kp3}Na{_Y@WFLqqdI2g|a%56LI`V!niwN-oTRL*k5cu^1?^)N`G4_~% zQontWNF@B0A5CGw<&V{M!to&!71esIh(!{BZz-m;A-sO5Gr=D{kr#wITe4PF)%iHo zdEQn>th)OCYbL74>JZM*Kk$UIgWN$*Cq>v((gXl|$}zsXzVrRMJ8M~&@$NZHNp21K{5|a3j~}1QAE<^8z51n=bZJyYV^eCI^*YXyp7&b6f?6 zmtNAF^5iCYb@}e6vXUG@LxcDmPi1vvwTCJP#F?*y?`h{$Nk)3aP}B>y;o{R-$&vj9 zEA(&c;P;xLe0Pkq54(nt!o7v&xigbk8v;d#K3E*Yw4r=ctaG8Q3LZ*TBL2T2^5P;` z^u;;L9m7CwY)Zw~?z-^WU{-=78$h{7vs$to!U>y_>DLq&Y08XaS#26BZr;ZUfYv?7 zvI^O7LJQlHay+XCDC8dRbVUJ9z^2mk6Fq5ls5`7A$$hqsvD zG*)3+D!okX8{at(UMJ3X1nECn-f&)d1D?3iUWmg1i8#T;FK{?`Otb-qgCpV>4hKhu zRyiDe-_p4@;MECRYq)v$S1acm>?Bbrjwr7yK(HnGrhkD`9ADQAcCY_v;~dG(DHd|- z6@aJblc93z)x4cEl=peAb~wjh_1ihSu*-x1u2U`vyJl)Xh<~hgL=`k~wsaoqR~lqU z1v$vPG*k{U0$UC;iNoO6dA_~9vuErl0!jy&SBOwB$XFM}MAgfGioe;xS(mjHmAwOv zxGm;oe+sP>23~bQC&81sl&)&+cHuECl-r`;lx5) zxT~vkbaWN<(c&JcN-chB*|ew-N>03Io-+&$-dG?@gYOr=#DC@8E1MghiQ$djXcrMX zRTNO`j}`zmHBK&X(cRfuV+RQsqF5v^>EZ0m9w$(UVhQ}U9?n79L0+$?GtE{7_h?J@ zx~jcLE7ToxlTFeCig_@^ZOC*epVZ5#X<_f%3XYZE5zjvx=qTbp^>!{{6{^twYMK7& zFrM&heq@rU?%jE=HK1sGr<<<7Y2{7JZfYxUY$Mb~_sWhuEhwT2trz#+0Ybj)hf1YH zY;uEfP=-=F4#T8APFMDWi*_jN5b0}fJ%D9Jzo~e^pRhHpb3r z3gJ^A`GlY^E`rHX5}l9u^+aGT}he3rMKwjq?EhvCC$1mt_$rY=Vx=s4W+fzJLs;XXuBwt6^@VvJlQB?3l*qpc^CXXZFl=!1D{FMhYMzcM^m% zgL!dlqrH~NSB!BEu3oy`0RCa;ym~8;o=;>5lR^;B8u90K@#mEI(>eh)+m{K9uKk0-(}d`RtVOZbKF;v8)wO2wZQgT$4! zc<=2Gct@T1^Pso_3@;#?A?{ehTb`1{-86WcPdoALK3-80Dn47q&%FNSE5}CeQ@m(=ez5Z~jDBLK6Bk#!!{rXJt2v>^|V* z^$}jtzD{o*J~%0p{m-A>?~0vvn%8$b<68W410Lj~+|HJDgap9mKE8d0K8zoC!)!Ws zgja*neEWGP_=dq*k-W)N=SQ_TG?mZbFg3k}GwnRD!a0(YEtG9%om! zoyd@oU<}8Xa3hZhC^g@f5&Y1`yfpm=ut;uRCw}KW&QkU&sk`T#b0|MM)9VJ=`l}%A zZ!kroNayc$=J2~_`6J2if<=uzWfP)!ym;~Y7eX7{3h8Cv4?T#|LxD>cI_uR$6Z#3+ zHthy}>PBZTe)I=N2t2QQX_<34FO2CFB1{*?n;n9saiUHpIi(Z;fF`?ZG9#-<{h@e1q~OsIxQxP<~n0)(jNHU zEo~lbEhZ3|e3or6L_n!!n+YLPczkF~gdQ_eT6fmd&LaMw`OcxtAVh@qSTO+zyJ!Z# zV}Wyp4e?(wi#FCS7<{pn<~2+Gtt~@%&?4uD+Ks$ok+U1SiAbgNzpV=W---Hn9EQG` z+G|E59=F7qUK5S$n?~|OZ|23aO+*Z(@`D0ORlb3=Y^|m8x=Wp-*$bpT#?rD2O+t9d z4bJL(W23tIF*`r0$#QV;!J77+P+()8wZa+8ejx0X7Qd-Ni@#RZVhrE*rL#W&q4}BG zJ8y;CqvpKos+r_p@JTD3o!A#dFs0YJnSOfxRJBt($5U5153@LdgX27OOcA2$ukl46 z2Nd%274_r%v0CwM6>$8}lhnl!6qm_UZgMxZq5mtst~bq;;q}}|@nxdV&j+524&k%b zI*&uD**-Hxt`$(~{^PC2x-(_8$=c|AmEB6}{(G*kbH$4)_GqKoA-gs^zpZr) z*z%Msdn5T%bzx4@zI|dCd!C4*l>A&(N`6Br*&EI?YNX_+fPd9W7NwPyd`>{Ak{`Dk z{+OlYPr{5B*w3UcDp}0cBB%Qg_7_!MOKC7L4uUBS{FB0uo{MX$&E`croEf?Y9P0~L z8ZW9B6%uWmX<6GB(?`gy(3v+mH!^}yuI+R-*I3^y)flPjmpb*!?x~V5rjy*G_|}DC zMeId_iZULvh@U0}NE`})coa`{Mzm$;?WGn6K(TSie9XCwT_LE*;TMZToot&W^K>Wx z4$=JLy5LqU+FojL02CXC(Em7Rvd#n*IkeA~3hGY^unkb4+Az{yYH>I4iQ{9GYU{EbNxRnASuZs;P1$pW0Zc}*IgU($vCUS_0{do8x=W&)U>U*axxH1%RF;zi*aq*5C#zk1S){_gF z0nf=Sl!rn{r(@8b#xsyl92w6Nz=4@dES?PzRE#rG0clKag z2^_okGPqXQ7eMZ?ms;H$P_TP@8DIc8LQsVmaLpz%c!9u?!6V4Pih*z2ODzU~;$?vM z8U@q=-~FU>bNzfEP$_&6d>KCa0#9%FXe_G8@NrEJ{1X3_XJ5yfo{8t-Pdg*xMhg_$ zvHA;u^b9MOz+&wl7Ay!@4ucV*9syu13C`hnE^y}YxM!V7HgxR#7gy8?;w5Xl)MUD@ z{HR{2L$Rm*zoP<^{+}eE*#E(wRR7P&vHJfAQcLy!p*h(9D=)9}__1Tou5jJ)p|_mf z^g)0oI{yGdM0NhYIkNL7<;c$82CzlvC-RfdPnAzZ#?HT4(8tcdMf}3fza^)t&cEwL z=a$NS|ICZd8`!->P}y41_xCEOukYVd!@i&DfiH?yoPhJ;BZ@ld@d0>x9?Kzz#IKQR z*yB&+$R7Vfj?6x*ih>w#ABW17It-~GJItM6AYX?ORb+?xP5cu7l^y1j*fX)*`5JVX z$3y|`FuMi7)?sj|eN};_C*o2&{A^IQdw^G)!PfmJe<%*L3qSg8o*<7sV7~Z;Jz#$B-}Hbw{JrHc`n>%%oSc!hfgA_7pLX8OHWP_e zU)Z3a|5{&2UIL>Z>|R83*BPhDZdWWwhX}yfb6c()0>{4VEMbq3YSQ3Im-xpYILETT2r7#3hebSW zG#EwADe`nEK;kj>f_D7k3+}<-7GByobFQN4ICH)eSXS!Eq=M|pYk-}%Cx?qFvL_E0 z-0$S?oppAPyG=l8=UuBBBS*V(=O@kq@E$Z3SxlYB5r7!(;7x+G3TJbFL~Cbfx*xVa zYBVpreL{>49fr|Fo_8L$oUijk2jUgy!H)h?aMx$P%_YEj`%`B}8xBx}JM=$;gMyKt zQ^docK@0qeu|t))?)%(1urlKFeu$zqr@kz*w?>WfHHmTFUJ@IcshHB}_NfAs0sfqT zVt9kzqQcvsqpk4v7pbMf+aIH=2yb=A$O%5Uj-25C3Ya3m{Y>bnG5+Fc8R5>2=2~I# zAh;j}0~~1q32@Zoh|n0|28{s-2DriE7Y4Y&W2y>pyy$!9s>*TgWPbnJJoyL60dor? zszbu@j~M8k3hE1PJ8C%4m(?{GKl-E7&1NX-Dy~HZ;OX)3-4~qmSsAH-v+1S$*hNUr zNIu`Kf%r8#I$-5793#Uls7)h7?m|~o2&E{N)MLhwz#wYKz;HnPn#D_ga(0gMh~G3Y zRu8r7p`F(!cM_MS1) z?N42HzQE4<<8EuGhv**wig@Au16ryZi9GzvMs<1Gug-SbMLy$K*aZHGU|?_A)<3$x z26-YEWhQgwlf(aw!6X{(0N?zZGo`^XK>)QGB$uQg@RM+ld1cng{l|v#R=+zF;RW`L z-(lSlEs_hU%f^qJJb>r^<;0H%D>IJI^D>@t#n~~kGUGAwO?KL7?GI-o9$)NeXp;w^ z8*KmxXxZAk*l2nG)Qe-}1m-yW>$`ty3=tS30&Y0u2q-bk3;OIlnKfTR@Re@iVy-Hi zxI{KlKQIO}>0zfHa5LB>LdX}2v|=PAKbXYp3v%EEsXnmzAcZ#By_Kqkc3{j;-0pmi zX57G@_Qy?zGjsMhfubrg0gFPn>&7SzzIoD(cI<6}t=jwM-?aB*)n4%!ajdeb^?)yB zHMEw|+a?iO?J<8X+^w{Lc}=8~kE!VStim(dE(E-?b`sRz3*F2U>YTyJfD__nrN94%1g5uwKB`U9XYjmL*R3~I;-zMQGG%qIa^RFMIBx%f4J8(~K8xW3{y4altpK&s6O z$avzgMuBBq3_sl^vbv`ups++M46jslX&Ammfd#w4&39_nS2v!A;Pp`%?RE(y?EQWD zsVD=kC=WMQv4`wc(>X@v{rNH~@290ADi@v6>hixLjAr^VP=Bob|OjfjoxPa%lZPC00&o~Fg{ifE$+izDc&eNDzzu?y3NA8TZE*O!9?!IS#v zQDfytOHqUh1foQKv3o=pZJ=b4MhX>+{#CJn!%{yM_-qDbkTf+0Y7==;Q!vZqfHaG% zqB+M$Q+)aE0C73Kw?pNIgMd61LFoDdyk2jtRQR7Zg_~@*KQ`+64gsZ}IBNUU+FWmD ztY(k-SHR$Yh(J|vr%==>P8m8inb1yqg_kxrIGo{L~{YR@4z~1~R8ax?y)-)YcftMhMAK4e5MkMej~%ln&q1ZE{rk2VIPtb$0F_s$1E$w(1FQPk>X&p`#n~$R39A z|332XSh+WL#~o)I@smA_hM_jnEAu9pyrgh=1HNUT5gdGz=O>Vlmu}Y@g;6|kqb?)o zYU_6OGO}w&Izf|BPCmQN#1TZT)~q6!pC1frt%$h0eUy!a6{UCbdcBQ;sFg|&;ui++ zozmBLdVL-AE_}UfOTjP!{`h=dKzzR57Rx-yOo;FK0lZ+(qfPGQFZ44;=);{5v*303 zoRpTW;44y)4l)58ZU*}2=n6O@y*Ns9B4eNvo(q%Pgv?&=GfwdO`F7^B({x|Y#(k+ z);5Xu_2otP4~Woi<(GyU-T3JNW@El2-N^cXcN~7{1EU`=yAEbBYxv+HMhBZH#Z6tX zvff@0#J|WeB6-D@&%5(}Wk!=)he0ZSfEyjz5r6p}A@Us+@^#lAaPpO3=QZZ3!;Bsc z4u}eLPP~S%A7-T6`8ET-CHEV>*t?Yc99YY);WuP};i$q;%8Cr5MEjQK4mY~9?`b8W zv#+I0yAuXBK#3d=fO;{hv1rrKFur?)(J7Ez6(jugk-NsVi2s!dF$~;AO7qP~V@nv3 z1_xmSN))N^_rJ}S!?sIPHy==4$iq4lng{Ov4b4BUKtevA<#3Q|Lh zTiaTAYKD;=TS;-mn|MkNe`IV~(t)$ukWZnQC% zxfNXW5vvjBMjK=FJVQ33u&<*&U!G$$;&a9rrEo*HXbIeU@#h%hI!5U7Vqw^Qc}6N* zPN@o2=JA2~Mytx$+w+YhtlZ=C$&4BQR zyl)Zc^;<&*w1aDAHRtiY!$bI)A|sB_kFw}4`4sNCi`jWscr1_&%?_qltiGCMhAvg>gvB;-o;$c*;y;P;`vqpjrkU zt!QElzc|&n6VkA^PJ;kpDm=Ko2wd{gG^4FHi8q~Yv}aRD;r23PqBcPgPvP784vf)C zxaKjsY7g-49$U<4Cgm{s0*}$xPG7h@zHYLX5*99R@^v#{`bnknYo0}R+&?$(?wQ7B z?H=A`76ixp2%}SOS2lZ?05ERd$HQhrQz@e8n!9?et<4MOKm)D#b|1em+vrmzUORTW zGUbXnpkYecuT9ORs_y>hHvL>;9M^v4M@o&1u*-^(*QwgiH4d}?DL8Se&hw0&`en{Dp2wn8_NY(Wcq@b-$y!)am zS3f^(V!vI_rA3j^!s;TV&&s~OyCSaEt_#gtIHsB~*Ersy6`O9C9%e)0^P4TjeSY#;dJq$Frk<({zOW| zbW#72w&Q=M*iD0}Rlj+WkTGxM)T9ymmnQ$=9;3BQ8f-;9w_hthQ>_rG()vD=mxkwO z@UnxgLikJTjW4wneqaNHjjp1mcRns+Z)cvn(VFe*{oOt*K%RbM{@q4nKusE;wdW^p zFgmmLgek_VQU3D7BU+naiQdXBQ}J__xXRf?QcKJW*$e`}AUlyy-C}gHA)>KXxGiI? zq&37mbs1^x4Q{)whBox9_4kg6ZfOB33$~yVW|6N2UIW0tJ$c2}#1PRzQhtGD)D7Sr zJDkJxb*9)Ux6;)E^iYsPrmJV~FcyST1it5HxFIg&CgUVIN0;9p%dyG2#_FYB+yQ-*j=o(4<=#8O$8U^6# z`4bFO@hiNjd@F~UYG{G-NiD@SDLQZ!ncs5V&Bhs)NNOAka^>mG3gp>C(*h3Z?T}%A zs{tRh-D+gAKK`gZ6sowvue@ZgD^_Ep{n4`RXnfRs7d)lyk2OVMVR}jxlEZx@ZayHw zY+K7y57v6gKlhJk1XYYgiTe9)dEBw>E+Zim(5&MQj=$g!rkKIufhe-RX6_ye|HtVi zXw)9pJ|xE2)5n#}JMM;=(Cvbl)%|f^HojL*2gf}i)3H9CTCn>_F$TB03rLWDqyUc! z!cZb{D+M;@Q16_0{%k`>HHWTj4h~dLzr8@cK^Oai5Q7HkTZmk^5L>j`aPnDujsLRO zND+4aGtd}})bEiJY|LrenDf|}M4mG$s6jnji>~2i>BfK>H%WVqe}9kB#wMT$9kD(^;R*Xx0kt}a zNPTFiB3_1tzDPX?BTz6Z>}SQ7zjoMYs=72EP^J_bs7>os&mg zE*izUP#(goQZGOQ06+ZM;#fxT<;F{pXL@UvPV0ys3g~EJitaP9jR-);+5p(^4?Slj zvqC?rHZ-K>J_^x>@=!seW}?jSu0vv3;2mI`a=mnX)SJ^kegUOLjfupil9nE zy?KZ0Fgr_S5{3eFG!#WwhVp}sWfXwAe(Ek)D*M%sstpaPje5oCXM+lb>s!X-x>NKH zoH=eA18~fA=X2!p14AAwlMRJ)r7FvkQ%=l)roAb@@ z8O?d>heimW)@=50^53NQVK-vwuD4;oZ8=qiSbHuhBGa1nMY!s*2W!s2TE{{V_4dyk@eF?W=3Qbyi@a3;=oDvOkz9wCfPuu#7UTYco#BT_HJH+8 z@#S9)s?NP|LKyu4#Q~Qnvx?*zarS%0d-|CozWiZVTlOC1C{%Tts_J|dsv29pRpPb! zTSfeVL#`I=Ey5P{^RvHxUbm!w#nO-GBg4aL7b~^aSU}t(R z-Zg^x7iW#twK@S~zHP^_<}8_tAQaZ2nD|zoV)U&jI`sjO7sKRvQ+uBKz0sDJpEH_O zQ+=>mw!8vzOWG0{P0Qgt8yT#KRI9P}3KR#M_9`-CL->^^T`5v~ z6`vW8I@T3KjCycr65Bu}5X!rrDsP8Wp1or}^+k1#Z^bFxwQw%}%$G(ATS>U0y7u|2 zYq`~!>nwF8Kj(UcJwd9~SY1aH2b;Q1Uac3xU)}3yz|S6YHSy`JHoxUtV{@$v5P@qg z%@*uaDvZ$FCscFaOU*?Fa65i+gsThB>UpL%KXA*?5PtS2qnazXYqbw~`VTPY_>jng z`n)Ot)cxMGTKkTr&!o|=HLSsef3fq{pCCIga3J~|%@1BQj_JK8?0Uu3iuI)oh0c1y z!2?`aA-5ohOu(*MmClm*xyi0N{PmxVrq%7OUHR6ZAz`E|5d+mVP5`L7k|%KOK^MHe z@n7RMHiMvp+hs>)`-jG95*?0FyiJFH<<=A2UX%QbF;X7`+f!oaX;cx}c?vLId$Nn< z&Qtww!h`tcUyZfd0kAgRSnW~0y!bZ*o*zF<8YQ-TvJWbNZ)d9dTsUwU&zE0;e9G4p zVUAlxCnm^`oIW50d;T!;bSO|C`hG=9kA3BuAxiN>q~}4|U7fkn0R;9OpCB%@$DN*b zJhiqfk{|pHzIf>Q=FsMh;LGiv{lHFqhg5deXc~pvJz*j>wBAH;hI-;xG=KQ2Q4o7v zNJ72i01*v#cC1T>alX(@RQB%fidEr*{*_}02BbN_1p>7@Mnn^mUhRvj19?Nn_Q_;sV6~Nod8hA3{9+OnMicMA2Ir`JYi9Df=8O@W= zy4tY?q!ir{O3|OjPn7-?KsZm~M7uw=<$ZtdAH@i&bfuva1G>^}f+xDtUg1hjc&j?D z^w>fHrT#RWh^G7r=T{GqA`yFHGyE&xM=+E>5t3d_i^iZo9TzpwpPm=L(4U_F8-L1} zDE(=UXJ`aJpt;)e7R;3%O2d-e6@Q4irn8TUJZSXy6~HUXrW>jqzNFD#k8&~IDa^H$ z{j8|V=yCyCDc*JiR3(Yzt-HxBz19{AuN?tL0bJL3I7|&vPl7QhXQmxkP$bn1E|RJEp@#?k*)+D z*Kk-ABdF5#P7~LQR#9xe;EArcbP_*!6}GdQH+1!k{Z^=p`ra9$Kis9piRl_5G0wDB z+#g!aWzQ%M#)@Do2}Rs4yoCUOMLK*w)mGXGgBUa)cMHqf!h=f5ja=`u!~PYLpUGrm zEiOKmI!Fq|wmRG^T$ex7*lekvn8Z(Agmu*`1OxX!UYtbc9;YYaZdK?~fo1KibFHbX zRl^$v1T|)TBL%GF^}>EUv-I!4sRp@Pvmg9feM4FO8i>^=F=mS@Sw&eJiU%igEe7uD zIXb7XvtEBPzci;XiA78X`Me{J*n|t4OxhJQIY7Ji#F=dxRBjhP73Z>RQf|Hcv@j}! zv~cZ7g~eT@6fB;lmrj=2pGOMN&~vClmIYFXpZ2YNSl}QHO<5(hbmi(hE!}f} zRy!!GJ%LyW-A5|j`&h{xHNwf-|1760eA{Y52^Zl4I)X2=e2(^k%U&;Bb;awiP394Q zxmvO}C;{OguTUA^3nb&gU9N0roRL;R!9zQ^JT@pg<2djm z%NcPNFSY^odtq3>?`I}ipD{p>7MCN?um(#B>uw+tRJ}u~lXJ2F-6ICz9|;oj|8|NTfd5Ad1WU-G6}4eI0{*d{E(xGJPuUbQ{TtI8 zj-ZMb4~=336~|z0IzQIil}Se5#HnCf9DS3f%F(w^AJ@p(G9d>YeP<}a%3<`Kps_BZ zrWMYi54c$$0>E)nxWC?ID*w8nS!_q|?;2N)m9fprwfUXPf`VCR!W2hqg8-xy;=Zo2 z0*b>mXbL~)pV7#?ht2j!##0KUJRn0R#AoscJ;iHuF7cuI`~p z0*MaPk)s6!m215w1PqgZay6sm#6Y3#^x@|Y}FF`KTa%P2Z|nv9~w)8v8$L)l7#g`sTOG#Sdak^&56%lN5L5X12K zXV`QcXhQ!7~#&>jeFrFF zQu!SzwZ|rXx?D!onhs>?bo-j=Dmdx&rpxK}GlC9{P7O~B2wg@1D>=LLGeY z6p9h5d4Y;hv=Ac{1z?0)OJx@kieg}dq5zCgUxSy!bWVFubQt+!z5dQL8KtOysVFs4 zd4@MAh(3i;>IoqLMyV&oFN{)8f)S^TYZVq?O4p;vb$!5%xEj3ph8uCXKVDSqx`Vw# zRDv<>qyl)wuSra^u?ylW`kG7GcZ!AFe*0>=3|YUE0-W$c0d9YMHeK$#1rW~j>2!O% ziWIy54dnJ4!Iwen)#(9)R&x(n1A|r@j|^G|ra;j8RLDbv)*D1Xwg0y5zXn`FD@b^| zyV!qw-M?}Nf}!@`2uZKLMU&87hKd^KF2lqxbeCbCs`qnWhkDZ{_K+LJB&*Oz_)o|% zb?3L+Ri|T%=sX|sd>`?ANu2m1WVFiV#bl3bMS%R)_A^{p*la<-YCGn)E+ha5v{ruW zY>%*}mEY=7C|>bu@_OC*mgX4#+$`5*c7r0UQd=7bVCUHgm^?RYWDI|4wre=Mg;W$> zAv$m!ncI4Bj_WJ-FsXt5`hZ7{(D!=e2)(Qnwz)eu$qnc5E18|}$A8|AZzZ^%^GEy0 zjwTaafAz=uSz+N`VHM(gk3As4^)`={;7U+sKbh>2{R9(S0nO?iEoZvj5fY*WQ@Vl0~g7tPYNRn%=5QWBp)pVdGBE z*wwCn>_v)A7<|9l<+4@5k5pg3-Zx1I6WrmuXMB#J15Yh;b>M$|)1#iPl20oB$68-a z5Wn?W*WAE}><=ms%q##qf1Rs6va@_#WN3;<8!^*2Y^L&k2$1w+*gIzUGJQ)NaWk#Y z{{V_#!cy(|*~EIMk@_aidi&aW!M4~bxIR<>anifdL-x;`-{3mN#`;&lneXVCa^^dl zltS*{aEAwEJoW5|1U8eD;BtK0OfutLI5S|E-8l!+Je6ZvAD9BOgg^6RLI_1QH>46E zv~&w3^HHeJg6t+j0T-nd4J&Wm3Q0{Aie2}ff2?0HG7t7_PcP@4CJkX-sz@wIsGBnvjs*W|4)v@w+S3FUN_0=@6!VFr%$}-rklz|Wp z^PK@7(`X4kNuzy`)&afffLCzI+LuUW>|zuRsbLl^g`%LVIfMjttwYj4As&RJ9ikTV7Eu4{*3%__dt*2m4plqp*W+tkgUbYzo@n(p710%Kd`c??c$TJtB$-m zR;uk-%3COGw5Vlugf*Vwlqs@AJd^()Q-F3iG?I+djy-3fV z!=L>UK5oe-!l63n`l}P3r-L?X8C-kLb)Kyy`2V6JS4%}^z~y_iQ)5(o?U?JWS_goy z%)fn@N+8tv08!@?0sOD|s}L6}+M9LwilN@z+iJc`=cmMb=kOsvz*pk;5|L1euL%H+ zl6OlbLXdgR)tTeo_&HMPU)1EsQj>e6CbfR$6(?NHG(ETk6LIU5kbWSPSBtNF$MQw3 z0YCo=oCFb9dg>J9nFUFdylARx zFzZFCg0`|7#ECdSt9F+y!DlS5C_e&!vc3g}F;{#Gt|f~25XW~PY203GCS%vp6GLO7 z0}TG2xY;rV?#i34o!J2pYI36kDhbAG#`~RgJ;=&P3vugqsRH=6)M{{ngkpF0 zH=`@R`$M>_Ay!CbjdkcqjTOM#m>T;n@{CO?UCFvC>T>(PbE(+=x3X{3NGa~ALMfgB zv@exs00D&aB$e7drm>jGF}WV2Bpe(qLuGV72MHx=9Kc(ccIrqB5ovn z+u=fzAw1@I?S{|_z@iQnMTAxkg?YKxk|K1dhW?f36Aa~0grwI7qM7JWTSN_XsIB4` zI@H#`aj1r+(xD#w)U_^@1|^w|yW}(1Y<3@!0-fM)1@H>6XcUi3p|ZRW=`OD~6wb&-Pmgg>*#2(#xUGe(&4voU7NDtN`| z&_>^hx&9F}SmgAa^=I(`VewS}7Q5rjwvm;aGgls%)286|%EgCgM}-g`2*j*PiV7Px zLs`%~(2;jpBR0k;2G+y8TM89>HQHh!F?@mYSMLaY;ar+~n?x!4cF0=KleTV6O2O7y zdjEM+?E^^xZjbeyr*;eV;q%bQmGs_FDaFc%1qL!Xf^x#t+hPzwXn&$Vr}322tN@(+ z)bHaYcj5>mYbS0s<>1?i6Dkl}rv%?G^A_%*2>%N{cDsev7dxjrsf2q2NQhgf0dyf9 zgmOfi;?o$Fpy(kKiXL)|3L`v(Vqo$u1*qiP)3hE&36XqDaWVOp0+8Pqw4Ogdlpd3B zX+7LMYyplWl5fEqamJ3{;Lnq8T5-8Wgg#-e{04u#gcZHqHNqC#U_D_a;gay`9qB}5 z$Dy|6eCRMZ)V318aHwrH-#=pm##DJqzM{5yTYwR^xQ=-n8z2bKX;vQv@bcYsYmG)& zlb6*ogL(Zft{p62Q5VB(zBXT;O=r!QIk>Y(IgW(WZ3tEl?)3xM$6QTm> z5gyh(A8sCzS-7NJ4#(X=RPXnEWb*f;;EKcXFZ1Pa>}+7>#AXUG9gce{>8xDbs|vy~ z7dLo;vb7vDp*O%KJzq66Comg!e^)l2)2Mzmx2KiC>&SfEKZqnadbg@1$r_C@0mQ*O zb3RFV>*J3besvDh7RXTEgB03^Z9Qv&%y=6`FfgW%TtH&Fu|N*ozX%C!19vk~4;5_X zy)_1%0j}!OV`XwGhmSAu~w)!jKuXu*#76 zaiY03K*)rZX=AaIS)1QF(lv%P6QpSHY^nfW0XE%Kqu}`->#k_Z-HnumGG=yMNHT7- z2$qOiaLy9n#!O`$}D{ajrxq=|5GGs+93>dOj3Z59U zHY}7O>x*_~dTa*)rXi~lkquW6xTCn8Kyd}})|_$GTtQ6aca4F?!xlmj!_PegpcW5% z1r*~Cv|pv%KIM;$>xObb5h=Ijq|_dO-drdH&`E-U0qFIGBmjK~M*L<>x6lm&iw2;E zcL@kxIRGm;tMucUrT+wuES3%b^=EaFvbri+F~SN%P?em#8Mn|@-}*s|<_TTQ_N?)> zAf0#4E~bYKuO+QYyjD(?DJzUb0U9ME5p9#29#(>4D56jiiuj!Frth;XT8L4I0x$}V zrlO0<9mT*XL;)Cu4uhkM@2B=Iln21OL9gPI0P0!3FcjTLnZX+cM3=&;+x3Du#-X+1 z7sjEr*H#&a*7h>D2Hdf&Syaj6C+EChmmlqI?qR!$I&hEWb_MW?U&A1#*wvEBw&jY2 z+--aGS~xu;i|D{T^*kCbN}Xy;LDh`>)L=Z>pQ_1 zW7f~t%9s^D5MtIt0!(ApEkr=IsfNk6e~==GD%r6&`&a&rV5m(sLei^m(Ij-228+Dz z5-EP6yF@OkdYATQsOL+zB^i!B!jM?yOSX;o5l`?DPmsi!O8kZokZ0hNM638MgUmtl z&IZ}@eN-2~`w_j3G<|{7dLjn^5sM1HS&<|Nw-JAOiOcW1i$4p+pLycX)8fw);?H1l zNqDOG6D_XLjTC=Iia#0fXMy#eQCp87w*g75M>6Y?#Coj09;>d$YU>xsM~_C{)K+rG zJ8+SEXCL=jKJJf-U&y_W5COS|dAWNAiC?RnytuW|-mwZ2J;akqeHK)IScmj;`J%@P zdNnVm0KPA7UB#PSJBzCe+lfE>#T^`Y{l`%8wL9M4a9aGrkLjn2Z}9MwzTqOrAHRrs zRb+W%n)zgL42y}hEk!O@Gx2AkI4i(&i{u7k4-dDY?-IXoi?F+x3ghY|O2jc7^mhrz zg{~x?bjjnRHgyQ*D;{6eiyIl{7G?t~xG{BoxGO!oEwEEZRr#gS~Y zp2i+gG_ffhpFKJxpfp5L*7DJ$TSl2z*ilkDH zmxb!#cz>Kb2A(I47;Wxtpg37sok#ggqs?x1%Hs>O<0>KAM8fAN?iyo$3h%nF$}_)W zR|s!mB5W7oW-Y*ekrIjRzUZG-74Zu_>Chtij>NFB=2E@>V*cV-vy4S7hGKM1X?~;~ zsRXpvSz(L$vC!f{QGY|Wh0|QCwdVVs<_)avKTx%9JZSlkRLdh>=2?vm{0Dkg0&3sC zrRRHDK()@&98o`yFEBq3GZeo?Rt9iNp*f8eE4c75D+BnOLNiM@7RwCaJKvZOFP@Ay zYw?otrpHmb*vbWla(oJekmf0NXJFR-n?%X-S*|;Z%;H*X17VI1+J3S*O5d@VM{G2E zv7NLO98}-Fn6JEGj@0hrB~#3?Sn0Q;>Z@PIu zdyJ4*E${!o8yfR0kGV+SU^V|^kNKwKMXS-;27Y3OS!$Qu-e!wEvA`nPC!e2beiL?9 zarH{`!7S6mzEE&thaI!cZ2hdVLsS0dE1!q(*g575$7Qb_pd9T$Nc-EtdYi^3leQP0 zsTo;fa*aPX7iQC>w~+4KD1Zge7r?_tW%uW{)#H}%l%wO@vgS+t`W&V`#w?L(j~}hl ztFf=NE885(>ut`e6Gp{`uPf5qP6!xm_g6dEmhYZ#h6L&9OJs6m`VuR-@!Zn*kn*x6 zW*trUERj)jCTVGkaLQ>*&?)tWOE7~By>k4X#*KJv$@|Ittp)GY=Cg-ph4AJ(%xWls zm+UfEz@0I#FEd-SNt8D@UF3QJpaVhi5`O3%V^I0- zTO@s+aIe{mAN|1*0`KLlywe=cFAU3$<>9N$MtsF8a|my@$~>$+&p%mZX0R8D6sWOd zmd4&98Y}w>G}d{IIi?y3cS1#uXTWA9&$ftT@WU7WMKp>$@2{jMp%EMN(zNm;Yt7yo zyG$zlJ6ih5%fMexWB5HA%pAU8gL$h4>e^`bX3ef6;)+qYDNno6%+%Xnr`*XKnciWj#4L--sUu(Sy9Qhv&3cIqCgg5Hyb*ZZliL0%2L^a|YSDBIgDu+L@x0*54 zRolz_>s!qf_A=!v)b_mqP=9-owBWdx~=Rm~Tz@`z?|ALl6I%8pQYAZ^rRY?lTuLf?8gDzxkZTUZi5JhRtm8tW5SX1@*2V zYI4pAbB1C*;6ZaSdq)xG;3`QxId*8@CLn=M=!IHd*Tr2stdss z6<0#{RFN^-)xaibw;#hkK0jZ=uoOi zNAp_Gx>vJP1PSTCA?cqZa7F(Oq#w;Mt_yC(ez2p=(4myluXqX;r@_np%&9Mz=hzKN zfnorq>M%Rejxs~jdFhL0rdR*XpLb7ZeF=_`U+-zrA5IDseJDi(qk_iSQD$g8ZS;>e zDjdT~2oBPpY0+O!3KV@PRq}7Lqs)LeNvZsoPq;U-eFO*T@3H7VN(vNxC`I`XhKDAy zV|J7o@M(;ouYbB!o_hu8|Ds2hHZ5ES`yCIxWC97&C1LWIs6P$iOB~TBpD>9Qu=@Ef=5V4PG@DYOK}@<$lN$_mdm~iUM1^JhtlijCSPf=0yi<@DJ6k%?Dd` zu~;nMa?)(Av3OG5x7^o~c*@%_5$-?>#Z0a(KQ!7cx1;nPE93|TdM8VMCAYQD5YLaE zHcRY$U{s2$glLoS&=|!DQ`v(&Qa0@IXz!u$+gN7Iti?+F(6u0<`7f zpdXV_@L|cykIZ)LfIs>B3HfqGK4M`(2ed4@fRDO7rK7~PZwuOo5dcgV@O>fIS#z?+ zP7!u{mKG%PZPRDe=ABy?w&AV{@BTuzc8bqG2lv2L!v4`wRF|^~a}@iI5CSV?hY4Ko z$MRkHp3|Rq;jcVVP|rpKH=dM^tj|`duyW(+hVy18ojJ->KR{XQt#iX=t^_I=>y9!$ z{d4n48#0z~Ha{N$HrH;3@rw7jed4LwRg z>m4EBuylAVLyWi3p5Q^W&F@QLbZxAj2M^cDD>cRBmUY@{(45efYmopNlMbjq=$ z6k0P%pA7{``E6MVDL{XmiOtZLl=)oI?ki2@<`59ZZ>1?=;VX;+_BaX}@skIG66{dR zQ97}k33H)*JDRBc%$kDDHYl0`oW0TV2@$l#!R(-9ZNId}<7f@hq4wNZ zkP$1q3_ZTFw-r90SR`k+RDAHS;dnx!k14~9Ke$7&BG%oxJnNDbjLqH`4NB_g>@){%P*e7s9=n3*9li^;NSUyUtE38@`l(`l>mPEh2D~Jw9Vm54M>=QT9bErE^ep z+-Fj%vtCo4zfz`#magQ7;+#>Bz2?4MV~_gL(;nu>boVCqFo7fYB@Xuh_9B5I_lH;V zQ(qRv*wFpBTdyZSpt!>Tf-}Cq+)a~Z=>iLiyK%Sqxp?>qq^ga!9 zcVHv^#DNx0tLI)}!}c3*5(D_3c*Rct&>k(ChP%_Wx;wAIE7`BPhHqyxoANDvX4c_b z4#Q^2Lc&>vk-4j6;GRoLRT$a0$_gW!NHKQt^{eEL#jaJp_`L@L2_1$yNx6XoUhhCS z$X?DKBt)^R11ffPf-1XuMMDU{&k}TWSU|_FPSLTe6M)s#`HxZVci2023YB_#JFmn( zm$7>K)JE>>^{-aRo}PL2uy0fu+8T*F7{d!Ob$>NJuGSGj@k2Y~H z*F#rJ(q>b4Hx{wl$6g%QWb5@-^KYBFU927{5M&#uu+UMG4dKTUVP1>hFnqd7ED;2HVQ{0K68j>}gHI_}8u7Z?p4+tTN77%Q$CAsWQ%G%Q(N1Qq;)LQX|@$ zDvi@!8VBg3aR`0OIE~gQpOvGwWgLPkjf1!9lx>rFWfh=CF@A)Vr*%*M#h$& zQXrT=BzJJPB?eOB$f2Gz2n|G;;@mL4zq=KqP&82Ij_ypBPq?FjC>mD&r6Y_$6sqj= zVF3Gl(#icYTSBNR`z%}|JI_K=>a!1wWTnaO7Hk_SM0ISk)NyOo_UR?<1N6~8guZ2; zgM_HCj|MrOUEDE@VEUWq1Wg-ei6V2`K?#0#-8PG%&4X8EYpS+&gz}66~JY@hx&0GGiGICBB2)&e& z#3^k5z3#F6Tq@4Hz=+v)46&q}k?M}KL5n9B!h_5I>E4DtLzo7x>`H^-oig<~l@=;A zJV^J3yp(qb@C<;Kc_RnzV zF&k7Y*PqRBC-aYoE3?`#gjuH#hfZOGihALxJv*>zL~1mv4NX+ueY$SAt+F!fM|QJz z9SQTr&31zFK08R$Db9ouVFM{dvzELa+D6|43cAge$o7&_)Zkr~1`kLLVy8TGI{@x7Bh8Xr)wZ@ds0^sm1kQwo#;omu9JM-kCux>1IopNN1*SK@qTtLarX?MOXy5KEG|8+t9{Ozq1*g#SX z4bXR;bm8Iae0{3;w())Rp6mFY#s#sgC#fLq`E*n}M={XDjg*O`80n3-=*?2}U%=8y!5wL zP3%<17q;U?jf2{=u7nz@=;CsC7bAI{yx6-rKYtLEE0t=pZw%8`H1eTPI`Nd!$r#f(xJ$(Frb*Qqk8hmjp1^GMVaXG# zmOK{XX~mVt*Fuwz_20WuA!J^eC3!bp&*L|{ z$FSZ69krU;tso?{seq!Q94mP0Z1)#zgg>4*`5^r|Ly{fFx6N^Lt$>#-bjR}a5*Ym^ z*lT9PJMo{CKwKP8;2>x=k#U41X0DeDNGGo-b$_I-l0@I1>rUk>=KI1YOzG#&bKl9< z5PCR#K07cam=B)s?#FH+MIvbGYu3wcAX>*yhLKW+GAV=ZT#uVj{D}qbBia)}l1c1Y zKeBKGMyG4tcd@4k+>dIeq*`vLTE2ae8$Rd!oYWIyY88CW688*NLEvg{>lXsWMpdkr zJ8Kl(kG*C5k9~^O4!TozB?ZM0OIpew#-XeiFZ;D!2;@}Z?~1$Y1@NRs>v?L=f+*hX zi@Sr%7cX=FrLj&Mln)Bg97!82?}Q(fy^}B>E%noyH{T2{GK63Q9k?44oHMMofLhK8 zfiSmMhw^?a-P1KTmZ0P8>+Mx;C-1w)w{Zn;v#wd~POpsk$r^Vm zjOE+b!DNv#@H29b)Zv&7JR+qaO>ezHep&BlJxkM;^~(Rd-ks%OZ~Jj`yy-O@{P~VV#@%%m z?QgkzG%F)CQ0`@X*UgaKu#CX{Xq%GuVms~f=WlU0)Yv_w9@6^{Pr1!q$o@m%e)KGV zxKq*dZPbxKZ)pqcg_9%^Z1h(H`>RFJ>#rGixQ}Y=6C!{R%<;c5T^ZQU|D6;pSZd^?5CZn3x52qx+Y7e={HDqeSIGUvWcXQQdhcw+ST>o{qCI_n@`Yv>RL*HLS6Hvx+tr*WmqbyxC5`*HP zNSvGDIcSFU)eL-8v$JTJe$twmKIfa6UNZC37)hOw^Rtru(IL?!#f4_O!H0*VqQ4XE zzz<-*7r*d}#_vJ2!{b|r3S@i@8j|?r)g^B~;(m~(^l?b(>s$W9qo6GovYZ^1>l%UlYGQ|6Kkjl%e=mAc|m=m1F-W%Zjy<8lgr&BHI_u`VG>j8 zO_+(NCvKA8?_*})Ab+d@Hmn@xA_ywwX{-$^if??%J(JBPsK{~lCYe@NMhcL|#ZLxx z&^D2*uPt_r8QN^V=NUK#@XCs5arY7=q`%jq{}?GyGD4|J`+DAvG6QZhwlToGxQ_`E zGI-x&@GU7o2D{%3vKnCJ-Th|An4!Jzqrd&(!e}14$BW3TjRYR0E(? z<;8Whqs-8u6chUrdD)9FDh(y&NPCb)JC777+EA*LGr^8BLx)m9+oyiaio1?rA%|-% z4jV{;;sB*8D~{VyX6R6ANniS^dvsOqj9GEfy!bVDA|oCzx_qMcKcMfR*01?MOix*(lVC>muM;f$Ns6a(wwULl2ojjS}ChFjzeHe!psCNAb9 z_e72Thmb@+LnYs7Dfv!P3Q8WOAF*`sI4MB=9=3FFyh=_i1R}zTWv|e(@qKs0b!G0JgzmcjHn;n7uh?6qB6!w%NQp~sWQgbmNC91 zrKo~0EfxH?N@G|N9O$Dl2z|>KA={K=qA^ZNV-QULvy*1qW_VQFBq(tzk5ksjrg)>p*SVV4`uJ_vowAbSZ-JocErO`c{E zRDX+V1cuQ-q_a&LZ9TYJ$Wlq*_<0?;Do2~)HP#ZVTZP-T%R z+w6Vh=|A1?vf%B?Cw&&t_3biX>7-Pdr0I5Pl2}qIRG>BHm;Qp8c`#BvtTS)y9aC zQ%<0d#vt@9W1Jy0(HKG$VGM%m-#@^RhuhS&7kNZPL2DAPn@MW`b+AU$=$#Q(%B6?!LAzLIwzCNX zG!E26#SwgYX8V6w`|kKCi{^2k=LjX6Ktf1DNgxRjkeXoVEg(n_i6H$dMF=RxhK*uF zd66QJrIQGPB2~l#MF@hZ)Bpm~Bp`~4DEO+VsQhMU_ipF8%lUqO@ckzoGqW?ZGqYuO z_t~WYw8E^4_Dn{hXuX#SL$n^H(AJ|+e>}q@lTbUq{p2!^xLVdM4`*q`y<~sCDsM;p zlTS^wr^!v&4~RsxFXkLu1ytu8P5Co%_9EMf*VG>D7o-px_H$|2i_)-Snk2ShjUt|3 z*`COX2)Xo<*n#~MxZw`$Uj&WZewW-z&((dH*nllUw^R#eha0ff=gJM(q`5i(^#*JL zyy*Z_Pg}jYY6BKj#0^-`O>V$il=N@F9w54*dBg^+@tL$V-qpMHHDc5uY%me8?Kwa| zr9Hin!^MZOM+50_`*qx08Q0?oR>$?rU=XqWI-OvJ!OWLr?aX=7V!?r(ECUv6e^cx^MW~X2Nr(#Q&)&cxdU5Kv#li+*vxb4 z+WWGjgc^;6dt93Z6paMs`1p1AHsV(s*_6QM&l^!cAJ(j>rs&qZ+>Cvjv(+Rn*^k@Msq0);9HCB2B1&B&7R+Xld0hLx7 zERdB3Mf{Z}mQh3-z3rPr17e4X9IWkrS=;>tUQ%t-WNkme+QxF+Blw1t(N+FLK>bw~ zTPoajac!8_-P(TEU^hq^s5tJc@LBEb{_h}e@bGr_Mix3;^-s&Rr^{=2vWy$v@7mep zt;~Exby&^$0a1K|Z_2b!v9JuVq&j{6i?k$E(r-x;KFS3C@afjkUe{o~1Ekq{%vW6n z{0QzUNUO<^ChanxY`csgWwc4V2q-maLtd}5{Vnzcq4pV*O{PGxTK5Fczt5f?Nc=9F z6F_J_F<-Vb$~M4I_eh-|<-2;=)8`g_4Nne#4!HXy3t8|VRw56+i_v%!q!#r$F7-X74!Ifc@5Dy zQZX1Ahr)U#sN2)LJRd)ljl>06ak*?3JjuqBdf03GuOcc(Q@UodvL}6&jV8@X;g0!m zW%%r`v%(V($RZY<{jQTX!Yv`P((Bun5&I;#B~(5Syp3Bz6~r&x5~`3FYD;KomVIW> zmJpBXJi0W0qPKl7t1EZ}Z41@XP@nuexzrR^mOJyJ5pcuNEQcMwYwa-<-s8!!-_M$B zIb@fp1nIfW@^F`kCtm1YhS%6`KgoKLvSMK$?r<*X11oZa30$x1cgqv&`mNb0D|WOA z2;4O23^R@UeBzd?1#$TGZ<)<|S0fd$Z*I zF@bB|n-%Y4R_tgK5I){`DRl^YiERk8Wgg$K7p^WMG`J68)&TCluk)i?3K6&)VQ~1> zlJ6UAZJ>%qeHM{S$*VA;odG z`s{c|PyWzI9J0g^Y6A*>p}0a~Fsb-TlK*FvpVVl=KN)H76-YRSIfxJ(mYeXeN7-E# zLeUi`Y6Gax`YmeXeF82YBuH#EOG6(CielGWL4iYS;PM`7g zNst4I`#8;$T;@;Wtrl?`fVPoZc-agN8vke81O`9+feb==n?C`6v5#||Advr6!vCh` zk9#>K@RzF^ggwokqZeqYB6~JA^W-P&)hycJssky{F$rE&+u^p5VF3E?4q){OXAw45 zTCs<*f1>>d3lw9aEh&fTcaY@kPuXW#%AsV8=g4RM@oc3K@*L0DTUepb*vBw8kyo;w zFF$MVZ7Bz#sJO$K|(%2B=4{@emyu+NbYPLSy4MGK^xmkN(ATdU(4Ab6g(*dR!kN^m2WK0?@^{vt@z$ zcc@Mfu4pw2nXoo~^-rPLa&U+0d#I8)5dQ;VqIami#d`NJe}j671MyICu|t)hLt9;6 zK$(x8W}nU|0AgYci&&_myJRhsu0sw<%lUn4PKGOr^5KObpK}kqV*kxx=~kAVxa;BW z%vdOw3>p$7I=3?*L>ulx5a`@{7s`E$oQ0vhtG-NbxKMhRu%_O9kTAyf+mP>?3GJ7V zOXpI6cCH2LckWce6wPKK6V9za+rHHzLpygq)JQm&6DHcZb5*?ypjst6SAF14MV6Xt zpKX!mZ}7}Zq?D{GdYE$49ew*iJL@Ca01w6W|(LbxZrttA+cc^&&&;Lz@`(ivH%>i zh?pjz#E==@I?L_%m1b)Ksd1TZ)gsyERuL?=xgCHIZLW|Y&_>&3-S+9a1$3yjWrqr! z-J2lKr<^f`&wSaa!-@%85pl*U{^XnX`4(!7Pcau`KL=A^cnh*3${P%sRZ;hDN{iQp zwrVAL`66*kOeJrVx9w&rR(Y`wD6}5hqtaq&k4glK_GkbIVUI=xfqhWD#j+1-vDhCp z!XQMIy3!z(xNDQWF{7NdJ+cT}v_~ax<~w4RN6Ezs0N=jZ-jlfqxftG!O5F3Vy`hC# z7$im;L}?MVShiL$24o=e+j}x7D6=gl2FGjBU31Dri(Bo5F>$eY+9H|6=Ru1T2P4TW zl^l#D>BdA7mY4;)q6v#^3ET?!a|D=?CsehEsSKrC8&^laB*N3e2J9B<88&@BJsG} z&jf)vW!j3~4UEMy3%+ZK4qrfyHlY-zlxKlJWWiMk0kVx#KfY9c4|FvAx)eua&%I6j4;Hi z;kR`~0*a#s1gOsHE+4S3G1!lRMex|z_e*3~`8~nn1P1dubE(YhN-YJ(YGncY%e$7! z{<8d1*5&Q0c z6_)1#DNBrJ%(ni9`iTkoEy6@k$Zskulv^ez2=sNoWwPlG zTjp=N0nJMtN&?oHOcT~L-Fk{J#$+1kF*XRj%(o~&$A$&!iw%DD2fb=xp|IKGyxp(Z zyBf>__9tqqh&pI-3zbQ6xY$4)eJ7I!xk$>=sbVC_zZ^*ESmUBbOd*@H~ z=YuuHp5rVLQnIEP8sdNKs7GvX;w4 zEt?=P5_?K^=Ah;NNIWw2fi`BX&)E}~qc!0Ijyd6ube_38IogyK9n3ZamcZjFYXwwV)0=`-7aOjGtRmu+`H!D8FJ2nf-3FA)S;ftPBtKfb?zq!v`&`NdI;1_ zEE7U>23V(xY^W{x$TDD_0M67rk1F##PGo5FOi+TRlw=-KYoEA$xnXOOXSI)_%*aRk z7<)wM^-Kt|Um*zye@171r~-DaHDGaDmd+p5wrqNYqqXg$e6=kre&Dw3NBQ!}qJ7pX z4>dngwf#IF_hli0JQV3@L#nAx>Foh)oa@_xgoi>D@^R%I-Qz5(sP?jUiQH|?@7IaN z>gl{M*As~rrkOW|QkZ7`C4OO=`B#3ZG_%5YQDOY+j$c>e_eD9z1}B_1qa4qh^Y7wQ zBfD4PSKfv16k`i4%|KUAugl)P&g-(@JW?Q&xvzx=Xsj}_-vqugnF|om+iVZK zMW5Uukat_fyNBkDeR42wzNsOMA(S&F78HP!N8D_)K-C;jUewJ-5fyNHWuX-l!6T`T z*DQi?v+Ze84maC^%Hfw<6so6XcfBqLw!aJH9oA3Y?SN;Q@(D{E*w9N$l$VweEDmh% zDkHu}5a^(Hlo1Q9MvT!$REY_&#wj~tO{eT92xHtKfqA1aIw6-cb_&olb_>)$@xDfw zqP;C-!rse`9yNKp#*PXWL737VeyeONX0EUVbC#7%aA=(7c)$Whk5wY&&|^W8(PI>< zJ+{#5F}|pYqmZ>E9JRxmu8_^DDZyg1!f&;Dt&pES^d?yJT8|a7Sq)s_Z&vc#2kkbs za}NU0ZA1Wd+gQRGGcBOUOpDMg3ZTcoFDd=Vy;70VJd~$FQBA< z++%*XLM9ql2t9h@vhu{Q+7lwtFuvkxZ5>_Nc|wm~$28#V3Yk>xUm=q!snTGUveFW* zN}C!2O0>!F_G<5lwz1ZM)Ht_ozEVb1bArV#pf?~yKbk`jq6$VYo_;?J#Bh)z!C2{! zC()Hw(&41?P~gh1e;1L)D0{t2F`n=ij)yl=9_sAqZ=nWfWhDkNzDJjYH_0-F$9j9; z2M>&}S2SGSql|g(90El-uXr1EbHJq?lsrI?dMLmuNIVpfChL#87ByDNZM1J>z!bW3 zSU4F$fn_I-$M?wKPUlfLqueL7!x`m%@e5~^`&WjVQI78gLk4-I32$`Z-Lf37vrD9! zkRqt5W3h(%M9;{(qp4#DzOlcf79VG}i{VMxj(+UFS_IjyC_!-U&nxBJadHkYXr1H8 zW98n^K`iEQ2IO~6HPJH+`CH7x;zF>)Gi|@FloK&RBPU{KR_cjZ!mmP2oQO3OLdAc5 zFV0lw$=Qws-lMOhQo_%IjLyu?k?P^rL_{xM zzD(2Gd3O-b!J*~rMYPnCEAXfYKvd-Yz;!@_4B<3?*jU)bdic|*Q1+TW**>(aC z5TU;6-}Vt=Hm&@@y`<@5^;i{{?ETGs`L%V>9HQeavcKpC@ z1rp%M!fchO& z(|OTczKR#z>Q{#q5PBRIml8|AEiG*}dxIaj(XTrkx&SXE%8M)KlY$rt_}$cNf}*22 zbrn@@F#95q7&q6BTeO0(@m_t%QPp5q1F6Lb&%Ps2>59D4(H5vbj7(#-Ow4Sn1LEiw zsa@o18b=8_j?~T!6*zD_3=b55p2GvN?H;?L7h!k>xa&tdWBfcSGu{P_$1JeE7N%w2aqJFjl8DDVmrzl?-0Bhkx`<^EP$ z5+F02J0P+n)jc z_&VHQ;sP7I5vPVYNsedI-xI5ExGf(c=2E!0az^+8Mt6SXotl%&3L^rWm*yKIy7EFt z-BNt|k;Zk{Dq$e zX-AL$e>ZZW5(kw^^Mq~AvXNA%dOq9&QWpO7j%+ZWkDHrP$vff&$0w$F6WY`s=Lp-) z)#@Sf%yB8Zi&=k&b5U zoAQC#)iWFiSYJ{KyxWU6Uh24=Ng;S=sgdIs06TFV%!+UF@lg+SDWzn$Zlc)P}WOd9JkA{~vjPynd0Cdj&sRmLj+ z-^Pq*&T|}N>qyZ%w%8iK6pO{ut|o?i6SeT;A)*bM@8>}C?Uxn%RGQDbd$9v<>@5A3ZXS1R zIvc<`A<}9TIL6*) zq}l4c6~@yKx2nV7hkrOgWAzXK8f&#=Rg&M54fEW%M&bOS6^>_^lN1$wZ^i!x_Ps;= zMSWI)f1C5-St;S7!%F{cV0ZI(m?+I1(8c^^wb&9-PcfI!S?2zCwS0>Cu~m+Z5tM)z zEa=~wk6G>bldUEyjepZIENg`Z2<32G+j>X6?qvRV*+;AK58r}3?>)_(rw?!riz`7~ z?iO$uyui%Yu7Rh;50DZt`rZxe1Gf6cr~LZcj-KWocrEil|AxF#m7Hi^oLaRqcUH+M z&1-x=n(-+PxS9LxL!~0wr4m^b`&qz&!6aU_msx@5t#hQXze*(kos!4$r1K-INU`_} z#lErLQL*xi^QO)dvnHIT#jMe>;#c0Rutqqp2W*1Q-r$(d>X%4VM-quD;338IKxv=|`7i~sr-EvoVh zFFPvpb5$O#l( zYzd)u?{Z|B3)aYG%>@K;eVe1Nxp562yT;v+y+aVtISn`0!zTv$eOm=j6}F3S4~8~{ zcQ5C>?M{o)6;P`KAPUoFD(c7wkc<<$@hTw9w>b+_CUd5)t-<4+|kq=utt7ssGGSu z9tq;m9Yh>;#{)!=b_WzfcaTET9RUEh5sThF3w& zS|c~vCP8Y@3QjOS4gdOA2lo;^aWvX30RGWPEDT;)D;Ea8BBbcn^P${&)$dlZNNAn` zy0(rk>?C0TBed$GKVK`=+r5^mH<(pjr(+K_ix&XDW|JSt@SZGo6qRE45JHH8ETb_u zzHub5#srQI!V?-@*2#syZUl>cMrS_fr%?0vKI?ovy7;QPqK;E_6tFQrb=gtFDiIRq z>Oq9{wN%LYk7PD$;9dN!&#&95gz__2A^)9yym!vZ6?S70SR(+*kBcK=(^(x+X*S4D);>CXv5AB9w=b;?9ze{N-8^B2b~+f5()!@oE>vAfpmP}2JU%^&*J@htm0v;cKC+#h}c z_*LAx-yEY1Gig2F*xs4QpZyy)b843;AjSLf?+%Z_QV3R5febt9>(lD%WxG{A@Lu`T z@vXsnkaAk>F1+F2j^v0g8mYR(r~ii3)ULrYjxZLw@W_80YZxgb24$*V*CmA9PqxI3G4KIH-u908!IWrbvG3;_Hlw-O-YHTRXz+boqpoC&AI-+E^YO`6eO=zo~&tpHjqdfLO9u?-S$-gY) ze1=`o++`kHg1Fr8*ULQiW?APBW^8~8=~ZNz$C`gbb;UY%8%isVT7|8>qL;qw#f#`_I`puwt(=lg>*QZjV1(G^1%(5 zw3;9nKd^(e*U6qIR9g6CDSQq=B8$mN_;P|k;eY_)-6Q7b`R;%8NvSa^y%*a`=ut}2 zgscWq#$JL#8Sg3?pA!Vi0EDlC@Zvxdervrei(MsDT7NjFBaC;GAd&ZXig&q<+Lg!~ z5I)}cePD^fzzgG?iz{4(zzIs#3B63!kAZXjsk$g4Q}yOTu=uYpRjoP+AQ11jc{ma)V)<0{P5WYJK{vm zQsv%3ELZnVavBjY=z_4a)^uYVZN1$ z25?u}y-mXjXE6(7s|5gOVc+v>HJx9XA8(Y?!%qk$P7im3{1Vq4j%<{NtD0}bO=NQ? z5Q_QX2ZV#3A8y?!kFLR5PaS7RbLB=cdmYUFA;dU6yr~siFP2dM=4xjGiY-ZR>y@RI7X64?|756hY zOTXiF-sh|j+ZO~a*vDwYtFKkecjU~_XZftI&bMuMOZHWHUQXJ5tPx>?G75j0&iH%X zoO!H1K?U$vm)g{^@Q?FG_i#=#SYJ}kuXbcMKw)$Gir8ni^Y$&Bc0Rb5vpf@U-@F1d z=vf2OGT8_M6&bXd{f_L9D0zTVDu#P%rC?A?=Qs=1rcp6DQdnNiLi=qZvrtW``1O&L zI19!0g&lsZo`oiO9ofznu-Zy=4(RGtvO$}toQp{DtbW! z{8Q1LcQ_TD-5(ruEcBBB&U_ZWSw{=RmYRi@-YjRKl?fJSJb=Ji zXevSAj0X@n<1v9i%tG4}0?oIz;@gX0kuM;S?_h#JzJT!Y#cAlHgaAv9+bpM{AXrc1 zW)LbZ{beP65y2u4K%n$D2?C`9!Y3W)aV46Q7r0>__Zyf#XdXxCqO? zo`6vJ#Z{Xpbt+xK%m89B6-pyq^i-(fyK<>4;a!>XR)K%TT<8%(jY^ISRMLBNoEUFj zCWOMS>;(dFPjJ??0B};2-Dq50+Y(>xmJxca-J(#ngH3c@yVL}2a`hPvmE7u4XR%eX zZ^yu#s;WFrR~fT>;xU=!lbH4OaH8MAp7p%Y8hh4a@e6y_;&(&#tZzQyd?&bP^%hKY zRy5cj!~)p0{;B~!!85kqVb{85mNS{}cs@0Tv!|Wetn3!hS|#qdWnF^I+%j8aC)+rC zX6gAaropCsQhFR8_>A*$R-KgBom15FWs=c>n^XZzl+p z4hSMWmOq=C?qSCX6*4bmo(6{E{S`qX?<0!$b%H?Nfbj9wV@3FT+MQbQ((kDekYJHH zAW-pCf3!ib7>kM2)|=791s zy1crAcLR70c5>p@YD!=4lDqUh{Mf+z%4<$oUEZfDP#3~WEl=$IcV2MJzYTXKOo&VH zS3)Uasf0NDfTJ_t!Er4FLM+R;#HZvrM@3xHO3-onPYsqiD~`*T-jm}pDI~{bZ3VRo zVo|_9F3VR;Dtp1?zD`k`qlgs%9GRgj#F4phq4Qxl}QgAaGR1H*Xe#j^b^Q#RQ8LgPZ0;R_qN~F&i{HzUf#*EfOy3 zcmfDLeHjj^TZD?W3hf?6`K%V~TdSzG!dcnIKGg`aR-wyB$>e+wxCVE#uB~#eG`{5N zZ#xrs%;NMxeDYfuVwg7;dwJQl&SnwCnyHF0=S6p_JcihNNqPnT!9{m%`QH!c#g}Kl zYI+@fMzQcs3tqI(46mpaQV0CcN+*u{5SA`Z!S`*>LNj`+{C23<+pwY+w^hfS&<(y$ zDYMquJR(NJm1?8cI=8dB8cZ~RmqgY%I}*DqYgB-*am42BDX&~)X|&$C*zBalf3x1% zk98ybQ2c#T{CyfuTi;*}CgSf46t9jxbd=(u-e92gyn11!`M7hjvB5?o0ei*@s2U2H7wsH9NcbzqDyC7D#ZcXnLhZwaw?c@0FYWU!B zUaq@snI|GGc=nmQYSW>1=|i!msaiwlk{ov_j|IEP)iydBK%s zR^G;w8~5$N$Gz0#cCM%J=~zCJNZhJEFtC7>rSD)}24p?XYaHnsC%-cI=OgDX!|1>Z z_c$N4b=ampGFbjgVmRM$?9l{X;R`tTl|RH2&7;2PT9*Iwv2%g>Ak_Ayp^e!nVuoEQ zF8uJo9KKC1>F){r>fn)W@~eYupLS)u@Dt|?w{gbVr+jsr8&q9BBKsZ&Km6f2KEf?s z8S_%0D;?YTrs?o`z+lilr*9*ku+O=NEuv*b7+jlNHVk&as@|p((XiD`E@i>%um#7Q z={)JX+R^5KZTMM&_v8U*Q^VNBBM&*-v)x3#-+((q8So$)u!->kZ*$oB*d1B#1F+tl zCZlUJ_)&uO&Iej=tFqn}Wxc-+yjGU~bp%>g<`PFF|K*7DN%mjLN*FW0yR&q~Ku*_` zZ6N9K*#=HD;qT(>W;8@1{O)14+a^zsx7sGMI(2%ygqD!oa+^Fo{>SIe{0K@QPLH?p zoso@H)wkizHPqjQZMgj|3}W*L>#linlr+0qFkhbQWxrbKVJeaF_Pq;db`_8Y<3{gjQ3^IxXg;UJ8ws~ z20Z6WXB)PbV2rn1qfICx5<4mU8TK*3qjI|x%VSmqT<2COdB*XLQ4uNZ0>L9=D5x33 z?Y|ql<+48s5pw@caWDIU_8K7W=2NPg^^MgVLC&KT=cla*#d(zE{0c!L z=TXSn9PqyU5+X#KkG}rE5T3Tp)wWbmh2-our`d;j4~WgiphoVucnAk{?LCuf=U8_ibI$V4joV&WgAo0GOUb?}(o{WFPK* zuXn*;&PPmki&BeusJs|pySx~HAjhY=Yw^q)1JfY&x^Tz3U z9$KyeYfE%8hQT49pu+8J(7RCRobuqlA8oDyd~BF2+`!p*3FUT`a`m#5ORfkxZ&B>X zGCV5s&3epDB*T2Z1PAQZC9-@zV`dm6vO`+%-S-UrIKzA@QLR%Xg6&wVH# zmLbRsZC&zHiA5jE6W~h-5}lHEwrsk&Ae2{DX|LcH6WS|klO1H@k?!XRU*VNV0)Q#C z`=g{9JZ+gL%==x0YbjieLCC?t+3ZsS5auxodFu+UG5pYHu5uP?^kw$7ZYk_EDI$Cc zMLbciE+MFY2%wG>D){!yck}3n;K{y8(XKc7s<1j0Ej+MA&OZ2N=|q1>s#O+i9XqV7 z8RLztl(nK2tZUaQc(DG7|+v7jqb^3m4h9p*}rxxZz+y` zoHe4Wt=5h(Uc7jGLzYT-fg>C9aZ59snJGKumR3;nO5@`zy9QO#{!?4^paCCyquad} zY5p2l^w(ICm)apRuI4Oz4P~x-Plv0?G7q-eN$A9`~P?EWH z2amors1{pJ%IXHOSlTfr$c}IAkgJbg{$!G?F6pJziE5CH?SV?hUMc_(&r_3K`z%!f z1)n!R1GTbU&DegcTEomwLTPjytRf!JfsXS6b9YS8E>;IgsAP8+R~?H`>|-1|h|3!D zFQdBu!Tuo%XpjA=JoYESqG55_v*J#<>{)524t#CXsGT9Y{_0TdyFM8<7-{9gr>=r} z02#!h=c!m6R+Ih+OJf;C9J(LK(Fv3soe%(s=gnigk7pE$l}T#usmuS4?S8K5D0vpm>1b~(lOvU^5loDI$ z;U8Q**$0H&#~2My$zM5p?~TF z=M7Rxr*gNf1BgX`QL*T+jzkdpODHJ(MJZ9i!if9JarT?5hS{%>H~7s}lMNtcQOW!! z&6>a%TJrSFqjl_bBZQ9VdMX)R9{`BwKizO`4OH-X^SMIl`WLKf4Kt^NQfVewrR0uJ zy`fDdqw6UET_0AcT&rN#GSHwDfCk;@GpLxYHum=I>T(*a!LE|pQeD`I5Qly166~&?uKIjRn}|d+ za~F449hl5IQmjZKaK74ZSBNm}3B_P2!NKrq|C*I@b;p}7>i}Z0Em5)9mOMlfwk4sU zXiJn56zmFbl7{zkrLc*l0D3&r7}o^W7)x$I&q>V;FHg#H)h6!NdSUya($L)jfOx(y z%jLBwCEP78aLRTyXDh8r4KwpYDYQPMw;TH`rQL?!rkbF)YwsdGXCv?Q`(4E*J4rOq zJ?Amy?PCNhS`mK7eFc!>^VF*ZsoT(Zp=xkLJ3AmbX(?*}LebY$DEJ!Quo2US$d7dW z(BVMtp6#g?PP9M|(Bc44U#C(iI6 z3mFz}IoQ?50>vSC+hEtjtjGT>T>o0RYL>#7L47~ORhKt%pvIU8Q{7PLt9IA@!R0E< zE0@A2JO8EJTMpOg;Bwi&lx@eR5@kykdfr_w)lwLHT9}W)B<5zC%QpX`Fuv>O?yVRn ztgu&``%#F7SMZU)SA(fo>z*G(_gWT1c_}7Z}a{Xe3IWkh3z9)e@ATW4dIy2 zcl!rjdBwMGUY(?8HiGL!!a=3tp!+=$gq8$K9CRrq47#;=u`#}u?VsH+!=7$SVR!A( z0gMV}|71%GpSPGkTH+8)Wuq4Z0P#HQaaWwBGTMuE ziDu}x#?BFNj5T_4v=1+sUN_PZPax z?RcU9khSAIX5Joo5BUN@iY|&;_*jz=wRnAxKZ5XT^4Wq;9qO7v_`sooEaMe{R8M$L z+#}ChOC<-h!-N?1I}o5>hPU+;7c0fSrGzg)PJC&PZ1I-}LO2E|D1QM`Oi=zINUYPw zXIh1-Q`wLGb;66vb))DaT?3MMyJg*z85N2BeT_G}XS3=bYtP~G<|RI6nyY;zp@yOA zdg)n7yl`vldi=`Ea{2+4fwO-@UUs#xGWPc~9SLI*p+MdF71sk6Y8>$JuKT{h)V-#= zaxB!)4RzyUg|wP~y-?M$m>3L>a>RP;{>OE{!Nw4#{u=YYU-eHbj4?dtRafswLg=gP z!B<^ry!tF%*)hETOxHLoPk&_>5J_0sF?`}ISR^KlId<$n%yOl&HH2DpN1(=-*{*>W zYJX)D{gv$@9ZD(-%EEGRC2#f|SDeB261L-Cb7k`%=A!ySgbk29e|7hJxofVgf`!y? z8CFafh*&W9ek>1aS~&Z>pjT~kq+%a^Ojd2n&xci8qAIT18s|u(Iv^Vr9Q(sw!1d`p z(TwaRiG4D4#XQ;l^6lk|9dA+b>@clgPpQGxF=Ixs-Gl_y+zDgo*59LW1l8 ztJ&j;0uLcU_725I_f9Cz6|4xw8L-GX zkzkQCAT($1HTZD286iQPn|vx=*~yAfoB@lj%p4F658n|IWDi&$`$yPlfi+^q0;1mAJQHG}OYD4Z^Qz{~A`QJogSfeue1 z94FK`(0#z!PS=MPY8>dqNrYDa2c2q7^;zLoEm)mN828^to#7fPk0e|d0Gw7r537$P zbo|Kmmcc4~21t4|7B>^wXL16^2v(m-fExk#xEitA1c?(kTuw~>EX3MDJJK6y_}yij%aW9y81G8=tzG zFel-FnFpms4l6%%-4o0qbL%xrUX>vnvVKKQ-SDNHI0vL6F+B?}zg2r_!_V z-PrgjcLU;Bbu9$QM8{H@=-2>&S`4I6Fitk_epK6&BGI0B2_%IE#KP~SE*J}x7CHR! z^@v)GLeZ!N+NgMeQTugpWB36%#sDS97zhBw^LsA2CNK)c%ILlS2K(vWeG5-aiGPla6U8VME?}*|p2ygRc1c6y*^+sBmgwG;`$|>{}vS2l%D^Y6*y7F(z<# z|1S{^;vRv22pS_?ECLy!v@d%AJ1x+D<1dyzOIjdwbJb!Qq^NF#X$L|CY&*Y-_udGhB6zzR2{Vq)rix(ih&%ffiXL|ykREqg zwHjs)38hf(fe^i%y6T0BK#x-Zdi;Xl<8pej>87i@!R8VTwA*JLkZzwvuxMA@;9q?} zZScQE(AubPgsQ`4X;kdkaD!iW1L|Z7$i+rP<)U2!0P%d$E!P{2LeZ|rlwFTo6&q$A z38mBdPstNVr!x@u{E_LVz9>(+KJXgDaG!-dH+Gq zdbyHWUs3}7J?`bop%rsT#Z2h*le1j4O4JO!P357tDPU?j_iBqq=;%oYWdoXG)o7Uc zOeix=2Q!p7O{gtLASx3bO#$d=@Bn`D>YJZ8iF9{0*k+=EcJv12=nVub8W1j>e*#D` zKmUv%Wv|)!zR>18=J#{J^jw`p0g>ouDpF4hz9X{G*+7oQr{rk-0Dzp$ClRP`VKEES zzWELBGVZ$TE`A{f9(Wi#F+82w4p~A!i;=RTmyG9iPdX-8paGNpSi%7(`#~I9ohz4M z;eZ}mYxR)a*lk6ap@X9S8Ow}AvLQAjNNud11d7ILc1RkFlB2N#0BU2GLNQ!N9+Kgj zOBjR4hnXV|VXLkfbg1@GZd7%PMjbGzRVSgS1dLV+KwI2%$P%q`V|OW$kG4p2_w(Cg zAwgmy#X@BZN{+S&0H}>!3e{VJpAoL0NEV}H7$dl`OQBe+JY6e&XSn&9ylLqA zr?~TF{K(Uj+{4&kREGGd;|~EKD=1C9jg#Hi3?rT=)pXZlRSxU81?Rx^2s>gM!1V}6 z>bYA7JE$f%YPmB+=XSk*|JG*oVO~(#p1`6B6Vc$gYpRi9wm!_KF1DwJ6C^fxvD9L; zL>+9}n$`eT;_czJg$(0* zziRkzHCQRW)-<|_`TSviA#Pv_d(p~1LmWJ75<>Y|TKP?-hqVe~jAmI4j4$=6&E6`3 zak}wF2-cf5Yhf1~*n?ka-=~_z_F$MgytrF*Lvz2<{$PnhJ_{k_q!v=5{+ZM2r)ttd-rbhOqlhzul*1_iyP_zmmE|M0mh&`IsVU`Pd>$XsYjqibBi?Y83ec zr$pV+_RWE{uzkxw*0}uFG!*Z9HE&-~&T0Z#k|ii3-0%Tr<*@oJk{AXzs>6j%)JF9m zhe&fxK!E{lSjm)?xa;|d(x6R+p6+N3077)1K)MQTGMzWrF1c!ZN4tHg{*VsOgyc77{ zIqnQrNO&Oc54ktTJ&k=x;3e^HD|v5|yv;dBM5a^8+pn*?v%wp@HYAEqp7datcW__# zY=ejQNADs3i@b9`aLPr(AENkf{#8GB9rinc3KvESGT*0P&G`5}?q+;de|P!7;wk)E zQIAsm>;CR67JgJmCWgU9{^|gC=inl^qW|YW-5f9SX9v0)1QTKdYZT13?;v=tDxe}M zeElHzAeI?GZC*Sgn+GK?$*w9KzSMSwZ^q>fvcaC6d4xx&+dG&kN6785L7`QHC)wQ{ zD`JboU70q%Z6W*;?YSa3RT^I;4+;GU)0e>ybYNr;ikxL2yKTNnzu4Z#vkY8R8qYE; z5Wny&!-Avo78`PwL2yeBtD9S9TUcJ^V;$oVB{!=4EdSgpud(@at9p6&Pd?l2{;pwx zV7v_e_;0Zh5ORx+z~$mq3uWMz262lGh!OAPw%`#%-M9IrFy7Hpz9zlF0mHJ1_^cVf zjZPDrkg$^}FRBqWf~fsgUQ`2DAV%;Sza6f?la`k+!?WM-TADW>eLOjDV1Aj1<3eAo z{NbZ;NTT1p@@d?o1PlaXw3{*E_7837r*VshyNe?(5$=4`!2Z1wzY-7(4)qj0RX{!) z*ZM(sCnMtLe<`Z2YYQ$KKFVEaMBH_ZR5d`Vn(0`ICLi@cAA8^ZmHC*_?lHG$X&oPL^Ya;KP`C9!|on2+IDJ#rOq*NkSKu{N3X0OYhk43Enjgq*8P0k zVPZ>Qhf|ubj>^FQ>ZrQE2>{~$rhB>wiJjn&Kk@~HM83e~qBK#9-15i5c){i>%lPF9 zZo4_=7~fSBRLV}TRofhOOw1C~dEttdW%-nP72|DHfVl9TR_QiSiElhry(cf8G$EBu z7mP4CU*J=pg0TyqZJwr~;upr|`2UO89QU+4j5{84pUWyq#KPMbku%-x@_zTYd!xzT z)XMXm7u~(8=dKnIdZ2&`_dniT*W3zLD})Rj0E^e;j=zV>N% z`A8~Q-LGT;DO=yc6D%NW7GABytACYPmgfz6EZy7ZS@&AQJP!dPo^n19kzg#Z?B?z6 z9Z{ZVO>~rqEIHVaX z^SKV5IaNIJ{ns&h^U@#SLvi!c#24I$SPP;##7O_!RK{p3D%;Tn-uM#jZ^z^f*rT{(*@P_iofg4SFkahKg5cb5Auz&ni0in;TEudJz9IzJVuP$}3V4DaPGGC{d?<5Fh4hUr4X1RMhJ4msDIbiXEryC-w z;Zu`VamleIx`|)UcQ2@L1stSr9iAzl947P}`mGeR=yQ4NaCTvXa2{2`b9a;|C(p&* z6dGLNyhnY12HW{STd+cxD(oH{*nMwj2PD2A2FsSL_%s$QT~$ZLre)sL3k) zOHp-gu%#$mc>5HqNebZ{qVNSHJR(Uzal&)-b9r)&ycygsun3-9YX$dq!k4fStu*!+ z@6hOhWFGZRd^vbX+H<#YKYw_QyAkWFNkoeoZf2j5>taD;j^l*fDZ9yMzwJ(s(WX$h zyn|4&C1Mr2E8bnt3d!j`Bn}@Dwt`VR@rtl9iMM~xox`SB6;qE0KNCv3=_lkFiJK5u zryN5Pw0h-a`b})XGgCc{83jQ2WSPxR$Tk0r6LKq3J|MiA=z&f_3vW;s-k`D4!g7lW zu((B~vC_C7hf@ETG_DEi8)`A{RY{4g3cgIuSo;>@j}*oTsZ<>I?ZvW9cs}fj`_dzX;KD zMtvc76tHjd)T$)fmKuQ6jXEF=gN{h!BIsBu5rWF$V_rfzIBH;34tvnzZ->+~TYbT= z8}{0)4JnL$dy7yS-X}G*!6?b2@*?Yy-d$^mkxMj`k!w`~`=4uv+>5MW)C~h^#1}M> zMp`vgo&2y+YEJkT z^572fbePryF?@}+q}e^*L&w~MOtzWS0-Yq*t%(WM!K@8m@T6CV#PYXJxZh*D0?TA( z*ux_?2&fwCVOcw;MFa2klQ4;7M+rH0G80a_o3PUa>hENXqx_%Kupt{%r1u$EZT+F7 zA~vAqtYpzxSMTcVd-JSzC?~#gF_PD%GuiN;IAnp4~gFBF5*OlM~|knUPA z$O~$kG2XNbZqtb9sjI4bZ@9?*J=Rx)N$=g0kNwJBkC8IE_a?!v&Q?(^{FgB{kPjwI z2;vVjNj6qMWpsJ3U2=b6n6I9a+nBQmz33^7|NM(b7NSQo#9Rfxt)0e`zjY@@Ow&A6 z2;eU7rc-j4ce6%|xljg=8W^5tZ1Bse6f{@(@D#MNO68jfL1M4hoOTL($r2>xzga(q z&%RKzhV3{MD!SMrg`Kp@8*Uu)iwd5WT#!|QA!_m!cWVP{1hdp3$)$x*v7?+;xzCs)Oxn>H%Xj?=1G%e8 zShzXnlzeGpHc@-pU_VzV$#?)hHh(y2l zVhOFT1OMlD_g5A+V(>GUot9(VtEc7Jfic3a9YYRryAmpQWnpJ@J*CuPRl;Lw=i|4y zx9FzZW12B%!~%LwNVeWA%hc+#IVfe&Oa={WG{Z7WaavB!1|N z>svlo=j`m~=6~LD? zpHOUEJtmAlu=AVhJgt{G0pVZVIz*9T zi3pImM5Oe?wXMs92w8unSpP~8$QlrOZOe8Rf<|r591*+$i)&jR2-OGr<;0cXKVd!m z5Obs1FovhaJF9ZobScFr7r4VK^aF80>rsS>T#srEI*3=W^m>#iC)cCWg-ZQ+w+fz) ziG2i=u1B@gwK>M8mK)I6TU^2OqFH@@sk_8!(Yx+?c3xfC2%77fsrkj?ik{b5dkrS@ zi{_licy>pGD3eoC8MFCWjuUB8NKQ&Jug8{72vj^n^MKugK7$hZ#&TsHY^(+=b;QEf z7y-ow-1ZDv*cut{scNw4fkiMYdkJ3c5er){X>8!ambvUKAG-!l8{}&mx%jf=Y=|Lr z%~_eBrJu!*GAp+AS4-U#{Sr@4@dQZ4wHJ#XdS%N3#@r{ZmgiA(-&y(I#sRBlD(m@F zs#h^+9t2B6iJlA-w8NDxt)1ElCeq}R2?b!k|2$MoJU2AuEUs+v@EV?*>=w}iJ9f12 z&9it9H`7S6t`&1mj(xG`z;miS;n){_E`(`oob#JjtZNa|s?Q>CO4Ht?^3b#vh+ftr zV6v>$mMA1A1A81Sj_}lx28%0VRg3UZ5ri(vIVWAzhcJX1Di`$*RZaUjxvUlJBXzMe z5hr~_0qCROwU2OFt92dEQG>li^w3Uv4ql?(=ST=ANSr3%vep6u#Ue$n_6)A$zy*fq z2oe_<)(`+v;{pQ+h!S6KQF4@kYg^j`%P0xBKtPJ91p*5MJ^4)o&(R1gSS)N|*L5P0 zxmeh$PKk*xWw)8duYWzFfkjy~>Ev^ku=mRKo|}OJFz#A8Q`|SsYZB zV=@F+%>h52w9f`pLU>Be-1H??doU||UPq{G`BTaSZI6R-#j|Bb*Cq2hpJC7i8%h&y`FqV z0oW5g-U(jP=|d!9jm36GETPpk;jKD*#ssptkN9~f z+sgz_&K>;DSpc(K@e<#HW9kUw0-oO6^IgLtA>$zY@gL+85OR=9;Bqk$1on7@@eMfD zf=3wFWqa=Eh*3@J`3X3qSR_{ManrfAm>|M*Umjr;DJh_5k+=3r6$1fQ@*jSEzDJz~ zGc;7_EgI#F+}lr0@uXsAg`v@WT+yir-stN1bRHSgD4JI=hsN_2eLNj*<1|im(Ww-E zegK@cA=>gOeLd4kRR;C(#9tOc`783D+pmaEW;5}$UyS$61D?hPYp9JSO(>r6Ol%;a zG*zOikP~Qai{%Nl_JLf|UXKhnTJsJAJU#BjI+0YaI)G*YDfh0sbE~AmnPg8z`P5(3 zfwq;rBL{gB40BkqJcTx_7*C-kaA#aR#M!BqjGx)twHnWK4zDjB{99*EFP3xK8N?Rp z55m$#W+|hk@v^XmJZ3g4@R(U%u{>rr#^HJP4y>hXP#rc1aA7rZV#;vy z3m#8b!;Y1QR}Al~7FUA%a)%Vl^HNubdS*sY0`V$cYyQzN&$le>f^O?**232!T4fm; z>Te=<@cN~%iKOx3B_m__#!tGH;c2V7^Rqf&rVj4l$bLT zjxeQOkVlwOF35vU*@H&Ja>po7C)P2Lw4H@Cn+>uOs5`LwS*T+9(9xcSY=V`vuleu= zxhgcpinyC!`?6yLxG+>N-^>i8D9$lEit@OI<5TNgY81n-U56eyt*@svZxuZuyh0ps)k{UQ56^NSI2LlDZr=RA-8 z)s-yY3cIDjvO~o~3^%+39`hImBZY)Uz4Dw*Zs%lVaGXX){GtV)muI9VKjArLu*w(x zdh+zAV2@(s)S<~Ni9oT9i&>dbncJT7)C??gA8QhV`p8qBrWWexr#(|xr;?~`paL7^1BvD=V_;U$#;eYQUnAi-Y+-g6SnDb>KQv|sY9XJ9b@q|-({_EZP~t0uv1 zSOGRl;dq7Wj1Wbho$N`n6cM%N#Z#>6_$nM*My?@N=J`|Lbm7JjOj}L$oUzA6Az9v}L z%bshd@s<3@)AkjKCNa9@w>Mjxw=QA^QZZ;~i{zVL^)xlFLkA!}u)TRvet>+FurK%# zLLjq7bQ7aCPyP=?U!4*~)ch)hh;+XQ_hKiC5FZD_9^;%Dp7usJeq@Fxh4mj(TS3s_&+7`-Uh5Q4Q9-`73_T*UXaV*^EGdLmnyqos^WL6&*)E4A$kw!u$q zfjf_OhgW4(3?Y1Moty3X+GIno^h5U0iB9E4M-zM4jl(4j#z9kCtX4HyaeBfK0TskAY~nXE#Fh0JxR)Ay+s+gw%WDd^GpO`uHvP*V8kjuWu;FD*Mk4fLl%?HhjO>gpHNIdU80$@(G9uE5+@d+2hxFgO zG>Lz(%Cn4psNrH%Z_8cHN0sHvSC5F~@2&PcW^TE};p4Da{^fHccH0huRXWtSRS{79 z;+Aj?)JGl8v*=UsO8*Y##fx%P_54MS3)K&<@jM&GXT0OHPN%#V8VOtCTRguI^`N^> z;YAM*n`cISE&J?>U+eJ0sWbN3<-eAzMnOGO!q;-u$k%Cye=R%haKZ*VZTv((1B8fA z^qUc^7Sbe?kW4KE??(XUeEjdVt1v1Bd%r1%hc)24-i3`JQcKnKQHbjL+HLXdu(4r8 z8=-5Sc!Tj_kb!S7jw4vq6;iY?`4Hn6sc>+A{S*{V9$9KYMLi^|i|&T;{qK7kSw#9L zDQq?oK9+dZ{|sSj=UwBvsTP}`vHy#3q} zog;`5Xpg+ts#2EFrb8Zl**JO!bbzFgoGzAMI3k&!+Zm)%yPd(6h6>Cd(TTrbXr)G# zuAgsSJ&?PsF#F4@k?QqDJ)#ofUF-mrQg|Caq5*e&WECQ+Q6XYLav(Xp%GqW(OnAT1 zjlk~+RBXU%vIY-CBrAyU@v_2gQL1ayEZXlculUH(r^M#h?K z3Sld{eD*Q{XuAQK?DzxdWyjAq9I)B}P8d1&d!CIT)U?mfJ>(XT&?sw`bOVxC3yfJ&>!8!eR5UY7lR zEWu)bzwGzy7QARsQfWTwgeS+Aep%>Mt2Vob5XzoTOiCMH#;!lOlWQx=iL-#B?@t}p z&a8h~_Wkt-Wy z5Yfsb76^LewTqrB79G(e;z1j8zIKV;E_MAYi44 zg6-NNb{|2&@+gV|cIjO@-|Xz(vvcmv)!!H2f5>HacG}LincY2lquY@W?NqwZ7{sUj z2HDyYQbntNTVz5)+c%gAit9L+@bVPHoui#bIODum7uo7|Jgz6{2bbfPUg!9d)bA-BliRG+-U<^{d#6krS+g|l1%EvXF z&j0`P)gwh~8u1%zItv*g%PVU-XGcWuSDDagQUr~LZ=d|ich_>>%d!EdB3Jy=j!&xX z99UONtImXF@X~tDRDAj*$wo)DE>z$qa&SH`V4`zN}&an^sdj{(y%|%%S@)W96)ZUK|pj3*?aU4$=GBd;U?ANcL7)~K+9^d>_ z*E;eMlzLD>_(g3Y6@;7MLw?8W_vb@~&TPi+78KE^@8mo0cB91Rt}F!$~I_rCF@ zIjM|>Bi~uV;YE}N{ylNde1koyHIe#360%P7B{Aw~ zZpCU*PV+QG9=`fJHypKITiVimX}`=+zYcg92$w$NIedbcdE z(lQ(Wm1XY0CsO=3B{(08Fn00yhEA_z7qG*3Q8w;OCC{ErZQ@MiQ}dn4{K&J@@_Cz^ z8b|V}Yp#vpvl}^m=H>nJDHP*?_MT})PN#7ZeQ)UoM`YcPg7ecb;)9KDU8zS%+%ok2es!o8KpXKun(n6};n0zge$E_E@-9gvTsoN4ZaGvF&oJse49A88QDH{aj4ItP2uX3I1m zJQ{G+4@Pqv#s@s9jk7!Zh%iL+ycfK~LnB%aUd z?#%Ib>j>S14I$P3Z|pTlvN7Wi;^Reuo|ry8DUwg_;ymZL@n8-9#BH^cctx5!mEBAP zK&#CNXSKVe)u0nD=;kb|uDPa4b4?{|(Oipz%{57xtHKZFdKtc*L~8usSn3&NsS3NL z3a4g9`kNOzYZ=CNo?QfKg4+KDC!Kmwig) zK%*TBHrhwZXzxoOyQ8-=+hE2a-7(N|;+#^woxux(OUfMYTjqd~Tpm<{xfFiGQhZNp zLx|zQ#FNTby_Vbt?pwoefQu7Lwi#Y68h7rOCzd+*cRm_L5#))b!~xDjYyc4ttgG&@ z_0dovD6Y^}{j0@+H~4v`QJMuu#`ru_6^tuJ!t>AKd8WKU&Pq0!R4X0o9Bx(|k|< zhk{Qm-5ZR0mko6&d%}*O&H*j6VL=>xi1Q})njLkx`O+bIV(9~WfuaGWaF!^aeL+g6 zUG1DGs^JNufV6l}=>Wk(oqkuu&)N$VaVXUXm1-TOuiUb=0#@r1pNkXv&xz{`y$wP~&M{ zXPk2cd$uYf^)wN6Wamj}Pq@&Puu`K3`fSBQo<80=%Xo{g8t?S6cQl5zTZtqDRRZXZ zeuXDb>85zlKX;YYPT!AH{o?|XAS>>oVwhWctkc+)#QX3 zh$2b^n>` zSnSN?3-ZMbmu&$+njhL%!2NgBfPS~wH@JO5qNycdqieqyo5l;UG7eN z%kt)Fjzve{EtBQVGuR`f80jwvM}LJyAJ0w!ef+Qj{LN^14LpIA5ufUK706E87MITa z!DL?!N4C-;i|40+9NxjAViyf@!>KQEergv`5$C7AC*)z)k}p@7-$)+yL)N;#f>@ZU zsyHmqPXTp#eu}bz@d!@3_DaqI4;A?eMq8$IhO>i@JxEdb^eBd^9WXEO!Y&h&_?GeRd@^9D=c}m2%1YfiHtwZm z?h>;^_CIsr5gz~EH97txw>n!IeDj@Fzc6m(({6XBup5bd*e&pw%EL!xw^&R{h1(hn z!wCMwQCqK=cU1O@d89tNmpGqdyv8$TIh(WBNg)z{B@FTREaG@B1&GSTB&CjCg^9@< z0b95g)ePN=0?@4}0NrZyUD~Z^A-dI|yPR=0qUct5I%MggMry90jy8yvECX^*m=Y z_A0F}CY4R$gxqWiDN?(2LuKR{%bksEEYYQ@4Ctg6pQ%W+p;f-(ghb%3I<43bL>e6S zLMksmdPAPAG7cr>$7G5gnhjI*B@3Oy9Q@K_)=*+zQcZS=aDcJosH5R=b><=ExOQ|s zkt82Sw+o#}nu~hk%mYj$c;=!0aXFsUCv@~I+Y``nmMtX3=oQ^1htPrc%HsjAz*!dP z<17n*^(3xjO3@kql2#3k_`+?*wa$*h*@A}%^?6BPh(iQnsD_9}C$wYZ)(3|OA)pu{ z2!8Mok;4zKfgvJ~))zxWTL@~41MneBgM3TKpdlh4BQIJ9Lj+}sLqrfDi6`FT-fu?} z3x*$$V=p%b^2+BS60`6s2=(_rf(I##&H`3!b~r-rh~G*D7hbaE%fXBZAX$`uU@kc! zkD_vlF7$jPoSv&KJ@Kf=0>BeTJ^n)p2!43fok<@Ku-|ZBWrpyOqYDNsWyT-0(Y#Z9DUfbMBG^5<9T=aU=OA zzjJ6}H^CZD8sv*#c+w#MB%U;gzEdD$>Kr0yeA?s=9{%F%&UsbD)9!l1xrq%YTEMuj z;%P%QG{Ae_vVRp%8^XuW{<u;mw#Z(tqD1p4QX)@zCUq2BYsVaJJ_8mMPd)kV1+DnT4qda1lOoOp zFR4G9+LV1rFhraQK3ErD>CA@%QbxQnP5d5~7)Fyh$D9wvx}knZtcg^>Sd%&MBriMe z99>sn%V5(9@eBUT(_2i>O(_@uqtT|p0-yo~5N*o!%T&}^0>%*zQ&CfrVyl^oQcZb( z2X{0(O=x3&c-Du`!>slxEeLWH6Hsa`0j1$2Qh7glaVaIZHg^360*WIO_=64?wD|xw#a!e~FrMQ0?%*(!V$_vFI!}sV@JTGBXM{oo& ztic^9KuyJu-I>4*H!PGJ4&6b3B!2X!L1~OaaVVKZx93+EO_0jSmryIR&6Mx(VTC^j3Ml5<5O{I#Aui9Q|VbE~c& z$Cv;Tr}@Bad0IAoYl<$Wisq-oOxqp!rte{GaYDAcnF)AeI!mJjtm&-LX*r!mLc+b< zh$2&pIGU9OW1~-x4HB;-Kd{UBz2oN75Id+{7cRbh=S*O?(yBtz8^cL@H%bag_20jD z=A`KErq1l#KnS(l4gN#{xKWs*q#vuL$Fp#xqjE7fC6bXQFh7W48jr!fCD`EP^tSkg zlhfO$!%j})_c))dVsaX=*LjY8O(YIXPWgj1Fu;4>Gyh_4>fj#9Z_R@99g}`?-oSp* z)Nxu`nxCAXpkV=y6+fSrlhW*;oo}*p8iB*4q$Zuy;A+2KJJ39ST4s83jEK_6zqFT% z>C1@W)Al<%v2;6JQHc3Vre(58Db6=BaGKUR$fCS4rqwvsk02rGUXt_(J6w_OrARwT zDU$AGC;ebE_h5EAK|<0uOVSV8;V@IqtdV6X%8!ylq|E{@@6|+ z3B5s)-bPB1^aeZW+^Fjhq<@m6Puk&%^iPVkc}6!7lK#mejTxk!x~a7<@Y%;8 zgY+8|(OG?UL2^Q*Mwbbst$h4(=a@KwE9dlF!SFY}^|-S~%FhByXY|iWbupv!5ht9d zStlZ+p3tKjOs&?0PW``@%o4RH3}9AI;5(jRHT-v+a?UncA5vz`?J2zl6eU;38G}e9 z@&%pUU$Lu5WeB3FtEQs~6sEr+&;~rNtGkm8y|k;lFMs}gAWS!e??309X2TExKsKui zTCw@=Ha1MyTbB@#Rbnbcs` zX2TW&rD_|hryGetbbYj)5X2V1xn!$=;#3DilU^Ui6uMIlwx3kN^}uguB<*`G1w#iiZ3RMi|&pqfjh>K1_e{?ABO7H zlB$_|hGPtgkkv7y$v_rkNK=E!ULS_+t(q*xkbo@4kf<3j*nydvhtJAP&0<1cn|fgw zQ$L|hEo8^{#eoTajhQmBLP#bwH!j9#bK_!+0x+UZ0ob8FB68u{lw#o86tguH3iU{~ zhEI-liCkVtWlYr2dKeksPxyg%moSQfk#PzDJI;py+0HmuF1zAfkh5Z<=0ccOiaaL+ z<1qe`M2+r)Dy2!8L14T&Zyx8WYm*6APCuWKA=bTT?m04=#CIW-I3ltDvM?a+`x zfFyn@&-D(oL4_gTvl|kf@y_-x_)PeJi|VBwa1j}(6&-=6lBv8n2tL2t)t7xv$l^j5(0IuYu0}R|-6g=r z(^_8JD3VkY4H->r9>`NoxzAk$$D;_Q7_)hsUe?G7r*oou_vqXR(g&WDq;>m!*IR{*enV;ZegMC(FHJIsFx>6*q>rPS?bp>?Pm7)jfnj&R* zMe6!w)w(J{S881ykAu+9A9nS#w2eIC8f~zsOWI|Gw!~oSb4#^(##mPlzkJj+kEIf9 zY}{r9AQ~5L8^jKGwY4Euj&n8VlZLxmv(5xNFV!`K9~%yxixLe|R=v2;kY|jBhOK?6 z%7#^P!c!8XRl_nvFv8t=8aMVfDzKEkyuuAWeFKprNNJVqoh+4pHiP_ zDm_;!O%bt?yPpB2R}gH`$i`f$HpLE7TfOoyTdF;|YPFT56Sdlgm!BU^{CV~{(Zb&n z{z1yBk5j=%j>oz-vp)$U>UoR+P|rW5o)i%pcPMjQ)=q>f!iU>L%TmN36*Hw9|0Y%Z zs%jOLd^?GX+xTZ?TE$m~y2}jKlduo!u`1Kt?Xnu82Ab}N*bst`ijE`zp=gA_;ANHY z;0whSD%8`Xj`|?bpv&@eWZf=n?<81Cg3g!mb7YS8AjzQ!cR!<@KhEpgZm@?5Zy~(V zn{TdgCHiO7awi(>DN+iO$&(F)x=P=!QZhVLwG0aDKT3xCK!%-l+&C1#Y4JQB*JMUR z5*|_`C7BU89(d?;!CC^#6h-k4W}K1n|E*_a{QpzWPzPQ$f8EtBblH`31vftNSwRwLvYp?$QdkW_KrZXx1fQ96 z1+Of*9*!@NQY7Ct9Qk~Uyx6&!Kz`o=I2T9BgGb1R^_W4)TG^3Hm!)+MU8dF<&8`o| zM#D@HP@7@)%y9hy{ih4qNm8508RST#3B=X4zo5Sd?>RvB$}*a*QaIH=7M03S(}UE7iMiPf(Lb*(yXc@ z1!rz|Evq7Hv+EAmDVAtxkA+3FI#N(qLj%m`t^Sv3n^iY`TaQov$=QI%%!YBdnPwr6 z6pa5PFF!#81AHr*8a!|14JrKcY}XqsUn7v@O=p9bj;|O9-(Ib}+m*;6cQce-Wyc(D z!j5Elo9%W8UT+f`p{sP^3Sz7bwziNYcAVA(Dn#l=R~dxE^4~2@;Y%tVmyB>ehz> zMf$KL9YYF{G}NM`F>%v^AR*}{rZjU$dx0cvLTSbpZ$9fqN|81c2-+qD;xa0|rHNH| zpzwr!Tip-Ewg7c#?k104l@Li(gpn=Nj5c`XHuvZ_fh?0Z(*(~Jyx&4s*OaCLN|QIS zq&^sdBXc;V@DNV8JAX2N`%?wf#&!J%M=34^A{LzccErA_SDAP6+%hHVz&g#3jW~qwUF+%qrZ5AT%&? z;RWJi88U$sh;;(oj~8@9S0U3Kyfkr2N4`47op1Eud!Kcs2$&)f50W zoNpFH@MFDapj7b;@ zg?j1%(}w?88Iv#}l`#o3?j7ARC>eS0{ms(pJX z&)ew=bDD50)O^v^z6u9dDHzHN9h?Gi-9HK3s0`w$862ED+ux_sHPqk*A8HSu3vbyx z55wAABArMam@A=R(DW9O1RikiyuXooJwy$(dz+8Jwpna2A0uSs22&(p-mg(pCSX1! z#pvagf5T#X4e99{KXP>x4DyCdZ$!nkyb`v7WgkOKh3bY*83a)I7aLTJ4zq<2#nN^; z{uQ6PdKrAsc5SP`F^Y=A;Q)dvhC?HVuiNKp7L2HJEu%xRm;dDIYQqLa=wexA zTBz_e(=vxp#6YcHW~+$Y9ZL^DBp%Z&4-;gRei;D>=^cQ<_fneTl%CbFJJQlj2ki!b6ZR^Q0C`~hjC z>3qvc2x`g<%kPABkfJJa@iQp;K08D3P{%83Yv(~70YmCYQMHbB2|nt0M(RkhgLG8s zl~Yp3pR3kUNx4_)xSOv#taX%mmBEB{kd7)}F@Wzl>UxWfC5S>v{`PSkSWrJGl=@LD zolm)$)D`-fV{7xW-(3xDM1_K+eN;+ibZx%#kgLcX05z&;MI~e3+SrP$STG{_6l1y{ z+H;)2UM3O zDpM-62>&2eRYK!7r7C7r77}z+^-%&4szwM5nNgv*K^mxx%6zE-aHvWH#s6llfiZ(0 zh=9DF8e|66aKB-&FNp*}8mM&0cBR1+wcH2UF9aO~mWdW(H&th!6b-6YC7MFoN<{mF zZ?EGXU{0?kLUSt95;9nl838jbusyL>9cBiELSBK9G)->r_MU1IZ$>+0W2KFK=0JbTL z_Ks#72r?|YlFTLTdG?<>I&ienI#Ft~QFJ}`Zg^vGe?4~=`-s#<72vbJVNJ9{nJ6;B zokRBTD(UhrA%#g73c#hxZv;d1c}6jC8+T=*yT1(z^;Bf?V3ON9b4u$$=A{82pXBag ztA~9wlG&Wb&QGUbC^d{Tyd~|tPTLv!LJ=b|K+L`*kZ`b0MDVzV?xBf21Zzyb^c24^ z`O=exO}@l5axV={zW5I`a@RH3NTLR`ugbn$rJ(`l^H%<=?8{`HGtgO&=cl;`F^{HB z?s8Vav%<|}=A~t0_qXhJQVmlDczuLn;>Dc7c>Jdj-@wevVmsz=b0IvRDl#um+6z=l z07@|>u#uFClmI+_GP{L)kVPBs&3sCbFx~K>qWz7%K+%R$r2Q)?McN}`L0-8nVKT!buw{nlcfr%gGxFS>Q``bdGdx2{ z^J0eQ={)y-gB>Dris@(RO~dO|=P}0)?ip-9p@qquS39_enCt=pTk~_uc>$%#oS@n& znG+ceXetk34VkPif#Mn~GFoPIC^}|zng(Gy07GVUC@K!(oq|wJAR3boQwhZs%N`=T zO6i2ijwziILJ(6rxAm|_dIuEBln%wx8v00Gp&{a9N{8YLX;QT%RZ53QLsL5U5|Y+R zgUuCCoJHNd@>RGrfG?ZLw9b?PC@-dURz%An(+WaG=XKtQmXW5nNU08#_<30`cNO`U z52IzI>342Sb{Cj0N6WRz%Y=xClo&toRlVI!*d7AMDgAq-8=5bI=i2+YJHppq_Kk!{ z36K?$5_l&kuCKel3D+1gvEzu*o`uvdhmkTmMxIqcax%4JrwPw(i_}iD7?s*-5k%Q+ z5)iy(@Diy*vxL!nTQCV3Y89R<9C zLo4G-Xf>$}eNbWKX+5dEjj~ATMH)EeUziIn1WvD7T9xy#ubhfwPIQB>dGWpDSbK zwqj5))&AkAUM;DLjv?fbXv^% zP$)VrUcFiPkCid&6H*znJ_S5$th&1m}@r*d?;zlelnhdXi#}XoPpDPkRUE@^RBA*napLY&NzE2$bx$wwM zA3?S^7TAe1g_MEzNKg(vk}8KD83a%%9~%^M7v^c`hmbE*=F9fubsIi*vNqrCAdfKL z?L-4K-=oTW%SeG9A(n>I?`gaF9+u{Nm=MwCdplshcS$jt@6B-JKM6A5!^(V=fn`49 zc0PNm+pZg0k1C7(1n=3{pu&2$fC;qq+H$zUQA0iN<%ri#h3lHj%8r+bDpFH;0nm{Y zUz6t@Xq3Skkb0m^d;+)fZ^o1G$#i!M_B1KfuDmLoYA?jok-%IY zFDJX@gbF6$K8lx<-6x~~+xCNSl)sQh3#=@GGER2z*UG`|2amxV+`(X~e}toYS~mq| z;g-i^7LLk`a}H+VqUve~#;p%9AN&KX=P0_>lgxYJqYUD_4z;gn#b^Ss=i#yl1Dql| z5CCpP07K^CD5{vC_{9I<043%oGpjCNzt7c_1tF;%+$cgcfWG1?8ox7%-&96jdkYW)ggC+R^o7(^B*x zja6o56v!YFb0CYQF>wGTX|H-Ry;{Im!i^?qT0b=HSc7dOjDvJk>7nQAk$hYwK}Yvp zuv)t>6iOW_7Pcy;;=U(!QO8Q9BSjC=QRQylRXTz!Rq3cCT`P5TJOgq}-O#0neD*8Q zrZOd$SYNwVkiIIJRJT4!$+aNpsPDMvw7yU%^`%&tjVmJ6P}LUoWph$Yp(>gG)W=wx z@|_zX(Kh?9R*?qy@JsGuf}=!?6*$EvtIr#*h1i19P$uGTC#-`MRN1DRm4cXvn@`Zu zbC(c+@Z1Q2Aro;FH%Ryv@}kItM0j}2$S%BMKNE##(*&Or@Y%(IE$n?yX5)4cF@n@k z`H`(k4a~;vBj_Nt%EsvdPSyF5$hS3EK85os%4dAY&%A^kh2-HhJvCsGNkQItnhTS= zIB~{#?knzMIGv4qZ%o0>jh1Pq*${6MDY)ze?TIL|NH4KA0(uhqZc9Qc>IKN;?gMvKH=d4t;D$$3i5jq$4m_f&p#kRq>c&&PbBOpj zR3m=rD>v*fK7wB6)GSEiZK#F@7*~`h%Ea53AG;T_TQq{W@-*C-$tyo~4}x>cai6;3 z4OM%w%<>rX2~Hw!`d{}rw$_daPpBr!9F*T)pq@}olqskWNufyNh+242XBr^DMV*8y z<>!01x);Q{p>9YThv3Uc)&}w|+uUQ~1hRTKRs3@Etk2zDQ_96}9GVR|tPd7|V`5Oc z(?92P_YDqqRzu{TF#QWRHyug*jW57FHIgiRVe}3hW1L1(n7wOkl04~qB9X@zOiUJ^ z+v~%}=af|Ix)1e%DD!Nh3~h(VJM@Xn8vL5C-47Zq`7d9)OIYhFWo{l$<_=P3$BD$6 zJn+rC!g>`Mf(kX=S-$WacY3J3HnvEq!H*Q)RFk*)!kxxn=;Dm!TXwj+@gZHE4d4^v z6TXG4aY>ajT^UZMQADOi-JBz;6es>W2yswzh?zVkMDEkNf&GwGgS7b!B8)Y~rs|3j z(pN}Dng+T*xHcZ9xJN*7P>0?pZuanLKe)ePPZ4Acm#j>ZVW*X(0Qc+oC6Bj~@*2yIG)C7vn#_xKP3y-F zQVM|un)xT#N67ds@Udjf<%JbBvRF<7?R?hqH7ZL$ZGwJ%!oA+;%jcYg7bg4DIzrCg z4Z<}2FexXz)Vu1GJDUto>ZRU7LTUdg_+*FsI%8~Pu#e3n6tIs`_PUQzDE6@)pg5S^$l{C6!rJ&Q=yGD+ zMn+ZjzOWvj=?VtdZJPyeT(@lzzi{2Qr2($n7?p6A_#iC7{hd5hx1 z`|%Ux=EM8_$Lcuy81MtXLEiRLLHHy1$NC1jfRJyHi?Ry*Lgh;M_H*-V+Q7N}ahKe^ zs&mRie4<-?^m-uu;w65Wyij~S5I;dUP&~7a55#X3FT&y@w9(>vG2Uq|5yw#QEXzP) zH&_nwoi8<+Ra@u`A2`2ziQ$>fE((#+0DtkarXKZa^K%+1ehJ^6H?jKX!t`hFcXadA z=2se?Rn;&_UTx2CKE?FJL{ag0*-bZ$=D(PptcduAuxX#R$Ve)o2m$%$S6}`B=bHSj zTc+3d|L*YIZ1CYPC(`2VNa(nb$Ss@&B9T5r22y zcSAW}I0e3d-aXDUk?&3NG~k!N=o!hsjPp!_Ygt9{o=)r@qITXKZ-+-_|CM9TX^7(? zPk*pH-dxa-8*`_(bZsD{g|&hR|wxI-9yd$$%0epp5~`guy~ zJsI3;w>IRJnK1U>)Q}&`^JMeva?c0sHBt>)dt^1`FkhC$jhpz+L{Bjs$6l1?8Ni45 z8b|uQNuDGF&fd&Q_Vi$T2tUh6-%}&~*%0?Vl`SGnE&I$T_IX^|$6N({R&6-r z`QB;1D8A=^yOQ9IPEU0{EiHPO`9LFnwzDUjJwRj-9jxw#V4K~mRe~`=*o<$#b95d4 z_$2RNtddm!H+FkhGco7d?bi64mXZE7Z9NSP;}8B`wx>JWPncSE`;FM`q~%wKb37H* z^ef{hULOV&_7mZT7OI&NJC7#g(>UjDK>Z8O)`5~%Shh4 zBh0NeJ9^ef6ah2-&|BX2tQTQxS*AeHz}pY9*9}g=UMIY2)@|OrrEhqX`Nam+b|oX9 zpXuz$VflnN+G(5s(B9WYD$_9qM{56=_q}Nbn@+0z8xNXl5vQGQ@1T@O-k`f@cf>N_ z!$<$%ZN`=pj+T)g4KmWR(nv5~$Mp1EU0oMi%+m`zJ=tQy5l!>D08rB`lF~njdwDt-5hs8L-#o)t%uW$*!Yq9J*n03;8k_4}wyd(Ik7s%{ zt>QS80(q}@o1`-MVf7NUOMGgOU0_Wv{Qq}lm-@4OhYi+DVErF-u1r2{u$sgK2Vxw4 zbYtI0|LX%iu?EDrJ{jcc#!3iN%WJL_6x3ukDiynxV-?KNIp>m-I4kiCsiuj{zNvC} z?n}6$g(`wA1m6a+lqgJ}ACs;@~B~8-JCIv_r3XpDhQh;=!fY2SvMi2y1(ni~dVj2DR}cp>rmB_L(fYF%VJ1;p#=6On&5%@}?|- zKuec-N*sX3rz|ed4aML7czGm`i(b>3wFs&dA!zgT4X$psT4lw)On&qLJf+l?R9G|> zq>XOO_f3U0T8L2VmX^QC1`>2js2%@_Z5)a}^pdkFyRItyd5@M4wBc)UrV#vqI2kiM zEo|s$qpu$;@4(m3L^BIXqJ_W^VmTn{_n;G0)^+OTg3R7hrQ=Z$akHMu{%b#FvHC)7hdhqd`C)DOEpYufX*Pbh%X*NserO(0%gCFnmyl?h^ z|2#Rdp#b8m1B9p;wx~2QA(j^b(JuH&RQSLkjK9U^u{4p0XzMrc@l3A4W4Z3zu5{VA zU0S+8-|qQp`4gu9<@ug;BkERC%y+h~$XL3-)8D*1o$q;kS~j~^mvUH{39}t)9)_TCBb5R(P9ds;54m_-=Vi8#>Cps#AM{+c%+m-) z)xotwtL%L*wkgkf%o<$)d%>fgA)$z2~BIb z;=5N_MlqLW@bueYQ67XjjBO-Uu^j<}mwi@#n+??(tk`=5UyMM;Qoi>|Pf7^38nC_! zMSuKh&r%zD&;X%MwG&-saQW?LJSUguJ-eIhW0z__N%gG0skts8h6g%TuZxT;0bJVxdKxp3$p20RKHrJL7 z;Mb!GdC^=pG_1U*tWNVN!U)nyFkbS_-?Xg3zkI>7z?j0FFM9g3X@t`19bT6?2@Dt* zFU{LB@uY_X)}g#;_~0adZ9aTfa_dGI8o+EA zDD}oK>evl|^=^I%;_pupL914I)t7bRY$WGY_)5%{nN~aED;tN!T-1ecbk~S9e@K%j z*}hAYNBsUrc;LG9O92S1OEHhT;#JR&j$`m-+N?%{GT8}I0jvjP-%ZFek5Cg{%#=xS ze;SV;=*>3|WMWc0>VU4Q+U97-_;zMO6L~fwsfl(pn9ST}y(XkxGMdP=Fc8H95kU0V zlNBkfYMNaY&HP}Rohi*ep)~On1QAqpAaz3Ucg;%l%mF-igrkP}OQuXff0=0+7LN$t zNI0Wmrwc&9u&dX>>#A{+7f1Ntd&dJG==cx82HKF=gA5b9k3hj$T1F87TCg=gyV=te z@|I~^JgwMjf{q4UL6u!El{Nf4ztWRMR*>pwvW+%g!?8iIFKvk$R)@E!>uqel--P$C z>uth54CYx$d2ZJR9$(Mfob;ejrhMr8p6hHX%jv81`qq5tht>pO!@wRi>jTfNHmFsP z{Y9h`bAk;GD}VN(=NcOnd(hn=w@7hM=anD9Dh@gernu>@uJmJ1Nuq5(s#_OR+^w5J zdt-{bjrfHr?ly3AT0F-7mxym16{po8G$Oz6{?aF&b)kWhr#|%@XT3#zwaddmNudT< zfs*H|ogL(`>m9*=Y~X3kFSUi($F|Qrlh{?7g$$Wg!LwpmQ@*dxj8wjRt7kKtKx$xM z!QE6wHEtpW7@KhOMW4ey@g4%lxB^rVaRsA{FWT;z$(|tPNN|}V_&g~ z_teZC%hCywpbD=%uKE_n`D_A5ky4teun#Ffs!*V*Ch}9?cm}c&1PQ5@N~%r*N2;Yr z6+W~%D!wI~MoN)1lnT;j89ccw9$F96-gzRZGoq;q>JTIu)X8s3f;xbvf;uY&w-Nl< z_nw|a2vnL5z4C;LFqvs5Jg+PHB z1a)2(5E|5>6)~vu38^E-c=n+H;21y5AHUBt!C*fV6pZQYX@>hgwucn#T;*LKMF47c zY}~x02H*H!?{xEgGhVjC+mT%)m2l~Dwi%fsYc-dLR97|=*_~@sv;rzfKv=+J<;}4P zfdk*}X7X~tE*^gdvVHGv^B!io%|R(O{NMsGi|75}Y0R<+9LLfgw|J*V5om}S{hLcQ zt|T>u8gTe3Z+{?|K0K@zb>xsqI7lrhKxkpK66DmY(NYtCvx6{$usaB2Y>iu*%kzM@ zkOExIE}#H0A&U#ACZOX1JBp5~<8n3xy8WX9`}qi_=b}>v7#+@D_iU)!k{gVQ-Ea)Ku23pbZv`ZsOc=?tD`4O zWwZb%>YgzZZeUR@w2$FLP0^5Q&A&X8ZIw~6UBQZ-WqE|uoIbuGMhm{P54_!~!KxX? zi+jv{TELJa?lJe%z7w)^7$>;I@xAY>cK0a(FSC;QJlS}r6gcy!G^94YTIvhrw=6w87 zBhG*KCC_Zbu^#lpb^8WV3tUXC+t*Sh{Vn9W9hAg%`!irUcpEzE8C_MGPJFA`+zziY ziVp$o)WyEX*HKav0ad(Fqm?e3Jh`E;B3!J7jY-S0G;^*}^&UbF zRh>gAEzm;Y1`0^v%OS*mWV5rHGzUzFYP0hMG^RLhJHG|GBz(8CFxoqYZ6S=&Bi|8# z5RdE>(XHfuC$^Q%om^~5v^w=x!T6j+ugVBFXoY?S%*WO9 zwx}NSscBc$;ho2NGtInKeDqjvbJpI@+zqceYnDAEOEE;gdf(BSSt!Mw` zPAk2!2Tt9z_0|?Ut$O^`R9HAxYCdwiRR!aUEwHW;U%Yxc&HD=bhSb0<%9pL=cI#JC zfa`uJz&!2=QXrQ6;+rTL-a(N2$!j4Za!uT0SyXH7-bl4}Ye}^sDZq_SZJyWM+nu!} zaNI{g1>B+_Rki0TB1kAwkJfU}rI2vXbqzs6)*}>aFDXFQBP8pY1dgnsf@VFFJw(cp z;Dd_ba#DZ1k|Uqq1PzG!VLvM&NOwJ-Ws zaD1PSXyfgYwnaeczG%H}ufV=Yo>=^m$O$883C~WgRqcIIz#C)O_k=9&i?Xu4N7*3) z1!k}>Iw&A?Uqmb7zQ||;7;49W^T8!i1?Ph;{%N^h*cYV`6x>uK^F^J#jaf2*CU9H@;?{^jLsXfgRGCX^qAIh9D)YmtqP9kagH(kAP?hpfRn*?- zHNqM91246ad!v^~0qzGrp#WUQ6>|WwQcJw%f2p;cY|por8;Y9=5A3cp1weJz z(*E8xhU1YewT)OpaP^XPQ5IQKugsE5)^B;-KyP<*ewNrpq%vJmH8n1%{aJEB{e~`< zn}}B_$@jtX;;X3N@_mCKp#UUTf9Fc!vxj;68sGCdgJBo)10kRV+eNATE(J4TBoN>8 z5@a?#a(zmuWaGtCXqQ1{{DOf+u3)Rr$03N0tL zRa#CW1X0TggcjU_pjryc;ogBLDfbTI3n!6UbD1YO`c$i$a9a!)dNZ>u-@`P?8p0NR z?->D*zQ@7$I{NF5@~$`7I|NVf8r~pK=nO5R2tZlg+BKLv+w$>o-YoVdsf3ztr<(p? zY5HKiHz!rk7WL&m-^KyA4K|3}Hi%WUcMPnePx1T5z$*H$V3sEcOVh{>c=zh-ye+H8 z(%LK-4fwTVy)9UyY|H;-hf2!U9%eSPSk4^hZCyQa>m27pIV|yr$1Pk*(F#Tmdi2CM#e-Q!C(z9Qd`KM@{l}OIstL zbOro~7Db$q_;_?@dG#bxR8s3pTmT=K?5)lM*fMJp@-UnPYRv5O6)rGUDTP5jk>Qtd&sfV!}c$ohSeo8AUmAksY{)|bU^OJ9_5HK&^gd*;8o4$fRbeiJ zKykt%06Jmqm3vs@X$gl61v4@_9P8Py8d#sMcR8$`#s zCf)083`6<+d%aCrK`_sJ%5#9`d2Ft?dG&bW#Eg2DNj;sxJjYRbk%Q4O6z5FaV5?nPoMlKjC}hAn^N{$3bLJtwX`Z)vRYw`FobO!| zI%Rf!$onO$nWuXNPL!qwSQF*?>Q9t-lws&{Z!>=WgI4wU)eF6&Sb}CDXUi&hR@8@Y zW{TJv-2Pb3+K?JJTeirPvt^UK;MuZQFls>%YWg1EI5s*MYh<1bt4$yU7#V{C4A$L5 z3NRK01(=@?hyZkJ@$O3@`o55$qO|iA@h3PYgF8;bHpR&vwpH^QK(AoF0 zc6Sx^;*HzE9iqJg@t8O=gSYrg_|%0xt25^ZJfsc#fl$PGe))3mNp^%ld2))^ny4wBaFA0Y1>h)>)J`4(>wSobxB;#HeM771qFFJaiWAbB554=@Z~~PR z(p3V2a;n>gw4$Dne54{yNNxc*E~Zdubv+@?C3rZ3%<3Q~q*hWoi9++}S?FcQT7CE5D5Tm0Q z%Tpo=7>Dv43J^nidc_b1$T*TWAcd%N+y+kqC4mzX#nKbf08$qxB#MT_Fx^0*LK`EI zm+c8;$e?BL`M4Y5y%#YSyF19S7;atSSX>yB$s&n)aVWNRHSMK16yGm|!lC#9@e7CI z2ReowiU)t^ogFe1`|E%2t!c0)sea37`7XI@NCDD?f&kss zTPG&+$UoqM(o%wjbRSl9pC$!J7YcxGB9AL6ZXQVrkv0?tXydmnagzItU?J^~742Q5 z0BJ)3%KSSiK)O&6po=npbr58}qO)!*qWab^`JQ8wHe3%8zTm_Rl)uebZp~5ZT0Ry!4}jYVQoO?`EC$MzOmHRgB>- zBLJLFxd7mN3SC&tr+nUD-k+DeyoKJZh7!+JF~bJw1aD&FfT)H#qD4(cIRV zFY-=q!nSK14l|BAp!r#6GJWpqEHiquI*S9EiF{VV$Y$opo#iRbk9B=Dso}@>j&)Wa z-#ekpWkTo(C4CVj6&co9eAQ@QdqEUKg`q^pi}%}Z$$DLgxEWmn zG*@5p_7F5N{|JB8M`1ddUDP*W@`DL=riA(g2rVh|^)xK>GjXM$n^RST`U`aE2a6Jw66(%h38d)D4x-UznCdTM>-B|HEmm5Iy)Im z>nNplDbQBZkpwAmO1BF6?rW24CU%wS?BuT6k+k#I?@GKW6HrAu8-&E{Jy6CRG@&d8 zl~#Q3Hx*g@SPXm=k62qbY&3zwsvcj{m>dh|#QD+Q-a4!=l|($LaUssPn2)K8om%*m z12A~Z*@(uWsQ7TjctXI!Up_B3g

KCGm_nSCXwJ?x4ks8oW(?WFj`tX5X$HU#|!e z=dXIc4!mK4B@W!3xTik2eh4Do=w2Em3}DYls1jQ|Sg|GuTS$SgAW-7sl5^@KVlcr` zxwcG;Q=`)NC$jSL z`^~ypKCb%y3kPd2GmE;(zTZn1lfGZjjdX#*-E4h7znkp)`MRd+`#4C$OYM~<*EeHc zT`c>)lhT|9(#e4z2Wg;*S6~TE*{jAU*JxvcDmY>iRb1d{!-L7Nc7m$H5R z`HwjkBFc(GM+hqR);jr?hj3+%F1fyup@hZz3;al)MHnQwGSAm76cL}>Xd6V<1kJEp zQz?SFwfc4|Y3K&@orXSyq}8q2U;-8Ln|f3Xxz+e8fXNg@1d)HRaJrQm7Q!ZvEbWm%C&-U-k_c;uHX8|gJ9eiEB z?BMG(XVt;e?-;Vs{3u^`@K1Cx>EIvalMem`s3vZE$jRNW#X$cSN4NHa z-SB|gL0v98_#c$!X^>7_U4nTNzt6b^c!=+F5~`$!gD%*^i7tBTWFgRc#lBuPD74#f zmeyVSF@}Oe>gD$G4Y1Y2wbXN9DPrl~y?yNr){78Ba~E`%<}T0$0kgo3E@LDw>g#L5 zuF<7v6u8h(Hq@uCXE=d`vWdLTrAK*nbpe>59S9R*hY+ZvzwdWOp%@kEE?BC2h`2t? z_P;v77j5uvrP_NIDs>iWftB~%_>yn8`FwZjJum2D?LEdiqSWi%sq>i6c9*lmv$`T( z8SdyVSB78cVri$(3CZ2sPPi}xnz%58zj%4;B>Z1o-a1W)Sj#u#xTa)W!B<}+oe&pq zf{<7iRw0~N7AE(QbQ|{2j%3j_6MN_`W5C7iAi}sRB!r1~gRQYuiLFViQYgmAC_u-^ z1`(meD90$8j*(F)dc*usZ|Hrsub;t>jMm;TsfTp#Nt%iBhK;S8K4d=7Lwdu1bg}jZ z^FC^rC1@Bml$djSNN<>{D=Kfm#r=jJYH|OfE|+7;dP38D1EeFnL?DVo2_Z_14XU8A zi7Ld{A<*~6_*O9rg`uP=Uv!->m+d1$;dnyP(Bj?4`n+*k(`5&6KhKH{Q3^OzSC)ovw?Cu~T|#FEm^CwDrB@p3>UMx~8&r`k2Uej^du` zG<9!XPAC^r$|aJr7{2jRCXmK12!C;JHoJ43Rt^sk%-F=znU4^}4Y`Zbx&ic+%~#-o zO}-!{I$@}kNc2GlBDVpws6p9{kS$c%IzO#%`uYs_Kh*9&-GDf`^f+^z5cgF~QjP)EA zfIzGVpT(KoA$htPRlwuT8JR4m!15r`ZRAt=kp;v zRD{@-x@UPAj4H%B3@6e=8WY6AgRV3tg<*3N3~N9H#ISj(AdO-3Vd58t&4(3)4Vzy- z&G#k^oBQFV)_Mk;NCd>}rB?$2Ea$ya?TGnva0b(0w`!U)PF@9*idza~oV?^aA7=|m z4Gdt;17nK=t@lHVeCkf%`atWNVAQ9BP!|+*tHD!m_LZ_N!KiN+$gt?=qyWRMP!Rv4 zuOr({3PfDgc$>%H>KkN(ctbP7hz~kk2#sA!1`*^!pXfsuPL@r2eMT*JjB1GtuU zm4Mi?q67ufsfSrP0f;(jq>c(>gtBXOpKpuFrUq4|>>_1cfK-*QQqFkLccsDZ{F|EU zgeI+tk>-a<9UOfY2mp>g&SbMwPO zc^&>^T`cGK_Y27&wX;x85CuGUkuTreTqvip&AJj@LjGAOmyic^v84GsrFlxyGz$u4 za1n^&1O|U~a51__tv_OmKvNn~W<^B421Rn+4zyN}_O%lN;tW=WfMOY$S0tB_?Fmu6 zjLe~wdjP7~c@^+!OW|{CKp2;igfN-M))vZnjM$pYVB#@gez_dKL@`M;q}jTfpUKQ`rdwcd!)BJlO5E>(oz4Q(w>&i1=6DP|57BK z{})|JIX_0%Vv1#SEv`7oVWZ&CUEnoAqak1Pg0CZxoc)xqhY2Kcy-Y|FuL31-bwrdP zUKIjGucA=xRmDUm^eT#mZ9C{LXB?wYs62`d|HpbO$3WyDs9q))Q6|pT;8;{Ozm?ay zd)Vq}N4%LZMMtFMwIdR!Y6jtm#yoz(m5Fvto_#kNo^U>lkeppxfA)zf#Yfu3C z;b-7M#1FZ*)`Z2Zk}yR#e5Y8t;XArOxnbP!>qi>9_@)iMO!mDlm0tJ_k=6J$;4zy% zfF=5u#kfo~fin6Ap-g-u1bQKILLWw+xgztz`l19B6_sHl~TH2N*5UI1tGB!szNxJM&LsrNcYJq z={`Z}J|99CXAwe|^mi~ewka_-X;TWtU<3tVSI38wz9K?l*Q03I>Iu+j%60Kr&MKIX z#ol5;q1;={gGpX&c^tj1Hs`qLxIzHbqQhSlKj9I>OzSP%DV^ZrHZ!HSZhNEk(ocLH ztyW6zt@gsYj%xY17ZTc;#l2I*A=xfAXk z*a;JQawkkk88-+Kq4}|s2|~CJ)>V{*7#n#INMho1o-UW(c|Rq&G@!LunK+W665a!b zAAtppcKCMY3(Arkb+M%RJf-<&fF}BTu)-+a7Xj(M3Z}G!Qu;AK3D-?P2~+X#7fpv3 zo=*cMj3=K7rgV}}GR;0#FT{8<&_E|Aib^NX9oHc%l91Bd+xXtn1+VCBxgcJyYTw7Q z6}lkH6#(gi{=M6L&l_wIK>>pDT9w%!WD@g#e_a}A!7rj(IL7w@r*JzmSh+4oYa3&E z*=`^CK+^S6IY&VuB$d95YFbyXS=7_X{rR&yeIpp*B(yCdiyMX5oA8?Yh3^u(p8$fl zEb2jFTE}{q*(gFGIo{pR?PHk?BLZ~qfDr-P-Yj4|*sO|cJboboMg(3Lzc3>3I+rLuuTK3pupN{2Lfd6Vc zs~7->Zx8Kf>xqcq1}Mcm66;L~jzX>{)LJ2n`0% znz+aQoYcYT?lS?vv1U&ny2t+fpk5#S+Em8VIHnF2`8IqXX@ z&-azXJ5Ce>`l)GbU@)bAgwhC231=d5>*=la%S0($ zTTxuxT2p}D(R@hi;f{u)=^YJ$s>uqs*1P)2t@ZbWirCT^-)L)^zxI;{>A{?vmiw+s z(f+Ou(i7rxOG5#;F8m2vLL^7_`18*CrW!o$vi9@H{?gAQ`&*7o_tVY$OFwU^i{;{_ zX@BD9?SP0_u7iyD;9z=xxe!d(wUpktp}w-e+)xkF#gb@$O7vM?wPyjL@v6yVm50?_AhYd4voVf#}wN{5?i~^`pQM(Cw=ACZUvzv<~p`a0OVZfFN~kC*f3xJf2@6Xd=^FXxOYzy zAa{v`kOT+`AwcMa&_ahms39RiiuBNV?kNdPL6joB2at>u1?-?=uss%3@Ug|ekA-hZIX z;sb-Z_T^lMT3r2Bwe_1cbo({*2Jcn?e5|Y1l&kGyF2=Q(d7$|y#*2u|Z36<4NfqC_Ofs#)4hukF6((M%aV*6- zU)9brL}Z%{h2Pz$DX5t!`%YVpX4DmnvhQyZA)@U2$7+`o!=Jo=5jhkgjtBdiHJ_DC z&1L6ln9|63L}Ow^hx1t0H4#rTK~(dl=2)>AyfTfIn~$6(Q1hvuVb_Gg4i5|%jOsnU zj-`6fwhp&UCr^Ndba?_Se#sNy96ABk*e57NXX?X%X3pLT1eK%SU&k35e#`Svo7|ob z{NX#kGbUS6wK`D0f#;irqXpZW#h-pD_$OQZiB82o;CX0!b@)H!4Bk%9k9r_R!#30In*3hsEBALwhO6mL ztp!>P&2R&n!PvVH|6CLgU$Uo!Z8ol+Tz4QWYV923*n|9Ix{d6qJOn8j&H_gQdf?!b zoinNm_u!Wbk8Dw<_J?~8q&3&x45)huj<0aye#o=6BlBLfpnm1nj;ee)o|RoA9=>Sf z^i{~%Re8qcgPm=BHQPD!6z!~~vh2vQ!)j#RGXl!XPS!KnnD0!0AKN=0jQYhQ7LF31 z{yW&gd9!xOf(xef>Azg{mmK*Wt$W{{od{oMIwz{yAoj31oZ@62O*n2+2B z=@AdRj@3?cG#V5Ei(hTfNNYUEA4Pt*;P-sg27{pfWKS0S*vVO$l2}*^Ms;>ZM=|Nx z-~HK5CRXT~b=T#YY)J3v#Ev~MqqgtvF3xyG9W)4HKK4u%{~lj4GYQ7WCuGAH;WtLY zl5Wlym6_0^yR)@6oArHTo>Sh1DMky63b^d_oEUY%AW)XfY6IhXILB1tGs$QN(k)qW zLtanJUv4H*xGQ#}0PwJJ4uV6eQ?rz*zLYFyxS~DCC}`M-Xp7AbCc96PsZ$5hC!*C! z*m3bXfpYvhvarJbbY}(}tCLt;9YFmvKabo8|KtBWa-7Xq=0uSVgR`CQ>bwaG>dxu{ zllnL}MEzhXhu*C|ExxDrn*|bq+!V@QifFF>Fi7nFWWm8Y@sWAoSSTXuMGjqi$8`n3 zAo%NdH5QVuq({Pi{hS@N$XqL`(X-9q;3mCuLIr}2YPk_m{)d_f^ZGk`YPEvtN`{7a zj<1+b-tp;i&&W6^8sIF{S}|Jcd9mtft~Se+J7ry2>;4;!p`w9y$_BCqA}cRYdx=)s zE=$W54#NBW;*HMN(BssRDP!P{TU*D%jzP{CM;+|Z=%`y#G=?tbhE(+o28q}`Yn|(? zn}=xT?%7=NOZ?ZoQbWJZWYAv6JV2`)G?YD3&v7@(PaL=0HL{0xhd`vfbObghR9-5%InyL!9xd_F}N0!Uv1A#DIS0 z{2fdT4Tm|u)!t^bWaKWxot?uzKq##1+i_-VeBAUM z=X?C9vmu;3;B2N{X6PpK=JTB$ZOpL)*>LRRxX4(m7xiUeyo*uv-Q;9g)I@FSi@)7D ztBRI3I4Hn_D9!irrVbXAEq$p=abd1yG9v2Bx>Tc=)`LMsUzAKpS?OGC!zO3Ex6;`G zMz6NKmI>olISm^kv3;a|^i*w9DBEXNJMRs}UbM#91h%jBhj^ZvIT-f6j-x+BU155- zeVq++_Z!ZpA(*AUd%_@powJ3uHAssv!4&FEsa7|H2vXN$uss??5G4rw-#?Fq8MBen<{O$;S?uR(M+9M}}-KJlip z6=JEWo1DY7UxIj}W8*hFn^TX>Wa+O5yqle?weWmfOm!=L+z}2J(<8&U4p3_ihC{zj zuIc+>i?el@*3GVo92YgMabX@Jcgn{}c-@$qaPKx;N96<)^=vmbQb!zf&VK$!r$YTXI2Se1?j848m8&K-Mm2awzxWJtM=QWS6rY+`BvAf5cASja-6wr-B$!+GC-- z|J?1IXT!ES{xZX+8EOpFx!;*-!=`@HXkGsRQ=;?%9IIRhi|gr7uIC>>J8|p)SM67Z zO_S=Fd^yi^bTQAfm`ji| zsAQTqo^ZC)rZWb@G*N=1KQ8h3bg#27q(xVcwvm%0Z{!^O06QZm@8-eS{TK^eFJV~L z-6Uz)9LRdo*-LF+VA+)+nKo%6knoipV~1;y_>{CPRuUOdy}|4{%vt7RvvKAGfoUz^ zEH=1JriXFikd-;Mrmy&E=kf^cAnSryK4@<-0QKo0?0*pxHb*1_Qo{Z(!=~6eSRfZ$ z9NkLT-!pWb#<*F&5Odq`$ki&{{F5=$euStzUEQvtd&xRKK}vf2}9OCbOl% z)HiTiDym!5U3z}eTE8$KKrC9u?Gtov76l#rR&l^C@hZseR{%9Jhq7?$6 z!Q#!dQMAD9rA7{cI(w${SE~$>xufUX&TbBEr(J=N+|gW0+djn19aoOv687<6A{x$! zV;|0NFhdLXz4@;5s-nHjNsc=6v^N-lEc-IdJLc>e#Ss1Jw)I9VoXcx`))iX6ueQ}r zFiNyCZNycDZr!3LsV@(ayK(vHkq@fp@jv&u>L@P*nUpc6eK=;Qrm~YSGLvqv*rcX8 z?v^IKYY6=HBs1w#A3CpwYYlFyAavP?HG{t1O{PiPe&$@SWdswENfF0p(j>SzvRw_| zu+N?C6|EN|p%UTSlYto$-`3jaB+i5!hsJ<&kt&NVjdpv=)qnyAN3 zaO$1nbTG=DL+~2LjIW(_;nQ+Vv~^EgIc`48IOD9V&1X_bcG)SXTPtBul06?{zH?@5 zK6W;S4evHm+^sjsL&@1UiI|Op246WhDvwFA$G^f7Xn!!beNy&521nVA;H5K|`v1eA zBzqt9I_oUbICfCKO=s;5Qe@6K=OyJUp-8rNKA7uSxbeKRFzT!YHzV1%6m_%Jqpa7qtMNla0b`(ZPe zRe#DU>-S%9hcPG0zsv@u^~`?ijabKtW2-B<^4RJUZZrknzj_h(F+%74uzjGrnZ6; ze>%@-=NTD}Moc}OJH}p*KI&OZ%>E|$sO!T+A)~stKct_+UFR1{`bI;Gf1LHeq2kt0 zz2BS~T)5<%6L#Y;tZ_>=_p7JH;4lBaXuyn7!m?ZPDHg#7Rn?YC!`>KP#^5=m)=d9%cBnB#SZ7@k;ICq8B-8+;DlDy7-%@ z;aYo!g~8ku#1Rd?IPz4C(Lw9Y8i_^5aCt&gz#52(PH3=|PH6lB@O7hOG$R<51Wc6z z=CVc-Fx3>WoHh6bv{tv=uw}hgTSX+BoOC5DU)vc>L2|ZBIghhOlC#~E^CD~T%ju++U0_f^@1wmlc91hko)}W`1 z7^qX*Xbe-MZi&+vzC6dejDaoAv39wPxVSnZS4TzRPFTVS{1q*J)r0cd#^~glLLELX zuUcaX)2w(LTqcXgg7PPE<-y$9rz4+M@4G5_JO!@O$KkTJ)L0P(*0b&b7>)`5X( zIv8Egnhvm0P6r%|rh|M&M$jWR&RaJazgANS|fYf$RoG4I2$9eiuV0#iv6|L!+w=F;E)A zwnhOh9H=5}d@8cG4VCmL-W%3IdyX*{dZ5<7HZt1Uu!-@mW7TvhOfx2GhZ%{`MW{~K zDY!L+6_YG0R*{PhW<@&Wny;N_%us$d(D~L`0sUEo6oxiF2tUpDD_$>BG{?>2xdZX0~={aI-w!swX&@N2eG=gS$11wfbOg z`k*vA+~U&ka4Qv3{t9ocbz*X;KjN56MH;FTIE{5|6#{*|rIDs_DEg}@q^FH*4ELs! zYlW+97{u*RD`SxjDq>Qb!c-FevSAQii$7g$ZO|Z(-}*l}q)A$O`JQk-3ghHVg7V0LT%P4X7n5T-5NT)> zavIBnA<)ly7=ttprCF1{^tH^+KhK6nEdT0hB-^04C7Y)Kqa#mn_C!a%IbD zw{J3=OwIT2p)7JEmnCirXknwQm<@Q)foL+BaeNB1gW_APi`Gs`!B3?VVJwLLDh=xJ)Z-LZFu)G~zW5rLd{qGqZ)(i|K@& z%Cn&n%N-YIX4s(Qyf-c9(E|X#W5N^LFK0){?U&Od82O0TqP zeNUGSYRM@19L^?2Lv~uv?6gDLN#}Ng{Z)!PD60il5{TEuYRef5^3}x!N~E$xU}VV0 zS!bd!@q#NhUCtih6itu_f% zdG`uNJ=kJE3q1YbEj|>L&l*WUcT>PP)?f+1R=)tMyl)N05|y_)%VfTcwGwk|K<&-a zdoydbBp`}k0+rqs1cKok9b9@xx^VxEN^gcQOYdEytj;Tfg9$#{$U8$RoV52O*ITkHte_>=|#=%$Ryk2Cqw6UY|`-DK`<#(_ezB`Hyyx*;jwIWvNp~W(Q zkf3T~q4P|v!Z{`-WKo5~fmx(Bx|}ev0B>Q#B&{_^>VOw~LL-QUB+TQRwD?o@qSMhus8ATuJrV!DQLLXPeXKQ*gI^dcbMOJyC~~m++*nou zyn!r43Gk{20DB>Bb;m5kQ5>xuxj3r?_?*e1UQr>AH2WJCCq}YH%5<#<=f{NrsSM}b z(P^>_*M4UVgwr&RMjX2>G*;^jnggev!Vkjyy3lB?RUK!AE$K!J8iowSV&@{`h>bBV z26v8?EBPH`MN!?-*Wpg%kfOB=W+^hW z))|ke+6l&uOi9lEP&)fV)<~t1sKAx)VPOewgZ;=F$=Tm>Xa8BDv#9{LMxXf(n-5KA zb8(ilqsIqDxEOuPhtk=c#Bz2BwBcr>pT?myXHxy$#Lhm?hDI#A-Gx!biE%1#2n+JV zYQpxrur%+?IFL6vE^%nL1sCZY8kn+Sd#M#Y9E0d`_YaB?#&&Tqd6UItQ=-~R_x9K9fx3yUokYhc!sSsq1ETI8ZIl=8JqCLs_-%4Mv~aj0-?nl%C& zDr!z46x=$cp_a?&Nke=_Q7$H_5uRcyD}UylpjZEtLX= zY24F7H!4h@5x=M~eFiq}G18(!>e6Y@e6Mj!1$F89y~Z8dd#smed9yA(Y(WEc>5}WL zON&mPuL|DBj1ujv#a))9r-Zk0Kj%c1MD>e8R+nC8nCOG1u&ZW43#CvNb=m}LI8fd7 zSD~yLYqJKTqPi4YspRqtpt`h8Fe+7cttLnbJy|PBzy_*I^H_r=0bBhNsHm&JipJ-K z_M)zxtmhc2tmj@YtgxP&BLq`DcgF--&t*PsbV>eP*ooJ3Z(4@)*K>5&VHs1Ls;j-v z(u61`HU~D!>WX7gowAdW2~>621o*3pk*{$~tPFCY`_D5XD|?s2A0ZLuNy?o}Djm>H zc+MD(A6;i)8m@E;_aK9c;i^0b#tTL}8#WbyK7q&!z#uVkz9ugkofYi_V@L&HIRgkI zC?}xyONL=XBy0T~irD>S;~pELrFhsxD~w6;6R`dj-1p=11$ODeb>Z;UD|mn!A4*Yt zFo=T6G^?v-nZ~+m9+I}R^O6;smLZ^2p?wa!KQhw9Q&qiv1+N-i6m4)Y1!bX}i82f2 zu+~65FlnN!2d1z_S|U!E$m)S2WFZQ)JB0b{1)9|n^M&UqjxrG!XDtzzF*#^bJoOhR zrAR}mfzw#2Ap}Y#8i%42%#+eD-?CN_9D}%Bc@tLy97@5npQ%Kv2#!H?qu$2V4u?{G zV4aQs=YMjbZBfpF@=^bZG9UGsC{IeKzhfjR+Ihx}OhjHhV|wunYYlkuAJdChSR;Ay zZ|=pall~80tS;9RD2}|y#aUiVo@5&srWcWhyvS+De)+?@#6>dI2uM{OM@1**YaQ*J z^E8e@bUz<6CfT53V8fU12PR8fqvb!&D9C?fm{5uUj!PWKe;i8wJ7xKg))T$ZM`AsZ zF;T83T1}KEG#eOy@~AlY(AEm5HIiRf_fC?BGmkNJ^5P?t*jRj4dQsnsP`b9P;MFmD`nT?<@b*h;eBD1S8W;-anDGIK}^y zwFY9d`eZr7)R=6=4D~8{GV4{{$=8a_8rBRGD`WFdsQ;z$lucSt`Y;iHW%|%I=J;~s z3#}tlL`(p%?sOn_@KcYg&l-(`aqy`*Jf_ixFiJ`@9pUTK#zQvjAWh<>$|0K6I)gXx z491V5xY;>N6GLjkaVTu*6lW=;BuxxhdJfl&96Kn_m=BRLP4ImvvoR2UG6SRB3Jf}! zVHt@nfNjecfBfRYFmN*Sl2DBnz%Pqmv;cm2GM&umd<6{0PZj0H+un#^va6O$>`JS) zY!LrWfZLG(wC|EzdiE&yisg4fGPM|hZu4dglib>w<&OCMGtonQ|H~ z{$TX3+~P~V6()V|dbKIoMpkl6ff<`;%2)6xsiB(zcTK>xF18HIlu ze^nrZI&xc}Be#c$najm24~RMOx6!_$uGG6^1AB$JmpxjrFjpY zvp0w}0meEhQT|p^40O>dbt_nmalkPi5tm~=w!(EWpZT$Y%n57#bNk|>8|iF zD0?-nv2rWK#JHxZw@#Ih{FFJXM#8`q6Ka*N?9vRbe$qd&bljX|cx6_rXeg@T8sWGH zZKFKaH5QJY=%1?Z3^Gu>y5&h|_06$baM5sdQMOy&Quj>7-3?D02ZjX9NEp}$E@rqY zQ?sMxCOH7L7@U)ruHz4DmKRR0@uGn6S?(^WM2emmqi&okpJf?4#I;C2%4vV{6z4)o zyUIFql5)f@=F}xmFJ-EHBZ$+9b)(_+t7S_?g~chZwq(l1j<^KKx#L7**jC3?nde!AJ=Ke- zX(v~jevykMbJm;|WX>O0Kfg82nOoQOoZduW`V;PTo3jyQq`G>kD1lp&jP+5n>rmKW zlt%A1(hIm;GF7gil{1lo*FyZJ8atvO0UFXMOX>n_qwURtDQc83nU|X1cb+2 zU(z1G4x_YmrNjNHuCw}LPDKeIv$y+3m_JIX9<~PCpnGq3J$;=GOH8Y)SZ6?VraqKK zC^c{r`nsX3Rb{)f81^=DHL5_Ve;T=(g_Q|?);q?;L(eotU4p>S>iTR#3 zQS$IXD^LcyW8vUeV`6IT5gfRI7Q^z!uG{VM$&?|O3&@me?`gI`DETuw65ej=>HxdO zOsodWnz}Zt7pKAZzZ1pDPJcTD#i8Tj{O`F?_wPU0He#7f<7* zpI~8T?qSnunnwHV%y5maYA!;SJ@#gw1Z0}3mpu$&{k=oQqw{g*W^8>f5^$M+d{{sg-Y!fy3j8#8v0yzHxnUL z6OR6p*9^vYa793)NxAjl%g1U(LQXf=im*$l3lv{=57aMnt;mFbF%wpC`Xj4)57)Fx zMwa8Z=@C%;a)Trte^{f4ELYnZH0*wsmb>7$T>Hdoa76Wtfcy^f*Feb6&yUhu3PS&Y z%;@FJtx*)bh-e0<`r{B0iwNaHz)sfllem5gJU@w##N+xf33feOtGQAveh*5hU@2#y z5c%Nb&}`Q&I>(R?PR8_c`Sdwlx7~-QPRg6XAgDK$u?wzaRd|yt7t(VkP0*Jz#(<)l z(nFf@705G|IOXdutA|f~T;Im&e){k9o0L*vtwHK0r#w_!6ftqQ{$vQ&K8}^IALa=A zPffc?c_V-@;T6|R{WM1qa@3O|q^7plFY*>aDq8T!EUq+iVo&`FZ{4WPG(;;MnW2Km z2YBP*%UstCJ;7j6K1N0&QSrwy1wdm$}_pL0$1%C0#TmCO%PJ?zxdvf2_2G`2slr$Ue;+0Gx2OA zEqbSMWyQ?V`TAn#CVevJD2gcGnVVcw75x?t7o#d^j)0Jo<}-*Pq;TMbt2X>N%$2Dx z{TFicRg|IRWy4)(^iBUlY1X?oN_;oveElI#M5P|>72hwwVu%?_;P@l1G{`?XxHlAj zTQ$r#e57lOq95XP8;=;d>PrUg80#1OfeQyvS=HZv}haNLKYq9k`^7rTgamQUCg4xkwL{4H6MRK3F1g7ic26v z6r zgTLon;h-Weg(S!IkKH^+D}92E2gaoXG3i>i&PjmSAH3ko)@N}F5kEo(MY4^6BAG)X z03$gCwjZB)v%ZS+2%6N*_tJ4vxv92&f$J3=IOXE>=?!7^LRTkve38{>2jak~@*9)v z$kYSzE-8IK=OKEa090A*ni$2In?`CC`EaWKA5I_!FA~(a6Ki-*Akr+4Y4h5dtsnFv zs_*V}4OPnVAsyFb{VeB9gYh&ff4pbaIy(NaCNNUI-%{5Y{SOW%^PhIpOQ>sD(U>Za z)J}?+?WKO^mT#ikyUf)|jrBm*5?5mBaFKCUiV~y*eqA%crg2K^!BV7n7e7z2L9@cV7a#G29*FgO)4i=i@ zhnm}MaE-9z2L((sX*ioCrNs5U{ut**b6cH_u3oTy6PuPFgJ(CoR@hOGKY+tyL8+_0 z{s!kj`aA~bH{tHKjdhSdEh^B5CgtK4Q^I@)HoMXl{Um2hs@2-!>JB?gnQAAYY>Vq& zJ8D2RSPND}C@0~sQdh5Qpz4uc7ADk-lW-1jOxUyt>P315y%4jl(m{?6|I#77%0uD4 z;;pXvir${fp&2*BD`(sc-a@-?g&!%69Rs|$HpT~l^&H+#3y6MRwtyIhY|I5jLBY(1 zH4SUXc9LqMAeyeZAae!b;=E}EfygxPa%5UT=r#x~pmOeY9k7EjS{uT}gows)c$eh@ zI}VY4y3^GwigPqSF=Btmp$=R>^iEeO%yi0^90pN$pF1}N#QP4FhavwyS7HS+X}!l~ z0@`eu9G~CYh1jsq1+D#?|1dWFIC4p;%bd+nW%R9e}mNNO>fZ9J`rGRCEfwV zL%+&zu<=3MxBi3Eko$h&?o)~a?xTXaxG*reH2hNMkkak6KHT^9MJD>4y%ZC)gA&g?S8tMsz$Mct*xU2i!y7e&BNZ>V*k ze4negx~&L`TH`sz4z8ov@=@<*I^uVL>X*6NDidH>nJb&6njTWaEk!hF^er|nc-9EN zmbv<yfD1Y77vg!+)we<+;savJ7C7~!Yf9K@WG1((&V;Zn=WKuU zvt9bME5Bm4_yvj3hK)t?rgh2LyvU?N*->6^`om=onK~2b?zOF4_s0`%pWxSzB)(Wa59|;d?({q`?jOnLfp7e#dN{o1b0tG{pKD6UzEWr3i$2!`MNb#J z{IwfxEH!5kY@>~(>v$U%9+~u@1Fyy}xaRBK8FRL|RDn#RTQO}e`Fg+T8mQ<)IU#M! zeUDNe09E-STn%oEQ z7UG^MxOde@@CIUxBo^a$^kR-cJl!VG1-ylLVxb~5zWE*3QhhCNCB{f+F^-3W3FB_k zALLlXeYeT|Dc(ZdcMI+b^wKi@5N{>!NGG_fgNlK6^R5xI)^1);beP=D^fVr1PC$7J7Rp}ItSgwl86BiA5BPvNArPM!XVYpC9Y zgT?lMnle+~cCiuAlG4)B-2DrYCAJ;&^`4w(Q2#VJ$=WEXCfxriYIze}`P5aQ4+~~c z!xC*i;)`#p{m#`ZK96Cd34azFjEatG5c#$a(8lLlE(uqE=CWp$0Fz$bKxyWdck$uEe78@3m{ZUy`~I17m3=>Np|#A5 zGv!+5CEg;|GRpHpee=-qO{B-=HJ+@boN~2@wY07w&5rzOy=>!88=f`@EvlY4=kBE2 z!D2s*ZnPIa@1Cfi<*JC#3Bne;rs7Vt9V}K$xDpiJQ}3B6A5;!I<0@A4$XRSykU1h| zNpnQ-7AiVg*B)98QqH-WDanv?&XumGa1>hO)t$xGc+HTLG>rFaR~r@s=EoIqN%lJ~ z!)=1dE;b0+rO|np$Bsy&DPR}q_N`U=1tAKPJo1gJSrAy*_3Ag6p+@mukV!-3Kld$e zKH9*v0Cmigg@LqbE8hp-xf&~w`=iu_%sJmQ=X@@ON_N^cOTJ(gK`P=N&zn|PXQ+JB z?0yCZQHnW`soXRR%|A6jLBZ%w~aDbGEFYF3bQ~ z09#`;S&mT@Lc1mpDlMc=R4dJl^@`w!|l>9 z{0q6cJ^5V_c~rRjPc>|guS$elRrH8CER2Klrn%#&!l@hG8Blh$Q;h1@;oU0k_4vJ` zF;(55C;bZx^LrSzEf&gg*j>#%h-F%{n>IVqDM7KRxqqsAInte`=mWSoiljbsWF+(0;dFEbWFymT=N!5g?7-D7Ebcm>K}}rrpuc{> z_&5Rw{kom&=#>Ell z3oeiQBH|Vn)8vaI(ifaS`r@EIq#7(paMx4nz`Y6XhI(C2OVfI-TiCRoc8fn$o~`9> zd=2#y@owv(+U~m0xHfX^$~n?RMtv}mdg^)q+Flnn*Ks!lSE4&`@QK_p9tHg={0I6c zx*OmZt*_DEU0-@_{zP9^*WExby#|tszK!WSB@S@+w;D`OawjW$VMP*BJjN-=P>*m! zJsU98y~*x0HmUjjXojuLB^0(c2!-u{dhS1T8<@iO?U1l-1$uq=7X53k8b#<=sEx=q zU-1@ygf@0uy2VWDmw7vN>M!1@Dz{!Usb|Q^9tBZS=Yn`>CfynonhwO2Ns5!m;4I0l z(#Vl2Rn8PR#TGLAP72nPTBUts%3xr5fcnn;f#Z4MG+d?_01N zixRVV;etNerUzzCJ0j7GS1#DWv@|HcC9rlCo7&1YQ6AvOwx)zfs;g$o4b|l{={ZS# zeUO;mP?j`OixkkGMfFEj*6Zq?Tj@DT{ZWoi^UA}_I?qVQVZC&!xw{)~qNCxG;Gij`?K*XUZmrxu>wknG)28+> z989*NO>G;PQkRC;FvZ=MsJSd+C?u=RWfM}uT>pe5DnXW2&9Bbb7}K7%4MGFyqU`RM zR(EMj+gAGGmUev@($?L{(QhtZp*q;5HvKrXUX?$rM;r!og=vR-5LbBQTnbcl#dq!8 zomrS>$`LdG`#ssylV>`!rO#YzpBUb4@2(QhHT1^??h4Q?!-Jpo(`Y03C)z6z+rBbx zisdHpBB3U25-%3NXp?v`O6XkFD5`=@;_jL5$st?AUErHc_dIi*BpZ*+m6s3KH|P=#(>l9X>aTEO+Ut7} zeI&m3;F~M1Am;0za162Mr+#3=h=a1O?mqejjz)~Wn=3a_FY^{+fGug+9xjo(K$&Uyq zt)$EciZ(NiaZcVB*~<4zPj`Z<_u#rxjfGDlr0M-QSky>rk9qKDBUi%;2=FO^I&kdm zvEh)?&s`N-XXASE%RVw^3sR*A?96t5@_(f4*3U-Ssjqu`#gx?`vY)%Hen+sTC=U9$ zbL~X9_csW-_IFqEAtN(F-@cd{rFZ25={d2}{oNnyr5sF#tiUe%y&Q{-QwsA3x;NO# zX{U0FKqViVyP`J1v|V?AbE8SS`jUxSq=3?V@CY0q_{r8F?kD~*kIm7SkX{^ycbW%un)=N=I!#qRfC>3nA=ubbLbgFD zNnE^jP_i8n6LOAT?>6j)e-s`18ed$+H6hB^3fwd7l$45(&6BD4UDO3%%n!;PeWc^LgH#Efy9C*_ZGEv*E; zSAeZxFi*J=0(2WVEiplk#x&MMM|c?Y)g@H%3?H zGe262U9l_n6TaE}KV#jk^*S7#bc&yESsS1E+&|9UUg-p1k8`(8vc`yc8@2|g&K&Qa zquU^4)f?waJ+DYT)o16)V{Y5{qKEcvv!>sSm_+a(Hg2?#L^*bh_(eGu-^M$^omNqb z?L5(KRFGo7o9KQ;pTl*g6gz`KO!uvwdz~rv<=>4O@Lu9>C&*9C)9-C=VunCnoG_4^18pgI31&FIslJ|rX`gYOfRLu(C5Tt%y1VE$Fy=^k z@k_tN^*~eP+7XHV$UJvTJJ>3EqwYYP`4jCm=-<7~J={)DQ|Yr9`*?F-c?u5B$K^#E z&WViJ>JDkdR=kC3z`l3L8n8ca5mr>PA!dPp`*H}o)jQpp zjy-qaTNT<4N`-qT=G>@1%8|%C4>R*TBh7;!#2vTP-GPOenGR8u*s{?>MfDsQUk$oU z&Pj5-i}FTK&PmaahKPEHiTYHEa?HCOuNFM&_j$eU0v6}wiCPO}bk^c6DUG;qYbEiE+A{%OGRgNkm+)U+=D40jI!`u)g5`z=SS*+IZ76 z5w}3DWBmhTM~VAy{eI4m+_BSi$4=ft?kIj=Z>;!W!Y16DeV(^wWfo0QxG(-AeL-Qm z{{y`t3sdu$9Ho#ixD?YDpK{jZ3q&SgaAfHV8-#q(@*_P{w}b7|%P*WgxxtPt+|aue z*T8l#F~NgRJ$xYx;A_y62W<4@fgP3ysFEndma zsnx6`Zh{Hhu#yT(Z<=B>D zt1QKQnDg5y`tA@!+Mm3KgUMyIKWPI~ZhB^+%uPN{K)rg3_v(<al8LGr+j7tEO8f}A zxK@2i>bHC}$S-91sreyO+0tS0eAhOXCl@2k8w3KmY22 zs+$xBF+*zY%Im6bGT_E%KB@<~N8NRx>|wmt)0T-~mQ@@#P62Xk#Usk_B0Z#4@0BeEs-qNVC@S?U9XK&vR6{$(Oi@t>*=zT+go; zzuLp%$K1V=+KAtLJ)a~1ep8n}=Kesxi$iE7ziZ_1O0MKBBUdqRVr}Hy+1s z_X!AJ(1(!1u{C#v!J0Bm4Ez6u+}sKaA@@~((*0jWf8}3D%~iLJluC&YI8k6)(T@o* z&3A1U`F=W$$Ef;`9FtPkw~OQo;#=NAbBMZF&LLronNw&1cLU6L$-lmhUMwfZ^^0VY zU>VB1*oOir0oer5qRIxL*^Jh=cCbAGwcxtYG-JmOtZ!{#nr6OUBvbgAMRINX)p_@a zdI9H0_Q=Klh{MQS-a_`6V%lRGZy|e3V)mGEO?#LRm!bf&hfM(4!v-OH&?3_gw%cO^ z*M;n1#}3%T1{U^E1`4I+dLLiqf`h&zl-z`GA3cQufvHP5CSbkPcX1BYrcBab<&vxz zdqsfF7z69;bzdwN2Y+cACn8gQ7BE!}#j=!0srczJR7ifZPXB-t2GT0(L^_xM)*wcG z1x1MSKU9#;|KjgtVQMKDE5J4d=>V{K2sS0y#vE)VSQ}Ub18&hzcnd4&ERIk4wcDL+ z)sSirWz0=2d`r%7fKz#+ zbX`#TGbH81eIHgnAEJF*>D4$(mIM&LSIVnA38NGFC zeHi~ay9d)0=6&Wau%ptJ&L5w-r|Z3K9K@5WP2u^^-D@hqpYerzramkb-`DM=dzxY= zpmQm!8)h=LcSF4MBfZ@1R&)<%8e{=;f5Jve$#^j*3d}>=0s*FZXs_?$X?KdE@8F0c z_b7Km%(qy>-pw0mwkd;CXK=Q8k~h$Fx({ZY_g^wOutZKa5ldtywz_FfHg_+f4H z+)_3YXzGnw%BJ3WORr@Ovx>fiA3zna9kEFubJ!qO9=3z+=IF+iA#>QV1Lm-S$sB(M z%t5zqHi-Xr+>$?A!!NW_f}4-;Y7rT@n9B$RmhKT?8CaMoqNlZoi*<5Jl%?|K%{op* zR$9fa1eTSktX;NLmbHsHSs?$a3lLqTA`fyGxffNV-1{0ww^Tb6q8jDiPeZT^Q*tzo zL#@>N5eHKM{9p#a1>Qnk`;K?*FRN=*+giiHtZi+aDfikSlzZPdJABCMFx|ef4SUMF zwprV92<6?@%g{xXcQeE<%DWlMu9`ioU-O#FVzlRF_ig$}Cc?_Q@fAomZeGTU(IQSq+1Is9X5VScSoU2Jg0{p$qwISP zNmd~`8d=Ef%TZ+^nzf7-q5@Io;HSl}(a==&KzKS1C7l-GX`t$#{0pg>0&S#}$G+o4)|fso zz%el$uy)F`_WG?lc~(= zsd;FE0%-EK382Z_2C;IP9c-Vxv$-xbdE2oAleY~_^TX9;vZ(xL8B1nP&X4Rd#k9v1 z-a_`c!?edj-a_`kGu41SR$bE`<}w5YkUeYy$R0L`mCWp5ZjXBEmK$Jk)WDkXawkKB zk`?ae`omm1vXGrVU?Cfr(i?v7B+k=IMFY{c?O)4e204#|Qe=>`I1P&A_Fpc+indP# z*o-z-UjDXRX16~$6&x#rp+CRjZJ9U^U3k?L6kw`H z39i)&7UGtA%>~$|9woTmA=vVj2^?%?xE>r#K`~;593&%o3w3W86x1^Zi83kBJ<4y^ z7%?}uY<%Sl6F5KePFKONm)d+qpu3dbY_kESH`|10^_kM!Ho=zC+jjAb(%beGl-_iH zSyN2MDUK#aL&&P{>6t)H{yElUnShV|(}y4Mhy3t^k^m_UJm2kqc1^J6^26A z>tN$TwIB3s)})PoLKuQ<_x=j`If#!K1lvSVuANl*WdMB+qI+Y{JNnm*F+IDRbWT7h z?}W)+3@#fA9`e+L!oEXl!J|z)V=M7u)T{_^9OO0ibk=QrC)_%7G+b!vNe=rP<-?4P zNiQPd;iV>?NO&;aQ{Pdr5@WX8$ewE6N~oXV%y-;? zfP+tV&ZsKX!f@Cp!{KCWPj{_INTzVWSAb6PWJBv`Ye(j}EvWeQ|0^UkC_MdXHTWUJ z^Kz6;gnY5ui8h`i+FDCA6ns`R04^@98V*MX4XMnq!+^+!^2wfPjfsPw4j0Gy_O$a< zQMK(%+JpzZsj%q9QQ>g9gU6{n2!k>`-L!`pM*V-hQ`Gw@20BB@I~g(R{*@3jqNpv* z@93FWW1B$btE%mAp`)ifiU~na9P-_h0)rbz?b6<2tYZev=nloxYgBioG-8_l- z&*R-Zy|llX2D=NrdFme+GIUGdVize#>Mtv4y%KlPA`!nRg>8ckJw0`ydJj)4N8Bpx zB0fE!#KGtuo^-9wDl5Q*2%MFVXL))tW0|iMh!yaTrC)xe)x4I7`|<8$+bmDE)+Lx} zW-wE8z_txAjjxC)x+CNEjC^K1v$x!M6fReLc}6SRC?@w*X%T*cw`*8^c%hFcQo%Ry zir$Ta@IIc&p@=2rH`mu@GjbEVW?#>&P;9|gTONe%KRQ;eK_acG!Z0 z73s$wP;XIQg^jtMBkF%w$?$#^Zp-sLtuaPGIwwD@c7Ut-0Yf_w1J66v`VgJ(DG9}2 z|A^X7yTZf@dlS)w|EAZm;fo$7Tk&qLfmjc*D~ksw_0-~5TcJ#IW&Y&ak#ROe|A6pq z8{#Qb9Sv7wfUV8QuT>!uMkM4n?^7ENc8m)5eK5>(N{MP?$?#jS@AGP&*4ctH3og9b z(?e~uTFw=nUr=YM1Mxp%nrH)4MtV9{#4i0sb+|UBLUzTYJbeP}#&vOYhoS>&H`Oh9 ziWc!59gXRTPb}Kz9`l)B)?G2%#`_}2cLDZtpy7gH%S54 zbkF^c*frSq)bM6n+!|{b?2qwIQe)Q0-BZel_155(VEnwzt7z_x{f8#Ny*p>rgIyQr zR)=GsJ1X-G3MO%(b+Q_@22xy}E?N{*K*V2ch5+zQn8-D7C>3`btE`b{;PSPTR|(-QNW3%&;}`@wD;{sgc4;f!Eus-(on5)u4F4y?PG+Q)pyC zVRT$%f-UOIIROR9x7_b7^32gWhJ4HY)MC$9QR^%n(SC*DDOr&g1a{Bx3{}^y5m%?P z;9#Bj$h=int3MmBU2}Z_0woEKs_^Yh&lGL1#U0So&EViBy>mhZGL1bL9OZwgH)+oW zlave%?;Kw-iQMmdd$#8t?L9_T(A_&!JuJd#YJ2T-*6`Dv#ngZo%e!dbvWDZgcwB;l zu9UyAhMsiO9BZvGCCaN9rsDh#5q2NJcWCXL>$zD=WLP9PVXYM0lr;!)T(|VR-P1wK zWN?y;1WaxmT)xedtK~B+VmruWJB~FF+d-18o56`K64==0-{IM!En`^3cCpEJGi#vE zVgs5fo?hjp?PjgS99wP7eHX_M)m~s&#Qa&4`CF`km}3K7?iX+U*FI*g#2i~~%*U%y z1GNhbi07=72V8FlD7+S1fW zANnx!3()dKZ+ker(o@;_R1ETHwfj1H^>N*)LO!1ZyD)`B{sx*rJq&7Hk^H;$;LP*^Lxx#*VIQMPq! z{|lbxQLLYs+~{5EncF;*cF`s4`w)a#k0thcQ?xYfFMz z;(eqFSehI4_+SNRxox*+Jbtq2@77#1PQnQa8xKrLqPZT=alz@&@^U ztCqr=X#~{Wz^2}2$OKQ5qB@CjBBx%l3NC2TT&=Z1KI)2cDB8Ik5$#$KAOR*n?zwD( z26hm%Jf?*RE*o0?1D;yY>Iu&z8#E@ZC{MX6U1{3GH>S)}sA#hoGcrYyX^JA&V3}f# z-xTXuGnrx)Hw9eV6w6Fgpd2yt|cKJBTiXdEoMqq;Y6|F-fy@+>|iOQGHb z0TSTK3!dp3hvJUKAT7Scib(P)$3UOXw~1k9F^4=uG#lVRQJ%JhNv7^| z4CIjjnXiiFG($U7P?QSZ16`VFTNpIvX&et6ZE@0!T2Sbza-$7O25eVi3m`~*&GQND ze3N#K$ZXG=W_y+iAhX^3XFks5qf#Qk`SHX8^?hU{lJAEMkCN{(ZoiWy*GRrcN@Vgq z!pJfCwu0*4B_^xCm%y=KT@4~xBl+f6&RgAh4c{PdO1_-8m3*;-mcc0oot- zcr*?b`)s96v%+BYQN6X+Y-3RPa#Zr)f_FTPYz)W+PgyRIPut)kM_l~bxlSGw?!a}) z50f)NTtbcNVy!>S6+!8zEz*>Uu=8C{V{I~1fi_w2LDu&wyU8LKn?Vw3lf|ZlT>7ou zd0jQMTYg=*(=pG-;rQLs>K}WisjD{14-4P%Mw>`@p`>p#{L{{p42AbN!XWMw&tqXv zU~i#hbH94pe%5c=V0nC_HE5L=Vb=+deZhC~geSjp3)I=l9{BK6Pd{xBlSz9j?+O5~ z2_D)=dn)*nrH!XO>G0=&JW2<&4rXcLn~Rr%vMhZ z6sq6R+Yt`_;E2Q*)3&be9RSJW=0w7glb-j&>TE)*Dh)?B(CXqZ|4A2FwH7|x{@i5q zASZ1TZClx#wNmbMVmISe(<+oAsR{Y*_;#tqzVY5&gRNoX{Uz@|^l8t6?8!ePJs%cvd-GCps z#RFs5n2v|HDPMcqS5i&I1DC$`WN03y0$FUM0C0;LW`Cxc7OVD+=UMGRMuvH$Asnrx zr)ZBesK_JggPR~jD{2{xo~^x70VZvBbH=F8^@Z$xmg?LU7t8ua`nvq!Q55web}D;z zy7n{Ehdl8k_ryOHMC+~^-ZoJ9s-ppv3?5p^ihMSH%hz?$lc{~n#FH1IHwSs)YuOci z03`n>&$n8tX#YvPk_*4mSWuL$HDdrWed=Z?98z?%4fDDUT5q!)J!dunH|UKU8b(6W zZ=TP>Mxz=q_;67RZ7frWEIM+tHU5=pu=q;QtQzxd(M?d&tI`vcW7uZ=e*L)?bu|1D zFb-LBo&fxU*7Dy58DjQh@Mbv+B>&~PMO(+nXl+#dcX)Sg3xf*7;=P5De|x&xu&>*$ zt1W%FUAy<58tuF7A5RShze&38vZtf=7So2T`WmVKkXEWTdotre8moL6-B8BbHltH zwfc8i{uf44l3<4B?IN!bG`}k}^PrJBKzX>glG{$RmD=!ZgtxI)n+X<{s?kjVxTWIZ zr+9BKHTEtUcP~`&-li2Ws_V5Bem~nUfE%jEvG_>%_=qD;u7Zl*bwt6iNbi!cxhNZU zz8{{Z-Nv*aqus)cwzLAH{iAtDR5G$0Gw(8oD*mty)f%M&z%5oJJLEPkw&$3mOxw$- zuG?Y{2Lwoq`EW_oP=S5-_N^6m90ipo_G_tqz$B7&jxy_fQGs2biZ2V

CYX2=XPAgvh z%y`e+5}x?nk$OGJ*U+Y-3v5@!I$eJ23sbsm$%yPS>$r|3 zi(><7vg0d9iiSVzR(mSgYHMYGR+&~?bhPh8?M+5?-3EItAb=a};(aY5;qS7(b>wVU z($M>;<44r`=+}-G+C?UxO!qxA-QUu5aTP7OGht(MZwvUM>#)hVT+2^zz~C(V9QB3k`%c%^FtY27Uv;G=fm^ibfvS=4Qik_;$CIdSx8EGCw5OR^vRN6o*~=B! zj0%+M?Yu22X{o5kP$XVo{SFs;YimO5kFelOK96@h1>7HgWVmAjzzw&@?AAl3;kky|u&jZO zX$Im3MqXzN8n`I3;kq`thQqk7-fy*G7Gt1;{Q{tC7D_Js)WaJO)5r+w}em8-e*X} z_C1qrIcp%c*g$N5WDUd?8#vo@+1}+^mAfrB5L?IHQrkGzKy0yr*fwAd#1V#~O$& zHVC$AE?P;v(y@YwGX~+K=triE0sr-kI*^s?O@h^@GU7CbPuDY)_OLtGn;%CPGU#f? z(?VplxQTH9BJ#Zb>JAc)-~%v|c?R!Zr2Fp9^Bz#N*O;!>Re~c7Dn>fq;j2>MU1h_j zY<4mfvBwZ^7aO9*_F^b@%bUEfUISa*YJ~|+H>fMrZW`9!jxRQzj-?H&d{MpV zPDuZxCD4}$O3FEzq8n+%D)dT?&VCD3pNj9_z^@@jT zN109{bZi)OLi4(_sGkjLMd_*kN!((hHzkz#;+J7fwO{@RacwwxWKazovAo3n#>6U+ z|zm*R7ls3NOlf8JSrWxZyA(^&KhGd%6;KPt? zrQqwSN~Ylox3|>*A_nn&EQeg?UJT}i8PmN%K_Vis%QhK-T^KQ)=auc9lkAwX4Ij69 zd0=WJYZVcQ&)Ef7t20os-~fDL3!XP4ZwkO5-l;&*y=t3`?lr-@@wq#{+Uk}Hc$Z;t zD_x+_>rE6Q=wmNEYmexuKE4f}m{ZhHdm@vO$OHuD&jxlOVZZ>UQaZ z>8zC|!O13Xx|=-{)eVk8nx~LC#b5|?iow;}WelzjX1Qkc(#< zo9l(B_nI%&q~Z!SD=0OMS8|A&#(}j;^Nit2M3JO|{OLIn8lUiHj<_y{0c87p89=rZ zt{6bp+$`~qeiB+voI*KGN-<&_r|tVaJYXu0fYOkGM?jCxmm%XQsjlWt|IC-Y`YtKO zkntBKUUGqN$iQ9=#IXlb;+`I;gI*Z9sa_bly#Ud?#vJH46pE2MWr6Z&oZCMnF7k)bWPgwX)nt(iWs^lOR1Skp7QT=)S;E45G+F6| zvdK!5>eytDE;O2~DJj7wYeWgRTZrAGxF!SA*kqKnYBJCYn~Z9OP38rN<~Nt;v|<#B zlX#qmk0!EVFQI7IOUfO$Mw=^(bC$nSyC=SXaYc^K-Xyfp?$bdv(N(6C0%iA=hTT__ zQndRDYM#yavimZ_?#oDZwEID~-4BxzwEKQa_|(1a4y4iUlr-A?-0|$%+Cph|suY^t z3lPn#uFJ_V>8{MKFH*jSX7{PwIX@@m9+e~hvvT+Ku$H4F73Zq|S=qTEr=F=Y9vnD$ z+AoURUxcgeqr?5mvc`lA9W zO7a;ybE;WF78`do!xk$SMQutgR@!JWe931J@5wmB&wrLvgG>mG@B9AFV|L{XH*tin zL}z#g;?G1Tye?3Bcg{rCm`H&$yd8;+{rIQ5bLz5GQY4xmk|CYs4;lGDz_ z5eM%*eB@DR%rCsz?4oQ6i(%tFFjg^+4Bl>LK+V0?63w&rwJpe%$HG$IYEPjzbuu#udI0u4dc@;_SuZFmWp#8U;TNdFR7oT5P~#p2vr@vh;<{ zG2OpWb8g=bj}`Y?j8}6CI-bl4)>-2vs=uI5)aUC?!{VzxfvYu2CjvFFU;j3zwF$cz z4@#0Al)OZEP$D1p9VFg|5K_2%hnJF-qREEWEkQ-KWFC4AQWKd&2Zs`C7=-IAK}F$m zRQ%bTjzU97$jb{pWU*4iryCiIl_Dczol_A@Jn6(}!dPmxGAbyFq}tsZN+Mkh&pOrM zsV@dpj#@7?!?&F_h+p`&(*{rjKE%mJh$?qPhPf%%n%ai*u6Ed-Rr_00?d^m3^b0vH zirM74*(abhzk5BW1h089r#IVA42auZi?_rz?W%xo;ik=csNJrf{Oqlq(mbhDhj6~> z62!!diiO2gjpR&uHGH?iLWaA?@3yn90} zRCiNI9apU#OCXrI0aIZqpL`kKIf@?;P?IH*Qrx!@rDBKcw4m1`YOmt&HbnNRCElAb zM|=Ax$W0i6FYn0iTH?7Q8%wrg9v6IZE2ba+>UvJMm{Wog-HO?xICH!PJM>0QJ{v;h z#r}jB@4DX1X~ag8BGIYzAxq`5fz|>4>&ja^pZb6sA=rwMY#?EUTOiX200-sQ1OO)s zU@e?1MBdI>#+DE~oFp$;D#zpnq(F=VbH{0Q^o>jLF*dfD6yjjKekmD@cW_4$#P5Cr z$=LPCFUqMJ@v;D*MU96Rfd_Z|**u1MGvgt@H!sOkm-$z*oB*8CFZfqyr@VQ7LwR08 zp237CEHoE4@~aYF3|Bd0rc80h>;-`PJU{0=VUi8kc<+FP#60M=rE(th%2GK$i+&f> zGtP{l$s+{7Wb)(%O=swJ;iJy!qpGm_1Rsr<{H`*h-r`+3KO-7(OjFc;SI*C>lj=A> zs{%EIToFKD%o{;2oS%&(h$z=^AGyZ-nUlvR5j-(HW6u!)PJYD)R!mTjW6XY6I>ua5 z1$BCp>a@5RorGt^s5Uab>p)pQ@ed3{6o9QT&d_$a(iUQS>mcGK7}_&;$FWG&b7{;_ zk^Q(38zcJ(@e3pSiFb>S>~kvHCi@2QIX7)~Rz$Q{2NiB9sGIw=yoU_kpL~8SfTxzS z1@ca_{3o*#%arS3(DYj-L-!-gMCgvzR!U`R<@MUA~qB=+2`;2$!ZNMqs=^w)VZvn6^Xwq@^;ngY=R zr1;bY{>}OAl5j`k#sdFRrb;*@R9)zw%nC?NoMOGslY(L9KxM(fpxc`dJ{Y+DBA87f z>~KW*h5#@O92EczPtX=(Q=Bg;ZF`#)5j-3bZY`4|!YxvOX%nwK@e=RJ-JqcNlrv%i zCEz_0*CO7NiK`a{HM%FRzb6w{I;oBe5Ztk;{hkb(iKG+)Ob@>~+9Mjj+ip!6y(VST z_&pguO>D&84Y0wDAs;rl>(u={x$D%!%w~w5PKiHN3~}6b62!$O4kZq4YV3~R0vEKE zXVi{3?sx&B`R-_2XA>Gmyz9^pMV{cwGWovl=`ywt87G2bYs~`L#F~1RDv;a7`WmBs z)~OQQFV;;JCudVd&OxvHU9F>zu zCW4R&OU~zUT41{9j#3{Ag9%3Er$W#!KmTpcJ|tVSqsbw|&+wmpScxQi`GB zLu#0<%Y8!wZu@+&T!w}ZNOct&jxLv>;TS2!mMo;i&lY2KJW=ogPpA#OlF}wdUv3zk z(8fMH%M5^ILLE3SK%uzn6ZpRJE@^L4uc(f#rl|@J7BfeT4CLJsfm+%7RmKU~>h=De zOcZ2efwhf5fftr9K>!yM!=uY^VhCRjT9RxV%(@WrI3RQs0QZ1^ON2!!w()S0EVL1v zt{6ek(Y!<6CmqH0KK8v}5^rGwo)=!Bj-K_toUryI1aQLI2kL-aT1TEy-_}}+mCRGK z{cE$u1Q%sn;3M1A2DbOuCW41^)_ej`b5;sP$LXGEudaP575j=*LB+nHiXFR`VzCvn z4~a1hryIuOoRp8fv28S?0BoBzhR(1L1v=}8m*MyQOrte;A7tu8MuN;<+%rcpZ&LGC z>k1G6=dHow7tULQSNP0Z3m_w*X}*)z_d7PTX{@TKYOGt-thJ(oPJwda7Sk3y)U5S! zzPP6?nx7k9KAgYY!gh)^S1e@0;n5Xx*4khNnYBLdjg?`->dr}7(5Q{>4j}G@PUQ&Q$ zp#aE6^2+UPPq1%DDbn6-ru|q4+emhsAR+A=2JL@H0n&zo&@;oM`2I9o9Ah7-_C(q@ z%(RCefk&b$6C|V^|A90|T~dIwp#bH^r_oYLDNgmF6sP)bqa=5+4P?Cu77~BlAU=!~ zAaN)_TaO_HNEZq)>(fBU4)+QJf}*2}amnoZE6mG?c5($lP~{4u!ir*75c36JTtO`3 zUAo%_#ncz3r7MUyVr$I$Oe`9`m8~Z7;^p9t1b_>O)qFq?TW=F0bnLEk2h@GQOb>RS z3hV>I2=*l+`MOeL{0lDhw0*3x1EdVYTzp8PKR@uet(WEa2gW|iNrHpX?$`$^jB6Kp z$dk4PY?(kZCg1%D8hdf-aA zUqE?^{et3o;*}e!Cm1z7#z#CaD@7H2)W@c4tkOzQ!w7X~ppd+N{yg|yTUl=HYfIuu zW36TNIxD&TU0VuEBFHFqt(D4B`lH2&4X;+TkIYuW1j>vsaOKy2@^52e?idHR*LC%^&oH3M`=5qFNQYGwgqi5+orUkQH&?woGazTk6I2VeqI3MC^LoP zQRb4Xl&9guk7D4&1dlRPD9+NwlYqR>NSs&~U+-MD4Ni#>ojtRA-f7f5>lp`_X+4~6 z#(EAgx4fUk>HssPfHN8!bObTm9JLacrE`bmoMVFtEnFUCu9C}xOjTg4N}pZD9RqEZ zgH(ZBl#W|PI@_zOQzC`g9vk%c;I$JGQqrt0{DVibJ@6nig`%_dTSc9%PC>|X zwvXWa;R|XZnhE-dg=i+>fFW<>^R`|3bE{>bd!CeHpc_wZGG(=|yJ4(*dbRYor%81c z>lUw;Ua^#vqQMtZ;;V}>IQqrYJnIGUIA7XbQ)*duuZGps;_{V(ylH<%X&;ufgGoOz zR$&@amtLoX8tUBgRrrrMw|t#Y#&gS;DdnHRnZ&teLYd>aWuS#_LdEvDi4LuSNekK< z7)HGS(R}+Www0zvQ%7QBK2#1YorQ`j9$u?A#kR^+Svt#V>MV(T;Xb2Dy=g_Hn@a?^xAIf*_8O4^4MEYCOot@{1)yVkW@Fj{zIFzT--`$hoYl-DdcfORi)VTb z@?tJVCRkB&PD2@W%d;h!IHUEOd}y+ML8muu9W-`?ut)PBG|YdH6u8YF!ZXX+0{C;& z$F#9rhlYSFDGBT*LBxi*N)*t4Ev6wb!Fb7N2;heeLHS`rcmbmMJ9BN#7=?mIwrAzm zcsV1*z{s_fgELYnn&T^zIqDRYdD{jrTec+B&>T(I@T_g4VuA=9t$}ZRKDh>taOSgk z)|(Uy8)%R7&}CwoB);G>Xbt+JR}c_Sd}IU2GbYXcADx58^DPukWyYl5z_@sPK|*1nMh9cf{CKowR{|=lb+Y~$aL6v zO^;VzV%u)rt^}CE&u?%g@OA(Cw`O}3SbX{?-2!+#{jPr!BNaII3-`o7OFPMJ@7n6J z)1nHxhj!xq?K>z`zq zvNnKcwCz)aO(oS(kynT!v!x*Ha32YKlotjBH0F&q*h-sfW^Ax!vu%VFZu$u(f#CslO{l2V(;ICzzr%np zpXfS5YNA&iBx-%T*4L{dx zSg>MAXAMX-5k&k19bVy7r#OCko2{j}f;cOutYRGaD!ERMFahi2!M8KpZJRXKm(WFN z;~#yW@mrtT*03i@kuV=2X?!H5rL6@o7!5i0zw?M44IY5 z_>+5Vt=UFW@?q3(5-=d9vH;QCWNF1)oNh?swz&TO1vL)Zp4C`qQikCVpW5q5py-pG`G~{d zGZY)=n|Q8x2*DOzRO`$~721}Wurcb*s8ZIS4_V?@g(ubW4}zCbZ3#T}XiiOS9N&Hf zy!BZ^2q&Fm^U37-<$M_jK~YcE(S4M+693^&;)A^X=x(cWdgpu@JgJVNU&L_1kJ>Yh ziU}h!PtFXk&sGp9j>+!{0FKGf&^RV9{>FAp-vw%jyKQ?2KCUfyQe_W;Z-~2XR9W2Q z+@3GjmfJ~nG_J^XL2@7yQeEsCDa6U|_muWeAdXmtP};bb2imwuqqM;UGS|gECPZ;# zZZpskbF%lqHN~84X}%o(E3XH|i^L(<5gaX%AOI#y#C&J_f;~#`#2kP%AOM^n;z=?J zRa1hl>y0TvH&O|8?Yv$(jlFK&Fm1h@Q;x56OcqK7|+MZjkpl%_iz4uU&EtmiKy=@}fsR+wWx$R(e@sXjA*ON`Tlipaz zOju%9qQ(GLG7_`Q-R)iv+-0DpL*zKMWfFDIa1l956*4aC@9W0mNiN&O5=i2X(QL+;_E+&&- z@z2p-=lMU{s`}4f_VUl%zaxDd`1(ZwkcP zdznQMPkwAA>~SgSQ!hE*Ue8nyd+g{9a_*N6ats)r$p8Em4nv(I#LxiWN&|dL;K~5M zNdx>r3ef<+Py<*t-opSzh5^1c3_y9H0lWZ4CX_-k6IyK}Sk{QCXaI_Vv2yocw!Vx) z(EumC3~=Lb+c&HWA%^LMG!S28L(@nBS^$sb4BjY5tf8b7N34Mxi4WK}$`PxXFqGi~ zIAZnRC`YXRq&miNJh3-rqs)d*C8cQJS19q>_p&b#$03Un_Y7G&=!F>!suxd!>*3gsXS#nk zl>L+7qq4tJW&JkY!(>!n9(P!Nc4=grEEb(W$d> zDu(hX6KsE+Q2;haOQ0pxOx)yA6USc~3UU0!V=*KWyT?8e2-N_*K*)^)@Ivtm2jGR9 zds9S)C9DJYTizlCm<`Zv2y7T&$dg1(7 zm_3UfRD9%EybtV;AN<=SZ{(DZu!phH@a48S`XkySk37PIBkaxCW$$ViR5ct#i;+Kj z&!%Dq(Qxr(Gkjb#${r+#Q&Lk7r)!|a+{0;qtj0E6m4jm3zXMm+pqjHk-7R#ukK#*sCJ0Ax230PIG4-~mp1RX(Y@-iG7o z+J)fC*t*$>t)##+y6A&8%kVdZlwu#s+U)5=p}Gxdh#7l?z@p=8zs+)dP1|e)IzmPU zIy1l+U(*N__n~JI01ht{1H%B0uM{c+TTNRQGT1rTacZcVL1+o-#q*y#Ud?QWbkPqflJ&-n}*wJ`-QX-k3d7pqxr9dri3N z*ej)gR>+rD&|7bo!$eCE8RHZvD8g~A&2pHiN9dy;B@2M^qji?_0^Gl=$hs3$v`Lo& z;tzca&>w;$gyp0^xQ|h$705B7Eg^toL@THxgi0>(2!&(Bs{|2+ddVzQLw=;TeGi*Y z&~Tu5ivZL>L7_OvizAelb#ArRlS-)88miW|d#MG7C~FE;F(w$FvZI_%B-#5h3czNW zV`%)6(in#e+P~Fsu};MpceEDKP7N173E6SD_*wkI;o|24pW#C0pmx@^zn)GXDuo)N zp{LD#@YNT554b0{AFu@R-|E@tu~HuaO(O)VK_^H--D>=Ac&=_>9~D&$_3W6ByoZEQ zJpwArfq>x4fxz!0H4ule_I?~@9+I)4|0^<2>1L`v~+rzjQA zq%QhMOitkIL*lGvvEMv-tM@ z83M(WCBD6XnLx#OX8|<%_CCdj;Lw$?8(Zc9k7A;Ad$QAnm)L75h#MSGRtvtXz_4k# zuVRNbEbwDc$>`A#V-xsS4SQAMPgUv=8nwpnkw=VA@D3UPEBZTPS$~(;>1eOR2qo@O zkyq$!7uVE;cJR5xTAl3Ud=VFQwRd542v@WP(Brn@0qG`uutj>zzd~lTxpBVJN4K;Q z0r47ZM@XVXf)RhCn@1uGVDRQ618$p8TXh3*29UZ!9KGGgGBHbu3Ta}MG$o`xh%{i* z^Lxrg@He{K>+%mXkTICFE$=?KY*3^L(de`P@;VvzN$fSk9xMC}mGzfD=J_uVkI=JU z<*_~N<^5g-EWT!UN)+#73rJ+|kV>Il94+|ae}YR!3nZh>npbwW8UL6k3?7{tk*%aR zzH9&>@O+3U|!No=HR7 zCqi@#ZJ&x?7}`Gl_#UHL$m7L^vp<{xFS8S(IvtKe!ZVt7RX{iUX{#STWYy=lQaVhE z`r4Oz_T`U7+>X%?eXIr=Z3~~*%U%!O8aUL;J|gC_s7514p`s&3mSnEJD)Gn`rIlJ| z9NyaILGpGmfMZNR@neiIIU_=TS2kxq7QD>a+`^tpe?4 zY@re#cK0-+FBs2~92dG^M?WEcVMjj!bc=nKr1Z5AfBwdAz2Pe-p11ddt2=7QFPHrF zTkkT(%xccP6abgoiOJNg^p=9UrJMHJL&gF4!gvXO=aay2{z;BKj8FQr_as(gE2!p9 z3&8Uty5Cm0l@LV=aIyjgu$2%6AFT?g!YY$e+)sc~Fo- z2aY!;GnHYT2?I=S3?cwr|78jQ_T;;Krwww1&kzh;*5_`ODUDoGfPE+Pm{!d)4OGVO z5Kkw?qRVPir8V)ZLT>>LNNEIvf!tkI?98=q9~=IZ0HLXjP7D0R`Tk(SPmJ#``Ni{@ z>F`O8HG~n4*>|eXVmgSCw;`x3BemqAu9;l}t5`mR;>kNZB(UA2GC1rYZ3mI^;8uB_ zl}O2Lzu4o8l@YTLlpAItC;(E;Q%&-S-mWZR`w&-YL=SYjMpA(lS&v~t8Y_-iQaHqv5nOxwnBw$ z)mp|ZjB+|R-rj*x0EV~HKu)A0{#6>|!kqf1ifp8#xMPRW?~KScTF8!(El2#q$dOKvr7l)pA+oQ_(ZWL1=F9muhrPA#2zY)y{MpWQKqeU$S`LAw?h|xptU2c z;Kj-IK^j}AcyNqV??6k4Z0_7`GMoFsi}qz~Gr_{;)%tDRF%yQs-J~FYru{Kp6fCtj z;LTo}gyBl<@Y5Z-vP+}}OkRi0y%AM0RD5@7S_%8OCWA(0xm>fexA60?*dz3F zk{J7))L9}Zih`N;D1Po@KpYF$t~?iIa94{U1@3AYi|q|rMN$AV^x}7(=urQ^glI@A zxv423+LBU}5IsnNyINsqM+25g3P6Y{_u-%Lmc4`9vTQu5hXldo_%k5p+GE#s85!Ap{v%B%n?FpE~wi7JT_}a(ZJ`=3?6@jD5A8(g!e>YFHJ-}4k z-yk*qtL?8yV(c!dBZP-TC%_$U?24uj{=}>4-L=Y-0;5(6w^!zizX=FuHAvxqHou!< zb5hAij?SbIP2sN9n-nNH8nR&oexJq%W#iwnr|E`e*qX0kf?u+e>STceCSEIWnXiMt&O3;Ip zQVB8%++7QMd=4qNPowLgr|9u+lTIPkkRG%FHu_vrAR66WVHts=33kj~Zck_H2^d=( z=$Kl(`umWP_=;d*i+}N{Z1Iz%0M-41XRL%4ze3&;6EGQAl8}GaT9ZR2Atlcl!`Enz}>a5;m44I`!zg> zj16yCb_S{Dwk$UM0#bktZ&X-C;O+|8**_))*z}@}XlGCC*WpEWgkWLQAB4^;M)`B3 zKq#z>0x`<>+oU2rz*Mt8vQxF;e>A)Pwm z$kzPe<-n4W#nR@5RUH-d=eMa=k@S~U| zK2x5CpAico08B6ghWxT1MTH4}SAIQb*aIiqVItjw`4e84Y@f8-UQ%N<2>ARHj^|hk z0iaBP!SBQc#+p!Zq0}@!u)d`o6lZ8@DXasj2xpWV^W=jiYwK-3Bdev1&v?<=!Eo6q zKnn{7>yh>Cl7zt85!D3=nvoN{&nE;{_2n(Hevrh!z1LoYjU=2^(r*~yY#9TDMA9$J zmj!RJ&)&ks0CRpmh+YO9&+-Uc%t(l>wHQ^;SoM*51#l_kd5xzZl%Ys$uPg__Qc9$? zWbnhYs72@4MgW-ZU;Y{YcYvdh2~&s~u2=@ibpO)N@bE#@B1OWzD$B0^8K0Rtx_rSK zc^$$uc0pmt4UsdvYayJRIYZzm&CdjY(wzBBZaz>)(pYkd zF5a$?RhjWxcj5p>YY+#J-?|B@7kH2jCfvkM(474xoNN>UqHuu4-_c4;HlYjQ2%9h| z9A(qxTl+>fjS$0?`Z!C8WPQpm(IHcK{Kvticxt1-u&9?59`%yc_eV719sNoq$KpmV zrdO1w8P`~WDQ~r`QUpKLIB;vhqVZ{uY3xHqk54{lAD|WR^XKf<*vABpnUqZ^3T$|a zTbH|b$xMnlES$aGz8>kbWu>Yg@~#(Po=h2eHJE|;!7iB|PQ4Qp6#I&CW{Mb!>bui5 z>REP!$cWkds{(+!&w;h8`0^pYWUs2RfZfVjF!iVJmZ?9T6kwE0?G#njQf@b-@D7B; zvlvp0MkuqJ1jwpDMCAU=M#wuDQh^x3xc;c~CBMM)H9LOr3uHb_F_YHE z=l|fH6=fH_BE2*I*pL!I-aOGcEA26yvkKvf&Y7@B^$0DAr~Gn%=cEkF>!7H|IXeIg zbk2_6EZR{PJ(0!zozu<4a84gHqH~ViBb{@!H@gv(-B@3Zyq(j-&2Uc24xN(%&^akU zIVXjpa~|$Iy$R3x3!O9X{hV&JY0x)m4fM@bL>KQG$~9>KH4FCqZ7-#< z!-N>R<$mxealC#%DNt^C3ED5^!}x?CQi@)Af!I^Ob5E}%!NvF}3Gl=BkbL-|OP2WD zaLJ(0RX0GF4ES8Rq#p6P-1_hin8mWgcT<6_$0=(A6LiW%ZzeS9Yg(1^N zEA-0lpG&Xo;mt3d@_VWnrM%tJ!_II^$`9R=0?;ifK)EG_qFeR|aI|O76Zwi>1>YpC zj=o8&p>NK-PYvapv>N*6mwQaU$-gb(_?2xUw9qy4KbNkVPYRT4ehICJv7m$-46S^Hj zjE|3VxX(B;ih+Jg0qCcFh&Jfj6vN}ECPElVXMKT=sr}6psyZ6;nLXhvN`JsQ4z{qh zs}h#kD}!k;KNTN3dxNmS#nn^+a4)X#Xq4@EhY@Tk!NZOFg#-Ymh~{|pibAt0IXYW5 z?+xHPnLSIM9`%Qi8Tab{6u)q<{?EPl*sDKK&GEX= z4t-O;sJg?(!oP&-^thoouAE+4LEW7HXXlI-v6_my+?ucYrOdD=eb=WZYfMTpSuaXO zR=47p>cn$oF%o7c@Qm7!ehvCkrC;SCq8gT7Uk31RcLw&1Nf6X=O=qm{t(2WOw3s=) z{cx5=q2eGs-ZTDRoFA&f59ineSbxF*6Rg*-w1-m*b^;dJ5X*QFJoCABRmncg^5hYKq&%ngYIpTOlG_32kKCz5?H}!?TN&BZf~3fbiMWgn{8~FYpmvxd7Zv+)mo~ zrHoq@_kot=ypc6d0HoSbrPQznJo!-I7}kj3Vce=m04i=#sI)~>M*~aeeF3~^1xsRG zNhP#J$9>W**43&PrtL$oC}r}BNBGQb)><*j6h`8eGKy>NsK+P(HBJU{LgTo79*yz5 z5p8)Dy-3G$#}L^=WBK7NHQ;+XpZM2|nl8l0I5tE4!Z*j^klD%dBF7~$sQae{^M?C3tZ`S?94 zz&$rnAT}QtwwJ@PI0peRwfX4(m2$2B+I)n*B#5!Hqz>+$i2~2&V>MEWGPtWXAO-Gf zxcS(I6#VDrqnp~3q>`JO5@HA`H3{J&1@3CN`8b&r+;8&{_~YiIVOchh)I)+$fSZpW zkOJI%bk`^#1@0QS`M8G^;O3)fDKShz|7e7rkpwCR3k#sh9Z3`Z|71rpi0~pil8FR-UhGIVBmk5NFyxLTMa4*p zJCdEC7;wZjhBH1){Bp&c+sH^nw4@S#D9bBebv`S{*R9DB*`{2QwFA zi?X@o5?#DyA-yBED1F+4Is{&|!7a)Wgd65U#1^H40I|_W@cdDZ7a2wNa#mx5k}|;! z$~-~}M|j+zeB*%VpLB!rHHAmLq__=ArJ1oo2~2%9DAy}`9H->lz`i&o|Ads_+-nO8 zW8}T|9*|RVbDR)Ua?;wy&g1$6JpBS3IitM1{KCLob3pA;^69yb5>doZRA1bnyh9|! zHS{e3z`5vVn9PZ}=!&2ce>4As%2O~sq#cy$A&nHM^ibJ@MtZ0`DMkxKA0*+j3J?+L zA+rU<{v@%0v9$&aF+JqN5Yt1=fgz@cS`vns9%@P$!l#Y$Ccwm%@RPR;R68qfm>mMH zp6pN-@W532Aa5Q6D38&|!%HXJoGgwDCWm}kb+C_sh#J@>1pvP7oJaEn9#7rKqe2;Jg& zlO3(~>j&hj>LwwFo_tLJOrDI{Ang$GWbqi@Kcu2sRZ%ErgCY+Z*`R1b09`u#5OL{* zL+H{b7sG6jYK{asY7!3aY!Cs-Y|x+3LBxXU+CiBOx-N8X%)5u^L5y^3apm8*o&0D0xC;zdh^G_6uL+{IN2VafDM)P!QksHPrXYnWSbNHt z>|f!U_=MTjr8J{F(wr2(P@2<1B$TGJN1D+dX%>iIQ^5?O;psK?sZ)5-t?Wnn%p*M> z@HSdoes1vSQWH@SkFnux<(EWrz9#;p3DsMBjPR}a)qumFCgRVoCGZD7)qV9{_=O*U zt*`=q;fI`p^WhghoVsK^{K7Z=)`(X<@Hrwsad#cxqZl$${KTgR#1(67MYMGG%i_O> z#2>s`d{tc0!)t%fi<6FcaxzHda7v3mi}t}Ev7i}~y-+&9WN34bSMc*`rE2*Lidpao zcWeUhHm!C5PkKKsn4g>O*v6I$2QktuFo#Xo7eRl`%uca@33$=zh>BXBg7le=<8XLU z7@@cLvx_Ic>F8cvom6`E4S?droyp$&F#y1z23<(cg!8R$I^rx)g(t_a1Sx_NYw;Sh z9L?APj{skA`z%L#`aT5^zeJ3hHt->CH?<9m;w`F;X8i6Nhd+O!^q|3f?rcZjV);D# z;C#-nbF}8yp3W*;@Xj1Z8_jxysKHZOkLVh6T|m%EM(&ho%8M2_A`6CbN4{qLgVrpp z30a?K)(?&5`vd$#{49sz#(&PXqZ;gIb`Ty z+vuzjIkU4%9~K)jDSUdLQjE`h$I&EANn$*p@CX0)9mh0Z&U0rBP1CCLGxHot)|!-| zqmN^-RuvgW_%N)07?!ca{d$G_@;StxFFCTUnNe27q0~5rNW?e=V4RAYwL296?UK64 z(Z;WjFiGgCuF-tqB1diOQzk57mtOa<%TTmST}wQOo0s+&){orMq3}oE>?9L;X zIQp1H@RHlWByx*JjpCC&$f$0433#NOPO4^o#U$SNp>25b(%>NN1tBB6W52gTXp@I^ z!bfj7N(B=!U}(;7TYX@$4!`W79KJ8V^ITSqf(^?YF`B;WFc1A^^ic6{;j7LHd_Yum zTORLirKy##{bh6z&wSV6$Gg3BqAb6?+_B112$s=SHw)*7Po!0}9yOUq zwBDh6wBC1zA@wx6ZfR&enMX*+JMTPWjiWx_aq+1T{z-+z2RX$J9l0;J*Bu!P*{?4@ zaMZPaMP(9=9(G$mXiwfNn=js4K2+axm=~oCP2_i8PcO+wjOiQBXI7dU#^bM)2;_0^ zIb!A(!KL=ZRgNdDmO|2nMTiJ{*PHMoJY@s;g`04G^^vW#&kSEF(nE!@^OK-&A1+tE zthPcFRN#v@m#L+}XP1RT?f9a7`Dl|b7_&a$#Pjs}Sv+)&^_A&Wsx(6ciT27fOlE% zc-iWpm5WXd@2QOzmhYmED3rPA?tO+v^8O?QUH{5%SLu>j_`8G0|GH z$ouv_MqXHx{ki8DR%(b-ZAW zR!~{7f~sf?DWu{de*PtB@4Rkbd=Yu&(kV-`?I_1?6E`%D z34+F%`jsQWY663CI$Pt8lAeTip*YGe_Wh2l=IUZ@C1!qly`%i>JV&Cn0VO4-etODL zYqmFeU zW#}f4O+?9aY$6i`n<)Eh$5bJkpcP^NvBX#sMxSayOaczm0ijS^prt-w}MY z(|Xd2e;dBzB`wJMjR5~>#2>jizM$z0{pX|jo~!j&S_@tBN7-<`9rls0JuW%<-QmsP zs&nc|M_TlCLP4>DjKm8)+v``LHADjD8(=5)@IhE{_Q+c2YqRSa!qyaEDr~{P(~fDH zCGBfi+HV+?V(mohp}6h8zDIm{Op1%~rSZl=^+^|skp9;CYn~V8s$*?UiK?)XO~Il; zwbs1lS;ymMe4OJeS2jquP<7=96nDro`iwwEf}B)5#Ith2WKBU2VZxeU%N$le z+4drb6-|S^vK-hxrc9c31?2|vx4}2%?pf#7+Zp8xk}f*l)-9XC+$qyix-_ z;|Ymn4DxQpPKykpNOQptndZ_?^H$d!*AkBlE?>hRmyv?X7LeCmp0tuEll-m%5lj+Y zJtUJv+pjwwBuRved9jWvYo0qpPNTJ$j=&U&7p|`~v4qeUfZKT9M7;x#?borUl^p{F zRL=hxcg%8hO)o(pP$rBrZRmr~u3L$WM)PM}!F=YAjzC`HmSbK@Zcg%O`=GI7lO7#1 zxMBT9DT4+NOleqeX!5|ijp_{=*tl-p2K5Ft&T5dHl9keEQ2n|M8qF%oj~4Y?S*dh9 zYpk;`uhG9(7(Y1HX`PdNy@Y>u9Ei^yd0KR_ioE#1inv91ls6yHF}&dY+m1NRTA$bo zXHFIB3CK@iv(84^#3V4hhZrfB*lmx2n~5cMdrAU(hFD_jt&fQ(4_on;KR$>{xP@&M zOxYVNYZJ(5;0OP{39>q@JKOQN!nCN(KRf1Y`p9E)aSi{P7S}=i)aPk2d{RwUHNN<% zfuTI)L|PD^qGKeXb&@YEMd-8M7 zU$*kHkr!I?@sZBhxxawRe;3{{knfmYmhpb!&NkNFlrlv4%KT1rKs8?T9~j@E4`OiN z&7c1pR$bnxaFQ;yQElrPNeW#LLtkU%tfU)>A#5MBi>)mQU9!k7hFx}xZ{#97)X%xj`Z%qJtKAHq;P33Bcl}1L zuO|fze8M`~2Wtey>TZ3RBH+?`GDV2w^8%euSrk*2Eqz@XT&(RVj4JAnW2U>!pp~Ovk$^MbUt%1i$`yo}! zaVc;lEkUYK0#xOTf!0d27)e91n{?=xLn3+VxN7aJ%_tgDX$)xYN0P0bXfd)E#o{m) z=#D9cd$cd66mqQaKI6GHP8^N`c#}|Pkfqf(Fq?Lz#9L`anMvR0(qz6{whc*9D zZ354TaQ5`6X2bzbsbL%d`XmmRxIrA~!tXxk{{TrwcZl!G58tU6U>#4{Vq)UEC}(qh z({Wx{A-9#afEJ6KNcdU-LHqd0+13W|7x+X>1C^-LG%j3#8`{?_R^W?bP*4Bdr zMdl_HH6zQg@4nO~mUX6U7x}@m&PLYn??cQ;be#V$Viow?3Aq!jf8U3c@olu2}2DPVks%uT4VBrLMxf6J}$y@=4 z0mZDOY>226GVI^J85UHbjD%4EJdJXkWBR6@7c*n2)LMYC^&pHw{$^M~X1vo+w`Njw zToFHYLavCPq9s`?b7$z!oREva@um`ywR!r48th+!`jDv6$3mBfb)W7$A;0ATba8oW zqAQlS!4wj}vp$QD=X0t!3#`j1A2et827Up2VpV5t>uOqt1M)KNU(M+>R}vkSGf!vbHthBym_lS_d)2u{(1GFV8d%tDPgB$$v<423k#4(2|`U z^xh{hjOb5*6NqHkmSpE{&Dw*qMW;(YDV;8zmY~yRpOj8F%2XnpZum*%bWcNl>U4uo zqSI;VJf(rNywyY&Qz|A1rc@5E^G`4%7B+A`X?=(C6)k1P!K#;Tb!=<~V@n_UphOd1 zr?F}cGY(eW-pCne1{W?HUYT1PI}@y*{2y4aXzZL;O#Mu2uLM4$$^BT*ZQ@Kc*OcB? zw`qOr1N^TYfLnl^L3q*((`5pTn0x15sAZlNWu zo^U11{jA4yEshtpa8|P>(88j6!y55*pG4NyD!}I&oK10kQR@_bqfHyjTXl4{)XMV7 z9i0`dWobR!-ksE_WDQH3Q;<-E&&XTb(Q=U-(po8!-9R$Kp;Ctqud9~@7B?WdY$6K% zqB_qk<6lb$MKHLT6hTKbL9oexZSA~ZHG@Sr-!ldbKbFdbhBqS$!*6Ws>|(Aj3=eNQ zgFTGT%ggSTSg^mHv!=!uc9edACV$H?`CF8e$K)HO$v4wNWpen+rQ75?%qCwWO}>WK zQzk#*Hu))9jwb&`k-X$(@->FZO+=N+L6Ie`hL>lQBwF008Ctwf7w0Ie87wT`=(@9^ z)q0vZC0g8snAO!e#atDQJ;!Y9o!PmYtSOWd+PcnZUf6DU45J0Y)O<&u_}-R|r(uF| zqkMw3Gc8A}bl?e3IaB6-XbD39e*82#Blvgs3}=04Sk{QbFWgHSRG1eonC`%z#7+wl&O` zL>9Xx43uohAZygO#MQva#?&lafZbCwm2yw{Rt|jiXf5=PB(7ySE6iH=S1fu*bNJ3D z8T+(aqBzZ3jn;!nzPygERmRFZexId0UpE9c1j2!jAtmP8vuQmgPp_L0`PCxcLaB9ry$BAE<(~tX3o_qBdsV>avmpCTY@bSFl z-ve7kBiL9yxqC!eNLFDIAAT5TRm(!!wbJM-EwZZ%!d2jpCyg&4B#kf1vM~iFGS1oM z#Gh(n-496wzGOq$Onx_LSxp`n6Vt=mMc}%ZZl2y^>G&P+ZxIr~A9FbCS^B{Lv`Z0> z^6tUQLak6{C=DV(Hm-MV5Yqi+oRt${%fir6QC1b;%UH27o%mX(^GVCoKsK~_?^NCO z9ZyIZ(cMx7wBE74NlFP}64(t`Z0rW)!gw{?Bk1(+6912Kt}~s!%>$)Yl5TJ&%Q43 zufQLVqY4OdR8f|Ve1$&Q`M?d_b0L3bg0s7&^cllDtY@TmY=dIq9XdF`w{JSSLPFbF zmDM=|HPL~q@z9CR^z@nvAbtrwrVajIxW(a#&b`G_pZMU^C)akhFQ`2kCO5qKi_Rbo zb!f{E@6&@SbQ0pz+#S_SuHW%UWM43p*so#zl;*+|ZSh2;-W$v(wrk!94tkIsJRu=x z_NPk)Q})JwjR|Df`XN4`0K7Wz9X(uS#Bs=)1s}fb+@k3(oWUI%?S+EFuR4cmmKC6` z=bR&3Np+s-9HcKlgR5g6vfB}=Z#*M6VERvWj{X1dh+N4djxk!60_Sd>(~}tdP(Byo zN)P|SyQvnPksC1c&&Um!g;Axge9}5+C7#oCC2YB*4u$X2O>;J5rzt7XW|MB04dOR) zhCN_g8TJ$M>L-*Cc;4~tf+f?P^)x^IECi29TL&dFKltV8Ji>a9oF&#Pbrw&C>U+-c z(hGCD@~@^kA0S2RWkq;)<)1uf68oDfE^HVtWTEca0jEKhIhYQqK-W*OP8!FncTmUC9z-mRzY;aP7v zyN4IUL*4+Tx`hf0`Cz7;m0kuG!mYBm&xlXX8Czx0Z`4-VMC=vDR@t-gAJ0}2nMamcf4tBlDBK>1V+VOtLrmQSMN?GcBOpiQgqI7Mk^Kq6!kdRWHbGQ%1T9N`$TdTvfRssJ` z%bdxqD=CBkUW1>@&|3pW(K2Tjx1eHUjtwP|A`GJBwJUvvWTov{LDOBVK zn#haIIW~_VB6)6*|9})Ac}~a|kU~YCo5=5o?%$IgCWuIWzd`;CDM0dY7kU*0$(sbO zD8nUqk6rpQ|MRNtL|q*W=GmEJ;iMET}QYLuH)}*<1fX(s+kp_J5L$!Hqb!_CM$uJ6)?Jz3Ae#1{VA)uIPriD5aFPyWnF z4Q?!!OyVUh7@lb21_7a?eE0C8Y)<_gSYg2MM1FOb^KbSnVU0E)3pNwyZ^x&QzZ7s+G*z&Y9ttOp! zabQ_LKI#a#uH!o}?QVAQ$i#hHH&ntBHV!a3j90$CjaJZ3jQD|r6y^ObxIOl02 zdHti#6>PLBEjD6CN+KgJN~;dN$anrcIFc{^+PNLB)%8E-9M4`NBvh-vaZ&cK8Ke|j z{q>6^O1uqNs(*#4fMy)&eTf$xceW-G+<;G#@@PXvdCJ_H{sG+nU1TJQh=$!c8rYmA$5 z`emx&&)`BI46dg`9Lzg0xP^Y5KIEGyyRncn6t47z^6#H=|n$RO^$n7}L1RaZNf)UpQ5S=*XoU_2B@Z@%|dJ=naER_g^&bDKO z7)OW_7zV_4oC&Hr=9gx>7o5J}?5*){FDsL0fm-4T?JUB}WAX`?q{%0eLS^!2sd-+z zWH$NOOVZ?HNmVpCY=J71ze`Fnv@W7FKlCy=&_t6{n#$y$37VX0f+jZsgvm!s3-?DujzE|u^60WwxrQEY6-0SmMOWr0>O0fZHBH;zD!cr13~ zSZg8yjy(iVjy+;8j!~#G!%xZ#c;w=(BIh}c4I?Dc7=ylt3zfrS*&tO=@b^#7Yzuo; zLAc{LXF3T{#!kzNyzn%RFoLh*o5z zF!)Aa7DvWf>Aw}Prh)adQd7V4JwIG>NSaU(R)Z-#q*87ZCDx=p%drL6&<*=?C$LE}=c+qz#PDC7s@T-Dj5q_VJr)_^-AXn<>T#bbyi zzYM8Ex=0P_*(rQxm@Cnmq6irsTU?-Iy%iWeRZHQHaMv70(8cUEE^v;Yd@McV`vxh# zOzH@!TI)5h$obd42-hpxIGz#d>a0!T3nF3t^a5doiac*pBn-Z4Dt5+UDYGrgl}I=k z&v!qIYOrSsneN?PJ=jtL5RplHmYs zMBT>x+@@Rxg1eg=UvwplTwyum@gY+NMKwI`zg`hMaR2qH_=WqgSFhmyYj8D@Ou)TK zNNI9MPW_>LXL;94-U-fIOuGt*?mZ<>Zu1`^K9mc8oA%~Im0VH$<9OFV*1{X9$yJ$*>_Q4K z-`0eOR&+IEeFz--q|8I=P)nrDG$ftFTm%VO+YG9cNdZ!|3967{U0$Iwn?VW{X{d_X zxLA099X^;CRg9^#L2t(z=TtrHs!Ycb9N`<4gzvbsaUo%X4QAuEi(g?pwwkMMY-#bE z=HmXOO)5{r!!ARd#&!`gaVUm;g(>VS0>xM*X2ur4<+nqg?qaS4n-OA9K!Y4%O;=lX zo>axP(Ra{L;@NE6r@C4_dmyA?CJmJg0 zaqKh^Txu-tTAvV59Il~H|uRdHft zy-vDSx$AN~hi-)vn-bS$k__nLYK731Niq{atXA%f?Gno<6kBsz^`~pH7KF8@HBGp< zOzzOmm1Kefg|@8w|E+Rrdsk=g$`$!X?V$mhrMW!E1#p2*r9{pnJGf$eD`Ozb{lBqa ze6(bUi30eI%)M#1rLWw)hDpwXSsh(T8t>ce_bx| zH;_`C?4CPrtE162+5{UEzE} zdsitF4Rp5U8PM7_dwR9DH#Lr}O`%vBTe}V%2z1AD<*5`G{RLZ_LOrdmzX{DHQVj0q zp8S}rg~oaiy4dFFH)NZqlLBb-36|^|kS1MRz9Jh%N^s^noS*OS!ZV#RK0gg4#Gy`T z?)=XO*VhJ%@-!VNV?$8N*bo$u-^=wrqX0Ak4qopNzRCm?7fn#N4+L)t^_W2GjDqrW zH$tljGl+Gcc1^}YJWhH7#sRTXId)C1{SNqW6rpdQfVxAUI`ewgy+41X%-g^0JM){GYphShirQU`lilba;qrrpHWvuuYcQDK#uRmt!XEys$6yz)?2inXC41DR?# zmCE`nh|ErlL#Y(HZ)i893y3RQVVAZ4f*Y1t`Xzrz~cqKivyPsAfkVx*68O$(zdt zrFT(K@e3EF!ybH5>OKT}rdYx+KRDsSS6p3qsR^!tg016Rk7@kovoN4_3LI3An{<^;GmVB22{)Klb2J)oIt}B*(!2HjHX|>pXqVkfhuKKek{g$Nf zy(J@W^5ov3+Bb7wbS-~?BaR@)IJobb@sg`P+fBGkejQdv*93sJ%+6c#z}Y9a3>Q#5XmxjLN`pBJgZ=TQ>p8ZT)B;bi|NSO^ZBAVu1i*0#PL;-eREyku-}MGU`OMq<4+1IM8wGZ5KnJHN9@b{ z%zpZD7I53-*YXomQN^&!_P;GtfotA&ZDui~8jKG$xLvo@(#zbI`M?MsIuAzp`rb&B zYWJ)Si#a?Bi8xU_N%QN@x_BcZwY1wZaoESZbW%CJmJX%joennKyA+QxrtzYst}dFv z3yEP~KLWMI&Q3O8Qs`=~?GQ!A7CaEfB{C(vbG@rpFaf}P0uL1}nw?vn zPn?n&$ZaoXM)K}8a-U&8629j)xVo@E2|!Lb#fl8ja7AXqPx&ynB9A|%)nrzfp%QOS z*MGdj?+kM__eIAY|5z_{?MI%u8F*7+#NZL58pb#)O0+6~2Cc1G8!B2bi4sq5iZl7C zMepF2(;T*Ob! z&uz_ydh-}ac-R#W7;MwSeR&kg)HBgT^ew8pAq~-840)}!_k|xAci@-Z!6zqp^1^}s z1$94h|AeXN$y~xG}ubRgHbDO8NPNV69C=lU+qJB?s2R zlw5uhrsS;os*-E~o;g{oub(cGj{Th~=IGcb3C$}Y7IEx+p0V3io)L<|6h>AKR6tKB zDsbWH%nK0BTkdgXo1o~Z>R4%M=&{sWO}IcZn!otDE6qyi-ja7<#VaB#!Cbp7$2=@S z7E-}^$uC@U%p~xI06d!7;756Mt`Q+6yi>3DBbnT{;;l}&>g$Ggk|1Tg2uoPr;wMi) z!kIvLUbEbE?JZ&J*1F*w1wFoU#p&=Otn!PYKT5wCsw5$Pp}+8>OxV7piqSFjNkmY6 z`j2MMcbwm0YVK)=rsu--B3iu281R=5HMSAM1?3KXcVHr*pQ+kcJQgOAcDOE`an>s zJ{ySiqEh~6&dlzddw1h|fBk)Y-(@p%=JaW28i;|uLBv4ch$acL6>Q39G#wLOv-`{P zN`vhn9Dt9EW_w8jG=3$<4&G#YdH*N^s9YffE)HQw?cmZCpiIh+@+a(NwC%%ANZZ$i z{>JZwXnXU7w!IkxP_S*%Z+y};sRzn-@SQu$^K240S`7tAG*ENvuJVrzmPaTL{}xul zyOIQK@)v*Ckn!Bz<*lL!tY2`rpN9<&S)$3F@=-SIf+N!6sr#JTp3rwZ#pjeke^aN7 zaCw;HT{;uM^+fR5@4G+kEnjW&FMiU#>pLNR*Qc3LzWd?~-z(+=C#3H#)!EW_tEr+_ zoS?p2XaH|JC#Er7MtSbhPO$}M4WR5dDT}?Xv!&<0LQ%d8e2HK-RNVaPDc#L`q0~1M zQvtPj?TgRckl4!g?FsdU*&ZjVT@=+%8r7<6;9eF$l|KdUzqpr_(k&z?1Zx3Nh^z%9 zLDhnqXMZm5;bQEhc0w@{A{}muGz=*!qcX>TEqC*>q_}7fzbaW{2ZnUr!KtUH2nHaI z$ICAqF1J_?DOvejc{!ooESR?F@Ju&oQu{ykKYkNwuSQfzFpsF^^)sA2?IZ+4=Gg z0x33U1gUP$jQ)JY1?UHf6tbstBqZ}^PnA!xfr(b%>uS?QCKsVAeZD)Sh_C zUTXm9fi)9TO!yzG4Jy0cDW&Z8PF!s$u5J>S7%vND0}8A)gg>Hec)eRFn`lHT+mVpW z-@8!mwt=CtKak26?G&yKt&)SX{im{H&BZXd7b`FK9+j&@w-c_hp`F>sWT+PCNa~1* zJuVK-?bxUs9=(V$-PvpfDFWSui~&AEg?;)Io?;a<7hc(OP=U!$;d(cFfE0zwt&UGD z2Hl9r{hU()-Y{}craVG9YSWc%s-~wp7`gvW;K#`Q_u>~u?!P}JH(d=9!4YiPA-Wxy*g3)~NU35iXLV{I*7DFl3PxYb$IaiF$hW4r;UTRxgW`Fk`tE*= zohFVcsEcEzNg=40MV{sd>brNaOi}_2*^1A-9s(+-Wk97dpB3d!;`{s6AI!Qr0Wn0- zi9$|eBSHdQN`aC%o?OL*z_jCF0laS54#B3(Wm*_jok(5ks=v}34wdR zPtn@M*SGWaka6mngky}l%st%xZ$@2o^@?KC30e%joKJBdWphZX484d1WYZsd(GZ8_ zX(n-*t8qWyng(<2B|2BEB9+A57AUVSUtP>Av)p}>?$v<)wxjH}GkBQPc$&9w>h8;) z)gVq>D%$YWU*f`3q?^vjQ>5?Ij!d0N-T2>-sq>?|YR9CGqHae_$)QD5Cr5+yLhPYJ zTE7!Q*c)L;>$FJ4?g$z?64FXI3+XVIuTwUNV@M(9ERMBU49UQdR@<|3ewRx!u)lA8 zR`>TtSH3OB-3hwr%wl&hv&C7tM+=bR5SAjva283BL)Z)+Dx5W%(8O@oIFf)u;syf% zli@51ufth4*$b7JqtD84RuDLbv*v{WFMSmj{wcVa3#DqSs8@W5SSp_Ns759SQ5er! zb5_Q)*6Li0XPHkBotiJ5RkOx3Dxf87iIuCN?2I4fm3i*;s300Lp!LaF8PNL7N#r9+ zWQQgqBU(X3&dP`up(2_sD!pQdNRJUMGy1F?;75Wxz$x0A%#Lo@aTNZ$!}W~crRy0a zL%1H?k~yohy9H}X($Vu$e%GF7wt~`fD2}d|{JV5LK#HzMkz#zwks!}4Gn(p%FI`H= zgU`XE#UufPL+^BR&x#_cYPc+dLq;h-+RvTGCXg~19~etznEt!X(rMbU)U@A*9D_q7 z1%pH81)H+l@fq(m4zIbQmwSc5mJ#Au+3!~xzn^5F#$S*cUq{kW_?Zt>EM`12*501fl9M0l|%r;RZ|sOVxW?s`o4@i0VB_88-j0 zsW)D$R~=9N=64x!BSf4&t{{mlD*lr7hjwQXf8o~-c8gsRvJHm4#XZ~c*T}|!aH?W3i+-oov0cp_L)}#d z-#Z-HMZcK(hn#Rv)hy8%%$5ZHPPm~fs2uJtH0JQl!`*37 zb950pnSA;WUb$~lcBIagQDx|=0|;LMrZ50=1_LmFv3jIC)tvJO3BY{*hYG-Kabo(E zVA`cIVf+P9;7pP*Cv@D3uiFfxYhX=Wd_Z&|XOfPDWS(=mdtekvRmT0|g109>e1&#~ zaZ_$$R8nj^e)jo_Llnl?bo`&%wa_!17)D&_E(lTh=%I;OtoeT{4CEW}lF{z?5Ex!G zeVtjC{{aJp=dW_#Wm6J{swbmU@^u%x#hR-5=l5Uj-o~yaNYUp;|0#WLw9cS04ELYX z=e#;w#xQRBlXL=e|D;Z5-uR~s^4zEkQLlRtaEid+!#Z2Wc$QI|PXJ@Y?*vi|VZi@7 zgt6gI6~fr)#PtTn^^wMfC%^#*dLCg=dLCZL3@Sm_BPx-u=SWEAv&X}tA5Fy|#^oTN z2&{qPt0%aB=6j~-Dt=L^`=aKT#MDyGNo}W{)1D`mj?BjAh_-Xi*|eQ_PHH<*7gE~B zC{N)zrJ`b;FV)?PA{}xrpl(zVV8xgk!AevFVxWqM7*a)!1h{~4s=J)gR8-M9ts*>c zJ)iJ~Zh1SfBkuONU1un_#QTpQ1EKK1^-7&Dg?f|<^^6v3#E6?Zm=B(lqZ7c6>=W#g zeMf>kYRzaWj!tl(`UN2^dP^G^HZFM5nifXc=YWxwd*I2}dNA}CF{IOHWDMy9oc$Fi zUybwH31r74c0XSbRQ)pw3~*l14B!Wtv_syjjOqIWZ6O)!WI>X9iP^i%zKOwXAtkp=>^hr{Rpdb0mM|(TF|`QKLxiHX5Q`|YMwnWUsu|+)H|3p3I%B< zT)?1T02HHsc}~#9O|sh>4oJLvZlDtqqg(wXr~w1?JKZCbY7s(j(E0VeiWCt@(e!1R zU!K>IqBsCkks^;ED@yIJ@g?vncexv<{~|JJyy)Lrp)d%?H-kRE%MDin%qBcz!07Ki z;-hSLH;nZxjS*uLw?yg$H7phl$-N>KD=L^!oFL)i{gdwE~y%a(XE=v|!7#7#F_0E_6&Jr_83FK=DImKb(jWG->1FoIk*#Eyhy zp1#Q4)dq%b=@S=ZTe=F+!5bkQHVpOT?U%Xh@rDs~f1@S=>WJgjr&E}>;adrw@Hb3yO}u}dgkQ&VRn@4Lts zy-}VP6+{E0D#ixB>rsd{ZgkRkgV6X$(l9){!DH^wB*Z&4jF1rZyCgM;86vt2sa&-A zTW-zkZ$LDaogv&{ojIXA>;%cc34TL<>=_8D#MY@7a7motN5cyoXWXi;q}1Wntvpy) z@W^F-%uJQn69H;;F^XEa7;_}3zzR)8ztJ0a3JDX~O;T9wCdGYlQ6yCjD@9<%by=Ny zaNcuLF1wtd!MXnkB8zJ*fURHFvp`gQVemAqV|6E-4L{ygMpER)o1?$Oz1Oc+UgtEI@vg?ArpFeZZ*Dg-`wR)F%F@O0D zcMe-j&|nLnvccbG%ge=$#k}fGXyGZKZsDWe@R89*zYBfnpQCn@|#728buW zLg$IHtgZ1MI5Bm**r=L zccCm)MvSRy$qa2n9B`A7jA)?MD!Oebr9DoJxRX1X;Db2g?ks-ch#P+K%8lTFWEowc z69?eRpf|qqw69+>=E*^Ver~HJNlHfAumtxcj!&rF~PRIyH;a=76 zL$h+hC5k8cz5{#F4z5O>W-?h_@U5I^wu5s&!D-GYzX?e56O zZG}Au_;Pc@Pu%ScR;?wFa*4|xQx}U=Iw~jp@b#a%H$<(_76F7VEab2dug&Lo^Be>^tcbp5#^7RKBLi6#t`&L&C{8ik>)!1BN^5Pd3G+_ia z&ur~!CC(H#CoHKITL(+(;NCXCh6ne)vNNIHC)i@jmJlz#FTAbj?_6zcQ)Yu`!iSKn zU(4|!t@p}5w_bmITAIgv)+?cA^EP*5!*v!YZhOcz$vkWF12=oq_}HZ6etgBrv`GHq zSMGDJbe9@?WVp2ZuFCev{XD5I*{vKM*(%o68bFP;jq>;>+ue8mjni0utss->u10`P zJRr^BN1);atQp@+q*4b%B=LsZ$HwzH z-@2!VwC$7s%(gX9Gp8HuVIniwNbN>irc;IV*u?xpdVJkp_bT?ZM$D0%*nX58f?U~J zu;u2P5>xo4D{g|u=;GV|54hi%X z1yWm$jyNH4GtD78<{+;zwfcyL(At>9^35n5?u8PuNXD(8LTtSH!jgD=}Mms?=Qp5Thc1ob9Bz*Uo z&2mBugs$mfP(Qy+?ak&mvyq$W1e;ld)gh0s>ziWMSTQYgf#l2f4ZJ2!^R9OOe8DS@Lp`AM0_|K{5Hw-dWQJaW?A%wU;L;Qa{`nGuc?x~Mdr3EjaaA3lK? z!^bt5QJ3FxpQo?cEu3$@&y&S^Xh2c*CmCJ%@G}tm79D|kNw}O}JQv3Euk>{=I*2?O zwh_;Po`oP3A;c?9Pn&3x0L>@NMYQAFDsk8taC%#WUI2tml{yoD+JQ(S@#0D5jM70ws zNW?doXC+%kkZKVhBdJ(xmhqHm&omo!fD~zX)Xp42O1blThdZxp;Nb>;IM%NpXowzPQAd%dd{t zM8wth=KFPd@v7UJ1XI~` zk7n%&uglcqwhq)UCVh?C)sxLTHu8+MQ4VEt1x?siCVvOiETUGj z11zi*-}yXnBx(paJ^uDs;3LP zofOf+-bRJ3atcf8e-pWgNeRE6=9yrliS;6PrYnwLlkRE4RuhV%awL+%{$X?3{rvlM zPjN6B&t-!aa5MU?S)Nm-8Nm-6^k%WJ2<@|?^ET^5XeTlnK&AC`GNJQ6 z@Q$y$>l~>0z^zd!41NTrVQ8<6Ya`N*JXDuNjl zdoqk0CC-^noYN@Io9#FSLz^%4*<}VZjY>MJm7tvhCczDS1I$zPh_(I$@k0?KmDXy{ zi^{^=vS$esSWPgPyH=#yOg8*rL`==Fww{Mf*9Q?WXm5~{%|0S!(P-~c0lw4%h>Oe; zbOWSbL*4{76|vv3>+8`2N#oNqruBm3I&uPBL^mHMG92 zPp+%$lSVne>!8cx%d~Z}Wkc1E7k2ZM*vJHUBptDWCOoQE`Sl3mdTS#Bu7@Fw;W1`p z5}h>=cdH%;Lfl7$kj9_bxYiQwV|=MKXL@+u z3o&DXrwq=bU?Kt|Z2?^Nn)uuYLjw_P1{MnYdiwr@h!+M`8#J~Dksy4$Sj=)^N{umP z7l_CYKlErO9~PP0hBv>&lf*MtG^odizcH{bf9?F1)MZz#tQU1mh=qzcRG+Vpy!+CU z-$)AN3FTEy|NHSKe~1}QqfIJp#(Veotc$7>Nr+ZHTybgoML`rzukKT}alsG7<+kP3 z13Z)ep4OT^uyGB;M~C-&JPCYedHcHj#%ZMy(RM2N&o{oBziO4o@xvdv6Y4H0iw8dW ztZE~f5kOuv$m2F%m47q6b#=%)??1nqwC39NRA6tdbO^2(5`kfy8w zu!*k_?=A6+Hm603Dw)T}Ro9C(rXrv40DU6g^mw-jKDTvTva2z`q z;-H;=KVGz_j7g7;88f^&e{5{Wzqw{X)%o1)(gx9l6CspXxUeNDXL;@a$cP22A7J5PJU_awe`L*l*TJ+99?BST156^iFzwFA+z<{g3NyMvG-_3; zC!ddFvr=5efCQH;Hjecy_?t~pz{d*sO!4e;d%%g$F2j#NZ4#D@8zmB`o3$0J^l`O< z62)g-?Rer{p2x(enveT(Y&4rf5P+Xv%6q+P{G9`iwwfThgn*eKZMI@^*+bk}=xPCc zRDR$Z!1H!>i{yhQdCrC{0v6=k%hiM#t;~CgG9Qu3%r{4ZyItbDocA2(`M+X!A-{bJ zj6@d_CQzl%iv+6D`BJ5K_*Kdqc&`$#Fz;oXN!i$~5PtZxp?4s@y=;6c{pE84p+)?d zi1;<2t*&e2yGAk@%dO|6znT9u4MuW7#Mb4chVvsuzWL@6##g@V9m0+|sSQtw>~0(; z)cyo&7&!)Nyt?~@Wd3;{UtxSOO(vTTN))vd1i2BlW8OimZnjW=h&u^IWx~Y^aVa6Z zm<2wP##g@DsErXJ`P%eh|CHnqb-WBn@#3r|rM&k|o)sZmfq(GOy3K*R)~qb|^oQ%b zqjdEGYfUUE(Fvjn#D41kis&P(RAcAp9QcHD2%2T%YA$*`hQWNKL~Mk2lu^#dS)QTB z44!c-bSb!vc99e29)vMxM1h}qhqI^b`EXtzR&tETZHT_P*)yEIZ3i4>z6tN0iDj(M z?HLNgn>^zd4?O4Y%)}KeD5_VmkXz19+95}oM-_fETAKl+RQQhy{7JY<7UKj!8c^Ip zBZ=>sr6q5M5n5Zmvvm+bU(QoK$5GulKND`OLLi$D&^wMJ4?2s`MUebBe3)kw* zE)C;zR+UDEO#mJ9ZJlQ}Wu&MW1Y{WldFFi2xEKK;--%f(c$vVf=X<)QjT5P~5gek8 z1;dkH-R*0jQ-SlSFAxE6;4|1+@>v3b1E0MMJXf;~B-K$)jY*v4YTjMwX=|`g90k)f zLACZp3P#G+ti8017=&VwKZekagIp0~t26)pEBo+25Q+dTzj z5i7QVT*QiR065if7prvM(Ab_3|H6Rk@VFaeVYO=2B2On{E#Lef*d)p@OKlDXIwE!) zMd*O8>-$wOc2nQjLG}R*%B`hk)~K?|GW@+aC3_VZYg->c5gBGjPPl>zU8i`elOu3R)ey1Q8eNW_ASXg|#N8_JM3wAMT} zd15cuzZ$A&I{XNnP|rbAcF_Hk)_LBID%1!SI}N&dyRrc~Sytgf{@{8TcoT4^bEtQhDH(K* zhvDQMthyLSYM_mK%49bY)aVyC#z?=okz_#gkj2})>gmtskyH$t-~uMV$^}eP2eZzBA*fuE0OA?zl=KJ1&HLM*Jk7($=;$z?RjACDrbYbauT|XPk z`nd(96dM1mrgVcR&Bbro6!0xLI=1s|Pdj#&AVCEbZ1N0d4PpbnDXcD=;xGZr*Pptq zX%s1i&XUb@HhVJo4ewC=t2TRv1>;Y9$5X-!-}M7Z)WFUA?|9k-;qA*y-t$A20MJA4 zdd3FqHa4`FQPj+p{Z?=~yae)TV??Mz9{n?bF0*mtFq&FSJt>W5einmc+`!A`WE7#yOWcQJ4ZA_v8%GhjHQhdjSrB`daDvtB z?O0jO-X<3r<7Exwh@096T1{mQpyjZwo3h387)vANpi@{DmIDdg$V^V=RUbeg zb6xVFXx54VVc&ppgXX+?ho=YjI<5|JDsCXUomt6)`zPuesFt||C0dItyjR(OfGOR0Op02GA_Fqc~QSZ`wZgm1n%c#uJv&)MMhLsmG8E z=xJxWZU)vfC%H1&EhHz<0~(f=(wrZM9iU4Hx&EuDY@X4tZbQQ@Ak+~-pn_&2RFv6B ziZolyPS1l;Ycx&O)okAhjm`@?S#~vRc*QQ5brNuASEKF$rDV{`eZKKLAN7I8r^uv! z>siLW(8-d_2Rv#wEL;+BCmHobG$kV}VO%4WpzhZ`63uZh!LRVY{{#;_wRLn4jP7?v zi>(9`Bjbs?24-AgB9+Xzn)A8Gb7T3}4M#WRcMco$iJ28Im;RfP;(8pE5l_ZJx$$}& zgiHUa@oF3dKOEyAxP#l(AF}Zv(?F6Pa09a+#SQalafDC$!R+LRP3mL6i2 z0V`sNH7z9ODHO9;V)hTQ1YR6sQJ%#RE2)vj<&Qj-!88?j1ti96y_;e2a%om7UhN8a zN|%=CjEO{>_Hk3d;GaDGT*k+I(Lrd-KP3gVaz3OYY!8UA{*Wg>LAL{~WHo;m zWE!`3R$B%?0(QVg7oUheL{bBduJJD4{;TH-TMp|HOl&y97kh55O|p0&)CpecwT z0vQ&lSD67Eq9TOmQ8SIiJK-6S8JEx9~WmF_vFTD ziQ7tvQ~0>!FnCWPm{8u5%fdSHEhltuA;wk>1Q;xm!FzRes-j@U(leoP6e+6e@6r>n z|M7By5p-2zr0`ZJA$UT-)!XF`t|u75eW}o|#c|G#hKDTu2OAqNd)Tp3^S#`vkIQAtYcR zB-R)AEF{rjnxFo-C|+FX8J7HqppTmt{uIA((*pd$O$$l$L|cHJDF)2_l{xPP-}t2; zcpnHEBwzi1v{crFXDry6z`Gt8UcmdA-Va$~A~2(4T@y=Ub%MXms`@{s-fGB%#`3lB zW}27^p7-z5BS|OvIVj6cR0l=chkIXU-8BTq2zqB;T+chyD1i50yd&61d$tNammrK; zkjOJ{g|_F3dfxG@%nmuqoSZ0w%9cGtq7b=o^r8ow@5~i(Wn(grjq(l+5J-J8Z8Te9 zha6=-q6j>1&rm!*0?Uuy?(9uxCgOht@q>^+Mqas^9Ku+rs#-(IEda9&C6l6J_>kp- zEvwu}56k1fW{!;H*Uk4dixbc?to)1k1%L94obtRhu!cRb+(0BqFM^Sj2rR?;S{Ebg z2u;TbCoHZ#$j<0w*%Te&hhw}YjDU0Onf2-zOOmT&(MbVH(qqIZ*Q}qUTY4jzZ%g%d zbOFm`aV*-&@{vT@lu??ZDN7B4{FQKvqqQLk-T~%Pm)!EZBEdU~bs$_}AY3C++guz- z5^HWv^mcYd73+ekt;Xjq2kB&~pkh9)vG)^3zSzLG2HvbM`I)M2E)E@Y~ePpC`*HkuWochTnw3xX~JZ z_#0W-I$~(}2Y?szmY+zj9s++)Q6G~YWd4$f=dWA>GfrG6W{eF#nJm4D2&TM=q)2b- z*~$A@RAQq5Ysz@_I)m}jbh7l3M82Z4cOWC+a_HMW7;teHZ;lPn(KxH%Fy%*1rMr4p zL=DjR6h9(3%&WRl!8;S#(Orj-8tJt8}J1j(T?B9MQQiwjG zHXLpGcncZ9FI29ceYg`0qADlGF%Be=`SjK#oKG8{^J7E2c|31ibVt^>all7~N&E4+ zaWI`0iKHD@!Hg~ayt`Z-8$-Nc&WtS9nUvJEwxBW5c~N6sYuEpNMR!*&6vkQ$KZ0wm zF`CaB0H-6aCYgx&=(^ON@FamY=ETNm%s`zLc=1$2FkTTLxdpN@KysTCGj=F9Q`8G2 zY8)u77XcE18`}el8v_}wHMYQz96CM>WaPjL3jP3+nbepl{#y3BE+=)4o#(3})uwce zVf-}ITkUfF8<@a@4Le9#?de}q3HB2S@SS$u*QlF;zu=#Z@ZQ6|Ah=*w-<)rJ(c6Zd zCaLHVxNP!8V?Hk5(=m#a!8RmY9&d#!=pGHb6(K zrr7?3aE7hg?U#G2q6#!V)vDpihVD99wz36$^A+9!jDS0vDs_G$hzuTT7)kKihmFRy zaC`@D4je-u&@?z|yt;|@Ti28(D%LFeF)?mTDAUHtkkj9hO?Xi^&!vnKbm&7tIvIWH z-fO%@)I7}wY2{g!PL}$Z$A@0$T^<4)+oH!D;L!rDKekiIjbYv*{@WODG$Z7k`cwxn zD4W>ye@N@btFmsGpTlrMgtIV;K?j_qR$vt43p-~pxEJRyYAFHdFH&kImU@pG=I$mk zmNEQ7X=gIOr#1Jj3ErF7L5d$DZ|T}Xxza*5T0Hh(W&(d>qPNC8``;;iGs(M~)lDIl z#ZI9^EfnHwimvw-x!{4_$};cBWE%&8R-+#Ov}^xN9@D@`M4B7>sEveqk^Me$^g~ftKw+p(oY#B&-+}{W+<(jM%8@tsnb?k#ej4gOUEN`tXZa zKOOz^piY8Jf%xncI^PZ-eT+n8F2oFSj0Ax(8YFkxz+6w;5oRT{vm?kfCqM9ElrUfp|}BP*{$J!XEVK@(*}$Z&-8gGhSbT+ ze_!K3sglopASiXmbKi{Qb zTc2<+3=CiYrb&}0&X`_0^~NP-N1+(*oF99uci!LFIS+g-bnOKsMcW2;XYeE7cd_$f zZNQc4Fw(cE^kUaeD1v+CYvy>rW61(c`70RrQvS{I=6`3)x!?v`qFM93eTHXY;&6{-)O80h%xG^mb%j2^T_Vao0L^)(Hi26#!9G*}itZ$Jk6#>>sOax>Q*K zKd`{t2epOg2ihNKAIW_Sy$4+!Xm4Ir-k9Hdw>O?WL}&*TxAZR*_qbA=3GIL7J>Ic@ zS7p`wkt%OKt0weOWv@6@cAr$)J${v~c&j69`nuP9FZ-C3741metIl@h1F4LAP#MN{ z=|=mHnX$%3@q38*CRQeOeN;^fxju@t0sYviQdWrXPmZ=eQB!?GAg&!rmJM?P4AB6%pZUnf zh_^Glm!xCq*=cg2;1QBhy~=w76xjAKtPucTh;@I9CfBl;2@qmkC$YXm(h=)Ag>@^* zK&L2W=@hQG^0)*;rk}g+G z+L8>!4H>v#(w$@ow5G`LUxuZu)QC@5?d`)ZBcO|cSI^SFp+6Ba4*z-2HQ^nXMF%8oZaa%Mzxz{ z?BC?e;_x5@y$$MYx{OKwLExZ1Pclyf0*F(^2Mrs-n#!2fa=v+|x1)I+;Zk|tf|hN0 zlt1)_$l9_9KC0IyYY7h*MPtOc@z?;oLK(Urj(TlDo zRohvurVyEGz|JsKokEZu`tt3VE%l;th7A8v+;}z0_f5ssD49GXGd9hYp88TB_-^8Jq}_Py(EYeNB|K;XD_R9&baxEm2&qi^FieH-+B}K&2yi6 z;RIJirsfqbEbiaqt-nA$3gem)neymT5F{EhiwS-25z*V=72eD2Nc+Xmw(*5xAz%+s|APN6}s6<&hx(#}ipW;K=_V2RNKa zj6L8T&4Qp2`85t`6OiN4EDG+BR$WjRBrV<}SWXZIq-C>7D#`#C*5k=63hp4IPL>3b z>HdTFKK1}Xh-5MfdURxukW@h?T7da0_H}&Qr{%?b>yL1G6)o-{t4<`?$ObC*w4G^Y%k9-+*(6tt{;=DrlU>V5qCvLqc5th;AR~qn5ZKE2&0A=; z0K6^X2w+P)-brS&+E5l`WAlIw5MH^4D8-d)l=E#zAjC0PAs^~QKCm|AS2&QHJG0~f zh2jRQssRdE0|zM78iDqQ1*Kkb+&j^hithE(aX4Ck8(~qnR}v{qM=5Jgc)1M)Fr(I{ z-_D{A#OL02eOOKODeruPJx-9L7p(yK#b{#%$-qA1#TmX=TyJKpp5ZN$t$T*oYg68b z#Mn5-cm)t)*8o4LPmMD7Wy>+?0h%GkqBz z#747PT(n^`?N2x+1%x;zrA(vAHyKmf8o;<1l2XkDEFMi#{XI^5ukR4+K)6Ahi#JMH z50Z*4SBGYNug^Ec30}f3bwGv*gnZnU?rbM)7RQ!)tfPPlsBtF=<;2lCspVNBgY0Q` z8opFZ;Dl}@%xyaTZGJN*cFlEN(V>~vB2|TE#Ad_heBDE1V|h%w zCed*7QOqRQz~-_kiB!uC9kS;b+*!glBqHL$SV#ua%hEG@wzW7+-9 z$v*wiB|urYjMqipEl2}yem!RJ`~=_dW={(~aAo)z@e5am@mEd5I(3%zt7FuuQ-_z{ zY-S`+5HcVG7?M}UP=WXkiM~fe2I8OoM}he3_@cV*1imH39nSCjeqb)&oa8&t-XppL z6RVK?CY|cncGdqC^?E#S&7gSRsJ^=&`%2Rx5&96+%f1BX!lxY$HTHePej(*Bs{2E8 z`HaH>J}$*Kju|aLziPn_^UuqC^8g%R6c^q!CIA@yO>7}U`~aW>^!WrzpfTF<{B)?9 zg(MwIw`(B-)0dJA3>%9Kf7n%@+u#zMCWa|91%%F$FUB z<)}d=$-usU50nVG0B|Tr20G_KNpZdOt{mvnY9^;fQVfAPkgKJf1BJH)Mpd(c{T|rCr*L{&Q-5Z zPNAIR9B7EbeW?@opxSU>>A-CQn>Zi_8UeX+K#Y&3gE?@_Ld_8vvqY0r|A-jZN@iu2{N%rVt(9Go*4R+WT21WQ!F1!od*w!wu6MYOd<>#I8u_JIZz7_Ku<1{ zI0%zv67z6No>l|M962O? zi*Kv+wdZ^L``+ifFV*$BSu0tuo3+wzhLcjgOj6WJ*6=yed4{c?y;oV!o z&|O?04?hCVjLRew74FG2L(Ck<*M@s$2;5k&ySE}!(gi>fmr3q+BA#Cx;w2I>Sie zlLUf;+dW#NKZ;6rB@hz$F}O|fYvUe~#--8*j2lf-{Y~qb(Y~{6EMW$0T*CKVt((TN zy#Cd`rcRhFUUskVZdO4`V$(RbwXE_KrK8HLu#OM3~R?)Sf`&6j?5_|gu)FTsxxzEr1;^d+;6&P89kP@6ABwXyk< zz>mH}@dtd#1aYySrs8U6BB{!mYPL=Sw_$mN9c(c~G@RcsCE!wF0)l7W3oTR-EPB;o zf&slMuZ{F73huD6Ivhv1l3sPgRNseeJVA(FRYnq!!g!#NRh909%;Ffzzr_J=jOTCP z;Csjh?chhPOW61c_}p7iOGK;%JGNXt=eFy^W#E;6J4<(OkGGNT_Bf%A?uIefx7(-& zYct8#PWBcQ4%xqb3SJ|gF$uI-uLB}%vEWC*%dms{zK!fWf1nwngF8?g@*~p0O#kp$ z;KmN_^){q~tJhX_aP`{~iUM&s+*cZs>v*`l0&YoB9h?d1aDYi!M#s(gutQtE-UIy` z)tdHNlIm{)G2YsRaDq;Y@zz3;D%`~A!uR-mLzx4*gpF_jh6xB6Zgs$_aO(s|0kcb6 z>EaaJ;Zo{RBO(F`x6URAQGgdkxb+T_ihe%3EiZEUsu=}$kZB|XNH#J7&s_=iB;dL2 zx%*b%ZR`a?1l!4Hz>1=se1>G8U@U7#fAd0KpNS|IM{cDR1a|d6&DwO|zY?Vhvm5Tf@#0yjZbL zg6c%YI!Q9HV!_77t6VX;5a>OWlF8z7i4%!twLxwz&1z~cHmhjQRXbp*N?bx_Mk07B zpSxvZTL?{}nkh-t=-m0a!D{~Fe&1C#?oiEhAMiC}MT9A#=0*ggR5|zDY=ebkO z7Z3ZExx&7KWd6x2Upo5_DTb`?uZ{KJ0<7P>!q+TL&)KtNv%j0KTj9%Ly9q+DVF{01 z6&SynyL07W$pNGWOG)ju_hF~Gn@?Qj>)=G0#f4k&9*+m`8oPO))xNe-1Z|330DELL zObxmdyuzGIXXY}#^l{%t8)op8lGGrnb`o(g5V`jW-%o5L!KfYeYLbflkK{Ag__o@h z9aPjsb~Y-3E_1sw`ql^PGDF)O0=?>NC5d)YkHICVy9qPs!{TgZV#pFT_df0G=`tT| zuUDQz1M>XmeS?x{P}g50zHBa!BEBf7;)2sU@e3E6;Fo;ND%2X&2HyS!-|3KxOaI`h zZaCI-9pCyQgp5BSY5@OMt4SZ|RKMb?{tw6{^26)lWWp|uova~+pjoyPRD)|s`(E<- z*b!0=7XuEpmrFoD!T%|~q-9wdgIK*hT}cEGyxG2an=c<<-8LoQSk}}Dlwt?MwE|oo zsEsSVJn$`W6|_7+ipk}HO(2P09uQ^Z^1x8R$+vuOjjw$gNNZmncvlOomIw5)qme`e zjP<|cEIo`sV61;KNeDFCQ4>TeHrwxj8sR-?{_GpR3RX#gv5UMlPj->Fk__x3w~lCh zrR$+QHS>6cWQzvV;HX-0{w+8J^JJc!d<^9Wc0zRR0RgJ+=mc`uJyLSmJsx#mo)}4p zU}E!)Feay<*t0E;XkJ&K>|^@!k+K9X8CfS39cg- zF$5JHef|bgibaf`fLDw@d)x6&g79T%lmjK(E`bu)Fc75}eNx78^f^x99`D3GrWV}O z9Jo#35=WmDHJA(D?Z|c_P`2=JabqF{4mdtP zc*xh!h8=q?Jo&MPputgWXbgvb_2ma+z=-T?{~LzH&wK-H7;qKivwXRV@dZHwZYUp= zH$Fk72QOmm%vXyT!lHpijC9>bsAUwJEOI%6BykL{22OpLNAu-!#_^E6{8kGu=M*pI z&^$c#k@lBd$jLfo0;}@=U9;>}SuR?e>M|Na?N@NrDtTq(5Zb4C?e~77`kuJ1>jlH-L2(EmFw!bT1Hz_>Q zoRBBy1mp7L6y^e1$rxrh)dv){o+ev z-x37aIDB1;P(S!By!N24eX4HN)H=*p1kZ_szT7C1K>8_u>#taCbQeY80$j^3ie!-m z_ZtoeDqbRi(7NN;JCQ6>@0xbh4vGC60V5c89flr~WC;w-_@<|`Tl3{d{u}xK{N@{P zD?H)|1bh2BC^sVLHDwsq%D@H5m1~t)=eH7nc)LTuAM_-U41)<$j+4OYgafI6m;@$= zE&(lY^Sl(^{`*-GHATmL)uuVSBbg9}EX2E=f(aoV#{2ELv%Q=U-Y+=73E>0c7fuM_ zm%N)M)PxWkQE@j7L`W__?dzY2AnKs2AGeRMJMHV^@}>AMrh#AhhHUPmg2qGe3A`aI zQpg*!BCia0IL?DI;`SMr_^~ZBqAOp%Xvjah(xjdJG6OiU0Vk+o8YDijd#X+u?x})_ zQk^oGKFOzzK|G#6dkh@^`O|kF+bXz2VL#!e11gdY0M|aS%=&{36ZmzLuS()EL*iojunWE`TqhtMA8Xy$Q9dF8fB{a| zFSfFH?ctQk#fo(Z!W7>pp{mCHbh_3B!Qi76U~Ux{UVd4651 zFr%@^!mY1_Aq@nTp!DVx{%l>VBJmR~wg%wc>RD4+sV1OpmpDeJk^(UimKAjq$>N*e zoP8O)S*HjTC2$P7xW3gVafVJONFJ=}{$EPSRsQ02;Nm%pU!dHAEs6u({+zrrV%PAi|Zq-?$T zgUu|xaniJQdGIfPiAU-#K<*&3y0H%c%dNKXwxBR{v!Utn@hTbn5oX?|EJWYb85P7(`dy z`iU7Cuc6iXsqZ`S1AFdIPmz=2!cYWKZhDUt6>w4!*g7^_nw zq1LJhcj{7t%w{|FHs%H)W9F@5|!7AZ% zq6a7OvkBJK@MuQ}3he?Epr=D2ll}7bu*tW*R{6l8g5;AvbA6Iklz5*gh}E9dFVSLT z@;yn`=vu1o;AHC|c9&D$yjLN%I!~wSYFaa*k+sicOLZQfl?v_Ubt%?uY&l6qy@}%- z#!}uX)yj7knaN(P1-eI?^}7xFz*vxB|CF#C*SnoztL97bIqZE>7V4wC<7zW{PXsb`kY{GAYnSN?vom2;Y;PKdY{O%UkW2|)-hl2})C+Fx?ZE)x*OGmuWq~@g@>!8WHY7mZQ8S~tb zx_sZ0Va@s0GXojF(Apa0>eHnjfBVZBJy|~j4OW_H7InepH?)vh(uHSEvkLj)v*RQA zy=|=`qQbsX(5`%6TWg4oszZeekg_gRm{9X_J1fsL%cKfPUww(hObYP*J*}jg+w!cJ z4cA;?y)rAjHM^a#zJ8cB$-IrSUe!f}7_xX#2kQ#L^-ziXX1=zAbx+jI8infp$91$u zv(-9T_Wlu_tU?z6%aO{MPS&l)OMHD7E5*2(pY3FI4}oZGXKMg^&yMI8jiX-|YZ|;( zsc?MW1^P?EjA#=|h(;9GPL0TSpC0IH-EFvz19#hoP0D2_2~D)nT{KveuG(qA_wsm?LaQmuBB?O&>&=H>wUY6B3$5vV@c6Ne zM?PCO(pI#m1*PC_%sS&5B} z9U8{`FlIJZ^VNea%T@%NkN$(LUSV6H2yb}hRT*p>DGct_p3huf)Y<&Jt8O)1-*&CX zGpB@&CcXD%Ql!;gWh|2NC4>)#e5@<3KDT&Oki*7tWRO;L3n<%%PlsA9Om?0yhyu*W z84=Bg-E#FXSG{hk>8RgL`zbaZ;oUUVuf%E*xaBEl;A)}g(8%9`{vsM(d znB>Haw2F-Le8fm=v8x-<$2rY;(1SQW8H}X=W!4NfgdmB%)#}gdjfO?$Dr)7TApy3kR4V*!32gL}jRePRN z^GyQpU20VsoA{@t)-Wf{OuqGomUa0SE50rtIo=v$9OdiBL!*D3aDuJ%Z^SC*xo)!m zeQsY=BtJ62Dj=4bEcLgEcbEt@oic=8-@e)Sx_rq*YX;o488*r4#ge*fpBI#jIKF<8 z)dM?vBZFs5vx<1{$yRYF64jGof)zw!V?n#R{M=;d$hz{W*8_>}P7<97iGGsAru*U= z@b<^rw~sH=qpW}|C#F~>HbM?BQ-IXi@|CX7rouRG9HEa&h}j)omv1YB5q}wPdjqI@ z8i7D1Od%Y41&240wrGk}@wo1?)uQMfd?`p9UpVm?Jl#5M-rwEn{ACie4IZ6;>y6eu zwK)IG8Plf8)LAk}AZDGU-nu0x6oY(*w$)A6qj0%)=(TQP^?PU^*L=p1RLW=QUYp_oKCSRmK)sY#mO|6;*(Fvx zvp%eBL2!xqiBGZ|-UGMA{S~`4pHx^knNh`>Bh`6Ky~SG22I*uD?fw>{7?!%NZLX_& zsD7h3h_oe1_xfwn5Z-LU_s0+HLJY6;Y%@H*Ab4Sp^)9O*te_?@eJehWRgzSy$?=s| zyI_k`9BA?1E3HLF1z&i()gg*xDi!>4JB*m0vQxN(&%MLy24z4GNqp-a)-+d*QicmK z@DZ;(+Stacqh8Jq;oVrzF3hv;tEHZ;y3?A@z9D?*diJ$W)sDz-nQt9nKkKZJ^=z)> zgkq2_*UxuZ>!MEU(x{DW{^0^^F}t9XOPPWk%e=i+M&ZtXB!9{`*A^H;3sl1E4_jBeKC&rc#v|5MuH8xr#z*{zN33iHAc3$N zs-V-OR!8<5NkySh4!jF1lD@?rm-e3*N8kV-wx;v_~rl1J_d!=<9>#dVz z4ePMlisKKgvI<;KLi!9eJB+u!4OS-3uCgY(O8hKz?u9I*Ya=cSW&wM|Sry4=EL@=H&UTY0(REwqS@R{`{++ZxJS^9(pd-0kq{yMwK zav{e`@p)W))`-v3;`1E;>M3gg@4D8?$}M|Tq^uC1)#CG{_^cJ5XW=ucD)OdM--Obc z?x{22*7+BC>6n*E-fsTic)Rv#n2hlkpS9YyF8f-L*d;#Siq9VL*(W{+#OHhQ z`9XYs;ya(U2Gm_Iejjv_Un|MK_CJy5$bx*#4mhRW6m`q zAU#@q&WjfO5Ai7$fA$uip@RKE;!`OCt+$C!GZ7Wa6rbnB%;jnE*&zOWU3~V6&$r@J zEN0=o#pinQnJ7N@iqGBR(^nKL>NW?ylf=*Q;`5Xk9xg0+FRS}__g{YVXsFVe$kcFs>g{X*ysDy>6fCVT#K!SV=Q0N6H@B$Qe z0m``mWn75zEdbd-{)J^@fx87L&;k@@0SdAZg;;3ig(1;~7d138z+Csa0J1gwSjP&r{{FO16~A!(eazoqe@}hOddZA> zlOUB#-G9Dq&1diGWWhl%KCa8u2)=ETHN^!bWDhuev-OPYEBFheS8w)~^I?LJA8TGw zlKzH3g~2-YLaR*<9=k6+mw)|^buIhNPE$&qcu1#;U)VLi!B@R&ZDZ$jmSD0ZTa!{- zgY1Pt)lIlqQG^X_5${{iu-HPsx&3+;`vjs3<=%p5lDn;2MHV0R0k}vuNk!Xa{JfRH zU=@bUT{;Re%Z5Sif<;bT(u>s4ntSmJ719tmO6QvnfZeBk3_~Ny#s4ps7{qetN7hel zkS3=bM+kI@66g|=d*B2Feq)YDlp5FZnV&!qWGu-9xmxn0$%A^D*MMM6ts$`NVN=eQbs!F_ zHdRP6%3*<)bl8YpRuvm+N3I+e3J9&W40707)(PexNkJ@eZGiLG;yCIx<6M@iT->AgC#U}Qc4zLO5;Fi)}AMhVsYBHZxMt_nBh;BS{ zzjZfzlcZ`lhBBeuc(n!(;l@n^Zp^l5Kx{FCefh6ZWgsfwch*LBz=2ANwMU7yhvZ7j z#^l0vgNu5McAWyF84V{R>#JWOmx=ahpZ*cO;WY9jw!CiS+CLHA)GZwJL>`sSc|j%HL8|~s`N07 zogQ|elFqtJiM5R6qO%_T5nd$O^_w-xc!3ulv3js|1Oi=kaj&Fa=5rt-3>VBdiuGbC zam`jz;gX7SO&}#*^W;%$9NTI~tJ+;CAY3zepb%1A9(DY`4-{(3j>8faJ4on(ptrhC z0z0^o${N0+s2Iwr|WOPK6 zFYQMP^ZclaJihV|Yp4Owx?F(Okms6J^kHM|IFuQ$?Zb;=E1I%vNiKTVxZ@qd`I$eh zT(i6nFOH~a$2 zjM1X7T0pv7)6hETEfsvGWI0uN5trp(Ol~WTJ%kyDA2UofpCxnaRogg>^8W+G|!svx@}MA?BZ2 zOtXGp9(x{k{G^3fbR%+hl5+kSB&W*w?thcBrhVOtW(I5D*HO)I)ZT_aU$3HowIP{y z4>bD136+Xmb_s!Sh*Hdt)vv%aZ0LmMFcfDTk)*Sfq)lI^#Z(4d^H9H{Pf{%osMqCm z^;hmoYF=-(#2s02l$G0=rB$|T$SPZD%;%Lc6{&nnR7DZH$6j34R$~D#jIGFE3rHra zYGvz+ZcsIjMptxXt4O9pOUvzAGM?r88&q6Rl+;~vwjfAJDr25hQl%ylR7*2rD#jU~ z3P~oitr||(Qh1jhh4`Fgq7YTF75$(tY>TZZWIvKjhY;V{g)omQ&t>rybUx8Tit>4o zC@SOQ|3Q?5iiu`SKfdaMmBN3!X-pJ`RifRQN`s=!7luAgjC z;{eQ`>z6N{Z*5r-vFy1a4S88Y1&kFFD`Mcr!99r}avK8g5IKjBXhFTZQ$JZ*VG0$= zm#-e$h<8h_pySP+Qg~p+(LAY)1_EK9|Hs~U$460Zk2@0tWP*s0C@l#PARuLD`w~P@ zij+{L*O@Iyr~xTkl1&Jr5d;E+tB3+N5D`Vi(f4fVdlp0mdwq)K*%d6P2>Lzu-r1cy zvopKE^Y_<}_xZfI+_~r8d-}Qc9>>DWeO(da|0-7wv0tL05F5O}IAeiGHws`5fO8O|Rn4Mfc~0 zdvO0kAHjcw=d?Dkp1?X!(z8BeAk#sWOy?DZ+cU0IJ-Yi8>Rk|CEIh@w2Qf=(#eY(= zJ*rh?22b7Xy0+otSwAPnyfXJZG3yWb*HgLYbrDW#aK-`uZWwTb{!~`Kyy(0FW*q$} zUymVYVR(pejA@TVWh7#0(_hmdAWJ_~*{YF%uIv!LO$UIZvecG;%!r}#ua4pFe7*kA z3ljhAaS>|VIh-pD)OX78g1@3ajig7aDCKnt7c!!%o`$}xKYhpMGNz%Vk>+RiM@Jin z9l|W;tDfcj47Hm@{n6p`!y#s|Hra!A)^-Hqiozq%magIR1-3^*#iY#=R_eP0QeN0s zK+C&@N9v#qq*VJWMt!=2wXhHtGaXaKk<|?v8Mo{a9+GPs8TUq;CogrQAC6yMA1OT` z{`rS-$RtQsv{FrC(Ii`VW4%N0i83-<1V+BD)zq91|7w5wSkm;n<_S%43q(zaP-%RL zBKm>`srAttKepuF*yY^%X#R&eIm|Rb1!hM^k=JrvKUG6V1VglV5KWOi_aTCJy|n%xDaJ~!ilwQWShTRK(%fN zEDD&Wi3Ig|VtjYO#gq~~Bmf~#c$^LZ3lF0Xqv=>$51?nQT4;@E2&s|%E#B~KevCT2 zwI8gjhl+gRLSdo?qH&NLM~6C&`3OTDFU)2N$S6s0ISy6#4384n+JjF4!VEf>INu&X}FniCsRoq>1y=tr4abBEf_|s zp4`15{YcI9QRM|A7iy@w;Ii;R;RXG8*eR}h_E!f;oaKQ&;p;4%<<)(|59Z#DnM`9N zmfd@fE$N#DA+)-`4ZrCA_NRCVALBnC;_C0=KMp)|vEe^=V)w8O|9Kdz#UA|USN!K^ z{O5fP_742fc7$Y~}x`pT&5FRRI4}=PY9QD!BWr^Lx^R!a@ zi|ig=ea5?o=;+Xji_nc@!%fhLf#Jn4A9#LXcw7C>xaqEF?v-I*w<7%e68IBLIoi?^ ze8N3fWRo*5giE4T(1knKX|Q=-q(g#*#y0~<LaMwuF+86W z9@EOvh{@r-!ak;;>3!kL(82DF>Z37J!e!iJ==mw(so4w&VB9TS(njm8B_)rpw{4{r zSLED{nyHp^TS=Z?1fAP z`iSCfW#N88R4XQQ$bx#P?YCJ4dH_s`W?JWV+WEY6oh#7!1TOnltpkSqcWI@R{I{ZB zi^A>owGExB>vK1!>lC$J93ItL8>mVpMmA92cf*19Oo2u&{EKK~Phz>GYBWiBQ$Nst z$iPK4Tz*Zfrpm;LCE>TTKV^$?>b8yHa980Qt&}4FDOwQ@7pB%m@wJgI==})9ds7oN zCq=>?^fgJI_y;24OVCTvWKI6lE75;yBfa!hlS61bNT+PWxKB}sSlFhojp^TBqoq2f zU{NJDUPgyv;oCVMI(lt*RHvkM2TPlv=RhhhEF`_R#8rex@Z2B_DI(kZP27x;Qe$%+ z5H?a5nHnkZJJK@+1><%{(Y`Bzo=x$2Wb>V+x z@gr5Buj<01g<*Q2V%{?tNxy}gWe?Th2E$A{(i%OrF>K4%UP~|?Dcbr$xHQN7(~T%x zYZVT)T?Oj_e_p$5tgr(2t43$UjgcvGwN|Qe9d*AsJS)fi)9#zY&kMI|P?(j}7BftE zni7U-fii(9(0WTU;khIeI1!0GqFqq$lk3{^{{S*|SlXKFgSfB2Pb#=?)vG4CaiPYI zhv7RkRDzDa2aABtZ`Xauzpl1086M#d4;BvUTPWrqPhri&gYoJ^YYrAzJ&^*2Ii?s8 z=Cn8cltk_zj7h{}x|pMa#^MO)+MDhUw@ILQ&JYt68G$>AYPW`M&<=jrgp-v^kF0yR z5xl^M+gSg=AGzp(h0*-hW_IIU%9uPP?Sf5`mb=2e1WoW-;nL!Z&V}C9nN15k5F+Cz zRat#?S2&xSi)tSa7cdWe9B1SKg5Xiz2s@~-nK1e_O+3<4WxS3mW6Y?+Fn$ysx61e= zk!5AfpX+vJ!Bc)f9C$aqfAoq%6T*~q=jfQqXd|*>e<<9#9)6}SLDQ`xV+E$5J|pOJ zN_cG+yfTsmUArTmpJ&!<|0F231a06_S>I*Rb_`4A5|;22hZt?gs38QR{uP)gDf}3Y zOEq1;v{z{fl&m^;wscK!DZKA<4!(?$mPaL>)S*=mM*F(Q{Do^P?h#`eFMe(p%j|DsM2H(mPSgGQ_@^>OQ-DK z7ru=bnhe#E(inD@Oi$8DtA_*I3x-04 z&xIXXe1EkGm1dXgn<(bH4>ihBM}PpytADyQ%Ya@4qqiMF;NBT^8(lY1m}f@DykuZn zQmvA4wpLFK-!~r!|16Yi#hSw@)WEMb0Vm{19(n5YO8C+2)mk$HQ8HQ=HfqH*99@kz zyc(XauMUC96)rp}(Vc@{sez^%x{~WK8S>E5gW->|cQZAaz8}$wY2Uk1_G{s;`syUt z^xTs3>Z7S0qQit23^4req1auSoFg(F9x8i1+=n@E%+g$wxr48Vhce3$jQ*2lhJzT3ht|Fseo{E0$4)&i|GQSIb%!2*D?B^L^pkSw z+u_xm(5ysL%VeaY#g`>_sDi_^K|+;6raqd8e5`Hf$`*y9(fpk7`?|&f>+^H2)&AA;7`XcPqSJzJ`O8$}B)v2)iX&t-8 ziXA1~AsxG4!DC6o?w8ROJ9Wta@^NCrhlPtp_qR?h3PMy8PoGknVuBoLsV0@ zxYxg9zO;y5`3@FgTMsiR5}7`<&`LEeLGOJJT50-8ne;<=R6W6=fobNP(aKL$HZg5b zHZcWSe@Rrn(y^&&-}NQj2(;%{O)E=qziHSs7`|(4`s0`IUXGhdTbPUv|L3+Ljr0u^ zbEDAo-@?tAN!{RK7BdIap%bkvH2svs>X;5Ibp`>Ee-D^0y!?B(C|ir**AGJ@zY6zZ zg5tFdMp{seRvZs+;_gFj{|HYrjcHG)4A@D*<+>v`UWz_Gcw0R*?F5`rEI1Kf!97U` zL*^Tnu`xV&My3ymc2M5Qa3#F6ftf-eEkon;l8|g@%;36x7~+124rNHcc38TYm?1J< zM`sE&Swd_73g0gLf!VCZ&nZD)b9Hb`6Q?4dEqM^GWRwgu+!Frc;kuwNXLx!6y%4@9 z1r$~Ckym+9Z9#P&-SsUL^DT!PW4;TA|J@?m9wTNlyDi}*4ZmCC{Tt~AM^{o9X`MvT zYl+(a6DGFF`E9IzWY>9o`EYc2On9W}M5?RGkO(+ILsl7-?BD93B04q~}F` z+ykBeXp`GXFi0E(n@^_3<3Ve}aA{vUnW}g7HFIX4+FYswBQ92i+M^K)uX60pK&g8v zrN}A=qu0Z-Hn`9Ox9-YC1$)8`lxR-ma*l_5UXJ2C{vIX1`t#rZ0Moyv?r&0(>k(_zAPs#k)!rlF+AaXY+v>Tz5pcHd*d$KL9 z9-c$yGxkL@QAx+J10DWhe{)pZJ`yWPyYO4`Hb;Z(iG`7f(9bv;?8yuIYNaM!?dIwF zZ~9sfqiuP2HAja#L>?6;Y3-T1_{UV7nHH%DWeQ9N@|4bm?&%a6&Mk%0Td;PbE)Ook z{ibp83*dXwf+}AXMLKa@Ep0)ypsV#Q6!Vc0Mhm)N1T`4uvu0BaX#8#ZN!fQvq$MXj znt@`kpBcs8)lsbKgH^-1H+2+yO^4 z!|joWg`AO^x|q%FzCJU89nlf2?X%Yn=j|hPUb+YFIE{>Th3}e-jdn$va{LgriOFbW z<1IrP>02n~ogP+aK+m5GvuTpBU7N+CZ()*q#ZAOfLW@A2`NUt zg*rf{jZ-mr`B@-I$(XTe+YQ6{-}TaXOfO3*`uh{ZwIb!y%fVK{YlvJw_^)d5nvBxP zb20x%iZuSD66$ZVczgOshGhvp+;19^^*A$>i&#!`G$A2C{wZwkdm!1tv7 zqTxd#)8H&VOR(Ac28#Ldqm1f1V$|R2BBqr@dUC?X3qR|qF~2v3Soe+kyKUVV9ZD9qj+q}E8)ck1|D@ui+q09= zhgU@&=bMbSHg=O#9%PRuLL{Tw20MG9T_a*G(8;k8FP=L$M$<3c*)3Vtk1rT)Z3!h~ zdykEa+|JuZTZhe8Cm}3M;dyY%G1haVQpxT{|D+16`6P(7TI3WOQ^1(Ql8KSQ^@J&a zdOE#cXd$K5_2%!L*z3#G^;j$4Rcl_Otp zRY>ti26C0?FMp(vKQG$@!z{gu9>bii zZyC6aA9uO>D&{Pv#vt`%r>;qI7IW#c$YNet!L)^0+f0L0PjN20iXOv^Yc(}#QXaTA zawjL;rhQ{5a5qy5Tpq^VhAz53vQt+Z6M*ScJ=C~~_L*zi=V)>hOxaQsS;h%3FnwsW zKgg8gp7|G`!QI!l)KxchtseaRS2}djzEzP?ty4(E5En@;qJa$Bm<_$?;2}$WWg@e+-%&fjcfK z)ya*Uo+j1tLCloucra-8`bZ;g7uK0!xZPLQMO-NrsisUdX_s(|9fmg$|aj3U-SI_F?eDfVl1?J z*p#V18W|3oGV(i`J!~p`%wU!zBYJ6Tk}&+oV^H7fus^kC!Ikjx(s2f!5d34*VOyk3 zSKC0DNtCg=Az_C}kK*zdjXhj9Tu9%*rwUv}s3V zldwpGqNbW0B`s%4iN-D(OOBH2s$)(u#_tA-2-BB>1(E0LU~-7hkZR;wl~R@3Nd{I! z0skVg#ZADA=ZW$2T2V*ksijlK%!3199M61jU&L9`l zC}O$|v1}P;2A!)ml*1(B1EufNk@xB$+uh;DO8=)LpVWgn4W?Q07-*a1B%xFj@cmT4 zE5@ zdm7Y)EhXou<2r$AtD}KJbCpneSkhZ}U;&?Pv{&5pamzE0WD^&diHpBk?e0lX{-*V%&TO3#~WA49%K+>wgg%^>iVO< zeu1>ECtY>z(X?M84bY@xkwVnMSyzaJUn4o_+hdVD^r5S+0JX%wHvJN5fy85x_UONz zcfbjDXPx^D8{o>(p$lWp;gku;TpA6ZtjhFD6a^VQ=B~RMJ^6d2IXc%{*A6ZFEz%BM zaXivS@Lw&>oe`WoZT`%;sOmVhdFO9{*=xT;Qqg9o3;J{w!1%YKinKNCQ{69{(k z4ehy)@OX>S$Cc5GnO$|wtoV)No&HAz&ifSC<)a6B!XIa^y4GmMiAZBK;zT4D6`q9Q zE$dmAi$3pJcQN|cA2|jqk$k2=3oR1yL&*X(^6{O`(ZRnW6+-I?nj_M$0hKIC z*fK3nA>myH^)J`y3O)nK`zGkN1>Lw$^Z3pIpOR(`ZRVpN@uO5=)vOI?fJuZ>Ji!>= zIVSw=2H<)fQke}vY=Y4Mgc-~j1JGmD&Ri6zAN`H5n_yfk*F<`?%8GTg5n1`TK{Ueg zcLVCMG1$W-bSbGbfH1KT8qp|PiUu}{#`#Ak7?;PjPH#=Nz%Gw7Qo3e>@nl&TcxAm! z$Vep-(;TKi6I1kPc67h+DQ2@8AYr-8*T!{Es$9bK_QyXT8e?$E*h>q9Q#xten+Cc7A2lDd- zx|DWQYgj`^ncg%ynM3zBOOAu@F_Avn(}U@f3`A}gZHrblgE97JK9SM%K<74(ju2Q7 zJQ{6{tz?%vnoH2W=F!V@Ob3G(x(c%Dp5*G9!1eL`=~KH}@L+9Dbhh~?rD<;TD^6Iz z43Lby)5X!ALWC(L!(M>?d2!UHtBr@Ptz(oZsoXpjEAxa-A;}TeZD?f6X!3l^ZFnf= zM&=gygpG{Sv{f|9asQxjs(n!yIAUM!m}s;ww@geoeKZwnSet?AV+PCl62^(W4DuO6 zPOJoZn(V!ylI^foMO{anlppuPFk?&_ec*`PzTFtw(3o1-@~FtV5d z*1j-92{DSAMVm=PHG@kOc_!(OFhO$+6TqG&#!Jx>Ew zw;}Q-)-4y7XvNGn#D|wegZ#WnXu_nrN`Zl-D?9Zk*Nqoe=>dnq#`_)JqKkF44Vv~< z>JU#w(|*ut8aa&n&?KEde*llgT-EM_Pf35S%&+>Y_>km^USA+(s&#Z|^kV)(IAE_o-K!aeEcGB)6R1N^ z_u^}kjK|Ifnoo#co~<3}J*JZO3M3ATvR74q!fatyDEge{3Ps6DM%+%F*34ipha+J6 zL;9CZ)})Dvp}PB`Px6x{TZd2Qt8^Jp;bmoh&uBZ2pFP=lnm{9E;^cY)1U2dvy^W7e zwhotCB|EVQm&QyshD(=CrgEJ^{9Z6nmiVW?5Ya##%_%KJ6yO7Ir>G1JgC0p?&_k5K zMja4c*T?gHqFeOH?topiJAFQ{(w+GxImjjLTM{6=xA}a7|8Wku~@jhUs z0xzbhz(ZDCc)-Ag(^i3Y2_~4Y(pi`rhQfcPQ1}F;uwktZ-P8n8EuEQy* zK>ssSfrV3yHfla4u!#y(6gWI~m(%VG`hAXoQl$j{XmJzhZ?A3>IYU#G5Ue|Q!Gr;9KeS)MW?L<1J%Lcxa*9}%;PCEevH!Cs06tq zKndPVqXgsCp}eLl0RkoHg;tM@e$4+jjUr4ng8g?CD8jKciV#dfSSZ4)DT?rz6$2hI zFyQnRVPt{>r?MzrdK!wr1V%PgJ65+-*KI0cx2Ybu9YL=r6bkx+UY9fA4?^T)bNOVa z?DdLvmrsp{GS(t`FlZ{#1Jh-;1uEhLP*otBm%2*;&vlQD+R;JVJx!UAsM}NvRpe{YtBp&zB97uYf55M zMF`2hkPH6U>@JVfBe{K|L-K^&_CUa63whig>JT#4B8pIdnzbSz74a;zXHK+rR#B>n@;Bn8$a673xP)b#DK0xP;Q7vTXOt+Y2^P$0|;te72U{xoksqDPeNG8|Fcy7nX?V|SrLDyf%vDd z0G}tQe<}*_C-wx%LwuPRGTKT;$J1c{3j=F_A7ich^4Fa_GSX7VsWXZ5mCWNBR_-}JC+qUw-6Xj{RZ-O(SnM4u2|)sK)Ki7Ysv zm6~+bBa2+F&oQl~Y`-WeMwIhK?a=ee=r3mz4p=Fki$3W`7Bwt|8b5C z+%n()I0?f6O({X*zpm?yp1C7Bn{TZGtJ@zf7+|vfaV{(a>EAy+sS1|)K`ryq)8ne9 z-_S>QMgJpQf%{e0_le-(+byW~j--e|v{|`5T4Jmi5~eVaWRv#_bkh#lL1$aUvc>Gn z4NoP#dY?$XCweI-gpExuLci~f{va%3$_?T=GPTK5;pR9UH}Nfheyg6Fx8gp{xw#2G z5pKfu&CZH%ceH@xAJen*5eAyD^Y#>WZUPAF)5oSPQ@4-Jzrk?HTWfwDYUDotfAy$+ z$_&nM@b2RTYGBKY(5wfe_ws+~F+0Hk6U@F$!R+HR#mro#(en?340QDC1T`ddX9|e? zbwpKsS;7FONumsWo@r_qhB2k2qXB5{#B;BEQbYEWl$im&$qYiAW`3-33oYui#g!z^aW|$p919E%6&|%sfAh z>QYX1o68(M&S3s6A&<*3QpO;e;P#{*w|_FjGl=D*6gNYBtSoybx}zcgp5HpKy-{Vv z+fc{!p`$na^r54taSz6`+mFHkt?n zKeH+N#&z2kD4P#Pi#Vn0!RVbFWKBPG$YKrTEp~(;YLa>MK_gQoP`D4Gn>ZoP^kz6+c{16I zHXs~s6`Hn}h@ncd>H)8lfj4=xVY5zBZpK}j8;XsTy<{>}q-GgZ7VG)fff8itgci2d(E#1!}6LV%jLo zo4$^|$MM7Aj*b3t8BGa`j3D2B8y(N_(}LFXCNT-Z>MgV8@7?%Aw1k<_whN|HS4J7= zVJ)V>Bv$vKLqj$;SFSn|JpZ9yj9(PkX&iW^}=dR2y}qT5nCNwUktbl{zJw z9V@NRJ&0RLb46vBI+FWoBeF8HS*%+F?pck(mY2|;G=iSrDmJ1%_qqmZczRW1&Y>hI zYwMUbqFt0Z{7oUF9XO)l!XTz+z(&1%J3uSd{0J)U8k?PC`bl}bYYd)ApRR!!mzTJ6>9rpQoSP| z@$djL0amT?P6n7*^1TL)U*jICVOGq#v-dbM?&ub)0z?W&l%4R!e%Lp1oskU2TKW=$k6zs?j*nJ7(tu+1TV%bbX)LXTnsb z+|c9|W=)cnp5OY$_Hjal0o9g0i~Gltw}c`n)-M)FtwT2ud2RB0$`%DSY57@|`oVj=$QiVFFU zuGWR3AK(F*n}~Pe6EP7uUQ>1qj=jn8zp2owjrfIuCN|M@rUJ9?80(j8wX@2NTYuyhR!9E)qi|~_Y z65TgFL^3M@fsQ^@or5lLbUZKhY?}+?M&7Pt&XMG65Ek21jO?Vb1Imc2Vq@zGHGpX% zf;2ew#b+j*<(Pvqx^qHoLcV0PxjpuP%MM3lop5H>>+?uKuixYKdtD-&jcPk_ZF8m1 z%mY*EwX*v}k5iKD9)}Z7Qps?p7A{&yekmy0(bFBPb01k)y^<@i*+jS9WplgzevdQg za7eC@PjWgOqD}NWoDQ2Z^8Pj7a9uO>E4J%e&~A>jv|Y~vxVdq3dF=9hw=K;8JRY>| z+hw-S4xiZFR$dOkl1Fp~J-$FF=n|byUqG_?TrQu>AKQ*d206 zcENtXGZ1ijW!U|<$sspj?~>t+{vm5z$3ZfEHfNklYu>OoyBPn`FugU zAe+-~gU3oR*0#FXJzPPC0r=3q#w%q;Q zV?zf6H4V^(i(-Y{+}&NXF7L5$N;|?SThQ%uJDnky4Ok|7Jd(rawTrUN>x2`mVgMc5 zvjqkoi%qVVm;Uk&rbdo(WbuI-E}nr~K`dW`MogGiGQ3~^q0=%6t)X^$^4Z%>>5BGV zS#wcd2E;&OJD?xFTXSx{|M2&>I*_lOQ# zKni(*Z6E}2uF>W7fc}Xxs3hg^h&%6H#pMMZP7rw6Ww!%I{cg$T3I;KNQ-bzjUt-a^ z=E~FAl3Mji>vd1lZ9X5v>%!UXD(V9+8O0CD?@Q9+_;Rv~cP7y@i z?{S3uHoLYNZT)SLJOL(c;yymU$kKMi{vhs4c@O zp`a9ki)J31$LsXFoL-6!)k2q7a(IGZOdVi$Y@VP5_tAo)#{q`b4;OM2801r2zAS>N zb=kag~ zQC__^dD6?OOJ6$!<@{Lp-nhCpH$MYfXymo)ROQ3g(B|;jJzj8u0k|v`aN3;`XqaU4 z`dlH_#(JD?j}L?mP7nLQ@(1uuE58^Dfh2f>9$7hb+uAK$zT^$M9RZuEsL*G7(JavO^w+mItvA+2k#(=mX`+YE}bzbztW3j@nBJ1@+aK_N?u=#y%2qFR=aPr=O%^i}0@Z0MPQInsS{+bd3 zoO4vAOV1alL$5{|L{!$-&P1++(iLPt3b+|t);SM&=(IUJA<^S=ID=vU*y9vI6umCV z69`d8=7E)!;VYPVTgd4S_`EhJSofc8|7D8zaVt+ zd7N_44;6w=hg%N$U1}Udy#zLSZl^s6A|N_lZn%>pif*{6<`qHyJT|Io`EDYB()$zx2m#Dd_C4KKjaGlQydUV`h!ldQOP3a%hWX*`R6h*W6#8Q7j!*PAIe?JIX=#yiV%6)CXM=lSpk@KdDTB9%yI~%m&2Pj1w%c4z)#!K}Frk6# z^Iki6Ioa!z{BV8J9}0L~ep&XQk-OHas%Mk&WdV-^W)UzE3StKu@Ob=ghh)bQJ&oLn z>g9XW_lz$4Ha03hea9jq^P-QxjWy1P*v}80*<5~bv2c$^wz<54fYTpv1tFgFC{@=k z!{X@)2Hm172r({X$xIc!`Ae)_8;8>kafaW4BVZdu%1#JxAPlxUz4nk_;l2eO z1NS1rg}ne=;da2h&Iv*plwnpFkR5QH)rq7pUdmA_J7E>`*k!=aFT%wp?2^4Mk4vf#w zz2%Hqo132rGi^fW3ppJgFU-b8SOtObALg=-Pyk};AS|``A-=%!S>S+x5Uw5sePRd{ zQg*^b2Bv8M<8#~mGKAh`QD#z9A;M%wxt{?=(4%si^n9=J90)PuHl87+7 zRiGl6l?;7SHG zyq6Drk1T~`u+*U-4iTab8;}c%UBnvE zKoT_7=J$I+5M3YyV5*=|KL~+Mat9$yL5GTJ6N@J4yN78|53zhyUWT6Wf+c!YEN={U z1%hA@9j^_RYXUHzalk5rC+PA6KVhPxz;X?EGl+s=86n_sfuKRq2u>pi*ubBF=<ii7szaIiByUPvh6&_Cr))(L%9Ka0QPKYgES#Q5)? zO!O`+k-A!fUb0{&94S5()a43mLfy1sBF)@A|lb^ zD_4N7iMH-u#-V`$^!fwf!C+b2=>$ZhR%^gd!-&&dB~w5ow{Y?F z+;N5UT9!c~orc=!i6&t!yXs)=MX>su4jokMS=R}Dl()i#rVJ^ces+i8><+=%9fGqv z1eTi}p+yF+kxhrqZgadwA5+x9rSL!eGuGc47g-62S`IdOJ} zK-*Y3yF+kxhv4iE0X|%%Uo1JhLtwr$adwB`><$6*65QDxg0njWR@)M1cLeSl_kbb&uQFHX4HTPMi@|@bcVzX7wc2SD-txs--u2lAH zTQ`tvO8&99!8zv)D_sJA;mwAl?N+?UJ%MiMThW#OeeA|Sq&@$lgz{#gjt#DW+heOr zVDI>uRjtv}?)B%QBbUDg@0agI6E3eP9`^*?v#2Tk9iGLjDSZ)Ml&UGk05zq1arvUs zWA)ED2Pe5ah_7RiC%6vbUnGy|Yxoy=!RvMWi(Ghr1OI}H9_Y}6?c-UH#t=;jNNwR& zSXrsPqT`s)(V-RI3qQwQlDo$E7u@k!g!(Q)v4U#`LirIGf2qC(y?OK- zjN`zD(p-yg(#sp%=*D3c%Y+L{lg*>1p$dA(Gq;IWin}M5nV?DAbJeYtO~Wgm?^|1`9@5GO=*K$PNBiOrdCYggnu#(_8nZ=ZlimJO?Z|m z1a1!F{)zTZ2ccmrV;(XcH=`XZ={r7r*`k){<7QWS81Aby&~blX_n5yuTcQbLLTFlm zN|4M?lZ2o2!|jJKQJ5au(Xk!Ts?DVG^@hLVErFW_O;SZegaVMWT{w>^#1!DUS!imo zqQ9|r2UOYG<`7z$RF^^(^K{iQ#oBAUFH9X3(Q}&Ln{%K&iz>9Y4mu?*OR3gG$J8d! z;Sbm4DCJjIY~kQJI@|<$VELSURN%YdlGYkzmlR0to*R04*zS%+cPH(P2_J?L#T`a& zp5YYX+=NpYt&jG}Hb<`7TUnjWlb5>DoY@t#g++SuQe&0BKr3amB_SUJ>C1zL=u2+U`mPXuR<5htC*mxZLnXXC}M0^m<`R9pXOC;;<;T68~T*5=*CFq zRVI*F_H)>_lCqChEv(ol{98Z36lo7ywAtRY&7={Y14A&+&t@4fw|+2-UbZ%WXT^N%f~8zgHD3N zjM!eIYp<>FqSn_z3hmFaPaMWQgf3c9u`#vcdn+m~7hYz-)!K`%tGHiR+rWh#XU2uy zEEjODYW`miy}CE|GN#w4Zf0!xF|~2RWEr(xu(db$A%QdvVveOk(&+5u zmWr709fK#)c8onbuuaqU?@*s@6|J(FiZjuk4NKdi{5Na*2@U2l)Wfre@8*ycm`osc zJaqtc=o`1M>ch91OD4spLqCxUNge-$J1X`!5NZg~?1Qk)^B9 zANN;`*VV?dl&1}*$Z9Z!=?BwYpBfXVx~?WvYMqEPD)C^_xTbRWo-iIo%C-k9$~k_s z+Jx$wZq_$Z%wId#sGsF?Pv0tLK+UT|&EhEy#&|q8*Z6qhvkYp?Ga5%9saVc`G}riy zhQ^G`RAziY;bqk8;mV0<^rIE)_#=S1{;fg{tiKU#>)y)lXys!Sz4&wH8Q;;-z=kHl zEUei%Rg)tioBP_%aW+3s%(?~(eP}(uiNNL+VB1Fbl=6-s-;*!1m(0Rs3 zay8^9sK^h3I;M~04wz@m{$PU=>z8r6!AKI;z3oL+z0*D^M^<&zMHv7iuRM)bM}$cU zdSQHhFS8t$r%)$CsbhFp4jsCYHn z4lu&%1mq{JRBKBa6pJ6`vg^%HijKOHHLfBa6tcBqW+f{-9v{Kin~$c(p)UrK&QFF_ z#`~cks^W9eEJ`B#IS|u2Z93fpHTat7GNl#Xz zv#>aWIX`87VqVj9YW^*u$(v~2?9Z-`e=FRoCorAlGyZpr840-u7UiJHH^g5Q?q$G9)HG^kyu0ua zQ%d~&z39D_@lsuF1FN=~^@CR^GO%j9j#VTD_IpWIabJb|32*BOoia&y1HNm#TDLmB zhvR?J^XiDciDLeP6kfeC-@?zEvx2ZG18NVMIU$T8*B+H&pU?;GL)-c{DoZbmZQwiL zXK+E==dX`9;4Z@rjWU~(lsv97q!;>lQyeE~tbKQ-jq!E9GWxn{2i&~zb<;Lw>0D7u zJYsdCaYn9aFC#1_u87cRVS+|P2*wn$PYZ%@1gG(__ zUEn)0PXxa;560K?{2)Dk1N2Q4^Y#UV>CEeLUC`0JU@=lsNSrxlunxzp<7STj7A`Qx z#`6=H=~ridQR2(%@v9bChkuu=!e2uhkd>2<$N#Ly-wIe;O+f}5K^8s}FRjPlx4`(6 zpQd7?6Cjv$Gz%flGsV2)xdLr{K3>95c|NJyu&DHkAs}&cQSIa5f}GVZ_)Ydv8Df)3 zNIp}b1zpJ~WD?qzcUN=e=NID3IpKZGV|LjXZ#^-7db&DVw#ie`zmSfNBs0x#dI9}K zFI_1D`Xj@}BJ{$6`2Bp-g*yE^f1yGDj;F}ykAJ&-&etK9Sw4#w8s*aq!zP-im(Rfm zXq=#UfiKoGL`HPzVj)wYi6@$WIR12j=>|tqa;rFW_>QLCQ28hE9m0K>`>f>J z9%<32V5e59wViC>5uR+S<)^RpIO_Xnyt!ikEdF?w@Gq@FZNr*TkbNq-*d|GyA=KyR zThCSEU&hDq!fQ+;WjrifjW~8gebnHac#-fP^NCEG`uxB(;$A~F-^ABsGjKD}zGZb& zgm0PZ_z(fqeE-|{LR}Ar5cpZE5i0L}7hiO4cD-wogjA0>unTCDYW!Eac z-ZhB(B|c4HAn`Oz-Ait(2OO3K)ll0tO*ZK28wUArvq6$Loh58i-;*3Ypi@VZYUs*q z5>qPT==lvyhX^n2-Dic#)?)thPDt*R!?adBqfS|sJ9M=Tto!r~S@)HWbvUmL|Gu7e@92r0;v(LJ?+Hsi(>kU@EwhuzTV!++trlshF-xhC z+Bz2v6)OAV_sW~&Un4nqY_?5hnrXxdl|N3}q^z{ft}NoXD=`>7pJB+9pv5Y@nz1MW z3hx(G-p!5IAPtEUG|2OkkQQDBFPeREH(9I;?y}(^CDTGN|Jx#?p*^z5LUGLpPuE7w zzd>I_aqT+9GApicu~Bi|Fzy6qjN;ZEzO4_+E3C{zM^4<9gBpHvo0$A(LlhsgKARu4 z*gEv{s*D;=TbI!fpWHT!HgLhdt+_Puz%8HNHaS_=j`uINjtl!3+q?g>+j?TyeAH)L z$Hpk<^V=@L|Gb1>xY#;W9F%OuLdl0NHY&LrxNIFNGR&b$&J<{hiHbW`J}Yd+0;0x$ zSYyzUr?2ZS>|jc<%J5qkqw}7sYpbhn(1NjNs0EXC!a|su)14*_fSPwT(9_;1&Rpbovvx^UqVqb@XoW6-I(pmgh2 zxuXGp$r5XEpQUo7h&CWA6I_+;8uGoCSW9$`5#*;!D_1w*hc2<6iSI~&pridO@lvEA z-(ZI&M0%NtcoS07;vIcPR_QdHDbR#BX+xhwhaQeLS84}VwuWrDfM`OPN$h2qhQDMc zqGY+;H>mQYa2*2r}kPhZr&A#wEe8=~5kj=Pylljx#wMt(SdSEZko1Y zGroMOwSDTL=C6v-ameWX_{z)C$Ng5;Lrr?EZmoRpuMBcDh3frPD;@eTWgNE}O%GO% zHeKZDX=qw`J6M^W#oxBn+6@m#f>^lWC6xKRf2q-JOiIi7@dnPH{-S*%o#c&+$f9Ac zxsE9x4&3+$tdcO@nHj;cDxPd3^rY2+xs{I#A7=m`Zw7t}W^1Z0(IIj3IKLKuQWIIc zA9x&hpT>6m3g45qOL?cPGM9&(hhim|BGq;^3+q}a=Ko6J*RMT=@zY z(I71+r|~4Dg~E&u8{^hX!|6;UBax@#`d5&grReoo<-@{u%yiYdnhE{NGnCp|9b1Xi z;+#+1zo^KmvFSd&$fc~XJjt-O2)!MzoB$^wS($xL-#{_{T-a!1o(%u(GP?;QXLPtp z9Qno|1Wbz6MiHG}r6Ab=zC(LPuRE=}a-+a^j#zu$J5=6uggT~Pw|#_q-6psPqt|T! zqqO$A_3)to7q7dS5uCKtnv$dzIf9abSmP+M46aw1vaYgSeLftq_L+&CkBeyovXXUk z-EJ>^1I1hsYPzSA z%`aaN{o5^Ai4HdlugmNS1IHe%?0cbYFd$1deM1SfR9KwW67mZ-&04mcTZZvV<8-f5 z84{;$kn^_Ra_ccvnj<9>jZkphwv@XAL!~)UA|;_%g=8>`Va)6spS-6PlOjB%Qat6r zEh90+(`FE%5GJ$HQDmm}TSjWXPAO${5$?w-Ba^uwFbT|0JIz(G{}wk$H~aBR%t?VhIDE%5d};qL3vbiUyrme~KrH(ad_3sduq2vmToT34kw(l#+w)$}q+&fWTA z)~=yk9gdsAtLJV9$E-a=;x>O0f}FdZ7_)W^HzfP8kV6MXiOrtcCYFu|En%!I4^H17 zEJ-qfnC^T=v^9T_G=^)@o?fx$sBd1?o!P6kzFAAYQ7fjFd^K8|U)57!s+0TM%J9!awFT8U zzpihgn12eSLhrYg*xzoQ@6w@XVK10dap#m9=R_wHnCVpkn`gd7xwR_nQW=t4PAEf7 zGvB4$S`{8NLSVDZ_bj(og~yT*tST_*G%Ghwe@?12{$K6!lc!;inE}m7p>HXrkI^8v z>smE>+J#?5xO4FT$~RDJx}w}VhJQ{aMm5wijo~ZHjTa(Hp~O0Hp8+Fd4Z~?)h>1NImgaQc?{)g%W_#TI_4GZw@amOsC`kh=txZP3EhqKfpUumgO@rci+}brQ$* zqrj>a?5hVZ=DSrGtzd_WzugM{s6))c3NoS0Ty%7EYEUpsMGU1{Lhd?@Wtu?sca;&# zX&Y*wdJ~~d`o*EYjF2Q)-JwBRE)LbNPmRX%3RWH&G^;S0Y@jepCH?G}WC~n>~bp0NGfph!^mp5QS*LNu0EH=sB z#FG5KgszR%VV$vc><~Bl>UMFVtWYvG-y1i&>~`^VUMe5P%kts$jb!U2BTmIgy0B~~pXVS(a!TDDh1|^; z=j2>|BOXB~#I{ypCFpZTQpmO3z+J+i4)~~dV8HXAnNX(d9X&p0;PC{4+;14MR z_^wLl|J5vxKMk|U(0EX#QO^fd66w*I#B3R!3F=(60Y9epfwK0JWi#8M_(k!?%7#mp zm9^vLO6$mRx=NC1P{%ZKoLp&)90x#&b>w&jjE~jH(~cY`sv|mM+qgc3W@{^58Ey)M~SvL2nAyVB3iZ^Zh-iZ#5oH~!0A=;=GQT$vZN`ysC~ zq|AftUXW!|l3b8`RCL?i9lX-=|~fNMz zc*dTO-g&@=K4?-c&ggv4G>C$uHG15QYPD|-UYfKLv|av&f=5_FQ! zeeHr}+qt~-J)^dezAIzLI4?GOde*XTdEOwT(sf8~S%&QGkbF?GL7v-?4YFNB&S;-< z=wK~y#109&AunMN5-|pxkTMh4CqrI1OaaK+XjdQLcY5KuU>~Fe3%DS8I^@(2iXqV( zg0zB=gv}OW(%KfJ?=?ts8Wv>eHh{JTYTW4Kw$+`wIo)hNX&>a`h78CO; zA^T<^gti@zB{VBTx9|?%@@0@mI(@e^J>@uib(4HZa4iKxkU2L1N%8DXzfZ)^lLuU) z!!Nr0E>*KcXUGmo@H`>6$L{nvAVafPgn!`l%ML#zTPA7cw_a8bN%3&H+kgnE5#eE4 zoYLMK#A)jS!JxzI0ssWU(41yz&(t^7txR33Ip?#{@Z#zY`H<||A$$EIz@0MgBeY>@BW=L!TM z^Pdya%zNF?x&+x$LoP_3j;3#p z#I}(B6!KR4Ajc+T=YVwMKFGidsSI6!T>!EUs~HYMK1l!Vft<2I$e!$lgp-h)*zJPE zl0MNPx@A=M$h|o@adZtA&%h?X{>l3E@@X@uWqQJe>{!wEURjfyp8+e>H@2=zo*j~@ zJ0R1j2eOod-EqneKcr0d_`E)+KO`&M(Y0VQWymxP378=dB4lm{qXN8jhQyE^UYd77 zqE2Pok88GYdB8RYq$qVteh2&kd+PTG;bB`az>ry1B#GTs2bR85$&P$iRgcI^-zmu% z-Nj+IiE1`m$?Nyous?y^*T6WZ3@_=*K}b{!Y0F)~gctKl9w>nnwlZW56~XEQt37T= zGY#4k3_^-mBAhk{h_qdjWN;HsaPe{gQbsj6EzqTB&v6LWyvoANx-@LY+wch9>_il7S-;cxuXj*bQ?rR|9VNx%h2n# zSGU*@=vV{v;bY4>b%#{dOj=tTP7Vx7#ld$%N^HsP1^$XydF1_TzTq-M4=T%Lm8~mFT@JKe<2^r-5 zq7MfwK1i|(KOrqTf|Rk%6(XQ{PRL{n$U^7>1_-jZ`|LKGTLz8sK%QI=>ifx>7LVkX zL#UX(V|3)Nm+W~Nx&@2Z0rh!(S=W4UvJk;Sl;DLyLEI-nObx*R1Y4LN)Ley1Nod>2?iFmdq1 zDF@Nv2@tr`Eb|$9RkL4b=#_>S)R)y%ckBj{Ad}J-G)xBh0v`scu0gKAklXDt&U7vN zL#}|*bSlL1c@TxmU=U=l4|FROlp&X}><6+wJaYDi`^0M;iuCf12=dC(GGJcj|}OCA-M1;wVl?@ zua{?oINs?D!W;}HS0d<_9XJn4{L!Wjee!FZW1dZuCtr}G$c7a$*^d+*h`+Y$WPP+$kSK}!lcw~py9`gEJ zU_m5Q`xfvBGGR}ym*?__+&&-VnD=^}kXTxly)Fqf!QqiY;Jc8t8RFZmyO!O{<=H&o z5JkxbcGU@<8|QkLJ#KHn3wfoX%|m;(T>MDZ*6ol&I$hs>8yXp?5i|9>Z+py!_TOIJ zJ|Bh+VV=tg5fmhvmtooxf*kUA$|*sjb_j4Mt|e&}0T;>V_641gl^Y_lkWT`??8G^v z!Rv`-0gr^S_Ce`Z=8-E;$QG%Olzww|iRA1O$=M|myk>WHiNtDU=Ij#5*(H+nD_LikNYbs#oLwS0 zyF_w!iRA1O$=M|m(}kI{OC-j1pR-FOXO~FME|Hk5;r+i|A|a_XFRmg7pUkp`l&nuZ zn1Yk9t+RM{>!ydRAF;~kNRnuhSHluXG|4~Uy&FRkO&9u)Qtiv?G`j)n!{6CC_XxZz zzpC-2V%O{*?P-~IV+Kdu}4=+SC%h6~Qx)RY1= z{KcR(rQ6{l#hOxFwWhQi{;DO_yb>SGAumx5!oNuBuEF>hc^H2P{zaa!9EyLDXUIzM zFF2J$(rY%vZ|uVnoDWd#?M?F_FVII{9%!9~{_M6Q8?EKuJ6~zo;!Yo@4EydtV?$|I z4t?}Ybv7?i;xoxOOV2zRr&M0kp7e{paPL0h;Uj? zi*FQeTDZ|y-G@NW_~ zAJEmt{j}ElQ4@4B{lF26<$?B00dARMnH*g+ptYLs@pEIxB;TXfL2G&f{S&QP6@BMo z(JR$o2tR4Xgkb3LgVl|=sg&G=RzIO;2df9@EB;#D4i#Lv)Gah#mJ|RTNbaHPYjq$P z>-O59@=^yyOksp#~NN(B%(+uHZ4pV^1OnHcIey93gVTO@#_`%uyfL5vj;9o=} z`=NcmK#Jjm?^Zu1EYfOH!eg#8Vl{vciD?j1DMy(%ZpDurUrnjR)W0&dK8Rtkoz{)X zfX09nCXZpmgZ5oegE70?^S3Y4-P_xO+fZ?@T6S&9MbFLf9U3Y@L}H- z-jC`>SIwL{erPEK z{3Jm@a*+M_*VS)x9EZ5$)ycn)imMcmhY=?uuzBIKU6;< zII4jf)R8cj-lmmmG*xCEsjlXPzS=ix=?5_dNdw#%R|ERuJ(*SOkvMc$bM*a@>Nxs- zSIzn4W72)0!^`Uxpz@!pJEGY?Yc>$SpqvG*ppi9MEzKYX{9N5pm}Bfb308Le($;2R zPwcKK65?iHeBWyP2trF8iU#krlBz39AZpZo$Eptrh-nskK{Vty4IyIG5!&}_bq9S# z?8WvlkVztDL3^lb_k?_1eS;snF=a&5kFi5c+JU4=TMxWZ)9Jm2C6-O6r@j>Gj45OaH04S#rlg@UWla~<`{cUze93a1Z6CZm$x~!z+XupTV3cax*XJ&O zzBwOKn@|m}U*AMAKYY3IlFdMXu(rJBh|s6@%)hCYwAms) z*!%AADvI@gcSGOM6FMY7XaXUIE0!Xi+N^){qPN*3`I!Xrt#X}cF zdRIU}yn@$quU8PeBI56za&~8TXHSCqeV*SR*FW%NcHWt{%{%YR&V1G{9}c~!?s?~V zd7ECm&H5JF$V*J(<^LavH&!Pe`R3|%y?EF3%$dY{-!C4Sn!Cs3B+Bx4s(iO+Z|YS} z-$EPtBa?XV|5@=uh1T=6O33LeD>ZWsGlo9xO_|HS@WQoG9KX-QI%5$j3Pq>qXdfMq z6l9|*9&2Ynmdw=C5ll`>z@21>o+T%h#jgd_oK09QZ)RA1DuZBC~Mt+B;| z##u(A&G>o$tT-vTv zP#gJslX(Bd;t7CG|GZq~b#fJb&oRz!yn`1FY=dspJ9rD$+nb_s!*hO6dU67d9g)+> zjK|v@H1K?OCq;wFiAI&Pa_aF{jjL&&#o@&SXwW%h#K8%Dla;gIBGElOGUu`~2Qy|$ zbZ2U%nscDvN9BwP6+ZIK8l7`ZQjkVQ7w-jQb99S$8QD?C2A+EQnk3QVNYzA7Lg+tZ zbAHs-#%W$XExa^g`2Rdx6nZ{ue9jD6InA|8HefDu1zJa^(aK3VFX?OJO@*Y%IZvXS zQ}j|ur_qhcIj@)J+MZjQrt44rI;64kqp=I})sxdGVQS8Da~EXaqI90Y3^*$ef)4Pv zMcSha({i5GQR>t0lxAiv&_KnjMIBPuqy!K?O6T$TlZ{d&TAK^QiXkXA$7}@%R88SI z2~=dIH*Q8wb4lt>TVNx(i@t?6a#Wr%n`)XDD4P;XK;o3x7g5UWoC_8%A2lauhceBm z>q;l)DIr=R=kdMg<~&gHv`5sdSIjf`Lmv9$<(v+tippA!QuDPu^wYeYuDaR=b9QCs zoXpYVO}GfIK;u$1XD^*O$p`&T>CAZ?w->;i@4$0xPG71$r;RM#)>-nOdSU>dHd*qW zJd4ZcV!r8QBYx(0(dTtC6&;inhcPIZacDlOT|W1XapzPkBS$!lw|uqGGK5*7K5f9} zE4w&nc^Nt0VZ3^-k<2lY)LxnMptRi8VZ3{;k*rfmEbjT%a~SXWmT}Ml!+kJ~n;Ce0 z(wTuTQ60cnc4H1~TZ{+c{PCZ}$LU;w=Ck8{oj2#S*H+@2FJDTg#NI)r=eGz{TG=)mha&Gi-Wyz~J_ zsj1@-dTnP;s;;&{8=o+3a9q)d%oS)7s6+U3ox20*>r?VWur`M}_8Vp>z!?4oo|BM# zc>!vMo_ix_v0UA$ORhqkx)$2Vk2#GY`4{G4;?z+r0u9N+XTBACavI3W6S!kO*C5{k z(1yZ~W}VSj1HPVnbDo!!-W)x7$MFnTpc$t(vhC05uB(lW!zB$rTXqzGAg7X~j54-s zSj+utrZ0|h|IitieAm*+OvC0|JMK7uap%EvVqCKRU2-^QLK%6T-ny&xO|+5SChN`v z3hV6)p#|X;#m#9WBE-*tXOd3T*L?zkd=~MdUcPgB=1ePt(|-9#K2hsTPOc>XTQA?| z`X=CWAtw1wJ1wRmG5f_4t%c|#2o|#uho%&YZeP#gflaHphym3VLcgTxH2~N&I^HoW zJSLS~kB4h%nQ(C-CORoLJ|iItBLKvwrl!Mn*3|fHN4>zcQ1nlpT5_a|Z2NJ@N7^8Z zW8W)ij#;C~NBGMi9MetllNcjtXB8J!stNFUJHoQUK}GQ)2kU(W4eKTxf#q zs=k+H9bMoaWF6+s^J>zL2 zZOP^vawVsyBs*NzlYdtO395fB=Y+h}Wj*)zRw?+opEJccVhRI%>>w*k3@})tEwx0+ zQK=I%rWVf>{!cNjcTn6T@rdyc_p7;m z&zX6;b2v90Z|5Y* z9B!31l%}h+7Uug@WWIB*K-n9waGJgGCF<3AA$XRTn>We!LFj1wzb23rkK#pF!lk+z0^kHqvS!`iALf=9g`B}Fy z3rTVR?Qwj~BgAnIZfTj@xT+|m0ty3pd_rs@+_O!~NJ`F(gA4a?1w1}66)t_lwcLb^ zc(_~!fjqp(THp50t^ojGejf}+J7-R-CUivqx1L^i`@xzFAA8#7Hi9)3GToZO`66r= zElK+m;d~wEbj1(noVGtTY5Nn-owPL^f_VOg^c&XD5bkp`+5mlnaq4Pz0ug8 za~{gU9_v89&qxM=JRIHn5$28LUvnnNbv)J~{fJ7-#{^EeAKk{~+$UD1xM?uOpNQw% zR9h4$o*&nZdy9C^$?~+vI4t^lv~jN)%GcueoX(ZyQ6B60*8dH#5wroD@B0e5|E?_0 z3}B|;nQSV_)Ae)fRhILqb%e=J6#GiS2y{CpSMX7^Ob;;*w~OAF)U?=y<-+P*60EE9 zC2E9(&B4{D&(`+MiOcOGDf>Y}{{X|Q7*vp$t8S8p$E<{x+6lP@#%c{v`^4P7$`y{7 ztau2)e-d*S>j(^s(P2z%jyp09h}X<$RC4Y%i=}zX*11QN$MQ7^2oq#!{=3GSwy;Hm z+T?aoDi{e23%^N>KfVcie4u&T++UPBB64n)^M5OcBd4<*SD>+^rkyi&ACV!S=uOVo zt+f+y#{p)!Sa`0^a=r=eb5BZgf7S$>=AP0w(ME2QZ=B|0^DU-1G5d76B7O$!l9iZ8 z^a&Y@@yw;0v(enAa_gWa?}0PHco$0_TkX5&KNoT}WXFiu#R_?W@Oe`4HPily0QxfjHL;%gri@22OOB_q{qScYH~Bsq0s8fFv)L zY594tKgq)*iJOi8;U(W=s@4fJVEi6aYZU!buI^=GsP-~35sUPf##0N%9M-X5JP|$4 z*XuFA2tB%}9t~@F9}J^~LDDwd))3*)DPXK@ru6*KK`?X%`0h{6T}Q`{55|uyONUhT zhoM_@vTF!O%{oJ~J{UDqgQW8+ZGtf4c*{>l^lyIcyMY=_Ug#y$0+)HfGSS*%c?OI9 ziQ(Z;O;()YaasqLjz5YmmoD&6mTMcY?^>=P@UW2Jxi(i0oRj;8B!{yW*j!mx-$Wa^ zY=KcJ5~{oqkHyibU*h!eaLt9qgS$9$_s({R(!qweBnW08N9U&BN zW&s`e{V@Z^f!`Br%xd6w$0Gfuf&YQ(MZ$qk^teW^$CX9saXHnaVc?^2c270*Rw;J{ zG&DbVn|u%sdQZrHQ8-r1vO7HcXiGNVd~a@BNj?wmWHl*PGLWF|W!?4A>P30w(2@DM zk!bn++@bQv1!UnT9OyOt4G?{s2l`voNb)+9PcIK-A!M-7pBU&eE_|MOlk- zpAU-z1hHs<4NFf*06eqU1i+U~jERknPL6^9WfF9v5Z|rfHGmQnlK=Mb=DK-0oe$!U75gC~uW#yxc4-Ar*j3qvGSi|6=2k6EkfwG08R?0Oe)?L|S@+ zuir+DUzMB`l?mw80DuMvwaICK1dY+W0M8as!vG%HcX`$PHGnP#h+WYDIR@yqfCikI z1fX01ipp7;Def1Ay7s z1i;yjj|S*m0R03g-9!M>wE>_Y+zIjl5-?aJ8qjnB@(pmtqSNARNl8iRsbIF~*mMB& z1S~Qd)b0&ixD8NtW0C+!ISsH&V*%nX5ui~4RXH;gP?G`kH5~yOAcG4Ij}F|m4F`>= zBD)^f7C^-b254?|dwe}Wk&BLpv7ZL;c?lVrsTde7J`+$?0iG@@nK@SxThlbMQE;@t zc8QMB4=jvQ8^9qAP-^jkb)}&Z!p3?asZjI|29Ab0T+e;(f79CkrnUb~Yv$DJf76YtLx)RvBIW6Jbhm^jzVrk*N9<`c3`M71Ya?f^ zK?fu3QPO>MC&C^LAHNQ3WbZUPay|jBfXk20tm$x=-kF7ooLOt&fRHomKI}0%vl`<% z8mvV}_%n;#Z|{VEksHpP@h@^wq6_{-PLg-UzsQNyZul2@Bi0@NB0HB^s{os0Cc3`6 z;gled9$?dl)DLQ!W%JEyY`<1U9z@mLMLm(?dFd}fS2RHtBJCAWc$B?Dl>wLuvK51W z!A_Y8xx{|9kkB)Y>Gw6z!wNm_xyy_Z>rpMSvRu?{+ zUmA@|uUQNI(P?x^U+q}CO;T29O`u&}?fp?yg1wwH0Hxlr_mNhhxOn?&Qyt|kj)+xs zCD>O7bB%#uEvKc_9f@law1E(M=alD*Ui5e~(OyGFH(P7nUOIq@9yO(Npd0W2J}aNIUyD<*@~-C7G(%l`khh zm=CI(l!(YtQcbEFf)>Z!pV|u5Y;TW|YM|cj?TJb)eT#jnX!NxxeKlC?+B;RNs#U}? zQhUxv^(RcLjZ!<N_8=mtONXit>7p^BaCZIvgj8)SGN zU5ak7S!a8`GQ_&2x|Fp+0b9D=eo`%TtLl@9oa-

0F1H?Lim&7G)aOBlcirE>}Rj za~gV~o4t83S8+b-H+Wiow5OZhrYz#BgEHHpp@}2PpkdwZU8QMgdv|-Bp3vadVFCxh z->7cLbF10XKN=cAgkXRx`}O_z;RKJQjr+73^C@V|u^#sFl5$Eb$77dbsGvT*wUKlR z<@W*+O%==UtP-Pq%8?U2okE*>+eZa+wdp8ssQGJ@nIjVI7|_c71!N-Qu7PT#F=kS9 z`{RY7zV%C;3naPRLW;Da5il4Oo%9Bz6@ijXNGstBt$FHfVZBg6!&xKIOa1MyDQy=T z;{(3gkgSzzLl@0`+CI|ak@SrHqVk+ZMI-Lh=<#RmlY^hu%1wcEFy)!=kT^wQ#+v=g z7>$rb2F{sY6wnd3^tzfVei_wb`{tgKMiOE(CvM#X|p^Cj25Mcp2u= zAKUu;$$J<%ea#fSnFNcZ|iZ0Kz^QaiwaAT+#`li4ZHbicoHzJfAgpx+dP%$`4G<3D2 zIswH9j$Z_9u*3-MT0FHr3cKp;qO{YBxmh-T5nAwIUPmtAFn|oMZO|p=3Ik+F{RmUS zaI=njFHeZWO^9#MF#D!Z33g9s+M`j_M-{7~dwp^ma9wUNQ?eLGZk~@LeR8?Fst6Sv zL)R%DG7)@<$v_5l3=AA0&Bwj?FLDOwV{KUs85cZLhYZ1tkTz3dHefdJ#ALuMTx1+D zE&#K!9xy`g>3|VF@~wH<4wwp;^fvBOPt#O&b~T?Tr|+@(5>06MMNUT5x^R)_F7ft*u`Y-n;_d3>mvUUtSSpP9t_Vk zH*Rsqxlzt$)Xa~k^3=qS(-#~4c<^HWFdi54g>FS$xQMYiQzw1-KZ zQY#fSjU?3Z(6rRBz_nJQeh0Ty^@VS>Z0%wz1>Z4Uw=S&cdR|uAbB&T5oInmVe?!f|<@QU^N0W1Ql;>*dmb1@uEs&)>Ue02w z#Hl&U%=q|uaS&VKEJR_q!ddb{ozN0=^9Lrl7IUC-acycnl7cVgmZx4`IPg6nx$QUoe zZ}w8heP_RYi-qIPJz#e!A9GsQHeqgPrJCcSX$S42LWPff_Yc}zOKAVw#6|G(owJS~ zvWBOmN2!k-w%=Du6>39=xUgIZ*C(8BC^GkeEP`ur1^${C1umGYXZ_~lC9_}%MHLcE5dq=y6ZSl1 zh=>sVCb>pSQRtJC_Bv+XCUPW1cIcvAkn0UteNwC|LZ7q~Xb98>Rx zJqfkGsm?Ld3%;E<>;OP)s!3*xDI7g!zC5l54na^Xo1?kc?ak5IoAwH3aj6UE{va=`kLPyc6l1emmyO!s)kA8ObrkriHic`{dJ% znECt(o|w!xyOD9e*@7(6Ng?MnofJM&h0>#M6`f9gkBsT$Jx(z0egXiZboO2Rm;L?H zQZPFDgS`%#(>1#@cfL|vPLyN#2W6KMH?ScSFq*g`~}mq=1mp z4tIMX$QSjiy+jEBH3#B0XwKd2>fCWyt@9MM1rkrpS#PPO#v69`z;M=CFQ;#k^@ec; zSnbR|;1@|!UqWl^y%yr@@`t^&qznWN_>*7~)NNb=8Rr9$EalA$<|>-}djgY)@0ZTm zmF2vf%5<(tGI~GSwx%uWP$Ex#%`zSB49bf(SG;#_OGz}y=4z=d=Gq`^O-IX1Sn}V%#6jT+XK(EsV1d#-oKp7CsWa*?%`77sQZl*OdEB+ASExXx?Fvk@i4RI?`~#>kY#kR`8G7jyHH(j zy3BZ(StGe_B>B2^-h*m#(lX<{RgI)6yG$9f%wkkkUS=Fszb$=~QDre>-gr9i)o|fv zxf=1ll+f+Ms5g zWSW12BWSQg!JlJxEXM4o@Jt)CmxkmW2e|M0d-MEgmB9~rVlrmG0`L808h;b)(`6Q8 zR>(P>DTR+zp_b}|DtgQ|Uv3<;O_yteabtFPTHbrrBzU2@H!r{>xtiIcBW=XyJ3Kva zR(0uFOeUTizcy05xiD{UH7NsA&M;h*WI8kTEk0B8eS;WFq*S1Z(;Qj6NZeLG;!33jPXN8Oqeh!qjAI7 zb?%!^JdFMR{2IkH+SU)OFN3NRX$VUR%RZxdP4Qe6PQq7a}RYgMIwbpQJ+fj^sruC124>N$~w0O+A{oAegIdij;3MDfr%s z6DjxWTpnXwNiER0V-V{oGD>hW%#1~#Yz)sxpp1SuZ;8~E(y_dz6HiBCWaKNx7}@xh zzdJ@A(}`2`2p;o_F-DH^%fyJsy)vyP+G`HzQoQkZ8g#o~fi#DaUj5;LVjvI)BsbFyRWqu98~hIxoLs%ymY+ z5-8W=){bB&os_G9e4BhL&S*?fu0xtcDN!WZAv za|amoNPcmJE(aQfxv?191K^pK1D%X^%$BDxYBsQ$E4z~I3Lo|O|&A}@s(U^rS%H2A!8+ICGkOn+>1d=_*V!>u zUK+qMPpT9amKkTV%%GKlrZX<0(CLgT&{8rK+|BW-avTKnk0Y`HcAhIBA^SKSg>(!I z<|>*(_S330)yC+&7a{Cf4Q|it>`D-PegMh1W$U+?8;g*Am)eAG@S@5+9aH4;t0*-K z+2!CkxJpez_D^6r{krw;%D+2gr|G0B+FKJ>8ND?Q`1VgmS|ITaN^wL~ll!i+jwB

<6t#8b(M7_dBaGOnC&Q6O&+((cvW6ous-yYpj`_bf(2{ORmKHt9I0us zg5Z3FxN8_!pt-B+G*7~H`*k6x-y+BSu)rHnKcd@L3nNkFVuwfBj$J{^+Gy$&w0Tu& zRB!aPR%p&sA*F-iFMl24;%uX716Qp26WYH75+>mzUz=hTZd}=|MG~3%c*zXu0EiS_6hBxUim}%e$KR%kjX^mql-j!MFNK%Gz4G?SC*E$lEm$*`5jbW(TI!FIt zt~TW{L>m=DSbu4&QOC$>9jgu1+TgqxpXIOR>$cvpQC8+_HMAFvOSwYQ^?bB#gCjhc zt8D6eDC^p@nhH34qhq182mQ9uF}1u;Ymc5fX@J&kazrYJwQ_oDja;Jep~p8nqJnuM za(;x9)5bb`gUTuITnz_Lri7q+TO1Rlf1-t398;8A`o{ZkutKN7Qqh z;~C{=j+_{!W#Yz2TI_z-N4(1v+DKecg_r0Du zU)bx8>ar5Uwb*f&qrcLcD@+b@D=cuw>I zbb2ENa8(H*o9JKX3CTqN${OQDzi183nK(>*?s%Y(bFx4a2YK}KyN)Z$bxui|p>K1g z#4WBP&k09IQ*Cmv;Cn&kla9xYmHR6t*Bbo!IvRb-5fRMsK)r`E@@kQ#$jzC$ryXx9 zb-5;i{r*ZLu7Ge}7dg&23WK?drasn+`Y47sY}9*0lj+UT&_#?zWPfXmR&sw8fbX#kY|5%5lx?Tag z9N{#fQF%DwxE%1tB}Y_E@jK#Leo$0RE(Lh0|7 z0Z*`@YK@)G*NsVo&-}(F#{wKbeCIbYHaRmhDlR!b7BF+-lYN&y%^g<)V2sj|G644{ zH8vhYki^@f6Js-D;sIAB%9frM=eyi=!D=ZCwn3uel57BFV~dId*d$wOVg`IUI5X2` zO9OZv9_%P!r+|)vzKC@80ko8W-9n!H^^8`{qGMwsqX?ExYIFiX#{k+7bPu3QsmTB$ zlbRY8Z;MS!1#}i4g)fOpicg3Elq0}g0i2zf^wi|ks5l!CWTXMmNjgfM1lJzcw4b?E z3X4hwG#O|hBQ-rXE-Ee2212JLC1s?6j)0CzL_v>==$qh|MAs{#>y9%PHbV3Nn_C`D zNpf}$w1GGEkOAeP2oE*XwguEyQXGLgI9bP z%6Mmjv>tUD4=pI`(A4qHHnXd)!{`yW;f|y;3%BMZjW~fA|IUJwD$cC$;1!oMYd!3L zII|R7U&EPb41Z>kZKEdm7r6=A6#pVOTbkit_!l|3+#LTRNBdg9uNqn8>$|dM)TWmYY1;p?@e&tC?j`TN8X2UkP~D7668eJD(!KHWG4&% zf~>~`G@-9Sv*-T62L_t3ct(IG%FTA}R7Ppdqkca*>E)biBeYWdizMXGWOj@_tGf6Z zMVj!vJIC2dR_1BssJ_kJ2#poWGa-9+S z+CR7&Ac7C^y1q7uPb0uiK>OEBP4^W23IYU<)D~98N zp)dSWJRW>+=Q}G%N+W$g^vgC?HNhB6Mg8@3v&=#$4Gcn~WGd0=6)$OhRp&diB&EHm z<2o8S1EJu^QR;in^oCpkr&hmnG=y=+;2NG6b->xZ1vS|}v})^!ANhtXaz;tYFs&R( zm%wH534K(nP#X%vQ12zqG3JWoEdE@MoQ#BFXkwxBWqob1Uqek|1|q>TMB)a6Y*@CQ zL@4eKwMNR&9(Yn7vSIUj3fZ6$#0i8qKsE>zZGvogoASh6HrKl7Xc||#KWS8C0LkC2N6nwLPg1_)9vDK)K*}=T zA#n+U*ihkB-H2r0fYRh;a1T0S4z{7rtHcJJhclc9j(~bNSD?v@f06Jv5SH#VJXcPa17-B;db_7Y~nsoW6cuNt>w;(^Ti zmXS~d)NhkB%fe)rHaRz1c!p=Q^N?aUDj(k)3Y({u3N$r`-b4*t$&S`Gl&kul+3MUR zDJ!-1P<=d2&HR2|W92ojl+3hv2R;buqRI!A+U2;Xgr?gMK;z>|^)%z|x2t3B=+F*l zQ{}XXNM89W*?rd0V87)&$xZ#1lazWAS0K>O0&oR@`Q71tLjLMi5?flTfLmFbUl*Dh zhqeeQzM(JQr=-HLwA@UJQdc{wQNW3Euc-rS9S1m3MJr~B4ZcBE?llTHq4BlK+&JY6 z15U_|U$c&u461_H4v#pIPS*;3@sv`! z`&1ZZLe6+iH^yyPN8&L)1RkkloS;m|vluZO;@Ns)HpGX$W*p)}fXsS`3q_zqT=>ZM z%0(wYO}u8bF2U(it(p?b?x1mP6h~#XvC5b;AEXB1@Fuk8VbO9AlE^Hsd7U?(vv!-5 z2s14jdd0ag_@*Wk@5rBN#hfGGq>db+@zm7ZF5`)K@-LJnZuzK@`k^X#ad^CmG8-t~ zghml**%|fb8XGLfO-h!Twm7yKuXAT9WMhh)xIyR6aT_e%IT{{m?o7}o`Z8kX&MA6g z>dsO!TJW2bzZM(4!Q%Y^uRDzmJXaMlOtW=zS-d~s&iYN?U_3uEg$k#h^#j0(rs&Ok z&ildhHKEoaG3Z1-s6l@SZwizcuHSLrE9d2;U%cc?RLOlw-#YUCWov$NzNwt%%GCv?@(EXplV$nz20G{Q)%CeriXZ!e6QVfI zxIkw#f{svXqs|$FHmbTX=1-5oBjSv3uDltVbl*8j4r9d38SChYS!^u>OA`HQrpJKn z&&1a1oVa+tV5`c~=+@qlI=-C`oPS74H_QVwovPy{kuLulJ_ssc1OQ#dU3c9L5CH%f z%8`RHD9j!K0O+=n005Zj$o>CGB06&aUk1WkC+)R$geqr>OHbGbunyY>x$fy|W8>G; zyl;)j`#21MbzGBLM_ag3;%4hMqMhgLHx<6R!Oi@zBAnidn+482Q#R4t^5sY7tOye> zc>I%nuQ~MGxKhrwT)C!akgk8i-`7fcle6=&I~d?f;976;fGc;j2Du%FAGuPj9qA6L zSi$wP!q+yKVIMOC-#3rBQht->iLi!lgxXBb>52|kRb5dozlmV3D11$lMUxGpCLBGm z)CCd56`&!AD?E+5LRXUYG<|}gnufTd>&Rg017>MxMB&Bb#vC)iJGzKMARmTq(nXXP zFiYZWZ6G{Sr#D}}8m?$bp2nzINSUmsW+BD4iG&pH_Rm1nua>K>M8DX?otO}EPZG5V z;Um9ird-eoR`mR~9-Ll(ns*H+9rteh**dQKl6-KJ@qDBPhc{tYNc8rK+BuBMuiF= z`D!hLQAuDVF2P7v93P zSXPE`jgc{n@7OEDxKh%^5HzKg>zuB(7RINUYu}G@wb9ikZIg{Sx2d-8ZnP_0(pQJ+ zMcW!od1&UJMgmSC%>wFxDXF`>PH-@GZ`MVE*D*8VNU#ka(Ma&)nP%vPc-M#WSw_qP z!6`j43j}X&Hs%)FHd|!6LhflK5I#}`tEdyK=t%J6W@9AyPL=M)G%XUKGRdwDQUxS+ zahVRuXv4G`yJfFzAsVuwv8}V)qB#ZmZP2!FJfSH3!L;(|Y-^WO3d1e&cYd`->KYq4 z*T&@mm}Vd_VPI%fjZ`X#S`9WwyE48w&7UdtprMDQi5 zYp8l}UL3u1+zi3o@Ed-Esmcu3DSV^ayDmu5)FSjA%Y>iA^zJ*{(bY+ooYqQiZKRmm z#r38HhX(^|xsyuf*RmlDkN0c2D(X;}U4~Qj;4ReG|FWu|d_+~BF{=8cSk>KoxL%au zEmB|?e~M|~mS5G)db`R6Nk3Stda#jV>r*cHzF~>2#+yZ&GiRwJel_E3U7Y)T>{m1I z%qRaY4NoqPhPmZ(+*V@{iQeiDk$e#G9a@(Eoh+wpwN58yGRb?=25i1Nsf)6LuMuA(Qv3fqjnt85ec z?yJLHH)~5x(A*r?5bpZ5HfXmqLqt$|o3BK!E2oZ>gel0UqD`OD)o2xlbK$3bYn|(z z+R~FMX+k~0et$}qO67NB!|l)d+l&_wm2HpY#^Ib-3DT%jL1^vo>#L%ItvR0XfQ#pp zZy99G)+4Uz${bLUe*~yWbNEcHRM6LjAo`LhaIGt7*UIb=U(7qM+OmSQ1`*jcnf|V8 ziL#n2h0fW>35FgFsg5QecV)rC-HFLX6M?}Q7<%6_g3(sB3GF1PXy zSE_Y<)Z4aWyj2eR9UNQu#ngckZlf4$!5XbM?~Ek%&U@a=zBn^?}+W&%0du z+WOs^k3@ozqX2U+xF$(TiS3%IH}52`!6PJ@m9JV~^i%%-CCQ zw+L85-f6}ze58tX2a9FAj!vYTp_6W!oc@EbYG1RTrHNPI*!vsFZvEF49we1Tm49Y!v>wEE#s zt{3#J>O!(abn?g9Y_tq z+}TN7${!22<9@}la0@)rVxjN8>v?$PgWXYLvG9bRmc_!|JB+b#3t&hsnN-KTk12GB z;>5yvSS({KB+~t=lkO)yhkPvjo=Rtoh49Jwr6uIh*U2kWVI1@@OH_e6!f(n~e4WO@ z-*6AcIQadJKymOM=J&6}!CcNwEL0@-cwLvicYEE^13JSazXxzzJpRwgr=V%Wvdg2_ zOSy;28LwNf)qIR88*R>p;G6Qj&_7GNzm+GyZoOVRY$Sv4%D*MsU$T}rwZ;a$`y_rf+h=t`_bZx?x|*yA*t@x$`=+S=PSAMbR>pd;rCRj zH2vTsoe{#3tY@_C3o5@;=al7kS~_KEc;t7=rZ`2bfOc1Px04&Q7Fcjq}z3T3|A@ca0 z*3s!JW|1*aM;M((?Ih8u+5p^xF*^0d%BaWhU2uaS1+&Wyf`GU`qI}?AoVN&q6H(Cy zy^7Xbt7r{XkughKAL;(7y!_5i>u@xNL500d8?gE6wsTjiD8CP`Vf7}e&`9!HZ}-je z^1pUkzll2RCm|{|LoFYqc91ujJaSDSBdjzS;n5?}aK;$R%EE+xt`61DQS`OMkhflN z50I7WyEF$N;fBPHFs@V!H`P(iq3$>x2?=G>hq~J;(Rz|TQgu`*)!jf>TkD{+zBY|# z zZI^U}hNb>js#;YgvBT#VGu&MzWj5Ea7SzuV*MjfArFFn^*Q3x0nO0YV1`GJ%qglJ0_BJUoNj<~J;U`zf`Vban60*@IS0zhPJ`q<@U>~o#d*u@nHxGB)#e_@ytx&9lv!CmhSRR-fxz}oOg4PNNZeD_(oH6v!h zD^X9(f>*;gjE++K4U6C<fyi63lhZ5QE#^99>3|a@TRLt*R30|*oo+1cd zL`VDeI`UcT=uN64WAM7V&izXX`Pv)S!Rvd*#{0AZo3Gy{_pFlgm*5*#!7GR%g{UOm zcewvqLjL&;>);illJLQcGsGog2>GDNCEpBagJ<^m)$ir5QF(pat(M-8bt+Pl~Nj;=O&WwLRf`>fJcUz@$Fd1t?SQ4lnb z>VF*+uA?+0Z_Suqd9LYuni2=y!(?SB*F0fyY^}v*(3->UNM$(pi10ZSHGSLtotdQj z5%=TDbaU;qN8DfPYwPzBn~QiO_sQG6;~rrV&kwxgo};YPcgF7CE!Rr52%pD>t zTeW96fHy*Sj=Q@mZ*ZkV#H|3TBm(XPB&; z?olPAHs8S8?ouVCYnV)YNbVIQ#fM+G`OmBKCe+`VL_oz{Bc_wHv<>mU4Udx*UF!ecw= zqk*ShFjtXXF1!D|yMywaMz38itAHzm=aGGmaxKu&OSbBKPxQP3IW{mtPtT+y#|GM= z=0CZkb#&U{+gW-#{F1He&oHNQY|^W<nXpv*C;!=Qq5xR9>8YICiLzD_cLa?uD`oSDaVC$(nEI-pzHO}JyJ)9S>?_O zA2+i~CW6{)`D8P9z2vGFCpdOowl3?UdWB!c=e zV8|bnO&Bl_(dZIz{$UO}RKn9rx`ghO@FbM31SfYj=$Gl+(4h!>tI|J#$~?_Sp+5#) ztA`Gj^i(K?V50TZLeUj&)RFF@J0(4hW1_Jp~25&OM*!To3SXa3o;Jz&AJS!py&8~Pu@x4^ev!JBh!bes$90W|-pND|? zw)dv|~QhjN@N1wQ&zz}5UAwpO#km-1_%pX+!k8p)qgJ}^+ims;Ph>uIg4XyCgt<$GVT z_^#!IPG%?nG2Hk6}=`;;}`nYF#9q(h( zWB9+Bi<{E!#a$E_x(I@5FiZd~!chMiWv!vAl!ofJ1ncn?v1>Kd)EZ%uocb{Xm)W%(uknAB;5j49F%S{XIEQlt{RIRV%eNulgenP^iA44x zFiNzyHFLJ5$o=-|c0BuF=9&0w&wBV}TQ7J7qlS5) zjr{aJxU=efcH`#@JzdD(_Yw7;Wg zrm}*w6`41eX$6`i_|Q!I)H*1>vnLbXd$me1itFr|sBF=yk_nWv&KznTzA+lZ_!3po zstk7CI&gjLarDIR3meKO^(K0kQ?kKCN8u4M5u8wOihk(oStj4oTj*nsm{{nv$wEi5 zg#`CVg}f8fG!#Bk#hTBHWpQ?%+m$SbDnIKn!7P{FuZiYAT~yiDz4T+v<}Sv8^(LTt zcut}*Jv;-0qGO{`RBumh^mb2A`;xKok+CT#wQqJ!z<;xR9z8g_hSU&A13h#_-B3Fk zuLZWH)UM%_7aQuHv#u>V;@uLAKI!2pi@xdQY3J{J0PFW?zw9PxaPGR6MbwifWjBVE zGxYy-tf=eN`mPOvzll2b@$~ceO$3iab9#Hql)%!XZ~J(vN|tr16Ag80HQ|NDxr?zj zX;)n^Gp5gBYRcH?=g7aiY`C;l7u&Hd8ai=FW$tc9>HYL=hv~u=??dEnToGQi9lXl8 z8CA4%O%*!VBx+E@jucwE`t0nmgy@*~SX)AJY($7G~uB&EY=w_@V~5gDb% zXFI}Ei>igcxg{;28pV5CbwoDaLpAEfJkmEOh6`G5{G@Ym&0Y{Y$W50?I&E^tZ^nZ} z{;BC`j^~N?fj+xMmKQ7|1~M{JyiPm7R{2wkJ}Ol7VZkVtY$)|P&rRt@5rgjt<>&)8 z_9e9-0_6!;|<4KOABX@WF)} z4y{0zzcd`K_^t3Khr=wPinFPT4cogYI?Z!KMhD3IL!oDXPPti3$!$Jwy5|W=-gJPx zJ`_^?S5JXDXL|O_dk+{-q-oLpJ3oQNI9PxMGL3_5D+5e57~s*z!9V>LD9$+enNK;i zOzOJ>x@7ko%#=9U{aS39gIS)hG>3OHht`euVw^k;S^9JDx!A!MB7zD3B?$}H2{yi8roaa`$64{}#VHT@?r{eMX5ZRp$-&u;l^>Vq6ip+?cxK+zqxOusGP6opUo zl#(9=aK+9lp@l16rLHI+HR*aEsNoTOu?Ri)(CPVh0YE0UI;8WR7Kbc-rx`qgfWcO_ z(`R^Ik>w{DH8@Yu=3eDEV&Xf|hm5|{?9kusJA<)I#Y}Oz(Ld>s@$T_>DxY8`pA{aH zk(Ln~8=n}HmXIC?pXh)ulECLz5^Pbi@d>f1afvj)EwUE*rmXi6nasJ1Fq(^{F;8(r z9pN`+9iVVMoZWaRF?a|!rH{cTVVf^F!wq=AT##6$yvR7hWBX4j`mjmS2mFr279#W; z-3YG0T#`RHWIPX~DQ7fe_9)s$%?W>ekOm$AK z3Vs3PD_8_>sVwJ;4NCXp@^O?tgtvaHZ2$-LXKzF5$Ggv0xKFYBdQZ2lNWs%(2Im3&~!%lNR{p*EFFc}1<)|ysXvFZtHrZh0_73WYzSjU!Tp;_@FNzTenWBgtol~cu!Mb^E?-vf_1=NsB+-Z&uYc^brm~Hk@7YHkB-nd z{I?~C7;{$|K^Wv9cQwkd1eA2I{^CYYrJB+-ObYvtA5~1?`nxNjVj969(g3Q2H6rYA zAVUD*G(rPeC|{y^#Hx2Z3#$tU3=FA*gSIB1na4aYE896uk#`_lv;uD2jDFYi8KA*x z&$xG^$GB4RQtSY#aMCkSSDU=iU2@X1O1Y}9&EDwFJLQ=s9YDXI@?6x>;TI&_aP(sr z@l4X;$d{-}P#t!x4!8va(nx<`Rjbkb0p?0P9DjvJ+HkCM&NHpFR0CbUsSU)?BN{Oo zh;aGEu%!6)?LgsN$UJ@BA$+9DhR1jowPJfA5&F@r2gBEhk{R=^n< zDv{t=fI2>$9pamG-See{K6)!Z*f;UI=SN8ypivp)q>L(tG~Jk`-RUwg_0CB!A8 zp>6Z)quEvR%b=lOds2(46(U{6$}*iC)MDIw%%~SAKQ>goYW`EG>^Ghcy0#mT&gb0q zoE8_u=6}B#!P2M1G>dlrRt>G`HzQoQX1!_babswH161!@PitM%dYK!bq1E!ki>eg~ zAE?5EmN0;EF}O2~n#f=J8NhBK_*VMaBP0*z9B2=7Ak&)+-b*OTA75e~3iq(zJo-AX z(NUxOG&oAeg>aph79SU#ks6yG6PJ+?7o8SuOOMXT$h0LS#V5rir}@`;Mb;wkF`hu< zeuFndhBLaFE`MRVYy+7|?@YG2 zsk05YUCRfR;)Iz<5hRp_in-VEz0tR2^Z9ciJ>Id7GO>x#u#uFO78?iOSIvx0NKH>l zipq#eu%)JE#HB}N(%qyYYmq3Efz?PMri2kYf$7qQ85F)Q9fF_4pi5DkD|7Emd%R;2 zYPx}7e<{>NF^(QB)Ns09V$}6Qs%v4S*@5*FU=r`hxYW zNsd9OmGcwiWJ9{v#QJ%N9Cpll({Lb@vkvW_Bxwcyeww4}A^E|$Gf2;zXk0mTF&+bIq=sks6%_|H0R$6XRkt(vod4iAhlj$x$}=o^~pFDlOX` z7O+ZUJRT{S9olr-ZYuS$(bFHyDC30Kpqd}Ix6ac3)W*#j7a{4`J((gX; z=)$>{d^N!6a5Glk^N$XkY{_2)@bd*m3LN?5p8`1WQkBBOfiIdIc%PN--!ka_(c@l@ zs{G=_y_Lm@dt4N6i59ekxpe1_X%(wPsYttzzblM=INOrDy=xu2US+&?rt~(FZpqKR zYaNBQ7$``pB@cVoI=t*sDR}E}B6YwbnT{|#{_futV%~a$5W{h`T&QS76(tBWv%-@z zl48>m;muuId{SI|T5M8coGl|2B1>#iTtZxG1`2MGzo6(^B-Fg|E(tZlgzGR<=uXU` zFyY#cpYR8AkWQIgs96m1{H0K{mof8bp@!4*zl3_eC3a{MZXN`1=+lgyUztObwVhlZ zu4w8n^lOW|i$)3(Zt5PlcIay=g@r@^ghetr^ernJd~C46qlcV#R3j88bl#OkH37b8v)T#o zO`Q6N9XDoQ{f_@lq46;h=$*w;3 z1}sUVVcRR&mc~vt6jh6a#T&=1Gq5rYsO|%(Bh0|A95-fQhjohN!r}pt=P!jtnKAQd zVUg2uxf8}gSNeo-(2kzHMn-x2{CDZ8_bS06ux$KYBO}R+V3zaM(zPYgx4SXPYcDRcslOeJu`P znHG%C19cB%qW{JGs6}i9Um8!oROXmo9r~a6j_UGbxA0CFl^;SJ((SDgjClO zhHgxw4^LRcncq&3IHPFS13u>!%DMWd23LRNvr`=yFMm4BM4vQ4=xueTkV ze?U^oo>HITLln;_mAL|PQ?%?U`hitLO?nj_%}&qvU+I>iCjO#oFjvz@kHK6`%in^g zXZWkK6EIN!MtXibBMyW0=Y$xC zU4H45?x^la%#Qd>#&CEUj2_fWjvEH94PR?Qt=Tx zA@}6{zu3B{!pQtvf$yBAz`=^DuSKFZqw)tT`#5EjGZ}Ab1)R_L)wL8|?o}A#t3Nt_ zfTWz%sv7Q`rYvXX;95iYZo9AKnEZjVa+RaR7yHr9@qQQSBV9$+#)ESh>J0Yd2V6zv zCghJYKJKqbr&Y`2!&bPRmJ{>4=qi#c^mjK`NkD&0;ya9-lt0#7@$97hIHi%f+2<$c zzoM&6un7{)6}L{w&(K%YpCejf))I4CPHzG$tk*d$0iS;Hw9aVcpFRL}BRcPPb{BgS0 zNZ;9?ZI4HH=kXQ)^KyPGeMJlx(sf?`X63G)Np`sGiJbg}(81*#aBiLxO}L;ldKV6Y zY7_vFuWyKayZ@vU?bSIELCSsnjLwOgV0Oe#6akMkCu;A=FOWMkV&+60IARj{TAVRP zzKAn46EWe}3%!IMdJ;ZT9q6b|rlMCdqt6%s`0cRT7J&Va^$2zL&+cY&sdltCGI5=Sx)6 ztIGZE5taLaNx4_V%B7!7yca;Z_nFvt{K}=DOq9-AD_3F=;wlOKWMbvB*2*oblK7Qt z_+;W&XN;dryz+M`w<3lvfAnKlUC$aFxYJoOGKH(e%%oUbbW%(jtPV5dVl$I%2^rA| z@#(3FuuBgovXbd4vB+9v6Y9mY)|*h(nIZ>49pNU_fV0NMVJB4i^?W!0Y1#;B5AyJ< zl1E-0R%Xm#=l)YV_L_9;raCqrgm7=oUnOrmYaJsRFjiir^tL7U@R5@Ho)9!^M?T>G z>^Rd9wR|wGC0DjHJimdwH-MivHMEJE?8u)kpQ3Iq+@@;fr@$%~94=gY*0@OpH~q!N zaTtvA=(|+4RqN0tW8e@JrvvyeI==s5GTj5A>3sEf=MR?T8t1HS*P1aJdXBh}%_qH? ze?pR*owE)>os1;y-^%YK$;s!ew-9^zNzk`Gk!`BrFTrK^<_>;7AXc5nUz$X zsRI9ml6RBwL{otH2xL@Jq;<6L>k^F5n>JyY9Tq#-T zKZmA8cn|4n8&<+Q%>A(K6s~819B=AuuVRSH_6xfCW*+89Jm1WLN7{VzbCbda@@huR z=9?89F_~{17mUl{ITtLJ!$R)qgd=>U8t5<<%($q~-?N{RgD&Yt!ef^#N5b#G zr+*|s7S-2#N3O$&SxBtO5tEQu@{-Z(e!uv4hr}MD&qff@dh12&!EtAZhTY&1h-Qq2 zy`J&DSXLem-?4diT0dce)1Mh41M1Ly5yN-LZI|e$)cW8ajM12GP+9y^fYy>!^_G$e3|fPWAQ-lJ{P+4ut-%KJ1|l*wDSQJG!7xe)g7n zYnZn{LTkFX%cE<`j(C6BD**Znj$^gSx`BzMwkMt6Uc+}V%bP9vHe`8MO7itf)&X<3 zO3epM?nKXSYB710$#)9_nro54T#p_x7pwN7%jv)o^APrXhLunr?Hc11VXw&5rl*u zge@Up!8rjXMMx+!!CR%Y^gJdtAtYQ9P%%9agoF{+9sXB9N-PvAv=F+U?cJv2a(cj< zE!AGu3b>3FeVu~pph`2nuPBSO3KRt4!+Unk$}|xrLRnglG z)!#F2H-x-L*|8_$zdOz3O5xMHXg0UskDPrT{@%M~-=^<#>DzEOlLfl%Bmx^u) z@+Det@QWOfsEVZTyHrJ==6T&kBxUgZ`i1L4&>Dxgx5Xk;a(c%rBe6)_A~STjR=~OX zZKwB)q)gME8CR9H%TNR#o*a%CtdNvEj)xGY0uaCrn8B+sIzCZNxJ>Xb02R=1{+yh6cBw{0X!BS5l}b&RqiP z>8ba1e$X3OweW);SPB;WxCQ0IHQpMsJo0_(JZhq!7utZ$w|u?VBg-@1w@#I28%b7e z@II7e&->Q-ky|CP$d59pHROKKuYN_@19V`W&UV8p;cW5f`O#=UYwyw7SLoR2_bpzB za*XQ?&%WVDv;r<90Y@Yxt|)_UpPC(l-rweZ1NHdvsq*N(ZQi5GWsS)A5@Z$Qg>RR} z5xzuq0(H2(iiaD`+T?%JK_P^=+AL_F_zi`)l7FGJ!n|#}nU>~l^>%tM1edv@+JPPE z3%ly(g^*FMtb2R)%D8h1hdF*xSgX7sNZ?7 z=}P8$Dx4bT{W(q!a-H*bLKkWkGzmVaiKlzH!Zp4RH_l(>TMrsC1P?C9;UyzEPAFfZ zSz_h|Z%&vnE~si)LDQde9T)erNNSc{^v+T4V;T6Q=4Y({w?$3w%e&-#Nmj~S)hc7i zLT>A*c3GO#aOCvdesw`&9%uFOQX!S*L>jp zOjp~mp;cGF6@g%^bln>%DNpKJ)T1w(DcRN&Cn2XGPz(vNjdb2ehSdv8)iE zrB!`ffAC7BC3b{sXB0mQG>hq{y0vhB; zgFzlWkD94kgv^KGf!+H6pcJjI+!ECdDzGWzL2-U>AV)~XXa(A!M|Xk>Mnwo8siWp3 z9yKfxa$Y08Elh;YF=q9x5n8-|B`>42!bIqjnU*F(H=beY-+3~Y0&F+3-VAw zt%CL_#130MFKDWbjt{wF~^WN4W%umx-P*;Y(B#s8ZH^L@C`uDIFG4 zoagQkD zb0!&|v6QiSGm!CEBam@)(K2S4WPAon45?9|F&WB>uBo(k^8)w)_)^ROOQZm`c)7BM zD}W@Q-6-RF1AI_%2CQ7c+rYMivx?3TJxsWUGQ17E7V)tqLY7 zA8?G4N&kvg;M2rB7*!A{E1zr6VEWW8h59m;J=z%O|2IyQC7Bf%5 z@xgIVLf~fT!qJ!+@iHb79;vgUZ+Gj0mXef0iPhG1)_am zA>VXb6h6Yj5s}icNP<<&Q_@VGWYan34C|LER5Eo=Wb2m-?F;Ufl9rKH2uSYE3E5%7 zx9OvpISQ{^tYa2kr#r#3aZko|%oMB>-AfW~88Z>H{a2PT8Jw$FY3jUAQ)jF-b&_hz zuz*3cYi+EC2K6jBkLoxIg3(L0HD&?- z`As9~#6AUYNm4nqYiL1R)c48kYQifANBm?&>E^?;|Du+XFPdEUWFRxWYcSKJFK*VU zcB0Wx==I3mzo1a*cti6E64##43ba9w3Z90=jPQ{=bkOt6g-vVo?Fk%(TchC%+wpk^~`7H9zZ_K9C;zXnD8cC z&U_)Dq|2F!0}B2hd+!||Me#n4vzrh?HuNO)TmnducD-ODfC54&b`X`TK%^reO`0G9 zB;_ud02e8Os36MQvNjan`nDh{*hM;uB3%%r|DKuIyPe(Jy#w*{`~HKk&nNF=cAlB1 z&oj@o(bc$B7&K-<{&x*1+8-hd@~`Q4SWS9Cp5-H*(Xb^^4;&R!Edj_;&S?H}7q#HN z#$82y_cqKhZQuPle1ayV8BMacsE9j4VI|jnh=C=p``aDr8O`TAbY?V~xKr1y`6)_P z0|i++Ga4pH%=$?kB-Zp_Wr0L79; zv$|}F+}+`!MQ}L%evE+R!d36WwA51wgLZ?^5E=B^q2(8!%|QJgEqW|d+fn@ZXp!Cq z>-&Zm%@SrZND&|Mgj|3HB&CV(7*UkQ3q|rbb!=pnC}6;8Y_xM!(LPS7WFSe%bK=2w zlF_j-MV*Az%qJZ8)WCH?Ny*;GM-XQ(YKUr$F1iC99a~g0wxQPJih2v8stvAE{9;@Y z?Br(qRmD#BSd69EiJ^gEL4@ZwE3}m)f*+g!X@%XOD$GjyPZ%X_EBt{HNUcyDIdTwKI!q zp$iL^HbRd)QItW;F5|K%S}tjbZkiP-`}7GY8!>rtL$qiXz!q0~sR7EKUQ`o}=su?* z8ZbRlc77I=?OeR5gZSU+MT7p|p|JJ#mu^5gwI`>-dUv;GAbFRho1J&+1d_Mx zqzUmhnAPe)GIwW;(_$jYY%I8Ii6nb5h7(s|CMp!>F@1#@Lls65PO2X-f8aip>t2+B z?wyClKewnp;+_HlFF&xnA(}R?s5|b7&Uf;`>|o8Mh<#poOjgN z@~4Wj{!bY7-z77fp$`@mIsacG@kgtf%^*YrgNpMK!4ef0(T49=) z4@6_)x|@+IcXRbKqIpq&Lu2IlgV+Ye@C}wG&m>kl7~JrIG>2&$!|OV?ZNqN1zm}QWYaEnklX>#W{2hI&WGT}x2vPy zK3eBO1#KWu?kCeg@BjK;}qiOkHtONzb{#^Ua^ z!{kq*nh>o*L$*xq_G*WVp2*QWT^Nmd%mQ5<9Q|_0D1?}UKV9~!iwsCUAy z_j#roTbVl;r%h{@)65R&xdJY)%?=lX+g&EN&FAx5o$i3w2(Lg{#C@O48I_#v_6Fd^ zU#G)oH#x0VhtUIs2RuHgZ}WKFsN|)hOmX>b)7EkZpUvq2_Bbp)kICwE;?Fi~!0dlb~xK+FWCwbFLBn_I6PlgW2hT$7CEvmmA_5 zi_Hmq^*YUFTfpiD+HB&!UbBIgfW_}OnOrWn4J2XqI^9MPir4RO`~5zz1(nR&nkk-0 zE?&oF`;A7o(QR`YeO`DT%i(l5tpTgU;e<~L{9CgqK+X=}Lb`2C{X4Qow?_}w~C z-qg|?%EwQwTmE5DPDh8agTpfHv5w;&YDT2w1${Gl%x;szWwsh^aDThm3(Dm;n~Z*k z%_sI>Q!*;qVD`J*X0zR4_gOqvsOIun-5#IU;qbw=qizQR`ZL6SEvL=rrY8`Svl*yH z&wc|Q$?x0k_TG;qP*Jn8wkbZ}oXs9;hh7^{T0c8JQOLBuzXSUk? zPB&br?X;PFHkZp}cG#(Y8sL6=zt>{-Se<^C6|P-%S*%77Em)G#W)GOf?avf1=d#UC zr`cmQTR=&yc9Ri4dwf`jy>64$>O`iuXGIJxL9afv?dzhun#S!DalNKtfeL8UH$~|N zkJTHnnFA(sz-6=gtO2*(=JZ+N^&^)*-~~F|<4Zw;pkOYG$>XtF9DXa@)(_}Ap~UVq z27C^ak4jK7G&|hj?+O@QW*b!XI9*Pg%@?p5t$v%|=!g5O$CqY^wYN_Nn~dMJjo4Yj zu4mp=XhfGT!?a-huA&@+*XS|ZEpD65Z-INXO%@Lj;<0%BZhOGywmU@b2-Zla$zyZa zt#+^xjweNEVr^Dp|)NK}cVBBi5`kh9L%Vu-g>^_st zXfso)_ckn9%Vo#!6`8V^n-X=3R$Q9pK*lB|ndtDPS@lv~Mx)u(!Qw=Hsu$Nc0Gq+% zfPFi_dQ3(uXqgkx_L*H)Tv5#JHVx=<+f8Ph1uhD=5RAcToBck&(`N(MXS0}4?!e-x zrNx(%O=&yM_&RD))sD|NH@38IhL&WZj`inOZKO{X*40+1_Q2BQY`BgpVDtujei)@d zL0zDzPN&Nh0EsyLeoEN#sZ$3fXS;lMpWEc|+MuS-Yj*oU>@d1n{SL1;;6y7f76A)Z ztz8Iy)aAC=T|UA@yAfQn#p&@G!9#gXR)>jdDjnePZCG)-H=#$*6!kN>6LfuY)m9@) z`wOhjQTEFO=^2F~2>fC0|rg0Y%dozLX}U4!=kJn;IV!{v3t>xU+< z4Q$XKusPfaWS$`nZx)x^h(ypoSF&) zT>O6N02jAgj|;8%a+wir^A)BdL-pcTsScaTWbR-xQnL#)GC4EV6yb-~!~aXFpvjGoi)@%SL@LY#M2CJic`z#&i(h}Hryw%H&S^0*xy zx5XQ9yR2RpwPR{?2|9)s^1cR}Gso@Oik+&FjC9#%yWeg0*)0|eTxw^B0m=kg>i1i0 zCb!Wq#frv(Qy)w=;G6C|W~bL;f=JA7_c>vN@WS9{wtAi5NzqB?>;~fUMa9o^*%TRWvJZW$=PFLe%AV zn&90+><;W^qt|Hm*o{VbsLO+32+Mfm+qDlRH#Hma<2pvG#|A?M1SC!vNsLBtEq1TT zCW2>ppUZZ`*lhFJOn!KY$7;vJ3uwE~2%~twXz_^~_)@48ze{AgtJG`&M;Wg>wBiWJ z1FWqY9qB%3TU>H@p<;94448=Ak7M{#07$~yBrWWoALW=M55xRIi=uh0x;z<IT0lV6^)D9=`*O9^ze?+E~DWxU6QU+v+xn8;m5lbXy>l1ixT&gJF6c z;A^Zlw*ww3Fga~L2Nfm>F0)~#17WforlVf`QYQ@AFj#x6ZllSCqkxj{=46S+vZ*g{ zISIP4yoZL|cMamZLTYv$*(T@*0(9lt4-S%G$1YjB{CS(Ge~_RcNngYD;8TQk>Eh;%T7P z;=uV2i`fT~@S2?ghs|Sgfz@&El|T-GM3xZGfDpZ4Z}9ZA)#m{t^cYPrsQAqgmD6~U zMwTuUi~#|dQ&}8Vvm@Yw7|!gof<1d68{(l82Rh1up2X=LUcw}1=T6YIG)b4t&S`?7 z%Iq*g00^x^km-g%(Cjih%oeNJP6DV5kq&i0i_K+$*}2Jpfae2^1by?s^wR5t zco{NDJ`>t}c1~tQKg}@l!4_|YG0_NN8AO*}BRDCG$?CQ_NN$7N&e(2-?13%d_PfkZcryr|bC{b_5Q7P(XfTn4*UG@RxLq)C0mtEu*Z}w! za1o+ucrgTwI6Q%?qdi8*PnscV>4oeB1k(@#z(^AiA&!2J%ZcBqQwoeB101hM)PGK? z6jy@HwP88PnO_bm6A*>={Q+4@aGrjcWJ62=|6_yMHzaD^ZVv>_FcG(zL`W^- ztdY$Rmwh|k79T7gK(vB$;});o9PpT2kd&rTqBO8s@taXj81FzFPM_Nie#;SnnFAz1 z-2ry`mY{2kG_WP;n#^~om4Vl?K_(qiIbYctq5gb$EY79r#ZQjCx)0kgts zJFp#`8Mg+UK6uU;#uA6iC7#UQ3gcM-rm8-N(-*LqA+dtzLuSxs$!7GyFWK%FFNI}5jP5=@|E~C#G@PeBImG=3}HdOrG zociMEYFl6ANQPIpTX^{KGzo+rC@^q%m;%qohZ;qD?zt(c9R{yTeSSrEVDF8gW<>GF#0TZFfqRgre9va4>J(wv@sMW>v(DCJ#(!tVRbI7=-8G^8BzG z01m+Dg+MnzXK2~+-ws9lf)G~Gcrk&997M$s0^d*LMFXg! z-2_GhZWAW}Y;Grv+ptXPfGLX0;*|0Tc2~gT2TusO1dui)6wNl983sEGBx<1napr;I zWe{1JA^8RCH%^ZW@-48GZ3)0i0^|Xl9ygc(T^}HEVxn%*%=0CE3<-KgF!eUlYzR!M zE#R!3W}g`p4q`f+2ZABID&>KNH;1%jXofXm7>az52=Tz=4F)E!4RVh#gM=kxi+3>n4%EE7Vk0j>-S#0HC4Hmli< zHjjpE_>5MtnBCNE^O#|I1L7Wt?M;wDHCr5JGj=Vo5Q_4`uqr?^I`R7j&ftNpY5aay zOe}7R29GYbbhJ4-xY!(s-Ry8cbm#z;aav(P2Bu`NJ`YTX^&yy_NCR1dhcWTo4HoGq zY%Rn&kodw;npgs@RE>QQpT%LC+l5W6>}XMzApuo%ID_?goPV=`+Ib;A2(|)}bvfK% zA8yDN(jYM#Heuj2fzRwQLDJ3SaN1$c?X=@15y&Z{+;hcJir)jBdLip*g1nX$tPi%3 zIGirK4W}R=)@KYXCqd5^lHyO)Gsl&*l-ILiO6i8Qp%*VVTOp!{;nN%N+i;5B<#I~< zMhr$6=0SyhuvBfgIw7ND1YcltK{N?tfX5}m77CcY!0I978?Z)!pMs@FV1Nm)uvuW_ zu)^98kSt~C67))J%!Ff$IGv&~upI-BV?xtFzzm)aW;|dRE?B{K`eCKo?uYaREHR4x zhn0+mRAT@ZGhmGcQXgPpUf6#C31h$);#n|BBlQy}hLqyiwytm6Vs;i@-?pW(RqXn$*SBq5-?qi<6uZ7{OS#wW`nIj>+qSN6+tS!w zcYWIyIj3}e+m_B=vFqEmu5a7AzHRIJwk@((?E1DXcBk9*ZCls3ZC&5CMUHG=-?pW* zYwY^At?S#iU^9Zn2KznTaH#-3`4)ha+}F2lUEj8)v0Lo=wk>*1%=K+s*SBq5-?nvq z+m?Ep;s5ovEgMQ&R+`D5-lhLA;Q_5Hz2Nn|476rhX?H{X8_>R?cL?V$FCCq8H@@wQ z-o3`$cLrtTw&99o*i!jyJ@n!7(&DT(npKg>JvlGsX8dh|xM4+Ucdick$AoHCs`M$C z2!G-J>XXgp?nr64yIPfn9nhtkJB)n!Tj;&yg&nwe(VeSGt=t+keN|}-t{Ymls?^TC zihf#E+AF0FuHP7~coa3hF;rmt0{$gT80MeYeyo4=sIiZQ3jFX^>caHlutRuw`(fk8 zjrWfW6+DE-tS&V-Jq=IaEvz|e{A0t1`Nu{-9>JvzC!oCI?;0i*Z2tirtGcieU+^jV zdv$4>MpNJh-i3nCJ@(P|!$!D=;MT_BqMQlv-t~7me8D30&~v3t`RcpT)aObYOvm&T z7L>n*|GxVk{=4RV{I}aC{P)#Q@LxZP8{xco_nT7J!m1frU;NRF(dL`4x zO}r?td9W$kTW3|OhH{kyrlOC2usUn6Uc4R+K*Yww$sUiWp3A0Y?-g1*P2yoqRP&SSW* z6TqYbWerO3CxFq`P(hZ?H}~fuJDU4W=^Mg+xp`Szvi8WO_!r?JG&#jQx1hfEw`ypN zuVEwcj*X=+C)GI1f}?#;Cg-5Ly_2j0wt*o_@eYqMMcb8hLonX=kf7-rlwf0hl7!d!~|9(YB; zE6!NtOh(VVUe_r6$h0AW-1klCas>$HS94kP9b%9IB7r8j(P8SOmHf#)#BH>Ux{U%E z)EEPb_UWf;>q zl?_uM_lAFwVWOOsjj7|58_}&7OPlkl`xFAIx)17W3y6nLL_lzdbZcZiQo4)Jm4GGr zWGjKGeE76|>WjbmeL9z1Yf?aD(_HgYl(^-9nEC+?5v%c@|3cUN2CY6hIZthlq#lqwg-d=wl;>hoq*66-7g)Nc0ks{7PA0;<9Oll1xMAhN$$NZ09nJE5>h=N|69apLIb2!#y-P51Q=Nh05 z^@7m{n=<$78f#tnBpa*0W^fN@qOg*!c2L4fw%TaF+E(lCkLOG^2_Ob*(EJoJ*!;Gr z|GO_{iWzl+4o-Lg<05HzG}MuY`h24#P^L-Z@meqiu^unquHfIkBH-V61^>n>dB8e? zQ4;^eF&V)^o?E2g-2x??#JhO@iPc{{A z*)^#*Ut_M!HpnuN$?}NSK`Xl0hNv8wC(lLaTL%}XvsKaNS!E9i%Vl87b25>gdjPH2 zH)*24)F;zqMi?_SgaJm7B|g|TI4VhalWA9;Fui1yt>8`cRL9`!u@%=IoYYPDiUB9# z_?rjNoxe_Mf!djZwG=Se78tZMyc3a=n9tq{IrJ`U|r4 z3T{?>2Q|4%XvP2#9|1Mj_YS%hHB}n&jRqpbJusNbghw@GheAVOCX~-XlRv4&o6dw4@`weo^a4*I#sIdYb4H^=P5_DN5Nv1!X$V842=q ze<3>gP>_x63K{Aea8kCyBM!Se*o@~_|3c<2Ei~pX`9~#DtfUQi#9H?Szv1~efM~tR z%Q-d3g9C!8Jpa)z`jeMbo=y=~0>fcWC_OOD5VQ;vWG;X2g~m+Eqfp{=%$xKqGf5bg zfV~+!NIsgvNzC3eYWAMeX79$uPyfO5wGQgDx3NTc`az<79`UFWoy0s*b+rsODHsgT zjP>Px2Njm-1_tO@=EIaX(lfka|9l%iO#+q-bFvaxGRy!l@$X6X7@{6N_-`9#Ck0_T zn!_-9%|Z1$W2+eI7|X0aDmb+XzbTIDbe4p=kv8BFt1k?;ZOU(tqdKe9AnRTTdYbV2 z;;2sbBx;!(f#b4eG8Dai5OK$+u&T3)R=rZy(H^qOKM9T$>ijAXHqp_qeoeWQ9R$#3 z@AHktv!4VnaDqXuLbJ!C8-?sbE2b0=MM+Q%z$Y>mZ7)GLqLyC-gZvN)co16AaDJ~eC9I_I{eC41 zFUU#Z9%#i+!6tmc2-M#(nau}lB2Pym%}>#hXbz@JopdDRAtiYsC5r4|R6@y9=No_9 z9(*R1fAv?AZ)6^Nm8Z~)Bw4%ybu<%>Fa1gqj#-Ow59)+t31&t%tCmc@aS=wB$v1Ys z%6wz~Q;eSIvFKMNi+54w@>M+Ic9$^p;F~HX;7K5 zFE}HK%fMiFYeMW-K_JtApRFe@_$9cH=UQN}o6wA7Q|fCaf%A_=U=hcKvZbM$aS#`& zO!z}F+PN>DKz6GH68|MkvH(tvDXOa5q7or_$4pJd7C-+z*cOs;z^aJ&$?WEE??p~w zFjGoqHxD53NN|{xigqeDNU}~ZU7j>Yc${faE9X~5+6lp+dL_;#C7E?LxgR{$ zmn*|ki{?yAalhKWrU*U}UxODo#2F`oKXKf83M`GTYn8x~vq8V9olOx|fPdB5WMI0~ z&W4b;TS4AWN(@a?w1!U+EnuRMK1m^S5_czV<`GTD zF;>E&JB9a%$<;!ulDG#+$H>@YiUIANF{Obf>@+oOju2{)#622?wQCBcFbbvh1Lh7Rk*jw&k48lj&*3bt9lDVdmNC5%hjXG%$SJI0N{Pc+ zhGx|bjgPI}qF$)8@K$W?_v(e(DQc_S)8Z(K46%3v#rTX+FHYFbw5a8umTG|GiMh6K zMK5QC3beyJ)S-T8tZ+)*9Z7ASkW1yjO03x+Wa9MBmWAd$lKMqMpaAa@@fR9;rN+B&(RzMK)cb3;*A+aBYh?P_m?PZ1+)jb>+u%FyC| zi)!FsE4ZGt70Kt`p=?F+x#r*1KKDkHd$Xp`)ue(3c$%N01iqu?a|xZ36m(8dV#xa3 zag{! z#^?omqcQG`sb6)lw~DxIJ0 zr;T{T8kW%DWbTa2;N|_N=4krg25Qh>9HFgATng;^lw?!<{B(n6%-13UO1K;w^X;Lc z;XjK}*bm~#Ws^!SSMP#TB*ab}A}-hvU)MV#({~Pda_81iF)wsFEGvbU@3Tgmmg^DU zr`ZR3IWIIahs~2j-9psV)+E!{v}=7=-a{Cq?wfxnr49 zGK3VMx9$k7Q`A7PQI1j3c7;Ls zB)h`bdxkD^|Dmvw1AJKtD>=ZWht*?x@UTuwM-zAI05v~F$+`=Zr4Bj?b^8_6?NMUL zI>4QjI)wvF_jIpTrOnI`-iW?a9CcUd@nmFtZc+_#++Cp=$=oH`>U2HggOZ%iAJ*}R ze;=m%ZGOi6t3Be*!||e@A2Bu8;u7y+lt_nxy!nVC1Jdz`u70$GPZ9l)<54u|Sh-Jp ze_&`wGT-NjepYprgi9~liU(z%E?+Kg92|01J)2_3{`N#vrOkC-YQH&gN3zBDe*DSqN35E&5GJ8AG0@#149kouwC4JMpd+TOz4#G z0n;k(t9)FjhwvFwNV@s}tsEC>qo}OvYQIKTWc4UM-M=Z^*@nK5qy9swug5Vi+Wzba ze2VC6Yjn9dR0HKt2nonCA!OnNwBm6H5GBu+dQ{Ph;vz^rP zY?x5)CW@itx1CB1SJneXt*%KsRas7&C}=99LgzmRF^wDw48%8Tc8nfqPh+# zG^$%g8}W#@&k5D!xi@77>qd2UHRxwgh30bHCo-sRRCikhlyEsVs#`%t!#{mg?ZD>5 zlgliXT&~`MwUQ7UaQI3bSa&q@wq^CumkUA{g$qpIT0vd!Xv?zhkf2W6$liH6bXur) zOs=cd=KVTtw$N-d8h1RD0y-BBr(lh&EgBpQwcw4%6oY1a+`G0Dx)DApoKR1`rvx0C zRw{ub)5>G&sOrXJ|8`Urz|^UuDw)VhN+KsH@nk*FI7+1215FHtnx*h%$MhEuMoD5R zg*uvx2Svwd^fU$cp!PiD073oT%A+y9*W!AHGCC8NQJ*Rq^^rcKKA?9lKIORnn)GW?5S=vM9x4w0vl#9C zAg(Mnsbq2W?j{@+2F>GX+O0U_xzK7pv(s@&@?{;Wa8>Ysa8M8RA2cZ!J@`WCaiL4( zd%^2?&&@4puwz&%+SLgS;X55idF$sj5~58&6;&v+If{v_U)VhvG*ODWl8=c86#ug} zl)?)EB?jG8=ic(S>hzJR*#}y)J~UM)r{{b*G*pz^wcEPSE~`S6;e zJ8+*R7iQ-%n;3UUjALjc(`ExxAQKxE&OWqZeJBGxzpV5Q9X=Ml6I!CPDeTsFLx=QE zdy>QCWU(}In4J70<}f*T5sB}I`te`vE%!}s&Zi$h9X5pw+^wk3rqF%dF0^`6s4e#= z+P*2&y4_L8#j1~q-v?90*z@7Dj!P%PkD|QIp@!2h0xJs(zJOCbg$3!b_p-3yR@i=4 zSg?!y{gZsftrr&H_6iGT(GvVuKCxZ<1SkvH=UfN>BBz+@;$LK=bUplw>=@0!zsL@| zO#BPdF0HE+WZ|D=C9OXGMbb14@Gqj+4e>9K6g^-q9lEWI9QYm9etnZ9bgBK^RCJ>0 zjx@3TmQXtmO@D884RM=keGSzoC&#xxK}Mc#(LGcPJ=b_P825`RrWMw#dm~1bj4t>W z3=i~dut7c>tgJ!J>lUok?yl+O4vZJwZKd_Vs_ zSR4HL*QSOStk%V=39G5sE`vrmTM3uV~m(KrBl8i zTw$9NcZQa7!XBp0{y&GBmD}eUgfB39{wH+~Imc=~-X7rgYYqsd++u)>nhoF=u_J#X+VE zon|u45D{t{I{NYVP?@k;%`@UO%H>j7=4j_(a2nd51|1145nhp@5O*|mr|>3I5EUQ) z%1Ls_H=U_YCBj(tgOn1sGqi74X{K0sER@Of+bDM#?RqE%fNC$>f^5+d?HvX}j?U4@ zS>NL)71OgLm;%XXf&*e_E{EU~fJju<&LRP_%9urxh8c~U(+I|O~= z$%yt@Urh>7ZgW(iBMafLP>GJnH~bY^Ds;kVF?LGE34=o}l|_z!5$`<{{p&sYH+^ZV4q$F~?P|ALMPCyhB<)xP8;){mF0{5N2F7 z_r@fsWrwnas{C7j=uCj$_=Be2R^sl}6W}G7PkIZg2-6~KNc_{fBqEVU%80rIDQcMK zdfWr&$Ee0p+@rRg{Z1QEPka}AGWkq(KK&G#_%i2oW&V6mk*I!(AmI_Kem(h#G`{I6 zGVj%dIHZC&ziaY0)%o_P)Qbdi9~UAJIP;M z%z0aAYJbGK^J^;3Bj7`({E$-$Kj;G{>d41U`Ag)}TKud-*))!yAwf%ds%c7S$#{o> zB$OMv-KTW&RGR1$<4r(WV+Cc2H*~*vO1+_b4MQHYbk*2W=0!)&Og5lFXC^mCX@5;_ zfNr&xHAEL}WzEqee@?E38vY3%rk|OdgO>a`xgj#)dI#G)4|^o6W%pb?EH@2puRAq^ z|A4AIvj-rmj`_LLS&dB;X%BkKUN!^GIS1VrJIbn}1%FR&Xz&hoj~wD3^vLL8BU`o0 zY2|f~^!kSndgQUO?vdjH{;`O2mbFBk&jH@6{+`?z)pM0KMteG!H%7Oeoje__c9u2x zw_4;|fr8vLzd8R6HA+pITB~Uqe17sxXzfj9S*YKI$@S4|odCbUg~_#RU^-+n@^1n` zm~Jl1MlCLaaDM3ocz<{vevQ7Vtp7g)tvxL?Cxq90sd4>G9Rsu7MV3V5xc4To1kH{1 z8&9b>+OMHi*>ywaj0S50^ei!3B3tL;TgyU1ozqYtJ8(RYV&+ZxH%lyKS|HI<0%Pi; zFeZGam+x>|;U?PRezo0rYxoo$;l(L=W$ih>y96z{iEc`0$xRqftKCHF)Bm=cfJ606 zAeh)qj5)1#6C)Y&WH%vBxxK6<$Im}aMyZa`Y(jyoD0fS;c#1Z_ZYw}1yO+I*axP4& zf&T1XwuxT~oKU80s^)A>JI)wk?-A?r^i*0iU(=(m1l{nP8pA7gqN zBlT4CPtsGSW>0uZ?nF6*A8wn&m}YD^oCQYkl6CtGIatXN<=zh&-2V2L6=EdHz`e<8W30FAq^>cw{M>Z(z=LHo1qKG;vMZE5GPm?2ywB(HQ__@{0DzVoUXgW~mAjsC{nI8JRrB=RW8y z`#G66oKY`{$-4TYB#I`q0gt$3{**ygc_VDI)bp?ZQG<*up0XvG?|epgZjk>@1O#m# zSB6j0s7`4%JVQ=tG8>1INX=^u00xdPyCjSR$|ByC=I6dS;& zNGE@p7U^orUnON{gbD^Yx}LC{DU2#i4O|uEau{DMycn5AJ>3+29xR)m&NLCDKatb@ zZ0AIOm;wzh)Kr|UCf7N9tkjUZ&ZCuhbP@B>{0?t`txaw z{%nq`Kbj;^{n7j+eqT{`D=$?0Tee2xZhu<0{AQsRQ%YD~+t;x!_qX`t(lWR(Rt-Z| zeR8!y&})@t<>?GWj8K|tXv7r=rMW^VV(#ByIgRq3S~R*jwlz9; z(=c@RRkHri7}o!x&3bzOM$NPOtR5;6Eu1Bq8M%MMa8{qSqtqbu{*8`j^(W2~qacxq zvnsMng=?(f{tbq=e-J6?M0PR!&Cud6TC}n3f5JmRnIf<|vFWJ}f}bgkI(P0Nl=^;I zvvdX|#%;`&NMTT*nINV>L&Sv&5tI7@7M@kOjY5o(w%eFXg(LZLaskL{30QI)E0w^K z+gJorROXB4p4FL@XkvdQZlhE|SYo&FAP;lp1@J1vIep!AO9$G20gh|tCHJ3ICw;cks#mJKSz5{q0rti- z&)d<7>_v9Lbxzh{qOCZFGT7x(4UPK@ZK#}*A-jtDpG(YRP^H$w6lmc7wc_#+eBhm* zcTQm~b1+8Q)-nq|$%E`)t;$RI6%w#yEzc-{C2N^~PHio-&goc-Cic`?G(TYy$&_H1 z*6ksLzU@l-zEGmbE{=Xi=~FC@!Vv_qZTZ&f{Lypj4Z!jw{-7j`-=U7?2H;=M(G9>~ z;~v!OpPvDOs!S$xeaI&mUpYB>YuvL38q06_dl*dt>8aO`$)yLmXy#qz(Z%uX^SUa~ z7(PW*fN?2@o#k&Naj=)`uJV|(2Qr&FN@rU;(MCLIgL8E~(RoXG$7HS#!GNqXs}3N@ z@SRlf;-0+na1!^h42lmRXs&_W5e3!pHIDOib+q|;wXQZkA5T0DFs~T##NQLFC7;$3 zYW8z4Gh$w=YIJ5#&Ok9(EFL97?zx9QetvxR1xQF|N` zdz$?tg_3=MyVdqHo8S{sGIDkO%YDnY^RU~DXsG08b}E4-Kl4e9>^7bMxBbin1zkF$ zGIPCLb!2+5+>BmXKdBaTIe*FpEi*#P9$u3r4!gJ9%<;`G=!ce5C6O3tE3l3J{_=18Iy|sTF;RhEkFpe4&TROE}?)_|RbuXfi?7L@27#D;1*0=XUv}K=BQaH;L>j zs=)nf>vS2Fm9#Zsyu17bj(<&p9)w8RV1p7`QtC>Osxs6pyYO!-^?I$F83=(tD+%1E zM3EglcT)n@gJ*uA{LVDK%0)7GYV94$7bR(2#Ol-}sda%BmHfEC$S4|w4`a%2s(%po zpdLJT1A_X4=T8`4#yem2;Q0!pDjI_);gJd(^+5fHSwOp-+2tSQZy8@KMf zNJmLKbgVpR+=0NPwk}|5Saw?>Ua<=^uiC1A<*wNnC1uCKu*wd<>WNyqhRVo&D{nxCSC-J^GMnSVq{ z-ykK5tm_*<=~KJD+=}ueDg2a6`tyc|Bw;)bbu{M<{F5gRYsRlE=lRbr>3hB<5*D9Oc#n8? zRrzB)zY|nLFGIOn4f4yH^5YzTb1eT1o^=0*tkb^dV zS+2GJS(Ah-G1iYYjWtT-C?%1@m3XoiJB$*kw%9i}l)sqDFSx94vD+kR%!4|b7CYxM zvDmCJxCgbx4#OPL+vyy@=w6G#Ms5kg?A0>ZD4*VE`E+}lKAYa6Y*HDmxMgGcomKgt zF6&!u4e0>m53~V~Sn)ymb5;2xpd)%#Yfyu{@oD+#Wd6cs{dmP30U>OSy;a~_Dhqyd zjB36WPY`dY1ab8?n<63h-9;L!XezuYY%d>}Bp9otvSL@ybb3aclC=ZRRScSKMu)Y& z^eE`(d7*wfp~&~&md_CGQgu$xU-XqrH9~=V@e$w*@xXWGAMnCpxhjoJhB5`w$fO3Y z1}aI`b`dfamA6OX9p#UwGvG0iO60Nw1{)fwFa;XuDK9%1b8$*vzNiXv!)w8jS=vI3 zqV_DUkm4z=2l#fCpXZ;KfFIyAk!zt=Fr`ti0(Zi7O-AF>8ITw!@@E7QM#soL(ymp})52S- zW>tIB|Iz>^d7}9AT#UVLWqKNF!GEVz!LM=W+HPnYe2S=GYm}3Uy7R{+V95;~Q36YD z=!Y0VZ{z-LHRiqI5{Z z;z}i;lFHRPBzr_G#38kaZ@?a`;?c9XL}ZuRfdL;>itK>C$o4WKBLk||$MHY1txZ!s*|%m3S^{HU%eV{*BU@BkW$E(*3w(zWC^@JYjxTik%=SLJ%) zR&GM7o6zNf?=eX-J(6^+`Sv7g%_iK7+M3%W#k1y?80TxT<`EIK(T*&lssWqsSzb-m z=hY<2E449abwFDO#54k-Iy}V0ONZMl-sDLyMV`X%axEWSXC%wC&NM z?Oi2pZz<7ZCuDChw8@hV^hrXC`sg7+K2~L+=*V}4-qgrvTNNFl7B=6 z*1Z}U?7jC!bfOnZ;m;=PkMF0VfI6<>t7PJ;x%UX?nU&!;l4IO7vog#wnXU}8CDBZ! zcsL(DTvcdURcSk_p#74Lnr3RZ>AVMtNi}Yf+l-vQ=zI2&mcs3Fd1UW9J%0gvUBVBb z+tOJ;a{CQ)$|^0D#;HulblHe0kPQZH8Gz>L_>3U~(NJNG3Kx2((nz^fZcDu7K?K*I zO=rF_*PlHl7gH~YZ$3+c$|&#IqJer)VJ#?by13kf;MTL)uE?!t8c5 z7%nxCxWo`bxMW}oWXhtZXF%MkZuQWbWu@J9nD$-(t=BpEGjj-fC5!CEp}_&uJ|cIW zkx?{q*BSZ8glbi)^eLDKe<3nF*=+6(?jYJ+fb6{W4}8}d7e-AVMXjohfE|Ym`})x4 z|1NBTMsEsPx!oxIC^EPI8j`Z=>&|+^U=n-XS#EMFI$m{QL%!fqlr1Qzqx| zFLI^JdHjoe>B@h`H9c?ti5wa?a73NGWHB=cA$1%8pikHf!+O7r*^h>cu) zmIVAouXIYyg%y2|SUCdyHCKE#XOmp6d#-biR$bbDbR}|Mxp%aNeF8XxroH7NN7;56YW{x*>cC zVb(2jDgH&qF=%`9^yeBQGzq;S^pPtd(;U47VVvaHgV(7im9kf7_V%%PhAW`Ew;$ITp zsi>s$h(_q0(Ua29sQl%_csPl+BY*isVWC_d6VJ9=leRlAal7K~>1Zq5|E=FvE!x&H z(pIJ>j%aVsio2S|ki{?rcm}DbW^ykqff5@tK~Kn`!9Q1&&hbbW996Z=3q(dQeLsH+5qZ!*vvr&z?XlObEO~u<>rY0w*N7@Lz1dRKO zm{BYF2)_*3EEW=N{%dU}YBmqO!&O6dN>Eeu%9A4uD92U1Ekk6>7(nDMMBQ4;FUYgJ zm2^dYBN*3|bP&BONE1af?TKxUh$=(o9{xpj5&bnERSK?ZP(Y1aHade{E|mfBFJdB{ z$+7e-?Mf)`lQm7s{mb7L`pJzDxidP|iz3RlKzUhX(5jkf*CMnH?Og;HB7C_B{SKQ@ z32Qt5m39NF{eIUprk%bT?SO82o3kxPDUK2_0JJ8WguoYqaZ^Yik!6g>G3FANz?e;F z)05L{GkXlj!*^&RAHh?P8@UjLl>+7xHEi*3v(xx#)zoR3@zrSDrhOflCjMws5UvB$ z{&ZUiEzV>GFH>+dgq{^XQVIhulx;ae$dC(VF{4Xm=+WjMXnl$@a4b;oK_%-K-3nKa zV(CQnvb~n+Or&B`wn>`E9lQKi?x?Z}CbE{TZ%RxP2woDOmwu7K6Pd=Z@(Wc{fpmpN z!wFsfVl@&SF`i(0Op8DsMyh;nCQLO7Ex`#65$K-%;TfmMfd?Q%}~KFDQ6870vAOOkVxPa!py^Q=~DuLyw9R zf+*J@K8tDVOWM|}w5?3dw#eAYxPGaB7JV4svXJl2iqpck%D%cG5~6HJ|LIjxkiK31 z7{iq9u}mrHU9p?{1C7qF7?6IN1vL#^o{P@pSIiU6%f*;9=~C-2`c#Ze0tht5#y3=g z;=qWZ|7+Uo35l0S<>q2}Y42C@t&me)VTi0;zM*Y3sZQjQso56hCA}ua!0?alOB#;8 zMkNcjWQg9oDr$1+o#aka5F!4VyDJ_Py2!;0@jdUU=)!eE3-778O9_ZcXNH;YVi*oG z!NW{^#CC!=kuGLQy079MVVDw$K8&LLLVE}>HHf0@zprASFp(|A5$=imfis;3RHSkB zFf~+jlAs#eQd#eY*!mWf=P_A`pXC}b76d_Ln9HCAvPHd^^4ZfBv(mZk z`WpC~gvu8Y4cxw@qE8KOe*z7R+%^#fL(f+XO@|RJz6Q3Dj>dkGrlWzM#c1H`dQ$k0 zN(%A!rfG>Ga>dKQR5Cgw(BK|dc?h|Up!O0i1<462y~Ol4D=Ij?i+~+!Op04p;Jy;? zZlkSu)|dt_;rY7>Sj^(J4EBHuOnl~^#gjSSE0E;2rm1)$AgIm-Vk)Ym4>tp4;3k;m zgqCQ<`>+-2n!Q8;=JC~g3D_v1a>zl-B(;}#Yjeepy8O$8XY7s&nO)-~+Sfson!CGR z5Qv`;WIqvPiD%qIG2n1bZeqBE%RhD#dt>;rOIroke_s(0__K*r@Un!^8A%1jiUSq5 zr}Js)Sasv*pg}r!8-=^~L`83bZf*_8_#%;zW~kxTrZ3)G zm0v)Gq!~~wje_X7b05&A3@G}fvx6$L@^!TV#cNup+!J&Ay%=u4L;0k36*HPInaqnb zau@vYiMfc6KxkSOyhFVioC@!=iX)adZ%=BEt@vt5f|AP*A+N324nYb$PfWF zM1wAi$EI;zFhtDW4H;~96ii1o8v|iV)vQ{BRZT_;JRr+T;p#m|R|%Udi!`25oUTo* z(~x*o4Sy4~Wkezkt~7y+R!hhhNirgV2KTJKh}NqBXo$hRnm|NvM!|GMv@k|Q6BHu4 z2Jf*+>zHq1P9Kcn^a08wwfE>YU~v}*cbRfPwc$%v(oZE0T!3aZUB%fNYFBYU!2w1| z_o|dM?siSBX!ySpGXL0B7;CE4uzgKUSFs|v_@kD5&zcDW-nr7A<2z_89`W$oi+i`? z2NJkA(Z+9TxR>`Ye!V4MP*c5~Ll#6YX{W>;HCa_;&Rus!IcZDS1ODx6>NtxV0o!YH z7SkpCugqDjQ*69Rtimf|r1XrolzvWMl9j^0ok&WNO>$yHN>9{VGBt(&ERmExmslQ! z8{25femF`MM@qj%L3E__np#TFD5P`^{(?)r@`(wfHb9JX3A@Qjs6{M7?JgkLSXY;C zRSR20f6X~rbO#M?QS)kmT-5);B{!qJ+n%h(Br$|qI(nK4n6P?!)&3$$+O2YR{(@o7 z18U~nOPQn2VRUybS((ONf4 zk&yn7kliB*i6${lC6dv36_}L7NUE(bqpH~29U1LZ%jhG8jIP01)Tn;t&VorR z+iR=GPfKl0Z_#(il9rwLzO{+B(43fMNyPVtCN%?#p0(A1g{8KRqc8#z*W@T_NyuEC zqhJ^_BZe{4C}UKf0zqKm75l!q7 zKegmkT{Pi~#p~psuxqRT)O7wu(qbH+Vv}|yMO%arZcf{!r>pX9>*#wJTNFe`Ov!cBVmhV}(>1u5 zKIvEPVi<4!Fv_tmW#f?tDVx;s$ZG4-mKpp+!ZhtH$NduVj{%LE9%f7(wTF4Ij*f?U z0FbyQ57SRV=IT5Q!HO&wCLi9Q44__tN>V5-DLV zX-i@huGGKu2Z7%oM+uEl5FI6aCq@ZZ>&aoIN)A`=D}IX#;!0wXzBR7ES1?j)h;oAp z?aivIIlrW_h`DY8S8<=jx{kCJX+fnc0gK})9#MfwvB=$ZiKoyE-iJj%P@cGy2Jd)D zg(0mSCe2*_-V2SHRh2AU{a;vB8H4$Jg{vwIPIJ}lo=q90b`~w3SUR*Wzl`urd-5__ zqCbpV)SSF5CiJ6i#uw@^D=V{E1~9pf8Gy(&IgD`exMCDO%~YPbj2F8wNvPphY|i`^q2y1ICP$U>!ypX-QXi%Jw% z?=vn(WpO1wBT)0|d`2GH{Q1(DODAuwr|CFedTVLT6nOx9zqf(eZ0cpmV$CeN`^ z!sj1*j=wee^QX2#-h5{1+AO|KMgoO=T{KS*j4Uo7dcQH&t=IY!9!cqCl62IoR0!^7Hp4KGNj*eSe6%oq{= zrUrK>G8KolmtLFHp|&1{7(6BXcRDu^L(rvH&1mGhVT%C(3iIL7CZRz~5Ap9oBy{Io8kHoY!l625By%ydq_FEL* z%W?1Mi)e%jOnkmL9OAgo5{PJ01WZRntEh+=2eF9MWUsA?7h33?H|P)wZ_zpQQll*V zQhn{ShpDK}ZBKMgA**$fgQ(;mF$Ymos%F74(hg|MU*FY3DY-kEa+}bMif~(a@qS%J zxE*&9{a6w1)g9L=EZ77mQ3?z0hb@?e1s8$qh2sm(z_!n6q1FWrph5vTkkJtTA}4qn z;a}wZMq~U744RznOvN~Z(!7OAR@TXeJ->C9gx96=9kcL|-Jdz%IpCVkch*N!SA?sh zU+wE_)@_ITCkJNmFX%hwe5bMo-Isk^7Cqmo^NpPEJh&>{LKq-7kM?~RmX3AaCzs-1 zWJ4=7Nse`fR);?khR79=yHRB`H2;p}1B6jbY2KTax1%i=CwAwCpvh~(9Tgy4{b%|# zxeeE5PjxcAq76mMvPA3i;bHI&8`CQ3Ys(AaX+kMeO8T09|A2J#?2BP9KOZoKdo2`z zxW}e)kJ2oJ=@C=6&X*y#ihohUQSEi%)xulyCz(@*H{?80@F$-*|dD&?#HKjEpu4@@bc)%0q35Vs92dNn*Y7Nq@a;c>!IHOPtA!VmM? zve1~|^NkcRD$cZ^qX0`6@uit;iOiY@-UzSAWZ5Wxswsxw5t`J80;;|Y*BZ*D7*9#R z;1}VViJV}})U1TWH^Z|9hYXME6j%01veZvSCx>-yD8P?se=04znNr3yi#Gon&JsJl z9lnzn`Z9oE2&}T)8UvVx_Dw+@#Wowm!#QCn1BsF0eCYUl;R3mkhb0%nfAvu(Gje-xP*xXI}m=oW`{yl=AcIBe(S(P;MCrt!N1rIO4-_7hyS5 zns*@FN2*>Az5mPODOEAdIJ9?G-Ar`L|H7?=|1h;N=8D=$P#bNZm6m~y|1WG8K4j|R zmbv+8`bXhmI(U2+TYJOD;oD+s7*(BoQ&%0v-Y%BeZS}cS_}R8(^1Dj}bDStXqt# zP*0ZnZTJgLFg1{sQ>9}AV*s;=+0|zeU`z!q8uvtFwD0@yD4{pgDlvv04J2cLA9}{% zkLiyZL%$!x6-k1R0VK+`rt6pY3B#FEEUP4_hW72P)ik#L7iFLI5S~!g2g7)EH>gZZ z>pk~`Z$(q~%1Yov`}Tx$)fI0*=Dp#bsNX)e;4jx|XG4?Z{@-7SGnp7SLQv6)A1&`n>2 zyNpCbs&v5u_y+L#h&v(?f6RYgll6Yb+mZs6OzvpdrcqrD&f#*Tlc9 zPGy14XlXbT7IlW_!)L;~gq;izqv4<7N4ZoUknk@uJkKM;bAn2X(2C}KJ@MA7%s?i8wX9!7W;L?zrH6)uY;ah1*45?M|Wv=_6&g{NW;FNQC3w^Cq9yf?AHM7*sUsl{t( z6i>XG6cF)hetEsPlIH|J?p6x1h`ka|F@h;2X6Q$K`AT@Ek||d)_Jx1O*q2$xy5YDe z+_}K=w1j1g%4inBH^S4+{U)~&wYa*V z)8T)UP2!gH%4CRWaKCbR&-!5L6gjK7S7N3+SUzzXYx4O%5~-aLe&Ia57fY&&Q9a-r zQ76KvMzt$n;)g^TwW8ttUIGhD_|&hlTAg|{{ufOYJzlr+OJR{dn-2Xmbvn+n$@IkY z`TSZXo1SMWRk3MxgiUZmN*ff)tPJrVM%jd)E!1k5x6?Ij(HI40r;)eRZ>#c?wb*S|4?`q>0IfT!MOXNCMe!>ac z7(58;x1#2z%KwkO?+lEhXdi!fLr7o}AdrNf1PC3HyY$dQZwZ7>Xvw7jM-2#wbU`Ha zK8jrKa(B5PMZvWhHwKQlYGGrPBY;q~`^_3Ci7i;f^8-Em2ZvbyK@q4V}z6NbfWD=6$oZD zmMNi`4x=P8o`gcOZB)w-x_U2{WH8NrVTeJ(qZcZwNIR0z!bV8_#)=1^1;+S8v9MmM zttI?2jTv5j_;jl66~MKWhkT3EY~w*9gNMwU=T>Zpgrn1K^+GWe3T))gu!eABimegc zk!}lBVN?5fW=jLIrNj=l5hBRqdek^mYaK}9Oc9-J+tIyNdpq04fm{xrP&~SeZKF80 zF}@ll6@Gj|tj^hfTVIUwyd#=38x|zIBkD{u%sv$!4zF~zxeema)7@-m!D@~c#0!l- zPqI>m8eYt>O^wj4lE!zp#Rq^g1}3i`z1GXtA3V#I67wvB<9pjIzO8Tdwxz(SeTm*_ z!$o~;R^NutAL%d(F7C%Se77$WtWW=V$__4T`WMR@qkE%vHS}$c2f66836J+cf7@o? zhBF7);^3D9`G)rf*yj5-oZhKp7Z4GpShzeLFM}zWwggpcO;qVlwa!bMjC5l85+%(j zTJNX2h$JjyOQzT;;Q0s3Qh-wLwInK#Jfak2RkWI z^2a!zyMc9S$5W9?xXM>?WpLzx`{cPKN;}V5=;e$8%h#*G2cvBJ#is~|KD)bF6thxg zY?F~#q_`YgJwbey!1-*BU~n@vaPaUL+jj9)Bro+VBn)Dn0>N+A;W$GV9%{aPE~LWt zxnqPAHoUXYHnS2LFZ^fMtK9Sv_4l%rG@sp}IeFFMm_k!xYJO2tVp@7yT2etmeqKs` zQhrKNT7F`IB{AKc4D*r~tg5`#oq-GLiGk7BuK6$cOpYt49K~qw7kteH6n{r)_ZEL| zB*$;C#e1hCb8PfQB~%=-Ekrh{#|IR z2D3g{(G;$AoEW0~Hv)bMzpaH>{PHA_&{GI4)xdnglL1W|M7?mUU&Y#{_81km7=_d z3BP6k%!!`$QLslAzm5|vjWV0^lM@qDiVDn0`2~3vb77Gs(VU!~T99HXO38=W`3p*- zO_ekv9`vRk4|EI4Mb zY_ZgZPR_(Lt{5C>{P@gEl)T^=LY@VFvG2s=*xFOz;#sy`Vk3gUkK??iMNm51_NCYk zz4>UAD2^!*22K(fqji#>jMQ^eqn`iVN%krFc^D^o_dm?$`G^&D_{)_AtyNys#08PC z)}yxF;=;;Qc9K#&->b4FAxk^K$L8B^it8%V))_7ArN?X@(dI{6pDPds+M4U5t=t&W zl;1AH?P}8I_Gqqv4cL`Y;boZp`tERP>mpmM08Sv5y)lu@As1TvSA#z;wq=4dTooCB zpMcwz*n0Vb1TD371J`_8mo2p=`nJZyb#T|W^^41F*{ar>Y1lQztQf_$F5BYavya=B z2h?d23}c4OtWSPq{Pbu#sMmzGBlD_Hm)jN!5iom&tvmZrp7{+$8-^>=;LJCK>Jc>< zD3c%lT;2%Qf5LV&AjR7m{*iGoZxHCnAmnN17mruGCZuUQ`<8Z=^iZ8i4OZEn6avPf zPRd@I+aFBOcG6|F?T|1=+lluIwvm-~vh21kUw;Y*qt+VE?(A!A69d3{ju^5iv0BRA zXe&mWX}AhvQRHKRgDWM*v>LA8Z0q3LdgivGAo#~-TW9cs1|$??MnfhtcSo0Gt+#Eh z_r%s^Tk#Gna={+ovt|bMi?8v>^X5v%!4Fi?Y1x-+2Z^6IQO%&vVk!-0P@l*I(+_qV zx7)_l5r3xOW8u{$y9NLrnoOX+Xri4!eS%Kn<0l^Vzt`#d`a{g3TB)v|Yx35UgM?^! z`g!)Ds!>y8#_FRwqzTH{pL=beh{)IpG@ThH^U#E`CQY@B)o=Qb7&EZgWe03$4AwR# zywS6}=hvVPqv>F*b9pNe1^10!o2+a;R`lyHT_#+Sj>lC6!Z zF@J}Kop!!+tX%Oks2IE^9ArT z2Th11%P|kQQX;dT;fu#mBJgQV);2?$F&)y@pS)>%M%5a#6wW4p11M!bHkI!hzQHC!xCVD?E7C7Oe$|g;mbk+JPFe%%FJ?Vr80M27?&m))6pwc}Uej3^E&TnzSYy zZa9xfN-%&3`y4H~^7u6p8A>H`yK;#PxnS!kfMHxmL>JwDs}cy0d|{gb#&T6yA>y!D zdG{<2qv?M*?SF8rKU*Z@7cN#YhlZCfqECBExt=uvYb5P}gO*Uh`a%TTI3U7Fy{~Lj zfsHFAOl*sVo4(#zAI|7CJIDuS`~3M;py_K{E7<0mvMd~cFw2|Sv|W(q;x(kNW14P+ zZE(dkTTh=3U}^FEp0M3F3UbtN%XM3tsv!ws*L^Xr{KnQ?)leh+(Ns2@sPNY_6r6;~ z?$MHOZC6DQ)SOu{5gA!Jzi>mLP7G=eTivh?(r*cxaPUO9sCn{Dw1lsZ_@`Sc#Dj04 zuZy}ZK`$M|{eMKk)TjCJA8kv)NS)?npEuuJBdjr0SOLvtOVt;aA4|P|+i0u-AG>37 zN9%5V#(Kb8r7}Chj5_6UaLUiN_rV5^d=gCX148|~41G;Q0YcmFfo+qjHP#sS4Q&?H7|*@DQo)xX0c%!nA61Q*^Q>zI z2>_OXQe|sba0>>cU8D#^b!^1k=1<$iYC^0GO-Ia4cxWMl$>||)KpSeXT|JH8pmIgkiOFHo} z-5SNm?x~on+{ebW)G{{8%b427roZN>FHLJzS|N&$5H|g+O8-SQQY@pgNKdsbtsNjf zLE!u>MhDXie-*f<@ulc(^ldGTSEK7FAO?;$9WkhOv{5bnIT|Nk+0nQH<_yw~#L^U@ z5>GoUr_094rK`Y)*cP;o7IT7?GTe$Tn+3>Qll`}94G-8Bgi9}^lx`QnHHJ{$r!ptK zbRW3Mm6FxTSshBB5Uxr0I+Sh~R4~}JxNS^vRJt4m@>cc+olE-)AgGm!DL(I+eIe;7 zqu{QkUkIQP2P#jeGD_n>ELU25!Zrv#l~KA-)fN-TEvP2aZt9^YluNruL@;G(EQ!6^a@zbffJ3!4=D8rGvV0* zrK?pS8ZuKUnNuqzvrA^_OCorl>xYmTJ-DgE|TdR^t_0|kj8*7759ZMoRMwY%>MQlOAX%cD1gOib3&DPqHT2O0)ETYQ* z$s)QnO5_=?cRxMjaD1Lo9uQ{?%GuOaD^pvaNJiGCclOS*X-~ zTj~B}aTdX@zq?{Q)zysF-rW`WB^>Tbm8oze+Eib66z z(Ent!#YoPMkW#gqEtvQ`YVo=Jh|eL5Py4wse(ml^IP;^@d*Yh}m!DkxH@zAAh>Xc1 z-8@ygP!K;MaDH-e)j;_>hZhcBIbHgz_%*UUqYuM16bL>QbGmt*=tkV-W4{i+im_=F z^PhhtzDH$nq9qv@M*BDZ2za0qx@6?jS9TVGhHaQp;15p$b=%Oxi0Fr6E;xE|S+fBZ z1lNt6HD5bh3I&kJL6Vrd_-rzPq`2=&8wj9oTjmqWnovwQD`m)(R5K<} zJ|3^zN=p5qG+qR83h)mt=}1)nTl-sIAH^AHy^mxaB-l$K0~? z=hCnsaXSU4Zn=dACvLf# zloMSF1fLT*U;PBJtDc^|(bnH6g%h^ys$2mxEVx&+KL9P;soarI9sB>Gp&nFelNjn> z?U14NY^O5R4BWGUp>{!a%uw$J+B*e_<0v>a)Epk17;5i!+WgT43N`FH`9oJ84`HXL zRGd|Ar%$3=Pt{w)R(KhESUYtPuKn2QXH-iz8MD_;4-hy%c6w0*C)?>UBtxU5@{Jb) zW=Gg{ZpPbzxK*c=6{MxXCNWM4eymiAkF-Y$`WXf0)V044?qfsnj>(m66n9xEGkIxa zJ^S}nKu~)Ifd^OUXq5@nt7lYbEbCf+s)mjtE?^22Ioyn_;d?{$wHPXDU_N5}2%ZXF-rE?N}{)GdVj{z?4ZvR>YD>%sF zUiKXLL2tXV;IRTW?`?0XYD0#{=tFxTT-@892}(I|lJ*fuANw#Bh(?W8UxH{x=162# zq@=BxRgnsmF)~qOXp?2J!aFK8zR9aV6Aq4`I;=*ite<^BRpF9KcVF;;M0fA`=c9b8KCZP10wY z%<;o4@F9Z0SruajL4cEUGblV__ql>PCSErX44+~DO6(M0NeuXsDmPt5Vu2GrUC~MU zZ6>y~OakmD5PYo#UNp=8zBn%4cnE$&f#8SW9E&NKMgA7*n0S99a8B~_*oG@$s(`6; z>~HH2ZKPUr?I8l#hS>KV+iYf~9J1B(>{BCjt0eHKy)*#qWnl7mpN)BNDtL)2CCl&V zwt=C-Uii&I`{WP~BoZA;bvJ7ty zTU=|NpgBwJNjg28U25+D7cD141eq4ey3D>(@WuX|XG1OsH!+C{HhXV4p<+WXac?}l zGsm3~!&XoN=-pOofx-iI_tue0R@lo0w7ocfr9DDl;$(QF2Bk4TI=|8$EX4TVLvybx zyy^;T58JP@&jnc=#ma(7!~j;x*+5u{eQLCB6>dbvp6ITnnC{_le~EoE+78iRwLKn8 zX1E}c$&S@_i&$vF`-kKM-`v7w6cr5Di#&RpwZ{IP0G4yOh&q-?FRimbDS#zhg=WF}|${ZGE`bjJ7srnKr%$4Q&a&v`Gi-C=LJ%hmw%> zox?s9Sh-Tt(V8-QS2QyHpv<160%4Z6ga^TMLJRs}gW?3YzMkYu1)V!^GGo@DxM2tU zs-*=!@3N1M&dV<VW0p z(#GiJdxU7e{U#*AW1%Ze(FJ}x&4+i~Cr#UCp6m$w9JIG?Y%WSQ=a~vEsYrfl=m2aN_1gSesWT(IW5(cn37~lO~}hD$SX)L$V;=NA^jA=1E$U4 zlB4S)L}8)DoSKrCmtTOikW^ThlvkLXkW`eGoS2%LoR)5eO>#DdOSMif+%3eUCHn0< zRpzF$zKc7ZG{KJxN`hf@wT*!=|A;+0AuZKxPKrw~O@1VP_PC~t7PX6MYEDT@v!oVU z5Y5R+MTLoJru3q;ltOcUQo1=MHBl0V6Gr_XjfZ)25Tk=zELtrrsYGjeO;M-)29KVQ zIjCo^ffM}OX_7_Vx)LFpo1#_1PbY1PjIM+$c&uV!bNJJ(4S~`5=(xYR$YRP%NyCnk zmX~feC!`h>rl(m_(h8HQqVr9KCUl%R0Vx>?CK;Kf$&{RID$Fk|NKPxrmrl3ZWEWyA z$%O?)c}TV9e5Bh#b6Sxl73sU6s357xTx2#$+0SpdA;eVDWh(Z#tj2zOgv*9(Hp8P4 zj%rcJZA|&81qB7>!lWeRFllLKY?OIPiTUY;DKO(J=1lXUDi`w<}uk(yMPXUR`ZN=-5qAV*6rOe(OX<);)DMMZfD`6w8oxL~p5CnLv8M)4;VMN)VtZFxQE%EW~gLUevXY7){+x+Two<7OTT zt0<-N!M2`3pI`xm6({8mXL0WOHJlHFWrn{OKM(% zB`w{Qlz@U$BKnCeD<#=vNl#3WPwPlb-}?IZt}{Qj5x{+Imp2WkIHeg^6Gf61?s4D`R`=QC{i|0nrvzk0G0 z+#2twCGIriWzg(ad1$Yrca7M)PSZ_qVtM-do(Py^ax67ioH%ZBjH;{u01AC%hOBUT zADJQl@p)t>Gm^ zt=O815cGwgr#NzjcQm*CDztdZ!|gA(gmbX|6d757?VU4gErDzO%z z!_pHT=xi0l%{EOUUcpCpAHyfP6zsMoYPw+2t=H^rU zi<|-Y4F4iKqt4=AhILN?dG z(0WL}z1B#BI`ZaD$DWQ|pk9K49v+)fM(=TqV5PWw@~!(XDZ7^gEq%9ObL0=U0mj1xT)K; z2Jrd-M^@-UjO!v|VBA*g4YcOr=m2NN%?kyKjr*X_20r#MeH@xOzdD?e>6k2RfuCnO z9tGQs@zS@(Ha!GhDSnV+En0;)Mn<3L+T~ZM#WS2~&@`=115S@r8@wJ*k8?yE9O4)f z0N&*~BzCi8xML>xh%04w({+SngzzrhKEmPlg_}6iu^4=<3zs~~kuAQPKvro(xek%q z^0ov;!z(AM)`XWvIa-5zTKGYu9Tp)8Zd~?gOL1crDD0_PM}r|FFCYTe%5g+!NqP!| zC91rLT7SJUj=`83vY5+J12yJfN8YTh5nCjzIo5F!m^jp7?y@X&!X$Z|qa|p^m22=t z`rwn08pa4NnKpwJh_=Q--aD-#?+pfA^qXevC{F(2e{r40CDt|MCpZjAoP z%yX;*b9EcGu^^T9h083C?wrNc^C1;x9Cj8&aI)YWc~ri`2A)=#&lmHVe zpT+Xu2yNT__ndI}@#o851^XE~5+)k6kP|PH%;Un3@kGG87dJ;rV~QNt1pyr%o8%bC z@tNoYMEGpRV^IRFLUv~q?v-sU_ze)@3yj#i5eb~fRLa2_W-KVnsBKcdsDFm45H!7a zXQ|ckwTSMQAi(kmY;Z>noB*$6JW)-&h*qH0AF)5fIy2sdq{{&;p6{~O)vZFVXw8`4 z5RTmn7e?!iPoF>Z!`u;$pSY$x4w(mIf;z= z+Ots~(|WF~Ks7D`+GLiai<4F482wpEPf*B} z5~m*rvo|{$!ws{GwEkWsc8)l)B7u z3y38If&8u%*XwknUZD`aqMP`%A5nbh11h@#PlsaCiXD80SYmE~9`z7kA$@qC!T~R1 zaq0WP3#bZ#lQTH2q^=tsJp}PIg{F@1ks6vh!fR-aRP6{a5FPj)de9}Fct9nlcbVtQ zU^fT1+xYh+?Ut^4GIPrLtWB&} zTO(QfD(yYYDRz1N69*i_@IYzV%m}W4xuJA^yJMpe(g_nl$FDF9R5XL|DMt+G$%^r~ zGfU_M!=84GRyRN08f|QVPdnOx5x&hE?m$_P!>-M$w|s4lxZQ_49Pfka96plb-h9R} z4b0_AS&Cb-(=kAp4nNrG7_WjO?mEKe=mOSoaKv4w!yj#qcB;_Lv380K zO`W=CiVB)K_3z2VsYBS#vtN?s?LzunY;}1ct{tgcWriV3K5Pu%+T*wZ(lG_H;cpXM zP2m@N9i2c1D}==lTv_PZ3u(e>k#LU2&wLK4)i?UXoeAYL$*xk zu`;=r(Xi+R$02Q7NbXylt!W&9Fv2DqYR1AE`yKgk;}bPQc|a|B-lrOP@~|aWqW^X( z{gbzKc2EtD`Sk>v2Q3o1(&4Bm-X(nc z?AcX@2$`L!d;TJ0vB0HQw{(@3ZdjKhz$-@`y`iJ$now!Mv)kqg@b}jpF>vs++t3YR z*$YF2AejBOqa(bsbV0pXoiRk_Kn-eX&z@~@1WPn@T#XKu0{3l;q5n69+e3xA7~v4^ z$`wZDSOpiq&yP!fw~<`bM{O=pUHM#K&*_S!r%E(r{SP(NCsnJVo~d4QRB7mqr`P=~ z3b~kRpPOwM=f#xsaWWE%bSrO*H9#n?MEH+t!A=!!IWMA%8x2LgRDtk{81KsEM4Xcf ziznF!a>21@s=vLIS~=@y5V-CW$2;J8#2pKU&0$>2rESqLQz;~2Dgd>D)sJk8;hSsY z&05L^-}^(vo6RaM<43B{rhX(VWiIsvCPqKpoR?K2k0IgC!qv&bZ!#=RHovN2X?VGU zwu7J%Bqz`FssHWp@{EeD%EL>OG_CPQrRf^)k_(RYjl>RVIH~#xFJ)94sWKLewCOiT zQe$xdf%Dl3%&b0;UNWP=b&e=o)JPnYrriq6K&%Rg*M2qQ*d)Z8Iz&XFYnAbRxcb9b z-h#+5mMh?b{NBW}!v0Ormy@J!mBQIg%$fGe1UR!0-Bh#jCrKrf#jk3;9wWvtwM@k%)qmiseDzd_F z6M|vJ!pfF~rMZ|wiW^w=bAT`#qnV(a@q5xsGG@x~7Rf!htf-2xLJ==oVKo{p4AR0r zKD_LF0D7JiD;TRLg*!0Mync)qjL6q_@;Xgcia0u*m??MoBHN!vvaoPuX%mffk~I=I zHSdwaM;}flohfA-)5yuf2wfA0hsKn>4n9!#CNEyayw6HmAW$?uRlYwe)_<#6s%vb} zOR|~5cWN`Zj(gFM316Wq78BkXUlt!I3LR9_sK3A>LZ{jab;hIKe%oK=28UW3dZ7J*A94>(Z)&zx>9@S6-&! z3Yfu3LDR~{2_c&iqtqeHkgU6GnqFoCJ6N&2OtTp_oKe6qq+tw%rL&g6Djb*>@pj;#?ed` zZ?3@8kCY7uSGaPVxMMD|0wzAiUiVXf_225C%Bs;3e0($L)s zed2lZ%Fz47Xo(yH(+u834NSc?w4*kI2X-{b;JU=i-l|)raQ~*kol}E^VJh~r)fDny zEV5+wv>E)}1!bOKbU7O4bIbnUBjNtp3!-%s_y^RIrgbz(;MR^Lf!7^@d(tNGtd9PC zX#l31%NPH727jAUhvle~!HFrjRkA8GmQ|@ND{TV*^vSX=0m4y?#m|g0oL;E(hK$4_ zZC_KiKR`ImMC{037^6D?h}ME0-cS}BAY5gj8+R?y*G^jnl#g!Q@ai>LJEF(OT+xNC zeunYSXjJnLQh6w)?P3R#$}92olq&LfsRi50j)HofREFW*Kfy{_sDRIIM`Qd5y(-0z zx>rHAp?vEguZSdfQZ0)nV0is}9*?R>fCy{2ptZF2sj?x0m_?y!gczWPrV%2wlQu%c zcQS|&y5!3dLbpocY@muWgM7}J!=s(FGu1gVdrE*HUptQMEV~u5o^fULkz)<|zHstH z_YiiW+?-DStcqiXB+qEBfT>jBZa6$WV0$2nwDq`En za#~3bJY|9)CQ@i>+a@(Mwe3cowYDAJ`M+)3Q!!)O`73@XN6c31kt%_`hG>0lj7RNPnVLA`0>mo>&d*T3ofhtFtn(>R zyp1eNeRUL5O1c7KknN5mr3|)rL=K=?UD@YXA-gpS`3K3aJ|!)plRR(L^;vkTwe!~q z-7z0L-^O{#U_tDIw$4vM$1cohNI*%2_uDy#fmE)Xtb`@80v0Xcq4rL@Fba-|b4~?0 ztOfb*7|tY|N!b|Dg>3z+JCrqL$h_P2Jn_z1!VFm7anB1~~gx6(1pJ z{KVxCC@sY@7K`-i5a&l##U}`ypSXNk3-|YEXIxcrTUX<_{Hp?D5SORRN)dAq67{n8 z5WgB3goVRp%6|};z4zuMb&&(Ju5C-}EzV#89Ot^zj4?y$`2-GJ4jxSloU_0=4PX?D zs5N~7%`oh;Elx@=be(6ylhjs(tre#hu z-2Zoan1D8Fqu<-x1XhJJFGfUgnZw)qyRPs~s4D|p=jdNn&(%a4HPtyo0KGY?2)o^3 zlj+WNpgUKtVK;)((S^|w!C_~S7f1d42u?#>)%P=;_rNr+6C@Hkt+cXI1|SV8b`BH3 z&5NiCfzw^BaISM-uy}?-(^hLwfZ35WZng880P+!&-f*jlf4P)64qV!_*XQQ58rfNj zkqA!M8t@?6)oY7RXL!IB!S&9F-@eKDvw_zKZFYWXFsQz_*?Aru;E2P~C}3YkFr4}O z*=)FIt1}3o|0(hyi`BbX0qb8e)#*X5`fSS0w zfcE<}HoNW-R~RzJyEc4zVR%}}P?;-W(2C@ishpg=JJh_pDttBVZWz9zQ56ecFSwk) z21?~FXJ}Qi3&lZ$SVuJu8pK+5Cqaz+#)+P0-|f`7Wm1<1Ifm(0DeO5_>{TAaCc$jU z>2t$ep_flpAcLnSy6Q`%d!466aT(#)Pc+*_Rk~P4Ws!b)-kB31ZYFSYG>g~Uly*P^ z$3IqKe%U!nfHrGch?MlQGfxnmNTBLVb=hd>kQWgaF}s423vvrE@BA%>g`}zBwrNiC za)9Fsn5DrdUvXYDhy+VtbzTFPux-$hCK;DpfQMgmP6QXYavTDp&#?lAUeWXk;@r}K zLr$|0a+hl=fBmcZhO-m+ixtaX|L(%_H=Hd1*IXMAPg1dQoy(&Fu0V&HGb+0yS5uSc zSeo}x`&JKQ-$GTyw~)=Xk{TX$3ZmGBLVLYR4ej-+9@?QnbPt1}fi4fSTj^FQ!oI9x z&%mv?#qUWyw2R+`9DCd@(4XE$F;!ef`1IpV*S*FpW3fnIyz4w8h?@zVpRvJBEnM^C z&i=@6kjRWyzJ66e_^|=U+XBR!dYe{Z4}aqVPO`Gwa0SegVBSgRZg2)`n9aiIu=x}# z77#2?H#lh7lDPtgPEmEWU}S~L_?EoS@u%8|AK*Uq$G5+sDwZJL z`Pf;%iWu2bb^&U{b$Y6xsS*F}W5mB18L=+;vJvZ6DV#;CIIG-ac4xk*GD-c zK5)+YwkVD!eEKos=2RggWGoix{sm`3fM_LfevCL?3+KAz+%1Za^)wFt9lRhg?<=Ry zjp{=YYwFvF(Hb&pX|Vr`ldEjPTmds7*!63tCqm!4AAIfn!yqYu>&}zlFt!RlDZB>F z-#B}K*SK;rE|gdS>se88|6q8meyw(}{GPiQ8thrt zlt)gEOiQ!BclJQx-gf>59D&KyL+>cTq@=qiC2-U}{k^>H|S`sZr1{Gr5;GSLPuB>Mq*qG9rf=-73Wf z3spQCgc)uawi~O&X9!xs@yS9BjQZo*NZ9f>H1I?BZ->C>-<%`Fw+QEc0?!nx{G&2X zbXqiMcPDuCo--T9{4qZi=GNZb9{+co_$fgp$0EJ6pqa%QRDFWrOqf{@K7Zf2QoM$w zYm`?S(Vd)9Fn*KW_VJ|Kb%zsP_H+0D&nKz@X0^X%3nBF zj-yLN7%N~%VD4Ye*MNytk$E>cdz8isusyeGctp~#~f~&f4L;n74+P25l z%LiX$!PNzfWnl6Y-qc&3!gIZAN31KUWI5XLq}3$N68TyDm{2Xf1s-bVA_?NC>D z@Cb*FtXGByyE+KM5jd!ts{=U3)shotZ|D)amiGH9C3IqS*8&lI!NF<>T~7hdafE)V zCDhyKReeI?_!_QTqRYLgO#Ik|e9{%$~S|2nRp0($g8r{PM1+kswOpO{`TgY+QZ!^{z|l@ido zk8A_IBV1PmFoA>CP`sT2jG+{d(ooFd_BKVh$2DE34sfQzKV6JQuaBh7V{n zXpV8kfI}L1p$zVcaYX^HC*qeJuRADdHY%1K#$xd{MOveF0 zqZg}-OWivuT^yivwHfk2@COIP7VYn|QZ6QzGOV!M-d4a+l%%=V+hWDrfXUXsusY


qT1aVS^7@F~iRs)o!;ndGu}lCDtWl3&=UuC^`y zQ^y5PcdexF`npO4;XVbXmU&kVO)c{)tz}-Ia?(G*t;+^6&lue*g~Qg>$o_Jv+dx;0 z5Y73zjx_90_@!qZxH;4HceL&>O2N7Un*VUd!An`L_dsetrWG=%N`!w8a*YRxTsaw3 znOFhq9DXp^wEzraRWLi-wGxcv3P@5N1kFQS4OI>CY>JC#W@-XlH)Q++e;(r6BRm32 zhq`)#xg1`yYF~4hs}L;WO4+LY+rwM~gt@TRa5Pro;K-s;b21XZuhA+5)BewfKx}hCW4n(L+$i6iQ?Smb0mqda!#<+69EmkOxiLb-=$GAH3jkUwvR2?;w z?;TvXyd>$2v$L`*k!+ZkJ#`jB-#UH}#kmBHpQ+^ps+HL?7K_w* zifc%K_#}bzv!*p!3l}uQ^|2^IBr>BJ9Sbu-Hh?B6Ki?{-2 zQPRoTu5h%)8B5Y;4s*`BT84B+4XKz^`{=nII^Z69aNFo(2l%rMjy>5nxB{kW z$+pNsKDFaRm%ok=$;T6_L@}xNWXj@!|k)3^)J0wO4gafxeHNLscwi@XYviTN_E|%UzEO(&2JfDf+%hF#1VN3J zAQ_y=%nJ|215hhCvd+0CwOh%W;h^N0_Y*_ILXFh$pz9?O#BkU&6U~W~I}Th9U0eaf zr#Sbt>d0i(6V2*@&&7(JGgV&Q0e7q)yHZgV!a=tTMjvwh9w3gO&@^@pRYTL*)iqOV z0;!n>u}hZ+Id^rWp0pflF=g0q`7H-jT*9B2LibQ5K{B$ZH2CnyXrab(7!bk3lGW|tJPQvmKgDYSb z1qXiQ`Uc#_f@IOOC+wE}90+HHTzkhUH2A!wSEXq06<_TYMr?=`L$g%ISv||pID=3X zF;1ktR?_3AU1mXSL7}N}Hd8}W}``h7j*AB1~lgwL_>0tfpF;BBnhFd}Kadr6%`}_;8 zF~alkvkR^X-~fZr4i(Q(ui1xL?_PH|Ysur5?R)qoqSenR_yyYl{}CYN2^MR138!qUurRw#d$yMyc(Z>{B8 zYrFoGc72O<9ihv*?s|$>W}G5Os)^tVnDk(+Yp#zf(K=EZzHCAYyY4D5NWO6OH?E@w zJ2WPI>-q%r8pMo+q~#2__B+>5kinIcNktb{z)_j`JqkyV#GgJe(CUys%0fCQrm-72Zc zJ=fdlvU(;HVpO#sxQ4;kerMl=_rjwO&|;ak-H!pe=(_3OU4y~941;X@dtvw=t}Q%- zcEzkNeU^YDOtvGgfYZ?SKV27M46YlYi)mM6JA$siT!-uGKg~d210nlRy|00g|M^Qv=-{g!Zr^(4AYgIa+R9 zI|r7fUYLVk2blw(sOlaMrlI-7+HrXk^CnM+rt>azF-OR`B>24fLJidBChQmF9w#Ki ziXit6upPPo+TKdjM7Si_T}x;SHwGgTZ^F-l-9wlBiWF30jX^gWmsk&=`&~<{>(E_S zCDse*zKjy<8S>YRj=hywTa&*PXp?t|)lU9?iuS3NSYJXriAt<{$={9yTYE%zi4{{{ zVx5D?EwN&vORP817`DWkNZMf9N~~>{kpJAof7yE^L4%RQ5S0ewU*taXYWNqqrMEi% zMed9P_!qhVDFpu_SJ{N(U*rI74g8CovaN}KkyAgl@Go*kAPoQ7ov{S{t&M+@{auYXn=o_eAW>EB1x|i{zU>| zWBd!7GI`$wR=ik02mW2%{TPVH6*R4(QG7pW8XgcRwi`@txtG2N?zV#1c`zR0m|#rr z9+A)yKRGa@9fp#F3!04MeNjhT>DAzb`{-u;L!s`FHrR^kw5HF&7!SVTv9UIdKVpMR&a3I+<|n?%>y-0L<4|6ID}Xm@(;BbXGz82*I_@p;om-9omjGlS(fZ4Bzj zn>HWCxDSJy3_UZGy5F->{EJBQ43g%;gq4#GD~k*2H;}eBbx#mMK(<0O{J6EdDQwyt znIzy!iAi?*NvJLcWJ~*+yB`r$Kw&rBS&dPT)E2_!2{um_yt)9!!*^S{zZP1--L2eB zK^qReX%6Z%s{8m5D7AM-!iKHgQNYaAqwcdpF#r-M*_TldX1rTm2maL39SEh??iwm= zh=p9xLk->&*4p6!aCIAZxvDLuyf&kpzAw@Oo=$V8!I^Ie)gziQL`=BSown|wf{-t> zQplP>!phe6?&)AESBe=B3Z=1eZgj$xZ?5UTt}MB{%KC?QI=CCb?k4v&VJ&QFcDD!X zx!wp3%gpY+U>jFTXjl)MCAg2OT5Cw4@0P57C=#S&iS8l+NL)9h^I^&ES>Om)N;;Qd zOp1GfsK-u;9D(4 zU*nFtb9fpWneK#iccJh%d?(#)1;P;KFNm?8@Z%F=b zs|X-wcBsGmZQ$TAk~q3|fIANC;!24ma2ypJFliuiP#%Pk_Uu6SM(~;%BujJ*ktdaW zb4*$zW*^OcNQ1}DxeJ={v~tOThU&H`qE^7XR_?0UqmUa_v&UVN9wkDfqs}5z3MO!Z(;y$fvjoEI-*iP}Kilhk( zJiTzfQ;ZslM|0WSOEC;I%@vk)F(k$jQ1V7hB)pxqqA4frPClUUzzBEGRv!GS zB00*hBlavZQp!RSx4`06^V7thGI88?YDQddA2dXrQ95|734vT{ypI`n6$mL{7 z%nmQ%M2uslTpY?B?Ve&#b!9Y~<;-JHvTiqixw#cs!j)oe1)yfI$-4O?RqZt%G(qNz zr$ZKc=ven>f(ZQxJF_e9b{;H}!NBPYu;BMZ7oE zXDK3PeX`f~^r?r(w!p~-!rEEru87bzEjX&ky$94A#vGFwQv@sJjH!4cGA7+B>CQwn zIS26!Otz-Ulijf(l`F;8B*qUzpJjG6^lfgkx?^F~6nAyBF`U>PLWsB4H}-A%05t_; zbTE@8I-U@XnLaHW2G0h>fnJK5>fR`T*&Is6uDDqFj1D-CmD}fAt4N)vyYGl#8Ha+z z%Q407G*H5ok_fmA-YRx?RJGOwew$BUa^UA_SIiOXiOknrBn;ul!Gztg$s_I|+}mI* zp6v3$jSvt>{5BYRc@;zI2G_m5kVJs;+h8X+Hc{Fu0%y1aB+xA31iU@R-JJ{c`+X70 zq~I69gl~)~dBGP@eh{qLJol>F!d(n$hNdrS%2A%{@}Msy<(@nTR&}^xZpjqr>j9h+ zh*n~`0_HPbtz=eHJ$jIb9|UVodQn14)8UFPwV@>%Rk6@=Vy*j-Aa-BDG!MNTfV=u=N3OSFC+wYSW=@W6q+5z_FDXxRZ2Vlw1evOJB&VVSv4 zW}|;5y{0PZk(ZYqSELsw4ZrD2TQ}~;OLu}TxJ55?EWANBi?llIf7-j=ZwTaMrgNx z#;0!OD?z;xhQ1Sls=U6#4%JB~CHHwCq+%>S*A6o=U89sF$w(|xtGC@2t;7~TS5#Xl)jaaG=ijm-!}uyBjhj5jYnul3=uMj!7<+2STdY8 zD%s?rr;dw?I_Tw#ETXeO2g}a7cZ0R+-n27~%odbQE}}e4@NB1gMFc&(m8H_Y2luK! zD09h*%Y^7CN^7{|b9W2jO&ONP%_AHv@%=qM0(Onyzf%8Kd_P&sP^R#cilv(zSsI`J z-pi7D_rzyky4`{ZM&iunvwMOWS|_T3;E{5|lm5Kq4iUvh1kPvo1cU3Xg04 zjnwX*U?ABFh=EN9j+AZsj*rN{_qFLrHVWpf2Q9Dux@(61p!DE%_e}xje5VX2h0(D0 zx9(TLXvDkMC&&P8<^Wq2X!_3G2F&29$Osg*g;(EO*}xZQ{d3b|!7@#I)Ww4D(VCA> z7eCG#KNxJ$v=&Dr@!?O(d~@}9H8c00xl9qZFf#vd4ciahmIEZNZ)IQ`#k4hp_VW^J zhrXWRfpMK%?nVN5hn2I;&cPS!!IM>lLqED#iLk>jOb?$(wma_b0{Dc(sa6C8zbefG zP&4%XvvVWg_LqNgw*$X(Sjfow6Il4G`x)QX?f>oG1wuzL<>S`kCsYSKF&Z7r_T^1F zde=Qx0L?jUgae}I_FO5Us5$)Qo_mF=wWf=?zFm-ohe)>Y@Q`K?KX~BYr9b79R{id7 zh|YC#t5*tssbi{3QgQH3Wqvn_`DH!te*tdp(^hXpcO0^%X_2m&E*rsy%YmY1kNh-hWx%)oYj6 z6ZCxprq(I{67<6~vEdTEjHfp%Wwr^Ig_lo_)~!;^_5>`8Di4=pBFYyEAeUj0KPDZI zEFT6YaiwH_oD1jGEiY2F#<7C4hf`FaeBW}Yo?NdyM*vIJD1Am@r+wjNd*Bf&x>1-p zr?Ln9Zj)%E8l}&l?!X=E`yfPBiao%vM&+N02i4~AA_q*&!R})YaI`=7)2E)eU!*}@ zY3DtS;mc9wFMx}j%t#>L8eP5uT<1zjAioG_#gvawwblgkZw!PRp-X}!H7P$Lg0LKB zb|fi<=18Yw%WDWAl&ir#g|m!(hxSx0hkQ7Stjd})D;*36KjBJ+F}dU0>Qew4v@D+* zt4o}s`QKEUM?>jBV$U2^^v%G1>ubIXs$!b|qgDABaU2Dvfgpzi#+ny;!>fJD`J>!j z5R2?6H#Y>=r<>@!5}y8L^!ksuPR-hCjyg?{ds1diJN;hSuKcZF@mYdKfBIdGKCI)( zF_?b4a>&rQ?gre0cKZEfj_d~dPeiW3^s*5459Z$@r49=hX->OFLG*u75fV9vV=SX{ zvWzt6E~Eo#<=v}@_X!q1)0H8Vl)Ew(i!`ru`I#zW^)cA`{7hF0v~b6|m$#}SHW*_( zU74qV7))1wk#!`K|zxw!8qmPdMpY79|fe-L11fK3&UZC&CQvZJC8w4@jj2$zo0Q;z$Fye_(k-eInqMft3c6t=RFDk1XW5pmju@ z%1~}KCO|)!Jc+7EFfqUVWNY|VR{2!XLxE{9adE&Tjch&n8%@R!DSyyF{F$K9k0u_fz@Nq#M3b9iIKatMSwZK77fRph;ZQz|@am`@vLcU* ze54lM2OR&JG2{DQ;gQ?Yz5||#qWG;My|StH0o6HRBs}z_q*`?Ek2gqJ92=a<<*BuP zomXlxDvk^eVR9FVg-y_2lU8E_vk7jP*EG!2LJ-?bz^3IV7Pp{^Xenc{NGEH1)(c`s z0_P_dx7Wg*3HO8u;(!Upu{c=);bSq!TP)&DeMwr42|iho`?kePR{pldmncpoeO%Y` zsQ?~D9CA6-CqQKwm}ImrQpKP9zyr^14TlFBcpftti*;-0`4Q~U_D*6KWTnh*;7%O8 z^s5>-_PhfQFeo{Cy~-8f=p`PQ0NaQjld7dAe2t>)a{b62$Q3Y}6n4j}?3KKaafR3l zo{?tHLD!66TJ)pW1yseNSBoYndflh6GzC@+< z%{==B5R5swWlR?7#{|z@L41Y4`3ZhoG;r|CB+sAX z`$%l++Y#90;28zNAoi6Z_SCU&O|HM##|u}EeSC>x4$=pyp1T3y-&n)_5TRCkaE9XL6z3wdp@=f1cX$p>%!;QEA` z>B%LkYMx~IV8#d3#0n2WK6AY?!m}Fu z#etBS!Zo;ar03BPuJvFdkBW>@9s$&{sO+7}W7BBQA@LgJii6a0b=8ooUvtnfJESec zE_Vt`#(9cBA}i*U&~?0L06LVtX1u2h-~jOuqABe5#;7>ZmxCj`wS|i(c&rAkb9`Id zay^4otu=#=Yrg#8of{EwUY=*1fqj0T=W&8XTwg>{#6BNmrJQ}*8)zNow(4AVB`(dx5}l`21AQ$bj1DV8D?o zYuk&XN5LtgyIoKZG=*QAI}x_8U5<84)rTKWL*BU+Mojm#5ySFe#&pk+pr??TuWdgI zuI=k-A8eh6WU)592h$tk`n7N48@M%e~G0`&Rkr?zsRADOZXSr!E+h^BHKZ(;9ukm=2iR)jmca5 z%lZ}mN%G#;_!kL%*YGbA1+L>?k4Z;nc$x~}H~b$y1KwVY&hh?g!C4pGY2!){hD+Pj zuG=zoq5=TXi+HDk0@GsQ2&!KH~3pxLF&X*5u8`P0Q+t(A$b%1{@ z_6!3fSs$=?jfZX-8OBQSFOpX~OGlS@z6k(@tPUPn?imcLKY{$ZjSNkqbs-$H!V{-$ z*c2XIfjV5mfs+m~NGL{%7$k?N--4S8zN!a*SnAmWqZ&uo@I^Fzr6(4STczz*y15d~ zctbb>^PzBcXA^jPs6j4*r~(|lqDAClY>0!_8Bwx#=?LSPda#6O{lkhILuuh zQZ)c|0#83)JsiGY;%Ni-uhyc~He0;flK?({IFy~%c-nv)nzlkAJi5lyP$i7we|xeT zb;b?J*%^9!3a30+HlU)Q8CQVY%Gy+*Y9qPRqn0%byspy*X3wq2YRquc1IQt)MZTQO z-&p6lEQB=X%aP0nf#$3Pn?{z<7-nzuEc0pE1d=0`slLrOZ1UU$9Ab#sZN^BVr*3(Y zh!N2vmV*k2XL6?)87Mt9%z?s;ot_A(K$Y%0KAs(_AdiWETI@0zz zVL8VSZ3%J@92%m<2(Ex>5e7Z&c^Pa{3y(VSdREE-wAta=5n|`6WEUYPCo5Pn(OCd$ zC!d_;0EikmtLrY)%k?H9Sq6&Y5kF$==>sI2Du;#9teEOxWU9)ycXGh-66wSH?LFiR z%mB4-?d0@4szdPfT0)n@b3_z>qu}y1AmmpbeA6eT9mFdIWFEksLpl%5ZjaG9Bz^Mb zwOai;ukYr=tIg`vkxb?2TxCd9q2h-qM&XhCgw+)zK?_z4kFBm)BSsa%tTh$QeA`Q< zYbu%upraa~7p%Fi;#~|y#_n7%TAfb%N9vi5#EYJ4!e{p;z|$Xj__KS=gXq~-wKxbQ zIlDK5KyqjI800)3s`BMQ;(>jhr$Ux6W^rJ57lJ2Q3C(TJ(CXrnLh_h77f2TP;*|pl zIl}i0AxJljEb;-A!$_a~p4S@-doUn>f{$^s%m)zJIFSK9!6zIt?(&`wBypT*wK%;# zK&>nDUoiXi-F2kPr#$8W@F^!2b(GHxq=#iVYy^EQSK#ZHnLu^G4Id8_?qC+Ydm=)9 z#9bQrCc(?7f{8Ggk~ijiDoJcq70;;W1@Xm>W>h6z==RJE}t0hT_X9 z*2BfuJtx(DkO3YULcFH#BMUVT`qq=BLZ17rXC^d#&+wX1NI(tSeCIK%@shB+>O0Ra zaEZf@PA9yGfrNooW*3@r#&B(*E8b5ln#gN7fCmj+Ki8W`%-Z5IEJDxe} z<}ClDa?MHpX*^NRKPvRNz4YhLo^}Els0Qc-=l|+CEg~qAe>f3Up58HBPW(aD5Q|Bv$kU2f1?QM>$n0)DyIW z@XG)cez?|X&KQ4a0Jy}#%dY9+7mP8+;XTMo8(@eo1qm)LUI^N-YYGvSRRF= zcH|xjAAmuyMwpk2EFlMWs#P&Z-KZ?`xoogfgHX(w1dF%qY5+I_w4@I=B)w+siVL8W zL#Y`PlZk{Z(kG27x`|>d0_XEZjlnI{!mWv}I4Fo|lgTGFZoeG^S>*+R2bxrP-*D!3 zc7?&K?JE+tAAYuB$iV*IOJRPWZvYQ*i~1MkOJZsf>>tJUl`aPiM@%04Bx2r(Q*M#HWzm zwUU~(sVEl2^Awu+)BqJUaj9d-JdjIq^W|5uG3ebrp-;K&Qu=jX)xD_V%D|;KyA$Do zt`+=cM}Kpiu?;$KVqC>}v7xmRhkBK&qMlWDC^+HM6`kPH4eNs8$6uGWf=A62QLxrA zN2L5zao6YfjfF?d716k?so0L7_v3fRwCJBOR~!~QS+!rXncJOEAc!Z?IRwXl1m>Uk z9jBMSiIej8E^zyJc=^k2$CogZ@oMA@8Job|m|20+$fSyA#gNHJI@F^`Zi|Jc)QYyC zm=(*WKN-H9T5$ky&0%p`MJ`ybZb&BplVRKRim~d}Xe7*y9MAnTN4cmnDRNqLH_?=` zv{Zo!GVl~Ps$-t=S;vYEg7_8%r`hKy4^CWVFH)&G`?#$J*+*aa592C7sQ9YfRc>ir zk3C zK|rjr#0Iw5E3ZHldy54u7%bQevUWv{Z-4Ec5qs1aG)5DX7&Vq8CPs}Vz+R1 zwOe;pMk){1O%3vCILMLfT2gmqd_+WJH)zgwGk*q3T!SYguF-NCZ_s=*Lc2lp5wWqC z4XysvP^wcn==6?xhEQUpVmHV@eh~88wng%p*{r9&D!}e5QuRUH#0JIX*!~myM?rjgE~cdZadsXb8fS46_Jh z-a+mk>r-o}sxT0%1tV6$wlig<)^;XQqEVr7(;#zuj$e*t^pcmil}BRps^ zDT!u4qT-9*IrY*1ZsoUNQeIMq&KgqEN|U(($M1$(gs0yOQ}uV;C`hmFRGspag-}`; z4yk-$5{C3()buEje1UFJtponT8#VpGt%v!3;9|0QK%k-dE7n&Jv?}*O128Scyji%b z4k+afKdG(iFiZ2_HLu~tC)6{5*23WW2qjPFo`B1#=3EvCZ);S$GB*a?A4x;Tj5Nm? zKyDss?kt3iV!Si~5^gujT$2UIEAhs9$m*lby;#Urm0cTz_7o)EbZk(?)f*E2WQ=*a zK#8TDABM^UOKAl=xj)sQstI%$XTDUx2*BefXarKno3{v)DX!FbG*N9;NlVivn9uRT z9QBzt9*vh-rO-({q8e0s=ohw~DU9RduT-~;V&c&z)Tf7dv>rZF;t|N1V*Z2AldF^iQW-YzM)8gJ%|4t^M@uSV zj`;-tY!rS|M`ia5Ws{*K2k`Z~KNvpOJkx^$|DJ1}D|DthP!#CjL2XqPC_SEMZpDlJ zsAtqWSd-d}-@(FNxA=wT5Iwm33U)FJPhP=7q^}m6Hwjc9T0eGI8lqUl&Jjp8s5~pq z0Z3q-z0{oKK^@PQn%8|=PS)E3QvRY zJQjh(r{7cqgR;$Kxl}MN+uV?|fZS|zXptXaSYG4@ZrwWPUo>?bG?+y(;8FW4fuO`H zbLApGp@tS&&jiM8ML@eds9}&x~ zZL0u$J74i9N5rn7&hZO6^b7i(?uZx*LBit0(d3AjhiCYR*t1;oETQ-qg*?ceY$5q) zKoPYSb&n%0Bzb)1_9|d!@jitmVXJvMFO*lo2r@2m{Scwh$CW5*Akk&^m&$H8|H+Fr zRqWBk{~BA(^M(3qGsyL`v;{MJ_Z2}U8(aw11X(uoB^Ghl+AZ-_)GmF=+jC8q0pO0^ zd{S($l7>B^SC`*7%ol{NYBLC4X-VMQkHKMyB3oKVR)Ugr_0zieHjsVbMw>gT-0yB4;6NH6S518qBW2ghNszT%| zQ7DCsCRd{D+hhKS+X|-ch0DtMVIF49a+lkqh;1?>Eoj&VVEdijc1Y0^I8j2?p|uR4eWJjemp{_sqW|DiPzW`$a@x>rDbXuVmkNsCZiC1Z? z#_=@1Bj37Fo&v*$uLUFo+1xKNj*N_t?_`rvFb6N{k9aJ7>i4oqSa1p#O zBIcgY;h~GeFl$ICSI1YRIvEX+nNq^ZmuOJjk>Dhs%K(sN4}bYA_KT= zOOmIEh!0Y9{TO=udRDFSLVk_fs`>(GdB(g(u&IxT_2UD2yQx+*I?ysUaUbrj zRN+S?1(`L#@n4vo`S0N)h%O(}+j!nA`0)HVlHHU1TzElYXT(_J_G}6#y`|^I z+~f4T0LhYQ$>1hh9nk#m6*c&VGJ|p*xq9O~idP#x!s6w2*i>8k@RGSZ&$m~_^Rad+ zK_O%5!pCW)t3B>tO6PAVIXHCLyf2V4Y1I_bFFaMll4e`W)F)?xrXdbV%Aw{2fs@r% z1N?Myy7AZ*^V^&-Uj;>`-4(R_Rt-<^Aqh_!C=#B)+Up7^Hy^D1)(k`nP@cADM&~sZ z_ENpz8F2nM5D=4>%ED{r*BQj%DPc%T^79SzWKKM%l9Xq2d@S>l+DvBi7MAVpxN{)w zJGcj+$NBU-n8y69#rfcS^E8MP^n*D^pm4B)gnwvg;~0;saqp@O_^kkwPNV3e}x_l?dJ4OAJ*m zJyiIB)@^pEzN3__nHz4vN9s^@duslZKTQNhw3NoP~8~s;VlFu2xVeqRxp0% z4vr35rh+$;LnmlAl50-Dg0U|lLSL9qfxeThwS?yIvDw6JT6THb;59~8BmV(Dwb z%Rzm3!7I*Y#Vx_OU4>sL zbeyi80+}T(CI;|vNlRDZg&uHSDa$Yh5ceNe+R|PqGf^E8?68ncFwbvT9XwiEQ&5WxWaPk5z;W9H4%K7ZfPS@IJ$^6` ze56D~FtgjBqF_N~OGo~qOhKN&&Qla{PI+*m_Wjy!aLZ&dI;CS68Q@+IytAu-S^2z9 zuzy&=o>6RRLj4m;FzVIXoobc}0bC`(MOg;dP!Ala>$5M(5R{*U^?xCUd?kz+g9csxg1k#49-Z~68hgpUS!=MVNs9hbLKV)hy%%ECvKpF7mE2N@)Wcj-tu#7-^}+0NxsD zNdV7Pm_kStuZdkyg-wZB|$`VW^uW@l)h-ueAH&jkT3&mUQ6|MG|*}o$4gjiU;`+xRh>bD^k$f zO_}&~gMQFt5khsWW@6|Ue)l<>sXmO)bKZN;JzI2pn%1@i;>CEfxD6kvlf}C;E&cgI zlbM|rZnBDu=ZRn5)5fgZVEHUdRSv%XjGh)mRWdhb8&4Ajh_p~IQn<{Pyr0s5VoNhm z)P;}SGEwuy*Rw5keE4`wMt1~5nJwa1$b-<4P%%k!=2}+x@Pja(?!1MHw?T`ybb+O` z4?lXc_Kc>AVpUK)OcQTUCeuVCNQ6BVSa|N~#f7`mjGFIqkM8!{~a#p6& zYYHx!T)u}2PwSVw?MdEb=?I!`vQ*&4fS#Ky?+W8oX!VUDMg5#ieH5YYZ%AF5x!Do| zcNq(y^{GrNlh6trx7F;u$ zpXtW~Z@!06UDGO+XNWJEaEcEyU!3BeA@GHa=Mgi;Q^Z;L$Q@2YrTP}jw;X?0#+KI- zKT+6tj`(7VHej8F8a4b9*O+rMNf6b0n;UUPWo@a|c z6cl>4pyaEC$S8to6^orLJ1(?rMM$y=OGO&Qk%bOWcd=KW6 zW~g5r&*(dM0rIG}bE! zK5dyR3}^e1&#R=Ut?EFG22EEu;S1s&?-r7xKel|riIXWXGA8vuf$N-^YBMz^lfk}E zEFBGS>g7W%Ecbxp%C|IOaWo@STNavPne5_EJZm|_305s#G>KEwQ(XgeysV(;Q7UkU z*YH9x>MO5o@!eRbr!kYpN2p`tN#huNq)ZxM!Dp6J{0$jdo-?jd$au~;Gfg{Z9Gm80 z&M;=2%o)bd+(N}MLV1`os3XtC)3p2YMbcEsbn`{^v;yXfx8$)1Bvjnom{vh5I6mz%)9fQL3+ z?KTAxVb^YB$$-$O=Bc@v(kxbWAk|=?>e1k0r<`)q*zYZwoOlyyRX>5;QJbk?brXDW z+wx4HaL5FLWAjrMC4s-0MvmR8S?>f{0~CKG7o{2u7@o@52KsUY76Hrn4elSvEBi|6 z9!;Y>e56Db$?~(s&T)+ivK&ILuk6oyj8RnTC`rjTIz7{ zEGw!$w%o+=A@UjzZ| z6z?840bQS1nt-WKEhY7sum)ia_~n^`39sjA_sr5!4|w>QB}}L^o#8wILcjgok|0tH z=@KTpJaCkJ#7n6L1A%uj7LC8BXf>Ug{F@_Yj3@s%_z1fxE@poFA4~m0d_Ngm_S4=J zHulrj)3KjY-xkGzTRv8UT}5NYiJKZfgN)(@<42581yBB&)3uX-hFdZjdEC0G6*-f1 zyRg-d<2PUty(|{<<*`^xsFr?&+)EN6Em+G!xyD^Xs z$t6dvW~WuBCVv2BW54CfAo|uV7Ac*Qxu0q>w4bS-G12+Sod=M&ja@Ui%hxJe_G}ZX%10@lebEyUc5pUyY0LBCkDlCPTw(jSJ zhKMIRrf5>|y9Qo}4;c(EXKl)f%~W)Ghv;)ZYpBpxZN@u9z6j18R~~_jAC>h7%O>3} z1U8kkUIt>TL|>MYW*Kqcn27-CZh#eDyfKjKP1y^imJts;p?9okg_V0p7@<>JiI4Q? zqd~@z{D$CC=dWWyr^?nILb{d)t}HfHZB++D602CVIAMYM4B&S{r>a`vJ0YqStwVhv z7}AV(3o+CU z+-ztPXUO0=f0924CFr`47~IJZ3;$LxhOwK01V)`y2x5+xXx zv^>>7OA3xyW>o=q!mZnc4-pSuVswN&4iu%A@#PpsiTI+hudwwfYuzs>;Wf$s1)@K4 zvYj~di%4rpAO4|CLiXPK6bbCTm!UziC3P;yMxlEPOUXlN=4HIMJtJDd-dk~&)_VhH z8F{aCvx&7V$4AU6z;nCEBhrviF@gJ^ZEOl2?t-qhG|t);)bD2XC*Q?4Z3buI)|j3b zr|qewm)hL=gzquS^B&3o1;fL#rydlU-9rhOg`=p5GL6L4r|<*URj|}h;m~T-8lM`H zm+{lYR~(1;b>lFLXwbkxUNyLm7haL0p9Ci|;O?)}sEo?c8!(OMfpmEr%M3M5RC~)=-_u-$) z*s`zwNns;j<-P}HI$P;i23LuR=nqU7>*i%#bq*s`!LAyTp>@^Z3`19i6Kw#;H_Ir% zRTs%)(S%SjNpO;#1>a|3JTES}LW2k3Jo=m;l;PPW*C-esTrwJp#=2y1hKFrUO5ZQz zhZ|o}$xC!fUP#nq18@7-V!_?=&=0pkIPZR#o1yi?g&D8nhyIl8svk=I`&b+E z!e^*^FP`Tx@H})NN~+r5T9OmKEdbqRfR0{B81n=w4YVHfH(Zf{hXbvd!V7J8c-8P+ zZB^w1w+3173BI#c@$e!5ZQuz0R4ZCE@V>Lbq9NAZA_cBn034DiqiGb@H-9u6HLKNO#D_$A#JSnfBZL4v7WYjesE)eTjPwD5WArQ*d@ez zGAOzg1f_Tq5vc|P^ZNM}N1`}jhU3fe_AZ zrp7CXD(`C}Vv+Z~MMO$6EUG`%po%J$m~5TM2^~@QULxY3265me-1BcnfAD1pzBsZb zEW-wmohbQ85+%DPA4w$Ylk<`D)2thKewK_ayXbTZ8@uT6_q8kk#P>a{{0&t?4*G`} zKXdzNaprQqf_>DcvkbFaG{#3I=%b}!Aw?{s7dI>|U-ET~P*L5m0vMcWO#ls7xtIP4 zW8l)?-Bz8ygeiM*&j2lD=$^F@fi9p$jX^M`Qr(=bsu1vy!5oIVU^5uA zJV5`|U#q|3sQ6`S{k2S{Cx5+hsu&nPANp&L*3e(;KsfLIS}RlQuVpe{#a{!x8(>{@ z&viL4c7ZiZ=!ux|;=N(=h)@*C(w}NjLxM87HfFSmE}-P#mxqhgZM-p*5;TrGlISsB z3SMmO!o#A&7*BTD`4k>@*@>B2mmQh;+FkZ7Mx26OcAw5TcFRHm#$^GXR>!Wee$Smp zVtRR>*+CwNvxE@kwNl+|>zf>R1M6w!&SwEYQxR14uP$05*g+qyvVO)rRM9n6K~?l# z3c3gPJOkxs-E+4*82{Bh`@iA{1kTaAXO%gg+;hmWVqo-I=$;kBpnFC^IPdNmF-Pm3 zRpz{kdm2xtpwD{iEDy>2FYB$_J-oQJY_QH3CLo?^FUEQPShZDkQEB5wYa}mZsL#m3 z2hD4lk@8SeG)VS7DA$_62}=t=A8mk+Cw+>Z%99c{CNiUpC;gcvKnU-c!_4|t)VpzF zz8yZoi8=JMQ0e(LYf+v*C1cAWN?GCQ(w)%lhyI^)Rq+7bk561Moq%)he^p+ih=?tXOpC2>Va}u*%L8GH2C3<@# zy0)%=#9R+MG1QQdbqCd8;6nCS9EVNXaad2Zr(1T+12^|uTYyTF3Cu3$nO8d8q%=T3iK0z#pXL!BvOv zJmj8U?CiLf3beD?eARiLP3(+<;lafIXJleGUz7GfeHraj2P)#{Y3JgO^Ni=>d7zZ* zN)hnme(MlnD1>nbdCJBpxpAOVPH2kQq0>1{a`v}86ckCaD5Dw- z`tT_V=U3&}dT{%tb-~W|AcX4+mVb?2n#(6FdQr;IWFI}?BljE~D*bT5TA7FII)W`{ zA7dzNoPG44ug$J{%zy3KM=3@$57`G5I@ZtEhNLx=XsX9bpMPmR!g2eMjDrp9Ai#>O zk5H-J-2~qx`CYcY$#bW%Rtl)05Uj=BeZ{(s| zK%vZr?DtU(svSw~uUqf?2tHZfjkAT!9Yy11jI%8>g4j5HgEK<7AdvBox@}Mub#9#b zSAvhQZQ{&0^9Sq0;#@32mQAxUg^W$JdY0BSD`gQqy>jATfP2HcF@oOm10OxIP6P{% z<@=&v8N!ePR5|9~sdAEDmD4|762eVqR5^{(hQ`e&Gpfw~%_!;HXX;cr zIqS81`4UF3g1!7$me$J;yCsv6$thJ(?YZ?J_YIQJ%MQ#cc{IKvG~ms>MQ!hZoqt;| zaCZ@E55xGdPK#B)xUCild|{o+Jw;e?VAg}Q@`kliwkW6`{QL_jAM59bWu^bu49NV7 zny#}ztLa(`3{t#@BFuJL`Pf>3FZ1EF+Y-XKz1cX$Yqmf;?bZUfO4$B;insF>1stst za0C%ho8m!Jst;xru`TB3EkJp{m&8tz$2XHuGD*;&LO6ak#`CgXIIO_~(4;o=mIa>Q zf}M0@Amth6ZW&NMHg_BGdKCT1D=PZ3PSIa_u%y$#ycQbKg944{p3aEAd_A&#{))0y zS*Z1riVM|*O3gY@JZb>MGPXM4W@(#=kAi#PUM=Yxd3+-XIXN^5Wo#i}@IUU8U_;8< z7VzybDKEx#LrV(BD@dvaaFnz4;(IOhye$1u!SxWZ8bSrI0juJ|*R$<$?-hq)u5Kva zC%R+zJ#fIXmxlrC=`m<)>miKyfVF0!c5nFoh5tSE0_!T;GQHQFjfdyMT-ko0dnH>= zdE-L$#Xy-BGg=nGOFH+p1o(gS*AiR;Q>xlxxQSp_Ra;~37jUPlt)b7Aba+(!!231% z)XzbyYPLXlN-MFNtpWEJSXRx}oJ$6uRkKxtwN@Wgv(=t?392e9bt0_9nw9zstQwM) z3en-epW}Z=!EMZ})W6_Cl&sWb{QDe&SFauT327RaC%J=u;Yz$eqhGjk&Rz5ie~o<) z{lXtc-ABLhS(snouL`O76wd?Hh+kDbM89B8O0FG%3d*V9m)tt=PLOSXG2RDWzrfx) zFz7$sI?$->8;f9%com0!!PJ!8H4r!v-Ta2v3@ijOta2cuj%|d$@guIT?K81HMHd`* ztd9?R-<$@?snXL2d`A+1NHnY)v-@|GK>`xYXFz85VI{*3kBl zMZ#Z9ltb`nC%cnCB%pf+_@>@2UuAdj8M3HY&it&7qKT%zYsRK{ZVK@f}Jm7%amVE(NTw=ToEAEZem-^i9b^yX#7LKpB-)e#m7u@qYZ7q zmQJ>=z6cuHEB;8YK3LwwRv%11W+};1(ePD{@C82rg5&!Vd=+hO>%fTti&Y;X_v~Oz zR->D-CIf(POIrjBk2t8JYQ`UPup%!2) zC8@`wvLIUz<7wR6w)tWv-4oUTy769IL^tDs$OP@$+ag(bBq!z0l?i7|C)nizJJ>9o zXlH0Dwz!9BcH1In2fuZ)&1I1^daX+OGs}A2MiJ7vL+^N7M_#;4fdGwO0|~WDvR;j; zY4s|zz=*u7F&J8dZlRcwqi9WNOXLO%@gFTqltLR2mY&fdIM_DtZaW}~ODG@0HN0vZLJTNt!juGn=X1Jd2GhbpBlq$!`;w#Vknm0ukXj;a4Tm-F2*|ATY<%s7am!dpXIRF`s`XmV-nt63Kyc)pgkcNB;^6n^G zGg#iw?!K)^|mc)ECN0>;6YuN$J^EvU_oQ$D>Nq9OyW#hvDkvr zsTM^6(&CA>nY_4|dPZ{H*vYoh;wq*Y%`bmWw)Nx|gZL>hrDKqA_}DeY<`QiT5=t@` zOCL_P_2vu^nx)x>iHEcZ{9>q0R7REQL1U*jVjZ+p*vo3rEsC6qb?joSW9E!_{(IIs zZX#~HSjV^UxoRCLGi-mB;GeVB@fS-Xj=!z5j&GNG*y%Oq9vemhl3k=F^RUrNoi=zA z9AB-s{Tj<;>6p!4so^49Nse!^Ox;tVYGbQ0^D-Heri6$|I<^>2V|-VPM)pq((XO*- z;M1kH-}xcSw0m=EKeyco^qvVNTP%{TEtu78S~04CT@6^s1eIzb8@<$3^t8_L)v^U> z`tGY~8VX{d>BR<`E@PsuFNaIUMZ-YfY+IWO;ct$d7#9}SBrL36P7d z2?x7MEUpC0AA1M7_)mT%Sj0uy4l^8sUx`Y$%R>jQI^j8>MXPKr{KK0X_54^^913QP z-%#Hh(8VqJwfKY7@HaA=X`irNYgEt&49>PS_rL`=af2UzUfYn%;S(E97$`3`NGJJT ztm=iE54Tl4ny{)iWmQ|zIMNjn7r(SYh0rFZ#20r^iZ8^ynngV`w5TTr76r?RR9t6! zhvWP}qSdB*Q=_<4dx~MHx~}_uJJcHP-e~c24Kk++jKD*%Iw~C z!n;HMCaOglE--bgZDfeyBV{Bb&`83)WY?1BTsl%h_XY+gA0I8t&l1C^!Q(eK=itT~ zL=81Ug?9ttjW8M&WPD(=i0dh)Ngmj1yDbJxGgIk2gdyp?9yrnrS3vt|8YpSx*DnW& zk$II^>Tt=FES{lZ@oEXeKAyC#Rfsy!EeyCN29{%9)Dm78=uysA2ACufeQ33nD9YVO zsANS%_1D$_i}VLLzs#20bI%*R#<@2H1doTe zuE=7boTi$ptx29(D8TB{nD~Kj_-M0&$$48LhP-4o&Ea!se)!E?D44(BHijQ4Q;<{M zek_GJzTFCK%G-Q}hopwKRfP|@*$Qv?C_u7IMlugs4RwrT-U{vOqD&$g`;MZ8pFJJC zbI|q{_}kB3OWdH!wg_~)njfOSV`J?K?MsTx72X08Ei%q2JXq1&hiu=7XHft0wzs;a z2W&@F&xKc(etXz9(f|~1yM0Gfz-#d{pwLlUT^3$rZY%z!xvgdf1z!P8_YOv8_8FfDahs)$Wn;og_T-!^I7@Y%`KOatYCBNyi#j!9f)KG z=GJn@mExf5Dfm(L{WxfICRIRBHaB>s*5*2_d>uB|TpD7;J*E5XB&Qnp45p50>FulKdaq`f6>cgvUpQmOv0sNzjp6|X1SQKsVMTjz!XxS*R3 z#_YIK3>+$Ehh+jg!wh?$YC=qgO^LZ1iP;p~ypUOx{^Ty_m4ZP5DR2_Vt@eSRbh3mU z9xAzscydp?c)wtVXm2Urp_{S8-vkwW?WS}na;S5fIo^slNzQ<#h4UDGZ|>JurA=0%*o$SM#&XmpUsOa5d)0< zpt(haSEH%T*nU=mXBF*-S$K{8Eclo9vy9O)syEA@VD0CqswTtb{~`EXwVz^D?N*Mz z%G%FmmP8zPQfohlUcddUXCy1wehS0GZR|RMUyUWx+0XQq7d|cq?woeSg09t}AytNO z?v&cYj#GuzT0`PjzYasy|F+Y>(X3WnRFs!ychK1MgbHIq7jHnI%QoTC%p1in}CW`xV)w91N z0=gOZwG<4fZ{N+rYx+89)E7Qzw6=l$inxQOiOx4ryS;~uP|<;j0%p(?jFsXVvFBDZ z@%t0htC#%iG<=Tz4{t`C47X<$;cv?%27rvM+dGwDDa7&TS8LO+)2m;5{JzXc=E47{ z>AMsd*VL|?oy0YseDK&A*$1;u*=mV3A)Jv9QXN!B9kixW198o3a6z!4nfgV`-wQcTJ(2abII4%Uf_ZXAv}= z-7)IyCG7SAGrFi$Dz^!YYin2Pl&?qZcrn{G@VRQXecRaw^4tMJLC!k%u@vI?+%;OW zU9;x3o9#13u!7C@J43U*L8LR7I&PjW2C8(1X>HCyXtqyO8JQe}GTT42W_#n+%(j5I zU5MOSI^?iWND57`58%Py-R$_tpeDkJ@+E_GMnjIgm+oet$29`0yV;Y)sI`B+#rE;SgJSCvdnYoP-%r zd_!KDUiNz6N^b%he8dvZbpoK5eIN^px1xi4+dmX1)16_~>-4d&g-ECR*z2=Mm=&C? zEn<++Axp>z$Z+)yWHB^uSK3H$e7=rWuj)ac_OoC1u$6zXzuhJtpxMCO;p5B4=w_^~ z10Z;yJ(`7wytM|XVp8Bf3SQ}4*(R)lO-1@)p#4pFgqQ-wM~JCmttLxHlan%r*q8C* zk2IRXDAhYwF#88Al4dA_41^^+FSPi2ZPsG0&cyXs6V@>^e<#F~mk`<>K37BN zu@Uy-h4^=65(7YP#RZ*8uoU9>uIq3JrS8&c4<4u6s}(VR3t=n)*{nBy206y7w-{DB zxqM{^pUsN6oMliq{V!oeygJ_Q^x>U~h~f99b`)$Zi8ww-C*u+%BP{TsD}Zk-!^_Cm zo{`VPG(oK-zh0+ZU0iaDCL_zAV)vhF-^f40B6`_fN|2527eWNy7c|XYjDwrqw`SX` z8r8s4w~OALNBnqk_NnkWa&{^AeR~wgttQBFsP_ew*PqGkU}<6O%Oq*`{c-3DepYK^+~VxleKb37kGQwRm~ zmf6kxV3~q!rvq3DaeVs?T03pIf#~XWPe|MJGUC#Mi&z=6SPpd)(p*Nymf7~L{0FRz zTUZKl{1TmvbN{W31w=>}NziuZ*gq^RoxO3-Ka?kj>-8|?G= zbC6SXRG&fB1i(H2(#8%V{hL7JP4>Qlkr9!N!XhGLOpRk3MW)0=n-XJV8#hi$Nsb8% zPabNL5+|(~Qz&p~qp-;E#E7V&k;&1Krtn5F$%!e+rs&8<;Yra$lOm+tUzcv;0%KEB zk`sqU4UHWNsis6En}#-O91#@-|4B@Yh)e<(cWv^Mj)~JRb3p}k8wE<8wZBu%d$-`2 zIXxU$E%wrZiH#Fsw_(wZVq9Y<>6H{U%hsHK)6pb=HRM@N5w`(CdM>MZj>Au zJ2W{awoz*I|P?+eX@Yt}SP>Mz=kzt8pu~6RR*p$ej$AVkO86G`Rv!e-PQazBzpXH#6M(NHwkwJMGZ5 z@8I|@ZQ6DoT!58opiSNtH?;b|df=T4%ga~uE)-ZEy`mPlQEhG%X!*??UyyLZ-tqtY z-v9T#|L=SB4Do;Ido4z0wc?-P{GglBN5k>Q^s_1Y>enCKzHPS$8J^u#w_|+Bg~uQL zXm^!2te3G!u6Tm8UU$V4{6G4NC;ouDYk#ZgRQS2uqTu16WY4dI`P8*w)Lr|VMOVP{ zj*G(H1NHiR9ab!LH{8Nm)N&HY==XI?pH$zC!2h28?PULrsFn#r&q`ej;j>Z^Ru+cN zf>7|cTHPcR{%V=6~2f;?L-Mk=S0k z0L%Xr$vkv*{eQ5l?{!__@w+L(@$=>Q$GVPgYC7^Q?z5=KgfWxG4^7TaB_rseKigmS z2GCmZx?~YpzNJh9Q1YogBSF~YHX-~AnZ=@E|GwVM)ZKj?aViU39zcI5bU+f)p+s_Rn`7K#im;>c!+qQswKr5O2C ziDrdd(%Y}7BNZGi;V8iio3OOyhf_=_(!#F(>0Gvwlu*nuju&T8AOIh7n(m#H!Z2B;Tr!|+`?z%etBRu!cNd1yuSfp-INEx<8QJWKb1Kkz<7wJ5lfxxC{N$N#tq zgw5ULSKbf?syU;ie?{qdMaM}W@eV}>lo8A|K>c?=4H6&G&G^;G9nhefBaVf~Z&7lp zIqHb~X2=7MxNwLOybmM{Zhbtr5{ses;HSml?tmMCj$x`Jr`VdDCAK$JN&0-*NWzir|CDc)a>jzqf zI^GlqP>%sTV_ge8O7)53`)o!#o)KW|?Q#`;QZ_@xtg_8OVr@sIvZ@bPBRzKoi)%Y# zM7ksLb^fol9oxlpx&!?3=}sNTBCadA(7+J@7S?r~^;rbzBWK0D!o@T$Pt*h)zdaRJ zTYuA09eh~NQPP0^@AVv4#Em-o)fzZjcs zVU8o>X}Tkgy961G!SO%sep00fM`#iL(q=MeqrxbZlT|ms!cKNA#xbG12PXr*V-hQY zS+S0eTm^78*0G|sLC8;42dPkM+p^pn)3Z~5Mf{h9{xKo-ZPHQ!ISXz9%LkQg2$r>+ zRNMz*N*6bkX~S_9K~Pi2cQX;xz-$bcI3aZrJaj)jJCsnv1Rf*0570mT5xqX>pHt|c z6X>6x(Ssk+KRM{1mFS-X=%0P?pGm1pD01^t5veRpWHp+*vi-!Ei8TV?> zE2Tl!W^>815xG!TI6$Fa&^dIq=2!@l2(|@}Iygr78$TM`(eZ&WSfvZXFFV@c*QDhK zsIBN1PAc2x76a)KbBB9;I4-GTB`L78qeEfgJr$o&#r4f01$k=lBNk70Lt@o$-5hIq zA+rE|9)%PRP+x3ESdZf?I(`l+=(@`H@R)F$7UTE3mqk<2TL) z7WH;K5q4_nA)(5uMC7Vi4%`7LkY-g;&@V-g%Uh1B1WbJ$5`QWe-o(BwO!!!Z1iOa8 zSU2PH#w6i9)e1)^f%_OV?(cY?fo}EGkw9@FPXiylEEiyaV;=Va1P*j85+1SLwZW$u zDB5xntotuXTgn>b*v<(>wqVgVlDVvjkA@T}KHn0y$FxHyGGc9AOL$_ry^X z>}*;n7?c`D1I~Td5u*ic2VST!KCmZnWBIf=1`2g4Y@m3M`|Ug2(VPK<{k9W!=mFnK zbwn_LXjE#b3T~(uA4fG(Sd0I73y!33Dv>l*MGe=Xf-=)#3gI`(@gt}@bE*i+jdJ|P ze~n3m;UZ*JRqQAob}oJ$1CAxQ-lVFKF$0aOkV%EdIKnvL7fM*{s9`IoH5LA#TCuKv z0Z+y{k{IZ21DrKMwPBVhq3BlCBV_2x;~f(iXpO>J6TTU?&@>=dA`1lL-gl7q;yWj# z1sW=@t&RjzoWIm$qT>S3HN+Ia&dgDPASkwUU23r8Drg3MH3DD z2D6VzbYV$QJ4q^uetHu46iOh=ml9-UpM*R6=4lIs5vpIe_Y z;Ym82T&##16ctq(^b4=FGoZSa&*@O5G443-!~K5#2;yJX0GuM}?}YN;BZy7vEl424 z@eRjaA;|K3&#x)uZc)xS{v%j_CJL0J3L52Y_4eM=n0I_o#luhp&v7jGHynHL@f^ou zLEOeT85!}w;%cjbj&eY&!&4J$cn4a~C=wOrs=W<`E9HZ-H&GwPnydjIshZq8-!X>c z-;%LqRkon8u`26s)2gz@HV;P~j2XvTEI=qT0w@vLlPDDE^?GLp!q z90?^~9ZPYG9cxSQOE8&k)Ug}Y33d{LUI^$!|0PlGr^6AuBy9${7oE*pc>8h~r^)UdP4*fq=>;j)lZH;P8aj%) zG#>p!go^e?fz%GpD$<$_jyk+FbAzKR&tJzBb*G~gjl~z1zoflN2%4lGn;oHr`G*)! z_wAjES6++v+Xs&HLi`J8VeE~)DoPy%1?yRVDC#m99sZ=wOb>Y-nh%klsG(`%^?PEY zvH8b6HaPtG8ydg#nZq%J6B>P>c82HS!7fLX5J$D*dAJdH;Bv$<(0GpTwZrk25U+>+ zb%*0L1C7FaHC1`;vOqLz-k3G-a-?zMXtg6b1@5xP5hA>&Hj_nF>2(zZ?gNqmQ#e4w zL}z&fbxefNEsD{)Cye;+s2qV@9SVN#bihGZhf-ziZ9pD73!HgTbtsq+LsY6dl#1Hl z0F|7$PMbG3U6fRTu^y6zqiT!1T1Be>=>t;8NhLhkfH2_+7jpUnvt*QI#3$-8NtX2R zfTLa!?t6rZ>o}2uq9JOZ$$CtvN~}U$%;`7JddM_D#b#2#2rXhNVW3J%Tv?Fukwf`L zq11L|Skan|p3_D62r?(n>2W6w}D3sICpXnSwU= z|52=I%>6e;u3Hx!!#Tbz3{5C)lkL5fSs5>Y1$(9y?6?0T!A>K=@Ww%HP`}5jenL~k ziWkfHOty?z6^?8lfQnx^E(smgW}xg02;HexJlk~ytG{+M(?YislJtPHE<3t1fSNhx zq7g&gR<5s#*VO@Pb#HovU&djsf^MJr`GGZ6SB@-Tp_fDI2|vB!*e~R;63DB)m1?V+ z`-5uN93%Y=A4!|8IX>kCr;0|FduYWE{<)#Gk_Yk-CJf!Zp;~39CYvg@kBrpD$ zkJf&2KWB&!7p$V9PqYljX1;>zVLRd}9-Aiok2-6;?sa6YYDUI;c{8J- zNmYghuieUfFm%u$aX}S{tK?k42|aD9Ily3{TLG+ANGfn-ueSg%+Q^y~x1v{t{Y`5*ThrE4^Oa(7_pV_oa-Y1k~YN0!6{hQ8- zsFr$}P$zx0wd#j?vU!!U;~_Um*`dyBsEqo!I!^ksTNUFYEykTX&VHzZI>d<6UUaLX zom0>}cx_2L(A2nlB3qF0rlv?(ZU;&(J537+LnZRTMHd&J4TO>!#ZOZ@iAJ zg@L~0=1wt!ouGKrc->K2Fz_(iIflE=$aR&%#d3YDlk2GcwL9IPXson(29~TO;1Znh zTWYzOtl;oCX2swmNJX1yERJ(dD#6vkWYGQaL15?fsr1bPs$aYzpN_BP@Q`VQILNDy z(x@wKs!_~AhMRH`D%B{A82>M+#$S{hcv99NR$2W$E2|GtmNwUb?>=%0anleP;~3Rb zR?%dFZ;~<-oNpF}GZGplq~1Vqb5>dfs)nbk-gmXQ)!%WZ7vk0_xQz{SjA;s*hiEmC zj0!)*q4mH%UWcToW=LK=$8diZztT)zBN#?K=|w;1+nn$j)f;^0(NFlAYQSrx&p_dU z&JhftW@WNmRt4P;*`Xg*E8Qk-ALJ~_2@hGix-4d;5fQY!38Kj=Zl(n7HS+f#$A>u2 z1sT5SRX}gS!T?*#)CX4*ozsLePSx^pd`G1}f=a5b2#thcg}^2s{OUK*JJbjG3w`NI zz4Wo15ULVX54lm>w>DX9nk3QPz+~q&p>YA|4kL8DD5MGMCE3k<2aG?&?*Ve(RcE2D zsAJ<}n7t}f3)S;L%Pa@Y2p{Fl;dUSiy{vRj%Ol|+G)$n=Xy-rNF{~G(QWR4avIZP}YZ8?1Jfw%lC&eb~p*Kx;PG_JsQh#S8^-Dy8JB-&TRS&q0 z;P@OW!&!$oGL8qU;UhI3jGX1X!Eus|EeC|X6gCbBn_b#Taka}s`etZ@@-~t2Gsr0p z2>)Y5D>xwBa%ls?bxJfUAXJ;<+`>IYA{wV7&*icBlc1YcJzCrp%$n;w%?mrwhO(E# z7knYIb>l__N9H+a@s)RYK6_DI!SIlX{0_xpOM_o`>2ktX4+B!z0_T=OLi-)6BjR}! z7dKO5l%LEVJyawup<7hrI=MPqj}u_UA0x6$HBqn&XLBC zq_`E%7o3oxqN#6jged7NP>xQHnd)GQcz`@KgUjToF z3s+d$x>T)!5g~jMe&IT2H~yC$AiQs02jN$iOak{1WUP0-Ej*;!5sQARv4qK#@9iL$ zcHdD!)nSC67@(u^l6iykBqvnZ$=F{4+{!q$$+=hXquMpSgv-5@hWos4ZEO`_+zUSL zO=W6s-Wc`a086(hhO8uw(S=}eRL)f50E-qikzNzToyt>w=x_K?uK`m2U~f zp=R~J&@CUT-MZi69Ln=HRy;F>jKy226K^3LOvB1f#@xS*WW5>53Z6eM?bOa67u}M{ z$Z~bFcN>^nf+ahhf#A{ejsDEdFbYj$QWLa+4k%>f|j`BY!fVuy1B{|_eWW%fzd5}gxnZh}Z<@+Eh9o`OazXdb4Z zpP**gDd?hXjmDWMJ!Uu)4WU~UM^Sw2J!Yh^4f+OWgz&9)F+SFOmx8K2(h>(BDLw|~ z{^9(D?Q{B4F^1w6-NE z7BxPWN#xURLk&FOY*L)xj;R=)yNzEUkL_0YeS@=#PiSf+KqqghLSOKE#S_lBfJLYW z?e0@1(g?HOpf;Z}5WD|n^XYw=H>6&#YPzDRiTfEIS@_zso-PqRX?CDMnZza4K+7Vo zIH}Jm=VPA#A13I4j6KvH;J zLrmg6b%y!y<#%J3G&(LFf7gwI2S8t)?GYX{{+iB)FL@iWi<%L8^}VTc%8=nCFwodD z+;htx;9{qoa?*~^omY9G({9yVluVOaMm|+YD{%Y2f?MQ5UkXuK@PW^+IF*m3`btMG zJ8N?y1u5rfepj4%!UT!{>{-sy0v`ZLhum|`M6~KoS&S3`S3MlY&qr!QP?=i)`_3V!a6gnRKaX1+=z9%HYez+IESLc`1 zcy&Z-qsHsi^MP(m;>mjRNONc5kpcMIqs$>XaLmB<$}|H@E4j8aa4jplHVS_G zRJEyjM}sP^-tg|Axm8@t85GULdPdQhLIiGu53yI2%vD_*d7%+Y93Fp0l@A(%O+l{V zLPP2yk?@_l;U%a>qz?#uG}u*J4~%jbaK45rU_+2w-E~qAh!05*u1N!ihPbZi0C9Gc zrtkj4ni^g;Iyh^j1GHyjoQr`nwOl7Xd@g#omTQZL8X38vuD6QdO)PhHIs8BR>T*_4 zrLL=?PmyiK0GBkaI=2jrtLq9XBEVNEi#mWYy{~lgN!n2i^nYtc!=kCVP~1h0!O=cf zqCurK>q{hCVMA6bM27z^gD3m4QW0WSDnx<*B5Xv+ty2jxF{enT1)GY~`__q5KO%{SAbhr0`#~mE00Un->>*#0<`o_32g%>J$Fs`GE z9P|%(uC}6II7fsekI&p*MH&|CvJ?`1_p5A?9ouHjT?vA}+KkA_tAVS{UCnsk{h(3{ z*Ekjv6%ML$8})(q%Q^`p-=(?-kDKHr)u0+Ee%x4Pp;qLo5lz|t6RN7T<&qS!Dg^xQ z2Hg@hs+Fq^FLYGfL3mqNbUINzS@vO;j#IacnTG4R(KrmbcL8Rby zBiNeoOZNtX!#*9r!2-^`Tvb8KKTFgErH{5QLHXL-IvnC_G!ZD0?E7wCi-!tSR+jKP zkUF4fPge~N?g_zu+=pX3A|VJOC^Pje{ng~#@DU_I4oHAhrij^^0{w{=v9Y`KdJwA1T474=oz5@34}QY8l0uMykb(R4@9v zZga4T5z>e(m6gK9QmxWSwfO%=s-cWjupj~V4I|Z86lWT#zHm#0HvxVd=o-#*zq-Y` zHPh0m1ci&Gx~h}vi+?GV2hZ^}x%QPe^um3`z=i=+qCk-8(tF5XtN;ikP z=J^N_>N7R`gN?(Kxa$KUz^$95s_H>;h_0KefWk6EPlmZJ>j6=S2F*q&fWD|#I6k;e zUmSRm1SgMksjiZGOx#7_CuKJ5@44XL4*0hd z{_TQ)yW!s+__r7S?Sp^&;hzNm4#2+;rT5-D*mfuX#)r7}y+5?P5*lWIlayzn8&tDVyM8V)@i!tJAFuUDM~J#B3Bxy1ZSD45qWJnVGl(Ua#IuB zXp~nAT#r;)+5?6}=2d0@Rc(Aqp<`|A0Wnc|t@Y428N8u~4r`p(QV)%zOJ1~MVeo7B z`q6ncMT%P(T_$Y{1~a4cnhHJ#RSU&x+yne$@1K|T|V)7rfFV9 zjvppt%aeaHg^i|3t{Yh1Jddse(cvJyQBEZ@hJ2G`#_*An%h`BF+Q zYRhg<%e>LN9m_{H>uRVa=G6RIBEw)IG)!PytGuuHLl}!})ip4}I?Q6h1#az(?CG#Z z>NOD9I?;ExHe&l$^?5ttnQs2C9g)pie&d8ad z!2o5#^nnk_ZjS~^-tFm4;mS1U56FuYDQMz7ek#v`%yYd%_#~cxZIy-^d!(5I^ZIeZ zboCid5&5ZyK-KoHHo{cu0Zt?E5@gd5g>wYC{QLD4!I-uaiZb9A$HMevh}b7s$fbxN z?h7HRVB@o<;UYy}Cx9pmFo_5dU?>0_h7PN{QA6bxn;9y+8#T!UL*^$GFE|dJ0&zq0 zLc~*QJ7I((S<-0q5lQLZ&^(b7ZmGCv>xSAij4!Q6#d%8z&7KmD+_P_d08>-~6%gY8 zIm869XQ)r(Aoc`4!a)o#yW75-SA*xvA12sx0P{PnV&jGP8;7-4E5d1p~|Bk@Fqwwz- z{5uZ+PQbs9;NMC3cMATUhJPQ!zccXf6UjCqe@}US|6y{|14UI;EnHW^n;t5GZ42|S z2?r?Flu#fXqgt^J4uGh|`StbCcs2I99y)MI{%Ae)`Bi7z3qNR}`2)~O(d~g0D>?;- z>(wOh)B7yTpU(@=DWX`6`qAbFLZKt7yIuyw5W{JHI*u zh{*hUH}p@JPeV1R5+Fi8K^cF-{lAsGCCt>j6+5T z_=w~^f8^H&pM(6%{4g2Wy#}F>am46$L>n;bn!95sg#AKw?zd z{DPq#cTTIoyRg#eGaKrB+)*A^JLHa3S#32ttvXdn&vHat`fi1+(bgb5AuWi?YnGzX zki+9e{%muvRZQ?ZJTmTzX4_Ck_OEn&U8m!#iVa2;bf+^^<@A*K z`JE6kNsDsxM{<0zqsW4Fr!!PMcL7T`9vHhd{|;Z_sP-I&ieXZE@{nUbhLW*4=2cI_ za9J}9-j7}wjYEPm4&+>(cYk>I-}yuLqgsFHauoZ!)*o^=ot+t&65c4>lxzx%j82YB ziA+q4j(|6G#)OB3g~!IEL?vN&2u$=21s-)ytH_VQqi5_5V`RaHLEa3#A^E7*8@e1N z@kQqiouM@U$s2|%qkz@&>Jew1PQ$B-hP7v%`#bWV^Lw#gym-SjnV(&Rh)KHY%pbz> zrwa0hSsFaBal(e4;Mlga#X+eZ`6a-NuQE%5+B@@8_%FS9$UKFL2M=*UX;}|h?P+LM zX@=(2J!FD1HZS8LY(dt7rwZ|y)-{SBb5DhI7y}vo(*i)vz4^QOn#WK~@-liWWR9y7 zN+zlQzWgwbZ;bK0#In^IJm4ecyZCm;JT8~xH@PuD@PT}TZLbQk3G$z{+B$H7;clyPmYQXo_kx119b#z7we; ze}%)g6=~sQoA{e_Q}>O~3)7rNXbeHbbFI0X+#)n`2jXd>6RvyfPvSn6BeY}i6D-uk zpEO3db``zCKN1=X5!!vGF^SO5fabWrLvswzzUyKDCQYn3a2la0{^a6ms~b<%+gtq| zQhSTv;l30tFDhD#R_`rpgH*GN8>w2t&rXrdn^D|A{E3) z^t(PoP?)d1|B$ygWV~g&^HvDF1#+qh)v`2J%2M_Yx*2EQ=whNlh7FqKVhAE%DAiiD zMYS4t&L)`2vzumRE~DgE?|?@&tLn;YlGKl{%~jI_un@PubBw&|&DTCQs>+$Jhykxg zIkuvXzRVD023-E1nbtA4sUnwf{<*_#^Yf4qy5yL`J^0CKT8Zc{N6|4pbSG^rm{!nE zQ3;7@J=r1M{M-|ij^4TPzc8({Zah_QT5WbpO)C|K4UD;>JW#(?=<0^wYN3n2t}~&? zDPUi(GORK7#cWGn+DQU2m1tn8=+?2KXigS~F>3dB?CaV;WN@mC!AVLC#%u%zJ9?}! zp^JNq8mT_1mce`(gOmO@4Bq>P4DOXNxLb+A49wv4lSL-fe+JCpiE0`AO~&AE%wUvv zV(#B_D6!1UiVnrK2t1{Mz}$+WpE;HHE+q#u;f%{|@ZNBO96K0UP2ynso^{pqfEv`n z$f{xogSwq_RmGq`oGnVN1hnaSS4{#+&f&;Fi7Q-x!BrK5esI2MmmHM%w_Ju(?B8(p zS{IAD`7*$=^pvM?rxz7i9+G9q4}QYSP~ok+ zMI6T^(Pn*+ef5gYY%{U|h3=LvKz_R`$-XHLn8tRBKe>2mpmalD_3Kd2-O_ca2j$GQ z4$=F7Y4$BUQ?E6vjhQ-2mRV=8Xe?Oo3;AZjFn@8{-sd)tK z5#vuWaawrUvp6A;Puf#WwxPQ)+Qt;cQkWN3?BmZrOWIYDZE#+e>}nU(uy}fHzRRA< z(+%%CyFzUT7b~P28UkzX>4pGY6E>VO(_v&vLq&$5;8s6Xaz)s?@>2<)t{wCwkb-l& zDDki3semM2sL;n)d^4C|Mqrdvm0t>Me+uj=eje?UJ>+G}uxYpl=`9W8iLffkxQxNW z{ck+TXD(eOIwbWVL_`PNMP#d7L{=&yx1^=7g*iu6SoU&pPfzsbqDg**2VO2Vd-693 zcoo^Obm6|Ps}$Q(_`~bP>9zQ0e#LrSg?{#twtL%B{DU_i@N4Dz`Hr(mCHi@Z&J$k_ zI_{nru~s!nMUqMS=N_e%Ft7u=h(`%kRQAG|Zxz4GsoMW4ssxU=m~#mEE*MvpO^AG_ zeD2WVIn`wALQvb_FPo#>Va2^veck(@kyUIjk*Z*VpP-FP$A%PU3@<*wsRoHvX`q!c zqBs!^8CmRlEIJ4|MijS@S8P7AI1S~FVk_<&S=>clksz)g%~sq!s(6OHA`XyMtC<0j zkarOBey3RH%M4T&;w=%x$?#1>Jcghkh~;iK-{Gs>c^gq?mlLw$!6>Kkir^<4eON@7^Wf&U$zzIWrPlGT~HZ>J|} z`$4f5ZCL-Fe~|hG=NpneD08l*11C}zsBE=R#pGfW`f5Au!iO^4F?kdQdN77&^OQXV zZe@!j!!2DL8G?dBZuy5iE>+}lu>y~1%(UWk6mtyHDBo4f-v%jvi~mRb{rV62JFUpy zNhSWGX8?b{OoREmUoC%sNclVYKjN=UiN6e-`jI_Aty{EBM*zj~Lx#AdUN^o1TPyRb`wRg`^p0h9GJv`ejb>oKVFbKk7fX z_yg5&JTM{raXpoZ9U@XiESHx$Np65%IXthJM^_e*Mld6kvH#OyNXh0Y4g7}Jz4V+=t-j+foE4u30wzr4@Q z+h4$aDlcPa;V04C*Zj2j8{T6-Z7g{EXZDMYiMPMHPwMT@?yJPxD-N7`d&Qqzx^V~d zB#nV9ar%t*tM^L{su_$Ppj-yUW-JUkwZ)*xF&p80kWQPDY{|;87<04+lR8^x&dSo! zj77Dz$a$eoL}<#}jz_}0c7V|-W-8k4ml|!e{Z$!l6FepV&1T~+qiO$dG}=7IXaPq-_=33m<9Qgq6iV@ZasP z{NPZat3@SAidn#&dy-;wmGdz|G9UkZU-85>A#`7%XdQ*dHLwL&U0`~19Z*E$zIFxJ z9#DgREl^f9AkC13hOBp0JBWdT8OWf=?tab>AR(*2_j z?fAAhhQ0okc>>6=B>LgMgC-IA+%n=gPLggKKZu8v)FwVBF}HfeG5!(_*Q$Yf_lCZAVea=|idE%erQ;L&3X z@Mx}<$9_^CpZ_26nDGyJgsUwSCUTYnkEjAqWWes?0je*nktXzBjq-KvlhaUqff%>)0l<>oCcF1QZ5 zxVUGG#$e1!hA1%EkgeD0jYc#4+ho?8Qc_a1T5X}G*Zg6gvG6D>#h7ij=*(J;E<00a z)M<4VlQub7t;;bQa|$P)$y>(7W?2ksy+M-&55ZD&8nfPLF`M+JY>Oc!GgF(Bg97_a z4Jq92JN^h4S9PxjxC{5!k}lPCizdeusL{mx#kFFzhAd-_0Y7##XY2HaWJ|W%pwHH6 zbeS5x77qJ%oF7`K?lrErXRIM58BPWp%{nuj4OZu5T9VBvSz0qZv(xI#dJ8g-njcb_ zR&V|~E;=RIoUF@E(d*4dojxvS+f5S5!XMomhN-lR=2n@wh&E)&@| zE(;O(%E>lo=45K%UzeE<&PQ{jJDS*sg2?; z6o)10Qr;ZdVnkocq&_)IqqU@%b;(BHG}8i8qk(-#c8Vz(sFuRhzt0=$S?!w(h1^eh zpK%kboU?3Q0tmHJM$i6Ty0w4q#s1YOtiio@PL*;q7!&#?#i8;y=7q*p!;uaJj+@dr zHb<>Bn6pyMDLHDhPNUVEEgDl+wpNp)O)+TAS%n+b^M`uI>N7RTDSDFzlmf(~%{FDH zn%F1B@5nMDYOq8x0Q?4sZ%tWdSfOW%g+J*&bDOg)hXF2MvXBWv^5h= z?mI6+(9LSP)uQfMGc++(cZ<4Do3CCptYko}S&Ijx&NSxevcPb_*{M@3W_5}#8O+IS zC_KGy8q9@8YfjFAG38`tX>`e;o7tJkpr@d|$QZz%gUJFO1~@Wi>)?NCBZA2dDGacWTf@aw({~oJvbbvc)}ZBCGr-eyE%8UCwMyzX z)iD;92{V+UHE47>7LyKi&1gx{SoG!`eNGBko~Cf}v?;?pW2$)s&oX7|a+1;T&1*vnD|`$3c*Z2dL}goYlC#xn5K@ZKXfnb(BRSbvXVodhg>D`( zbtV^+qRuqyVI6_RPYX7gV$#EVCR)(j6ic!$8SUs%5-Kco#;SWap-EqqycBD!rf0#0 zs*t`;No{y*MXxof%_gu5oz7^{T8zoC!fN!%*?Kd0QOc39+L<-k=43r))}qsBEGCOO zIXTOalVwiHHd>MkZ^e{s<6<%+R=R)> zr>@~*tM1uE7X(AqouXS`l)xQ2&*iCN%_gHx14dy?$%H<$vVbdt#*m}U*5@Rf%qHsk zV+`3j>P(%B@zOh+#}wnI=P~QLO_P3UjQ< z%*1X7xCc81*9(@W1E;FBXkpa?w+mL6Y0+j|vV_r%4J#uTUsk%39C(?Y1K z1&!CLX(U7!xN5r1rVCs(-MV5+ABd1);OZP$p>+^6rdVK+fd6MhtecslHx_bNAv}rA zR%d1>8;sg)O=gx(2d`hklAUSDf=JAgW7OwRe@~W%Xd^fiI4B0ofyM;d4@#;{HfpmV z46|s=g*(#owsW!SsyjuRm;z0;eGX3rI~#8+X%m~1qt|8PC^s7%RWgLRCQCBJ?lpfi(0lpX8}9UhM54L ztIaZl1Jf8X;q;vewkybdbD0qG$5frfMw5%Cgcefss&Z<;DY_d>H99F-*s7768JpL^ zH|B-KR?S#4g2kW_Iu-Ll3Q9XV%@6hLQS!pSySRUMasTe(l+zCX?&2!lJpQ|j`*#;t z>1O-iUEIIBxGJ`e|L)@c-NpU8i~DyMXZUv)$LxOp`7W+yQ1CO{Gx&ew7t(tso0i~{ zAKeob?uP9$LjJ%{I6Hs*bV*hQY$>LDO zkEbB}nUZub^6r!Ki#FsR@-NzCpcl`VwDgLBE6HcIKy4SUOh6fy^|kTaG+WP?H1K%7 z1TK{SVQK?D*M|Hql*Dtdp%xcPbTtRT;k;QfIq3MD;utBynN}JPVzXi?L?p zwu39sX5>P1_^%CKj+~ME8XP*Gk&7G7$W6oaQMvcvdn)+u+)Vrsm0aAHg-hfU2-&zq zt^mxzC33=ZATE&?Ki|M5@`}ToxI~VIdgtOIJgY_aZ|hC;#*%?2sTa_^6@f9FrSR0n zl2UJe0-eA1uKAml`(J(rr}yoW#GtXbYjW-lm!MnO7jWEb(Bl+yO2`**LKS~Q8}5|s zRjm?%Q6Og(zJ2qhNW~>`^a#Mnw{Q5nCFebTH#0TprTd|eNVwK?>B1;^v$0oYVIVe__IW(s&Mb1YmnHyHnpJR zDE=?225oq13JgCg*2X1)5Bhy@bo;N8X53vA_oPItx-VA5<7Q#~DeRrU3#)!wlFa*B zQTEdkgQ~XGHE&Yf0E+8_hI7{RDo46#jI|wCZ_!rk^Qs1w;{{T@`0DY{SS8$rGf{P9EoJ?a#fA%%0X4RlVGM13klE6YGI{Fd|zK@54Za(C%3% zq6Z6WSjWH%vi@Gy_NtK#-i~N%0-EGyoueAdP}_!EyYeHgGhEch_ zB_hZ)rqJwd9n7hgid7Kl`cW3k{Fg0Kj!_XIg)=yPu7^eHtCz-MbR`Ri4Mmd^L#{Qtn zaZ4PeOgT`S5bJinODX2H6N(BG$IuPUjRp?8F}-09Rap#yh@u-B9cCRWtB6`guwZ%N zR*key0=ga!MmAl7$agE1GSrkZ)ENafu%?G9GE~?m(t6KBwMGKQeMR~BilLL4dKx1R z?<-`EfjN=Xfki*Xvj%d+SeqfAIJS1rSnB|3?GCC6rVApOuTWMTct08J(Ku@&IvLL* z_Kvq|r4@xcoIT6j=NmXOCV<#vu;iZCFnR5^^{m-$wKvwYeyd89ROG*sNj-^5eFc$v zn4;86qz+Y3J((?DZD3ujdYRej7~&v+%BLQ|!Wk|{VT=|{=9ag~oSop!^b5a$=p zQW)olj$K}uf-?55oTB>JU1Gvb9E(J%Xwj%va}e=Y;!o7glW&u)XQ)^;J)j!-Hkn&} zNnrC59X8V$ic?$ra=%hp#&u{{myu-;S#80?GwsE};u49T`oJ73e3k4B?!)y}vI;zW z8U{f;Qp$dn>;(J-5cDK@;TElREe96^lg7d!@`p@gh_PDn=gOq-!<;B%--n44zeuJ$ zcC=#wdb6JLZ%)1jvV2v4&bpyZdd|9@O=Qe@H$e;bjd0i{yq;3ynP*amy`A0Kr&%+t zTB~cOhX3p1)Vh{hO-qdtZA-Vl+Ms#!=5cT|q`4`%xu&@`MV%Cf&xW*wXU^)D8Z(qy z!ZTfz*3PO^F||*5YOqou8^lRZ<^&5dYD zM{BGKaJA~VL_(PKy48TDrdq>d|NmqAKwE1l-^PY_+4Qv>oolO>E4sqBs12r4)sZU8 ztQv?rGO;;YlWq+l6Grr-e;hOEe^WIkx3gCKBdvH24eM;p{JX00S_f-Cch%U@!Fs3? ztr*pdwzgTdM}6Q5H>g+LM1QGnPAy*e{rs!P4*5znDTmvZvC-p zXf>;#om~aVH%D9lHNPIefT*+U)`mRrSCuU9vz@CT`JzT}A8T(9ex1--Sl?GOt;zbn z2n6DOZNqGVDdyUSzqiPTDlYOU)@h{^1jd)B4YIROQy(nF zWdN?g_$HW+1iU!bnRs5|`HPM>DsoujK3l5H$*eLYjBYP}Gqyf3psKa#Y ztE$rsoeX~8bZeUGK10QW_ruj-(n->=DGGczG6W6%&>D_Dn?I_y6r+Qx)&ci<@POv| z-;QqJR#U=LLxHCgl&3Ido+Js}E>1}>T7kUUL-};H_8-_0Fq^U6YwWO0UKvJ5Qp3=zA6vgy9cFq1Ki)M)WT}~4 zR5aUDjXzAr{!m!et{)()8uL9-5#OkQ&n|0EXj`S#p-ZZ~EnV0CS~j5;TDrvgp>OSj zF0&EVtT2%xL~J;qsf}(GTBA{1kw*h&AxV>Wz^+_P4idhYXW=4W=?YD0vaYno zOVU=hbahZ@CWwP9T`yG8WsXAIzq51=aa+2`hw$Dc-ME&n94s^CtXwAiM3ycRwqIUt z?dZu*5n2mt*F>f@Uc0zK==6GP2=m2^Oe}qTRrWt#yTTZSW^4@2IZzOtzrlJ=wVIi3 z;;zUA*iqk#UIl7UcO|PzV(VQD0C88V(dcijCO2Sgp^VMU`VS{!zS~5Q&x>7lpNI>L zC?)C9v+$ER5r2JeZNT#$0as@nuwKDiH$`0tsX|~RQ(^h@- zq6syfCzFJyyOLJSLp{}91`spITgy?eSZjY-Px)tE9pO6Jan_E~Ithq8)jQ!{vrjxc z^^}Z2c&yj-kSKHFL9EDd4jwDYYVSPFo@woKNN} zMg6bBlul(j##5^Lgdq^AOhqZztV84#*UBq)y)LOJ8M2QsKTR)nn~Fl=@VKZQblPN#@@Ex^-$dsf1^nc z@)^yC43!A(7TSN$s+QN@?&IT$wtX|YiAr@?qJg*2`um_vk`5Z6;0M-tq(fk|JN|`OaNZ8yIFK@x#}wqzY$orC)P=iMy!wGp&iJHpxWw z_2EjMuPRCcPVC_bLisnrhPtG=aaDZ;aqqA+g1E!5=6t{k2O@pFO84=+{}HT9Rm2J% zgxT;tLR86uIP2HJg@bC9Mtksaq;VAiLsv=T&3>ipd0u^_@_6AjSBpyGg<40X@xmQJ zKba5BFqwQ-x+Gqx#OD+QmJa7teSu3RKxly4hLpyuvKcD&IUZ1r1_+Y+3CKINvZh6EUD*9b4w%WJ!w8JZKpV&4oeHOXtYi7fR+mWa|M z)z|V4E=H6#QEXyVZIjowN0v5nt1WSBS^uH2=DMjhxkUav(I(ff>kJ-@vRkWwpImOO z@cF3HdK~{$Xf61)Kbh9VSTBOoxj!taIPyO?){$;pRd1|~k4lZT;Zcz_##md&m1>)E z>1cT8(*7+J(&Jsm2=mZ}wr3xS7upAu?hhf4jtk2Nl-fhMmoZKhQa?X77FA3d8^L^P zLyX*O2{%7F5m&~HE^WkRx|-@^l*aLit5qfTn+hzu$NLSBRu%96UHc7KRyvti zBomAe^^@S@9`01x3h%&Aq7_bGReG1>g3vtwvS{ay+y6JQF)_l&AWU~7ymPb?BUBzZ zT``q^gT8Ro*`=!+Q`H+`>TgmbG{Lx?oH0h2@pb9;Xzo=MSX|m)(PUl`rr{;p-cq=* zxO84LoXNvNAs-EreAq^`wuREBOD~mrMsuUZrufq~(Ml#)?re$zYnCZ|Go>5w2NuU9 zoJ^!9`@s-q!DNL?H`px2HK8sY3Pl@J$AzGc-eq5?KF1Tz?yoy;hYPOPGE`zypZ`W} zimfiOsX8@imYeOHXmlt`ag7EAsLDQzV-3*tlWU+RPjve8z-H*Ns_Y}xVP;G&^NT$w zQbqG~0W>6>76$s2fi<2Jt4gggQ5ZXmMy-*h$OqWG1}L5Dj3D_s0)Nac)PIUQRkp@I z;U}!Kh1~RBd^uWsM7e>{#{^&&3L@1uKeTS`#bsJ}zC)o;hC0dZs*bYDLPw z!AOY}opIx;dMoM#uUNTTQ3oe$LSy>Hwn7?IS}>2wLFFZ39{SVvRR@(Lh^(p!D&O^@ zZrzDUgUYF{rpiI3xA4fb|M5zUs}Hd3Zd@H`)k@YlR^ZgQSc<438;Z+5sw9Z(R#LXO zlA}>iO3K!&c41wS8QOM{DjFK9Q(E@a*UtPzU)k$WR@PH>R3zhdh8z+~M%zn9dZSU+ zkwLs2R1j`HS24}Wi+fD!X_+8CwsX3cvJ{c)HukbLm9b_o+a0d>z9PIS8rWt+nip}2 z&eu-KKV+|+dik7y*GCPATevb54K6RM&mBSY%FFcpi9=}H`I7n`TaH7F4zHco%(cU+ zHmf13=>J<{&5htmX2Eq`^IDeay>mB#TxLa$K(^wtD34tJ1X^{dtmQg;nsPKN&rNd>7;qgH5k+L6wN%Q%#1a#v_SslLZ2^4s-tTmeZ zq^uq)2(!iTT?NXMvp~6a6ns{1fpWBltsWZuTUjvwhCrF(2b5V3zc5shZ1>_v3FNQ- zEUS-(oh%FCrwEirR{`wkv9bt$u0YZJ36y8Q2uwu%dO5uKPX%()Z6N=Y6cmFt%(Z#( zs|9kO2SDDIY4b+?=h;H|%}$WxK;FLC7SHbzD2ty0Wx(aK8ffCl5Fa$`SeX}Z6MkEc zv1?Ba^!28;e?p*-xd-$OPi&F=Wr4E!7*LL!DhuWB3zVGuK*^{m3*$Ud{Q0srXy+v$ z?5`-R!v#{piw}W-S>$3Uq2Wy+xP-$srPR4+fSUGuSvY5;gpucf@DnCHM+x8XAk-np zV?v2!xR)sPv+Gbzr1q!OuPT75K3f*d4W@*r-q84+W(h%psl7+ZEv`80eLxBOF92cf z1K5Kvpak?g5Ne+<3*rh0VbLA{>Z@~va$nO5O|C(Ow|*{<;C`Zn{vJ?+^u3o7o_!28 zt^zQ3kP^=LK#gZtJL}op9BKY z7VlG3J*^jk0@E7GhYFObSUrojXaa@FOc3Y^H-J82lPO4`w-D$Du?AVMfXb%|l-78X zU$|P9z;~jQMbE(E=sa3BxxLD2wo95*&j-;qC%uX22me-(H~9#NKbq z)3P+ayFmF2Y-`Z~TLZqIKxlyd$QJFPuKXZMfwvpUa_|XfOXlAdYTd-pEqGfRKTV)? z!Tzp8_d{Ly`2yuVT<5R8hf?`v0_Bn~u(5jRq1X6z0_8<)$;Uixsr-)uWfK-#1!o5b zUBgy~|J4ar3!45}!`6#GAW+s|mld<|(6fAnK3j|588 z9iR;Mw!O^NMDuFfS|gK>tv>1)eK?#8p@gl!fiet;JKT?prv$Ap)adJD>%cXqgsvB% zMynMoO{l`p=Eb$5)P;9|x=Lm1%so#Ddrtsi&f~RRh%G@nhV*y-K2T4-uue@I!_g}| zivH(;y2QA?6{QZP)Ri}Znlb)xM|hVJs%1<(;`z)oxoz>%y#$xK;?g`^>WxbWaOn+P z`U#gt;nK&rGzFJ_$ECTrRE|rZ;?fmdT8&HJ;?ibZ`VNvfXaSJ9cz@2cBKEkEtxP)-&3tajFmk#36MqE09OIvYiJ}woX@}Bri?hIT! zf{D{`=^QSt!lm1|WXGkaxbz_|`Bp$_2QEe8(rH|3h)W;fQZg>>#-%h|x`<0%aA^)M z^}?mOxHJ%#&f(I;k+}FPE>6a!_iub z9ha8jQa@Z;iA#fU=__1%7nkbE?vW=A93jsF6H4;&EKK47neeC=}TOS$E6BfYK}|WaH$n8eS}NT z?RRu~ENYJOws1ZG zz(} zwywe_tx#_*Q2 zJAT76kz~{tQVh%ev1e3ZjeELEkc`T zfj+=A5`8!<=)<_*>{uV-=h+PC`ca6C??NA=kp>kswS}S<7wv*V+$K1z*4;RRwXPZ5 z=-^OcjlxphkTE<|2vNh&GHMZmhBpAU0JtFZ=|xbBE1w+kM+K2JYomgj@79Djmp}7? zZ5CA0qP%EZG@~E2&${W|VQ~jBxGlE8@PBD+({pbq;$|!165%{;Vr$ATVR1iZ za3@B>c(GXWzw)S!ZZw7QEK=-XzETIbYJt8)HM1q~``8ZlFdb|dX%jlQ>*0^K{aPLd zp|FxQ8fA7Z3Yb3JkZ0X{Z#;*g(3`w>%;=8f9 zFG_Ip)5}%pS)I+qb&?`>kRXC6Ch+3~F!d`nRT3x!GUyD?(ae>ZR^*U`upGsFj-_}#-B*;?9s zICvk_U946~FQ*qA$Uvozp|z3!1yHAp=?DFJkMnfmHkfOuAVudkZ8k4(f4`*KT62F% zp&v=0oecP+ZxV<5perU@ZC))vlSQVP1l-9*3~o>hJ!x$V;+o((tX?$21gX6ft*(97 zBM?2CX7lI!3caLF?IdG>D0YBuNF=(M3IcjfivNm;&!?P4#My%H!p@dcQH8gSC=cYp zZ4w83^$cF1TcPiki3>7Gy{$S=9B}@MLk-D-&wWXd7ue3#WZdG4^KNbtlqmxpZEuU^ zi=2}%BZTq*K#kC69C(+4=WL1GZt1{xFazIu-nj@bUw$wH9qM39NC_77WpO@m!;{dnCQ()`n zi?(on0t-G?1plH7EHCd$(MCzph^3$D3ajs07HE|S_X zkpGw7wNO%bh+&SfkmVv|0RqTgw^sz@f8rg7wk`(dTc?!!a1Ln)Wzr7Fa9@5IcHuQH z(%Dgenh3ho+Zl_lUw|&~`3*sZdkcp32MlA(=gbJM>a@ZA=&35>O z(&T&bMJ6)K8+n*UX52oEXJlN%o{Kav6C!ou8cy^D*KkeXAfU!5b~*tn2oY<(eAdq& z4Lfke6Ad}(=Zj99@bgB+{eTnDF+BT{34j;?CIC{ucmOExWzL6(z6m!wDJ`JfQ4@LG zE;r%;aR97}N$7O8Q;o`Qm)GYSqsdd;M&Iy~JgnS$JK_`P*_|wB-HS;Yd9y(HoV{hCx41E8#&i(s}NZ)Nyvh&mE$`jtTTADRf@!0RkO? zCjEH0CJL`>3xvA|N&gag48>F<8isdBgHiWv5>kTrhk{iT>=jb%VYQst1vxN;Ws0z$ zD#3Q&4_@G8tvcRFHS&ZnIyunh3#Ltaft#1yh11_3dRdlhi$GR;Z53L7ptd*K@&-t# zM6tj9O8r5A`3kz(aA^d}XaOm+r?jg-E9)u+PIoDZ=$;ZbSq`?Jvw5ONjUd2O4_@E} zioy*6<8FMJZu-b1i!%}TdH`JdH@IO2a?n`N7}kElU(mI+4Q;10-5GosK7JG z4-Ng?;RPOmbkRe(i|s>f5paA_0-PZQcFM&QT_0+z113)}r?Qx7!JwNPhS?0=e+&nt?T5hk+qZCe;Tw~>r)jTBBZ5q9afN7&+Fn@T+r0y@QRG?jGI4Mjos{6MywET)?%PY^V?lL%xB@sCFZ4PY;0R_vi)r9C`14p!%d zLJxTZVL=n6GYH_L$AcrAqX;^)Qc&7gpmG%tod2moLhnh%z~MjaFxsqmIFJO&-{YG|9in>`^aldECQ1e zgub5*S(C79(%fV)p|pkDe+h7^0BpKScRxRsA2ji~BskDBrvkbQ@Nvfv(oGQGRfgPI zKz<(OEd=e!`lwupnO@?@v7?)VoT~Dk3}f^)8VopdSa{kN&WC-;5(z>OQZ2C6<3E-m zEV{gw<$jS ziA)sELrbds~7Kgl2sT+0LOdguxiW=+cq5 zCI>YTAm+;;9xnx_K3B%wEXo}>1I=4WjQUpNLk84)XHXD&@&zdKCK=GUWe_fZD+BsQ z3Pe22Z`XoCD9{lZ(6s{aGvzWMhYSd7-j(HGLXRaFA!yJF*wH+YVceBrV0Sn4bBG;c zP~a+Xk}xqr=*;IZg1R@PGaf-GZAF<7Z}ao`;Ap}M*Or0k_ob~d-&zLIN)e(E1xE{B zFN?uA{S{!CWf=XW7@)%axeu9!xvOj~`1fTECrcZW@pritOy`ta!$4eI4X2(~${@Z_ zglPXXI0`*o1M7v=1rdVGYhezGWDt8@5Z%`aTOb^Bu7j2RO{{D&9*N-GxIyIxbafp# zaya?ynwY^~gDF0gLEgLJzCXc=(Pcd-M$}Eln90-@ueUXU!y2c5v>6$b3nK(HY};@Z zchk*%8`_1$q3wmB@oi*SFKw_Taj8-)Q>9qFH^Mq%k-?nUXlu^(m%{X^6z1Z$AlGR! zm^Z$I(M*xTOso{fZ&*kI(2KuB-nttOKC-=SWh$GL4eak*nIdG zuG0XaO#^3ov@^ei?PpfALqY`jv8b9KOYb2J2AdF53qFk6ZMyEc`||7x8!7y7SSunTZ7k zgHY5S*t^w1w~B2VoB(FbJRD8lV;jt^L)Z5}NT4HC5Xmry-==ZFMi?l5K5nZuHAJ3Egr7ZT4ymHHiw`;9@9etM@4ac-0SA(!j(XGoZ^DlfcE_k(1| z1LN+9-mMFPM_LEi0Kq2M8x?qjLb@p?RE6diL2hpj?u0(|W4N2?>ZL9SpCsWvD2625 zRso%C41dN=1$;=)tI$lFts$}*Lu;Xcldv)QK@oZr;fg%?-L7vbJF14j{=M;hA$tp~f6qxMjH^6uT>n9e2Rij_)kPe*TV|aX2^jHBq;Nplf3( z(7Oy!e!M*j-Q0FK9Ho`R1Eoq4?3gAT#t{8be1O9l_A+k-AlJmv_* zsC7}_!|>#Kg$#9>3{{f>IjBiTV9_h5s16p@|95!uIP@s^ure7|iHJqy2{Irip(M{z z@6cdDmuti04%g8J6&zi4Y8!|)5d|E#)#c#M_w$1KGW*CHe<;d0kvFo4DIy}3@#N50 zs<~Pbl`)DIXkG;jsYY}l-Sx*iPM+-`Ap|C!?#>}Aik)jiEKYtno zI-f0F`d+|a73Z)XF=F|#GV*o z?{pWo(=wv@yDZ{u1`(#OLB3xY$s;ZGRnV1b0+MY&8x?%^h#acH&WJol9dZ=Rvf%ZwFjQ~{5PEOAdiRy09*qd&gD-rKfqoNoiTPzq?DSZ3rYySKo%XAoLzH z(Lwh_Q6YGo4WaZpP@(Ie!GB_|!5sVFle%$VNOxm5UJL#*XPdVF0r6M5fITUwt%?(& zqtUFpwl;jK49g^95!t|?E0IkEKUToDsh?-DgOF1mT7HzQgSYRw=?js9{vk-=OI8Xi z#GwWeDdZmxi$KeY!)lU83j8t|?x(`QKamNc26}uhEEt_cpb;nk03CO*J(Y<)5uwyY z0k$wW|KSMpMqU4evtA{#uJ(&v5g7qXP8q?!(;;z!{|Q?&vQU#pZMWVc!4Sy^^gRWy zuSDNxVz4bk%IouW?n~q9@cUF$&a@Fe`t(K+awG>J`}*4Jb1zVg zjuH$V${Q743tgELR12Sl;@is*+qxs3{tISiY;Ai}?j4Fal11#-3{+>>;P5y!(I2K` zxD0KG1Pve1Ss7qY;=Z70%UQIcf%ez=&tw=&+%d=!eK5$L3Rg`NIhC>)Tlav}1H$Y{ zXv36nKa_SMuqK)~8aOSM;qG(Ch0~26a8D@YV;1t}Qh2;GHqZ{&b+(KMLG8lqLHq+5 z+Ff@vGD=Ihy(!=Hp=fwqBC?0uJ5sxQS^`F*Qh|~5i?GLY4e(F0Jx2nj3h{ei&|18A z0#hU|BiU&_pq3e^MxTf<)VPk_m(OB*G>bht)iRyyr`T6-rmtk7FYqeFTZMq0;*&w` zrrO|nNR+(}SS@VU4Cv^ovJn3BhoXPtiqO1mwtDbF7aqCfgwWE5ZvLD|sZESMjNikK zc_$e&0G*Dp_vN-J4)zyjus_0cUDvYT4RwyQNAR~L0Ag;yLc z*+PC)-`&Sx2V6D{iXETZA)lH=s@U zh(ho8U>TWCP}mc+(;kTl0@Pwmxj)*HXkWoEe?)Tx@H5eeDdgX+(EJAuRv+~A<-`MG zKipZO4!lj)la=)3I;*QmfIa)OzehUXA-qdPa$69|S+sF9yfHJN1l9>hWxMP_kisO@ zB&R9DFg2YEMu8b*;kvZ~PCQ&`Vb}35vVC-N>tjHPJsG7%)=5GEb>VCTd2ri75xyOP z=YtSnoLM824?|HsE} zGegY2sllGiUu8SEB<ChF`)^+jih- z$w2*2*_)t@q`EqkW{s|ip0mb-I z;0UI@F1&cC1pBNKEE#e{YrByfL1Bk6u-97KN5M_JN?^H_f(=cxo51f9{+BXf&$YFW z<`yf0Atf-P)%(-!I(Xbbz={|!n3R{%q@23G$hONK2#cf!lHF&(3ac*o!an%y)7L7l0bG=f+T^|)6NhOOlBb`Fp#nDP*rMz zYTNChkoA(_zN>^whWcz*dvkuhfNLAnUd5o2fr9ckM+3UqgCX}NLH$w*71Asd_+#uq zk1&v}-v!=>h1YG2mUXvBLgGsT2_JcI%9O7Vd>Oa^vOaCbhASM*1HVIPh|gMf|2)KWu6)^ZxK&4t z5Qt{}1n%o*)5xYIK*YDp^${EbAk$bLzuYu=!TY$Bx2f#^c7w9mvy&D?ZEh-ol zybI@Z28*Cfn&nMQr8>vwJaLO%zUgV#^2-G5Vdn<3*cDe{z-dDvU>s0j59i>+yv_kL z*!h)X-|cNT@+GV|_T$QeI35`wXx`pCDj8+8f%WfKMf6>jqj&6QZ^b_p&?nXPVMm^J z5k@|2T~vMaR)2c~?v5h%O+{?tiwXw73fu50Gm&sSXRveRAoIao945&8c{HXfOZt+< zuIFE7F*6vxZ?LHUzDec_ohCni()@7DE32Mn9^rMKa+%h(uSH;OfR)hIcGF3 zJ1PjCJ%GxLQS9Iy#SVz^10!|eG`YPl|250a8m1qS8>r`tCN*^gaVr)3`J(cE>~DfU z{7vX$z-qe2jCsMqu{~zCVWk}v3!-iE$<0`KeBhA zrh0U+J)7sALCXg@x-z;Brc>GMb{+yAQ72$&SS&JBu%cAHIR#{_z3DS(@~_ajXq0VL zj_zpYFncrJEP(Z6!Fo-{d{2o^LPO`;1Nq)E#Mebc5~hPcAucbKDm!^L240KMqFpo< zGCd%#z!5k2^Y3s)!n$YB@bp6+kgX=_nj24wmh8XHADca`}G$OleQ^0*6 z70?bbXb_PRZecaUA?N`qnoWX6#+Eh>#^%M-neaf9=Q?MiH5nV0UE2NVko+s)l3*(5 zy3NL45=1h-*&o_9e6oP3W)OQ%w-4l+NimvWf)IGQrj@+GWt(A7;s*#oeO*A^@r*X4 zu~9E6+G|Q^@FvwusP-&Cn=PPyjg?wKLl5pC24tT zc~ya&q&glGLa#2W;X(bu)mMZg2ON*OZ*tq#J>{|W8pPv1Z=8yWLpMHvq;`F=br4## zz}^f3V@c~6sFGMdh&zf#EVO?IFRa4v={!(RAA+E_F5=eN=}98;%-%B}Tx1rDIy2v% zjE}dvkEx#vbtnSVu@n`k7?rQ?ARV;v#Mj0^n_lJkDdrKxwN$R=g)&!U!U~8QlcMl?T?%pB(Fpwi_LR@V)}+RkE}F zlZ>Cfu<;N}+4TTs zUV;!nCqIGY#kA%2#_;f!47d*q3h#zDL1_i{c;Z#~o-({1QamEut)D}#coxN*!Qz3r zHAQhNVKPWw_MQDXEIR55_zD@`2`L^qnbC2LJ)RGSFGfPV!UdqfZy+EgbG_{s7#f~y zbjlX%O`U-s{#_QI`e3Ty1YPq2OZPi`nt=N(gX`3x=41_OsfcJ$LL|A%V;k&#WarJl zC1B?=*aaIw1{Jxn!q$7BA~+nLln>Vlp2#m2aA7~^k_F&q;{BWg^YfI@c6@7po8Kz{ z?Ph>rlKOHx6oIyiK>S0&g@ADq7gC1JDV+x=K>oP_|1%XOG$G*?ab4sxu^@D-(CGnY zCc*9yhgh6H+`}i^WcqrE{>1qJyGH(mxM1Q_@TsRlh*UJVsql_C00yDiKiFS}yMBPm zz7*8d%jrXi_3Zu;tfwDE=q*K<^^?6noLR>ROc4AkCI~9@653%W{(_kH!=J&lXHu}~ zQZUfbe%v%E*c2r&GO{LH?P`2@3G=o|3I>_LCaB;@96TcF3-Q9YQrK@Qg?(c?q^#iR z5{CU<3JamgTihur*l{H=2poE#Z9DA^;SO%|UYKzIn$-Cc*@NWLQ9<{3nzQ14Yf5(# zwa}zrVFWJu#p7`I#%@@_+EBPu77kov4sViy=p`UTZeJDK;d+8>$af8AOnVhpt@Wk$ zZu~VF(q#z}dGN2Y+3WFf-o)SX(eM}V5ApowZ-&D-0}|sKp@L>`K^^4S@kWtZ`og{G z(&w6ASg=R&T?D8X7$`(W^~3?A>L`P0FNGnQ^4(Nw5BioAhKoEE-pQ8*B`$D2liUqv6T&+jDI2F5>Z zLmQ9TW63={XiUsue-v`m{w06Ro5Y&@Hu#GpuV3I3PB_@CH}U`pHt`8>>==2!S`>Zu z=mWyO)29{|CcE#fSxfYYWTsjjhnZ?oi_TOM{KYc`2tkOb`jnJvq@J=jwG~2kA zR6-4Fxp~F!HzmN0Wl!MIW={dL2a5^m{h|EJGLQ^1&bDxPm%BimA~Bm;6_6PCK!BOb z!n}4GjxsXjM)C*9|Eo)ZidA4 z6IkeFd7J{#(q(%hGF-CP6Xi(;T676^^eqK&0|QQWrFowv=xDl0r-%!y zzlf`_V;d+yW-*Wxdck;!K)3gA46oU~0DEV%B5pqkE{Rc=t~%(0#$K@3MsZ{6d7_&$ zK%o{2-OOXUfnD4ia0FOM4l^aVL<9?NLRNo=0JN0>BI5=5wm@@p>(@j#K3eJn?>{Qx z{vg36PYVv*2Hfic?iB_Xk|l%S4M!!Qa}pru9KnfyScCYwDr%Dv@YiLNbf&PLii;4O zgqC=%AjtRq3W07Hbn6~WSwsAXzE{rI122U)t~D8&XD#Yb>W?M)BjU91&98h8B!(f8 zmH&k^kCjP)S$_fkeIo;1=NcW%(pdhK0CQY~ zL1aUQanP`(^<&9yk3T8{IwXwl03IFQF>Z0j;Q)~|ymt*sA-zhEy0*QZKg)s@1Y@N_ii za|GB-5mw~5plf}2__3qD@O*H96uYkyHl$fI>E2|4fSo5|!?veA^HgxQ6!9Y^M4~zM zZ`6k)0}vkZ+XdJyA}nZ6Hry&KVZBfZ42Cy>za~Ij79n6{7PyB(0&!Lef_R`3KSv^8 z$B#~KI2s;^=MIt%WQNO@fbxA>+tD5F3?;uv5(97*S)d~w(tCooki%Y&{T=oBjsjwP z38FK?ibWgl9FEOj3GTA3A~f7l<^~OMO?T8F$kBiwDL@aGKsyI(LIr&r)MWhI5XBA# zNjl&{9PjYU1?T(+h{A|6EBK*-kc!(Y1KlkJ zg{@o$x~zsdcqHK67lyS?m2hz$6u^_Gpwqvdxef!lPt>Hz@)W z{SHfYX!$Dw@I@&weuRPmI12VSjfD8*oD}_cMRbz1>D}6q%tr)LYYc_IILsx|CDAxR zF6+}M7`@*Hvd}?+Qk(P-BsR%NgJ|vNX|T>dC%~q&up|$im)j@~t#1p6ZDfe4GDNZw zwWfoazbzmRWf94wk%69U=ZNM9%Mjm`ArirQKj%>M%LK$vSwxbbBZvVXH4@THpU7bI zm0>${gh;YPfZfl+LQ0>^RWdob!2c>k+@*{-y%P-dp@4XgMHB}*=XrY!e@BLRQ-(;E z(!HHwDTOUbXIKsEp&c(dI?_2OUXC!nKCCWWK8Y`8io?IlGV#%vDz^meTpo6DG=N)| z2zUkq?p#Y_vA#yr2a{bC!Cz1WC+V>U8IDG92NMAw&w!JWXZSa2Lbr`$6mj2C#3fO{ z`RK$bG;|JR2EV4@YZ!3IhYChE;AKZ790gI5$QSP5e|Pl<7Wx5Go-MP92yBXb1C6W z#ng0A3Qa!})phUZn9Bbs0Bx25;UrGQ%|s(}xb-_l+zk?3a%to30S*&?UI0HM1>a|O zyaxwil}33&f<{gibjx(;`QQ*L$^c}~1w$lK1a@B&vsRoR{z+zoKA1{vP~@JtwpVlE zMH7<2NE5)HWx(OEENmE-B*Iy8XBM4nsn~;|(jFcS1UbAVfafycwl^H_asw67vMNP` z@f!KX0vck_#G$$p>7a&6!kAYn_`1QcfbJE*cQfGhoHLe#m>=7r2)?ya@VPtT2Jb;j z5`&o}*&jk*x0t@jF%gh?bCPq1FY74raHZ02QisD55FbjHY53?6S*D4m5GL|GkLbir zC0{pGx=cre($LvuBt%W7jew=9tAN^>MI|{dq9Oyz?UDTRGQj6tfaXzPd_58T5w1<_ z;WWe@?;h-qULWmf!hb0A@jlxJoZo$upDaV3ARxP7h||e`7o5)b0?bAhhGb~K;Xst1 z&?FLl^Bz2FSuaCf>p~^tZOM$+fGyLACY>#B1G+`_yZHM^{GCwh7_XmqUOsh`fUv2z zYoTJqNmap80pq7k>iIfpO{W)$#BQz27V2md7V z$>EqPosaIb9kcl^0^|z}K45&ROQ@#!rz!O_V|rO}Sd&NQTn~SX%tIEYvT{A)ok-3}u}Z1p>48;hX^hIK={x zv24g|l1dH(^2cRRN2O3?Kp%ez@s58aUB-OjFWzkuK@a-MF@~=dDHXI=B;8&n!<%II zq#HO(64BP8=1T%<@WGhIUk;^-%a76zyAA-hUhSyE_ll&Bd{R4j;`P!weq5u&0@We76d zB1=(GS%tem6pErKg5dh7pzwR=N$x$<@9&>;dQNX%PfqgWN%CazlJXZS@~8Fzd)k8i z!h$8Y)%N{xTa~IV^XXq57F&j69}h%!-TmZH{&z8;cP-FAH7I2oQi3wAfTw(8MN{;sWrx6BgAw|DFV`1Won3D?aM zXqWnxht7A!Votj>y&7Or)}>ZAWgV%<#3N9T+BIYqnZVB-K@~|Q16v`*^3++$wfTgj zSThkP{$*+KRIlN0@K8$U9Yc!rP_Tz}F#m82yjru8>+poNNbfH1AicY2SY3_YQM{Ek zFUzjs&rC{mG}4=}xk|*W{}xfS4kAQJL5&%RxlY71TM^_}{ODu&6?Z5RujoX;s~XF5 zw#rpG()Z@r$sK;2v9cATKS>FWMRr^p%MwqcfZLy>h zKb-}3jl!_LsamGBx)7lN`kN zolFjq8Tg)A&f7*gly^vSs_6=_+FI0xsJZC5H!1}&WLKrVocb=@Na6rjRu*eya=ZiO z0+?W|?lMk9DjjF)y)c#x)7yr_Q^= zSlu{t#a%1TuN^e!bLWNg@vOf>_R%5z8y2OrUKU1oif}gT8t2ytvOaHr3G1^&u?lsp zz(!f^*?bFZjs~N&Lj5cjQ)<; zvw?kKNzoJL6did5jf2}NvNvU95xlsMJC^UeRvgVsf-&*ytFbAeylu((F!rM*;@<~S zl7>VYUPTpJjgR^cE#S(0%{5hPf=LVhi&#np-s^UgNdDEGCZW9XHCnq(KQq;y7{0iM z508lVCoXONQgj_+x)fFLAEHKdO9|&qzK0Q-Y%9w7-=g|l$CqrD_?HcMN02909HIIsWBZceLYoTRe7+ zH0Cv8pUWS=b-pG`swvAk=G};L4n4|l0NtdhpQ?+5FZdZ6oLJLbz~gJmmbq1bVp%`M z>>Xg5QhVwhG|PKhnB6Q)veoNm#q)CY3uXEK7AYZo;!TvHc^2?& zJ8&+4={F?6UIpGA0Pj8O2P5wy`SRb906Q(rSO1e4%3p~{@gI48N#QTpN`mYI&G4yt zWRAw`n!5CJHyR}PEjBf1cHKpTrgwsD7WBk#Q9X;%2mrL5KyhNm)s#fOa)c+w(T#p% zvH}m`We(0vA9bG`Q`DkK9pnz;C;ovEU#Rf&4ERJInVedOkBGoYN3-pqj~SsD(VD|{ zE7VQ{Du(04yeOQU)HI%-9X~sipLzg$_^KUrs|kwZt=3(0#jy(t>@k6H8dsX*ydCMR zB5j%OQv2aH;P@MJ0P&C3a&UaKPg}Ns@^DjsrCTLY=2FuOSh`e^A1LcG50OVF`g4hj z#&2a@RaknW%%zqhfE*yl8o5O^U1@yf*G)rt?KdOEq&56gKjfTBc)8Un`dLjsms4Vb zU3qMr0*)~Nsm_`h<*Lq)hqz)Kc?8rsGKU+Zb~wycgB2;#N&^WcHy6DoQ-q!pFH|G& zi9~;`M4w5l!-{p#z*^kOT_61;6YDKo7Bxj)40pw|8;W(^z(T=qz)PAni{!l~r(rj& zscEPkB3xnUE1CFLZTS?}9g(hBM-_f9204x_tfb`#8NmmSxN7j!co?kJQLbnln2BHL zvn7%zR(ItvEdk&?=*QnE@2ciN4@W?=4bZD&T&?)3XvoYkquQEL@NV?uhhkh69q7pj z)D#2i!`Y}*_BKNN)>d#;aZEJx#+!Ncz3*0pY;<4*4@bG%es6eov+{h^+epdh&CqqW z(8HBoH5}-^2@jN08Tx!zbyqB_TU(YuY(Exfm)}#nHw)$6d*ZU_DiWcl z_?bS_W5o-5)xQ{vV$?_Rdl~qP;!upbn^|4|o0U1)6~w=ZcVSOZ1)OgL)^v4u%rOIJ z{x|Sqf~zXqqgcBPtg|hUPm4x3!{W_EeDZcPb=!YaeYITG*+oV58mQ;G`6}?D+OBq( z*J(<_Vp|}Up38My)mU&HnMb90c9N?L6o=YSo9epKv0(dZ14DlNYs;ei{;nQAIZd%r z{Ve+0V@a;cSh#IsHRMg}TMP8A<;^1^^=;rhg&gijQo+8Qc%d9W+W>|FZYpCO2b#H5 zx_@oxs>oI<)-!&VzhpPVu?!~66J`vh*sqO|Vh0uGT|b7RG_@9@bTJuGg8#`Fr2}Rb z_1FGt;;O~2E7mnXODlH;Ma^P(!ZXb(@cHkdc7_MaNWE;PQi(3#6eSu1t*u}oqIuJH zTCpQ54rpzD^d2-XQv6e2*s$AAJ8NMhXhIsG*%F#z3yoPfzeN}?;jlk9-JrKM(_7op zNp%{va8-rLr6^A{(4js(9OKQX{QpK#Np8{#W@>}vJ#XNl?#EHkuQn^kBU>Yq>&)b5 zZON2d_0nCnU~(yvpBSK8j!_kvQs+YX^}}0Z&)ARAQ2WR%;;5|%N{95eFz$ay5x*Kl zl(dCKyKP3@v_(;d<+MkJ)#8h@p#^AQXPC4g>v)S;o{|Awg+nI8papPhXIQm>7Ap75 zbR{}^NoaQi^uTbW>zUKdg8A*EFy>iV$bhb9a%WpIMR#mAqB~!b=NQPOw8u_2tH_Ui z3f;=h0ePmGJl&Q|0|5mcT(up$Bze1mT(hHVFispceg0-!6qWsFI-#xMl_-}1MdiQP z-7Jh3bVmG&&Ct{KP_b^lsEexsE1e`wa4GKSrRCJsPtfYhs&}C-FW%lEgirk$8vCyq zeb*LE8oP6VD}o>G>Z-(26+hX)*Yp-bs`8?5n?>-FWC&>}ex|n!N#cd28m9RNpLTQA zXTueLh=K1|fM(Okw(bbNKPC-l)LuuOS8_iCGx5cj3^WVrXDfvIT;KO_HD=E!Ax{~E z^xlO|c|kG0l!R=)(+md)b_f3nGk>uyAA5WB=25w>WcIG&zh&Uhe-8sY-TJ%g@V!YF zD(G_JfSJG7mM;r-A6FW?rubJ4{OF&N$rN?)BY9B;OoOBNUpDhE{WpJdKUYf@U0*6u zB=0>;WEMK5sLWIPyC!0B0lhNyK|{q`eT&+!HMLlVVqv!q9ZORfitw?pv|zsSZzz0g zTYd{OpPa#m2D$38iHbkoz~5ZaO=*$9-@ONFzAbgMnMx__8RAN1&nxOW19i<%S3cGn z*rmW~GmFeznc=QP_K9MBWMIM04a6z~JJumHi&C@lNYwGaD%NcSOH0j!#%XnB9gm~= zM0%St>PIsgpPb7Zj&jvxH5*W-vsm1Pmr85B)!++Sq*dezqv3|GhK{yzC3EEl(o1FN zPW9*Q$Dk3{T`{``n6PhsS!WBRg9So)k)7|V%;qS_%mAdQ8_dCjd{+vaZXp%eliEIl zKE!rK+7=-B`-?5uW((08~!4uY{2k|O}=mMO!Fu$-c z<#$d*VwGwrng0fu)Z~qwgfzHoA^mAjLaU_;OO_;9-!0Rq9ZrpvYExX597*DpWlBvQ zzNWxXe#ueYZYt7jh++-&vo<#Fg4H^`Q|B9WeHu9!VxZVU<{GX2gMqg?17W_@8 zUt^`7cu%{Gw$3XKY;*AN&9k-GFePFCOblVs-Yo>ZEWxoP7cMX?VtV8 zCPK>Dt>o-9%Mm)vQ_r-i#E(t7h?P^nwJFPAdIrK?wH3D2EQ|`?;o!DarJM^&j>jzL z%6NAz`6 zH?o!t5p-uh4!9)tlR7pnCLvuR_MQ9f%JIKDV0`UyTkIkemcD+>dRJ2iRziw+zo}zm z?RYufj=TCh_S?cZOIEiB>wMyvC%`Ppkp-)~) zhgvVYnmMpQK(KQUJ`tlMW1V_cUjFNLt$5Z(G*z)%mXX(-cq}(rS|=z5Ref5)M5`p1 zf4>Qi54aHnk)N&;fs@2kY0TQxK8z<{Y!kwr4NHeP3e3VV`YR$2lf4DE0XkdNS7>)@ zo{-|Dp)axLUGdGc)iL)GGQ057sopx+WeK76HR(RgI+43|(qL=YE3O2GPZvqIjO6A< z#gzmhn(r4UpP-tm!50;`uf|hmdBen^8paekBU9vL6TfMq1y`$|^#t)w7q3?0t+%_P zSeX>rnnIzY$rTbWPHefo9c?1)3T%Yl3qbXy_luJD{!zxJ3fRN|Y)~AI#!v(=zYCr3 zMkwIM#&P`=LjuIV=1O2g6=;wFq&~bZzr7(dlvmj8ie~*SxIQV=)`sU~RFqpZBB*+9 zwg=VoGDTggr{av3aDIP}t0P-tVHKKL)MLrriyq6{iuHz`wZEdfDKBb)n)I2~?r65p z0^DN;Qj6sB_b&J{_QTitjiO%BQ}dodC7sanLN&fAI|J(rqS43r%7VUVMpON;=nYpq zZHNX{4d>Y(NHxSk+8=>eOr z!%_mI=4Pm2mX@~IG&?LQKk^=p#CPDoo*>!d^lX*=8ICcw*gQKd)_UjigYUWOIo3-e zCKdz|p|BVw3Eqsle9`huHQrKW%U)^6_A5ge@0pxsoJw+B3Ol9~MoBYr7#uPOYruvb zwv}_xPL7r|{~SWn+>z{CdUl{>TsaJ{*$rFvbvrgXF++Iyqv(jmHI?llOxgSts-W4M zBS&4GF_MV4dJ_(x_oo)!fa5Ng_dJ12jQ!A6fjz8{T};UJU*Qa$gld>hSkU@H6pvZ! ziZSEi{kGy!P2}=~+Z8#eVk_2wCts%=>*M<(^3jmj>lCq*RYD-~<25ECEh&YwZ2zB#bXQiQavq zW>Q`1^XPLz55%Mlsy|>^9>TFm^w!i~t|i{)Xr@GqbkS)f`5=YtZ$?slk*TqK?ip0! zeQe>qOmJ$pZaxct=~BgAV&?kGe`iObEpomI={F`}{LDFY``=L9eP*t|N~z0-Y|W@7 z$A9+NO4#+E5`K0;!WAXqtN)fTsV)4N+Cb1nTQOdf7{4Zl@m_d7P^NzM!hB&9yo&~VP+Gh&*A--4VlTkDq$@0D*!!^@hNUULcL5%kG&2ob z8Chxm91Y`l3$vs6)K9a^@~kh>l^dtvV{~wT-qz)DM>DF((V;xE80>0f6{DHkpHF3n z@rT;F!r59Sp-3me-wvzGQ$NiJ;m?1IWLasJfL)HP5;Q%^yNp~urr?Kla7~3aU(E>S z$G*!B;Y~6i;h70IeMml}h~Cf^w<4%0Uvgi57~;+J}X(c*NSwb={>$6OR6oUG2V8yQ%qeH}J_ikUmn zj!Qk6KYxIGd<$`tcLw`Rw( zym)U;S>Ed>DC!yYHJG$w6c{KE>&s-8<*At$LgeWAXJ&by*vX^5<-l96ChVRPfLSa? z0XPRRoG1T`sT+Tok-yp@DW#sgjiH+QEl7b_UEIYSZ>mP(JisA=Qh3oFG`DNDFn1ej zwlKBxY5D%qUtG;ue+BHL2d@6rHG=iBV7i+z6tBC#xzgDZg(=iyaIPR4<6)VImw)hx z&9_kJ*itk8=W56HDe4|Q6-Q+#b;$kG)rjq~0Jocg1`UYeM+PACzf$OndbBa)YbIpM zQ6%QI$Z(lu(8`C`@46bHHdtKRox_6BpbzBGv0i9BFS_UI%1XC1XHKb>rp%#K_5K47 z4gMogX?oO=L;la7oRV3Ae^nhb-o&sROSO=b&15oll^(c~&@CWxo}R3ky7GTz;CRpB z9V7VOx@jTnYP!SNa0`8inXXIbg&lEZY>F$~Q6%N8)XNE^GSACKSEASLtWX+bV$WD) zJY|+a19d}7yX&G;KwofBPeyyQ7kk%2dCN@kTeL7f^d%f6wJOLRiH-pAuIqXJ##B|_ za|3=CH@$_NJHf75WL!1Npj>=5#4TnPUX5^znT1WuyUDYGF6B*_H2C@>WczzwsJo(= z5>wu7=~rSdOnEe-Y5&7OH(l#Zbw%mGzw|l?StiEm~Ch$ z0MlWt0<;F~;c|%DG|8T#V^gQNcwA->?>-(5hMI*i`I$kKl7fnGYg1RY~J7XgWlV)rrMY$)TV?g}RG`?(670t{n$L}6R z+%a*+hKM;bRw50bejV+uh28*R|IlISVBlU!XfIH=b+!b#+Ktt0Z8jsZt>w6BuN3LngR6)fdvI$h57ZV+6vm1xA`aCP zi)zA77Y%tRhCfmTu9!g{~dz@Qj*;{h9B#UI=E*I;U}_?_n67ht$zHG#+`8%K&(3) zi=hdBMUSVhuOv6b??%Ld{FQ}#(M+Z|&yROkWKrphh@{v85Nu^?Y%K2W+%9-vv!J_uBU3Yf+C#SrgK?d;bU(!YiU8JnbGj&j%O1T zb)12kjszawz+IE))pl27V=SyZGmAd{$vW=JY`p@m)dNRHL5Z^7>|BxO*Tr`iS%53e zK$>5*yq+6JS1aH#J!6uML+Osp6&2YX#k!?urK+!O&2Cs&*Uc>Y(5(%j znOL#W43-=FMkM~JpF}`FL0P0D z<#a(;*t})QSR#a-C2Ry_|EGZMO<;9qN%jmK+n)?Ic|s&Me=kY_8+%IFu&3CukzoZm z*P7B~iw^7W-PKtC@CBSK)6o+RgKkINU`rLn^+YpwHF)L;jU6WZso}RMHTj~oox}J& zABMxR)r3uiKl=~#WVq&ude4rUTGF{3Kh^@tfITN{sDIc|Nk0O4$Qrekrl3CV0aGxe z97d7rwl$aiT5avhzQ`^%NMZWxF_Y8XRaqYkrk5E*e*3j;+;!Meg;}D*(6QKkvD9l%S%*srB*hLG$YbH=#`(~EA z77K4DyUy50qLaTc`b`A(rz?TM-JI=?gSQ3$w=|Ev#J^*DCi;To6CZ!IfxRKWhq zoaPi@AdKb|?4c1dIpTlgQ92x%c0=lM>ue%BfFtX7rZEj96?Cd62^05;hUxl)k>e%vFxdr*?91^D-Q9`2 zq*7OG3I8d^t~Vcdhhd@;ex&!K;NaZBN+SfEk`+lo$+}Ytrg=ZleyHufmv`@MMVxX1 zsZb^1#XWYyzXRU{!kLnGTzh}glA|ncW!LIFqmMfnd+$@sm&=&b_yJJpGnF9vH~Y97 zqj_bD?^0cSmtd)`+{ly)e!YI~I@orfknfq1XBuPE?Z2PzT9bdfbVoEATPE%swp^hK zm|H~1@65#LSDdxza-ZIS|8&Qd}Th$tujqR2uFMfR9{N0GfcpSJ56 zHP+pSHO!Po=E?%>)RUAcsyF>kJ#{kuC4h45X1==#>z*kq%&xeL3Ny11JM`f2C`^bb z=?Mqj+uf3R*4y1e*FOTkL+4C$9om6}{gyf{_Kuo+ZAw|9=MsKM1@a8b-LL?ec4Q<$PJz3ZpvJWRjg-`y`s-f zc;RAGK4mgGBBw3XFKnqRrl8AEDoZBjzk2Ha8O7yz&#CU_?5>6Nr!8xB0h%Dml7;zY zS095xC9|~pX21}27MV|6%o z9&`7BB{fA9XM*`7>R7_J%%<)rRop+%M8*AqLgK^{BQok6r0TJk+?b#_xknuDxwc0+ zo;2MjY^q7Z8+H<~x8gkZgM#A}6C)fuW0U?z@~l^SB=eecVX|;sm@$cQQkXU7)QZWN zhgM9bY-wQ=ANN~WkrXuJZ0|BeJ7K;%6IPb~ZL)*m;%$zW95e-H@&b1QmV@DCG02rE z!;yU@tT;&|VkH9DovMhFOhjR&D)Kw+dsO0!7P*r!ufZ;+U>goC3^EGNB1mm7()D4#rdu-&R|9JsXNe`**v#rG*8LN z4dHutpbhh<7I9ro^E(Nl$(}e}gUiW%p52IBu=6e-=w~kJ}=*heA0R^kw zjT}2|MZEfdim1;nDewhbFj6LwxBCI>Bt5qD^R{#<)i@_Oh~I75s|LUItUH{Ac96C{ z2zOC&%4|IaM-IwiB+uOlLB(rf$XN%fG;$~9!8(2z#lu>D~wU(GL z-mg)8OC9?vub^W;M~RuK6GI()otVKF!Y~;bc4fM)gaS# z-c{6oS#K!8`*ea~cDp+EXhL+UvrC^kxg2M$)n{KR#6=y#uj8GuA~TT6y5w+)w<7+sY@42o2gp!_2iwi@hlV?FRK3yvsKHL1$8!efmmmMsY2{>dAIl6 zHCaQfI2OYPNw|xgMtHSJDf$8xdBLIHm3h1O-7&0AXLFt>l7MU$-`Q`nsQ)+YAo_m; z6}F!q>+i0V<>i0uU7zedfgpJpPbd}bq@-nk3J3gPabTA zfUS$p+BJyrRvGF*IuJMW92!~u6c;NL16)iP2?N%kLcOtGb9iZ6$OQZ_N@M zF85@%Si!MSF#xAIV&p5hv;Sg4e&ci0hx2T?vo$VzPU#mkgY@gME>geR+|`z#_4*Zu z#T|P{YF5xaEI~U=1XBn6;6r}pqTcdsA9~B*sEA&X5k+8>yb2y1yw<&66<(OrFO*02 zMbqFb+lXG&A}aPT_{l#qoXeMAgqe)$Dzgr~(`(2&f@82coHu&oVom;Ww~f)5ZG(SV z`ZB@dtx8xuw-;Z130c=panVN&a2sz$JNni?Xh-LLg<*u2w%oM;9d^$LmZX#nZhvTRJR!CTAMue3u_gKOVaG`Nl{X?2N`05gjOCGl69<<}qT$+R5x@)sLihE1PMZ*^7aNg`+iSN7yb-iKBy>7>) zg7)cm=$phnEVZCIAN8}+0vZ?G8wZEfol*UQ`GaZws`JJ(pldgl?g+zpZ1gV%*HlFj z(yR{D9Q@|GJB~f91a#2^@C`q>+hE+)1j-h_Xvl~B=uR~0>&+jbud@_rh7Lsfdhadh zE4iVknUPcM;iGnP7HOJg6^QhbYH>m>EP6u``{*O!5eqn z^)Sk6iuoUQNPo-|S)*>UX0DIBsF}$Em?C^Rd0RODYaFVDy4}pRb**l)fgG>_giiV$ z4)#F`-QNz~jP zvI=Slk53pF!o%;OId;)P^_r;^;fDXftcG`&xm6bTKyLZ%Y9kih-JCt8yW3??z5B?X zbj50^XK6X#WE{3UDgOX5OtVl^%~UZrb6tw35gVtVWAxCxGsq`O(ee&Y6P9P;4L9@f z#kssYb^v8-6|hJTq!LfSE2sNarA3EqrG@&8nF#7i^8-Oakj4kE{^rJ#FyYRBLUx{;2ZxN zj!Lx*&-!Ixl$0Qj`87xoC;VC@P)RK;?}=q+l!TLJ2`H`U*!9aq`^1h$t+j`@yR z9OU>r2m63h6PWz#_YP`+uB?xNj?ZRqEyvNN^U8F^oEkKK14zZJS^ONeH`s^KrdsBy7^aoU* z8s*2H!wE9+2L^@n$~B5(un^sp5U<As`&Nl4(M0&$I&B?an~`7s ze~|a%J#koq{$Ua_KrKOETpQUX62gy#>;C&eQT$d-sDBv8zb(y4tUzyoToYSN=#qsB zZFr(59_!Fa0Ifq0;JM#umE{G?2G!#KCZeC!%9f86={9^y_DZ!q^&L*#2RtGO@&mY* z^hHk&f{Sw{KI6szosWT%*nP$*qZsORLvzTTLMbn!5+cq%z!hzpuT5P zou|r_Dzzdcf69zUC*)6m&KWZ(sMLz^2~);QdTea|xCxWQyDIA&c$`U9@t?<>r9w)T za#j(SUxRU3H!!G_^Edp}Ekh&+(>(e?tjf8fbhV;^FUs@}_~5F_8brtr9sC^PPpoGOgL$aeYfa^7-iJC zP+Jg63{}x`iJy~ECy!T%`~V`2f1QfmwM&|KVjZJ3jxNndinlpzSgyZ}`f=Em^1|RS zej~j&img-NXN};tj@7oz6=tTKTGPx^hkc|-M+2n#VwdW2yj+f_8ZYn;#tOeQPbJ48 zTk!j4Ff9;j-W+X>+X{SB2d15MH1M%Q*U*3zQ!0P7rGIaxQ@NSc+Jl)j-wwv!d@Vgu zEVj4ICLBVL;m@W77e1g}Iug35?~qX5qZLF{mj5@64Ob9v^{MR_QJ-~HV4OT)0k?K^ zu*GEsa8v}L6Xcg@mg}FVPCd#aPY;e$O14A^Dbxwci^8lSq*84jxqL82AKJpY%-6)} zbZ$;>f8{_eqg(AfP1znr+@&M-YKio?ndzy+H@`Ln^9S0X`LbOj>a=g0c#Fv&aQw&` z!Vkv28(AKueHWDouZ@T-Y=ukdWlCsFxif;PZ`CH-(|`r{kvUkJpX&}&gyJgpi|U98 zb<;W;s#{F0GcxGR=sq1hX)H}KQUi=Qp4<`jezFSX z2F`+SG!!FxouNuY%*=td%$K`>xl%Eov1Jxdy?}F-9s=_zGxG^z3bWhQ->jG;{?1|0 zCekh#FEa2IL@`lb{1+Z3&sX9a>^TzAeP|^f-^~-uF7%O>u%I^@3A8_whp*{ou!QIP z7*r{v435+-=#Ew#eCLBsD`>e>6k)D&%exl9N#??vMQ0Y0G@o%p}8Kc_8YM zONx2H%*1XrIBBETh{nABEN?Uh;qAWvd;m;pgPbO{!Cr1q0Xg^+kwgaopjOwP(onsh zRGTl8P`6j%O-C6treZ(8#>mm@p`IkxuAj{Dbn#=A;|L9>v{)6od+821;)Z#e!2?PE zH)T|sc$>pg`x#Ve>TpjpHbH^MnZY#dMc}MuBSLxkppmutsu9pC%y1M@Fp0=Bi=YbY z^^qv4>y?PLW)ZY1aqpwT@4L4oNq2HXk*$c8W)W1STpNW(_HiZRm{|nPU(vo|$d(a_ z>wm(2EQf6+91KXH3`IszhGLN&a!6)q{&(64inf9f0{KaE zrR(&ktYnF}!{LE|fl?8~_b=U12?qpT#Htv~m1gn%&EAh1{mJ{ms`fYJWt;JyRMuOO zdun94*_uq_4SDr>NMCqAx>=|XX;k`hM47()Z{3$)I7VY;j)|V(tVn(|?{VBM?H*f6 z1pO?|XYdGIglJHNNgd9O}{G(WiyRg91 zmHlo>xnESu{cOw+_cRp7B%VDJz12GW!&&|^OFX~c_l1R~f0@csym+hnPT)%8qCWO4 zzG=UAroX2^lgq~mIm#$(df%^yV~C>D!@L3h$-gvFdzp;gQeEs27%QED=NtwZq&UOHV>@2!gl_-K(qpQs9qvx(BK#6Yq-53kG2wI( z{&0ZQpzn+tlzhXgLCtTF1|_w?|128x_m6%J3YYzyuVrMxr^p_Wk^QcyIMB}_{fQbV z&GZLritDiOf#zY;vIDL9({!LL+)Z#7-b@6=*42{dH=>|#%2wp?MB=`k3D#pvT&WOqT0 z{0Kg`@t8PT{J@r4&`Zo{GQhX@bPMG}i^f*uUrhCcv-gycxAj73@Chk^vx{b7wO3x+ zm=G!C4U3R{W+Bu9xco3q@G4mfZ{K%{|Baqcy?WwbzL;M{qOVxcUzyPq|KFa1yC8;7 zTLtxv8l=lMf21q(tl1Z;^G!L3bfcA?Fcv<@oNZ+XNvm9Upe(IW4Khu^1EpyiJHtP2 zio-Jg!g`S2LY^wJDUYGM*pmo)``K-fU%e;=>aOtA6Em4aGz(NT5mF4wqXEFtr`$j9 zk(x4slPwW+st7(Z$WU$MtnxHLOPHW9>!8x)5%qGlarJonjpxGHixw)kP|1=`Ey6mR z(~|myo=U^=8EZTp*a-{kV+)JgrPxug0ap4@4FA-#{CeAo{cd6XVqsAsc=I_Ff~3K+ zgx0}blu(g|oMx!ubL;TozKa$3k#(5vk~r9$%khI{E^CQMIrH^;v`+geY;PUbpEWtG zr-jwc!oq6QTz>C)PgS;9u@>rB97{Yg;_!l}Ih$vJ&9=a(CH~Kgo|bH{g6-DBiXyR< z0A=r&oyIkxH4{56)K~4PtzQ-mXGOiBr#^Vu(}#I1obwuosxl}x6^@6Xi=y6s%0W#k zF&PJ|X4h=-my2A6*(z0rn9Xj*A)*>S@JV z4l!qD+7N&7qO|I=&C|#+P6i*N4^A%0>aSoNCC|bbPLa!ILx%WE75RULzY3=_&W;pO zDbllOKw|FQ330shc25jjX#qZC0g{G|+kvuwOac$YOq)B8!{gths*m!e;$BZv_yq_w zP=Tn!cWbYwHS1?#^fofc_c(I+=pg=d)}#pj(}d!1cm#;{graTgifH}4A7yy4g|^U0 zqcNQ1H#~_r6NeZF6yv8iP%igcg6}p4rw?lU7Fvc^W$?=~I311}dZt1OzuzC#%Owlv zf{{bsnI7+;n;kh!b_>h#HCJ@Gq#AJzPETrxJ&7xX5Z4hZe`IQG28p+=*FSr{oIl+Y z-}9_wZ56q-nT+)o<@jq0FErPYTiBAD1;`G3XJu#`l!Ua64VBuqbAi^Gn*0GQ-`rt5 zdbv8t7HiQ(%yjL+8N;YOSbn9kJy@L|IOM5Ny5_QAzIl>oyd#099`;m>`TnV3<=s}T zz9PZPVW5aeU=2GS+wrEQHShMwyO^H&5u}LenMFhW-tD92h#VTGnIOv4{khXBDaYeA zm2g)@pr$-4T6(wPcs%Wi=llP_>4dl1Yz%W;mj4&Iq5H&3!~Dev%b1tvVWwzP^TwwuHUUX|(+=P9kSVtvmeIgc0UH-z8%??>G?^`gm+ja6O ze8p{rxv4OxJ^k5_7Q*-cNq|2+Xi6pi%o$GymK$FBk6AGw5#%)=hk><=z#BYq5 zOJyPQkJ8b+eHO-{1}a!T1w*#=`XFtK@PRjc`{OY_f%^G;}u)(c+3ks{|&^8ylQpxWKCF0{8mjf z0U?f;yY6X)GsEy!Kcys=kaCBtYVvQ4<3=-3DRy^N?6U7`ORUppJX%p1rZlBBMupkzr@7+nQJ7o)YkvS-{9Uo@~r3F@b(H zfbi*RPRMqd4BOJ?lx;PO6pWXBecw0@x=Rvc1811{;wDNO|W63q$=U4 zi~IgY)v;83xEw#khx3wU)8URtosJW(hRl?k{11@7Hnpy>V?AWaX%M-XOd!Ypr~=(k z&RdH;tz_=wzJ%5X;6ULGT)mc<1*!QtwnkEzNZ!&Fk0q( z)@kJzWqm1pE8W;^F5mJ1lPTUa7SOb?5K94Vv#zPvS-&m*V{tM*C>vrds*_awa&Z@K z>K>z|!K-n^?+a3H>WwOjcaFdhw80X)=SA$|`J#ifYQP_;mCs`;%?{&!%rl7gTbUQ> zt;9>d85O5(V!{quQt(}sf^Q*4QX$F9cuN6qNFXnW^d|6Q9cESGtL~t;dfmdgrg64h z!y+5?q3hI#=0WqNpIVi|#$#k&q(49@Y``7iUNY*soT$egWxeSlkSK^f$H;<+Glasu zT{wbaVRJ|Hcyq(N?ZwGK;a+mnOQ$WxjyEw8vGUtZpu%C4()ZH(bLSrJ{MFrp&TB`!|tLyF6!xr|Xfc@j8b zZuWe|zZ$gcSeZ$H#qe1%-gs<|bgr6L-w!K2)^9HlY#QUUo%5+1IIGdt>$1YJ~Xix)X80Wk%ufczcV(kc|kOVqz14 z$l#fW}^L5$#AkG`df-s2+`>*KIkMS+_Q1lnY zdwbM*&S(^;w6_|?NBJ-DUMGCh(R*iCjJe$0ZwJ>%oj?aQ!Q0mideR28SAgP}b06Qn02|0SWi2ydFy*HTJo#YsYIi-cAr zp@NndCzOPIPRk+lrD;hJ1(BML(T>vcZ_!R;unsUmZF#lwP=ige=S0P`cp+5i$b++) z?0{0CjB5TWb+1K*b_*3ELoNz#(DB(xJR=$9rdSIb!=F#`rm@p9tgdbF1-;33oZ#mg zc*PhP>Hg08-bD7BK6vd0-XwO%68x4q_%98-y)a8HyCG~2;vB${SOS!Y#@^auzJ-y3sTO!)M~O(r#!GMxDL_TOIT@RT4K@P? zXaII1U;52<%lu+H^Ocu2Eilr(F0Z&Ql8C5HnqxZ28VavV&Q;@N|6`M}Bqw#Ts#TLN z7?z9oo)?k*cheWpaKEg6AkhT`cnx5WP zyv@&Z8p(=dtRC`px;LGTvOq>yAXIg1s57^jtiYbqLzcDmc3@9fAd58!H7Ag~ltC^n zgTz$D`{*63683_lIE@`u=x-~)O?b#ceg6?lCb7#}5SdHtk|o>)6&ueZhAjH>t+|bO zROX6chl3a7pnO7X^!n+(VE)Qm-e&B+g>%oIGx()>7++Z74aQ`P0Ed5;_A{jR3wK;RQ3)&OAMcU=A=CB{wg^lax?c}(o3;RJgZ+8q)nB-oz3wy1*w=WBsAWIj%GMX3l z@D5>RCYVbXHf9pNHZ9sH7vot&eaOFeqBJB~Le`NX*}C!47$Vh3k+Jm$GFDoeSHIS} zpq+brd$7?8T=S-X$ZDhoJZyp?`4gr={9-L!4Da06o5>bh!p&0=nmxgw%V!^jR=uJR zf4`siA-2U5exrT(q8Z-q?1Vo2=L5Wb*vFReAKHiiYoNCcyP*%iVvskBUAKh4W*>gn zU~gL%;gng4bc^8`L%i8o-tplWL-`32FLIda>xT`66-w2I{(GpmD~13~p&JH5QvpIA zPyrf@v=jws>{u#5R3z^YM})>JWJ*3tP(IOgC1|wMkcD6Mc`{X5{HL^V(fo&zXrMn~ zj>=++iUX_V^RxBe3k3TP&L)6GItcnZZ=Qd8WF^c#$!5b z1wL&YnqCzq^77?g*uTm0OD=VW`J zvyH5X4in3kdTg}wCoD5rfeFc>U)JKqIBr0_I@@R>Hk z(I>g;M1O0#Ue==%p{WHHS(EK#Iri~QlaTS-?cm#Z>|}2%woMP;Ga1>i*#duA!r4Nn zv|-R&vSA}BTcr)FK9)Afq{h##sosIuNflYwg)f}wcg}xj;eIpGp#NmTLMF)~jBv_? zm6>GDRqRJgKD7H2ttPCYK0KMQBun@@_TkBd_0WeW6ZWtrd>8xhWWoyc;mL$ewuEc3&-D7Heqg~cdSr{)_ z7*vj$KI!d`Q#!QZSDy3^V;@<9AJu~E-D1_2c^jh`YQZ-ygW3Gf68xJ$+M}=8ia+_Z zw<-(8vS6ABH}TAD!R&mhg3__`T@# zwe41*1=CF*?#v35frl*NIw`q1Q=|(W9MU>19*Mir^q8who!Si*pJhSK2t)xB!{H!U z?XAaN)Q4+dgo4B^;hs}bSfionMFucaWGG*ItV6z5ovO>%BkSOPtHjrEgMTz;sv%pB_gP(w z4_=2lueCmGRgUI9X3ik2&i95%GaRk^6#mOb)FdGJBcd;z`=7_mxJUG`^~`YTdhq|k=dxj^xuIV@dh*Ic{3(nPQ*lS4*gFp5_flEAnpkLSl3?v zz?hE0(4nKLg&Oi2$`fWr857`=PUZ!FI+BGdgAE#lkwwnBV<&`ceZ?qD=-l={(!eVTcyMdd)!sWv79965_Z`%i-NM(wGhgC_L@0j zJ7mOO!CW|9#Z8OtUF_J2b9 zGQ>n{(6!=EuUgkaHbdaQ{Rm|gUmwlknhECJ-$SBQz#;KQFJAda4GBRShSS*sVW}of zvjj_}H`y%tQGZGZ{epK^3rQ8=087ZemXJo}g4;)9P~|np!kB4c9N2+%raKOM>pM2- zg4aKS0kD@W!C$Zh4``?3BVBM|=Gjq8@IzW~QcolysVDM+o}pW$o=YjuWM?I=gKU=y z*V&Me;sasT%LT;_I-a#y8hB<$u=uNgJH?i0| zAG4l2cB#fxYxHR73=kZ zuYBumgXI^dXctjn_NgkHC|guEcTAUM^QpQXxuk?rWKw8xUv@@8`__Z&5eJANC3Q9K zXO9_-*)8qI(fp_5=zL>EqA~5S%NSfkOH5bU{_umhCAQl+cSB6g5DWPsE}GB!(c76t z%ruv7r`YNqU^0z+AbkJm@;`!@39(~KYg5k)iN=uFN1*p?q?v84jPGh<7NQum|! z*cbik9m)<_qVawp_M{pcfAfxX+%$i}fZx62*pHU5->XmfR(%3kcAwBbL#FTQ##_ts z-2b6Eil3#cj#6WMF>F>@ey{P?ZgLc{#w=Z4_W2VdE>&lduIPFnmH3@MwaIWJ|MHGy z56zMWf>a>(Zxq>1GMG-UbLdSr%fwNDVues8+`Sm$GO65~*)qz<)^07U5_7IT&g5sF z#i!i!4ra6Tu}%2LJA%!yh@GaynliT}hr~p;G-mE=W>KYgAbpM<+&V(VWrtqmmit~O zdqs-WCD0Z_0v&mP28dgiKGTAvxM9-**o>b|xMN1!@R${f*1Bb6M3!bgZN0BD1 z^lUz#`LZ$JB09*|MV9u;rG4F5soCbz{_iYdV&o=DR1T|m<{w7;a8hU)UuBkNMwd>V zU6w!n@7B?(GncB9Fd@h{mnB;yG{iv|@;oTg?e)RFC)n`WIwhGN;#o6O$V z$8=4&Zw7nE67EeE)BP%@;P_*ztT0lx86O+zYX?u?mPlXaGE2LmWth45WPP5SQXI@~ zQ|#r`wbDNz;;R>LtF9uhLU0k{T>QiFO8ZL9(Pq0*kjYE7#Rh_C`Tj_G-xT(pCC=Zd zI2%)wpNN5fqBz=Di=`4@-&jqaQFg(}4g0BHfo})7-z6!qAS;IMIWlWmmukT1zE}hwytG;&P9G${kujCuf##=(? z)0=EI8e8q?D!->LZtJWltMrsltN8k| z&yi}Ye%SV~io)mmWJs&w8_YhnMB%uK0_+rtL^D8$gl|dI_Of#{vl)%#pcB@EMb72f zEqw#!w9In+KrNrX5fM6o-+`t+KPnFdR$N*BsT{xrY3wp{B>Q5ORRQ zf!;U1P-kSPN{O@&;H0^R%wJjCm(HHoBWl+1WnqSZ3GwWIBihyVO=BPE5yAC*vmNi5 z5pNq2%21Oc4@>g(W|s|!`o2MqOB6y^FJ3Ty|NIB9HsX27=o#MEhkdC5vi_b~{9iip ze;5)7n(nKGVyXq(lkTg}axKAn zNXhKs`G(T>#kd_^RrE1*9*F*sw!Z#sx&=~T4_VR9m+N>z7rbSA-vGAW5`3+F@Cg~d zG;DzAmtK+omEmi}-nRsQ$3A#?mam@UN+5U)Uy+3-*H@O{7q#GIvyqUpnwY0-_&oXi z2@XaOews5owb?{%x9&*iB@xBJn1|oHGctMeE^O$Tz!SS0%v>Bl_mD5JNCV@SGaWhd z_XUSAlcw)9UuSU`o-q*4z{3lkx@Sx|#{xs<=yWSzhY`AkRTd`9NCQUMHj{cS(@}(a zIpEAQMrMilf`H38t1FUrr!LU3uD-^OSIvR8O3}i)!%<0JBkCNsWPwc4^acL*Alcg7 zZjj*9QNQWt%fLpbrl_1VBqoI%RAX1B($+t9;ivcTb;HhirtrULv0^_P6Sl{QT{RV_ zI{&aI@{{tXdM{riY{Zt`-;k*l`GG+`?3A}as>wO+qf{G)hCFxWBB`(G!Nd~J8XTT6-TIIC0lrknab4gY1AMK}hY{bP6L}bC?CH7- zr?$SofI8RthYhVm_MRKP^`MW~0`6>3d$jJ}Q@=4;7X z6w2l=$@*oOFPAm5$V$;*7a6`vH=nzWozXuM69z51l*N*8^qNB>Uw+Xvz(wA?3zxl^Z{&QSAhuek=Y` z>%DDcZd_8_VXggZE-w&QS9(2*{7NS3Cw5m0p(?09%`y31#^e`cKFoa7*ObLAmbnOd zG5o5~3cx$!4{e7*bZKg`<})IB7+9OYp8*a9gcFAJQM`7*0wt z)xww*h%_n1f>+KoQ5Dg%y1><+@U>y9ErD042s~|!f77MDjyRQBlYMrn?_u_aCHOx3 z;5*u$^-t-zpo7eP%9qMK7RY%CaXihNE<;CdlDMg5;-+Mccp4uO^0+K*$jBJJH&fVe`>J*zJ;U{~=t-SMqxH0D;c@tYu6yl%Xi^tN={o+=}`HuXjSpJUx zotOW+A^#_qRCX)t{8HS4oni?YezHS8Z5Ov7=jZb2D{%{PzAbKLoiB-7sPl@r#W=;x zE`<9)+y;g@Ul#W;=RR>O<9uJ-qMSwIR>dhiVfg8*;uhvC5x26=qw@BQxCJ{`h+Apr zNAl@MaSL@`=ap9ZI;0Eb9{!xO4$e3jMXEadx%$qJD?3U#SrtdAe9~9(>aFH@bxmBp z$0gtS7GJXp1@&SXzVqAoX7!x|PvKvKamgn&1oGDh4j_fX;Q@!C;$dSMp8a~81jn~L zW3?}}P-LoLSHM{d&PurCQznX6&9Skqv!%GS#wDNfQM_-0?Mj`g;?fM4e9AoWzQ!`_ z`w@przEk9xc;ypYfm{@qOSt4aMRpMyn-Mr$;u7g>jcdMBWEuX!s}=d`RDT)EQ=OZ| zWt+Hc7nfb)vWM^9Jv+6~=@SnZ#pRN?d@U|l#O12Ed@C;BiOY3yDTRfm`J@Fxas#m* zurV(Al)>WFG%*8jhPccUm$~AyKwK7y%j3A@Qx1#Y&Vkc1#W_#7E*FSPp|~s-m&e6r zskl5PE>DZga&cM7tE}jB{6)^Yg)>XjKZVsSa{gm@ zx^H+YHB0|XW_+4khA6_Y7CFlpo`MZep@yfhxu`)zY-GT2!#^VpPvs3yqF9P>qL>y@ z`P807`4msW=oV2y)t*F&)t*pd3+Yjq;vy=$;-B(K6k_d36k_otEOHT*X6;FoX7MCS zcM%n9?Makx?Ws8mwRjTc9Z|zmq4p?By!NyVWmG%~3sB@-Zg^Uyo`ii>KUiaZ^_=w; zx4bHJzG!*p6oy8~*71eeF})H-$n;8>B-1NlpiHm!=w217_3J%bkgv2 z+VFJN@N~}buohFNmp#@9tlZVHzwn|AqUSgr9r7Y^nOrcNajd*6>Ep2i`oCRi>2lU7oMK`SKxpvq^ii zwHLj)h&R=wO8L&;7nDJ@ z=aiV=@Zj9`?&=qOn96$)F?8M$djA3bTKilBv0|-0Em`a7Jc?I6oyYiBFZ!A%d_)g3 zN0!1XaV}C%=W)Dw+W9fAV1LR}H~5-Fsy0S6wJ|pENgLq*Tf^6G@b$$JE!Q{rI#xUg zVWNs_dI3U9Uo3@M?|Gj2l5coZ(WC}RG^ueDO={dkb%mQ~QsXA7E8LRNE*a%K!cV{C zTZ$>seP8zVOcf1l!Cf~It&_@AacMFWmj!ch`DiY+V`ShmsAxtxukmv)`(i^y%NxLD z{0}fNu+?!RZfE$~jlQm-qVB=}iupA>!8O}tldo^6u=;p;mOs4-FAsCqCInc=Yi-8U z3w+XM{6w{bw(=8r!gS;sTYQheU-ZFYoooWz1k) zb_^|ptw`U97szj3Mg4=%Uv<1)3h zXs<0*zwHr>Cfw;5T#_o`Qn3my>r8oBBnc4Oj|#US7|+hN){2ogOX0o^|v?+(w$<=^GFB&^5f-3_=zY{BKLSHy2c_elKqqaAp)X%{Z; zy|{e+1}?w6C4M1#PU07#@8eb4L0p=CD&C7)9p6z875OOYP>CNEZpWkZoEw*Rm&C6` z7fbx3Q3+oCi;KUR?o2?nK8iYB;{TiROZVS#IsHFeA|0?ry~^Rzy|QSWi=LVI zZJp|PbtDd#c6D%htpP62Ho@h7Y9X%Ar{VHq3tYxz;_`VX5%!b{`)xP8`mQ@J_xt0r zWhgG6=80d3o}QrB&Bv?B6L3i?z~$N5;&C1>v5RndZV4_qOGNqpg}TJ^;x;GHjxG9jlq0yo*;AKt(-HHl@4tG)E_&wbG^F(NgdsD&3{)y=IE8M*QfSc=I zg;3nF3SnFUysKDQP~26>+aawQUJymlJ*<%Lz?{~>2{%q9gp#YIF%kE=nB0?zIOk$c-0NZ@Zgnvc zx4M`dk%_p~9oT7&^-hTHby0X<3Qx*J-0LEYm5I35#T-sjBEbm@lc`f<3uu$+RCXTn zez8=FK98rVIcs8_M@LK^JYwS12=US+sUS{SW_sjfrYAlz^uWhV&wI@DxW`OSd(3oZ zGSi94Oy?ytotDgWRx)cDWalnz#mUG_cS~k^#$%4AXFO&th6J~0E1vI|=?=$CPj}3k zc(`Mx8w)c%+A(VW2Q$rW_prirUyA@x@$1gslrT8am@4($4t*~V(1Z$nV#Up(0Ra2GrXB*Pcu!6 zW||evG##30{xZ|dgck|XRI!+B%rwiGX-YBEy@8pg4>L^+W;(>pbQqiI*fi5YX{H0n zOvj9w4ihsS9%eci%rxrFG|f8E8$;tYhAt7!G+JY5u*T3>jiI3$Ll0$QXq=j9n8wg3jiCoJF`5{oF*HQY;%Q7x z%!m;hLjyEss#e<$AI)I2(iTkT;9)1nXN}kru&*?(C)m5k;^QqwrsgI-N$Kc}{!hWz z324(zn4PsyTvu*@&wDK09E?o&y*8QMdo2T%#4XJ-T4kcsEW@i=%Lx15E8u2lWy5}> zD$4#!D6-EIXf3!BLibr(sLaZJmR2frYoDcq%J}TJgs9Bq{g%!ub8f$-lggAmU}>u| zqYl`p9XntNR}zndHfn=)6(auMqP)Ahb#@O zR<1+pAxm?Wd3VTCPi1_6wKP+is9!DhRVL+EOD~miNVjxRnStq+t}1gV-O^rV3LUnw z*6y$+$m;EN;jMlRHfV>YJG9#bt`3nh-L;jtF_ zA6NTuE$lz8x@aw!PS{xMXq$;WVX5XPn;0u-79f;B;f#7=9QXSF;l)(3xk1XM)j74VJSU#F*2~!f+QP&mrJb@Fc}DG= z3^;g39Yz^o|C>4}GobHpHfo!Hvr&7CYISWop?Y^wHE!eq_G1ssO0hTrYJEf=_nq|2 z&8t)?V-MYhv@ErU?n0rnsvGXY;Ipd6yRh%98Z~#p;hZ|KP|Y@ze$LXz+RVF9^1P+5 z%1k@2X1%-c=)7f^l61LX>8&!U7c5<@2P3(@atylO3~wT3%d*Aoq-@zmsB}^7&WkYJ zHj{nPGT3VJBGkQP8Kg3B$>ML#9E8i4)B*euUS3j%&qD~zRvqyW60LTXOjeR-n6VCe zamk{UUyI#v7~gDj!-B87zG?|jnwG1Uu`1Kynq|DooVaF*wDv677@34NZsSJw?9*h` zv$vq@bxVY`;4L_EU0JyWetDL0N|KbP9KHo*Zdj%&Nx}`AGDU7$B9&zBP1P~C;G?Z% ztVNBGTcBH1&)$M|%trDnvy8E}LtMCN?&;|G65Pmk^gpcHkppeG+H*Ouhg%}8ohYvL zH2)0LOwJIUSO?rLm&f-p$&r-Tj8d5kcWfk0?pic!^s!~AwTHxo zy;k`HRy*M%y#5_`|B#DUF$_uWehb7sQNzXppPpC-D3AI-we(Y&<4h|a=>SslG190gMW{Lgj~ zm{^e2f%v7BaIr_3n$Al7-xun*y8_c+sw46Wym_gP)hjUUPm89?tNt#kQt})EpWFWi?R;1EyC?alhN&!xL&;= z8w9zFD;sWaf$T!exE$C5Z3;8vw7dn<3$xMIy+$^c&OjU0W*d8L<{Y)xmO&ePHpS}J zGRU-N^Hipt1B+If%MNUj%Jem{Wh(Q+#8#=y!Xh>X9E-9am1Ip(w#3>l@fbt1#EN#U zfXzkOXvhH{4|OfO4ALCgVpTB6iOpA;EGM>5Wx}0pB+Oaug=Nssh0RoIx{HlufGeA= zB==mIaetKw-&~n-SDOi8Zp^rl&xEaR%((5&gfDK)xaZ4+9_}`o-R{hox--Gq!zL5y z!HnzFOvv$I#_eP#_!MKtO-d##D#nZxK_)!4&4dOAFY%4cpO(k=l~(?JpL9%rllsaNpkF z8LmwAH}2O~Lsl8(+-mSB%Z%H?)i9_mGwz&M!_KnIc&xD+UYBLYz13<6D#zMc8$=a; zzKj)~&oLUruc!u{fs}H}?KAM995WuMoPj`3W&aE;@MOj#iZgK1Qw_>2xa-M``}{1Z zRGu}lHdQ?3)0|&nRna2~LU0G>1^4ULb%D@@^@>>cLl&fzS8iv)r}C&fi;FZD)v0d&h|Gd7XivG@+S{hBG2YC0P?H6hy;-nQD_&9UKzy5BMH{sp z6>VDewxa6oENE1TwYK%!y)^pdRaW{vA-=8$crUH%l;6&4m27&>yRuCtvNCIKYw5c; zT6$g)x_C1`r!fNo}Syh?w{2&W1Rkdkb z$!aWI^~d;XHuapS#=6+LH@-2tHzEk$G{+s3=1~v72mGe4dwxU5S7*l6a28ysuBL=6 zs98fzMmR)j*wk^m1~Z=PWr2T9HJhPYO`Epds%cZkr>PSk3TwmouDwOwQ#uFg%pj_)e9=mBk zWI;%)k4I9HPgCz=)-g}wagivl9R*!+m?z$A;s`mzc`54-NQF|hRSQy~Uv1@dDkRlr zKGvy1Jc-vh{%_aj5!X5l0a`uMBUPYR^^tJ6;k*axUNJOxGtFymol z3Y-XFqpd!rfNvdUTz{s($~w$=ypRH)>)6y2QCD3xq`>vM%y?#!0zviE;7frO^;Acu zLux%{Je5s{@Aa7RSSua+)mM8W9k$iCQTte5ohQ>FtbrOo>5$w&wKN?*Hc&$*9ojau zQCrv0#@dU9th;rPi}+Nn&Ux&|Gv~$bX#|4@G|!)5(qU~Qn}W|9slzKB8aGyhH64~T zR?STZ)>s{0>EPeQMs02r7G_(s{Z*{_*i|u)G)i37ys$dirbFeXHVvE6^uHeek%#5% zZ-QL|^tj)a<}St&nGUrASy$^MPmK#rDitWUpYt(r*xPdWFyH7ve}vb&HvlfZ71j#jC(7a{WrRm&3-u1N=*XkP_(tp02|oaX6U81w%O-jTHEw-$2QFP2S++=YGY&I zZ5uTwr9*?ZHU<{9RnuKMTxn}F(7fBJ^IAHLYG>oy!FKAxBt5acn$yyuLwg$serlhu z1<%^sR8zl$I^W<iuL$=&E*KGTiN|+}H+RyQ<@18w~5F z4!&)W(M=sg+rX>4n)0_nba&O^+u%-j<<2%}*uy3h*F)8l2YY&`F_#D5dnjvpFr=qC z$>+hDp6VdXgMeP@fXaiVwwZ^$lm~gxvbQ=s^I&stn==3OX5Fk)WuEBcIT)3o{c#u~ zyD@KwZy4qbUHWt>XUuzfklIJ}Ssr}oqsDR`1ou^YAP+Y7Rih7|J@&O}SV%vc+Bfu5 zy_p9e`!VCuXdaC0uevD@PWD&Fb{;qnV8g7Vf;?`7(GS{~JI1JJj{h#Oj*2^wI6zGo zci`~=H4yGVvw`X)cn22SW^xCreXe~>#iW}LLz+2nr2LML1HbhoyE zRH}){vVx`H$_O!-_H$=zt4UZ)M4a`6-4V>+7LO1yXsPfrg0;5ACqz`54}=V54XsTi zBY`4LEe+$;$cgy1UGNoB5k2hT`@|k@B_~fE{~wPtQBT_sxkFiVThpgSgxh7PFpSl) z#dk!^TN*?RWA)0}bW5fPf~#B0+H0}3pliz>rC`V*Uc$EJEm1+c;|KGHvuZFTrI(BK zT7jJYQ$){gtX&u`^~YWJ<{f^3`uUr@5+1g_zgq;?^@n-GSp!?UV@0@K*#KeJ8@|2I zEB2p4wL~0V8E_iG>e?2nDI)W};AfsjVW9~ln3HWYo$90TH7p;&0&Ma328ahi&Inf9 z)>Nd3>KoWt)?a%hD{i|p#*1jbIE?nAoe?#vccU`4P1-Et04*2?XbhOL;D3aB*!Ij5 z5hb`Ms4ygV#h%IR-lH)16uwdNKaI=~L4=DSU=;JSbvQwU6)uFxQLKrr!)rvK;mKfd zrXhHg|7Uz&2}a@2ma;XTqgioVgOfyHA}(Pc{og&Xq7~xxtzm^Q_{OfMbBX_qu@n)+ z_-ot3VAmI0;I_YqePXpfrEPoZtcY+7#t6s!Asb$xrwKYA=f$kE3yqR+RM8f6unsis zU`Nc#arm=1JR8B(F)XBv4XKMEl9~@jND9OF+0D2<72r)=A7}8|*T+fS>{H=D5l6Wq z9Ig(qw9}ftg(Z}V#I-5k8<&>^AI`NPDxLNlWSy?DzFk5xE?yU(ieaaa-ip1ST zbY^j|8_QbuwsErx#%pTMy{&G>x(*vRA|i5J#L(K~qlS+dH`(Y-5y`2&Lp7T_v0p?W zr!*zjp=m$D`mwCBwGW6e5#`xaGx}g6?^_GfKJ|67)kzUSpbatpQ}z?;G%)-o8*Nd9 z!N2pzu}0SMK=``Aec{457GjIXh#1l)P;NX6w2nK{?jWK{kB-6bZQws^?v3bYDr@Wb zMGov2A1t5dgaw)ky?fiPI4m!$4T7P7QC^Ug}u-YMVT*S-1gh3NnXKQB>{vsl1T@&HN z1QukgUO@!a?f}P$tev%;r2eZ2v;C4}w9_Bv|JdIXzCr(D#f+Aco|A~gy##wFDz6FO z!q{AG42I-NubcmjS?RTi*VRrz*-5O2)eRz>MC9%nh@QmyTD>NGUBvQc?}yN-;*M|6 z{pzZA65ke4zV{(~G7I;$G5_Wu;=PBB+82tzUnv%`z?#Dm$ezqXt@RM9E5d@k&syu* zFr=o{HxdS5xG+ZQ$4z0it$XIFFjGuK3g<`ZRLWDetPtYu@N^36YPCZoS7`V^$EmEB z)ehl6j5F5G-7~!1d0*KPvBz3zxHOfuvf3f?MQBWe3e#9stDQ$e(fK*ze1AM&C_86` zcr!#zQ`ba9f<}KcgtfYPQ-Z2E)cQb+V61c2X&c5)&tZYqkwCbb2s@vTVdrurl!rHIH@pnLNMoglNgn_ibC|Dn zgh+cLO5JfDd_jX&e~Fh9f$IyP{an_(tc^pfMJRh63}u(~fL%;rF^GB}=JTJrLQnw% zM&Hb36|9XFaqrsaC891BTzXnWy-VABgm@`5jb@Flts=5egv5`+7#HbMezOCG{Z(?*q0a8)Y?Z>+*t(XuLP(0YT759EJF1+9Rlb1tN|p=XQizDO~O5g zQ20I_v<0j#_&Y@w{f|S1L|A|S!_uK(_el5uHg>EKpM>#0vi8;kjci^K>i`(81E9u2 zMeoQ4|7plmu|yyemk7wtXap;LB7NbfgBIh)g{;gKYY0BWm<8%Kf^bo>svr&yFJNt~ z`;zcxTxX#5HFk~Wor_tyFU8se?J3k)$XZ$hEQz$lRR~&6p4AC$&ka@JxF}HJhP}Kk zOI^sSTgLzis^d}xtpcu4kj|HYt9Fx0_!%d}BvJNPl-i7|EU|z=`tn$a+e4j2thIG? z5IH7RH$27F4aVr0GpQsb)tyqt*S6dzRM0$d)dOj1PsI8MX*Nxm)!_LebzUd(N-U1} z0~#-8LDt#`|Mda!XLe&7KO1#B6NK^rrHeL#5#748a{R0h&GW^ zCe2*48bvCCeRQMIjih@N!0sMP0qnxPdl=uIFKtu>k(5#(cl39ROwSinAh#4#~0|y(Z^U8Ixb~S4w7fUz@@BI zw9HVfs0ee-uYf{DrSzgOu?9m&^QCL^D>x{mZ)e*|E6&B(Fj@AYkUqvmiuq-~EmhJO zFCm_bAYV+8l(O(Ga9_qsSsl&+|NKlYbjFO;dx}RJhhcE}Mh^TB|9LEpP#jhp%;!t9 zMHrTpQpnOE%;!rfVo6FVD(C~oGUZDtC`d}zk@r_HUMOFjFi@G^0(P;=`(;oeKa&YT zn6Y|KaRVaeAm0du4ahp^pYWwHj38f1|AUuOu_#8{i~p0)mrj4F9LN&V%on!Ox1;d? z9I|XGdEXF0e&KB~YTRssxA_jIfa`MAlyvaJjMe+gq7IiHg=~x*9E8u$WF6~;biqJd zX|`Ea@rRH;m}x8hJWG|OXV-HupYI+$x|Wuc$@~5IR6Ach0IRcBybT`YJB*Ko^D}p# z{0ikgJ&$~itE}>k(Bnv1hkP9Q##TyC`=pefHsI4fo3iwHVduPbiW{_bS>?U_Ye6}x|Ehuy3qX{FS7Hcbe$`ubhTLpuY2>QTb31xHU^5i zaLgCeb)zgymm*8?Ix=5MS0Yj>uSD<~C0|OH9a3sscGyVos{V+kRbO;vkzbfDEM#GM zVSyJK`BJ(*kWxCCYk0koFQs$2l*)5Cp5^nU|EP*-Rhd?-8J@NC#dOk^h2=^6KT7lO8uRj47?c&Vjd^&2~g^JlE%gh^4Oq9zzC61DTNZzU^lw-v6eWFuX6;HeT< zMvOn+ZXKC z;1h&ttC>H3ylls6*2%O%DrCav)odcdackHQm^@v>7Gn~Xz*b^nm&lf55|_xra54Yg zL>6cgCucN#1u6myMK~TdBuHvMR)xMGK!3WJr7;PKROdhCE z`6t!|lgU4^)|edriFL-reiLhhNvBO{>N*_Ugodv}iOp;%CNnmp&)4DFX43Rd!q#1f zD3Kh6j3gH5dQ{ftxSV>g4NPqBQU;n|W$y6mp|c}QxXube>zAtyIsNgXZ+u)*3tw0x&gI*VO3C}%P(w_>4i}ESi%nC z<8sTwAHT51t^#52^pM>e07Fu7^-`zZ%*}2;4BX9vUG__bzES}y_ID`;ZmG--a&|L! zRJy+#cietxnu?=rKWs{6lk5(F`ySTIbU>CI1yOtOAUFUyd)NYkn!l$Vw3zQv5oYbh z@o@l7?!`Vm0G??$;ts%%X*fO(!1FY0*#YRf58HVFGWW45m^9eW#$d8}KN~7db@a1? z2PwIwq2dA7O`?hQ>>#>A@$#_t0P7-APHj8LtzEn<6gkMcV)_0D*)%E1_P2xe-HLk& zNh7Fzh?SK*Aixgl3@z>na|PdehZ zl#)et?V#&ctdXa)ZYc3RjDu)5#2#k#T*Wml_W2&!r9P|o%`FbKkFX-};xP96ZuoMT zwZx>w5f+Teyd&5h8SwN7Yg{x#mOQ?^2;{Wo-jH^bHNw%H0Sk{}FJ-`AM{$^Cz@TH; zSs8Hs81`TWG(FCuFiAO%<0b=2o?ufki9JEGzfO>BSO&?iWRR@QN!AZll1`F}LniK( z3>cq@^G60;$Ruy-oMNLfxBe6!!x`}JDK-w1(WlvXOm3bg*ys$wZD-hcC*ik7%halO zhi^w&RTz@RoFMEsRvTX#GUqqew&-2iw71x__@k_fP-uotyNjPsL#OV-jx07Clgek= zWK7^Jn~sU=IW`j$vrGz}XY(+(@I0H3iTwo@j|p60%P^^Ykws&&^&*ukcZp5F@0`b8 zV$EH}?E&r$w-q$8492}t4hCIj%^)C~6-A}MY#h=TVNW(&fJxoU>_B=bgiLsrSOXBGDEvT%s@SlRDG zq~mQga0}kvX1g%iaEIYnXx_2H5OSAoLU8{s+m6ZNdu$6PHSe>Hn4G=O)?*U!fO6j+ zu%9ru@pr5{2P*u5b?3;s$70>{O7q%@&sjhCYT^zKX=2@0+F@9EkNG3*53k&~GnU%< z5Piyl4v(-IIq>!o)|LZn97LcU0i*J9IS{;{Kw(txy=SxV ztvA6RaA=A9MRYL@|NW2G2NrPph!+MH*z^&{y9NCJW{H@b{hMvZWaKB3efoqoSa1;t zTZKuL&saMyiTX^r&i}Gl%<2EKrI?KPLb-Qe@G8Rs^S^kM4uu35@5Wc4<`*}#k^oEH`D%Fc2#=*o9(*Z+R1Y+p071pL8N8n% zzf_F$`xPhtyf|Ni;z=dA8Ivz1sLYa*d@jD@$i5WsR8*{>!OH!y@{?CE@?gUEYHko+ zp0~rw*TL;l98hygX`YCQV;Q~?lb_4*O_;PRi#4nROIcEhDu+#92PRLx0h4W>lnW}) zS79!PNF_7QmojC><>vrxIg3;tZouDwuiYDcoEc#slfZ&CBnlByibut z>0Wpo1bt)v;Ju;-euJelzQNM$%|q~;>6g5D_o8Ac47Q;swqaf&u?MYMeXtE%;B-YC zDqCPmB^)DLplW6QD<-!q6I@Y+@5fw7RelJQzpGL%r5X;ZEzr9L5flP6CdFz zZ>Po4IU^bD{CF}tx(xh%c_zMP>WwcyiAkCt&%$I{ZGH)pmj3)2CM5z$>QYj(9zTn@H}&`_O!n93zhN@H0p*%Btl$=*hk8{3#4$6SpjJQCk( z1x@f+5Nkxxx6Rm-{%3J0dY|=mNetqCkQT^`qLZ1>y(yo8+SyI<0Lp|8f&2$dvSbp{ zj4#C8S($_e@dcQ>62#|W65gE8!6c_SUyMo57L?p>!53j}XfXc~lSjd1EFy%gJeJAW zmSp91OR_Sd6>ovB-b!o5o4JaIN9gNC*^gc5+tJ`{6t9r$QWKFK7aBM-)}3~cGh{Y>H+6;|{PEFF1ggjGX%H%w-P@*bF6 z4(07JDcOk+!Y?aL?ZlfG6_2g3z<2Eby=+1{=va&nX z{;50F-meGcPW7N_{d$t0AQQV@hG|-0@!i{|c3NeT1*dyax!S!AKP%TjCo0!SjN;|N zy9fI4vNw0dTEFz>8YZLqPz6`};GW8Y=6$L1?S1(q%$4rP$I6y;X@Ew$;D3#VSsM%C z{kePM*XD(ATxVe@A)ku+ZHko$t8U-?dT>$Xg6#cBKj&Zg8DBaf)B=G zry_6!W{qs3HcI|7GjD(o78gK`r*AHjo6o204v;6D<(F9p_*P<)S5L4dn5%uj^fdnOdE}-l@$0k8fSqN_+bp5?^3{BXRo21v)5qdBt8&sP3P{Y`{#5%T}n&dL}|&JqPqsViH8G| zrw+xiC;aD(sOZiNGTmt=&T;8*bS9rEOVz)NrRv|caew11a(~Ax>L#xra28Jo_tj;;L>j}q#q)kW~pG;SbzIv)U^f20OFE#T9n_`Va0aRYTm;x49r@?rsZ zLKB}B-~o*<*IY=ulr5xwYrlwEoW6)!Ty-&@j4JCElZw+4obJ+L!V*%sw*-fGI&_So zeQ_*?##JRV*^D#e@tF?)n)zsJH`hWhO4fpa#k@PrGvfuu*`?$tTS}U(myxl(%kVUi z4y9uGSn2&uUo3|k8lZ{GcvE;3i*pl>&R8BPO&_R(DhKK$F6X_SC*uyB5HTrYJYF{7 z;)vyVHcN+MD=6u{0%xFfxUhoHkOe~ zF^xgw@W%M!@bL+}fl2(w1IrD9lmwjCwt{0K4>O5>bRZlC5sA2$ zw!*bUlqEww;H^!`Ql{bOUvPh7AU`=vIqq2z^)&h z#NDvN^I+a)ESU#(NoXz)7AD~llLzj}c*NwvGMNL+`yi_9G_M0!FH*WA?;fUu>G6g$vcFu$9Ka>5WpYbrt1D9QRJmQKwVS#K|x*N|ttKj)=EVl}}r1BZ| z^1n%NIhFS|iQlMq1AO=JDUKweAot?%%N{;m0t#>c4t{(2R43A)!1hA_h^9qKLc#1_ zU&P)k1Mzyda&UhSuLG}-cX#%nA{5FlHu$`JJiJXs;ovkJ;7NAfMc69oP&~WXpiUE* ze-J024*Pfo`$eKVJ3-_=9Pi>c`uiA?_wnwIB%wI=Z1}#9ck&=WQR`xZcA5)2^(b~- z3Mpz`Y*5%j3g@lu>Ec8sDRzBCS-5%vn=xTOK9)n76ZmEJELn_R%coHoyVzjywz7D@ zupY&n*GMsivj@V713X+>q>%MYZ%EEi7GL&shan{&7B$LH`1)y>b&z+I4WhvHJ8Mn^(jDAq z44!E{?Dmo7V#BGR8grz5(JCkD3*R+5?#U6;qSagXg3jIp3^j1WnOHA?SlQ1}4^d}CILJ<5{ zZ#U@`1);CNr@Op^^oqjH#Rlu`DC_-RwNDvoi6YL=wuOuXXz7hx&*H`|qY(4(cA^S= zKfstiju3yG*R+@a@`aPfc_WkfjR#Ck_;#H4_aF(ynTrk9)d%dV_w^FR3c>Odys;x` zPO#; z)lHp}8C~!O>kRHW!@7aOc-=Krtm5R568x)e<=HmKW9I8_C5M?@5X zyvy9v^i=rJ`g&n-|9GW5l*r-r2%#sj5T3(_+sm*DIGV$onZ$3Dtb}hle3~OkD8xJ$ zqOb6I5>Rk?AQa8z4eTlCVm7qN<&9j$Z!EiBwyzJk=i({o*lLd7F~82;As~HcX&j?e zg2K(ez?)p&-2Rd9uQ}Ae%7abfH=0O>*;jct`?Er_8S<{8%i=dmc7W?OKHQNc6l)#~ zbFcA1&IBmR95*o6g6Ht0YrFwJV00SYg7wu9{Je5kZQ@#MIH zf!Fa-s0b+ckd{R#c_?nMgKI+_)5yvYe3KV)Rmc89;c6dvoX49K6~EEd^i@TKBVmyC z!>H0u^gdp^jzBvnV8abQ!GnrWXt~&+;Rt0o*pY-3V7?2M-Q?q>HU*N44Qh{6+SMR@ zK0J+$pjVNhj9^+wBNMYn+gTmpeg6fccb96at z6DXt{-v+>WLwgzd0?RqCVG_Tw)j4p2^AJapP%!yJD5B$4Fae4k{|bY3-bMn78c%|~ zI&UWd#f#$?&TsJm`(H$#R)I#hcqNngjn?sBQ@40aN0Lya_&C^e3olRzP>i_Ppz{IH zVqSg^eA3@Vd6c!2Btg(hc|#h_jqp!C@lO8 z{zs7alz<|@pMv*&9w7k*eV2#W`}hQqY*3K5^FA2&fOmyEkD^LRJqq$phOrNDAdwyg zcJG0E4|qRWkYc$D9fpecd1vVGBP%BLD2971r2USEDHWvX?JM~2L*CDW0EKId4fb3w z*+{pCJb(hWrD+P)o_iebKfuE$=plEMm_oISUXV35K4h`hNTJ%B;p9W!)_$Mp&Zpq` z2%j*E-`JfcA@mWR3Q0mi+AU$vBYezC@ljRb(IcE)#BWr^$5D@YUk{Q{T(;Ptmwv0? z?kfdeQzsRHUmkN;dy2|_0-2Ao7V#U4R!MxqJK8@M)whT6C*0pv{6;~|)pUW<9p?K^ z_Jj>Dak}?<$~_>n+hj2vQVELJJ_fIz;57*W3eElmU7qrAdl_s6+n@3VuHrY^tSfDH zfvbxrR{&oN+Pwdamw@{Llf`Wnm7rj4u|fZP{9nZ(i&+UrQlsGQzaaG)A1VRGXkUY} z&-oyG8Oa56pYuSI_>ENu!Kvqbj0Z_5I$Lb8iXiBEeo6&-+8O?Wm$E-Bx}r7Ae}VV0 z;y0FU4Od_Ae)clN3+lYY>s0X@B^_YGOPu6LLh;#RgH{Jhs}p{RC=By*@R-^Bl2-=r z7`!zgT?*C~8`SL$?y=LV!{R@AUHj*v@`aG`Cl7KJzp;vLvd;!fEzj4y7R+lnRdg3A zQxvz@przq9I&t<>iaSXa3gkWtuU_FHL1id}8~=0i8mGcFqQ*Y3=`{`s@f&L#2zOs| zFDdB&1>WG8Bdxj6Sm z?~i=4N&H6D)v)0s?@BpsPDcmG?4?(Sa)0x768+W50lqBS?F~!+=JRBE3}*VoQ{?YJ z$o#|?OVw%JvDHm))`fZh@Nm-(QPt5g4&XL%R!y+`%xk#{gf;Gz&b1NFRfWNy@nl2F zAA4DAPy5V6?FpR)yMOsMDGnZmeb(}353u{f`%3YC81jWLv%es!sta$w@BxnEH`Z|& z>i|0!y%e~0p6dv+zVccoQmZn~0g}hf^#RLQyqF^NCwP40lcadtWCvW*6&(oYzHv>W zB~u;X%J0z~;K%R0gDg=Cu72kUrrV-kpLhqDn6;o)!am){Q4p*>Th#9Dj?6l*Oknc7Rj6%#EQ$0bP@5!V(9l*z0CXxKKdvBhgPW==HpX z0noRg-q)T?{SAi;>T8_ncjb5-zzrHg#l}z!GBcODKy?3`#bJ3NeURypaMEpy1H{)^ zToHtHc z&7C2+s9vXtK?k<8Rdx;T(uu|N%5c;b_akM zOz?&Z?s^}4DjEWF-1Tj;P}+G1@Lzm06sCCSt)yj_yO80bcbB?#p;R%wrTje<1{c$Z z%5wd#;Q=vwg+F{Mrq`3=w@|0J-c9~~2Ik^=UuiFg!6_HLJlL1eTTAI#2rpqcGXwUN z(0fUv6K-KIcZ;h60VVZ7sk#g%mee~+L-u#!bV`I*TL*P_ty&^=F*74o%!Fu6>m+o7S z|IE^Quq=p#ywswAu&eA+jf>cW||=K2R2T z{tSi`(~Coga(Z1U#VdnydblhcjULvynOFwimD2;H_&L<@)Q8&tBpUDs#CzgFD1M{o z)8UP$-i~rwop)AmN0!GvCFOOHR$kvM#oFHvuD5ed`Q1-_A)~s!T#A2#t~K=Y4kUK*0q>f6x)i*DJ2my= z@^>t3uB9K6HrfQ3AZ^;_!Enq6cMz33i)iD6n*q?&R}YaT_TVKUdJ`|2_ZGbU^hqZ1 z8=IF0>;3dDQc@mX`{}df?>!JzTaT5$mx7(YzD54Fz%GCEpDbNzYJ#`@lN-U306kKQ zYs0?*dX^MdYmR>Wb+adwud9!j;%yLLS3f6zZ-jyM^fU7JRj5{9&z8UU!KeB-QBn=N zTALs@drNJ&)c|KkLX9D~p?*>Ru9fcANH1b1GnJr1WBr>WDNPDB{V%p3JP6xb5}G$L zENkG_RDUeBpQV3ks#mZU4M?xpOn0$!qOz;Qux$Gfs6BUUIY?q#%R@%aRySA>q>q$E zYryLuJhf1pB((^ao3@-qoJU^n%(U`ce5i7+!_w*Q9F62oszvw!Iy=w$eLD@k$uf zO5fl>#atp1TkAWeY67adx7bl1{%EZ?m1qija<8_fGz7KLJIT@+5Z6XeaJ(-ZO^w91 zH-_Y8JL^Mm^p3(Xx~(2y5+Zas7?RrR!=>W%k*F8|UC-^T3iaFRngbOdH3r^x(i?!@ z4i9}I+apadA>rp5FrdBOMxqDfOfbL4&eCwIJq|V zIw5p_AbbwRsgV>WPK5b`^ro=36P`4PJcl=(^k`Y!GTZ9(=FT`DllTgvh*=g-C>VxK zBcv_D(f{%1+ORAP$0nhV@Fq;3?L@zaF2V+s>H^6dca?&;E_#T>7nUI|(+0efc9n+r zUGVI^RCw&M$po(5Eg`TWT(96J5PCc-fzB7r{V`TxMrrsxT(53V+S9;wpZl*$uKi%^x|vS;8si*FCmn@JRe=4kjd8>o*kJrRyN+%ZAe z97_;99;o{eLI*EEnL&DlJt^FPd4u#NQdz%gg7Bf2t3$)Vc>X5w(c4xJe;tftm{1P5 z4AECe@t#{I@LyzU3U`O-?WK4>_(tfnr1(3Qj=Fp$0PaTU#iO_4vK&opMmJiF-|7^( zR3j&rENODx63Ws=PHaf?sK_zV8u76!6rV5viBF2$1|b$}g;9Lk03`m+$VF?lok)Jx zAlg}10_PQA9t18bP|%Y=wgTdNSXf7n04qhMVg)jSs|KJ-uNygScTE!Ch!rd3sDR#t zh()QC3M0T3Xc$i5mI5=o5xAp3ZchUD6v!Sx;DG{Rg9!Ygz`1Bi9w}092&p_#pi=~a zXA1m2l)wuGO3WnirvlFF!&+?lLF$q zTUey107pgJ#DZ}I&IX{ixf(gG0Di3&#qI*E75ZWcIfCL6;OEAuKuIOvflJO&URr_d zmjucx;QESyrve8h@KOL?lZLkfFaIG>NrCa-2vmty#N#`WY6`gG7edgH8VYQ(BT!3$ z&$y%vHGCCtwkJ?qf%YZ>0SahE2-Gz|v=(2KNPUB7mz@YS6yS#FvDL*1G%)~mSfG*9 zTDp_CxdONnO}G`JKyzGThM=_qQ;HF2w_F^5R7X)+rlV3>CIMg~HFmpF8M$0dxHU}H zI|FS=jX+sVcVXj&(7+{ZqTXHxAjkWN+ucvS`gZGAC$a% zFDmf20wH|}{G-5K3I0{!hrXooRe@E52z*!I{9pohxO`B0achVG(ON-88Vw_r!V1(H zLBK(Q2_p#ui=y@74JQaZBrwi@#g)876v;~};D?`N z#{#7lm_3s~Sp`nvr`l1&Q-Fh_4qto|3W5p-pboAmau0?0S2KyLAc!VH@@h&xFPh{v z6j--_KrIFAqy=9AVuZ;zNu=R#0J2!e$Z6e|k+_}$=i>=9h*o69N+OLESg?vf69s0h zCJ?B=*);@$6lk76poIds#7%TWhyvo9dk<)_kgS9B`ra<$Z1bVCx=U=i==w~9ml*&I6^iiN)3TgCH zpv*4>1}Ly%H-SM4Tu&u1M1k{r2n%YG#=S^@DXKWvRAK#pkr zpAw8W0JT2K$l-EP(x0e+_@o~im@GgvS=cAZRHZWXB&keS;D4C}W-1VTiog#Fh|l_= z)j0}?Wu^#dgi$RIej_knX;i;xN7ug#6j^zZR2C^9KJAA_mI%N_W5;I`SZV-jY^;$J zi%^AroB|^xSS3KNFmO$%#$Effp+gnE@LYjM#R$AqAiX$&R|*8-7YVW6HwuVP6e4&hzzNY-@ir`R{{3JO zYV6-ePRlDz1^!VWz>~ng3e2xU;Hv@!s}lIGz(EP@aNVM;v|BaOD5ya6m+C|cDkia;9HA85e39&3sJ*Sf%5n*LIlnVERn!f0r9m$)NmIdfes9Oofm@Q(FUQ`mo#$P z#d;(!t-z)x1j;HfyeR=s1^NaO@KRuBGXmZUcs3_cNr4V6qKQ;dEjsd8x^(aTzzpL;Ih$wGh$h8@r2{cmR zvjj~P_$7=q0u|`cg+P!3FC}Q9K(BDp2vOjF-3rkCXDda9b|;lK3KZ)>pq&C4JqdJB zKztDqeGgSYEVxF{Spg+7UlgdnoitJvu>YCBUIpeN5a+*r ziae4k2NdYEi^?2Q;JyUu3hdua8b=hUl}g~40xKmrp};2zP6`lB{UJX1h>o06DuebB zIHSN#39=Lj!mm4Gk#h=&&pjfzAiz!0$v>VTkZl0!;~XQWJvb=D(ORw|GmcV$YYK?Z zJfg`w0mMRj?RE|Uivh?aH*(s)_yR}Nzoo#Cvjpxa@I-=p3PeYqBb5h=h;Kilkv|kD zd6B>)1>Q^WM1lBAr14CFfNTOU6xbobp9*+hCXLt8iil4@V!dw#5R3Wgg_8*08-N=7 z(a33eS4sbq0?jN0J}Xe_cLHA&c<_k8HvzIl6`3#O@n?r?v58O}1&y3G>rX0BSOM|1 zNc71;fe&v86j30#a6zHrsK6L|0?rCNkieAyo&T0Nkczuf5nqo)BgGWREJ~n+0^*~Q zs8LD*@r6hPWfbsoAy7^M@d^UeD6ha&w}N#1RZv8{f&f)2D)5H~fyxTpEk>ZK0`rO! zsIEZQk_2ihP_h&O9|gpRBe51g0itO?)GkZJU#UctBTz?y*zyGGDIi{HfJPc9@VO#^ zMhZk%CeTCy@oobw5~u*wEJ*i%L5kS>l1d8&=KB!{QJ|MUfmRB=f!)0b3{zn800JWvFb^UyN`aq;5Ev6L z&ObB)zC;iit5oI>BQRcpQX>dN2_Rn4pow?NVrwQDfR5cMMo#-WhQ!kp5Z|Xn{TT{~ zFH(y0&n!inN0G{G1>7bOn5#hIR08t^*d)Ag!S7F^jRgiEFBXYhiV#Ohaf|^-ywu2P z5z(`#c&s9iBv_$9<=LbWufR?TRw+-0$ZA-K$UF-wg^BA=Ev?Ju-yRE*qugBJNYw-cPa3BmpuM{QKZ2y zq>`$DcP4?o3V59&uup+R2@WXG>@;Z{QXu&Zfpi7Lt0}N0M-W6y&nKKEa!jd+&tam< z2?fMkDiEAh;Q0jtrxXw`sX&c03KYvGkfp%d%LL9TusTN`e-{*KaD`MZDImU%iB>Nw za7ltI3W%3lpvF}N#D_5vTvtH6*aE=~1;qC-5m@N>qg{9K77?yg_TDCNO9Ano3oLU- z0roqAdkS=VNZ^42#~u^-LxF}*2|QB3G5R@?CyIzqWMVbX6qx*qzzYQmy&>?Y0+s$E z@LGXdp9s8F!0QWvzZ5w8oxleg|I`5m3KkOe{;gC}3KRH8fkXBL{>=v_0$&vnuiro$ z-xWCSNWczXj3CFEcmoG&6jUJkvNMswibS{*a8RH|DFQ_lXkLbZqXGlV5pY&upC+vM*`)C?MVyg8l5LKodU#{tAd!g`h@s9YuQ8 zBT`R+PxT2jP@rT(0*w@SB0&=c#Ct^0YM=t*9U=&V6sXpeKnp9t^PhN;2&#lAl@*}` zS_yEO&M`d*v^4&)Y$DAupZZ+RR z)aj3(6)-`AcasE6(xCMm0h2X&C0oE00xFUi&7K$VtOb~-%a}?p#YqgRu%l3^7LYPc zw|w$}Q3R(EY+`)MvIC@BK;qA~e8%X1OK_$Jzq}}5t_GrJh?@{%LM0GtTounf*30;AjNvs@)^A_=p%Tw6jV;=S0Lnd z9c6f-fHyRlfdAUSIcqeShX1($Sf{~`4+Lz`;M6_=Z)q?coh?pz+X615I<}30Y_^De z

152DSqdW19xeuz-vhJ2Ys3U-1CDG%!CFuv>$QPXrWbKm`|^;@YFhYo~;Kph0`A z$s@`>4Zb`hV7~_6pym+cpa%2sA9(2yi?MsE`lu$2z>!FX5kR zFd6&c5#xjg9~TQasljh00!|UU$~^d~0i5!+1tg2pmd}X6zfB_eTLPDyz;C63oFiGr z6khyMz;_mq6u!57232Gb|B?n&kpb{(Q00~YzXlYML5!dV)QjQsAJT;CFo<%Q0FSDC zjQ7fZ{6v_gTPYP;v#Nfkg~TtpG%6K$R7MMjB9H1>k-SsHp-F zqXETK0Geq)85Mx$8c;w5z!j$nWm7;BG@xP%Kr0O>l>*R414^U-v?JKY7Q;_r0Cco~ zw3yD8&!8>}g1c(a--T~&f^^q}VkiJTG@uL$KraobfCA7*1L~as^dmqI0lkw60v@t} zlwu%#ISh`+CpQp(2!V@4!iUm(oZd;z=2jzWnOfbkko;sju#29!1dcuE7RngBel0p&~pp3#7E zCIHWB;G&KR$W%?JV*-#ufUXbgfC~gnw}4bfn&mSnXM*@MHK3dcz$^_YTmq1x0o6$W z<^Z_<79#=4(orZm0^lTA%2M!KCjbj9AfDv0p^ z&;E}D!;^e5g;8F#faH;5`3%a0Ab6Pu)B*umK~T;Fp#MSe9}7qVE9v_WgZWVv1m{@* z!N~tL%WF^r1mUIz)Bpi^lK>N;dyIt@0@hhTGT31G3<`cA{#yi>8Gj(YwF2;t1tk6! z`Y`-L^`p`y;oB@C;X5p!LG2HmzDomYe*o;(fNCEA1sYK817ME^6#D@9Km!VV0PG`p z0aHl)LmIy70&+kIfRy4x%O`Rk2tKR;Q0` z(1dCoASX4TLI=Pp4JgV1@D;(AEI2<$18~{`Qt)prpFw2~1fSD@${YX}G?IRMHCT#^UnI6x|N z6zXsQT+x6M8~{HMyv$;?$LDeYezbrT>nHklGnik~LGUjYkl>q^&!EHxf^SLxCnr#3 z1LO}Kg(4dOe`-LH4S?GkP-FwZhK<)MQ;KW=+^YfQH2|t=KzR*->KeGHuK^ON36(Vf zYH2`a4S+ftP*ek;o(2@s0I074B{TpUYC!P}fM^0t>(O1{dqM#ByDTCV6l3`eN@yUw z8Nnf*&>CMS1ZZIai63wI3`%GqxFx|`j9;eWx3Pf4Z%1D#gNNgzLx|r|@+Xn-&N`f0 z83^yH0ktv!x)b1+3O-zj4-*0Ow16bg+wvLI#6WOg4Jd&D@Sp~iz+nIP5D9*#pp(Sc zj1Xmz1tiHKmd~ID27-qY;71F(TYSI>;86=m{NeO{%it|4*lqy{c33`x;up++v?i3e zKzd^cDw)Cy_&_1RSPMuB<1L>-Aqxag)PUL*08eQ^?FxXW305=3iM<3QTEHbqCRtu% z#6Ss8(O_|J0n;^rmIaf9%xpMGDp>%`(f|S$1eqF~=`SElgLV%In3u=(e<{}xmG5(m zf}czxXTd}kT0qLV*zy?=vtaNN4K_U@-~|l|hY85h;AaJvYXD^nS^s~T1i!(Rumw_G zX#vUfRr=m#@Zu*W$=56(!KUS-k_F4OMg!grRXMbon#&lERiS&NeCp5Lzd5g zeg#uFs=*H#0zT3J5*Cc{sRj_RAoyH^4l0XN1Vzjf8WxD*GQPHmWO~~286EyDDV)^+ zsufJ~f(Fp6AoyMbC{_>@X>c=FfL{ZORv<<(!Csca1(gbt%NCJRlvzH*_o@U}Y5<`M z#{WSB=u{B=r~yfLj1ARgAYb2>G9mQbQH%HUUVdJEpX1*Fi{WRc=|qM4MWa?NlvnW)bM1>XF$M$!Ov&_`3iz0 z4f>Y|NYMb=6^t>Rz$JP7r1CIyl*$T;GE0LeuL#K002&rdBuj%z1?CZ~XTd{NYcR%h z7LbDf)ACWv0>Lh0u_kZ+DoHNU0D2Zo;ROw#W;Kxn^PH2$ZRlpY-Kn8=Uex(6KFbGa-uv=aIS%Q_Uj_ac(#)Z`! z|4F1iF6!{uo)UgZgWbIZ_%vAFS3ppM?;aFTq5%{#Sc)d@lg&dU z%8weXQ{aXMXC9UqziLqUh=5xfKsST={!fFx>SAwe&|!qch`^S7!zJ~Rph#5`0Tj_d zA~iHH6sV;^#Yl-!SA%XUoBA41Oao~|Y0yr^XskiS=o<3=BZlMzZ_Jxd$T_hVko(et zKD=KLF%2e}U;znkW%&$9X)w602ID6R=%B&iNdh`+;DV+G&*`Sgszd=jG^nd$^wt2{ z8a$<+22j=@cu0dI3Jf9$u;3KeK#YeiAO(K}K9>rorUt?vv%-z(X#yVC0BRbH;m`nD z8U#;h03{8ACpDms2Ecd?prAo8NrUyX)${i>$x#**@)?YhXaOl`lI1hz%#q*}4Jz?z zaKxXk0R%J%3=JTkK`=`Lh-VOF3Xt`WUzZ5U(ora&fhhAdpmYYna|Fv-PKag@EVO`> zbFt;a7ndY>i3Vn#fEP4)MFCfiCQ!{_lFK!qW(L5^1i8%gDugZoR$4$Zebw?Al*>Ty zYZ^c#gWwK*3>9MyV|>IEx4QO9l=T*oBsW?<oF#IDcA#Pip{e48}jJ0hBQaE@<$z zN5J!yJrgaJt=3Ea?UE}pmN?&4qk{c=6U5@ zQ4U^K6587dIxq3bfO|YiKK_h`b5c3{@d+P){lVdHD>#1T zY*!BF#8W2Vhr9A}PKY?1$id`svP!^@UhQ=!;S_HA9FZmX3o2w zA)?HP2x#}*K_l;X(uDpvz_v)6Y3-ap!7u3@#$$#z&GL0QbKksg~eupQjIxBo- zZbDxCk*0Zv57#g+?eNsHtu$kIdgAjQIwA#lJ$#zb&XKR(>5b1Da9AR(4by)_D@=k0H2l9p@Z*$e{cU!VfHd@@Av&)l^7dTpjbp4&Qb0pS@ zrHYTLNdDsz>8-n{d3%?qR^%4V;&&st#E&H=7M{cB3-y00bnD&p*<(WAzLT~x1N*jD zV~O6q8`s_MmR|X|`&Q zC(d;2L8*@2&0J(3-^se$DolwU+T*Dowq4c(=VaHCzXoId6&~K=VHFSCdDz9n?>v0Z z!z>;?;o&(R{=>spJp9bVO&(Hsc!`H39wzf(@bDrJr+FyC!DSTFJj=s7JgnwnA`km{ z_=1PaJgnzoFAx96!yX>WdAQDli-%`;$l~D$4;OgY%EN~|oZ!LFgUQ1R9@g~aaXJrI zd05E9I3AAkkjcY599B-vt)7xTEiIj&8GXY2*ax2BHru=A%DtY>wyoxoy`Byt!+OCEgOmaKW7h@i)>1lvodfh%xE8BSone%SwZ}DrrG{bs1T58=6V)tcym+=5XWxDmkv0$A&SKV+*wBlZJcR<1<%B z%`Xuynsd4Li#Q!J<`9#MFB^^X#K6aq2Kfw`1kp4MIP|qL$NcnVYx9Nup4dhl6&I;d z5e`R1I7Oy=zh`(|j*5%WOnR)1yyuPqsFBeNV3bpaOC8>s160@h!a*EDCCL2G0Z-db zValNt$#W!y!;usYM^ZTK*wq=q1D+1e!e{Wx5y-37IsM%`*K8P$#-7;;>X=SCw3e#zI-vfcX_fDLuJ|dhGD{#?jXYPHor)Fi& zNSnPNaei6~J`b3+nhz8w7gC98X3q*#>)X6Y^;^mB&i>F-Hq18BeA;%YGo0nNOZ{q3 zM2$L9ZH^=O2(}QzC8wXtF8mCy22rD;6qj%4!lv%iS;H zQl~SKOvQfL(b#4#2~;$$DTy|*IVR(~&Vh=i$bIM8OC8``ID07p&aJbTy1;37PD(cZ z+@-egEk1XtADsQ?F7<|U?cAjxEaYy>sKn#W|bB-hcCCZXfT|wN{e_g)ys`gJeVy}CS=PA&TMZhgssVz6ZU0$ z<9S}Tw;ddtQ%;X}db_EL?Hl2EBm!lNGw&N-KSA!SmP*+o-Z$MT}S+#0eR!SXO z?g8_>gZiShi*|e28jkGt4zW#qJ>T1_uhiFS`&%eoJ(jLZVtPhWN}~EynFPLV-)$AW zOJZVr>TG`BZ=yLX-+O;EiSWMt03y^;XD7}`%9^2KY|59~JDM+bS(Gm|`)9tlJxb8F zK%6lJ-i|C*ftOF?wgPW6RbdTnjz(zGxwS_oO-)TlwyASen!y5ZTnpyvh_gB38Ktfj zWokx-e0p%A8CNJ-4Jnixm0aj;jl`D~%1zu|=;cFHTqyb1-s9zC@#r4$W$y8I8o*!2 zh8+@DN@43SC|4D<=W zx`SNSPmU&5i5{DW6uw}IUWba4vMxcs$@s#(u&pm`bPYLSoPD7gH{aL7T=bxi-vYS2m3I zUqCKmjfZ%XSWe@Sf7$NIUTtP3H|^(c{G9I>_5*d+NLGW__&8)OUE^b;Ik?8hd;8ZK zU!UlgnA{0SEh*`z-X<;g<7<6(*2e3f$>}FQ^9_P8@`R)^`h>5C^w{=7`!~45z0EnF z`I?&BPx#m?oj4&y{_}*7O=ZmIzNly}yBKdn;Yi6N{dX5F_w%3ozNv#Kk6(~NExzFE zDFd8+ynPBrfiWL9k2Sx);A;@g6ZZGTTc%T(FZ&(<8@OA6!Ygxv7`GVFxZc83V5)C$V0JwvDphgs6>JPGe@Ne5zS@ycY{-4_xFtEvX(KXW<*$` zCcY6Z_bt1B8XxFq*ZMgWEL-bmD>=MYuBm*jzoUAfgN~Yfpu3y#qgpjIyPWW`I>)Z_ zcTodIg3Zy7;ayeuwiCYQDxkm3F^U1LR6y}Me?xh~98cIBnP%7Z{w8MQ^?uGF+OC(P zPFye5xO~08M+>gN8Pl4foMPSA*0NT&qvbAI@Bfz|M`G2V1{|Iz}+-N@!IOpCDu>+;|x#+N=?xh3ml!)}WYH3VMv#i~QWvz#HhYH;c(GKHn zcZWuS^Z}|8N86vtG3!t1*o~EV=E(rN>^frud;mr%=asPm_7LBU4LIP$jte{l=c#dl zk#OD}7kCWLwQ+%gaJq~S3>m;hQ==M0H6HwbwR_x1`RR+Ng#k#GstPy#%+`GmH z#xy`uf6WN+*0)HLyc5#`Y`rg~1xBb_kz${YTM=t+dZ%-&JP>~(2r(WrBx0r!=&lqa zWI&3CU8VPKQ~jBKxo5Yi?}doAO-qH|Al}y0UVx zTU}X`uuEN89k4xJSq0daE|$|ckCV|>IwYsN-|HNFYy}GQ%l;r+Ma+R92bnPkf}Fi9 zJ`iLlpMN08UdneM$eG3c2ZJ1r9zQ5CmmCao*73o?AV>$Pn?>R zojfBkc}8mTOx9rhhr#GEJ6P~1u_;~cEWeH2=*oHv+t8I2v(B=nV&A!9Z(zf@vUY5; ztby2KZtQU9d>EX=F7MV)L5|#gZUotnEVvP5m$COoa1xw)KL^=VyZ#*H%yHDuL3W%A ze-3hjvF7Js(@9dtKimI8&DZ6Pzw-m}((3N9IjXT)R+naxmK|=4HNs<&w3bZ#LQPAy zf-oA5wdLSDJC8=Qn``|`uvIGG${0~QP;RkiVn@5O)?zEWvYwB_*TW@rV<*ds=xkZ3 z+G_NG#dh=vTTUZpJ8rM}Y{!dD%=<=+h;m>0C0N1-_gK|p{-!IcTHM+$mpaKl6&DjF z&lroHm^n9NYGQWA%v7rxrrPnZH1d!|k4O4nvE&OUS=O=1wA>@B6_4GHgg50EbDs27 zelZ8loB74;ADR{vvkw|tP|V?fenIg-`HkxMGQv^yUgTaI`6bTIOiY?PHwoX)m1?eY zuOpgaRppUnt0^le=B=w`HcSkLjC&pZr?1+(Z z>Axyw{YT`A`aBY9^`unpvo=SDRlcfNbyIs(kK@Imvd(O@tg9%wVpZ|7P+3(rTh=Tr z!x@|1yB`TTodbPcXQyGkAvImyR&(su5L@hm zts%~#3b%%$U3?#ET)`V+wPm&r7VnhR42yTl>WwL+vW6eCtZ^736ub7BWsSzmO~qcr zgjre7;uWQ`Dv*=1R$a8Le|W0UbdPv9)VN;rlUUy1AC~>F43?Ia_;>mFge=|{Vn4QS zpIpPSeWAwVrFMtgC*WdhX3S2Vk&*pC+U#)0WPi$@7H*_AETpQPr%t@SRhGBdvKm|t zTTbI)L_~WWllG5hRoYE_t%1A#G5@y_W{ZQN$!5J9p{nMDD&ACE->L=-#cH+3d5>)75Im;V;w7Ur>%|*on|Sv*ruoB;80d zJp$F>`6AR>RzmD{`@-;b_QE2r+WorlzqH)VPlblHlty7sun#~j)x+X`cIw>3tkl`r zsk4)15o*cRP>gD)>GnLtsXi+yGcyhEP*LZFS3~zBvoEfO*sqpe4Ye4nnwZVe(t5J;Yek8v^l2A z`RLd%oe|;4B(0g8H8*iyR(6t_oYYS#VfWuBrG$Oi_!POo1oZJEes4W?xE4 zOEr-#i*VdRQqtd-V!yH4y*n5ijg{3IJB*d(!q#GCeTOZ@${LTo#LDtu6S1<2uzOfp zH?eIv9E$zI%6b|bg_Y&1fepdRJfW?n*b}VSBiIbAtfANitgJRYEvrdy%X$eLepTp8 z*yyXQ1K8oKEE{(6D(j-Q^0Ap0jLZ7Fv5i*+S786HvU0I;S6SPzVOLq7V5hFKg4m*~ zECYLU#c~>h8dhaPkE=7Og?sk2lGE&m2Q4pYqXv(e_8hr`LyU_Y&6h1N;YhG+x!jPG zi00s}wg>Gu!uMe$cJZq1zT>caS6Tb9ZC6!=9022LGHCZN^=kq}JR1b*Lmk1XC$xFp_f(Ae){duY)l~EO@9aK-t?MX%0IP!>#Lw(|sworu;cyAZuog#3I2|8( zq=Ylp=Z};;;HoE_vQsRUFx|5DV*9R&*8`y`gW8zEu$c@77Fh4H2QwU8fQ%4g_8d}&A3#q_A+7{&K3QRa{vB~dazXp>ONM(}t-DSwbGNhsy) z{y;)0JGJtJ(ynmsZ&}KLdQ8hwPCFO1EM;Bgw=Cr&e75M3OS_Ghejv5FM6+4Z+zshQ}$+CXIW?x}W;psVjNGFtga-N z@+RG%QrdQ~_ zLEn_NQK|K`4?$`}?8)rVa=$6<+FBA_VgD#x+$-4Tt2P9W$NpZioW>vSz&E8ok5u!` zZX8x~8zh>?U%1#%J*6)DC(?Mk-zZfx(Ad~APW^|)mT?H07F)&}lN(#c;bm8B8SmZY z*fQR``pwJY6O!CePx^)4)=*~hEH-> z<}2eA=v`kKACvRGGPac}{xY_scFGy)mlM+cWgM|z@|Pv_l6&>I%`pbq=GKtkLTMS! z@HjEn=5UeM=9`j6cD5rfIEaNYctHClh=eXiB-n++&1!fkPg`0DY zDvnedREVR!&G9&^DRN#~mNO|m z?Rl9xbx$kj+Tygda?U+oN-O7Eha+j_ymJ+4vjk{Y` zA@)`)_I@wRT8PcmiWLv5hX46sf_ReLb!V3UHW$UJ?knew>E&?hgGl|2M?=YBhMIC!IuB>unN|6{;&!*o#3zvHpA#gD+b8Q zhU0+<#{?_OrP!3Mc5e^HZfs@k#5QbYEyez8W%a_oYh}HM4cE$=jQ>Iu%V{LJcRpJ2 z^_$4%`9KBli&)#pt?FtShU*E3iq<$|fw;z;NWlTAP==`VCEaTp9t8sSnP5rqo_V%s3 z-ZEag%UJ$y&B8yT47q@q{J+#JWBzxH$)DkC=f=2GT2*%KpdO-F`zky#W2QNy!$bXQ z`$;sOW@b`hWy3z1_|buB_;hQX?@PVTcOJW()qdy(zvF7!KSiTwKSF>z?&cZ)QSLgL5m^S-}1o!E+l~-ANM^9C<1M{D%3=dB?9SK&B$+dAZ z{}b0}gT2dQIgM>~n2edYXkI(__%AExu~~c-afQXd8gV67{ha7)b0k}-w8TDUwc+_Z WHZUveQrEEMG}bp~dQRumF8>d@=Hamb diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index dc3fbaf6d26be65005109b0285bea3ad4ae8ca5a..9bfc3386535c5dba422b46210bb14de4e9a1a8bf 100644 GIT binary patch delta 64 zcmca`is`~BrVTBOhWQ0%7RhM_Ir?Ua$!5tZDanS3CYC9Q21bdd#+DYAW+q8yNy(;( UNogh~mdR#GsfL@kGR|HM0Nvsh)c^nh delta 64 zcmca`is`~BrVTBOh9!9hxdqAP<@%PXDP|_-hRG>OhGxcT21!Qd#>q(*MnL2nE0}QKiKf83(X_nY25(K!@SaWqOyJa?`hnpBF7gnFlNoy$73Uw{lv& Rv?;{lQO$>l2K?rgG=JDZ6\n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2489,10 +2489,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:46.249753Z", - "iopub.status.busy": "2024-04-06T04:15:46.249429Z", - "iopub.status.idle": "2024-04-06T04:15:46.446289Z", - "shell.execute_reply": "2024-04-06T04:15:46.445717Z" + "iopub.execute_input": "2024-04-06T04:32:59.241500Z", + "iopub.status.busy": "2024-04-06T04:32:59.241175Z", + "iopub.status.idle": "2024-04-06T04:32:59.438012Z", + "shell.execute_reply": "2024-04-06T04:32:59.437410Z" } }, "outputs": [ @@ -2532,10 +2532,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:46.448528Z", - "iopub.status.busy": "2024-04-06T04:15:46.448216Z", - "iopub.status.idle": "2024-04-06T04:15:46.452666Z", - "shell.execute_reply": "2024-04-06T04:15:46.452118Z" + "iopub.execute_input": "2024-04-06T04:32:59.440559Z", + "iopub.status.busy": "2024-04-06T04:32:59.440204Z", + "iopub.status.idle": "2024-04-06T04:32:59.444637Z", + "shell.execute_reply": "2024-04-06T04:32:59.444201Z" }, "nbsphinx": "hidden" }, @@ -2572,56 +2572,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00ad991fcfdc490d8fc1b7da5dd25cc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9b4cf912f7c34143831d51f2bb700676", - "placeholder": "​", - "style": "IPY_MODEL_61fd28d7ddb7403db50273e4625a93c9", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.25it/s]" - } - }, - "081cecb5bc3c490eb96b968958646d85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_306d4849d5f6456e8a47218ff3c88bc1", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b10aaf3c951546a28757660b3e1b6db5", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "08734eda4afc4628925fae928d7b7584": { + "01a761c23187462489caed4c9ca92b4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2674,84 +2625,7 @@ "width": null } }, - "094eda2d138648ce90e4359f4f6f5b98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0be6ea4bdf434487844f8dcccf92799f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "11e946e1b04f4200ac1258d919a452fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_08734eda4afc4628925fae928d7b7584", - "placeholder": "​", - "style": "IPY_MODEL_91a46e26290a40a9b1694890bf26b540", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.14it/s]" - } - }, - "1820387404b549059e81ac007566c156": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1d4196a37a44432d949c28f75b399099": { + "01d6c6d5c4544426af39a2a43bf4efd5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2804,30 +2678,7 @@ "width": null } }, - "1e00a0a580dc41e78784f4778e166ae8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_28706b709a774358ac8c8225f4a7465a", - "placeholder": "​", - "style": "IPY_MODEL_f3ee1199a5aa42c8a0cafce7aeedc375", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 570.73it/s]" - } - }, - "1f6f06c63dcf47bebf23aa87eea97f7e": { + "052ba7dd44914624bc95867853cefd91": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2880,7 +2731,57 @@ "width": null } }, - "24588fda55e94abb98816a8ebbd87e49": { + "062e939e5df64531b55a3a30c9808fb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_69040f6c457a458dad3f64ae864e2abc", + "IPY_MODEL_856c1d7d86824b298f7b89334a62b627", + "IPY_MODEL_e36a0c3800fd4b46a397695a9464376d" + ], + "layout": "IPY_MODEL_18c03d0fbf7e486fa980759c0f1d203c", + "tabbable": null, + "tooltip": null + } + }, + "07e1a5656606425a8fa445a2a98b32db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_01a761c23187462489caed4c9ca92b4a", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_44469fd7a84845fabbb26081bc4f71e6", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "0898a61434e8435fb6d38cda818ecf42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2896,7 +2797,30 @@ "description_width": "" } }, - "26ea2d6333ef46f091fe6ee351a0ea24": { + "0c49ec751aa74bdeb0da999541e70abf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_716dbef584c74a10be95d49134e35c36", + "placeholder": "​", + "style": "IPY_MODEL_d53fb7bf594d407c9e842abf6174a266", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "0ffda52749f54b41b5d0955c9e1f987d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2949,7 +2873,7 @@ "width": null } }, - "28706b709a774358ac8c8225f4a7465a": { + "10d5b8ef6dd44439b5792f3b9229a7b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3002,31 +2926,30 @@ "width": null } }, - "290f4b3a1c86435db5ac3e6ad1fb69bc": { + "154d43bd379742748defa9f93f6dec4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_598fa6fcfc3547918ed160450fcdef47", - "IPY_MODEL_081cecb5bc3c490eb96b968958646d85", - "IPY_MODEL_b25c6d04ca624347b9994dc85ea0ce40" - ], - "layout": "IPY_MODEL_31b904407c97436e83eacfad90c525fe", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_59b99f3d2363470f95240494b60426e7", + "placeholder": "​", + "style": "IPY_MODEL_e630ccc4aafc46e1994dc57c453efa4c", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 250653.12 examples/s]" } }, - "294ec45fa70f423c975351d24a7c776f": { + "18c03d0fbf7e486fa980759c0f1d203c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3079,25 +3002,7 @@ "width": null } }, - "2a74a0ed6b7b41b2a4c5bb47658223c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2e430f1f8e334932981a697267206909": { + "18f4e2fb304e4207a8582f3b68e46f1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3150,55 +3055,126 @@ "width": null } }, - "2e9a22676d3b44059d4abdc77d09ea7a": { + "19d828f4e1d84ef2ac773bc529b40946": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d587e6373db14885bca54f2e22d83948", - "IPY_MODEL_ccac8bc1c11c45f89ff96cefaa978542", - "IPY_MODEL_1e00a0a580dc41e78784f4778e166ae8" - ], - "layout": "IPY_MODEL_c3cd1b2a1792405eae2c24be210e75d8", - "tabbable": null, - "tooltip": null - } + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } }, - "2ece33572c6d44c59a0fb46b03563a47": { + "19dc464653b042e1b8ba1ff4aa4f3231": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "19ea4bc4cf5345209bfc0f43ac43a390": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1aaabe82fd3748eeb69937660d87bde7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bc6d1af3ba594c0dbfcd3bdad498d583", - "IPY_MODEL_8320541184f144558aba7ba3cfa94c91", - "IPY_MODEL_ae0e5d51e5c34604914ecd0092f03db3" - ], - "layout": "IPY_MODEL_de0ea962496a4c16ad11925c80cde938", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bcf53273c9a94359bf468708176a7fb9", + "placeholder": "​", + "style": "IPY_MODEL_eda57d1ce07e4fb08048f276454d81c4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 67.82it/s]" + } + }, + "1bc46611a5134fa6bf3a2e1d7329d9e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0ffda52749f54b41b5d0955c9e1f987d", + "placeholder": "​", + "style": "IPY_MODEL_19ea4bc4cf5345209bfc0f43ac43a390", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "1d0f443e388d4ac3aa919649a0bd9f6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d6430b8f25744f0fbc6b7c7b994b06d4", + "placeholder": "​", + "style": "IPY_MODEL_868c933ad87744c3aa05cb4cd929090f", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 62.96it/s]" } }, - "306d4849d5f6456e8a47218ff3c88bc1": { + "1f1036a8b18842dfa18443fdf59a95dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3251,7 +3227,7 @@ "width": null } }, - "31b904407c97436e83eacfad90c525fe": { + "21a93b6159174e5c99baaca057c26509": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3304,60 +3280,25 @@ "width": null } }, - "35e707fc5ed3493783fa82f2eabfb926": { - "model_module": "@jupyter-widgets/base", + "224bb80ea8ed446ebd6daabd22c3e867": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3712c6cc349a4f16ad880e06baae4d0f": { + "230d8fb552244430b2da0fe2e463b928": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3372,16 +3313,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a7209dfc03c540d49b21da8d55e9f809", - "IPY_MODEL_791dadf2f937427f97652d481ab50dba", - "IPY_MODEL_d0fc6798b54947e6a515a130cb22cfba" + "IPY_MODEL_0c49ec751aa74bdeb0da999541e70abf", + "IPY_MODEL_a8de67324e69481aa6f71eebd240332f", + "IPY_MODEL_154d43bd379742748defa9f93f6dec4c" ], - "layout": "IPY_MODEL_35e707fc5ed3493783fa82f2eabfb926", + "layout": "IPY_MODEL_052ba7dd44914624bc95867853cefd91", "tabbable": null, "tooltip": null } }, - "39a19472a3fe402aa0610d403a02c6f6": { + "23a4c60ebe91433cabd5be6f58108e1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3396,15 +3337,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9e2635fbcbcf4c73bb15dc4678af1915", + "layout": "IPY_MODEL_677944caba4f4f68bedc7737bb773d16", "placeholder": "​", - "style": "IPY_MODEL_d9756d765be6479c8d1e1c537eef57ab", + "style": "IPY_MODEL_baa12a5e11064c04934b7f2251564311", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 40/40 [00:00<00:00, 63.99it/s]" + } + }, + "2a60a0c90b1b4f46a02f1662dd4c96e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3aa61b3e41484235a80165aa7ac9938c": { + "2b93072870f04a1daa0f16d389336ebc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3457,89 +3416,7 @@ "width": null } }, - "3f87d27541e94fe98a144f5970480975": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "422d7bc875ef4f0bbfeb515409edd4e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7815fb349d7d4b36a7eeedeb74219410", - "IPY_MODEL_42c001508b9e439783f688a398baf06f", - "IPY_MODEL_ca5b2e641e9b4a1dbf23722f88208fa9" - ], - "layout": "IPY_MODEL_6277b6475528473ba825f46589da3b8f", - "tabbable": null, - "tooltip": null - } - }, - "42c001508b9e439783f688a398baf06f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3aa61b3e41484235a80165aa7ac9938c", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_69fbe90d36244ffa92552ab639e1aa67", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "469a22ad2b1240178677c86c09a59ee5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4e63cd84d0664a389f7a2c1fc4d2150d": { + "318a2a3cc2dd449d87d92d835336d9d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3592,7 +3469,7 @@ "width": null } }, - "58f7bc3b08554c83a3c454d0d6f5ae76": { + "36f95cffa25d460ba500ec7de91933d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3610,35 +3487,54 @@ "text_color": null } }, - "598fa6fcfc3547918ed160450fcdef47": { + "374d6a83e7564f3a99a8e43b41595fa9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1f6f06c63dcf47bebf23aa87eea97f7e", - "placeholder": "​", - "style": "IPY_MODEL_956c53c683464b9f8824a5886e0abde9", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "59d936234a0c4fa1aa01e97a9e4aa2c3": { - "model_module": "@jupyter-widgets/base", + "37a89191786645eba770cde499fad762": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1bc46611a5134fa6bf3a2e1d7329d9e1", + "IPY_MODEL_c0d6bc39047b4081aa9475148f266798", + "IPY_MODEL_1d0f443e388d4ac3aa919649a0bd9f6d" + ], + "layout": "IPY_MODEL_dcee1ad305e747b396286c15af30cc5f", + "tabbable": null, + "tooltip": null + } + }, + "391330f212e94180b7c1d3f8b79364a2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, @@ -3686,7 +3582,7 @@ "width": null } }, - "5da7b28c31aa4e6d8d90cbb424c85e6e": { + "3cb626be1259490498bdc43c229957d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3704,30 +3600,83 @@ "text_color": null } }, - "5df00a0d8d314b25ad3811b63ded156a": { + "432d3960ddab4b78b5489f18eb6be184": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "44469fd7a84845fabbb26081bc4f71e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "45f3fe0616ef4b6d9187942fe63d092e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "494d4dec9fa34cdba034f2e400df4b4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6ff21481a4e649b098e6c46e679a9d43", - "placeholder": "​", - "style": "IPY_MODEL_9f2d66a8777940ca83298259478d9403", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4ec9881e872043c7af778c7f3fe8b2b3", + "IPY_MODEL_79d4ea75e0b24546ab4c3e15dcd17fe0", + "IPY_MODEL_b37c27a865bd41238ca6e848152182c4" + ], + "layout": "IPY_MODEL_2b93072870f04a1daa0f16d389336ebc", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:47<00:00, 1405.79it/s]" + "tooltip": null } }, - "61fd28d7ddb7403db50273e4625a93c9": { + "4df2995557604f368c17b7801a8aa7a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3745,7 +3694,76 @@ "text_color": null } }, - "6277b6475528473ba825f46589da3b8f": { + "4ec9881e872043c7af778c7f3fe8b2b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_61c55f2451eb4c4e864fb94997319e79", + "placeholder": "​", + "style": "IPY_MODEL_c2f27d13f7af40c4938b2ff919248bc7", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "567dbef175174a0bb698e0c117bdefd8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bb928bde160d418985c159d23435d896", + "placeholder": "​", + "style": "IPY_MODEL_224bb80ea8ed446ebd6daabd22c3e867", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "58016631c51a4c2bab081a3fcb222ce6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8665b261d85149c79feba0ad3dc5a0fe", + "placeholder": "​", + "style": "IPY_MODEL_374d6a83e7564f3a99a8e43b41595fa9", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "58b8b6bed5f84d05ade00f2d3773b9e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3798,7 +3816,7 @@ "width": null } }, - "642a185c4e5e4ea1864cfe5f3ba9983d": { + "59b99f3d2363470f95240494b60426e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3851,7 +3869,33 @@ "width": null } }, - "68b49f9c56874691a5dde48afc01bd3d": { + "5cc1b33d526e4c2ea671e6aa4a807101": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7dcc2439e854d37a27bed7fba490b03", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8cb9becccf604e7d912917ceb837d524", + "tabbable": null, + "tooltip": null, + "value": 2.0 + } + }, + "61c55f2451eb4c4e864fb94997319e79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3904,41 +3948,7 @@ "width": null } }, - "69fbe90d36244ffa92552ab639e1aa67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6a4d080fdfbf406d9bc40858e59c7b93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6da88db83ea84d948ef4fd00bf7e1b7a": { + "61e1bb7f02a4489dbe279ece48634ba8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3954,35 +3964,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce6227b964234c43b828cdf0f2a1d14b", + "layout": "IPY_MODEL_b87839e9f74c433ab8102575e86bcd7b", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e2479206943340a7b4abc0461314a573", + "style": "IPY_MODEL_fd142fc752ad437dac5e121ea0a962e7", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "6ecf2566f8f9408b96ffa9571a542a5f": { + "63f80561a9aa4de6b4236289ee6db555": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_58016631c51a4c2bab081a3fcb222ce6", + "IPY_MODEL_8dd48fae4b9146fc9977d90131836405", + "IPY_MODEL_a92e3ef11d2c4d27a1956ce5946d7509" + ], + "layout": "IPY_MODEL_b5d8fdd0cad64e94955d5536ac4dad32", + "tabbable": null, + "tooltip": null } }, - "6ff21481a4e649b098e6c46e679a9d43": { + "677944caba4f4f68bedc7737bb773d16": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4035,7 +4051,30 @@ "width": null } }, - "71f92f3cb76845af818f1596d1aad567": { + "69040f6c457a458dad3f64ae864e2abc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cf59e27052914f59bf2cb3f866f7faf0", + "placeholder": "​", + "style": "IPY_MODEL_b8708f41587841e587390f8e235ba687", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "698bb2e60fd546c7a86f3c097d682c43": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4088,7 +4127,7 @@ "width": null } }, - "756e2b663cb646e19866396cda50162f": { + "6aa2909e4e954f21a2e9b886e37872f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4141,154 +4180,14 @@ "width": null } }, - "759ec36b48e94bc893402c8ff9056f2b": { - "model_module": "@jupyter-widgets/controls", + "716dbef584c74a10be95d49134e35c36": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7815fb349d7d4b36a7eeedeb74219410": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8193fdc82d2c453895b8d95a67bd4f7d", - "placeholder": "​", - "style": "IPY_MODEL_2a74a0ed6b7b41b2a4c5bb47658223c3", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "784230a45fca4f1c8240cb4a0198eec0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e1f04debe70546f2a5a319a9428a4a1c", - "placeholder": "​", - "style": "IPY_MODEL_8a39362055af46b7ad345a72d7185d77", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "791dadf2f937427f97652d481ab50dba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1d4196a37a44432d949c28f75b399099", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a3e3d17ce98c474db87db01a2de279d5", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "7940bbf8279a468daaf2e7f5d58a8af1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cb7ec40fe3ec45d08179aab6d4080513", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a5e82c8a3dd84f3dbca53c62fb193eee", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "7e9a369dad29460c8238bd0440c14715": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b182f0cfdea448d49fa68891f3958ee1", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a9d6da1bc5a44dc2ada67afa4e7ccf8f", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "814242700d4d41bcba403292723426b6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -4334,7 +4233,30 @@ "width": null } }, - "8193fdc82d2c453895b8d95a67bd4f7d": { + "758003aac78a4e89a0dd59c12bfd4499": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_75938d156efb49d681d43a2189e81adf", + "placeholder": "​", + "style": "IPY_MODEL_45f3fe0616ef4b6d9187942fe63d092e", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "75938d156efb49d681d43a2189e81adf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4387,51 +4309,23 @@ "width": null } }, - "81b57646c41d4d90aa519b869e9aebf9": { + "75c5b3367f7243e08df5201fed89d767": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "82882b42306b46108ffbdd691ca14483": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_83fa26570c3e46e8a836852d5991276d", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_759ec36b48e94bc893402c8ff9056f2b", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "bar_color": null, + "description_width": "" } }, - "8320541184f144558aba7ba3cfa94c91": { + "79d4ea75e0b24546ab4c3e15dcd17fe0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4447,17 +4341,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_92bcffad357c45219a7c17d6d6e74fe2", - "max": 60000.0, + "layout": "IPY_MODEL_bc9ac33beb964c04b7e19f6a1e1a6eec", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_24588fda55e94abb98816a8ebbd87e49", + "style": "IPY_MODEL_841bd0118c39439da9678bf5209d9393", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 40.0 } }, - "83fa26570c3e46e8a836852d5991276d": { + "7b9c395b1818449285ae7e333c19aed1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4510,48 +4404,7 @@ "width": null } }, - "84f931bb437e445c9058f93680fd71da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "879bdf453c59414e803955956d15052a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c0b263a55e3f4b13b09eb3cea6f5a67f", - "placeholder": "​", - "style": "IPY_MODEL_81b57646c41d4d90aa519b869e9aebf9", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 290021.38 examples/s]" - } - }, - "8a39362055af46b7ad345a72d7185d77": { + "7edd891321db4e908b5ed0d68bdddab0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4569,7 +4422,7 @@ "text_color": null } }, - "904bf123e452461f808196ab1e7ece7e": { + "801329626f1a493bb35bed548fee56d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4622,48 +4475,23 @@ "width": null } }, - "91a46e26290a40a9b1694890bf26b540": { + "841bd0118c39439da9678bf5209d9393": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9206926af6964e0b9491cb165fe3b945": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eb2f24e80df84b15abc80dc6ff728e9e", - "placeholder": "​", - "style": "IPY_MODEL_9377ab731a1d44009e9d7f3dc768d177", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.69it/s]" + "bar_color": null, + "description_width": "" } }, - "92bcffad357c45219a7c17d6d6e74fe2": { + "84941543352247e1ba0307848d584119": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4716,48 +4544,86 @@ "width": null } }, - "9377ab731a1d44009e9d7f3dc768d177": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "94c61f3f34414ce3899f7578075e5c30": { + "856c1d7d86824b298f7b89334a62b627": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ff1e772a59ce423580b3134bca1d92c9", - "placeholder": "​", - "style": "IPY_MODEL_9f63ece615d3412ea42216e51c9a5af2", + "layout": "IPY_MODEL_1f1036a8b18842dfa18443fdf59a95dd", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ea07905d53eb44ab85413ddd0eb1103b", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 40.0 + } + }, + "8665b261d85149c79feba0ad3dc5a0fe": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "956c53c683464b9f8824a5886e0abde9": { + "868c933ad87744c3aa05cb4cd929090f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4775,7 +4641,7 @@ "text_color": null } }, - "9b4cf912f7c34143831d51f2bb700676": { + "89b15967dfb6452597bba424994c0aed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4828,7 +4694,7 @@ "width": null } }, - "9e2635fbcbcf4c73bb15dc4678af1915": { + "8a36d05bb1a644cf890db7ec5c1979a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4881,99 +4747,190 @@ "width": null } }, - "9e83c759ac5845c3874beaea138464ae": { + "8cb9becccf604e7d912917ceb837d524": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8cf1e91b3283461d9e7f008fa37fff9f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8dd48fae4b9146fc9977d90131836405": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ffdad78df3264781ac2a4a0e7f6a47ff", - "IPY_MODEL_7940bbf8279a468daaf2e7f5d58a8af1", - "IPY_MODEL_00ad991fcfdc490d8fc1b7da5dd25cc0" - ], - "layout": "IPY_MODEL_294ec45fa70f423c975351d24a7c776f", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a3362f365ba145b7a2e7a9bab08c112e", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_75c5b3367f7243e08df5201fed89d767", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "9f2d66a8777940ca83298259478d9403": { + "8fc744a4ac8745b8846e23dbc6bcb863": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21a93b6159174e5c99baaca057c26509", + "placeholder": "​", + "style": "IPY_MODEL_4df2995557604f368c17b7801a8aa7a3", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "9f63ece615d3412ea42216e51c9a5af2": { + "903744741edd4db481eac7c207012baf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_318a2a3cc2dd449d87d92d835336d9d3", + "placeholder": "​", + "style": "IPY_MODEL_36f95cffa25d460ba500ec7de91933d4", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "a3e3d17ce98c474db87db01a2de279d5": { + "915b6ef632714224897e7967dd8fed40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a5e82c8a3dd84f3dbca53c62fb193eee": { + "92a29e7b86344f558ffc62c421168612": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_567dbef175174a0bb698e0c117bdefd8", + "IPY_MODEL_61e1bb7f02a4489dbe279ece48634ba8", + "IPY_MODEL_b52404a02e14446b9eb8d9c9687553ab" + ], + "layout": "IPY_MODEL_58b8b6bed5f84d05ade00f2d3773b9e5", + "tabbable": null, + "tooltip": null } }, - "a61253b69359414f892ede8d5e635311": { + "99b1fdbd6a654220895926ef07fb0a65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4988,16 +4945,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d61389f0925e44b89855df404e5e0ec5", - "IPY_MODEL_82882b42306b46108ffbdd691ca14483", - "IPY_MODEL_879bdf453c59414e803955956d15052a" + "IPY_MODEL_9ec788f231ad4c5da7b9ca1152c1d44b", + "IPY_MODEL_5cc1b33d526e4c2ea671e6aa4a807101", + "IPY_MODEL_ec8926923d6642cc965b8aea46f7cdb2" ], - "layout": "IPY_MODEL_d71acf66a79d410491280aad2949002b", + "layout": "IPY_MODEL_10d5b8ef6dd44439b5792f3b9229a7b3", "tabbable": null, "tooltip": null } }, - "a7209dfc03c540d49b21da8d55e9f809": { + "9c6eb45703d9488c8455e7918665d719": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5012,31 +4969,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_814242700d4d41bcba403292723426b6", + "layout": "IPY_MODEL_c977511679bc4e89a67b20d915a938ff", "placeholder": "​", - "style": "IPY_MODEL_e98593a22ae14c7595bc43684aa5ac9d", + "style": "IPY_MODEL_915b6ef632714224897e7967dd8fed40", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "a9d6da1bc5a44dc2ada67afa4e7ccf8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 60000/60000 [00:48<00:00, 1364.59it/s]" } }, - "acf35687d6184470b664fbd6915bca24": { + "9e2f25346ff041f0a43792feaf401889": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5054,7 +4995,7 @@ "text_color": null } }, - "ae0e5d51e5c34604914ecd0092f03db3": { + "9ec788f231ad4c5da7b9ca1152c1d44b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5069,15 +5010,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cec0792e81c34f57a620c02b6008c9b9", + "layout": "IPY_MODEL_6aa2909e4e954f21a2e9b886e37872f9", "placeholder": "​", - "style": "IPY_MODEL_1820387404b549059e81ac007566c156", + "style": "IPY_MODEL_c76ed92d69d6444fb0a07c53c18b4c0d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5555.33 examples/s]" + "value": "Computing checksums: 100%" } }, - "b10aaf3c951546a28757660b3e1b6db5": { + "a0876f2d03024b3bb5761a0df2937cfb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5093,7 +5034,7 @@ "description_width": "" } }, - "b182f0cfdea448d49fa68891f3958ee1": { + "a3362f365ba145b7a2e7a9bab08c112e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5146,109 +5087,120 @@ "width": null } }, - "b25c6d04ca624347b9994dc85ea0ce40": { + "a45cdcaa39ac4e7783e3300484169c30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a8de67324e69481aa6f71eebd240332f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ef26370d36c34e109eced96b9d944f4c", - "placeholder": "​", - "style": "IPY_MODEL_58f7bc3b08554c83a3c454d0d6f5ae76", + "layout": "IPY_MODEL_698bb2e60fd546c7a86f3c097d682c43", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0898a61434e8435fb6d38cda818ecf42", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.48it/s]" + "value": 10000.0 } }, - "b4cf52f12f954d4fa658d40e09efc765": { - "model_module": "@jupyter-widgets/base", + "a92e3ef11d2c4d27a1956ce5946d7509": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_801329626f1a493bb35bed548fee56d1", + "placeholder": "​", + "style": "IPY_MODEL_432d3960ddab4b78b5489f18eb6be184", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 287662.14 examples/s]" } }, - "b627c3fe164e4b63bc1789650329087f": { + "ab2472f1e90442db812aa71752ac3895": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_59d936234a0c4fa1aa01e97a9e4aa2c3", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_469a22ad2b1240178677c86c09a59ee5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8fc744a4ac8745b8846e23dbc6bcb863", + "IPY_MODEL_fcd3307eda42417c8c3f83f6bd1ece28", + "IPY_MODEL_1aaabe82fd3748eeb69937660d87bde7" + ], + "layout": "IPY_MODEL_cf898ee7a0764e2b9f7a0b8a17fee462", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null + } + }, + "abb6597d1f0d493ebdf894332caa8c19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_903744741edd4db481eac7c207012baf", + "IPY_MODEL_fa5a714c695a458288a525b0b07ff15d", + "IPY_MODEL_9c6eb45703d9488c8455e7918665d719" + ], + "layout": "IPY_MODEL_7b9c395b1818449285ae7e333c19aed1", + "tabbable": null, + "tooltip": null } }, - "bc6d1af3ba594c0dbfcd3bdad498d583": { + "b37c27a865bd41238ca6e848152182c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5263,15 +5215,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_26ea2d6333ef46f091fe6ee351a0ea24", + "layout": "IPY_MODEL_ba458d4944864736a9229851605bc597", "placeholder": "​", - "style": "IPY_MODEL_5da7b28c31aa4e6d8d90cbb424c85e6e", + "style": "IPY_MODEL_f3aa86d829fc4ca5bb1496d9254e9cac", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 40/40 [00:00<00:00, 62.56it/s]" } }, - "bda4610631d64bc797fbde49591f4cb6": { + "b52404a02e14446b9eb8d9c9687553ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5286,15 +5238,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f5204ce422d541bfbfe61703e39a622a", + "layout": "IPY_MODEL_391330f212e94180b7c1d3f8b79364a2", "placeholder": "​", - "style": "IPY_MODEL_6a4d080fdfbf406d9bc40858e59c7b93", + "style": "IPY_MODEL_2a60a0c90b1b4f46a02f1662dd4c96e4", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 275112.10 examples/s]" + "value": " 40/40 [00:00<00:00, 69.41it/s]" } }, - "c0b263a55e3f4b13b09eb3cea6f5a67f": { + "b5d8fdd0cad64e94955d5536ac4dad32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5347,7 +5299,7 @@ "width": null } }, - "c3cd1b2a1792405eae2c24be210e75d8": { + "b84a380de582459fa124b9a70e1b5359": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5400,31 +5352,7 @@ "width": null } }, - "c541ea3d24e641c1bd1eefb685829c47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_784230a45fca4f1c8240cb4a0198eec0", - "IPY_MODEL_e833feea6f5944b5a4fa2c77a81361ee", - "IPY_MODEL_9206926af6964e0b9491cb165fe3b945" - ], - "layout": "IPY_MODEL_904bf123e452461f808196ab1e7ece7e", - "tabbable": null, - "tooltip": null - } - }, - "c638000777cb4cec975b1486d525c699": { + "b8708f41587841e587390f8e235ba687": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5442,30 +5370,60 @@ "text_color": null } }, - "ca5b2e641e9b4a1dbf23722f88208fa9": { - "model_module": "@jupyter-widgets/controls", + "b87839e9f74c433ab8102575e86bcd7b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df7f8da2e01e4f9d94babea9052e473c", - "placeholder": "​", - "style": "IPY_MODEL_6ecf2566f8f9408b96ffa9571a542a5f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 57.99it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cb7ec40fe3ec45d08179aab6d4080513": { + "ba458d4944864736a9229851605bc597": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5518,49 +5476,78 @@ "width": null } }, - "cbf2b24bd18b4edbacd886dcafaa444e": { + "baa12a5e11064c04934b7f2251564311": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ccac8bc1c11c45f89ff96cefaa978542": { - "model_module": "@jupyter-widgets/controls", + "bb928bde160d418985c159d23435d896": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4e63cd84d0664a389f7a2c1fc4d2150d", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cbf2b24bd18b4edbacd886dcafaa444e", - "tabbable": null, - "tooltip": null, - "value": 2.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ce6227b964234c43b828cdf0f2a1d14b": { + "bc9ac33beb964c04b7e19f6a1e1a6eec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5613,7 +5600,7 @@ "width": null } }, - "cec0792e81c34f57a620c02b6008c9b9": { + "bcf53273c9a94359bf468708176a7fb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5666,100 +5653,69 @@ "width": null } }, - "d0fc6798b54947e6a515a130cb22cfba": { + "c0d6bc39047b4081aa9475148f266798": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_71f92f3cb76845af818f1596d1aad567", - "placeholder": "​", - "style": "IPY_MODEL_c638000777cb4cec975b1486d525c699", + "layout": "IPY_MODEL_89b15967dfb6452597bba424994c0aed", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_19dc464653b042e1b8ba1ff4aa4f3231", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.38it/s]" + "value": 40.0 } }, - "d587e6373db14885bca54f2e22d83948": { + "c2f27d13f7af40c4938b2ff919248bc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_68b49f9c56874691a5dde48afc01bd3d", - "placeholder": "​", - "style": "IPY_MODEL_acf35687d6184470b664fbd6915bca24", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "d61389f0925e44b89855df404e5e0ec5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b4cf52f12f954d4fa658d40e09efc765", - "placeholder": "​", - "style": "IPY_MODEL_84f931bb437e445c9058f93680fd71da", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d6da9320d97441f18cf0ff51d6e7e512": { + "c76ed92d69d6444fb0a07c53c18b4c0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_39a19472a3fe402aa0610d403a02c6f6", - "IPY_MODEL_7e9a369dad29460c8238bd0440c14715", - "IPY_MODEL_bda4610631d64bc797fbde49591f4cb6" - ], - "layout": "IPY_MODEL_f7c1a36609be4ec09acd66e486d99e11", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d71acf66a79d410491280aad2949002b": { + "c977511679bc4e89a67b20d915a938ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5812,25 +5768,7 @@ "width": null } }, - "d9756d765be6479c8d1e1c537eef57ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dc2596ecf2904fde9a212a3f308541e5": { + "cb078ccfa5bd45de92c15a832146aa12": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5845,68 +5783,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_642a185c4e5e4ea1864cfe5f3ba9983d", + "layout": "IPY_MODEL_8a36d05bb1a644cf890db7ec5c1979a1", "placeholder": "​", - "style": "IPY_MODEL_094eda2d138648ce90e4359f4f6f5b98", + "style": "IPY_MODEL_7edd891321db4e908b5ed0d68bdddab0", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "de0ea962496a4c16ad11925c80cde938": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 60000/60000 [00:11<00:00, 6806.11 examples/s]" } }, - "dea1cccc081743ec9b2780690b8c9a75": { + "cb88b48c32274a769a3b6b2f97e0d5f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5921,16 +5806,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_94c61f3f34414ce3899f7578075e5c30", - "IPY_MODEL_6da88db83ea84d948ef4fd00bf7e1b7a", - "IPY_MODEL_11e946e1b04f4200ac1258d919a452fe" + "IPY_MODEL_f15c402cc4324dd7b2cf7f6985c8d4ed", + "IPY_MODEL_dfeea2e3d11f410baa4ffc746955acbf", + "IPY_MODEL_cb078ccfa5bd45de92c15a832146aa12" ], - "layout": "IPY_MODEL_756e2b663cb646e19866396cda50162f", + "layout": "IPY_MODEL_ee99b4bb138247288c3fc9cb7044cdb8", "tabbable": null, "tooltip": null } }, - "df7f8da2e01e4f9d94babea9052e473c": { + "cf59e27052914f59bf2cb3f866f7faf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5983,7 +5868,7 @@ "width": null } }, - "e1f04debe70546f2a5a319a9428a4a1c": { + "cf898ee7a0764e2b9f7a0b8a17fee462": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6036,49 +5921,7 @@ "width": null } }, - "e2479206943340a7b4abc0461314a573": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e833feea6f5944b5a4fa2c77a81361ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2e430f1f8e334932981a697267206909", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3f87d27541e94fe98a144f5970480975", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "e98593a22ae14c7595bc43684aa5ac9d": { + "d53fb7bf594d407c9e842abf6174a266": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6096,7 +5939,7 @@ "text_color": null } }, - "eb2f24e80df84b15abc80dc6ff728e9e": { + "d6430b8f25744f0fbc6b7c7b994b06d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6149,7 +5992,7 @@ "width": null } }, - "ef26370d36c34e109eced96b9d944f4c": { + "d8b68b042b5241cf86f858b91a7ab195": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6202,25 +6045,7 @@ "width": null } }, - "f3ee1199a5aa42c8a0cafce7aeedc375": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f5204ce422d541bfbfe61703e39a622a": { + "dcee1ad305e747b396286c15af30cc5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6273,7 +6098,173 @@ "width": null } }, - "f791528742cc4153ad7e12f4fe834057": { + "dd33a2c7592548889d520f9105c23bb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dfeea2e3d11f410baa4ffc746955acbf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_18f4e2fb304e4207a8582f3b68e46f1b", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a0876f2d03024b3bb5761a0df2937cfb", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "e36a0c3800fd4b46a397695a9464376d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f989133be39d4b8585b24a17aa6b8612", + "placeholder": "​", + "style": "IPY_MODEL_dd33a2c7592548889d520f9105c23bb8", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 71.69it/s]" + } + }, + "e630ccc4aafc46e1994dc57c453efa4c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ea07905d53eb44ab85413ddd0eb1103b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "eb284719132643f39c4d672792c9676b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_758003aac78a4e89a0dd59c12bfd4499", + "IPY_MODEL_07e1a5656606425a8fa445a2a98b32db", + "IPY_MODEL_23a4c60ebe91433cabd5be6f58108e1f" + ], + "layout": "IPY_MODEL_84941543352247e1ba0307848d584119", + "tabbable": null, + "tooltip": null + } + }, + "ec8926923d6642cc965b8aea46f7cdb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b84a380de582459fa124b9a70e1b5359", + "placeholder": "​", + "style": "IPY_MODEL_3cb626be1259490498bdc43c229957d5", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 514.95it/s]" + } + }, + "eda57d1ce07e4fb08048f276454d81c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ee99b4bb138247288c3fc9cb7044cdb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6326,7 +6317,48 @@ "width": null } }, - "f7c1a36609be4ec09acd66e486d99e11": { + "f15c402cc4324dd7b2cf7f6985c8d4ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_01d6c6d5c4544426af39a2a43bf4efd5", + "placeholder": "​", + "style": "IPY_MODEL_9e2f25346ff041f0a43792feaf401889", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "f3aa86d829fc4ca5bb1496d9254e9cac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f7dcc2439e854d37a27bed7fba490b03": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6379,7 +6411,7 @@ "width": null } }, - "f823fdf5151743ee90a218b258ea87ff": { + "f989133be39d4b8585b24a17aa6b8612": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6432,104 +6464,72 @@ "width": null } }, - "f83b182cbfef43f9b6e165da73875419": { + "fa5a714c695a458288a525b0b07ff15d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dc2596ecf2904fde9a212a3f308541e5", - "IPY_MODEL_b627c3fe164e4b63bc1789650329087f", - "IPY_MODEL_5df00a0d8d314b25ad3811b63ded156a" - ], - "layout": "IPY_MODEL_f823fdf5151743ee90a218b258ea87ff", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8cf1e91b3283461d9e7f008fa37fff9f", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a45cdcaa39ac4e7783e3300484169c30", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "ff1e772a59ce423580b3134bca1d92c9": { - "model_module": "@jupyter-widgets/base", + "fcd3307eda42417c8c3f83f6bd1ece28": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d8b68b042b5241cf86f858b91a7ab195", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_19d828f4e1d84ef2ac773bc529b40946", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "ffdad78df3264781ac2a4a0e7f6a47ff": { + "fd142fc752ad437dac5e121ea0a962e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f791528742cc4153ad7e12f4fe834057", - "placeholder": "​", - "style": "IPY_MODEL_0be6ea4bdf434487844f8dcccf92799f", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index e280384ab..43decdf02 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:50.016933Z", - "iopub.status.busy": "2024-04-06T04:15:50.016765Z", - "iopub.status.idle": "2024-04-06T04:15:51.093933Z", - "shell.execute_reply": "2024-04-06T04:15:51.093393Z" + "iopub.execute_input": "2024-04-06T04:33:02.881954Z", + "iopub.status.busy": "2024-04-06T04:33:02.881761Z", + "iopub.status.idle": "2024-04-06T04:33:03.953480Z", + "shell.execute_reply": "2024-04-06T04:33:03.952937Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:51.096509Z", - "iopub.status.busy": "2024-04-06T04:15:51.096219Z", - "iopub.status.idle": "2024-04-06T04:15:51.114718Z", - "shell.execute_reply": "2024-04-06T04:15:51.114311Z" + "iopub.execute_input": "2024-04-06T04:33:03.956075Z", + "iopub.status.busy": "2024-04-06T04:33:03.955587Z", + "iopub.status.idle": "2024-04-06T04:33:03.973883Z", + "shell.execute_reply": "2024-04-06T04:33:03.973490Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:51.116987Z", - "iopub.status.busy": "2024-04-06T04:15:51.116584Z", - "iopub.status.idle": "2024-04-06T04:15:51.141165Z", - "shell.execute_reply": "2024-04-06T04:15:51.140695Z" + "iopub.execute_input": "2024-04-06T04:33:03.975942Z", + "iopub.status.busy": "2024-04-06T04:33:03.975699Z", + "iopub.status.idle": "2024-04-06T04:33:04.012978Z", + "shell.execute_reply": "2024-04-06T04:33:04.012510Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:51.143306Z", - "iopub.status.busy": "2024-04-06T04:15:51.142956Z", - "iopub.status.idle": "2024-04-06T04:15:51.146419Z", - "shell.execute_reply": "2024-04-06T04:15:51.145892Z" + "iopub.execute_input": "2024-04-06T04:33:04.014896Z", + "iopub.status.busy": "2024-04-06T04:33:04.014722Z", + "iopub.status.idle": "2024-04-06T04:33:04.018157Z", + "shell.execute_reply": "2024-04-06T04:33:04.017691Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:51.148509Z", - "iopub.status.busy": "2024-04-06T04:15:51.148195Z", - "iopub.status.idle": "2024-04-06T04:15:51.156122Z", - "shell.execute_reply": "2024-04-06T04:15:51.155564Z" + "iopub.execute_input": "2024-04-06T04:33:04.020151Z", + "iopub.status.busy": "2024-04-06T04:33:04.019837Z", + "iopub.status.idle": "2024-04-06T04:33:04.027381Z", + "shell.execute_reply": "2024-04-06T04:33:04.026969Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:51.158380Z", - "iopub.status.busy": "2024-04-06T04:15:51.157974Z", - "iopub.status.idle": "2024-04-06T04:15:51.160651Z", - "shell.execute_reply": "2024-04-06T04:15:51.160126Z" + "iopub.execute_input": "2024-04-06T04:33:04.029320Z", + "iopub.status.busy": "2024-04-06T04:33:04.029148Z", + "iopub.status.idle": "2024-04-06T04:33:04.031565Z", + "shell.execute_reply": "2024-04-06T04:33:04.031152Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:51.162562Z", - "iopub.status.busy": "2024-04-06T04:15:51.162265Z", - "iopub.status.idle": "2024-04-06T04:15:54.102739Z", - "shell.execute_reply": "2024-04-06T04:15:54.102113Z" + "iopub.execute_input": "2024-04-06T04:33:04.033457Z", + "iopub.status.busy": "2024-04-06T04:33:04.033286Z", + "iopub.status.idle": "2024-04-06T04:33:07.020218Z", + "shell.execute_reply": "2024-04-06T04:33:07.019691Z" } }, "outputs": [], @@ -402,10 +402,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:54.105301Z", - "iopub.status.busy": "2024-04-06T04:15:54.104968Z", - "iopub.status.idle": "2024-04-06T04:15:54.114359Z", - "shell.execute_reply": "2024-04-06T04:15:54.113824Z" + "iopub.execute_input": "2024-04-06T04:33:07.022814Z", + "iopub.status.busy": "2024-04-06T04:33:07.022610Z", + "iopub.status.idle": "2024-04-06T04:33:07.032179Z", + "shell.execute_reply": "2024-04-06T04:33:07.031775Z" } }, "outputs": [], @@ -437,10 +437,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:54.116540Z", - "iopub.status.busy": "2024-04-06T04:15:54.116231Z", - "iopub.status.idle": "2024-04-06T04:15:55.891275Z", - "shell.execute_reply": "2024-04-06T04:15:55.890683Z" + "iopub.execute_input": "2024-04-06T04:33:07.034095Z", + "iopub.status.busy": "2024-04-06T04:33:07.033903Z", + "iopub.status.idle": "2024-04-06T04:33:08.789065Z", + "shell.execute_reply": "2024-04-06T04:33:08.788481Z" } }, "outputs": [ @@ -485,10 +485,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.895568Z", - "iopub.status.busy": "2024-04-06T04:15:55.894234Z", - "iopub.status.idle": "2024-04-06T04:15:55.920587Z", - "shell.execute_reply": "2024-04-06T04:15:55.920085Z" + "iopub.execute_input": "2024-04-06T04:33:08.792211Z", + "iopub.status.busy": "2024-04-06T04:33:08.791532Z", + "iopub.status.idle": "2024-04-06T04:33:08.814502Z", + "shell.execute_reply": "2024-04-06T04:33:08.814015Z" }, "scrolled": true }, @@ -613,10 +613,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.924233Z", - "iopub.status.busy": "2024-04-06T04:15:55.923320Z", - "iopub.status.idle": "2024-04-06T04:15:55.934559Z", - "shell.execute_reply": "2024-04-06T04:15:55.934069Z" + "iopub.execute_input": "2024-04-06T04:33:08.817077Z", + "iopub.status.busy": "2024-04-06T04:33:08.816765Z", + "iopub.status.idle": "2024-04-06T04:33:08.825617Z", + "shell.execute_reply": "2024-04-06T04:33:08.825158Z" } }, "outputs": [ @@ -720,10 +720,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.938182Z", - "iopub.status.busy": "2024-04-06T04:15:55.937261Z", - "iopub.status.idle": "2024-04-06T04:15:55.950750Z", - "shell.execute_reply": "2024-04-06T04:15:55.950239Z" + "iopub.execute_input": "2024-04-06T04:33:08.828222Z", + "iopub.status.busy": "2024-04-06T04:33:08.827849Z", + "iopub.status.idle": "2024-04-06T04:33:08.838568Z", + "shell.execute_reply": "2024-04-06T04:33:08.838097Z" } }, "outputs": [ @@ -852,10 +852,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.954390Z", - "iopub.status.busy": "2024-04-06T04:15:55.953460Z", - "iopub.status.idle": "2024-04-06T04:15:55.964719Z", - "shell.execute_reply": "2024-04-06T04:15:55.964248Z" + "iopub.execute_input": "2024-04-06T04:33:08.841680Z", + "iopub.status.busy": "2024-04-06T04:33:08.840763Z", + "iopub.status.idle": "2024-04-06T04:33:08.851889Z", + "shell.execute_reply": "2024-04-06T04:33:08.851420Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.968475Z", - "iopub.status.busy": "2024-04-06T04:15:55.967527Z", - "iopub.status.idle": "2024-04-06T04:15:55.978733Z", - "shell.execute_reply": "2024-04-06T04:15:55.978257Z" + "iopub.execute_input": "2024-04-06T04:33:08.855383Z", + "iopub.status.busy": "2024-04-06T04:33:08.854470Z", + "iopub.status.idle": "2024-04-06T04:33:08.866911Z", + "shell.execute_reply": "2024-04-06T04:33:08.866438Z" } }, "outputs": [ @@ -1083,10 +1083,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.980961Z", - "iopub.status.busy": "2024-04-06T04:15:55.980623Z", - "iopub.status.idle": "2024-04-06T04:15:55.987855Z", - "shell.execute_reply": "2024-04-06T04:15:55.987441Z" + "iopub.execute_input": "2024-04-06T04:33:08.869543Z", + "iopub.status.busy": "2024-04-06T04:33:08.869360Z", + "iopub.status.idle": "2024-04-06T04:33:08.876491Z", + "shell.execute_reply": "2024-04-06T04:33:08.875865Z" } }, "outputs": [ @@ -1170,10 +1170,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.989944Z", - "iopub.status.busy": "2024-04-06T04:15:55.989616Z", - "iopub.status.idle": "2024-04-06T04:15:55.995904Z", - "shell.execute_reply": "2024-04-06T04:15:55.995403Z" + "iopub.execute_input": "2024-04-06T04:33:08.878704Z", + "iopub.status.busy": "2024-04-06T04:33:08.878368Z", + "iopub.status.idle": "2024-04-06T04:33:08.884874Z", + "shell.execute_reply": "2024-04-06T04:33:08.884343Z" } }, "outputs": [ @@ -1266,10 +1266,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.998173Z", - "iopub.status.busy": "2024-04-06T04:15:55.997704Z", - "iopub.status.idle": "2024-04-06T04:15:56.005154Z", - "shell.execute_reply": "2024-04-06T04:15:56.004595Z" + "iopub.execute_input": "2024-04-06T04:33:08.887114Z", + "iopub.status.busy": "2024-04-06T04:33:08.886669Z", + "iopub.status.idle": "2024-04-06T04:33:08.893228Z", + "shell.execute_reply": "2024-04-06T04:33:08.892752Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 8caecef08..a6257a523 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:58.980997Z", - "iopub.status.busy": "2024-04-06T04:15:58.980817Z", - "iopub.status.idle": "2024-04-06T04:16:01.635517Z", - "shell.execute_reply": "2024-04-06T04:16:01.634921Z" + "iopub.execute_input": "2024-04-06T04:33:11.681681Z", + "iopub.status.busy": "2024-04-06T04:33:11.681132Z", + "iopub.status.idle": "2024-04-06T04:33:14.408684Z", + "shell.execute_reply": "2024-04-06T04:33:14.408170Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:01.638211Z", - "iopub.status.busy": "2024-04-06T04:16:01.637841Z", - "iopub.status.idle": "2024-04-06T04:16:01.641348Z", - "shell.execute_reply": "2024-04-06T04:16:01.640830Z" + "iopub.execute_input": "2024-04-06T04:33:14.411372Z", + "iopub.status.busy": "2024-04-06T04:33:14.410870Z", + "iopub.status.idle": "2024-04-06T04:33:14.414126Z", + "shell.execute_reply": "2024-04-06T04:33:14.413639Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:01.643415Z", - "iopub.status.busy": "2024-04-06T04:16:01.643050Z", - "iopub.status.idle": "2024-04-06T04:16:01.646013Z", - "shell.execute_reply": "2024-04-06T04:16:01.645596Z" + "iopub.execute_input": "2024-04-06T04:33:14.416093Z", + "iopub.status.busy": "2024-04-06T04:33:14.415817Z", + "iopub.status.idle": "2024-04-06T04:33:14.419148Z", + "shell.execute_reply": "2024-04-06T04:33:14.418621Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:01.647872Z", - "iopub.status.busy": "2024-04-06T04:16:01.647695Z", - "iopub.status.idle": "2024-04-06T04:16:01.671923Z", - "shell.execute_reply": "2024-04-06T04:16:01.671486Z" + "iopub.execute_input": "2024-04-06T04:33:14.421094Z", + "iopub.status.busy": "2024-04-06T04:33:14.420828Z", + "iopub.status.idle": "2024-04-06T04:33:14.445821Z", + "shell.execute_reply": "2024-04-06T04:33:14.445234Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:01.673817Z", - "iopub.status.busy": "2024-04-06T04:16:01.673635Z", - "iopub.status.idle": "2024-04-06T04:16:01.677282Z", - "shell.execute_reply": "2024-04-06T04:16:01.676773Z" + "iopub.execute_input": "2024-04-06T04:33:14.448095Z", + "iopub.status.busy": "2024-04-06T04:33:14.447753Z", + "iopub.status.idle": "2024-04-06T04:33:14.451521Z", + "shell.execute_reply": "2024-04-06T04:33:14.451033Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'getting_spare_card', 'card_payment_fee_charged', 'change_pin', 'cancel_transfer', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire', 'apple_pay_or_google_pay'}\n" + "Classes: {'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'change_pin', 'beneficiary_not_allowed', 'cancel_transfer', 'lost_or_stolen_phone', 'supported_cards_and_currencies'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:01.679189Z", - "iopub.status.busy": "2024-04-06T04:16:01.678921Z", - "iopub.status.idle": "2024-04-06T04:16:01.681836Z", - "shell.execute_reply": "2024-04-06T04:16:01.681428Z" + "iopub.execute_input": "2024-04-06T04:33:14.453654Z", + "iopub.status.busy": "2024-04-06T04:33:14.453334Z", + "iopub.status.idle": "2024-04-06T04:33:14.456651Z", + "shell.execute_reply": "2024-04-06T04:33:14.456195Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:01.683996Z", - "iopub.status.busy": "2024-04-06T04:16:01.683795Z", - "iopub.status.idle": "2024-04-06T04:16:05.869169Z", - "shell.execute_reply": "2024-04-06T04:16:05.868466Z" + "iopub.execute_input": "2024-04-06T04:33:14.458570Z", + "iopub.status.busy": "2024-04-06T04:33:14.458385Z", + "iopub.status.idle": "2024-04-06T04:33:18.310859Z", + "shell.execute_reply": "2024-04-06T04:33:18.310235Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:05.872192Z", - "iopub.status.busy": "2024-04-06T04:16:05.871664Z", - "iopub.status.idle": "2024-04-06T04:16:06.850433Z", - "shell.execute_reply": "2024-04-06T04:16:06.849867Z" + "iopub.execute_input": "2024-04-06T04:33:18.313664Z", + "iopub.status.busy": "2024-04-06T04:33:18.313302Z", + "iopub.status.idle": "2024-04-06T04:33:19.193930Z", + "shell.execute_reply": "2024-04-06T04:33:19.193370Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:06.853315Z", - "iopub.status.busy": "2024-04-06T04:16:06.852888Z", - "iopub.status.idle": "2024-04-06T04:16:06.856060Z", - "shell.execute_reply": "2024-04-06T04:16:06.855577Z" + "iopub.execute_input": "2024-04-06T04:33:19.196805Z", + "iopub.status.busy": "2024-04-06T04:33:19.196442Z", + "iopub.status.idle": "2024-04-06T04:33:19.199261Z", + "shell.execute_reply": "2024-04-06T04:33:19.198798Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:06.858535Z", - "iopub.status.busy": "2024-04-06T04:16:06.858115Z", - "iopub.status.idle": "2024-04-06T04:16:08.429970Z", - "shell.execute_reply": "2024-04-06T04:16:08.429311Z" + "iopub.execute_input": "2024-04-06T04:33:19.201572Z", + "iopub.status.busy": "2024-04-06T04:33:19.201213Z", + "iopub.status.idle": "2024-04-06T04:33:20.771182Z", + "shell.execute_reply": "2024-04-06T04:33:20.770550Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.433540Z", - "iopub.status.busy": "2024-04-06T04:16:08.432944Z", - "iopub.status.idle": "2024-04-06T04:16:08.458129Z", - "shell.execute_reply": "2024-04-06T04:16:08.457627Z" + "iopub.execute_input": "2024-04-06T04:33:20.774433Z", + "iopub.status.busy": "2024-04-06T04:33:20.773600Z", + "iopub.status.idle": "2024-04-06T04:33:20.799139Z", + "shell.execute_reply": "2024-04-06T04:33:20.798597Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.461622Z", - "iopub.status.busy": "2024-04-06T04:16:08.460657Z", - "iopub.status.idle": "2024-04-06T04:16:08.472275Z", - "shell.execute_reply": "2024-04-06T04:16:08.471790Z" + "iopub.execute_input": "2024-04-06T04:33:20.801783Z", + "iopub.status.busy": "2024-04-06T04:33:20.801390Z", + "iopub.status.idle": "2024-04-06T04:33:20.811382Z", + "shell.execute_reply": "2024-04-06T04:33:20.810884Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.475751Z", - "iopub.status.busy": "2024-04-06T04:16:08.474843Z", - "iopub.status.idle": "2024-04-06T04:16:08.481161Z", - "shell.execute_reply": "2024-04-06T04:16:08.480567Z" + "iopub.execute_input": "2024-04-06T04:33:20.813909Z", + "iopub.status.busy": "2024-04-06T04:33:20.813527Z", + "iopub.status.idle": "2024-04-06T04:33:20.818371Z", + "shell.execute_reply": "2024-04-06T04:33:20.817869Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.483438Z", - "iopub.status.busy": "2024-04-06T04:16:08.483264Z", - "iopub.status.idle": "2024-04-06T04:16:08.490944Z", - "shell.execute_reply": "2024-04-06T04:16:08.490403Z" + "iopub.execute_input": "2024-04-06T04:33:20.820606Z", + "iopub.status.busy": "2024-04-06T04:33:20.820299Z", + "iopub.status.idle": "2024-04-06T04:33:20.826482Z", + "shell.execute_reply": "2024-04-06T04:33:20.826090Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.493066Z", - "iopub.status.busy": "2024-04-06T04:16:08.492894Z", - "iopub.status.idle": "2024-04-06T04:16:08.499255Z", - "shell.execute_reply": "2024-04-06T04:16:08.498859Z" + "iopub.execute_input": "2024-04-06T04:33:20.828437Z", + "iopub.status.busy": "2024-04-06T04:33:20.828137Z", + "iopub.status.idle": "2024-04-06T04:33:20.834167Z", + "shell.execute_reply": "2024-04-06T04:33:20.833652Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.501464Z", - "iopub.status.busy": "2024-04-06T04:16:08.500950Z", - "iopub.status.idle": "2024-04-06T04:16:08.506843Z", - "shell.execute_reply": "2024-04-06T04:16:08.506432Z" + "iopub.execute_input": "2024-04-06T04:33:20.836059Z", + "iopub.status.busy": "2024-04-06T04:33:20.835877Z", + "iopub.status.idle": "2024-04-06T04:33:20.841929Z", + "shell.execute_reply": "2024-04-06T04:33:20.841349Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.509115Z", - "iopub.status.busy": "2024-04-06T04:16:08.508602Z", - "iopub.status.idle": "2024-04-06T04:16:08.516801Z", - "shell.execute_reply": "2024-04-06T04:16:08.516407Z" + "iopub.execute_input": "2024-04-06T04:33:20.843988Z", + "iopub.status.busy": "2024-04-06T04:33:20.843684Z", + "iopub.status.idle": "2024-04-06T04:33:20.852453Z", + "shell.execute_reply": "2024-04-06T04:33:20.851982Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.519036Z", - "iopub.status.busy": "2024-04-06T04:16:08.518506Z", - "iopub.status.idle": "2024-04-06T04:16:08.523968Z", - "shell.execute_reply": "2024-04-06T04:16:08.523558Z" + "iopub.execute_input": "2024-04-06T04:33:20.854597Z", + "iopub.status.busy": "2024-04-06T04:33:20.854199Z", + "iopub.status.idle": "2024-04-06T04:33:20.859815Z", + "shell.execute_reply": "2024-04-06T04:33:20.859258Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.525951Z", - "iopub.status.busy": "2024-04-06T04:16:08.525543Z", - "iopub.status.idle": "2024-04-06T04:16:08.530793Z", - "shell.execute_reply": "2024-04-06T04:16:08.530264Z" + "iopub.execute_input": "2024-04-06T04:33:20.861773Z", + "iopub.status.busy": "2024-04-06T04:33:20.861471Z", + "iopub.status.idle": "2024-04-06T04:33:20.866885Z", + "shell.execute_reply": "2024-04-06T04:33:20.866352Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.532785Z", - "iopub.status.busy": "2024-04-06T04:16:08.532500Z", - "iopub.status.idle": "2024-04-06T04:16:08.535816Z", - "shell.execute_reply": "2024-04-06T04:16:08.535329Z" + "iopub.execute_input": "2024-04-06T04:33:20.869013Z", + "iopub.status.busy": "2024-04-06T04:33:20.868609Z", + "iopub.status.idle": "2024-04-06T04:33:20.872412Z", + "shell.execute_reply": "2024-04-06T04:33:20.871871Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.537804Z", - "iopub.status.busy": "2024-04-06T04:16:08.537486Z", - "iopub.status.idle": "2024-04-06T04:16:08.542264Z", - "shell.execute_reply": "2024-04-06T04:16:08.541823Z" + "iopub.execute_input": "2024-04-06T04:33:20.874578Z", + "iopub.status.busy": "2024-04-06T04:33:20.874128Z", + "iopub.status.idle": "2024-04-06T04:33:20.879644Z", + "shell.execute_reply": "2024-04-06T04:33:20.879101Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 9715b8d4b..31a8923c7 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:11.827441Z", - "iopub.status.busy": "2024-04-06T04:16:11.827268Z", - "iopub.status.idle": "2024-04-06T04:16:12.900240Z", - "shell.execute_reply": "2024-04-06T04:16:12.899649Z" + "iopub.execute_input": "2024-04-06T04:33:24.564833Z", + "iopub.status.busy": "2024-04-06T04:33:24.564645Z", + "iopub.status.idle": "2024-04-06T04:33:25.678241Z", + "shell.execute_reply": "2024-04-06T04:33:25.677637Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:12.903158Z", - "iopub.status.busy": "2024-04-06T04:16:12.902591Z", - "iopub.status.idle": "2024-04-06T04:16:12.905507Z", - "shell.execute_reply": "2024-04-06T04:16:12.905059Z" + "iopub.execute_input": "2024-04-06T04:33:25.681005Z", + "iopub.status.busy": "2024-04-06T04:33:25.680432Z", + "iopub.status.idle": "2024-04-06T04:33:25.683479Z", + "shell.execute_reply": "2024-04-06T04:33:25.683004Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:12.907643Z", - "iopub.status.busy": "2024-04-06T04:16:12.907467Z", - "iopub.status.idle": "2024-04-06T04:16:12.919565Z", - "shell.execute_reply": "2024-04-06T04:16:12.919023Z" + "iopub.execute_input": "2024-04-06T04:33:25.685643Z", + "iopub.status.busy": "2024-04-06T04:33:25.685458Z", + "iopub.status.idle": "2024-04-06T04:33:25.698037Z", + "shell.execute_reply": "2024-04-06T04:33:25.697552Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:12.921585Z", - "iopub.status.busy": "2024-04-06T04:16:12.921255Z", - "iopub.status.idle": "2024-04-06T04:16:16.478543Z", - "shell.execute_reply": "2024-04-06T04:16:16.478086Z" + "iopub.execute_input": "2024-04-06T04:33:25.700120Z", + "iopub.status.busy": "2024-04-06T04:33:25.699931Z", + "iopub.status.idle": "2024-04-06T04:33:30.316432Z", + "shell.execute_reply": "2024-04-06T04:33:30.315931Z" }, "id": "dhTHOg8Pyv5G" }, @@ -692,7 +692,13 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 084feca40..71792b57a 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:18.630228Z", - "iopub.status.busy": "2024-04-06T04:16:18.629773Z", - "iopub.status.idle": "2024-04-06T04:16:19.717285Z", - "shell.execute_reply": "2024-04-06T04:16:19.716754Z" + "iopub.execute_input": "2024-04-06T04:33:32.453926Z", + "iopub.status.busy": "2024-04-06T04:33:32.453487Z", + "iopub.status.idle": "2024-04-06T04:33:33.577711Z", + "shell.execute_reply": "2024-04-06T04:33:33.577162Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:19.719827Z", - "iopub.status.busy": "2024-04-06T04:16:19.719547Z", - "iopub.status.idle": "2024-04-06T04:16:19.722875Z", - "shell.execute_reply": "2024-04-06T04:16:19.722410Z" + "iopub.execute_input": "2024-04-06T04:33:33.580468Z", + "iopub.status.busy": "2024-04-06T04:33:33.579978Z", + "iopub.status.idle": "2024-04-06T04:33:33.583331Z", + "shell.execute_reply": "2024-04-06T04:33:33.582894Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:19.724721Z", - "iopub.status.busy": "2024-04-06T04:16:19.724550Z", - "iopub.status.idle": "2024-04-06T04:16:22.693080Z", - "shell.execute_reply": "2024-04-06T04:16:22.692344Z" + "iopub.execute_input": "2024-04-06T04:33:33.585545Z", + "iopub.status.busy": "2024-04-06T04:33:33.585109Z", + "iopub.status.idle": "2024-04-06T04:33:36.718652Z", + "shell.execute_reply": "2024-04-06T04:33:36.718005Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.696305Z", - "iopub.status.busy": "2024-04-06T04:16:22.695564Z", - "iopub.status.idle": "2024-04-06T04:16:22.728174Z", - "shell.execute_reply": "2024-04-06T04:16:22.727599Z" + "iopub.execute_input": "2024-04-06T04:33:36.721727Z", + "iopub.status.busy": "2024-04-06T04:33:36.721060Z", + "iopub.status.idle": "2024-04-06T04:33:36.760399Z", + "shell.execute_reply": "2024-04-06T04:33:36.759784Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.730962Z", - "iopub.status.busy": "2024-04-06T04:16:22.730489Z", - "iopub.status.idle": "2024-04-06T04:16:22.760391Z", - "shell.execute_reply": "2024-04-06T04:16:22.759838Z" + "iopub.execute_input": "2024-04-06T04:33:36.763173Z", + "iopub.status.busy": "2024-04-06T04:33:36.762842Z", + "iopub.status.idle": "2024-04-06T04:33:36.801368Z", + "shell.execute_reply": "2024-04-06T04:33:36.800735Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.762715Z", - "iopub.status.busy": "2024-04-06T04:16:22.762463Z", - "iopub.status.idle": "2024-04-06T04:16:22.765481Z", - "shell.execute_reply": "2024-04-06T04:16:22.765022Z" + "iopub.execute_input": "2024-04-06T04:33:36.804245Z", + "iopub.status.busy": "2024-04-06T04:33:36.803821Z", + "iopub.status.idle": "2024-04-06T04:33:36.807084Z", + "shell.execute_reply": "2024-04-06T04:33:36.806596Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.767437Z", - "iopub.status.busy": "2024-04-06T04:16:22.767124Z", - "iopub.status.idle": "2024-04-06T04:16:22.769623Z", - "shell.execute_reply": "2024-04-06T04:16:22.769199Z" + "iopub.execute_input": "2024-04-06T04:33:36.809090Z", + "iopub.status.busy": "2024-04-06T04:33:36.808779Z", + "iopub.status.idle": "2024-04-06T04:33:36.811544Z", + "shell.execute_reply": "2024-04-06T04:33:36.811006Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.771819Z", - "iopub.status.busy": "2024-04-06T04:16:22.771506Z", - "iopub.status.idle": "2024-04-06T04:16:22.796699Z", - "shell.execute_reply": "2024-04-06T04:16:22.796156Z" + "iopub.execute_input": "2024-04-06T04:33:36.813573Z", + "iopub.status.busy": "2024-04-06T04:33:36.813305Z", + "iopub.status.idle": "2024-04-06T04:33:36.837656Z", + "shell.execute_reply": "2024-04-06T04:33:36.837105Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e037cf4389884d2ca6c4c6f8c3db3915", + "model_id": "ad7ffe9f7e104f438570b96387ce328e", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d010c5336fd14cdab1efb31597d6bf6c", + "model_id": "6a93f0182ebb47fc96441f7413ee50a4", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.802394Z", - "iopub.status.busy": "2024-04-06T04:16:22.802218Z", - "iopub.status.idle": "2024-04-06T04:16:22.808522Z", - "shell.execute_reply": "2024-04-06T04:16:22.808123Z" + "iopub.execute_input": "2024-04-06T04:33:36.843747Z", + "iopub.status.busy": "2024-04-06T04:33:36.843506Z", + "iopub.status.idle": "2024-04-06T04:33:36.850771Z", + "shell.execute_reply": "2024-04-06T04:33:36.850304Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.810337Z", - "iopub.status.busy": "2024-04-06T04:16:22.810168Z", - "iopub.status.idle": "2024-04-06T04:16:22.813449Z", - "shell.execute_reply": "2024-04-06T04:16:22.813042Z" + "iopub.execute_input": "2024-04-06T04:33:36.853060Z", + "iopub.status.busy": "2024-04-06T04:33:36.852662Z", + "iopub.status.idle": "2024-04-06T04:33:36.856158Z", + "shell.execute_reply": "2024-04-06T04:33:36.855726Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.815335Z", - "iopub.status.busy": "2024-04-06T04:16:22.815015Z", - "iopub.status.idle": "2024-04-06T04:16:22.821107Z", - "shell.execute_reply": "2024-04-06T04:16:22.820663Z" + "iopub.execute_input": "2024-04-06T04:33:36.858276Z", + "iopub.status.busy": "2024-04-06T04:33:36.858000Z", + "iopub.status.idle": "2024-04-06T04:33:36.864594Z", + "shell.execute_reply": "2024-04-06T04:33:36.864108Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.823126Z", - "iopub.status.busy": "2024-04-06T04:16:22.822797Z", - "iopub.status.idle": "2024-04-06T04:16:22.858959Z", - "shell.execute_reply": "2024-04-06T04:16:22.858293Z" + "iopub.execute_input": "2024-04-06T04:33:36.866698Z", + "iopub.status.busy": "2024-04-06T04:33:36.866352Z", + "iopub.status.idle": "2024-04-06T04:33:36.905959Z", + "shell.execute_reply": "2024-04-06T04:33:36.905317Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.861509Z", - "iopub.status.busy": "2024-04-06T04:16:22.861175Z", - "iopub.status.idle": "2024-04-06T04:16:22.891534Z", - "shell.execute_reply": "2024-04-06T04:16:22.890881Z" + "iopub.execute_input": "2024-04-06T04:33:36.908640Z", + "iopub.status.busy": "2024-04-06T04:33:36.908384Z", + "iopub.status.idle": "2024-04-06T04:33:36.948839Z", + "shell.execute_reply": "2024-04-06T04:33:36.948221Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.893902Z", - "iopub.status.busy": "2024-04-06T04:16:22.893675Z", - "iopub.status.idle": "2024-04-06T04:16:23.014413Z", - "shell.execute_reply": "2024-04-06T04:16:23.013794Z" + "iopub.execute_input": "2024-04-06T04:33:36.951895Z", + "iopub.status.busy": "2024-04-06T04:33:36.951511Z", + "iopub.status.idle": "2024-04-06T04:33:37.080581Z", + "shell.execute_reply": "2024-04-06T04:33:37.079922Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:23.017156Z", - "iopub.status.busy": "2024-04-06T04:16:23.016635Z", - "iopub.status.idle": "2024-04-06T04:16:26.020660Z", - "shell.execute_reply": "2024-04-06T04:16:26.019996Z" + "iopub.execute_input": "2024-04-06T04:33:37.083569Z", + "iopub.status.busy": "2024-04-06T04:33:37.082731Z", + "iopub.status.idle": "2024-04-06T04:33:40.126106Z", + "shell.execute_reply": "2024-04-06T04:33:40.125422Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:26.023206Z", - "iopub.status.busy": "2024-04-06T04:16:26.022830Z", - "iopub.status.idle": "2024-04-06T04:16:26.079432Z", - "shell.execute_reply": "2024-04-06T04:16:26.078859Z" + "iopub.execute_input": "2024-04-06T04:33:40.128582Z", + "iopub.status.busy": "2024-04-06T04:33:40.128353Z", + "iopub.status.idle": "2024-04-06T04:33:40.189416Z", + "shell.execute_reply": "2024-04-06T04:33:40.188788Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:26.081692Z", - "iopub.status.busy": "2024-04-06T04:16:26.081279Z", - "iopub.status.idle": "2024-04-06T04:16:26.120101Z", - "shell.execute_reply": "2024-04-06T04:16:26.119549Z" + "iopub.execute_input": "2024-04-06T04:33:40.191652Z", + "iopub.status.busy": "2024-04-06T04:33:40.191314Z", + "iopub.status.idle": "2024-04-06T04:33:40.231110Z", + "shell.execute_reply": "2024-04-06T04:33:40.230569Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "d1c22757", + "id": "7997ced4", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "efb4bb46", + "id": "57a8d119", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "1e9de073", + "id": "9fb93000", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:26.122247Z", - "iopub.status.busy": "2024-04-06T04:16:26.121882Z", - "iopub.status.idle": "2024-04-06T04:16:26.245866Z", - "shell.execute_reply": "2024-04-06T04:16:26.245381Z" + "iopub.execute_input": "2024-04-06T04:33:40.233390Z", + "iopub.status.busy": "2024-04-06T04:33:40.233191Z", + "iopub.status.idle": "2024-04-06T04:33:40.327660Z", + "shell.execute_reply": "2024-04-06T04:33:40.327127Z" } }, "outputs": [ @@ -1387,7 +1387,7 @@ }, { "cell_type": "markdown", - "id": "c8b9ef58", + "id": "27082dba", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1396,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "c782bf6a", + "id": "5a3f0b1c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:26.248362Z", - "iopub.status.busy": "2024-04-06T04:16:26.248022Z", - "iopub.status.idle": "2024-04-06T04:16:26.307531Z", - "shell.execute_reply": "2024-04-06T04:16:26.307066Z" + "iopub.execute_input": "2024-04-06T04:33:40.330424Z", + "iopub.status.busy": "2024-04-06T04:33:40.330165Z", + "iopub.status.idle": "2024-04-06T04:33:40.412901Z", + "shell.execute_reply": "2024-04-06T04:33:40.412405Z" } }, "outputs": [ @@ -1445,7 +1445,7 @@ }, { "cell_type": "markdown", - "id": "3e3aeaed", + "id": "bb4c5299", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1456,13 +1456,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "dec49bf1", + "id": "0a847975", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:26.310799Z", - "iopub.status.busy": "2024-04-06T04:16:26.310063Z", - "iopub.status.idle": "2024-04-06T04:16:26.317904Z", - "shell.execute_reply": "2024-04-06T04:16:26.317453Z" + "iopub.execute_input": "2024-04-06T04:33:40.415545Z", + "iopub.status.busy": "2024-04-06T04:33:40.415364Z", + "iopub.status.idle": "2024-04-06T04:33:40.424747Z", + "shell.execute_reply": "2024-04-06T04:33:40.424323Z" } }, "outputs": [], @@ -1564,7 +1564,7 @@ }, { "cell_type": "markdown", - "id": "3f9f6288", + "id": "f6c74243", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1579,13 +1579,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "6e4b536f", + "id": "665cd26e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:26.320208Z", - "iopub.status.busy": "2024-04-06T04:16:26.319799Z", - "iopub.status.idle": "2024-04-06T04:16:26.337706Z", - "shell.execute_reply": "2024-04-06T04:16:26.337157Z" + "iopub.execute_input": "2024-04-06T04:33:40.427036Z", + "iopub.status.busy": "2024-04-06T04:33:40.426714Z", + "iopub.status.idle": "2024-04-06T04:33:40.447448Z", + "shell.execute_reply": "2024-04-06T04:33:40.446876Z" } }, "outputs": [ @@ -1602,7 +1602,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7725/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7516/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1636,13 +1636,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "0d630068", + "id": "1a0ba0a1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:26.339591Z", - "iopub.status.busy": "2024-04-06T04:16:26.339270Z", - "iopub.status.idle": "2024-04-06T04:16:26.342513Z", - "shell.execute_reply": "2024-04-06T04:16:26.342052Z" + "iopub.execute_input": "2024-04-06T04:33:40.449833Z", + "iopub.status.busy": "2024-04-06T04:33:40.449476Z", + "iopub.status.idle": "2024-04-06T04:33:40.452685Z", + "shell.execute_reply": "2024-04-06T04:33:40.452130Z" } }, "outputs": [ @@ -1737,7 +1737,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1520c7ddd1e44969881c547a43c9e684": { + "14b2e46a058f49b7877f1e0a8fc3b5b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,7 +1790,7 @@ "width": null } }, - "1688b7eba8b54fe3809f86e1c4916732": { + "23c0ea245fbd417183656f1b6c07712f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1843,67 +1843,30 @@ "width": null } }, - "2d3bb7f3059b48ac9e328e9b02caa2a0": { + "245c87c4c2aa416db47130538b929d58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2e2c612e24c04e0da4cd29773f19f62d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3e80266ae9b14a00b62c98eebb74e34b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_acffd6e0b037466e92da7d8d6befa339", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2e2c612e24c04e0da4cd29773f19f62d", + "layout": "IPY_MODEL_7480a084643d44109ad2e89da0ca1645", + "placeholder": "​", + "style": "IPY_MODEL_d3c14fbb47a44544abaeec177f87256f", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 10000/? [00:00<00:00, 1599963.38it/s]" } }, - "5e3480ac2d3743b7a3cae6cec68283d2": { + "26607dc2026d44d18409e2097833bbb6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1956,7 +1919,7 @@ "width": null } }, - "5f1f4eabc74740d6af7e4db8c6edcd53": { + "538f177063ec4fd38db9281cbb4e4736": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1971,15 +1934,62 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1520c7ddd1e44969881c547a43c9e684", + "layout": "IPY_MODEL_23c0ea245fbd417183656f1b6c07712f", "placeholder": "​", - "style": "IPY_MODEL_2d3bb7f3059b48ac9e328e9b02caa2a0", + "style": "IPY_MODEL_f7f940143f124c22a39fad1b33b95e97", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: " } }, - "831f71a0eb714a8db385f01469c61e87": { + "5d3a89a90e3b4986a627cb78ab15f855": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c9e7c9ca5279402f833cd03f267b90b0", + "placeholder": "​", + "style": "IPY_MODEL_7a5ac41ff90446bda080db1a245f6076", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "6a93f0182ebb47fc96441f7413ee50a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_538f177063ec4fd38db9281cbb4e4736", + "IPY_MODEL_8147d6885df5404da13067a4b04feaff", + "IPY_MODEL_245c87c4c2aa416db47130538b929d58" + ], + "layout": "IPY_MODEL_26607dc2026d44d18409e2097833bbb6", + "tabbable": null, + "tooltip": null + } + }, + "7480a084643d44109ad2e89da0ca1645": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2032,7 +2042,51 @@ "width": null } }, - "91b717a2b89042d5a32b8696650b932a": { + "7a5ac41ff90446bda080db1a245f6076": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8147d6885df5404da13067a4b04feaff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b88c297a26be479180743ea12a8782ee", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8a8358bc01474398ae2c3b719fe94d03", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "83a387e924c445e394cde04898e3e09e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2085,7 +2139,65 @@ "width": null } }, - "930de2a48aaa402682e3ea6f980d3c24": { + "8a8358bc01474398ae2c3b719fe94d03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ad7ffe9f7e104f438570b96387ce328e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5d3a89a90e3b4986a627cb78ab15f855", + "IPY_MODEL_f6ab57c77c6546aeb601051c57a99435", + "IPY_MODEL_cda88cf88c8042acb6232ea9423f355f" + ], + "layout": "IPY_MODEL_14b2e46a058f49b7877f1e0a8fc3b5b6", + "tabbable": null, + "tooltip": null + } + }, + "b884a7bf75b9420f8028a27180dff7b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b88c297a26be479180743ea12a8782ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2138,7 +2250,7 @@ "width": null } }, - "acffd6e0b037466e92da7d8d6befa339": { + "be6b5fe0f64b4e89bba0bc6b2e5c249c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2191,49 +2303,7 @@ "width": null } }, - "b5edfa4ae1c24fe18fb7d98dfd4f1f10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c3891fb0a6814a08a91127de98b68e57", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0e0cda2407c49569600550eced58dc4", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "c0e0cda2407c49569600550eced58dc4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c3891fb0a6814a08a91127de98b68e57": { + "c9e7c9ca5279402f833cd03f267b90b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2286,25 +2356,23 @@ "width": null } }, - "c87a8ffa2ce24bf3bbc55da50de70b0e": { + "cc099a9799bc402bbc12d51076fd879a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "cd74b5e9bab24c0abef51b20fe999ec1": { + "cda88cf88c8042acb6232ea9423f355f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2319,39 +2387,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5e3480ac2d3743b7a3cae6cec68283d2", + "layout": "IPY_MODEL_83a387e924c445e394cde04898e3e09e", "placeholder": "​", - "style": "IPY_MODEL_c87a8ffa2ce24bf3bbc55da50de70b0e", + "style": "IPY_MODEL_b884a7bf75b9420f8028a27180dff7b2", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1388290.75it/s]" + "value": " 10000/? [00:00<00:00, 1022876.23it/s]" } }, - "d010c5336fd14cdab1efb31597d6bf6c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5f1f4eabc74740d6af7e4db8c6edcd53", - "IPY_MODEL_b5edfa4ae1c24fe18fb7d98dfd4f1f10", - "IPY_MODEL_cd74b5e9bab24c0abef51b20fe999ec1" - ], - "layout": "IPY_MODEL_91b717a2b89042d5a32b8696650b932a", - "tabbable": null, - "tooltip": null - } - }, - "d5a0445dd8f34a568bcb152156f941cf": { + "d3c14fbb47a44544abaeec177f87256f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2369,77 +2413,33 @@ "text_color": null } }, - "e037cf4389884d2ca6c4c6f8c3db3915": { + "f6ab57c77c6546aeb601051c57a99435": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e3969651bc1d4bdcabf39a423c806afa", - "IPY_MODEL_3e80266ae9b14a00b62c98eebb74e34b", - "IPY_MODEL_eb176aacd98e4ee4ae524f8537758911" - ], - "layout": "IPY_MODEL_1688b7eba8b54fe3809f86e1c4916732", - "tabbable": null, - "tooltip": null - } - }, - "e3969651bc1d4bdcabf39a423c806afa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_930de2a48aaa402682e3ea6f980d3c24", - "placeholder": "​", - "style": "IPY_MODEL_d5a0445dd8f34a568bcb152156f941cf", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "eb176aacd98e4ee4ae524f8537758911": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_831f71a0eb714a8db385f01469c61e87", - "placeholder": "​", - "style": "IPY_MODEL_efc5471870364072aadad5da8b804efc", + "layout": "IPY_MODEL_be6b5fe0f64b4e89bba0bc6b2e5c249c", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cc099a9799bc402bbc12d51076fd879a", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1087114.20it/s]" + "value": 50.0 } }, - "efc5471870364072aadad5da8b804efc": { + "f7f940143f124c22a39fad1b33b95e97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 2881453c1..09d453fd1 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:29.430149Z", - "iopub.status.busy": "2024-04-06T04:16:29.429976Z", - "iopub.status.idle": "2024-04-06T04:16:30.564039Z", - "shell.execute_reply": "2024-04-06T04:16:30.563507Z" + "iopub.execute_input": "2024-04-06T04:33:43.785678Z", + "iopub.status.busy": "2024-04-06T04:33:43.785475Z", + "iopub.status.idle": "2024-04-06T04:33:44.953788Z", + "shell.execute_reply": "2024-04-06T04:33:44.953182Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:30.566611Z", - "iopub.status.busy": "2024-04-06T04:16:30.566160Z", - "iopub.status.idle": "2024-04-06T04:16:30.744810Z", - "shell.execute_reply": "2024-04-06T04:16:30.744264Z" + "iopub.execute_input": "2024-04-06T04:33:44.956257Z", + "iopub.status.busy": "2024-04-06T04:33:44.955968Z", + "iopub.status.idle": "2024-04-06T04:33:45.136559Z", + "shell.execute_reply": "2024-04-06T04:33:45.135941Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:30.747314Z", - "iopub.status.busy": "2024-04-06T04:16:30.747034Z", - "iopub.status.idle": "2024-04-06T04:16:30.759196Z", - "shell.execute_reply": "2024-04-06T04:16:30.758739Z" + "iopub.execute_input": "2024-04-06T04:33:45.139194Z", + "iopub.status.busy": "2024-04-06T04:33:45.138996Z", + "iopub.status.idle": "2024-04-06T04:33:45.151534Z", + "shell.execute_reply": "2024-04-06T04:33:45.150954Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:30.761130Z", - "iopub.status.busy": "2024-04-06T04:16:30.760804Z", - "iopub.status.idle": "2024-04-06T04:16:30.994613Z", - "shell.execute_reply": "2024-04-06T04:16:30.994052Z" + "iopub.execute_input": "2024-04-06T04:33:45.153835Z", + "iopub.status.busy": "2024-04-06T04:33:45.153455Z", + "iopub.status.idle": "2024-04-06T04:33:45.364208Z", + "shell.execute_reply": "2024-04-06T04:33:45.363567Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:30.996911Z", - "iopub.status.busy": "2024-04-06T04:16:30.996524Z", - "iopub.status.idle": "2024-04-06T04:16:31.022836Z", - "shell.execute_reply": "2024-04-06T04:16:31.022277Z" + "iopub.execute_input": "2024-04-06T04:33:45.366694Z", + "iopub.status.busy": "2024-04-06T04:33:45.366209Z", + "iopub.status.idle": "2024-04-06T04:33:45.393157Z", + "shell.execute_reply": "2024-04-06T04:33:45.392663Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:31.025023Z", - "iopub.status.busy": "2024-04-06T04:16:31.024705Z", - "iopub.status.idle": "2024-04-06T04:16:32.689639Z", - "shell.execute_reply": "2024-04-06T04:16:32.689011Z" + "iopub.execute_input": "2024-04-06T04:33:45.395608Z", + "iopub.status.busy": "2024-04-06T04:33:45.395250Z", + "iopub.status.idle": "2024-04-06T04:33:47.125309Z", + "shell.execute_reply": "2024-04-06T04:33:47.124671Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:32.692739Z", - "iopub.status.busy": "2024-04-06T04:16:32.691806Z", - "iopub.status.idle": "2024-04-06T04:16:32.710096Z", - "shell.execute_reply": "2024-04-06T04:16:32.709655Z" + "iopub.execute_input": "2024-04-06T04:33:47.127865Z", + "iopub.status.busy": "2024-04-06T04:33:47.127360Z", + "iopub.status.idle": "2024-04-06T04:33:47.146064Z", + "shell.execute_reply": "2024-04-06T04:33:47.145478Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:32.712277Z", - "iopub.status.busy": "2024-04-06T04:16:32.711888Z", - "iopub.status.idle": "2024-04-06T04:16:34.121379Z", - "shell.execute_reply": "2024-04-06T04:16:34.120829Z" + "iopub.execute_input": "2024-04-06T04:33:47.148206Z", + "iopub.status.busy": "2024-04-06T04:33:47.148010Z", + "iopub.status.idle": "2024-04-06T04:33:48.575713Z", + "shell.execute_reply": "2024-04-06T04:33:48.575123Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.124260Z", - "iopub.status.busy": "2024-04-06T04:16:34.123450Z", - "iopub.status.idle": "2024-04-06T04:16:34.137159Z", - "shell.execute_reply": "2024-04-06T04:16:34.136699Z" + "iopub.execute_input": "2024-04-06T04:33:48.578373Z", + "iopub.status.busy": "2024-04-06T04:33:48.577728Z", + "iopub.status.idle": "2024-04-06T04:33:48.591925Z", + "shell.execute_reply": "2024-04-06T04:33:48.591473Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.139252Z", - "iopub.status.busy": "2024-04-06T04:16:34.138914Z", - "iopub.status.idle": "2024-04-06T04:16:34.214593Z", - "shell.execute_reply": "2024-04-06T04:16:34.213981Z" + "iopub.execute_input": "2024-04-06T04:33:48.594180Z", + "iopub.status.busy": "2024-04-06T04:33:48.593840Z", + "iopub.status.idle": "2024-04-06T04:33:48.670108Z", + "shell.execute_reply": "2024-04-06T04:33:48.669540Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.217043Z", - "iopub.status.busy": "2024-04-06T04:16:34.216564Z", - "iopub.status.idle": "2024-04-06T04:16:34.429068Z", - "shell.execute_reply": "2024-04-06T04:16:34.428507Z" + "iopub.execute_input": "2024-04-06T04:33:48.672461Z", + "iopub.status.busy": "2024-04-06T04:33:48.672082Z", + "iopub.status.idle": "2024-04-06T04:33:48.894054Z", + "shell.execute_reply": "2024-04-06T04:33:48.893460Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.431328Z", - "iopub.status.busy": "2024-04-06T04:16:34.430969Z", - "iopub.status.idle": "2024-04-06T04:16:34.447948Z", - "shell.execute_reply": "2024-04-06T04:16:34.447502Z" + "iopub.execute_input": "2024-04-06T04:33:48.896310Z", + "iopub.status.busy": "2024-04-06T04:33:48.895957Z", + "iopub.status.idle": "2024-04-06T04:33:48.912992Z", + "shell.execute_reply": "2024-04-06T04:33:48.912438Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.450049Z", - "iopub.status.busy": "2024-04-06T04:16:34.449680Z", - "iopub.status.idle": "2024-04-06T04:16:34.459136Z", - "shell.execute_reply": "2024-04-06T04:16:34.458684Z" + "iopub.execute_input": "2024-04-06T04:33:48.915370Z", + "iopub.status.busy": "2024-04-06T04:33:48.914978Z", + "iopub.status.idle": "2024-04-06T04:33:48.925166Z", + "shell.execute_reply": "2024-04-06T04:33:48.924650Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.461189Z", - "iopub.status.busy": "2024-04-06T04:16:34.460883Z", - "iopub.status.idle": "2024-04-06T04:16:34.546980Z", - "shell.execute_reply": "2024-04-06T04:16:34.546388Z" + "iopub.execute_input": "2024-04-06T04:33:48.927196Z", + "iopub.status.busy": "2024-04-06T04:33:48.927015Z", + "iopub.status.idle": "2024-04-06T04:33:49.014441Z", + "shell.execute_reply": "2024-04-06T04:33:49.013806Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.549416Z", - "iopub.status.busy": "2024-04-06T04:16:34.549081Z", - "iopub.status.idle": "2024-04-06T04:16:34.666036Z", - "shell.execute_reply": "2024-04-06T04:16:34.665491Z" + "iopub.execute_input": "2024-04-06T04:33:49.016777Z", + "iopub.status.busy": "2024-04-06T04:33:49.016537Z", + "iopub.status.idle": "2024-04-06T04:33:49.145893Z", + "shell.execute_reply": "2024-04-06T04:33:49.145286Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.668421Z", - "iopub.status.busy": "2024-04-06T04:16:34.668052Z", - "iopub.status.idle": "2024-04-06T04:16:34.671958Z", - "shell.execute_reply": "2024-04-06T04:16:34.671475Z" + "iopub.execute_input": "2024-04-06T04:33:49.148236Z", + "iopub.status.busy": "2024-04-06T04:33:49.148006Z", + "iopub.status.idle": "2024-04-06T04:33:49.151659Z", + "shell.execute_reply": "2024-04-06T04:33:49.151136Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.673935Z", - "iopub.status.busy": "2024-04-06T04:16:34.673637Z", - "iopub.status.idle": "2024-04-06T04:16:34.677407Z", - "shell.execute_reply": "2024-04-06T04:16:34.676851Z" + "iopub.execute_input": "2024-04-06T04:33:49.153711Z", + "iopub.status.busy": "2024-04-06T04:33:49.153349Z", + "iopub.status.idle": "2024-04-06T04:33:49.157155Z", + "shell.execute_reply": "2024-04-06T04:33:49.156622Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.679348Z", - "iopub.status.busy": "2024-04-06T04:16:34.679087Z", - "iopub.status.idle": "2024-04-06T04:16:34.717109Z", - "shell.execute_reply": "2024-04-06T04:16:34.716638Z" + "iopub.execute_input": "2024-04-06T04:33:49.159176Z", + "iopub.status.busy": "2024-04-06T04:33:49.158878Z", + "iopub.status.idle": "2024-04-06T04:33:49.196839Z", + "shell.execute_reply": "2024-04-06T04:33:49.196263Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.719238Z", - "iopub.status.busy": "2024-04-06T04:16:34.718854Z", - "iopub.status.idle": "2024-04-06T04:16:34.761595Z", - "shell.execute_reply": "2024-04-06T04:16:34.761037Z" + "iopub.execute_input": "2024-04-06T04:33:49.198950Z", + "iopub.status.busy": "2024-04-06T04:33:49.198645Z", + "iopub.status.idle": "2024-04-06T04:33:49.242193Z", + "shell.execute_reply": "2024-04-06T04:33:49.241610Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.763590Z", - "iopub.status.busy": "2024-04-06T04:16:34.763291Z", - "iopub.status.idle": "2024-04-06T04:16:34.854715Z", - "shell.execute_reply": "2024-04-06T04:16:34.854134Z" + "iopub.execute_input": "2024-04-06T04:33:49.244487Z", + "iopub.status.busy": "2024-04-06T04:33:49.244090Z", + "iopub.status.idle": "2024-04-06T04:33:49.337248Z", + "shell.execute_reply": "2024-04-06T04:33:49.336579Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.857415Z", - "iopub.status.busy": "2024-04-06T04:16:34.857033Z", - "iopub.status.idle": "2024-04-06T04:16:34.939418Z", - "shell.execute_reply": "2024-04-06T04:16:34.938882Z" + "iopub.execute_input": "2024-04-06T04:33:49.339846Z", + "iopub.status.busy": "2024-04-06T04:33:49.339620Z", + "iopub.status.idle": "2024-04-06T04:33:49.430742Z", + "shell.execute_reply": "2024-04-06T04:33:49.430143Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.941858Z", - "iopub.status.busy": "2024-04-06T04:16:34.941389Z", - "iopub.status.idle": "2024-04-06T04:16:35.149130Z", - "shell.execute_reply": "2024-04-06T04:16:35.148549Z" + "iopub.execute_input": "2024-04-06T04:33:49.432983Z", + "iopub.status.busy": "2024-04-06T04:33:49.432697Z", + "iopub.status.idle": "2024-04-06T04:33:49.645127Z", + "shell.execute_reply": "2024-04-06T04:33:49.644551Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:35.151469Z", - "iopub.status.busy": "2024-04-06T04:16:35.151106Z", - "iopub.status.idle": "2024-04-06T04:16:35.321162Z", - "shell.execute_reply": "2024-04-06T04:16:35.320562Z" + "iopub.execute_input": "2024-04-06T04:33:49.647536Z", + "iopub.status.busy": "2024-04-06T04:33:49.647110Z", + "iopub.status.idle": "2024-04-06T04:33:49.836451Z", + "shell.execute_reply": "2024-04-06T04:33:49.835806Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:35.323607Z", - "iopub.status.busy": "2024-04-06T04:16:35.323218Z", - "iopub.status.idle": "2024-04-06T04:16:35.329092Z", - "shell.execute_reply": "2024-04-06T04:16:35.328658Z" + "iopub.execute_input": "2024-04-06T04:33:49.838935Z", + "iopub.status.busy": "2024-04-06T04:33:49.838446Z", + "iopub.status.idle": "2024-04-06T04:33:49.845067Z", + "shell.execute_reply": "2024-04-06T04:33:49.844540Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:35.331109Z", - "iopub.status.busy": "2024-04-06T04:16:35.330777Z", - "iopub.status.idle": "2024-04-06T04:16:35.549947Z", - "shell.execute_reply": "2024-04-06T04:16:35.549322Z" + "iopub.execute_input": "2024-04-06T04:33:49.847230Z", + "iopub.status.busy": "2024-04-06T04:33:49.846825Z", + "iopub.status.idle": "2024-04-06T04:33:50.065771Z", + "shell.execute_reply": "2024-04-06T04:33:50.065168Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:35.552571Z", - "iopub.status.busy": "2024-04-06T04:16:35.552084Z", - "iopub.status.idle": "2024-04-06T04:16:36.614576Z", - "shell.execute_reply": "2024-04-06T04:16:36.613951Z" + "iopub.execute_input": "2024-04-06T04:33:50.068226Z", + "iopub.status.busy": "2024-04-06T04:33:50.067840Z", + "iopub.status.idle": "2024-04-06T04:33:51.143014Z", + "shell.execute_reply": "2024-04-06T04:33:51.142387Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 8d64c845b..f2ec4a55c 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:39.842682Z", - "iopub.status.busy": "2024-04-06T04:16:39.842493Z", - "iopub.status.idle": "2024-04-06T04:16:40.904249Z", - "shell.execute_reply": "2024-04-06T04:16:40.903707Z" + "iopub.execute_input": "2024-04-06T04:33:54.655001Z", + "iopub.status.busy": "2024-04-06T04:33:54.654839Z", + "iopub.status.idle": "2024-04-06T04:33:55.737154Z", + "shell.execute_reply": "2024-04-06T04:33:55.736607Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:40.906864Z", - "iopub.status.busy": "2024-04-06T04:16:40.906350Z", - "iopub.status.idle": "2024-04-06T04:16:40.909410Z", - "shell.execute_reply": "2024-04-06T04:16:40.908973Z" + "iopub.execute_input": "2024-04-06T04:33:55.739856Z", + "iopub.status.busy": "2024-04-06T04:33:55.739430Z", + "iopub.status.idle": "2024-04-06T04:33:55.742481Z", + "shell.execute_reply": "2024-04-06T04:33:55.741958Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:40.911516Z", - "iopub.status.busy": "2024-04-06T04:16:40.911185Z", - "iopub.status.idle": "2024-04-06T04:16:40.918926Z", - "shell.execute_reply": "2024-04-06T04:16:40.918454Z" + "iopub.execute_input": "2024-04-06T04:33:55.744755Z", + "iopub.status.busy": "2024-04-06T04:33:55.744422Z", + "iopub.status.idle": "2024-04-06T04:33:55.752051Z", + "shell.execute_reply": "2024-04-06T04:33:55.751620Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:40.920875Z", - "iopub.status.busy": "2024-04-06T04:16:40.920484Z", - "iopub.status.idle": "2024-04-06T04:16:40.968362Z", - "shell.execute_reply": "2024-04-06T04:16:40.967839Z" + "iopub.execute_input": "2024-04-06T04:33:55.754050Z", + "iopub.status.busy": "2024-04-06T04:33:55.753666Z", + "iopub.status.idle": "2024-04-06T04:33:55.808130Z", + "shell.execute_reply": "2024-04-06T04:33:55.807549Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:40.970431Z", - "iopub.status.busy": "2024-04-06T04:16:40.970252Z", - "iopub.status.idle": "2024-04-06T04:16:40.987654Z", - "shell.execute_reply": "2024-04-06T04:16:40.987139Z" + "iopub.execute_input": "2024-04-06T04:33:55.810525Z", + "iopub.status.busy": "2024-04-06T04:33:55.810206Z", + "iopub.status.idle": "2024-04-06T04:33:55.827426Z", + "shell.execute_reply": "2024-04-06T04:33:55.826967Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:40.989600Z", - "iopub.status.busy": "2024-04-06T04:16:40.989419Z", - "iopub.status.idle": "2024-04-06T04:16:40.993163Z", - "shell.execute_reply": "2024-04-06T04:16:40.992637Z" + "iopub.execute_input": "2024-04-06T04:33:55.829293Z", + "iopub.status.busy": "2024-04-06T04:33:55.829117Z", + "iopub.status.idle": "2024-04-06T04:33:55.833052Z", + "shell.execute_reply": "2024-04-06T04:33:55.832518Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:40.995099Z", - "iopub.status.busy": "2024-04-06T04:16:40.994924Z", - "iopub.status.idle": "2024-04-06T04:16:41.025782Z", - "shell.execute_reply": "2024-04-06T04:16:41.025242Z" + "iopub.execute_input": "2024-04-06T04:33:55.835165Z", + "iopub.status.busy": "2024-04-06T04:33:55.834833Z", + "iopub.status.idle": "2024-04-06T04:33:55.865218Z", + "shell.execute_reply": "2024-04-06T04:33:55.864706Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:41.027997Z", - "iopub.status.busy": "2024-04-06T04:16:41.027687Z", - "iopub.status.idle": "2024-04-06T04:16:41.054554Z", - "shell.execute_reply": "2024-04-06T04:16:41.053960Z" + "iopub.execute_input": "2024-04-06T04:33:55.867653Z", + "iopub.status.busy": "2024-04-06T04:33:55.867231Z", + "iopub.status.idle": "2024-04-06T04:33:55.894195Z", + "shell.execute_reply": "2024-04-06T04:33:55.893624Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:41.057159Z", - "iopub.status.busy": "2024-04-06T04:16:41.056783Z", - "iopub.status.idle": "2024-04-06T04:16:42.790293Z", - "shell.execute_reply": "2024-04-06T04:16:42.789738Z" + "iopub.execute_input": "2024-04-06T04:33:55.896247Z", + "iopub.status.busy": "2024-04-06T04:33:55.896066Z", + "iopub.status.idle": "2024-04-06T04:33:57.627098Z", + "shell.execute_reply": "2024-04-06T04:33:57.626566Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.792876Z", - "iopub.status.busy": "2024-04-06T04:16:42.792440Z", - "iopub.status.idle": "2024-04-06T04:16:42.798968Z", - "shell.execute_reply": "2024-04-06T04:16:42.798521Z" + "iopub.execute_input": "2024-04-06T04:33:57.629758Z", + "iopub.status.busy": "2024-04-06T04:33:57.629236Z", + "iopub.status.idle": "2024-04-06T04:33:57.636079Z", + "shell.execute_reply": "2024-04-06T04:33:57.635555Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.800896Z", - "iopub.status.busy": "2024-04-06T04:16:42.800578Z", - "iopub.status.idle": "2024-04-06T04:16:42.816097Z", - "shell.execute_reply": "2024-04-06T04:16:42.815514Z" + "iopub.execute_input": "2024-04-06T04:33:57.638210Z", + "iopub.status.busy": "2024-04-06T04:33:57.637876Z", + "iopub.status.idle": "2024-04-06T04:33:57.650276Z", + "shell.execute_reply": "2024-04-06T04:33:57.649820Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.818053Z", - "iopub.status.busy": "2024-04-06T04:16:42.817877Z", - "iopub.status.idle": "2024-04-06T04:16:42.824509Z", - "shell.execute_reply": "2024-04-06T04:16:42.824076Z" + "iopub.execute_input": "2024-04-06T04:33:57.652252Z", + "iopub.status.busy": "2024-04-06T04:33:57.651928Z", + "iopub.status.idle": "2024-04-06T04:33:57.658292Z", + "shell.execute_reply": "2024-04-06T04:33:57.657737Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.826513Z", - "iopub.status.busy": "2024-04-06T04:16:42.826215Z", - "iopub.status.idle": "2024-04-06T04:16:42.828918Z", - "shell.execute_reply": "2024-04-06T04:16:42.828390Z" + "iopub.execute_input": "2024-04-06T04:33:57.660348Z", + "iopub.status.busy": "2024-04-06T04:33:57.660033Z", + "iopub.status.idle": "2024-04-06T04:33:57.662546Z", + "shell.execute_reply": "2024-04-06T04:33:57.662096Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.831070Z", - "iopub.status.busy": "2024-04-06T04:16:42.830715Z", - "iopub.status.idle": "2024-04-06T04:16:42.834322Z", - "shell.execute_reply": "2024-04-06T04:16:42.833878Z" + "iopub.execute_input": "2024-04-06T04:33:57.664568Z", + "iopub.status.busy": "2024-04-06T04:33:57.664236Z", + "iopub.status.idle": "2024-04-06T04:33:57.667775Z", + "shell.execute_reply": "2024-04-06T04:33:57.667336Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.836385Z", - "iopub.status.busy": "2024-04-06T04:16:42.836066Z", - "iopub.status.idle": "2024-04-06T04:16:42.838499Z", - "shell.execute_reply": "2024-04-06T04:16:42.838092Z" + "iopub.execute_input": "2024-04-06T04:33:57.669724Z", + "iopub.status.busy": "2024-04-06T04:33:57.669426Z", + "iopub.status.idle": "2024-04-06T04:33:57.672060Z", + "shell.execute_reply": "2024-04-06T04:33:57.671546Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.840349Z", - "iopub.status.busy": "2024-04-06T04:16:42.840178Z", - "iopub.status.idle": "2024-04-06T04:16:42.844214Z", - "shell.execute_reply": "2024-04-06T04:16:42.843709Z" + "iopub.execute_input": "2024-04-06T04:33:57.673964Z", + "iopub.status.busy": "2024-04-06T04:33:57.673653Z", + "iopub.status.idle": "2024-04-06T04:33:57.677802Z", + "shell.execute_reply": "2024-04-06T04:33:57.677364Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.846196Z", - "iopub.status.busy": "2024-04-06T04:16:42.845918Z", - "iopub.status.idle": "2024-04-06T04:16:42.875194Z", - "shell.execute_reply": "2024-04-06T04:16:42.874785Z" + "iopub.execute_input": "2024-04-06T04:33:57.679746Z", + "iopub.status.busy": "2024-04-06T04:33:57.679562Z", + "iopub.status.idle": "2024-04-06T04:33:57.708692Z", + "shell.execute_reply": "2024-04-06T04:33:57.708184Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.877276Z", - "iopub.status.busy": "2024-04-06T04:16:42.876861Z", - "iopub.status.idle": "2024-04-06T04:16:42.881783Z", - "shell.execute_reply": "2024-04-06T04:16:42.881248Z" + "iopub.execute_input": "2024-04-06T04:33:57.711548Z", + "iopub.status.busy": "2024-04-06T04:33:57.711062Z", + "iopub.status.idle": "2024-04-06T04:33:57.716161Z", + "shell.execute_reply": "2024-04-06T04:33:57.715701Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index e4aafbf21..e4f3da5a6 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:45.661544Z", - "iopub.status.busy": "2024-04-06T04:16:45.661196Z", - "iopub.status.idle": "2024-04-06T04:16:46.809800Z", - "shell.execute_reply": "2024-04-06T04:16:46.809269Z" + "iopub.execute_input": "2024-04-06T04:34:00.530023Z", + "iopub.status.busy": "2024-04-06T04:34:00.529838Z", + "iopub.status.idle": "2024-04-06T04:34:01.665208Z", + "shell.execute_reply": "2024-04-06T04:34:01.664664Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:46.812367Z", - "iopub.status.busy": "2024-04-06T04:16:46.811955Z", - "iopub.status.idle": "2024-04-06T04:16:47.004877Z", - "shell.execute_reply": "2024-04-06T04:16:47.004387Z" + "iopub.execute_input": "2024-04-06T04:34:01.667949Z", + "iopub.status.busy": "2024-04-06T04:34:01.667372Z", + "iopub.status.idle": "2024-04-06T04:34:01.860713Z", + "shell.execute_reply": "2024-04-06T04:34:01.860104Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:47.007627Z", - "iopub.status.busy": "2024-04-06T04:16:47.007171Z", - "iopub.status.idle": "2024-04-06T04:16:47.020533Z", - "shell.execute_reply": "2024-04-06T04:16:47.019988Z" + "iopub.execute_input": "2024-04-06T04:34:01.863387Z", + "iopub.status.busy": "2024-04-06T04:34:01.863099Z", + "iopub.status.idle": "2024-04-06T04:34:01.876408Z", + "shell.execute_reply": "2024-04-06T04:34:01.875857Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:47.022765Z", - "iopub.status.busy": "2024-04-06T04:16:47.022336Z", - "iopub.status.idle": "2024-04-06T04:16:49.666131Z", - "shell.execute_reply": "2024-04-06T04:16:49.665587Z" + "iopub.execute_input": "2024-04-06T04:34:01.878382Z", + "iopub.status.busy": "2024-04-06T04:34:01.878075Z", + "iopub.status.idle": "2024-04-06T04:34:04.553375Z", + "shell.execute_reply": "2024-04-06T04:34:04.552763Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:49.668424Z", - "iopub.status.busy": "2024-04-06T04:16:49.668078Z", - "iopub.status.idle": "2024-04-06T04:16:51.001650Z", - "shell.execute_reply": "2024-04-06T04:16:51.001036Z" + "iopub.execute_input": "2024-04-06T04:34:04.555866Z", + "iopub.status.busy": "2024-04-06T04:34:04.555447Z", + "iopub.status.idle": "2024-04-06T04:34:05.899176Z", + "shell.execute_reply": "2024-04-06T04:34:05.898628Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:51.004148Z", - "iopub.status.busy": "2024-04-06T04:16:51.003951Z", - "iopub.status.idle": "2024-04-06T04:16:51.007855Z", - "shell.execute_reply": "2024-04-06T04:16:51.007326Z" + "iopub.execute_input": "2024-04-06T04:34:05.901446Z", + "iopub.status.busy": "2024-04-06T04:34:05.901252Z", + "iopub.status.idle": "2024-04-06T04:34:05.905303Z", + "shell.execute_reply": "2024-04-06T04:34:05.904832Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:51.009845Z", - "iopub.status.busy": "2024-04-06T04:16:51.009540Z", - "iopub.status.idle": "2024-04-06T04:16:52.782092Z", - "shell.execute_reply": "2024-04-06T04:16:52.781517Z" + "iopub.execute_input": "2024-04-06T04:34:05.907229Z", + "iopub.status.busy": "2024-04-06T04:34:05.906935Z", + "iopub.status.idle": "2024-04-06T04:34:07.727455Z", + "shell.execute_reply": "2024-04-06T04:34:07.726870Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:52.784717Z", - "iopub.status.busy": "2024-04-06T04:16:52.784151Z", - "iopub.status.idle": "2024-04-06T04:16:52.792831Z", - "shell.execute_reply": "2024-04-06T04:16:52.792340Z" + "iopub.execute_input": "2024-04-06T04:34:07.730219Z", + "iopub.status.busy": "2024-04-06T04:34:07.729486Z", + "iopub.status.idle": "2024-04-06T04:34:07.737826Z", + "shell.execute_reply": "2024-04-06T04:34:07.737345Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:52.794793Z", - "iopub.status.busy": "2024-04-06T04:16:52.794582Z", - "iopub.status.idle": "2024-04-06T04:16:55.366851Z", - "shell.execute_reply": "2024-04-06T04:16:55.366274Z" + "iopub.execute_input": "2024-04-06T04:34:07.739895Z", + "iopub.status.busy": "2024-04-06T04:34:07.739580Z", + "iopub.status.idle": "2024-04-06T04:34:10.345477Z", + "shell.execute_reply": "2024-04-06T04:34:10.344972Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:55.369004Z", - "iopub.status.busy": "2024-04-06T04:16:55.368810Z", - "iopub.status.idle": "2024-04-06T04:16:55.372208Z", - "shell.execute_reply": "2024-04-06T04:16:55.371683Z" + "iopub.execute_input": "2024-04-06T04:34:10.347724Z", + "iopub.status.busy": "2024-04-06T04:34:10.347360Z", + "iopub.status.idle": "2024-04-06T04:34:10.351001Z", + "shell.execute_reply": "2024-04-06T04:34:10.350556Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:55.374049Z", - "iopub.status.busy": "2024-04-06T04:16:55.373882Z", - "iopub.status.idle": "2024-04-06T04:16:55.377805Z", - "shell.execute_reply": "2024-04-06T04:16:55.377374Z" + "iopub.execute_input": "2024-04-06T04:34:10.352909Z", + "iopub.status.busy": "2024-04-06T04:34:10.352732Z", + "iopub.status.idle": "2024-04-06T04:34:10.357176Z", + "shell.execute_reply": "2024-04-06T04:34:10.356760Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:55.379630Z", - "iopub.status.busy": "2024-04-06T04:16:55.379460Z", - "iopub.status.idle": "2024-04-06T04:16:55.382604Z", - "shell.execute_reply": "2024-04-06T04:16:55.382172Z" + "iopub.execute_input": "2024-04-06T04:34:10.359140Z", + "iopub.status.busy": "2024-04-06T04:34:10.358816Z", + "iopub.status.idle": "2024-04-06T04:34:10.361865Z", + "shell.execute_reply": "2024-04-06T04:34:10.361423Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 4e7470bcf..a41b44c5c 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:57.779764Z", - "iopub.status.busy": "2024-04-06T04:16:57.779362Z", - "iopub.status.idle": "2024-04-06T04:16:58.917468Z", - "shell.execute_reply": "2024-04-06T04:16:58.916926Z" + "iopub.execute_input": "2024-04-06T04:34:12.844775Z", + "iopub.status.busy": "2024-04-06T04:34:12.844311Z", + "iopub.status.idle": "2024-04-06T04:34:13.980776Z", + "shell.execute_reply": "2024-04-06T04:34:13.980176Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:58.920171Z", - "iopub.status.busy": "2024-04-06T04:16:58.919730Z", - "iopub.status.idle": "2024-04-06T04:17:00.402818Z", - "shell.execute_reply": "2024-04-06T04:17:00.402146Z" + "iopub.execute_input": "2024-04-06T04:34:13.983263Z", + "iopub.status.busy": "2024-04-06T04:34:13.983016Z", + "iopub.status.idle": "2024-04-06T04:34:15.579622Z", + "shell.execute_reply": "2024-04-06T04:34:15.579010Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:00.405560Z", - "iopub.status.busy": "2024-04-06T04:17:00.405171Z", - "iopub.status.idle": "2024-04-06T04:17:00.408489Z", - "shell.execute_reply": "2024-04-06T04:17:00.408036Z" + "iopub.execute_input": "2024-04-06T04:34:15.582324Z", + "iopub.status.busy": "2024-04-06T04:34:15.581949Z", + "iopub.status.idle": "2024-04-06T04:34:15.585226Z", + "shell.execute_reply": "2024-04-06T04:34:15.584699Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:00.410471Z", - "iopub.status.busy": "2024-04-06T04:17:00.410144Z", - "iopub.status.idle": "2024-04-06T04:17:00.417033Z", - "shell.execute_reply": "2024-04-06T04:17:00.416605Z" + "iopub.execute_input": "2024-04-06T04:34:15.587256Z", + "iopub.status.busy": "2024-04-06T04:34:15.586885Z", + "iopub.status.idle": "2024-04-06T04:34:15.593670Z", + "shell.execute_reply": "2024-04-06T04:34:15.593228Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:00.418981Z", - "iopub.status.busy": "2024-04-06T04:17:00.418714Z", - "iopub.status.idle": "2024-04-06T04:17:00.912054Z", - "shell.execute_reply": "2024-04-06T04:17:00.911471Z" + "iopub.execute_input": "2024-04-06T04:34:15.595551Z", + "iopub.status.busy": "2024-04-06T04:34:15.595372Z", + "iopub.status.idle": "2024-04-06T04:34:16.077823Z", + "shell.execute_reply": "2024-04-06T04:34:16.077255Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:00.914527Z", - "iopub.status.busy": "2024-04-06T04:17:00.914334Z", - "iopub.status.idle": "2024-04-06T04:17:00.919763Z", - "shell.execute_reply": "2024-04-06T04:17:00.919333Z" + "iopub.execute_input": "2024-04-06T04:34:16.079945Z", + "iopub.status.busy": "2024-04-06T04:34:16.079765Z", + "iopub.status.idle": "2024-04-06T04:34:16.085000Z", + "shell.execute_reply": "2024-04-06T04:34:16.084559Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:00.921551Z", - "iopub.status.busy": "2024-04-06T04:17:00.921376Z", - "iopub.status.idle": "2024-04-06T04:17:00.925216Z", - "shell.execute_reply": "2024-04-06T04:17:00.924803Z" + "iopub.execute_input": "2024-04-06T04:34:16.086986Z", + "iopub.status.busy": "2024-04-06T04:34:16.086699Z", + "iopub.status.idle": "2024-04-06T04:34:16.090564Z", + "shell.execute_reply": "2024-04-06T04:34:16.090132Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:00.927291Z", - "iopub.status.busy": "2024-04-06T04:17:00.926918Z", - "iopub.status.idle": "2024-04-06T04:17:01.586996Z", - "shell.execute_reply": "2024-04-06T04:17:01.586405Z" + "iopub.execute_input": "2024-04-06T04:34:16.092402Z", + "iopub.status.busy": "2024-04-06T04:34:16.092226Z", + "iopub.status.idle": "2024-04-06T04:34:16.742313Z", + "shell.execute_reply": "2024-04-06T04:34:16.741698Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:01.589592Z", - "iopub.status.busy": "2024-04-06T04:17:01.589103Z", - "iopub.status.idle": "2024-04-06T04:17:01.838973Z", - "shell.execute_reply": "2024-04-06T04:17:01.838457Z" + "iopub.execute_input": "2024-04-06T04:34:16.744425Z", + "iopub.status.busy": "2024-04-06T04:34:16.744233Z", + "iopub.status.idle": "2024-04-06T04:34:16.915555Z", + "shell.execute_reply": "2024-04-06T04:34:16.915036Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:01.841138Z", - "iopub.status.busy": "2024-04-06T04:17:01.840761Z", - "iopub.status.idle": "2024-04-06T04:17:01.845105Z", - "shell.execute_reply": "2024-04-06T04:17:01.844587Z" + "iopub.execute_input": "2024-04-06T04:34:16.917406Z", + "iopub.status.busy": "2024-04-06T04:34:16.917231Z", + "iopub.status.idle": "2024-04-06T04:34:16.921449Z", + "shell.execute_reply": "2024-04-06T04:34:16.921026Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:01.847194Z", - "iopub.status.busy": "2024-04-06T04:17:01.846830Z", - "iopub.status.idle": "2024-04-06T04:17:02.307982Z", - "shell.execute_reply": "2024-04-06T04:17:02.307425Z" + "iopub.execute_input": "2024-04-06T04:34:16.923486Z", + "iopub.status.busy": "2024-04-06T04:34:16.923119Z", + "iopub.status.idle": "2024-04-06T04:34:17.368354Z", + "shell.execute_reply": "2024-04-06T04:34:17.367768Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:02.310165Z", - "iopub.status.busy": "2024-04-06T04:17:02.309824Z", - "iopub.status.idle": "2024-04-06T04:17:02.642945Z", - "shell.execute_reply": "2024-04-06T04:17:02.642387Z" + "iopub.execute_input": "2024-04-06T04:34:17.371163Z", + "iopub.status.busy": "2024-04-06T04:34:17.370822Z", + "iopub.status.idle": "2024-04-06T04:34:17.674268Z", + "shell.execute_reply": "2024-04-06T04:34:17.673692Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:02.645608Z", - "iopub.status.busy": "2024-04-06T04:17:02.645319Z", - "iopub.status.idle": "2024-04-06T04:17:02.979231Z", - "shell.execute_reply": "2024-04-06T04:17:02.978692Z" + "iopub.execute_input": "2024-04-06T04:34:17.676624Z", + "iopub.status.busy": "2024-04-06T04:34:17.676303Z", + "iopub.status.idle": "2024-04-06T04:34:18.037637Z", + "shell.execute_reply": "2024-04-06T04:34:18.037134Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:02.982484Z", - "iopub.status.busy": "2024-04-06T04:17:02.982127Z", - "iopub.status.idle": "2024-04-06T04:17:03.390843Z", - "shell.execute_reply": "2024-04-06T04:17:03.390270Z" + "iopub.execute_input": "2024-04-06T04:34:18.040616Z", + "iopub.status.busy": "2024-04-06T04:34:18.040298Z", + "iopub.status.idle": "2024-04-06T04:34:18.480221Z", + "shell.execute_reply": "2024-04-06T04:34:18.479710Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:03.395055Z", - "iopub.status.busy": "2024-04-06T04:17:03.394665Z", - "iopub.status.idle": "2024-04-06T04:17:03.813261Z", - "shell.execute_reply": "2024-04-06T04:17:03.812709Z" + "iopub.execute_input": "2024-04-06T04:34:18.484224Z", + "iopub.status.busy": "2024-04-06T04:34:18.483951Z", + "iopub.status.idle": "2024-04-06T04:34:18.910308Z", + "shell.execute_reply": "2024-04-06T04:34:18.909828Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:03.816607Z", - "iopub.status.busy": "2024-04-06T04:17:03.816267Z", - "iopub.status.idle": "2024-04-06T04:17:04.006027Z", - "shell.execute_reply": "2024-04-06T04:17:04.005432Z" + "iopub.execute_input": "2024-04-06T04:34:18.912281Z", + "iopub.status.busy": "2024-04-06T04:34:18.912098Z", + "iopub.status.idle": "2024-04-06T04:34:19.127034Z", + "shell.execute_reply": "2024-04-06T04:34:19.126447Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:04.008508Z", - "iopub.status.busy": "2024-04-06T04:17:04.008064Z", - "iopub.status.idle": "2024-04-06T04:17:04.193210Z", - "shell.execute_reply": "2024-04-06T04:17:04.192639Z" + "iopub.execute_input": "2024-04-06T04:34:19.129044Z", + "iopub.status.busy": "2024-04-06T04:34:19.128856Z", + "iopub.status.idle": "2024-04-06T04:34:19.327498Z", + "shell.execute_reply": "2024-04-06T04:34:19.327017Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:04.195887Z", - "iopub.status.busy": "2024-04-06T04:17:04.195463Z", - "iopub.status.idle": "2024-04-06T04:17:04.198586Z", - "shell.execute_reply": "2024-04-06T04:17:04.198082Z" + "iopub.execute_input": "2024-04-06T04:34:19.329747Z", + "iopub.status.busy": "2024-04-06T04:34:19.329569Z", + "iopub.status.idle": "2024-04-06T04:34:19.332430Z", + "shell.execute_reply": "2024-04-06T04:34:19.332000Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:04.200606Z", - "iopub.status.busy": "2024-04-06T04:17:04.200242Z", - "iopub.status.idle": "2024-04-06T04:17:05.172591Z", - "shell.execute_reply": "2024-04-06T04:17:05.172013Z" + "iopub.execute_input": "2024-04-06T04:34:19.334383Z", + "iopub.status.busy": "2024-04-06T04:34:19.334059Z", + "iopub.status.idle": "2024-04-06T04:34:20.209133Z", + "shell.execute_reply": "2024-04-06T04:34:20.208555Z" } }, "outputs": [ @@ -1101,14 +1101,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "./example_images/000000430073.jpg" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " | idx 100\n" + "./example_images/000000430073.jpg | idx 100\n" ] }, { @@ -1179,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:05.175404Z", - "iopub.status.busy": "2024-04-06T04:17:05.175059Z", - "iopub.status.idle": "2024-04-06T04:17:05.279492Z", - "shell.execute_reply": "2024-04-06T04:17:05.278947Z" + "iopub.execute_input": "2024-04-06T04:34:20.211448Z", + "iopub.status.busy": "2024-04-06T04:34:20.211008Z", + "iopub.status.idle": "2024-04-06T04:34:20.342519Z", + "shell.execute_reply": "2024-04-06T04:34:20.342095Z" } }, "outputs": [ @@ -1221,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:05.281714Z", - "iopub.status.busy": "2024-04-06T04:17:05.281381Z", - "iopub.status.idle": "2024-04-06T04:17:05.389641Z", - "shell.execute_reply": "2024-04-06T04:17:05.389153Z" + "iopub.execute_input": "2024-04-06T04:34:20.344524Z", + "iopub.status.busy": "2024-04-06T04:34:20.344193Z", + "iopub.status.idle": "2024-04-06T04:34:20.458465Z", + "shell.execute_reply": "2024-04-06T04:34:20.457952Z" } }, "outputs": [], @@ -1273,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:05.392001Z", - "iopub.status.busy": "2024-04-06T04:17:05.391816Z", - "iopub.status.idle": "2024-04-06T04:17:06.109074Z", - "shell.execute_reply": "2024-04-06T04:17:06.108500Z" + "iopub.execute_input": "2024-04-06T04:34:20.460533Z", + "iopub.status.busy": "2024-04-06T04:34:20.460222Z", + "iopub.status.idle": "2024-04-06T04:34:21.196312Z", + "shell.execute_reply": "2024-04-06T04:34:21.195737Z" } }, "outputs": [ @@ -1358,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:06.111397Z", - "iopub.status.busy": "2024-04-06T04:17:06.110954Z", - "iopub.status.idle": "2024-04-06T04:17:06.114735Z", - "shell.execute_reply": "2024-04-06T04:17:06.114197Z" + "iopub.execute_input": "2024-04-06T04:34:21.198485Z", + "iopub.status.busy": "2024-04-06T04:34:21.198170Z", + "iopub.status.idle": "2024-04-06T04:34:21.201764Z", + "shell.execute_reply": "2024-04-06T04:34:21.201234Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 55bc06abd..dff88146d 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:08.332348Z", - "iopub.status.busy": "2024-04-06T04:17:08.332172Z", - "iopub.status.idle": "2024-04-06T04:17:11.067244Z", - "shell.execute_reply": "2024-04-06T04:17:11.066595Z" + "iopub.execute_input": "2024-04-06T04:34:23.301443Z", + "iopub.status.busy": "2024-04-06T04:34:23.301280Z", + "iopub.status.idle": "2024-04-06T04:34:25.945799Z", + "shell.execute_reply": "2024-04-06T04:34:25.945183Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:11.069992Z", - "iopub.status.busy": "2024-04-06T04:17:11.069428Z", - "iopub.status.idle": "2024-04-06T04:17:11.401104Z", - "shell.execute_reply": "2024-04-06T04:17:11.400569Z" + "iopub.execute_input": "2024-04-06T04:34:25.948528Z", + "iopub.status.busy": "2024-04-06T04:34:25.948218Z", + "iopub.status.idle": "2024-04-06T04:34:26.266936Z", + "shell.execute_reply": "2024-04-06T04:34:26.266392Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:11.403502Z", - "iopub.status.busy": "2024-04-06T04:17:11.403186Z", - "iopub.status.idle": "2024-04-06T04:17:11.407467Z", - "shell.execute_reply": "2024-04-06T04:17:11.407051Z" + "iopub.execute_input": "2024-04-06T04:34:26.269348Z", + "iopub.status.busy": "2024-04-06T04:34:26.269036Z", + "iopub.status.idle": "2024-04-06T04:34:26.272997Z", + "shell.execute_reply": "2024-04-06T04:34:26.272583Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:11.409521Z", - "iopub.status.busy": "2024-04-06T04:17:11.409185Z", - "iopub.status.idle": "2024-04-06T04:17:16.574565Z", - "shell.execute_reply": "2024-04-06T04:17:16.574059Z" + "iopub.execute_input": "2024-04-06T04:34:26.275074Z", + "iopub.status.busy": "2024-04-06T04:34:26.274739Z", + "iopub.status.idle": "2024-04-06T04:34:31.314624Z", + "shell.execute_reply": "2024-04-06T04:34:31.314110Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 2719744/170498071 [00:00<00:06, 27150858.36it/s]" + " 1%| | 1769472/170498071 [00:00<00:09, 17538639.93it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 14385152/170498071 [00:00<00:01, 79698911.13it/s]" + " 5%|▍ | 8192000/170498071 [00:00<00:03, 44831466.83it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 25985024/170498071 [00:00<00:01, 96219724.72it/s]" + " 8%|▊ | 13041664/170498071 [00:00<00:03, 46433907.51it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37650432/170498071 [00:00<00:01, 104278791.75it/s]" + " 12%|█▏ | 19791872/170498071 [00:00<00:02, 54704480.34it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 49283072/170498071 [00:00<00:01, 108526944.35it/s]" + " 15%|█▌ | 25788416/170498071 [00:00<00:02, 56333002.76it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 60850176/170498071 [00:00<00:00, 110919928.74it/s]" + " 18%|█▊ | 31424512/170498071 [00:00<00:02, 55036228.43it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 72515584/170498071 [00:00<00:00, 112772522.55it/s]" + " 22%|██▏ | 37978112/170498071 [00:00<00:02, 58347764.86it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 84115456/170498071 [00:00<00:00, 113779771.17it/s]" + " 26%|██▌ | 43843584/170498071 [00:00<00:02, 56723331.51it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 95715328/170498071 [00:00<00:00, 114398601.27it/s]" + " 29%|██▉ | 49676288/170498071 [00:00<00:02, 57186066.18it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 107380736/170498071 [00:01<00:00, 115092493.28it/s]" + " 33%|███▎ | 56197120/170498071 [00:01<00:01, 59520956.47it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 118980608/170498071 [00:01<00:00, 115340861.91it/s]" + " 36%|███▋ | 62193664/170498071 [00:01<00:01, 55914267.41it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 130613248/170498071 [00:01<00:00, 115637259.98it/s]" + " 40%|████ | 68943872/170498071 [00:01<00:01, 59219350.19it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 142311424/170498071 [00:01<00:00, 115909354.44it/s]" + " 46%|████▌ | 77758464/170498071 [00:01<00:01, 67611548.92it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 153944064/170498071 [00:01<00:00, 115967061.77it/s]" + " 51%|█████▏ | 87556096/170498071 [00:01<00:01, 76485308.02it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 165609472/170498071 [00:01<00:00, 115896658.00it/s]" + " 58%|█████▊ | 98697216/170498071 [00:01<00:00, 86783379.22it/s]" ] }, { @@ -372,7 +372,63 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 110383673.81it/s]" + " 63%|██████▎ | 107642880/170498071 [00:01<00:00, 87414535.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 69%|██████▉ | 117768192/170498071 [00:01<00:00, 91407747.36it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 75%|███████▍ | 127565824/170498071 [00:01<00:00, 93045985.07it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 80%|████████ | 136904704/170498071 [00:01<00:00, 88471190.33it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▌ | 146505728/170498071 [00:02<00:00, 90636821.57it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 91%|█████████▏| 155648000/170498071 [00:02<00:00, 86904824.23it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 165478400/170498071 [00:02<00:00, 90092503.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:02<00:00, 72776359.59it/s]" ] }, { @@ -490,10 +546,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:16.576690Z", - "iopub.status.busy": "2024-04-06T04:17:16.576423Z", - "iopub.status.idle": "2024-04-06T04:17:16.580993Z", - "shell.execute_reply": "2024-04-06T04:17:16.580566Z" + "iopub.execute_input": "2024-04-06T04:34:31.316844Z", + "iopub.status.busy": "2024-04-06T04:34:31.316485Z", + "iopub.status.idle": "2024-04-06T04:34:31.321190Z", + "shell.execute_reply": "2024-04-06T04:34:31.320736Z" }, "nbsphinx": "hidden" }, @@ -544,10 +600,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:16.583051Z", - "iopub.status.busy": "2024-04-06T04:17:16.582688Z", - "iopub.status.idle": "2024-04-06T04:17:17.128244Z", - "shell.execute_reply": "2024-04-06T04:17:17.127732Z" + "iopub.execute_input": "2024-04-06T04:34:31.323414Z", + "iopub.status.busy": "2024-04-06T04:34:31.323024Z", + "iopub.status.idle": "2024-04-06T04:34:31.843073Z", + "shell.execute_reply": "2024-04-06T04:34:31.842461Z" } }, "outputs": [ @@ -580,10 +636,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:17.130361Z", - "iopub.status.busy": "2024-04-06T04:17:17.130041Z", - "iopub.status.idle": "2024-04-06T04:17:17.628711Z", - "shell.execute_reply": "2024-04-06T04:17:17.628136Z" + "iopub.execute_input": "2024-04-06T04:34:31.845476Z", + "iopub.status.busy": "2024-04-06T04:34:31.845122Z", + "iopub.status.idle": "2024-04-06T04:34:32.343468Z", + "shell.execute_reply": "2024-04-06T04:34:32.342863Z" } }, "outputs": [ @@ -621,10 +677,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:17.631026Z", - "iopub.status.busy": "2024-04-06T04:17:17.630590Z", - "iopub.status.idle": "2024-04-06T04:17:17.634166Z", - "shell.execute_reply": "2024-04-06T04:17:17.633631Z" + "iopub.execute_input": "2024-04-06T04:34:32.345737Z", + "iopub.status.busy": "2024-04-06T04:34:32.345520Z", + "iopub.status.idle": "2024-04-06T04:34:32.349079Z", + "shell.execute_reply": "2024-04-06T04:34:32.348636Z" } }, "outputs": [], @@ -647,17 +703,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:17.636095Z", - "iopub.status.busy": "2024-04-06T04:17:17.635918Z", - "iopub.status.idle": "2024-04-06T04:17:29.942716Z", - "shell.execute_reply": "2024-04-06T04:17:29.942087Z" + "iopub.execute_input": "2024-04-06T04:34:32.351161Z", + "iopub.status.busy": "2024-04-06T04:34:32.350840Z", + "iopub.status.idle": "2024-04-06T04:34:45.259522Z", + "shell.execute_reply": "2024-04-06T04:34:45.258934Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "44ee01f7f7be41e68df2da15ba015dda", + "model_id": "991b461cb5f14fa38412734f4f788575", "version_major": 2, "version_minor": 0 }, @@ -716,10 +772,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:29.945101Z", - "iopub.status.busy": "2024-04-06T04:17:29.944777Z", - "iopub.status.idle": "2024-04-06T04:17:31.687463Z", - "shell.execute_reply": "2024-04-06T04:17:31.686934Z" + "iopub.execute_input": "2024-04-06T04:34:45.261911Z", + "iopub.status.busy": "2024-04-06T04:34:45.261529Z", + "iopub.status.idle": "2024-04-06T04:34:46.966878Z", + "shell.execute_reply": "2024-04-06T04:34:46.966282Z" } }, "outputs": [ @@ -763,10 +819,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:31.690226Z", - "iopub.status.busy": "2024-04-06T04:17:31.689730Z", - "iopub.status.idle": "2024-04-06T04:17:31.946394Z", - "shell.execute_reply": "2024-04-06T04:17:31.945880Z" + "iopub.execute_input": "2024-04-06T04:34:46.969590Z", + "iopub.status.busy": "2024-04-06T04:34:46.969163Z", + "iopub.status.idle": "2024-04-06T04:34:47.194956Z", + "shell.execute_reply": "2024-04-06T04:34:47.194388Z" } }, "outputs": [ @@ -802,10 +858,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:31.949014Z", - "iopub.status.busy": "2024-04-06T04:17:31.948523Z", - "iopub.status.idle": "2024-04-06T04:17:32.616423Z", - "shell.execute_reply": "2024-04-06T04:17:32.615855Z" + "iopub.execute_input": "2024-04-06T04:34:47.197286Z", + "iopub.status.busy": "2024-04-06T04:34:47.197100Z", + "iopub.status.idle": "2024-04-06T04:34:47.844542Z", + "shell.execute_reply": "2024-04-06T04:34:47.843965Z" } }, "outputs": [ @@ -855,10 +911,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:32.619435Z", - "iopub.status.busy": "2024-04-06T04:17:32.618930Z", - "iopub.status.idle": "2024-04-06T04:17:32.960383Z", - "shell.execute_reply": "2024-04-06T04:17:32.959887Z" + "iopub.execute_input": "2024-04-06T04:34:47.847025Z", + "iopub.status.busy": "2024-04-06T04:34:47.846663Z", + "iopub.status.idle": "2024-04-06T04:34:48.133586Z", + "shell.execute_reply": "2024-04-06T04:34:48.133164Z" } }, "outputs": [ @@ -906,10 +962,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:32.962638Z", - "iopub.status.busy": "2024-04-06T04:17:32.962284Z", - "iopub.status.idle": "2024-04-06T04:17:33.209463Z", - "shell.execute_reply": "2024-04-06T04:17:33.208824Z" + "iopub.execute_input": "2024-04-06T04:34:48.135743Z", + "iopub.status.busy": "2024-04-06T04:34:48.135451Z", + "iopub.status.idle": "2024-04-06T04:34:48.362823Z", + "shell.execute_reply": "2024-04-06T04:34:48.362258Z" } }, "outputs": [ @@ -965,10 +1021,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:33.212321Z", - "iopub.status.busy": "2024-04-06T04:17:33.211889Z", - "iopub.status.idle": "2024-04-06T04:17:33.296629Z", - "shell.execute_reply": "2024-04-06T04:17:33.296153Z" + "iopub.execute_input": "2024-04-06T04:34:48.365290Z", + "iopub.status.busy": "2024-04-06T04:34:48.364817Z", + "iopub.status.idle": "2024-04-06T04:34:48.441430Z", + "shell.execute_reply": "2024-04-06T04:34:48.440837Z" } }, "outputs": [], @@ -989,10 +1045,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:33.298986Z", - "iopub.status.busy": "2024-04-06T04:17:33.298637Z", - "iopub.status.idle": "2024-04-06T04:17:43.478524Z", - "shell.execute_reply": "2024-04-06T04:17:43.477922Z" + "iopub.execute_input": "2024-04-06T04:34:48.444056Z", + "iopub.status.busy": "2024-04-06T04:34:48.443776Z", + "iopub.status.idle": "2024-04-06T04:34:58.624130Z", + "shell.execute_reply": "2024-04-06T04:34:58.623554Z" } }, "outputs": [ @@ -1029,10 +1085,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:43.481077Z", - "iopub.status.busy": "2024-04-06T04:17:43.480681Z", - "iopub.status.idle": "2024-04-06T04:17:45.220676Z", - "shell.execute_reply": "2024-04-06T04:17:45.220149Z" + "iopub.execute_input": "2024-04-06T04:34:58.626457Z", + "iopub.status.busy": "2024-04-06T04:34:58.626142Z", + "iopub.status.idle": "2024-04-06T04:35:00.411515Z", + "shell.execute_reply": "2024-04-06T04:35:00.411019Z" } }, "outputs": [ @@ -1063,10 +1119,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:45.223132Z", - "iopub.status.busy": "2024-04-06T04:17:45.222778Z", - "iopub.status.idle": "2024-04-06T04:17:45.425573Z", - "shell.execute_reply": "2024-04-06T04:17:45.425094Z" + "iopub.execute_input": "2024-04-06T04:35:00.414250Z", + "iopub.status.busy": "2024-04-06T04:35:00.413656Z", + "iopub.status.idle": "2024-04-06T04:35:00.626834Z", + "shell.execute_reply": "2024-04-06T04:35:00.626355Z" } }, "outputs": [], @@ -1080,10 +1136,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:45.428091Z", - "iopub.status.busy": "2024-04-06T04:17:45.427670Z", - "iopub.status.idle": "2024-04-06T04:17:45.430756Z", - "shell.execute_reply": "2024-04-06T04:17:45.430333Z" + "iopub.execute_input": "2024-04-06T04:35:00.629326Z", + "iopub.status.busy": "2024-04-06T04:35:00.628902Z", + "iopub.status.idle": "2024-04-06T04:35:00.632039Z", + "shell.execute_reply": "2024-04-06T04:35:00.631618Z" } }, "outputs": [], @@ -1105,10 +1161,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:45.432840Z", - "iopub.status.busy": "2024-04-06T04:17:45.432525Z", - "iopub.status.idle": "2024-04-06T04:17:45.440432Z", - "shell.execute_reply": "2024-04-06T04:17:45.440004Z" + "iopub.execute_input": "2024-04-06T04:35:00.634061Z", + "iopub.status.busy": "2024-04-06T04:35:00.633729Z", + "iopub.status.idle": "2024-04-06T04:35:00.641703Z", + "shell.execute_reply": "2024-04-06T04:35:00.641295Z" }, "nbsphinx": "hidden" }, @@ -1153,48 +1209,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "115954a83e3e49ce8939e0daea4966f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a6a5c907692848fc80cb9673fd89fcb1", - "placeholder": "​", - "style": "IPY_MODEL_c78e41d9307249af94c9332e92489b0f", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "39412d074fad4df6aefc57c172332f9a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "42430248b6934f87ba9966dfe801ecb5": { + "15c8db426b2d442dafc5fec0ada46d26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1247,31 +1262,25 @@ "width": null } }, - "44ee01f7f7be41e68df2da15ba015dda": { + "18e0c03543334359bae24bc35d678719": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_115954a83e3e49ce8939e0daea4966f6", - "IPY_MODEL_9ffeac5c9c424f2ebc36255362aa24d6", - "IPY_MODEL_b7d190cce83f40a09e92e9f4ce7045fc" - ], - "layout": "IPY_MODEL_819b5cb5e9514e2f8df3425d0535829c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "819b5cb5e9514e2f8df3425d0535829c": { + "5888f59c5c7747d284d2a1179b08220a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1324,33 +1333,53 @@ "width": null } }, - "9ffeac5c9c424f2ebc36255362aa24d6": { + "62503695057042fe9e46cf6d976cf0ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_42430248b6934f87ba9966dfe801ecb5", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c3041a25c4e74b138eafeb7431d7cd22", + "layout": "IPY_MODEL_dc69440eba354ce18f5a8f226872b05a", + "placeholder": "​", + "style": "IPY_MODEL_18e0c03543334359bae24bc35d678719", "tabbable": null, "tooltip": null, - "value": 102469840.0 + "value": " 102M/102M [00:00<00:00, 180MB/s]" } }, - "a6a5c907692848fc80cb9673fd89fcb1": { + "66a60ffdadfe43c49835a3149977dd23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5888f59c5c7747d284d2a1179b08220a", + "placeholder": "​", + "style": "IPY_MODEL_a901c8deef634fefa5bf50b380005288", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "710b50fb237d4bfa800dd8ccca2aa500": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1403,46 +1432,57 @@ "width": null } }, - "b7d190cce83f40a09e92e9f4ce7045fc": { + "721bf251193348b0a2bc03a41fa88621": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f09d11078deb4890b9b29821b9e7abb1", - "placeholder": "​", - "style": "IPY_MODEL_39412d074fad4df6aefc57c172332f9a", + "layout": "IPY_MODEL_710b50fb237d4bfa800dd8ccca2aa500", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ad6af0ebf6a84194902f8859297785ed", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 304MB/s]" + "value": 102469840.0 } }, - "c3041a25c4e74b138eafeb7431d7cd22": { + "991b461cb5f14fa38412734f4f788575": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_66a60ffdadfe43c49835a3149977dd23", + "IPY_MODEL_721bf251193348b0a2bc03a41fa88621", + "IPY_MODEL_62503695057042fe9e46cf6d976cf0ec" + ], + "layout": "IPY_MODEL_15c8db426b2d442dafc5fec0ada46d26", + "tabbable": null, + "tooltip": null } }, - "c78e41d9307249af94c9332e92489b0f": { + "a901c8deef634fefa5bf50b380005288": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1460,7 +1500,23 @@ "text_color": null } }, - "f09d11078deb4890b9b29821b9e7abb1": { + "ad6af0ebf6a84194902f8859297785ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "dc69440eba354ce18f5a8f226872b05a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 12155c733..bac3e263c 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:49.808502Z", - "iopub.status.busy": "2024-04-06T04:17:49.808333Z", - "iopub.status.idle": "2024-04-06T04:17:50.938302Z", - "shell.execute_reply": "2024-04-06T04:17:50.937783Z" + "iopub.execute_input": "2024-04-06T04:35:04.945916Z", + "iopub.status.busy": "2024-04-06T04:35:04.945744Z", + "iopub.status.idle": "2024-04-06T04:35:06.052331Z", + "shell.execute_reply": "2024-04-06T04:35:06.051744Z" }, "nbsphinx": "hidden" }, @@ -117,7 +117,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:50.940835Z", - "iopub.status.busy": "2024-04-06T04:17:50.940476Z", - "iopub.status.idle": "2024-04-06T04:17:50.957880Z", - "shell.execute_reply": "2024-04-06T04:17:50.957193Z" + "iopub.execute_input": "2024-04-06T04:35:06.054800Z", + "iopub.status.busy": "2024-04-06T04:35:06.054557Z", + "iopub.status.idle": "2024-04-06T04:35:06.072120Z", + "shell.execute_reply": "2024-04-06T04:35:06.071716Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:50.960308Z", - "iopub.status.busy": "2024-04-06T04:17:50.959904Z", - "iopub.status.idle": "2024-04-06T04:17:50.962814Z", - "shell.execute_reply": "2024-04-06T04:17:50.962356Z" + "iopub.execute_input": "2024-04-06T04:35:06.074202Z", + "iopub.status.busy": "2024-04-06T04:35:06.073811Z", + "iopub.status.idle": "2024-04-06T04:35:06.076794Z", + "shell.execute_reply": "2024-04-06T04:35:06.076351Z" }, "nbsphinx": "hidden" }, @@ -199,10 +199,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:50.964843Z", - "iopub.status.busy": "2024-04-06T04:17:50.964451Z", - "iopub.status.idle": "2024-04-06T04:17:51.055914Z", - "shell.execute_reply": "2024-04-06T04:17:51.055379Z" + "iopub.execute_input": "2024-04-06T04:35:06.078868Z", + "iopub.status.busy": "2024-04-06T04:35:06.078492Z", + "iopub.status.idle": "2024-04-06T04:35:06.208916Z", + "shell.execute_reply": "2024-04-06T04:35:06.208494Z" } }, "outputs": [ @@ -375,10 +375,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:51.058209Z", - "iopub.status.busy": "2024-04-06T04:17:51.057898Z", - "iopub.status.idle": "2024-04-06T04:17:51.238376Z", - "shell.execute_reply": "2024-04-06T04:17:51.237789Z" + "iopub.execute_input": "2024-04-06T04:35:06.211100Z", + "iopub.status.busy": "2024-04-06T04:35:06.210666Z", + "iopub.status.idle": "2024-04-06T04:35:06.392965Z", + "shell.execute_reply": "2024-04-06T04:35:06.392412Z" }, "nbsphinx": "hidden" }, @@ -418,10 +418,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:51.241000Z", - "iopub.status.busy": "2024-04-06T04:17:51.240573Z", - "iopub.status.idle": "2024-04-06T04:17:51.480475Z", - "shell.execute_reply": "2024-04-06T04:17:51.479935Z" + "iopub.execute_input": "2024-04-06T04:35:06.395403Z", + "iopub.status.busy": "2024-04-06T04:35:06.395013Z", + "iopub.status.idle": "2024-04-06T04:35:06.638949Z", + "shell.execute_reply": "2024-04-06T04:35:06.638348Z" } }, "outputs": [ @@ -457,10 +457,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:51.482794Z", - "iopub.status.busy": "2024-04-06T04:17:51.482431Z", - "iopub.status.idle": "2024-04-06T04:17:51.486805Z", - "shell.execute_reply": "2024-04-06T04:17:51.486258Z" + "iopub.execute_input": "2024-04-06T04:35:06.641297Z", + "iopub.status.busy": "2024-04-06T04:35:06.640953Z", + "iopub.status.idle": "2024-04-06T04:35:06.645580Z", + "shell.execute_reply": "2024-04-06T04:35:06.645032Z" } }, "outputs": [], @@ -478,10 +478,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:51.488855Z", - "iopub.status.busy": "2024-04-06T04:17:51.488525Z", - "iopub.status.idle": "2024-04-06T04:17:51.494877Z", - "shell.execute_reply": "2024-04-06T04:17:51.494412Z" + "iopub.execute_input": "2024-04-06T04:35:06.647781Z", + "iopub.status.busy": "2024-04-06T04:35:06.647427Z", + "iopub.status.idle": "2024-04-06T04:35:06.654351Z", + "shell.execute_reply": "2024-04-06T04:35:06.653847Z" } }, "outputs": [], @@ -528,10 +528,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:51.496834Z", - "iopub.status.busy": "2024-04-06T04:17:51.496663Z", - "iopub.status.idle": "2024-04-06T04:17:51.499175Z", - "shell.execute_reply": "2024-04-06T04:17:51.498746Z" + "iopub.execute_input": "2024-04-06T04:35:06.656526Z", + "iopub.status.busy": "2024-04-06T04:35:06.656127Z", + "iopub.status.idle": "2024-04-06T04:35:06.658766Z", + "shell.execute_reply": "2024-04-06T04:35:06.658318Z" } }, "outputs": [], @@ -546,10 +546,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:51.501146Z", - "iopub.status.busy": "2024-04-06T04:17:51.500827Z", - "iopub.status.idle": "2024-04-06T04:17:59.701511Z", - "shell.execute_reply": "2024-04-06T04:17:59.700993Z" + "iopub.execute_input": "2024-04-06T04:35:06.660791Z", + "iopub.status.busy": "2024-04-06T04:35:06.660469Z", + "iopub.status.idle": "2024-04-06T04:35:14.877273Z", + "shell.execute_reply": "2024-04-06T04:35:14.876740Z" } }, "outputs": [], @@ -573,10 +573,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.704325Z", - "iopub.status.busy": "2024-04-06T04:17:59.703744Z", - "iopub.status.idle": "2024-04-06T04:17:59.711002Z", - "shell.execute_reply": "2024-04-06T04:17:59.710577Z" + "iopub.execute_input": "2024-04-06T04:35:14.880136Z", + "iopub.status.busy": "2024-04-06T04:35:14.879546Z", + "iopub.status.idle": "2024-04-06T04:35:14.886452Z", + "shell.execute_reply": "2024-04-06T04:35:14.885981Z" } }, "outputs": [ @@ -679,10 +679,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.712952Z", - "iopub.status.busy": "2024-04-06T04:17:59.712668Z", - "iopub.status.idle": "2024-04-06T04:17:59.716246Z", - "shell.execute_reply": "2024-04-06T04:17:59.715722Z" + "iopub.execute_input": "2024-04-06T04:35:14.888384Z", + "iopub.status.busy": "2024-04-06T04:35:14.888208Z", + "iopub.status.idle": "2024-04-06T04:35:14.891854Z", + "shell.execute_reply": "2024-04-06T04:35:14.891406Z" } }, "outputs": [], @@ -697,10 +697,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.718341Z", - "iopub.status.busy": "2024-04-06T04:17:59.718012Z", - "iopub.status.idle": "2024-04-06T04:17:59.720948Z", - "shell.execute_reply": "2024-04-06T04:17:59.720455Z" + "iopub.execute_input": "2024-04-06T04:35:14.893970Z", + "iopub.status.busy": "2024-04-06T04:35:14.893580Z", + "iopub.status.idle": "2024-04-06T04:35:14.896696Z", + "shell.execute_reply": "2024-04-06T04:35:14.896194Z" } }, "outputs": [ @@ -735,10 +735,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.723004Z", - "iopub.status.busy": "2024-04-06T04:17:59.722690Z", - "iopub.status.idle": "2024-04-06T04:17:59.725674Z", - "shell.execute_reply": "2024-04-06T04:17:59.725233Z" + "iopub.execute_input": "2024-04-06T04:35:14.898553Z", + "iopub.status.busy": "2024-04-06T04:35:14.898382Z", + "iopub.status.idle": "2024-04-06T04:35:14.901388Z", + "shell.execute_reply": "2024-04-06T04:35:14.900951Z" } }, "outputs": [], @@ -757,10 +757,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.727583Z", - "iopub.status.busy": "2024-04-06T04:17:59.727268Z", - "iopub.status.idle": "2024-04-06T04:17:59.735001Z", - "shell.execute_reply": "2024-04-06T04:17:59.734458Z" + "iopub.execute_input": "2024-04-06T04:35:14.903150Z", + "iopub.status.busy": "2024-04-06T04:35:14.902982Z", + "iopub.status.idle": "2024-04-06T04:35:14.910845Z", + "shell.execute_reply": "2024-04-06T04:35:14.910300Z" } }, "outputs": [ @@ -884,10 +884,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.737149Z", - "iopub.status.busy": "2024-04-06T04:17:59.736738Z", - "iopub.status.idle": "2024-04-06T04:17:59.739425Z", - "shell.execute_reply": "2024-04-06T04:17:59.738895Z" + "iopub.execute_input": "2024-04-06T04:35:14.912783Z", + "iopub.status.busy": "2024-04-06T04:35:14.912607Z", + "iopub.status.idle": "2024-04-06T04:35:14.915272Z", + "shell.execute_reply": "2024-04-06T04:35:14.914817Z" }, "nbsphinx": "hidden" }, @@ -922,10 +922,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.741379Z", - "iopub.status.busy": "2024-04-06T04:17:59.741083Z", - "iopub.status.idle": "2024-04-06T04:17:59.861150Z", - "shell.execute_reply": "2024-04-06T04:17:59.860591Z" + "iopub.execute_input": "2024-04-06T04:35:14.917066Z", + "iopub.status.busy": "2024-04-06T04:35:14.916896Z", + "iopub.status.idle": "2024-04-06T04:35:15.039512Z", + "shell.execute_reply": "2024-04-06T04:35:15.038973Z" } }, "outputs": [ @@ -964,10 +964,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.863473Z", - "iopub.status.busy": "2024-04-06T04:17:59.863158Z", - "iopub.status.idle": "2024-04-06T04:17:59.966536Z", - "shell.execute_reply": "2024-04-06T04:17:59.965985Z" + "iopub.execute_input": "2024-04-06T04:35:15.041688Z", + "iopub.status.busy": "2024-04-06T04:35:15.041372Z", + "iopub.status.idle": "2024-04-06T04:35:15.143758Z", + "shell.execute_reply": "2024-04-06T04:35:15.143187Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.969085Z", - "iopub.status.busy": "2024-04-06T04:17:59.968712Z", - "iopub.status.idle": "2024-04-06T04:18:00.472645Z", - "shell.execute_reply": "2024-04-06T04:18:00.472029Z" + "iopub.execute_input": "2024-04-06T04:35:15.146009Z", + "iopub.status.busy": "2024-04-06T04:35:15.145689Z", + "iopub.status.idle": "2024-04-06T04:35:15.632674Z", + "shell.execute_reply": "2024-04-06T04:35:15.632055Z" } }, "outputs": [], @@ -1042,10 +1042,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:00.475278Z", - "iopub.status.busy": "2024-04-06T04:18:00.474898Z", - "iopub.status.idle": "2024-04-06T04:18:00.577317Z", - "shell.execute_reply": "2024-04-06T04:18:00.576734Z" + "iopub.execute_input": "2024-04-06T04:35:15.635337Z", + "iopub.status.busy": "2024-04-06T04:35:15.634992Z", + "iopub.status.idle": "2024-04-06T04:35:15.743506Z", + "shell.execute_reply": "2024-04-06T04:35:15.742910Z" } }, "outputs": [ @@ -1080,10 +1080,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:00.579693Z", - "iopub.status.busy": "2024-04-06T04:18:00.579312Z", - "iopub.status.idle": "2024-04-06T04:18:00.587971Z", - "shell.execute_reply": "2024-04-06T04:18:00.587553Z" + "iopub.execute_input": "2024-04-06T04:35:15.745851Z", + "iopub.status.busy": "2024-04-06T04:35:15.745490Z", + "iopub.status.idle": "2024-04-06T04:35:15.753696Z", + "shell.execute_reply": "2024-04-06T04:35:15.753263Z" } }, "outputs": [ @@ -1190,10 +1190,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:00.589999Z", - "iopub.status.busy": "2024-04-06T04:18:00.589674Z", - "iopub.status.idle": "2024-04-06T04:18:00.592366Z", - "shell.execute_reply": "2024-04-06T04:18:00.591928Z" + "iopub.execute_input": "2024-04-06T04:35:15.755695Z", + "iopub.status.busy": "2024-04-06T04:35:15.755367Z", + "iopub.status.idle": "2024-04-06T04:35:15.758042Z", + "shell.execute_reply": "2024-04-06T04:35:15.757595Z" }, "nbsphinx": "hidden" }, @@ -1218,10 +1218,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:00.594344Z", - "iopub.status.busy": "2024-04-06T04:18:00.593958Z", - "iopub.status.idle": "2024-04-06T04:18:06.032480Z", - "shell.execute_reply": "2024-04-06T04:18:06.031916Z" + "iopub.execute_input": "2024-04-06T04:35:15.760007Z", + "iopub.status.busy": "2024-04-06T04:35:15.759679Z", + "iopub.status.idle": "2024-04-06T04:35:21.169503Z", + "shell.execute_reply": "2024-04-06T04:35:21.168860Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:06.034781Z", - "iopub.status.busy": "2024-04-06T04:18:06.034431Z", - "iopub.status.idle": "2024-04-06T04:18:06.043093Z", - "shell.execute_reply": "2024-04-06T04:18:06.042679Z" + "iopub.execute_input": "2024-04-06T04:35:21.172001Z", + "iopub.status.busy": "2024-04-06T04:35:21.171800Z", + "iopub.status.idle": "2024-04-06T04:35:21.180339Z", + "shell.execute_reply": "2024-04-06T04:35:21.179868Z" } }, "outputs": [ @@ -1377,10 +1377,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:06.045152Z", - "iopub.status.busy": "2024-04-06T04:18:06.044842Z", - "iopub.status.idle": "2024-04-06T04:18:06.113165Z", - "shell.execute_reply": "2024-04-06T04:18:06.112584Z" + "iopub.execute_input": "2024-04-06T04:35:21.182362Z", + "iopub.status.busy": "2024-04-06T04:35:21.182047Z", + "iopub.status.idle": "2024-04-06T04:35:21.256060Z", + "shell.execute_reply": "2024-04-06T04:35:21.255579Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 2aa4f5141..89e2cb219 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:09.136176Z", - "iopub.status.busy": "2024-04-06T04:18:09.136007Z", - "iopub.status.idle": "2024-04-06T04:18:11.074442Z", - "shell.execute_reply": "2024-04-06T04:18:11.073722Z" + "iopub.execute_input": "2024-04-06T04:35:24.243928Z", + "iopub.status.busy": "2024-04-06T04:35:24.243468Z", + "iopub.status.idle": "2024-04-06T04:35:26.047952Z", + "shell.execute_reply": "2024-04-06T04:35:26.047292Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:11.077142Z", - "iopub.status.busy": "2024-04-06T04:18:11.076951Z", - "iopub.status.idle": "2024-04-06T04:18:58.504072Z", - "shell.execute_reply": "2024-04-06T04:18:58.503451Z" + "iopub.execute_input": "2024-04-06T04:35:26.050495Z", + "iopub.status.busy": "2024-04-06T04:35:26.050118Z", + "iopub.status.idle": "2024-04-06T04:36:08.935704Z", + "shell.execute_reply": "2024-04-06T04:36:08.935125Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:58.506581Z", - "iopub.status.busy": "2024-04-06T04:18:58.506181Z", - "iopub.status.idle": "2024-04-06T04:18:59.586152Z", - "shell.execute_reply": "2024-04-06T04:18:59.585563Z" + "iopub.execute_input": "2024-04-06T04:36:08.938332Z", + "iopub.status.busy": "2024-04-06T04:36:08.937887Z", + "iopub.status.idle": "2024-04-06T04:36:09.999880Z", + "shell.execute_reply": "2024-04-06T04:36:09.999323Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:59.588721Z", - "iopub.status.busy": "2024-04-06T04:18:59.588437Z", - "iopub.status.idle": "2024-04-06T04:18:59.591702Z", - "shell.execute_reply": "2024-04-06T04:18:59.591184Z" + "iopub.execute_input": "2024-04-06T04:36:10.002451Z", + "iopub.status.busy": "2024-04-06T04:36:10.002049Z", + "iopub.status.idle": "2024-04-06T04:36:10.005300Z", + "shell.execute_reply": "2024-04-06T04:36:10.004764Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:59.593851Z", - "iopub.status.busy": "2024-04-06T04:18:59.593529Z", - "iopub.status.idle": "2024-04-06T04:18:59.597220Z", - "shell.execute_reply": "2024-04-06T04:18:59.596787Z" + "iopub.execute_input": "2024-04-06T04:36:10.007484Z", + "iopub.status.busy": "2024-04-06T04:36:10.007053Z", + "iopub.status.idle": "2024-04-06T04:36:10.010737Z", + "shell.execute_reply": "2024-04-06T04:36:10.010232Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:59.599215Z", - "iopub.status.busy": "2024-04-06T04:18:59.598912Z", - "iopub.status.idle": "2024-04-06T04:18:59.602294Z", - "shell.execute_reply": "2024-04-06T04:18:59.601883Z" + "iopub.execute_input": "2024-04-06T04:36:10.012726Z", + "iopub.status.busy": "2024-04-06T04:36:10.012460Z", + "iopub.status.idle": "2024-04-06T04:36:10.016097Z", + "shell.execute_reply": "2024-04-06T04:36:10.015646Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:59.604288Z", - "iopub.status.busy": "2024-04-06T04:18:59.603975Z", - "iopub.status.idle": "2024-04-06T04:18:59.606581Z", - "shell.execute_reply": "2024-04-06T04:18:59.606178Z" + "iopub.execute_input": "2024-04-06T04:36:10.018111Z", + "iopub.status.busy": "2024-04-06T04:36:10.017712Z", + "iopub.status.idle": "2024-04-06T04:36:10.020470Z", + "shell.execute_reply": "2024-04-06T04:36:10.020044Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:59.608476Z", - "iopub.status.busy": "2024-04-06T04:18:59.608219Z", - "iopub.status.idle": "2024-04-06T04:20:14.384993Z", - "shell.execute_reply": "2024-04-06T04:20:14.384347Z" + "iopub.execute_input": "2024-04-06T04:36:10.022477Z", + "iopub.status.busy": "2024-04-06T04:36:10.022151Z", + "iopub.status.idle": "2024-04-06T04:37:25.589281Z", + "shell.execute_reply": "2024-04-06T04:37:25.588682Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "915045c266014b50aa25fe51d11426f0", + "model_id": "430f85b602e34595b215cff777f2e22c", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "af131beb047e4f4aa72b9e8100198f5d", + "model_id": "72840f69ea214918a754b98c138bcd01", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:20:14.387966Z", - "iopub.status.busy": "2024-04-06T04:20:14.387398Z", - "iopub.status.idle": "2024-04-06T04:20:15.062876Z", - "shell.execute_reply": "2024-04-06T04:20:15.062312Z" + "iopub.execute_input": "2024-04-06T04:37:25.591755Z", + "iopub.status.busy": "2024-04-06T04:37:25.591547Z", + "iopub.status.idle": "2024-04-06T04:37:26.256442Z", + "shell.execute_reply": "2024-04-06T04:37:26.255866Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:20:15.065331Z", - "iopub.status.busy": "2024-04-06T04:20:15.064846Z", - "iopub.status.idle": "2024-04-06T04:20:17.802413Z", - "shell.execute_reply": "2024-04-06T04:20:17.801817Z" + "iopub.execute_input": "2024-04-06T04:37:26.258907Z", + "iopub.status.busy": "2024-04-06T04:37:26.258403Z", + "iopub.status.idle": "2024-04-06T04:37:28.986847Z", + "shell.execute_reply": "2024-04-06T04:37:28.986249Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:20:17.804878Z", - "iopub.status.busy": "2024-04-06T04:20:17.804483Z", - "iopub.status.idle": "2024-04-06T04:20:50.380828Z", - "shell.execute_reply": "2024-04-06T04:20:50.380284Z" + "iopub.execute_input": "2024-04-06T04:37:28.989011Z", + "iopub.status.busy": "2024-04-06T04:37:28.988663Z", + "iopub.status.idle": "2024-04-06T04:38:01.556933Z", + "shell.execute_reply": "2024-04-06T04:38:01.556488Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ec62a08c4bda47b1bd77cd0903cbbb11", + "model_id": "d3ec0bdaf05d45038d515229edd1fce4", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:20:50.382850Z", - "iopub.status.busy": "2024-04-06T04:20:50.382669Z", - "iopub.status.idle": "2024-04-06T04:21:05.039724Z", - "shell.execute_reply": "2024-04-06T04:21:05.039165Z" + "iopub.execute_input": "2024-04-06T04:38:01.559018Z", + "iopub.status.busy": "2024-04-06T04:38:01.558830Z", + "iopub.status.idle": "2024-04-06T04:38:15.949783Z", + "shell.execute_reply": "2024-04-06T04:38:15.949244Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:05.042254Z", - "iopub.status.busy": "2024-04-06T04:21:05.041859Z", - "iopub.status.idle": "2024-04-06T04:21:08.807363Z", - "shell.execute_reply": "2024-04-06T04:21:08.806822Z" + "iopub.execute_input": "2024-04-06T04:38:15.952245Z", + "iopub.status.busy": "2024-04-06T04:38:15.951882Z", + "iopub.status.idle": "2024-04-06T04:38:19.737339Z", + "shell.execute_reply": "2024-04-06T04:38:19.736758Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:08.809579Z", - "iopub.status.busy": "2024-04-06T04:21:08.809248Z", - "iopub.status.idle": "2024-04-06T04:21:10.235522Z", - "shell.execute_reply": "2024-04-06T04:21:10.234988Z" + "iopub.execute_input": "2024-04-06T04:38:19.739665Z", + "iopub.status.busy": "2024-04-06T04:38:19.739350Z", + "iopub.status.idle": "2024-04-06T04:38:21.124441Z", + "shell.execute_reply": "2024-04-06T04:38:21.123826Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "740b71fa81144253bdfb8f2790e4add4", + "model_id": "a41dd8fa1c914418a704a6e5e8be1e2e", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:10.237946Z", - "iopub.status.busy": "2024-04-06T04:21:10.237613Z", - "iopub.status.idle": "2024-04-06T04:21:10.265996Z", - "shell.execute_reply": "2024-04-06T04:21:10.265500Z" + "iopub.execute_input": "2024-04-06T04:38:21.126758Z", + "iopub.status.busy": "2024-04-06T04:38:21.126415Z", + "iopub.status.idle": "2024-04-06T04:38:21.155079Z", + "shell.execute_reply": "2024-04-06T04:38:21.154584Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:10.268487Z", - "iopub.status.busy": "2024-04-06T04:21:10.268126Z", - "iopub.status.idle": "2024-04-06T04:21:16.399889Z", - "shell.execute_reply": "2024-04-06T04:21:16.399372Z" + "iopub.execute_input": "2024-04-06T04:38:21.157615Z", + "iopub.status.busy": "2024-04-06T04:38:21.157258Z", + "iopub.status.idle": "2024-04-06T04:38:27.224964Z", + "shell.execute_reply": "2024-04-06T04:38:27.224445Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:16.402010Z", - "iopub.status.busy": "2024-04-06T04:21:16.401673Z", - "iopub.status.idle": "2024-04-06T04:21:16.457799Z", - "shell.execute_reply": "2024-04-06T04:21:16.457258Z" + "iopub.execute_input": "2024-04-06T04:38:27.227144Z", + "iopub.status.busy": "2024-04-06T04:38:27.226803Z", + "iopub.status.idle": "2024-04-06T04:38:27.282607Z", + "shell.execute_reply": "2024-04-06T04:38:27.282076Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01797c0f12644ab5bc8fc8fe706c568f": { + "02c8e49579ab4c2cb5010e5d696f7f75": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1091,25 +1091,7 @@ "width": null } }, - "12a3fbc6fcd1435abec30e5d1236d5a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "178d3a8137e64688a78d9a695552227b": { + "06ef42058bc7433ca11271d89630261f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1162,7 +1144,7 @@ "width": null } }, - "1cbee73c901f4b329499bea42c991401": { + "07b675adb016454a9854b4ea300e4cfe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1177,121 +1159,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_af6290a9581448b2b835cc163e6aa439", + "layout": "IPY_MODEL_70deac36097f491e8666a288db33cf71", "placeholder": "​", - "style": "IPY_MODEL_7a1ea3696d9b411b9b033d7fda5e8b3f", + "style": "IPY_MODEL_f73f43e9ac32458989fecfd81a100778", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "images processed using softmin: 100%" } }, - "1f4c09b62de9480089fd7c0b54ca4722": { - "model_module": "@jupyter-widgets/base", + "0e3edfaa67be4256bf241604d1fdfd54": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_686826beb1be457bab28c73bcd2ffefb", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8db16dbcca284d40921261550c3c9241", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "27d8f71bd7ae4673be076e414c162d63": { - "model_module": "@jupyter-widgets/base", + "0ffcaa24253e452f8a885fef873bdcfb": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2fc6a15947dc447dbb06f6a5e36ec65f": { + "182b3bcc537c404793b98eb84a4a9fef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1306,15 +1226,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a9841c8e85c949dd90a717f2e6f39a94", + "layout": "IPY_MODEL_ea8cdf6af87544368e97f412bed093e3", "placeholder": "​", - "style": "IPY_MODEL_7ef0c4988b1d472ea469314464587963", + "style": "IPY_MODEL_ff45dd3e934e4e0c9f7fa5da7043dbd7", "tabbable": null, "tooltip": null, - "value": " 4997817/4997817 [00:32<00:00, 151527.74it/s]" + "value": " 4997817/4997817 [00:32<00:00, 154776.29it/s]" } }, - "331c3ef53a454479ba7b44c8e444408c": { + "20149c21eb1a4d47b708a9f402b4f051": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1329,54 +1249,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a276020c8f4d46d58e05ba0543077a7d", + "layout": "IPY_MODEL_42508acbff6b4c069678d14fb3bb650d", "placeholder": "​", - "style": "IPY_MODEL_12a3fbc6fcd1435abec30e5d1236d5a1", + "style": "IPY_MODEL_d2dd7b61c9974c56af1e4ae1413f64cf", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.44it/s]" + "value": "100%" } }, - "4051c68cf13f44cebc605e5818e7fcc4": { + "232cb3f4436c4a29aa37462ded23ed0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1f4c09b62de9480089fd7c0b54ca4722", - "placeholder": "​", - "style": "IPY_MODEL_baec72cf50724068b7602f06b42bd150", + "layout": "IPY_MODEL_2a73fcdba5f1491486544ab0e5fd82f6", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_83ed95add600447dbcd4112a82b755ac", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "4c06029894d142b282a5438fecb2ebd7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 30.0 } }, - "50ca6313f88242e59604728cf5b3430f": { + "28dfa37fd60e430591dba8d65770190b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1392,17 +1299,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_847e7a34fd6842679b84ed096d9c4f39", - "max": 4997817.0, + "layout": "IPY_MODEL_a6b9abd68857477cbdc3898a45b7c10f", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_83479ebf3e00418588989e8fe7240055", + "style": "IPY_MODEL_40eb33493e30499e97354717869f83be", "tabbable": null, "tooltip": null, - "value": 4997817.0 + "value": 30.0 } }, - "52e77769263349dc97c804a3f7171cce": { + "2a73fcdba5f1491486544ab0e5fd82f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1455,7 +1362,69 @@ "width": null } }, - "63d12b5a43844dcba4a1740e593b5ab4": { + "2bc90b79c1364f709f2cc5d8d3ac1a01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9efde9d20e674f91930d36a8fffde7e0", + "placeholder": "​", + "style": "IPY_MODEL_0ffcaa24253e452f8a885fef873bdcfb", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.88it/s]" + } + }, + "2d5ba316556d415b8f9eceaac5bda45b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_957a7ec883f34696b2479a90a87bdbcb", + "placeholder": "​", + "style": "IPY_MODEL_562e407d8d8745fc83b37ab7c94d1b60", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.41it/s]" + } + }, + "40eb33493e30499e97354717869f83be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "42508acbff6b4c069678d14fb3bb650d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1508,46 +1477,7 @@ "width": null } }, - "653a34e566a846cf89ade08d0193cfe4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_27d8f71bd7ae4673be076e414c162d63", - "placeholder": "​", - "style": "IPY_MODEL_7531318a4ab040fcb3a5d2a7b124a6b5", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "6c1356911008442e9e5f49d05695c6e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "740b71fa81144253bdfb8f2790e4add4": { + "430f85b602e34595b215cff777f2e22c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1562,52 +1492,69 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8400c4bb441941cbb02382dbc0b1a499", - "IPY_MODEL_c60f6735da854d13b596428d92a43206", - "IPY_MODEL_c01e31cec8b541d082e02f55c3f6a5fa" + "IPY_MODEL_621c7249a2054bf59226e64a4b8f7081", + "IPY_MODEL_28dfa37fd60e430591dba8d65770190b", + "IPY_MODEL_7e7920af14e54024b17aa6179ca38f35" ], - "layout": "IPY_MODEL_e74b7dcefe73432da73c17c47b9cd035", + "layout": "IPY_MODEL_4ad7bb286eca4c09948bb75a92a76c29", "tabbable": null, "tooltip": null } }, - "7531318a4ab040fcb3a5d2a7b124a6b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7a1ea3696d9b411b9b033d7fda5e8b3f": { - "model_module": "@jupyter-widgets/controls", + "4ad7bb286eca4c09948bb75a92a76c29": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7ef0c4988b1d472ea469314464587963": { + "562e407d8d8745fc83b37ab7c94d1b60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1625,46 +1572,7 @@ "text_color": null } }, - "83479ebf3e00418588989e8fe7240055": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8400c4bb441941cbb02382dbc0b1a499": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_01797c0f12644ab5bc8fc8fe706c568f", - "placeholder": "​", - "style": "IPY_MODEL_e0ce3782e1cd4450a691c7d45abf86fc", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "847e7a34fd6842679b84ed096d9c4f39": { + "5b27262a9cd94dcca7fa54df4cceb26a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1717,31 +1625,41 @@ "width": null } }, - "915045c266014b50aa25fe51d11426f0": { + "5bb6200f11d74e33b58d64accf19085f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_653a34e566a846cf89ade08d0193cfe4", - "IPY_MODEL_db70671d4bd541a68ba969eb75cc2ff7", - "IPY_MODEL_f26d7d357fc44177bc0e68d25429ee78" - ], - "layout": "IPY_MODEL_63d12b5a43844dcba4a1740e593b5ab4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a276020c8f4d46d58e05ba0543077a7d": { + "60b778a0ef8e44b39608af38b47ca860": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "60ce120b6f0d4b35939edd06a49b48fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1794,7 +1712,48 @@ "width": null } }, - "a9841c8e85c949dd90a717f2e6f39a94": { + "621c7249a2054bf59226e64a4b8f7081": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7f6b7ffd00bb4a2caab3b50683296936", + "placeholder": "​", + "style": "IPY_MODEL_cbbaae80c54e40cabbdb2edd591551d4", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "646252281ae14f8886cc21d9e56afec5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "686826beb1be457bab28c73bcd2ffefb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1847,31 +1806,7 @@ "width": null } }, - "af131beb047e4f4aa72b9e8100198f5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4051c68cf13f44cebc605e5818e7fcc4", - "IPY_MODEL_b89c297a48ef4c9eba1ba82a7ea9f8c6", - "IPY_MODEL_331c3ef53a454479ba7b44c8e444408c" - ], - "layout": "IPY_MODEL_c4c052714fb94a418b51b6af6f512b1e", - "tabbable": null, - "tooltip": null - } - }, - "af6290a9581448b2b835cc163e6aa439": { + "70deac36097f491e8666a288db33cf71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1924,7 +1859,31 @@ "width": null } }, - "b7b93344d3ae4aa1815f6925aa9a44c6": { + "72840f69ea214918a754b98c138bcd01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8b3e196faee64d279374daae7049f9a7", + "IPY_MODEL_0e3edfaa67be4256bf241604d1fdfd54", + "IPY_MODEL_2d5ba316556d415b8f9eceaac5bda45b" + ], + "layout": "IPY_MODEL_7c0fbc0da1b843e89059929faa931860", + "tabbable": null, + "tooltip": null + } + }, + "7c0fbc0da1b843e89059929faa931860": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1977,69 +1936,7 @@ "width": null } }, - "b89c297a48ef4c9eba1ba82a7ea9f8c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f027ad5a5f0a4126ab19de21f2572adc", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6c1356911008442e9e5f49d05695c6e2", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "baec72cf50724068b7602f06b42bd150": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bfe50aeccda04accafb1c5ed276ff8cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c01e31cec8b541d082e02f55c3f6a5fa": { + "7e7920af14e54024b17aa6179ca38f35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2054,15 +1951,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ff64cd2a7e6043a6b9b3b929bfbce777", + "layout": "IPY_MODEL_06ef42058bc7433ca11271d89630261f", "placeholder": "​", - "style": "IPY_MODEL_bfe50aeccda04accafb1c5ed276ff8cd", + "style": "IPY_MODEL_60b778a0ef8e44b39608af38b47ca860", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.49it/s]" + "value": " 30/30 [00:00<00:00, 407.39it/s]" } }, - "c4c052714fb94a418b51b6af6f512b1e": { + "7f6b7ffd00bb4a2caab3b50683296936": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2115,33 +2012,7 @@ "width": null } }, - "c60f6735da854d13b596428d92a43206": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_52e77769263349dc97c804a3f7171cce", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4c06029894d142b282a5438fecb2ebd7", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "cd058eab4a214ec48424b923304f88f7": { + "83ed95add600447dbcd4112a82b755ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2157,51 +2028,99 @@ "description_width": "" } }, - "db70671d4bd541a68ba969eb75cc2ff7": { + "8b3e196faee64d279374daae7049f9a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_178d3a8137e64688a78d9a695552227b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cd058eab4a214ec48424b923304f88f7", + "layout": "IPY_MODEL_02c8e49579ab4c2cb5010e5d696f7f75", + "placeholder": "​", + "style": "IPY_MODEL_646252281ae14f8886cc21d9e56afec5", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "number of examples processed for checking labels: 100%" } }, - "e0ce3782e1cd4450a691c7d45abf86fc": { + "8db16dbcca284d40921261550c3c9241": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "957a7ec883f34696b2479a90a87bdbcb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e74b7dcefe73432da73c17c47b9cd035": { + "9efde9d20e674f91930d36a8fffde7e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2254,7 +2173,7 @@ "width": null } }, - "ec62a08c4bda47b1bd77cd0903cbbb11": { + "a41dd8fa1c914418a704a6e5e8be1e2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2269,16 +2188,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1cbee73c901f4b329499bea42c991401", - "IPY_MODEL_50ca6313f88242e59604728cf5b3430f", - "IPY_MODEL_2fc6a15947dc447dbb06f6a5e36ec65f" + "IPY_MODEL_07b675adb016454a9854b4ea300e4cfe", + "IPY_MODEL_232cb3f4436c4a29aa37462ded23ed0a", + "IPY_MODEL_2bc90b79c1364f709f2cc5d8d3ac1a01" ], - "layout": "IPY_MODEL_f9ee4de31010414899bb295a6164fcab", + "layout": "IPY_MODEL_5b27262a9cd94dcca7fa54df4cceb26a", "tabbable": null, "tooltip": null } }, - "f027ad5a5f0a4126ab19de21f2572adc": { + "a6b9abd68857477cbdc3898a45b7c10f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2331,30 +2250,25 @@ "width": null } }, - "f26d7d357fc44177bc0e68d25429ee78": { + "cbbaae80c54e40cabbdb2edd591551d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b7b93344d3ae4aa1815f6925aa9a44c6", - "placeholder": "​", - "style": "IPY_MODEL_feacfc1b507745adb46df66f28716695", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 407.45it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f9ee4de31010414899bb295a6164fcab": { + "d2ba7ead109f40f88a0f2fdcd7f79091": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2407,7 +2321,7 @@ "width": null } }, - "feacfc1b507745adb46df66f28716695": { + "d2dd7b61c9974c56af1e4ae1413f64cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2425,7 +2339,31 @@ "text_color": null } }, - "ff64cd2a7e6043a6b9b3b929bfbce777": { + "d3ec0bdaf05d45038d515229edd1fce4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_20149c21eb1a4d47b708a9f402b4f051", + "IPY_MODEL_f5b6a3b6f2474f7c8d2b531dbc37f186", + "IPY_MODEL_182b3bcc537c404793b98eb84a4a9fef" + ], + "layout": "IPY_MODEL_d2ba7ead109f40f88a0f2fdcd7f79091", + "tabbable": null, + "tooltip": null + } + }, + "ea8cdf6af87544368e97f412bed093e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2477,6 +2415,68 @@ "visibility": null, "width": null } + }, + "f5b6a3b6f2474f7c8d2b531dbc37f186": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60ce120b6f0d4b35939edd06a49b48fa", + "max": 4997817.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5bb6200f11d74e33b58d64accf19085f", + "tabbable": null, + "tooltip": null, + "value": 4997817.0 + } + }, + "f73f43e9ac32458989fecfd81a100778": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ff45dd3e934e4e0c9f7fa5da7043dbd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 956cecfc9..e868c19b5 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:18.815482Z", - "iopub.status.busy": "2024-04-06T04:21:18.815069Z", - "iopub.status.idle": "2024-04-06T04:21:20.147463Z", - "shell.execute_reply": "2024-04-06T04:21:20.146792Z" + "iopub.execute_input": "2024-04-06T04:38:29.398070Z", + "iopub.status.busy": "2024-04-06T04:38:29.397578Z", + "iopub.status.idle": "2024-04-06T04:38:30.762030Z", + "shell.execute_reply": "2024-04-06T04:38:30.761463Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-06 04:21:18-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-04-06 04:38:29-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,24 +94,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.250, 2400:52e0:1a00::941:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n", + "169.150.236.98, 2400:52e0:1a00::718:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.98|:443... connected.\r\n", "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", "\r", - "conll2003.zip 0%[ ] 0 --.-KB/s \r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.008s \r\n", - "\r\n", - "2024-04-06 04:21:19 (115 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", - "\r\n" + "conll2003.zip 0%[ ] 0 --.-KB/s " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "\r", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.04s \r\n", + "\r\n", + "2024-04-06 04:38:29 (22.5 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] }, @@ -130,9 +131,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-06 04:21:19-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.167.97, 3.5.28.226, 52.217.226.9, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.167.97|:443... connected.\r\n" + "--2024-04-06 04:38:30-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.84.148, 52.216.129.163, 52.217.231.17, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.84.148|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" ] }, { @@ -159,7 +167,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 23%[===> ] 3.86M 19.3MB/s " + "pred_probs.npz 14%[=> ] 2.33M 11.7MB/s " ] }, { @@ -167,9 +175,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 50.8MB/s in 0.3s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 46.9MB/s in 0.3s \r\n", "\r\n", - "2024-04-06 04:21:20 (50.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-04-06 04:38:30 (46.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -186,10 +194,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:20.150071Z", - "iopub.status.busy": "2024-04-06T04:21:20.149872Z", - "iopub.status.idle": "2024-04-06T04:21:21.460595Z", - "shell.execute_reply": "2024-04-06T04:21:21.459998Z" + "iopub.execute_input": "2024-04-06T04:38:30.764412Z", + "iopub.status.busy": "2024-04-06T04:38:30.764032Z", + "iopub.status.idle": "2024-04-06T04:38:31.972111Z", + "shell.execute_reply": "2024-04-06T04:38:31.971535Z" }, "nbsphinx": "hidden" }, @@ -200,7 +208,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -226,10 +234,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:21.463318Z", - "iopub.status.busy": "2024-04-06T04:21:21.462904Z", - "iopub.status.idle": "2024-04-06T04:21:21.466277Z", - "shell.execute_reply": "2024-04-06T04:21:21.465836Z" + "iopub.execute_input": "2024-04-06T04:38:31.974580Z", + "iopub.status.busy": "2024-04-06T04:38:31.974308Z", + "iopub.status.idle": "2024-04-06T04:38:31.977556Z", + "shell.execute_reply": "2024-04-06T04:38:31.977128Z" } }, "outputs": [], @@ -279,10 +287,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:21.468133Z", - "iopub.status.busy": "2024-04-06T04:21:21.467961Z", - "iopub.status.idle": "2024-04-06T04:21:21.470821Z", - "shell.execute_reply": "2024-04-06T04:21:21.470387Z" + "iopub.execute_input": "2024-04-06T04:38:31.979700Z", + "iopub.status.busy": "2024-04-06T04:38:31.979317Z", + "iopub.status.idle": "2024-04-06T04:38:31.982377Z", + "shell.execute_reply": "2024-04-06T04:38:31.981830Z" }, "nbsphinx": "hidden" }, @@ -300,10 +308,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:21.472776Z", - "iopub.status.busy": "2024-04-06T04:21:21.472453Z", - "iopub.status.idle": "2024-04-06T04:21:30.680472Z", - "shell.execute_reply": "2024-04-06T04:21:30.679868Z" + "iopub.execute_input": "2024-04-06T04:38:31.984377Z", + "iopub.status.busy": "2024-04-06T04:38:31.984017Z", + "iopub.status.idle": "2024-04-06T04:38:41.053110Z", + "shell.execute_reply": "2024-04-06T04:38:41.052521Z" } }, "outputs": [], @@ -377,10 +385,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:30.683031Z", - "iopub.status.busy": "2024-04-06T04:21:30.682707Z", - "iopub.status.idle": "2024-04-06T04:21:30.688231Z", - "shell.execute_reply": "2024-04-06T04:21:30.687711Z" + "iopub.execute_input": "2024-04-06T04:38:41.055687Z", + "iopub.status.busy": "2024-04-06T04:38:41.055498Z", + "iopub.status.idle": "2024-04-06T04:38:41.061081Z", + "shell.execute_reply": "2024-04-06T04:38:41.060531Z" }, "nbsphinx": "hidden" }, @@ -420,10 +428,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:30.690240Z", - "iopub.status.busy": "2024-04-06T04:21:30.689862Z", - "iopub.status.idle": "2024-04-06T04:21:31.036172Z", - "shell.execute_reply": "2024-04-06T04:21:31.035483Z" + "iopub.execute_input": "2024-04-06T04:38:41.063230Z", + "iopub.status.busy": "2024-04-06T04:38:41.062809Z", + "iopub.status.idle": "2024-04-06T04:38:41.426124Z", + "shell.execute_reply": "2024-04-06T04:38:41.425590Z" } }, "outputs": [], @@ -460,10 +468,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:31.038675Z", - "iopub.status.busy": "2024-04-06T04:21:31.038461Z", - "iopub.status.idle": "2024-04-06T04:21:31.042956Z", - "shell.execute_reply": "2024-04-06T04:21:31.042398Z" + "iopub.execute_input": "2024-04-06T04:38:41.428511Z", + "iopub.status.busy": "2024-04-06T04:38:41.428316Z", + "iopub.status.idle": "2024-04-06T04:38:41.432566Z", + "shell.execute_reply": "2024-04-06T04:38:41.432029Z" } }, "outputs": [ @@ -535,10 +543,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:31.045119Z", - "iopub.status.busy": "2024-04-06T04:21:31.044811Z", - "iopub.status.idle": "2024-04-06T04:21:33.441748Z", - "shell.execute_reply": "2024-04-06T04:21:33.441118Z" + "iopub.execute_input": "2024-04-06T04:38:41.434828Z", + "iopub.status.busy": "2024-04-06T04:38:41.434438Z", + "iopub.status.idle": "2024-04-06T04:38:43.797032Z", + "shell.execute_reply": "2024-04-06T04:38:43.796336Z" } }, "outputs": [], @@ -560,10 +568,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:33.444867Z", - "iopub.status.busy": "2024-04-06T04:21:33.444063Z", - "iopub.status.idle": "2024-04-06T04:21:33.448146Z", - "shell.execute_reply": "2024-04-06T04:21:33.447602Z" + "iopub.execute_input": "2024-04-06T04:38:43.800002Z", + "iopub.status.busy": "2024-04-06T04:38:43.799357Z", + "iopub.status.idle": "2024-04-06T04:38:43.803395Z", + "shell.execute_reply": "2024-04-06T04:38:43.802849Z" } }, "outputs": [ @@ -599,10 +607,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:33.450036Z", - "iopub.status.busy": "2024-04-06T04:21:33.449863Z", - "iopub.status.idle": "2024-04-06T04:21:33.455276Z", - "shell.execute_reply": "2024-04-06T04:21:33.454729Z" + "iopub.execute_input": "2024-04-06T04:38:43.805438Z", + "iopub.status.busy": "2024-04-06T04:38:43.805041Z", + "iopub.status.idle": "2024-04-06T04:38:43.810204Z", + "shell.execute_reply": "2024-04-06T04:38:43.809632Z" } }, "outputs": [ @@ -780,10 +788,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:33.457279Z", - "iopub.status.busy": "2024-04-06T04:21:33.456977Z", - "iopub.status.idle": "2024-04-06T04:21:33.483175Z", - "shell.execute_reply": "2024-04-06T04:21:33.482607Z" + "iopub.execute_input": "2024-04-06T04:38:43.812097Z", + "iopub.status.busy": "2024-04-06T04:38:43.811923Z", + "iopub.status.idle": "2024-04-06T04:38:43.837570Z", + "shell.execute_reply": "2024-04-06T04:38:43.837054Z" } }, "outputs": [ @@ -885,10 +893,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:33.485345Z", - "iopub.status.busy": "2024-04-06T04:21:33.484939Z", - "iopub.status.idle": "2024-04-06T04:21:33.489208Z", - "shell.execute_reply": "2024-04-06T04:21:33.488781Z" + "iopub.execute_input": "2024-04-06T04:38:43.839685Z", + "iopub.status.busy": "2024-04-06T04:38:43.839262Z", + "iopub.status.idle": "2024-04-06T04:38:43.843573Z", + "shell.execute_reply": "2024-04-06T04:38:43.843046Z" } }, "outputs": [ @@ -962,10 +970,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:33.491173Z", - "iopub.status.busy": "2024-04-06T04:21:33.490882Z", - "iopub.status.idle": "2024-04-06T04:21:34.904768Z", - "shell.execute_reply": "2024-04-06T04:21:34.904205Z" + "iopub.execute_input": "2024-04-06T04:38:43.845456Z", + "iopub.status.busy": "2024-04-06T04:38:43.845286Z", + "iopub.status.idle": "2024-04-06T04:38:45.262927Z", + "shell.execute_reply": "2024-04-06T04:38:45.262416Z" } }, "outputs": [ @@ -1137,10 +1145,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:34.906826Z", - "iopub.status.busy": "2024-04-06T04:21:34.906624Z", - "iopub.status.idle": "2024-04-06T04:21:34.910693Z", - "shell.execute_reply": "2024-04-06T04:21:34.910157Z" + "iopub.execute_input": "2024-04-06T04:38:45.265138Z", + "iopub.status.busy": "2024-04-06T04:38:45.264818Z", + "iopub.status.idle": "2024-04-06T04:38:45.268799Z", + "shell.execute_reply": "2024-04-06T04:38:45.268374Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 584baae0c8d47c4bd9462c966989a5da7336d76c..1aa75447749d9d38754b10317eaec8bcf5928002 100644 GIT binary patch delta 62 zcmX>tep-A(E~8<7ftf{enn8}fSz@wTa!N|FVWNp;N}_>LqN%Z^g{7HEl37x+X<|~E RiHT*hSyHOu=6Q^|TmX9J6D$A# delta 62 zcmX>tep-A(E~8;do=RiIJ)K=6Q^|TmXGa5|97@ diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index 3d94ba57cf16d092e8da5eca4c076e78a7f1edfc..302ccf789c59eeb728d3e5813456c817ae220f04 100644 GIT binary patch delta 64 zcmZ2>lX=-q<_%{!4f6}kERxdlX=-q<_%{!4NLM2ato5n%k?c&Q_M`v4U{vGlJ5~;s?6_p`eGK^Kj-`Wt>^N^A z?s4z$13%sQ=jC_Za)+DUyyf=U&9}Nc?o77_cY9p3uD_=GV=g{2817nG^}bvzn;E_J zhp!gr4bIu~(ZT(DmJhb?IeT#Z?&am|&gvpkEFCWWB+fdmkEXzi;W_iTjoh z{=K(X6`P91%^DuxR4g03zW3t6s=Z4GOZP6S_T5@69#ng;dOzb2KX>2ZOZvn!o)wi@ zdLuID#%WCq$tf~Z{|sLG_1@M&hc_HN{fs_m#uK3;^)`wavLh*aPB{w%7oFK?s@6dp z4lX%-=Fi{wKtD5;n3axUB0*FziRYY2B8D19SR75)I;fuR?pxo2QDu1U5wAb|z<+`7P$Gf4?92-mWitz}F-+s&`O zhpl?;q7<2MZbjnQGxwARC75SH5ZP?CZBRYk`qx&T(PtqzZ!^u9Q79F?B2?)>qEc4r z@yWFgs;67~*DcR=tf}XAc5 zub;BvI3BSQ0F>Q;#?@!7{@br^2jSKc<$58P{1jSN0=;dwFwNu+h;OksVFHGAl4 z96S*yvB0!2f}jI9>zOn%2QR8)e=C*@_q<#lC|cuI`>@2;uoZc_+_c`V=U@BOhC6Or zv2*9T{tBrbk49VEi4=+vBdm3lAb}0m7WDAgPs%Mb7f$R_)w4&7rNhUbFCHv*x7I&bpV{1&j`K%PJ}>E4+_bK`|Fm*xuVqu!8?P3tt9_s7oYupA2J~Gg zDZ@=t>LMrE2ZqXxF45t(Te15-{)#jS7o$hAY38EPk)X_kNNC)wDXyN53FXbR^~nq5 zrgu@(lr{62M{cYA0a*T=NK{82%WrfbTodr^_V$o8mQoVRSt}?}9BmYh zO2yGK$L*pehwNYu@auC6zUh%i~ z!fE9kRn2CO-qtyQeNT+ffNHQZ0V}l2MCJ9)ZRn%(qV!}|k1l^cx z@DWKv9A5EE@ynt$W>aaZC1$+|Qtf)TxS%I$P*yVf#3X>K#sF}O3?!TFcyb(_DMSIjKsWC07=Zt0Jr4imKYk_kSHSc`LvBs=Xmd(!eT8Qqr%Gz#ce%-{0 zIjQ3O(Jkl2Yh;^QTQ0kB@}7>pR$ScRS`x`9Vx@}xj!IC>#&jD+MBGr@_`IaP0bw_G~B?TKQ0(GN+cOcRKvifHE2ScjI27aWAm zWL7iCHvtEe7htPRi^?0@Vq-tF`sbqZ?4CDu??!8|o+nO+n}^6=y<54e5*jqWffqEIpo_EfMLs%34A; zRrbt+&Waw>nWDV4h4dCt2?Lb}5CwhJ1gChS%4TP}Nr%KdSPU)zD&1R?QAbXK8X8ZB z#arbIMIQti^pQXvK%-az0ta=5J|lC@{{tO&ip)Dr_MicV21qh8x)yZ57U@^*KT<9k)5n&(;q%L;Ef?pHZac8!^s(Qv zD|!;j`bm0aTuKmQUgQ9b0!by%dmt(-y5m6ZA;%0lJqLpX&m=w(Z73KbR1rFotO?|! zHQf?1TY*}H&VF?0!E@KG^VjYIft&wk#*QVg*;6hYGEYK9Q32fmf{~oL}Yp`OqH*} zK!O+77ruOW^RW04i16g#c1#;v;#QY`yu7|kxXKwe1&&y7hP467&>nbz@Rn)#%Er!? znQj34t=YFjCv=cw*ab+T3yCMj$q-9JZ5aal3wO!_gDwlo@C?n(H1wOJjvhy19Mi;* zquOeTSkVVcUG2KET)jcBCuUA@X+WlhV8(XPr@(BrjWH2)ynvsq$0V`M3K_#!%bl3{ zwSqo6F%{>JZac2y@P&RqX-6k@Syv&0U`Rk8s(SAP+L{1foJ2e4xjNUNV~qU*W(6?; z4G6M?DM%UyWd=XU5Y(|6YqP#W8ZfI8q&C!xBPN1n;V>%0nIDuCr4L4k5 zm0&YrMJzHfL`dekl*dE@+=Q6KSdwr^gaEY3OdO;z(AU{&&stE3kr3-Lcske{QxXJI z1_`>GBB2EShzopJJXO9}^d`qOO<$N8Qi|B%*1^wrR>Ss?Vh%e*|4Ph(tEZ3!dYFM0 z3*d&?TO>~&9^D96t=D4tjZ3TTR^}H=TPDsQJ^8F8I{{iP8;U1D>+~*KqN7sFy5GYq z^?)v(!Pk+YV0LrNxE`1UM`MS?kq+4l%A%69L7QkKr>+8zUp$8#f=P4q-WcH=!yAFB z1q-e<9w9vAgU!^96tk08k*g!y%Nu%=*Gs}K8Eq7neQ9Hhx`4|RfdH7Cszk1B@J#3~2zY=VAiv@L=IW zf$SQo(M!-FB|3`(;}}73-zywlG7PMQ3p5{Cl)!d4QIZO0(C->8*%q^5hbz@$ALti9DPA6MDrJK^M%x|y7br}&U< zr*)#rCT}Q>{Hs;fi{B~tPi_0DZQu5|paHSArv-I+O>KJ-PSV4vZ9lc`r?&mPhf7o2 zernrKZTq?3Pnp{GbClWCwr?I3Ol|x6OCK!;cl|VFYTM&`JZ&cW)VBXG&kUxv{nWOf t+V)f1{?x|>Q`>&@h+}Ho*WV1D+V)f1{{PLk*MrLrE*L&{Z)fYm{{UVJ)wKWs delta 13256 zcmeHNTdZAG70uqaAgxdf_LleEo6@EPO7D6<)I<0NC0DE420+h;l~)qKKrzs-oV+K_+xT@3S3tA zTyxFG7-P=+=>4l7y?^x+zgbCd-9c_x3b)_BXj4=|(-1vXJQL3}58f~)c`!~A>ZlHa zN&WP@D;I7WJiGJU!Bsmq41T!t?7=a2t{ePy=fdEQo%LWI|2+N9QwN*zb8)BpkIwyU z*PjO)_G}#des?wa)?H_A3fH+E+tb!7ci^*gq2-FC~8yBR+Y?&jG3 zys5SqClA)#b;e+6&nbh)c30)rUCmjfSU33bo?HKyAFKwO?!Iqu?cVi+6Zf7mxOngB ztGXMu7aZ)~ds6R#J@oYAfn$%Wqos;!uOg#NSc~{sWiw}%v8b}-_|)F2@66(X z`KOQn{p{)tRd1Z`AVibwK zGws*T`OA&ZRE`j(S(FUVE)Wl6wM!;w6O5!vHxDh8YlnY-qWH>+1x1*pS~!O~Zp+pq zV#q5OT%t@j`wo@!&1>H;*9~|4q`0kEAcQI=iBchGkvMlUTPHZDga$6|+f~jFU%apU zQ&IO^fi|ljE-vk}{>Cc>Z615LSXDVqMbb9rB&iTKI%1`?l2h+RW?{Irue@RIOmy+Qgh8F;QiQH|;BTtf;f0 z!8;=|!HFn|kA%};Q1g*;licu)+vW};7%>ONtz%Iu5s|x&!J&*~BqEUEzED12R6Q1( zeYjk&!G=6mUVXmWBER;j#apgfziZd#dOb zxCj@#{FCKl@P%_tDdRlLBq$O(Xr2RM++>O3Y#us!ZhpA5X6})q?lCP!XE_f| zi*q&$Hc@*CJ&*;e(8QdGJbK_E4>}lvAZXbXyAIc0FUAk|Z=L&5v8N|i=IB!D$x?ar z>An{`Qg}UXk@pI(ZhIf$mT3csi=Zq~FyT;Hju?wn9CuPJl(tAV0KG+Xk1f{;G-o7% zPTKpf>K2?yibvv%*Q567Krpz>phk$bZ;D5b;98&E=Iu9&ORFBU&1)?peD|$lRhXJ9H_>eB=U+ zLnLc)$24*Sz^36Br~{=zp#r0IJc;bUI*12o1knK-nqX8mq7p-5f&p5z3Q9#TMCA^X-2X8_uJX=$1jf7$?Chu!5)o+9nc}UBbT`J1o95x3r>{ z@s4Y&FD6G<%k*57{^-*^Pel&b*1~j$nm4{WcV3ME3c_`!+H#R-L}Ua-A{yy5sMp~r zqLq65e>8NGg^Jb?fxeyqn=V0=_~D7?mk$;TnIo>8QX`4*cs~~j@B~4NKH4!*bV$}` zx4C+Cd1cjOwkxWCt}Z`PW#md!8te&d#A@LaB&kS(E1!d$q$X7hw@R>tXj35-)CHvq z(#24unkLOz@09Zs-M>->ufhlij-c-l@0n9TI7Jgu6fXpdd9bK^E}**d>a#s6ug6!; zt*^3;hy({43`rP4o%P^cMq7pWbK7Fnn9x^X=fu;%66zlWf@X7K_kZ7a*-ejz$KLM{2dr+6kprVKRfT zYYu4uS(93vj9Lf99cyWON6$y)S53Wx6wS+|yrS;0KTYA*O#`GqsNP~Z}Qw@jCS4GVA>&|M}B%VBua z4Zvi88O00>z}Eg<>PMq$ES7f?sCU;A3lt zBL`}zyJ>dwVMv>9w}Z6Z7nK{gs4bjK6q*mviyD~&>MnTT)=FWMN^J{I2KxAjWUG26 zA>Ffgnyn{7%W9}6FV)c%*YkM!Fuc`0u1#pR+GfGEfxM=eVSwmEu<{(iof9S|NZfIH za&SM)W0IvAwdn;!3zQiCl2s)5j$=<29EThunYYtWH3A)tA~h1R&nZBSjUE>T_i_Pz zntFle_>1Q*se9~?$nawG_Lb$z1;aT3+F8`77Lj725Mdl$fh%aOrUr(MyGYJbD-ca+ zIw>@$j1+(ikYZ@JKvOFm#uJhSuB`)f@C-sH1f!svOyZQ#iZk!dW zJh8RBszS5J7)G#=3Amv`B|#>0!lKU!igW_wYN#JnlaMkfEdnzJ%`#!A2X-7Xcyd>H zwU%5a5M=IyYq_K03CAVoY!rGH$GRC$kKqpBdTn-9ci@Y28_zdesGbmOI)Wl#D8Sn( zE01_n@4&1v*9ke%;f?#Cs;iz+;bgr{56tqZM^9QVtGB)@VY0n>aq z6De(l`~*1kn3f$6n{HKil5N|b^0W#97g7>PD#0n8bhaIZ2guI=@@K}ArjC0U@J)xQ zW!4M`=z_5ja0sAfR5CiEpOYlH#%m-nD=!sF8Do1)m+`m2N45H8n&k0FJw2D5 z?s=~xDA(swM=YQJUb%m^1DNdqW;+0}91W+hOlCWP*$!Z~1NfkQ&1?rSUcAkA07q62 zvmHR+FSN{d0J9yy`z;}6JAl~^p!+3~*$!Z~1DNdqCU#THW|FfVzz6LhW;=k{4&eQk nGs~wQvmL;c1;lIzFxvt2{rdg?6hH@RGVQ-pl1F0DwxWFZ4$3T@S`x~bXe%GN$b3a;$N-~4%ICgQtGH#6|y4fD;Md+s^E zKj-}9&E22AxqJJUC*;jrmQxkqxL`xFDd!{u`5c4_Mtk;_qK(OfSc!bHvB(z=PP}+< zVuHV8vx5`U_aB|?%-%NBGcQj5Iv&3}ePXcEc}LQQkSm31Vk&{~e~8kQpxx~8_ov_N z221Q&rW{xls>QMmH9MD>WE4`y*|RTqKc1XXWSlouMoyBdFf4K@iL@ssCC6KDb*ILk z|9X0Q_NNbZZ%mrO$KU>Ddbt^UymP+0@Td|b_r-J1JvQtKZ#V|&h)bbZQgFB;S-6l5 zNY)?b6it@dc^&ZGDnleIa7>OS2Hd0{zw>VQ$n5ryx>s;gj#>$;Rl)UGC1T7vI&ET3 znsW9tJbQOCv?7n;VkZXM3Va7ojZghjhLq-Z8VhYLz6N<1d&%XU`_u6D=gq6!Y zVk<84u;Yz;({uYq($~Lm;ak`C76q!dNLNL&Dg_)}2hIjB<-NoOv!A_ueCK9&CYzLv z)}?s#bMisxl9CWkRwn1hvtR8_&AztReRuMFt2}$?iYKl-ef`qqFMjFC>qmE~q0Ofo zH|F-PJvQc-y3<1|tMTly?lV2RAXRnI3KC?jWaSbHj7zAZgfPm#Om}C$zc>9#*Be=@ zvr!~31@K%#)K*gowN#1bA8AnDJ!Lp z#**~tRnIx7BDHlPr+G>rUqOx%0LIpk2jzqm085TQK}P%Q%4G$)R^Vl;HsT_aIpqHM z-t<$0L(75HkVhZ_a|CjRiz_CeTA~~>Vkn*!n;?w_ugnR~QB4%UHzntq*FZPKKswm0 zlPD3FQ+$-RdZTQTTxvaJk5=SGDt#mHDDO?(c^L39i4AMm8YrzjL>Xsc zfHD}JYDw7|gD)Yg$}u@@&4#p9m=-`t;1H4kwqPM8Q8`(1aU^E%O?Mz|t-#AnnsFD> z_RJ@`bLUb2HEHujuww-wLq$?WyQ``sJcgdb-Y+?OLGOcvLCe(`SLD1@Ix3x<%+h32 zD<0nfS))u3!sh7S+^Fz#1Ie11(XXTHO4KkB#=}Y&FV<>y1`_Nl z5>ygNR&*_qE>=O2mCH2V`2`H-^}X(UljrNv6??!kHahkJk!xHXABx=2$cz>M9GnYq z^01ZFWJ*vml%*9?s zPAjSF8)3)rN+NHsM(!IaJjNd<_aHM+}{ZlN>dQ zv?*Po(VCl2w=QlDwDJc`a*fpN9B7{&?>^JnldsM`uz210;I$v#_}Ek1tx9vbvE8ct zk7dqwt8#x2wcV<0w<_DM$`RYIO=a6|RW=qm+pWrWtFqmyY_}@gt;&D)I@_(v=0a+_ cRoQM;wp*3M)z_w*{C{s%%)c^nh delta 8853 zcmeHMPl%mY75C-)QcWWgaS~UZ_hrzEZ8|yk-gEygG$^_#7!t|CijK+sOH{0iLP01| zx+q#Vg7EDXicrC1;{zeVwkoL5>Z-G|-PB;Z$xiIX-}nB|H(KAfa`y&ic=P7Hcka38 z{QjIXzj%4)`ImQY{^o@E?vwP5Z>6W6I`2z1Y(>gZ7*#1st5S4QYL#5jB!aMsrMA!9 zJMrwj6BB$No83Fny#45;o&8-myU$MU_7B`{9-kJOT&&qTN0KFlpq z*_r+2u=!HkW$VfMY_!2&e9)eA<{(Wl)>i9k|Eaf|56w=!)I2xof(;3W&}6gXg0odE zQt`^Lk``~9iNp5Zq#KE@`#=1?xilX5)?@AYMCDj*X?;7kdSbtSkJW>myC!u zRq1QSwS*Z?`eZvLAGLEO2QH3%!dn!6ak=;`s!9E=i|x*g{@lDUnWkKb8J`wRW?@pa znX`{I#+(I}*$@8F-kEe`ar830ElMDjU8R7hG@}I; zd2~`&D@rPqVrIn#wTwFRa0R9$nP+ED9=|i0vLn1p<(PF~{5cj;g{!gRHJWPw?Vq$e zJ<@Gwr@q%dKN*caWFvMr$L?=lXl;M}u=&_N8~yc9pa0Im-l9Y?lhYJjRm3jJV2X?+ zweUU$OKFkXuC=*n!zL%6*!$|y;aa&ND`#te^J05?_WCc|A5CtIRLJe2FCM@A#j6)D zede>DyE@jNM_)a1b87G4T>rCInlqgr$*Mnlto``Zmh8z}YeNu>q=RAMSi_N7TTatzgf;%;-L8_Klt1OOlPuitGx&{Z~}RBKa~;1W(=fS795LM5S-UcpXq zl>rE<#!9xT`s@UL5lMn5d|rcHR}z;jtYN1VXC+;6L;sedoW>i{Y;vu=JsAx=$KCGc zxIG;tD^o`;PYM;yZW?mX!m0 zYbuI`(>^9Dz#B5lR)lq)ubv#+WMz?_U3D&!HaaEeg%T$E9+$o|ySCT(XoqLp>8^sTX(E|q?4SZ5@i1c!BajZ{Y+h1WFn257xyK z9t*hQv|!VDQ+90UrUf1byc2EllE_4$)7qk~<0bviweNq1c6#2H51CDI`);RI{h?{Q z4x$P>3ya`zCYZngqYV=Pxq*Iy@t3XWQ8P<;P6mx*XITCu6c8riI+LcQfE^g)r=dNrPb!!}0lZ(nLZ4~IAsck%EXp~$HG-RQBA`m!~q0T;9K-IYHw8B{0 z-~T5J@A^P9621THZ-;?qW9+_r;P{meXNH~A469_}D=@KCCK^W0kYUfo0$gk36Bf;k``pSz}R#oaR0_@jht?d zY8EE3#P%cS)xNN6I8zmKA>2zA086P376>Ro1HnH;C+adSAm3Ss9xM*d9OLysXsHMj ztjJ!hgKTq!%u(2kb>-1lkKNcDWIunUISn@4oYsJ{hxB-t)Wwo8(C{?Gk?Sd!@3{WHgB5B?kAE7u?Z diff --git a/master/.doctrees/tutorials/datalab/data_monitor.doctree b/master/.doctrees/tutorials/datalab/data_monitor.doctree index 81e5546cbbedb68eb38b0761159161c76651ddb5..01be91344f7844bd97ad9ad8e24e697b95eb3252 100644 GIT binary patch delta 3828 zcmeHJJ&0XZ5aujfB&Z-5Hz0v`vxRJMG3RH_&)6723nB5R5hR2-=bSlU{E47#5VX@K zA;qm!Qi!5K)GZ!iE!4`@A|TiZZYsMFA%dWd&fB+!L?H(|i`PBw8}2vXeBU>7FJ0Sn z>Dr!8zu9X}zYy66?_b>mK>Z?l|f2=*dHA#tF(@;4vK#D%+TuQZ!mYQ^R z{?zq1do>$({`$m$0h0qH3eFXT7Fw!osbU6-!nWx1FI<14TQogzw<>1`ve6P`6S-Be zrR5f!XE5YSOEH(}SKI34=h6J4(omD;NJWPf60~N~S~5n4 z9jdo%{hY~w=%X#tV`v6Ax#WZQ;54=Y*VyU2U>CqG_TIk_|aUXBZf2 zHF}p56id-_rkn%#nKdf6l5|7o5@eWjy1cSdriy4XVLxpjR0wZpHTSUq!QeON`qRjlt5ikXNx$zZieku^E3vCc{LqA-f( z_D%JnrMJ}U9i76epg#W8vnP)|`RHRuPxf4TYjx=iZ1u$Y_}NctW$4iwFZ`_TKPa6f z$1@p`b2JbMNsD6}^75G9RM@#gc3{JDwGnuEhuSj+{_16e6ls zk`IkimGxArG1X=+-tEe%gDJ9=9kP)X0+l=_Z*!An=yh%5m)nx1o!AXvqPMNZDD)v) zommq|6kUk2&neDn&vVy9pXaUvp2oj(_spajmvqJ1QidjpD_)~bDPjyY+%RX2hKeh} zkwXysAy=PT5?cpgmu_a`yf)VRY?_wPT9=(HM;n3<65wF!&1_5uea@x>zQZPrFKsJ7 z(UL5pV!Wx4bjlbqLZKX~wQOOoP4`yJTbyUDC(fA3PA$?T2lM%Kj8x8*g<+Qsg5 qnX_Nqw#9Ax*JWMYw%NzPjl3;x+v2t@Zd?4{+_vM>Zy#7XeaBxn41UM} delta 3854 zcmeHJJBVFX6y*#LNl-yBBp}guGd43MIQyKl&u7~hK?@=A(+Cnn+~)@>83P7V1wlJ4 zG^DtdffS;sh&sh1jEz=C3qi0EOsaGtLIhEpxM%JJW}3NJ*}UpC`?2;qYpuQRm0NqR z+}iWy_j~o(RXBYnpF6igwRj9Vm!!RIkW8>SMPr=JksWB(A)|3&?eD!`99Rmzv{H<1 zY-(uWA{x!C$;MQXQqUZ@xI$|`9Xc@iFVi;{*8W*~;p)_IWw0eMHiOmZXkGPC1EFIs z{^D!5-x-@(yYG)@4|dMm010!A)UYN)p}4@+MXJVEr!T&K`|Z)8*}(@?{$PqRpw?W9 z_Xdsi(bizB)nw$Saev{e+Bbu5)XS5p@$vw<>KX!4(=h`ub8wJbB3=7$uc-%TM?X^U zsm^MfEDE)d2s!zLtwdnbP=Jy1=4^lcW3_*_epP*^x{)<}|K}&_co)Z3(7&tL*;JFa zrJ9zDP?8nES>up$ZdIe1$)c;1DPYsBlD5^0OR|k225+swEc$a8m_PBW`b>3He2Ll> zWJ*}sv9C2H#6ZrV4SJw{{b%*5P#;0>pIleajez_9f=u`$OJA$UyVejWSqnkD zQ=(1aMROa7Qu8Lm7N-<-(+FHM<_*tAn;Vvv&~r4}^q22n*f$$EW$`we8~}1eGBrZ6 zP>anVX%Stwahi^x_ea;2?nba_gVHO9T7Fd4@Z4eq=fr~+DYRq^r9?5*B)a*yA?umRBhZkTiGmRmQ*vVFhMA1$ zgk_8SX7Hv_j77S&qHV?qE&5`LPF|wWIPpy4d{cE}u>FTWs$(6=|98a|L06W-W3VY^ z3(az?*2zUf7hP_*Y=#_q*w#9)0AB03=Wn4G0RY*MyHiXv^%(K+fY z1m)2)rWj*k(NNpcjKv1Sq1#HFYbF+g>{)#8QlJ_@G;gl5mQaW7bo2=PCY|XBdVlCI zrTh2Q!ae=zYsyWjf_8EXGCFy|#)KAJOS#&tfi}&yIvFjFVa*|Gc|@U|;TbWf-#I<@ zTz8|^N$u^*tG|3heLgR`dC|>_Zntl;o#~qw-L`_A7hN|}HS?m|{!RHm7Tt;24~G}t Gxc6WG<8@*H diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index dd097e02d3841d5fc1039e1583549fb4fcf925e0..d6d7edfe6ee01d06735f1a137dd3cc73f24ddb16 100644 GIT binary patch delta 2181 zcmeHHOGuSL7-gm?GNXu4h`=8Ugu3Xw{&_6gWf1fvT3E_;o*;_Ky}9nSszo~)C@5&* zriJbPXd$#};YQL`SZd);C}?pvLCsYYBk0e)%NfqhIcLsyW?`~*VY2nr+yOi`&ZP}# zq=#$Et#cM@rkqAZ=Tu3>nc>Ff+62aw<;LR&prrsUVElSygWxEvWN~Bw952ofg0CPx zu7XE@?Snlh$0lx%4Eb7rwQk31zN?aT4b}UrTf0N``b3-_22bO%2ZxHK0B(S|`~vKc zqaIA{{B$?WHt*g}_?xfVq$?8LXAln$gS-EQJyOdYB90r5d0>(Wf+hD{1xb;RgfXq- z(noN=6jj{&1m-_v(ksPSK-gKtgrEj%9!QRi6v8-di*E~XbZ@4J7J^ag84WB1sdL7a z%suy1a*TCxdIdfM9avcEyw<@`$GkLJct>1HP#Y?gieLsFi;G`iTYT~z_QmIGu-05Q zN@c{^xA1bQil|qi>Od|qqB%zX_@8QIQ87LXo|LGaySZ!3?4(&k1Fm8WVC81Tr`Xg{>7a!P<+nYj6r=CG0Gs21KRA zO(#9^<}B>Zk`zrWCzKM$urn$c9-L+#TZU6!8wqt7r-HyJ0bS0B4ay566v~N~K6hfn z_23+Q2{Okd;R4${P{f)|3rZp6B#|yfhskz3W$f#AO34RTA&S!tSlP#k=vFkYG+=v% zh)JEsj5?aiuBb*1honI{kFi6W&Ppe_Dfd|M<_CNT?vy3fS;;ytTCt<+aD+*9$yPblJ C$e+gm delta 2171 zcmeH{JxEqj7{@s$Niw4#%O&ulkwY(fKJPh)5E^m_`Xm|(2bLIQBJF5H!dc z+8SJKyV20s(%>TL6qOn@)zA_yL7lf(jR?BAyId}p|8xH5_dL)4F3q$r&9pyW*o7xY z(Y0|qJ>9Ro%bCE|8JyFA3=z~CNeHJ_YL2kR!ZO0eZO~SLHZXo6;$d)LegW0WD_ra`I-!S~kuX*`o_YuUsBjCn=Y4=TJEGU#a&T?wf!*Ype z;6A-r!?@%!F24u2N>#9tf-zPiXNwol;b%~4 z9OqxcGg*l*i~18(nZ~(M(uIa0^Fk|cg4T!|YIUI6G$Ar1c}}Fr1rdtn#A&4wGpWK` zVyxpu_8L9|8PdVwRPD8+3|V0ksFl*&)S6UdW0G|i17F}QD0Pl#4Wd%x21S3oJP!vm zqqJjM3o40ZN?Jvnrx*w8TnYz6>nPp@oTR}yCm6#{8jhtVUJw_UWVVUYWe7|AK^@1z zF{-5T2IVA;kSNWS{57^XyZ~F)amw7AIA!KdoVhhv*~tm&!ziws|rCg169FB*6KoO6=gXc>(e>-y9k^3F^?Z|EZuC^GtB1P`W?w=Zhp)CLa diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 2beac5fdf4f767c9e366308c04727216bc7e5803..dd3806a42cf00eca728ec38938771e0111b6300a 100644 GIT binary patch delta 72 zcmbQ<$2q-^bHf!*!~6m>i{vze9DTFIWV7Uylw`w16U&rD1EWM!V@nH5Gm|8A7*iYi5lD@+1~0)?(KXReuhW6t?U zt7`aRu4nc+`}IB6THkm52VXz^3tvCIyRY|9cYpWs)pYkBWkM!5pQBt*A;v(Ru+b6b zB)7&Y;gt{4`7DGD$|ri@=d0h|+WP+J=j!UNBnx`9$9{0MYy0NWWA@|^pMCRf+X>l5 z$kw6M3;L1^&iTx>C!TxGo?Fv-58k-)+6Ql3ci-`!T=y$aj?TQ{)X{y$w_Y2qJG6E5 zLHnu2>8@H)y?b=OFKE_vh0$JV*Hz;_?p zEyo@>aPG71q2k#Psi?EgiI|iZj4NhrN-BCO<>)Kn^UZ_SKDYkBwL3nsYREW=CgVZI zgbruoG~q&R@QOcBFk1M5@jAejF&Zx zIdFd5aZSexGP?0e+0j~#4!>~bXy5CrM%Nu#IePlPHjcJDx$QXLuN(dC!Jke)-!l5{ zq4!On?T?;%BaL<*+VL*m^^2n?w^onV{_|Itz4YAUOtksHKRx-i_Aq&7gr=5qrUcL2 z1`(BJ+OlAkR(^5^jf2WlJMa4^ujxBu@h)wY5;A$GH3=~ZYqN`5vB}H0t{-$@?Q>ye z$0|O$`mkyn^DBq8=`ap$`Pb`45C0fvHu-qV=$k)TQ$1N7*#$qrksa@=>4~*pz=_Si z@s6c`-F)C%hjCWIiU>Om*bNsUdPlg(FfT%47GAi?_8JG3XGQ*f?V2G`ELm=oj2WlJ zDJ<7<$4Rh;z>Z6M{e1JF@^z>E;?k9{5i+{?E!lznFFUf!kMrHj)6ceiVAu7xx!+5- zY#WM&>e2GdzE=PB^xR&4^Q+5VeeUR_x3(?&Z1aIf-U_Xi4?TWD>x2_d7`b2G@X%*l zKOQ>Igl3s0ON3z28_Jy1R7>UpH@5Qr#zENrcuTvrc1_fe%gK%pZTMUpFLgv^u?p?Q;WxEKRdfP@ug~rEcX4PwQ_vuKia!m@9D(njX&{H z`>u9z_zi4q_)2?YaoH>QY2PdDRRw>uy>Z2ff*37}OWtgsR_y<~*2ZH0tN8wfSMh!M z*AJb@g<*2I^gpsdiPoZUFXO4T_qMvl;59sT>1)%cidzn~Kd|hmWlGj$>YWI zZ(#U)x`_I=J)k1-q`2q$-l^lK4|aET0V}LeA%v`mNIF`|kWxePhU+Mq81KEh^X1k+hCn^% z_(UZUSaM3!q=2NHA)1nL>-FxD*05n(UTis|bMeqLOj+#h_0B2Yez3cGlS7mxHi={< zk{@-*VL(bMacwj!)?UJK z35kSGnef(Wl8}bEEY@ArIdy#hotZD2l{N4}arkze&c2Uy{-!l-SU|O-#<`z)r2E?oR4iC| z(`{f0n?Lutt;5X}_|%(}Rm2Ix;JgHy%OwP6*kN(mn%??qYkg}y&Cy5YloX5+WL>O3 zWdgG#uK3Gwcm4Pv>HJCSZrgBAn=$W&JAdc;OFsFrk6(O!gK5&GqZ>|*ZN7GE5wGZM z7}Rgf7p=E@XBC4Dz23la5Q)rj{EiCg;cQ7e>zyaa-INt>{o?iZwG0w&q;%Hs&O}Vi zk`bCyG&bsD&ks85ix&@cH;mubojY26oTQ9# z*cvvhAr%jA?|iCXH@VW4-<@}EXH6fFT6(5vG?IcvYMX(tiHkgfS(5QH-|p>!t!kim zXL!<5iOij~&LqLTpwi0h#xQI6oHT?g#c7b>sew(7g*u*tXN-kZJn+NLsl|>z>~zNm z@9aL(8rDypQ{{aPbKA=Mp1Ps4uK3)+?r?xbaAx6Jxn#@SdoB?WC5|^GsbYcnHFd$h z;4E^hNQ}-4uZ_njo2f})WQi87Ps5^z|JHf51rV5c%9KU`zsR(sR;rNTxGHK%O1D0J zaZ~lv(`r-oGaFHD>YE?veX!Vmq+Xi@Q%k+e)LX1vI@;AApe=pzxu5nn3>&t_ioGjV zoL#A{oJD_9}7{qBFSYkj3P* zj=AFPEpSa}2AVUGlof_LhbT)EkUA5D^Ww}qaAK7!Hmrdc+pg>E93uSH&5tdWN$^M4 zb=C|tg+h_CG$KG8pu{5^f+kQboy)+-@Sxq@L6kgu?K8|T3M4gi6$6cR}g^3Y)Sk_V35B zPd3%306GXh06SI-s3^Fv>}<9isVRlY$k{N{Fug8X7xn0%c6Jdeha4X1F07J7Nxpz+ zU;1L7NCY}vro=LGBijcnjnW2)B<1*LuOrnV-@^*)6{6zs2tHdS#fD4E%UrA0T-mbG z^=Bu-Vp1H|@5|DOBNjWJ=yV4ri^Q_$K$U_Kcp|_LaDhUKKoIuhdmiiF(j7X`GnH8+ zoZyrYm!*b82Z@7Ou0sYSo50VAFpadzBc)lu0{}chxV2CSaxPRBJ9R(WFmag)cQ(#j zxnG$J2ZTlyRFtqeARML~bSuXkYz;fivC6^~db8LulN=k&M1ag=P>F_;%Ysm2s*E_y z6z?KHY>4+FM(tV1IwNezV4_HI3PT&_l~vAYm~xT`uN)Z1RV31T>VS^})CCf~PC-Ik z(ALeQzoAYMUwg^@AtcfHgSjqmVH{!lM#kfWh9K zD_*$0vtbH88|I$ozNTp_S3~amwUx>cwLoc=^-=<^6xbLCw${u*Lj_O@UPI>r3Le9Q z5F8t{(*nU}(a)N0XQ`hx80IoRt3NdQ4)|=?RdMLgJ0Beq3Z<9^&=~_yU_dFsB@i3@ z&oU^4m5U8vw94iP4-`fKmw9AJMGW;plqswNV2hyh_STT-M4ePpDFR-BJIziA35!Q= z1vK&nT=JBuvo$TD_=|q;lExJ*W`_3_e|mmz^*~F@O{5asz@xIE49FRGj6$nN;*H~% zTz5~mFEh`HD2h?Y8Q`r(TLE8FJQ6zv-TN-@KHAy@2t&AY;C>Ft-Xgk0X#-_GBR&`I ziO%}j#LzH%oEKZ1J6 zWRc}o6nFhrZ}S3Quy%$48YFEb5YEd|2yCZRsu3HIfPq-xrth%ZM*V->QoS!vFz35p zn6*niu*qDPj&3->j7&Ey(iNTc!-j1kuud_j0k4%PUqoO?A;H^my-qOHA#j;4jrTp) zMFgT2JYETa1P^?JQ!-$SIRn^$Ix#-E=Jv2-}H7kJFKvm2$p~T+geNj_sLJ<- zG-7)o?c5+sqiTQ~p{TYZp7>}1GOM&b0Qst$xES_;E1RZ0^TXY4YYZX?CoALsyI)OOCYv;vqgm=@O-D7wlc)9T z_fy~)J~{w)#%Xh(JWdnPDm#d-t^gvQVWIg~&q z!~+_zOqaP4&x|3zeGh_W{mhGkX8o+t^2(Hk&?aI3NNZTXhPqG+eNc%M&}EReqHP1X zIjDCu%!0NBU_=iY2}znsK+50>+}UIYkG5c~0n&+q-V_C8;NZAaBoBzPw504)Fx)V$ zt|CLjwD0h>X(nR}a@M_=x5!+~fQ=Fm?TBEI!M#x*gk+a|WoeCt+3`J3b-&cQyZ&Z8 zU+OVUhPiaKZ#cALe63+eI1nVU3191HN^qOTgQuWC3XR$z*k$OG)H$h;T*m9M`cKk~hn5$s{m8CY!UpZSJ=@v{3p$`E~ z;IIuuSs12<`h?1JNwU_DzjCBhvm$aBgQQb>m@yEO5%>@=kjxlJb%hot5o4He%LFxV z0*wsWT_IPa-$VjlAaUu%G&ZcC8ahW=1R2DJdBIc8D%R2-U(j?x&7wvGY67I5ebxz~ z1X2wONr2_>xX8%(>8pV82MtXNv+_v8Erq2H)L@``>FA~-JLYcno8pzbmG6!QLP!Y& zJyb6WKCUuu7c#%o&Qm+9DFC<`R%#j$e zd4MdT`4FIBKryNzxPw$0D3h*IYb)YoO0`Fz+!(-hQE)O415x=ZQ60Fwnhc#qk`1ev zR=k=PfaFb!qmOn@1PB4lWtszv0A7?~MW`}_P^}#5S4&6^z%#OUNVtTu5@|>Y+BLX= zh=wAgJ+K!^x$m6w36dBDOJN`+D+|R7oEu0KlI$b^&2Fe+0k+aB8>U{)&4L1<`|nXMo+T-~xn*kHcPfoASLbSur;KlG7%oU zq7*K*LERjC2S`IyMXL}2iI9l*K0vG+Kk#-B!gQn%8xU|AO3A2{y8!;qDDoqKC!1d1 zJEF=!0j+}dXLM--Ia%oW=z4=cBJ_dnyBV)UwYYWx#k!w$E*<9j`KPtKiJaogc0`yI zAQ})BZWyAUw9wsQ$58qz5uy+7?!6%iB|NAiKs!+Z|De3V0Fce3GFd^+fdth>IRd>? zWo3b&bqPj8Q0Xk~7J6u@Sue5N`uSDio&_VSogTHx3Han?HY8{SKpz0MLcr)Kva#{n zq9BS>oR+xI5a1MA00NpFsE77~l!xXoRLdaAqfnm2`25G=gqtQc2Yi=ksgik%wufjj z06jyJ7Y~Ha8Pft@!_3f|p6#)I{hZ6a&n^f$<9&$#$O>guG8+N0*2RPzjapo--ru(x}5RYXTiGn(_zW5Nvd za~i>jG66($TxU?9irQ`h01FXKaZupFpg?s%$2mcO6;#<`$BUf}GaAYe;xu~vAeaH( zfVDszhO8ky8es5FkiKJV4nyxl!au<(SE<`mD?s&gCSQaeubPJLs?IuxFHEac@CO71!jg+F=<}u6C?_u0ao!sNb?|lfC2%f z6#^;KEtUQr0k3LU!2Y*-v~lXn?E?A^BpMsFg=SDHs0uX;0?8Gqk(*rJ4Zs?e9$KtI zmPBYQ)o7h`DT|>hjgUg7y9fv^K+?c|D5IJHMH*TL#9K5RL_HA;Pajt}x_;71hwWnx zHM17(^^PgtzPG#K0`pG0`mWmUP%@qc3!?p0|$8TgS>gI&U4L zWSIs!ZykG=zO{Ml*tEs5zJY7rI#$-Pj&=UcTgT?DWAoOrdF$AuC2rn2Hg6r9w~o#B zG%h2C^VYHBHm@x!J~T9M&0ELjtz$F4IW%t_o41ZFX&0ELnI@ji{WAoOr|Ie*s LV{}eG`2PO^p_UWY delta 21664 zcmeHPd#t5Zb@#l00R%>v0YvWk?r4cTdS|~MhzeEPQbEVmszs3OXB6!SEk0_B&Qy(B zi9`?h*;tL!*lHxPl4(4tsRG)>rfDK$+temnY^=6ThYU1Yg!<@jpYPl|=Z<*xU#0(? z8xolB?0eR?_g-uLe(Sf^@cvJq_wG-hH#{)9t9Q@v^E>FR`^j(J9NzMly*5Q9G!4;H z#WV3t^WY6*k_Y1?p^oYxnAC^=bH`6F>wR_dm-@N^<#h6i=e%_CI&<3jTyF4de`)XU z+;Hj@dvE^j^t?M?d-4r;zINyBKeO_rZsp{Gzd2{}0poj*P98CDpMTW_lRGYd?yxMF zJaG91AA0cQpa1FGdVfB7L|uK_6@*+)$Yo9UF0Xvr)_ZKez!NT;**N?cSNvVSaf)J- zURf@!pduT~QcNbwq`2giw(gAH?^jn%*1x;!aJcf9Pg#p9I?EY}RtrHhH6fFnC5V5u|k_d!anxQgJ7A_j0vWvzNOeUh?XJ z5qfgy$LCBwe((A~2|GD>-^G)!J+?kM@RiF?{Os_-`*!sf9-e!~^*7$?UZ3_~-iVFz zyGOo!#fKjJmB}mazjFDi|5*5V)9U)<@gHCCL{{-e>yx{Ga_ZqDfAvTGCP+b(!+Q*MsbcIaABRuRJmvjNkn<)l87XChspKwRkLrq z^dDYw@&KNK!#sO($2XtZx5v-&`QOA@p7;@){K>bzv+(%5#nY7d?b&I*XZea3O-}jt zCl{8?&31?Rgl4<5{K~)JEMsys;D;Eh1y8{u#0^oFcoVGCvfF)a)#3H;{=(^vO@;>z zZw%518Mx8HCkF%E2qj!9-}TOMWzp;)FZ{1^kX+#)WnZhw{rA3j^6+Cgz{N+GOg`}V z(fOlGpSs|N_=O|)ziV>&|G))jzwoo4K6moqwL2z{{|M){_?3I$fWL9Vqr-RqB=%0f z_~4y)9ezshDdnfVYFE$SbzARS4YMQ*&vArC2`;0TF7N~wqHss+!#ofxtIC$AwBI}H z^hPiiwGT$ilm+sw&&f+F1wkT?aQE&DYpZ5oc;1=4x4y8+hI?vQz!zn~v-K)bC8N{0 z9fXmcec{^jRqxsN^4@gc%lrG<_E(Sf_p~=2>z&*_>sWuSz3Ev01#R<#-ns4Pj`h!M zFa3J&{PyUv{;t`xk+GK9cKz$UXSP>9+&`yV_{xW|@Wl`HpWfa%f3~~*%)|Y&%Cn8K zWOw_M^2ek5`=_+ee|^81e)XaL^}Q$C@|lnJ_DrvNr2n>l`{4Kb=k=SWec<2vyGEx< zPGsA=rFU_A!=wEj?SV(J+p`|)pVpG!>z&c=eXPG@c&e4QedKL@oXX9;v)i}-2*+CX98GiyhzbI{EAUAxa^z|B29PRHu!jN9D)nR2cRwuLV_0MY*k2D zWVMl^z2)M;In$dD4ZhK9Dt2Q_&mUYpy9elCZsO2VOd;dQUNX=yXvM-Ei`^7zji^t4p5DQI!tUz07aF(I4=`0+!B&TP6 zbbzbKJS9r4brMI?V)P3T!U)Q_|&i=nrvwPx?4f&_uO{dWzC)d@1mZe6tGMX3B+dsj+7WBNy~`$ z_z#E7E)Eh4|jT3I~IXc?cfQc=$?A!H+M$cLEB4o)jW!Xv*MRrP>C_sR1%0ajH zkio9$m7g5Edf33bET`TJu9E=2!v+kVC_{48G`hK4BJfI%A(lxj^Trw}V-`dtnMew9 z`m$HRd&f)7Dp|aejw=?6Q6f)*EHvp~>g=(81w()6a#$r+SUi*5ln#?ar#eWC*uXTB#xu zr(|w=XlL0=#q4Y^HLF+MH>B-P-#NUX-T#uo*{4`S7~SBey=O8wcZ~BzUPDxCgbgJE z9%k^~ky%j|PT@qz8?~BsGsG$vv^{9da1rZ^Y5(M>w&nPSu)r2R!lVYrc zu(5KW8znK|b3s%@EhGr)^CWH1-nIvC8qH&D?4v8$PH|`yt^3wpcr_63q+n@(^4ge76!EI z^Y0tJulJ71EvfCHQ}fU5t1G9bHUn*K`KH>3$>^eI&0yRzcxQGIx)PWjqu?lkf<_gE zO61fryBQLUnUKchSQ4!TihFAebQ6=jkDyheWY9ULT?okwZUQQnfngGi$2;vE57}7} z+7BKb?wYg3ig`A}w5nxfQPS>vXmonRRB|jT&N&KS1vsK`)RefSj^Gn9-TBeM{$W!} zVb4t96kIE*XaEQS7{^2~(E3sbYGV(jjk?Ue0}uofeGcF;$R)x;6Esu$XQO+2Ys*cx z_W{zX2D?z({|AGM#sNMEPL&LWI8{=BVk8je6(JC3e0R*qPGy?B_ILFZ-5wt zAfu>&1cQWt_j3SX86`~+XM`#+0ymEYP@M^n(*rk^O)R(i;V+C>Q?aJH2z%a7N4wgO zOa@OoS>k7d^DfFFUcy<$ghil+qPKzTG8qgBF_6i+7CZ~!2R;fu?F{9LrqtnCSBh1v+xF1f=-R5`a;v@EscmeZu zs3}8{VFAwoW-lC}7EmABtL_+VLR!Um=(uCWY!_#HpFKLYNuFhB$*7~U0d15HG#xdS z%2_k8_B5s6Dg_M3*?Nsc0oo`KG|5JtIZ7A>r0(`{Z*N?#lPQ;#RU#1&f<^dg@g=)+q1%S*oYZD`HMJeJz1^dW$GDWTPp*qv!CAz?2WGOCo?A=c z;RTaAk8~g_xUqoHLbpIfk9hOwWwDqT2=-=xX^WyJW)wzT3#PLLHDggAaJ>WqxWxdg zSf2-2&G15i843tunt;_|V_=RB?2cKc85c~=SP^uV?+j63qQJ5owY5tWeg+P|65=DRh494%h_olVnDKBEM)KI5w_g4YG3xI5gmt$*;!HcwMz#lwFiEEv}Xe#W)?z? zOQb)YgG@+ia1w*E90dzY4z$>^!dy39uGT)9$6Mu=?Dhz%Iq3G)wR78wx5~Cu7jGef z?SslIq-_C*Ls!^@h^8ilph!hml8zHYB~t=j0QLx|7U*Ii$V;3GCv~T3K>c_>v^Kb- zK`ip*pjASHD;*G!6Q6aWfQ`j)s~870DtJ~gJ}U&~c$PErBkC!XCn#;8%n{EiM>&Gc zSQZwt$Jl0tJ{gK0iCd?*Y?MM&B}vgQgNqlQyjj|SDk1~(%+d0NS3?$o_A1d|Lwg4l zYys28wHN3?Lu@Lh+40D0h|wG}F2EQ%uVUyt%IuP52JIz{_FRW)YZSE?ic|ElkYAhy zP~qUw{L9EOQcMB55KCzxBIp}=0)3G|bPVW?gD3;=0WulV@OuYe>a8ue*s))zw#y8X z4$}Ar6$^0&5}Uw!p<;W;HVK3P{|(g{1qh*v<*qIpS2~&V5UbqD36NHE%IzUmJE*M? ztL8B&J=t%*b-yUKu|?`p$q1qmSK#M}q6AGJj!XhbZb8w~CRbWF5K zc%M)+bQMF#7l9>&pbcZZg|>q3GtX!apz1f?AqMgypjBP~DY@{)<+hRIkLw?(sX21C zVUfY#K^aZA77?F32?%o86>G)n>^Mv$#6#!kihh9m*XH>1L^~e-lbSO+nW;^kTH3q(Caf zD6^bRkm4S2!UpeXP{_~dcxkj$Mhx3e9K^iDtZRl2?$Qg}9zQi7-M+eZj9bxG+f<3R zi`tK!bdqfU@cqN}=HZ}qKatX4Bts~M|hV_mBmDsOlqBLqN%Z^g{7HEl37x+X<|~E RiHT*hSyHOu=1GiR+yH@36IcKM delta 62 zcmca3c}H?XBBNnRo=RiIJ)K=1GiR+yH~K61)Ha diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 705afb38e5a214b3b2769311704823bb8c1f9160..7582d8fc2d00b5f74ec384ec78919a0725f5df7a 100644 GIT binary patch delta 68 zcmZo!%HFb+eZxLZ!~6m>i{vze9DTFIWV7Uylw`w16U&rD1EWM!V@nH5Gm|87aAOHXW delta 68 zcmZo!%HFb+eZxLZ!;(CM+=Arta(&Cx6f+ZZ!{n4CLo?$vgCrw!i{vze9DTFIWV7Uylw`w16U&rD1EWM!V@nH5Gm|8}-jgCT`Es)MF3zMPUtg6iP3*V8WsF-lLqkfA);E?sW&?{v}0rRn_B7q&4^ZSs>(XU?3gk}bikqo6*$u$oa~azd6o#48Hf zEPTlsiFxU%@dcTA>R<&8jN+3&WU)+Mk|jL(OO^!0Yu4F56dKVSm$N-Chf(<*03!{P Aa{vGU delta 439 zcmZqN%GtP;bHff!!;(CM+=Arta(&Cx6f+ZZ!{n4CLo?$vgCrw!}W=>I_URKR0JlQlwX>wJH^yIB6%98_9v?fnYQJAa<#Cwuu zCf`U&Ax>dL+Ox?u>2i}p{)wuq>nNxvXC&sOr^dt=WafdniFwJXIWh4iMTvREX{kjZ zvFU-w7!_H-tc7iil9OMj%TJz?EqzLP$(3%@X3de?XX8v?QL%)HrkCyKYUnPOmO-o5vI-#O>|zPr1# zyt}i!{n-+~_?osMvzOO21|4Dy9Kl6o0+n>uY4F+yg+2qgpnc+-w+|h=dV6W(a*NUA zoLn}EGsqyVGR!+ItqDmAn>IiA^xfj3tL)0J_p}b?YzH5A7Xtz3NZCQg5)jFM{aayLEUNX)Kcy5CBw?4nj-}tg}fb=2B06cy*!m z)&d%zjq(lz%a#d?!f+y&v+?3zXk8|(5iMzmK9+&N;I)tx*_nRB_ z`_jV`BSH#divz~((ul%E|qQd-0`++7Mr7^0SB7}Wiwn7G$Cerc|I8CF}N@wnMV8(EfhqjKg$s}72GIJVp zAyB%Ek$Wk4M0^}%d^iEhF$c3qXa?o)T3CK05>C8qMIOK6SAPE=%J*E^0dbUPTHHMDO zup?!X9R*4wsskL!|{5J~+nn;QWvHCUMS#^Y8n>JUGXbViYTh5gT78GT`Opsie)jN9*T)8u|a;ZyH zn2@Eg&RQ9H03Bq|*#;54a7?X!`t^s^qAT?BpO1BsG8&W+I!7i$1kY0Tf+=UB_F0Fm zM^%gH<$WJ*to0jf&3iwzhN~XlAa|SXt6!VqB3T=~EqG(2-}@#Z&FVkjPnX{_d1>tP zl?SJ;H)Z*4^6d6Qt~dSBGh~H!5OR(>QIA8AS|`UNm}n7h${>X6*==%ms^f_V&G1zQ zDie)>-En7($joKUW5Keg%B{!Sr~BhSk`J0rBuly0kep`{DD|2LXH)Xt$RwoSI?&&k zZGUO17|N}m$gw(vn^(zFx%M}i>71Z3agY`OB*L&fi3B=3OQQ%}_BZ#p?@TQypi-(B zZ59%gwmx{KI8#_CS;#|A>-Wf1`SLD#vOh7`UTV4|oOW6-rz_rlGCb8nbZzflWaNiGnwnx_q5AX3n>SM zBCv)EEvexE5u%D)g`&rxq_n<_0z|Wzx>M4(>3yrSEtI{7Ec{2WV(H3e)qP@jjQDOgIfa# z=tV4h3fhjuV*#hnO-#;uZIjxu=`PSj(P%hs8ONiLnv^O4aY#> zDvWJqzF5B6-yY}`8k?mM@SKst8xR4K4k@4kSrPB^b|F{;HfP`g?G)X^`=C&p3O&o9 z4;Om-Kg1cLk+?eN!H+x`(4NtQIL*m9m%>AFqV3dh4Bb^=q>(&NVk%nh=wYLF=+iND zAOqZ6M?AoW;XO&tNpe2&FY^DHoINJz HUr+oCodv#k diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index e7c9432762c07a04cb4af2f50137e73f02e6625e..5769a4136df79e9202656e12e65747ffd80e03bd 100644 GIT binary patch delta 76 zcmZoa&f9*Rcf$cr!~6m>i{vze9DTFIWV7Uylw`w16U&rD1EWM!V@nH5Gm|8saadwQAfsV^ftf{enn8}fSz@wTa!N|FVWNp;N}_>LqN%Z^g{7HEl37x+X<|~E RiHT*hSyHOu<|f92TmW(k6M6su delta 62 zcmX>saadwQAfsVPo=RiIJ)K<|f92TmW=#65ap+ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 309525e2b472cd3df7e85d0191babc013b59bb4e..fd4348e968f7b177b10a24fe590e8726e0c06ae0 100644 GIT binary patch delta 72 zcmZ3mkz>I|jtzS_4f6}kERxdI|jtzS_4NLM2ato5n%k?c&Q_M`v4U38ygwZPS}8VzjfZ3M)S2#W~@xkEUumh7y>9~ zl1M2i*MnT&SgqWiIX+xjz7<9`7CL4&7EV0fJJ9!+1GNEr4{g@)cDc6bF7%M$KWElH zx>NbPv#6sO_W(`TKAVx!L1Xr$wKVO)4rJT??ze_Bt+8bSJIf;U8B2K^%9#r| zSu!dTB9tT+c*_M=0aCP_(Uf#raccr$)=}<-R1)ib7pDc`K!xVOB`^|$4otWxyq4($ zp)ql{>9vS+Uw;v0Q$OTy@1t{rSV8q-DqLx8t(=uGPkCELge9Ia;!Sis1_#C)COi?p zE~aR;n~C@2>(^0N{$mXF=g+3lcJsHsUUXNbB;xYbYjf4{u}fFxik9?ubU}iyG*iyM vMAVxVxopNWkas;oG9R5q6NUTVTGzw+9oDb;d>q#AfCub9>(@y2>+AgqJ$YQg delta 2241 zcmeHIO-q$Q7-hgLE21y8mA>4fO*fs-cjhtEK5S8VE26NFi_B*VDN=?dNFU1z3a;^D z5LDu#5FuRLO>O!I{(@>5ZTtn*bVbm(^{(2vna!M;Ip;j*FfSJy=N20q?r(X%?R~>S z6PXypqvLjRvJ<>Zxg^#ZlCppemCPDNsbE%Vfr%#4aw_D~*QVP8Xt*+<`;L;sHztl@ z+=X#5Ap|qUQpq|L8JXz3Ro>p+Ieydk%nWZW&kXN*Qaf?rZzn1Ra|gZ1mfKLVGGcpM zNq60AD?jFwb+G2Tu*wHJg|1f0y60fs{TjP9S~Xn#dzQYrx$cB>?=cB7NaH#2sd9lj zO@z^y2Vj98cxyy5%b zU|3QPIsmu881)d{0fWPDY-@Jn9NJZVb_va*c0vRQt`+mlbFf|k1CO2dnnw#mO=5Lu z61_wDJle()PHY~7HFX_Hz~ExKrE=axdf0%WpeQlmr8XOcwKL#^IxKn6j=PX*AFPm; zNE+n@$d>!!D0)ZH-c?4}n`RF&DvBqY)obK82d5oX2&xrfFyP z_AWZo5hGSQ6`NX^o-QT@MZk!dLJxv)PeTkki-mVsFrg^eb@OY_DMd|Y_0=GHgzn`` zE-l2T&tAMXRJzc2rhh0W%738q+$)re*~%5vlH_WO&Mf5jVzZx{{oL&5Kfap(+0Vi1 J@dxNj^DkT}fMx&y diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 09413382e60e58b47fcb84dc2b9a1e69df615ebf..4caf02d368e068239291186c13a937421e136141 100644 GIT binary patch delta 64 zcmbQ&&N#1~af213VSa&`MRJ-!j=ou9vRQIUO0r?1iDgQnfl;EVv89EjnMsmaQnG1c TQksd0WwKdPs^R8rMq?)ck^2*j delta 64 zcmbQ&&N#1~af213VM(4rZb5Q+xxQs;ikXSIVRA~6p_y@-L6VWVadMJ{k&&r!vPGh) TfnlPdd9sO-srlw?Mq?)clwT6? diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index f4204cd5c4d99a7e5c310553bacad15279436b98..91bb58abe0638b1673788c5998488e9b5c138e5e 100644 GIT binary patch delta 68 zcmaEInC;17whdc24f6}kERxdXb+@tW+s^S|5mXl36C&?5t3&lnUA1p;1li^s2Lb9>Qmk&?>@bL5u z@jk@+5j%(vAU=q=3vmiDp7{{sZp1x^dlB~`?nitW@e#yF5f31C5oZu*5$6yeLp+H1 zIO6>B@buniKi`uU)thLADw<3%QAv|(baAR ziaBW?Jd=qoNl}+?z0iGgrzcUO))aKnf1~6yf>R8>!t3iJBt{Zix3E4an?-!r{_A^r&eCnaWMSo-uYw0{@1!s_rjJ+$cvG4q;+B` zm6I8`(?VIf>dLj9g^1317Nz<^6m_t|bH$vJOYE)Kti}}=l;A3<7!r!2bj((|kXZYw z%~VY@@$lwzo#<^V@v5AQ&v*Ne>hS!x55D#6g&Q~a`wPU`#i+b3i7AN?$j9gm2gS}N z6{cZZG(bIEzcfEHy!n^zp5?9c^Bc48w>otJsULspD_5WV(igt?#MQ=(#^a}3?{?wY z{oy}9>CX18+Qw0Rk%stsmyaHV>RKnB+ z<3JyjR080nC??xrtEJAq$mFWG$^RHj^~qi%?QwP6k>)W@5pA+xf3%eIt3C z@YYOz8*gWazn`6--gL}nR1>EZ)eIjDe%30i_Ame<7`eL7k7b=QycKEdVJ9j{ z6-ySQ!&nzlE13*)6g0%Th!nspZ1QM%bdK3=79qXD6QpFcOC$hb4bN6E@l2=%oH~hh zBlB?mY9|+syu+U_qZ<&nyN1t&`J-sRv!79$GKWb3qi~jDd`7Syi>hi)8N3)okhh!E za))tP<34s9H4>ifM4|%?dAxTsM)J}OCf!6O7V3gi_6hl4bC!w+tDPd7KM zH63kNyzPoN?v@h-w=3S!YJ3E|?TWWu@h08gu6WqTkIUC~#rwaT<#xr}u6QT>17N%2 eZCAY2pC+~|-m%qkyW*X+!%i#S5-Z*x?*1QPvB+lt delta 7610 zcmeHLO{`s270%VCv;uA@PMQplDR3lNdkn@B>L=MRql z;Na*4@gc;A5nG6lAU=w?32_85p7|K!X2dOsTM-{e+=jRv@d?By5qBVtA+`}ah~tPm z5qBXzg*Y)B9NqommpjK5BNc_#j8jm|d!b5JJaJA!7uG-W^6vNRr!Jq_-5&n&!0y{e zI$yZtAqPe#Qz7q-2rgUB7xN^REdaJ{gmCZho7o2h=OM-$EQZg#m7BftK+Wc(N zrC^vgJfT`e+-n=W(=G?2VicvA{_6SWj-k8QT$^;2#G#+w-#%DP+`oOMv7Impmlz+{ zXVON7%#6;&DRM26mILxWwKX+LqP5nOM{`+;L3)*hM_UAW9r~+V?XlsNKQ+IZOtq3; zQdU}fOF9e8jX z?v$2^i=aG7i{fHHGdRXID<|>4Vg9h)L(OAb{{v`WXpZ$)-f3mRir{lJA{I=lAO>bInu)@6AQ2Kc zyubWHb9{L1>+P$PDKW*Pwh=^JFzY!)%~V#F+l=Xr%iybJpM$TO{1ANSIxohHv1kh= zfC;R}RPaoZ1jM{a3o7Bl%Yu8Am^eucZjKT|jMBi~B@Cw$9AV&WP&{Z~ zbWuPg&x=OYgl%lp3hFA|`T*)`W4emE+S}bgU8T7Gtuu$HvygQIZZAng#Web1DMOKU za*>L3<1>I*B|4Quk(n_(m9o}Zn1GVU>1Aq0to{CXnw{acPq*Kmw2DQqp)OEE0gNiA zVIKrWSOrP4fA3nez0kc{{{DBLX&>$E`uwUt`Pudhuqs+O<{h9xWP=D+LTO>svi4xu zSuLaPd7i!0V~K${4=yk%lPSroY=i9Izt${tujMi141?zwkQJnGtw~wq zw7kI}znZiqYR{D;lOT2`g}`*ts8(uNEj2HAuHKak&_cayxn~3d+}+fF$+e&396%h$WqFZGme2Gi)RhODX+Pv68+p~RgEBMWqVoi*0+oCRWz+1QdU+^i}jCK4zbr& zN(&)`AO@d7e#X>l4%bIRdc1@M93+9C@|m3+b-qK1AN}{x6TU$L=M! zBzf6T00m^U1}rR+2eXaaD!er|n*QA~vhwIPt83NF@4t1T{n6yPN~=~uR2$I`oL>8Q z#RGC(|M!=g?QVT#a%R8p?)PJB`tMz99@(sUn>BB<=KaU-Bvui)S@ZsFzuc^On>7z# xu58x4&6>BmU2fLA&6@YG4R*8UZPvWan)hG6iC8t6>v!b;d(9iL=KbO3e*!uft>6Fv diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 7e6b680cd9a10c93d04d74523a312d44eac424ca..e71b299c157e88e43c363489e3dc135b0da41801 100644 GIT binary patch delta 1512 zcmbRGgzNMZt_>$R4f6}kERxdl@qMwXN1y+bEo z2xC<;v(z&*HPACMHq*1T&`~flF)*+)HA*$GGE4-rtjrB9CZBUP;YCq4IWcDYW_pH3 zKqr_PL;2=Frx@xPnom}YkK{pC546;Ka)W0hiwV%BleDXn^?v(dLs?T?Iy> zx6`~zn5ME$Hu$19naf)M6yo6MjVCW^H-v;vt`85N-05RNLiDa6DQegG#i2&+hLCI6 zqg5s#Y#95^e|jD#6X#@}urNt2V0NWRM!iZxEK)6#7EP`S<-s1K0nzp&$+H%lw$R4NLM2ato5n%k?c&Q_M`v4UQXgb;6Rg%@n(8|zavY~gVs-B*nf}w?}o~5y#p`MYcfsTTa ziGhKYsZpwdm0==~Wo2n%I5{xJgd0iGcrWDG2dxwwoBj7)S5fXGb2z{Cn zR*Z_|K~@U1$9uA7sQKi27cUl513in$>q6zZfwmYKC}@EBj$RHN8SJrBG6W-rozGS? z^{`Gq;L4~sd2fIKJj&t~kRpP(*qRdffP~m`oqQ)anb;W13W-CFu`40hu*cMmQ2)uX zU)YD4pVmn#vNAB}>SE>t%Cgt?$)2%tBt#lDvY7Scd7(VmBhS&xTyY9CpN$j`Z+?}a dG=K8ie_T`L8Fe_P<}fodfIzD^<5F*?O#tD8VBP=# diff --git a/master/_modules/cleanlab/internal/outlier.html b/master/_modules/cleanlab/internal/outlier.html index 5587c0c06..df2e8e316 100644 --- a/master/_modules/cleanlab/internal/outlier.html +++ b/master/_modules/cleanlab/internal/outlier.html @@ -598,7 +598,7 @@

Source code for cleanlab.internal.outlier

Let’s print the first example in the train set.

@@ -846,43 +846,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1181,7 +1181,7 @@

4. Train a more robust model from noisy labels -{"state": {"a00672d52f0e4ec9897ae8c78c851671": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6029174aa2734257bacd074acae12776": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "001625066cc74e33a5f9a433101c3430": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a00672d52f0e4ec9897ae8c78c851671", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6029174aa2734257bacd074acae12776", "tabbable": null, "tooltip": null, "value": 391.0}}, "a714e79dfe51449da09559531bb4f2c4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3323bfb5b684dd58b98c0bf68515b92": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8584eacafcf641dbbe0abc4e0fdab8de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a714e79dfe51449da09559531bb4f2c4", "placeholder": "\u200b", "style": "IPY_MODEL_c3323bfb5b684dd58b98c0bf68515b92", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "d7a529e025be4eed842f99e2a80de169": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f81cba84f0d84d50bd031c8f82d138ea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0dfc239a2d764dfb9a2caff49904c052": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d7a529e025be4eed842f99e2a80de169", "placeholder": "\u200b", "style": "IPY_MODEL_f81cba84f0d84d50bd031c8f82d138ea", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200766.5kB/s]"}}, "0e69644f50714b77a30821b0843e81d6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ade5e9f8260742648554ed88676a1439": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8584eacafcf641dbbe0abc4e0fdab8de", "IPY_MODEL_001625066cc74e33a5f9a433101c3430", "IPY_MODEL_0dfc239a2d764dfb9a2caff49904c052"], "layout": "IPY_MODEL_0e69644f50714b77a30821b0843e81d6", "tabbable": null, "tooltip": null}}, "a9eb6a714389492a8f65dfbcb6b1347d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0227130daf864de2a9f5587e121b425a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7e34a09b52204cc6a05eee2a94a134c5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a9eb6a714389492a8f65dfbcb6b1347d", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0227130daf864de2a9f5587e121b425a", "tabbable": null, "tooltip": null, "value": 2211.0}}, "652d6c45fdf84f82ab0757317bd59b84": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af71ad4fc2684b65b76b830365f91e77": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "733711233f5e41ba8c73fc0238f5d588": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_652d6c45fdf84f82ab0757317bd59b84", "placeholder": "\u200b", "style": "IPY_MODEL_af71ad4fc2684b65b76b830365f91e77", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "7b08bd54587b4d6eaf9f870784c54884": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58a37ef0e351407ea826e173989c9988": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b1ec9508a119452d96ca2d738b2c70ec": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b08bd54587b4d6eaf9f870784c54884", "placeholder": "\u200b", "style": "IPY_MODEL_58a37ef0e351407ea826e173989c9988", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007442kB/s]"}}, "e4492c16584a4d3db5993c7c80f91750": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d91617b6d2124998a5969f32922d6f53": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_733711233f5e41ba8c73fc0238f5d588", "IPY_MODEL_7e34a09b52204cc6a05eee2a94a134c5", "IPY_MODEL_b1ec9508a119452d96ca2d738b2c70ec"], "layout": "IPY_MODEL_e4492c16584a4d3db5993c7c80f91750", "tabbable": null, "tooltip": null}}, "0dfc0392780e4d329d424a64da0895f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "746795d5f6294e0db6d2c1ff0787e7bb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a8e63d0a8b7f4990a25935f7b6ec9b5b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0dfc0392780e4d329d424a64da0895f9", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_746795d5f6294e0db6d2c1ff0787e7bb", "tabbable": null, "tooltip": null, "value": 665.0}}, "e4aa9dc9e51f4720912647b7bf06cd6b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b18bf64c6af24a8caea3aae397c3cb6d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d01a8b75c0734bd0bfd490a12ae7e443": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e4aa9dc9e51f4720912647b7bf06cd6b", "placeholder": "\u200b", "style": "IPY_MODEL_b18bf64c6af24a8caea3aae397c3cb6d", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "27e0409ecfa34ca2bd343174e9997ceb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "77bf6cc11c6548d9a3e4fa57b0b3e8c4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7ed69dea8ce24277a76c64546ca7f8f0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_27e0409ecfa34ca2bd343174e9997ceb", "placeholder": "\u200b", "style": "IPY_MODEL_77bf6cc11c6548d9a3e4fa57b0b3e8c4", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007115kB/s]"}}, "f4ab230c96bc4d729e8d06faed7289fd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3725429ec93d4bbc82beacd81f2af0eb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d01a8b75c0734bd0bfd490a12ae7e443", "IPY_MODEL_a8e63d0a8b7f4990a25935f7b6ec9b5b", "IPY_MODEL_7ed69dea8ce24277a76c64546ca7f8f0"], "layout": "IPY_MODEL_f4ab230c96bc4d729e8d06faed7289fd", "tabbable": null, "tooltip": null}}, "09e4037f17934e1da5741f0685a7dfeb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d6eb34eba80f46d98043fce0e6ae607b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "df37b03118504b9e8ad0075e04dbd977": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_09e4037f17934e1da5741f0685a7dfeb", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d6eb34eba80f46d98043fce0e6ae607b", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "f454d670d8084974bec424e436bfc5d6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e34a642eab214564b8116c8281a7f70d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "68da5203870e4d0bb2a623361e6c6eb2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f454d670d8084974bec424e436bfc5d6", "placeholder": "\u200b", "style": "IPY_MODEL_e34a642eab214564b8116c8281a7f70d", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "f9d7413d84ce4841a9b14b87967ed398": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2500b1c2e7344cc18679fe7b81ee19d7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1636481f45ab4c0387de3345fc362533": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f9d7413d84ce4841a9b14b87967ed398", "placeholder": "\u200b", "style": "IPY_MODEL_2500b1c2e7344cc18679fe7b81ee19d7", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007139MB/s]"}}, "7e44815da81f4d49b01907a9a053b714": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "63e87ffe9e854dceade059b4b8812599": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_68da5203870e4d0bb2a623361e6c6eb2", "IPY_MODEL_df37b03118504b9e8ad0075e04dbd977", "IPY_MODEL_1636481f45ab4c0387de3345fc362533"], "layout": "IPY_MODEL_7e44815da81f4d49b01907a9a053b714", "tabbable": null, "tooltip": null}}, "80cea85ada4b4a4e9e790c0ada42054d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "73ab885582294b89accd8cfd85cbb712": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0b2fe773764c4ee780ed77c63a296446": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_80cea85ada4b4a4e9e790c0ada42054d", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_73ab885582294b89accd8cfd85cbb712", "tabbable": null, "tooltip": null, "value": 466062.0}}, "8c7c0ed05c7f4d70b058dd4cd5e71a7e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "27ee615ea9ec4e129ac040262cb7eb36": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cf70cf100fd64ea19fa00d072669b6a7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c7c0ed05c7f4d70b058dd4cd5e71a7e", "placeholder": "\u200b", "style": "IPY_MODEL_27ee615ea9ec4e129ac040262cb7eb36", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "d134664dc3ad4f0f844b1e84b2482fcf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "771812d922384d4e87eb7a5db3af0429": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c72bc04c1dd7490a857510ffb59c9f6f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d134664dc3ad4f0f844b1e84b2482fcf", "placeholder": "\u200b", "style": "IPY_MODEL_771812d922384d4e87eb7a5db3af0429", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20076.30MB/s]"}}, "bcc237acc68443c399549e6ed980e896": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb9f5fb9025747a6913a7f62dd70f767": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cf70cf100fd64ea19fa00d072669b6a7", "IPY_MODEL_0b2fe773764c4ee780ed77c63a296446", "IPY_MODEL_c72bc04c1dd7490a857510ffb59c9f6f"], "layout": "IPY_MODEL_bcc237acc68443c399549e6ed980e896", "tabbable": null, "tooltip": null}}, "9f4378a841c741738433fdc80ed52c0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "36ecbc2e91fa4bb48f5eee41c960cb50": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "39eb0f33cb864974b789a85bc0fec7d6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9f4378a841c741738433fdc80ed52c0e", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_36ecbc2e91fa4bb48f5eee41c960cb50", "tabbable": null, "tooltip": null, "value": 48.0}}, "833070d973a74d199ed789b713638f2d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff576f4717b5477285400b6d291ec1e0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "379a79f3f34c4421ae3251ec47632830": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_833070d973a74d199ed789b713638f2d", "placeholder": "\u200b", "style": "IPY_MODEL_ff576f4717b5477285400b6d291ec1e0", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "053dbb42cf054867a54de302dbfefdf8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4491dd455c674c288a42e47aaf2cff64": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7535ec3c3bca46ca83e74c5570159b64": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_053dbb42cf054867a54de302dbfefdf8", "placeholder": "\u200b", "style": "IPY_MODEL_4491dd455c674c288a42e47aaf2cff64", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.17kB/s]"}}, "7da62dfb321243d79fbab18d50cfe174": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7c9adca368ad434994f84ee3ff7a2fe7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_379a79f3f34c4421ae3251ec47632830", "IPY_MODEL_39eb0f33cb864974b789a85bc0fec7d6", "IPY_MODEL_7535ec3c3bca46ca83e74c5570159b64"], "layout": "IPY_MODEL_7da62dfb321243d79fbab18d50cfe174", "tabbable": null, "tooltip": null}}, "38c37ce799764bafbe125e3b271307e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "451cb48a63834df88f315fc0babb4856": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c740cc87635d450e8be1c88a0a6efc34": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_38c37ce799764bafbe125e3b271307e4", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_451cb48a63834df88f315fc0babb4856", "tabbable": null, "tooltip": null, "value": 231508.0}}, "bc1da15980204de993b4d7e5c8d5d695": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "46d398d355574563ade88fde8d158f7d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4c1c253256d5477f94554e8bed11175f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bc1da15980204de993b4d7e5c8d5d695", "placeholder": "\u200b", "style": "IPY_MODEL_46d398d355574563ade88fde8d158f7d", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "9354a8d075ce4a5a92dd7c126c6258c5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a9bae02f72248ac891c6b2792152198": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c8dedf3b56054de0aa28acb1cb2e50da": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9354a8d075ce4a5a92dd7c126c6258c5", "placeholder": "\u200b", "style": "IPY_MODEL_8a9bae02f72248ac891c6b2792152198", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200710.8MB/s]"}}, "8338cde6e506483db82d6901ba3e774c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ded0570bc26344d68b4798c4ab6888e4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4c1c253256d5477f94554e8bed11175f", "IPY_MODEL_c740cc87635d450e8be1c88a0a6efc34", "IPY_MODEL_c8dedf3b56054de0aa28acb1cb2e50da"], "layout": "IPY_MODEL_8338cde6e506483db82d6901ba3e774c", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"947502200a574c5bb753e3a810fa8f74": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b9a4822bbbc543158d3165bdc309367e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9b703acaaefe43f2a747995e6baf26ca": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_947502200a574c5bb753e3a810fa8f74", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b9a4822bbbc543158d3165bdc309367e", "tabbable": null, "tooltip": null, "value": 391.0}}, "fb7871277ea44cc992dd5130b07e281f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "83a784ca18dd40209d7df691456fa335": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4d3503dbfed14de4b1ffb6918b31358f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fb7871277ea44cc992dd5130b07e281f", "placeholder": "\u200b", "style": "IPY_MODEL_83a784ca18dd40209d7df691456fa335", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "ef836ca5c2e0473c8f44942bbfbde97c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3b7fa05cbd34b3e8440577d3268b3a2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "795e0495ac274840b84a9b2585fcb45b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ef836ca5c2e0473c8f44942bbfbde97c", "placeholder": "\u200b", "style": "IPY_MODEL_c3b7fa05cbd34b3e8440577d3268b3a2", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200769.3kB/s]"}}, "57a3d879c99546208499a10cab8e04c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b23f615f5b84f338a77080fed288888": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4d3503dbfed14de4b1ffb6918b31358f", "IPY_MODEL_9b703acaaefe43f2a747995e6baf26ca", "IPY_MODEL_795e0495ac274840b84a9b2585fcb45b"], "layout": "IPY_MODEL_57a3d879c99546208499a10cab8e04c7", "tabbable": null, "tooltip": null}}, "f83c84fa51244911ad30fbc24f0dae14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae1d1e4addb14d72ad47d043144ef5b2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7de6723f9beb43dbbad71ef72bf3d394": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f83c84fa51244911ad30fbc24f0dae14", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ae1d1e4addb14d72ad47d043144ef5b2", "tabbable": null, "tooltip": null, "value": 2211.0}}, "ef220577d59248bdbc40d7374238082a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "04b7c5dc6e7948f7b6da88bf9de4c09b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d3d9e1e700e14803bfdd9de847eb8a1b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ef220577d59248bdbc40d7374238082a", "placeholder": "\u200b", "style": "IPY_MODEL_04b7c5dc6e7948f7b6da88bf9de4c09b", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "bd7e59232eee46a9941063b605e66d9b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "202e77f783604892ba40274a0d289276": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "58219d6711ac4cbe976717b4a76aa16b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bd7e59232eee46a9941063b605e66d9b", "placeholder": "\u200b", "style": "IPY_MODEL_202e77f783604892ba40274a0d289276", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007457kB/s]"}}, "83718921424246c8b3bb82278f13e7dd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "328b046d1b9d4dcfa0edb3132c01a4f2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d3d9e1e700e14803bfdd9de847eb8a1b", "IPY_MODEL_7de6723f9beb43dbbad71ef72bf3d394", "IPY_MODEL_58219d6711ac4cbe976717b4a76aa16b"], "layout": "IPY_MODEL_83718921424246c8b3bb82278f13e7dd", "tabbable": null, "tooltip": null}}, "f76bdeeb99374127a9a34c37ef45c330": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a0c9bb1d94eb48e1945c490bd1d43922": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d9f750fd331d4370b4ead712d6fe626d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f76bdeeb99374127a9a34c37ef45c330", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a0c9bb1d94eb48e1945c490bd1d43922", "tabbable": null, "tooltip": null, "value": 665.0}}, "385b07eec10c4e1780987426b0fb1ffa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6942d17c55104716b38548fde85fe97d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "250cfa9619754602808099a37a2351cd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_385b07eec10c4e1780987426b0fb1ffa", "placeholder": "\u200b", "style": "IPY_MODEL_6942d17c55104716b38548fde85fe97d", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "4a44c65dbe25405084910ffb25948f0b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95ba2b873c0b456186466656bd4a4b05": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "10e4288569c34c62a5b336b51d001893": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a44c65dbe25405084910ffb25948f0b", "placeholder": "\u200b", "style": "IPY_MODEL_95ba2b873c0b456186466656bd4a4b05", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007125kB/s]"}}, "751b322f8b584ba699d87d767abcfd88": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f26e295a2fa0406c8e3fff0e0818202d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_250cfa9619754602808099a37a2351cd", "IPY_MODEL_d9f750fd331d4370b4ead712d6fe626d", "IPY_MODEL_10e4288569c34c62a5b336b51d001893"], "layout": "IPY_MODEL_751b322f8b584ba699d87d767abcfd88", "tabbable": null, "tooltip": null}}, "e4e868950b0e4748a7bb54abf124ca39": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "33e4cc93e6f44376a34c0ceb628ca488": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ce5ef1ebbb6d4b7589aa40b6d38dd8f2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e4e868950b0e4748a7bb54abf124ca39", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_33e4cc93e6f44376a34c0ceb628ca488", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "b805e697dc3841fe87f86c354f112531": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64fdd33a9fa24c04b2d980484a3dffca": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5c1ec47f563245d7989ffc7eff2b3393": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b805e697dc3841fe87f86c354f112531", "placeholder": "\u200b", "style": "IPY_MODEL_64fdd33a9fa24c04b2d980484a3dffca", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "27f1cfa796cd4d64880fb8ad1470589b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe7ce2b57aca4dc1b98fc34a52588b14": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "18d5e009472c494c99ff042d5f4315c1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_27f1cfa796cd4d64880fb8ad1470589b", "placeholder": "\u200b", "style": "IPY_MODEL_fe7ce2b57aca4dc1b98fc34a52588b14", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007167MB/s]"}}, "aa772cc8b00945c1aa7b22081cb39031": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d20256762cdf4c06816c5653fdfef6a8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5c1ec47f563245d7989ffc7eff2b3393", "IPY_MODEL_ce5ef1ebbb6d4b7589aa40b6d38dd8f2", "IPY_MODEL_18d5e009472c494c99ff042d5f4315c1"], "layout": "IPY_MODEL_aa772cc8b00945c1aa7b22081cb39031", "tabbable": null, "tooltip": null}}, "e5b68aee810b4fc48e7950601e662dad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b8d38e973ddb4490be0781dbb8717675": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "dd34df9493e74cc89434500b5b18d5ac": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e5b68aee810b4fc48e7950601e662dad", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b8d38e973ddb4490be0781dbb8717675", "tabbable": null, "tooltip": null, "value": 466062.0}}, "f756af4beca342ed8bed100e0bfffe79": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "032871bbc89742aba639ffaee1200e37": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a4758f91aee04d48822bb6b9c3453db8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f756af4beca342ed8bed100e0bfffe79", "placeholder": "\u200b", "style": "IPY_MODEL_032871bbc89742aba639ffaee1200e37", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "d1036ff8e3b44432a630841123cd665e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fcdc6f83ca124a68b2ab9d6ace3e2308": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "806be8102c2840c683f53e27268a1a1d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d1036ff8e3b44432a630841123cd665e", "placeholder": "\u200b", "style": "IPY_MODEL_fcdc6f83ca124a68b2ab9d6ace3e2308", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20077.08MB/s]"}}, "73369ea4b442452ba79dde0f11ccccf7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d2370f99c49d43b39ac2ea8e64340375": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a4758f91aee04d48822bb6b9c3453db8", "IPY_MODEL_dd34df9493e74cc89434500b5b18d5ac", "IPY_MODEL_806be8102c2840c683f53e27268a1a1d"], "layout": "IPY_MODEL_73369ea4b442452ba79dde0f11ccccf7", "tabbable": null, "tooltip": null}}, "6475f269b762452097c0dd8a50483fa7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "829408c009e84267b620439ac80aa762": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "623c296ec27847a08d197e0f9349902d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6475f269b762452097c0dd8a50483fa7", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_829408c009e84267b620439ac80aa762", "tabbable": null, "tooltip": null, "value": 48.0}}, "2b3304b6189e458ba99e1273f6dc3065": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1978592a53c7411fbb7d77958baefc3c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b015ab05281b4ee48af1da0ccdc94161": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2b3304b6189e458ba99e1273f6dc3065", "placeholder": "\u200b", "style": "IPY_MODEL_1978592a53c7411fbb7d77958baefc3c", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "d330efe583834f6e9a4aef2d210f2448": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5108e22e56ca44b8a5f0abeba3da954d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "29d77952655945c5975ed010d32ac352": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d330efe583834f6e9a4aef2d210f2448", "placeholder": "\u200b", "style": "IPY_MODEL_5108e22e56ca44b8a5f0abeba3da954d", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20079.54kB/s]"}}, "974e2a874ecf49ff8142c67afb939afd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb7ad54f03394e35a23b11c642b2c405": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b015ab05281b4ee48af1da0ccdc94161", "IPY_MODEL_623c296ec27847a08d197e0f9349902d", "IPY_MODEL_29d77952655945c5975ed010d32ac352"], "layout": "IPY_MODEL_974e2a874ecf49ff8142c67afb939afd", "tabbable": null, "tooltip": null}}, "9123a1575ca34375b0b43f4289e4f1ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "431300eb075a4588806ea9c78d8531a3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "263444dd6e2144b3b9f73741003fea9f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9123a1575ca34375b0b43f4289e4f1ef", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_431300eb075a4588806ea9c78d8531a3", "tabbable": null, "tooltip": null, "value": 231508.0}}, "2ea5a0c2da3a4d83b5610c2c9d2d542c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a0bbd2409f4d4acfb2e91ffc5b12b95e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "964aed80ab284dd48a31d9d5ad28fd30": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2ea5a0c2da3a4d83b5610c2c9d2d542c", "placeholder": "\u200b", "style": "IPY_MODEL_a0bbd2409f4d4acfb2e91ffc5b12b95e", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "533ead7294bf4d068190ca8e90d78e80": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fade1033c9ad433a857f6d209599eaad": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b6313e82b4f34189bbf42e2bf514a82d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_533ead7294bf4d068190ca8e90d78e80", "placeholder": "\u200b", "style": "IPY_MODEL_fade1033c9ad433a857f6d209599eaad", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200736.7MB/s]"}}, "4a315905dbb7402f9b17e6768c6aa8eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ccab9f1f4f0466db60167c0d669672d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_964aed80ab284dd48a31d9d5ad28fd30", "IPY_MODEL_263444dd6e2144b3b9f73741003fea9f", "IPY_MODEL_b6313e82b4f34189bbf42e2bf514a82d"], "layout": "IPY_MODEL_4a315905dbb7402f9b17e6768c6aa8eb", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index c2f567347..c1d11beeb 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:46.998595Z", - "iopub.status.busy": "2024-04-06T04:09:46.998415Z", - "iopub.status.idle": "2024-04-06T04:09:49.841323Z", - "shell.execute_reply": "2024-04-06T04:09:49.840716Z" + "iopub.execute_input": "2024-04-06T04:26:58.967747Z", + "iopub.status.busy": "2024-04-06T04:26:58.967347Z", + "iopub.status.idle": "2024-04-06T04:27:01.569874Z", + "shell.execute_reply": "2024-04-06T04:27:01.569267Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:49.844045Z", - "iopub.status.busy": "2024-04-06T04:09:49.843730Z", - "iopub.status.idle": "2024-04-06T04:09:49.847194Z", - "shell.execute_reply": "2024-04-06T04:09:49.846655Z" + "iopub.execute_input": "2024-04-06T04:27:01.572409Z", + "iopub.status.busy": "2024-04-06T04:27:01.572137Z", + "iopub.status.idle": "2024-04-06T04:27:01.575389Z", + "shell.execute_reply": "2024-04-06T04:27:01.574976Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:49.849125Z", - "iopub.status.busy": "2024-04-06T04:09:49.848944Z", - "iopub.status.idle": "2024-04-06T04:09:49.852084Z", - "shell.execute_reply": "2024-04-06T04:09:49.851525Z" + "iopub.execute_input": "2024-04-06T04:27:01.577325Z", + "iopub.status.busy": "2024-04-06T04:27:01.576995Z", + "iopub.status.idle": "2024-04-06T04:27:01.580088Z", + "shell.execute_reply": "2024-04-06T04:27:01.579648Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:49.854219Z", - "iopub.status.busy": "2024-04-06T04:09:49.853794Z", - "iopub.status.idle": "2024-04-06T04:09:49.905818Z", - "shell.execute_reply": "2024-04-06T04:09:49.905280Z" + "iopub.execute_input": "2024-04-06T04:27:01.581930Z", + "iopub.status.busy": "2024-04-06T04:27:01.581670Z", + "iopub.status.idle": "2024-04-06T04:27:01.658694Z", + "shell.execute_reply": "2024-04-06T04:27:01.658172Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:49.908057Z", - "iopub.status.busy": "2024-04-06T04:09:49.907733Z", - "iopub.status.idle": "2024-04-06T04:09:49.911295Z", - "shell.execute_reply": "2024-04-06T04:09:49.910769Z" + "iopub.execute_input": "2024-04-06T04:27:01.660795Z", + "iopub.status.busy": "2024-04-06T04:27:01.660465Z", + "iopub.status.idle": "2024-04-06T04:27:01.663899Z", + "shell.execute_reply": "2024-04-06T04:27:01.663501Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:49.913239Z", - "iopub.status.busy": "2024-04-06T04:09:49.912838Z", - "iopub.status.idle": "2024-04-06T04:09:49.916019Z", - "shell.execute_reply": "2024-04-06T04:09:49.915549Z" + "iopub.execute_input": "2024-04-06T04:27:01.665856Z", + "iopub.status.busy": "2024-04-06T04:27:01.665521Z", + "iopub.status.idle": "2024-04-06T04:27:01.668705Z", + "shell.execute_reply": "2024-04-06T04:27:01.668216Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'change_pin', 'getting_spare_card', 'lost_or_stolen_phone', 'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay'}\n" + "Classes: {'cancel_transfer', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'card_about_to_expire'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:49.917795Z", - "iopub.status.busy": "2024-04-06T04:09:49.917625Z", - "iopub.status.idle": "2024-04-06T04:09:49.920534Z", - "shell.execute_reply": "2024-04-06T04:09:49.920011Z" + "iopub.execute_input": "2024-04-06T04:27:01.670676Z", + "iopub.status.busy": "2024-04-06T04:27:01.670295Z", + "iopub.status.idle": "2024-04-06T04:27:01.673371Z", + "shell.execute_reply": "2024-04-06T04:27:01.672860Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:49.922421Z", - "iopub.status.busy": "2024-04-06T04:09:49.922120Z", - "iopub.status.idle": "2024-04-06T04:09:49.925343Z", - "shell.execute_reply": "2024-04-06T04:09:49.924824Z" + "iopub.execute_input": "2024-04-06T04:27:01.675367Z", + "iopub.status.busy": "2024-04-06T04:27:01.675041Z", + "iopub.status.idle": "2024-04-06T04:27:01.678078Z", + "shell.execute_reply": "2024-04-06T04:27:01.677656Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:49.927205Z", - "iopub.status.busy": "2024-04-06T04:09:49.927030Z", - "iopub.status.idle": "2024-04-06T04:09:55.397780Z", - "shell.execute_reply": "2024-04-06T04:09:55.397268Z" + "iopub.execute_input": "2024-04-06T04:27:01.679941Z", + "iopub.status.busy": "2024-04-06T04:27:01.679685Z", + "iopub.status.idle": "2024-04-06T04:27:06.350529Z", + "shell.execute_reply": "2024-04-06T04:27:06.349987Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ade5e9f8260742648554ed88676a1439", + "model_id": "0b23f615f5b84f338a77080fed288888", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d91617b6d2124998a5969f32922d6f53", + "model_id": "328b046d1b9d4dcfa0edb3132c01a4f2", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3725429ec93d4bbc82beacd81f2af0eb", + "model_id": "f26e295a2fa0406c8e3fff0e0818202d", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "63e87ffe9e854dceade059b4b8812599", + "model_id": "d20256762cdf4c06816c5653fdfef6a8", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fb9f5fb9025747a6913a7f62dd70f767", + "model_id": "d2370f99c49d43b39ac2ea8e64340375", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7c9adca368ad434994f84ee3ff7a2fe7", + "model_id": "fb7ad54f03394e35a23b11c642b2c405", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ded0570bc26344d68b4798c4ab6888e4", + "model_id": "2ccab9f1f4f0466db60167c0d669672d", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:55.400433Z", - "iopub.status.busy": "2024-04-06T04:09:55.400109Z", - "iopub.status.idle": "2024-04-06T04:09:55.402869Z", - "shell.execute_reply": "2024-04-06T04:09:55.402363Z" + "iopub.execute_input": "2024-04-06T04:27:06.353364Z", + "iopub.status.busy": "2024-04-06T04:27:06.352933Z", + "iopub.status.idle": "2024-04-06T04:27:06.356122Z", + "shell.execute_reply": "2024-04-06T04:27:06.355669Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:55.404845Z", - "iopub.status.busy": "2024-04-06T04:09:55.404601Z", - "iopub.status.idle": "2024-04-06T04:09:55.407293Z", - "shell.execute_reply": "2024-04-06T04:09:55.406775Z" + "iopub.execute_input": "2024-04-06T04:27:06.358024Z", + "iopub.status.busy": "2024-04-06T04:27:06.357833Z", + "iopub.status.idle": "2024-04-06T04:27:06.360554Z", + "shell.execute_reply": "2024-04-06T04:27:06.360115Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:55.409133Z", - "iopub.status.busy": "2024-04-06T04:09:55.408957Z", - "iopub.status.idle": "2024-04-06T04:09:57.748570Z", - "shell.execute_reply": "2024-04-06T04:09:57.747832Z" + "iopub.execute_input": "2024-04-06T04:27:06.362646Z", + "iopub.status.busy": "2024-04-06T04:27:06.362219Z", + "iopub.status.idle": "2024-04-06T04:27:08.620143Z", + "shell.execute_reply": "2024-04-06T04:27:08.619410Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:57.751723Z", - "iopub.status.busy": "2024-04-06T04:09:57.751103Z", - "iopub.status.idle": "2024-04-06T04:09:57.759200Z", - "shell.execute_reply": "2024-04-06T04:09:57.758689Z" + "iopub.execute_input": "2024-04-06T04:27:08.623393Z", + "iopub.status.busy": "2024-04-06T04:27:08.622654Z", + "iopub.status.idle": "2024-04-06T04:27:08.630521Z", + "shell.execute_reply": "2024-04-06T04:27:08.629847Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:57.761396Z", - "iopub.status.busy": "2024-04-06T04:09:57.761068Z", - "iopub.status.idle": "2024-04-06T04:09:57.765069Z", - "shell.execute_reply": "2024-04-06T04:09:57.764609Z" + "iopub.execute_input": "2024-04-06T04:27:08.632688Z", + "iopub.status.busy": "2024-04-06T04:27:08.632254Z", + "iopub.status.idle": "2024-04-06T04:27:08.636058Z", + "shell.execute_reply": "2024-04-06T04:27:08.635598Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:57.767194Z", - "iopub.status.busy": "2024-04-06T04:09:57.766864Z", - "iopub.status.idle": "2024-04-06T04:09:57.770194Z", - "shell.execute_reply": "2024-04-06T04:09:57.769725Z" + "iopub.execute_input": "2024-04-06T04:27:08.638183Z", + "iopub.status.busy": "2024-04-06T04:27:08.637783Z", + "iopub.status.idle": "2024-04-06T04:27:08.641176Z", + "shell.execute_reply": "2024-04-06T04:27:08.640663Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:57.772227Z", - "iopub.status.busy": "2024-04-06T04:09:57.771918Z", - "iopub.status.idle": "2024-04-06T04:09:57.774992Z", - "shell.execute_reply": "2024-04-06T04:09:57.774444Z" + "iopub.execute_input": "2024-04-06T04:27:08.643224Z", + "iopub.status.busy": "2024-04-06T04:27:08.642931Z", + "iopub.status.idle": "2024-04-06T04:27:08.645892Z", + "shell.execute_reply": "2024-04-06T04:27:08.645427Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:57.776989Z", - "iopub.status.busy": "2024-04-06T04:09:57.776673Z", - "iopub.status.idle": "2024-04-06T04:09:57.783858Z", - "shell.execute_reply": "2024-04-06T04:09:57.783402Z" + "iopub.execute_input": "2024-04-06T04:27:08.647921Z", + "iopub.status.busy": "2024-04-06T04:27:08.647631Z", + "iopub.status.idle": "2024-04-06T04:27:08.654408Z", + "shell.execute_reply": "2024-04-06T04:27:08.653855Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:57.786107Z", - "iopub.status.busy": "2024-04-06T04:09:57.785708Z", - "iopub.status.idle": "2024-04-06T04:09:58.011730Z", - "shell.execute_reply": "2024-04-06T04:09:58.011213Z" + "iopub.execute_input": "2024-04-06T04:27:08.656381Z", + "iopub.status.busy": "2024-04-06T04:27:08.656204Z", + "iopub.status.idle": "2024-04-06T04:27:08.882696Z", + "shell.execute_reply": "2024-04-06T04:27:08.882060Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:58.014244Z", - "iopub.status.busy": "2024-04-06T04:09:58.013921Z", - "iopub.status.idle": "2024-04-06T04:09:58.193899Z", - "shell.execute_reply": "2024-04-06T04:09:58.193402Z" + "iopub.execute_input": "2024-04-06T04:27:08.886463Z", + "iopub.status.busy": "2024-04-06T04:27:08.885511Z", + "iopub.status.idle": "2024-04-06T04:27:09.066323Z", + "shell.execute_reply": "2024-04-06T04:27:09.065793Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:58.197263Z", - "iopub.status.busy": "2024-04-06T04:09:58.196330Z", - "iopub.status.idle": "2024-04-06T04:09:58.201225Z", - "shell.execute_reply": "2024-04-06T04:09:58.200749Z" + "iopub.execute_input": "2024-04-06T04:27:09.070042Z", + "iopub.status.busy": "2024-04-06T04:27:09.069102Z", + "iopub.status.idle": "2024-04-06T04:27:09.074062Z", + "shell.execute_reply": "2024-04-06T04:27:09.073560Z" }, "nbsphinx": "hidden" }, @@ -1113,49 +1113,198 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "001625066cc74e33a5f9a433101c3430": { + "032871bbc89742aba639ffaee1200e37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "04b7c5dc6e7948f7b6da88bf9de4c09b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0b23f615f5b84f338a77080fed288888": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4d3503dbfed14de4b1ffb6918b31358f", + "IPY_MODEL_9b703acaaefe43f2a747995e6baf26ca", + "IPY_MODEL_795e0495ac274840b84a9b2585fcb45b" + ], + "layout": "IPY_MODEL_57a3d879c99546208499a10cab8e04c7", + "tabbable": null, + "tooltip": null + } + }, + "10e4288569c34c62a5b336b51d001893": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a00672d52f0e4ec9897ae8c78c851671", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6029174aa2734257bacd074acae12776", + "layout": "IPY_MODEL_4a44c65dbe25405084910ffb25948f0b", + "placeholder": "​", + "style": "IPY_MODEL_95ba2b873c0b456186466656bd4a4b05", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": " 665/665 [00:00<00:00, 125kB/s]" } }, - "0227130daf864de2a9f5587e121b425a": { + "18d5e009472c494c99ff042d5f4315c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_27f1cfa796cd4d64880fb8ad1470589b", + "placeholder": "​", + "style": "IPY_MODEL_fe7ce2b57aca4dc1b98fc34a52588b14", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 167MB/s]" + } + }, + "1978592a53c7411fbb7d77958baefc3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "202e77f783604892ba40274a0d289276": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "250cfa9619754602808099a37a2351cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_385b07eec10c4e1780987426b0fb1ffa", + "placeholder": "​", + "style": "IPY_MODEL_6942d17c55104716b38548fde85fe97d", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "263444dd6e2144b3b9f73741003fea9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9123a1575ca34375b0b43f4289e4f1ef", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_431300eb075a4588806ea9c78d8531a3", + "tabbable": null, + "tooltip": null, + "value": 231508.0 } }, - "053dbb42cf054867a54de302dbfefdf8": { + "27f1cfa796cd4d64880fb8ad1470589b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1208,7 +1357,30 @@ "width": null } }, - "09e4037f17934e1da5741f0685a7dfeb": { + "29d77952655945c5975ed010d32ac352": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d330efe583834f6e9a4aef2d210f2448", + "placeholder": "​", + "style": "IPY_MODEL_5108e22e56ca44b8a5f0abeba3da954d", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 9.54kB/s]" + } + }, + "2b3304b6189e458ba99e1273f6dc3065": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1261,33 +1433,31 @@ "width": null } }, - "0b2fe773764c4ee780ed77c63a296446": { + "2ccab9f1f4f0466db60167c0d669672d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_80cea85ada4b4a4e9e790c0ada42054d", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_73ab885582294b89accd8cfd85cbb712", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_964aed80ab284dd48a31d9d5ad28fd30", + "IPY_MODEL_263444dd6e2144b3b9f73741003fea9f", + "IPY_MODEL_b6313e82b4f34189bbf42e2bf514a82d" + ], + "layout": "IPY_MODEL_4a315905dbb7402f9b17e6768c6aa8eb", "tabbable": null, - "tooltip": null, - "value": 466062.0 + "tooltip": null } }, - "0dfc0392780e4d329d424a64da0895f9": { + "2ea5a0c2da3a4d83b5610c2c9d2d542c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1340,30 +1510,47 @@ "width": null } }, - "0dfc239a2d764dfb9a2caff49904c052": { + "328b046d1b9d4dcfa0edb3132c01a4f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d7a529e025be4eed842f99e2a80de169", - "placeholder": "​", - "style": "IPY_MODEL_f81cba84f0d84d50bd031c8f82d138ea", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d3d9e1e700e14803bfdd9de847eb8a1b", + "IPY_MODEL_7de6723f9beb43dbbad71ef72bf3d394", + "IPY_MODEL_58219d6711ac4cbe976717b4a76aa16b" + ], + "layout": "IPY_MODEL_83718921424246c8b3bb82278f13e7dd", "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 66.5kB/s]" + "tooltip": null + } + }, + "33e4cc93e6f44376a34c0ceb628ca488": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "0e69644f50714b77a30821b0843e81d6": { + "385b07eec10c4e1780987426b0fb1ffa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1416,48 +1603,23 @@ "width": null } }, - "1636481f45ab4c0387de3345fc362533": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f9d7413d84ce4841a9b14b87967ed398", - "placeholder": "​", - "style": "IPY_MODEL_2500b1c2e7344cc18679fe7b81ee19d7", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 139MB/s]" - } - }, - "2500b1c2e7344cc18679fe7b81ee19d7": { + "431300eb075a4588806ea9c78d8531a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "27e0409ecfa34ca2bd343174e9997ceb": { + "4a315905dbb7402f9b17e6768c6aa8eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1510,305 +1672,12 @@ "width": null } }, - "27ee615ea9ec4e129ac040262cb7eb36": { - "model_module": "@jupyter-widgets/controls", + "4a44c65dbe25405084910ffb25948f0b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "36ecbc2e91fa4bb48f5eee41c960cb50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3725429ec93d4bbc82beacd81f2af0eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d01a8b75c0734bd0bfd490a12ae7e443", - "IPY_MODEL_a8e63d0a8b7f4990a25935f7b6ec9b5b", - "IPY_MODEL_7ed69dea8ce24277a76c64546ca7f8f0" - ], - "layout": "IPY_MODEL_f4ab230c96bc4d729e8d06faed7289fd", - "tabbable": null, - "tooltip": null - } - }, - "379a79f3f34c4421ae3251ec47632830": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_833070d973a74d199ed789b713638f2d", - "placeholder": "​", - "style": "IPY_MODEL_ff576f4717b5477285400b6d291ec1e0", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "38c37ce799764bafbe125e3b271307e4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "39eb0f33cb864974b789a85bc0fec7d6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9f4378a841c741738433fdc80ed52c0e", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36ecbc2e91fa4bb48f5eee41c960cb50", - "tabbable": null, - "tooltip": null, - "value": 48.0 - } - }, - "4491dd455c674c288a42e47aaf2cff64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "451cb48a63834df88f315fc0babb4856": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "46d398d355574563ade88fde8d158f7d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4c1c253256d5477f94554e8bed11175f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bc1da15980204de993b4d7e5c8d5d695", - "placeholder": "​", - "style": "IPY_MODEL_46d398d355574563ade88fde8d158f7d", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "58a37ef0e351407ea826e173989c9988": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6029174aa2734257bacd074acae12776": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "63e87ffe9e854dceade059b4b8812599": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_68da5203870e4d0bb2a623361e6c6eb2", - "IPY_MODEL_df37b03118504b9e8ad0075e04dbd977", - "IPY_MODEL_1636481f45ab4c0387de3345fc362533" - ], - "layout": "IPY_MODEL_7e44815da81f4d49b01907a9a053b714", - "tabbable": null, - "tooltip": null - } - }, - "652d6c45fdf84f82ab0757317bd59b84": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, @@ -1823,118 +1692,40 @@ "border_right": null, "border_top": null, "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "68da5203870e4d0bb2a623361e6c6eb2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f454d670d8084974bec424e436bfc5d6", - "placeholder": "​", - "style": "IPY_MODEL_e34a642eab214564b8116c8281a7f70d", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "733711233f5e41ba8c73fc0238f5d588": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_652d6c45fdf84f82ab0757317bd59b84", - "placeholder": "​", - "style": "IPY_MODEL_af71ad4fc2684b65b76b830365f91e77", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "73ab885582294b89accd8cfd85cbb712": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "746795d5f6294e0db6d2c1ff0787e7bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7535ec3c3bca46ca83e74c5570159b64": { + "4d3503dbfed14de4b1ffb6918b31358f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1949,33 +1740,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_053dbb42cf054867a54de302dbfefdf8", + "layout": "IPY_MODEL_fb7871277ea44cc992dd5130b07e281f", "placeholder": "​", - "style": "IPY_MODEL_4491dd455c674c288a42e47aaf2cff64", + "style": "IPY_MODEL_83a784ca18dd40209d7df691456fa335", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.17kB/s]" - } - }, - "771812d922384d4e87eb7a5db3af0429": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": ".gitattributes: 100%" } }, - "77bf6cc11c6548d9a3e4fa57b0b3e8c4": { + "5108e22e56ca44b8a5f0abeba3da954d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1993,7 +1766,7 @@ "text_color": null } }, - "7b08bd54587b4d6eaf9f870784c54884": { + "533ead7294bf4d068190ca8e90d78e80": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2046,31 +1819,7 @@ "width": null } }, - "7c9adca368ad434994f84ee3ff7a2fe7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_379a79f3f34c4421ae3251ec47632830", - "IPY_MODEL_39eb0f33cb864974b789a85bc0fec7d6", - "IPY_MODEL_7535ec3c3bca46ca83e74c5570159b64" - ], - "layout": "IPY_MODEL_7da62dfb321243d79fbab18d50cfe174", - "tabbable": null, - "tooltip": null - } - }, - "7da62dfb321243d79fbab18d50cfe174": { + "57a3d879c99546208499a10cab8e04c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2123,7 +1872,53 @@ "width": null } }, - "7e34a09b52204cc6a05eee2a94a134c5": { + "58219d6711ac4cbe976717b4a76aa16b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bd7e59232eee46a9941063b605e66d9b", + "placeholder": "​", + "style": "IPY_MODEL_202e77f783604892ba40274a0d289276", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 457kB/s]" + } + }, + "5c1ec47f563245d7989ffc7eff2b3393": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b805e697dc3841fe87f86c354f112531", + "placeholder": "​", + "style": "IPY_MODEL_64fdd33a9fa24c04b2d980484a3dffca", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "623c296ec27847a08d197e0f9349902d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2139,17 +1934,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a9eb6a714389492a8f65dfbcb6b1347d", - "max": 2211.0, + "layout": "IPY_MODEL_6475f269b762452097c0dd8a50483fa7", + "max": 48.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0227130daf864de2a9f5587e121b425a", + "style": "IPY_MODEL_829408c009e84267b620439ac80aa762", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": 48.0 } }, - "7e44815da81f4d49b01907a9a053b714": { + "6475f269b762452097c0dd8a50483fa7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2202,30 +1997,43 @@ "width": null } }, - "7ed69dea8ce24277a76c64546ca7f8f0": { + "64fdd33a9fa24c04b2d980484a3dffca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_27e0409ecfa34ca2bd343174e9997ceb", - "placeholder": "​", - "style": "IPY_MODEL_77bf6cc11c6548d9a3e4fa57b0b3e8c4", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 115kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6942d17c55104716b38548fde85fe97d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "80cea85ada4b4a4e9e790c0ada42054d": { + "73369ea4b442452ba79dde0f11ccccf7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2278,7 +2086,7 @@ "width": null } }, - "833070d973a74d199ed789b713638f2d": { + "751b322f8b584ba699d87d767abcfd88": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2331,7 +2139,95 @@ "width": null } }, - "8338cde6e506483db82d6901ba3e774c": { + "795e0495ac274840b84a9b2585fcb45b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef836ca5c2e0473c8f44942bbfbde97c", + "placeholder": "​", + "style": "IPY_MODEL_c3b7fa05cbd34b3e8440577d3268b3a2", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 69.3kB/s]" + } + }, + "7de6723f9beb43dbbad71ef72bf3d394": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f83c84fa51244911ad30fbc24f0dae14", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ae1d1e4addb14d72ad47d043144ef5b2", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "806be8102c2840c683f53e27268a1a1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1036ff8e3b44432a630841123cd665e", + "placeholder": "​", + "style": "IPY_MODEL_fcdc6f83ca124a68b2ab9d6ace3e2308", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 7.08MB/s]" + } + }, + "829408c009e84267b620439ac80aa762": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "83718921424246c8b3bb82278f13e7dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2384,30 +2280,7 @@ "width": null } }, - "8584eacafcf641dbbe0abc4e0fdab8de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a714e79dfe51449da09559531bb4f2c4", - "placeholder": "​", - "style": "IPY_MODEL_c3323bfb5b684dd58b98c0bf68515b92", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "8a9bae02f72248ac891c6b2792152198": { + "83a784ca18dd40209d7df691456fa335": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2425,7 +2298,7 @@ "text_color": null } }, - "8c7c0ed05c7f4d70b058dd4cd5e71a7e": { + "9123a1575ca34375b0b43f4289e4f1ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2478,7 +2351,7 @@ "width": null } }, - "9354a8d075ce4a5a92dd7c126c6258c5": { + "947502200a574c5bb753e3a810fa8f74": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2531,7 +2404,48 @@ "width": null } }, - "9f4378a841c741738433fdc80ed52c0e": { + "95ba2b873c0b456186466656bd4a4b05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "964aed80ab284dd48a31d9d5ad28fd30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2ea5a0c2da3a4d83b5610c2c9d2d542c", + "placeholder": "​", + "style": "IPY_MODEL_a0bbd2409f4d4acfb2e91ffc5b12b95e", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "974e2a874ecf49ff8142c67afb939afd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2584,7 +2498,90 @@ "width": null } }, - "a00672d52f0e4ec9897ae8c78c851671": { + "9b703acaaefe43f2a747995e6baf26ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_947502200a574c5bb753e3a810fa8f74", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b9a4822bbbc543158d3165bdc309367e", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "a0bbd2409f4d4acfb2e91ffc5b12b95e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a0c9bb1d94eb48e1945c490bd1d43922": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a4758f91aee04d48822bb6b9c3453db8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f756af4beca342ed8bed100e0bfffe79", + "placeholder": "​", + "style": "IPY_MODEL_032871bbc89742aba639ffaee1200e37", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "aa772cc8b00945c1aa7b22081cb39031": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2637,7 +2634,69 @@ "width": null } }, - "a714e79dfe51449da09559531bb4f2c4": { + "ae1d1e4addb14d72ad47d043144ef5b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b015ab05281b4ee48af1da0ccdc94161": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2b3304b6189e458ba99e1273f6dc3065", + "placeholder": "​", + "style": "IPY_MODEL_1978592a53c7411fbb7d77958baefc3c", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "b6313e82b4f34189bbf42e2bf514a82d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_533ead7294bf4d068190ca8e90d78e80", + "placeholder": "​", + "style": "IPY_MODEL_fade1033c9ad433a857f6d209599eaad", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 36.7MB/s]" + } + }, + "b805e697dc3841fe87f86c354f112531": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2690,33 +2749,39 @@ "width": null } }, - "a8e63d0a8b7f4990a25935f7b6ec9b5b": { + "b8d38e973ddb4490be0781dbb8717675": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0dfc0392780e4d329d424a64da0895f9", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_746795d5f6294e0db6d2c1ff0787e7bb", - "tabbable": null, - "tooltip": null, - "value": 665.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b9a4822bbbc543158d3165bdc309367e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a9eb6a714389492a8f65dfbcb6b1347d": { + "bd7e59232eee46a9941063b605e66d9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2769,49 +2834,7 @@ "width": null } }, - "ade5e9f8260742648554ed88676a1439": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8584eacafcf641dbbe0abc4e0fdab8de", - "IPY_MODEL_001625066cc74e33a5f9a433101c3430", - "IPY_MODEL_0dfc239a2d764dfb9a2caff49904c052" - ], - "layout": "IPY_MODEL_0e69644f50714b77a30821b0843e81d6", - "tabbable": null, - "tooltip": null - } - }, - "af71ad4fc2684b65b76b830365f91e77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b18bf64c6af24a8caea3aae397c3cb6d": { + "c3b7fa05cbd34b3e8440577d3268b3a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2829,30 +2852,33 @@ "text_color": null } }, - "b1ec9508a119452d96ca2d738b2c70ec": { + "ce5ef1ebbb6d4b7589aa40b6d38dd8f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b08bd54587b4d6eaf9f870784c54884", - "placeholder": "​", - "style": "IPY_MODEL_58a37ef0e351407ea826e173989c9988", + "layout": "IPY_MODEL_e4e868950b0e4748a7bb54abf124ca39", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_33e4cc93e6f44376a34c0ceb628ca488", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 442kB/s]" + "value": 54245363.0 } }, - "bc1da15980204de993b4d7e5c8d5d695": { + "d1036ff8e3b44432a630841123cd665e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2905,7 +2931,55 @@ "width": null } }, - "bcc237acc68443c399549e6ed980e896": { + "d20256762cdf4c06816c5653fdfef6a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5c1ec47f563245d7989ffc7eff2b3393", + "IPY_MODEL_ce5ef1ebbb6d4b7589aa40b6d38dd8f2", + "IPY_MODEL_18d5e009472c494c99ff042d5f4315c1" + ], + "layout": "IPY_MODEL_aa772cc8b00945c1aa7b22081cb39031", + "tabbable": null, + "tooltip": null + } + }, + "d2370f99c49d43b39ac2ea8e64340375": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a4758f91aee04d48822bb6b9c3453db8", + "IPY_MODEL_dd34df9493e74cc89434500b5b18d5ac", + "IPY_MODEL_806be8102c2840c683f53e27268a1a1d" + ], + "layout": "IPY_MODEL_73369ea4b442452ba79dde0f11ccccf7", + "tabbable": null, + "tooltip": null + } + }, + "d330efe583834f6e9a4aef2d210f2448": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2958,25 +3032,7 @@ "width": null } }, - "c3323bfb5b684dd58b98c0bf68515b92": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c72bc04c1dd7490a857510ffb59c9f6f": { + "d3d9e1e700e14803bfdd9de847eb8a1b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2991,15 +3047,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d134664dc3ad4f0f844b1e84b2482fcf", + "layout": "IPY_MODEL_ef220577d59248bdbc40d7374238082a", "placeholder": "​", - "style": "IPY_MODEL_771812d922384d4e87eb7a5db3af0429", + "style": "IPY_MODEL_04b7c5dc6e7948f7b6da88bf9de4c09b", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 6.30MB/s]" + "value": "README.md: 100%" } }, - "c740cc87635d450e8be1c88a0a6efc34": { + "d9f750fd331d4370b4ead712d6fe626d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3015,86 +3071,43 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_38c37ce799764bafbe125e3b271307e4", - "max": 231508.0, + "layout": "IPY_MODEL_f76bdeeb99374127a9a34c37ef45c330", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_451cb48a63834df88f315fc0babb4856", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "c8dedf3b56054de0aa28acb1cb2e50da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9354a8d075ce4a5a92dd7c126c6258c5", - "placeholder": "​", - "style": "IPY_MODEL_8a9bae02f72248ac891c6b2792152198", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 10.8MB/s]" - } - }, - "cf70cf100fd64ea19fa00d072669b6a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8c7c0ed05c7f4d70b058dd4cd5e71a7e", - "placeholder": "​", - "style": "IPY_MODEL_27ee615ea9ec4e129ac040262cb7eb36", + "style": "IPY_MODEL_a0c9bb1d94eb48e1945c490bd1d43922", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": 665.0 } }, - "d01a8b75c0734bd0bfd490a12ae7e443": { + "dd34df9493e74cc89434500b5b18d5ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e4aa9dc9e51f4720912647b7bf06cd6b", - "placeholder": "​", - "style": "IPY_MODEL_b18bf64c6af24a8caea3aae397c3cb6d", + "layout": "IPY_MODEL_e5b68aee810b4fc48e7950601e662dad", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b8d38e973ddb4490be0781dbb8717675", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": 466062.0 } }, - "d134664dc3ad4f0f844b1e84b2482fcf": { + "e4e868950b0e4748a7bb54abf124ca39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3147,23 +3160,7 @@ "width": null } }, - "d6eb34eba80f46d98043fce0e6ae607b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d7a529e025be4eed842f99e2a80de169": { + "e5b68aee810b4fc48e7950601e662dad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3216,99 +3213,60 @@ "width": null } }, - "d91617b6d2124998a5969f32922d6f53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_733711233f5e41ba8c73fc0238f5d588", - "IPY_MODEL_7e34a09b52204cc6a05eee2a94a134c5", - "IPY_MODEL_b1ec9508a119452d96ca2d738b2c70ec" - ], - "layout": "IPY_MODEL_e4492c16584a4d3db5993c7c80f91750", - "tabbable": null, - "tooltip": null - } - }, - "ded0570bc26344d68b4798c4ab6888e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4c1c253256d5477f94554e8bed11175f", - "IPY_MODEL_c740cc87635d450e8be1c88a0a6efc34", - "IPY_MODEL_c8dedf3b56054de0aa28acb1cb2e50da" - ], - "layout": "IPY_MODEL_8338cde6e506483db82d6901ba3e774c", - "tabbable": null, - "tooltip": null - } - }, - "df37b03118504b9e8ad0075e04dbd977": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_09e4037f17934e1da5741f0685a7dfeb", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d6eb34eba80f46d98043fce0e6ae607b", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "e34a642eab214564b8116c8281a7f70d": { - "model_module": "@jupyter-widgets/controls", + "ef220577d59248bdbc40d7374238082a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e4492c16584a4d3db5993c7c80f91750": { + "ef836ca5c2e0473c8f44942bbfbde97c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3361,7 +3319,31 @@ "width": null } }, - "e4aa9dc9e51f4720912647b7bf06cd6b": { + "f26e295a2fa0406c8e3fff0e0818202d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_250cfa9619754602808099a37a2351cd", + "IPY_MODEL_d9f750fd331d4370b4ead712d6fe626d", + "IPY_MODEL_10e4288569c34c62a5b336b51d001893" + ], + "layout": "IPY_MODEL_751b322f8b584ba699d87d767abcfd88", + "tabbable": null, + "tooltip": null + } + }, + "f756af4beca342ed8bed100e0bfffe79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3414,7 +3396,7 @@ "width": null } }, - "f454d670d8084974bec424e436bfc5d6": { + "f76bdeeb99374127a9a34c37ef45c330": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3467,7 +3449,7 @@ "width": null } }, - "f4ab230c96bc4d729e8d06faed7289fd": { + "f83c84fa51244911ad30fbc24f0dae14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3520,7 +3502,7 @@ "width": null } }, - "f81cba84f0d84d50bd031c8f82d138ea": { + "fade1033c9ad433a857f6d209599eaad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3538,7 +3520,7 @@ "text_color": null } }, - "f9d7413d84ce4841a9b14b87967ed398": { + "fb7871277ea44cc992dd5130b07e281f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3591,7 +3573,7 @@ "width": null } }, - "fb9f5fb9025747a6913a7f62dd70f767": { + "fb7ad54f03394e35a23b11c642b2c405": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3606,16 +3588,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_cf70cf100fd64ea19fa00d072669b6a7", - "IPY_MODEL_0b2fe773764c4ee780ed77c63a296446", - "IPY_MODEL_c72bc04c1dd7490a857510ffb59c9f6f" + "IPY_MODEL_b015ab05281b4ee48af1da0ccdc94161", + "IPY_MODEL_623c296ec27847a08d197e0f9349902d", + "IPY_MODEL_29d77952655945c5975ed010d32ac352" ], - "layout": "IPY_MODEL_bcc237acc68443c399549e6ed980e896", + "layout": "IPY_MODEL_974e2a874ecf49ff8142c67afb939afd", "tabbable": null, "tooltip": null } }, - "ff576f4717b5477285400b6d291ec1e0": { + "fcdc6f83ca124a68b2ab9d6ace3e2308": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fe7ce2b57aca4dc1b98fc34a52588b14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 8adda0839..4120a32c1 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1318,7 +1318,7 @@

5. Use cleanlab to find label issues -{"state": {"e2c8bfd78802420aa58151606782b475": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d79079d6562b49a594dd4a26a677f78f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a7ac1a1507d34e3cbf51ce9364327dd4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e2c8bfd78802420aa58151606782b475", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d79079d6562b49a594dd4a26a677f78f", "tabbable": null, "tooltip": null, "value": 2041.0}}, "95a78818ee794fe68c61b7cf29fdc42a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "09b588eda4e849c7883eda8de9d1f6cb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cde044794a6d416cb7d4d9bfbbdd10e8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_95a78818ee794fe68c61b7cf29fdc42a", "placeholder": "\u200b", "style": "IPY_MODEL_09b588eda4e849c7883eda8de9d1f6cb", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "8ebb23a6bbc5451ea03d8f0a3a6549ed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "25f71ece0cbd4346880b5d478816ec2d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4805493dbd5a4d47be1f18fbfec250f3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8ebb23a6bbc5451ea03d8f0a3a6549ed", "placeholder": "\u200b", "style": "IPY_MODEL_25f71ece0cbd4346880b5d478816ec2d", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007465kB/s]"}}, "9bd0850a8f3048b2a6e2b025199ba70c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "77de5646dc9c499f9253538ec2d87f4b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cde044794a6d416cb7d4d9bfbbdd10e8", "IPY_MODEL_a7ac1a1507d34e3cbf51ce9364327dd4", "IPY_MODEL_4805493dbd5a4d47be1f18fbfec250f3"], "layout": "IPY_MODEL_9bd0850a8f3048b2a6e2b025199ba70c", "tabbable": null, "tooltip": null}}, "7ed909777aa14b02a34f0ad06f2fc633": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d085ea3e5b0346f9b925bfdfbefdfc20": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1977963d69874f08a4a550c12eb0df08": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7ed909777aa14b02a34f0ad06f2fc633", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d085ea3e5b0346f9b925bfdfbefdfc20", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "f46aef77cd22424c910b2fd513c15c5a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "14f2acb7f672473f9d817f61c2e3c9db": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ec4ed17648334d328e83dbdee38561cc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f46aef77cd22424c910b2fd513c15c5a", "placeholder": "\u200b", "style": "IPY_MODEL_14f2acb7f672473f9d817f61c2e3c9db", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "c5d3b8c148a34d98ae425286ae6f2d3a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2539a2a801e740c8bed2c81dee15de8f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f0ecf95ddb2e40a186c5daa4bf530cf2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c5d3b8c148a34d98ae425286ae6f2d3a", "placeholder": "\u200b", "style": "IPY_MODEL_2539a2a801e740c8bed2c81dee15de8f", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200780.0MB/s]"}}, "a743879d50e341859bc0e025425d71a5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f90847c72e2948f88b0565cc891316b9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ec4ed17648334d328e83dbdee38561cc", "IPY_MODEL_1977963d69874f08a4a550c12eb0df08", "IPY_MODEL_f0ecf95ddb2e40a186c5daa4bf530cf2"], "layout": "IPY_MODEL_a743879d50e341859bc0e025425d71a5", "tabbable": null, "tooltip": null}}, "24db312476c84654b3ccf179894cfba2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bb59d5eed0b3438ea804f1f21c759972": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "30c3fe14ac314a788cceb278f099e17b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_24db312476c84654b3ccf179894cfba2", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bb59d5eed0b3438ea804f1f21c759972", "tabbable": null, "tooltip": null, "value": 3201.0}}, "a8c905a789e74254bc8abeb6de7b5e2a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a76de540b8341478bc0760b061ceebf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "03ae62aabce04fd7bdfd6ac247da0f43": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a8c905a789e74254bc8abeb6de7b5e2a", "placeholder": "\u200b", "style": "IPY_MODEL_8a76de540b8341478bc0760b061ceebf", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "cd2f786eadd64d1ebe22d92168b1cfce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d7914b97b1a4317a52be1158797d013": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a24e58baca2544fe90d69d75d634f23f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cd2f786eadd64d1ebe22d92168b1cfce", "placeholder": "\u200b", "style": "IPY_MODEL_6d7914b97b1a4317a52be1158797d013", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007749kB/s]"}}, "0a79f2fe50fd4fa685198558f8f162f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7564a312fac74e70a16f36d43fd95d4a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_03ae62aabce04fd7bdfd6ac247da0f43", "IPY_MODEL_30c3fe14ac314a788cceb278f099e17b", "IPY_MODEL_a24e58baca2544fe90d69d75d634f23f"], "layout": "IPY_MODEL_0a79f2fe50fd4fa685198558f8f162f0", "tabbable": null, "tooltip": null}}, "7a44458323f64a208abd1891b3e08c40": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c6f1a93025344fd4937db01da956dd54": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "590e946a276c42428e90902ec7e8db30": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7a44458323f64a208abd1891b3e08c40", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c6f1a93025344fd4937db01da956dd54", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "2e3c9659709d4c17a1299e21b7874985": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "63c1ad7a0b464cc19b0259064c194dc5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "47f9253646c84b7e92006b8a777e5784": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2e3c9659709d4c17a1299e21b7874985", "placeholder": "\u200b", "style": "IPY_MODEL_63c1ad7a0b464cc19b0259064c194dc5", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "3f9c78fdf806416eae2cb0d0cf83d25d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "944470f832a54dcd82bc13a52223ac50": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "83367e9e88cc4ca595ac324d5954be37": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3f9c78fdf806416eae2cb0d0cf83d25d", "placeholder": "\u200b", "style": "IPY_MODEL_944470f832a54dcd82bc13a52223ac50", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007251MB/s]"}}, "fe5b64a8596748c498922baaf2bcf5d7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "10eba25b896d4feb945b9de45c2b2425": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_47f9253646c84b7e92006b8a777e5784", "IPY_MODEL_590e946a276c42428e90902ec7e8db30", "IPY_MODEL_83367e9e88cc4ca595ac324d5954be37"], "layout": "IPY_MODEL_fe5b64a8596748c498922baaf2bcf5d7", "tabbable": null, "tooltip": null}}, "a6823d942574498c912ce97b605daa72": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d0fbf44ea676431db02d0c42430a2d0a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "023b1113484545a9950c12629a309554": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a6823d942574498c912ce97b605daa72", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d0fbf44ea676431db02d0c42430a2d0a", "tabbable": null, "tooltip": null, "value": 128619.0}}, "8c9e064270cc4327894382f8953f6ac0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b5cf6998f58848d5bb85a3c137affd72": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "407eb61a00a145999b71b768d85326a6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c9e064270cc4327894382f8953f6ac0", "placeholder": "\u200b", "style": "IPY_MODEL_b5cf6998f58848d5bb85a3c137affd72", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "82fdb254f9074dbba7f4008818adbfd1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba969e4fc3e34f9ab064c8dea0ffc806": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3b379630b21449379b6d2561d7527534": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_82fdb254f9074dbba7f4008818adbfd1", "placeholder": "\u200b", "style": "IPY_MODEL_ba969e4fc3e34f9ab064c8dea0ffc806", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20073.17MB/s]"}}, "3f4d4f09d1b24ef8b347f9430147b81f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4d5878ce9e8648e6806b8ce16a71d915": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_407eb61a00a145999b71b768d85326a6", "IPY_MODEL_023b1113484545a9950c12629a309554", "IPY_MODEL_3b379630b21449379b6d2561d7527534"], "layout": "IPY_MODEL_3f4d4f09d1b24ef8b347f9430147b81f", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"61797416aadf4af5bcea4adfab15ea37": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "648981cda80e4fe686afd77c841b011b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "245795f1b8c14f0580deec4394842154": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_61797416aadf4af5bcea4adfab15ea37", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_648981cda80e4fe686afd77c841b011b", "tabbable": null, "tooltip": null, "value": 2041.0}}, "0958ba1748ee4beca7da01e8e46a9749": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b5d1d793a204f1ab4608428b5ba64b9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "68b320632eea4620bbd3b735bdc34dd9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0958ba1748ee4beca7da01e8e46a9749", "placeholder": "\u200b", "style": "IPY_MODEL_6b5d1d793a204f1ab4608428b5ba64b9", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "9f88f31de9d74eb0928335732d663561": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b74e55a2c5174b88b66ecaa2389897db": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8848bb7bffb545109abca26a5ae067d7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9f88f31de9d74eb0928335732d663561", "placeholder": "\u200b", "style": "IPY_MODEL_b74e55a2c5174b88b66ecaa2389897db", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007514kB/s]"}}, "f6e17f0c62ca4e53a8d555529912ee89": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd5cd533ee9f44c9a03ecc0071f84776": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_68b320632eea4620bbd3b735bdc34dd9", "IPY_MODEL_245795f1b8c14f0580deec4394842154", "IPY_MODEL_8848bb7bffb545109abca26a5ae067d7"], "layout": "IPY_MODEL_f6e17f0c62ca4e53a8d555529912ee89", "tabbable": null, "tooltip": null}}, "87a12f7b60404561827c31d53af0eaa8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "51ff76b0c91049ceab3634eafef03d03": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "38cedb80c4884a7aa9c8360e66697385": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_87a12f7b60404561827c31d53af0eaa8", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_51ff76b0c91049ceab3634eafef03d03", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "841d6e99393d4eacb2171cd893b4a9ae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad0c26113b5641988b98da2e1367adc3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4cb73865490e4acab5b8bd74d5733f8e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_841d6e99393d4eacb2171cd893b4a9ae", "placeholder": "\u200b", "style": "IPY_MODEL_ad0c26113b5641988b98da2e1367adc3", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "753341b93da447daa4758e7e5a5610e7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae98285a153e46948474fc4abeceddfd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ba43a6d3c0eb4eae9b16f9526c18eff9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_753341b93da447daa4758e7e5a5610e7", "placeholder": "\u200b", "style": "IPY_MODEL_ae98285a153e46948474fc4abeceddfd", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200739.9MB/s]"}}, "d16f6084ce1149cd889d6a2cb15f31c5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65cd560eff044447950b5de1dfe924a9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4cb73865490e4acab5b8bd74d5733f8e", "IPY_MODEL_38cedb80c4884a7aa9c8360e66697385", "IPY_MODEL_ba43a6d3c0eb4eae9b16f9526c18eff9"], "layout": "IPY_MODEL_d16f6084ce1149cd889d6a2cb15f31c5", "tabbable": null, "tooltip": null}}, "a0795bde2b3a4af08cc09a2b34f5e2aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b5504d0328b84005b17ed0cf71889d5b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ba716f0978944bb8b14f373794cf086b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a0795bde2b3a4af08cc09a2b34f5e2aa", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b5504d0328b84005b17ed0cf71889d5b", "tabbable": null, "tooltip": null, "value": 3201.0}}, "d64c977788594151a2a69bd522b4b4e2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b387baf48cbf40a79960c2e5e37c6dc5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "451ef1098e4b4a0cbc94307f8c54a69a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d64c977788594151a2a69bd522b4b4e2", "placeholder": "\u200b", "style": "IPY_MODEL_b387baf48cbf40a79960c2e5e37c6dc5", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "399a48d2dd4a4aeba66c8583c6cb3267": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d05285dc1f6426fba9ead2f8bc7365b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ffab753038714d3ca6e89b271ede7406": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_399a48d2dd4a4aeba66c8583c6cb3267", "placeholder": "\u200b", "style": "IPY_MODEL_8d05285dc1f6426fba9ead2f8bc7365b", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007894kB/s]"}}, "9e087829122b4cf38c2f2193a3ae9b93": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "16bedf557e1f48c3b23c71d15d5ff3ae": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_451ef1098e4b4a0cbc94307f8c54a69a", "IPY_MODEL_ba716f0978944bb8b14f373794cf086b", "IPY_MODEL_ffab753038714d3ca6e89b271ede7406"], "layout": "IPY_MODEL_9e087829122b4cf38c2f2193a3ae9b93", "tabbable": null, "tooltip": null}}, "4c0901a7fd664a0386f5506a5f1265c6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c5e187c01984c899378ec18b1b6f259": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9d58780c4a6d406b98d0415c7c2a4ee5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4c0901a7fd664a0386f5506a5f1265c6", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6c5e187c01984c899378ec18b1b6f259", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "202cf82f0f8a4e6ab6c44edcc4f643d4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "68b5eff6aadd4afb9e1940334ccb3d9b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fa3cbfeda5cd4b7fbc3c0c9e921e5864": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_202cf82f0f8a4e6ab6c44edcc4f643d4", "placeholder": "\u200b", "style": "IPY_MODEL_68b5eff6aadd4afb9e1940334ccb3d9b", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "ae7e6d3ea8df4eb8badebf0329826518": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2a522c81494744879ad988349f56ed6d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0148687423ae4404946f694c128d1db8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ae7e6d3ea8df4eb8badebf0329826518", "placeholder": "\u200b", "style": "IPY_MODEL_2a522c81494744879ad988349f56ed6d", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200739.4MB/s]"}}, "c639e0d31a954ec89eb3549596545904": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9527fc8121814f01a443e62ff927d47b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fa3cbfeda5cd4b7fbc3c0c9e921e5864", "IPY_MODEL_9d58780c4a6d406b98d0415c7c2a4ee5", "IPY_MODEL_0148687423ae4404946f694c128d1db8"], "layout": "IPY_MODEL_c639e0d31a954ec89eb3549596545904", "tabbable": null, "tooltip": null}}, "77a067827f5d4c28b687f203c008e031": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4edb5018fb694daab45e95ca9a2d5a86": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "aece8b0eb585430bbc9c4df8054ab74b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_77a067827f5d4c28b687f203c008e031", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4edb5018fb694daab45e95ca9a2d5a86", "tabbable": null, "tooltip": null, "value": 128619.0}}, "25b2f2a091664e82b0b254933237ecda": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bbb63db0bf1246e09f27e3fbcd6067f2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "45c7d5509d354e7db551d2ee42562f4a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_25b2f2a091664e82b0b254933237ecda", "placeholder": "\u200b", "style": "IPY_MODEL_bbb63db0bf1246e09f27e3fbcd6067f2", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "9b265031b424474386c724023fbceea8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13d241d8b1a14cd99f8717170fdc36e9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "283a7fca65ce4358af3da78be675147f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9b265031b424474386c724023fbceea8", "placeholder": "\u200b", "style": "IPY_MODEL_13d241d8b1a14cd99f8717170fdc36e9", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20072.64MB/s]"}}, "4055580cee714e89b235223a231f6c86": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f6af1b2285f641a2b47091704e8edf17": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_45c7d5509d354e7db551d2ee42562f4a", "IPY_MODEL_aece8b0eb585430bbc9c4df8054ab74b", "IPY_MODEL_283a7fca65ce4358af3da78be675147f"], "layout": "IPY_MODEL_4055580cee714e89b235223a231f6c86", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 363234e16..661651aab 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:01.195944Z", - "iopub.status.busy": "2024-04-06T04:10:01.195729Z", - "iopub.status.idle": "2024-04-06T04:10:05.927367Z", - "shell.execute_reply": "2024-04-06T04:10:05.926792Z" + "iopub.execute_input": "2024-04-06T04:27:12.140596Z", + "iopub.status.busy": "2024-04-06T04:27:12.140418Z", + "iopub.status.idle": "2024-04-06T04:27:16.566489Z", + "shell.execute_reply": "2024-04-06T04:27:16.565924Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:05.930353Z", - "iopub.status.busy": "2024-04-06T04:10:05.929705Z", - "iopub.status.idle": "2024-04-06T04:10:05.933035Z", - "shell.execute_reply": "2024-04-06T04:10:05.932521Z" + "iopub.execute_input": "2024-04-06T04:27:16.569088Z", + "iopub.status.busy": "2024-04-06T04:27:16.568539Z", + "iopub.status.idle": "2024-04-06T04:27:16.571617Z", + "shell.execute_reply": "2024-04-06T04:27:16.571189Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:05.935181Z", - "iopub.status.busy": "2024-04-06T04:10:05.934854Z", - "iopub.status.idle": "2024-04-06T04:10:05.939445Z", - "shell.execute_reply": "2024-04-06T04:10:05.939029Z" + "iopub.execute_input": "2024-04-06T04:27:16.573587Z", + "iopub.status.busy": "2024-04-06T04:27:16.573414Z", + "iopub.status.idle": "2024-04-06T04:27:16.578000Z", + "shell.execute_reply": "2024-04-06T04:27:16.577578Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-06T04:10:05.941730Z", - "iopub.status.busy": "2024-04-06T04:10:05.941268Z", - "iopub.status.idle": "2024-04-06T04:10:07.570959Z", - "shell.execute_reply": "2024-04-06T04:10:07.570278Z" + "iopub.execute_input": "2024-04-06T04:27:16.580077Z", + "iopub.status.busy": "2024-04-06T04:27:16.579751Z", + "iopub.status.idle": "2024-04-06T04:27:18.276513Z", + "shell.execute_reply": "2024-04-06T04:27:18.275051Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-06T04:10:07.573521Z", - "iopub.status.busy": "2024-04-06T04:10:07.573301Z", - "iopub.status.idle": "2024-04-06T04:10:07.583865Z", - "shell.execute_reply": "2024-04-06T04:10:07.583450Z" + "iopub.execute_input": "2024-04-06T04:27:18.282470Z", + "iopub.status.busy": "2024-04-06T04:27:18.281603Z", + "iopub.status.idle": "2024-04-06T04:27:18.299325Z", + "shell.execute_reply": "2024-04-06T04:27:18.298235Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:07.585858Z", - "iopub.status.busy": "2024-04-06T04:10:07.585680Z", - "iopub.status.idle": "2024-04-06T04:10:07.590998Z", - "shell.execute_reply": "2024-04-06T04:10:07.590554Z" + "iopub.execute_input": "2024-04-06T04:27:18.302849Z", + "iopub.status.busy": "2024-04-06T04:27:18.302356Z", + "iopub.status.idle": "2024-04-06T04:27:18.311115Z", + "shell.execute_reply": "2024-04-06T04:27:18.310622Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-06T04:10:07.592915Z", - "iopub.status.busy": "2024-04-06T04:10:07.592596Z", - "iopub.status.idle": "2024-04-06T04:10:08.039113Z", - "shell.execute_reply": "2024-04-06T04:10:08.038613Z" + "iopub.execute_input": "2024-04-06T04:27:18.313433Z", + "iopub.status.busy": "2024-04-06T04:27:18.313090Z", + "iopub.status.idle": "2024-04-06T04:27:18.744781Z", + "shell.execute_reply": "2024-04-06T04:27:18.744269Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:08.041462Z", - "iopub.status.busy": "2024-04-06T04:10:08.041095Z", - "iopub.status.idle": "2024-04-06T04:10:09.051263Z", - "shell.execute_reply": "2024-04-06T04:10:09.050622Z" + "iopub.execute_input": "2024-04-06T04:27:18.747037Z", + "iopub.status.busy": "2024-04-06T04:27:18.746633Z", + "iopub.status.idle": "2024-04-06T04:27:20.503082Z", + "shell.execute_reply": "2024-04-06T04:27:20.502599Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-04-06T04:10:09.053964Z", - "iopub.status.busy": "2024-04-06T04:10:09.053616Z", - "iopub.status.idle": "2024-04-06T04:10:09.072488Z", - "shell.execute_reply": "2024-04-06T04:10:09.071948Z" + "iopub.execute_input": "2024-04-06T04:27:20.505556Z", + "iopub.status.busy": "2024-04-06T04:27:20.505108Z", + "iopub.status.idle": "2024-04-06T04:27:20.523191Z", + "shell.execute_reply": "2024-04-06T04:27:20.522660Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:09.074543Z", - "iopub.status.busy": "2024-04-06T04:10:09.074230Z", - "iopub.status.idle": "2024-04-06T04:10:09.077746Z", - "shell.execute_reply": "2024-04-06T04:10:09.077346Z" + "iopub.execute_input": "2024-04-06T04:27:20.525153Z", + "iopub.status.busy": "2024-04-06T04:27:20.524840Z", + "iopub.status.idle": "2024-04-06T04:27:20.527990Z", + "shell.execute_reply": "2024-04-06T04:27:20.527457Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:09.079689Z", - "iopub.status.busy": "2024-04-06T04:10:09.079387Z", - "iopub.status.idle": "2024-04-06T04:10:23.747012Z", - "shell.execute_reply": "2024-04-06T04:10:23.746455Z" + "iopub.execute_input": "2024-04-06T04:27:20.530026Z", + "iopub.status.busy": "2024-04-06T04:27:20.529694Z", + "iopub.status.idle": "2024-04-06T04:27:34.456164Z", + "shell.execute_reply": "2024-04-06T04:27:34.455636Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-06T04:10:23.749854Z", - "iopub.status.busy": "2024-04-06T04:10:23.749457Z", - "iopub.status.idle": "2024-04-06T04:10:23.753443Z", - "shell.execute_reply": "2024-04-06T04:10:23.752996Z" + "iopub.execute_input": "2024-04-06T04:27:34.458814Z", + "iopub.status.busy": "2024-04-06T04:27:34.458439Z", + "iopub.status.idle": "2024-04-06T04:27:34.462230Z", + "shell.execute_reply": "2024-04-06T04:27:34.461692Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:23.755529Z", - "iopub.status.busy": "2024-04-06T04:10:23.755236Z", - "iopub.status.idle": "2024-04-06T04:10:24.472476Z", - "shell.execute_reply": "2024-04-06T04:10:24.471919Z" + "iopub.execute_input": "2024-04-06T04:27:34.464292Z", + "iopub.status.busy": "2024-04-06T04:27:34.463976Z", + "iopub.status.idle": "2024-04-06T04:27:35.183273Z", + "shell.execute_reply": "2024-04-06T04:27:35.182717Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-06T04:10:24.475330Z", - "iopub.status.busy": "2024-04-06T04:10:24.474973Z", - "iopub.status.idle": "2024-04-06T04:10:24.479564Z", - "shell.execute_reply": "2024-04-06T04:10:24.479106Z" + "iopub.execute_input": "2024-04-06T04:27:35.186021Z", + "iopub.status.busy": "2024-04-06T04:27:35.185608Z", + "iopub.status.idle": "2024-04-06T04:27:35.190731Z", + "shell.execute_reply": "2024-04-06T04:27:35.190237Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:24.481879Z", - "iopub.status.busy": "2024-04-06T04:10:24.481525Z", - "iopub.status.idle": "2024-04-06T04:10:24.592834Z", - "shell.execute_reply": "2024-04-06T04:10:24.592251Z" + "iopub.execute_input": "2024-04-06T04:27:35.193080Z", + "iopub.status.busy": "2024-04-06T04:27:35.192698Z", + "iopub.status.idle": "2024-04-06T04:27:35.302175Z", + "shell.execute_reply": "2024-04-06T04:27:35.301475Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:24.595138Z", - "iopub.status.busy": "2024-04-06T04:10:24.594946Z", - "iopub.status.idle": "2024-04-06T04:10:24.607308Z", - "shell.execute_reply": "2024-04-06T04:10:24.606754Z" + "iopub.execute_input": "2024-04-06T04:27:35.304615Z", + "iopub.status.busy": "2024-04-06T04:27:35.304237Z", + "iopub.status.idle": "2024-04-06T04:27:35.316277Z", + "shell.execute_reply": "2024-04-06T04:27:35.315829Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:24.609352Z", - "iopub.status.busy": "2024-04-06T04:10:24.609024Z", - "iopub.status.idle": "2024-04-06T04:10:24.616898Z", - "shell.execute_reply": "2024-04-06T04:10:24.616360Z" + "iopub.execute_input": "2024-04-06T04:27:35.318303Z", + "iopub.status.busy": "2024-04-06T04:27:35.317968Z", + "iopub.status.idle": "2024-04-06T04:27:35.325434Z", + "shell.execute_reply": "2024-04-06T04:27:35.324937Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:24.618873Z", - "iopub.status.busy": "2024-04-06T04:10:24.618555Z", - "iopub.status.idle": "2024-04-06T04:10:24.622875Z", - "shell.execute_reply": "2024-04-06T04:10:24.622318Z" + "iopub.execute_input": "2024-04-06T04:27:35.327556Z", + "iopub.status.busy": "2024-04-06T04:27:35.327202Z", + "iopub.status.idle": "2024-04-06T04:27:35.331288Z", + "shell.execute_reply": "2024-04-06T04:27:35.330846Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-04-06T04:10:24.624871Z", - "iopub.status.busy": "2024-04-06T04:10:24.624545Z", - "iopub.status.idle": "2024-04-06T04:10:24.630012Z", - "shell.execute_reply": "2024-04-06T04:10:24.629508Z" + "iopub.execute_input": "2024-04-06T04:27:35.333294Z", + "iopub.status.busy": "2024-04-06T04:27:35.332989Z", + "iopub.status.idle": "2024-04-06T04:27:35.338557Z", + "shell.execute_reply": "2024-04-06T04:27:35.337997Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-06T04:10:24.632092Z", - "iopub.status.busy": "2024-04-06T04:10:24.631766Z", - "iopub.status.idle": "2024-04-06T04:10:24.979721Z", - "shell.execute_reply": "2024-04-06T04:10:24.979241Z" + "iopub.execute_input": "2024-04-06T04:27:35.340521Z", + "iopub.status.busy": "2024-04-06T04:27:35.340225Z", + "iopub.status.idle": "2024-04-06T04:27:35.658582Z", + "shell.execute_reply": "2024-04-06T04:27:35.657998Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-06T04:10:24.981981Z", - "iopub.status.busy": "2024-04-06T04:10:24.981539Z", - "iopub.status.idle": "2024-04-06T04:10:25.090071Z", - "shell.execute_reply": "2024-04-06T04:10:25.089503Z" + "iopub.execute_input": "2024-04-06T04:27:35.660829Z", + "iopub.status.busy": "2024-04-06T04:27:35.660413Z", + "iopub.status.idle": "2024-04-06T04:27:35.769702Z", + "shell.execute_reply": "2024-04-06T04:27:35.769175Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-06T04:10:25.092276Z", - "iopub.status.busy": "2024-04-06T04:10:25.091912Z", - "iopub.status.idle": "2024-04-06T04:10:25.198257Z", - "shell.execute_reply": "2024-04-06T04:10:25.197689Z" + "iopub.execute_input": "2024-04-06T04:27:35.771757Z", + "iopub.status.busy": "2024-04-06T04:27:35.771495Z", + "iopub.status.idle": "2024-04-06T04:27:35.872918Z", + "shell.execute_reply": "2024-04-06T04:27:35.872364Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:25.200626Z", - "iopub.status.busy": "2024-04-06T04:10:25.200225Z", - "iopub.status.idle": "2024-04-06T04:10:25.306345Z", - "shell.execute_reply": "2024-04-06T04:10:25.305814Z" + "iopub.execute_input": "2024-04-06T04:27:35.875082Z", + "iopub.status.busy": "2024-04-06T04:27:35.874745Z", + "iopub.status.idle": "2024-04-06T04:27:35.975770Z", + "shell.execute_reply": "2024-04-06T04:27:35.975289Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:25.308483Z", - "iopub.status.busy": "2024-04-06T04:10:25.308149Z", - "iopub.status.idle": "2024-04-06T04:10:25.311361Z", - "shell.execute_reply": "2024-04-06T04:10:25.310829Z" + "iopub.execute_input": "2024-04-06T04:27:35.977985Z", + "iopub.status.busy": "2024-04-06T04:27:35.977624Z", + "iopub.status.idle": "2024-04-06T04:27:35.980777Z", + "shell.execute_reply": "2024-04-06T04:27:35.980344Z" }, "nbsphinx": "hidden" }, @@ -1397,33 +1397,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "023b1113484545a9950c12629a309554": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a6823d942574498c912ce97b605daa72", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d0fbf44ea676431db02d0c42430a2d0a", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "03ae62aabce04fd7bdfd6ac247da0f43": { + "0148687423ae4404946f694c128d1db8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1438,33 +1412,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8c905a789e74254bc8abeb6de7b5e2a", + "layout": "IPY_MODEL_ae7e6d3ea8df4eb8badebf0329826518", "placeholder": "​", - "style": "IPY_MODEL_8a76de540b8341478bc0760b061ceebf", + "style": "IPY_MODEL_2a522c81494744879ad988349f56ed6d", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "09b588eda4e849c7883eda8de9d1f6cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 15.9M/15.9M [00:00<00:00, 39.4MB/s]" } }, - "0a79f2fe50fd4fa685198558f8f162f0": { + "0958ba1748ee4beca7da01e8e46a9749": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1517,31 +1473,7 @@ "width": null } }, - "10eba25b896d4feb945b9de45c2b2425": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_47f9253646c84b7e92006b8a777e5784", - "IPY_MODEL_590e946a276c42428e90902ec7e8db30", - "IPY_MODEL_83367e9e88cc4ca595ac324d5954be37" - ], - "layout": "IPY_MODEL_fe5b64a8596748c498922baaf2bcf5d7", - "tabbable": null, - "tooltip": null - } - }, - "14f2acb7f672473f9d817f61c2e3c9db": { + "13d241d8b1a14cd99f8717170fdc36e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1559,33 +1491,31 @@ "text_color": null } }, - "1977963d69874f08a4a550c12eb0df08": { + "16bedf557e1f48c3b23c71d15d5ff3ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7ed909777aa14b02a34f0ad06f2fc633", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d085ea3e5b0346f9b925bfdfbefdfc20", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_451ef1098e4b4a0cbc94307f8c54a69a", + "IPY_MODEL_ba716f0978944bb8b14f373794cf086b", + "IPY_MODEL_ffab753038714d3ca6e89b271ede7406" + ], + "layout": "IPY_MODEL_9e087829122b4cf38c2f2193a3ae9b93", "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "tooltip": null } }, - "24db312476c84654b3ccf179894cfba2": { + "202cf82f0f8a4e6ab6c44edcc4f643d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1638,43 +1568,33 @@ "width": null } }, - "2539a2a801e740c8bed2c81dee15de8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "25f71ece0cbd4346880b5d478816ec2d": { + "245795f1b8c14f0580deec4394842154": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_61797416aadf4af5bcea4adfab15ea37", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_648981cda80e4fe686afd77c841b011b", + "tabbable": null, + "tooltip": null, + "value": 2041.0 } }, - "2e3c9659709d4c17a1299e21b7874985": { + "25b2f2a091664e82b0b254933237ecda": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1727,56 +1647,74 @@ "width": null } }, - "30c3fe14ac314a788cceb278f099e17b": { + "283a7fca65ce4358af3da78be675147f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_24db312476c84654b3ccf179894cfba2", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bb59d5eed0b3438ea804f1f21c759972", + "layout": "IPY_MODEL_9b265031b424474386c724023fbceea8", + "placeholder": "​", + "style": "IPY_MODEL_13d241d8b1a14cd99f8717170fdc36e9", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": " 129k/129k [00:00<00:00, 2.64MB/s]" } }, - "3b379630b21449379b6d2561d7527534": { + "2a522c81494744879ad988349f56ed6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "38cedb80c4884a7aa9c8360e66697385": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_82fdb254f9074dbba7f4008818adbfd1", - "placeholder": "​", - "style": "IPY_MODEL_ba969e4fc3e34f9ab064c8dea0ffc806", + "layout": "IPY_MODEL_87a12f7b60404561827c31d53af0eaa8", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_51ff76b0c91049ceab3634eafef03d03", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 3.17MB/s]" + "value": 16887676.0 } }, - "3f4d4f09d1b24ef8b347f9430147b81f": { + "399a48d2dd4a4aeba66c8583c6cb3267": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1829,7 +1767,7 @@ "width": null } }, - "3f9c78fdf806416eae2cb0d0cf83d25d": { + "4055580cee714e89b235223a231f6c86": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1882,7 +1820,7 @@ "width": null } }, - "407eb61a00a145999b71b768d85326a6": { + "451ef1098e4b4a0cbc94307f8c54a69a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1897,15 +1835,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c9e064270cc4327894382f8953f6ac0", + "layout": "IPY_MODEL_d64c977788594151a2a69bd522b4b4e2", "placeholder": "​", - "style": "IPY_MODEL_b5cf6998f58848d5bb85a3c137affd72", + "style": "IPY_MODEL_b387baf48cbf40a79960c2e5e37c6dc5", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "47f9253646c84b7e92006b8a777e5784": { + "45c7d5509d354e7db551d2ee42562f4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1920,15 +1858,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2e3c9659709d4c17a1299e21b7874985", + "layout": "IPY_MODEL_25b2f2a091664e82b0b254933237ecda", "placeholder": "​", - "style": "IPY_MODEL_63c1ad7a0b464cc19b0259064c194dc5", + "style": "IPY_MODEL_bbb63db0bf1246e09f27e3fbcd6067f2", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": "label_encoder.txt: 100%" + } + }, + "4c0901a7fd664a0386f5506a5f1265c6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "4805493dbd5a4d47be1f18fbfec250f3": { + "4cb73865490e4acab5b8bd74d5733f8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1943,101 +1934,116 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8ebb23a6bbc5451ea03d8f0a3a6549ed", + "layout": "IPY_MODEL_841d6e99393d4eacb2171cd893b4a9ae", "placeholder": "​", - "style": "IPY_MODEL_25f71ece0cbd4346880b5d478816ec2d", + "style": "IPY_MODEL_ad0c26113b5641988b98da2e1367adc3", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 465kB/s]" + "value": "embedding_model.ckpt: 100%" } }, - "4d5878ce9e8648e6806b8ce16a71d915": { + "4edb5018fb694daab45e95ca9a2d5a86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_407eb61a00a145999b71b768d85326a6", - "IPY_MODEL_023b1113484545a9950c12629a309554", - "IPY_MODEL_3b379630b21449379b6d2561d7527534" - ], - "layout": "IPY_MODEL_3f4d4f09d1b24ef8b347f9430147b81f", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "590e946a276c42428e90902ec7e8db30": { + "51ff76b0c91049ceab3634eafef03d03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a44458323f64a208abd1891b3e08c40", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c6f1a93025344fd4937db01da956dd54", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "63c1ad7a0b464cc19b0259064c194dc5": { - "model_module": "@jupyter-widgets/controls", + "61797416aadf4af5bcea4adfab15ea37": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6d7914b97b1a4317a52be1158797d013": { + "648981cda80e4fe686afd77c841b011b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "7564a312fac74e70a16f36d43fd95d4a": { + "65cd560eff044447950b5de1dfe924a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2052,40 +2058,144 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_03ae62aabce04fd7bdfd6ac247da0f43", - "IPY_MODEL_30c3fe14ac314a788cceb278f099e17b", - "IPY_MODEL_a24e58baca2544fe90d69d75d634f23f" + "IPY_MODEL_4cb73865490e4acab5b8bd74d5733f8e", + "IPY_MODEL_38cedb80c4884a7aa9c8360e66697385", + "IPY_MODEL_ba43a6d3c0eb4eae9b16f9526c18eff9" ], - "layout": "IPY_MODEL_0a79f2fe50fd4fa685198558f8f162f0", + "layout": "IPY_MODEL_d16f6084ce1149cd889d6a2cb15f31c5", "tabbable": null, "tooltip": null } }, - "77de5646dc9c499f9253538ec2d87f4b": { + "68b320632eea4620bbd3b735bdc34dd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cde044794a6d416cb7d4d9bfbbdd10e8", - "IPY_MODEL_a7ac1a1507d34e3cbf51ce9364327dd4", - "IPY_MODEL_4805493dbd5a4d47be1f18fbfec250f3" - ], - "layout": "IPY_MODEL_9bd0850a8f3048b2a6e2b025199ba70c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0958ba1748ee4beca7da01e8e46a9749", + "placeholder": "​", + "style": "IPY_MODEL_6b5d1d793a204f1ab4608428b5ba64b9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "68b5eff6aadd4afb9e1940334ccb3d9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6b5d1d793a204f1ab4608428b5ba64b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6c5e187c01984c899378ec18b1b6f259": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "753341b93da447daa4758e7e5a5610e7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7a44458323f64a208abd1891b3e08c40": { + "77a067827f5d4c28b687f203c008e031": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2138,7 +2248,7 @@ "width": null } }, - "7ed909777aa14b02a34f0ad06f2fc633": { + "841d6e99393d4eacb2171cd893b4a9ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2191,7 +2301,7 @@ "width": null } }, - "82fdb254f9074dbba7f4008818adbfd1": { + "87a12f7b60404561827c31d53af0eaa8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2244,7 +2354,7 @@ "width": null } }, - "83367e9e88cc4ca595ac324d5954be37": { + "8848bb7bffb545109abca26a5ae067d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2259,15 +2369,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3f9c78fdf806416eae2cb0d0cf83d25d", + "layout": "IPY_MODEL_9f88f31de9d74eb0928335732d663561", "placeholder": "​", - "style": "IPY_MODEL_944470f832a54dcd82bc13a52223ac50", + "style": "IPY_MODEL_b74e55a2c5174b88b66ecaa2389897db", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 251MB/s]" + "value": " 2.04k/2.04k [00:00<00:00, 514kB/s]" } }, - "8a76de540b8341478bc0760b061ceebf": { + "8d05285dc1f6426fba9ead2f8bc7365b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2285,7 +2395,31 @@ "text_color": null } }, - "8c9e064270cc4327894382f8953f6ac0": { + "9527fc8121814f01a443e62ff927d47b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fa3cbfeda5cd4b7fbc3c0c9e921e5864", + "IPY_MODEL_9d58780c4a6d406b98d0415c7c2a4ee5", + "IPY_MODEL_0148687423ae4404946f694c128d1db8" + ], + "layout": "IPY_MODEL_c639e0d31a954ec89eb3549596545904", + "tabbable": null, + "tooltip": null + } + }, + "9b265031b424474386c724023fbceea8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2338,7 +2472,33 @@ "width": null } }, - "8ebb23a6bbc5451ea03d8f0a3a6549ed": { + "9d58780c4a6d406b98d0415c7c2a4ee5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4c0901a7fd664a0386f5506a5f1265c6", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6c5e187c01984c899378ec18b1b6f259", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "9e087829122b4cf38c2f2193a3ae9b93": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2391,25 +2551,7 @@ "width": null } }, - "944470f832a54dcd82bc13a52223ac50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "95a78818ee794fe68c61b7cf29fdc42a": { + "9f88f31de9d74eb0928335732d663561": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2462,7 +2604,7 @@ "width": null } }, - "9bd0850a8f3048b2a6e2b025199ba70c": { + "a0795bde2b3a4af08cc09a2b34f5e2aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2515,30 +2657,25 @@ "width": null } }, - "a24e58baca2544fe90d69d75d634f23f": { + "ad0c26113b5641988b98da2e1367adc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cd2f786eadd64d1ebe22d92168b1cfce", - "placeholder": "​", - "style": "IPY_MODEL_6d7914b97b1a4317a52be1158797d013", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 749kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a6823d942574498c912ce97b605daa72": { + "ae7e6d3ea8df4eb8badebf0329826518": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2591,60 +2728,25 @@ "width": null } }, - "a743879d50e341859bc0e025425d71a5": { - "model_module": "@jupyter-widgets/base", + "ae98285a153e46948474fc4abeceddfd": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a7ac1a1507d34e3cbf51ce9364327dd4": { + "aece8b0eb585430bbc9c4df8054ab74b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2660,88 +2762,51 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e2c8bfd78802420aa58151606782b475", - "max": 2041.0, + "layout": "IPY_MODEL_77a067827f5d4c28b687f203c008e031", + "max": 128619.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_d79079d6562b49a594dd4a26a677f78f", + "style": "IPY_MODEL_4edb5018fb694daab45e95ca9a2d5a86", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": 128619.0 } }, - "a8c905a789e74254bc8abeb6de7b5e2a": { - "model_module": "@jupyter-widgets/base", + "b387baf48cbf40a79960c2e5e37c6dc5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b5cf6998f58848d5bb85a3c137affd72": { + "b5504d0328b84005b17ed0cf71889d5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "ba969e4fc3e34f9ab064c8dea0ffc806": { + "b74e55a2c5174b88b66ecaa2389897db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2759,92 +2824,98 @@ "text_color": null } }, - "bb59d5eed0b3438ea804f1f21c759972": { + "ba43a6d3c0eb4eae9b16f9526c18eff9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_753341b93da447daa4758e7e5a5610e7", + "placeholder": "​", + "style": "IPY_MODEL_ae98285a153e46948474fc4abeceddfd", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 39.9MB/s]" } }, - "c5d3b8c148a34d98ae425286ae6f2d3a": { - "model_module": "@jupyter-widgets/base", + "ba716f0978944bb8b14f373794cf086b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a0795bde2b3a4af08cc09a2b34f5e2aa", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b5504d0328b84005b17ed0cf71889d5b", + "tabbable": null, + "tooltip": null, + "value": 3201.0 } }, - "c6f1a93025344fd4937db01da956dd54": { + "bbb63db0bf1246e09f27e3fbcd6067f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bd5cd533ee9f44c9a03ecc0071f84776": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_68b320632eea4620bbd3b735bdc34dd9", + "IPY_MODEL_245795f1b8c14f0580deec4394842154", + "IPY_MODEL_8848bb7bffb545109abca26a5ae067d7" + ], + "layout": "IPY_MODEL_f6e17f0c62ca4e53a8d555529912ee89", + "tabbable": null, + "tooltip": null } }, - "cd2f786eadd64d1ebe22d92168b1cfce": { + "c639e0d31a954ec89eb3549596545904": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2897,78 +2968,7 @@ "width": null } }, - "cde044794a6d416cb7d4d9bfbbdd10e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_95a78818ee794fe68c61b7cf29fdc42a", - "placeholder": "​", - "style": "IPY_MODEL_09b588eda4e849c7883eda8de9d1f6cb", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "d085ea3e5b0346f9b925bfdfbefdfc20": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d0fbf44ea676431db02d0c42430a2d0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d79079d6562b49a594dd4a26a677f78f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e2c8bfd78802420aa58151606782b475": { + "d16f6084ce1149cd889d6a2cb15f31c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3021,53 +3021,7 @@ "width": null } }, - "ec4ed17648334d328e83dbdee38561cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f46aef77cd22424c910b2fd513c15c5a", - "placeholder": "​", - "style": "IPY_MODEL_14f2acb7f672473f9d817f61c2e3c9db", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "f0ecf95ddb2e40a186c5daa4bf530cf2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c5d3b8c148a34d98ae425286ae6f2d3a", - "placeholder": "​", - "style": "IPY_MODEL_2539a2a801e740c8bed2c81dee15de8f", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 80.0MB/s]" - } - }, - "f46aef77cd22424c910b2fd513c15c5a": { + "d64c977788594151a2a69bd522b4b4e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3120,7 +3074,7 @@ "width": null } }, - "f90847c72e2948f88b0565cc891316b9": { + "f6af1b2285f641a2b47091704e8edf17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3135,16 +3089,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ec4ed17648334d328e83dbdee38561cc", - "IPY_MODEL_1977963d69874f08a4a550c12eb0df08", - "IPY_MODEL_f0ecf95ddb2e40a186c5daa4bf530cf2" + "IPY_MODEL_45c7d5509d354e7db551d2ee42562f4a", + "IPY_MODEL_aece8b0eb585430bbc9c4df8054ab74b", + "IPY_MODEL_283a7fca65ce4358af3da78be675147f" ], - "layout": "IPY_MODEL_a743879d50e341859bc0e025425d71a5", + "layout": "IPY_MODEL_4055580cee714e89b235223a231f6c86", "tabbable": null, "tooltip": null } }, - "fe5b64a8596748c498922baaf2bcf5d7": { + "f6e17f0c62ca4e53a8d555529912ee89": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3196,6 +3150,52 @@ "visibility": null, "width": null } + }, + "fa3cbfeda5cd4b7fbc3c0c9e921e5864": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_202cf82f0f8a4e6ab6c44edcc4f643d4", + "placeholder": "​", + "style": "IPY_MODEL_68b5eff6aadd4afb9e1940334ccb3d9b", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" + } + }, + "ffab753038714d3ca6e89b271ede7406": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_399a48d2dd4a4aeba66c8583c6cb3267", + "placeholder": "​", + "style": "IPY_MODEL_8d05285dc1f6426fba9ead2f8bc7365b", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 894kB/s]" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/data_monitor.html b/master/tutorials/datalab/data_monitor.html index ca4d00a07..4f1439c28 100644 --- a/master/tutorials/datalab/data_monitor.html +++ b/master/tutorials/datalab/data_monitor.html @@ -661,7 +661,7 @@

1. Install and import required dependenciesdependencies = ["cleanlab", "matplotlib", "datasets"] # TODO: make sure this list is updated if "google.colab" in str(get_ipython()): # Check if it's running in Google Colab - %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9 + %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00 cmd = ' '.join([dep for dep in dependencies if dep != "cleanlab"]) %pip install $cmd else: @@ -1144,7 +1144,7 @@

5. Use DataMonitor to find issues in new data

-
+
diff --git a/master/tutorials/datalab/data_monitor.ipynb b/master/tutorials/datalab/data_monitor.ipynb index 6e26bb6a6..49d632c47 100644 --- a/master/tutorials/datalab/data_monitor.ipynb +++ b/master/tutorials/datalab/data_monitor.ipynb @@ -66,10 +66,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:29.365982Z", - "iopub.status.busy": "2024-04-06T04:10:29.365801Z", - "iopub.status.idle": "2024-04-06T04:10:30.517962Z", - "shell.execute_reply": "2024-04-06T04:10:30.517324Z" + "iopub.execute_input": "2024-04-06T04:27:39.124807Z", + "iopub.status.busy": "2024-04-06T04:27:39.124638Z", + "iopub.status.idle": "2024-04-06T04:27:40.230534Z", + "shell.execute_reply": "2024-04-06T04:27:40.229912Z" } }, "outputs": [], @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -103,10 +103,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:30.520598Z", - "iopub.status.busy": "2024-04-06T04:10:30.520301Z", - "iopub.status.idle": "2024-04-06T04:10:30.527232Z", - "shell.execute_reply": "2024-04-06T04:10:30.526805Z" + "iopub.execute_input": "2024-04-06T04:27:40.232938Z", + "iopub.status.busy": "2024-04-06T04:27:40.232697Z", + "iopub.status.idle": "2024-04-06T04:27:40.239199Z", + "shell.execute_reply": "2024-04-06T04:27:40.238786Z" } }, "outputs": [], @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:30.529435Z", - "iopub.status.busy": "2024-04-06T04:10:30.529090Z", - "iopub.status.idle": "2024-04-06T04:10:30.537877Z", - "shell.execute_reply": "2024-04-06T04:10:30.537356Z" + "iopub.execute_input": "2024-04-06T04:27:40.241352Z", + "iopub.status.busy": "2024-04-06T04:27:40.240938Z", + "iopub.status.idle": "2024-04-06T04:27:40.249415Z", + "shell.execute_reply": "2024-04-06T04:27:40.248876Z" } }, "outputs": [], @@ -334,10 +334,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:30.539879Z", - "iopub.status.busy": "2024-04-06T04:10:30.539615Z", - "iopub.status.idle": "2024-04-06T04:10:30.544868Z", - "shell.execute_reply": "2024-04-06T04:10:30.544466Z" + "iopub.execute_input": "2024-04-06T04:27:40.251546Z", + "iopub.status.busy": "2024-04-06T04:27:40.251172Z", + "iopub.status.idle": "2024-04-06T04:27:40.256527Z", + "shell.execute_reply": "2024-04-06T04:27:40.256119Z" } }, "outputs": [], @@ -350,10 +350,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:30.546982Z", - "iopub.status.busy": "2024-04-06T04:10:30.546610Z", - "iopub.status.idle": "2024-04-06T04:10:30.550184Z", - "shell.execute_reply": "2024-04-06T04:10:30.549783Z" + "iopub.execute_input": "2024-04-06T04:27:40.258644Z", + "iopub.status.busy": "2024-04-06T04:27:40.258268Z", + "iopub.status.idle": "2024-04-06T04:27:40.262114Z", + "shell.execute_reply": "2024-04-06T04:27:40.261656Z" } }, "outputs": [], @@ -431,10 +431,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:30.552157Z", - "iopub.status.busy": "2024-04-06T04:10:30.551977Z", - "iopub.status.idle": "2024-04-06T04:10:30.738064Z", - "shell.execute_reply": "2024-04-06T04:10:30.737553Z" + "iopub.execute_input": "2024-04-06T04:27:40.264175Z", + "iopub.status.busy": "2024-04-06T04:27:40.263808Z", + "iopub.status.idle": "2024-04-06T04:27:40.445579Z", + "shell.execute_reply": "2024-04-06T04:27:40.445093Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:30.740510Z", - "iopub.status.busy": "2024-04-06T04:10:30.740280Z", - "iopub.status.idle": "2024-04-06T04:10:31.040121Z", - "shell.execute_reply": "2024-04-06T04:10:31.039553Z" + "iopub.execute_input": "2024-04-06T04:27:40.447977Z", + "iopub.status.busy": "2024-04-06T04:27:40.447537Z", + "iopub.status.idle": "2024-04-06T04:27:40.744638Z", + "shell.execute_reply": "2024-04-06T04:27:40.744091Z" } }, "outputs": [ @@ -534,10 +534,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:31.042492Z", - "iopub.status.busy": "2024-04-06T04:10:31.042041Z", - "iopub.status.idle": "2024-04-06T04:10:31.067678Z", - "shell.execute_reply": "2024-04-06T04:10:31.067074Z" + "iopub.execute_input": "2024-04-06T04:27:40.746848Z", + "iopub.status.busy": "2024-04-06T04:27:40.746525Z", + "iopub.status.idle": "2024-04-06T04:27:40.771572Z", + "shell.execute_reply": "2024-04-06T04:27:40.771006Z" } }, "outputs": [], @@ -562,10 +562,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:31.070093Z", - "iopub.status.busy": "2024-04-06T04:10:31.069901Z", - "iopub.status.idle": "2024-04-06T04:10:32.748429Z", - "shell.execute_reply": "2024-04-06T04:10:32.747817Z" + "iopub.execute_input": "2024-04-06T04:27:40.774039Z", + "iopub.status.busy": "2024-04-06T04:27:40.773664Z", + "iopub.status.idle": "2024-04-06T04:27:42.370106Z", + "shell.execute_reply": "2024-04-06T04:27:42.369478Z" } }, "outputs": [ @@ -648,10 +648,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:32.750720Z", - "iopub.status.busy": "2024-04-06T04:10:32.750379Z", - "iopub.status.idle": "2024-04-06T04:10:32.753670Z", - "shell.execute_reply": "2024-04-06T04:10:32.753257Z" + "iopub.execute_input": "2024-04-06T04:27:42.372440Z", + "iopub.status.busy": "2024-04-06T04:27:42.372129Z", + "iopub.status.idle": "2024-04-06T04:27:42.375563Z", + "shell.execute_reply": "2024-04-06T04:27:42.375038Z" } }, "outputs": [], @@ -677,10 +677,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:32.755839Z", - "iopub.status.busy": "2024-04-06T04:10:32.755444Z", - "iopub.status.idle": "2024-04-06T04:10:32.765209Z", - "shell.execute_reply": "2024-04-06T04:10:32.764770Z" + "iopub.execute_input": "2024-04-06T04:27:42.377711Z", + "iopub.status.busy": "2024-04-06T04:27:42.377396Z", + "iopub.status.idle": "2024-04-06T04:27:42.386960Z", + "shell.execute_reply": "2024-04-06T04:27:42.386393Z" } }, "outputs": [], @@ -717,17 +717,17 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:32.767300Z", - "iopub.status.busy": "2024-04-06T04:10:32.766972Z", - "iopub.status.idle": "2024-04-06T04:10:37.847887Z", - "shell.execute_reply": "2024-04-06T04:10:37.847324Z" + "iopub.execute_input": "2024-04-06T04:27:42.389082Z", + "iopub.status.busy": "2024-04-06T04:27:42.388643Z", + "iopub.status.idle": "2024-04-06T04:27:47.460848Z", + "shell.execute_reply": "2024-04-06T04:27:47.460241Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2aea03d7a4f24e21835e60e7945aad6b", + "model_id": "88a3f04de8e44875bbbccd2e92af964b", "version_major": 2, "version_minor": 0 }, @@ -787,17 +787,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:37.850092Z", - "iopub.status.busy": "2024-04-06T04:10:37.849755Z", - "iopub.status.idle": "2024-04-06T04:10:43.140744Z", - "shell.execute_reply": "2024-04-06T04:10:43.140166Z" + "iopub.execute_input": "2024-04-06T04:27:47.463019Z", + "iopub.status.busy": "2024-04-06T04:27:47.462687Z", + "iopub.status.idle": "2024-04-06T04:27:52.754644Z", + "shell.execute_reply": "2024-04-06T04:27:52.754068Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "56370b4ce89f4eb297d57ae589e26e51", + "model_id": "98349aa633c94f6f8de2ad9b4a7ddcc0", "version_major": 2, "version_minor": 0 }, @@ -925,10 +925,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:43.142997Z", - "iopub.status.busy": "2024-04-06T04:10:43.142638Z", - "iopub.status.idle": "2024-04-06T04:10:43.153445Z", - "shell.execute_reply": "2024-04-06T04:10:43.153011Z" + "iopub.execute_input": "2024-04-06T04:27:52.756904Z", + "iopub.status.busy": "2024-04-06T04:27:52.756572Z", + "iopub.status.idle": "2024-04-06T04:27:52.767494Z", + "shell.execute_reply": "2024-04-06T04:27:52.766969Z" } }, "outputs": [ @@ -1161,10 +1161,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:43.155269Z", - "iopub.status.busy": "2024-04-06T04:10:43.155090Z", - "iopub.status.idle": "2024-04-06T04:10:43.160530Z", - "shell.execute_reply": "2024-04-06T04:10:43.160087Z" + "iopub.execute_input": "2024-04-06T04:27:52.769625Z", + "iopub.status.busy": "2024-04-06T04:27:52.769240Z", + "iopub.status.idle": "2024-04-06T04:27:52.774775Z", + "shell.execute_reply": "2024-04-06T04:27:52.774299Z" } }, "outputs": [ @@ -1244,7 +1244,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04f1fe913e6647c3878763324c2e7a76": { + "061ccf039e13444da59852bf8e450df8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1262,7 +1262,33 @@ "text_color": null } }, - "184736b585174068b53979a2bc326dfb": { + "07e9941853a644c2a8e7beb026aa8096": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83e26b89eb7147a9a08689975eaae0aa", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a50c1ed63c444f5ea7ec0b51e28adfa9", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "1f1380d992af4fc9ac5092887976d69d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1315,49 +1341,71 @@ "width": null } }, - "1c81cf67f91c4b888dab2213df234f0c": { + "3501255b1f0e4d23b395426656d1061d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f1380d992af4fc9ac5092887976d69d", + "placeholder": "​", + "style": "IPY_MODEL_d71ac3c63a39491d9ed58f8bbc64e388", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.33it/s]" } }, - "2aea03d7a4f24e21835e60e7945aad6b": { + "41752ff7750c4b20be0a41d83676cda7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9d6d815d4a9b4ea5a6eebb4479524371", - "IPY_MODEL_313b34e797b94ab6b4fd80a910d0a4ac", - "IPY_MODEL_caa142c700c8492e80d30ed3c0b16aaa" - ], - "layout": "IPY_MODEL_2c34d710d74f4ae3ad2819468e5d2b24", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4c96caaaddeb44fa8d834cd11d2bec53", + "placeholder": "​", + "style": "IPY_MODEL_061ccf039e13444da59852bf8e450df8", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "2c34d710d74f4ae3ad2819468e5d2b24": { + "4c2a75ebabb6459aa6defc80f93384b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4c96caaaddeb44fa8d834cd11d2bec53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1410,51 +1458,76 @@ "width": null } }, - "3112364e254d45a983c68a6672720320": { + "79ee40937e344d409eebbafc1d34af9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "313b34e797b94ab6b4fd80a910d0a4ac": { - "model_module": "@jupyter-widgets/controls", + "80904aac151d4808b96b94cab7affb24": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_487411add662423683e7233192723fa6", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8267adce1e7749f18c00aaa750cfb91e", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3beb63de2fcd4237b90532549ccfe142": { + "830d282b791f42c9a26b8731e4e4dd10": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1507,7 +1580,7 @@ "width": null } }, - "487411add662423683e7233192723fa6": { + "83e26b89eb7147a9a08689975eaae0aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1560,7 +1633,7 @@ "width": null } }, - "56370b4ce89f4eb297d57ae589e26e51": { + "88a3f04de8e44875bbbccd2e92af964b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1575,16 +1648,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c9d0fd2be9644c0ea77a71e0a46eb712", - "IPY_MODEL_804f91ffd13c480f86d2d1b6fcdfaba6", - "IPY_MODEL_5f28d90c6ac345b79e7097ff5ea124d7" + "IPY_MODEL_91d86c05cce145ae9379b1550341fef6", + "IPY_MODEL_d26d3eb4fe95497db089feb11c392945", + "IPY_MODEL_c4a783fb9d8b484cbe929e6db7234964" ], - "layout": "IPY_MODEL_89e015b46c4546efa94305fbce3c1098", + "layout": "IPY_MODEL_91edbbc589e34aee8ae904e8b0a3009d", "tabbable": null, "tooltip": null } }, - "5f28d90c6ac345b79e7097ff5ea124d7": { + "91d86c05cce145ae9379b1550341fef6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1599,15 +1672,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_184736b585174068b53979a2bc326dfb", + "layout": "IPY_MODEL_d80e7ac068684ff2922a11e8e6d52e25", "placeholder": "​", - "style": "IPY_MODEL_1c81cf67f91c4b888dab2213df234f0c", + "style": "IPY_MODEL_99572cb4f6f14e83856554309f7cc07c", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "6af880553e63497fb229bb987ebf4d68": { + "91edbbc589e34aee8ae904e8b0a3009d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1660,49 +1733,49 @@ "width": null } }, - "804f91ffd13c480f86d2d1b6fcdfaba6": { + "98349aa633c94f6f8de2ad9b4a7ddcc0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6af880553e63497fb229bb987ebf4d68", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_980f49aa997249c9b5254f4c926aa4db", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_41752ff7750c4b20be0a41d83676cda7", + "IPY_MODEL_07e9941853a644c2a8e7beb026aa8096", + "IPY_MODEL_3501255b1f0e4d23b395426656d1061d" + ], + "layout": "IPY_MODEL_80904aac151d4808b96b94cab7affb24", "tabbable": null, - "tooltip": null, - "value": 7.0 + "tooltip": null } }, - "8267adce1e7749f18c00aaa750cfb91e": { + "99572cb4f6f14e83856554309f7cc07c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "89e015b46c4546efa94305fbce3c1098": { + "a272a4b17efd42cfbf635e41a3cf87bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1755,7 +1828,7 @@ "width": null } }, - "980f49aa997249c9b5254f4c926aa4db": { + "a50c1ed63c444f5ea7ec0b51e28adfa9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1771,7 +1844,7 @@ "description_width": "" } }, - "9d6d815d4a9b4ea5a6eebb4479524371": { + "c4a783fb9d8b484cbe929e6db7234964": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1786,132 +1859,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3beb63de2fcd4237b90532549ccfe142", + "layout": "IPY_MODEL_830d282b791f42c9a26b8731e4e4dd10", "placeholder": "​", - "style": "IPY_MODEL_04f1fe913e6647c3878763324c2e7a76", + "style": "IPY_MODEL_4c2a75ebabb6459aa6defc80f93384b4", "tabbable": null, "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "b81f140aec4c49b783cf4dfb46a82129": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 50/50 [00:05<00:00,  9.89it/s]" } }, - "c9d0fd2be9644c0ea77a71e0a46eb712": { + "d26d3eb4fe95497db089feb11c392945": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f7f3afe350e745858fda609f0df6727a", - "placeholder": "​", - "style": "IPY_MODEL_3112364e254d45a983c68a6672720320", + "layout": "IPY_MODEL_a272a4b17efd42cfbf635e41a3cf87bc", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_79ee40937e344d409eebbafc1d34af9b", "tabbable": null, "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" + "value": 50.0 } }, - "caa142c700c8492e80d30ed3c0b16aaa": { + "d71ac3c63a39491d9ed58f8bbc64e388": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ff409b3307f24d83b06d573799bf62c0", - "placeholder": "​", - "style": "IPY_MODEL_b81f140aec4c49b783cf4dfb46a82129", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.88it/s]" - } - }, - "f7f3afe350e745858fda609f0df6727a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ff409b3307f24d83b06d573799bf62c0": { + "d80e7ac068684ff2922a11e8e6d52e25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 10499fb81..ef080168e 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1121,7 +1121,7 @@

Functionality 2: Specifying nondefault arguments
-
+
@@ -1517,7 +1517,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"2cfa2393ea0842739ff04953fb459e25": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "31c8e9b4a35a46e5b173f25dfa0bdc44": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3f5048b0d7b04192ba7e421ffbbc80dc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2cfa2393ea0842739ff04953fb459e25", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_31c8e9b4a35a46e5b173f25dfa0bdc44", "tabbable": null, "tooltip": null, "value": 132.0}}, "a16b98dfb0414e7a9ebfaa05b3caf3ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "085628767279462da9a04b14eec2bcd5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0afd1a05ead340c7bf25c88ecff0da9c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a16b98dfb0414e7a9ebfaa05b3caf3ab", "placeholder": "\u200b", "style": "IPY_MODEL_085628767279462da9a04b14eec2bcd5", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "b9ad4aa73828498c92de311fcdd82240": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "edf1b9afddd7441d8b518a2e72df484c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b24c583d51fd4398beb0625a429a5984": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b9ad4aa73828498c92de311fcdd82240", "placeholder": "\u200b", "style": "IPY_MODEL_edf1b9afddd7441d8b518a2e72df484c", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713520.10\u2007examples/s]"}}, "28cb3e10819a4aa2ae6b2260c3d6b360": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4f906d5463b546c5803f5e6c5cb45858": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0afd1a05ead340c7bf25c88ecff0da9c", "IPY_MODEL_3f5048b0d7b04192ba7e421ffbbc80dc", "IPY_MODEL_b24c583d51fd4398beb0625a429a5984"], "layout": "IPY_MODEL_28cb3e10819a4aa2ae6b2260c3d6b360", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"8e9944f01dc04773b1a6f250b877bdac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "92a77433e43f4ff8a546985e6e38611a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "17c3deaafb3d4e8ba7ed2d539ab37994": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8e9944f01dc04773b1a6f250b877bdac", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_92a77433e43f4ff8a546985e6e38611a", "tabbable": null, "tooltip": null, "value": 132.0}}, "0df42a660b99494ba1a08fc9a8cdd1b4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "996d62a724d14e7f9758fa309375faff": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7bd4b0305523463bbf5bf70b1f791cc7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0df42a660b99494ba1a08fc9a8cdd1b4", "placeholder": "\u200b", "style": "IPY_MODEL_996d62a724d14e7f9758fa309375faff", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "375a2c62332d41db9fb6fda4e1c413b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd9f710c62d542cf9e7b79052a8e5d74": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d482671c5f304dc1af9900d828daaf12": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_375a2c62332d41db9fb6fda4e1c413b1", "placeholder": "\u200b", "style": "IPY_MODEL_bd9f710c62d542cf9e7b79052a8e5d74", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713627.93\u2007examples/s]"}}, "02bbc5143d3a4993a0d1f8da9de11d01": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d02d6b616f48472186e69f83078244aa": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7bd4b0305523463bbf5bf70b1f791cc7", "IPY_MODEL_17c3deaafb3d4e8ba7ed2d539ab37994", "IPY_MODEL_d482671c5f304dc1af9900d828daaf12"], "layout": "IPY_MODEL_02bbc5143d3a4993a0d1f8da9de11d01", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index fdcc7e164..6f252d481 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:45.592417Z", - "iopub.status.busy": "2024-04-06T04:10:45.592246Z", - "iopub.status.idle": "2024-04-06T04:10:46.763744Z", - "shell.execute_reply": "2024-04-06T04:10:46.763140Z" + "iopub.execute_input": "2024-04-06T04:27:55.167484Z", + "iopub.status.busy": "2024-04-06T04:27:55.167142Z", + "iopub.status.idle": "2024-04-06T04:27:56.268393Z", + "shell.execute_reply": "2024-04-06T04:27:56.267802Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:46.766271Z", - "iopub.status.busy": "2024-04-06T04:10:46.766009Z", - "iopub.status.idle": "2024-04-06T04:10:46.769053Z", - "shell.execute_reply": "2024-04-06T04:10:46.768529Z" + "iopub.execute_input": "2024-04-06T04:27:56.270921Z", + "iopub.status.busy": "2024-04-06T04:27:56.270628Z", + "iopub.status.idle": "2024-04-06T04:27:56.273710Z", + "shell.execute_reply": "2024-04-06T04:27:56.273181Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:46.770987Z", - "iopub.status.busy": "2024-04-06T04:10:46.770811Z", - "iopub.status.idle": "2024-04-06T04:10:46.779996Z", - "shell.execute_reply": "2024-04-06T04:10:46.779529Z" + "iopub.execute_input": "2024-04-06T04:27:56.276040Z", + "iopub.status.busy": "2024-04-06T04:27:56.275731Z", + "iopub.status.idle": "2024-04-06T04:27:56.284763Z", + "shell.execute_reply": "2024-04-06T04:27:56.284342Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:46.781805Z", - "iopub.status.busy": "2024-04-06T04:10:46.781631Z", - "iopub.status.idle": "2024-04-06T04:10:46.786184Z", - "shell.execute_reply": "2024-04-06T04:10:46.785778Z" + "iopub.execute_input": "2024-04-06T04:27:56.286793Z", + "iopub.status.busy": "2024-04-06T04:27:56.286479Z", + "iopub.status.idle": "2024-04-06T04:27:56.290759Z", + "shell.execute_reply": "2024-04-06T04:27:56.290351Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:46.788097Z", - "iopub.status.busy": "2024-04-06T04:10:46.787920Z", - "iopub.status.idle": "2024-04-06T04:10:46.970465Z", - "shell.execute_reply": "2024-04-06T04:10:46.969978Z" + "iopub.execute_input": "2024-04-06T04:27:56.292900Z", + "iopub.status.busy": "2024-04-06T04:27:56.292571Z", + "iopub.status.idle": "2024-04-06T04:27:56.470930Z", + "shell.execute_reply": "2024-04-06T04:27:56.470381Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:46.973173Z", - "iopub.status.busy": "2024-04-06T04:10:46.972703Z", - "iopub.status.idle": "2024-04-06T04:10:47.343929Z", - "shell.execute_reply": "2024-04-06T04:10:47.343452Z" + "iopub.execute_input": "2024-04-06T04:27:56.473159Z", + "iopub.status.busy": "2024-04-06T04:27:56.472901Z", + "iopub.status.idle": "2024-04-06T04:27:56.842173Z", + "shell.execute_reply": "2024-04-06T04:27:56.841568Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:47.346009Z", - "iopub.status.busy": "2024-04-06T04:10:47.345819Z", - "iopub.status.idle": "2024-04-06T04:10:47.369500Z", - "shell.execute_reply": "2024-04-06T04:10:47.369048Z" + "iopub.execute_input": "2024-04-06T04:27:56.844403Z", + "iopub.status.busy": "2024-04-06T04:27:56.844070Z", + "iopub.status.idle": "2024-04-06T04:27:56.867433Z", + "shell.execute_reply": "2024-04-06T04:27:56.867005Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:47.371463Z", - "iopub.status.busy": "2024-04-06T04:10:47.371280Z", - "iopub.status.idle": "2024-04-06T04:10:47.382377Z", - "shell.execute_reply": "2024-04-06T04:10:47.381858Z" + "iopub.execute_input": "2024-04-06T04:27:56.869442Z", + "iopub.status.busy": "2024-04-06T04:27:56.869133Z", + "iopub.status.idle": "2024-04-06T04:27:56.879921Z", + "shell.execute_reply": "2024-04-06T04:27:56.879386Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:47.384660Z", - "iopub.status.busy": "2024-04-06T04:10:47.384266Z", - "iopub.status.idle": "2024-04-06T04:10:49.023186Z", - "shell.execute_reply": "2024-04-06T04:10:49.022519Z" + "iopub.execute_input": "2024-04-06T04:27:56.882178Z", + "iopub.status.busy": "2024-04-06T04:27:56.881838Z", + "iopub.status.idle": "2024-04-06T04:27:58.449402Z", + "shell.execute_reply": "2024-04-06T04:27:58.448837Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:49.025619Z", - "iopub.status.busy": "2024-04-06T04:10:49.025297Z", - "iopub.status.idle": "2024-04-06T04:10:49.047153Z", - "shell.execute_reply": "2024-04-06T04:10:49.046589Z" + "iopub.execute_input": "2024-04-06T04:27:58.451881Z", + "iopub.status.busy": "2024-04-06T04:27:58.451481Z", + "iopub.status.idle": "2024-04-06T04:27:58.472786Z", + "shell.execute_reply": "2024-04-06T04:27:58.472247Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:49.049275Z", - "iopub.status.busy": "2024-04-06T04:10:49.048964Z", - "iopub.status.idle": "2024-04-06T04:10:49.067979Z", - "shell.execute_reply": "2024-04-06T04:10:49.067456Z" + "iopub.execute_input": "2024-04-06T04:27:58.474943Z", + "iopub.status.busy": "2024-04-06T04:27:58.474628Z", + "iopub.status.idle": "2024-04-06T04:27:58.493726Z", + "shell.execute_reply": "2024-04-06T04:27:58.493177Z" } }, "outputs": [ @@ -910,7 +910,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:49.069957Z", - "iopub.status.busy": "2024-04-06T04:10:49.069696Z", - "iopub.status.idle": "2024-04-06T04:10:49.083918Z", - "shell.execute_reply": "2024-04-06T04:10:49.083472Z" + "iopub.execute_input": "2024-04-06T04:27:58.495766Z", + "iopub.status.busy": "2024-04-06T04:27:58.495439Z", + "iopub.status.idle": "2024-04-06T04:27:58.509263Z", + "shell.execute_reply": "2024-04-06T04:27:58.508829Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:49.085994Z", - "iopub.status.busy": "2024-04-06T04:10:49.085649Z", - "iopub.status.idle": "2024-04-06T04:10:49.104524Z", - "shell.execute_reply": "2024-04-06T04:10:49.103976Z" + "iopub.execute_input": "2024-04-06T04:27:58.511294Z", + "iopub.status.busy": "2024-04-06T04:27:58.510970Z", + "iopub.status.idle": "2024-04-06T04:27:58.529602Z", + "shell.execute_reply": "2024-04-06T04:27:58.529063Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4f906d5463b546c5803f5e6c5cb45858", + "model_id": "d02d6b616f48472186e69f83078244aa", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:49.106644Z", - "iopub.status.busy": "2024-04-06T04:10:49.106306Z", - "iopub.status.idle": "2024-04-06T04:10:49.121784Z", - "shell.execute_reply": "2024-04-06T04:10:49.121278Z" + "iopub.execute_input": "2024-04-06T04:27:58.531477Z", + "iopub.status.busy": "2024-04-06T04:27:58.531304Z", + "iopub.status.idle": "2024-04-06T04:27:58.546063Z", + "shell.execute_reply": "2024-04-06T04:27:58.545580Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:49.123860Z", - "iopub.status.busy": "2024-04-06T04:10:49.123557Z", - "iopub.status.idle": "2024-04-06T04:10:49.129393Z", - "shell.execute_reply": "2024-04-06T04:10:49.128867Z" + "iopub.execute_input": "2024-04-06T04:27:58.548107Z", + "iopub.status.busy": "2024-04-06T04:27:58.547734Z", + "iopub.status.idle": "2024-04-06T04:27:58.553403Z", + "shell.execute_reply": "2024-04-06T04:27:58.552986Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:49.131386Z", - "iopub.status.busy": "2024-04-06T04:10:49.131052Z", - "iopub.status.idle": "2024-04-06T04:10:49.149747Z", - "shell.execute_reply": "2024-04-06T04:10:49.149200Z" + "iopub.execute_input": "2024-04-06T04:27:58.555509Z", + "iopub.status.busy": "2024-04-06T04:27:58.555093Z", + "iopub.status.idle": "2024-04-06T04:27:58.572894Z", + "shell.execute_reply": "2024-04-06T04:27:58.572431Z" } }, "outputs": [ @@ -1431,48 +1431,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "085628767279462da9a04b14eec2bcd5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0afd1a05ead340c7bf25c88ecff0da9c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a16b98dfb0414e7a9ebfaa05b3caf3ab", - "placeholder": "​", - "style": "IPY_MODEL_085628767279462da9a04b14eec2bcd5", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "28cb3e10819a4aa2ae6b2260c3d6b360": { + "02bbc5143d3a4993a0d1f8da9de11d01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1525,7 +1484,7 @@ "width": null } }, - "2cfa2393ea0842739ff04953fb459e25": { + "0df42a660b99494ba1a08fc9a8cdd1b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1578,23 +1537,7 @@ "width": null } }, - "31c8e9b4a35a46e5b173f25dfa0bdc44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3f5048b0d7b04192ba7e421ffbbc80dc": { + "17c3deaafb3d4e8ba7ed2d539ab37994": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1610,41 +1553,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2cfa2393ea0842739ff04953fb459e25", + "layout": "IPY_MODEL_8e9944f01dc04773b1a6f250b877bdac", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_31c8e9b4a35a46e5b173f25dfa0bdc44", + "style": "IPY_MODEL_92a77433e43f4ff8a546985e6e38611a", "tabbable": null, "tooltip": null, "value": 132.0 } }, - "4f906d5463b546c5803f5e6c5cb45858": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0afd1a05ead340c7bf25c88ecff0da9c", - "IPY_MODEL_3f5048b0d7b04192ba7e421ffbbc80dc", - "IPY_MODEL_b24c583d51fd4398beb0625a429a5984" - ], - "layout": "IPY_MODEL_28cb3e10819a4aa2ae6b2260c3d6b360", - "tabbable": null, - "tooltip": null - } - }, - "a16b98dfb0414e7a9ebfaa05b3caf3ab": { + "375a2c62332d41db9fb6fda4e1c413b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1697,7 +1616,7 @@ "width": null } }, - "b24c583d51fd4398beb0625a429a5984": { + "7bd4b0305523463bbf5bf70b1f791cc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1712,15 +1631,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b9ad4aa73828498c92de311fcdd82240", + "layout": "IPY_MODEL_0df42a660b99494ba1a08fc9a8cdd1b4", "placeholder": "​", - "style": "IPY_MODEL_edf1b9afddd7441d8b518a2e72df484c", + "style": "IPY_MODEL_996d62a724d14e7f9758fa309375faff", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 13520.10 examples/s]" + "value": "Saving the dataset (1/1 shards): 100%" } }, - "b9ad4aa73828498c92de311fcdd82240": { + "8e9944f01dc04773b1a6f250b877bdac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1773,7 +1692,41 @@ "width": null } }, - "edf1b9afddd7441d8b518a2e72df484c": { + "92a77433e43f4ff8a546985e6e38611a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "996d62a724d14e7f9758fa309375faff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bd9f710c62d542cf9e7b79052a8e5d74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1790,6 +1743,53 @@ "font_size": null, "text_color": null } + }, + "d02d6b616f48472186e69f83078244aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7bd4b0305523463bbf5bf70b1f791cc7", + "IPY_MODEL_17c3deaafb3d4e8ba7ed2d539ab37994", + "IPY_MODEL_d482671c5f304dc1af9900d828daaf12" + ], + "layout": "IPY_MODEL_02bbc5143d3a4993a0d1f8da9de11d01", + "tabbable": null, + "tooltip": null + } + }, + "d482671c5f304dc1af9900d828daaf12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_375a2c62332d41db9fb6fda4e1c413b1", + "placeholder": "​", + "style": "IPY_MODEL_bd9f710c62d542cf9e7b79052a8e5d74", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13627.93 examples/s]" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index a45b83b04..8fd460cb9 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:51.904102Z", - "iopub.status.busy": "2024-04-06T04:10:51.903772Z", - "iopub.status.idle": "2024-04-06T04:10:53.062916Z", - "shell.execute_reply": "2024-04-06T04:10:53.062216Z" + "iopub.execute_input": "2024-04-06T04:28:01.140999Z", + "iopub.status.busy": "2024-04-06T04:28:01.140833Z", + "iopub.status.idle": "2024-04-06T04:28:02.262000Z", + "shell.execute_reply": "2024-04-06T04:28:02.261355Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:53.066083Z", - "iopub.status.busy": "2024-04-06T04:10:53.065583Z", - "iopub.status.idle": "2024-04-06T04:10:53.068830Z", - "shell.execute_reply": "2024-04-06T04:10:53.068290Z" + "iopub.execute_input": "2024-04-06T04:28:02.264649Z", + "iopub.status.busy": "2024-04-06T04:28:02.264228Z", + "iopub.status.idle": "2024-04-06T04:28:02.267145Z", + "shell.execute_reply": "2024-04-06T04:28:02.266735Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:53.071252Z", - "iopub.status.busy": "2024-04-06T04:10:53.070784Z", - "iopub.status.idle": "2024-04-06T04:10:53.080808Z", - "shell.execute_reply": "2024-04-06T04:10:53.080228Z" + "iopub.execute_input": "2024-04-06T04:28:02.269196Z", + "iopub.status.busy": "2024-04-06T04:28:02.268920Z", + "iopub.status.idle": "2024-04-06T04:28:02.278242Z", + "shell.execute_reply": "2024-04-06T04:28:02.277783Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:53.083081Z", - "iopub.status.busy": "2024-04-06T04:10:53.082896Z", - "iopub.status.idle": "2024-04-06T04:10:53.087965Z", - "shell.execute_reply": "2024-04-06T04:10:53.087512Z" + "iopub.execute_input": "2024-04-06T04:28:02.280171Z", + "iopub.status.busy": "2024-04-06T04:28:02.279844Z", + "iopub.status.idle": "2024-04-06T04:28:02.284049Z", + "shell.execute_reply": "2024-04-06T04:28:02.283641Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:53.090354Z", - "iopub.status.busy": "2024-04-06T04:10:53.089890Z", - "iopub.status.idle": "2024-04-06T04:10:53.277576Z", - "shell.execute_reply": "2024-04-06T04:10:53.276977Z" + "iopub.execute_input": "2024-04-06T04:28:02.286098Z", + "iopub.status.busy": "2024-04-06T04:28:02.285775Z", + "iopub.status.idle": "2024-04-06T04:28:02.470065Z", + "shell.execute_reply": "2024-04-06T04:28:02.469547Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:53.280007Z", - "iopub.status.busy": "2024-04-06T04:10:53.279818Z", - "iopub.status.idle": "2024-04-06T04:10:53.655608Z", - "shell.execute_reply": "2024-04-06T04:10:53.655065Z" + "iopub.execute_input": "2024-04-06T04:28:02.472692Z", + "iopub.status.busy": "2024-04-06T04:28:02.472227Z", + "iopub.status.idle": "2024-04-06T04:28:02.862171Z", + "shell.execute_reply": "2024-04-06T04:28:02.861570Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:53.657682Z", - "iopub.status.busy": "2024-04-06T04:10:53.657478Z", - "iopub.status.idle": "2024-04-06T04:10:53.660243Z", - "shell.execute_reply": "2024-04-06T04:10:53.659763Z" + "iopub.execute_input": "2024-04-06T04:28:02.864346Z", + "iopub.status.busy": "2024-04-06T04:28:02.864021Z", + "iopub.status.idle": "2024-04-06T04:28:02.868011Z", + "shell.execute_reply": "2024-04-06T04:28:02.867360Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:53.662182Z", - "iopub.status.busy": "2024-04-06T04:10:53.662008Z", - "iopub.status.idle": "2024-04-06T04:10:53.697853Z", - "shell.execute_reply": "2024-04-06T04:10:53.697252Z" + "iopub.execute_input": "2024-04-06T04:28:02.870143Z", + "iopub.status.busy": "2024-04-06T04:28:02.869708Z", + "iopub.status.idle": "2024-04-06T04:28:02.905119Z", + "shell.execute_reply": "2024-04-06T04:28:02.904575Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:53.700017Z", - "iopub.status.busy": "2024-04-06T04:10:53.699830Z", - "iopub.status.idle": "2024-04-06T04:10:55.419138Z", - "shell.execute_reply": "2024-04-06T04:10:55.418475Z" + "iopub.execute_input": "2024-04-06T04:28:02.907153Z", + "iopub.status.busy": "2024-04-06T04:28:02.906777Z", + "iopub.status.idle": "2024-04-06T04:28:04.522763Z", + "shell.execute_reply": "2024-04-06T04:28:04.522160Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:55.421824Z", - "iopub.status.busy": "2024-04-06T04:10:55.421257Z", - "iopub.status.idle": "2024-04-06T04:10:55.441030Z", - "shell.execute_reply": "2024-04-06T04:10:55.440494Z" + "iopub.execute_input": "2024-04-06T04:28:04.525220Z", + "iopub.status.busy": "2024-04-06T04:28:04.524729Z", + "iopub.status.idle": "2024-04-06T04:28:04.543944Z", + "shell.execute_reply": "2024-04-06T04:28:04.543486Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:55.443109Z", - "iopub.status.busy": "2024-04-06T04:10:55.442772Z", - "iopub.status.idle": "2024-04-06T04:10:55.449858Z", - "shell.execute_reply": "2024-04-06T04:10:55.449380Z" + "iopub.execute_input": "2024-04-06T04:28:04.545971Z", + "iopub.status.busy": "2024-04-06T04:28:04.545633Z", + "iopub.status.idle": "2024-04-06T04:28:04.551859Z", + "shell.execute_reply": "2024-04-06T04:28:04.551428Z" } }, "outputs": [ @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:55.451806Z", - "iopub.status.busy": "2024-04-06T04:10:55.451492Z", - "iopub.status.idle": "2024-04-06T04:10:55.457159Z", - "shell.execute_reply": "2024-04-06T04:10:55.456736Z" + "iopub.execute_input": "2024-04-06T04:28:04.553727Z", + "iopub.status.busy": "2024-04-06T04:28:04.553467Z", + "iopub.status.idle": "2024-04-06T04:28:04.559055Z", + "shell.execute_reply": "2024-04-06T04:28:04.558635Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:55.459155Z", - "iopub.status.busy": "2024-04-06T04:10:55.458774Z", - "iopub.status.idle": "2024-04-06T04:10:55.469253Z", - "shell.execute_reply": "2024-04-06T04:10:55.468723Z" + "iopub.execute_input": "2024-04-06T04:28:04.561010Z", + "iopub.status.busy": "2024-04-06T04:28:04.560761Z", + "iopub.status.idle": "2024-04-06T04:28:04.571254Z", + "shell.execute_reply": "2024-04-06T04:28:04.570824Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:55.471298Z", - "iopub.status.busy": "2024-04-06T04:10:55.470981Z", - "iopub.status.idle": "2024-04-06T04:10:55.479664Z", - "shell.execute_reply": "2024-04-06T04:10:55.479131Z" + "iopub.execute_input": "2024-04-06T04:28:04.573178Z", + "iopub.status.busy": "2024-04-06T04:28:04.572871Z", + "iopub.status.idle": "2024-04-06T04:28:04.581776Z", + "shell.execute_reply": "2024-04-06T04:28:04.581258Z" } }, "outputs": [ @@ -1340,10 +1340,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:55.481700Z", - "iopub.status.busy": "2024-04-06T04:10:55.481291Z", - "iopub.status.idle": "2024-04-06T04:10:55.488213Z", - "shell.execute_reply": "2024-04-06T04:10:55.487676Z" + "iopub.execute_input": "2024-04-06T04:28:04.583843Z", + "iopub.status.busy": "2024-04-06T04:28:04.583519Z", + "iopub.status.idle": "2024-04-06T04:28:04.590173Z", + "shell.execute_reply": "2024-04-06T04:28:04.589690Z" }, "scrolled": true }, @@ -1468,10 +1468,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:55.490188Z", - "iopub.status.busy": "2024-04-06T04:10:55.489813Z", - "iopub.status.idle": "2024-04-06T04:10:55.499171Z", - "shell.execute_reply": "2024-04-06T04:10:55.498631Z" + "iopub.execute_input": "2024-04-06T04:28:04.592157Z", + "iopub.status.busy": "2024-04-06T04:28:04.591831Z", + "iopub.status.idle": "2024-04-06T04:28:04.600966Z", + "shell.execute_reply": "2024-04-06T04:28:04.600530Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index d1fbdc2d4..1d5cf1c7b 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -694,21 +694,21 @@

2. Fetch and normalize the Fashion-MNIST dataset
-Downloading data: 100%|██████████| 30.9M/30.9M [00:00<00:00, 131MB/s]
-Downloading data: 100%|██████████| 5.18M/5.18M [00:00<00:00, 35.3MB/s]
+Downloading data: 100%|██████████| 30.9M/30.9M [00:00<00:00, 50.7MB/s]
+Downloading data: 100%|██████████| 5.18M/5.18M [00:00<00:00, 57.7MB/s]
 

-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1021,7 +1021,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1053,7 +1053,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1085,7 +1085,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -2003,35 +2003,35 @@

Low information images - is_low_information_issue low_information_score + is_low_information_issue 53050 - True 0.067975 + True 40875 - True 0.089929 + True 9594 - True 0.092601 + True 34825 - True 0.107744 + True 37530 - True 0.108516 + True @@ -2059,7 +2059,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index cc06cba23..5dbc9174f 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:10:58.218215Z", - "iopub.status.busy": "2024-04-06T04:10:58.217761Z", - "iopub.status.idle": "2024-04-06T04:11:01.070969Z", - "shell.execute_reply": "2024-04-06T04:11:01.070418Z" + "iopub.execute_input": "2024-04-06T04:28:06.972790Z", + "iopub.status.busy": "2024-04-06T04:28:06.972606Z", + "iopub.status.idle": "2024-04-06T04:28:09.752985Z", + "shell.execute_reply": "2024-04-06T04:28:09.752449Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:11:01.073435Z", - "iopub.status.busy": "2024-04-06T04:11:01.072983Z", - "iopub.status.idle": "2024-04-06T04:11:01.076474Z", - "shell.execute_reply": "2024-04-06T04:11:01.076067Z" + "iopub.execute_input": "2024-04-06T04:28:09.755512Z", + "iopub.status.busy": "2024-04-06T04:28:09.755090Z", + "iopub.status.idle": "2024-04-06T04:28:09.758597Z", + "shell.execute_reply": "2024-04-06T04:28:09.758078Z" } }, "outputs": [], @@ -152,10 +152,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:11:01.078481Z", - "iopub.status.busy": "2024-04-06T04:11:01.078157Z", - "iopub.status.idle": "2024-04-06T04:11:03.883724Z", - "shell.execute_reply": "2024-04-06T04:11:03.883196Z" + "iopub.execute_input": "2024-04-06T04:28:09.760622Z", + "iopub.status.busy": "2024-04-06T04:28:09.760210Z", + "iopub.status.idle": "2024-04-06T04:28:16.295173Z", + "shell.execute_reply": "2024-04-06T04:28:16.294666Z" } }, "outputs": [ @@ -172,7 +172,7 @@ "output_type": "stream", "text": [ "\r", - "Downloading data: 34%|███▍ | 10.5M/30.9M [00:00<00:00, 63.1MB/s]" + "Downloading data: 34%|███▍ | 10.5M/30.9M [00:00<00:00, 27.2MB/s]" ] }, { @@ -180,22 +180,22 @@ "output_type": "stream", "text": [ "\r", - "Downloading data: 100%|██████████| 30.9M/30.9M [00:00<00:00, 131MB/s] " + "Downloading data: 68%|██████▊ | 21.0M/30.9M [00:00<00:00, 45.5MB/s]" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\n" + "\r", + "Downloading data: 100%|██████████| 30.9M/30.9M [00:00<00:00, 50.7MB/s]" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\r", - "Downloading data: 0%| | 0.00/5.18M [00:00\n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2489,10 +2489,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:46.249753Z", - "iopub.status.busy": "2024-04-06T04:15:46.249429Z", - "iopub.status.idle": "2024-04-06T04:15:46.446289Z", - "shell.execute_reply": "2024-04-06T04:15:46.445717Z" + "iopub.execute_input": "2024-04-06T04:32:59.241500Z", + "iopub.status.busy": "2024-04-06T04:32:59.241175Z", + "iopub.status.idle": "2024-04-06T04:32:59.438012Z", + "shell.execute_reply": "2024-04-06T04:32:59.437410Z" } }, "outputs": [ @@ -2532,10 +2532,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:46.448528Z", - "iopub.status.busy": "2024-04-06T04:15:46.448216Z", - "iopub.status.idle": "2024-04-06T04:15:46.452666Z", - "shell.execute_reply": "2024-04-06T04:15:46.452118Z" + "iopub.execute_input": "2024-04-06T04:32:59.440559Z", + "iopub.status.busy": "2024-04-06T04:32:59.440204Z", + "iopub.status.idle": "2024-04-06T04:32:59.444637Z", + "shell.execute_reply": "2024-04-06T04:32:59.444201Z" }, "nbsphinx": "hidden" }, @@ -2572,56 +2572,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00ad991fcfdc490d8fc1b7da5dd25cc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9b4cf912f7c34143831d51f2bb700676", - "placeholder": "​", - "style": "IPY_MODEL_61fd28d7ddb7403db50273e4625a93c9", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.25it/s]" - } - }, - "081cecb5bc3c490eb96b968958646d85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_306d4849d5f6456e8a47218ff3c88bc1", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b10aaf3c951546a28757660b3e1b6db5", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "08734eda4afc4628925fae928d7b7584": { + "01a761c23187462489caed4c9ca92b4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2674,84 +2625,7 @@ "width": null } }, - "094eda2d138648ce90e4359f4f6f5b98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0be6ea4bdf434487844f8dcccf92799f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "11e946e1b04f4200ac1258d919a452fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_08734eda4afc4628925fae928d7b7584", - "placeholder": "​", - "style": "IPY_MODEL_91a46e26290a40a9b1694890bf26b540", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.14it/s]" - } - }, - "1820387404b549059e81ac007566c156": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1d4196a37a44432d949c28f75b399099": { + "01d6c6d5c4544426af39a2a43bf4efd5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2804,30 +2678,7 @@ "width": null } }, - "1e00a0a580dc41e78784f4778e166ae8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_28706b709a774358ac8c8225f4a7465a", - "placeholder": "​", - "style": "IPY_MODEL_f3ee1199a5aa42c8a0cafce7aeedc375", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 570.73it/s]" - } - }, - "1f6f06c63dcf47bebf23aa87eea97f7e": { + "052ba7dd44914624bc95867853cefd91": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2880,7 +2731,57 @@ "width": null } }, - "24588fda55e94abb98816a8ebbd87e49": { + "062e939e5df64531b55a3a30c9808fb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_69040f6c457a458dad3f64ae864e2abc", + "IPY_MODEL_856c1d7d86824b298f7b89334a62b627", + "IPY_MODEL_e36a0c3800fd4b46a397695a9464376d" + ], + "layout": "IPY_MODEL_18c03d0fbf7e486fa980759c0f1d203c", + "tabbable": null, + "tooltip": null + } + }, + "07e1a5656606425a8fa445a2a98b32db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_01a761c23187462489caed4c9ca92b4a", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_44469fd7a84845fabbb26081bc4f71e6", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "0898a61434e8435fb6d38cda818ecf42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2896,7 +2797,30 @@ "description_width": "" } }, - "26ea2d6333ef46f091fe6ee351a0ea24": { + "0c49ec751aa74bdeb0da999541e70abf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_716dbef584c74a10be95d49134e35c36", + "placeholder": "​", + "style": "IPY_MODEL_d53fb7bf594d407c9e842abf6174a266", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "0ffda52749f54b41b5d0955c9e1f987d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2949,7 +2873,7 @@ "width": null } }, - "28706b709a774358ac8c8225f4a7465a": { + "10d5b8ef6dd44439b5792f3b9229a7b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3002,31 +2926,30 @@ "width": null } }, - "290f4b3a1c86435db5ac3e6ad1fb69bc": { + "154d43bd379742748defa9f93f6dec4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_598fa6fcfc3547918ed160450fcdef47", - "IPY_MODEL_081cecb5bc3c490eb96b968958646d85", - "IPY_MODEL_b25c6d04ca624347b9994dc85ea0ce40" - ], - "layout": "IPY_MODEL_31b904407c97436e83eacfad90c525fe", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_59b99f3d2363470f95240494b60426e7", + "placeholder": "​", + "style": "IPY_MODEL_e630ccc4aafc46e1994dc57c453efa4c", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 250653.12 examples/s]" } }, - "294ec45fa70f423c975351d24a7c776f": { + "18c03d0fbf7e486fa980759c0f1d203c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3079,25 +3002,7 @@ "width": null } }, - "2a74a0ed6b7b41b2a4c5bb47658223c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2e430f1f8e334932981a697267206909": { + "18f4e2fb304e4207a8582f3b68e46f1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3150,55 +3055,126 @@ "width": null } }, - "2e9a22676d3b44059d4abdc77d09ea7a": { + "19d828f4e1d84ef2ac773bc529b40946": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d587e6373db14885bca54f2e22d83948", - "IPY_MODEL_ccac8bc1c11c45f89ff96cefaa978542", - "IPY_MODEL_1e00a0a580dc41e78784f4778e166ae8" - ], - "layout": "IPY_MODEL_c3cd1b2a1792405eae2c24be210e75d8", - "tabbable": null, - "tooltip": null - } + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } }, - "2ece33572c6d44c59a0fb46b03563a47": { + "19dc464653b042e1b8ba1ff4aa4f3231": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "19ea4bc4cf5345209bfc0f43ac43a390": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1aaabe82fd3748eeb69937660d87bde7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bc6d1af3ba594c0dbfcd3bdad498d583", - "IPY_MODEL_8320541184f144558aba7ba3cfa94c91", - "IPY_MODEL_ae0e5d51e5c34604914ecd0092f03db3" - ], - "layout": "IPY_MODEL_de0ea962496a4c16ad11925c80cde938", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bcf53273c9a94359bf468708176a7fb9", + "placeholder": "​", + "style": "IPY_MODEL_eda57d1ce07e4fb08048f276454d81c4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 67.82it/s]" + } + }, + "1bc46611a5134fa6bf3a2e1d7329d9e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0ffda52749f54b41b5d0955c9e1f987d", + "placeholder": "​", + "style": "IPY_MODEL_19ea4bc4cf5345209bfc0f43ac43a390", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "1d0f443e388d4ac3aa919649a0bd9f6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d6430b8f25744f0fbc6b7c7b994b06d4", + "placeholder": "​", + "style": "IPY_MODEL_868c933ad87744c3aa05cb4cd929090f", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 62.96it/s]" } }, - "306d4849d5f6456e8a47218ff3c88bc1": { + "1f1036a8b18842dfa18443fdf59a95dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3251,7 +3227,7 @@ "width": null } }, - "31b904407c97436e83eacfad90c525fe": { + "21a93b6159174e5c99baaca057c26509": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3304,60 +3280,25 @@ "width": null } }, - "35e707fc5ed3493783fa82f2eabfb926": { - "model_module": "@jupyter-widgets/base", + "224bb80ea8ed446ebd6daabd22c3e867": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3712c6cc349a4f16ad880e06baae4d0f": { + "230d8fb552244430b2da0fe2e463b928": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3372,16 +3313,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a7209dfc03c540d49b21da8d55e9f809", - "IPY_MODEL_791dadf2f937427f97652d481ab50dba", - "IPY_MODEL_d0fc6798b54947e6a515a130cb22cfba" + "IPY_MODEL_0c49ec751aa74bdeb0da999541e70abf", + "IPY_MODEL_a8de67324e69481aa6f71eebd240332f", + "IPY_MODEL_154d43bd379742748defa9f93f6dec4c" ], - "layout": "IPY_MODEL_35e707fc5ed3493783fa82f2eabfb926", + "layout": "IPY_MODEL_052ba7dd44914624bc95867853cefd91", "tabbable": null, "tooltip": null } }, - "39a19472a3fe402aa0610d403a02c6f6": { + "23a4c60ebe91433cabd5be6f58108e1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3396,15 +3337,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9e2635fbcbcf4c73bb15dc4678af1915", + "layout": "IPY_MODEL_677944caba4f4f68bedc7737bb773d16", "placeholder": "​", - "style": "IPY_MODEL_d9756d765be6479c8d1e1c537eef57ab", + "style": "IPY_MODEL_baa12a5e11064c04934b7f2251564311", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 40/40 [00:00<00:00, 63.99it/s]" + } + }, + "2a60a0c90b1b4f46a02f1662dd4c96e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3aa61b3e41484235a80165aa7ac9938c": { + "2b93072870f04a1daa0f16d389336ebc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3457,89 +3416,7 @@ "width": null } }, - "3f87d27541e94fe98a144f5970480975": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "422d7bc875ef4f0bbfeb515409edd4e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7815fb349d7d4b36a7eeedeb74219410", - "IPY_MODEL_42c001508b9e439783f688a398baf06f", - "IPY_MODEL_ca5b2e641e9b4a1dbf23722f88208fa9" - ], - "layout": "IPY_MODEL_6277b6475528473ba825f46589da3b8f", - "tabbable": null, - "tooltip": null - } - }, - "42c001508b9e439783f688a398baf06f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3aa61b3e41484235a80165aa7ac9938c", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_69fbe90d36244ffa92552ab639e1aa67", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "469a22ad2b1240178677c86c09a59ee5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4e63cd84d0664a389f7a2c1fc4d2150d": { + "318a2a3cc2dd449d87d92d835336d9d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3592,7 +3469,7 @@ "width": null } }, - "58f7bc3b08554c83a3c454d0d6f5ae76": { + "36f95cffa25d460ba500ec7de91933d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3610,35 +3487,54 @@ "text_color": null } }, - "598fa6fcfc3547918ed160450fcdef47": { + "374d6a83e7564f3a99a8e43b41595fa9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1f6f06c63dcf47bebf23aa87eea97f7e", - "placeholder": "​", - "style": "IPY_MODEL_956c53c683464b9f8824a5886e0abde9", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "59d936234a0c4fa1aa01e97a9e4aa2c3": { - "model_module": "@jupyter-widgets/base", + "37a89191786645eba770cde499fad762": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1bc46611a5134fa6bf3a2e1d7329d9e1", + "IPY_MODEL_c0d6bc39047b4081aa9475148f266798", + "IPY_MODEL_1d0f443e388d4ac3aa919649a0bd9f6d" + ], + "layout": "IPY_MODEL_dcee1ad305e747b396286c15af30cc5f", + "tabbable": null, + "tooltip": null + } + }, + "391330f212e94180b7c1d3f8b79364a2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, @@ -3686,7 +3582,7 @@ "width": null } }, - "5da7b28c31aa4e6d8d90cbb424c85e6e": { + "3cb626be1259490498bdc43c229957d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3704,30 +3600,83 @@ "text_color": null } }, - "5df00a0d8d314b25ad3811b63ded156a": { + "432d3960ddab4b78b5489f18eb6be184": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "44469fd7a84845fabbb26081bc4f71e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "45f3fe0616ef4b6d9187942fe63d092e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "494d4dec9fa34cdba034f2e400df4b4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6ff21481a4e649b098e6c46e679a9d43", - "placeholder": "​", - "style": "IPY_MODEL_9f2d66a8777940ca83298259478d9403", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4ec9881e872043c7af778c7f3fe8b2b3", + "IPY_MODEL_79d4ea75e0b24546ab4c3e15dcd17fe0", + "IPY_MODEL_b37c27a865bd41238ca6e848152182c4" + ], + "layout": "IPY_MODEL_2b93072870f04a1daa0f16d389336ebc", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:47<00:00, 1405.79it/s]" + "tooltip": null } }, - "61fd28d7ddb7403db50273e4625a93c9": { + "4df2995557604f368c17b7801a8aa7a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3745,7 +3694,76 @@ "text_color": null } }, - "6277b6475528473ba825f46589da3b8f": { + "4ec9881e872043c7af778c7f3fe8b2b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_61c55f2451eb4c4e864fb94997319e79", + "placeholder": "​", + "style": "IPY_MODEL_c2f27d13f7af40c4938b2ff919248bc7", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "567dbef175174a0bb698e0c117bdefd8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bb928bde160d418985c159d23435d896", + "placeholder": "​", + "style": "IPY_MODEL_224bb80ea8ed446ebd6daabd22c3e867", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "58016631c51a4c2bab081a3fcb222ce6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8665b261d85149c79feba0ad3dc5a0fe", + "placeholder": "​", + "style": "IPY_MODEL_374d6a83e7564f3a99a8e43b41595fa9", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "58b8b6bed5f84d05ade00f2d3773b9e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3798,7 +3816,7 @@ "width": null } }, - "642a185c4e5e4ea1864cfe5f3ba9983d": { + "59b99f3d2363470f95240494b60426e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3851,7 +3869,33 @@ "width": null } }, - "68b49f9c56874691a5dde48afc01bd3d": { + "5cc1b33d526e4c2ea671e6aa4a807101": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7dcc2439e854d37a27bed7fba490b03", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8cb9becccf604e7d912917ceb837d524", + "tabbable": null, + "tooltip": null, + "value": 2.0 + } + }, + "61c55f2451eb4c4e864fb94997319e79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3904,41 +3948,7 @@ "width": null } }, - "69fbe90d36244ffa92552ab639e1aa67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6a4d080fdfbf406d9bc40858e59c7b93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6da88db83ea84d948ef4fd00bf7e1b7a": { + "61e1bb7f02a4489dbe279ece48634ba8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3954,35 +3964,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce6227b964234c43b828cdf0f2a1d14b", + "layout": "IPY_MODEL_b87839e9f74c433ab8102575e86bcd7b", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e2479206943340a7b4abc0461314a573", + "style": "IPY_MODEL_fd142fc752ad437dac5e121ea0a962e7", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "6ecf2566f8f9408b96ffa9571a542a5f": { + "63f80561a9aa4de6b4236289ee6db555": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_58016631c51a4c2bab081a3fcb222ce6", + "IPY_MODEL_8dd48fae4b9146fc9977d90131836405", + "IPY_MODEL_a92e3ef11d2c4d27a1956ce5946d7509" + ], + "layout": "IPY_MODEL_b5d8fdd0cad64e94955d5536ac4dad32", + "tabbable": null, + "tooltip": null } }, - "6ff21481a4e649b098e6c46e679a9d43": { + "677944caba4f4f68bedc7737bb773d16": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4035,7 +4051,30 @@ "width": null } }, - "71f92f3cb76845af818f1596d1aad567": { + "69040f6c457a458dad3f64ae864e2abc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cf59e27052914f59bf2cb3f866f7faf0", + "placeholder": "​", + "style": "IPY_MODEL_b8708f41587841e587390f8e235ba687", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "698bb2e60fd546c7a86f3c097d682c43": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4088,7 +4127,7 @@ "width": null } }, - "756e2b663cb646e19866396cda50162f": { + "6aa2909e4e954f21a2e9b886e37872f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4141,154 +4180,14 @@ "width": null } }, - "759ec36b48e94bc893402c8ff9056f2b": { - "model_module": "@jupyter-widgets/controls", + "716dbef584c74a10be95d49134e35c36": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7815fb349d7d4b36a7eeedeb74219410": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8193fdc82d2c453895b8d95a67bd4f7d", - "placeholder": "​", - "style": "IPY_MODEL_2a74a0ed6b7b41b2a4c5bb47658223c3", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "784230a45fca4f1c8240cb4a0198eec0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e1f04debe70546f2a5a319a9428a4a1c", - "placeholder": "​", - "style": "IPY_MODEL_8a39362055af46b7ad345a72d7185d77", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "791dadf2f937427f97652d481ab50dba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1d4196a37a44432d949c28f75b399099", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a3e3d17ce98c474db87db01a2de279d5", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "7940bbf8279a468daaf2e7f5d58a8af1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cb7ec40fe3ec45d08179aab6d4080513", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a5e82c8a3dd84f3dbca53c62fb193eee", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "7e9a369dad29460c8238bd0440c14715": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b182f0cfdea448d49fa68891f3958ee1", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a9d6da1bc5a44dc2ada67afa4e7ccf8f", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "814242700d4d41bcba403292723426b6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -4334,7 +4233,30 @@ "width": null } }, - "8193fdc82d2c453895b8d95a67bd4f7d": { + "758003aac78a4e89a0dd59c12bfd4499": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_75938d156efb49d681d43a2189e81adf", + "placeholder": "​", + "style": "IPY_MODEL_45f3fe0616ef4b6d9187942fe63d092e", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "75938d156efb49d681d43a2189e81adf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4387,51 +4309,23 @@ "width": null } }, - "81b57646c41d4d90aa519b869e9aebf9": { + "75c5b3367f7243e08df5201fed89d767": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "82882b42306b46108ffbdd691ca14483": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_83fa26570c3e46e8a836852d5991276d", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_759ec36b48e94bc893402c8ff9056f2b", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "bar_color": null, + "description_width": "" } }, - "8320541184f144558aba7ba3cfa94c91": { + "79d4ea75e0b24546ab4c3e15dcd17fe0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4447,17 +4341,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_92bcffad357c45219a7c17d6d6e74fe2", - "max": 60000.0, + "layout": "IPY_MODEL_bc9ac33beb964c04b7e19f6a1e1a6eec", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_24588fda55e94abb98816a8ebbd87e49", + "style": "IPY_MODEL_841bd0118c39439da9678bf5209d9393", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 40.0 } }, - "83fa26570c3e46e8a836852d5991276d": { + "7b9c395b1818449285ae7e333c19aed1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4510,48 +4404,7 @@ "width": null } }, - "84f931bb437e445c9058f93680fd71da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "879bdf453c59414e803955956d15052a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c0b263a55e3f4b13b09eb3cea6f5a67f", - "placeholder": "​", - "style": "IPY_MODEL_81b57646c41d4d90aa519b869e9aebf9", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 290021.38 examples/s]" - } - }, - "8a39362055af46b7ad345a72d7185d77": { + "7edd891321db4e908b5ed0d68bdddab0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4569,7 +4422,7 @@ "text_color": null } }, - "904bf123e452461f808196ab1e7ece7e": { + "801329626f1a493bb35bed548fee56d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4622,48 +4475,23 @@ "width": null } }, - "91a46e26290a40a9b1694890bf26b540": { + "841bd0118c39439da9678bf5209d9393": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9206926af6964e0b9491cb165fe3b945": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eb2f24e80df84b15abc80dc6ff728e9e", - "placeholder": "​", - "style": "IPY_MODEL_9377ab731a1d44009e9d7f3dc768d177", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.69it/s]" + "bar_color": null, + "description_width": "" } }, - "92bcffad357c45219a7c17d6d6e74fe2": { + "84941543352247e1ba0307848d584119": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4716,48 +4544,86 @@ "width": null } }, - "9377ab731a1d44009e9d7f3dc768d177": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "94c61f3f34414ce3899f7578075e5c30": { + "856c1d7d86824b298f7b89334a62b627": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ff1e772a59ce423580b3134bca1d92c9", - "placeholder": "​", - "style": "IPY_MODEL_9f63ece615d3412ea42216e51c9a5af2", + "layout": "IPY_MODEL_1f1036a8b18842dfa18443fdf59a95dd", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ea07905d53eb44ab85413ddd0eb1103b", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 40.0 + } + }, + "8665b261d85149c79feba0ad3dc5a0fe": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "956c53c683464b9f8824a5886e0abde9": { + "868c933ad87744c3aa05cb4cd929090f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4775,7 +4641,7 @@ "text_color": null } }, - "9b4cf912f7c34143831d51f2bb700676": { + "89b15967dfb6452597bba424994c0aed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4828,7 +4694,7 @@ "width": null } }, - "9e2635fbcbcf4c73bb15dc4678af1915": { + "8a36d05bb1a644cf890db7ec5c1979a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4881,99 +4747,190 @@ "width": null } }, - "9e83c759ac5845c3874beaea138464ae": { + "8cb9becccf604e7d912917ceb837d524": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8cf1e91b3283461d9e7f008fa37fff9f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8dd48fae4b9146fc9977d90131836405": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ffdad78df3264781ac2a4a0e7f6a47ff", - "IPY_MODEL_7940bbf8279a468daaf2e7f5d58a8af1", - "IPY_MODEL_00ad991fcfdc490d8fc1b7da5dd25cc0" - ], - "layout": "IPY_MODEL_294ec45fa70f423c975351d24a7c776f", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a3362f365ba145b7a2e7a9bab08c112e", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_75c5b3367f7243e08df5201fed89d767", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "9f2d66a8777940ca83298259478d9403": { + "8fc744a4ac8745b8846e23dbc6bcb863": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21a93b6159174e5c99baaca057c26509", + "placeholder": "​", + "style": "IPY_MODEL_4df2995557604f368c17b7801a8aa7a3", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "9f63ece615d3412ea42216e51c9a5af2": { + "903744741edd4db481eac7c207012baf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_318a2a3cc2dd449d87d92d835336d9d3", + "placeholder": "​", + "style": "IPY_MODEL_36f95cffa25d460ba500ec7de91933d4", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "a3e3d17ce98c474db87db01a2de279d5": { + "915b6ef632714224897e7967dd8fed40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a5e82c8a3dd84f3dbca53c62fb193eee": { + "92a29e7b86344f558ffc62c421168612": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_567dbef175174a0bb698e0c117bdefd8", + "IPY_MODEL_61e1bb7f02a4489dbe279ece48634ba8", + "IPY_MODEL_b52404a02e14446b9eb8d9c9687553ab" + ], + "layout": "IPY_MODEL_58b8b6bed5f84d05ade00f2d3773b9e5", + "tabbable": null, + "tooltip": null } }, - "a61253b69359414f892ede8d5e635311": { + "99b1fdbd6a654220895926ef07fb0a65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4988,16 +4945,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d61389f0925e44b89855df404e5e0ec5", - "IPY_MODEL_82882b42306b46108ffbdd691ca14483", - "IPY_MODEL_879bdf453c59414e803955956d15052a" + "IPY_MODEL_9ec788f231ad4c5da7b9ca1152c1d44b", + "IPY_MODEL_5cc1b33d526e4c2ea671e6aa4a807101", + "IPY_MODEL_ec8926923d6642cc965b8aea46f7cdb2" ], - "layout": "IPY_MODEL_d71acf66a79d410491280aad2949002b", + "layout": "IPY_MODEL_10d5b8ef6dd44439b5792f3b9229a7b3", "tabbable": null, "tooltip": null } }, - "a7209dfc03c540d49b21da8d55e9f809": { + "9c6eb45703d9488c8455e7918665d719": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5012,31 +4969,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_814242700d4d41bcba403292723426b6", + "layout": "IPY_MODEL_c977511679bc4e89a67b20d915a938ff", "placeholder": "​", - "style": "IPY_MODEL_e98593a22ae14c7595bc43684aa5ac9d", + "style": "IPY_MODEL_915b6ef632714224897e7967dd8fed40", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "a9d6da1bc5a44dc2ada67afa4e7ccf8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 60000/60000 [00:48<00:00, 1364.59it/s]" } }, - "acf35687d6184470b664fbd6915bca24": { + "9e2f25346ff041f0a43792feaf401889": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5054,7 +4995,7 @@ "text_color": null } }, - "ae0e5d51e5c34604914ecd0092f03db3": { + "9ec788f231ad4c5da7b9ca1152c1d44b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5069,15 +5010,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cec0792e81c34f57a620c02b6008c9b9", + "layout": "IPY_MODEL_6aa2909e4e954f21a2e9b886e37872f9", "placeholder": "​", - "style": "IPY_MODEL_1820387404b549059e81ac007566c156", + "style": "IPY_MODEL_c76ed92d69d6444fb0a07c53c18b4c0d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5555.33 examples/s]" + "value": "Computing checksums: 100%" } }, - "b10aaf3c951546a28757660b3e1b6db5": { + "a0876f2d03024b3bb5761a0df2937cfb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5093,7 +5034,7 @@ "description_width": "" } }, - "b182f0cfdea448d49fa68891f3958ee1": { + "a3362f365ba145b7a2e7a9bab08c112e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5146,109 +5087,120 @@ "width": null } }, - "b25c6d04ca624347b9994dc85ea0ce40": { + "a45cdcaa39ac4e7783e3300484169c30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a8de67324e69481aa6f71eebd240332f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ef26370d36c34e109eced96b9d944f4c", - "placeholder": "​", - "style": "IPY_MODEL_58f7bc3b08554c83a3c454d0d6f5ae76", + "layout": "IPY_MODEL_698bb2e60fd546c7a86f3c097d682c43", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0898a61434e8435fb6d38cda818ecf42", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.48it/s]" + "value": 10000.0 } }, - "b4cf52f12f954d4fa658d40e09efc765": { - "model_module": "@jupyter-widgets/base", + "a92e3ef11d2c4d27a1956ce5946d7509": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_801329626f1a493bb35bed548fee56d1", + "placeholder": "​", + "style": "IPY_MODEL_432d3960ddab4b78b5489f18eb6be184", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 287662.14 examples/s]" } }, - "b627c3fe164e4b63bc1789650329087f": { + "ab2472f1e90442db812aa71752ac3895": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_59d936234a0c4fa1aa01e97a9e4aa2c3", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_469a22ad2b1240178677c86c09a59ee5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8fc744a4ac8745b8846e23dbc6bcb863", + "IPY_MODEL_fcd3307eda42417c8c3f83f6bd1ece28", + "IPY_MODEL_1aaabe82fd3748eeb69937660d87bde7" + ], + "layout": "IPY_MODEL_cf898ee7a0764e2b9f7a0b8a17fee462", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null + } + }, + "abb6597d1f0d493ebdf894332caa8c19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_903744741edd4db481eac7c207012baf", + "IPY_MODEL_fa5a714c695a458288a525b0b07ff15d", + "IPY_MODEL_9c6eb45703d9488c8455e7918665d719" + ], + "layout": "IPY_MODEL_7b9c395b1818449285ae7e333c19aed1", + "tabbable": null, + "tooltip": null } }, - "bc6d1af3ba594c0dbfcd3bdad498d583": { + "b37c27a865bd41238ca6e848152182c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5263,15 +5215,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_26ea2d6333ef46f091fe6ee351a0ea24", + "layout": "IPY_MODEL_ba458d4944864736a9229851605bc597", "placeholder": "​", - "style": "IPY_MODEL_5da7b28c31aa4e6d8d90cbb424c85e6e", + "style": "IPY_MODEL_f3aa86d829fc4ca5bb1496d9254e9cac", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 40/40 [00:00<00:00, 62.56it/s]" } }, - "bda4610631d64bc797fbde49591f4cb6": { + "b52404a02e14446b9eb8d9c9687553ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5286,15 +5238,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f5204ce422d541bfbfe61703e39a622a", + "layout": "IPY_MODEL_391330f212e94180b7c1d3f8b79364a2", "placeholder": "​", - "style": "IPY_MODEL_6a4d080fdfbf406d9bc40858e59c7b93", + "style": "IPY_MODEL_2a60a0c90b1b4f46a02f1662dd4c96e4", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 275112.10 examples/s]" + "value": " 40/40 [00:00<00:00, 69.41it/s]" } }, - "c0b263a55e3f4b13b09eb3cea6f5a67f": { + "b5d8fdd0cad64e94955d5536ac4dad32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5347,7 +5299,7 @@ "width": null } }, - "c3cd1b2a1792405eae2c24be210e75d8": { + "b84a380de582459fa124b9a70e1b5359": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5400,31 +5352,7 @@ "width": null } }, - "c541ea3d24e641c1bd1eefb685829c47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_784230a45fca4f1c8240cb4a0198eec0", - "IPY_MODEL_e833feea6f5944b5a4fa2c77a81361ee", - "IPY_MODEL_9206926af6964e0b9491cb165fe3b945" - ], - "layout": "IPY_MODEL_904bf123e452461f808196ab1e7ece7e", - "tabbable": null, - "tooltip": null - } - }, - "c638000777cb4cec975b1486d525c699": { + "b8708f41587841e587390f8e235ba687": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5442,30 +5370,60 @@ "text_color": null } }, - "ca5b2e641e9b4a1dbf23722f88208fa9": { - "model_module": "@jupyter-widgets/controls", + "b87839e9f74c433ab8102575e86bcd7b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df7f8da2e01e4f9d94babea9052e473c", - "placeholder": "​", - "style": "IPY_MODEL_6ecf2566f8f9408b96ffa9571a542a5f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 57.99it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cb7ec40fe3ec45d08179aab6d4080513": { + "ba458d4944864736a9229851605bc597": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5518,49 +5476,78 @@ "width": null } }, - "cbf2b24bd18b4edbacd886dcafaa444e": { + "baa12a5e11064c04934b7f2251564311": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ccac8bc1c11c45f89ff96cefaa978542": { - "model_module": "@jupyter-widgets/controls", + "bb928bde160d418985c159d23435d896": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4e63cd84d0664a389f7a2c1fc4d2150d", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cbf2b24bd18b4edbacd886dcafaa444e", - "tabbable": null, - "tooltip": null, - "value": 2.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ce6227b964234c43b828cdf0f2a1d14b": { + "bc9ac33beb964c04b7e19f6a1e1a6eec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5613,7 +5600,7 @@ "width": null } }, - "cec0792e81c34f57a620c02b6008c9b9": { + "bcf53273c9a94359bf468708176a7fb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5666,100 +5653,69 @@ "width": null } }, - "d0fc6798b54947e6a515a130cb22cfba": { + "c0d6bc39047b4081aa9475148f266798": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_71f92f3cb76845af818f1596d1aad567", - "placeholder": "​", - "style": "IPY_MODEL_c638000777cb4cec975b1486d525c699", + "layout": "IPY_MODEL_89b15967dfb6452597bba424994c0aed", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_19dc464653b042e1b8ba1ff4aa4f3231", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.38it/s]" + "value": 40.0 } }, - "d587e6373db14885bca54f2e22d83948": { + "c2f27d13f7af40c4938b2ff919248bc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_68b49f9c56874691a5dde48afc01bd3d", - "placeholder": "​", - "style": "IPY_MODEL_acf35687d6184470b664fbd6915bca24", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "d61389f0925e44b89855df404e5e0ec5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b4cf52f12f954d4fa658d40e09efc765", - "placeholder": "​", - "style": "IPY_MODEL_84f931bb437e445c9058f93680fd71da", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d6da9320d97441f18cf0ff51d6e7e512": { + "c76ed92d69d6444fb0a07c53c18b4c0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_39a19472a3fe402aa0610d403a02c6f6", - "IPY_MODEL_7e9a369dad29460c8238bd0440c14715", - "IPY_MODEL_bda4610631d64bc797fbde49591f4cb6" - ], - "layout": "IPY_MODEL_f7c1a36609be4ec09acd66e486d99e11", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d71acf66a79d410491280aad2949002b": { + "c977511679bc4e89a67b20d915a938ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5812,25 +5768,7 @@ "width": null } }, - "d9756d765be6479c8d1e1c537eef57ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dc2596ecf2904fde9a212a3f308541e5": { + "cb078ccfa5bd45de92c15a832146aa12": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5845,68 +5783,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_642a185c4e5e4ea1864cfe5f3ba9983d", + "layout": "IPY_MODEL_8a36d05bb1a644cf890db7ec5c1979a1", "placeholder": "​", - "style": "IPY_MODEL_094eda2d138648ce90e4359f4f6f5b98", + "style": "IPY_MODEL_7edd891321db4e908b5ed0d68bdddab0", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "de0ea962496a4c16ad11925c80cde938": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 60000/60000 [00:11<00:00, 6806.11 examples/s]" } }, - "dea1cccc081743ec9b2780690b8c9a75": { + "cb88b48c32274a769a3b6b2f97e0d5f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5921,16 +5806,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_94c61f3f34414ce3899f7578075e5c30", - "IPY_MODEL_6da88db83ea84d948ef4fd00bf7e1b7a", - "IPY_MODEL_11e946e1b04f4200ac1258d919a452fe" + "IPY_MODEL_f15c402cc4324dd7b2cf7f6985c8d4ed", + "IPY_MODEL_dfeea2e3d11f410baa4ffc746955acbf", + "IPY_MODEL_cb078ccfa5bd45de92c15a832146aa12" ], - "layout": "IPY_MODEL_756e2b663cb646e19866396cda50162f", + "layout": "IPY_MODEL_ee99b4bb138247288c3fc9cb7044cdb8", "tabbable": null, "tooltip": null } }, - "df7f8da2e01e4f9d94babea9052e473c": { + "cf59e27052914f59bf2cb3f866f7faf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5983,7 +5868,7 @@ "width": null } }, - "e1f04debe70546f2a5a319a9428a4a1c": { + "cf898ee7a0764e2b9f7a0b8a17fee462": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6036,49 +5921,7 @@ "width": null } }, - "e2479206943340a7b4abc0461314a573": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e833feea6f5944b5a4fa2c77a81361ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2e430f1f8e334932981a697267206909", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3f87d27541e94fe98a144f5970480975", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "e98593a22ae14c7595bc43684aa5ac9d": { + "d53fb7bf594d407c9e842abf6174a266": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6096,7 +5939,7 @@ "text_color": null } }, - "eb2f24e80df84b15abc80dc6ff728e9e": { + "d6430b8f25744f0fbc6b7c7b994b06d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6149,7 +5992,7 @@ "width": null } }, - "ef26370d36c34e109eced96b9d944f4c": { + "d8b68b042b5241cf86f858b91a7ab195": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6202,25 +6045,7 @@ "width": null } }, - "f3ee1199a5aa42c8a0cafce7aeedc375": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f5204ce422d541bfbfe61703e39a622a": { + "dcee1ad305e747b396286c15af30cc5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6273,7 +6098,173 @@ "width": null } }, - "f791528742cc4153ad7e12f4fe834057": { + "dd33a2c7592548889d520f9105c23bb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dfeea2e3d11f410baa4ffc746955acbf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_18f4e2fb304e4207a8582f3b68e46f1b", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a0876f2d03024b3bb5761a0df2937cfb", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "e36a0c3800fd4b46a397695a9464376d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f989133be39d4b8585b24a17aa6b8612", + "placeholder": "​", + "style": "IPY_MODEL_dd33a2c7592548889d520f9105c23bb8", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 71.69it/s]" + } + }, + "e630ccc4aafc46e1994dc57c453efa4c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ea07905d53eb44ab85413ddd0eb1103b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "eb284719132643f39c4d672792c9676b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_758003aac78a4e89a0dd59c12bfd4499", + "IPY_MODEL_07e1a5656606425a8fa445a2a98b32db", + "IPY_MODEL_23a4c60ebe91433cabd5be6f58108e1f" + ], + "layout": "IPY_MODEL_84941543352247e1ba0307848d584119", + "tabbable": null, + "tooltip": null + } + }, + "ec8926923d6642cc965b8aea46f7cdb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b84a380de582459fa124b9a70e1b5359", + "placeholder": "​", + "style": "IPY_MODEL_3cb626be1259490498bdc43c229957d5", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 514.95it/s]" + } + }, + "eda57d1ce07e4fb08048f276454d81c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ee99b4bb138247288c3fc9cb7044cdb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6326,7 +6317,48 @@ "width": null } }, - "f7c1a36609be4ec09acd66e486d99e11": { + "f15c402cc4324dd7b2cf7f6985c8d4ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_01d6c6d5c4544426af39a2a43bf4efd5", + "placeholder": "​", + "style": "IPY_MODEL_9e2f25346ff041f0a43792feaf401889", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "f3aa86d829fc4ca5bb1496d9254e9cac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f7dcc2439e854d37a27bed7fba490b03": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6379,7 +6411,7 @@ "width": null } }, - "f823fdf5151743ee90a218b258ea87ff": { + "f989133be39d4b8585b24a17aa6b8612": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6432,104 +6464,72 @@ "width": null } }, - "f83b182cbfef43f9b6e165da73875419": { + "fa5a714c695a458288a525b0b07ff15d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dc2596ecf2904fde9a212a3f308541e5", - "IPY_MODEL_b627c3fe164e4b63bc1789650329087f", - "IPY_MODEL_5df00a0d8d314b25ad3811b63ded156a" - ], - "layout": "IPY_MODEL_f823fdf5151743ee90a218b258ea87ff", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8cf1e91b3283461d9e7f008fa37fff9f", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a45cdcaa39ac4e7783e3300484169c30", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "ff1e772a59ce423580b3134bca1d92c9": { - "model_module": "@jupyter-widgets/base", + "fcd3307eda42417c8c3f83f6bd1ece28": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d8b68b042b5241cf86f858b91a7ab195", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_19d828f4e1d84ef2ac773bc529b40946", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "ffdad78df3264781ac2a4a0e7f6a47ff": { + "fd142fc752ad437dac5e121ea0a962e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f791528742cc4153ad7e12f4fe834057", - "placeholder": "​", - "style": "IPY_MODEL_0be6ea4bdf434487844f8dcccf92799f", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index e280384ab..43decdf02 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:50.016933Z", - "iopub.status.busy": "2024-04-06T04:15:50.016765Z", - "iopub.status.idle": "2024-04-06T04:15:51.093933Z", - "shell.execute_reply": "2024-04-06T04:15:51.093393Z" + "iopub.execute_input": "2024-04-06T04:33:02.881954Z", + "iopub.status.busy": "2024-04-06T04:33:02.881761Z", + "iopub.status.idle": "2024-04-06T04:33:03.953480Z", + "shell.execute_reply": "2024-04-06T04:33:03.952937Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:51.096509Z", - "iopub.status.busy": "2024-04-06T04:15:51.096219Z", - "iopub.status.idle": "2024-04-06T04:15:51.114718Z", - "shell.execute_reply": "2024-04-06T04:15:51.114311Z" + "iopub.execute_input": "2024-04-06T04:33:03.956075Z", + "iopub.status.busy": "2024-04-06T04:33:03.955587Z", + "iopub.status.idle": "2024-04-06T04:33:03.973883Z", + "shell.execute_reply": "2024-04-06T04:33:03.973490Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:51.116987Z", - "iopub.status.busy": "2024-04-06T04:15:51.116584Z", - "iopub.status.idle": "2024-04-06T04:15:51.141165Z", - "shell.execute_reply": "2024-04-06T04:15:51.140695Z" + "iopub.execute_input": "2024-04-06T04:33:03.975942Z", + "iopub.status.busy": "2024-04-06T04:33:03.975699Z", + "iopub.status.idle": "2024-04-06T04:33:04.012978Z", + "shell.execute_reply": "2024-04-06T04:33:04.012510Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:51.143306Z", - "iopub.status.busy": "2024-04-06T04:15:51.142956Z", - "iopub.status.idle": "2024-04-06T04:15:51.146419Z", - "shell.execute_reply": "2024-04-06T04:15:51.145892Z" + "iopub.execute_input": "2024-04-06T04:33:04.014896Z", + "iopub.status.busy": "2024-04-06T04:33:04.014722Z", + "iopub.status.idle": "2024-04-06T04:33:04.018157Z", + "shell.execute_reply": "2024-04-06T04:33:04.017691Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:51.148509Z", - "iopub.status.busy": "2024-04-06T04:15:51.148195Z", - "iopub.status.idle": "2024-04-06T04:15:51.156122Z", - "shell.execute_reply": "2024-04-06T04:15:51.155564Z" + "iopub.execute_input": "2024-04-06T04:33:04.020151Z", + "iopub.status.busy": "2024-04-06T04:33:04.019837Z", + "iopub.status.idle": "2024-04-06T04:33:04.027381Z", + "shell.execute_reply": "2024-04-06T04:33:04.026969Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:51.158380Z", - "iopub.status.busy": "2024-04-06T04:15:51.157974Z", - "iopub.status.idle": "2024-04-06T04:15:51.160651Z", - "shell.execute_reply": "2024-04-06T04:15:51.160126Z" + "iopub.execute_input": "2024-04-06T04:33:04.029320Z", + "iopub.status.busy": "2024-04-06T04:33:04.029148Z", + "iopub.status.idle": "2024-04-06T04:33:04.031565Z", + "shell.execute_reply": "2024-04-06T04:33:04.031152Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:51.162562Z", - "iopub.status.busy": "2024-04-06T04:15:51.162265Z", - "iopub.status.idle": "2024-04-06T04:15:54.102739Z", - "shell.execute_reply": "2024-04-06T04:15:54.102113Z" + "iopub.execute_input": "2024-04-06T04:33:04.033457Z", + "iopub.status.busy": "2024-04-06T04:33:04.033286Z", + "iopub.status.idle": "2024-04-06T04:33:07.020218Z", + "shell.execute_reply": "2024-04-06T04:33:07.019691Z" } }, "outputs": [], @@ -402,10 +402,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:54.105301Z", - "iopub.status.busy": "2024-04-06T04:15:54.104968Z", - "iopub.status.idle": "2024-04-06T04:15:54.114359Z", - "shell.execute_reply": "2024-04-06T04:15:54.113824Z" + "iopub.execute_input": "2024-04-06T04:33:07.022814Z", + "iopub.status.busy": "2024-04-06T04:33:07.022610Z", + "iopub.status.idle": "2024-04-06T04:33:07.032179Z", + "shell.execute_reply": "2024-04-06T04:33:07.031775Z" } }, "outputs": [], @@ -437,10 +437,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:54.116540Z", - "iopub.status.busy": "2024-04-06T04:15:54.116231Z", - "iopub.status.idle": "2024-04-06T04:15:55.891275Z", - "shell.execute_reply": "2024-04-06T04:15:55.890683Z" + "iopub.execute_input": "2024-04-06T04:33:07.034095Z", + "iopub.status.busy": "2024-04-06T04:33:07.033903Z", + "iopub.status.idle": "2024-04-06T04:33:08.789065Z", + "shell.execute_reply": "2024-04-06T04:33:08.788481Z" } }, "outputs": [ @@ -485,10 +485,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.895568Z", - "iopub.status.busy": "2024-04-06T04:15:55.894234Z", - "iopub.status.idle": "2024-04-06T04:15:55.920587Z", - "shell.execute_reply": "2024-04-06T04:15:55.920085Z" + "iopub.execute_input": "2024-04-06T04:33:08.792211Z", + "iopub.status.busy": "2024-04-06T04:33:08.791532Z", + "iopub.status.idle": "2024-04-06T04:33:08.814502Z", + "shell.execute_reply": "2024-04-06T04:33:08.814015Z" }, "scrolled": true }, @@ -613,10 +613,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.924233Z", - "iopub.status.busy": "2024-04-06T04:15:55.923320Z", - "iopub.status.idle": "2024-04-06T04:15:55.934559Z", - "shell.execute_reply": "2024-04-06T04:15:55.934069Z" + "iopub.execute_input": "2024-04-06T04:33:08.817077Z", + "iopub.status.busy": "2024-04-06T04:33:08.816765Z", + "iopub.status.idle": "2024-04-06T04:33:08.825617Z", + "shell.execute_reply": "2024-04-06T04:33:08.825158Z" } }, "outputs": [ @@ -720,10 +720,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.938182Z", - "iopub.status.busy": "2024-04-06T04:15:55.937261Z", - "iopub.status.idle": "2024-04-06T04:15:55.950750Z", - "shell.execute_reply": "2024-04-06T04:15:55.950239Z" + "iopub.execute_input": "2024-04-06T04:33:08.828222Z", + "iopub.status.busy": "2024-04-06T04:33:08.827849Z", + "iopub.status.idle": "2024-04-06T04:33:08.838568Z", + "shell.execute_reply": "2024-04-06T04:33:08.838097Z" } }, "outputs": [ @@ -852,10 +852,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.954390Z", - "iopub.status.busy": "2024-04-06T04:15:55.953460Z", - "iopub.status.idle": "2024-04-06T04:15:55.964719Z", - "shell.execute_reply": "2024-04-06T04:15:55.964248Z" + "iopub.execute_input": "2024-04-06T04:33:08.841680Z", + "iopub.status.busy": "2024-04-06T04:33:08.840763Z", + "iopub.status.idle": "2024-04-06T04:33:08.851889Z", + "shell.execute_reply": "2024-04-06T04:33:08.851420Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.968475Z", - "iopub.status.busy": "2024-04-06T04:15:55.967527Z", - "iopub.status.idle": "2024-04-06T04:15:55.978733Z", - "shell.execute_reply": "2024-04-06T04:15:55.978257Z" + "iopub.execute_input": "2024-04-06T04:33:08.855383Z", + "iopub.status.busy": "2024-04-06T04:33:08.854470Z", + "iopub.status.idle": "2024-04-06T04:33:08.866911Z", + "shell.execute_reply": "2024-04-06T04:33:08.866438Z" } }, "outputs": [ @@ -1083,10 +1083,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.980961Z", - "iopub.status.busy": "2024-04-06T04:15:55.980623Z", - "iopub.status.idle": "2024-04-06T04:15:55.987855Z", - "shell.execute_reply": "2024-04-06T04:15:55.987441Z" + "iopub.execute_input": "2024-04-06T04:33:08.869543Z", + "iopub.status.busy": "2024-04-06T04:33:08.869360Z", + "iopub.status.idle": "2024-04-06T04:33:08.876491Z", + "shell.execute_reply": "2024-04-06T04:33:08.875865Z" } }, "outputs": [ @@ -1170,10 +1170,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.989944Z", - "iopub.status.busy": "2024-04-06T04:15:55.989616Z", - "iopub.status.idle": "2024-04-06T04:15:55.995904Z", - "shell.execute_reply": "2024-04-06T04:15:55.995403Z" + "iopub.execute_input": "2024-04-06T04:33:08.878704Z", + "iopub.status.busy": "2024-04-06T04:33:08.878368Z", + "iopub.status.idle": "2024-04-06T04:33:08.884874Z", + "shell.execute_reply": "2024-04-06T04:33:08.884343Z" } }, "outputs": [ @@ -1266,10 +1266,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:55.998173Z", - "iopub.status.busy": "2024-04-06T04:15:55.997704Z", - "iopub.status.idle": "2024-04-06T04:15:56.005154Z", - "shell.execute_reply": "2024-04-06T04:15:56.004595Z" + "iopub.execute_input": "2024-04-06T04:33:08.887114Z", + "iopub.status.busy": "2024-04-06T04:33:08.886669Z", + "iopub.status.idle": "2024-04-06T04:33:08.893228Z", + "shell.execute_reply": "2024-04-06T04:33:08.892752Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 888f059fa..26071ae2b 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -757,7 +757,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'visa_or_mastercard', 'getting_spare_card', 'card_payment_fee_charged', 'change_pin', 'cancel_transfer', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire', 'apple_pay_or_google_pay'}
+Classes: {'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'change_pin', 'beneficiary_not_allowed', 'cancel_transfer', 'lost_or_stolen_phone', 'supported_cards_and_currencies'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 8caecef08..a6257a523 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:15:58.980997Z", - "iopub.status.busy": "2024-04-06T04:15:58.980817Z", - "iopub.status.idle": "2024-04-06T04:16:01.635517Z", - "shell.execute_reply": "2024-04-06T04:16:01.634921Z" + "iopub.execute_input": "2024-04-06T04:33:11.681681Z", + "iopub.status.busy": "2024-04-06T04:33:11.681132Z", + "iopub.status.idle": "2024-04-06T04:33:14.408684Z", + "shell.execute_reply": "2024-04-06T04:33:14.408170Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:01.638211Z", - "iopub.status.busy": "2024-04-06T04:16:01.637841Z", - "iopub.status.idle": "2024-04-06T04:16:01.641348Z", - "shell.execute_reply": "2024-04-06T04:16:01.640830Z" + "iopub.execute_input": "2024-04-06T04:33:14.411372Z", + "iopub.status.busy": "2024-04-06T04:33:14.410870Z", + "iopub.status.idle": "2024-04-06T04:33:14.414126Z", + "shell.execute_reply": "2024-04-06T04:33:14.413639Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:01.643415Z", - "iopub.status.busy": "2024-04-06T04:16:01.643050Z", - "iopub.status.idle": "2024-04-06T04:16:01.646013Z", - "shell.execute_reply": "2024-04-06T04:16:01.645596Z" + "iopub.execute_input": "2024-04-06T04:33:14.416093Z", + "iopub.status.busy": "2024-04-06T04:33:14.415817Z", + "iopub.status.idle": "2024-04-06T04:33:14.419148Z", + "shell.execute_reply": "2024-04-06T04:33:14.418621Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:01.647872Z", - "iopub.status.busy": "2024-04-06T04:16:01.647695Z", - "iopub.status.idle": "2024-04-06T04:16:01.671923Z", - "shell.execute_reply": "2024-04-06T04:16:01.671486Z" + "iopub.execute_input": "2024-04-06T04:33:14.421094Z", + "iopub.status.busy": "2024-04-06T04:33:14.420828Z", + "iopub.status.idle": "2024-04-06T04:33:14.445821Z", + "shell.execute_reply": "2024-04-06T04:33:14.445234Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:01.673817Z", - "iopub.status.busy": "2024-04-06T04:16:01.673635Z", - "iopub.status.idle": "2024-04-06T04:16:01.677282Z", - "shell.execute_reply": "2024-04-06T04:16:01.676773Z" + "iopub.execute_input": "2024-04-06T04:33:14.448095Z", + "iopub.status.busy": "2024-04-06T04:33:14.447753Z", + "iopub.status.idle": "2024-04-06T04:33:14.451521Z", + "shell.execute_reply": "2024-04-06T04:33:14.451033Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'getting_spare_card', 'card_payment_fee_charged', 'change_pin', 'cancel_transfer', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire', 'apple_pay_or_google_pay'}\n" + "Classes: {'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'change_pin', 'beneficiary_not_allowed', 'cancel_transfer', 'lost_or_stolen_phone', 'supported_cards_and_currencies'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:01.679189Z", - "iopub.status.busy": "2024-04-06T04:16:01.678921Z", - "iopub.status.idle": "2024-04-06T04:16:01.681836Z", - "shell.execute_reply": "2024-04-06T04:16:01.681428Z" + "iopub.execute_input": "2024-04-06T04:33:14.453654Z", + "iopub.status.busy": "2024-04-06T04:33:14.453334Z", + "iopub.status.idle": "2024-04-06T04:33:14.456651Z", + "shell.execute_reply": "2024-04-06T04:33:14.456195Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:01.683996Z", - "iopub.status.busy": "2024-04-06T04:16:01.683795Z", - "iopub.status.idle": "2024-04-06T04:16:05.869169Z", - "shell.execute_reply": "2024-04-06T04:16:05.868466Z" + "iopub.execute_input": "2024-04-06T04:33:14.458570Z", + "iopub.status.busy": "2024-04-06T04:33:14.458385Z", + "iopub.status.idle": "2024-04-06T04:33:18.310859Z", + "shell.execute_reply": "2024-04-06T04:33:18.310235Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:05.872192Z", - "iopub.status.busy": "2024-04-06T04:16:05.871664Z", - "iopub.status.idle": "2024-04-06T04:16:06.850433Z", - "shell.execute_reply": "2024-04-06T04:16:06.849867Z" + "iopub.execute_input": "2024-04-06T04:33:18.313664Z", + "iopub.status.busy": "2024-04-06T04:33:18.313302Z", + "iopub.status.idle": "2024-04-06T04:33:19.193930Z", + "shell.execute_reply": "2024-04-06T04:33:19.193370Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:06.853315Z", - "iopub.status.busy": "2024-04-06T04:16:06.852888Z", - "iopub.status.idle": "2024-04-06T04:16:06.856060Z", - "shell.execute_reply": "2024-04-06T04:16:06.855577Z" + "iopub.execute_input": "2024-04-06T04:33:19.196805Z", + "iopub.status.busy": "2024-04-06T04:33:19.196442Z", + "iopub.status.idle": "2024-04-06T04:33:19.199261Z", + "shell.execute_reply": "2024-04-06T04:33:19.198798Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:06.858535Z", - "iopub.status.busy": "2024-04-06T04:16:06.858115Z", - "iopub.status.idle": "2024-04-06T04:16:08.429970Z", - "shell.execute_reply": "2024-04-06T04:16:08.429311Z" + "iopub.execute_input": "2024-04-06T04:33:19.201572Z", + "iopub.status.busy": "2024-04-06T04:33:19.201213Z", + "iopub.status.idle": "2024-04-06T04:33:20.771182Z", + "shell.execute_reply": "2024-04-06T04:33:20.770550Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.433540Z", - "iopub.status.busy": "2024-04-06T04:16:08.432944Z", - "iopub.status.idle": "2024-04-06T04:16:08.458129Z", - "shell.execute_reply": "2024-04-06T04:16:08.457627Z" + "iopub.execute_input": "2024-04-06T04:33:20.774433Z", + "iopub.status.busy": "2024-04-06T04:33:20.773600Z", + "iopub.status.idle": "2024-04-06T04:33:20.799139Z", + "shell.execute_reply": "2024-04-06T04:33:20.798597Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.461622Z", - "iopub.status.busy": "2024-04-06T04:16:08.460657Z", - "iopub.status.idle": "2024-04-06T04:16:08.472275Z", - "shell.execute_reply": "2024-04-06T04:16:08.471790Z" + "iopub.execute_input": "2024-04-06T04:33:20.801783Z", + "iopub.status.busy": "2024-04-06T04:33:20.801390Z", + "iopub.status.idle": "2024-04-06T04:33:20.811382Z", + "shell.execute_reply": "2024-04-06T04:33:20.810884Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.475751Z", - "iopub.status.busy": "2024-04-06T04:16:08.474843Z", - "iopub.status.idle": "2024-04-06T04:16:08.481161Z", - "shell.execute_reply": "2024-04-06T04:16:08.480567Z" + "iopub.execute_input": "2024-04-06T04:33:20.813909Z", + "iopub.status.busy": "2024-04-06T04:33:20.813527Z", + "iopub.status.idle": "2024-04-06T04:33:20.818371Z", + "shell.execute_reply": "2024-04-06T04:33:20.817869Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.483438Z", - "iopub.status.busy": "2024-04-06T04:16:08.483264Z", - "iopub.status.idle": "2024-04-06T04:16:08.490944Z", - "shell.execute_reply": "2024-04-06T04:16:08.490403Z" + "iopub.execute_input": "2024-04-06T04:33:20.820606Z", + "iopub.status.busy": "2024-04-06T04:33:20.820299Z", + "iopub.status.idle": "2024-04-06T04:33:20.826482Z", + "shell.execute_reply": "2024-04-06T04:33:20.826090Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.493066Z", - "iopub.status.busy": "2024-04-06T04:16:08.492894Z", - "iopub.status.idle": "2024-04-06T04:16:08.499255Z", - "shell.execute_reply": "2024-04-06T04:16:08.498859Z" + "iopub.execute_input": "2024-04-06T04:33:20.828437Z", + "iopub.status.busy": "2024-04-06T04:33:20.828137Z", + "iopub.status.idle": "2024-04-06T04:33:20.834167Z", + "shell.execute_reply": "2024-04-06T04:33:20.833652Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.501464Z", - "iopub.status.busy": "2024-04-06T04:16:08.500950Z", - "iopub.status.idle": "2024-04-06T04:16:08.506843Z", - "shell.execute_reply": "2024-04-06T04:16:08.506432Z" + "iopub.execute_input": "2024-04-06T04:33:20.836059Z", + "iopub.status.busy": "2024-04-06T04:33:20.835877Z", + "iopub.status.idle": "2024-04-06T04:33:20.841929Z", + "shell.execute_reply": "2024-04-06T04:33:20.841349Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.509115Z", - "iopub.status.busy": "2024-04-06T04:16:08.508602Z", - "iopub.status.idle": "2024-04-06T04:16:08.516801Z", - "shell.execute_reply": "2024-04-06T04:16:08.516407Z" + "iopub.execute_input": "2024-04-06T04:33:20.843988Z", + "iopub.status.busy": "2024-04-06T04:33:20.843684Z", + "iopub.status.idle": "2024-04-06T04:33:20.852453Z", + "shell.execute_reply": "2024-04-06T04:33:20.851982Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.519036Z", - "iopub.status.busy": "2024-04-06T04:16:08.518506Z", - "iopub.status.idle": "2024-04-06T04:16:08.523968Z", - "shell.execute_reply": "2024-04-06T04:16:08.523558Z" + "iopub.execute_input": "2024-04-06T04:33:20.854597Z", + "iopub.status.busy": "2024-04-06T04:33:20.854199Z", + "iopub.status.idle": "2024-04-06T04:33:20.859815Z", + "shell.execute_reply": "2024-04-06T04:33:20.859258Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.525951Z", - "iopub.status.busy": "2024-04-06T04:16:08.525543Z", - "iopub.status.idle": "2024-04-06T04:16:08.530793Z", - "shell.execute_reply": "2024-04-06T04:16:08.530264Z" + "iopub.execute_input": "2024-04-06T04:33:20.861773Z", + "iopub.status.busy": "2024-04-06T04:33:20.861471Z", + "iopub.status.idle": "2024-04-06T04:33:20.866885Z", + "shell.execute_reply": "2024-04-06T04:33:20.866352Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.532785Z", - "iopub.status.busy": "2024-04-06T04:16:08.532500Z", - "iopub.status.idle": "2024-04-06T04:16:08.535816Z", - "shell.execute_reply": "2024-04-06T04:16:08.535329Z" + "iopub.execute_input": "2024-04-06T04:33:20.869013Z", + "iopub.status.busy": "2024-04-06T04:33:20.868609Z", + "iopub.status.idle": "2024-04-06T04:33:20.872412Z", + "shell.execute_reply": "2024-04-06T04:33:20.871871Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:08.537804Z", - "iopub.status.busy": "2024-04-06T04:16:08.537486Z", - "iopub.status.idle": "2024-04-06T04:16:08.542264Z", - "shell.execute_reply": "2024-04-06T04:16:08.541823Z" + "iopub.execute_input": "2024-04-06T04:33:20.874578Z", + "iopub.status.busy": "2024-04-06T04:33:20.874128Z", + "iopub.status.idle": "2024-04-06T04:33:20.879644Z", + "shell.execute_reply": "2024-04-06T04:33:20.879101Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 9715b8d4b..31a8923c7 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:11.827441Z", - "iopub.status.busy": "2024-04-06T04:16:11.827268Z", - "iopub.status.idle": "2024-04-06T04:16:12.900240Z", - "shell.execute_reply": "2024-04-06T04:16:12.899649Z" + "iopub.execute_input": "2024-04-06T04:33:24.564833Z", + "iopub.status.busy": "2024-04-06T04:33:24.564645Z", + "iopub.status.idle": "2024-04-06T04:33:25.678241Z", + "shell.execute_reply": "2024-04-06T04:33:25.677637Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:12.903158Z", - "iopub.status.busy": "2024-04-06T04:16:12.902591Z", - "iopub.status.idle": "2024-04-06T04:16:12.905507Z", - "shell.execute_reply": "2024-04-06T04:16:12.905059Z" + "iopub.execute_input": "2024-04-06T04:33:25.681005Z", + "iopub.status.busy": "2024-04-06T04:33:25.680432Z", + "iopub.status.idle": "2024-04-06T04:33:25.683479Z", + "shell.execute_reply": "2024-04-06T04:33:25.683004Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:12.907643Z", - "iopub.status.busy": "2024-04-06T04:16:12.907467Z", - "iopub.status.idle": "2024-04-06T04:16:12.919565Z", - "shell.execute_reply": "2024-04-06T04:16:12.919023Z" + "iopub.execute_input": "2024-04-06T04:33:25.685643Z", + "iopub.status.busy": "2024-04-06T04:33:25.685458Z", + "iopub.status.idle": "2024-04-06T04:33:25.698037Z", + "shell.execute_reply": "2024-04-06T04:33:25.697552Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:12.921585Z", - "iopub.status.busy": "2024-04-06T04:16:12.921255Z", - "iopub.status.idle": "2024-04-06T04:16:16.478543Z", - "shell.execute_reply": "2024-04-06T04:16:16.478086Z" + "iopub.execute_input": "2024-04-06T04:33:25.700120Z", + "iopub.status.busy": "2024-04-06T04:33:25.699931Z", + "iopub.status.idle": "2024-04-06T04:33:30.316432Z", + "shell.execute_reply": "2024-04-06T04:33:30.315931Z" }, "id": "dhTHOg8Pyv5G" }, @@ -692,7 +692,13 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 833c9d795..d12576394 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -797,13 +797,13 @@

How can I find label issues in big datasets with limited memory?
-
+
-
+
@@ -1748,7 +1748,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 084feca40..71792b57a 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:18.630228Z", - "iopub.status.busy": "2024-04-06T04:16:18.629773Z", - "iopub.status.idle": "2024-04-06T04:16:19.717285Z", - "shell.execute_reply": "2024-04-06T04:16:19.716754Z" + "iopub.execute_input": "2024-04-06T04:33:32.453926Z", + "iopub.status.busy": "2024-04-06T04:33:32.453487Z", + "iopub.status.idle": "2024-04-06T04:33:33.577711Z", + "shell.execute_reply": "2024-04-06T04:33:33.577162Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:19.719827Z", - "iopub.status.busy": "2024-04-06T04:16:19.719547Z", - "iopub.status.idle": "2024-04-06T04:16:19.722875Z", - "shell.execute_reply": "2024-04-06T04:16:19.722410Z" + "iopub.execute_input": "2024-04-06T04:33:33.580468Z", + "iopub.status.busy": "2024-04-06T04:33:33.579978Z", + "iopub.status.idle": "2024-04-06T04:33:33.583331Z", + "shell.execute_reply": "2024-04-06T04:33:33.582894Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:19.724721Z", - "iopub.status.busy": "2024-04-06T04:16:19.724550Z", - "iopub.status.idle": "2024-04-06T04:16:22.693080Z", - "shell.execute_reply": "2024-04-06T04:16:22.692344Z" + "iopub.execute_input": "2024-04-06T04:33:33.585545Z", + "iopub.status.busy": "2024-04-06T04:33:33.585109Z", + "iopub.status.idle": "2024-04-06T04:33:36.718652Z", + "shell.execute_reply": "2024-04-06T04:33:36.718005Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.696305Z", - "iopub.status.busy": "2024-04-06T04:16:22.695564Z", - "iopub.status.idle": "2024-04-06T04:16:22.728174Z", - "shell.execute_reply": "2024-04-06T04:16:22.727599Z" + "iopub.execute_input": "2024-04-06T04:33:36.721727Z", + "iopub.status.busy": "2024-04-06T04:33:36.721060Z", + "iopub.status.idle": "2024-04-06T04:33:36.760399Z", + "shell.execute_reply": "2024-04-06T04:33:36.759784Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.730962Z", - "iopub.status.busy": "2024-04-06T04:16:22.730489Z", - "iopub.status.idle": "2024-04-06T04:16:22.760391Z", - "shell.execute_reply": "2024-04-06T04:16:22.759838Z" + "iopub.execute_input": "2024-04-06T04:33:36.763173Z", + "iopub.status.busy": "2024-04-06T04:33:36.762842Z", + "iopub.status.idle": "2024-04-06T04:33:36.801368Z", + "shell.execute_reply": "2024-04-06T04:33:36.800735Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.762715Z", - "iopub.status.busy": "2024-04-06T04:16:22.762463Z", - "iopub.status.idle": "2024-04-06T04:16:22.765481Z", - "shell.execute_reply": "2024-04-06T04:16:22.765022Z" + "iopub.execute_input": "2024-04-06T04:33:36.804245Z", + "iopub.status.busy": "2024-04-06T04:33:36.803821Z", + "iopub.status.idle": "2024-04-06T04:33:36.807084Z", + "shell.execute_reply": "2024-04-06T04:33:36.806596Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.767437Z", - "iopub.status.busy": "2024-04-06T04:16:22.767124Z", - "iopub.status.idle": "2024-04-06T04:16:22.769623Z", - "shell.execute_reply": "2024-04-06T04:16:22.769199Z" + "iopub.execute_input": "2024-04-06T04:33:36.809090Z", + "iopub.status.busy": "2024-04-06T04:33:36.808779Z", + "iopub.status.idle": "2024-04-06T04:33:36.811544Z", + "shell.execute_reply": "2024-04-06T04:33:36.811006Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.771819Z", - "iopub.status.busy": "2024-04-06T04:16:22.771506Z", - "iopub.status.idle": "2024-04-06T04:16:22.796699Z", - "shell.execute_reply": "2024-04-06T04:16:22.796156Z" + "iopub.execute_input": "2024-04-06T04:33:36.813573Z", + "iopub.status.busy": "2024-04-06T04:33:36.813305Z", + "iopub.status.idle": "2024-04-06T04:33:36.837656Z", + "shell.execute_reply": "2024-04-06T04:33:36.837105Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e037cf4389884d2ca6c4c6f8c3db3915", + "model_id": "ad7ffe9f7e104f438570b96387ce328e", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d010c5336fd14cdab1efb31597d6bf6c", + "model_id": "6a93f0182ebb47fc96441f7413ee50a4", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.802394Z", - "iopub.status.busy": "2024-04-06T04:16:22.802218Z", - "iopub.status.idle": "2024-04-06T04:16:22.808522Z", - "shell.execute_reply": "2024-04-06T04:16:22.808123Z" + "iopub.execute_input": "2024-04-06T04:33:36.843747Z", + "iopub.status.busy": "2024-04-06T04:33:36.843506Z", + "iopub.status.idle": "2024-04-06T04:33:36.850771Z", + "shell.execute_reply": "2024-04-06T04:33:36.850304Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.810337Z", - "iopub.status.busy": "2024-04-06T04:16:22.810168Z", - "iopub.status.idle": "2024-04-06T04:16:22.813449Z", - "shell.execute_reply": "2024-04-06T04:16:22.813042Z" + "iopub.execute_input": "2024-04-06T04:33:36.853060Z", + "iopub.status.busy": "2024-04-06T04:33:36.852662Z", + "iopub.status.idle": "2024-04-06T04:33:36.856158Z", + "shell.execute_reply": "2024-04-06T04:33:36.855726Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.815335Z", - "iopub.status.busy": "2024-04-06T04:16:22.815015Z", - "iopub.status.idle": "2024-04-06T04:16:22.821107Z", - "shell.execute_reply": "2024-04-06T04:16:22.820663Z" + "iopub.execute_input": "2024-04-06T04:33:36.858276Z", + "iopub.status.busy": "2024-04-06T04:33:36.858000Z", + "iopub.status.idle": "2024-04-06T04:33:36.864594Z", + "shell.execute_reply": "2024-04-06T04:33:36.864108Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.823126Z", - "iopub.status.busy": "2024-04-06T04:16:22.822797Z", - "iopub.status.idle": "2024-04-06T04:16:22.858959Z", - "shell.execute_reply": "2024-04-06T04:16:22.858293Z" + "iopub.execute_input": "2024-04-06T04:33:36.866698Z", + "iopub.status.busy": "2024-04-06T04:33:36.866352Z", + "iopub.status.idle": "2024-04-06T04:33:36.905959Z", + "shell.execute_reply": "2024-04-06T04:33:36.905317Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.861509Z", - "iopub.status.busy": "2024-04-06T04:16:22.861175Z", - "iopub.status.idle": "2024-04-06T04:16:22.891534Z", - "shell.execute_reply": "2024-04-06T04:16:22.890881Z" + "iopub.execute_input": "2024-04-06T04:33:36.908640Z", + "iopub.status.busy": "2024-04-06T04:33:36.908384Z", + "iopub.status.idle": "2024-04-06T04:33:36.948839Z", + "shell.execute_reply": "2024-04-06T04:33:36.948221Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:22.893902Z", - "iopub.status.busy": "2024-04-06T04:16:22.893675Z", - "iopub.status.idle": "2024-04-06T04:16:23.014413Z", - "shell.execute_reply": "2024-04-06T04:16:23.013794Z" + "iopub.execute_input": "2024-04-06T04:33:36.951895Z", + "iopub.status.busy": "2024-04-06T04:33:36.951511Z", + "iopub.status.idle": "2024-04-06T04:33:37.080581Z", + "shell.execute_reply": "2024-04-06T04:33:37.079922Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:23.017156Z", - "iopub.status.busy": "2024-04-06T04:16:23.016635Z", - "iopub.status.idle": "2024-04-06T04:16:26.020660Z", - "shell.execute_reply": "2024-04-06T04:16:26.019996Z" + "iopub.execute_input": "2024-04-06T04:33:37.083569Z", + "iopub.status.busy": "2024-04-06T04:33:37.082731Z", + "iopub.status.idle": "2024-04-06T04:33:40.126106Z", + "shell.execute_reply": "2024-04-06T04:33:40.125422Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:26.023206Z", - "iopub.status.busy": "2024-04-06T04:16:26.022830Z", - "iopub.status.idle": "2024-04-06T04:16:26.079432Z", - "shell.execute_reply": "2024-04-06T04:16:26.078859Z" + "iopub.execute_input": "2024-04-06T04:33:40.128582Z", + "iopub.status.busy": "2024-04-06T04:33:40.128353Z", + "iopub.status.idle": "2024-04-06T04:33:40.189416Z", + "shell.execute_reply": "2024-04-06T04:33:40.188788Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:26.081692Z", - "iopub.status.busy": "2024-04-06T04:16:26.081279Z", - "iopub.status.idle": "2024-04-06T04:16:26.120101Z", - "shell.execute_reply": "2024-04-06T04:16:26.119549Z" + "iopub.execute_input": "2024-04-06T04:33:40.191652Z", + "iopub.status.busy": "2024-04-06T04:33:40.191314Z", + "iopub.status.idle": "2024-04-06T04:33:40.231110Z", + "shell.execute_reply": "2024-04-06T04:33:40.230569Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "d1c22757", + "id": "7997ced4", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "efb4bb46", + "id": "57a8d119", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "1e9de073", + "id": "9fb93000", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:26.122247Z", - "iopub.status.busy": "2024-04-06T04:16:26.121882Z", - "iopub.status.idle": "2024-04-06T04:16:26.245866Z", - "shell.execute_reply": "2024-04-06T04:16:26.245381Z" + "iopub.execute_input": "2024-04-06T04:33:40.233390Z", + "iopub.status.busy": "2024-04-06T04:33:40.233191Z", + "iopub.status.idle": "2024-04-06T04:33:40.327660Z", + "shell.execute_reply": "2024-04-06T04:33:40.327127Z" } }, "outputs": [ @@ -1387,7 +1387,7 @@ }, { "cell_type": "markdown", - "id": "c8b9ef58", + "id": "27082dba", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1396,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "c782bf6a", + "id": "5a3f0b1c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:26.248362Z", - "iopub.status.busy": "2024-04-06T04:16:26.248022Z", - "iopub.status.idle": "2024-04-06T04:16:26.307531Z", - "shell.execute_reply": "2024-04-06T04:16:26.307066Z" + "iopub.execute_input": "2024-04-06T04:33:40.330424Z", + "iopub.status.busy": "2024-04-06T04:33:40.330165Z", + "iopub.status.idle": "2024-04-06T04:33:40.412901Z", + "shell.execute_reply": "2024-04-06T04:33:40.412405Z" } }, "outputs": [ @@ -1445,7 +1445,7 @@ }, { "cell_type": "markdown", - "id": "3e3aeaed", + "id": "bb4c5299", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1456,13 +1456,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "dec49bf1", + "id": "0a847975", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:26.310799Z", - "iopub.status.busy": "2024-04-06T04:16:26.310063Z", - "iopub.status.idle": "2024-04-06T04:16:26.317904Z", - "shell.execute_reply": "2024-04-06T04:16:26.317453Z" + "iopub.execute_input": "2024-04-06T04:33:40.415545Z", + "iopub.status.busy": "2024-04-06T04:33:40.415364Z", + "iopub.status.idle": "2024-04-06T04:33:40.424747Z", + "shell.execute_reply": "2024-04-06T04:33:40.424323Z" } }, "outputs": [], @@ -1564,7 +1564,7 @@ }, { "cell_type": "markdown", - "id": "3f9f6288", + "id": "f6c74243", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1579,13 +1579,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "6e4b536f", + "id": "665cd26e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:26.320208Z", - "iopub.status.busy": "2024-04-06T04:16:26.319799Z", - "iopub.status.idle": "2024-04-06T04:16:26.337706Z", - "shell.execute_reply": "2024-04-06T04:16:26.337157Z" + "iopub.execute_input": "2024-04-06T04:33:40.427036Z", + "iopub.status.busy": "2024-04-06T04:33:40.426714Z", + "iopub.status.idle": "2024-04-06T04:33:40.447448Z", + "shell.execute_reply": "2024-04-06T04:33:40.446876Z" } }, "outputs": [ @@ -1602,7 +1602,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7725/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7516/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1636,13 +1636,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "0d630068", + "id": "1a0ba0a1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:26.339591Z", - "iopub.status.busy": "2024-04-06T04:16:26.339270Z", - "iopub.status.idle": "2024-04-06T04:16:26.342513Z", - "shell.execute_reply": "2024-04-06T04:16:26.342052Z" + "iopub.execute_input": "2024-04-06T04:33:40.449833Z", + "iopub.status.busy": "2024-04-06T04:33:40.449476Z", + "iopub.status.idle": "2024-04-06T04:33:40.452685Z", + "shell.execute_reply": "2024-04-06T04:33:40.452130Z" } }, "outputs": [ @@ -1737,7 +1737,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1520c7ddd1e44969881c547a43c9e684": { + "14b2e46a058f49b7877f1e0a8fc3b5b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,7 +1790,7 @@ "width": null } }, - "1688b7eba8b54fe3809f86e1c4916732": { + "23c0ea245fbd417183656f1b6c07712f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1843,67 +1843,30 @@ "width": null } }, - "2d3bb7f3059b48ac9e328e9b02caa2a0": { + "245c87c4c2aa416db47130538b929d58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2e2c612e24c04e0da4cd29773f19f62d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3e80266ae9b14a00b62c98eebb74e34b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_acffd6e0b037466e92da7d8d6befa339", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2e2c612e24c04e0da4cd29773f19f62d", + "layout": "IPY_MODEL_7480a084643d44109ad2e89da0ca1645", + "placeholder": "​", + "style": "IPY_MODEL_d3c14fbb47a44544abaeec177f87256f", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 10000/? [00:00<00:00, 1599963.38it/s]" } }, - "5e3480ac2d3743b7a3cae6cec68283d2": { + "26607dc2026d44d18409e2097833bbb6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1956,7 +1919,7 @@ "width": null } }, - "5f1f4eabc74740d6af7e4db8c6edcd53": { + "538f177063ec4fd38db9281cbb4e4736": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1971,15 +1934,62 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1520c7ddd1e44969881c547a43c9e684", + "layout": "IPY_MODEL_23c0ea245fbd417183656f1b6c07712f", "placeholder": "​", - "style": "IPY_MODEL_2d3bb7f3059b48ac9e328e9b02caa2a0", + "style": "IPY_MODEL_f7f940143f124c22a39fad1b33b95e97", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: " } }, - "831f71a0eb714a8db385f01469c61e87": { + "5d3a89a90e3b4986a627cb78ab15f855": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c9e7c9ca5279402f833cd03f267b90b0", + "placeholder": "​", + "style": "IPY_MODEL_7a5ac41ff90446bda080db1a245f6076", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "6a93f0182ebb47fc96441f7413ee50a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_538f177063ec4fd38db9281cbb4e4736", + "IPY_MODEL_8147d6885df5404da13067a4b04feaff", + "IPY_MODEL_245c87c4c2aa416db47130538b929d58" + ], + "layout": "IPY_MODEL_26607dc2026d44d18409e2097833bbb6", + "tabbable": null, + "tooltip": null + } + }, + "7480a084643d44109ad2e89da0ca1645": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2032,7 +2042,51 @@ "width": null } }, - "91b717a2b89042d5a32b8696650b932a": { + "7a5ac41ff90446bda080db1a245f6076": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8147d6885df5404da13067a4b04feaff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b88c297a26be479180743ea12a8782ee", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8a8358bc01474398ae2c3b719fe94d03", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "83a387e924c445e394cde04898e3e09e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2085,7 +2139,65 @@ "width": null } }, - "930de2a48aaa402682e3ea6f980d3c24": { + "8a8358bc01474398ae2c3b719fe94d03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ad7ffe9f7e104f438570b96387ce328e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5d3a89a90e3b4986a627cb78ab15f855", + "IPY_MODEL_f6ab57c77c6546aeb601051c57a99435", + "IPY_MODEL_cda88cf88c8042acb6232ea9423f355f" + ], + "layout": "IPY_MODEL_14b2e46a058f49b7877f1e0a8fc3b5b6", + "tabbable": null, + "tooltip": null + } + }, + "b884a7bf75b9420f8028a27180dff7b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b88c297a26be479180743ea12a8782ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2138,7 +2250,7 @@ "width": null } }, - "acffd6e0b037466e92da7d8d6befa339": { + "be6b5fe0f64b4e89bba0bc6b2e5c249c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2191,49 +2303,7 @@ "width": null } }, - "b5edfa4ae1c24fe18fb7d98dfd4f1f10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c3891fb0a6814a08a91127de98b68e57", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0e0cda2407c49569600550eced58dc4", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "c0e0cda2407c49569600550eced58dc4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c3891fb0a6814a08a91127de98b68e57": { + "c9e7c9ca5279402f833cd03f267b90b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2286,25 +2356,23 @@ "width": null } }, - "c87a8ffa2ce24bf3bbc55da50de70b0e": { + "cc099a9799bc402bbc12d51076fd879a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "cd74b5e9bab24c0abef51b20fe999ec1": { + "cda88cf88c8042acb6232ea9423f355f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2319,39 +2387,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5e3480ac2d3743b7a3cae6cec68283d2", + "layout": "IPY_MODEL_83a387e924c445e394cde04898e3e09e", "placeholder": "​", - "style": "IPY_MODEL_c87a8ffa2ce24bf3bbc55da50de70b0e", + "style": "IPY_MODEL_b884a7bf75b9420f8028a27180dff7b2", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1388290.75it/s]" + "value": " 10000/? [00:00<00:00, 1022876.23it/s]" } }, - "d010c5336fd14cdab1efb31597d6bf6c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5f1f4eabc74740d6af7e4db8c6edcd53", - "IPY_MODEL_b5edfa4ae1c24fe18fb7d98dfd4f1f10", - "IPY_MODEL_cd74b5e9bab24c0abef51b20fe999ec1" - ], - "layout": "IPY_MODEL_91b717a2b89042d5a32b8696650b932a", - "tabbable": null, - "tooltip": null - } - }, - "d5a0445dd8f34a568bcb152156f941cf": { + "d3c14fbb47a44544abaeec177f87256f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2369,77 +2413,33 @@ "text_color": null } }, - "e037cf4389884d2ca6c4c6f8c3db3915": { + "f6ab57c77c6546aeb601051c57a99435": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e3969651bc1d4bdcabf39a423c806afa", - "IPY_MODEL_3e80266ae9b14a00b62c98eebb74e34b", - "IPY_MODEL_eb176aacd98e4ee4ae524f8537758911" - ], - "layout": "IPY_MODEL_1688b7eba8b54fe3809f86e1c4916732", - "tabbable": null, - "tooltip": null - } - }, - "e3969651bc1d4bdcabf39a423c806afa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_930de2a48aaa402682e3ea6f980d3c24", - "placeholder": "​", - "style": "IPY_MODEL_d5a0445dd8f34a568bcb152156f941cf", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "eb176aacd98e4ee4ae524f8537758911": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_831f71a0eb714a8db385f01469c61e87", - "placeholder": "​", - "style": "IPY_MODEL_efc5471870364072aadad5da8b804efc", + "layout": "IPY_MODEL_be6b5fe0f64b4e89bba0bc6b2e5c249c", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cc099a9799bc402bbc12d51076fd879a", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1087114.20it/s]" + "value": 50.0 } }, - "efc5471870364072aadad5da8b804efc": { + "f7f940143f124c22a39fad1b33b95e97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 2881453c1..09d453fd1 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:29.430149Z", - "iopub.status.busy": "2024-04-06T04:16:29.429976Z", - "iopub.status.idle": "2024-04-06T04:16:30.564039Z", - "shell.execute_reply": "2024-04-06T04:16:30.563507Z" + "iopub.execute_input": "2024-04-06T04:33:43.785678Z", + "iopub.status.busy": "2024-04-06T04:33:43.785475Z", + "iopub.status.idle": "2024-04-06T04:33:44.953788Z", + "shell.execute_reply": "2024-04-06T04:33:44.953182Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:30.566611Z", - "iopub.status.busy": "2024-04-06T04:16:30.566160Z", - "iopub.status.idle": "2024-04-06T04:16:30.744810Z", - "shell.execute_reply": "2024-04-06T04:16:30.744264Z" + "iopub.execute_input": "2024-04-06T04:33:44.956257Z", + "iopub.status.busy": "2024-04-06T04:33:44.955968Z", + "iopub.status.idle": "2024-04-06T04:33:45.136559Z", + "shell.execute_reply": "2024-04-06T04:33:45.135941Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:30.747314Z", - "iopub.status.busy": "2024-04-06T04:16:30.747034Z", - "iopub.status.idle": "2024-04-06T04:16:30.759196Z", - "shell.execute_reply": "2024-04-06T04:16:30.758739Z" + "iopub.execute_input": "2024-04-06T04:33:45.139194Z", + "iopub.status.busy": "2024-04-06T04:33:45.138996Z", + "iopub.status.idle": "2024-04-06T04:33:45.151534Z", + "shell.execute_reply": "2024-04-06T04:33:45.150954Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:30.761130Z", - "iopub.status.busy": "2024-04-06T04:16:30.760804Z", - "iopub.status.idle": "2024-04-06T04:16:30.994613Z", - "shell.execute_reply": "2024-04-06T04:16:30.994052Z" + "iopub.execute_input": "2024-04-06T04:33:45.153835Z", + "iopub.status.busy": "2024-04-06T04:33:45.153455Z", + "iopub.status.idle": "2024-04-06T04:33:45.364208Z", + "shell.execute_reply": "2024-04-06T04:33:45.363567Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:30.996911Z", - "iopub.status.busy": "2024-04-06T04:16:30.996524Z", - "iopub.status.idle": "2024-04-06T04:16:31.022836Z", - "shell.execute_reply": "2024-04-06T04:16:31.022277Z" + "iopub.execute_input": "2024-04-06T04:33:45.366694Z", + "iopub.status.busy": "2024-04-06T04:33:45.366209Z", + "iopub.status.idle": "2024-04-06T04:33:45.393157Z", + "shell.execute_reply": "2024-04-06T04:33:45.392663Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:31.025023Z", - "iopub.status.busy": "2024-04-06T04:16:31.024705Z", - "iopub.status.idle": "2024-04-06T04:16:32.689639Z", - "shell.execute_reply": "2024-04-06T04:16:32.689011Z" + "iopub.execute_input": "2024-04-06T04:33:45.395608Z", + "iopub.status.busy": "2024-04-06T04:33:45.395250Z", + "iopub.status.idle": "2024-04-06T04:33:47.125309Z", + "shell.execute_reply": "2024-04-06T04:33:47.124671Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:32.692739Z", - "iopub.status.busy": "2024-04-06T04:16:32.691806Z", - "iopub.status.idle": "2024-04-06T04:16:32.710096Z", - "shell.execute_reply": "2024-04-06T04:16:32.709655Z" + "iopub.execute_input": "2024-04-06T04:33:47.127865Z", + "iopub.status.busy": "2024-04-06T04:33:47.127360Z", + "iopub.status.idle": "2024-04-06T04:33:47.146064Z", + "shell.execute_reply": "2024-04-06T04:33:47.145478Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:32.712277Z", - "iopub.status.busy": "2024-04-06T04:16:32.711888Z", - "iopub.status.idle": "2024-04-06T04:16:34.121379Z", - "shell.execute_reply": "2024-04-06T04:16:34.120829Z" + "iopub.execute_input": "2024-04-06T04:33:47.148206Z", + "iopub.status.busy": "2024-04-06T04:33:47.148010Z", + "iopub.status.idle": "2024-04-06T04:33:48.575713Z", + "shell.execute_reply": "2024-04-06T04:33:48.575123Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.124260Z", - "iopub.status.busy": "2024-04-06T04:16:34.123450Z", - "iopub.status.idle": "2024-04-06T04:16:34.137159Z", - "shell.execute_reply": "2024-04-06T04:16:34.136699Z" + "iopub.execute_input": "2024-04-06T04:33:48.578373Z", + "iopub.status.busy": "2024-04-06T04:33:48.577728Z", + "iopub.status.idle": "2024-04-06T04:33:48.591925Z", + "shell.execute_reply": "2024-04-06T04:33:48.591473Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.139252Z", - "iopub.status.busy": "2024-04-06T04:16:34.138914Z", - "iopub.status.idle": "2024-04-06T04:16:34.214593Z", - "shell.execute_reply": "2024-04-06T04:16:34.213981Z" + "iopub.execute_input": "2024-04-06T04:33:48.594180Z", + "iopub.status.busy": "2024-04-06T04:33:48.593840Z", + "iopub.status.idle": "2024-04-06T04:33:48.670108Z", + "shell.execute_reply": "2024-04-06T04:33:48.669540Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.217043Z", - "iopub.status.busy": "2024-04-06T04:16:34.216564Z", - "iopub.status.idle": "2024-04-06T04:16:34.429068Z", - "shell.execute_reply": "2024-04-06T04:16:34.428507Z" + "iopub.execute_input": "2024-04-06T04:33:48.672461Z", + "iopub.status.busy": "2024-04-06T04:33:48.672082Z", + "iopub.status.idle": "2024-04-06T04:33:48.894054Z", + "shell.execute_reply": "2024-04-06T04:33:48.893460Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.431328Z", - "iopub.status.busy": "2024-04-06T04:16:34.430969Z", - "iopub.status.idle": "2024-04-06T04:16:34.447948Z", - "shell.execute_reply": "2024-04-06T04:16:34.447502Z" + "iopub.execute_input": "2024-04-06T04:33:48.896310Z", + "iopub.status.busy": "2024-04-06T04:33:48.895957Z", + "iopub.status.idle": "2024-04-06T04:33:48.912992Z", + "shell.execute_reply": "2024-04-06T04:33:48.912438Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.450049Z", - "iopub.status.busy": "2024-04-06T04:16:34.449680Z", - "iopub.status.idle": "2024-04-06T04:16:34.459136Z", - "shell.execute_reply": "2024-04-06T04:16:34.458684Z" + "iopub.execute_input": "2024-04-06T04:33:48.915370Z", + "iopub.status.busy": "2024-04-06T04:33:48.914978Z", + "iopub.status.idle": "2024-04-06T04:33:48.925166Z", + "shell.execute_reply": "2024-04-06T04:33:48.924650Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.461189Z", - "iopub.status.busy": "2024-04-06T04:16:34.460883Z", - "iopub.status.idle": "2024-04-06T04:16:34.546980Z", - "shell.execute_reply": "2024-04-06T04:16:34.546388Z" + "iopub.execute_input": "2024-04-06T04:33:48.927196Z", + "iopub.status.busy": "2024-04-06T04:33:48.927015Z", + "iopub.status.idle": "2024-04-06T04:33:49.014441Z", + "shell.execute_reply": "2024-04-06T04:33:49.013806Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.549416Z", - "iopub.status.busy": "2024-04-06T04:16:34.549081Z", - "iopub.status.idle": "2024-04-06T04:16:34.666036Z", - "shell.execute_reply": "2024-04-06T04:16:34.665491Z" + "iopub.execute_input": "2024-04-06T04:33:49.016777Z", + "iopub.status.busy": "2024-04-06T04:33:49.016537Z", + "iopub.status.idle": "2024-04-06T04:33:49.145893Z", + "shell.execute_reply": "2024-04-06T04:33:49.145286Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.668421Z", - "iopub.status.busy": "2024-04-06T04:16:34.668052Z", - "iopub.status.idle": "2024-04-06T04:16:34.671958Z", - "shell.execute_reply": "2024-04-06T04:16:34.671475Z" + "iopub.execute_input": "2024-04-06T04:33:49.148236Z", + "iopub.status.busy": "2024-04-06T04:33:49.148006Z", + "iopub.status.idle": "2024-04-06T04:33:49.151659Z", + "shell.execute_reply": "2024-04-06T04:33:49.151136Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.673935Z", - "iopub.status.busy": "2024-04-06T04:16:34.673637Z", - "iopub.status.idle": "2024-04-06T04:16:34.677407Z", - "shell.execute_reply": "2024-04-06T04:16:34.676851Z" + "iopub.execute_input": "2024-04-06T04:33:49.153711Z", + "iopub.status.busy": "2024-04-06T04:33:49.153349Z", + "iopub.status.idle": "2024-04-06T04:33:49.157155Z", + "shell.execute_reply": "2024-04-06T04:33:49.156622Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.679348Z", - "iopub.status.busy": "2024-04-06T04:16:34.679087Z", - "iopub.status.idle": "2024-04-06T04:16:34.717109Z", - "shell.execute_reply": "2024-04-06T04:16:34.716638Z" + "iopub.execute_input": "2024-04-06T04:33:49.159176Z", + "iopub.status.busy": "2024-04-06T04:33:49.158878Z", + "iopub.status.idle": "2024-04-06T04:33:49.196839Z", + "shell.execute_reply": "2024-04-06T04:33:49.196263Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.719238Z", - "iopub.status.busy": "2024-04-06T04:16:34.718854Z", - "iopub.status.idle": "2024-04-06T04:16:34.761595Z", - "shell.execute_reply": "2024-04-06T04:16:34.761037Z" + "iopub.execute_input": "2024-04-06T04:33:49.198950Z", + "iopub.status.busy": "2024-04-06T04:33:49.198645Z", + "iopub.status.idle": "2024-04-06T04:33:49.242193Z", + "shell.execute_reply": "2024-04-06T04:33:49.241610Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.763590Z", - "iopub.status.busy": "2024-04-06T04:16:34.763291Z", - "iopub.status.idle": "2024-04-06T04:16:34.854715Z", - "shell.execute_reply": "2024-04-06T04:16:34.854134Z" + "iopub.execute_input": "2024-04-06T04:33:49.244487Z", + "iopub.status.busy": "2024-04-06T04:33:49.244090Z", + "iopub.status.idle": "2024-04-06T04:33:49.337248Z", + "shell.execute_reply": "2024-04-06T04:33:49.336579Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.857415Z", - "iopub.status.busy": "2024-04-06T04:16:34.857033Z", - "iopub.status.idle": "2024-04-06T04:16:34.939418Z", - "shell.execute_reply": "2024-04-06T04:16:34.938882Z" + "iopub.execute_input": "2024-04-06T04:33:49.339846Z", + "iopub.status.busy": "2024-04-06T04:33:49.339620Z", + "iopub.status.idle": "2024-04-06T04:33:49.430742Z", + "shell.execute_reply": "2024-04-06T04:33:49.430143Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:34.941858Z", - "iopub.status.busy": "2024-04-06T04:16:34.941389Z", - "iopub.status.idle": "2024-04-06T04:16:35.149130Z", - "shell.execute_reply": "2024-04-06T04:16:35.148549Z" + "iopub.execute_input": "2024-04-06T04:33:49.432983Z", + "iopub.status.busy": "2024-04-06T04:33:49.432697Z", + "iopub.status.idle": "2024-04-06T04:33:49.645127Z", + "shell.execute_reply": "2024-04-06T04:33:49.644551Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:35.151469Z", - "iopub.status.busy": "2024-04-06T04:16:35.151106Z", - "iopub.status.idle": "2024-04-06T04:16:35.321162Z", - "shell.execute_reply": "2024-04-06T04:16:35.320562Z" + "iopub.execute_input": "2024-04-06T04:33:49.647536Z", + "iopub.status.busy": "2024-04-06T04:33:49.647110Z", + "iopub.status.idle": "2024-04-06T04:33:49.836451Z", + "shell.execute_reply": "2024-04-06T04:33:49.835806Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:35.323607Z", - "iopub.status.busy": "2024-04-06T04:16:35.323218Z", - "iopub.status.idle": "2024-04-06T04:16:35.329092Z", - "shell.execute_reply": "2024-04-06T04:16:35.328658Z" + "iopub.execute_input": "2024-04-06T04:33:49.838935Z", + "iopub.status.busy": "2024-04-06T04:33:49.838446Z", + "iopub.status.idle": "2024-04-06T04:33:49.845067Z", + "shell.execute_reply": "2024-04-06T04:33:49.844540Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:35.331109Z", - "iopub.status.busy": "2024-04-06T04:16:35.330777Z", - "iopub.status.idle": "2024-04-06T04:16:35.549947Z", - "shell.execute_reply": "2024-04-06T04:16:35.549322Z" + "iopub.execute_input": "2024-04-06T04:33:49.847230Z", + "iopub.status.busy": "2024-04-06T04:33:49.846825Z", + "iopub.status.idle": "2024-04-06T04:33:50.065771Z", + "shell.execute_reply": "2024-04-06T04:33:50.065168Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:35.552571Z", - "iopub.status.busy": "2024-04-06T04:16:35.552084Z", - "iopub.status.idle": "2024-04-06T04:16:36.614576Z", - "shell.execute_reply": "2024-04-06T04:16:36.613951Z" + "iopub.execute_input": "2024-04-06T04:33:50.068226Z", + "iopub.status.busy": "2024-04-06T04:33:50.067840Z", + "iopub.status.idle": "2024-04-06T04:33:51.143014Z", + "shell.execute_reply": "2024-04-06T04:33:51.142387Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 8d64c845b..f2ec4a55c 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:39.842682Z", - "iopub.status.busy": "2024-04-06T04:16:39.842493Z", - "iopub.status.idle": "2024-04-06T04:16:40.904249Z", - "shell.execute_reply": "2024-04-06T04:16:40.903707Z" + "iopub.execute_input": "2024-04-06T04:33:54.655001Z", + "iopub.status.busy": "2024-04-06T04:33:54.654839Z", + "iopub.status.idle": "2024-04-06T04:33:55.737154Z", + "shell.execute_reply": "2024-04-06T04:33:55.736607Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:40.906864Z", - "iopub.status.busy": "2024-04-06T04:16:40.906350Z", - "iopub.status.idle": "2024-04-06T04:16:40.909410Z", - "shell.execute_reply": "2024-04-06T04:16:40.908973Z" + "iopub.execute_input": "2024-04-06T04:33:55.739856Z", + "iopub.status.busy": "2024-04-06T04:33:55.739430Z", + "iopub.status.idle": "2024-04-06T04:33:55.742481Z", + "shell.execute_reply": "2024-04-06T04:33:55.741958Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:40.911516Z", - "iopub.status.busy": "2024-04-06T04:16:40.911185Z", - "iopub.status.idle": "2024-04-06T04:16:40.918926Z", - "shell.execute_reply": "2024-04-06T04:16:40.918454Z" + "iopub.execute_input": "2024-04-06T04:33:55.744755Z", + "iopub.status.busy": "2024-04-06T04:33:55.744422Z", + "iopub.status.idle": "2024-04-06T04:33:55.752051Z", + "shell.execute_reply": "2024-04-06T04:33:55.751620Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:40.920875Z", - "iopub.status.busy": "2024-04-06T04:16:40.920484Z", - "iopub.status.idle": "2024-04-06T04:16:40.968362Z", - "shell.execute_reply": "2024-04-06T04:16:40.967839Z" + "iopub.execute_input": "2024-04-06T04:33:55.754050Z", + "iopub.status.busy": "2024-04-06T04:33:55.753666Z", + "iopub.status.idle": "2024-04-06T04:33:55.808130Z", + "shell.execute_reply": "2024-04-06T04:33:55.807549Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:40.970431Z", - "iopub.status.busy": "2024-04-06T04:16:40.970252Z", - "iopub.status.idle": "2024-04-06T04:16:40.987654Z", - "shell.execute_reply": "2024-04-06T04:16:40.987139Z" + "iopub.execute_input": "2024-04-06T04:33:55.810525Z", + "iopub.status.busy": "2024-04-06T04:33:55.810206Z", + "iopub.status.idle": "2024-04-06T04:33:55.827426Z", + "shell.execute_reply": "2024-04-06T04:33:55.826967Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:40.989600Z", - "iopub.status.busy": "2024-04-06T04:16:40.989419Z", - "iopub.status.idle": "2024-04-06T04:16:40.993163Z", - "shell.execute_reply": "2024-04-06T04:16:40.992637Z" + "iopub.execute_input": "2024-04-06T04:33:55.829293Z", + "iopub.status.busy": "2024-04-06T04:33:55.829117Z", + "iopub.status.idle": "2024-04-06T04:33:55.833052Z", + "shell.execute_reply": "2024-04-06T04:33:55.832518Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:40.995099Z", - "iopub.status.busy": "2024-04-06T04:16:40.994924Z", - "iopub.status.idle": "2024-04-06T04:16:41.025782Z", - "shell.execute_reply": "2024-04-06T04:16:41.025242Z" + "iopub.execute_input": "2024-04-06T04:33:55.835165Z", + "iopub.status.busy": "2024-04-06T04:33:55.834833Z", + "iopub.status.idle": "2024-04-06T04:33:55.865218Z", + "shell.execute_reply": "2024-04-06T04:33:55.864706Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:41.027997Z", - "iopub.status.busy": "2024-04-06T04:16:41.027687Z", - "iopub.status.idle": "2024-04-06T04:16:41.054554Z", - "shell.execute_reply": "2024-04-06T04:16:41.053960Z" + "iopub.execute_input": "2024-04-06T04:33:55.867653Z", + "iopub.status.busy": "2024-04-06T04:33:55.867231Z", + "iopub.status.idle": "2024-04-06T04:33:55.894195Z", + "shell.execute_reply": "2024-04-06T04:33:55.893624Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:41.057159Z", - "iopub.status.busy": "2024-04-06T04:16:41.056783Z", - "iopub.status.idle": "2024-04-06T04:16:42.790293Z", - "shell.execute_reply": "2024-04-06T04:16:42.789738Z" + "iopub.execute_input": "2024-04-06T04:33:55.896247Z", + "iopub.status.busy": "2024-04-06T04:33:55.896066Z", + "iopub.status.idle": "2024-04-06T04:33:57.627098Z", + "shell.execute_reply": "2024-04-06T04:33:57.626566Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.792876Z", - "iopub.status.busy": "2024-04-06T04:16:42.792440Z", - "iopub.status.idle": "2024-04-06T04:16:42.798968Z", - "shell.execute_reply": "2024-04-06T04:16:42.798521Z" + "iopub.execute_input": "2024-04-06T04:33:57.629758Z", + "iopub.status.busy": "2024-04-06T04:33:57.629236Z", + "iopub.status.idle": "2024-04-06T04:33:57.636079Z", + "shell.execute_reply": "2024-04-06T04:33:57.635555Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.800896Z", - "iopub.status.busy": "2024-04-06T04:16:42.800578Z", - "iopub.status.idle": "2024-04-06T04:16:42.816097Z", - "shell.execute_reply": "2024-04-06T04:16:42.815514Z" + "iopub.execute_input": "2024-04-06T04:33:57.638210Z", + "iopub.status.busy": "2024-04-06T04:33:57.637876Z", + "iopub.status.idle": "2024-04-06T04:33:57.650276Z", + "shell.execute_reply": "2024-04-06T04:33:57.649820Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.818053Z", - "iopub.status.busy": "2024-04-06T04:16:42.817877Z", - "iopub.status.idle": "2024-04-06T04:16:42.824509Z", - "shell.execute_reply": "2024-04-06T04:16:42.824076Z" + "iopub.execute_input": "2024-04-06T04:33:57.652252Z", + "iopub.status.busy": "2024-04-06T04:33:57.651928Z", + "iopub.status.idle": "2024-04-06T04:33:57.658292Z", + "shell.execute_reply": "2024-04-06T04:33:57.657737Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.826513Z", - "iopub.status.busy": "2024-04-06T04:16:42.826215Z", - "iopub.status.idle": "2024-04-06T04:16:42.828918Z", - "shell.execute_reply": "2024-04-06T04:16:42.828390Z" + "iopub.execute_input": "2024-04-06T04:33:57.660348Z", + "iopub.status.busy": "2024-04-06T04:33:57.660033Z", + "iopub.status.idle": "2024-04-06T04:33:57.662546Z", + "shell.execute_reply": "2024-04-06T04:33:57.662096Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.831070Z", - "iopub.status.busy": "2024-04-06T04:16:42.830715Z", - "iopub.status.idle": "2024-04-06T04:16:42.834322Z", - "shell.execute_reply": "2024-04-06T04:16:42.833878Z" + "iopub.execute_input": "2024-04-06T04:33:57.664568Z", + "iopub.status.busy": "2024-04-06T04:33:57.664236Z", + "iopub.status.idle": "2024-04-06T04:33:57.667775Z", + "shell.execute_reply": "2024-04-06T04:33:57.667336Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.836385Z", - "iopub.status.busy": "2024-04-06T04:16:42.836066Z", - "iopub.status.idle": "2024-04-06T04:16:42.838499Z", - "shell.execute_reply": "2024-04-06T04:16:42.838092Z" + "iopub.execute_input": "2024-04-06T04:33:57.669724Z", + "iopub.status.busy": "2024-04-06T04:33:57.669426Z", + "iopub.status.idle": "2024-04-06T04:33:57.672060Z", + "shell.execute_reply": "2024-04-06T04:33:57.671546Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.840349Z", - "iopub.status.busy": "2024-04-06T04:16:42.840178Z", - "iopub.status.idle": "2024-04-06T04:16:42.844214Z", - "shell.execute_reply": "2024-04-06T04:16:42.843709Z" + "iopub.execute_input": "2024-04-06T04:33:57.673964Z", + "iopub.status.busy": "2024-04-06T04:33:57.673653Z", + "iopub.status.idle": "2024-04-06T04:33:57.677802Z", + "shell.execute_reply": "2024-04-06T04:33:57.677364Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.846196Z", - "iopub.status.busy": "2024-04-06T04:16:42.845918Z", - "iopub.status.idle": "2024-04-06T04:16:42.875194Z", - "shell.execute_reply": "2024-04-06T04:16:42.874785Z" + "iopub.execute_input": "2024-04-06T04:33:57.679746Z", + "iopub.status.busy": "2024-04-06T04:33:57.679562Z", + "iopub.status.idle": "2024-04-06T04:33:57.708692Z", + "shell.execute_reply": "2024-04-06T04:33:57.708184Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:42.877276Z", - "iopub.status.busy": "2024-04-06T04:16:42.876861Z", - "iopub.status.idle": "2024-04-06T04:16:42.881783Z", - "shell.execute_reply": "2024-04-06T04:16:42.881248Z" + "iopub.execute_input": "2024-04-06T04:33:57.711548Z", + "iopub.status.busy": "2024-04-06T04:33:57.711062Z", + "iopub.status.idle": "2024-04-06T04:33:57.716161Z", + "shell.execute_reply": "2024-04-06T04:33:57.715701Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index e4aafbf21..e4f3da5a6 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:45.661544Z", - "iopub.status.busy": "2024-04-06T04:16:45.661196Z", - "iopub.status.idle": "2024-04-06T04:16:46.809800Z", - "shell.execute_reply": "2024-04-06T04:16:46.809269Z" + "iopub.execute_input": "2024-04-06T04:34:00.530023Z", + "iopub.status.busy": "2024-04-06T04:34:00.529838Z", + "iopub.status.idle": "2024-04-06T04:34:01.665208Z", + "shell.execute_reply": "2024-04-06T04:34:01.664664Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:46.812367Z", - "iopub.status.busy": "2024-04-06T04:16:46.811955Z", - "iopub.status.idle": "2024-04-06T04:16:47.004877Z", - "shell.execute_reply": "2024-04-06T04:16:47.004387Z" + "iopub.execute_input": "2024-04-06T04:34:01.667949Z", + "iopub.status.busy": "2024-04-06T04:34:01.667372Z", + "iopub.status.idle": "2024-04-06T04:34:01.860713Z", + "shell.execute_reply": "2024-04-06T04:34:01.860104Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:47.007627Z", - "iopub.status.busy": "2024-04-06T04:16:47.007171Z", - "iopub.status.idle": "2024-04-06T04:16:47.020533Z", - "shell.execute_reply": "2024-04-06T04:16:47.019988Z" + "iopub.execute_input": "2024-04-06T04:34:01.863387Z", + "iopub.status.busy": "2024-04-06T04:34:01.863099Z", + "iopub.status.idle": "2024-04-06T04:34:01.876408Z", + "shell.execute_reply": "2024-04-06T04:34:01.875857Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:47.022765Z", - "iopub.status.busy": "2024-04-06T04:16:47.022336Z", - "iopub.status.idle": "2024-04-06T04:16:49.666131Z", - "shell.execute_reply": "2024-04-06T04:16:49.665587Z" + "iopub.execute_input": "2024-04-06T04:34:01.878382Z", + "iopub.status.busy": "2024-04-06T04:34:01.878075Z", + "iopub.status.idle": "2024-04-06T04:34:04.553375Z", + "shell.execute_reply": "2024-04-06T04:34:04.552763Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:49.668424Z", - "iopub.status.busy": "2024-04-06T04:16:49.668078Z", - "iopub.status.idle": "2024-04-06T04:16:51.001650Z", - "shell.execute_reply": "2024-04-06T04:16:51.001036Z" + "iopub.execute_input": "2024-04-06T04:34:04.555866Z", + "iopub.status.busy": "2024-04-06T04:34:04.555447Z", + "iopub.status.idle": "2024-04-06T04:34:05.899176Z", + "shell.execute_reply": "2024-04-06T04:34:05.898628Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:51.004148Z", - "iopub.status.busy": "2024-04-06T04:16:51.003951Z", - "iopub.status.idle": "2024-04-06T04:16:51.007855Z", - "shell.execute_reply": "2024-04-06T04:16:51.007326Z" + "iopub.execute_input": "2024-04-06T04:34:05.901446Z", + "iopub.status.busy": "2024-04-06T04:34:05.901252Z", + "iopub.status.idle": "2024-04-06T04:34:05.905303Z", + "shell.execute_reply": "2024-04-06T04:34:05.904832Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:51.009845Z", - "iopub.status.busy": "2024-04-06T04:16:51.009540Z", - "iopub.status.idle": "2024-04-06T04:16:52.782092Z", - "shell.execute_reply": "2024-04-06T04:16:52.781517Z" + "iopub.execute_input": "2024-04-06T04:34:05.907229Z", + "iopub.status.busy": "2024-04-06T04:34:05.906935Z", + "iopub.status.idle": "2024-04-06T04:34:07.727455Z", + "shell.execute_reply": "2024-04-06T04:34:07.726870Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:52.784717Z", - "iopub.status.busy": "2024-04-06T04:16:52.784151Z", - "iopub.status.idle": "2024-04-06T04:16:52.792831Z", - "shell.execute_reply": "2024-04-06T04:16:52.792340Z" + "iopub.execute_input": "2024-04-06T04:34:07.730219Z", + "iopub.status.busy": "2024-04-06T04:34:07.729486Z", + "iopub.status.idle": "2024-04-06T04:34:07.737826Z", + "shell.execute_reply": "2024-04-06T04:34:07.737345Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:52.794793Z", - "iopub.status.busy": "2024-04-06T04:16:52.794582Z", - "iopub.status.idle": "2024-04-06T04:16:55.366851Z", - "shell.execute_reply": "2024-04-06T04:16:55.366274Z" + "iopub.execute_input": "2024-04-06T04:34:07.739895Z", + "iopub.status.busy": "2024-04-06T04:34:07.739580Z", + "iopub.status.idle": "2024-04-06T04:34:10.345477Z", + "shell.execute_reply": "2024-04-06T04:34:10.344972Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:55.369004Z", - "iopub.status.busy": "2024-04-06T04:16:55.368810Z", - "iopub.status.idle": "2024-04-06T04:16:55.372208Z", - "shell.execute_reply": "2024-04-06T04:16:55.371683Z" + "iopub.execute_input": "2024-04-06T04:34:10.347724Z", + "iopub.status.busy": "2024-04-06T04:34:10.347360Z", + "iopub.status.idle": "2024-04-06T04:34:10.351001Z", + "shell.execute_reply": "2024-04-06T04:34:10.350556Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:55.374049Z", - "iopub.status.busy": "2024-04-06T04:16:55.373882Z", - "iopub.status.idle": "2024-04-06T04:16:55.377805Z", - "shell.execute_reply": "2024-04-06T04:16:55.377374Z" + "iopub.execute_input": "2024-04-06T04:34:10.352909Z", + "iopub.status.busy": "2024-04-06T04:34:10.352732Z", + "iopub.status.idle": "2024-04-06T04:34:10.357176Z", + "shell.execute_reply": "2024-04-06T04:34:10.356760Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:55.379630Z", - "iopub.status.busy": "2024-04-06T04:16:55.379460Z", - "iopub.status.idle": "2024-04-06T04:16:55.382604Z", - "shell.execute_reply": "2024-04-06T04:16:55.382172Z" + "iopub.execute_input": "2024-04-06T04:34:10.359140Z", + "iopub.status.busy": "2024-04-06T04:34:10.358816Z", + "iopub.status.idle": "2024-04-06T04:34:10.361865Z", + "shell.execute_reply": "2024-04-06T04:34:10.361423Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 4e7470bcf..a41b44c5c 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:57.779764Z", - "iopub.status.busy": "2024-04-06T04:16:57.779362Z", - "iopub.status.idle": "2024-04-06T04:16:58.917468Z", - "shell.execute_reply": "2024-04-06T04:16:58.916926Z" + "iopub.execute_input": "2024-04-06T04:34:12.844775Z", + "iopub.status.busy": "2024-04-06T04:34:12.844311Z", + "iopub.status.idle": "2024-04-06T04:34:13.980776Z", + "shell.execute_reply": "2024-04-06T04:34:13.980176Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:16:58.920171Z", - "iopub.status.busy": "2024-04-06T04:16:58.919730Z", - "iopub.status.idle": "2024-04-06T04:17:00.402818Z", - "shell.execute_reply": "2024-04-06T04:17:00.402146Z" + "iopub.execute_input": "2024-04-06T04:34:13.983263Z", + "iopub.status.busy": "2024-04-06T04:34:13.983016Z", + "iopub.status.idle": "2024-04-06T04:34:15.579622Z", + "shell.execute_reply": "2024-04-06T04:34:15.579010Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:00.405560Z", - "iopub.status.busy": "2024-04-06T04:17:00.405171Z", - "iopub.status.idle": "2024-04-06T04:17:00.408489Z", - "shell.execute_reply": "2024-04-06T04:17:00.408036Z" + "iopub.execute_input": "2024-04-06T04:34:15.582324Z", + "iopub.status.busy": "2024-04-06T04:34:15.581949Z", + "iopub.status.idle": "2024-04-06T04:34:15.585226Z", + "shell.execute_reply": "2024-04-06T04:34:15.584699Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:00.410471Z", - "iopub.status.busy": "2024-04-06T04:17:00.410144Z", - "iopub.status.idle": "2024-04-06T04:17:00.417033Z", - "shell.execute_reply": "2024-04-06T04:17:00.416605Z" + "iopub.execute_input": "2024-04-06T04:34:15.587256Z", + "iopub.status.busy": "2024-04-06T04:34:15.586885Z", + "iopub.status.idle": "2024-04-06T04:34:15.593670Z", + "shell.execute_reply": "2024-04-06T04:34:15.593228Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:00.418981Z", - "iopub.status.busy": "2024-04-06T04:17:00.418714Z", - "iopub.status.idle": "2024-04-06T04:17:00.912054Z", - "shell.execute_reply": "2024-04-06T04:17:00.911471Z" + "iopub.execute_input": "2024-04-06T04:34:15.595551Z", + "iopub.status.busy": "2024-04-06T04:34:15.595372Z", + "iopub.status.idle": "2024-04-06T04:34:16.077823Z", + "shell.execute_reply": "2024-04-06T04:34:16.077255Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:00.914527Z", - "iopub.status.busy": "2024-04-06T04:17:00.914334Z", - "iopub.status.idle": "2024-04-06T04:17:00.919763Z", - "shell.execute_reply": "2024-04-06T04:17:00.919333Z" + "iopub.execute_input": "2024-04-06T04:34:16.079945Z", + "iopub.status.busy": "2024-04-06T04:34:16.079765Z", + "iopub.status.idle": "2024-04-06T04:34:16.085000Z", + "shell.execute_reply": "2024-04-06T04:34:16.084559Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:00.921551Z", - "iopub.status.busy": "2024-04-06T04:17:00.921376Z", - "iopub.status.idle": "2024-04-06T04:17:00.925216Z", - "shell.execute_reply": "2024-04-06T04:17:00.924803Z" + "iopub.execute_input": "2024-04-06T04:34:16.086986Z", + "iopub.status.busy": "2024-04-06T04:34:16.086699Z", + "iopub.status.idle": "2024-04-06T04:34:16.090564Z", + "shell.execute_reply": "2024-04-06T04:34:16.090132Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:00.927291Z", - "iopub.status.busy": "2024-04-06T04:17:00.926918Z", - "iopub.status.idle": "2024-04-06T04:17:01.586996Z", - "shell.execute_reply": "2024-04-06T04:17:01.586405Z" + "iopub.execute_input": "2024-04-06T04:34:16.092402Z", + "iopub.status.busy": "2024-04-06T04:34:16.092226Z", + "iopub.status.idle": "2024-04-06T04:34:16.742313Z", + "shell.execute_reply": "2024-04-06T04:34:16.741698Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:01.589592Z", - "iopub.status.busy": "2024-04-06T04:17:01.589103Z", - "iopub.status.idle": "2024-04-06T04:17:01.838973Z", - "shell.execute_reply": "2024-04-06T04:17:01.838457Z" + "iopub.execute_input": "2024-04-06T04:34:16.744425Z", + "iopub.status.busy": "2024-04-06T04:34:16.744233Z", + "iopub.status.idle": "2024-04-06T04:34:16.915555Z", + "shell.execute_reply": "2024-04-06T04:34:16.915036Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:01.841138Z", - "iopub.status.busy": "2024-04-06T04:17:01.840761Z", - "iopub.status.idle": "2024-04-06T04:17:01.845105Z", - "shell.execute_reply": "2024-04-06T04:17:01.844587Z" + "iopub.execute_input": "2024-04-06T04:34:16.917406Z", + "iopub.status.busy": "2024-04-06T04:34:16.917231Z", + "iopub.status.idle": "2024-04-06T04:34:16.921449Z", + "shell.execute_reply": "2024-04-06T04:34:16.921026Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:01.847194Z", - "iopub.status.busy": "2024-04-06T04:17:01.846830Z", - "iopub.status.idle": "2024-04-06T04:17:02.307982Z", - "shell.execute_reply": "2024-04-06T04:17:02.307425Z" + "iopub.execute_input": "2024-04-06T04:34:16.923486Z", + "iopub.status.busy": "2024-04-06T04:34:16.923119Z", + "iopub.status.idle": "2024-04-06T04:34:17.368354Z", + "shell.execute_reply": "2024-04-06T04:34:17.367768Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:02.310165Z", - "iopub.status.busy": "2024-04-06T04:17:02.309824Z", - "iopub.status.idle": "2024-04-06T04:17:02.642945Z", - "shell.execute_reply": "2024-04-06T04:17:02.642387Z" + "iopub.execute_input": "2024-04-06T04:34:17.371163Z", + "iopub.status.busy": "2024-04-06T04:34:17.370822Z", + "iopub.status.idle": "2024-04-06T04:34:17.674268Z", + "shell.execute_reply": "2024-04-06T04:34:17.673692Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:02.645608Z", - "iopub.status.busy": "2024-04-06T04:17:02.645319Z", - "iopub.status.idle": "2024-04-06T04:17:02.979231Z", - "shell.execute_reply": "2024-04-06T04:17:02.978692Z" + "iopub.execute_input": "2024-04-06T04:34:17.676624Z", + "iopub.status.busy": "2024-04-06T04:34:17.676303Z", + "iopub.status.idle": "2024-04-06T04:34:18.037637Z", + "shell.execute_reply": "2024-04-06T04:34:18.037134Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:02.982484Z", - "iopub.status.busy": "2024-04-06T04:17:02.982127Z", - "iopub.status.idle": "2024-04-06T04:17:03.390843Z", - "shell.execute_reply": "2024-04-06T04:17:03.390270Z" + "iopub.execute_input": "2024-04-06T04:34:18.040616Z", + "iopub.status.busy": "2024-04-06T04:34:18.040298Z", + "iopub.status.idle": "2024-04-06T04:34:18.480221Z", + "shell.execute_reply": "2024-04-06T04:34:18.479710Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:03.395055Z", - "iopub.status.busy": "2024-04-06T04:17:03.394665Z", - "iopub.status.idle": "2024-04-06T04:17:03.813261Z", - "shell.execute_reply": "2024-04-06T04:17:03.812709Z" + "iopub.execute_input": "2024-04-06T04:34:18.484224Z", + "iopub.status.busy": "2024-04-06T04:34:18.483951Z", + "iopub.status.idle": "2024-04-06T04:34:18.910308Z", + "shell.execute_reply": "2024-04-06T04:34:18.909828Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:03.816607Z", - "iopub.status.busy": "2024-04-06T04:17:03.816267Z", - "iopub.status.idle": "2024-04-06T04:17:04.006027Z", - "shell.execute_reply": "2024-04-06T04:17:04.005432Z" + "iopub.execute_input": "2024-04-06T04:34:18.912281Z", + "iopub.status.busy": "2024-04-06T04:34:18.912098Z", + "iopub.status.idle": "2024-04-06T04:34:19.127034Z", + "shell.execute_reply": "2024-04-06T04:34:19.126447Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:04.008508Z", - "iopub.status.busy": "2024-04-06T04:17:04.008064Z", - "iopub.status.idle": "2024-04-06T04:17:04.193210Z", - "shell.execute_reply": "2024-04-06T04:17:04.192639Z" + "iopub.execute_input": "2024-04-06T04:34:19.129044Z", + "iopub.status.busy": "2024-04-06T04:34:19.128856Z", + "iopub.status.idle": "2024-04-06T04:34:19.327498Z", + "shell.execute_reply": "2024-04-06T04:34:19.327017Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:04.195887Z", - "iopub.status.busy": "2024-04-06T04:17:04.195463Z", - "iopub.status.idle": "2024-04-06T04:17:04.198586Z", - "shell.execute_reply": "2024-04-06T04:17:04.198082Z" + "iopub.execute_input": "2024-04-06T04:34:19.329747Z", + "iopub.status.busy": "2024-04-06T04:34:19.329569Z", + "iopub.status.idle": "2024-04-06T04:34:19.332430Z", + "shell.execute_reply": "2024-04-06T04:34:19.332000Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:04.200606Z", - "iopub.status.busy": "2024-04-06T04:17:04.200242Z", - "iopub.status.idle": "2024-04-06T04:17:05.172591Z", - "shell.execute_reply": "2024-04-06T04:17:05.172013Z" + "iopub.execute_input": "2024-04-06T04:34:19.334383Z", + "iopub.status.busy": "2024-04-06T04:34:19.334059Z", + "iopub.status.idle": "2024-04-06T04:34:20.209133Z", + "shell.execute_reply": "2024-04-06T04:34:20.208555Z" } }, "outputs": [ @@ -1101,14 +1101,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "./example_images/000000430073.jpg" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " | idx 100\n" + "./example_images/000000430073.jpg | idx 100\n" ] }, { @@ -1179,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:05.175404Z", - "iopub.status.busy": "2024-04-06T04:17:05.175059Z", - "iopub.status.idle": "2024-04-06T04:17:05.279492Z", - "shell.execute_reply": "2024-04-06T04:17:05.278947Z" + "iopub.execute_input": "2024-04-06T04:34:20.211448Z", + "iopub.status.busy": "2024-04-06T04:34:20.211008Z", + "iopub.status.idle": "2024-04-06T04:34:20.342519Z", + "shell.execute_reply": "2024-04-06T04:34:20.342095Z" } }, "outputs": [ @@ -1221,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:05.281714Z", - "iopub.status.busy": "2024-04-06T04:17:05.281381Z", - "iopub.status.idle": "2024-04-06T04:17:05.389641Z", - "shell.execute_reply": "2024-04-06T04:17:05.389153Z" + "iopub.execute_input": "2024-04-06T04:34:20.344524Z", + "iopub.status.busy": "2024-04-06T04:34:20.344193Z", + "iopub.status.idle": "2024-04-06T04:34:20.458465Z", + "shell.execute_reply": "2024-04-06T04:34:20.457952Z" } }, "outputs": [], @@ -1273,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:05.392001Z", - "iopub.status.busy": "2024-04-06T04:17:05.391816Z", - "iopub.status.idle": "2024-04-06T04:17:06.109074Z", - "shell.execute_reply": "2024-04-06T04:17:06.108500Z" + "iopub.execute_input": "2024-04-06T04:34:20.460533Z", + "iopub.status.busy": "2024-04-06T04:34:20.460222Z", + "iopub.status.idle": "2024-04-06T04:34:21.196312Z", + "shell.execute_reply": "2024-04-06T04:34:21.195737Z" } }, "outputs": [ @@ -1358,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:06.111397Z", - "iopub.status.busy": "2024-04-06T04:17:06.110954Z", - "iopub.status.idle": "2024-04-06T04:17:06.114735Z", - "shell.execute_reply": "2024-04-06T04:17:06.114197Z" + "iopub.execute_input": "2024-04-06T04:34:21.198485Z", + "iopub.status.busy": "2024-04-06T04:34:21.198170Z", + "iopub.status.idle": "2024-04-06T04:34:21.201764Z", + "shell.execute_reply": "2024-04-06T04:34:21.201234Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 0e9412cc8..3d4c5d8af 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -746,7 +746,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:01<00:00, 110383673.81it/s]
+100%|██████████| 170498071/170498071 [00:02<00:00, 72776359.59it/s]
 
-
+
@@ -1090,7 +1090,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 55bc06abd..dff88146d 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:08.332348Z", - "iopub.status.busy": "2024-04-06T04:17:08.332172Z", - "iopub.status.idle": "2024-04-06T04:17:11.067244Z", - "shell.execute_reply": "2024-04-06T04:17:11.066595Z" + "iopub.execute_input": "2024-04-06T04:34:23.301443Z", + "iopub.status.busy": "2024-04-06T04:34:23.301280Z", + "iopub.status.idle": "2024-04-06T04:34:25.945799Z", + "shell.execute_reply": "2024-04-06T04:34:25.945183Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:11.069992Z", - "iopub.status.busy": "2024-04-06T04:17:11.069428Z", - "iopub.status.idle": "2024-04-06T04:17:11.401104Z", - "shell.execute_reply": "2024-04-06T04:17:11.400569Z" + "iopub.execute_input": "2024-04-06T04:34:25.948528Z", + "iopub.status.busy": "2024-04-06T04:34:25.948218Z", + "iopub.status.idle": "2024-04-06T04:34:26.266936Z", + "shell.execute_reply": "2024-04-06T04:34:26.266392Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:11.403502Z", - "iopub.status.busy": "2024-04-06T04:17:11.403186Z", - "iopub.status.idle": "2024-04-06T04:17:11.407467Z", - "shell.execute_reply": "2024-04-06T04:17:11.407051Z" + "iopub.execute_input": "2024-04-06T04:34:26.269348Z", + "iopub.status.busy": "2024-04-06T04:34:26.269036Z", + "iopub.status.idle": "2024-04-06T04:34:26.272997Z", + "shell.execute_reply": "2024-04-06T04:34:26.272583Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:11.409521Z", - "iopub.status.busy": "2024-04-06T04:17:11.409185Z", - "iopub.status.idle": "2024-04-06T04:17:16.574565Z", - "shell.execute_reply": "2024-04-06T04:17:16.574059Z" + "iopub.execute_input": "2024-04-06T04:34:26.275074Z", + "iopub.status.busy": "2024-04-06T04:34:26.274739Z", + "iopub.status.idle": "2024-04-06T04:34:31.314624Z", + "shell.execute_reply": "2024-04-06T04:34:31.314110Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 2719744/170498071 [00:00<00:06, 27150858.36it/s]" + " 1%| | 1769472/170498071 [00:00<00:09, 17538639.93it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 14385152/170498071 [00:00<00:01, 79698911.13it/s]" + " 5%|▍ | 8192000/170498071 [00:00<00:03, 44831466.83it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 25985024/170498071 [00:00<00:01, 96219724.72it/s]" + " 8%|▊ | 13041664/170498071 [00:00<00:03, 46433907.51it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37650432/170498071 [00:00<00:01, 104278791.75it/s]" + " 12%|█▏ | 19791872/170498071 [00:00<00:02, 54704480.34it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 49283072/170498071 [00:00<00:01, 108526944.35it/s]" + " 15%|█▌ | 25788416/170498071 [00:00<00:02, 56333002.76it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 60850176/170498071 [00:00<00:00, 110919928.74it/s]" + " 18%|█▊ | 31424512/170498071 [00:00<00:02, 55036228.43it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 72515584/170498071 [00:00<00:00, 112772522.55it/s]" + " 22%|██▏ | 37978112/170498071 [00:00<00:02, 58347764.86it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 84115456/170498071 [00:00<00:00, 113779771.17it/s]" + " 26%|██▌ | 43843584/170498071 [00:00<00:02, 56723331.51it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 95715328/170498071 [00:00<00:00, 114398601.27it/s]" + " 29%|██▉ | 49676288/170498071 [00:00<00:02, 57186066.18it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 107380736/170498071 [00:01<00:00, 115092493.28it/s]" + " 33%|███▎ | 56197120/170498071 [00:01<00:01, 59520956.47it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 118980608/170498071 [00:01<00:00, 115340861.91it/s]" + " 36%|███▋ | 62193664/170498071 [00:01<00:01, 55914267.41it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 130613248/170498071 [00:01<00:00, 115637259.98it/s]" + " 40%|████ | 68943872/170498071 [00:01<00:01, 59219350.19it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 142311424/170498071 [00:01<00:00, 115909354.44it/s]" + " 46%|████▌ | 77758464/170498071 [00:01<00:01, 67611548.92it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 153944064/170498071 [00:01<00:00, 115967061.77it/s]" + " 51%|█████▏ | 87556096/170498071 [00:01<00:01, 76485308.02it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 165609472/170498071 [00:01<00:00, 115896658.00it/s]" + " 58%|█████▊ | 98697216/170498071 [00:01<00:00, 86783379.22it/s]" ] }, { @@ -372,7 +372,63 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 110383673.81it/s]" + " 63%|██████▎ | 107642880/170498071 [00:01<00:00, 87414535.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 69%|██████▉ | 117768192/170498071 [00:01<00:00, 91407747.36it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 75%|███████▍ | 127565824/170498071 [00:01<00:00, 93045985.07it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 80%|████████ | 136904704/170498071 [00:01<00:00, 88471190.33it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▌ | 146505728/170498071 [00:02<00:00, 90636821.57it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 91%|█████████▏| 155648000/170498071 [00:02<00:00, 86904824.23it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 165478400/170498071 [00:02<00:00, 90092503.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:02<00:00, 72776359.59it/s]" ] }, { @@ -490,10 +546,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:16.576690Z", - "iopub.status.busy": "2024-04-06T04:17:16.576423Z", - "iopub.status.idle": "2024-04-06T04:17:16.580993Z", - "shell.execute_reply": "2024-04-06T04:17:16.580566Z" + "iopub.execute_input": "2024-04-06T04:34:31.316844Z", + "iopub.status.busy": "2024-04-06T04:34:31.316485Z", + "iopub.status.idle": "2024-04-06T04:34:31.321190Z", + "shell.execute_reply": "2024-04-06T04:34:31.320736Z" }, "nbsphinx": "hidden" }, @@ -544,10 +600,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:16.583051Z", - "iopub.status.busy": "2024-04-06T04:17:16.582688Z", - "iopub.status.idle": "2024-04-06T04:17:17.128244Z", - "shell.execute_reply": "2024-04-06T04:17:17.127732Z" + "iopub.execute_input": "2024-04-06T04:34:31.323414Z", + "iopub.status.busy": "2024-04-06T04:34:31.323024Z", + "iopub.status.idle": "2024-04-06T04:34:31.843073Z", + "shell.execute_reply": "2024-04-06T04:34:31.842461Z" } }, "outputs": [ @@ -580,10 +636,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:17.130361Z", - "iopub.status.busy": "2024-04-06T04:17:17.130041Z", - "iopub.status.idle": "2024-04-06T04:17:17.628711Z", - "shell.execute_reply": "2024-04-06T04:17:17.628136Z" + "iopub.execute_input": "2024-04-06T04:34:31.845476Z", + "iopub.status.busy": "2024-04-06T04:34:31.845122Z", + "iopub.status.idle": "2024-04-06T04:34:32.343468Z", + "shell.execute_reply": "2024-04-06T04:34:32.342863Z" } }, "outputs": [ @@ -621,10 +677,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:17.631026Z", - "iopub.status.busy": "2024-04-06T04:17:17.630590Z", - "iopub.status.idle": "2024-04-06T04:17:17.634166Z", - "shell.execute_reply": "2024-04-06T04:17:17.633631Z" + "iopub.execute_input": "2024-04-06T04:34:32.345737Z", + "iopub.status.busy": "2024-04-06T04:34:32.345520Z", + "iopub.status.idle": "2024-04-06T04:34:32.349079Z", + "shell.execute_reply": "2024-04-06T04:34:32.348636Z" } }, "outputs": [], @@ -647,17 +703,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:17.636095Z", - "iopub.status.busy": "2024-04-06T04:17:17.635918Z", - "iopub.status.idle": "2024-04-06T04:17:29.942716Z", - "shell.execute_reply": "2024-04-06T04:17:29.942087Z" + "iopub.execute_input": "2024-04-06T04:34:32.351161Z", + "iopub.status.busy": "2024-04-06T04:34:32.350840Z", + "iopub.status.idle": "2024-04-06T04:34:45.259522Z", + "shell.execute_reply": "2024-04-06T04:34:45.258934Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "44ee01f7f7be41e68df2da15ba015dda", + "model_id": "991b461cb5f14fa38412734f4f788575", "version_major": 2, "version_minor": 0 }, @@ -716,10 +772,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:29.945101Z", - "iopub.status.busy": "2024-04-06T04:17:29.944777Z", - "iopub.status.idle": "2024-04-06T04:17:31.687463Z", - "shell.execute_reply": "2024-04-06T04:17:31.686934Z" + "iopub.execute_input": "2024-04-06T04:34:45.261911Z", + "iopub.status.busy": "2024-04-06T04:34:45.261529Z", + "iopub.status.idle": "2024-04-06T04:34:46.966878Z", + "shell.execute_reply": "2024-04-06T04:34:46.966282Z" } }, "outputs": [ @@ -763,10 +819,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:31.690226Z", - "iopub.status.busy": "2024-04-06T04:17:31.689730Z", - "iopub.status.idle": "2024-04-06T04:17:31.946394Z", - "shell.execute_reply": "2024-04-06T04:17:31.945880Z" + "iopub.execute_input": "2024-04-06T04:34:46.969590Z", + "iopub.status.busy": "2024-04-06T04:34:46.969163Z", + "iopub.status.idle": "2024-04-06T04:34:47.194956Z", + "shell.execute_reply": "2024-04-06T04:34:47.194388Z" } }, "outputs": [ @@ -802,10 +858,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:31.949014Z", - "iopub.status.busy": "2024-04-06T04:17:31.948523Z", - "iopub.status.idle": "2024-04-06T04:17:32.616423Z", - "shell.execute_reply": "2024-04-06T04:17:32.615855Z" + "iopub.execute_input": "2024-04-06T04:34:47.197286Z", + "iopub.status.busy": "2024-04-06T04:34:47.197100Z", + "iopub.status.idle": "2024-04-06T04:34:47.844542Z", + "shell.execute_reply": "2024-04-06T04:34:47.843965Z" } }, "outputs": [ @@ -855,10 +911,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:32.619435Z", - "iopub.status.busy": "2024-04-06T04:17:32.618930Z", - "iopub.status.idle": "2024-04-06T04:17:32.960383Z", - "shell.execute_reply": "2024-04-06T04:17:32.959887Z" + "iopub.execute_input": "2024-04-06T04:34:47.847025Z", + "iopub.status.busy": "2024-04-06T04:34:47.846663Z", + "iopub.status.idle": "2024-04-06T04:34:48.133586Z", + "shell.execute_reply": "2024-04-06T04:34:48.133164Z" } }, "outputs": [ @@ -906,10 +962,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:32.962638Z", - "iopub.status.busy": "2024-04-06T04:17:32.962284Z", - "iopub.status.idle": "2024-04-06T04:17:33.209463Z", - "shell.execute_reply": "2024-04-06T04:17:33.208824Z" + "iopub.execute_input": "2024-04-06T04:34:48.135743Z", + "iopub.status.busy": "2024-04-06T04:34:48.135451Z", + "iopub.status.idle": "2024-04-06T04:34:48.362823Z", + "shell.execute_reply": "2024-04-06T04:34:48.362258Z" } }, "outputs": [ @@ -965,10 +1021,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:33.212321Z", - "iopub.status.busy": "2024-04-06T04:17:33.211889Z", - "iopub.status.idle": "2024-04-06T04:17:33.296629Z", - "shell.execute_reply": "2024-04-06T04:17:33.296153Z" + "iopub.execute_input": "2024-04-06T04:34:48.365290Z", + "iopub.status.busy": "2024-04-06T04:34:48.364817Z", + "iopub.status.idle": "2024-04-06T04:34:48.441430Z", + "shell.execute_reply": "2024-04-06T04:34:48.440837Z" } }, "outputs": [], @@ -989,10 +1045,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:33.298986Z", - "iopub.status.busy": "2024-04-06T04:17:33.298637Z", - "iopub.status.idle": "2024-04-06T04:17:43.478524Z", - "shell.execute_reply": "2024-04-06T04:17:43.477922Z" + "iopub.execute_input": "2024-04-06T04:34:48.444056Z", + "iopub.status.busy": "2024-04-06T04:34:48.443776Z", + "iopub.status.idle": "2024-04-06T04:34:58.624130Z", + "shell.execute_reply": "2024-04-06T04:34:58.623554Z" } }, "outputs": [ @@ -1029,10 +1085,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:43.481077Z", - "iopub.status.busy": "2024-04-06T04:17:43.480681Z", - "iopub.status.idle": "2024-04-06T04:17:45.220676Z", - "shell.execute_reply": "2024-04-06T04:17:45.220149Z" + "iopub.execute_input": "2024-04-06T04:34:58.626457Z", + "iopub.status.busy": "2024-04-06T04:34:58.626142Z", + "iopub.status.idle": "2024-04-06T04:35:00.411515Z", + "shell.execute_reply": "2024-04-06T04:35:00.411019Z" } }, "outputs": [ @@ -1063,10 +1119,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:45.223132Z", - "iopub.status.busy": "2024-04-06T04:17:45.222778Z", - "iopub.status.idle": "2024-04-06T04:17:45.425573Z", - "shell.execute_reply": "2024-04-06T04:17:45.425094Z" + "iopub.execute_input": "2024-04-06T04:35:00.414250Z", + "iopub.status.busy": "2024-04-06T04:35:00.413656Z", + "iopub.status.idle": "2024-04-06T04:35:00.626834Z", + "shell.execute_reply": "2024-04-06T04:35:00.626355Z" } }, "outputs": [], @@ -1080,10 +1136,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:45.428091Z", - "iopub.status.busy": "2024-04-06T04:17:45.427670Z", - "iopub.status.idle": "2024-04-06T04:17:45.430756Z", - "shell.execute_reply": "2024-04-06T04:17:45.430333Z" + "iopub.execute_input": "2024-04-06T04:35:00.629326Z", + "iopub.status.busy": "2024-04-06T04:35:00.628902Z", + "iopub.status.idle": "2024-04-06T04:35:00.632039Z", + "shell.execute_reply": "2024-04-06T04:35:00.631618Z" } }, "outputs": [], @@ -1105,10 +1161,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:45.432840Z", - "iopub.status.busy": "2024-04-06T04:17:45.432525Z", - "iopub.status.idle": "2024-04-06T04:17:45.440432Z", - "shell.execute_reply": "2024-04-06T04:17:45.440004Z" + "iopub.execute_input": "2024-04-06T04:35:00.634061Z", + "iopub.status.busy": "2024-04-06T04:35:00.633729Z", + "iopub.status.idle": "2024-04-06T04:35:00.641703Z", + "shell.execute_reply": "2024-04-06T04:35:00.641295Z" }, "nbsphinx": "hidden" }, @@ -1153,48 +1209,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "115954a83e3e49ce8939e0daea4966f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a6a5c907692848fc80cb9673fd89fcb1", - "placeholder": "​", - "style": "IPY_MODEL_c78e41d9307249af94c9332e92489b0f", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "39412d074fad4df6aefc57c172332f9a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "42430248b6934f87ba9966dfe801ecb5": { + "15c8db426b2d442dafc5fec0ada46d26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1247,31 +1262,25 @@ "width": null } }, - "44ee01f7f7be41e68df2da15ba015dda": { + "18e0c03543334359bae24bc35d678719": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_115954a83e3e49ce8939e0daea4966f6", - "IPY_MODEL_9ffeac5c9c424f2ebc36255362aa24d6", - "IPY_MODEL_b7d190cce83f40a09e92e9f4ce7045fc" - ], - "layout": "IPY_MODEL_819b5cb5e9514e2f8df3425d0535829c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "819b5cb5e9514e2f8df3425d0535829c": { + "5888f59c5c7747d284d2a1179b08220a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1324,33 +1333,53 @@ "width": null } }, - "9ffeac5c9c424f2ebc36255362aa24d6": { + "62503695057042fe9e46cf6d976cf0ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_42430248b6934f87ba9966dfe801ecb5", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c3041a25c4e74b138eafeb7431d7cd22", + "layout": "IPY_MODEL_dc69440eba354ce18f5a8f226872b05a", + "placeholder": "​", + "style": "IPY_MODEL_18e0c03543334359bae24bc35d678719", "tabbable": null, "tooltip": null, - "value": 102469840.0 + "value": " 102M/102M [00:00<00:00, 180MB/s]" } }, - "a6a5c907692848fc80cb9673fd89fcb1": { + "66a60ffdadfe43c49835a3149977dd23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5888f59c5c7747d284d2a1179b08220a", + "placeholder": "​", + "style": "IPY_MODEL_a901c8deef634fefa5bf50b380005288", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "710b50fb237d4bfa800dd8ccca2aa500": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1403,46 +1432,57 @@ "width": null } }, - "b7d190cce83f40a09e92e9f4ce7045fc": { + "721bf251193348b0a2bc03a41fa88621": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f09d11078deb4890b9b29821b9e7abb1", - "placeholder": "​", - "style": "IPY_MODEL_39412d074fad4df6aefc57c172332f9a", + "layout": "IPY_MODEL_710b50fb237d4bfa800dd8ccca2aa500", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ad6af0ebf6a84194902f8859297785ed", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 304MB/s]" + "value": 102469840.0 } }, - "c3041a25c4e74b138eafeb7431d7cd22": { + "991b461cb5f14fa38412734f4f788575": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_66a60ffdadfe43c49835a3149977dd23", + "IPY_MODEL_721bf251193348b0a2bc03a41fa88621", + "IPY_MODEL_62503695057042fe9e46cf6d976cf0ec" + ], + "layout": "IPY_MODEL_15c8db426b2d442dafc5fec0ada46d26", + "tabbable": null, + "tooltip": null } }, - "c78e41d9307249af94c9332e92489b0f": { + "a901c8deef634fefa5bf50b380005288": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1460,7 +1500,23 @@ "text_color": null } }, - "f09d11078deb4890b9b29821b9e7abb1": { + "ad6af0ebf6a84194902f8859297785ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "dc69440eba354ce18f5a8f226872b05a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 12155c733..bac3e263c 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:49.808502Z", - "iopub.status.busy": "2024-04-06T04:17:49.808333Z", - "iopub.status.idle": "2024-04-06T04:17:50.938302Z", - "shell.execute_reply": "2024-04-06T04:17:50.937783Z" + "iopub.execute_input": "2024-04-06T04:35:04.945916Z", + "iopub.status.busy": "2024-04-06T04:35:04.945744Z", + "iopub.status.idle": "2024-04-06T04:35:06.052331Z", + "shell.execute_reply": "2024-04-06T04:35:06.051744Z" }, "nbsphinx": "hidden" }, @@ -117,7 +117,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:50.940835Z", - "iopub.status.busy": "2024-04-06T04:17:50.940476Z", - "iopub.status.idle": "2024-04-06T04:17:50.957880Z", - "shell.execute_reply": "2024-04-06T04:17:50.957193Z" + "iopub.execute_input": "2024-04-06T04:35:06.054800Z", + "iopub.status.busy": "2024-04-06T04:35:06.054557Z", + "iopub.status.idle": "2024-04-06T04:35:06.072120Z", + "shell.execute_reply": "2024-04-06T04:35:06.071716Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:50.960308Z", - "iopub.status.busy": "2024-04-06T04:17:50.959904Z", - "iopub.status.idle": "2024-04-06T04:17:50.962814Z", - "shell.execute_reply": "2024-04-06T04:17:50.962356Z" + "iopub.execute_input": "2024-04-06T04:35:06.074202Z", + "iopub.status.busy": "2024-04-06T04:35:06.073811Z", + "iopub.status.idle": "2024-04-06T04:35:06.076794Z", + "shell.execute_reply": "2024-04-06T04:35:06.076351Z" }, "nbsphinx": "hidden" }, @@ -199,10 +199,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:50.964843Z", - "iopub.status.busy": "2024-04-06T04:17:50.964451Z", - "iopub.status.idle": "2024-04-06T04:17:51.055914Z", - "shell.execute_reply": "2024-04-06T04:17:51.055379Z" + "iopub.execute_input": "2024-04-06T04:35:06.078868Z", + "iopub.status.busy": "2024-04-06T04:35:06.078492Z", + "iopub.status.idle": "2024-04-06T04:35:06.208916Z", + "shell.execute_reply": "2024-04-06T04:35:06.208494Z" } }, "outputs": [ @@ -375,10 +375,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:51.058209Z", - "iopub.status.busy": "2024-04-06T04:17:51.057898Z", - "iopub.status.idle": "2024-04-06T04:17:51.238376Z", - "shell.execute_reply": "2024-04-06T04:17:51.237789Z" + "iopub.execute_input": "2024-04-06T04:35:06.211100Z", + "iopub.status.busy": "2024-04-06T04:35:06.210666Z", + "iopub.status.idle": "2024-04-06T04:35:06.392965Z", + "shell.execute_reply": "2024-04-06T04:35:06.392412Z" }, "nbsphinx": "hidden" }, @@ -418,10 +418,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:51.241000Z", - "iopub.status.busy": "2024-04-06T04:17:51.240573Z", - "iopub.status.idle": "2024-04-06T04:17:51.480475Z", - "shell.execute_reply": "2024-04-06T04:17:51.479935Z" + "iopub.execute_input": "2024-04-06T04:35:06.395403Z", + "iopub.status.busy": "2024-04-06T04:35:06.395013Z", + "iopub.status.idle": "2024-04-06T04:35:06.638949Z", + "shell.execute_reply": "2024-04-06T04:35:06.638348Z" } }, "outputs": [ @@ -457,10 +457,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:51.482794Z", - "iopub.status.busy": "2024-04-06T04:17:51.482431Z", - "iopub.status.idle": "2024-04-06T04:17:51.486805Z", - "shell.execute_reply": "2024-04-06T04:17:51.486258Z" + "iopub.execute_input": "2024-04-06T04:35:06.641297Z", + "iopub.status.busy": "2024-04-06T04:35:06.640953Z", + "iopub.status.idle": "2024-04-06T04:35:06.645580Z", + "shell.execute_reply": "2024-04-06T04:35:06.645032Z" } }, "outputs": [], @@ -478,10 +478,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:51.488855Z", - "iopub.status.busy": "2024-04-06T04:17:51.488525Z", - "iopub.status.idle": "2024-04-06T04:17:51.494877Z", - "shell.execute_reply": "2024-04-06T04:17:51.494412Z" + "iopub.execute_input": "2024-04-06T04:35:06.647781Z", + "iopub.status.busy": "2024-04-06T04:35:06.647427Z", + "iopub.status.idle": "2024-04-06T04:35:06.654351Z", + "shell.execute_reply": "2024-04-06T04:35:06.653847Z" } }, "outputs": [], @@ -528,10 +528,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:51.496834Z", - "iopub.status.busy": "2024-04-06T04:17:51.496663Z", - "iopub.status.idle": "2024-04-06T04:17:51.499175Z", - "shell.execute_reply": "2024-04-06T04:17:51.498746Z" + "iopub.execute_input": "2024-04-06T04:35:06.656526Z", + "iopub.status.busy": "2024-04-06T04:35:06.656127Z", + "iopub.status.idle": "2024-04-06T04:35:06.658766Z", + "shell.execute_reply": "2024-04-06T04:35:06.658318Z" } }, "outputs": [], @@ -546,10 +546,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:51.501146Z", - "iopub.status.busy": "2024-04-06T04:17:51.500827Z", - "iopub.status.idle": "2024-04-06T04:17:59.701511Z", - "shell.execute_reply": "2024-04-06T04:17:59.700993Z" + "iopub.execute_input": "2024-04-06T04:35:06.660791Z", + "iopub.status.busy": "2024-04-06T04:35:06.660469Z", + "iopub.status.idle": "2024-04-06T04:35:14.877273Z", + "shell.execute_reply": "2024-04-06T04:35:14.876740Z" } }, "outputs": [], @@ -573,10 +573,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.704325Z", - "iopub.status.busy": "2024-04-06T04:17:59.703744Z", - "iopub.status.idle": "2024-04-06T04:17:59.711002Z", - "shell.execute_reply": "2024-04-06T04:17:59.710577Z" + "iopub.execute_input": "2024-04-06T04:35:14.880136Z", + "iopub.status.busy": "2024-04-06T04:35:14.879546Z", + "iopub.status.idle": "2024-04-06T04:35:14.886452Z", + "shell.execute_reply": "2024-04-06T04:35:14.885981Z" } }, "outputs": [ @@ -679,10 +679,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.712952Z", - "iopub.status.busy": "2024-04-06T04:17:59.712668Z", - "iopub.status.idle": "2024-04-06T04:17:59.716246Z", - "shell.execute_reply": "2024-04-06T04:17:59.715722Z" + "iopub.execute_input": "2024-04-06T04:35:14.888384Z", + "iopub.status.busy": "2024-04-06T04:35:14.888208Z", + "iopub.status.idle": "2024-04-06T04:35:14.891854Z", + "shell.execute_reply": "2024-04-06T04:35:14.891406Z" } }, "outputs": [], @@ -697,10 +697,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.718341Z", - "iopub.status.busy": "2024-04-06T04:17:59.718012Z", - "iopub.status.idle": "2024-04-06T04:17:59.720948Z", - "shell.execute_reply": "2024-04-06T04:17:59.720455Z" + "iopub.execute_input": "2024-04-06T04:35:14.893970Z", + "iopub.status.busy": "2024-04-06T04:35:14.893580Z", + "iopub.status.idle": "2024-04-06T04:35:14.896696Z", + "shell.execute_reply": "2024-04-06T04:35:14.896194Z" } }, "outputs": [ @@ -735,10 +735,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.723004Z", - "iopub.status.busy": "2024-04-06T04:17:59.722690Z", - "iopub.status.idle": "2024-04-06T04:17:59.725674Z", - "shell.execute_reply": "2024-04-06T04:17:59.725233Z" + "iopub.execute_input": "2024-04-06T04:35:14.898553Z", + "iopub.status.busy": "2024-04-06T04:35:14.898382Z", + "iopub.status.idle": "2024-04-06T04:35:14.901388Z", + "shell.execute_reply": "2024-04-06T04:35:14.900951Z" } }, "outputs": [], @@ -757,10 +757,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.727583Z", - "iopub.status.busy": "2024-04-06T04:17:59.727268Z", - "iopub.status.idle": "2024-04-06T04:17:59.735001Z", - "shell.execute_reply": "2024-04-06T04:17:59.734458Z" + "iopub.execute_input": "2024-04-06T04:35:14.903150Z", + "iopub.status.busy": "2024-04-06T04:35:14.902982Z", + "iopub.status.idle": "2024-04-06T04:35:14.910845Z", + "shell.execute_reply": "2024-04-06T04:35:14.910300Z" } }, "outputs": [ @@ -884,10 +884,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.737149Z", - "iopub.status.busy": "2024-04-06T04:17:59.736738Z", - "iopub.status.idle": "2024-04-06T04:17:59.739425Z", - "shell.execute_reply": "2024-04-06T04:17:59.738895Z" + "iopub.execute_input": "2024-04-06T04:35:14.912783Z", + "iopub.status.busy": "2024-04-06T04:35:14.912607Z", + "iopub.status.idle": "2024-04-06T04:35:14.915272Z", + "shell.execute_reply": "2024-04-06T04:35:14.914817Z" }, "nbsphinx": "hidden" }, @@ -922,10 +922,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.741379Z", - "iopub.status.busy": "2024-04-06T04:17:59.741083Z", - "iopub.status.idle": "2024-04-06T04:17:59.861150Z", - "shell.execute_reply": "2024-04-06T04:17:59.860591Z" + "iopub.execute_input": "2024-04-06T04:35:14.917066Z", + "iopub.status.busy": "2024-04-06T04:35:14.916896Z", + "iopub.status.idle": "2024-04-06T04:35:15.039512Z", + "shell.execute_reply": "2024-04-06T04:35:15.038973Z" } }, "outputs": [ @@ -964,10 +964,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.863473Z", - "iopub.status.busy": "2024-04-06T04:17:59.863158Z", - "iopub.status.idle": "2024-04-06T04:17:59.966536Z", - "shell.execute_reply": "2024-04-06T04:17:59.965985Z" + "iopub.execute_input": "2024-04-06T04:35:15.041688Z", + "iopub.status.busy": "2024-04-06T04:35:15.041372Z", + "iopub.status.idle": "2024-04-06T04:35:15.143758Z", + "shell.execute_reply": "2024-04-06T04:35:15.143187Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:17:59.969085Z", - "iopub.status.busy": "2024-04-06T04:17:59.968712Z", - "iopub.status.idle": "2024-04-06T04:18:00.472645Z", - "shell.execute_reply": "2024-04-06T04:18:00.472029Z" + "iopub.execute_input": "2024-04-06T04:35:15.146009Z", + "iopub.status.busy": "2024-04-06T04:35:15.145689Z", + "iopub.status.idle": "2024-04-06T04:35:15.632674Z", + "shell.execute_reply": "2024-04-06T04:35:15.632055Z" } }, "outputs": [], @@ -1042,10 +1042,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:00.475278Z", - "iopub.status.busy": "2024-04-06T04:18:00.474898Z", - "iopub.status.idle": "2024-04-06T04:18:00.577317Z", - "shell.execute_reply": "2024-04-06T04:18:00.576734Z" + "iopub.execute_input": "2024-04-06T04:35:15.635337Z", + "iopub.status.busy": "2024-04-06T04:35:15.634992Z", + "iopub.status.idle": "2024-04-06T04:35:15.743506Z", + "shell.execute_reply": "2024-04-06T04:35:15.742910Z" } }, "outputs": [ @@ -1080,10 +1080,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:00.579693Z", - "iopub.status.busy": "2024-04-06T04:18:00.579312Z", - "iopub.status.idle": "2024-04-06T04:18:00.587971Z", - "shell.execute_reply": "2024-04-06T04:18:00.587553Z" + "iopub.execute_input": "2024-04-06T04:35:15.745851Z", + "iopub.status.busy": "2024-04-06T04:35:15.745490Z", + "iopub.status.idle": "2024-04-06T04:35:15.753696Z", + "shell.execute_reply": "2024-04-06T04:35:15.753263Z" } }, "outputs": [ @@ -1190,10 +1190,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:00.589999Z", - "iopub.status.busy": "2024-04-06T04:18:00.589674Z", - "iopub.status.idle": "2024-04-06T04:18:00.592366Z", - "shell.execute_reply": "2024-04-06T04:18:00.591928Z" + "iopub.execute_input": "2024-04-06T04:35:15.755695Z", + "iopub.status.busy": "2024-04-06T04:35:15.755367Z", + "iopub.status.idle": "2024-04-06T04:35:15.758042Z", + "shell.execute_reply": "2024-04-06T04:35:15.757595Z" }, "nbsphinx": "hidden" }, @@ -1218,10 +1218,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:00.594344Z", - "iopub.status.busy": "2024-04-06T04:18:00.593958Z", - "iopub.status.idle": "2024-04-06T04:18:06.032480Z", - "shell.execute_reply": "2024-04-06T04:18:06.031916Z" + "iopub.execute_input": "2024-04-06T04:35:15.760007Z", + "iopub.status.busy": "2024-04-06T04:35:15.759679Z", + "iopub.status.idle": "2024-04-06T04:35:21.169503Z", + "shell.execute_reply": "2024-04-06T04:35:21.168860Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:06.034781Z", - "iopub.status.busy": "2024-04-06T04:18:06.034431Z", - "iopub.status.idle": "2024-04-06T04:18:06.043093Z", - "shell.execute_reply": "2024-04-06T04:18:06.042679Z" + "iopub.execute_input": "2024-04-06T04:35:21.172001Z", + "iopub.status.busy": "2024-04-06T04:35:21.171800Z", + "iopub.status.idle": "2024-04-06T04:35:21.180339Z", + "shell.execute_reply": "2024-04-06T04:35:21.179868Z" } }, "outputs": [ @@ -1377,10 +1377,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:06.045152Z", - "iopub.status.busy": "2024-04-06T04:18:06.044842Z", - "iopub.status.idle": "2024-04-06T04:18:06.113165Z", - "shell.execute_reply": "2024-04-06T04:18:06.112584Z" + "iopub.execute_input": "2024-04-06T04:35:21.182362Z", + "iopub.status.busy": "2024-04-06T04:35:21.182047Z", + "iopub.status.idle": "2024-04-06T04:35:21.256060Z", + "shell.execute_reply": "2024-04-06T04:35:21.255579Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 0d9a12444..60b73eda9 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -766,13 +766,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1162,7 +1162,7 @@

Get label quality scores -{"state": {"178d3a8137e64688a78d9a695552227b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cd058eab4a214ec48424b923304f88f7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "db70671d4bd541a68ba969eb75cc2ff7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_178d3a8137e64688a78d9a695552227b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cd058eab4a214ec48424b923304f88f7", "tabbable": null, "tooltip": null, "value": 30.0}}, "27d8f71bd7ae4673be076e414c162d63": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7531318a4ab040fcb3a5d2a7b124a6b5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "653a34e566a846cf89ade08d0193cfe4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_27d8f71bd7ae4673be076e414c162d63", "placeholder": "\u200b", "style": "IPY_MODEL_7531318a4ab040fcb3a5d2a7b124a6b5", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "b7b93344d3ae4aa1815f6925aa9a44c6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "feacfc1b507745adb46df66f28716695": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f26d7d357fc44177bc0e68d25429ee78": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b7b93344d3ae4aa1815f6925aa9a44c6", "placeholder": "\u200b", "style": "IPY_MODEL_feacfc1b507745adb46df66f28716695", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007407.45it/s]"}}, "63d12b5a43844dcba4a1740e593b5ab4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "915045c266014b50aa25fe51d11426f0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_653a34e566a846cf89ade08d0193cfe4", "IPY_MODEL_db70671d4bd541a68ba969eb75cc2ff7", "IPY_MODEL_f26d7d357fc44177bc0e68d25429ee78"], "layout": "IPY_MODEL_63d12b5a43844dcba4a1740e593b5ab4", "tabbable": null, "tooltip": null}}, "f027ad5a5f0a4126ab19de21f2572adc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c1356911008442e9e5f49d05695c6e2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b89c297a48ef4c9eba1ba82a7ea9f8c6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f027ad5a5f0a4126ab19de21f2572adc", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6c1356911008442e9e5f49d05695c6e2", "tabbable": null, "tooltip": null, "value": 30.0}}, "1f4c09b62de9480089fd7c0b54ca4722": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "baec72cf50724068b7602f06b42bd150": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4051c68cf13f44cebc605e5818e7fcc4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1f4c09b62de9480089fd7c0b54ca4722", "placeholder": "\u200b", "style": "IPY_MODEL_baec72cf50724068b7602f06b42bd150", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "a276020c8f4d46d58e05ba0543077a7d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "12a3fbc6fcd1435abec30e5d1236d5a1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "331c3ef53a454479ba7b44c8e444408c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a276020c8f4d46d58e05ba0543077a7d", "placeholder": "\u200b", "style": "IPY_MODEL_12a3fbc6fcd1435abec30e5d1236d5a1", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.44it/s]"}}, "c4c052714fb94a418b51b6af6f512b1e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af131beb047e4f4aa72b9e8100198f5d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4051c68cf13f44cebc605e5818e7fcc4", "IPY_MODEL_b89c297a48ef4c9eba1ba82a7ea9f8c6", "IPY_MODEL_331c3ef53a454479ba7b44c8e444408c"], "layout": "IPY_MODEL_c4c052714fb94a418b51b6af6f512b1e", "tabbable": null, "tooltip": null}}, "847e7a34fd6842679b84ed096d9c4f39": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "83479ebf3e00418588989e8fe7240055": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "50ca6313f88242e59604728cf5b3430f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_847e7a34fd6842679b84ed096d9c4f39", "max": 4997817.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_83479ebf3e00418588989e8fe7240055", "tabbable": null, "tooltip": null, "value": 4997817.0}}, "af6290a9581448b2b835cc163e6aa439": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7a1ea3696d9b411b9b033d7fda5e8b3f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1cbee73c901f4b329499bea42c991401": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_af6290a9581448b2b835cc163e6aa439", "placeholder": "\u200b", "style": "IPY_MODEL_7a1ea3696d9b411b9b033d7fda5e8b3f", "tabbable": null, "tooltip": null, "value": "100%"}}, "a9841c8e85c949dd90a717f2e6f39a94": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ef0c4988b1d472ea469314464587963": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2fc6a15947dc447dbb06f6a5e36ec65f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a9841c8e85c949dd90a717f2e6f39a94", "placeholder": "\u200b", "style": "IPY_MODEL_7ef0c4988b1d472ea469314464587963", "tabbable": null, "tooltip": null, "value": "\u20074997817/4997817\u2007[00:32<00:00,\u2007151527.74it/s]"}}, "f9ee4de31010414899bb295a6164fcab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec62a08c4bda47b1bd77cd0903cbbb11": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1cbee73c901f4b329499bea42c991401", "IPY_MODEL_50ca6313f88242e59604728cf5b3430f", "IPY_MODEL_2fc6a15947dc447dbb06f6a5e36ec65f"], "layout": "IPY_MODEL_f9ee4de31010414899bb295a6164fcab", "tabbable": null, "tooltip": null}}, "52e77769263349dc97c804a3f7171cce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c06029894d142b282a5438fecb2ebd7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c60f6735da854d13b596428d92a43206": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_52e77769263349dc97c804a3f7171cce", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4c06029894d142b282a5438fecb2ebd7", "tabbable": null, "tooltip": null, "value": 30.0}}, "01797c0f12644ab5bc8fc8fe706c568f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e0ce3782e1cd4450a691c7d45abf86fc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8400c4bb441941cbb02382dbc0b1a499": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_01797c0f12644ab5bc8fc8fe706c568f", "placeholder": "\u200b", "style": "IPY_MODEL_e0ce3782e1cd4450a691c7d45abf86fc", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "ff64cd2a7e6043a6b9b3b929bfbce777": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bfe50aeccda04accafb1c5ed276ff8cd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c01e31cec8b541d082e02f55c3f6a5fa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ff64cd2a7e6043a6b9b3b929bfbce777", "placeholder": "\u200b", "style": "IPY_MODEL_bfe50aeccda04accafb1c5ed276ff8cd", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.49it/s]"}}, "e74b7dcefe73432da73c17c47b9cd035": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "740b71fa81144253bdfb8f2790e4add4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8400c4bb441941cbb02382dbc0b1a499", "IPY_MODEL_c60f6735da854d13b596428d92a43206", "IPY_MODEL_c01e31cec8b541d082e02f55c3f6a5fa"], "layout": "IPY_MODEL_e74b7dcefe73432da73c17c47b9cd035", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"a6b9abd68857477cbdc3898a45b7c10f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40eb33493e30499e97354717869f83be": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "28dfa37fd60e430591dba8d65770190b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a6b9abd68857477cbdc3898a45b7c10f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_40eb33493e30499e97354717869f83be", "tabbable": null, "tooltip": null, "value": 30.0}}, "7f6b7ffd00bb4a2caab3b50683296936": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cbbaae80c54e40cabbdb2edd591551d4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "621c7249a2054bf59226e64a4b8f7081": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7f6b7ffd00bb4a2caab3b50683296936", "placeholder": "\u200b", "style": "IPY_MODEL_cbbaae80c54e40cabbdb2edd591551d4", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "06ef42058bc7433ca11271d89630261f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60b778a0ef8e44b39608af38b47ca860": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7e7920af14e54024b17aa6179ca38f35": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_06ef42058bc7433ca11271d89630261f", "placeholder": "\u200b", "style": "IPY_MODEL_60b778a0ef8e44b39608af38b47ca860", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007407.39it/s]"}}, "4ad7bb286eca4c09948bb75a92a76c29": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "430f85b602e34595b215cff777f2e22c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_621c7249a2054bf59226e64a4b8f7081", "IPY_MODEL_28dfa37fd60e430591dba8d65770190b", "IPY_MODEL_7e7920af14e54024b17aa6179ca38f35"], "layout": "IPY_MODEL_4ad7bb286eca4c09948bb75a92a76c29", "tabbable": null, "tooltip": null}}, "686826beb1be457bab28c73bcd2ffefb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8db16dbcca284d40921261550c3c9241": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0e3edfaa67be4256bf241604d1fdfd54": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_686826beb1be457bab28c73bcd2ffefb", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8db16dbcca284d40921261550c3c9241", "tabbable": null, "tooltip": null, "value": 30.0}}, "02c8e49579ab4c2cb5010e5d696f7f75": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "646252281ae14f8886cc21d9e56afec5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8b3e196faee64d279374daae7049f9a7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_02c8e49579ab4c2cb5010e5d696f7f75", "placeholder": "\u200b", "style": "IPY_MODEL_646252281ae14f8886cc21d9e56afec5", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "957a7ec883f34696b2479a90a87bdbcb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "562e407d8d8745fc83b37ab7c94d1b60": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2d5ba316556d415b8f9eceaac5bda45b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_957a7ec883f34696b2479a90a87bdbcb", "placeholder": "\u200b", "style": "IPY_MODEL_562e407d8d8745fc83b37ab7c94d1b60", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.41it/s]"}}, "7c0fbc0da1b843e89059929faa931860": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "72840f69ea214918a754b98c138bcd01": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8b3e196faee64d279374daae7049f9a7", "IPY_MODEL_0e3edfaa67be4256bf241604d1fdfd54", "IPY_MODEL_2d5ba316556d415b8f9eceaac5bda45b"], "layout": "IPY_MODEL_7c0fbc0da1b843e89059929faa931860", "tabbable": null, "tooltip": null}}, "60ce120b6f0d4b35939edd06a49b48fa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5bb6200f11d74e33b58d64accf19085f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f5b6a3b6f2474f7c8d2b531dbc37f186": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_60ce120b6f0d4b35939edd06a49b48fa", "max": 4997817.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5bb6200f11d74e33b58d64accf19085f", "tabbable": null, "tooltip": null, "value": 4997817.0}}, "42508acbff6b4c069678d14fb3bb650d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d2dd7b61c9974c56af1e4ae1413f64cf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "20149c21eb1a4d47b708a9f402b4f051": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_42508acbff6b4c069678d14fb3bb650d", "placeholder": "\u200b", "style": "IPY_MODEL_d2dd7b61c9974c56af1e4ae1413f64cf", "tabbable": null, "tooltip": null, "value": "100%"}}, "ea8cdf6af87544368e97f412bed093e3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff45dd3e934e4e0c9f7fa5da7043dbd7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "182b3bcc537c404793b98eb84a4a9fef": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ea8cdf6af87544368e97f412bed093e3", "placeholder": "\u200b", "style": "IPY_MODEL_ff45dd3e934e4e0c9f7fa5da7043dbd7", "tabbable": null, "tooltip": null, "value": "\u20074997817/4997817\u2007[00:32<00:00,\u2007154776.29it/s]"}}, "d2ba7ead109f40f88a0f2fdcd7f79091": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d3ec0bdaf05d45038d515229edd1fce4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_20149c21eb1a4d47b708a9f402b4f051", "IPY_MODEL_f5b6a3b6f2474f7c8d2b531dbc37f186", "IPY_MODEL_182b3bcc537c404793b98eb84a4a9fef"], "layout": "IPY_MODEL_d2ba7ead109f40f88a0f2fdcd7f79091", "tabbable": null, "tooltip": null}}, "2a73fcdba5f1491486544ab0e5fd82f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "83ed95add600447dbcd4112a82b755ac": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "232cb3f4436c4a29aa37462ded23ed0a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a73fcdba5f1491486544ab0e5fd82f6", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_83ed95add600447dbcd4112a82b755ac", "tabbable": null, "tooltip": null, "value": 30.0}}, "70deac36097f491e8666a288db33cf71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f73f43e9ac32458989fecfd81a100778": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "07b675adb016454a9854b4ea300e4cfe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_70deac36097f491e8666a288db33cf71", "placeholder": "\u200b", "style": "IPY_MODEL_f73f43e9ac32458989fecfd81a100778", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "9efde9d20e674f91930d36a8fffde7e0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0ffcaa24253e452f8a885fef873bdcfb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2bc90b79c1364f709f2cc5d8d3ac1a01": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9efde9d20e674f91930d36a8fffde7e0", "placeholder": "\u200b", "style": "IPY_MODEL_0ffcaa24253e452f8a885fef873bdcfb", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.88it/s]"}}, "5b27262a9cd94dcca7fa54df4cceb26a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a41dd8fa1c914418a704a6e5e8be1e2e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_07b675adb016454a9854b4ea300e4cfe", "IPY_MODEL_232cb3f4436c4a29aa37462ded23ed0a", "IPY_MODEL_2bc90b79c1364f709f2cc5d8d3ac1a01"], "layout": "IPY_MODEL_5b27262a9cd94dcca7fa54df4cceb26a", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 2aa4f5141..89e2cb219 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:09.136176Z", - "iopub.status.busy": "2024-04-06T04:18:09.136007Z", - "iopub.status.idle": "2024-04-06T04:18:11.074442Z", - "shell.execute_reply": "2024-04-06T04:18:11.073722Z" + "iopub.execute_input": "2024-04-06T04:35:24.243928Z", + "iopub.status.busy": "2024-04-06T04:35:24.243468Z", + "iopub.status.idle": "2024-04-06T04:35:26.047952Z", + "shell.execute_reply": "2024-04-06T04:35:26.047292Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:11.077142Z", - "iopub.status.busy": "2024-04-06T04:18:11.076951Z", - "iopub.status.idle": "2024-04-06T04:18:58.504072Z", - "shell.execute_reply": "2024-04-06T04:18:58.503451Z" + "iopub.execute_input": "2024-04-06T04:35:26.050495Z", + "iopub.status.busy": "2024-04-06T04:35:26.050118Z", + "iopub.status.idle": "2024-04-06T04:36:08.935704Z", + "shell.execute_reply": "2024-04-06T04:36:08.935125Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:58.506581Z", - "iopub.status.busy": "2024-04-06T04:18:58.506181Z", - "iopub.status.idle": "2024-04-06T04:18:59.586152Z", - "shell.execute_reply": "2024-04-06T04:18:59.585563Z" + "iopub.execute_input": "2024-04-06T04:36:08.938332Z", + "iopub.status.busy": "2024-04-06T04:36:08.937887Z", + "iopub.status.idle": "2024-04-06T04:36:09.999880Z", + "shell.execute_reply": "2024-04-06T04:36:09.999323Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:59.588721Z", - "iopub.status.busy": "2024-04-06T04:18:59.588437Z", - "iopub.status.idle": "2024-04-06T04:18:59.591702Z", - "shell.execute_reply": "2024-04-06T04:18:59.591184Z" + "iopub.execute_input": "2024-04-06T04:36:10.002451Z", + "iopub.status.busy": "2024-04-06T04:36:10.002049Z", + "iopub.status.idle": "2024-04-06T04:36:10.005300Z", + "shell.execute_reply": "2024-04-06T04:36:10.004764Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:59.593851Z", - "iopub.status.busy": "2024-04-06T04:18:59.593529Z", - "iopub.status.idle": "2024-04-06T04:18:59.597220Z", - "shell.execute_reply": "2024-04-06T04:18:59.596787Z" + "iopub.execute_input": "2024-04-06T04:36:10.007484Z", + "iopub.status.busy": "2024-04-06T04:36:10.007053Z", + "iopub.status.idle": "2024-04-06T04:36:10.010737Z", + "shell.execute_reply": "2024-04-06T04:36:10.010232Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:59.599215Z", - "iopub.status.busy": "2024-04-06T04:18:59.598912Z", - "iopub.status.idle": "2024-04-06T04:18:59.602294Z", - "shell.execute_reply": "2024-04-06T04:18:59.601883Z" + "iopub.execute_input": "2024-04-06T04:36:10.012726Z", + "iopub.status.busy": "2024-04-06T04:36:10.012460Z", + "iopub.status.idle": "2024-04-06T04:36:10.016097Z", + "shell.execute_reply": "2024-04-06T04:36:10.015646Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:59.604288Z", - "iopub.status.busy": "2024-04-06T04:18:59.603975Z", - "iopub.status.idle": "2024-04-06T04:18:59.606581Z", - "shell.execute_reply": "2024-04-06T04:18:59.606178Z" + "iopub.execute_input": "2024-04-06T04:36:10.018111Z", + "iopub.status.busy": "2024-04-06T04:36:10.017712Z", + "iopub.status.idle": "2024-04-06T04:36:10.020470Z", + "shell.execute_reply": "2024-04-06T04:36:10.020044Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:18:59.608476Z", - "iopub.status.busy": "2024-04-06T04:18:59.608219Z", - "iopub.status.idle": "2024-04-06T04:20:14.384993Z", - "shell.execute_reply": "2024-04-06T04:20:14.384347Z" + "iopub.execute_input": "2024-04-06T04:36:10.022477Z", + "iopub.status.busy": "2024-04-06T04:36:10.022151Z", + "iopub.status.idle": "2024-04-06T04:37:25.589281Z", + "shell.execute_reply": "2024-04-06T04:37:25.588682Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "915045c266014b50aa25fe51d11426f0", + "model_id": "430f85b602e34595b215cff777f2e22c", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "af131beb047e4f4aa72b9e8100198f5d", + "model_id": "72840f69ea214918a754b98c138bcd01", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:20:14.387966Z", - "iopub.status.busy": "2024-04-06T04:20:14.387398Z", - "iopub.status.idle": "2024-04-06T04:20:15.062876Z", - "shell.execute_reply": "2024-04-06T04:20:15.062312Z" + "iopub.execute_input": "2024-04-06T04:37:25.591755Z", + "iopub.status.busy": "2024-04-06T04:37:25.591547Z", + "iopub.status.idle": "2024-04-06T04:37:26.256442Z", + "shell.execute_reply": "2024-04-06T04:37:26.255866Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:20:15.065331Z", - "iopub.status.busy": "2024-04-06T04:20:15.064846Z", - "iopub.status.idle": "2024-04-06T04:20:17.802413Z", - "shell.execute_reply": "2024-04-06T04:20:17.801817Z" + "iopub.execute_input": "2024-04-06T04:37:26.258907Z", + "iopub.status.busy": "2024-04-06T04:37:26.258403Z", + "iopub.status.idle": "2024-04-06T04:37:28.986847Z", + "shell.execute_reply": "2024-04-06T04:37:28.986249Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:20:17.804878Z", - "iopub.status.busy": "2024-04-06T04:20:17.804483Z", - "iopub.status.idle": "2024-04-06T04:20:50.380828Z", - "shell.execute_reply": "2024-04-06T04:20:50.380284Z" + "iopub.execute_input": "2024-04-06T04:37:28.989011Z", + "iopub.status.busy": "2024-04-06T04:37:28.988663Z", + "iopub.status.idle": "2024-04-06T04:38:01.556933Z", + "shell.execute_reply": "2024-04-06T04:38:01.556488Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ec62a08c4bda47b1bd77cd0903cbbb11", + "model_id": "d3ec0bdaf05d45038d515229edd1fce4", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:20:50.382850Z", - "iopub.status.busy": "2024-04-06T04:20:50.382669Z", - "iopub.status.idle": "2024-04-06T04:21:05.039724Z", - "shell.execute_reply": "2024-04-06T04:21:05.039165Z" + "iopub.execute_input": "2024-04-06T04:38:01.559018Z", + "iopub.status.busy": "2024-04-06T04:38:01.558830Z", + "iopub.status.idle": "2024-04-06T04:38:15.949783Z", + "shell.execute_reply": "2024-04-06T04:38:15.949244Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:05.042254Z", - "iopub.status.busy": "2024-04-06T04:21:05.041859Z", - "iopub.status.idle": "2024-04-06T04:21:08.807363Z", - "shell.execute_reply": "2024-04-06T04:21:08.806822Z" + "iopub.execute_input": "2024-04-06T04:38:15.952245Z", + "iopub.status.busy": "2024-04-06T04:38:15.951882Z", + "iopub.status.idle": "2024-04-06T04:38:19.737339Z", + "shell.execute_reply": "2024-04-06T04:38:19.736758Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:08.809579Z", - "iopub.status.busy": "2024-04-06T04:21:08.809248Z", - "iopub.status.idle": "2024-04-06T04:21:10.235522Z", - "shell.execute_reply": "2024-04-06T04:21:10.234988Z" + "iopub.execute_input": "2024-04-06T04:38:19.739665Z", + "iopub.status.busy": "2024-04-06T04:38:19.739350Z", + "iopub.status.idle": "2024-04-06T04:38:21.124441Z", + "shell.execute_reply": "2024-04-06T04:38:21.123826Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "740b71fa81144253bdfb8f2790e4add4", + "model_id": "a41dd8fa1c914418a704a6e5e8be1e2e", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:10.237946Z", - "iopub.status.busy": "2024-04-06T04:21:10.237613Z", - "iopub.status.idle": "2024-04-06T04:21:10.265996Z", - "shell.execute_reply": "2024-04-06T04:21:10.265500Z" + "iopub.execute_input": "2024-04-06T04:38:21.126758Z", + "iopub.status.busy": "2024-04-06T04:38:21.126415Z", + "iopub.status.idle": "2024-04-06T04:38:21.155079Z", + "shell.execute_reply": "2024-04-06T04:38:21.154584Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:10.268487Z", - "iopub.status.busy": "2024-04-06T04:21:10.268126Z", - "iopub.status.idle": "2024-04-06T04:21:16.399889Z", - "shell.execute_reply": "2024-04-06T04:21:16.399372Z" + "iopub.execute_input": "2024-04-06T04:38:21.157615Z", + "iopub.status.busy": "2024-04-06T04:38:21.157258Z", + "iopub.status.idle": "2024-04-06T04:38:27.224964Z", + "shell.execute_reply": "2024-04-06T04:38:27.224445Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:16.402010Z", - "iopub.status.busy": "2024-04-06T04:21:16.401673Z", - "iopub.status.idle": "2024-04-06T04:21:16.457799Z", - "shell.execute_reply": "2024-04-06T04:21:16.457258Z" + "iopub.execute_input": "2024-04-06T04:38:27.227144Z", + "iopub.status.busy": "2024-04-06T04:38:27.226803Z", + "iopub.status.idle": "2024-04-06T04:38:27.282607Z", + "shell.execute_reply": "2024-04-06T04:38:27.282076Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01797c0f12644ab5bc8fc8fe706c568f": { + "02c8e49579ab4c2cb5010e5d696f7f75": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1091,25 +1091,7 @@ "width": null } }, - "12a3fbc6fcd1435abec30e5d1236d5a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "178d3a8137e64688a78d9a695552227b": { + "06ef42058bc7433ca11271d89630261f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1162,7 +1144,7 @@ "width": null } }, - "1cbee73c901f4b329499bea42c991401": { + "07b675adb016454a9854b4ea300e4cfe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1177,121 +1159,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_af6290a9581448b2b835cc163e6aa439", + "layout": "IPY_MODEL_70deac36097f491e8666a288db33cf71", "placeholder": "​", - "style": "IPY_MODEL_7a1ea3696d9b411b9b033d7fda5e8b3f", + "style": "IPY_MODEL_f73f43e9ac32458989fecfd81a100778", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "images processed using softmin: 100%" } }, - "1f4c09b62de9480089fd7c0b54ca4722": { - "model_module": "@jupyter-widgets/base", + "0e3edfaa67be4256bf241604d1fdfd54": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_686826beb1be457bab28c73bcd2ffefb", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8db16dbcca284d40921261550c3c9241", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "27d8f71bd7ae4673be076e414c162d63": { - "model_module": "@jupyter-widgets/base", + "0ffcaa24253e452f8a885fef873bdcfb": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2fc6a15947dc447dbb06f6a5e36ec65f": { + "182b3bcc537c404793b98eb84a4a9fef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1306,15 +1226,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a9841c8e85c949dd90a717f2e6f39a94", + "layout": "IPY_MODEL_ea8cdf6af87544368e97f412bed093e3", "placeholder": "​", - "style": "IPY_MODEL_7ef0c4988b1d472ea469314464587963", + "style": "IPY_MODEL_ff45dd3e934e4e0c9f7fa5da7043dbd7", "tabbable": null, "tooltip": null, - "value": " 4997817/4997817 [00:32<00:00, 151527.74it/s]" + "value": " 4997817/4997817 [00:32<00:00, 154776.29it/s]" } }, - "331c3ef53a454479ba7b44c8e444408c": { + "20149c21eb1a4d47b708a9f402b4f051": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1329,54 +1249,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a276020c8f4d46d58e05ba0543077a7d", + "layout": "IPY_MODEL_42508acbff6b4c069678d14fb3bb650d", "placeholder": "​", - "style": "IPY_MODEL_12a3fbc6fcd1435abec30e5d1236d5a1", + "style": "IPY_MODEL_d2dd7b61c9974c56af1e4ae1413f64cf", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.44it/s]" + "value": "100%" } }, - "4051c68cf13f44cebc605e5818e7fcc4": { + "232cb3f4436c4a29aa37462ded23ed0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1f4c09b62de9480089fd7c0b54ca4722", - "placeholder": "​", - "style": "IPY_MODEL_baec72cf50724068b7602f06b42bd150", + "layout": "IPY_MODEL_2a73fcdba5f1491486544ab0e5fd82f6", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_83ed95add600447dbcd4112a82b755ac", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "4c06029894d142b282a5438fecb2ebd7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 30.0 } }, - "50ca6313f88242e59604728cf5b3430f": { + "28dfa37fd60e430591dba8d65770190b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1392,17 +1299,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_847e7a34fd6842679b84ed096d9c4f39", - "max": 4997817.0, + "layout": "IPY_MODEL_a6b9abd68857477cbdc3898a45b7c10f", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_83479ebf3e00418588989e8fe7240055", + "style": "IPY_MODEL_40eb33493e30499e97354717869f83be", "tabbable": null, "tooltip": null, - "value": 4997817.0 + "value": 30.0 } }, - "52e77769263349dc97c804a3f7171cce": { + "2a73fcdba5f1491486544ab0e5fd82f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1455,7 +1362,69 @@ "width": null } }, - "63d12b5a43844dcba4a1740e593b5ab4": { + "2bc90b79c1364f709f2cc5d8d3ac1a01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9efde9d20e674f91930d36a8fffde7e0", + "placeholder": "​", + "style": "IPY_MODEL_0ffcaa24253e452f8a885fef873bdcfb", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.88it/s]" + } + }, + "2d5ba316556d415b8f9eceaac5bda45b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_957a7ec883f34696b2479a90a87bdbcb", + "placeholder": "​", + "style": "IPY_MODEL_562e407d8d8745fc83b37ab7c94d1b60", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.41it/s]" + } + }, + "40eb33493e30499e97354717869f83be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "42508acbff6b4c069678d14fb3bb650d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1508,46 +1477,7 @@ "width": null } }, - "653a34e566a846cf89ade08d0193cfe4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_27d8f71bd7ae4673be076e414c162d63", - "placeholder": "​", - "style": "IPY_MODEL_7531318a4ab040fcb3a5d2a7b124a6b5", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "6c1356911008442e9e5f49d05695c6e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "740b71fa81144253bdfb8f2790e4add4": { + "430f85b602e34595b215cff777f2e22c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1562,52 +1492,69 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8400c4bb441941cbb02382dbc0b1a499", - "IPY_MODEL_c60f6735da854d13b596428d92a43206", - "IPY_MODEL_c01e31cec8b541d082e02f55c3f6a5fa" + "IPY_MODEL_621c7249a2054bf59226e64a4b8f7081", + "IPY_MODEL_28dfa37fd60e430591dba8d65770190b", + "IPY_MODEL_7e7920af14e54024b17aa6179ca38f35" ], - "layout": "IPY_MODEL_e74b7dcefe73432da73c17c47b9cd035", + "layout": "IPY_MODEL_4ad7bb286eca4c09948bb75a92a76c29", "tabbable": null, "tooltip": null } }, - "7531318a4ab040fcb3a5d2a7b124a6b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7a1ea3696d9b411b9b033d7fda5e8b3f": { - "model_module": "@jupyter-widgets/controls", + "4ad7bb286eca4c09948bb75a92a76c29": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7ef0c4988b1d472ea469314464587963": { + "562e407d8d8745fc83b37ab7c94d1b60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1625,46 +1572,7 @@ "text_color": null } }, - "83479ebf3e00418588989e8fe7240055": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8400c4bb441941cbb02382dbc0b1a499": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_01797c0f12644ab5bc8fc8fe706c568f", - "placeholder": "​", - "style": "IPY_MODEL_e0ce3782e1cd4450a691c7d45abf86fc", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "847e7a34fd6842679b84ed096d9c4f39": { + "5b27262a9cd94dcca7fa54df4cceb26a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1717,31 +1625,41 @@ "width": null } }, - "915045c266014b50aa25fe51d11426f0": { + "5bb6200f11d74e33b58d64accf19085f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_653a34e566a846cf89ade08d0193cfe4", - "IPY_MODEL_db70671d4bd541a68ba969eb75cc2ff7", - "IPY_MODEL_f26d7d357fc44177bc0e68d25429ee78" - ], - "layout": "IPY_MODEL_63d12b5a43844dcba4a1740e593b5ab4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a276020c8f4d46d58e05ba0543077a7d": { + "60b778a0ef8e44b39608af38b47ca860": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "60ce120b6f0d4b35939edd06a49b48fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1794,7 +1712,48 @@ "width": null } }, - "a9841c8e85c949dd90a717f2e6f39a94": { + "621c7249a2054bf59226e64a4b8f7081": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7f6b7ffd00bb4a2caab3b50683296936", + "placeholder": "​", + "style": "IPY_MODEL_cbbaae80c54e40cabbdb2edd591551d4", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "646252281ae14f8886cc21d9e56afec5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "686826beb1be457bab28c73bcd2ffefb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1847,31 +1806,7 @@ "width": null } }, - "af131beb047e4f4aa72b9e8100198f5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4051c68cf13f44cebc605e5818e7fcc4", - "IPY_MODEL_b89c297a48ef4c9eba1ba82a7ea9f8c6", - "IPY_MODEL_331c3ef53a454479ba7b44c8e444408c" - ], - "layout": "IPY_MODEL_c4c052714fb94a418b51b6af6f512b1e", - "tabbable": null, - "tooltip": null - } - }, - "af6290a9581448b2b835cc163e6aa439": { + "70deac36097f491e8666a288db33cf71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1924,7 +1859,31 @@ "width": null } }, - "b7b93344d3ae4aa1815f6925aa9a44c6": { + "72840f69ea214918a754b98c138bcd01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8b3e196faee64d279374daae7049f9a7", + "IPY_MODEL_0e3edfaa67be4256bf241604d1fdfd54", + "IPY_MODEL_2d5ba316556d415b8f9eceaac5bda45b" + ], + "layout": "IPY_MODEL_7c0fbc0da1b843e89059929faa931860", + "tabbable": null, + "tooltip": null + } + }, + "7c0fbc0da1b843e89059929faa931860": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1977,69 +1936,7 @@ "width": null } }, - "b89c297a48ef4c9eba1ba82a7ea9f8c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f027ad5a5f0a4126ab19de21f2572adc", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6c1356911008442e9e5f49d05695c6e2", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "baec72cf50724068b7602f06b42bd150": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bfe50aeccda04accafb1c5ed276ff8cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c01e31cec8b541d082e02f55c3f6a5fa": { + "7e7920af14e54024b17aa6179ca38f35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2054,15 +1951,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ff64cd2a7e6043a6b9b3b929bfbce777", + "layout": "IPY_MODEL_06ef42058bc7433ca11271d89630261f", "placeholder": "​", - "style": "IPY_MODEL_bfe50aeccda04accafb1c5ed276ff8cd", + "style": "IPY_MODEL_60b778a0ef8e44b39608af38b47ca860", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.49it/s]" + "value": " 30/30 [00:00<00:00, 407.39it/s]" } }, - "c4c052714fb94a418b51b6af6f512b1e": { + "7f6b7ffd00bb4a2caab3b50683296936": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2115,33 +2012,7 @@ "width": null } }, - "c60f6735da854d13b596428d92a43206": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_52e77769263349dc97c804a3f7171cce", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4c06029894d142b282a5438fecb2ebd7", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "cd058eab4a214ec48424b923304f88f7": { + "83ed95add600447dbcd4112a82b755ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2157,51 +2028,99 @@ "description_width": "" } }, - "db70671d4bd541a68ba969eb75cc2ff7": { + "8b3e196faee64d279374daae7049f9a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_178d3a8137e64688a78d9a695552227b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cd058eab4a214ec48424b923304f88f7", + "layout": "IPY_MODEL_02c8e49579ab4c2cb5010e5d696f7f75", + "placeholder": "​", + "style": "IPY_MODEL_646252281ae14f8886cc21d9e56afec5", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "number of examples processed for checking labels: 100%" } }, - "e0ce3782e1cd4450a691c7d45abf86fc": { + "8db16dbcca284d40921261550c3c9241": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "957a7ec883f34696b2479a90a87bdbcb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e74b7dcefe73432da73c17c47b9cd035": { + "9efde9d20e674f91930d36a8fffde7e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2254,7 +2173,7 @@ "width": null } }, - "ec62a08c4bda47b1bd77cd0903cbbb11": { + "a41dd8fa1c914418a704a6e5e8be1e2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2269,16 +2188,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1cbee73c901f4b329499bea42c991401", - "IPY_MODEL_50ca6313f88242e59604728cf5b3430f", - "IPY_MODEL_2fc6a15947dc447dbb06f6a5e36ec65f" + "IPY_MODEL_07b675adb016454a9854b4ea300e4cfe", + "IPY_MODEL_232cb3f4436c4a29aa37462ded23ed0a", + "IPY_MODEL_2bc90b79c1364f709f2cc5d8d3ac1a01" ], - "layout": "IPY_MODEL_f9ee4de31010414899bb295a6164fcab", + "layout": "IPY_MODEL_5b27262a9cd94dcca7fa54df4cceb26a", "tabbable": null, "tooltip": null } }, - "f027ad5a5f0a4126ab19de21f2572adc": { + "a6b9abd68857477cbdc3898a45b7c10f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2331,30 +2250,25 @@ "width": null } }, - "f26d7d357fc44177bc0e68d25429ee78": { + "cbbaae80c54e40cabbdb2edd591551d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b7b93344d3ae4aa1815f6925aa9a44c6", - "placeholder": "​", - "style": "IPY_MODEL_feacfc1b507745adb46df66f28716695", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 407.45it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f9ee4de31010414899bb295a6164fcab": { + "d2ba7ead109f40f88a0f2fdcd7f79091": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2407,7 +2321,7 @@ "width": null } }, - "feacfc1b507745adb46df66f28716695": { + "d2dd7b61c9974c56af1e4ae1413f64cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2425,7 +2339,31 @@ "text_color": null } }, - "ff64cd2a7e6043a6b9b3b929bfbce777": { + "d3ec0bdaf05d45038d515229edd1fce4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_20149c21eb1a4d47b708a9f402b4f051", + "IPY_MODEL_f5b6a3b6f2474f7c8d2b531dbc37f186", + "IPY_MODEL_182b3bcc537c404793b98eb84a4a9fef" + ], + "layout": "IPY_MODEL_d2ba7ead109f40f88a0f2fdcd7f79091", + "tabbable": null, + "tooltip": null + } + }, + "ea8cdf6af87544368e97f412bed093e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2477,6 +2415,68 @@ "visibility": null, "width": null } + }, + "f5b6a3b6f2474f7c8d2b531dbc37f186": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60ce120b6f0d4b35939edd06a49b48fa", + "max": 4997817.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5bb6200f11d74e33b58d64accf19085f", + "tabbable": null, + "tooltip": null, + "value": 4997817.0 + } + }, + "f73f43e9ac32458989fecfd81a100778": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ff45dd3e934e4e0c9f7fa5da7043dbd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 0b61aaafd..1c7d43cec 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -676,16 +676,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 956cecfc9..e868c19b5 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:18.815482Z", - "iopub.status.busy": "2024-04-06T04:21:18.815069Z", - "iopub.status.idle": "2024-04-06T04:21:20.147463Z", - "shell.execute_reply": "2024-04-06T04:21:20.146792Z" + "iopub.execute_input": "2024-04-06T04:38:29.398070Z", + "iopub.status.busy": "2024-04-06T04:38:29.397578Z", + "iopub.status.idle": "2024-04-06T04:38:30.762030Z", + "shell.execute_reply": "2024-04-06T04:38:30.761463Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-06 04:21:18-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-04-06 04:38:29-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,24 +94,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.250, 2400:52e0:1a00::941:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n", + "169.150.236.98, 2400:52e0:1a00::718:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.98|:443... connected.\r\n", "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", "\r", - "conll2003.zip 0%[ ] 0 --.-KB/s \r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.008s \r\n", - "\r\n", - "2024-04-06 04:21:19 (115 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", - "\r\n" + "conll2003.zip 0%[ ] 0 --.-KB/s " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "\r", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.04s \r\n", + "\r\n", + "2024-04-06 04:38:29 (22.5 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] }, @@ -130,9 +131,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-06 04:21:19-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.167.97, 3.5.28.226, 52.217.226.9, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.167.97|:443... connected.\r\n" + "--2024-04-06 04:38:30-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.84.148, 52.216.129.163, 52.217.231.17, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.84.148|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" ] }, { @@ -159,7 +167,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 23%[===> ] 3.86M 19.3MB/s " + "pred_probs.npz 14%[=> ] 2.33M 11.7MB/s " ] }, { @@ -167,9 +175,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 50.8MB/s in 0.3s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 46.9MB/s in 0.3s \r\n", "\r\n", - "2024-04-06 04:21:20 (50.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-04-06 04:38:30 (46.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -186,10 +194,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:20.150071Z", - "iopub.status.busy": "2024-04-06T04:21:20.149872Z", - "iopub.status.idle": "2024-04-06T04:21:21.460595Z", - "shell.execute_reply": "2024-04-06T04:21:21.459998Z" + "iopub.execute_input": "2024-04-06T04:38:30.764412Z", + "iopub.status.busy": "2024-04-06T04:38:30.764032Z", + "iopub.status.idle": "2024-04-06T04:38:31.972111Z", + "shell.execute_reply": "2024-04-06T04:38:31.971535Z" }, "nbsphinx": "hidden" }, @@ -200,7 +208,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -226,10 +234,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:21.463318Z", - "iopub.status.busy": "2024-04-06T04:21:21.462904Z", - "iopub.status.idle": "2024-04-06T04:21:21.466277Z", - "shell.execute_reply": "2024-04-06T04:21:21.465836Z" + "iopub.execute_input": "2024-04-06T04:38:31.974580Z", + "iopub.status.busy": "2024-04-06T04:38:31.974308Z", + "iopub.status.idle": "2024-04-06T04:38:31.977556Z", + "shell.execute_reply": "2024-04-06T04:38:31.977128Z" } }, "outputs": [], @@ -279,10 +287,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:21.468133Z", - "iopub.status.busy": "2024-04-06T04:21:21.467961Z", - "iopub.status.idle": "2024-04-06T04:21:21.470821Z", - "shell.execute_reply": "2024-04-06T04:21:21.470387Z" + "iopub.execute_input": "2024-04-06T04:38:31.979700Z", + "iopub.status.busy": "2024-04-06T04:38:31.979317Z", + "iopub.status.idle": "2024-04-06T04:38:31.982377Z", + "shell.execute_reply": "2024-04-06T04:38:31.981830Z" }, "nbsphinx": "hidden" }, @@ -300,10 +308,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:21.472776Z", - "iopub.status.busy": "2024-04-06T04:21:21.472453Z", - "iopub.status.idle": "2024-04-06T04:21:30.680472Z", - "shell.execute_reply": "2024-04-06T04:21:30.679868Z" + "iopub.execute_input": "2024-04-06T04:38:31.984377Z", + "iopub.status.busy": "2024-04-06T04:38:31.984017Z", + "iopub.status.idle": "2024-04-06T04:38:41.053110Z", + "shell.execute_reply": "2024-04-06T04:38:41.052521Z" } }, "outputs": [], @@ -377,10 +385,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:30.683031Z", - "iopub.status.busy": "2024-04-06T04:21:30.682707Z", - "iopub.status.idle": "2024-04-06T04:21:30.688231Z", - "shell.execute_reply": "2024-04-06T04:21:30.687711Z" + "iopub.execute_input": "2024-04-06T04:38:41.055687Z", + "iopub.status.busy": "2024-04-06T04:38:41.055498Z", + "iopub.status.idle": "2024-04-06T04:38:41.061081Z", + "shell.execute_reply": "2024-04-06T04:38:41.060531Z" }, "nbsphinx": "hidden" }, @@ -420,10 +428,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:30.690240Z", - "iopub.status.busy": "2024-04-06T04:21:30.689862Z", - "iopub.status.idle": "2024-04-06T04:21:31.036172Z", - "shell.execute_reply": "2024-04-06T04:21:31.035483Z" + "iopub.execute_input": "2024-04-06T04:38:41.063230Z", + "iopub.status.busy": "2024-04-06T04:38:41.062809Z", + "iopub.status.idle": "2024-04-06T04:38:41.426124Z", + "shell.execute_reply": "2024-04-06T04:38:41.425590Z" } }, "outputs": [], @@ -460,10 +468,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:31.038675Z", - "iopub.status.busy": "2024-04-06T04:21:31.038461Z", - "iopub.status.idle": "2024-04-06T04:21:31.042956Z", - "shell.execute_reply": "2024-04-06T04:21:31.042398Z" + "iopub.execute_input": "2024-04-06T04:38:41.428511Z", + "iopub.status.busy": "2024-04-06T04:38:41.428316Z", + "iopub.status.idle": "2024-04-06T04:38:41.432566Z", + "shell.execute_reply": "2024-04-06T04:38:41.432029Z" } }, "outputs": [ @@ -535,10 +543,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:31.045119Z", - "iopub.status.busy": "2024-04-06T04:21:31.044811Z", - "iopub.status.idle": "2024-04-06T04:21:33.441748Z", - "shell.execute_reply": "2024-04-06T04:21:33.441118Z" + "iopub.execute_input": "2024-04-06T04:38:41.434828Z", + "iopub.status.busy": "2024-04-06T04:38:41.434438Z", + "iopub.status.idle": "2024-04-06T04:38:43.797032Z", + "shell.execute_reply": "2024-04-06T04:38:43.796336Z" } }, "outputs": [], @@ -560,10 +568,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:33.444867Z", - "iopub.status.busy": "2024-04-06T04:21:33.444063Z", - "iopub.status.idle": "2024-04-06T04:21:33.448146Z", - "shell.execute_reply": "2024-04-06T04:21:33.447602Z" + "iopub.execute_input": "2024-04-06T04:38:43.800002Z", + "iopub.status.busy": "2024-04-06T04:38:43.799357Z", + "iopub.status.idle": "2024-04-06T04:38:43.803395Z", + "shell.execute_reply": "2024-04-06T04:38:43.802849Z" } }, "outputs": [ @@ -599,10 +607,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:33.450036Z", - "iopub.status.busy": "2024-04-06T04:21:33.449863Z", - "iopub.status.idle": "2024-04-06T04:21:33.455276Z", - "shell.execute_reply": "2024-04-06T04:21:33.454729Z" + "iopub.execute_input": "2024-04-06T04:38:43.805438Z", + "iopub.status.busy": "2024-04-06T04:38:43.805041Z", + "iopub.status.idle": "2024-04-06T04:38:43.810204Z", + "shell.execute_reply": "2024-04-06T04:38:43.809632Z" } }, "outputs": [ @@ -780,10 +788,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:33.457279Z", - "iopub.status.busy": "2024-04-06T04:21:33.456977Z", - "iopub.status.idle": "2024-04-06T04:21:33.483175Z", - "shell.execute_reply": "2024-04-06T04:21:33.482607Z" + "iopub.execute_input": "2024-04-06T04:38:43.812097Z", + "iopub.status.busy": "2024-04-06T04:38:43.811923Z", + "iopub.status.idle": "2024-04-06T04:38:43.837570Z", + "shell.execute_reply": "2024-04-06T04:38:43.837054Z" } }, "outputs": [ @@ -885,10 +893,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:33.485345Z", - "iopub.status.busy": "2024-04-06T04:21:33.484939Z", - "iopub.status.idle": "2024-04-06T04:21:33.489208Z", - "shell.execute_reply": "2024-04-06T04:21:33.488781Z" + "iopub.execute_input": "2024-04-06T04:38:43.839685Z", + "iopub.status.busy": "2024-04-06T04:38:43.839262Z", + "iopub.status.idle": "2024-04-06T04:38:43.843573Z", + "shell.execute_reply": "2024-04-06T04:38:43.843046Z" } }, "outputs": [ @@ -962,10 +970,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:33.491173Z", - "iopub.status.busy": "2024-04-06T04:21:33.490882Z", - "iopub.status.idle": "2024-04-06T04:21:34.904768Z", - "shell.execute_reply": "2024-04-06T04:21:34.904205Z" + "iopub.execute_input": "2024-04-06T04:38:43.845456Z", + "iopub.status.busy": "2024-04-06T04:38:43.845286Z", + "iopub.status.idle": "2024-04-06T04:38:45.262927Z", + "shell.execute_reply": "2024-04-06T04:38:45.262416Z" } }, "outputs": [ @@ -1137,10 +1145,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:21:34.906826Z", - "iopub.status.busy": "2024-04-06T04:21:34.906624Z", - "iopub.status.idle": "2024-04-06T04:21:34.910693Z", - "shell.execute_reply": "2024-04-06T04:21:34.910157Z" + "iopub.execute_input": "2024-04-06T04:38:45.265138Z", + "iopub.status.busy": "2024-04-06T04:38:45.264818Z", + "iopub.status.idle": "2024-04-06T04:38:45.268799Z", + "shell.execute_reply": "2024-04-06T04:38:45.268374Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 34a59d2dc..753559168 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.3", - commit_hash: "76dfdd23fa2e7f058421aa1938be49b71a7ad5d9", + commit_hash: "e0b7615c1169c6d8fcae15be6477bd7327e82e00", }; \ No newline at end of file

 Helper functions used internally for outlier detection tasks.
 """
 
-from typing import Union
+from typing import Optional
 
 import numpy as np
 
@@ -657,35 +657,38 @@ 

Source code for cleanlab.internal.outlier

     avg_distances: np.ndarray,
     metric: str,
     C: int = 100,
-    p: Union[int, None] = None,
+    p: Optional[int] = None,
 ):
     """
     Ensure that scores where avg_distances are below the tolerance threshold get a score of one.
 
     Parameters
     ----------
-    scores : np.ndarray
+    scores :
         An array of scores of shape ``(N)``, where N is the number of examples.
         Each entry represents a score between 0 and 1.
 
-    avg_distances : np.ndarray
+    avg_distances :
         An array of distances of shape ``(N)``, where N is the number of examples.
         Each entry represents an example's average distance to its k nearest neighbors.
 
-    metric : str
+    metric :
         The metric used by the knn algorithm to calculate the distances.
         It must be 'cosine', 'euclidean' or 'minkowski', otherwise this function does nothing.
 
-    C : int, default=100
+    C :
         Multiplier used to increase the tolerance of the acceptable precision differences.
+        It is a multiplicative factor of the machine epsilon that is used to calculate the tolerance.
+        For the type of values that are used in the distances, a value of 100 should be a sensible
+        default value for small values of the distances, below the order of 1.
 
-    p : int, default=None
+    p :
         This value is only used when metric is 'minkowski'.
         A ValueError will be raised if metric is 'minkowski' and 'p' was not provided.
 
     Returns
     -------
-    fixed_scores : np.ndarray
+    fixed_scores :
         An array of scores of shape ``(N,)`` for N examples with scores between 0 and 1.
     """
     if metric == "cosine":
diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb
index 9090cdf11..8ff05f0bd 100644
--- a/master/_sources/tutorials/clean_learning/tabular.ipynb
+++ b/master/_sources/tutorials/clean_learning/tabular.ipynb
@@ -121,7 +121,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb
index b8ae7d38c..70fb68efa 100644
--- a/master/_sources/tutorials/clean_learning/text.ipynb
+++ b/master/_sources/tutorials/clean_learning/text.ipynb
@@ -129,7 +129,7 @@
     "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"  # disable parallelism to avoid deadlocks with huggingface\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb
index b35afce33..ccfe3cd2c 100644
--- a/master/_sources/tutorials/datalab/audio.ipynb
+++ b/master/_sources/tutorials/datalab/audio.ipynb
@@ -91,7 +91,7 @@
     "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/data_monitor.ipynb b/master/_sources/tutorials/datalab/data_monitor.ipynb
index b735cfba7..ba69d4f43 100644
--- a/master/_sources/tutorials/datalab/data_monitor.ipynb
+++ b/master/_sources/tutorials/datalab/data_monitor.ipynb
@@ -71,7 +71,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]  # TODO: make sure this list is updated\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
index 34ca5d1f6..926d8c660 100644
--- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
@@ -87,7 +87,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]  # TODO: make sure this list is updated\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
index 4fecac4a0..810e242fb 100644
--- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
@@ -85,7 +85,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]  # TODO: make sure this list is updated\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb
index 77da73b27..e06e46265 100644
--- a/master/_sources/tutorials/datalab/tabular.ipynb
+++ b/master/_sources/tutorials/datalab/tabular.ipynb
@@ -81,7 +81,7 @@
     "dependencies = [\"cleanlab\", \"datasets\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb
index c564ad40d..90c91f3c1 100644
--- a/master/_sources/tutorials/datalab/text.ipynb
+++ b/master/_sources/tutorials/datalab/text.ipynb
@@ -90,7 +90,7 @@
     "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"  # disable parallelism to avoid deadlocks with huggingface\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb
index 37fb124f5..7a9484bfb 100644
--- a/master/_sources/tutorials/dataset_health.ipynb
+++ b/master/_sources/tutorials/dataset_health.ipynb
@@ -77,7 +77,7 @@
     "dependencies = [\"cleanlab\", \"requests\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb
index d3cd170ae..f4f769e7f 100644
--- a/master/_sources/tutorials/indepth_overview.ipynb
+++ b/master/_sources/tutorials/indepth_overview.ipynb
@@ -62,7 +62,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb
index 6619e2ae1..fa1c91842 100644
--- a/master/_sources/tutorials/multiannotator.ipynb
+++ b/master/_sources/tutorials/multiannotator.ipynb
@@ -96,7 +96,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb
index c23921aa5..285c7eeb2 100644
--- a/master/_sources/tutorials/multilabel_classification.ipynb
+++ b/master/_sources/tutorials/multilabel_classification.ipynb
@@ -73,7 +73,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb
index 9c817b637..786c68a2b 100644
--- a/master/_sources/tutorials/object_detection.ipynb
+++ b/master/_sources/tutorials/object_detection.ipynb
@@ -77,7 +77,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb
index d48072617..5f552451b 100644
--- a/master/_sources/tutorials/outliers.ipynb
+++ b/master/_sources/tutorials/outliers.ipynb
@@ -119,7 +119,7 @@
     "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb
index fc3a13e15..ebea59ea4 100644
--- a/master/_sources/tutorials/regression.ipynb
+++ b/master/_sources/tutorials/regression.ipynb
@@ -111,7 +111,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb
index f57357f82..6392c5c2c 100644
--- a/master/_sources/tutorials/segmentation.ipynb
+++ b/master/_sources/tutorials/segmentation.ipynb
@@ -91,7 +91,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb
index 86097ecd1..9bc09c00e 100644
--- a/master/_sources/tutorials/token_classification.ipynb
+++ b/master/_sources/tutorials/token_classification.ipynb
@@ -95,7 +95,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/cleanlab/internal/outlier.html b/master/cleanlab/internal/outlier.html
index e8b3909bb..a4645e852 100644
--- a/master/cleanlab/internal/outlier.html
+++ b/master/cleanlab/internal/outlier.html
@@ -655,19 +655,22 @@
 
Parameters:
    -
  • scores (np.ndarray) – An array of scores of shape (N), where N is the number of examples. +

  • scores (ndarray) – An array of scores of shape (N), where N is the number of examples. Each entry represents a score between 0 and 1.

  • -
  • avg_distances (np.ndarray) – An array of distances of shape (N), where N is the number of examples. +

  • avg_distances (ndarray) – An array of distances of shape (N), where N is the number of examples. Each entry represents an example’s average distance to its k nearest neighbors.

  • -
  • metric (str) – The metric used by the knn algorithm to calculate the distances. +

  • metric (str) – The metric used by the knn algorithm to calculate the distances. It must be ‘cosine’, ‘euclidean’ or ‘minkowski’, otherwise this function does nothing.

  • -
  • C (int, default 100) – Multiplier used to increase the tolerance of the acceptable precision differences.

  • -
  • p (int, default None) – This value is only used when metric is ‘minkowski’. +

  • C (int) – Multiplier used to increase the tolerance of the acceptable precision differences. +It is a multiplicative factor of the machine epsilon that is used to calculate the tolerance. +For the type of values that are used in the distances, a value of 100 should be a sensible +default value for small values of the distances, below the order of 1.

  • +
  • p (Optional[int]) – This value is only used when metric is ‘minkowski’. A ValueError will be raised if metric is ‘minkowski’ and ‘p’ was not provided.

Returns:
-

fixed_scores (np.ndarray) – An array of scores of shape (N,) for N examples with scores between 0 and 1.

+

fixed_scores – An array of scores of shape (N,) for N examples with scores between 0 and 1.

diff --git a/master/searchindex.js b/master/searchindex.js index b650b97c9..e969baeb5 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Audio Classification with SpeechBrain and Cleanlab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Image Classification with PyTorch and Cleanlab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 80, 85, 86, 87, 94, 96, 97], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 85, 86, 87, 94, 96, 97], "generate_noise_matrix_from_trac": [0, 1, 85, 86, 87, 94, 96, 97], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 51, 52, 64, 88, 92, 103], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 79, 80, 86, 92, 100], "benchmark": [1, 37, 79, 80, 85, 86, 87, 94, 96, 97], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 50, 52, 57, 58, 62, 64, 65, 66, 67, 69, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "core": [1, 40, 43, 71, 73], "algorithm": [1, 2, 8, 10, 31, 38, 42, 50, 52, 57, 66, 75, 77, 79, 93, 94, 96, 103], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 55, 57, 58, 61, 65, 66, 70, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "introduc": [1, 84, 93, 94], "synthet": [1, 96, 97, 102], "nois": [1, 2, 3, 36, 43, 46, 52, 58, 85, 86, 87, 92, 96, 101], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 85, 86, 92, 95, 99, 100], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 52, 57, 58, 59, 60, 61, 66, 67, 75, 76, 77, 78, 79, 80, 81, 85, 86, 87, 95, 96, 99, 100, 101, 102], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 84, 86, 90, 95, 96, 100], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 55, 59, 62, 65, 74, 78, 88, 90, 91, 94, 98, 103], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 52, 55, 57, 62, 65, 66, 67, 79, 88, 93, 97], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 52, 56, 57, 58, 59, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 52, 53, 66, 67, 69, 74, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 100, 102, 103], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 50, 52, 57, 59, 62, 65, 67, 69, 70, 78, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "matric": [1, 3, 46, 93], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "learn": [1, 2, 3, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 55, 57, 59, 66, 68, 70, 73, 77, 79, 83, 84, 86, 88, 90, 91, 92, 96, 97, 101], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 59, 60, 61, 62, 64, 65, 66, 67, 69, 75, 77, 78, 85, 87, 93, 94, 96, 97, 98, 101, 102, 103], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 52, 58, 59, 61, 67, 69, 70, 71, 73, 74, 80, 85, 86, 87, 90, 91, 93, 95, 96], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 52, 53, 59, 62, 64, 65, 66, 67, 90, 98, 99], "trace": [1, 85, 86, 87, 94, 96, 97], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "more": [1, 2, 3, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 67, 69, 70, 73, 74, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 102, 103], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 102, 103], "noise_matrix": [1, 2, 3, 10, 46, 52, 85, 86, 87, 94, 96, 97], "py": [1, 3, 33, 37, 38, 43, 46, 48, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 86, 94, 96], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99, 101, 102], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 85], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 50, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 50, 52, 57, 65, 66, 67, 71, 90, 91, 94, 96, 103], "true_label": [1, 2, 3, 36, 46, 52, 94, 96], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 93, 94, 96, 97, 98, 99, 102, 103], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 53, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 93, 94, 96, 97, 101], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 50, 64, 69, 83, 87, 91, 93, 94, 96, 97, 98, 99, 101], "achiev": [1, 2, 37, 38, 41, 69, 93, 96, 103], "better": [1, 5, 43, 57, 59, 67, 69, 70, 79, 83, 84, 87, 90, 91, 93, 94, 97, 98, 99, 103], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 57, 62, 64, 66, 67, 69, 73, 77, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 57, 67, 69, 82, 84, 85, 86, 87, 88, 90, 93, 94, 96, 97, 99], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 65, 69, 79, 82, 83, 86, 93, 94, 96, 97, 100, 101], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 50, 57, 58, 65, 66, 67, 93, 96, 99], "amount": [1, 3, 88], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 87, 88, 91], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 103], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 50, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 84, 92, 93, 94, 97, 98, 99, 102, 103], "condit": [1, 2, 3, 46, 51, 52, 67, 88, 94, 103], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 92, 93, 94, 95, 97, 98, 99, 102, 103], "k_": [1, 2, 3, 46, 52], "k_y": [1, 2, 3, 46, 52], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102], "fraction": [1, 2, 3, 10, 20, 38, 46, 52, 57, 69, 90, 93], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 96, 97, 98, 100, 101, 102, 103], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 51, 52, 59, 67, 69, 70, 82, 84, 85, 86, 87, 88, 90, 91, 93, 96, 98, 100, 102, 103], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 52, 53, 55, 57, 58, 61, 65, 66, 67, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 102, 103], "assum": [1, 2, 3, 12, 43, 46, 51, 52, 67, 71, 74, 93, 97, 99, 101, 102, 103], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 51, 52, 57, 58, 59, 61, 62, 65, 66, 67, 69, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 52, 58, 59, 61, 64, 69, 85, 86, 87, 88, 93, 94, 96, 97, 102, 103], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 92, 93, 100], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 51, 52, 53, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "return": [1, 2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 97, 98, 101, 102, 103], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 51, 52, 57, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 52, 57, 58, 59, 61, 62, 78, 83, 84, 87, 88, 90, 91, 92, 93, 94, 101, 103], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 57, 59, 61, 64, 65, 66, 67, 69, 70, 75, 77, 78, 79, 84, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103], "perfect": [1, 2, 36, 69, 94, 98], "exactli": [1, 3, 10, 36, 37, 41, 43, 60, 66, 86, 87, 88, 90, 91, 94], "yield": [1, 37, 41, 85], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 50, 55, 57, 58, 61, 64, 66, 67, 69, 70, 73, 77, 78, 80, 83, 84, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 50, 57, 58, 59, 64, 65, 73, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 52, 53, 56, 57, 64, 65, 67, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "loop": [1, 3, 46, 52, 88, 98], "implement": [1, 2, 3, 9, 14, 22, 37, 38, 40, 41, 46, 52, 69, 79, 82, 84, 86, 90, 99, 100], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 57, 58, 62, 64, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 50, 53, 64, 65, 69, 71, 73, 77, 83, 84, 86, 87, 88, 90, 91, 97, 101, 102], "do": [1, 2, 5, 9, 10, 36, 40, 41, 52, 53, 66, 67, 71, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 56, 69, 83, 84, 86, 87, 88, 90, 91, 92, 94, 99], "pseudocod": [1, 100], "happen": [1, 10, 43, 59, 85, 91, 96, 102], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 82, 83, 84, 85, 88, 91, 92, 93, 96, 97, 98, 101, 102, 103], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 61, 69, 79, 83, 84, 85, 91, 93, 94, 98, 99], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 50, 51, 52, 56, 57, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102], "distinct": [1, 18, 52, 103], "natur": [1, 10, 96, 99], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 80, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 102, 103], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 51, 52, 53, 66, 67, 69, 82, 83, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 52, 53, 56, 65, 69, 70, 83, 84, 85, 86, 87, 90, 93, 94, 96, 97, 99, 101], "round": [1, 40, 43, 52, 69, 93, 101], "astyp": [1, 96], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 50, 51, 52, 53, 58, 59, 61, 65, 66, 67, 69, 71, 73, 74, 75, 78, 84, 86, 88, 98, 99], "rang": [1, 3, 5, 7, 12, 46, 48, 50, 52, 65, 69, 70, 85, 88, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "pragma": 1, "cover": [1, 3, 80, 92, 93], "choic": [1, 8, 43, 50, 88, 93, 97, 99], "replac": [1, 51, 56, 67, 82, 83, 85, 86, 87, 88, 91, 92, 93, 96, 99], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 67, 84, 85, 86, 87], "05": [1, 10, 26, 30, 51, 65, 69, 75, 77, 90, 92, 93, 94, 98], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 85, 86, 87, 94, 96, 97], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 85, 86, 87, 88, 93, 94, 96, 97, 102], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 69, 82, 84, 85, 86, 87, 90, 92, 94, 96, 97], "max_it": [1, 83, 84, 91, 99], "10000": [1, 40, 92, 93], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 51, 52, 53, 56, 57, 59, 65, 66, 67, 69, 71, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 99, 101], "diagon": [1, 3, 5, 43, 46, 52], "equal": [1, 3, 10, 12, 59, 64, 74, 100], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 52, 69, 79, 83, 84, 88, 90, 91, 93, 102, 103], "impli": [1, 10, 36, 58, 65], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 50, 51, 52, 57, 58, 59, 61, 64, 65, 69, 73, 77, 84, 85, 86, 87, 94, 96, 97], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 50, 52, 57, 58, 59, 62, 82, 83, 90, 91, 94, 97, 98, 101], "maximum": [1, 10, 66, 74, 78, 102], "minimum": [1, 8, 10, 20, 43, 45, 59, 64, 77], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 64, 69, 86, 93, 94, 96, 98, 99], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 86, 88, 93, 101, 102], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "necessari": [1, 2, 3, 4, 7, 10, 12, 51, 85, 86], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 56, 57, 58, 60, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 52, 57, 61, 65, 69, 74, 78, 79, 82, 83, 84, 85, 87, 91, 93, 96, 97, 99, 101], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 52, 55, 56, 59, 66, 67, 69, 71, 79, 80, 84, 92, 93, 94, 100], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 53, 56, 57, 58, 59, 61, 64, 65, 66, 67, 69, 73, 74, 75, 77, 83, 85, 87, 88, 91, 92, 93, 97, 98, 101, 103], "when": [1, 2, 3, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 50, 52, 56, 59, 61, 62, 64, 66, 67, 69, 70, 82, 83, 85, 86, 87, 88, 90, 91, 96, 100, 101, 102, 103], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103], "rate": [1, 2, 3, 10, 38, 52, 84, 103], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 56, 57, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 82, 83, 85, 86, 87, 90, 91, 93, 96, 97, 99, 100, 101, 102, 103], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 52, 56, 57, 62, 64, 65, 66, 67, 69, 70, 74, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 55, 56, 57, 59, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "high": [1, 2, 16, 40, 43, 52, 64, 67, 69, 82, 83, 85, 86, 87, 88, 92, 94, 98, 101, 102, 103], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 52, 57, 58, 62, 64, 65, 66, 67, 69, 71, 74, 78, 80, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "imposs": [1, 10, 94], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 51, 56, 57, 66, 69, 74, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "low": [1, 10, 52, 57, 79, 85, 86, 87, 91, 94, 98, 102], "zero": [1, 3, 5, 37, 41, 45, 52, 53, 86, 88, 97, 98, 99], "forc": [1, 2, 3, 5, 41, 86, 103], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 52, 56, 57, 59, 61, 65, 66, 67, 69, 70, 73, 75, 77, 80, 82, 83, 84, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 50, 51, 52, 53, 56, 57, 66, 67, 69, 71, 73, 77, 78, 79, 83, 84, 86, 87, 88, 91, 96, 97, 98, 99, 100, 101, 102, 103], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 55, 80], "produc": [1, 2, 5, 9, 10, 16, 48, 57, 67, 69, 71, 73, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 102, 103], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 50, 56, 57, 58, 69, 87, 91, 93, 98], "opposit": [1, 103], "occur": [1, 3, 10, 36, 51, 64, 86, 87, 88, 93, 99], "small": [1, 3, 10, 36, 40, 48, 52, 58, 65, 83, 88, 91, 92, 97, 99], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 50, 51, 53, 56, 61, 64, 69, 70, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "max": [1, 43, 66, 67, 87, 88, 99], "tri": [1, 37, 41, 100], "befor": [1, 2, 3, 37, 41, 50, 52, 66, 69, 74, 82, 83, 85, 91, 93, 94, 96, 99, 101], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 26, 30, 36, 37, 40, 41, 43, 46, 48, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 84, 86, 87, 88, 90, 93, 94, 97, 101, 102], "left": [1, 2, 43, 45, 50, 52, 59, 62, 65, 85, 86, 87, 97, 98, 99, 102], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 57, 62, 64, 65, 66, 85, 86, 87, 92, 96, 97, 98, 103], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 56, 93, 94, 102], "length": [1, 5, 12, 26, 27, 36, 38, 43, 52, 59, 62, 66, 67, 69, 71, 74, 78, 82, 84, 97, 99, 102, 103], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 50, 52, 55, 56, 57, 58, 59, 66, 67, 69, 71, 73, 74, 75, 77, 78, 84, 96, 100, 102, 103], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 52, 53, 57, 59, 65, 71, 73, 74, 75, 77, 78, 82, 83, 84, 93, 96, 97, 98, 102, 103], "ball": [1, 92], "bin": [1, 3, 59, 85, 86, 87, 99], "ensur": [1, 2, 10, 37, 41, 50, 52, 53, 56, 64, 67, 69, 82, 83, 84, 86, 87, 88, 91, 93, 94, 99, 100, 101], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 56, 57, 58, 59, 62, 64, 65, 66, 67, 70, 73, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102], "least": [1, 4, 10, 18, 31, 36, 40, 57, 58, 64, 67, 77, 87, 88, 93, 96, 99, 102], "int_arrai": [1, 52], "can": [2, 3, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 97, 98, 99, 100, 101, 102, 103], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 51, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100, 102, 103], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 75, 77, 78, 79, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103], "regular": [2, 3, 40, 56], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 52, 53, 58, 59, 60, 61, 66, 67, 79, 93, 94, 95], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 50, 52, 57, 59, 67, 69, 79, 83, 84, 85, 91, 92, 93, 94, 97, 99, 101, 102, 103], "cleanlearn": [2, 3, 10, 23, 30, 37, 52, 56, 68, 69, 70, 79, 80, 82, 83, 101], "wrap": [2, 37, 41, 56, 66, 69, 79, 82, 83, 85, 86, 87, 90, 91, 94, 101], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56, 65, 66, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 56, 66, 69, 70, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101], "classifi": [2, 3, 41, 48, 52, 57, 60, 66, 67, 79, 80, 82, 83, 84, 90, 91, 93, 96, 97, 99, 100, 102, 103], "adher": [2, 41, 69], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 52, 57, 58, 59, 64, 66, 69, 71, 73, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 93, 95, 98, 99, 100, 101, 102, 103], "api": [2, 3, 14, 56, 62, 65, 66, 69, 80, 93, 101], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 67, 69, 71, 84, 86, 87, 90, 93, 96, 99, 103], "four": [2, 10, 92, 94, 103], "clf": [2, 3, 5, 48, 69, 79, 82, 90, 93, 94, 97], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 55, 56, 66, 68, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101, 103], "sample_weight": [2, 41, 69, 94], "predict_proba": [2, 5, 36, 39, 41, 48, 55, 56, 82, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 99], "predict": [2, 3, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 83, 92, 93, 94, 95, 99, 101, 102, 103], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 50, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 99, 101], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 52, 55, 56, 57, 58, 59, 60, 64, 66, 67, 68, 69, 74, 75, 76, 77, 78, 80, 83, 88, 89, 95, 100], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 52, 53, 57, 58, 59, 60, 62, 65, 66, 67, 69, 71, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 52, 66, 69, 79, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 101], "element": [2, 3, 5, 36, 42, 43, 45, 52, 57, 59, 67, 74, 75, 77, 83, 84, 91, 93, 103], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 52, 57, 58, 62, 65, 67, 69, 82, 83, 84, 86, 88, 90, 93, 96, 97, 98, 99, 101, 102, 103], "index": [2, 10, 26, 36, 43, 51, 52, 53, 58, 67, 69, 74, 77, 78, 83, 84, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 50, 51, 52, 56, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 100, 101, 102, 103], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 50, 52, 53, 55, 57, 62, 64, 66, 69, 82, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 99, 100, 101], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 59, 62, 65, 67, 69, 70, 79, 80, 83, 92, 93, 94, 95, 97, 98, 101, 102, 103], "size": [2, 10, 31, 37, 40, 41, 43, 48, 59, 64, 65, 69, 71, 73, 83, 85, 88, 90, 93, 94, 96, 97, 98, 100, 102], "here": [2, 5, 7, 10, 14, 40, 43, 46, 56, 57, 58, 59, 61, 62, 65, 66, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "re": [2, 5, 37, 41, 51, 57, 69, 79, 82, 83, 84, 85, 86, 90, 91, 93, 101, 102, 103], "weight": [2, 10, 37, 38, 41, 48, 57, 64, 67, 69, 83, 84, 85, 86, 87, 91], "loss": [2, 38, 56, 67, 69, 88], "while": [2, 3, 10, 37, 40, 41, 47, 48, 52, 69, 79, 88, 93, 94, 96, 97, 101], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 52, 56, 57, 62, 65, 66, 69, 70, 80, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 52, 53, 56, 66, 67, 77, 79, 80, 84, 85, 86, 87, 88, 93], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 52, 55, 56, 57, 58, 59, 61, 66, 67, 69, 70, 71, 73, 74, 80, 82, 83, 84, 85, 88, 90, 92, 96, 97, 98, 99, 100, 101, 102, 103], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 57, 86, 87, 88, 93, 100, 101], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 53, 58, 59, 64, 65, 69, 71, 83, 91, 93, 97, 98, 101, 102], "clonabl": [2, 69], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 57, 62, 65, 66, 67, 69, 70, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 97, 98, 99, 100, 101, 102, 103], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 64, 66, 67, 69, 70, 73, 75, 77, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "clone": [2, 69, 97], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 61, 65, 69, 75, 80, 84, 86, 93, 94, 96, 97, 98, 99, 101, 103], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 51, 57, 58, 59, 61, 64, 65, 69, 79, 86, 87, 88, 93, 95, 97, 98, 101], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 52, 59, 60, 62, 65, 66, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "manual": [2, 69, 82, 83, 84, 93, 99, 100, 101, 103], "pytorch": [2, 37, 38, 41, 69, 79, 84, 93, 95, 97, 102], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 52, 56, 66, 69, 83, 84, 85, 86, 87, 91, 93, 94, 97, 99, 100, 101, 102, 103], "__init__": [2, 38, 69, 88], "independ": [2, 3, 10, 58, 69, 91, 100, 101, 103], "compat": [2, 37, 40, 41, 56, 69, 70, 73, 77, 79, 82, 83, 93, 100, 101], "neural": [2, 38, 56, 66, 69, 84, 88, 93, 97, 99, 101], "network": [2, 37, 38, 41, 56, 66, 69, 83, 84, 88, 91, 93, 97, 99, 101], "typic": [2, 37, 41, 66, 69, 82, 83, 84, 87, 88, 90, 91, 99, 100], "initi": [2, 3, 13, 18, 37, 41, 57, 69, 82, 91, 93], "insid": [2, 41, 69, 93, 94], "There": [2, 3, 7, 79, 94, 96], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 62, 64, 65, 80, 83, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101, 102, 103], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 52, 57, 69, 83, 84, 86, 91, 92, 93, 99, 100, 103], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 73, 77, 79, 82, 88, 90, 91, 94, 96, 97, 98, 100, 102, 103], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 52, 55, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "prune": [2, 3, 43, 59, 69, 80, 98], "everyth": [2, 65, 94], "els": [2, 65, 85, 86, 88, 92, 93, 96, 97, 98], "mathemat": [2, 3, 10, 46, 97], "keep": [2, 13, 14, 52, 79, 85, 86, 92, 93, 102], "belong": [2, 3, 10, 36, 43, 45, 46, 58, 59, 60, 61, 66, 67, 71, 75, 77, 78, 87, 88, 94, 97, 99, 102, 103], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 70, 74, 75, 77, 78, 92, 93, 100], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 52, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 91, 92, 95], "erron": [2, 3, 36, 43, 46, 52, 58, 59, 67, 69, 70, 71, 99, 101], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 50, 51, 57, 61, 64, 69, 70, 75, 77, 78, 79, 82, 83, 90, 91, 93, 97, 98, 99, 101, 102, 103], "linear_model": [2, 5, 36, 52, 69, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logisticregress": [2, 3, 5, 36, 52, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logreg": 2, "cl": [2, 14, 30, 69, 79, 82, 83, 93, 94, 101], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 52, 56, 57, 59, 66, 67, 69, 75, 79, 83, 84, 85, 86, 87, 91, 92, 93, 94, 96, 98, 99, 101], "x_train": [2, 82, 85, 86, 87, 94, 96, 97, 101], "labels_maybe_with_error": 2, "had": [2, 3, 69, 98], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 55, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 89, 95, 96, 100, 101], "pred": [2, 43, 52, 82, 83, 100, 101], "x_test": [2, 82, 85, 86, 87, 94, 97, 101], "might": [2, 5, 57, 69, 74, 82, 83, 86, 87, 88, 93, 98], "case": [2, 3, 10, 13, 36, 48, 57, 69, 82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 99, 101, 103], "standard": [2, 3, 5, 30, 36, 43, 56, 58, 59, 61, 67, 69, 79, 82, 86, 87, 90, 92, 94, 98], "adapt": [2, 37, 39, 52, 55, 69, 99], "skorch": [2, 69, 79, 93], "kera": [2, 55, 62, 65, 69, 79, 93, 98], "scikera": [2, 56, 69, 93], "open": [2, 40, 92, 98, 103], "doesn": [2, 69, 79], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 50, 51, 61, 66, 67, 69, 75, 77, 78, 79, 86, 87, 88, 90, 91, 92, 94, 97, 98, 101, 103], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 56, 57, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 51, 56, 62, 64, 66, 69, 79, 80, 82, 83, 86, 87, 91, 96, 103], "made": [2, 5, 16, 37, 41, 69, 82, 83, 88, 91, 93, 96, 98, 100, 101], "easi": [2, 11, 46, 69, 86, 87, 92, 93, 94, 97], "inherit": [2, 7, 38, 69], "baseestim": [2, 41, 69], "yourmodel": [2, 69], "def": [2, 7, 14, 37, 41, 56, 69, 83, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 66, 67, 69, 82, 83, 86, 88, 91, 92, 97, 102, 103], "refer": [2, 10, 16, 37, 41, 42, 58, 59, 61, 62, 64, 65, 69, 73, 74, 86, 87, 88, 90, 91, 93, 94, 97, 100, 101], "origin": [2, 5, 10, 41, 42, 43, 51, 52, 56, 58, 59, 62, 65, 66, 69, 70, 73, 75, 77, 82, 83, 86, 88, 90, 91, 93, 94, 98, 99, 101, 103], "total": [2, 3, 4, 36, 40, 52, 58, 78, 85, 88, 93, 102], "state": [2, 3, 5, 37, 38, 41, 47, 69, 94, 97, 98, 103], "art": [2, 38, 94, 97], "northcutt": [2, 3, 36, 66, 67], "et": [2, 3, 36, 38, 66, 67], "al": [2, 3, 36, 38, 66, 67], "2021": [2, 3, 36, 66, 67], "weak": [2, 65], "supervis": [2, 10, 86, 87, 93, 96], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 51, 52, 55, 62, 65, 66, 67, 69, 71, 75, 77, 80, 86, 95, 100], "uncertainti": [2, 10, 45, 66, 69, 93, 99, 101], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 50, 57, 64, 65, 69, 79, 83, 86, 87, 88, 91, 93, 94, 97, 100], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 51, 52, 53, 56, 57, 67, 69, 79, 80, 83, 85, 86, 87, 92, 99, 101], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 51, 52, 55, 57, 58, 61, 62, 66, 67, 69, 73, 74, 75, 77, 79, 80, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 103], "deep": [2, 39, 41, 55, 56, 69, 91], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "subfield": 2, "theori": [2, 94], "machin": [2, 5, 9, 10, 14, 16, 33, 39, 55, 69, 82, 83, 86, 87, 92, 96], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 58, 65, 66, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 100, 101], "varieti": [2, 82, 83, 93], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 52, 56, 57, 58, 61, 62, 64, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "pu": [2, 52], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 53, 56, 65, 69, 79, 80, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "discret": [2, 34, 43, 46, 52, 66, 67, 71, 73, 74], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 52, 66, 67, 79, 83, 84, 86, 87, 88, 90, 91, 94, 97, 98, 99, 102, 103], "would": [2, 3, 5, 37, 40, 41, 43, 52, 59, 69, 79, 83, 85, 86, 88, 93, 94, 99, 101, 103], "obtain": [2, 5, 8, 10, 16, 43, 57, 59, 62, 65, 67, 70, 84, 87, 91, 93, 96, 98, 100, 102, 103], "been": [2, 4, 36, 43, 46, 51, 52, 57, 58, 62, 64, 66, 67, 69, 84, 86, 90, 93, 94, 96, 97, 98, 99, 102, 103], "dure": [2, 10, 16, 66, 69, 82, 83, 84, 85, 90, 91, 93, 94, 97, 100, 101, 103], "denot": [2, 3, 46, 48, 52, 59, 66, 67, 77], "tild": 2, "paper": [2, 4, 10, 57, 66, 75, 77, 92, 94, 96, 99, 101, 103], "cv_n_fold": [2, 3, 69, 83], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 52, 57, 58, 61, 62, 65, 69, 70, 77, 83, 86, 91, 92, 93, 97, 98, 99, 100, 102, 103], "converge_latent_estim": [2, 3], "pulearn": [2, 52], "find_label_issues_kwarg": [2, 10, 69, 80, 93, 94], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 59, 75, 93], "clean": [2, 64, 67, 69, 70, 79, 82, 83, 85, 86, 87, 92, 101], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 52, 69, 84, 93, 94, 96, 97, 98], "messi": [2, 69, 94], "ridden": [2, 69], "autom": [2, 9, 10, 69, 79, 87, 92, 93], "robust": [2, 46, 69, 87, 93], "prone": [2, 69], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 56, 59, 60, 62, 65, 66, 67, 69, 70, 78, 79, 80, 83, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 57, 64, 69, 85, 86, 87, 93, 96, 98], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 57, 73, 77, 84, 86, 87, 91, 94], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 57, 58, 61, 64, 65, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 94, 96, 98, 100, 103], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 57, 58, 62, 64, 65, 66, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "experiment": [2, 37, 38, 40, 41, 42, 59, 80, 85, 93], "wrapper": [2, 56, 82, 83, 84, 101], "around": [2, 64, 85, 86, 87, 98, 99, 103], "fasttext": [2, 55], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 66, 69, 82, 83, 85, 90, 91, 92, 93, 102, 103], "along": [2, 48, 59, 77, 85, 86, 87, 88, 93, 99], "dimens": [2, 52, 71, 74, 88, 93, 99, 102], "select": [2, 9, 10, 26, 57, 67, 88, 93, 96, 99], "split": [2, 3, 5, 10, 12, 40, 48, 51, 52, 69, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 97, 100, 103], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 59, 62, 65, 67, 69, 70, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "fold": [2, 3, 36, 43, 46, 69, 82, 84, 90, 92, 93, 98, 102], "By": [2, 36, 58, 59, 69, 86, 93, 102], "need": [2, 3, 10, 36, 37, 40, 41, 43, 58, 59, 61, 66, 69, 79, 83, 84, 86, 87, 91, 93, 94, 96, 97, 98, 102], "holdout": [2, 3, 69], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 52, 57, 58, 59, 61, 64, 65, 66, 67, 69, 70, 71, 73, 79, 80, 83, 86, 87, 92, 94, 95, 98, 99, 101, 102], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 55, 57, 66, 69, 80, 82, 83, 85, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 102, 103], "numer": [2, 3, 5, 10, 13, 22, 30, 34, 48, 64, 66, 69, 74, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 94, 96, 97, 99, 101], "consist": [2, 3, 37, 41, 52, 57, 102, 103], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 50, 52, 56, 59, 64, 67, 69, 70, 73, 77, 79, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 103], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 52, 58, 69, 87, 91], "close": [2, 3, 10, 40, 46, 66, 84, 86, 87, 88, 90, 91, 93, 94, 98], "form": [2, 3, 10, 37, 38, 41, 46, 51, 52, 67, 69, 93], "equival": [2, 3, 37, 41, 46, 66, 99, 101], "iter": [2, 3, 36, 37, 41, 43, 52, 58, 59, 69, 85, 93, 96, 102], "enforc": [2, 37, 41, 52], "perfectli": [2, 36, 58, 94], "certain": [2, 3, 5, 37, 41, 56, 65, 69, 85, 86, 87, 92, 98, 99], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 77, 85, 86, 87, 88, 93, 103], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 56, 57, 59, 66, 67, 69, 75, 77, 86], "filter": [2, 3, 10, 40, 42, 51, 58, 60, 61, 63, 65, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 87, 88, 91, 92, 93, 97, 98, 101, 102, 103], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 93, 97, 98, 101, 102, 103], "particularli": [2, 79, 96, 99], "filter_bi": [2, 3, 40, 43, 59, 80, 93], "frac_nois": [2, 43, 59, 75, 93], "min_examples_per_class": [2, 43, 59, 87, 93, 94], "impact": [2, 4, 10, 86, 87, 88], "ml": [2, 4, 5, 9, 10, 15, 69, 79, 82, 83, 86, 87, 88, 90, 91, 96, 97, 101], "accuraci": [2, 38, 67, 82, 83, 84, 88, 93, 94, 96, 99, 101, 102], "n_job": [2, 40, 43, 59, 71, 73, 75, 93, 99, 102], "disabl": [2, 37, 41, 43, 99], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 51, 57, 59, 65, 71, 73, 75, 83, 84, 85, 86, 93, 96, 100], "caus": [2, 43, 48, 86, 87, 93], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 58, 59, 60, 62, 63, 65, 66, 68, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 87, 92, 93, 97, 98, 99, 102, 103], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 57, 59, 60, 61, 62, 63, 64, 67, 68, 70, 72, 73, 75, 76, 77, 80, 93, 94, 97, 98, 102, 103], "adjust_pred_prob": [2, 10, 61, 66, 67, 94], "control": [2, 5, 9, 10, 16, 40, 43, 57, 65, 66, 69, 75, 77, 86, 87, 92, 93], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 52, 57, 58, 61, 62, 64, 66, 67, 69, 73, 77, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 98, 99, 100, 101, 102], "much": [2, 10, 36, 40, 43, 69, 85, 93, 94, 96, 99], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 52, 56, 57, 58, 62, 64, 65, 66, 69, 73, 74, 77, 78, 79, 80, 83, 84, 86, 88, 91, 92, 93, 98, 99, 100, 101], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 52, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 85, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "suppress": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74, 102, 103], "statement": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74], "big": [2, 40, 59, 65, 69, 94], "limit": [2, 5, 16, 40, 59, 85, 98, 102, 103], "memori": [2, 37, 40, 41, 59, 65, 71, 73, 85, 86, 102], "label_issues_batch": [2, 39, 59, 93], "find_label_issues_batch": [2, 39, 40, 59, 93], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 52, 53, 57, 58, 59, 61, 62, 65, 66, 67, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 50, 64, 65, 66, 67, 73, 77, 86, 98, 99, 102, 103], "inverse_noise_matrix": [2, 3, 10, 46, 52, 80, 94], "label_issu": [2, 40, 43, 59, 62, 69, 71, 80, 82, 83, 84, 88, 91, 93, 94, 97, 101], "clf_kwarg": [2, 3, 10, 69], "clf_final_kwarg": [2, 69], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 73, 77, 79, 84, 88, 90, 91, 94, 96, 98, 100, 101], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 50, 52, 59, 61, 62, 65, 67, 69, 70, 71, 73, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 101, 102, 103], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 59, 62, 65, 67, 69, 70, 71, 74, 75, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 97, 99, 101, 102, 103], "final": [2, 10, 69, 82, 90, 98, 100, 101], "remain": [2, 69, 80, 82, 83, 88, 97, 101, 103], "datasetlik": [2, 52, 69], "beyond": [2, 5, 7, 9, 10, 11, 35, 79, 82, 83, 101, 102], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 56, 57, 58, 69, 77, 82, 83, 84, 86, 87, 90, 91, 93, 94, 96, 101, 103], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 52, 53, 56, 57, 58, 69, 74, 78, 80, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101, 102, 103], "scipi": [2, 5, 13, 52], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 52, 53, 87, 88, 90, 91, 94], "csr_matrix": [2, 4, 5, 13, 16, 18, 31], "torch": [2, 37, 38, 41, 83, 84, 88, 91, 92, 99], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 56, 57, 62, 65, 69, 79, 80, 84, 86, 87, 88, 93, 94, 99], "tensorflow": [2, 52, 56, 79, 84, 93], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 52, 53, 56, 59, 62, 63, 64, 65, 66, 69, 77, 79, 83, 84, 87, 88, 90, 93, 94, 95, 97, 101], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 73, 74, 75, 77, 78, 80, 83, 84, 85, 86, 87, 88, 92, 93, 94, 97, 98, 101, 103], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 52, 67, 74, 78, 82, 83, 84, 88, 90, 91, 93, 97, 98, 99, 100, 101, 103], "wa": [2, 3, 12, 14, 40, 50, 52, 57, 58, 64, 66, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 100, 102, 103], "abl": [2, 3, 10, 69, 84, 93, 94, 96, 97], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 82, 84, 86, 87, 88, 90, 92, 96, 101, 102, 103], "make": [2, 3, 5, 18, 37, 40, 41, 48, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "sure": [2, 5, 40, 43, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101], "shuffl": [2, 10, 52, 84, 88, 91, 97, 99], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 52, 57, 62, 64, 69, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 90, 91, 94, 96, 97, 98, 99, 100, 101, 103], "batch": [2, 40, 52, 56, 57, 71, 73, 85, 88, 93, 99], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 52, 57, 58, 59, 62, 65, 66, 67, 71, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 101, 102, 103], "destroi": [2, 52], "oper": [2, 37, 40, 41, 52, 56, 67, 79, 82, 83, 91, 93, 99], "eg": [2, 5, 10, 52, 62, 65, 86, 87, 93], "repeat": [2, 52, 57, 96, 99], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 51, 52, 61, 66, 75, 82, 83, 84, 85, 86, 87, 88, 90, 93, 96, 97, 99, 100, 101, 102], "array_lik": [2, 3, 36, 43, 52, 59, 66, 70], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 51, 52, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "seri": [2, 3, 40, 52, 53, 69, 77, 93], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 52, 57, 58, 59, 61, 66, 67, 69, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 99, 103], "rather": [2, 3, 5, 26, 36, 52, 56, 57, 64, 73, 77, 83, 96, 100, 101, 102, 103], "leav": [2, 43], "per": [2, 3, 5, 7, 13, 36, 40, 43, 48, 51, 57, 58, 59, 61, 64, 65, 67, 70, 71, 73, 77, 87, 93, 98, 103], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 52, 57, 59, 62, 64, 67, 73, 77, 86, 93, 96, 98, 99, 101], "cutoff": [2, 3, 99], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 52, 57, 64, 66, 67, 70, 73, 77, 82, 83, 84, 88, 90, 91, 93, 94, 98, 99, 100, 101, 102], "section": [2, 3, 7, 10, 80, 88, 90, 93, 98], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 59, 66, 67, 69, 70, 75, 77, 92, 93, 100], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 64, 66, 77, 80, 87, 89, 93, 94], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 56, 64, 66, 67, 69, 73, 77, 85, 94], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 56, 57, 58, 59, 62, 64, 66, 67, 69, 70, 78, 80, 83, 84, 87, 88, 91, 96, 98, 101], "automat": [2, 3, 5, 26, 36, 79, 82, 83, 88, 90, 91, 92, 93, 96, 97, 98, 101, 102, 103], "greater": [2, 3, 5, 7, 9, 10, 28, 40, 52, 64, 87, 92, 93, 103], "count": [2, 22, 26, 36, 40, 43, 46, 52, 58, 59, 65, 80, 88, 93, 98], "observ": [2, 3, 46, 84, 85, 86, 87, 96, 99, 101], "mislabel": [2, 10, 36, 40, 42, 43, 46, 57, 58, 59, 62, 64, 67, 73, 75, 77, 79, 82, 83, 84, 88, 90, 91, 93, 94, 98, 101], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 99, 100, 101, 103], "get_label_issu": [2, 39, 40, 68, 69, 82, 83, 94, 101], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 57, 59, 64, 66, 67, 71, 73, 85, 87, 93, 97, 98], "boolean": [2, 7, 10, 22, 40, 43, 51, 57, 59, 62, 67, 69, 71, 73, 74, 79, 83, 84, 87, 88, 91, 93, 98, 101, 102], "label_issues_mask": [2, 43, 67, 69, 80], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 75, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 50, 51, 59, 62, 65, 66, 67, 69, 71, 75, 77, 79, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103], "return_indices_ranked_bi": [2, 40, 43, 59, 75, 80, 82, 83, 93, 94], "significantli": [2, 88, 94, 96, 100], "reduc": [2, 40, 43, 52, 84, 93], "time": [2, 10, 37, 40, 41, 52, 57, 80, 82, 83, 85, 86, 88, 92, 93, 94, 98, 99, 101, 102, 103], "take": [2, 5, 10, 36, 37, 41, 47, 48, 52, 56, 67, 82, 85, 88, 90, 96, 97, 98, 103], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 103], "skip": [2, 10, 37, 41, 69, 84, 93, 97, 103], "slow": [2, 3], "step": [2, 7, 26, 48, 65, 85, 88, 94, 96, 100], "caution": [2, 5, 93], "previous": [2, 5, 13, 52, 66, 69, 80, 82, 84, 86, 90, 91, 96, 100], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 52, 69, 82, 86, 88, 90, 93, 101, 102, 103], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 57, 61, 64, 67, 69, 75, 77, 80, 82, 87, 90, 93, 96, 97, 98, 103], "still": [2, 40, 41, 52, 66, 82, 84, 88, 93, 99], "extra": [2, 37, 41, 52, 56, 57, 58, 69, 88, 91, 93, 96, 99], "receiv": [2, 10, 37, 41, 42, 58, 61, 62, 69, 71, 75, 87, 98], "overwritten": [2, 69], "callabl": [2, 3, 37, 41, 48, 51, 56, 61, 93], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 51, 52, 65, 67, 69, 74, 84, 85, 86, 87, 88, 93, 94, 97, 103], "appropri": [2, 10, 16, 34, 59, 67, 86, 90, 97, 98], "earli": [2, 88], "stop": [2, 88], "x_valid": 2, "y_valid": 2, "could": [2, 4, 7, 10, 22, 36, 52, 66, 82, 86, 88, 90, 97, 101, 103], "f": [2, 7, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "ignor": [2, 37, 41, 51, 56, 69, 74, 78, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "allow": [2, 4, 36, 37, 40, 41, 45, 52, 57, 65, 66, 69, 71, 73, 83, 84, 85, 88, 93, 100, 102], "access": [2, 10, 13, 37, 41, 69, 83, 87, 88, 91, 97], "hyperparamet": [2, 61, 66, 88], "purpos": [2, 86, 87, 93, 97, 101], "want": [2, 5, 10, 36, 40, 53, 57, 59, 69, 83, 85, 86, 88, 91, 92, 96, 98, 99, 100, 102, 103], "explicitli": [2, 8, 10, 41, 69, 93], "yourself": [2, 5, 40, 87], "altern": [2, 7, 10, 48, 52, 56, 57, 67, 80, 83, 84, 88, 90, 91, 93, 94, 96, 97, 99, 101], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 52, 56, 57, 59, 66, 67, 69, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 97, 98, 99, 100, 101, 102], "effect": [2, 10, 27, 37, 41, 57, 66, 69, 88, 90, 91, 93, 99], "offer": [2, 5, 9, 10, 83, 84, 86, 87, 91, 93, 94, 97], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 57, 69, 83, 86, 88, 91, 93, 94, 96, 98, 99, 100, 101, 102], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 66, 69, 82, 86], "label_issues_df": [2, 69, 88], "similar": [2, 10, 36, 37, 41, 52, 57, 61, 62, 64, 66, 69, 73, 77, 85, 86, 87, 88, 90, 91, 93, 94, 98, 99, 102], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 51, 56, 58, 59, 61, 64, 65, 66, 69, 73, 74, 75, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 52, 62, 69, 86, 87], "were": [2, 3, 5, 36, 41, 58, 64, 77, 82, 84, 90, 93, 94, 96, 98, 100, 102], "present": [2, 3, 5, 10, 12, 13, 20, 36, 52, 66, 74, 79, 88, 90, 93, 99], "actual": [2, 3, 5, 36, 57, 58, 67, 87, 93, 94, 103], "num_class": [2, 36, 40, 52, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99], "uniqu": [2, 31, 52, 74, 86, 93, 97, 99], "given_label": [2, 5, 25, 30, 36, 46, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102, 103], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 50, 51, 52, 67, 93, 94, 99], "trick": [2, 93], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 50, 57, 65, 66, 67, 79, 85, 86, 87, 88, 90, 91, 98, 99], "account": [2, 36, 57, 61, 66, 67, 83, 91, 93, 94, 96, 97, 99, 101], "word": [2, 3, 51, 77, 78, 93], "remov": [2, 10, 31, 36, 37, 41, 43, 69, 79, 82, 83, 87, 88, 90, 91, 92, 93, 94, 97, 99, 101], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 52, 57, 58, 64, 67, 69, 73, 77, 84, 86, 87, 88, 91, 94, 97, 99, 102], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 52, 56, 67, 69, 71, 79, 80, 82, 83, 84, 87, 88, 90, 91, 93, 94, 97, 98, 99, 100, 101, 102], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 50, 51, 52, 57, 59, 61, 66, 67, 69, 70, 71, 79, 82, 83, 84, 88, 91, 92, 93, 94, 99, 100, 101], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 50, 60, 62, 63, 64, 65, 66, 67, 68, 69, 72, 76, 79, 82, 83, 85, 86, 88, 89, 95, 97, 101, 102, 103], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 52, 67, 69], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 56, 69, 71, 73, 75, 93], "test": [2, 5, 10, 26, 41, 48, 56, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 100, 101, 103], "expect": [2, 3, 37, 41, 43, 48, 57, 66, 67, 69, 82, 83, 93, 94, 96, 97, 98, 101, 103], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 65, 69, 82, 83, 84, 86, 87, 88, 93, 94, 96, 100, 101, 102], "simpli": [2, 10, 36, 67, 83, 86, 87, 90, 91, 93, 94, 97, 101, 102, 103], "quantifi": [2, 5, 7, 10, 13, 43, 61, 66, 69, 79, 87, 88, 90, 91, 94, 98], "save_spac": [2, 10, 68, 69], "potenti": [2, 10, 36, 43, 51, 59, 62, 65, 67, 69, 71, 73, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "cach": [2, 83, 91], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 52, 53, 56, 57, 58, 80, 82, 83, 84, 86, 87, 90, 91, 92, 93, 94, 96, 101, 102], "unlik": [2, 10, 43, 45, 48, 56, 58, 59, 61, 77, 86, 96, 97, 99, 101], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 52, 57, 59, 67, 71, 73, 78, 79, 86, 88, 93, 94, 96, 103], "mask": [2, 40, 43, 51, 52, 59, 62, 67, 69, 71, 73, 74, 79, 85, 92, 93, 96, 98, 102, 103], "prefer": [2, 67, 75, 97], "plan": 2, "subsequ": [2, 3, 37, 41, 83, 91, 93, 94, 98], "invok": [2, 37, 41, 94, 100], "scratch": [2, 69], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 56, 57, 59, 61, 65, 66, 67, 69, 70, 71, 73, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "share": [2, 67, 69], "mostli": [2, 52, 64, 69, 97, 101], "longer": [2, 34, 47, 48, 51, 69, 80, 83, 91, 93, 98], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 69, 77, 86, 87, 92, 103], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 57, 58, 61, 65, 69, 74, 77, 84, 86, 88, 90, 91, 92, 93, 94, 96, 99], "docstr": [2, 36, 37, 41, 52, 69, 92, 94], "unless": [2, 37, 41, 69, 93], "our": [2, 3, 10, 56, 57, 67, 69, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "is_label_issu": [2, 30, 69, 83, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "entir": [2, 10, 26, 40, 43, 46, 58, 59, 64, 67, 69, 71, 73, 74, 79, 85, 86, 87, 93, 98, 99, 100, 102, 103], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 57, 58, 59, 62, 65, 67, 69, 70, 71, 73, 74, 80, 87, 88, 90, 91, 93, 96, 101], "label_qu": [2, 57, 69, 83, 94, 96, 101], "measur": [2, 5, 36, 57, 58, 69, 79, 82, 92, 93, 94, 96, 97, 101, 102, 103], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 57, 58, 59, 61, 62, 64, 67, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 101], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 50, 57, 58, 61, 64, 65, 67, 69, 70, 73, 77, 83, 84, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "eas": 2, "comparison": [2, 37, 41, 65, 94, 96], "against": [2, 37, 41, 86, 90, 93, 96, 97], "predicted_label": [2, 5, 25, 30, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102], "ad": [2, 37, 41, 85, 87, 96, 101], "precis": [2, 50, 59, 62, 65, 93, 94, 102, 103], "definit": [2, 7, 34, 48, 69, 82, 90], "accessor": [2, 69], "describ": [2, 10, 18, 57, 66, 67, 69, 75, 77, 94, 96, 97, 98, 100, 103], "precomput": [2, 4, 5, 46, 69, 87, 88, 90, 91, 92, 94], "clear": [2, 37, 41, 69, 83, 91, 101], "save": [2, 5, 16, 37, 40, 41, 65, 69, 93, 98, 102, 103], "space": [2, 5, 10, 66, 69, 88, 90, 92], "place": [2, 37, 41, 52, 69, 82, 96], "larg": [2, 9, 10, 40, 69, 88, 90, 91, 93, 98, 99, 102, 103], "deploi": [2, 9, 10, 69, 88, 90, 91, 93], "care": [2, 10, 37, 41, 69, 91, 93, 94], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 69, 93, 94, 96, 98, 101], "cannot": [2, 5, 12, 14, 52, 100, 103], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 69], "__init_subclass__": [2, 39, 41, 68, 69], "set_": [2, 41, 69], "_request": [2, 41, 69], "pep": [2, 41, 69], "487": [2, 41, 69], "look": [2, 5, 7, 16, 37, 41, 52, 69, 74, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 103], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 52, 57, 58, 62, 65, 69, 74, 77, 78, 79, 84, 85, 86, 90, 91, 94, 96, 99, 102, 103], "__metadata_request__": [2, 41, 69], "infer": [2, 41, 52, 69, 74, 78, 82, 83, 88, 96, 97], "signatur": [2, 37, 41, 69], "accept": [2, 37, 41, 50, 67, 69, 86, 87, 93], "metadata": [2, 41, 69, 88, 90, 91, 103], "through": [2, 5, 7, 41, 69, 83, 84, 85, 87, 91, 92, 93, 96, 98, 99], "develop": [2, 9, 41, 69, 93, 94, 103], "request": [2, 41, 69, 82, 83, 87, 91, 92, 97, 103], "those": [2, 3, 4, 10, 40, 41, 43, 56, 57, 59, 65, 69, 73, 77, 78, 79, 84, 88, 93, 98, 102], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 52, 62, 65, 66, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "www": [2, 41, 69, 99], "org": [2, 4, 18, 37, 38, 41, 52, 66, 69, 93, 94, 103], "dev": [2, 41, 69], "0487": [2, 41, 69], "get_metadata_rout": [2, 39, 41, 68, 69], "rout": [2, 41, 69], "pleas": [2, 37, 41, 56, 69, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 101, 103], "guid": [2, 7, 10, 41, 69, 80, 88, 89], "mechan": [2, 37, 41, 69], "metadatarequest": [2, 41, 69], "encapsul": [2, 16, 41, 64, 69], "get_param": [2, 39, 41, 55, 56, 68, 69], "subobject": [2, 41, 69], "param": [2, 10, 37, 41, 56, 66, 69, 93], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 57, 58, 65, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101, 102, 103], "set_fit_request": [2, 39, 41, 68, 69], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 56, 57, 58, 62, 64, 65, 67, 69, 74, 78, 84, 85, 86, 93, 96, 97, 98, 103], "unchang": [2, 37, 41, 69, 103], "relev": [2, 16, 26, 41, 69, 88], "enable_metadata_rout": [2, 41, 69], "set_config": [2, 41, 69], "meta": [2, 41, 69], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 50, 69, 84, 93], "alia": [2, 37, 41, 69], "metadata_rout": [2, 41, 69], "retain": [2, 41, 52, 69], "chang": [2, 32, 34, 37, 40, 41, 45, 69, 77, 82, 83, 84, 86, 91, 93, 98, 99, 103], "version": [2, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 52, 55, 56, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "sub": [2, 41, 64, 69], "pipelin": [2, 41, 69, 101], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 50, 51, 52, 59, 66, 69, 71, 73, 74, 78, 83, 91, 93], "updat": [2, 13, 37, 40, 41, 56, 69, 80, 85, 86, 88], "set_param": [2, 39, 41, 55, 56, 68, 69], "simpl": [2, 37, 41, 43, 57, 67, 69, 82, 83, 85, 86, 87, 88, 90, 91, 96, 99, 101], "well": [2, 3, 9, 10, 37, 41, 45, 46, 57, 59, 65, 67, 69, 74, 77, 78, 80, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99], "nest": [2, 37, 41, 42, 53, 69, 75, 77, 78, 103], "latter": [2, 37, 41, 69, 99], "compon": [2, 41, 69], "__": [2, 41, 69], "set_score_request": [2, 68, 69], "structur": [3, 66, 82, 85, 90, 93], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 57, 66, 67, 71, 73, 77, 87, 88, 90, 92, 93, 94, 98, 103], "channel": [3, 84, 94], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 52, 58, 83, 87, 92], "inv": 3, "confident_joint": [3, 22, 36, 43, 52, 58, 59, 80, 93, 94], "un": 3, "under": [3, 10, 37, 41, 58, 65, 66, 87, 99], "joint": [3, 36, 43, 46, 52, 58, 59, 92], "num_label_issu": [3, 40, 43, 59, 74, 78, 80], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 52, 53, 59, 97], "don": [3, 79, 87, 88, 90, 91, 94, 98, 101], "statis": 3, "compute_confident_joint": [3, 36, 43, 52, 59, 94], "off": [3, 43, 52, 64, 88, 94, 98, 99], "j": [3, 5, 36, 37, 41, 42, 43, 59, 62, 65, 66, 75, 77, 78, 85, 86, 87, 94, 102, 103], "confident_learn": [3, 43, 59, 94], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 52, 57, 96], "cj": [3, 46, 52], "axi": [3, 31, 46, 48, 50, 71, 74, 84, 85, 86, 87, 88, 93, 94, 96, 97, 99, 101, 102], "bincount": [3, 85, 86, 87, 94, 96, 97], "alwai": [3, 10, 37, 41, 52, 82, 83, 84, 94, 101], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 64, 65, 71, 73, 82, 87, 88, 90, 92, 93, 94, 99, 101], "As": [3, 7, 79, 86, 87, 91, 94, 101, 103], "add": [3, 5, 7, 12, 13, 37, 41, 56, 65, 83, 84, 85, 86, 87, 88, 91, 93, 94, 97], "approach": [3, 4, 36, 40, 43, 56, 82, 85, 90, 94, 97, 99, 101], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 51, 67, 83, 87, 91, 94, 101], "know": [3, 10, 86, 87, 88, 90, 91, 93, 94, 96, 101], "cut": [3, 64, 79, 94], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 98, 99, 103], "underestim": 3, "few": [3, 9, 10, 65, 79, 87, 93, 96, 97, 98, 99, 103], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 51, 61, 62, 64, 65, 67, 70, 77, 92, 93, 97, 102, 103], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 73, 74, 75, 79, 80, 84, 93, 97, 99, 103], "num_issu": [3, 7, 40, 84, 85, 86, 87, 88, 90, 91, 94], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 56, 57, 83, 85, 92, 93, 98, 101, 103], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 94], "v": [3, 10, 40, 58, 59, 61, 67, 85, 86, 87, 97, 98, 99, 100], "rest": [3, 5, 7, 9, 10, 11, 35, 58, 59, 61, 69, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101], "fashion": [3, 5, 71, 82], "2x2": 3, "incorrectli": [3, 36, 58, 59, 62, 90, 103], "calibrated_cj": 3, "c": [3, 10, 50, 51, 59, 67, 79, 82, 84, 86, 87, 90, 91, 93, 94, 97, 98, 99, 100, 101], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 51, 57, 61, 64, 70, 73, 77, 78, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 102, 103], "truli": [3, 99, 102], "estimate_joint": [3, 36, 94], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 59, 65, 94, 98, 100, 102, 103], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 57, 58, 65, 74, 98, 99], "done": [3, 10, 56, 69, 86, 93, 94, 97, 99, 100], "overfit": [3, 10, 62, 65, 82, 84, 85, 86, 87, 88, 90, 91, 100], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 52, 57, 58, 64, 65, 66, 67, 77, 82, 84, 85, 86, 93, 94, 97, 98], "baselin": [3, 37, 43, 83, 99, 101], "proxi": 3, "union": [3, 5, 12, 48, 52, 53, 59, 65, 69, 77, 93], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 52, 57, 59, 65, 73, 75, 77, 78, 84, 103], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 5, 10, 40, 46, 57, 71, 73, 79, 83, 85, 88, 93, 102], "practic": [3, 82, 83, 87, 88, 94, 99, 101], "complet": [3, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "gist": 3, "cj_ish": 3, "guess": [3, 46, 94, 96], "8": [3, 5, 7, 8, 47, 48, 49, 51, 61, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "parallel": [3, 43, 65, 75, 92], "again": [3, 56, 82, 93, 99], "simplifi": [3, 14, 93], "understand": [3, 9, 36, 58, 65, 87, 94, 101, 102, 103], "100": [3, 37, 41, 50, 67, 82, 83, 86, 87, 88, 90, 92, 93, 94, 97, 98, 99, 103], "optim": [3, 37, 38, 41, 56, 88, 96], "speed": [3, 43, 83, 92, 93, 101], "dtype": [3, 23, 25, 26, 31, 37, 41, 51, 52, 61, 77, 84, 98], "enumer": [3, 37, 41, 84, 85, 86, 87, 88, 103], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 52, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "num_confident_bin": 3, "argmax": [3, 43, 67, 71, 74, 84, 93, 94, 98, 99, 102], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 52, 53, 61, 70, 82, 84], "eqn": [3, 46], "margin": [3, 43, 46, 48, 67], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 58, 94, 100], "poorli": [3, 46, 82], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 94], "variabl": [3, 7, 14, 27, 52, 69, 70, 84, 86, 90, 94, 97, 101], "exact": [3, 46, 82, 85, 86, 87, 88, 90], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 59, 64, 73, 75, 77, 86, 87, 88, 93, 98, 102], "percent": 3, "often": [3, 36, 46, 58, 93, 94, 100, 102], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 52, 53, 65, 82, 83, 84, 85, 86, 88, 90, 91, 93, 97, 98, 99, 101], "wai": [3, 5, 56, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 100], "pro": 3, "con": 3, "pred_proba": [3, 100], "combin": [3, 36, 86, 88, 92, 93, 94, 100, 101], "becaus": [3, 46, 52, 64, 91, 93, 94, 96, 98], "littl": [3, 40, 92, 98, 103], "uniform": [3, 67, 92, 93, 94], "20": [3, 7, 42, 78, 84, 88, 91, 92, 93, 94, 98, 101, 102, 103], "Such": [3, 88, 99], "bound": [3, 23, 25, 37, 41, 51, 61, 62, 64, 65, 98], "reason": [3, 22, 37, 41], "comment": [3, 51, 103], "end": [3, 5, 37, 41, 65], "file": [3, 5, 12, 39, 40, 55, 65, 82, 84, 86, 90, 91, 92, 93, 98, 99, 102, 103], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 94], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 80, 82, 85, 86, 87, 88, 90, 91, 94, 102, 103], "five": [3, 62, 65, 94, 98], "estimate_cv_predicted_prob": [3, 94], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 98], "confident_threshold": [3, 10, 22, 23, 40, 66], "valuat": [4, 9, 18], "assess": [4, 98], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 85, 86, 87, 88, 90, 91, 93, 94, 96], "contribut": [4, 10, 18, 98], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 90], "metric": [4, 5, 10, 18, 19, 26, 31, 50, 52, 56, 65, 66, 82, 83, 84, 88, 90, 91, 94, 101], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 65, 66, 67, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 66, 87, 91, 99], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 50, 66, 86, 87, 88, 90, 91, 93, 94, 99], "knn": [4, 10, 13, 18, 26, 31, 50, 66, 90, 99], "graph": [4, 5, 10, 13, 16, 18, 26, 31], "calcul": [4, 10, 18, 26, 40, 48, 50, 57, 61, 62, 64, 65, 66, 69, 73, 88, 92], "directli": [4, 5, 14, 16, 33, 34, 40, 56, 57, 83, 87, 91, 93, 97, 98, 101], "lowest": [4, 10, 57, 65, 87, 88, 93, 96, 97, 98, 102], "fall": [4, 10, 64, 73, 77, 94, 99], "flag": [4, 10, 22, 26, 43, 48, 58, 59, 62, 69, 79, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 99, 101, 102], "approxim": [4, 10, 18, 40, 66, 96], "top": [4, 5, 10, 36, 40, 42, 43, 52, 59, 62, 65, 67, 74, 78, 79, 83, 84, 86, 87, 90, 91, 92, 93, 94, 98, 99, 101, 103], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 97, 99, 101, 103], "arxiv": [4, 18, 94], "ab": [4, 18, 94, 98], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 66, 79, 83, 84, 86, 87, 90, 91, 94, 97, 101], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 59, 79, 83, 84, 86, 87, 88, 91, 93, 94, 99], "suppli": [4, 97, 98, 101], "2d": [4, 5, 16, 32, 40, 48, 49, 51, 52, 57, 82, 84, 97], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 58, 84, 85, 86, 87, 88, 90, 91, 94], "num_featur": [4, 5, 16, 37, 41, 56], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 64, 66, 90, 99], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56], "nearestneighbor": [4, 5, 10, 18, 66, 90, 99], "cosin": [4, 10, 50, 66, 99], "dim": [4, 66, 88, 102], "euclidean": [4, 5, 10, 50, 64, 66, 90], "dimension": [4, 26, 52, 84, 94, 99], "exce": [4, 85, 88], "transform": [4, 10, 32, 48, 50, 52, 66, 67, 82, 83, 87, 88, 91, 99, 103], "rel": [4, 10, 36, 57, 58, 66, 86, 87, 88, 90, 91, 94, 99], "adjust": [4, 38, 43, 61, 66, 67, 79, 94], "closer": [4, 10, 64, 98], "highli": [4, 87, 88], "influenti": 4, "posit": [4, 5, 37, 41, 50, 52, 65, 92, 99], "convers": 4, "neg": [4, 10, 64, 65, 86, 87, 92], "valueerror": [4, 5, 12, 13, 34, 45, 48, 50, 93], "neither": [4, 5, 10, 14, 98], "nor": [4, 5, 10, 14], "larger": [4, 18, 69, 71, 73, 85, 88, 91, 92, 93], "55": [4, 51, 92, 98, 101], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 84, 88, 89, 90, 91, 93, 94, 97, 98, 101], "kind": [5, 6, 7, 10, 84, 85, 86, 88, 90, 91, 92, 94], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 53, 57, 65, 75, 82, 83, 84, 86, 90, 91, 94, 96, 99, 100], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 52, 55, 59, 66, 69, 70, 79], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 55, 56, 71, 73], "pip": [5, 7, 9, 11, 35, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "github": [5, 7, 9, 11, 35, 37, 38, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 52, 66, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "egg": [5, 7, 9, 11, 35, 79, 92], "label_nam": [5, 7, 8, 10, 12, 18, 31, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "image_kei": [5, 10, 88], "interfac": [5, 9, 10, 79, 93, 94], "librari": [5, 10, 41, 62, 65, 66, 79, 83, 86, 91, 92, 93], "goal": [5, 101], "track": [5, 7, 13, 14, 79, 85, 86, 92, 93, 94], "intermedi": [5, 9, 87], "statist": [5, 10, 13, 22, 26, 36, 57, 58, 65, 87, 90, 91, 94], "convert": [5, 10, 12, 34, 37, 41, 49, 50, 53, 57, 64, 73, 77, 80, 83, 84, 88, 91, 92, 93, 96, 97, 98], "hug": [5, 10, 12, 88], "face": [5, 10, 12, 16, 88, 92, 97], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 57, 58, 64, 66, 85, 86, 87, 88, 91, 93, 94, 96, 98], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 57, 58, 70, 74, 77, 78, 83, 90, 91, 93, 96, 97, 103], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 52, 57, 58, 61, 62, 64, 65, 86, 87, 90, 91, 94, 96, 97, 98], "path": [5, 12, 37, 40, 41, 65, 84, 86, 93, 98], "local": [5, 7, 10, 12, 37, 38, 41, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 66, 75, 77, 78, 79, 81, 86, 87, 89, 92, 93, 94, 95, 96, 99], "txt": [5, 12, 103], "csv": [5, 12, 82, 83, 90, 91, 101], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 52, 57, 97], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 83, 85, 86, 87, 91, 95, 96, 99], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 97], "imag": [5, 9, 36, 41, 62, 64, 65, 66, 71, 73, 74, 79, 86, 87, 89, 92, 93, 95, 96, 97, 98, 100, 102], "field": [5, 10, 37, 41], "themselv": [5, 82, 83, 101], "pil": [5, 88], "cleanvis": [5, 10], "level": [5, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 51, 75, 77, 87, 88, 93, 95, 97, 102], "load_dataset": [5, 12, 88], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 85], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 58, 65, 74, 78, 79, 92, 94, 98, 102, 103], "empti": [5, 12, 46, 57, 87, 93, 97], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "sort": [5, 16, 40, 43, 48, 57, 59, 62, 64, 65, 67, 73, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "common": [5, 13, 16, 87, 89, 92, 93, 94, 97, 98, 102], "real": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "world": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "interact": [5, 16, 91, 93], "thereof": [5, 16], "insight": [5, 16, 65, 96], "best": [5, 9, 10, 16, 47, 57, 67, 82, 83, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 103], "properli": [5, 10, 40, 47, 52, 53, 71, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 101, 102], "respect": [5, 37, 41, 62, 65, 84, 85, 86, 87, 88, 90, 91, 94, 97, 98], "lexicograph": [5, 47, 52, 84, 85, 86, 87, 88, 90, 91, 94, 97], "squar": [5, 52, 69, 92, 101], "csr": 5, "evenli": 5, "omit": [5, 64, 65, 88, 98], "itself": [5, 32, 37, 41, 98], "three": [5, 10, 36, 57, 58, 69, 74, 82, 84, 85, 86, 87, 90, 92, 94, 96, 100, 101, 102, 103], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 79, 90, 97, 103], "th": [5, 42, 47, 51, 52, 57, 59, 62, 64, 65, 66, 75, 77, 78, 91, 97, 98, 103], "ascend": [5, 36, 58, 88, 94], "segment": [5, 71, 73, 74, 95], "reflect": [5, 82, 83, 90, 91, 96, 98, 99, 101], "maintain": [5, 56], "kneighbors_graph": [5, 18, 90], "illustr": 5, "todens": 5, "second": [5, 48, 52, 65, 67, 86, 93, 94, 103], "duplic": [5, 9, 21, 22, 37, 41, 79, 85, 86, 94, 101], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 57, 93, 96, 103], "unspecifi": [5, 16, 43, 59], "interest": [5, 16, 22, 74, 78, 82, 83, 91, 94, 101, 102, 103], "constructor": [5, 10, 16, 23, 30], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 69, 70, 92, 101, 103], "random_st": [5, 82, 84, 85, 86, 87, 88, 94, 97, 99], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 79, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101], "comprehens": [5, 79, 88, 97, 101], "nbr": 5, "n_neighbor": [5, 10, 18, 66], "mode": [5, 11, 18, 37, 40, 41, 99], "4x4": 5, "float64": [5, 26, 37, 41, 77], "compress": [5, 10, 52, 71, 73], "toarrai": 5, "NOT": [5, 40, 91], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 87], "suppos": [5, 10, 62, 82, 83, 99, 101], "who": [5, 64, 82, 90, 94, 103], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 56, 86, 93], "clean_learning_kwarg": [5, 10, 23, 30, 93, 101], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 80], "prune_by_noise_r": [5, 43, 59, 94], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 78, 79, 84, 85, 86, 87, 90, 91, 93, 94, 97, 101, 103], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 55, 56, 58, 63, 72, 73, 75, 76, 77, 80, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 101, 102, 103], "show": [5, 7, 26, 37, 41, 47, 52, 65, 74, 78, 82, 85, 87, 88, 90, 91, 92, 93, 94, 96, 99, 101, 102, 103], "suffer": [5, 10, 13, 22, 59, 67, 78, 103], "onc": [5, 22, 36, 37, 41, 82, 85, 86, 93, 94, 97, 98], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 57, 58, 61, 64, 65, 69, 73, 74, 75, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 98, 103], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 61, 64, 66, 67, 73, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 98, 99, 103], "compar": [5, 57, 66, 77, 86, 87, 90, 94, 98], "issue_summari": [5, 7, 10, 13, 85, 86], "With": [5, 9, 10, 40, 83, 91, 93, 94, 96, 101, 102, 103], "usag": [5, 40, 56], "usual": [5, 12, 32, 33, 88, 96, 101], "ti": [5, 57], "exhibit": [5, 7, 10, 13, 74, 87, 88, 90, 91, 94, 98], "ie": [5, 69], "likelihood": [5, 10, 40, 42, 43, 59, 64, 66, 67, 71, 75], "wherea": [5, 52, 59, 100], "outlier": [5, 9, 14, 21, 22, 31, 44, 67, 79, 85, 86, 87, 94, 95, 101], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 94, 101], "global": [5, 7, 22, 37, 41], "non_iid": [5, 10, 14, 26, 87, 88, 90, 91, 94], "hypothesi": 5, "iid": [5, 7, 9, 26, 90, 94], "never": [5, 84, 94, 97, 99, 100], "someth": [5, 7, 37, 41, 67, 98], "123": [5, 85, 86, 87], "456": [5, 82, 83, 84], "nearest_neighbor": 5, "7": [5, 48, 49, 56, 75, 77, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 61, 75, 77, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "distance_to_nearest_neighbor": [5, 86, 87, 88, 90, 91, 94], "789": 5, "get_issu": [5, 10, 13, 84, 85, 87, 88, 90, 91, 93, 97, 101], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86, 87], "focu": [5, 13, 91, 102, 103], "full": [5, 10, 13, 40, 56, 65, 85, 88, 103], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 58, 74, 78, 79, 102], "specific_issu": [5, 13], "lie": [5, 10, 66, 67, 83, 84, 86, 87, 88, 90, 91, 94], "get_issue_summari": [5, 13, 85, 87], "get_info": [5, 13, 87, 91], "yet": [5, 17, 27, 56, 92, 96], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 86], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 84, 86, 88], "load": [5, 12, 40, 65, 88, 92, 93, 94, 98, 99, 102, 103], "futur": [5, 10, 22, 37, 41, 57, 79, 83, 84, 86, 91, 93], "overwrit": [5, 86], "separ": [5, 36, 48, 61, 86, 87, 88, 93, 98, 100], "static": 5, "rememb": [5, 91, 93, 94], "part": [5, 10, 37, 41, 43, 62, 64, 65, 84, 86, 92, 102, 103], "ident": [5, 10, 22, 52, 85, 91], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 79, 82, 83, 84, 88, 93, 96, 101], "walk": 7, "alongsid": [7, 37, 41, 86, 93], "pre": [7, 8, 10, 37, 41, 86, 87, 101], "runtim": [7, 37, 40, 41, 69, 71, 73, 84, 88, 93], "issue_manager_factori": [7, 14, 86], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "thing": [7, 41, 83, 94, 101], "next": [7, 57, 79, 82, 83, 84, 85, 90, 91, 93, 96, 98, 101, 103], "dummi": 7, "randint": [7, 31, 48, 85, 86, 87, 93], "mark": [7, 10, 80, 98, 99, 101], "regard": [7, 87, 94], "rand": [7, 48, 85, 86, 87], "is_": [7, 10, 86], "_issu": [7, 10, 86], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "whole": [7, 26, 37, 41, 87], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "popul": [7, 87, 91], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 98], "raw_scor": 7, "bit": 7, "involv": [7, 40, 74, 78, 85, 93, 97], "intermediate_arg": 7, "min": [7, 48, 64, 77, 86, 93, 99], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 71, 77, 91, 93], "easili": [7, 46, 80, 82, 83, 84, 85, 87, 90, 91, 94, 96, 97, 99, 100, 101, 102], "hard": [7, 41, 92, 99], "sai": [7, 10, 37, 41, 97, 102], "anoth": [7, 22, 36, 40, 51, 64, 67, 83, 90, 91, 93, 94, 96, 99], "try": [7, 9, 10, 40, 43, 56, 57, 71, 73, 79, 85, 87, 88, 90, 91, 93, 94, 102], "won": [7, 37, 41, 86, 87, 93, 97], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 86], "instanti": [7, 16, 40, 56, 66, 83, 84, 87, 90], "477762": 7, "286455": 7, "term": [7, 10, 46, 52, 65, 84, 85, 86, 87, 88, 90, 91, 94], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 98, 99, 101, 102, 103], "003042": 7, "058117": 7, "11": [7, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "121908": 7, "15": [7, 50, 56, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "169312": 7, "17": [7, 83, 84, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 86, 87, 92, 94], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 92, 98, 103], "dbscan": [8, 10, 31, 93], "hdbscan": [8, 93], "etc": [8, 10, 22, 32, 37, 41, 46, 56, 57, 75, 79, 86, 87, 90, 91, 93, 94, 97, 101], "sensit": [8, 10, 50], "ep": [8, 31, 65], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 93], "your_data": 8, "get_pred_prob": [8, 85], "n_cluster": [8, 31, 93], "cluster_id": [8, 10, 31, 93], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 87, 88, 90, 91, 93, 94], "search": [9, 10, 20, 26, 27, 51, 69, 93, 100], "nondefault": 9, "Near": [9, 93], "imbal": [9, 21, 61, 66, 67, 87], "null": [9, 14, 21, 87, 88, 91, 94], "togeth": [9, 10, 46, 83, 86, 87, 88, 90, 91, 94, 101, 103], "built": [9, 48], "own": [9, 37, 39, 41, 55, 61, 62, 65, 71, 75, 82, 83, 84, 87, 88, 90, 91, 93, 96, 97, 101, 102, 103], "prerequisit": 9, "basic": [9, 41, 56, 90, 91, 99], "fulli": [9, 10, 37, 41, 56, 93], "platform": [9, 10, 79, 88, 90, 91, 93], "write": [9, 10], "code": [9, 10, 37, 41, 46, 52, 56, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "being": [9, 10, 13, 36, 37, 41, 43, 48, 51, 52, 67, 82, 90, 93, 94, 101, 102], "100x": [9, 10], "faster": [9, 10, 40, 66, 69, 71, 73, 93, 94], "intellig": [9, 10], "quickli": [9, 10, 38, 82, 84, 88, 90, 91, 93, 97, 99, 102, 103], "fix": [9, 10, 57, 83, 85, 91, 94, 101], "scientist": [9, 10], "million": [9, 10, 103], "thank": [9, 10], "ai": [9, 10, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103], "suggest": [9, 10, 36, 57, 58, 64, 83, 88, 91, 93, 101], "power": [9, 10, 88, 90, 91, 92, 94, 103], "automl": [9, 10, 79, 93], "system": [9, 10, 84, 85, 88, 90, 91, 102], "foundat": [9, 10, 79], "improv": [9, 10, 57, 82, 83, 87, 88, 92, 93, 94, 101, 102], "click": [9, 10, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "tune": [9, 10, 83, 84, 91, 92, 99], "serv": [9, 10, 13, 16, 96], "auto": [9, 10, 82, 83, 85, 87, 92, 93, 101], "free": [9, 10, 79, 84, 87, 88, 90, 91, 93, 94], "page": [10, 87, 93, 94], "variou": [10, 13, 30, 39, 53, 55, 79, 82, 86, 87, 90, 91, 92, 93, 94, 96, 98], "why": [10, 85, 91], "matter": [10, 36, 58, 83, 91], "didn": 10, "plu": [10, 101], "_score": 10, "badli": [10, 64, 82, 83, 103], "issue_scor": 10, "outlier_scor": [10, 28, 86, 87, 88, 90, 91, 94, 99], "atyp": [10, 66, 86, 87, 88, 90, 91, 94, 99], "datapoint": [10, 31, 43, 48, 52, 67, 70, 79, 82, 83, 84, 86, 87, 90, 91, 93, 100, 101], "is_issu": [10, 22], "is_outlier_issu": [10, 86, 87, 88, 90, 91, 94], "annot": [10, 36, 47, 57, 58, 59, 61, 62, 64, 65, 74, 77, 78, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 98, 102], "dissimilar": [10, 90, 91], "preced": 10, "incorrect": [10, 64, 67, 70, 82, 84, 85, 86, 87, 88, 90, 91, 94, 98, 101], "due": [10, 40, 43, 67, 71, 73, 84, 85, 86, 87, 88, 90, 91, 94, 101], "appear": [10, 36, 47, 58, 59, 62, 70, 87, 88, 90, 91, 101, 102], "now": [10, 40, 80, 82, 83, 84, 85, 87, 96, 98, 99, 101, 103], "token": [10, 42, 51, 73, 74, 75, 76, 77, 78, 93, 94, 95], "hamper": [10, 88, 92], "analyt": [10, 79, 93, 96], "lead": [10, 64, 67, 88, 98], "draw": [10, 85, 86, 87], "conclus": [10, 91], "veri": [10, 36, 58, 62, 64, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101], "rare": [10, 43, 65, 86, 87, 88, 90, 91, 93, 94], "anomal": [10, 67, 86, 87, 88, 90, 91, 94], "articl": [10, 40, 93], "blog": 10, "unexpect": [10, 37, 41, 91], "consequ": 10, "inspect": [10, 83, 84, 85, 87, 88, 94, 98, 101], "extrem": [10, 86, 87, 88, 90, 91, 93, 94], "record": [10, 37, 41, 84, 90, 101], "abbrevi": 10, "misspel": 10, "typo": [10, 78], "resolut": 10, "video": [10, 92], "audio": [10, 86, 87, 89, 93], "minor": [10, 51], "variat": 10, "translat": 10, "d": [10, 50, 82, 90, 91, 93, 94, 97, 101, 103], "constant": [10, 31, 69], "median": [10, 30, 50], "question": [10, 22, 79, 94], "nearli": [10, 22, 87, 88, 90, 91], "awar": [10, 80, 94], "presenc": [10, 94], "near_dupl": [10, 14, 19, 85, 86, 87, 88, 90, 91, 93, 94], "signific": [10, 90, 91, 94], "violat": [10, 90, 91, 94], "assumpt": [10, 90, 91, 94], "changepoint": [10, 90, 91, 94], "shift": [10, 90, 91, 94], "drift": [10, 87, 90, 94], "autocorrel": [10, 90, 91, 94], "almost": [10, 90, 91, 94], "adjac": [10, 90, 91, 94], "tend": [10, 36, 46, 90, 91, 94, 102, 103], "sequenti": [10, 37, 41, 56, 88], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 51, 52, 77, 82, 90, 91, 92, 93, 94, 100, 103], "x1": [10, 62, 65, 98], "x2": [10, 62, 65, 98], "10th": 10, "100th": 10, "90": [10, 77, 82, 90, 94, 100, 101], "similarli": [10, 37, 41, 86, 88, 90, 93, 98], "math": [10, 88], "behind": [10, 66, 94], "proper": [10, 52, 57, 62, 65, 82, 88, 91, 93, 96, 98], "scenario": [10, 67, 85, 86, 87], "underli": [10, 42, 66, 75, 77, 103], "stem": [10, 66, 99], "evolv": 10, "influenc": 10, "act": [10, 64, 86], "accordingli": [10, 32], "emploi": [10, 97, 99], "partit": [10, 100], "ahead": 10, "good": [10, 37, 41, 50, 56, 58, 64, 67, 71, 73, 74, 79, 85, 88, 90, 91], "problem": [10, 32, 40, 48, 74, 79, 86, 87, 88, 91, 93], "deploy": [10, 82, 83, 94, 101], "overlook": [10, 64, 98], "fact": 10, "thu": [10, 36, 41, 58, 82, 84, 90, 91, 94, 100, 103], "diagnos": [10, 87, 93], "rarest": [10, 87], "q": [10, 98], "subpar": 10, "special": [10, 51], "techniqu": [10, 98], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 87, 88, 90, 91, 94], "excess": [10, 88], "dark": [10, 102], "bright": [10, 103], "blurri": [10, 88], "lack": [10, 56], "unusu": [10, 98, 99], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 79, 87, 88, 90, 91, 95], "get_self_confidence_for_each_label": [10, 48, 67], "r": [10, 40, 69, 85, 86, 87, 101, 102], "tabular": [10, 79, 81, 86, 87, 89, 93, 96], "categor": [10, 66, 81, 82, 86, 87, 89, 93, 101], "encod": [10, 49, 65, 71, 74, 82, 83, 90, 91, 93, 101, 102], "miss": [10, 27, 37, 41, 52, 62, 64, 85, 90, 93, 98, 101], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 52, 66, 93], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 87], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 79, 92], "health_summary_kwarg": 10, "tandem": [10, 92], "view": [10, 37, 41, 42, 43, 73, 75, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 103], "ood_kwarg": 10, "outofdistribut": [10, 28, 66, 99], "outsid": [10, 93, 97], "outlierissuemanag": [10, 14, 21, 28, 86], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 86, 87, 88, 91, 93, 94, 96, 97, 98, 101, 102], "howev": [10, 37, 41, 52, 82, 83, 84, 88, 90, 91, 96, 100, 102], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 84, 86, 92, 96, 98], "fewer": [10, 43, 52, 98], "vice": [10, 58], "versa": [10, 58], "light": [10, 88, 92, 98, 102], "29": [10, 85, 88, 92, 96, 97, 98, 102, 103], "low_inform": [10, 88], "odd_aspect_ratio": [10, 88], "35": [10, 86, 88, 92, 96, 97, 98], "odd_siz": [10, 88], "doc": [10, 37, 41, 79, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "studio": [11, 79, 87, 88, 90, 91, 93], "data_issu": [11, 15, 16, 33, 86], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 56, 67, 85, 86, 87, 88, 96], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 65, 96], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 88], "dataissu": [13, 15, 16, 33], "central": [13, 103], "repositori": 13, "strategi": [13, 48, 93], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 52, 59, 62, 65, 69, 71, 73, 85, 86, 87, 93], "recomput": [13, 83], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 58, 79], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 66, 86], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 71, 73], "stabl": [15, 21, 24, 29, 39, 44, 52, 55, 66, 80], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 94, 98, 102, 103], "creation": [16, 41], "execut": [16, 37, 41, 86, 93, 98], "coordin": [16, 62, 64, 65, 98, 103], "behavior": [16, 36, 37, 41, 65, 85, 93], "At": [16, 65, 93], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 56], "valuabl": 18, "vstack": [18, 52, 88, 92, 93, 94, 96, 97], "25": [18, 26, 37, 48, 50, 85, 87, 88, 92, 94, 96, 97, 98, 103], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 51, 52], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 85, 86, 87, 88, 93, 94, 96, 97], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 83, 91, 99], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 51, 52, 82, 84, 86, 88, 92, 94, 97], "near_duplicate_set": [19, 21, 86, 87, 88, 90, 91, 93, 94], "occurr": [19, 20, 22, 26, 27, 28, 31, 51], "median_nn_dist": 19, "near_duplicate_scor": [19, 86, 87, 88, 90, 91, 93, 94], "class_imbalance_scor": [20, 87], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 64, 79, 94, 103], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 66, 67, 86, 87, 88, 91, 94, 99], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 102], "priori": [22, 94], "abstract": [22, 32], "applic": [23, 57, 93, 94, 96, 103], "typevar": [23, 25, 37, 41, 51, 61, 64, 65], "scalartyp": [23, 25], "covari": [23, 25, 69, 101], "summary_dict": 23, "label_scor": [23, 25, 30, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 67, 71, 73, 98, 102], "empir": [26, 47, 57], "cumul": 26, "ecdf": 26, "histogram": [26, 90, 101], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 87, 90, 91, 94], "null_track": 27, "extend": [27, 49, 56, 88, 98, 99, 103], "superclass": 27, "arbitrari": [27, 36, 73, 77, 86, 99, 101], "prompt": 27, "address": [27, 83, 86, 87, 91, 93], "enabl": [27, 41], "null_scor": [27, 87], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "multipli": [30, 50], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 52, 65, 83, 103], "50": [31, 41, 85, 93, 94, 96, 98, 99, 101, 103], "keepdim": [31, 93], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 84, 96], "npt": 31, "int_": 31, "id": [31, 57, 86, 88, 93, 96], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 87], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": 32, "mainli": [32, 99, 103], "content": [32, 66, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "fetch": [32, 40, 84, 87, 93], "datset": 33, "exclud": [33, 42, 74, 78, 86, 93, 103], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 85, 86, 87], "continu": [34, 56, 82, 83, 88, 91, 93, 96, 98, 101, 103], "binari": [34, 48, 52, 59, 61, 94, 103], "simultan": [34, 101], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 86, 87], "typeerror": [34, 48], "12": [34, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 57, 58, 67, 85, 86, 87, 88, 92, 98, 100, 102], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 82, 83, 84, 87, 88, 90, 91, 96, 98, 99, 101, 103], "modifi": [36, 37, 40, 41, 52, 93, 94], "help": [36, 37, 41, 65, 79, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 96, 97, 101, 102, 103], "rank_classes_by_label_qu": [36, 87], "merg": [36, 51, 79, 92, 93, 103], "find_overlapping_class": [36, 93, 94], "problemat": [36, 58, 74, 78, 84, 98, 103], "unnorm": [36, 58, 94], "abov": [36, 37, 40, 41, 52, 57, 64, 65, 67, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "model_select": [36, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101], "cross_val_predict": [36, 41, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 100, 101], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 94], "cv": [36, 48, 82, 84, 85, 86, 87, 90, 94, 96], "df": [36, 52, 78, 84, 93], "overall_label_qu": [36, 58], "col": 36, "prob": [36, 51, 94, 100], "divid": [36, 58, 67], "label_nois": [36, 58], "human": [36, 92, 102, 103], "clearli": [36, 67, 88, 98, 102], "num": [36, 58, 92, 94], "overlap": [36, 79, 92, 93, 94], "ontolog": 36, "publish": [36, 103], "therefor": [36, 67], "vehicl": [36, 92], "truck": [36, 92, 99, 102], "intuit": [36, 58, 85], "car": [36, 92, 98, 102], "frequent": [36, 57, 90, 93, 101], "characterist": 36, "l": [36, 37, 41, 62, 64, 65], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 52, 58, 60, 74, 92, 93, 99, 100, 103], "cat": [36, 52, 58, 60, 92, 93, 99, 100], "captur": [36, 84, 98, 99, 102], "co": [36, 37, 38], "noisy_label": [36, 85, 86, 87, 97], "overlapping_class": 36, "descend": [36, 37, 41, 48, 58, 65], "overall_label_health_scor": [36, 58, 94], "half": [36, 37, 39, 41, 58, 92, 103], "health_scor": [36, 58], "classes_by_label_qu": [36, 87], "cnn": [37, 39, 41, 88], "cifar": [37, 38, 92, 99], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 65, 85, 86, 93, 96, 99, 100, 102, 103], "forward": [37, 38, 39, 41, 88, 96], "overridden": [37, 41], "although": [37, 41, 66, 82, 90], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 53, 58, 65, 73, 77, 93, 96, 97, 98, 100, 103], "former": [37, 41], "hook": [37, 41, 92], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 65], "recurs": [37, 41, 48], "submodul": [37, 41], "children": [37, 39, 41, 103], "nn": [37, 38, 41, 88], "init": [37, 41, 94], "no_grad": [37, 41, 88, 99], "init_weight": [37, 41], "linear": [37, 41, 83, 88, 91], "fill_": [37, 41], "net": [37, 41, 84, 88, 92], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 88], "tensor": [37, 38, 41, 83, 84, 88, 91, 99], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 84], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 99], "compil": [37, 39, 41, 56], "cpu": [37, 39, 41, 43, 84, 88], "move": [37, 41, 48, 80, 92], "cuda": [37, 39, 41, 84, 88], "devic": [37, 41, 84, 88], "gpu": [37, 41, 83, 84, 91], "live": [37, 41], "copi": [37, 41, 69, 82, 84, 85, 86, 87, 90, 93, 97, 100, 101], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 88, 97, 99], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 79, 86, 92, 96, 99, 103], "get_buff": [37, 39, 41], "target": [37, 38, 41, 69, 70, 99, 101], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 91], "resolv": [37, 41, 85, 103], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 88, 102], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 88], "break": [37, 41, 88, 98], "pickl": [37, 41, 98], "get_paramet": [37, 39, 41], "let": [37, 41, 66, 67, 82, 83, 84, 85, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 88], "16": [37, 41, 48, 56, 73, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 102, 103], "33": [37, 41, 92, 98], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 67, 85, 92, 98, 103], "diagram": [37, 41, 100], "degre": [37, 41], "queri": [37, 41, 87, 88, 93, 97], "named_modul": [37, 39, 41], "o": [37, 41, 50, 51, 84, 85, 86, 87, 92, 93, 94, 97, 98, 103], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 96], "preserv": [37, 41, 52], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 52, 53, 65, 86, 88, 93, 94, 96, 98, 99], "named_buff": [37, 39, 41], "prefix": [37, 41, 84, 103], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 83, 84, 91, 93], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 82, 90], "fire": [37, 41, 92], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 86, 87], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 88, 90, 101], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 83, 84, 91], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 56, 80, 84, 93], "design": [37, 41, 85], "ordereddict": [37, 41], "detach": [37, 41, 88], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 58, 64], "complex": [37, 41, 84], "integr": [37, 41, 79, 93], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 83, 91, 92], "desir": [37, 41, 51, 65], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 84], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 83, 91], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 88], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 98], "noisili": [38, 94], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 56, 88], "decim": [38, 52], "forget": [38, 48, 103], "rate_schedul": 38, "epoch": [38, 39, 41, 88, 93], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 67, 93], "250": [38, 86, 87, 94, 98, 103], "epoch_decay_start": 38, "80": [38, 82, 90, 97, 101], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 83, 88, 91, 94], "train_load": [38, 41], "model1": [38, 94], "optimizer1": 38, "model2": [38, 94], "optimizer2": 38, "dataload": [38, 88, 99], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 55, 103], "wish": [39, 55, 99, 102, 103], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 93], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 72, 73, 74, 75, 76, 77, 78, 102, 103], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 71, 73, 85, 88, 93, 99, 102], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 88], "loader": [39, 41, 88], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 80], "mini": [40, 71, 73, 93], "low_self_confid": [40, 43, 59], "self_confid": [40, 43, 44, 48, 59, 61, 67, 75, 77, 82, 83, 93, 94], "conveni": [40, 83, 84, 91], "script": 40, "labels_fil": [40, 93], "pred_probs_fil": [40, 93], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 57, 102], "read": [40, 45, 87, 93, 94, 99, 103], "zarr": [40, 93], "memmap": [40, 102], "pythonspe": 40, "mmap": [40, 93], "hdf5": 40, "further": [40, 42, 58, 59, 61, 64, 65, 73, 74, 84, 93], "yourfil": 40, "npy": [40, 92, 93, 102], "mmap_mod": [40, 102], "tip": [40, 43, 56, 93], "save_arrai": 40, "your_arrai": 40, "disk": [40, 92, 93], "npz": [40, 103], "maxim": [40, 57, 71, 73, 102], "multiprocess": [40, 43, 59, 71, 73, 88, 93], "linux": [40, 71, 73], "physic": [40, 43, 71, 73, 98], "psutil": [40, 43, 71, 73], "labels_arrai": [40, 53], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 65, 86, 93, 98, 99], "store_result": 40, "becom": [40, 99], "verifi": [40, 93, 96, 99], "long": [40, 57, 66, 96], "enough": [40, 52, 93], "chunk": [40, 100], "ram": [40, 92], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 93], "shortcut": 40, "encount": [40, 43, 71], "1000": [40, 84, 91, 93, 99], "aggreg": [40, 44, 48, 57, 61, 64, 67, 77, 93, 94, 96], "seen": [40, 85, 93, 99, 103], "far": [40, 57], "label_quality_scor": [40, 61, 64, 67, 70, 94, 98], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 59, 61, 67, 75, 77], "low_normalized_margin": [40, 43, 59], "issue_indic": [40, 64, 88], "update_num_issu": 40, "arr": [40, 93], "chunksiz": 40, "convnet": 41, "bespok": [41, 56], "download": [41, 84, 88, 93, 99], "mnist": [41, 79, 84, 92], "handwritten": 41, "digit": [41, 84, 92], "last": [41, 48, 62, 65, 85, 86, 87, 93, 96, 98, 103], "sklearn_digits_test_s": 41, "64": [41, 82, 88, 90, 94, 98], "01": [41, 67, 69, 84, 94, 97, 98, 99], "templat": 41, "flexibli": 41, "among": [41, 57, 94], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 52, 99], "train_label": [41, 83, 99], "scikit": [41, 52, 66, 79, 83, 84, 85, 86, 87, 90, 91, 93, 101], "span": 42, "sentenc": [42, 51, 75, 77, 78, 83, 91], "token_classif": [42, 51, 75, 77, 78, 93], "encourag": [43, 59, 67, 70], "multilabel_classif": [43, 58, 59, 61, 67, 93, 97], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 59, 67, 94], "num_to_remove_per_class": [43, 59], "bad": [43, 59, 64, 67, 91, 93], "seem": [43, 94, 97], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 59, 61, 67, 75, 77], "label_issues_idx": [43, 67], "entropi": [43, 45, 47, 48, 66, 67], "prune_by_class": [43, 59, 94], "predicted_neq_given": [43, 59, 94], "prune_counts_matrix": 43, "smallest": [43, 67], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 79, 83, 93], "too": [43, 48, 66, 87, 88, 93, 98], "thread": [43, 59], "window": [43, 84, 92], "shorter": [43, 62], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 52], "clip_noise_r": [44, 52], "clip_valu": [44, 52], "value_count": [44, 52, 93], "value_counts_fill_missing_class": [44, 52], "get_missing_class": [44, 52], "round_preserving_sum": [44, 52], "round_preserving_row_tot": [44, 52], "estimate_pu_f1": [44, 52], "confusion_matrix": [44, 52], "print_square_matrix": [44, 52], "print_noise_matrix": [44, 52, 94], "print_inverse_noise_matrix": [44, 52], "print_joint_matrix": [44, 52, 94], "compress_int_arrai": [44, 52], "train_val_split": [44, 52], "subset_x_i": [44, 52], "subset_label": [44, 52], "subset_data": [44, 52], "extract_indices_tf": [44, 52], "unshuffle_tensorflow_dataset": [44, 52], "is_torch_dataset": [44, 52], "is_tensorflow_dataset": [44, 52], "csr_vstack": [44, 52], "append_extra_datapoint": [44, 52], "get_num_class": [44, 52], "num_unique_class": [44, 52], "get_unique_class": [44, 52], "format_label": [44, 52], "smart_display_datafram": [44, 52], "force_two_dimens": [44, 52], "latent_algebra": [44, 80], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 97], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 97], "onehot2int": [44, 49, 97], "multilabel_scor": [44, 61], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 61], "softmin": [44, 48, 61, 64, 73, 77], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "transform_distances_to_scor": [44, 50], "correct_precision_error": [44, 50], "token_classification_util": [44, 103], "get_sent": [44, 51, 103], "filter_sent": [44, 51, 103], "process_token": [44, 51], "merge_prob": [44, 51], "color_sent": [44, 51], "assert_valid_input": [44, 53], "assert_valid_class_label": [44, 53], "assert_nonempty_input": [44, 53], "assert_indexing_work": [44, 53], "labels_to_arrai": [44, 53], "labels_to_list_multilabel": [44, 53], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 56, 57, 79, 96], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 52, 84], "behav": 45, "unnecessari": [45, 93], "slightli": [45, 82, 83, 85], "interv": [45, 48, 99], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 52, 69, 84, 96, 102, 103], "increas": [46, 50, 64, 66, 67, 84, 86, 93, 96, 97, 103], "dot": [46, 77, 93], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 57], "ensembl": [47, 48, 57, 67, 82, 90, 93, 97, 99, 101], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 57], "format_multiannotator_label": [47, 57, 96], "formatted_label": [47, 52], "old": [47, 52, 80, 84, 92], "check_consensus_label_class": 47, "consensus_label": [47, 57, 96], "consensus_method": [47, 57], "consensu": [47, 57, 79, 95, 103], "establish": [47, 56, 83, 101], "compute_soft_cross_entropi": 47, "soft": [47, 92], "find_best_temp_scal": 47, "coarse_search_rang": [47, 69, 93], "fine_search_s": [47, 69, 93], "temperatur": [47, 48, 64, 73, 77], "scale": [47, 50, 82, 92, 93, 99, 102], "factor": [47, 48, 50, 71, 73], "minim": [47, 64, 99], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 92], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 67], "get_confidence_weighted_entropy_for_each_label": [48, 67], "75": [48, 85, 86, 87, 92, 96, 97, 98, 101, 103], "scorer": 48, "alpha": [48, 61, 64, 85, 86, 87, 94, 97, 101], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 59, 90, 91, 94, 103], "formula": [48, 50], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 67, 94, 96, 102], "recent": [48, 103], "success": 48, "previou": [48, 88, 93, 98], "discount": 48, "s_ema": 48, "175": [48, 88, 94, 98], "underflow": 48, "nan": [48, 57, 82, 90, 96, 101], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 61], "n_sampl": 48, "n_label": 48, "worst": [48, 96], "class_label_quality_scor": 48, "42": [48, 91, 92, 98, 103], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 60, 61], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 84], "wider": 48, "splitter": 48, "kfold": [48, 88], "onevsrestclassifi": [48, 97], "randomforestclassifi": [48, 94, 97], "n_split": [48, 87, 88, 97], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 59, 65, 71, 74, 82, 90, 92, 93, 101, 102], "onehot_matrix": 49, "avg_dist": 50, "scaling_factor": 50, "exp": [50, 66, 67, 86], "dt": 50, "right": [50, 62, 65, 83, 91, 97, 98, 99], "strength": [50, 65], "pronounc": 50, "differenti": 50, "ly": 50, "rule": [50, 51, 92], "thumb": 50, "ood_features_scor": [50, 66, 99], "88988177": 50, "80519832": 50, "toler": 50, "minkowski": 50, "noth": 50, "fixed_scor": 50, "readabl": 51, "lambda": [51, 84, 86, 93, 96], "long_sent": 51, "headlin": 51, "charact": [51, 52], "s1": 51, "s2": 51, "processed_token": 51, "alecnlcb": 51, "entiti": [51, 79, 93, 103], "mapped_ent": 51, "unique_ident": 51, "loc": [51, 85, 86, 87, 88, 103], "nbitbas": [51, 61], "probs_merg": 51, "0125": [51, 77], "0375": 51, "075": 51, "025": 51, "color": [51, 74, 85, 86, 87, 90, 94, 97, 99, 101, 102], "red": [51, 65, 85, 86, 87, 92, 94, 97, 98, 99, 102], "colored_sent": 51, "termcolor": 51, "31msentenc": 51, "0m": 51, "ancillari": 52, "class_without_nois": 52, "any_other_class": 52, "choos": [52, 67, 82, 90, 93, 94, 101], "tradition": 52, "new_sum": 52, "fill": 52, "come": [52, 85, 86, 87, 93, 102], "major": [52, 57, 80, 85, 88, 99], "versu": [52, 94], "obviou": 52, "cgdeboer": 52, "iteround": 52, "reach": 52, "prob_s_eq_1": 52, "claesen": 52, "f1": [52, 65, 91, 94], "BE": 52, "left_nam": 52, "top_nam": 52, "titl": [52, 85, 86, 87, 94, 97, 99], "short_titl": 52, "round_plac": 52, "pretti": [52, 85, 94], "joint_matrix": 52, "num_possible_valu": 52, "holdout_idx": 52, "extract": [52, 66, 83, 84, 91, 96, 99, 102], "allow_shuffl": 52, "turn": [52, 79, 98], "shuffledataset": 52, "histori": 52, "pre_x": 52, "buffer_s": 52, "csr_matric": 52, "append": [52, 84, 85, 88, 92, 93, 94, 96, 97, 98, 99, 103], "bottom": [52, 62, 65, 98], "to_data": 52, "from_data": 52, "taken": 52, "label_matrix": 52, "canon": 52, "displai": [52, 65, 74, 78, 83, 84, 85, 91, 94, 103], "jupyt": [52, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "notebook": [52, 57, 84, 85, 87, 92, 93, 94, 96, 97, 98, 102, 103], "consol": 52, "html": [52, 62, 65, 66, 90, 93, 94], "allow_missing_class": 53, "allow_one_class": 53, "length_x": 53, "labellik": 53, "labels_list": [53, 59], "keraswrappermodel": [55, 56, 79], "keraswrappersequenti": [55, 56], "tf": [56, 84], "legaci": 56, "newer": 56, "interim": 56, "advis": [56, 97], "stabil": 56, "until": 56, "accommod": 56, "keraswrapp": 56, "huggingface_keras_imdb": 56, "unit": [56, 103], "model_kwarg": [56, 69], "compile_kwarg": 56, "sparsecategoricalcrossentropi": 56, "layer": [56, 83, 84, 91, 99], "dens": 56, "my_keras_model": 56, "from_logit": 56, "declar": 56, "apply_softmax": 56, "analysi": 57, "analyz": [57, 79, 94, 96, 97], "get_label_quality_multiannot": [57, 96], "vote": 57, "crowdsourc": [57, 79, 96], "dawid": [57, 96], "skene": [57, 96], "analog": [57, 85, 92, 96], "chosen": [57, 67, 93, 96], "crowdlab": [57, 96], "unlabel": [57, 88, 90, 91, 96, 99, 102], "decid": [57, 83, 91, 92, 96, 101, 103], "get_active_learning_scor": [57, 96], "activelab": [57, 96], "priorit": [57, 64, 98, 102, 103], "showcas": 57, "main": [57, 85], "best_qual": 57, "quality_method": 57, "calibrate_prob": 57, "return_detailed_qu": 57, "return_annotator_stat": 57, "return_weight": 57, "label_quality_score_kwarg": 57, "necessarili": [57, 65, 91, 94], "did": [57, 58, 82, 83, 84, 90, 94, 96, 101], "majority_vot": 57, "broken": [57, 65, 92, 101], "highest": [57, 65, 86, 88, 100], "0th": 57, "consensus_quality_scor": [57, 96], "annotator_agr": [57, 96], "reman": 57, "1st": 57, "2nd": [57, 71], "3rd": 57, "consensus_label_suffix": 57, "consensus_quality_score_suffix": 57, "suffix": 57, "emsembl": 57, "weigh": [57, 92], "agreement": [57, 96], "agre": 57, "prevent": [57, 93], "overconfid": [57, 100], "wrong": [57, 62, 64, 80, 83, 85, 86, 87, 91, 93, 94, 98], "detailed_label_qu": [57, 96], "annotator_stat": [57, 96], "model_weight": 57, "annotator_weight": 57, "warn": [57, 86, 87, 88, 90, 91, 93, 94], "labels_info": 57, "num_annot": [57, 96], "deriv": [57, 96], "quality_annotator_1": 57, "quality_annotator_2": 57, "quality_annotator_m": 57, "annotator_qu": [57, 96], "num_examples_label": [57, 96], "agreement_with_consensu": [57, 96], "worst_class": [57, 96], "trustworthi": [57, 96, 101], "get_label_quality_multiannotator_ensembl": 57, "weigtht": 57, "budget": 57, "retrain": [57, 83, 101], "active_learning_scor": 57, "active_learning_scores_unlabel": 57, "get_active_learning_scores_ensembl": 57, "henc": [57, 84, 86, 96], "get_majority_vote_label": [57, 96], "event": 57, "lastli": [57, 90], "convert_long_to_wide_dataset": 57, "labels_multiannotator_long": 57, "wide": [57, 82, 83, 84], "suitabl": [57, 82, 90], "labels_multiannotator_wid": 57, "common_multilabel_issu": [58, 60], "mutual": [58, 97], "exclus": [58, 97], "rank_classes_by_multilabel_qu": [58, 60], "overall_multilabel_health_scor": [58, 60], "multilabel_health_summari": [58, 60], "classes_by_multilabel_qu": 58, "inner": [59, 73], "find_multilabel_issues_per_class": [59, 60], "per_class_label_issu": 59, "label_issues_list": 59, "pred_probs_list": [59, 67, 88, 94], "anim": [60, 99], "rat": 60, "predat": 60, "pet": 60, "reptil": 60, "manner": [61, 82, 83, 96, 101], "box": [62, 64, 65, 92, 98], "object_detect": [62, 64, 65, 98], "return_indices_ranked_by_scor": [62, 98], "overlapping_label_check": [62, 64], "suboptim": [62, 64], "locat": [62, 64, 98, 102, 103], "bbox": [62, 65, 98], "image_nam": [62, 65], "y1": [62, 65, 98], "y2": [62, 65, 98], "later": [62, 65, 66, 83, 103], "corner": [62, 65, 98], "xyxi": [62, 65, 98], "io": [62, 65, 84, 92], "keras_cv": [62, 65], "bounding_box": [62, 65, 98], "detectron": [62, 65, 98], "detectron2": [62, 65, 98], "readthedoc": [62, 65], "en": [62, 65], "latest": [62, 65], "visual": [62, 63, 65, 82, 85, 86, 87, 88, 101, 103], "draw_box": [62, 65], "mmdetect": [62, 65, 98], "swap": [62, 64, 74, 78], "penal": [62, 64], "concern": [62, 64, 79, 87], "issues_from_scor": [63, 64, 72, 73, 74, 76, 77, 78, 98, 102, 103], "compute_overlooked_box_scor": [63, 64], "compute_badloc_box_scor": [63, 64], "compute_swap_box_scor": [63, 64], "pool_box_scores_per_imag": [63, 64], "object_counts_per_imag": [63, 65, 98], "bounding_box_size_distribut": [63, 65, 98], "class_label_distribut": [63, 65, 98], "get_sorted_bbox_count_idx": [63, 65], "plot_class_size_distribut": [63, 65], "plot_class_distribut": [63, 65], "get_average_per_class_confusion_matrix": [63, 65], "calculate_per_class_metr": [63, 65], "aggregation_weight": 64, "imperfect": [64, 93], "chose": [64, 96, 98], "imperfectli": [64, 98], "dirti": [64, 67, 70, 101], "subtyp": 64, "badloc": 64, "nonneg": 64, "high_probability_threshold": 64, "auxiliary_input": [64, 65], "vari": [64, 87], "iou": [64, 65], "heavili": 64, "auxiliarytypesdict": 64, "pred_label": [64, 83], "pred_label_prob": 64, "pred_bbox": 64, "lab_label": 64, "lab_bbox": 64, "similarity_matrix": 64, "min_possible_similar": 64, "scores_overlook": 64, "low_probability_threshold": 64, "scores_badloc": 64, "accident": [64, 83, 90, 91, 93], "scores_swap": 64, "box_scor": 64, "image_scor": [64, 73, 102], "discov": [65, 87, 103], "abnorm": [65, 88, 98], "auxiliari": [65, 99, 102], "_get_valid_inputs_for_compute_scor": 65, "object_count": 65, "down": 65, "bbox_siz": 65, "class_distribut": 65, "plot": [65, 85, 86, 87, 94, 97, 99, 101, 102], "sorted_idx": [65, 99], "class_to_show": 65, "hidden": [65, 85, 99], "max_class_to_show": 65, "prediction_threshold": 65, "overlai": [65, 98], "figsiz": [65, 85, 86, 87, 88, 94, 97, 99], "save_path": [65, 98], "blue": [65, 92, 94, 98], "overlaid": 65, "side": [65, 92, 98], "figur": [65, 94, 97, 99, 101], "extens": [65, 94, 96], "png": [65, 98], "pdf": [65, 66], "svg": 65, "matplotlib": [65, 85, 86, 87, 88, 94, 97, 98, 99, 101], "num_proc": [65, 88], "intersect": [65, 93], "tp": 65, "fp": 65, "ground": [65, 92, 94, 96, 101], "truth": [65, 94, 96, 101], "bias": 65, "avg_metr": 65, "distionari": 65, "95": [65, 75, 77, 90, 92, 94, 101], "per_class_metr": 65, "Of": 66, "li": 66, "smaller": [66, 85, 97, 98], "find_top_issu": [66, 67, 99], "reli": [66, 83, 84, 85, 86, 87, 91, 98, 99, 101], "dist_metr": 66, "subtract": [66, 67], "renorm": [66, 67, 93], "least_confid": 66, "sum_": 66, "log": [66, 67, 80], "softmax": [66, 73, 77, 88], "literatur": 66, "gen": 66, "liu": 66, "lochman": 66, "zach": 66, "openaccess": 66, "thecvf": 66, "cvpr2023": 66, "liu_gen_pushing_the_limits_of_softmax": 66, "based_out": 66, "distribution_detection_cvpr_2023_pap": 66, "fit_scor": [66, 99], "ood_predictions_scor": 66, "pretrain": [66, 83, 84, 91, 99], "adjust_confident_threshold": 66, "probabilist": [66, 82, 84, 86, 87, 90, 91, 99, 100], "order_label_issu": [67, 80], "whichev": [67, 100], "argsort": [67, 83, 88, 91, 94, 98, 99, 101], "max_": 67, "get_label_quality_ensemble_scor": [67, 93, 94], "weight_ensemble_members_bi": 67, "custom_weight": 67, "log_loss_search_t_valu": 67, "0001": [67, 92], "scheme": 67, "log_loss_search": 67, "log_loss": [67, 91], "1e0": 67, "1e1": 67, "1e2": 67, "2e2": 67, "quality_scor": [67, 99], "forth": 67, "top_issue_indic": 67, "rank_bi": [67, 80], "weird": [67, 78], "minu": 67, "prob_label": 67, "max_prob_not_label": 67, "idea": [67, 85, 98], "AND": [67, 91], "get_epistemic_uncertainti": [68, 69], "get_aleatoric_uncertainti": [68, 69], "corrupt": [69, 101], "linearregress": [69, 93, 101], "y_with_nois": 69, "n_boot": [69, 93], "include_aleatoric_uncertainti": [69, 93], "sole": [69, 82, 86, 96, 99], "bootstrap": [69, 93, 101], "resampl": [69, 84, 93], "epistem": [69, 93, 99, 101], "aleator": [69, 93, 101], "model_final_kwarg": 69, "coars": 69, "thorough": [69, 93], "fine": [69, 83, 84, 91, 99], "grain": 69, "grid": 69, "varianc": [69, 94], "epistemic_uncertainti": 69, "residu": [69, 70, 93], "deviat": [69, 98, 101], "aleatoric_uncertainti": 69, "outr": 70, "contin": 70, "raw": [70, 79, 80, 87, 88, 92, 93, 96, 98, 99, 101], "aka": [70, 84, 94, 98, 101, 103], "00323821": 70, "33692597": 70, "00191686": 70, "semant": [71, 73, 74, 95], "pixel": [71, 73, 74, 99, 102], "h": [71, 73, 74, 102], "height": [71, 73, 74, 102], "w": [71, 73, 74, 102], "width": [71, 73, 74, 102], "labels_one_hot": [71, 74, 102], "stream": [71, 85, 99, 103], "downsampl": [71, 73, 102], "shrink": [71, 73], "divis": [71, 73, 86], "common_label_issu": [72, 74, 76, 78, 102, 103], "filter_by_class": [72, 74, 102], "segmant": [73, 74], "num_pixel_issu": [73, 102], "product": [73, 88, 93], "pixel_scor": [73, 102], "highlight": [74, 78, 85, 86, 87, 90, 102], "enter": 74, "legend": [74, 85, 86, 87, 97, 98, 101, 102], "colormap": 74, "background": 74, "person": [74, 93, 98, 102, 103], "ambigu": [74, 78, 83, 84, 91, 92, 94, 103], "systemat": [74, 78, 96], "misunderstood": [74, 78], "issues_df": [74, 88], "class_index": 74, "issues_subset": [74, 78], "filter_by_token": [76, 78, 103], "token_score_method": 77, "sentence_score_method": 77, "sentence_score_kwarg": 77, "compris": [77, 78], "token_scor": [77, 103], "converg": 77, "toward": 77, "_softmin_sentence_scor": 77, "sentence_scor": [77, 103], "token_info": 77, "70": [77, 90], "02": [77, 86, 87, 94, 98], "03": [77, 90, 92, 94, 98, 103], "04": [77, 90, 98, 103], "08": [77, 94, 98, 101, 103], "commonli": [78, 80, 86, 87, 97, 103], "But": [78, 91, 94, 101, 103], "restrict": [78, 93], "reliabl": [79, 82, 84, 93, 96, 102], "thousand": 79, "imagenet": [79, 92], "popular": [79, 96, 98], "centric": [79, 88, 90, 91, 95], "capabl": 79, "minut": [79, 82, 83, 84, 90, 91, 92, 96, 97, 98, 101, 102, 103], "conda": 79, "feature_embed": [79, 99], "Then": [79, 82, 83, 88, 93], "your_dataset": [79, 84, 86, 87, 88, 90, 91, 93], "column_name_of_label": [79, 84, 86, 87, 88, 90, 91], "plagu": [79, 87], "untrain": 79, "\u30c4": 79, "label_issues_info": [79, 87], "sklearn_compatible_model": 79, "framework": [79, 97, 98], "complianc": 79, "tag": [79, 97, 103], "sequenc": 79, "recognit": [79, 84, 93, 103], "train_data": [79, 82, 83, 99, 101], "gotten": 79, "test_data": [79, 82, 83, 85, 94, 97, 99, 101], "deal": [79, 87], "tutori": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "feel": [79, 84, 87, 93], "ask": [79, 93], "slack": [79, 93], "project": [79, 101], "welcom": 79, "commun": [79, 93], "guidelin": [79, 98], "piec": 79, "smart": [79, 88, 90, 91, 93], "edit": [79, 93], "easier": [79, 94], "unreli": [79, 82, 84, 90, 91], "link": [79, 84, 92, 98], "older": 80, "outlin": 80, "substitut": 80, "v2": [80, 82, 90], "get_noise_indic": 80, "psx": 80, "sorted_index_method": 80, "order_label_error": 80, "label_errors_bool": 80, "latent_estim": 80, "num_label_error": 80, "learningwithnoisylabel": 80, "neatli": 80, "organ": [80, 82, 90, 92, 103], "reorgan": 80, "baseline_method": 80, "incorpor": [80, 94], "research": [80, 94], "polyplex": 80, "terminologi": 80, "label_error": 80, "quickstart": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "sql": [82, 90], "databas": [82, 90], "excel": [82, 90], "parquet": [82, 90], "student": [82, 90, 101, 103], "grade": [82, 90, 101], "900": [82, 90, 101], "exam": [82, 90, 101], "letter": [82, 90, 103], "hundr": [82, 90], "mistak": [82, 83, 88, 90, 91], "No": [82, 83, 91, 93], "extratreesclassifi": 82, "extratre": 82, "ranked_label_issu": [82, 83], "branch": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "preprocess": [82, 83, 87, 90, 99, 101], "standardscal": [82, 90, 99], "labelencod": [82, 83], "train_test_split": [82, 83, 85, 86, 87, 99], "accuracy_scor": [82, 83, 84, 91, 94], "grades_data": [82, 90], "read_csv": [82, 83, 90, 91, 101], "demo": [82, 87, 90, 97], "head": [82, 83, 84, 87, 88, 90, 91, 92, 94, 96, 101], "stud_id": [82, 90], "exam_1": [82, 90, 101], "exam_2": [82, 90, 101], "exam_3": [82, 90, 101], "letter_grad": [82, 90], "f48f73": [82, 90], "53": [82, 85, 86, 87, 90, 92, 97, 98], "00": [82, 86, 87, 88, 90, 92, 99], "77": [82, 86, 87, 90, 98], "0bd4e7": [82, 90], "81": [82, 90, 91, 98, 101, 103], "great": [82, 85, 90, 92], "particip": [82, 90], "cb9d7a": [82, 90], "61": [82, 90, 94, 98, 101], "94": [82, 90, 92, 94, 98, 101], "78": [82, 90, 92, 94, 98, 101], "9acca4": [82, 90], "48": [82, 90, 92, 94, 98], "x_raw": [82, 90], "labels_raw": 82, "interg": [82, 83], "categorical_featur": [82, 101], "x_encod": [82, 90], "get_dummi": [82, 90, 101], "drop_first": [82, 90], "numeric_featur": [82, 90], "scaler": [82, 90, 99], "x_process": [82, 90], "fit_transform": [82, 90], "bring": [82, 83, 88, 90, 91, 96, 101], "byod": [82, 83, 88, 90, 91, 96, 101], "decis": [82, 85, 86, 87], "tress": 82, "held": [82, 84, 90, 91, 92, 98, 99, 100], "straightforward": [82, 84, 90], "benefit": [82, 84, 100, 102], "num_crossval_fold": [82, 84, 90, 96], "u": [82, 83, 84, 86, 88, 90, 93, 94, 96, 97, 100, 101, 102, 103], "tabl": [82, 90, 92, 96], "212": [82, 94], "review": [82, 83, 87, 90, 91, 92, 93, 94, 98, 101, 102, 103], "iloc": [82, 83, 84, 90, 91, 101], "58": [82, 87, 90, 92, 94, 98], "92": [82, 86, 94, 98], "93": [82, 92, 98, 101, 103], "827": 82, "99": [82, 92, 94], "86": [82, 87, 88, 90, 94, 98, 101], "74": [82, 98, 101], "637": [82, 90], "79": [82, 92, 98], "65": [82, 86, 98], "cheat": 82, "0pt": 82, "120": [82, 86, 87], "97": [82, 92, 93, 94, 98, 101, 103], "233": 82, "68": [82, 92, 94, 98], "83": [82, 94, 98, 101, 103], "76": [82, 85, 94, 97, 98, 101], "suspici": [82, 90], "carefulli": [82, 88, 90, 91], "examin": [82, 85, 86, 87, 90, 98], "labels_train": 82, "labels_test": 82, "test_siz": [82, 83, 85, 86, 87], "acc_og": [82, 83], "783068783068783": 82, "robustli": [82, 83, 101], "14": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "acc_cl": [82, 83], "8095238095238095": 82, "especi": [82, 83, 85, 88, 93, 101], "blindli": [82, 83, 84, 93, 101], "trust": [82, 83, 84, 93, 94, 96, 100, 101], "effort": [82, 83, 101], "intent": [83, 91], "servic": [83, 91, 93], "onlin": [83, 91], "bank": [83, 91, 92], "banking77": [83, 91], "oo": [83, 91], "000": [83, 88, 91, 92, 103], "categori": [83, 88, 91], "shortlist": [83, 91, 101], "scope": [83, 91], "logist": [83, 85, 86, 87, 91, 96, 99], "probabilit": [83, 84], "drop": [83, 93, 96, 101], "earlier": [83, 103], "sentence_transform": [83, 91], "sentencetransform": [83, 91], "payment": [83, 91], "cancel_transf": [83, 91], "transfer": [83, 91], "fund": [83, 91], "cancel": [83, 91], "transact": [83, 91], "my": [83, 91], "revert": [83, 91], "morn": [83, 91], "realis": [83, 91], "yesterdai": [83, 91], "rent": [83, 91], "realli": [83, 91, 96, 102], "tomorrow": [83, 91], "raw_text": [83, 91], "raw_label": 83, "raw_train_text": 83, "raw_test_text": 83, "raw_train_label": 83, "raw_test_label": 83, "39": [83, 84, 86, 88, 91, 92, 93, 98, 101, 102, 103], "supported_cards_and_curr": [83, 91], "card_payment_fee_charg": [83, 91], "beneficiary_not_allow": [83, 91], "change_pin": [83, 91], "getting_spare_card": [83, 91], "lost_or_stolen_phon": [83, 91], "visa_or_mastercard": [83, 91], "card_about_to_expir": [83, 91], "apple_pay_or_google_pai": [83, 91], "card": [83, 91, 92], "utter": [83, 91], "encond": 83, "test_label": [83, 94, 97, 99], "suit": [83, 91, 92, 93], "electra": [83, 91], "discrimin": [83, 91], "googl": [83, 85, 91], "train_text": 83, "test_text": 83, "home": [83, 86, 87, 91, 92], "runner": [83, 86, 87, 91], "google_electra": [83, 91], "pool": [83, 91, 93, 99], "opt": [83, 84, 87, 88, 90, 91, 94], "hostedtoolcach": [83, 84, 87, 88, 90, 91, 94], "x64": [83, 84, 87, 88, 90, 91, 94], "lib": [83, 84, 87, 88, 90, 91, 94], "python3": [83, 84, 87, 88, 90, 91, 94], "site": [83, 84, 87, 88, 90, 91, 94], "_util": [83, 91], "831": [83, 91], "userwarn": [83, 84, 86, 87, 91], "typedstorag": [83, 91], "untypedstorag": [83, 91], "untyped_storag": [83, 91], "fget": [83, 91], "__get__": [83, 91], "owner": [83, 91], "leverag": [83, 84, 91, 93, 94, 96], "computation": [83, 84, 91], "intens": [83, 84, 91], "400": [83, 85, 91], "858371": 83, "547274": 83, "826228": 83, "966008": 83, "792449": 83, "identified_issu": [83, 101], "lowest_quality_label": [83, 84, 91, 94, 101], "to_numpi": [83, 91, 93, 101], "44": [83, 92, 97, 98], "646": 83, "390": 83, "628": 83, "121": [83, 85, 94], "702": 83, "863": [83, 84], "135": 83, "337": [83, 98], "735": 83, "print_as_df": 83, "inverse_transform": 83, "charg": [83, 91], "cash": [83, 91], "holidai": [83, 91], "sent": [83, 91, 103], "mine": [83, 91], "expir": [83, 91], "fight": 83, "hors": [83, 92, 99], "duck": [83, 92], "me": [83, 91], "whoever": [83, 91], "consum": [83, 101], "18": [83, 84, 91, 92, 93, 94, 98, 99, 101, 102, 103], "baseline_model": [83, 101], "87": [83, 87, 88, 98, 101], "acceler": [83, 101], "19": [83, 84, 88, 91, 92, 93, 94, 98, 99, 101, 102, 103], "89": [83, 85, 86, 90, 98, 101], "spoken": 84, "500": [84, 99, 103], "english": [84, 92], "pronunci": 84, "wav": 84, "huggingfac": [84, 86, 87, 88, 93], "voxceleb": 84, "speech": [84, 103], "your_pred_prob": [84, 85, 86, 87, 90, 91], "tensorflow_io": 84, "huggingface_hub": 84, "reproduc": [84, 90, 94, 96], "command": 84, "wget": [84, 98, 102, 103], "navig": 84, "browser": 84, "jakobovski": 84, "archiv": [84, 103], "v1": 84, "tar": [84, 99], "gz": [84, 99], "mkdir": [84, 103], "spoken_digit": 84, "xf": 84, "6_nicolas_32": 84, "data_path": 84, "listdir": 84, "nondeterminist": 84, "file_nam": 84, "endswith": 84, "file_path": 84, "join": [84, 85, 88, 93], "7_george_26": 84, "0_nicolas_24": 84, "0_nicolas_6": 84, "listen": 84, "display_exampl": 84, "expand": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "pulldown": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "colab": [84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "tfio": 84, "pathlib": 84, "ipython": 84, "load_wav_16k_mono": 84, "filenam": 84, "khz": 84, "file_cont": 84, "read_fil": 84, "sample_r": 84, "decode_wav": 84, "desired_channel": 84, "squeez": 84, "rate_in": 84, "rate_out": 84, "16000": 84, "wav_file_nam": 84, "audio_r": 84, "wav_file_exampl": 84, "plai": [84, 92, 93], "button": 84, "wav_file_name_exampl": 84, "7_jackson_43": 84, "hear": 84, "extractor": 84, "encoderclassifi": 84, "spkrec": 84, "xvect": 84, "feature_extractor": 84, "from_hparam": 84, "run_opt": 84, "uncom": 84, "ffmpeg": 84, "backend": 84, "wav_audio_file_path": 84, "torchaudio": 84, "extract_audio_embed": 84, "emb": [84, 88], "signal": 84, "encode_batch": 84, "embeddings_list": [84, 88], "embeddings_arrai": 84, "650": 84, "stft": 84, "return_complex": 84, "view_as_r": 84, "recov": 84, "trigger": 84, "aten": 84, "src": 84, "nativ": 84, "spectralop": 84, "cpp": 84, "_vf": 84, "n_fft": 84, "hop_length": 84, "win_length": 84, "attr": 84, "512": [84, 88], "196311": 84, "319459": 84, "478975": 84, "2890875": 84, "8170238": 84, "89265": 84, "24": [84, 92, 94, 96, 98, 101], "898056": 84, "256195": 84, "559641": 84, "559721": 84, "62067": 84, "285245": 84, "21": [84, 86, 92, 93, 94, 98, 101, 103], "709627": 84, "5033693": 84, "913803": 84, "819831": 84, "1831515": 84, "208763": 84, "084257": 84, "3210397": 84, "005453": 84, "216152": 84, "478235": 84, "6821785": 84, "053807": 84, "242471": 84, "091424": 84, "78334856": 84, "03954": 84, "23": [84, 88, 92, 94, 98, 101], "569176": 84, "761097": 84, "1258295": 84, "753237": 84, "3508866": 84, "598274": 84, "23712": 84, "2500": 84, "tol": 84, "decreas": [84, 93], "cv_accuraci": 84, "9708": 84, "9976": 84, "986": 84, "002161": 84, "176": [84, 92, 94, 97], "002483": 84, "2318": 84, "004411": 84, "1005": 84, "004857": 84, "1871": 84, "007494": 84, "investig": [84, 85], "040587": 84, "999207": 84, "999377": 84, "975220": 84, "999367": 84, "identified_label_issu": [84, 91], "sort_valu": [84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 101], "516": 84, "1946": 84, "469": 84, "2132": 84, "worth": [84, 94], "6_yweweler_25": 84, "7_nicolas_43": 84, "6_theo_27": 84, "6_yweweler_36": 84, "6_yweweler_14": 84, "6_yweweler_35": 84, "6_nicolas_8": 84, "sound": 84, "quit": [84, 99], "22": [84, 86, 88, 92, 93, 94, 97, 98, 103], "ve": [85, 92, 93, 94, 96, 98], "prove": 85, "monitor": [85, 92], "ran": 85, "data_monitor": 85, "your_datalab": 85, "new_data_batch": 85, "your_label": 85, "get_your_label": 85, "websit": [85, 92], "todo": 85, "get_ipython": 85, "76dfdd23fa2e7f058421aa1938be49b71a7ad5d9": 85, "cmd": 85, "dep": 85, "dependencies_test": 85, "missing_depend": 85, "__import__": 85, "importerror": 85, "sep": [85, 103], "npleas": 85, "toi": [85, 86, 87, 88, 92, 94, 96], "mid": [85, 86, 87], "workflow": [85, 95, 101], "unseen": 85, "inf": [85, 86, 87], "bins_map": [85, 86, 87], "create_data": [85, 86, 87], "800": 85, "y_bin": [85, 86, 87], "y_i": [85, 86, 87], "y_bin_idx": [85, 86, 87], "y_train": [85, 86, 87, 94, 101], "y_test": [85, 86, 87, 94, 101], "y_train_idx": [85, 86, 87], "y_test_idx": [85, 86, 87], "slide": [85, 86, 87, 92], "frame": [85, 86, 87], "x_out": [85, 86, 87], "tini": [85, 86, 87], "concaten": [85, 86, 87, 93, 100], "y_out": [85, 86, 87], "y_out_bin": [85, 86, 87], "y_out_bin_idx": [85, 86, 87], "exact_duplicate_idx": [85, 86, 87], "x_duplic": [85, 86, 87], "y_duplic": [85, 86, 87], "y_duplicate_idx": [85, 86, 87], "noisy_labels_idx": [85, 86, 87, 97], "train_x": 85, "test_x": 85, "train_y_tru": 85, "test_y_tru": 85, "train_i": 85, "test_i": 85, "train_y_idx": 85, "test_y_idx": 85, "scatter": [85, 86, 87, 94, 97, 101], "black": [85, 86, 87, 92, 101], "cyan": [85, 86, 87], "pyplot": [85, 86, 87, 88, 94, 97, 99, 101], "plt": [85, 86, 87, 88, 94, 97, 99, 101], "plot_data": [85, 86, 87, 94, 97, 101], "fig": [85, 86, 87, 88, 92, 99, 101], "ax": [85, 86, 87, 88, 99, 101], "subplot": [85, 86, 87, 88, 99], "set_titl": [85, 86, 87, 88, 99], "set_xlabel": [85, 86, 87], "x_1": [85, 86, 87], "fontsiz": [85, 86, 87, 88, 94, 97], "set_ylabel": [85, 86, 87], "x_2": [85, 86, 87], "set_xlim": [85, 86, 87], "set_ylim": [85, 86, 87], "linestyl": [85, 86, 87], "circl": [85, 86, 87, 94, 97], "misclassifi": [85, 86, 87], "zip": [85, 86, 87, 88, 98, 103], "label_err": [85, 86, 87], "180": [85, 86, 87, 98], "marker": [85, 86, 87], "facecolor": [85, 86, 87], "edgecolor": [85, 86, 87], "linewidth": [85, 86, 87, 99], "title_fontproperti": [85, 86, 87], "semibold": [85, 86, 87], "first_legend": [85, 86, 87], "align": [85, 86, 87], "markerscal": 85, "second_legend": [85, 86, 87], "46": [85, 90, 92, 94, 98], "gca": [85, 86, 87], "add_artist": [85, 86, 87], "tight_layout": [85, 86, 87], "ideal": [85, 86, 87], "simplic": [85, 97], "327": [85, 98], "9297": 85, "000124": 85, "259": 85, "000725": 85, "269": 85, "000794": 85, "002061": 85, "125": [85, 86], "002908": 85, "fly": [85, 92], "feed": [85, 93], "simul": 85, "tqdm": [85, 88], "sleep": [85, 92], "generate_stream": 85, "sleep_tim": 85, "desc": 85, "singleton_stream": 85, "seamless": [85, 93], "singleton": 85, "batched_stream": 85, "processed_singleton": 85, "suggested_label": [85, 91], "250997": 85, "285757": 85, "43": [85, 86, 92, 94, 98], "120906": 85, "principl": 85, "processed_batch": 85, "51": [85, 86, 87, 90, 92, 94, 98], "002748": 85, "189996": 85, "093505": 85, "037250": 85, "149": [85, 98], "076397": 85, "154": 85, "294010": 85, "160": [85, 91, 101], "073622": 85, "166": [85, 88], "140832": 85, "167": [85, 92, 94, 98, 103], "041743": 85, "181": 85, "169429": 85, "127304": 85, "235": [85, 98], "090310": 85, "254": [85, 92, 98], "183343": 85, "256": [85, 92, 93, 98], "048720": 85, "263": [85, 97, 98], "138820": 85, "292": 85, "239609": 85, "295": [85, 98], "022075": 85, "306": 85, "103040": 85, "343": 85, "234755": 85, "354": 85, "001612": 85, "359": 85, "068359": 85, "367": [85, 101], "015793": 85, "368": 85, "029022": 85, "391": 85, "106761": 85, "troublesom": 85, "623844": 85, "812647": 85, "816854": 85, "661968": 85, "632244": 85, "395": 85, "474599": 85, "396": 85, "653901": 85, "397": 85, "584554": 85, "398": 85, "817287": 85, "399": 85, "881545": 85, "183": 85, "937927": 85, "309": 85, "939505": 85, "133": 85, "947290": 85, "177": 85, "952187": 85, "314": [85, 98], "997293": 85, "27": [85, 90, 92, 94, 98, 103], "655501": 85, "underneath": 86, "hood": [86, 93], "alert": 86, "introduct": 86, "mayb": [86, 87, 91], "your_feature_matrix": [86, 87], "dup": [86, 87], "45": [86, 87, 92, 94, 98], "remaind": 86, "modal": [86, 87, 93, 96], "132": [86, 87, 94, 98], "9318": 86, "006940": 86, "007830": 86, "40": [86, 87, 91, 92], "014828": 86, "107": [86, 87, 94, 97], "021241": 86, "026407": 86, "notic": [86, 94, 96, 98], "3558": [86, 87], "126": [86, 87, 94, 98], "006636": [86, 87], "130": [86, 87], "012571": [86, 87], "129": [86, 87], "127": [86, 87], "014909": [86, 87], "128": [86, 87, 88], "017443": [86, 87], "6160": [86, 87], "is_near_duplicate_issu": [86, 87, 88, 90, 91, 93, 94], "131": [86, 87, 102], "000000e": [86, 87], "000002": [86, 87], "463180e": [86, 87], "07": [86, 87, 88, 90, 94, 98, 101], "161148": [86, 87], "859087e": [86, 87], "30": [86, 87, 88, 92, 93, 97, 102, 103], "3453": 86, "029542": 86, "031182": 86, "057961": 86, "058244": 86, "348": 86, "378": 86, "357": 86, "34": [86, 92, 94, 96, 98, 103], "54": [86, 92, 94, 98, 103], "039122": 86, "044598": 86, "105": [86, 98], "105196": 86, "133654": 86, "168033": 86, "101107": 86, "37": [86, 92], "183382": 86, "109": [86, 92, 98], "209259": 86, "211042": 86, "221316": 86, "average_ood_scor": 86, "34530442089193386": 86, "52": [86, 92, 98, 103], "169820": 86, "087324e": 86, "259024": 86, "583757e": 86, "91": [86, 98], "346458": 86, "341292e": 86, "specfi": 86, "new_lab": 86, "scoring_funct": 86, "div": 86, "rem": 86, "inv_scal": 86, "49": [86, 92, 94, 98], "superstitionissuemanag": 86, "unlucki": 86, "superstit": 86, "to_seri": 86, "issues_mask": 86, "summary_scor": 86, "9242": 86, "is_superstition_issu": 86, "superstition_scor": 86, "26": [86, 88, 92, 94, 96, 98], "047581": 86, "090635": 86, "129591": 86, "164840": 86, "lurk": [87, 88, 94], "_split": 87, "737": 87, "thoroughli": 87, "904": 87, "_base": [87, 88, 90, 91, 94], "246": [87, 88, 90, 91, 94, 98], "efficiencywarn": [87, 88, 90, 91, 94], "sort_graph_by_row_valu": [87, 88, 90, 91, 94], "warn_when_not_sort": [87, 88, 90, 91, 94], "8561": 87, "001908": 87, "003564": 87, "007331": 87, "008963": 87, "009664": 87, "0227": 87, "is_class_imbalance_issu": 87, "022727": 87, "conceptu": 87, "856061": 87, "355772": 87, "616034": 87, "821750": 87, "901562": 87, "betweeen": 87, "is_null_issu": 87, "is_non_iid_issu": [87, 90, 91, 94], "is_underperforming_group_issu": 87, "859131": 87, "417707": 87, "664083": 87, "970324": 87, "816953": 87, "375317": 87, "641516": 87, "890575": 87, "531021": 87, "460593": 87, "601188": 87, "826147": 87, "752808": 87, "321635": 87, "562539": 87, "948362": 87, "090243": 87, "472909": 87, "746763": 87, "878267": 87, "examples_w_issu": [87, 93], "013445": 87, "025184": 87, "026376": 87, "inde": [87, 91], "miscellan": [87, 103], "428571": 87, "111111": 87, "571429": 87, "407407": 87, "592593": 87, "337838": 87, "092593": 87, "662162": 87, "333333": [87, 92], "952381": 87, "666667": 87, "portion": 87, "huge": [87, 94], "worri": [87, 91], "critic": 87, "60": [88, 94, 101], "torchvis": [88, 99], "tensordataset": 88, "stratifiedkfold": [88, 97], "autonotebook": 88, "fashion_mnist": 88, "9m": 88, "lt": [88, 90, 91, 92, 96, 99], "131mb": 88, "18m": 88, "3mb": 88, "num_row": 88, "60000": 88, "transformed_dataset": 88, "with_format": 88, "255": [88, 92], "unsqueez": 88, "cpu_count": 88, "torch_dataset": 88, "quick": [88, 97], "super": [88, 90, 91], "relu": 88, "batchnorm2d": 88, "maxpool2d": 88, "lazylinear": 88, "flatten": 88, "get_test_accuraci": 88, "testload": [88, 99], "energi": 88, "trainload": [88, 99], "n_epoch": 88, "patienc": 88, "criterion": 88, "crossentropyloss": 88, "adamw": 88, "best_test_accuraci": 88, "start_epoch": 88, "running_loss": 88, "best_epoch": 88, "end_epoch": 88, "3f": [88, 101], "acc": [88, 94], "time_taken": 88, "compute_embed": 88, "compute_pred_prob": 88, "train_batch_s": 88, "num_work": 88, "worker": [88, 103], "train_id_list": 88, "test_id_list": 88, "train_id": 88, "test_id": 88, "embeddings_model": 88, "ntrain": 88, "trainset": 88, "testset": 88, "pin_memori": 88, "fold_embed": 88, "fold_pred_prob": 88, "finish": 88, "482": 88, "720": 88, "847": 88, "329": [88, 98], "88": [88, 92, 93, 94, 97, 98, 101], "195": 88, "649": 88, "493": 88, "060": 88, "892": [88, 94], "330": [88, 98], "505": 88, "599": 88, "476": 88, "340": 88, "836": 88, "328": [88, 98], "310": 88, "765": 88, "reorder": 88, "hstack": [88, 93, 94, 96], "vision": 88, "grayscal": 88, "max_preval": 88, "7714": 88, "3772": 88, "3585": 88, "3651": 88, "27080": 88, "873833e": 88, "40378": 88, "915575e": 88, "25316": 88, "390277e": 88, "06": [88, 94, 98, 103], "2090": 88, "751164e": 88, "14999": 88, "881301e": 88, "9569": 88, "11262": 88, "000003": 88, "coat": [88, 92], "shirt": [88, 92], "19228": 88, "000010": 88, "dress": 88, "32657": 88, "000013": 88, "bag": [88, 92, 99, 100], "21282": 88, "000016": 88, "53564": 88, "000018": 88, "pullov": 88, "6321": 88, "30968": 88, "001267": 88, "30659": 88, "000022": [88, 103], "47824": 88, "001454": 88, "3370": 88, "000026": 88, "54565": 88, "001854": 88, "9762": 88, "258": 88, "47139": 88, "000033": 88, "166980": 88, "986195": 88, "997205": 88, "sandal": [88, 92], "948781": 88, "999358": 88, "54078": 88, "17371": 88, "000025": 88, "plot_label_issue_exampl": 88, "ncol": [88, 99], "nrow": [88, 99], "ceil": 88, "axes_list": 88, "label_issue_indic": 88, "gl": 88, "sl": 88, "fontdict": 88, "imshow": [88, 99], "cmap": [88, 101], "grai": 88, "subplots_adjust": 88, "hspace": 88, "outsiz": 88, "outlier_issu": [88, 91], "outlier_issues_df": 88, "depict": [88, 97, 98, 99, 100, 102], "plot_outlier_issues_exampl": 88, "n_comparison_imag": 88, "sample_from_class": 88, "number_of_sampl": 88, "non_outlier_indic": 88, "isnul": 88, "non_outlier_indices_excluding_curr": 88, "sampled_indic": 88, "label_scores_of_sampl": 88, "top_score_indic": 88, "top_label_indic": 88, "sampled_imag": 88, "get_image_given_label_and_sampl": 88, "image_from_dataset": 88, "corresponding_label": 88, "comparison_imag": 88, "images_to_plot": 88, "idlist": 88, "iterrow": 88, "near_duplicate_issu": [88, 93], "closest": 88, "counterpart": 88, "near_duplicate_issues_df": 88, "plot_near_duplicate_issue_exampl": 88, "seen_id_pair": 88, "get_image_and_given_label_and_predicted_label": 88, "duplicate_imag": 88, "nd_set": 88, "challeng": 88, "dark_issu": 88, "reveal": [88, 98, 102], "dark_scor": 88, "dark_issues_df": 88, "is_dark_issu": 88, "34848": 88, "203922": 88, "50270": 88, "204588": 88, "3936": 88, "213098": 88, "733": 88, "217686": 88, "8094": 88, "230118": 88, "plot_image_issue_exampl": 88, "28": [88, 91, 92, 94, 96, 103], "difficult": 88, "disproportion": 88, "lowinfo_issu": 88, "low_information_scor": 88, "lowinfo_issues_df": 88, "is_low_information_issu": 88, "53050": 88, "067975": 88, "40875": 88, "089929": 88, "9594": 88, "092601": 88, "34825": 88, "107744": 88, "37530": 88, "108516": 88, "lot": 88, "histgradientboostingclassifi": 90, "cat_featur": 90, "boost": [90, 93, 96, 101], "xgboost": [90, 93, 101], "think": [90, 91, 93, 97, 102, 103], "nonzero": 90, "358": 90, "294": [90, 98], "941": [90, 103], "7109": 90, "000005": [90, 91], "886": 90, "000059": 90, "709": 90, "000104": 90, "723": 90, "000169": 90, "689": 90, "000181": 90, "3590": 90, "051882e": 90, "683133e": 90, "536582e": 90, "406589e": 90, "324246e": 90, "6165": 90, "582": 90, "185": [90, 92, 98, 103], "187": [90, 92], "898": 90, "0014": [90, 92], "595": 90, "702427": 90, "147": [90, 94, 98], "711186": 90, "157": [90, 94], "721394": 90, "771": 90, "731979": 90, "740335": 90, "0014153602099278074": 90, "issue_result": 90, "000842": 90, "555944": 90, "004374": 90, "sorted_issu": 90, "73": [90, 92, 97, 98, 101], "deserv": 90, "outlier_result": 90, "sorted_outli": 90, "56": [90, 92, 101], "96": [90, 92, 94, 97, 98, 101], "style": [90, 102], "font": 90, "18px": 90, "ff00ff": 90, "bac": 90, "unintend": [90, 91], "duplicate_result": 90, "690": 90, "perhap": [90, 94, 96], "twice": 90, "67": [90, 92, 98, 101], "wari": [90, 91, 93], "dive": 91, "your_featur": 91, "text_embed": 91, "data_dict": [91, 94, 96], "85": [91, 98], "38": [91, 92, 98], "9710": 91, "981": 91, "974": 91, "000146": 91, "982": [91, 92], "000224": 91, "971": 91, "000507": 91, "980": [91, 92], "000960": 91, "3584": 91, "994": 91, "009642": 91, "999": 91, "013067": 91, "013841": 91, "433": 91, "014722": 91, "989": 91, "018224": 91, "6070": 91, "095724": 91, "148": 91, "006237": 91, "546": 91, "099341": 91, "514": 91, "006485": 91, "481": 91, "123418": 91, "008165": 91, "0000": [91, 92, 94], "313": [91, 98], "564102": 91, "572258": 91, "574915": 91, "31": [91, 92, 94, 96, 98], "575507": 91, "575874": 91, "792090": 91, "257611": 91, "698710": 91, "182121": 91, "771619": 91, "data_with_suggested_label": 91, "withdraw": 91, "monei": 91, "lowest_quality_outli": 91, "OR": 91, "636c65616e6c616220697320617765736f6d6521": 91, "phone": [91, 92], "gone": 91, "gt": [91, 96, 103], "samp": 91, "br": 91, "press": [91, 103], "nonsens": 91, "sens": 91, "detriment": 91, "duplicate_issu": 91, "fee": 91, "pai": 91, "go": [91, 92, 94], "strongli": 91, "p_valu": 91, "benign": 91, "curat": [91, 95], "mnist_test_set": 92, "imagenet_val_set": 92, "tench": 92, "goldfish": 92, "white": [92, 103], "shark": 92, "tiger": 92, "hammerhead": 92, "electr": 92, "rai": 92, "stingrai": 92, "cock": 92, "hen": 92, "ostrich": 92, "brambl": 92, "goldfinch": 92, "hous": 92, "finch": 92, "junco": 92, "indigo": 92, "bunt": 92, "american": [92, 103], "robin": 92, "bulbul": 92, "jai": 92, "magpi": 92, "chickade": 92, "dipper": 92, "kite": 92, "bald": 92, "eagl": 92, "vultur": 92, "grei": 92, "owl": 92, "salamand": 92, "smooth": 92, "newt": 92, "spot": [92, 93, 98], "axolotl": 92, "bullfrog": 92, "tree": 92, "frog": [92, 99], "tail": 92, "loggerhead": 92, "sea": 92, "turtl": 92, "leatherback": 92, "mud": 92, "terrapin": 92, "band": 92, "gecko": 92, "green": [92, 103], "iguana": 92, "carolina": 92, "anol": 92, "desert": 92, "grassland": 92, "whiptail": 92, "lizard": 92, "agama": 92, "frill": 92, "neck": 92, "allig": 92, "gila": 92, "monster": 92, "european": 92, "chameleon": 92, "komodo": 92, "dragon": 92, "nile": 92, "crocodil": 92, "triceratop": 92, "worm": 92, "snake": 92, "ring": 92, "eastern": 92, "hog": 92, "nose": 92, "kingsnak": 92, "garter": 92, "water": 92, "vine": 92, "night": 92, "boa": 92, "constrictor": 92, "african": 92, "rock": 92, "indian": 92, "cobra": 92, "mamba": 92, "saharan": 92, "horn": 92, "viper": 92, "diamondback": 92, "rattlesnak": 92, "sidewind": 92, "trilobit": 92, "harvestman": 92, "scorpion": 92, "yellow": 92, "garden": 92, "spider": 92, "barn": 92, "southern": 92, "widow": 92, "tarantula": 92, "wolf": 92, "tick": 92, "centiped": 92, "grous": 92, "ptarmigan": 92, "ruf": 92, "prairi": 92, "peacock": 92, "quail": 92, "partridg": 92, "parrot": 92, "macaw": 92, "sulphur": 92, "crest": 92, "cockatoo": 92, "lorikeet": 92, "coucal": 92, "bee": 92, "eater": 92, "hornbil": 92, "hummingbird": 92, "jacamar": 92, "toucan": 92, "breast": 92, "mergans": 92, "goos": 92, "swan": 92, "tusker": 92, "echidna": 92, "platypu": 92, "wallabi": 92, "koala": 92, "wombat": 92, "jellyfish": 92, "anemon": 92, "brain": 92, "coral": 92, "flatworm": 92, "nematod": 92, "conch": 92, "snail": 92, "slug": 92, "chiton": 92, "chamber": 92, "nautilu": 92, "dung": 92, "crab": 92, "fiddler": 92, "king": 92, "lobster": 92, "spini": 92, "crayfish": 92, "hermit": 92, "isopod": 92, "stork": 92, "spoonbil": 92, "flamingo": 92, "heron": 92, "egret": 92, "bittern": 92, "crane": 92, "bird": [92, 99], "limpkin": 92, "gallinul": 92, "coot": 92, "bustard": 92, "ruddi": 92, "turnston": 92, "dunlin": 92, "redshank": 92, "dowitch": 92, "oystercatch": 92, "pelican": 92, "penguin": 92, "albatross": 92, "whale": 92, "killer": 92, "dugong": 92, "lion": 92, "chihuahua": 92, "japanes": 92, "chin": 92, "maltes": 92, "pekinges": 92, "shih": 92, "tzu": 92, "charl": 92, "spaniel": 92, "papillon": 92, "terrier": 92, "rhodesian": 92, "ridgeback": 92, "afghan": [92, 103], "hound": 92, "basset": 92, "beagl": 92, "bloodhound": 92, "bluetick": 92, "coonhound": 92, "tan": 92, "walker": 92, "foxhound": 92, "redbon": 92, "borzoi": 92, "irish": 92, "wolfhound": 92, "italian": 92, "greyhound": 92, "whippet": 92, "ibizan": 92, "norwegian": 92, "elkhound": 92, "otterhound": 92, "saluki": 92, "scottish": 92, "deerhound": 92, "weimaran": 92, "staffordshir": 92, "bull": 92, "bedlington": 92, "border": 92, "kerri": 92, "norfolk": 92, "norwich": 92, "yorkshir": 92, "wire": 92, "fox": 92, "lakeland": 92, "sealyham": 92, "airedal": 92, "cairn": 92, "australian": 92, "dandi": 92, "dinmont": 92, "boston": 92, "miniatur": 92, "schnauzer": 92, "giant": 92, "tibetan": 92, "silki": 92, "wheaten": 92, "west": 92, "highland": 92, "lhasa": 92, "apso": 92, "flat": 92, "retriev": 92, "curli": 92, "golden": 92, "labrador": 92, "chesapeak": 92, "bai": 92, "german": [92, 103], "shorthair": 92, "pointer": 92, "vizsla": 92, "setter": 92, "gordon": 92, "brittani": 92, "clumber": 92, "springer": 92, "welsh": 92, "cocker": 92, "sussex": 92, "kuvasz": 92, "schipperk": 92, "groenendael": 92, "malinoi": 92, "briard": 92, "kelpi": 92, "komondor": 92, "sheepdog": 92, "shetland": 92, "colli": 92, "bouvier": 92, "de": 92, "flandr": 92, "rottweil": 92, "shepherd": 92, "dobermann": 92, "pinscher": 92, "swiss": [92, 103], "mountain": 92, "bernes": 92, "appenzel": 92, "sennenhund": 92, "entlebuch": 92, "boxer": 92, "bullmastiff": 92, "mastiff": 92, "french": 92, "bulldog": 92, "dane": 92, "st": 92, "bernard": 92, "huski": 92, "alaskan": 92, "malamut": 92, "siberian": 92, "dalmatian": 92, "affenpinsch": 92, "basenji": 92, "pug": 92, "leonberg": 92, "newfoundland": 92, "pyrenean": 92, "samoi": 92, "pomeranian": 92, "chow": 92, "keeshond": 92, "griffon": 92, "bruxelloi": 92, "pembrok": 92, "corgi": 92, "cardigan": 92, "poodl": 92, "mexican": 92, "hairless": 92, "tundra": 92, "coyot": 92, "dingo": 92, "dhole": 92, "wild": 92, "hyena": 92, "kit": 92, "arctic": 92, "tabbi": 92, "persian": 92, "siames": 92, "egyptian": 92, "mau": 92, "cougar": 92, "lynx": 92, "leopard": 92, "snow": 92, "jaguar": 92, "cheetah": 92, "brown": [92, 102], "bear": 92, "polar": 92, "sloth": 92, "mongoos": 92, "meerkat": 92, "beetl": 92, "ladybug": 92, "longhorn": 92, "leaf": 92, "rhinocero": 92, "weevil": 92, "ant": 92, "grasshopp": 92, "cricket": 92, "stick": 92, "insect": 92, "cockroach": 92, "manti": 92, "cicada": 92, "leafhopp": 92, "lacew": 92, "dragonfli": 92, "damselfli": 92, "admir": 92, "ringlet": 92, "monarch": 92, "butterfli": 92, "gossam": 92, "wing": 92, "starfish": 92, "urchin": 92, "cucumb": 92, "cottontail": 92, "rabbit": 92, "hare": 92, "angora": 92, "hamster": 92, "porcupin": 92, "squirrel": 92, "marmot": 92, "beaver": 92, "guinea": 92, "pig": 92, "sorrel": 92, "zebra": 92, "boar": 92, "warthog": 92, "hippopotamu": 92, "ox": 92, "buffalo": 92, "bison": 92, "bighorn": 92, "sheep": 92, "alpin": 92, "ibex": 92, "hartebeest": 92, "impala": 92, "gazel": 92, "dromedari": 92, "llama": 92, "weasel": 92, "mink": 92, "polecat": 92, "foot": 92, "ferret": 92, "otter": 92, "skunk": 92, "badger": 92, "armadillo": 92, "toed": 92, "orangutan": 92, "gorilla": 92, "chimpanze": 92, "gibbon": 92, "siamang": 92, "guenon": 92, "pata": 92, "monkei": 92, "baboon": 92, "macaqu": 92, "langur": 92, "colobu": 92, "probosci": 92, "marmoset": 92, "capuchin": 92, "howler": 92, "titi": 92, "geoffroi": 92, "lemur": 92, "indri": 92, "asian": 92, "eleph": 92, "bush": 92, "snoek": 92, "eel": 92, "coho": 92, "salmon": 92, "beauti": 92, "clownfish": 92, "sturgeon": 92, "garfish": 92, "lionfish": 92, "pufferfish": 92, "abacu": 92, "abaya": 92, "academ": 92, "gown": 92, "accordion": 92, "acoust": 92, "guitar": 92, "aircraft": 92, "carrier": 92, "airlin": 92, "airship": 92, "altar": 92, "ambul": 92, "amphibi": 92, "clock": [92, 103], "apiari": 92, "apron": 92, "wast": 92, "assault": 92, "rifl": 92, "backpack": 92, "bakeri": 92, "balanc": 92, "beam": 92, "balloon": 92, "ballpoint": 92, "pen": 92, "aid": 92, "banjo": 92, "balust": 92, "barbel": 92, "barber": 92, "chair": [92, 98], "barbershop": 92, "baromet": 92, "barrel": 92, "wheelbarrow": 92, "basebal": 92, "basketbal": 92, "bassinet": 92, "bassoon": 92, "swim": 92, "cap": 92, "bath": 92, "towel": 92, "bathtub": 92, "station": 92, "wagon": 92, "lighthous": 92, "beaker": 92, "militari": 92, "beer": 92, "bottl": 92, "glass": 92, "bell": 92, "cot": 92, "bib": 92, "bicycl": [92, 102], "bikini": 92, "binder": 92, "binocular": 92, "birdhous": 92, "boathous": 92, "bobsleigh": 92, "bolo": 92, "tie": 92, "poke": 92, "bonnet": 92, "bookcas": 92, "bookstor": 92, "bow": 92, "brass": 92, "bra": 92, "breakwat": 92, "breastplat": 92, "broom": 92, "bucket": 92, "buckl": 92, "bulletproof": 92, "vest": 92, "butcher": 92, "shop": 92, "taxicab": 92, "cauldron": 92, "candl": 92, "cannon": 92, "cano": 92, "mirror": [92, 98], "carousel": 92, "tool": [92, 94, 96], "carton": 92, "wheel": 92, "teller": 92, "cassett": 92, "player": 92, "castl": 92, "catamaran": 92, "cd": 92, "cello": 92, "mobil": [92, 103], "chain": 92, "fenc": [92, 102], "mail": 92, "chainsaw": 92, "chest": 92, "chiffoni": 92, "chime": 92, "china": 92, "cabinet": 92, "christma": 92, "stock": 92, "church": 92, "movi": 92, "theater": 92, "cleaver": 92, "cliff": 92, "dwell": 92, "cloak": 92, "clog": 92, "cocktail": 92, "shaker": 92, "coffe": 92, "mug": 92, "coffeemak": 92, "coil": 92, "lock": 92, "keyboard": 92, "confectioneri": 92, "ship": [92, 99], "corkscrew": 92, "cornet": 92, "cowboi": 92, "boot": 92, "hat": 92, "cradl": 92, "crash": 92, "helmet": 92, "crate": 92, "infant": 92, "bed": 92, "crock": 92, "pot": 92, "croquet": 92, "crutch": 92, "cuirass": 92, "dam": 92, "desk": 92, "desktop": 92, "rotari": 92, "dial": 92, "telephon": 92, "diaper": 92, "watch": 92, "dine": 92, "dishcloth": 92, "dishwash": 92, "disc": 92, "brake": 92, "dock": 92, "sled": 92, "dome": 92, "doormat": 92, "drill": 92, "rig": 92, "drum": 92, "drumstick": 92, "dumbbel": 92, "dutch": 92, "oven": 92, "fan": 92, "locomot": 92, "entertain": 92, "center": 92, "envelop": 92, "espresso": 92, "powder": 92, "feather": 92, "fireboat": 92, "engin": [92, 102], "screen": 92, "sheet": 92, "flagpol": 92, "flute": 92, "footbal": 92, "forklift": 92, "fountain": 92, "poster": 92, "freight": 92, "fry": 92, "pan": 92, "fur": 92, "garbag": 92, "ga": 92, "pump": 92, "goblet": 92, "kart": 92, "golf": 92, "cart": 92, "gondola": 92, "gong": 92, "grand": 92, "piano": 92, "greenhous": 92, "grill": 92, "groceri": 92, "guillotin": 92, "barrett": 92, "hair": 92, "sprai": 92, "hammer": 92, "dryer": 92, "hand": [92, 94], "handkerchief": 92, "drive": 92, "harmonica": 92, "harp": 92, "harvest": 92, "hatchet": 92, "holster": 92, "honeycomb": 92, "hoop": 92, "skirt": 92, "horizont": 92, "bar": 92, "drawn": 92, "hourglass": 92, "ipod": 92, "cloth": 92, "iron": 92, "jack": 92, "lantern": 92, "jean": 92, "jeep": 92, "jigsaw": 92, "puzzl": 92, "pull": 92, "rickshaw": 92, "joystick": 92, "kimono": 92, "knee": 92, "pad": 92, "knot": 92, "ladl": 92, "lampshad": 92, "laptop": 92, "lawn": 92, "mower": 92, "knife": 92, "lifeboat": 92, "lighter": 92, "limousin": 92, "ocean": 92, "liner": 92, "lipstick": 92, "slip": 92, "shoe": 92, "lotion": 92, "speaker": 92, "loup": 92, "sawmil": 92, "magnet": 92, "compass": 92, "mailbox": 92, "tight": 92, "tank": 92, "manhol": 92, "maraca": 92, "marimba": 92, "maypol": 92, "maze": 92, "cup": [92, 98], "medicin": 92, "megalith": 92, "microphon": 92, "microwav": 92, "milk": 92, "minibu": 92, "miniskirt": 92, "minivan": 92, "missil": 92, "mitten": [92, 93], "mix": 92, "bowl": 92, "modem": 92, "monasteri": 92, "mope": 92, "mortar": 92, "mosqu": 92, "mosquito": 92, "scooter": 92, "bike": 92, "tent": 92, "mous": [92, 93], "mousetrap": 92, "van": 92, "muzzl": 92, "nail": 92, "brace": 92, "necklac": 92, "nippl": 92, "obelisk": 92, "obo": 92, "ocarina": 92, "odomet": 92, "oil": 92, "oscilloscop": 92, "overskirt": 92, "bullock": 92, "oxygen": 92, "packet": 92, "paddl": 92, "padlock": 92, "paintbrush": 92, "pajama": 92, "palac": [92, 103], "parachut": 92, "park": 92, "bench": 92, "meter": 92, "passeng": 92, "patio": 92, "payphon": 92, "pedest": 92, "pencil": 92, "perfum": 92, "petri": 92, "dish": 92, "photocopi": 92, "plectrum": 92, "pickelhaub": 92, "picket": 92, "pickup": 92, "pier": 92, "piggi": 92, "pill": 92, "pillow": 92, "ping": 92, "pong": 92, "pinwheel": 92, "pirat": 92, "pitcher": 92, "plane": 92, "planetarium": 92, "plastic": 92, "plate": 92, "rack": 92, "plow": 92, "plunger": 92, "polaroid": 92, "camera": 92, "pole": [92, 102], "polic": 92, "poncho": 92, "billiard": 92, "soda": 92, "potter": 92, "prayer": 92, "rug": 92, "printer": 92, "prison": 92, "projectil": 92, "projector": 92, "hockei": 92, "puck": 92, "punch": 92, "purs": 92, "quill": 92, "quilt": 92, "race": 92, "racket": 92, "radiat": 92, "radio": 92, "telescop": 92, "rain": 92, "recreat": 92, "reel": 92, "reflex": 92, "refriger": 92, "remot": 92, "restaur": 92, "revolv": 92, "rotisseri": 92, "eras": 92, "rugbi": 92, "ruler": 92, "safe": 92, "safeti": 92, "salt": 92, "sarong": 92, "saxophon": 92, "scabbard": 92, "school": 92, "bu": [92, 102], "schooner": 92, "scoreboard": 92, "crt": 92, "screw": 92, "screwdriv": 92, "seat": 92, "belt": 92, "sew": 92, "shield": 92, "shoji": 92, "basket": 92, "shovel": 92, "shower": 92, "curtain": 92, "ski": 92, "door": 92, "slot": 92, "snorkel": 92, "snowmobil": 92, "snowplow": 92, "soap": 92, "dispens": 92, "soccer": [92, 103], "sock": [92, 93], "solar": 92, "thermal": 92, "collector": 92, "sombrero": 92, "soup": 92, "heater": 92, "shuttl": 92, "spatula": 92, "motorboat": 92, "web": 92, "spindl": 92, "sport": [92, 103], "spotlight": 92, "stage": 92, "steam": 92, "arch": 92, "bridg": 92, "steel": 92, "stethoscop": 92, "scarf": 92, "stone": 92, "wall": [92, 102], "stopwatch": 92, "stove": 92, "strainer": 92, "tram": 92, "stretcher": 92, "couch": 92, "stupa": 92, "submarin": 92, "sundial": 92, "sunglass": 92, "sunscreen": 92, "suspens": 92, "mop": 92, "sweatshirt": 92, "swimsuit": 92, "swing": 92, "switch": 92, "syring": 92, "lamp": 92, "tape": 92, "teapot": 92, "teddi": 92, "televis": [92, 103], "tenni": 92, "thatch": 92, "roof": 92, "front": 92, "thimbl": 92, "thresh": 92, "throne": 92, "tile": 92, "toaster": 92, "tobacco": 92, "toilet": 92, "totem": 92, "tow": 92, "tractor": 92, "semi": 92, "trailer": 92, "trai": 92, "trench": 92, "tricycl": 92, "trimaran": 92, "tripod": 92, "triumphal": 92, "trolleybu": 92, "trombon": 92, "tub": 92, "turnstil": 92, "typewrit": 92, "umbrella": 92, "unicycl": 92, "upright": 92, "vacuum": 92, "cleaner": 92, "vase": 92, "vault": 92, "velvet": 92, "vend": 92, "vestment": 92, "viaduct": 92, "violin": 92, "volleybal": 92, "waffl": 92, "wallet": 92, "wardrob": 92, "sink": 92, "wash": 92, "jug": 92, "tower": 92, "whiskei": 92, "whistl": 92, "wig": 92, "shade": [92, 102], "windsor": 92, "wine": 92, "wok": 92, "wooden": 92, "spoon": 92, "wool": 92, "rail": 92, "shipwreck": 92, "yawl": 92, "yurt": 92, "comic": 92, "book": 92, "crossword": 92, "traffic": [92, 98, 102], "sign": [92, 102, 103], "dust": 92, "jacket": [92, 98], "menu": 92, "guacamol": 92, "consomm": 92, "trifl": 92, "ic": 92, "cream": 92, "pop": 92, "baguett": 92, "bagel": 92, "pretzel": 92, "cheeseburg": 92, "mash": 92, "potato": 92, "cabbag": 92, "broccoli": 92, "cauliflow": 92, "zucchini": 92, "spaghetti": 92, "squash": 92, "acorn": 92, "butternut": 92, "artichok": 92, "pepper": [92, 93], "cardoon": 92, "mushroom": 92, "granni": 92, "smith": 92, "strawberri": 92, "orang": 92, "lemon": 92, "pineappl": 92, "banana": 92, "jackfruit": 92, "custard": 92, "appl": 92, "pomegran": 92, "hai": 92, "carbonara": 92, "chocol": 92, "syrup": 92, "dough": 92, "meatloaf": 92, "pizza": 92, "pie": 92, "burrito": 92, "eggnog": 92, "alp": 92, "bubbl": 92, "reef": 92, "geyser": 92, "lakeshor": 92, "promontori": 92, "shoal": 92, "seashor": 92, "vallei": 92, "volcano": 92, "bridegroom": 92, "scuba": 92, "diver": 92, "rapese": 92, "daisi": 92, "ladi": 92, "slipper": 92, "corn": 92, "rose": 92, "hip": 92, "chestnut": 92, "fungu": 92, "agar": 92, "gyromitra": 92, "stinkhorn": 92, "earth": 92, "star": 92, "wood": 92, "bolet": 92, "ear": 92, "cifar10_test_set": 92, "airplan": [92, 99], "automobil": [92, 99], "deer": [92, 99], "cifar100_test_set": 92, "aquarium_fish": 92, "babi": 92, "boi": 92, "camel": 92, "caterpillar": 92, "cattl": [92, 103], "cloud": 92, "dinosaur": 92, "dolphin": 92, "flatfish": 92, "forest": 92, "girl": 92, "kangaroo": 92, "lawn_mow": 92, "man": 92, "maple_tre": 92, "motorcycl": [92, 102], "oak_tre": 92, "orchid": 92, "palm_tre": 92, "pear": 92, "pickup_truck": 92, "pine_tre": 92, "plain": 92, "poppi": 92, "possum": 92, "raccoon": 92, "road": [92, 102], "rocket": 92, "seal": 92, "shrew": 92, "skyscrap": 92, "streetcar": 92, "sunflow": 92, "sweet_pepp": 92, "trout": 92, "tulip": 92, "willow_tre": 92, "woman": [92, 98], "caltech256": 92, "ak47": 92, "bat": 92, "glove": 92, "birdbath": 92, "blimp": 92, "bonsai": 92, "boom": 92, "breadmak": 92, "buddha": 92, "bulldoz": 92, "cactu": 92, "cake": 92, "tire": 92, "cartman": 92, "cereal": 92, "chandeli": 92, "chess": 92, "board": 92, "chimp": 92, "chopstick": 92, "coffin": 92, "coin": 92, "comet": 92, "cormor": 92, "globe": 92, "diamond": 92, "dice": 92, "doorknob": 92, "drink": 92, "straw": 92, "dumb": 92, "eiffel": 92, "elk": 92, "ewer": 92, "eyeglass": 92, "fern": 92, "fighter": 92, "jet": [92, 101], "extinguish": 92, "hydrant": 92, "firework": 92, "flashlight": 92, "floppi": 92, "fri": 92, "frisbe": 92, "galaxi": 92, "giraff": 92, "goat": 92, "gate": 92, "grape": 92, "pick": [92, 93], "hamburg": 92, "hammock": 92, "harpsichord": 92, "hawksbil": 92, "helicopt": 92, "hibiscu": 92, "homer": 92, "simpson": 92, "horsesho": 92, "air": 92, "skeleton": 92, "ibi": 92, "cone": 92, "iri": 92, "jesu": 92, "christ": 92, "joi": 92, "kayak": 92, "ketch": 92, "ladder": 92, "lath": 92, "licens": 92, "lightbulb": 92, "lightn": 92, "mandolin": 92, "mar": 92, "mattress": 92, "megaphon": 92, "menorah": 92, "microscop": 92, "minaret": 92, "minotaur": 92, "motorbik": 92, "mussel": 92, "neckti": 92, "octopu": 92, "palm": 92, "pilot": 92, "paperclip": 92, "shredder": 92, "pci": 92, "peopl": [92, 98], "pez": 92, "picnic": 92, "pram": 92, "prai": 92, "pyramid": 92, "rainbow": 92, "roulett": 92, "saddl": 92, "saturn": 92, "segwai": 92, "propel": 92, "sextant": 92, "music": 92, "skateboard": 92, "smokestack": 92, "sneaker": 92, "boat": 92, "stain": 92, "steer": 92, "stirrup": 92, "superman": 92, "sushi": 92, "armi": [92, 103], "sword": 92, "tambourin": 92, "teepe": 92, "court": 92, "theodolit": 92, "tomato": 92, "tombston": 92, "tour": 92, "pisa": 92, "treadmil": 92, "fork": 92, "tweezer": 92, "unicorn": 92, "vcr": 92, "waterfal": 92, "watermelon": 92, "weld": 92, "windmil": 92, "xylophon": 92, "yarmulk": 92, "yo": 92, "toad": 92, "twenty_news_test_set": 92, "alt": 92, "atheism": 92, "comp": 92, "graphic": [92, 102], "misc": [92, 103], "sy": 92, "ibm": 92, "pc": 92, "hardwar": 92, "mac": 92, "forsal": 92, "rec": 92, "sci": 92, "crypt": 92, "electron": 92, "med": 92, "soc": 92, "religion": 92, "christian": [92, 103], "talk": [92, 103], "polit": 92, "gun": 92, "mideast": 92, "amazon": 92, "neutral": 92, "imdb_test_set": 92, "all_class": 92, "20news_test_set": 92, "_load_classes_predprobs_label": 92, "dataset_nam": 92, "labelerror": 92, "url_bas": 92, "5392f6c71473055060be3044becdde1cbc18284d": 92, "url_label": 92, "original_test_label": 92, "_original_label": 92, "url_prob": 92, "cross_validated_predicted_prob": 92, "_pyx": 92, "num_part": 92, "datatset": 92, "bytesio": 92, "allow_pickl": 92, "pred_probs_part": 92, "url": 92, "_of_": 92, "nload": 92, "imdb": 92, "interpret": [92, 93, 94, 97, 101], "capit": 92, "29780": 92, "780": 92, "medic": [92, 103], "doctor": 92, "359223": 92, "640777": 92, "184": [92, 94], "258427": 92, "341176": 92, "263158": 92, "658824": 92, "337349": 92, "246575": 92, "662651": 92, "248": 92, "330000": 92, "355769": 92, "670000": 92, "251": [92, 98], "252": 92, "112": 92, "253": [92, 98], "022989": 92, "049505": 92, "190": [92, 94, 98], "66": 92, "002216": 92, "000974": 92, "59": [92, 98], "000873": 92, "000739": 92, "32635": 92, "32636": 92, "47": [92, 98], "32637": 92, "32638": 92, "32639": 92, "32640": 92, "051": 92, "002242": 92, "997758": 92, "002088": 92, "001045": 92, "997912": 92, "002053": 92, "997947": 92, "001980": 92, "000991": 92, "998020": 92, "001946": 92, "002915": 92, "998054": 92, "001938": 92, "002904": 92, "998062": 92, "001020": 92, "998980": 92, "001018": 92, "002035": 92, "998982": 92, "999009": 92, "0003": 92, "0002": 92, "36": [92, 103], "41": [92, 98, 101], "71": [92, 94, 98, 101], "071": 92, "067269": 92, "929": 92, "046": 92, "058243": 92, "954": 92, "035": 92, "032096": 92, "965": 92, "031": 92, "012232": 92, "969": 92, "022": 92, "025896": 92, "978": 92, "020": [92, 94], "013092": 92, "018": 92, "013065": 92, "016": 92, "030542": 92, "984": 92, "013": 92, "020833": 92, "987": 92, "012": 92, "010020": 92, "988": 92, "0073": 92, "0020": 92, "0016": 92, "0015": 92, "0013": 92, "0012": 92, "0010": 92, "0008": 92, "0007": 92, "0006": 92, "0005": 92, "0004": 92, "244": [92, 98], "98": [92, 93, 101], "452381": 92, "459770": 92, "72": [92, 94, 97, 101], "523364": 92, "460784": 92, "446602": 92, "57": [92, 94], "103774": 92, "030612": 92, "110092": 92, "049020": 92, "0034": 92, "0032": 92, "0026": 92, "0025": 92, "4945": 92, "4946": 92, "4947": 92, "4948": 92, "4949": 92, "4950": 92, "846": 92, "82": [92, 94, 98, 101], "7532": 92, "532": 92, "034483": 92, "009646": 92, "965517": 92, "030457": 92, "020513": 92, "969543": 92, "028061": 92, "035443": 92, "971939": 92, "025316": 92, "005168": 92, "974684": 92, "049751": 92, "979487": 92, "019920": 92, "042802": 92, "980080": 92, "017677": 92, "005115": 92, "982323": 92, "012987": 92, "005236": 92, "987013": 92, "012723": 92, "025126": 92, "987277": 92, "010989": 92, "008264": 92, "989011": 92, "010283": 92, "027778": 92, "989717": 92, "009677": 92, "990323": 92, "007614": 92, "010127": 92, "992386": 92, "005051": 92, "994949": 92, "005025": 92, "994975": 92, "005013": 92, "994987": 92, "001859": 92, "001328": 92, "000929": 92, "000664": 92, "186": [92, 94], "188": [92, 94, 97], "189": [92, 94], "snippet": 93, "nlp": [93, 103], "mind": [93, 94], "alphanumer": 93, "facilit": 93, "classlabel": 93, "guidanc": 93, "labels_str": 93, "datalab_str": 93, "labels_int": 93, "remap": 93, "datalab_int": 93, "my_dict": 93, "pet_nam": 93, "rover": 93, "rocki": 93, "speci": 93, "from_dict": 93, "datalab_dataset": 93, "number_of_class": 93, "total_number_of_data_point": 93, "alphabet": 93, "labels_proper_format": 93, "your_classifi": 93, "issues_datafram": 93, "class_predicted_for_flagged_exampl": 93, "class_predicted_for_all_exampl": 93, "grant": 93, "On": [93, 94, 98], "merged_dataset": 93, "label_column_nam": 93, "datataset": 93, "fair": [93, 94], "game": 93, "speedup": [93, 99], "flexibl": 93, "tempfil": 93, "mkdtemp": 93, "sped": 93, "anywai": 93, "pred_probs_merg": 93, "merge_rare_class": 93, "count_threshold": 93, "class_mapping_orig2new": 93, "heath_summari": 93, "num_examples_per_class": 93, "rare_class": 93, "num_classes_merg": 93, "other_class": 93, "labels_merg": 93, "new_c": 93, "merged_prob": 93, "new_class": 93, "original_class": 93, "num_check": 93, "ones_array_ref": 93, "isclos": 93, "though": [93, 94, 103], "successfulli": 93, "meaning": [93, 99], "virtuou": [93, 96], "cycl": [93, 96], "jointli": 93, "junk": 93, "clutter": 93, "unknown": 93, "caltech": 93, "combined_boolean_mask": 93, "mask1": 93, "mask2": 93, "gradientboostingclassifi": [93, 94], "true_error": [93, 94, 97], "101": [93, 98], "102": [93, 97, 98], "104": [93, 94, 98], "model_to_find_error": 93, "model_to_return": 93, "cl0": 93, "randomizedsearchcv": 93, "expens": 93, "param_distribut": 93, "learning_r": [93, 94], "max_depth": [93, 94], "magnitud": 93, "coeffici": [93, 101], "optin": 93, "environ": [93, 94], "rerun": [93, 94], "cell": [93, 94], "unabl": [93, 94], "render": [93, 94], "nbviewer": [93, 94], "nbsp": [93, 94], "cleanlearninginot": [93, 94], "fittedcleanlearn": [93, 94], "linearregressionlinearregress": 93, "n_init": 93, "fit_predict": 93, "continuous_column": 93, "categorical_column": 93, "data_df": 93, "feature_a": 93, "feature_b": 93, "unexpectedli": 93, "emphas": 93, "crucial": 93, "merge_duplicate_set": 93, "merge_kei": 93, "construct_group_kei": 93, "merged_set": 93, "consolidate_set": 93, "tolist": [93, 97], "issubset": 93, "frozenset": 93, "sets_list": 93, "mutabl": 93, "new_set": 93, "current_set": 93, "intersecting_set": 93, "lowest_score_strategi": 93, "sub_df": 93, "idxmin": 93, "filter_near_dupl": 93, "strategy_fn": 93, "strategy_kwarg": 93, "duplicate_row": 93, "group_kei": 93, "to_keep_indic": 93, "groupbi": 93, "explod": 93, "to_remov": 93, "isin": [93, 99], "kept": 93, "ids_to_remove_seri": 93, "tmp": 93, "ipykernel_7725": 93, "1995098996": 93, "deprecationwarn": 93, "dataframegroupbi": 93, "include_group": 93, "silenc": 93, "assist": 93, "streamlin": 93, "ux": 93, "agpl": 93, "compani": 93, "commerci": 93, "alter": 93, "email": 93, "team": 93, "discuss": 93, "anywher": 93, "profession": 93, "expert": 93, "depth": 94, "survei": [94, 103], "focus": [94, 96, 97, 101], "scienc": 94, "multivariate_norm": [94, 96, 97], "make_data": [94, 96], "cov": [94, 96, 97], "avg_trac": [94, 97], "py_tru": 94, "noise_matrix_tru": 94, "noise_marix": 94, "s_test": 94, "noisy_test_label": 94, "purpl": 94, "val": 94, "namespac": 94, "exec": 94, "markerfacecolor": [94, 97], "markeredgecolor": [94, 97, 101], "markers": [94, 97, 101], "markeredgewidth": [94, 97, 101], "realist": 94, "7560": 94, "637318e": 94, "896262e": 94, "548391e": 94, "923417e": 94, "375075e": 94, "3454": 94, "014051": 94, "020451": 94, "249": [94, 98], "042594": 94, "043859": 94, "045954": 94, "6120": 94, "023714": 94, "007136": 94, "119": [94, 98], "107266": 94, "103": [94, 98], "033738": 94, "238": [94, 98], "119505": 94, "236": [94, 98], "037843": 94, "222": 94, "614915": 94, "122": [94, 98], "624422": 94, "625965": 94, "626079": 94, "118": 94, "627675": 94, "695223": 94, "323529": 94, "523015": 94, "013720": 94, "675727": 94, "646521": 94, "anyth": 94, "enhanc": [94, 96, 98], "magic": 94, "liter": 94, "identif": 94, "x27": 94, "logisticregressionlogisticregress": 94, "ever": 94, "092": 94, "040": 94, "024": 94, "004": 94, "surpris": 94, "1705": 94, "01936": 94, "ton": 94, "yourfavoritemodel1": 94, "merged_label": 94, "merged_test_label": 94, "newli": [94, 96], "yourfavoritemodel2": 94, "yourfavoritemodel3": 94, "cl3": 94, "takeawai": 94, "That": [94, 97], "randomli": 94, "my_test_pred_prob": 94, "my_test_pr": 94, "issues_test": 94, "corrected_test_label": 94, "pretend": 94, "cl_test_pr": 94, "69": [94, 101], "fairli": 94, "label_acc": 94, "percentag": 94, "offset": 94, "nquestion": 94, "overestim": 94, "answer": 94, "experienc": 94, "knowledg": 94, "prioiri": 94, "known": 94, "versatil": 94, "label_issues_indic": 94, "213": [94, 98], "218": [94, 98], "152": 94, "197": [94, 98], "196": [94, 98], "170": 94, "214": 94, "164": [94, 97], "198": [94, 98], "191": [94, 98], "63": [94, 98, 101], "117": [94, 101], "62": [94, 98, 101], "206": [94, 98], "115": [94, 98, 103], "193": 94, "194": 94, "201": [94, 98], "174": 94, "163": 94, "150": [94, 96, 98], "169": 94, "151": [94, 98], "168": 94, "precision_scor": 94, "recall_scor": 94, "f1_score": 94, "true_label_issu": 94, "filter_by_list": 94, "718750": [94, 96], "807018": 94, "912": 94, "733333": 94, "800000": 94, "721311": 94, "792793": 94, "908": 94, "676923": 94, "765217": 94, "567901": 94, "702290": 94, "844": 94, "gaug": 94, "label_issues_count": 94, "155": [94, 98], "156": 94, "172": [94, 97], "easiest": 94, "modular": 94, "penalti": 94, "l2": 94, "model3": 94, "n_estim": 94, "cv_pred_probs_1": 94, "cv_pred_probs_2": 94, "cv_pred_probs_3": 94, "label_quality_scores_best": 94, "cv_pred_probs_ensembl": 94, "label_quality_scores_bett": 94, "superior": [94, 100], "timm": 95, "glad": 96, "multiannotator_label": 96, "300": [96, 103], "noisier": 96, "111": [96, 101], "local_data": [96, 97], "true_labels_train": [96, 97], "noise_matrix_bett": 96, "noise_matrix_wors": 96, "transpos": [96, 99], "dropna": 96, "zfill": 96, "row_na_check": 96, "notna": 96, "reset_index": 96, "a0001": 96, "a0002": 96, "a0003": 96, "a0004": 96, "a0005": 96, "a0006": 96, "a0007": 96, "a0008": 96, "a0009": 96, "a0010": 96, "a0041": 96, "a0042": 96, "a0043": 96, "a0044": 96, "a0045": 96, "a0046": 96, "a0047": 96, "a0048": 96, "a0049": 96, "a0050": 96, "na": 96, "60856743": 96, "41693214": 96, "40908785": 96, "87147629": 96, "64941785": 96, "10774851": 96, "0524466": 96, "71853246": 96, "37169848": 96, "66031048": 96, "multiannotator_util": 96, "crude": 96, "straight": 96, "majority_vote_label": 96, "736118": 96, "757751": 96, "782232": 96, "715565": 96, "824256": 96, "quality_annotator_a0001": 96, "quality_annotator_a0002": 96, "quality_annotator_a0003": 96, "quality_annotator_a0004": 96, "quality_annotator_a0005": 96, "quality_annotator_a0006": 96, "quality_annotator_a0007": 96, "quality_annotator_a0008": 96, "quality_annotator_a0009": 96, "quality_annotator_a0010": 96, "quality_annotator_a0041": 96, "quality_annotator_a0042": 96, "quality_annotator_a0043": 96, "quality_annotator_a0044": 96, "quality_annotator_a0045": 96, "quality_annotator_a0046": 96, "quality_annotator_a0047": 96, "quality_annotator_a0048": 96, "quality_annotator_a0049": 96, "quality_annotator_a0050": 96, "070564": 96, "216078": 96, "119188": 96, "alongisd": 96, "244981": 96, "208333": 96, "295979": 96, "294118": 96, "324197": 96, "310345": 96, "355316": 96, "346154": 96, "439732": 96, "480000": 96, "a0031": 96, "523205": 96, "580645": 96, "a0034": 96, "535313": 96, "607143": 96, "a0021": 96, "606999": 96, "a0015": 96, "609526": 96, "678571": 96, "a0011": 96, "621103": 96, "692308": 96, "wors": 96, "improved_consensus_label": 96, "majority_vote_accuraci": 96, "cleanlab_label_accuraci": 96, "8581081081081081": 96, "9797297297297297": 96, "besid": 96, "sorted_consensus_quality_scor": 96, "worst_qual": 96, "better_qu": 96, "worst_quality_accuraci": 96, "better_quality_accuraci": 96, "9893238434163701": 96, "improved_pred_prob": 96, "treat": [96, 97, 101, 103], "analzi": 96, "copyright": 97, "advertis": 97, "violenc": 97, "nsfw": 97, "celeba": 97, "make_multilabel_data": 97, "boxes_coordin": 97, "box_multilabel": 97, "make_multi": 97, "bx1": 97, "by1": 97, "bx2": 97, "by2": 97, "label_list": 97, "ur": 97, "upper": 97, "inidx": 97, "logical_and": 97, "inv_d": 97, "labels_idx": 97, "true_labels_test": 97, "dict_unique_label": 97, "get_color_arrai": 97, "dcolor": 97, "aa4400": 97, "55227f": 97, "55a100": 97, "00ff00": 97, "007f7f": 97, "386b55": 97, "0000ff": 97, "y_onehot": 97, "single_class_label": 97, "stratifi": [97, 100], "kf": 97, "train_index": 97, "test_index": 97, "clf_cv": 97, "x_train_cv": 97, "x_test_cv": 97, "y_train_cv": 97, "y_test_cv": 97, "y_pred_cv": 97, "saw": 97, "num_to_displai": 97, "09": [97, 98, 101], "275": 97, "267": 97, "225": 97, "171": 97, "234": 97, "165": 97, "227": [97, 98], "262": [97, 98], "266": [97, 98], "139": 97, "143": [97, 98], "216": [97, 98], "265": 97, "159": [97, 98], "despit": [97, 103], "suspect": 97, "888": 97, "8224": 97, "9632": 97, "968": 97, "6512": 97, "0444": 97, "774": 97, "labels_binary_format": 97, "labels_list_format": 97, "surround": 98, "scene": 98, "coco": 98, "everydai": 98, "has_label_issu": 98, "insal": 98, "nc": [98, 102, 103], "s3": [98, 102, 103], "amazonaw": [98, 102, 103], "objectdetectionbenchmark": 98, "tutorial_obj": 98, "pkl": 98, "example_imag": 98, "unzip": [98, 103], "_separate_label": 98, "_separate_predict": 98, "begin": 98, "image_path": 98, "rb": 98, "image_to_visu": 98, "seg_map": 98, "334": 98, "float32": 98, "bboxes_ignor": 98, "290": 98, "286": 98, "285": 98, "224": 98, "231": [98, 103], "293": 98, "289": 98, "282": 98, "281": 98, "271": 98, "280": 98, "277": 98, "279": 98, "287": 98, "299": 98, "276": 98, "307": 98, "321": 98, "326": 98, "333": 98, "261": 98, "319": 98, "257": 98, "283": 98, "243": 98, "303": 98, "316": 98, "247": 98, "323": 98, "226": [98, 103], "228": 98, "232": 98, "219": 98, "239": 98, "240": 98, "209": 98, "242": 98, "202": 98, "230": 98, "215": 98, "220": 98, "229": 98, "217": [98, 103], "237": 98, "207": 98, "204": 98, "84": [98, 101], "205": 98, "223": 98, "153": 98, "140": 98, "124": 98, "268": 98, "273": 98, "108": 98, "284": 98, "110": 98, "136": 98, "145": 98, "173": 98, "297": 98, "317": 98, "192": 98, "332": 98, "324": 98, "203": 98, "320": 98, "199": 98, "291": 98, "000000481413": 98, "jpg": 98, "42398": 98, "44503": 98, "29968": 98, "336": 98, "21005": 98, "9978472": 98, "forgot": 98, "drew": 98, "label_issue_idx": 98, "num_examples_to_show": 98, "138": 98, "candid": 98, "97489622": 98, "70610878": 98, "98764951": 98, "88899237": 98, "99085805": 98, "issue_idx": 98, "95569726e": 98, "03354841e": 98, "57510169e": 98, "58447666e": 98, "39755858e": 98, "issue_to_visu": 98, "000000009483": 98, "95569726168054e": 98, "addition": [98, 102], "visibl": 98, "missmatch": 98, "likelei": 98, "agnost": 98, "vaidat": 98, "inconsist": 98, "000000395701": 98, "033548411774308e": 98, "armchair": 98, "tv": 98, "000000154004": 98, "38300759625496356": 98, "foreground": 98, "000000448410": 98, "0008575101690203273": 98, "crowd": 98, "alon": 98, "explor": [98, 99], "resembl": [98, 99], "000000499768": 98, "9748962231208227": 98, "000000521141": 98, "8889923658893665": 98, "000000143931": 98, "9876495074395956": 98, "bonu": 98, "uncov": 98, "irregular": 98, "anomali": 98, "object_detection_util": 98, "calculate_bounding_box_area": 98, "num_imgs_to_show": 98, "lab_object_count": 98, "pred_object_count": 98, "000000430073": 98, "000000183709": 98, "000000189475": 98, "studi": 98, "label_norm": 98, "pred_norm": 98, "area": [98, 102], "lab_area": 98, "pred_area": 98, "lab_area_mean": 98, "lab_area_std": 98, "max_deviation_valu": 98, "max_deviation_class": 98, "deviation_valu": 98, "deviation_class": 98, "mean_area": 98, "std_area": 98, "class_area": 98, "deviations_awai": 98, "max_deviation_index": 98, "num_imgs_to_show_per_class": 98, "class_num": 98, "sorted_indic": 98, "000000422886": 98, "000000341828": 98, "000000461009": 98, "train_feature_embed": 99, "ood_train_feature_scor": 99, "test_feature_embed": 99, "ood_test_feature_scor": 99, "ood_train_predictions_scor": 99, "train_pred_prob": 99, "ood_test_predictions_scor": 99, "test_pred_prob": 99, "pylab": 99, "rcparam": 99, "baggingclassifi": 99, "therebi": 99, "rescal": 99, "transform_norm": 99, "totensor": 99, "root": 99, "animal_class": 99, "non_animal_class": 99, "animal_idx": 99, "test_idx": 99, "toronto": 99, "edu": 99, "kriz": 99, "170498071": 99, "110383673": 99, "81it": 99, "5000": 99, "plot_imag": 99, "visualize_outli": 99, "txt_class": 99, "img": [99, 101], "npimg": 99, "show_label": 99, "data_subset": 99, "resnet50": 99, "corpu": 99, "2048": 99, "embed_imag": 99, "create_model": 99, "strang": 99, "odd": 99, "train_ood_features_scor": 99, "top_train_ood_features_idx": 99, "fun": 99, "negat": 99, "homogen": 99, "bottom_train_ood_features_idx": 99, "test_ood_features_scor": 99, "top_ood_features_idx": 99, "inevit": 99, "trade": 99, "5th": 99, "percentil": 99, "fifth_percentil": 99, "plt_rang": 99, "hist": 99, "train_outlier_scor": 99, "ylabel": 99, "axvlin": 99, "test_outlier_scor": 99, "ood_features_indic": 99, "revisit": 99, "return_invers": 99, "train_feature_embeddings_sc": 99, "test_feature_embeddings_sc": 99, "train_pred_label": 99, "9702": 99, "train_ood_predictions_scor": 99, "test_ood_predictions_scor": 99, "lost": 99, "unsuit": 100, "ok": [100, 103], "convention": 100, "aforement": 100, "hypothet": 100, "contrast": 100, "tradit": 100, "disjoint": 100, "out_of_sample_pred_probs_for_a": 100, "out_of_sample_pred_probs_for_b": 100, "out_of_sample_pred_probs_for_c": 100, "out_of_sample_pred_prob": 100, "price": 101, "incom": 101, "ag": 101, "sensor": 101, "histgradientboostingregressor": 101, "r2_score": 101, "student_grades_r": 101, "final_scor": 101, "true_final_scor": 101, "homework": 101, "3d": 101, "hue": 101, "mpl_toolkit": 101, "mplot3d": 101, "axes3d": 101, "errors_idx": 101, "add_subplot": 101, "z": 101, "colorbar": 101, "errors_mask": 101, "feature_column": 101, "predicted_column": 101, "x_train_raw": 101, "x_test_raw": 101, "randomforestregressor": 101, "385101": 101, "499503": 101, "698255": 101, "776647": 101, "109373": 101, "170547": 101, "481096": 101, "984759": 101, "645270": 101, "795928": 101, "141": 101, "659": 101, "318": 101, "305": 101, "560": 101, "657": 101, "688": 101, "view_datapoint": 101, "concat": 101, "preds_og": 101, "r2_og": 101, "838": 101, "found_label_issu": 101, "preds_cl": 101, "r2_cl": 101, "926": 101, "favorit": 101, "968627e": 101, "228799": 101, "646674e": 101, "402962": 101, "323818e": 101, "952758": 101, "422144e": 101, "456908": 101, "465815e": 101, "753968": 101, "791186e": 101, "110719": 101, "485156e": 101, "670640": 101, "225300e": 101, "749976": 101, "499679e": 101, "947007": 101, "067882e": 101, "648396": 101, "synthia": 102, "imagesegment": 102, "given_mask": 102, "predicted_mask": 102, "set_printopt": [102, 103], "sky": 102, "sidewalk": 102, "veget": 102, "terrain": 102, "rider": 102, "pred_probs_filepath": 102, "1088": 102, "1920": 102, "label_filepath": 102, "synthia_class": 102, "maunal": 102, "100000": 102, "244800": 102, "leftmost": 102, "middl": [102, 103], "infact": 102, "rightmost": 102, "discrep": 102, "3263230": 102, "783379": 102, "275110": 102, "255792": 102, "78225": 102, "55990": 102, "54427": 102, "33591": 102, "24645": 102, "21308": 102, "15045": 102, "14171": 102, "13832": 102, "13498": 102, "11490": 102, "9164": 102, "8769": 102, "6999": 102, "6031": 102, "5011": 102, "mistakenli": 102, "class_issu": 102, "aim": [102, 103], "domin": 102, "bunch": 103, "conll": 103, "2003": 103, "love": 103, "n_i": 103, "optional_list_of_ordered_class_nam": 103, "deepai": 103, "conll2003": 103, "rm": 103, "tokenclassif": 103, "2024": 103, "2400": 103, "52e0": 103, "1a00": 103, "connect": 103, "443": 103, "await": 103, "982975": 103, "960k": 103, "959": 103, "94k": 103, "kb": 103, "008": 103, "mb": 103, "directori": 103, "inflat": 103, "17045998": 103, "16m": 103, "octet": 103, "26m": 103, "8mb": 103, "bert": 103, "read_npz": 103, "filepath": 103, "corrsespond": 103, "iob2": 103, "given_ent": 103, "entity_map": 103, "readfil": 103, "startswith": 103, "docstart": 103, "isalpha": 103, "isupp": 103, "indices_to_preview": 103, "nsentenc": 103, "eu": 103, "reject": 103, "boycott": 103, "british": 103, "lamb": 103, "00030412": 103, "00023826": 103, "99936208": 103, "00007009": 103, "00002545": 103, "99998795": 103, "00000401": 103, "00000218": 103, "00000455": 103, "00000131": 103, "00000749": 103, "99996115": 103, "00001371": 103, "0000087": 103, "00000895": 103, "99998936": 103, "00000382": 103, "00000178": 103, "00000366": 103, "00000137": 103, "99999101": 103, "00000266": 103, "00000174": 103, "0000035": 103, "00000109": 103, "99998768": 103, "00000482": 103, "00000202": 103, "00000438": 103, "0000011": 103, "00000465": 103, "99996392": 103, "00001105": 103, "0000116": 103, "00000878": 103, "99998671": 103, "00000364": 103, "00000213": 103, "00000472": 103, "00000281": 103, "99999073": 103, "00000211": 103, "00000159": 103, "00000442": 103, "00000115": 103, "peter": 103, "blackburn": 103, "00000358": 103, "00000529": 103, "99995623": 103, "0000129": 103, "0000024": 103, "00001812": 103, "99994141": 103, "00001645": 103, "00002162": 103, "brussel": 103, "1996": 103, "00001172": 103, "00000821": 103, "00004661": 103, "0000618": 103, "99987167": 103, "99999061": 103, "00000201": 103, "00000195": 103, "00000408": 103, "00000135": 103, "2254": 103, "2907": 103, "19392": 103, "9962": 103, "8904": 103, "19303": 103, "12918": 103, "9256": 103, "11855": 103, "18392": 103, "20426": 103, "19402": 103, "14744": 103, "19371": 103, "4645": 103, "10331": 103, "9430": 103, "6143": 103, "18367": 103, "12914": 103, "todai": 103, "weather": 103, "march": 103, "scalfaro": 103, "northern": 103, "himself": 103, "said": 103, "germani": 103, "nastja": 103, "rysich": 103, "north": 103, "spla": 103, "fought": 103, "khartoum": 103, "govern": 103, "south": 103, "1983": 103, "autonomi": 103, "animist": 103, "region": 103, "moslem": 103, "arabis": 103, "mayor": 103, "antonio": 103, "gonzalez": 103, "garcia": 103, "revolutionari": 103, "parti": 103, "wednesdai": 103, "troop": 103, "raid": 103, "farm": 103, "stole": 103, "rape": 103, "women": 103, "spring": 103, "chg": 103, "hrw": 103, "12pct": 103, "princ": 103, "photo": 103, "moment": 103, "spokeswoman": 103, "rainier": 103, "told": 103, "reuter": 103, "danila": 103, "carib": 103, "w224": 103, "equip": 103, "radiomet": 103, "earn": 103, "19996": 103, "london": 103, "denom": 103, "sale": 103, "uk": 103, "jp": 103, "fr": 103, "maccabi": 103, "hapoel": 103, "haifa": 103, "tel": 103, "aviv": 103, "hospit": 103, "rever": 103, "roman": 103, "cathol": 103, "nun": 103, "admit": 103, "calcutta": 103, "week": 103, "ago": 103, "fever": 103, "vomit": 103, "allianc": 103, "embattl": 103, "kabul": 103, "salang": 103, "highwai": 103, "mondai": 103, "tuesdai": 103, "suprem": 103, "council": 103, "led": 103, "jumbish": 103, "milli": 103, "movement": 103, "warlord": 103, "abdul": 103, "rashid": 103, "dostum": 103, "dollar": 103, "exchang": 103, "3570": 103, "12049": 103, "born": 103, "1937": 103, "provinc": 103, "anhui": 103, "dai": 103, "came": 103, "shanghai": 103, "citi": 103, "prolif": 103, "author": 103, "teacher": 103, "chines": 103, "16764": 103, "1990": 103, "historian": 103, "alan": 103, "john": 103, "percival": 103, "taylor": 103, "di": 103, "20446": 103, "pace": 103, "bowler": 103, "ian": 103, "harvei": 103, "claim": 103, "victoria": 103, "15514": 103, "cotti": 103, "osc": 103, "foreign": 103, "minist": 103, "7525": 103, "sultan": 103, "specter": 103, "met": 103, "crown": 103, "abdullah": 103, "defenc": 103, "aviat": 103, "jeddah": 103, "saudi": 103, "agenc": 103, "2288": 103, "hi": 103, "customari": 103, "outfit": 103, "champion": 103, "damp": 103, "scalp": 103, "canada": 103, "reign": 103, "olymp": 103, "donovan": 103, "bailei": 103, "1992": 103, "linford": 103, "christi": 103, "britain": 103, "1984": 103, "1988": 103, "carl": 103, "lewi": 103, "ambigi": 103, "punctuat": 103, "chicago": 103, "digest": 103, "philadelphia": 103, "usda": 103, "york": 103, "token_issu": 103, "471": 103, "kean": 103, "year": 103, "contract": 103, "manchest": 103, "19072": 103, "societi": 103, "bite": 103, "deliv": 103, "19910": 103, "father": 103, "clarenc": 103, "woolmer": 103, "renam": 103, "uttar": 103, "pradesh": 103, "india": 103, "ranji": 103, "trophi": 103, "nation": 103, "championship": 103, "captain": 103, "1949": 103, "15658": 103, "19879": 103, "iii": 103, "brian": 103, "shimer": 103, "randi": 103, "jone": 103, "19104": 103}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [55, 0, 0, "-", "models"], [57, 0, 0, "-", "multiannotator"], [60, 0, 0, "-", "multilabel_classification"], [63, 0, 0, "-", "object_detection"], [66, 0, 0, "-", "outlier"], [67, 0, 0, "-", "rank"], [68, 0, 0, "-", "regression"], [72, 0, 0, "-", "segmentation"], [76, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "outlier"], [51, 0, 0, "-", "token_classification_utils"], [52, 0, 0, "-", "util"], [53, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[50, 1, 1, "", "correct_precision_errors"], [50, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, 1, 1, "", "color_sentence"], [51, 1, 1, "", "filter_sentence"], [51, 1, 1, "", "get_sentence"], [51, 1, 1, "", "mapping"], [51, 1, 1, "", "merge_probs"], [51, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[52, 1, 1, "", "append_extra_datapoint"], [52, 1, 1, "", "clip_noise_rates"], [52, 1, 1, "", "clip_values"], [52, 1, 1, "", "compress_int_array"], [52, 1, 1, "", "confusion_matrix"], [52, 1, 1, "", "csr_vstack"], [52, 1, 1, "", "estimate_pu_f1"], [52, 1, 1, "", "extract_indices_tf"], [52, 1, 1, "", "force_two_dimensions"], [52, 1, 1, "", "format_labels"], [52, 1, 1, "", "get_missing_classes"], [52, 1, 1, "", "get_num_classes"], [52, 1, 1, "", "get_unique_classes"], [52, 1, 1, "", "is_tensorflow_dataset"], [52, 1, 1, "", "is_torch_dataset"], [52, 1, 1, "", "num_unique_classes"], [52, 1, 1, "", "print_inverse_noise_matrix"], [52, 1, 1, "", "print_joint_matrix"], [52, 1, 1, "", "print_noise_matrix"], [52, 1, 1, "", "print_square_matrix"], [52, 1, 1, "", "remove_noise_from_class"], [52, 1, 1, "", "round_preserving_row_totals"], [52, 1, 1, "", "round_preserving_sum"], [52, 1, 1, "", "smart_display_dataframe"], [52, 1, 1, "", "subset_X_y"], [52, 1, 1, "", "subset_data"], [52, 1, 1, "", "subset_labels"], [52, 1, 1, "", "train_val_split"], [52, 1, 1, "", "unshuffle_tensorflow_dataset"], [52, 1, 1, "", "value_counts"], [52, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[53, 1, 1, "", "assert_indexing_works"], [53, 1, 1, "", "assert_nonempty_input"], [53, 1, 1, "", "assert_valid_class_labels"], [53, 1, 1, "", "assert_valid_inputs"], [53, 1, 1, "", "labels_to_array"], [53, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[56, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[56, 2, 1, "", "KerasWrapperModel"], [56, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[57, 1, 1, "", "convert_long_to_wide_dataset"], [57, 1, 1, "", "get_active_learning_scores"], [57, 1, 1, "", "get_active_learning_scores_ensemble"], [57, 1, 1, "", "get_label_quality_multiannotator"], [57, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [57, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[58, 0, 0, "-", "dataset"], [59, 0, 0, "-", "filter"], [61, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[58, 1, 1, "", "common_multilabel_issues"], [58, 1, 1, "", "multilabel_health_summary"], [58, 1, 1, "", "overall_multilabel_health_score"], [58, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, 1, 1, "", "find_label_issues"], [59, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[62, 0, 0, "-", "filter"], [64, 0, 0, "-", "rank"], [65, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[62, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[64, 1, 1, "", "compute_badloc_box_scores"], [64, 1, 1, "", "compute_overlooked_box_scores"], [64, 1, 1, "", "compute_swap_box_scores"], [64, 1, 1, "", "get_label_quality_scores"], [64, 1, 1, "", "issues_from_scores"], [64, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[65, 1, 1, "", "bounding_box_size_distribution"], [65, 1, 1, "", "calculate_per_class_metrics"], [65, 1, 1, "", "class_label_distribution"], [65, 1, 1, "", "get_average_per_class_confusion_matrix"], [65, 1, 1, "", "get_sorted_bbox_count_idxs"], [65, 1, 1, "", "object_counts_per_image"], [65, 1, 1, "", "plot_class_distribution"], [65, 1, 1, "", "plot_class_size_distributions"], [65, 1, 1, "", "visualize"]], "cleanlab.outlier": [[66, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[66, 3, 1, "", "fit"], [66, 3, 1, "", "fit_score"], [66, 3, 1, "", "score"]], "cleanlab.rank": [[67, 1, 1, "", "find_top_issues"], [67, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [67, 1, 1, "", "get_label_quality_ensemble_scores"], [67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_normalized_margin_for_each_label"], [67, 1, 1, "", "get_self_confidence_for_each_label"], [67, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[69, 0, 0, "-", "learn"], [70, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[69, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[69, 3, 1, "", "__init_subclass__"], [69, 3, 1, "", "find_label_issues"], [69, 3, 1, "", "fit"], [69, 3, 1, "", "get_aleatoric_uncertainty"], [69, 3, 1, "", "get_epistemic_uncertainty"], [69, 3, 1, "", "get_label_issues"], [69, 3, 1, "", "get_metadata_routing"], [69, 3, 1, "", "get_params"], [69, 3, 1, "", "predict"], [69, 3, 1, "", "save_space"], [69, 3, 1, "", "score"], [69, 3, 1, "", "set_fit_request"], [69, 3, 1, "", "set_params"], [69, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[70, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[71, 0, 0, "-", "filter"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[71, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[74, 1, 1, "", "common_label_issues"], [74, 1, 1, "", "display_issues"], [74, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 82, 83, 84, 88, 90, 91, 93, 94, 97, 103], "count": [3, 94], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 85, 86, 87, 89, 90, 91, 94, 97], "creat": [7, 85, 86, 87, 94, 96], "your": [7, 79, 86, 87, 91, 93, 94], "own": 7, "issu": [7, 9, 10, 21, 30, 79, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 86], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 86], "us": [7, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "gener": 8, "cluster": [8, 93], "id": 8, "guid": [9, 11], "type": [9, 10, 94], "custom": [9, 86], "cleanlab": [9, 10, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "studio": [9, 10], "easi": [9, 10, 79, 88, 90, 91], "mode": [9, 10, 79, 88, 90, 91], "can": [10, 85, 87, 92, 93, 94, 96], "detect": [10, 87, 90, 91, 93, 94, 98, 99], "estim": [10, 94, 96, 97], "each": 10, "label": [10, 23, 25, 30, 79, 82, 83, 84, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "outlier": [10, 28, 50, 66, 88, 90, 91, 97, 99], "Near": [10, 87, 88, 90, 91], "duplic": [10, 19, 87, 88, 90, 91, 93, 97], "non": [10, 91], "iid": [10, 91], "class": [10, 80, 94, 102], "imbal": [10, 20], "imag": [10, 88, 99], "specif": [10, 21, 102], "underperform": [10, 93], "group": [10, 93], "null": [10, 27], "data": [10, 12, 79, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "valuat": 10, "option": 10, "paramet": [10, 94], "get": [11, 85, 86, 87, 96, 97, 98, 102, 103], "start": [11, 92], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 93, 94], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 68, 69, 70, 93, 101], "prioriti": 30, "order": 30, "find": [30, 79, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "underperforming_group": 31, "model_output": 32, "report": [33, 88], "dataset": [36, 58, 79, 83, 85, 87, 88, 91, 92, 93, 94, 97, 98, 99, 101, 102, 103], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 59, 62, 71, 75, 94], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "token_classification_util": 51, "util": 52, "valid": [53, 88, 100], "fasttext": 54, "model": [55, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101], "kera": 56, "multiannot": [57, 96], "multilabel_classif": 60, "rank": [61, 64, 67, 70, 73, 77, 94], "object_detect": 63, "summari": [65, 74, 78], "learn": [69, 82, 85, 87, 93, 94], "segment": [72, 102], "token_classif": [76, 103], "open": [79, 93], "sourc": [79, 93], "document": 79, "quickstart": 79, "1": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "instal": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "2": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "common": [79, 80, 103], "3": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "handl": [79, 93], "error": [79, 83, 88, 93, 94, 96, 97, 98, 101, 102, 103], "train": [79, 82, 83, 84, 93, 99, 101], "robust": [79, 82, 83, 94, 101], "noisi": [79, 82, 83, 94, 101], "4": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 98, 99, 101], "curat": [79, 92], "fix": [79, 93], "level": [79, 92, 94, 103], "5": [79, 82, 84, 85, 87, 88, 90, 94, 96, 101], "improv": [79, 96], "via": [79, 94, 96], "mani": [79, 94], "other": [79, 96, 98, 101], "techniqu": 79, "contribut": 79, "how": [80, 93, 94, 96, 97, 103], "migrat": 80, "version": 80, "0": 80, "from": [80, 82, 83, 85, 86, 87, 94, 101], "pre": [80, 84, 93, 99], "function": [80, 86], "name": 80, "chang": 80, "modul": [80, 94], "new": [80, 85], "remov": 80, "argument": [80, 86], "variabl": 80, "cleanlearn": [81, 93, 94], "tutori": [81, 89, 92, 95], "tabular": [82, 90], "scikit": 82, "requir": [82, 83, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "depend": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "load": [82, 83, 84, 85, 86, 87, 90, 91, 101], "process": [82, 90, 99, 101], "select": [82, 90], "comput": [82, 84, 88, 90, 91, 93, 96, 100], "out": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "sampl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "predict": [82, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 100], "probabl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "more": [82, 83, 85, 87, 94, 101], "text": [83, 91, 103], "format": [83, 91, 93, 97, 98], "defin": [83, 88, 91, 101], "potenti": [83, 96, 101], "audio": 84, "speechbrain": 84, "import": [84, 85, 86, 87, 88, 92, 94, 96], "them": [84, 92, 94], "featur": [84, 88, 99], "fit": 84, "linear": 84, "datamonitor": 85, "leverag": 85, "statist": [85, 96], "audit": [85, 86, 87], "skip": [85, 87, 92, 94, 96], "detail": [85, 87, 92, 94, 96], "classifi": [85, 86, 87], "6": [85, 94], "about": [85, 87], "addit": [85, 87], "workflow": [86, 94], "instanti": 86, "object": [86, 98], "increment": 86, "search": 86, "specifi": [86, 93], "nondefault": 86, "save": 86, "ad": 86, "A": 87, "unifi": 87, "all": [87, 94], "kind": [87, 98], "inform": [87, 88], "pytorch": [88, 99], "fetch": [88, 92], "normal": 88, "fashion": 88, "mnist": 88, "prepar": 88, "k": [88, 90, 100], "fold": [88, 100], "cross": [88, 100], "embed": [88, 99], "7": [88, 94], "view": 88, "most": [88, 103], "like": 88, "exampl": [88, 93, 94, 99], "sever": 88, "set": [88, 94], "dark": 88, "top": [88, 102], "low": 88, "numer": 90, "categor": 90, "column": 90, "construct": 90, "nearest": 90, "neighbour": 90, "graph": 90, "drift": [91, 97], "evalu": 92, "health": [92, 94], "8": [92, 94], "popular": 92, "faq": 93, "what": [93, 94, 100], "do": [93, 94], "i": [93, 94, 100], "infer": 93, "correct": 93, "ha": 93, "flag": 93, "should": 93, "v": 93, "test": [93, 94, 99], "big": 93, "limit": 93, "memori": 93, "why": 93, "isn": 93, "t": 93, "work": [93, 94, 96, 103], "me": 93, "differ": [93, 98], "clean": [93, 94], "final": 93, "hyperparamet": 93, "tune": 93, "onli": 93, "one": [93, 94, 97, 102], "doe": [93, 96, 103], "take": 93, "so": 93, "long": 93, "slice": 93, "when": [93, 94], "identifi": [93, 98], "run": 93, "licens": 93, "under": 93, "an": 93, "answer": 93, "question": 93, "The": 94, "centric": 94, "ai": 94, "machin": 94, "find_label_issu": 94, "line": 94, "code": 94, "visual": [94, 98, 99, 102], "twenti": 94, "lowest": 94, "qualiti": [94, 96, 97, 98, 102, 103], "see": 94, "now": 94, "let": 94, "": 94, "happen": 94, "we": 94, "merg": 94, "seafoam": 94, "green": 94, "yellow": 94, "too": 94, "you": 94, "re": 94, "One": 94, "score": [94, 96, 97, 98, 102, 103], "rule": 94, "overal": [94, 102], "accur": 94, "thi": 94, "directli": 94, "fulli": 94, "character": 94, "nois": 94, "matrix": [94, 97], "joint": 94, "prior": 94, "true": 94, "distribut": 94, "flip": 94, "rate": 94, "ani": 94, "again": 94, "support": 94, "lot": 94, "method": 94, "filter_bi": 94, "automat": 94, "everi": 94, "uniqu": 94, "num_label_issu": 94, "threshold": 94, "found": 94, "Not": 94, "sure": 94, "ensembl": 94, "multipl": [94, 96], "predictor": 94, "consensu": 96, "annot": 96, "initi": 96, "major": 96, "vote": 96, "better": 96, "compar": 96, "inspect": 96, "retrain": 96, "further": 96, "multi": 97, "beyond": 97, "mislabel": [97, 102, 103], "given": 97, "hot": 97, "binari": 97, "without": 97, "applic": 97, "real": 97, "download": [98, 102, 103], "objectlab": 98, "exploratori": 98, "analysi": 98, "timm": 99, "cifar10": 99, "some": 99, "pred_prob": [99, 102, 103], "wai": 101, "semant": 102, "which": 102, "ar": 102, "commonli": 102, "focus": 102, "token": 103, "word": 103, "sentenc": 103, "contain": 103, "particular": 103}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [50, "module-cleanlab.internal.outlier"], [66, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [68, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [58, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [59, "module-cleanlab.multilabel_classification.filter"], [62, "filter"], [71, "filter"], [75, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "util": [[52, "module-cleanlab.internal.util"]], "validation": [[53, "module-cleanlab.internal.validation"]], "fasttext": [[54, "fasttext"]], "models": [[55, "models"]], "keras": [[56, "module-cleanlab.models.keras"]], "multiannotator": [[57, "module-cleanlab.multiannotator"]], "multilabel_classification": [[60, "multilabel-classification"]], "rank": [[61, "module-cleanlab.multilabel_classification.rank"], [64, "module-cleanlab.object_detection.rank"], [67, "module-cleanlab.rank"], [73, "module-cleanlab.segmentation.rank"], [77, "module-cleanlab.token_classification.rank"]], "object_detection": [[63, "object-detection"]], "summary": [[65, "summary"], [74, "module-cleanlab.segmentation.summary"], [78, "module-cleanlab.token_classification.summary"]], "regression.learn": [[69, "module-cleanlab.regression.learn"]], "regression.rank": [[70, "module-cleanlab.regression.rank"]], "segmentation": [[72, "segmentation"]], "token_classification": [[76, "token-classification"]], "cleanlab open-source documentation": [[79, "cleanlab-open-source-documentation"]], "Quickstart": [[79, "quickstart"]], "1. Install cleanlab": [[79, "install-cleanlab"]], "2. Find common issues in your data": [[79, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[79, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[79, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[79, "improve-your-data-via-many-other-techniques"]], "Contributing": [[79, "contributing"]], "Easy Mode": [[79, "easy-mode"], [88, "Easy-Mode"], [90, "Easy-Mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[80, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[80, "function-and-class-name-changes"]], "Module name changes": [[80, "module-name-changes"]], "New modules": [[80, "new-modules"]], "Removed modules": [[80, "removed-modules"]], "Common argument and variable name changes": [[80, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[81, "cleanlearning-tutorials"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[82, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "1. Install required dependencies": [[82, "1.-Install-required-dependencies"], [83, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [91, "1.-Install-required-dependencies"], [101, "1.-Install-required-dependencies"]], "2. Load and process the data": [[82, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [101, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[82, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [90, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[82, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[82, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[83, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[83, "2.-Load-and-format-the-text-dataset"], [91, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[83, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[83, "4.-Train-a-more-robust-model-from-noisy-labels"], [101, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Audio Classification with SpeechBrain and Cleanlab": [[84, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[84, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[84, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[84, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[84, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[84, "5.-Use-cleanlab-to-find-label-issues"], [90, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[85, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[85, "1.-Install-and-import-required-dependencies"], [87, "1.-Install-and-import-required-dependencies"], [88, "1.-Install-and-import-required-dependencies"], [96, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[85, "2.-Create-and-load-the-data-(can-skip-these-details)"], [87, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[85, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [87, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[85, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [87, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[85, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[85, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "Datalab: Advanced workflows to audit your data": [[86, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[86, "Install-and-import-required-dependencies"]], "Create and load the data": [[86, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[86, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[86, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[86, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[86, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[86, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[86, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[87, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[87, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[87, "Get-additional-information"]], "Near duplicate issues": [[87, "Near-duplicate-issues"], [88, "Near-duplicate-issues"]], "Image Classification with PyTorch and Cleanlab": [[88, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[88, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[88, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[88, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[88, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[88, "7.-Use-cleanlab-to-find-issues"]], "View report": [[88, "View-report"]], "Label issues": [[88, "Label-issues"], [90, "Label-issues"], [91, "Label-issues"]], "View most likely examples with label errors": [[88, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[88, "Outlier-issues"], [90, "Outlier-issues"], [91, "Outlier-issues"]], "View most severe outliers": [[88, "View-most-severe-outliers"]], "View sets of near duplicate images": [[88, "View-sets-of-near-duplicate-images"]], "Dark images": [[88, "Dark-images"]], "View top examples of dark images": [[88, "View-top-examples-of-dark-images"]], "Low information images": [[88, "Low-information-images"]], "Datalab Tutorials": [[89, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[90, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[90, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[91, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[91, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[91, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[91, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[92, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[92, "Install-dependencies-and-import-them"], [94, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[92, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[92, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[93, "FAQ"]], "What data can cleanlab detect issues in?": [[93, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[93, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[93, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[93, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[93, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[93, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[93, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[93, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[93, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[93, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[93, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[93, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[93, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[93, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[94, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[94, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[94, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[94, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[94, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[94, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[94, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[94, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[94, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[94, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[94, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[94, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[94, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[94, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[94, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[94, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[94, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[94, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[94, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[95, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[96, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[96, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[96, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[96, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[96, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[96, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[96, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[96, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[96, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[97, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[97, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[97, "2.-Format-data,-labels,-and-model-predictions"], [98, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[97, "3.-Use-cleanlab-to-find-label-issues"], [98, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[97, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[97, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[97, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[97, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[97, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[98, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[98, "1.-Install-required-dependencies-and-download-data"], [102, "1.-Install-required-dependencies-and-download-data"], [103, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[98, "Get-label-quality-scores"], [102, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[98, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[98, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[98, "Other-uses-of-visualize"]], "Exploratory data analysis": [[98, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[99, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[99, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[99, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[99, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[99, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[99, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[100, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[100, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[100, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[101, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[101, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[101, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[102, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[102, "2.-Get-data,-labels,-and-pred_probs"], [103, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[102, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[102, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[102, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[103, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[103, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[103, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[103, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[103, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.outlier"], [51, "module-cleanlab.internal.token_classification_utils"], [52, "module-cleanlab.internal.util"], [53, "module-cleanlab.internal.validation"], [55, "module-cleanlab.models"], [56, "module-cleanlab.models.keras"], [57, "module-cleanlab.multiannotator"], [58, "module-cleanlab.multilabel_classification.dataset"], [59, "module-cleanlab.multilabel_classification.filter"], [60, "module-cleanlab.multilabel_classification"], [61, "module-cleanlab.multilabel_classification.rank"], [62, "module-cleanlab.object_detection.filter"], [63, "module-cleanlab.object_detection"], [64, "module-cleanlab.object_detection.rank"], [65, "module-cleanlab.object_detection.summary"], [66, "module-cleanlab.outlier"], [67, "module-cleanlab.rank"], [68, "module-cleanlab.regression"], [69, "module-cleanlab.regression.learn"], [70, "module-cleanlab.regression.rank"], [71, "module-cleanlab.segmentation.filter"], [72, "module-cleanlab.segmentation"], [73, "module-cleanlab.segmentation.rank"], [74, "module-cleanlab.segmentation.summary"], [75, "module-cleanlab.token_classification.filter"], [76, "module-cleanlab.token_classification"], [77, "module-cleanlab.token_classification.rank"], [78, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[50, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[52, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[53, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[55, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[56, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[57, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[58, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[60, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[61, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[62, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[62, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[63, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[64, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[65, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[66, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[66, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[67, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[68, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[69, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[69, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[69, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[70, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[70, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[71, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[71, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[72, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[73, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[74, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[75, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[75, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[76, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[77, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[78, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Audio Classification with SpeechBrain and Cleanlab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Image Classification with PyTorch and Cleanlab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 80, 85, 86, 87, 94, 96, 97], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 85, 86, 87, 94, 96, 97], "generate_noise_matrix_from_trac": [0, 1, 85, 86, 87, 94, 96, 97], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 51, 52, 64, 88, 92, 103], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 79, 80, 86, 92, 100], "benchmark": [1, 37, 79, 80, 85, 86, 87, 94, 96, 97], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 50, 52, 57, 58, 62, 64, 65, 66, 67, 69, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "core": [1, 40, 43, 71, 73], "algorithm": [1, 2, 8, 10, 31, 38, 42, 50, 52, 57, 66, 75, 77, 79, 93, 94, 96, 103], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 55, 57, 58, 61, 65, 66, 70, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "introduc": [1, 84, 93, 94], "synthet": [1, 96, 97, 102], "nois": [1, 2, 3, 36, 43, 46, 52, 58, 85, 86, 87, 92, 96, 101], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 85, 86, 92, 95, 99, 100], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 52, 57, 58, 59, 60, 61, 66, 67, 75, 76, 77, 78, 79, 80, 81, 85, 86, 87, 95, 96, 99, 100, 101, 102], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 84, 86, 90, 95, 96, 100], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 55, 59, 62, 65, 74, 78, 88, 90, 91, 94, 98, 103], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 52, 55, 57, 62, 65, 66, 67, 79, 88, 93, 97], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 52, 56, 57, 58, 59, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 52, 53, 66, 67, 69, 74, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 100, 102, 103], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 50, 52, 57, 59, 62, 65, 67, 69, 70, 78, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "matric": [1, 3, 46, 93], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "learn": [1, 2, 3, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 55, 57, 59, 66, 68, 70, 73, 77, 79, 83, 84, 86, 88, 90, 91, 92, 96, 97, 101], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 59, 60, 61, 62, 64, 65, 66, 67, 69, 75, 77, 78, 85, 87, 93, 94, 96, 97, 98, 101, 102, 103], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 52, 58, 59, 61, 67, 69, 70, 71, 73, 74, 80, 85, 86, 87, 90, 91, 93, 95, 96], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 52, 53, 59, 62, 64, 65, 66, 67, 90, 98, 99], "trace": [1, 85, 86, 87, 94, 96, 97], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "more": [1, 2, 3, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 67, 69, 70, 73, 74, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 102, 103], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 102, 103], "noise_matrix": [1, 2, 3, 10, 46, 52, 85, 86, 87, 94, 96, 97], "py": [1, 3, 33, 37, 38, 43, 46, 48, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 86, 94, 96], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99, 101, 102], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 85], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 50, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 50, 52, 57, 65, 66, 67, 71, 90, 91, 94, 96, 103], "true_label": [1, 2, 3, 36, 46, 52, 94, 96], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 93, 94, 96, 97, 98, 99, 102, 103], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 53, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 93, 94, 96, 97, 101], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 50, 64, 69, 83, 87, 91, 93, 94, 96, 97, 98, 99, 101], "achiev": [1, 2, 37, 38, 41, 69, 93, 96, 103], "better": [1, 5, 43, 57, 59, 67, 69, 70, 79, 83, 84, 87, 90, 91, 93, 94, 97, 98, 99, 103], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 57, 62, 64, 66, 67, 69, 73, 77, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 57, 67, 69, 82, 84, 85, 86, 87, 88, 90, 93, 94, 96, 97, 99], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 65, 69, 79, 82, 83, 86, 93, 94, 96, 97, 100, 101], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 50, 57, 58, 65, 66, 67, 93, 96, 99], "amount": [1, 3, 88], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 87, 88, 91], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 103], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 50, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 84, 92, 93, 94, 97, 98, 99, 102, 103], "condit": [1, 2, 3, 46, 51, 52, 67, 88, 94, 103], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 92, 93, 94, 95, 97, 98, 99, 102, 103], "k_": [1, 2, 3, 46, 52], "k_y": [1, 2, 3, 46, 52], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102], "fraction": [1, 2, 3, 10, 20, 38, 46, 52, 57, 69, 90, 93], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 96, 97, 98, 100, 101, 102, 103], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 51, 52, 59, 67, 69, 70, 82, 84, 85, 86, 87, 88, 90, 91, 93, 96, 98, 100, 102, 103], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 52, 53, 55, 57, 58, 61, 65, 66, 67, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 102, 103], "assum": [1, 2, 3, 12, 43, 46, 51, 52, 67, 71, 74, 93, 97, 99, 101, 102, 103], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 51, 52, 57, 58, 59, 61, 62, 65, 66, 67, 69, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 52, 58, 59, 61, 64, 69, 85, 86, 87, 88, 93, 94, 96, 97, 102, 103], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 92, 93, 100], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 51, 52, 53, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "return": [1, 2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 97, 98, 101, 102, 103], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 51, 52, 57, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 52, 57, 58, 59, 61, 62, 78, 83, 84, 87, 88, 90, 91, 92, 93, 94, 101, 103], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 57, 59, 61, 64, 65, 66, 67, 69, 70, 75, 77, 78, 79, 84, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103], "perfect": [1, 2, 36, 69, 94, 98], "exactli": [1, 3, 10, 36, 37, 41, 43, 60, 66, 86, 87, 88, 90, 91, 94], "yield": [1, 37, 41, 85], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 50, 55, 57, 58, 61, 64, 66, 67, 69, 70, 73, 77, 78, 80, 83, 84, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 50, 57, 58, 59, 64, 65, 73, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 52, 53, 56, 57, 64, 65, 67, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "loop": [1, 3, 46, 52, 88, 98], "implement": [1, 2, 3, 9, 14, 22, 37, 38, 40, 41, 46, 52, 69, 79, 82, 84, 86, 90, 99, 100], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 57, 58, 62, 64, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 50, 53, 64, 65, 69, 71, 73, 77, 83, 84, 86, 87, 88, 90, 91, 97, 101, 102], "do": [1, 2, 5, 9, 10, 36, 40, 41, 52, 53, 66, 67, 71, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 56, 69, 83, 84, 86, 87, 88, 90, 91, 92, 94, 99], "pseudocod": [1, 100], "happen": [1, 10, 43, 59, 85, 91, 96, 102], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 82, 83, 84, 85, 88, 91, 92, 93, 96, 97, 98, 101, 102, 103], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 61, 69, 79, 83, 84, 85, 91, 93, 94, 98, 99], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 50, 51, 52, 56, 57, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102], "distinct": [1, 18, 52, 103], "natur": [1, 10, 96, 99], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 80, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 102, 103], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 51, 52, 53, 66, 67, 69, 82, 83, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 52, 53, 56, 65, 69, 70, 83, 84, 85, 86, 87, 90, 93, 94, 96, 97, 99, 101], "round": [1, 40, 43, 52, 69, 93, 101], "astyp": [1, 96], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 50, 51, 52, 53, 58, 59, 61, 65, 66, 67, 69, 71, 73, 74, 75, 78, 84, 86, 88, 98, 99], "rang": [1, 3, 5, 7, 12, 46, 48, 50, 52, 65, 69, 70, 85, 88, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "pragma": 1, "cover": [1, 3, 80, 92, 93], "choic": [1, 8, 43, 50, 88, 93, 97, 99], "replac": [1, 51, 56, 67, 82, 83, 85, 86, 87, 88, 91, 92, 93, 96, 99], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 67, 84, 85, 86, 87], "05": [1, 10, 26, 30, 51, 65, 69, 75, 77, 90, 92, 93, 94, 98], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 85, 86, 87, 94, 96, 97], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 85, 86, 87, 88, 93, 94, 96, 97, 102], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 69, 82, 84, 85, 86, 87, 90, 92, 94, 96, 97], "max_it": [1, 83, 84, 91, 99], "10000": [1, 40, 92, 93], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 51, 52, 53, 56, 57, 59, 65, 66, 67, 69, 71, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 99, 101], "diagon": [1, 3, 5, 43, 46, 52], "equal": [1, 3, 10, 12, 59, 64, 74, 100], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 52, 69, 79, 83, 84, 88, 90, 91, 93, 102, 103], "impli": [1, 10, 36, 58, 65], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 50, 51, 52, 57, 58, 59, 61, 64, 65, 69, 73, 77, 84, 85, 86, 87, 94, 96, 97], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 50, 52, 57, 58, 59, 62, 82, 83, 90, 91, 94, 97, 98, 101], "maximum": [1, 10, 66, 74, 78, 102], "minimum": [1, 8, 10, 20, 43, 45, 59, 64, 77], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 64, 69, 86, 93, 94, 96, 98, 99], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 86, 88, 93, 101, 102], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "necessari": [1, 2, 3, 4, 7, 10, 12, 51, 85, 86], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 56, 57, 58, 60, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 52, 57, 61, 65, 69, 74, 78, 79, 82, 83, 84, 85, 87, 91, 93, 96, 97, 99, 101], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 52, 55, 56, 59, 66, 67, 69, 71, 79, 80, 84, 92, 93, 94, 100], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 53, 56, 57, 58, 59, 61, 64, 65, 66, 67, 69, 73, 74, 75, 77, 83, 85, 87, 88, 91, 92, 93, 97, 98, 101, 103], "when": [1, 2, 3, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 50, 52, 56, 59, 61, 62, 64, 66, 67, 69, 70, 82, 83, 85, 86, 87, 88, 90, 91, 96, 100, 101, 102, 103], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103], "rate": [1, 2, 3, 10, 38, 52, 84, 103], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 56, 57, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 82, 83, 85, 86, 87, 90, 91, 93, 96, 97, 99, 100, 101, 102, 103], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 52, 56, 57, 62, 64, 65, 66, 67, 69, 70, 74, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 55, 56, 57, 59, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "high": [1, 2, 16, 40, 43, 52, 64, 67, 69, 82, 83, 85, 86, 87, 88, 92, 94, 98, 101, 102, 103], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 52, 57, 58, 62, 64, 65, 66, 67, 69, 71, 74, 78, 80, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "imposs": [1, 10, 94], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 51, 56, 57, 66, 69, 74, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "low": [1, 10, 52, 57, 79, 85, 86, 87, 91, 94, 98, 102], "zero": [1, 3, 5, 37, 41, 45, 52, 53, 86, 88, 97, 98, 99], "forc": [1, 2, 3, 5, 41, 86, 103], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 52, 56, 57, 59, 61, 65, 66, 67, 69, 70, 73, 75, 77, 80, 82, 83, 84, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 50, 51, 52, 53, 56, 57, 66, 67, 69, 71, 73, 77, 78, 79, 83, 84, 86, 87, 88, 91, 96, 97, 98, 99, 100, 101, 102, 103], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 55, 80], "produc": [1, 2, 5, 9, 10, 16, 48, 57, 67, 69, 71, 73, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 102, 103], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 50, 56, 57, 58, 69, 87, 91, 93, 98], "opposit": [1, 103], "occur": [1, 3, 10, 36, 51, 64, 86, 87, 88, 93, 99], "small": [1, 3, 10, 36, 40, 48, 50, 52, 58, 65, 83, 88, 91, 92, 97, 99], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 50, 51, 53, 56, 61, 64, 69, 70, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "max": [1, 43, 66, 67, 87, 88, 99], "tri": [1, 37, 41, 100], "befor": [1, 2, 3, 37, 41, 50, 52, 66, 69, 74, 82, 83, 85, 91, 93, 94, 96, 99, 101], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 26, 30, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 84, 86, 87, 88, 90, 93, 94, 97, 101, 102], "left": [1, 2, 43, 45, 50, 52, 59, 62, 65, 85, 86, 87, 97, 98, 99, 102], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 57, 62, 64, 65, 66, 85, 86, 87, 92, 96, 97, 98, 103], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 56, 93, 94, 102], "length": [1, 5, 12, 26, 27, 36, 38, 43, 52, 59, 62, 66, 67, 69, 71, 74, 78, 82, 84, 97, 99, 102, 103], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 50, 52, 55, 56, 57, 58, 59, 66, 67, 69, 71, 73, 74, 75, 77, 78, 84, 96, 100, 102, 103], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 52, 53, 57, 59, 65, 71, 73, 74, 75, 77, 78, 82, 83, 84, 93, 96, 97, 98, 102, 103], "ball": [1, 92], "bin": [1, 3, 59, 85, 86, 87, 99], "ensur": [1, 2, 10, 37, 41, 50, 52, 53, 56, 64, 67, 69, 82, 83, 84, 86, 87, 88, 91, 93, 94, 99, 100, 101], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 56, 57, 58, 59, 62, 64, 65, 66, 67, 70, 73, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102], "least": [1, 4, 10, 18, 31, 36, 40, 57, 58, 64, 67, 77, 87, 88, 93, 96, 99, 102], "int_arrai": [1, 52], "can": [2, 3, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 97, 98, 99, 100, 101, 102, 103], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 51, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100, 102, 103], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 75, 77, 78, 79, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103], "regular": [2, 3, 40, 56], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 52, 53, 58, 59, 60, 61, 66, 67, 79, 93, 94, 95], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 50, 52, 57, 59, 67, 69, 79, 83, 84, 85, 91, 92, 93, 94, 97, 99, 101, 102, 103], "cleanlearn": [2, 3, 10, 23, 30, 37, 52, 56, 68, 69, 70, 79, 80, 82, 83, 101], "wrap": [2, 37, 41, 56, 66, 69, 79, 82, 83, 85, 86, 87, 90, 91, 94, 101], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56, 65, 66, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 56, 66, 69, 70, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101], "classifi": [2, 3, 41, 48, 52, 57, 60, 66, 67, 79, 80, 82, 83, 84, 90, 91, 93, 96, 97, 99, 100, 102, 103], "adher": [2, 41, 69], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 52, 57, 58, 59, 64, 66, 69, 71, 73, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 93, 95, 98, 99, 100, 101, 102, 103], "api": [2, 3, 14, 56, 62, 65, 66, 69, 80, 93, 101], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 67, 69, 71, 84, 86, 87, 90, 93, 96, 99, 103], "four": [2, 10, 92, 94, 103], "clf": [2, 3, 5, 48, 69, 79, 82, 90, 93, 94, 97], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 55, 56, 66, 68, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101, 103], "sample_weight": [2, 41, 69, 94], "predict_proba": [2, 5, 36, 39, 41, 48, 55, 56, 82, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 99], "predict": [2, 3, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 83, 92, 93, 94, 95, 99, 101, 102, 103], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 50, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 99, 101], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 52, 55, 56, 57, 58, 59, 60, 64, 66, 67, 68, 69, 74, 75, 76, 77, 78, 80, 83, 88, 89, 95, 100], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 52, 53, 57, 58, 59, 60, 62, 65, 66, 67, 69, 71, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 52, 66, 69, 79, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 101], "element": [2, 3, 5, 36, 42, 43, 45, 52, 57, 59, 67, 74, 75, 77, 83, 84, 91, 93, 103], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 52, 57, 58, 62, 65, 67, 69, 82, 83, 84, 86, 88, 90, 93, 96, 97, 98, 99, 101, 102, 103], "index": [2, 10, 26, 36, 43, 51, 52, 53, 58, 67, 69, 74, 77, 78, 83, 84, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 50, 51, 52, 56, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 100, 101, 102, 103], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 50, 52, 53, 55, 57, 62, 64, 66, 69, 82, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 99, 100, 101], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 59, 62, 65, 67, 69, 70, 79, 80, 83, 92, 93, 94, 95, 97, 98, 101, 102, 103], "size": [2, 10, 31, 37, 40, 41, 43, 48, 59, 64, 65, 69, 71, 73, 83, 85, 88, 90, 93, 94, 96, 97, 98, 100, 102], "here": [2, 5, 7, 10, 14, 40, 43, 46, 56, 57, 58, 59, 61, 62, 65, 66, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "re": [2, 5, 37, 41, 51, 57, 69, 79, 82, 83, 84, 85, 86, 90, 91, 93, 101, 102, 103], "weight": [2, 10, 37, 38, 41, 48, 57, 64, 67, 69, 83, 84, 85, 86, 87, 91], "loss": [2, 38, 56, 67, 69, 88], "while": [2, 3, 10, 37, 40, 41, 47, 48, 52, 69, 79, 88, 93, 94, 96, 97, 101], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 52, 56, 57, 62, 65, 66, 69, 70, 80, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 52, 53, 56, 66, 67, 77, 79, 80, 84, 85, 86, 87, 88, 93], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 52, 55, 56, 57, 58, 59, 61, 66, 67, 69, 70, 71, 73, 74, 80, 82, 83, 84, 85, 88, 90, 92, 96, 97, 98, 99, 100, 101, 102, 103], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 57, 86, 87, 88, 93, 100, 101], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 53, 58, 59, 64, 65, 69, 71, 83, 91, 93, 97, 98, 101, 102], "clonabl": [2, 69], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 57, 62, 65, 66, 67, 69, 70, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 97, 98, 99, 100, 101, 102, 103], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 64, 66, 67, 69, 70, 73, 75, 77, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "clone": [2, 69, 97], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 61, 65, 69, 75, 80, 84, 86, 93, 94, 96, 97, 98, 99, 101, 103], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 50, 51, 57, 58, 59, 61, 64, 65, 69, 79, 86, 87, 88, 93, 95, 97, 98, 101], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 52, 59, 60, 62, 65, 66, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "manual": [2, 69, 82, 83, 84, 93, 99, 100, 101, 103], "pytorch": [2, 37, 38, 41, 69, 79, 84, 93, 95, 97, 102], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 52, 56, 66, 69, 83, 84, 85, 86, 87, 91, 93, 94, 97, 99, 100, 101, 102, 103], "__init__": [2, 38, 69, 88], "independ": [2, 3, 10, 58, 69, 91, 100, 101, 103], "compat": [2, 37, 40, 41, 56, 69, 70, 73, 77, 79, 82, 83, 93, 100, 101], "neural": [2, 38, 56, 66, 69, 84, 88, 93, 97, 99, 101], "network": [2, 37, 38, 41, 56, 66, 69, 83, 84, 88, 91, 93, 97, 99, 101], "typic": [2, 37, 41, 66, 69, 82, 83, 84, 87, 88, 90, 91, 99, 100], "initi": [2, 3, 13, 18, 37, 41, 57, 69, 82, 91, 93], "insid": [2, 41, 69, 93, 94], "There": [2, 3, 7, 79, 94, 96], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 62, 64, 65, 80, 83, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101, 102, 103], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 52, 57, 69, 83, 84, 86, 91, 92, 93, 99, 100, 103], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 73, 77, 79, 82, 88, 90, 91, 94, 96, 97, 98, 100, 102, 103], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 52, 55, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "prune": [2, 3, 43, 59, 69, 80, 98], "everyth": [2, 65, 94], "els": [2, 65, 85, 86, 88, 92, 93, 96, 97, 98], "mathemat": [2, 3, 10, 46, 97], "keep": [2, 13, 14, 52, 79, 85, 86, 92, 93, 102], "belong": [2, 3, 10, 36, 43, 45, 46, 58, 59, 60, 61, 66, 67, 71, 75, 77, 78, 87, 88, 94, 97, 99, 102, 103], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 70, 74, 75, 77, 78, 92, 93, 100], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 52, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 91, 92, 95], "erron": [2, 3, 36, 43, 46, 52, 58, 59, 67, 69, 70, 71, 99, 101], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 50, 51, 57, 61, 64, 69, 70, 75, 77, 78, 79, 82, 83, 90, 91, 93, 97, 98, 99, 101, 102, 103], "linear_model": [2, 5, 36, 52, 69, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logisticregress": [2, 3, 5, 36, 52, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logreg": 2, "cl": [2, 14, 30, 69, 79, 82, 83, 93, 94, 101], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 52, 56, 57, 59, 66, 67, 69, 75, 79, 83, 84, 85, 86, 87, 91, 92, 93, 94, 96, 98, 99, 101], "x_train": [2, 82, 85, 86, 87, 94, 96, 97, 101], "labels_maybe_with_error": 2, "had": [2, 3, 69, 98], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 55, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 89, 95, 96, 100, 101], "pred": [2, 43, 52, 82, 83, 100, 101], "x_test": [2, 82, 85, 86, 87, 94, 97, 101], "might": [2, 5, 57, 69, 74, 82, 83, 86, 87, 88, 93, 98], "case": [2, 3, 10, 13, 36, 48, 57, 69, 82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 99, 101, 103], "standard": [2, 3, 5, 30, 36, 43, 56, 58, 59, 61, 67, 69, 79, 82, 86, 87, 90, 92, 94, 98], "adapt": [2, 37, 39, 52, 55, 69, 99], "skorch": [2, 69, 79, 93], "kera": [2, 55, 62, 65, 69, 79, 93, 98], "scikera": [2, 56, 69, 93], "open": [2, 40, 92, 98, 103], "doesn": [2, 69, 79], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 50, 51, 61, 66, 67, 69, 75, 77, 78, 79, 86, 87, 88, 90, 91, 92, 94, 97, 98, 101, 103], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 56, 57, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 51, 56, 62, 64, 66, 69, 79, 80, 82, 83, 86, 87, 91, 96, 103], "made": [2, 5, 16, 37, 41, 69, 82, 83, 88, 91, 93, 96, 98, 100, 101], "easi": [2, 11, 46, 69, 86, 87, 92, 93, 94, 97], "inherit": [2, 7, 38, 69], "baseestim": [2, 41, 69], "yourmodel": [2, 69], "def": [2, 7, 14, 37, 41, 56, 69, 83, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 66, 67, 69, 82, 83, 86, 88, 91, 92, 97, 102, 103], "refer": [2, 10, 16, 37, 41, 42, 58, 59, 61, 62, 64, 65, 69, 73, 74, 86, 87, 88, 90, 91, 93, 94, 97, 100, 101], "origin": [2, 5, 10, 41, 42, 43, 51, 52, 56, 58, 59, 62, 65, 66, 69, 70, 73, 75, 77, 82, 83, 86, 88, 90, 91, 93, 94, 98, 99, 101, 103], "total": [2, 3, 4, 36, 40, 52, 58, 78, 85, 88, 93, 102], "state": [2, 3, 5, 37, 38, 41, 47, 69, 94, 97, 98, 103], "art": [2, 38, 94, 97], "northcutt": [2, 3, 36, 66, 67], "et": [2, 3, 36, 38, 66, 67], "al": [2, 3, 36, 38, 66, 67], "2021": [2, 3, 36, 66, 67], "weak": [2, 65], "supervis": [2, 10, 86, 87, 93, 96], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 51, 52, 55, 62, 65, 66, 67, 69, 71, 75, 77, 80, 86, 95, 100], "uncertainti": [2, 10, 45, 66, 69, 93, 99, 101], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 50, 57, 64, 65, 69, 79, 83, 86, 87, 88, 91, 93, 94, 97, 100], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 51, 52, 53, 56, 57, 67, 69, 79, 80, 83, 85, 86, 87, 92, 99, 101], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 51, 52, 55, 57, 58, 61, 62, 66, 67, 69, 73, 74, 75, 77, 79, 80, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 103], "deep": [2, 39, 41, 55, 56, 69, 91], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "subfield": 2, "theori": [2, 94], "machin": [2, 5, 9, 10, 14, 16, 33, 39, 50, 55, 69, 82, 83, 86, 87, 92, 96], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 58, 65, 66, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 100, 101], "varieti": [2, 82, 83, 93], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 52, 56, 57, 58, 61, 62, 64, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "pu": [2, 52], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 53, 56, 65, 69, 79, 80, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "discret": [2, 34, 43, 46, 52, 66, 67, 71, 73, 74], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 52, 66, 67, 79, 83, 84, 86, 87, 88, 90, 91, 94, 97, 98, 99, 102, 103], "would": [2, 3, 5, 37, 40, 41, 43, 52, 59, 69, 79, 83, 85, 86, 88, 93, 94, 99, 101, 103], "obtain": [2, 5, 8, 10, 16, 43, 57, 59, 62, 65, 67, 70, 84, 87, 91, 93, 96, 98, 100, 102, 103], "been": [2, 4, 36, 43, 46, 51, 52, 57, 58, 62, 64, 66, 67, 69, 84, 86, 90, 93, 94, 96, 97, 98, 99, 102, 103], "dure": [2, 10, 16, 66, 69, 82, 83, 84, 85, 90, 91, 93, 94, 97, 100, 101, 103], "denot": [2, 3, 46, 48, 52, 59, 66, 67, 77], "tild": 2, "paper": [2, 4, 10, 57, 66, 75, 77, 92, 94, 96, 99, 101, 103], "cv_n_fold": [2, 3, 69, 83], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 52, 57, 58, 61, 62, 65, 69, 70, 77, 83, 86, 91, 92, 93, 97, 98, 99, 100, 102, 103], "converge_latent_estim": [2, 3], "pulearn": [2, 52], "find_label_issues_kwarg": [2, 10, 69, 80, 93, 94], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 59, 75, 93], "clean": [2, 64, 67, 69, 70, 79, 82, 83, 85, 86, 87, 92, 101], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 52, 69, 84, 93, 94, 96, 97, 98], "messi": [2, 69, 94], "ridden": [2, 69], "autom": [2, 9, 10, 69, 79, 87, 92, 93], "robust": [2, 46, 69, 87, 93], "prone": [2, 69], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 56, 59, 60, 62, 65, 66, 67, 69, 70, 78, 79, 80, 83, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 57, 64, 69, 85, 86, 87, 93, 96, 98], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 57, 73, 77, 84, 86, 87, 91, 94], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 57, 58, 61, 64, 65, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 94, 96, 98, 100, 103], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 57, 58, 62, 64, 65, 66, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "experiment": [2, 37, 38, 40, 41, 42, 59, 80, 85, 93], "wrapper": [2, 56, 82, 83, 84, 101], "around": [2, 64, 85, 86, 87, 98, 99, 103], "fasttext": [2, 55], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 66, 69, 82, 83, 85, 90, 91, 92, 93, 102, 103], "along": [2, 48, 59, 77, 85, 86, 87, 88, 93, 99], "dimens": [2, 52, 71, 74, 88, 93, 99, 102], "select": [2, 9, 10, 26, 57, 67, 88, 93, 96, 99], "split": [2, 3, 5, 10, 12, 40, 48, 51, 52, 69, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 97, 100, 103], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 59, 62, 65, 67, 69, 70, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "fold": [2, 3, 36, 43, 46, 69, 82, 84, 90, 92, 93, 98, 102], "By": [2, 36, 58, 59, 69, 86, 93, 102], "need": [2, 3, 10, 36, 37, 40, 41, 43, 58, 59, 61, 66, 69, 79, 83, 84, 86, 87, 91, 93, 94, 96, 97, 98, 102], "holdout": [2, 3, 69], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 52, 57, 58, 59, 61, 64, 65, 66, 67, 69, 70, 71, 73, 79, 80, 83, 86, 87, 92, 94, 95, 98, 99, 101, 102], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 55, 57, 66, 69, 80, 82, 83, 85, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 102, 103], "numer": [2, 3, 5, 10, 13, 22, 30, 34, 48, 64, 66, 69, 74, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 94, 96, 97, 99, 101], "consist": [2, 3, 37, 41, 52, 57, 102, 103], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 50, 52, 56, 59, 64, 67, 69, 70, 73, 77, 79, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 103], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 52, 58, 69, 87, 91], "close": [2, 3, 10, 40, 46, 66, 84, 86, 87, 88, 90, 91, 93, 94, 98], "form": [2, 3, 10, 37, 38, 41, 46, 51, 52, 67, 69, 93], "equival": [2, 3, 37, 41, 46, 66, 99, 101], "iter": [2, 3, 36, 37, 41, 43, 52, 58, 59, 69, 85, 93, 96, 102], "enforc": [2, 37, 41, 52], "perfectli": [2, 36, 58, 94], "certain": [2, 3, 5, 37, 41, 56, 65, 69, 85, 86, 87, 92, 98, 99], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 77, 85, 86, 87, 88, 93, 103], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 56, 57, 59, 66, 67, 69, 75, 77, 86], "filter": [2, 3, 10, 40, 42, 51, 58, 60, 61, 63, 65, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 87, 88, 91, 92, 93, 97, 98, 101, 102, 103], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 93, 97, 98, 101, 102, 103], "particularli": [2, 79, 96, 99], "filter_bi": [2, 3, 40, 43, 59, 80, 93], "frac_nois": [2, 43, 59, 75, 93], "min_examples_per_class": [2, 43, 59, 87, 93, 94], "impact": [2, 4, 10, 86, 87, 88], "ml": [2, 4, 5, 9, 10, 15, 69, 79, 82, 83, 86, 87, 88, 90, 91, 96, 97, 101], "accuraci": [2, 38, 67, 82, 83, 84, 88, 93, 94, 96, 99, 101, 102], "n_job": [2, 40, 43, 59, 71, 73, 75, 93, 99, 102], "disabl": [2, 37, 41, 43, 99], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 51, 57, 59, 65, 71, 73, 75, 83, 84, 85, 86, 93, 96, 100], "caus": [2, 43, 48, 86, 87, 93], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 58, 59, 60, 62, 63, 65, 66, 68, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 87, 92, 93, 97, 98, 99, 102, 103], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 57, 59, 60, 61, 62, 63, 64, 67, 68, 70, 72, 73, 75, 76, 77, 80, 93, 94, 97, 98, 102, 103], "adjust_pred_prob": [2, 10, 61, 66, 67, 94], "control": [2, 5, 9, 10, 16, 40, 43, 57, 65, 66, 69, 75, 77, 86, 87, 92, 93], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 52, 57, 58, 61, 62, 64, 66, 67, 69, 73, 77, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 98, 99, 100, 101, 102], "much": [2, 10, 36, 40, 43, 69, 85, 93, 94, 96, 99], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 52, 56, 57, 58, 62, 64, 65, 66, 69, 73, 74, 77, 78, 79, 80, 83, 84, 86, 88, 91, 92, 93, 98, 99, 100, 101], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 52, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 85, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "suppress": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74, 102, 103], "statement": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74], "big": [2, 40, 59, 65, 69, 94], "limit": [2, 5, 16, 40, 59, 85, 98, 102, 103], "memori": [2, 37, 40, 41, 59, 65, 71, 73, 85, 86, 102], "label_issues_batch": [2, 39, 59, 93], "find_label_issues_batch": [2, 39, 40, 59, 93], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 52, 53, 57, 58, 59, 61, 62, 65, 66, 67, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 50, 64, 65, 66, 67, 73, 77, 86, 98, 99, 102, 103], "inverse_noise_matrix": [2, 3, 10, 46, 52, 80, 94], "label_issu": [2, 40, 43, 59, 62, 69, 71, 80, 82, 83, 84, 88, 91, 93, 94, 97, 101], "clf_kwarg": [2, 3, 10, 69], "clf_final_kwarg": [2, 69], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 73, 77, 79, 84, 88, 90, 91, 94, 96, 98, 100, 101], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 50, 52, 59, 61, 62, 65, 67, 69, 70, 71, 73, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 101, 102, 103], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 59, 62, 65, 67, 69, 70, 71, 74, 75, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 97, 99, 101, 102, 103], "final": [2, 10, 69, 82, 90, 98, 100, 101], "remain": [2, 69, 80, 82, 83, 88, 97, 101, 103], "datasetlik": [2, 52, 69], "beyond": [2, 5, 7, 9, 10, 11, 35, 79, 82, 83, 101, 102], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 56, 57, 58, 69, 77, 82, 83, 84, 86, 87, 90, 91, 93, 94, 96, 101, 103], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 52, 53, 56, 57, 58, 69, 74, 78, 80, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101, 102, 103], "scipi": [2, 5, 13, 52], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 52, 53, 87, 88, 90, 91, 94], "csr_matrix": [2, 4, 5, 13, 16, 18, 31], "torch": [2, 37, 38, 41, 83, 84, 88, 91, 92, 99], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 56, 57, 62, 65, 69, 79, 80, 84, 86, 87, 88, 93, 94, 99], "tensorflow": [2, 52, 56, 79, 84, 93], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 52, 53, 56, 59, 62, 63, 64, 65, 66, 69, 77, 79, 83, 84, 87, 88, 90, 93, 94, 95, 97, 101], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 73, 74, 75, 77, 78, 80, 83, 84, 85, 86, 87, 88, 92, 93, 94, 97, 98, 101, 103], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 52, 67, 74, 78, 82, 83, 84, 88, 90, 91, 93, 97, 98, 99, 100, 101, 103], "wa": [2, 3, 12, 14, 40, 50, 52, 57, 58, 64, 66, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 100, 102, 103], "abl": [2, 3, 10, 69, 84, 93, 94, 96, 97], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 82, 84, 86, 87, 88, 90, 92, 96, 101, 102, 103], "make": [2, 3, 5, 18, 37, 40, 41, 48, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "sure": [2, 5, 40, 43, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101], "shuffl": [2, 10, 52, 84, 88, 91, 97, 99], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 52, 57, 62, 64, 69, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 90, 91, 94, 96, 97, 98, 99, 100, 101, 103], "batch": [2, 40, 52, 56, 57, 71, 73, 85, 88, 93, 99], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 50, 52, 57, 58, 59, 62, 65, 66, 67, 71, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 101, 102, 103], "destroi": [2, 52], "oper": [2, 37, 40, 41, 52, 56, 67, 79, 82, 83, 91, 93, 99], "eg": [2, 5, 10, 52, 62, 65, 86, 87, 93], "repeat": [2, 52, 57, 96, 99], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 51, 52, 61, 66, 75, 82, 83, 84, 85, 86, 87, 88, 90, 93, 96, 97, 99, 100, 101, 102], "array_lik": [2, 3, 36, 43, 52, 59, 66, 70], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 51, 52, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "seri": [2, 3, 40, 52, 53, 69, 77, 93], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 52, 57, 58, 59, 61, 66, 67, 69, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 99, 103], "rather": [2, 3, 5, 26, 36, 52, 56, 57, 64, 73, 77, 83, 96, 100, 101, 102, 103], "leav": [2, 43], "per": [2, 3, 5, 7, 13, 36, 40, 43, 48, 51, 57, 58, 59, 61, 64, 65, 67, 70, 71, 73, 77, 87, 93, 98, 103], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 52, 57, 59, 62, 64, 67, 73, 77, 86, 93, 96, 98, 99, 101], "cutoff": [2, 3, 99], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 52, 57, 64, 66, 67, 70, 73, 77, 82, 83, 84, 88, 90, 91, 93, 94, 98, 99, 100, 101, 102], "section": [2, 3, 7, 10, 80, 88, 90, 93, 98], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 59, 66, 67, 69, 70, 75, 77, 92, 93, 100], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 64, 66, 77, 80, 87, 89, 93, 94], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 56, 64, 66, 67, 69, 73, 77, 85, 94], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 56, 57, 58, 59, 62, 64, 66, 67, 69, 70, 78, 80, 83, 84, 87, 88, 91, 96, 98, 101], "automat": [2, 3, 5, 26, 36, 79, 82, 83, 88, 90, 91, 92, 93, 96, 97, 98, 101, 102, 103], "greater": [2, 3, 5, 7, 9, 10, 28, 40, 52, 64, 87, 92, 93, 103], "count": [2, 22, 26, 36, 40, 43, 46, 52, 58, 59, 65, 80, 88, 93, 98], "observ": [2, 3, 46, 84, 85, 86, 87, 96, 99, 101], "mislabel": [2, 10, 36, 40, 42, 43, 46, 57, 58, 59, 62, 64, 67, 73, 75, 77, 79, 82, 83, 84, 88, 90, 91, 93, 94, 98, 101], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 99, 100, 101, 103], "get_label_issu": [2, 39, 40, 68, 69, 82, 83, 94, 101], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 57, 59, 64, 66, 67, 71, 73, 85, 87, 93, 97, 98], "boolean": [2, 7, 10, 22, 40, 43, 51, 57, 59, 62, 67, 69, 71, 73, 74, 79, 83, 84, 87, 88, 91, 93, 98, 101, 102], "label_issues_mask": [2, 43, 67, 69, 80], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 75, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 50, 51, 59, 62, 65, 66, 67, 69, 71, 75, 77, 79, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103], "return_indices_ranked_bi": [2, 40, 43, 59, 75, 80, 82, 83, 93, 94], "significantli": [2, 88, 94, 96, 100], "reduc": [2, 40, 43, 52, 84, 93], "time": [2, 10, 37, 40, 41, 52, 57, 80, 82, 83, 85, 86, 88, 92, 93, 94, 98, 99, 101, 102, 103], "take": [2, 5, 10, 36, 37, 41, 47, 48, 52, 56, 67, 82, 85, 88, 90, 96, 97, 98, 103], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 103], "skip": [2, 10, 37, 41, 69, 84, 93, 97, 103], "slow": [2, 3], "step": [2, 7, 26, 48, 65, 85, 88, 94, 96, 100], "caution": [2, 5, 93], "previous": [2, 5, 13, 52, 66, 69, 80, 82, 84, 86, 90, 91, 96, 100], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 52, 69, 82, 86, 88, 90, 93, 101, 102, 103], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 57, 61, 64, 67, 69, 75, 77, 80, 82, 87, 90, 93, 96, 97, 98, 103], "still": [2, 40, 41, 52, 66, 82, 84, 88, 93, 99], "extra": [2, 37, 41, 52, 56, 57, 58, 69, 88, 91, 93, 96, 99], "receiv": [2, 10, 37, 41, 42, 58, 61, 62, 69, 71, 75, 87, 98], "overwritten": [2, 69], "callabl": [2, 3, 37, 41, 48, 51, 56, 61, 93], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 51, 52, 65, 67, 69, 74, 84, 85, 86, 87, 88, 93, 94, 97, 103], "appropri": [2, 10, 16, 34, 59, 67, 86, 90, 97, 98], "earli": [2, 88], "stop": [2, 88], "x_valid": 2, "y_valid": 2, "could": [2, 4, 7, 10, 22, 36, 52, 66, 82, 86, 88, 90, 97, 101, 103], "f": [2, 7, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "ignor": [2, 37, 41, 51, 56, 69, 74, 78, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "allow": [2, 4, 36, 37, 40, 41, 45, 52, 57, 65, 66, 69, 71, 73, 83, 84, 85, 88, 93, 100, 102], "access": [2, 10, 13, 37, 41, 69, 83, 87, 88, 91, 97], "hyperparamet": [2, 61, 66, 88], "purpos": [2, 86, 87, 93, 97, 101], "want": [2, 5, 10, 36, 40, 53, 57, 59, 69, 83, 85, 86, 88, 91, 92, 96, 98, 99, 100, 102, 103], "explicitli": [2, 8, 10, 41, 69, 93], "yourself": [2, 5, 40, 87], "altern": [2, 7, 10, 48, 52, 56, 57, 67, 80, 83, 84, 88, 90, 91, 93, 94, 96, 97, 99, 101], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 52, 56, 57, 59, 66, 67, 69, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 97, 98, 99, 100, 101, 102], "effect": [2, 10, 27, 37, 41, 57, 66, 69, 88, 90, 91, 93, 99], "offer": [2, 5, 9, 10, 83, 84, 86, 87, 91, 93, 94, 97], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 57, 69, 83, 86, 88, 91, 93, 94, 96, 98, 99, 100, 101, 102], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 66, 69, 82, 86], "label_issues_df": [2, 69, 88], "similar": [2, 10, 36, 37, 41, 52, 57, 61, 62, 64, 66, 69, 73, 77, 85, 86, 87, 88, 90, 91, 93, 94, 98, 99, 102], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 51, 56, 58, 59, 61, 64, 65, 66, 69, 73, 74, 75, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 52, 62, 69, 86, 87], "were": [2, 3, 5, 36, 41, 58, 64, 77, 82, 84, 90, 93, 94, 96, 98, 100, 102], "present": [2, 3, 5, 10, 12, 13, 20, 36, 52, 66, 74, 79, 88, 90, 93, 99], "actual": [2, 3, 5, 36, 57, 58, 67, 87, 93, 94, 103], "num_class": [2, 36, 40, 52, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99], "uniqu": [2, 31, 52, 74, 86, 93, 97, 99], "given_label": [2, 5, 25, 30, 36, 46, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102, 103], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 50, 51, 52, 67, 93, 94, 99], "trick": [2, 93], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 50, 57, 65, 66, 67, 79, 85, 86, 87, 88, 90, 91, 98, 99], "account": [2, 36, 57, 61, 66, 67, 83, 91, 93, 94, 96, 97, 99, 101], "word": [2, 3, 51, 77, 78, 93], "remov": [2, 10, 31, 36, 37, 41, 43, 69, 79, 82, 83, 87, 88, 90, 91, 92, 93, 94, 97, 99, 101], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 52, 57, 58, 64, 67, 69, 73, 77, 84, 86, 87, 88, 91, 94, 97, 99, 102], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 52, 56, 67, 69, 71, 79, 80, 82, 83, 84, 87, 88, 90, 91, 93, 94, 97, 98, 99, 100, 101, 102], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 50, 51, 52, 57, 59, 61, 66, 67, 69, 70, 71, 79, 82, 83, 84, 88, 91, 92, 93, 94, 99, 100, 101], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 50, 60, 62, 63, 64, 65, 66, 67, 68, 69, 72, 76, 79, 82, 83, 85, 86, 88, 89, 95, 97, 101, 102, 103], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 52, 67, 69], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 56, 69, 71, 73, 75, 93], "test": [2, 5, 10, 26, 41, 48, 56, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 100, 101, 103], "expect": [2, 3, 37, 41, 43, 48, 57, 66, 67, 69, 82, 83, 93, 94, 96, 97, 98, 101, 103], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 65, 69, 82, 83, 84, 86, 87, 88, 93, 94, 96, 100, 101, 102], "simpli": [2, 10, 36, 67, 83, 86, 87, 90, 91, 93, 94, 97, 101, 102, 103], "quantifi": [2, 5, 7, 10, 13, 43, 61, 66, 69, 79, 87, 88, 90, 91, 94, 98], "save_spac": [2, 10, 68, 69], "potenti": [2, 10, 36, 43, 51, 59, 62, 65, 67, 69, 71, 73, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "cach": [2, 83, 91], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 52, 53, 56, 57, 58, 80, 82, 83, 84, 86, 87, 90, 91, 92, 93, 94, 96, 101, 102], "unlik": [2, 10, 43, 45, 48, 56, 58, 59, 61, 77, 86, 96, 97, 99, 101], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 52, 57, 59, 67, 71, 73, 78, 79, 86, 88, 93, 94, 96, 103], "mask": [2, 40, 43, 51, 52, 59, 62, 67, 69, 71, 73, 74, 79, 85, 92, 93, 96, 98, 102, 103], "prefer": [2, 67, 75, 97], "plan": 2, "subsequ": [2, 3, 37, 41, 83, 91, 93, 94, 98], "invok": [2, 37, 41, 94, 100], "scratch": [2, 69], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 56, 57, 59, 61, 65, 66, 67, 69, 70, 71, 73, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "share": [2, 67, 69], "mostli": [2, 52, 64, 69, 97, 101], "longer": [2, 34, 47, 48, 51, 69, 80, 83, 91, 93, 98], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 69, 77, 86, 87, 92, 103], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 57, 58, 61, 65, 69, 74, 77, 84, 86, 88, 90, 91, 92, 93, 94, 96, 99], "docstr": [2, 36, 37, 41, 52, 69, 92, 94], "unless": [2, 37, 41, 69, 93], "our": [2, 3, 10, 56, 57, 67, 69, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "is_label_issu": [2, 30, 69, 83, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "entir": [2, 10, 26, 40, 43, 46, 58, 59, 64, 67, 69, 71, 73, 74, 79, 85, 86, 87, 93, 98, 99, 100, 102, 103], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 57, 58, 59, 62, 65, 67, 69, 70, 71, 73, 74, 80, 87, 88, 90, 91, 93, 96, 101], "label_qu": [2, 57, 69, 83, 94, 96, 101], "measur": [2, 5, 36, 57, 58, 69, 79, 82, 92, 93, 94, 96, 97, 101, 102, 103], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 57, 58, 59, 61, 62, 64, 67, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 101], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 50, 57, 58, 61, 64, 65, 67, 69, 70, 73, 77, 83, 84, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "eas": 2, "comparison": [2, 37, 41, 65, 94, 96], "against": [2, 37, 41, 86, 90, 93, 96, 97], "predicted_label": [2, 5, 25, 30, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102], "ad": [2, 37, 41, 85, 87, 96, 101], "precis": [2, 50, 59, 62, 65, 93, 94, 102, 103], "definit": [2, 7, 34, 48, 69, 82, 90], "accessor": [2, 69], "describ": [2, 10, 18, 57, 66, 67, 69, 75, 77, 94, 96, 97, 98, 100, 103], "precomput": [2, 4, 5, 46, 69, 87, 88, 90, 91, 92, 94], "clear": [2, 37, 41, 69, 83, 91, 101], "save": [2, 5, 16, 37, 40, 41, 65, 69, 93, 98, 102, 103], "space": [2, 5, 10, 66, 69, 88, 90, 92], "place": [2, 37, 41, 52, 69, 82, 96], "larg": [2, 9, 10, 40, 69, 88, 90, 91, 93, 98, 99, 102, 103], "deploi": [2, 9, 10, 69, 88, 90, 91, 93], "care": [2, 10, 37, 41, 69, 91, 93, 94], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 69, 93, 94, 96, 98, 101], "cannot": [2, 5, 12, 14, 52, 100, 103], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 69], "__init_subclass__": [2, 39, 41, 68, 69], "set_": [2, 41, 69], "_request": [2, 41, 69], "pep": [2, 41, 69], "487": [2, 41, 69], "look": [2, 5, 7, 16, 37, 41, 52, 69, 74, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 103], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 52, 57, 58, 62, 65, 69, 74, 77, 78, 79, 84, 85, 86, 90, 91, 94, 96, 99, 102, 103], "__metadata_request__": [2, 41, 69], "infer": [2, 41, 52, 69, 74, 78, 82, 83, 88, 96, 97], "signatur": [2, 37, 41, 69], "accept": [2, 37, 41, 50, 67, 69, 86, 87, 93], "metadata": [2, 41, 69, 88, 90, 91, 103], "through": [2, 5, 7, 41, 69, 83, 84, 85, 87, 91, 92, 93, 96, 98, 99], "develop": [2, 9, 41, 69, 93, 94, 103], "request": [2, 41, 69, 82, 83, 87, 91, 92, 97, 103], "those": [2, 3, 4, 10, 40, 41, 43, 56, 57, 59, 65, 69, 73, 77, 78, 79, 84, 88, 93, 98, 102], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 52, 62, 65, 66, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "www": [2, 41, 69, 99], "org": [2, 4, 18, 37, 38, 41, 52, 66, 69, 93, 94, 103], "dev": [2, 41, 69], "0487": [2, 41, 69], "get_metadata_rout": [2, 39, 41, 68, 69], "rout": [2, 41, 69], "pleas": [2, 37, 41, 56, 69, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 101, 103], "guid": [2, 7, 10, 41, 69, 80, 88, 89], "mechan": [2, 37, 41, 69], "metadatarequest": [2, 41, 69], "encapsul": [2, 16, 41, 64, 69], "get_param": [2, 39, 41, 55, 56, 68, 69], "subobject": [2, 41, 69], "param": [2, 10, 37, 41, 56, 66, 69, 93], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 57, 58, 65, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101, 102, 103], "set_fit_request": [2, 39, 41, 68, 69], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 56, 57, 58, 62, 64, 65, 67, 69, 74, 78, 84, 85, 86, 93, 96, 97, 98, 103], "unchang": [2, 37, 41, 69, 103], "relev": [2, 16, 26, 41, 69, 88], "enable_metadata_rout": [2, 41, 69], "set_config": [2, 41, 69], "meta": [2, 41, 69], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 50, 69, 84, 93], "alia": [2, 37, 41, 69], "metadata_rout": [2, 41, 69], "retain": [2, 41, 52, 69], "chang": [2, 32, 34, 37, 40, 41, 45, 69, 77, 82, 83, 84, 86, 91, 93, 98, 99, 103], "version": [2, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 52, 55, 56, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "sub": [2, 41, 64, 69], "pipelin": [2, 41, 69, 101], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 50, 51, 52, 59, 66, 69, 71, 73, 74, 78, 83, 91, 93], "updat": [2, 13, 37, 40, 41, 56, 69, 80, 85, 86, 88], "set_param": [2, 39, 41, 55, 56, 68, 69], "simpl": [2, 37, 41, 43, 57, 67, 69, 82, 83, 85, 86, 87, 88, 90, 91, 96, 99, 101], "well": [2, 3, 9, 10, 37, 41, 45, 46, 57, 59, 65, 67, 69, 74, 77, 78, 80, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99], "nest": [2, 37, 41, 42, 53, 69, 75, 77, 78, 103], "latter": [2, 37, 41, 69, 99], "compon": [2, 41, 69], "__": [2, 41, 69], "set_score_request": [2, 68, 69], "structur": [3, 66, 82, 85, 90, 93], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 57, 66, 67, 71, 73, 77, 87, 88, 90, 92, 93, 94, 98, 103], "channel": [3, 84, 94], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 52, 58, 83, 87, 92], "inv": 3, "confident_joint": [3, 22, 36, 43, 52, 58, 59, 80, 93, 94], "un": 3, "under": [3, 10, 37, 41, 58, 65, 66, 87, 99], "joint": [3, 36, 43, 46, 52, 58, 59, 92], "num_label_issu": [3, 40, 43, 59, 74, 78, 80], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 52, 53, 59, 97], "don": [3, 79, 87, 88, 90, 91, 94, 98, 101], "statis": 3, "compute_confident_joint": [3, 36, 43, 52, 59, 94], "off": [3, 43, 52, 64, 88, 94, 98, 99], "j": [3, 5, 36, 37, 41, 42, 43, 59, 62, 65, 66, 75, 77, 78, 85, 86, 87, 94, 102, 103], "confident_learn": [3, 43, 59, 94], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 52, 57, 96], "cj": [3, 46, 52], "axi": [3, 31, 46, 48, 50, 71, 74, 84, 85, 86, 87, 88, 93, 94, 96, 97, 99, 101, 102], "bincount": [3, 85, 86, 87, 94, 96, 97], "alwai": [3, 10, 37, 41, 52, 82, 83, 84, 94, 101], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 64, 65, 71, 73, 82, 87, 88, 90, 92, 93, 94, 99, 101], "As": [3, 7, 79, 86, 87, 91, 94, 101, 103], "add": [3, 5, 7, 12, 13, 37, 41, 56, 65, 83, 84, 85, 86, 87, 88, 91, 93, 94, 97], "approach": [3, 4, 36, 40, 43, 56, 82, 85, 90, 94, 97, 99, 101], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 51, 67, 83, 87, 91, 94, 101], "know": [3, 10, 86, 87, 88, 90, 91, 93, 94, 96, 101], "cut": [3, 64, 79, 94], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 98, 99, 103], "underestim": 3, "few": [3, 9, 10, 65, 79, 87, 93, 96, 97, 98, 99, 103], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 51, 61, 62, 64, 65, 67, 70, 77, 92, 93, 97, 102, 103], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 73, 74, 75, 79, 80, 84, 93, 97, 99, 103], "num_issu": [3, 7, 40, 84, 85, 86, 87, 88, 90, 91, 94], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 56, 57, 83, 85, 92, 93, 98, 101, 103], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 94], "v": [3, 10, 40, 58, 59, 61, 67, 85, 86, 87, 97, 98, 99, 100], "rest": [3, 5, 7, 9, 10, 11, 35, 58, 59, 61, 69, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101], "fashion": [3, 5, 71, 82], "2x2": 3, "incorrectli": [3, 36, 58, 59, 62, 90, 103], "calibrated_cj": 3, "c": [3, 10, 50, 51, 59, 67, 79, 82, 84, 86, 87, 90, 91, 93, 94, 97, 98, 99, 100, 101], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 51, 57, 61, 64, 70, 73, 77, 78, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 102, 103], "truli": [3, 99, 102], "estimate_joint": [3, 36, 94], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 59, 65, 94, 98, 100, 102, 103], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 57, 58, 65, 74, 98, 99], "done": [3, 10, 56, 69, 86, 93, 94, 97, 99, 100], "overfit": [3, 10, 62, 65, 82, 84, 85, 86, 87, 88, 90, 91, 100], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 52, 57, 58, 64, 65, 66, 67, 77, 82, 84, 85, 86, 93, 94, 97, 98], "baselin": [3, 37, 43, 83, 99, 101], "proxi": 3, "union": [3, 5, 12, 48, 52, 53, 59, 65, 69, 77, 93], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 52, 57, 59, 65, 73, 75, 77, 78, 84, 103], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 5, 10, 40, 46, 57, 71, 73, 79, 83, 85, 88, 93, 102], "practic": [3, 82, 83, 87, 88, 94, 99, 101], "complet": [3, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "gist": 3, "cj_ish": 3, "guess": [3, 46, 94, 96], "8": [3, 5, 7, 8, 47, 48, 49, 51, 61, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "parallel": [3, 43, 65, 75, 92], "again": [3, 56, 82, 93, 99], "simplifi": [3, 14, 93], "understand": [3, 9, 36, 58, 65, 87, 94, 101, 102, 103], "100": [3, 37, 41, 50, 67, 82, 83, 86, 87, 88, 90, 92, 93, 94, 97, 98, 99, 103], "optim": [3, 37, 38, 41, 56, 88, 96], "speed": [3, 43, 83, 92, 93, 101], "dtype": [3, 23, 25, 26, 31, 37, 41, 51, 52, 61, 77, 84, 98], "enumer": [3, 37, 41, 84, 85, 86, 87, 88, 103], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 52, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "num_confident_bin": 3, "argmax": [3, 43, 67, 71, 74, 84, 93, 94, 98, 99, 102], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 52, 53, 61, 70, 82, 84], "eqn": [3, 46], "margin": [3, 43, 46, 48, 67], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 58, 94, 100], "poorli": [3, 46, 82], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 94], "variabl": [3, 7, 14, 27, 52, 69, 70, 84, 86, 90, 94, 97, 101], "exact": [3, 46, 82, 85, 86, 87, 88, 90], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 59, 64, 73, 75, 77, 86, 87, 88, 93, 98, 102], "percent": 3, "often": [3, 36, 46, 58, 93, 94, 100, 102], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 52, 53, 65, 82, 83, 84, 85, 86, 88, 90, 91, 93, 97, 98, 99, 101], "wai": [3, 5, 56, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 100], "pro": 3, "con": 3, "pred_proba": [3, 100], "combin": [3, 36, 86, 88, 92, 93, 94, 100, 101], "becaus": [3, 46, 52, 64, 91, 93, 94, 96, 98], "littl": [3, 40, 92, 98, 103], "uniform": [3, 67, 92, 93, 94], "20": [3, 7, 42, 78, 84, 88, 91, 92, 93, 94, 98, 101, 102, 103], "Such": [3, 88, 99], "bound": [3, 23, 25, 37, 41, 51, 61, 62, 64, 65, 98], "reason": [3, 22, 37, 41], "comment": [3, 51, 103], "end": [3, 5, 37, 41, 65], "file": [3, 5, 12, 39, 40, 55, 65, 82, 84, 86, 90, 91, 92, 93, 98, 99, 102, 103], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 94], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 80, 82, 85, 86, 87, 88, 90, 91, 94, 102, 103], "five": [3, 62, 65, 94, 98], "estimate_cv_predicted_prob": [3, 94], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 98], "confident_threshold": [3, 10, 22, 23, 40, 66], "valuat": [4, 9, 18], "assess": [4, 98], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 85, 86, 87, 88, 90, 91, 93, 94, 96], "contribut": [4, 10, 18, 98], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 90], "metric": [4, 5, 10, 18, 19, 26, 31, 50, 52, 56, 65, 66, 82, 83, 84, 88, 90, 91, 94, 101], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 65, 66, 67, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 66, 87, 91, 99], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 50, 66, 86, 87, 88, 90, 91, 93, 94, 99], "knn": [4, 10, 13, 18, 26, 31, 50, 66, 90, 99], "graph": [4, 5, 10, 13, 16, 18, 26, 31], "calcul": [4, 10, 18, 26, 40, 48, 50, 57, 61, 62, 64, 65, 66, 69, 73, 88, 92], "directli": [4, 5, 14, 16, 33, 34, 40, 56, 57, 83, 87, 91, 93, 97, 98, 101], "lowest": [4, 10, 57, 65, 87, 88, 93, 96, 97, 98, 102], "fall": [4, 10, 64, 73, 77, 94, 99], "flag": [4, 10, 22, 26, 43, 48, 58, 59, 62, 69, 79, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 99, 101, 102], "approxim": [4, 10, 18, 40, 66, 96], "top": [4, 5, 10, 36, 40, 42, 43, 52, 59, 62, 65, 67, 74, 78, 79, 83, 84, 86, 87, 90, 91, 92, 93, 94, 98, 99, 101, 103], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 97, 99, 101, 103], "arxiv": [4, 18, 94], "ab": [4, 18, 94, 98], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 66, 79, 83, 84, 86, 87, 90, 91, 94, 97, 101], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 59, 79, 83, 84, 86, 87, 88, 91, 93, 94, 99], "suppli": [4, 97, 98, 101], "2d": [4, 5, 16, 32, 40, 48, 49, 51, 52, 57, 82, 84, 97], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 58, 84, 85, 86, 87, 88, 90, 91, 94], "num_featur": [4, 5, 16, 37, 41, 56], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 64, 66, 90, 99], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56], "nearestneighbor": [4, 5, 10, 18, 66, 90, 99], "cosin": [4, 10, 50, 66, 99], "dim": [4, 66, 88, 102], "euclidean": [4, 5, 10, 50, 64, 66, 90], "dimension": [4, 26, 52, 84, 94, 99], "exce": [4, 85, 88], "transform": [4, 10, 32, 48, 50, 52, 66, 67, 82, 83, 87, 88, 91, 99, 103], "rel": [4, 10, 36, 57, 58, 66, 86, 87, 88, 90, 91, 94, 99], "adjust": [4, 38, 43, 61, 66, 67, 79, 94], "closer": [4, 10, 64, 98], "highli": [4, 87, 88], "influenti": 4, "posit": [4, 5, 37, 41, 50, 52, 65, 92, 99], "convers": 4, "neg": [4, 10, 64, 65, 86, 87, 92], "valueerror": [4, 5, 12, 13, 34, 45, 48, 50, 93], "neither": [4, 5, 10, 14, 98], "nor": [4, 5, 10, 14], "larger": [4, 18, 69, 71, 73, 85, 88, 91, 92, 93], "55": [4, 51, 92, 98, 101], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 84, 88, 89, 90, 91, 93, 94, 97, 98, 101], "kind": [5, 6, 7, 10, 84, 85, 86, 88, 90, 91, 92, 94], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 53, 57, 65, 75, 82, 83, 84, 86, 90, 91, 94, 96, 99, 100], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 52, 55, 59, 66, 69, 70, 79], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 55, 56, 71, 73], "pip": [5, 7, 9, 11, 35, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "github": [5, 7, 9, 11, 35, 37, 38, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 52, 66, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "egg": [5, 7, 9, 11, 35, 79, 92], "label_nam": [5, 7, 8, 10, 12, 18, 31, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "image_kei": [5, 10, 88], "interfac": [5, 9, 10, 79, 93, 94], "librari": [5, 10, 41, 62, 65, 66, 79, 83, 86, 91, 92, 93], "goal": [5, 101], "track": [5, 7, 13, 14, 79, 85, 86, 92, 93, 94], "intermedi": [5, 9, 87], "statist": [5, 10, 13, 22, 26, 36, 57, 58, 65, 87, 90, 91, 94], "convert": [5, 10, 12, 34, 37, 41, 49, 50, 53, 57, 64, 73, 77, 80, 83, 84, 88, 91, 92, 93, 96, 97, 98], "hug": [5, 10, 12, 88], "face": [5, 10, 12, 16, 88, 92, 97], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 57, 58, 64, 66, 85, 86, 87, 88, 91, 93, 94, 96, 98], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 57, 58, 70, 74, 77, 78, 83, 90, 91, 93, 96, 97, 103], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 52, 57, 58, 61, 62, 64, 65, 86, 87, 90, 91, 94, 96, 97, 98], "path": [5, 12, 37, 40, 41, 65, 84, 86, 93, 98], "local": [5, 7, 10, 12, 37, 38, 41, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 66, 75, 77, 78, 79, 81, 86, 87, 89, 92, 93, 94, 95, 96, 99], "txt": [5, 12, 103], "csv": [5, 12, 82, 83, 90, 91, 101], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 52, 57, 97], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 83, 85, 86, 87, 91, 95, 96, 99], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 97], "imag": [5, 9, 36, 41, 62, 64, 65, 66, 71, 73, 74, 79, 86, 87, 89, 92, 93, 95, 96, 97, 98, 100, 102], "field": [5, 10, 37, 41], "themselv": [5, 82, 83, 101], "pil": [5, 88], "cleanvis": [5, 10], "level": [5, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 51, 75, 77, 87, 88, 93, 95, 97, 102], "load_dataset": [5, 12, 88], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 85], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 58, 65, 74, 78, 79, 92, 94, 98, 102, 103], "empti": [5, 12, 46, 57, 87, 93, 97], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "sort": [5, 16, 40, 43, 48, 57, 59, 62, 64, 65, 67, 73, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "common": [5, 13, 16, 87, 89, 92, 93, 94, 97, 98, 102], "real": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "world": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "interact": [5, 16, 91, 93], "thereof": [5, 16], "insight": [5, 16, 65, 96], "best": [5, 9, 10, 16, 47, 57, 67, 82, 83, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 103], "properli": [5, 10, 40, 47, 52, 53, 71, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 101, 102], "respect": [5, 37, 41, 62, 65, 84, 85, 86, 87, 88, 90, 91, 94, 97, 98], "lexicograph": [5, 47, 52, 84, 85, 86, 87, 88, 90, 91, 94, 97], "squar": [5, 52, 69, 92, 101], "csr": 5, "evenli": 5, "omit": [5, 64, 65, 88, 98], "itself": [5, 32, 37, 41, 98], "three": [5, 10, 36, 57, 58, 69, 74, 82, 84, 85, 86, 87, 90, 92, 94, 96, 100, 101, 102, 103], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 79, 90, 97, 103], "th": [5, 42, 47, 51, 52, 57, 59, 62, 64, 65, 66, 75, 77, 78, 91, 97, 98, 103], "ascend": [5, 36, 58, 88, 94], "segment": [5, 71, 73, 74, 95], "reflect": [5, 82, 83, 90, 91, 96, 98, 99, 101], "maintain": [5, 56], "kneighbors_graph": [5, 18, 90], "illustr": 5, "todens": 5, "second": [5, 48, 52, 65, 67, 86, 93, 94, 103], "duplic": [5, 9, 21, 22, 37, 41, 79, 85, 86, 94, 101], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 57, 93, 96, 103], "unspecifi": [5, 16, 43, 59], "interest": [5, 16, 22, 74, 78, 82, 83, 91, 94, 101, 102, 103], "constructor": [5, 10, 16, 23, 30], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 69, 70, 92, 101, 103], "random_st": [5, 82, 84, 85, 86, 87, 88, 94, 97, 99], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 79, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101], "comprehens": [5, 79, 88, 97, 101], "nbr": 5, "n_neighbor": [5, 10, 18, 66], "mode": [5, 11, 18, 37, 40, 41, 99], "4x4": 5, "float64": [5, 26, 37, 41, 77], "compress": [5, 10, 52, 71, 73], "toarrai": 5, "NOT": [5, 40, 91], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 87], "suppos": [5, 10, 62, 82, 83, 99, 101], "who": [5, 64, 82, 90, 94, 103], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 56, 86, 93], "clean_learning_kwarg": [5, 10, 23, 30, 93, 101], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 80], "prune_by_noise_r": [5, 43, 59, 94], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 78, 79, 84, 85, 86, 87, 90, 91, 93, 94, 97, 101, 103], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 55, 56, 58, 63, 72, 73, 75, 76, 77, 80, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 101, 102, 103], "show": [5, 7, 26, 37, 41, 47, 52, 65, 74, 78, 82, 85, 87, 88, 90, 91, 92, 93, 94, 96, 99, 101, 102, 103], "suffer": [5, 10, 13, 22, 59, 67, 78, 103], "onc": [5, 22, 36, 37, 41, 82, 85, 86, 93, 94, 97, 98], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 57, 58, 61, 64, 65, 69, 73, 74, 75, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 98, 103], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 61, 64, 66, 67, 73, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 98, 99, 103], "compar": [5, 57, 66, 77, 86, 87, 90, 94, 98], "issue_summari": [5, 7, 10, 13, 85, 86], "With": [5, 9, 10, 40, 83, 91, 93, 94, 96, 101, 102, 103], "usag": [5, 40, 56], "usual": [5, 12, 32, 33, 88, 96, 101], "ti": [5, 57], "exhibit": [5, 7, 10, 13, 74, 87, 88, 90, 91, 94, 98], "ie": [5, 69], "likelihood": [5, 10, 40, 42, 43, 59, 64, 66, 67, 71, 75], "wherea": [5, 52, 59, 100], "outlier": [5, 9, 14, 21, 22, 31, 44, 67, 79, 85, 86, 87, 94, 95, 101], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 94, 101], "global": [5, 7, 22, 37, 41], "non_iid": [5, 10, 14, 26, 87, 88, 90, 91, 94], "hypothesi": 5, "iid": [5, 7, 9, 26, 90, 94], "never": [5, 84, 94, 97, 99, 100], "someth": [5, 7, 37, 41, 67, 98], "123": [5, 85, 86, 87], "456": [5, 82, 83, 84], "nearest_neighbor": 5, "7": [5, 48, 49, 56, 75, 77, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 61, 75, 77, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "distance_to_nearest_neighbor": [5, 86, 87, 88, 90, 91, 94], "789": 5, "get_issu": [5, 10, 13, 84, 85, 87, 88, 90, 91, 93, 97, 101], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86, 87], "focu": [5, 13, 91, 102, 103], "full": [5, 10, 13, 40, 56, 65, 85, 88, 103], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 58, 74, 78, 79, 102], "specific_issu": [5, 13], "lie": [5, 10, 66, 67, 83, 84, 86, 87, 88, 90, 91, 94], "get_issue_summari": [5, 13, 85, 87], "get_info": [5, 13, 87, 91], "yet": [5, 17, 27, 56, 92, 96], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 86], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 84, 86, 88], "load": [5, 12, 40, 65, 88, 92, 93, 94, 98, 99, 102, 103], "futur": [5, 10, 22, 37, 41, 57, 79, 83, 84, 86, 91, 93], "overwrit": [5, 86], "separ": [5, 36, 48, 61, 86, 87, 88, 93, 98, 100], "static": 5, "rememb": [5, 91, 93, 94], "part": [5, 10, 37, 41, 43, 62, 64, 65, 84, 86, 92, 102, 103], "ident": [5, 10, 22, 52, 85, 91], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 79, 82, 83, 84, 88, 93, 96, 101], "walk": 7, "alongsid": [7, 37, 41, 86, 93], "pre": [7, 8, 10, 37, 41, 86, 87, 101], "runtim": [7, 37, 40, 41, 69, 71, 73, 84, 88, 93], "issue_manager_factori": [7, 14, 86], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "thing": [7, 41, 83, 94, 101], "next": [7, 57, 79, 82, 83, 84, 85, 90, 91, 93, 96, 98, 101, 103], "dummi": 7, "randint": [7, 31, 48, 85, 86, 87, 93], "mark": [7, 10, 80, 98, 99, 101], "regard": [7, 87, 94], "rand": [7, 48, 85, 86, 87], "is_": [7, 10, 86], "_issu": [7, 10, 86], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "whole": [7, 26, 37, 41, 87], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "popul": [7, 87, 91], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 98], "raw_scor": 7, "bit": 7, "involv": [7, 40, 74, 78, 85, 93, 97], "intermediate_arg": 7, "min": [7, 48, 64, 77, 86, 93, 99], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 71, 77, 91, 93], "easili": [7, 46, 80, 82, 83, 84, 85, 87, 90, 91, 94, 96, 97, 99, 100, 101, 102], "hard": [7, 41, 92, 99], "sai": [7, 10, 37, 41, 97, 102], "anoth": [7, 22, 36, 40, 51, 64, 67, 83, 90, 91, 93, 94, 96, 99], "try": [7, 9, 10, 40, 43, 56, 57, 71, 73, 79, 85, 87, 88, 90, 91, 93, 94, 102], "won": [7, 37, 41, 86, 87, 93, 97], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 86], "instanti": [7, 16, 40, 56, 66, 83, 84, 87, 90], "477762": 7, "286455": 7, "term": [7, 10, 46, 52, 65, 84, 85, 86, 87, 88, 90, 91, 94], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 98, 99, 101, 102, 103], "003042": 7, "058117": 7, "11": [7, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "121908": 7, "15": [7, 50, 56, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "169312": 7, "17": [7, 83, 84, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 86, 87, 92, 94], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 92, 98, 103], "dbscan": [8, 10, 31, 93], "hdbscan": [8, 93], "etc": [8, 10, 22, 32, 37, 41, 46, 56, 57, 75, 79, 86, 87, 90, 91, 93, 94, 97, 101], "sensit": [8, 10, 50], "ep": [8, 31, 65], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 93], "your_data": 8, "get_pred_prob": [8, 85], "n_cluster": [8, 31, 93], "cluster_id": [8, 10, 31, 93], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 87, 88, 90, 91, 93, 94], "search": [9, 10, 20, 26, 27, 51, 69, 93, 100], "nondefault": 9, "Near": [9, 93], "imbal": [9, 21, 61, 66, 67, 87], "null": [9, 14, 21, 87, 88, 91, 94], "togeth": [9, 10, 46, 83, 86, 87, 88, 90, 91, 94, 101, 103], "built": [9, 48], "own": [9, 37, 39, 41, 55, 61, 62, 65, 71, 75, 82, 83, 84, 87, 88, 90, 91, 93, 96, 97, 101, 102, 103], "prerequisit": 9, "basic": [9, 41, 56, 90, 91, 99], "fulli": [9, 10, 37, 41, 56, 93], "platform": [9, 10, 79, 88, 90, 91, 93], "write": [9, 10], "code": [9, 10, 37, 41, 46, 52, 56, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "being": [9, 10, 13, 36, 37, 41, 43, 48, 51, 52, 67, 82, 90, 93, 94, 101, 102], "100x": [9, 10], "faster": [9, 10, 40, 66, 69, 71, 73, 93, 94], "intellig": [9, 10], "quickli": [9, 10, 38, 82, 84, 88, 90, 91, 93, 97, 99, 102, 103], "fix": [9, 10, 57, 83, 85, 91, 94, 101], "scientist": [9, 10], "million": [9, 10, 103], "thank": [9, 10], "ai": [9, 10, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103], "suggest": [9, 10, 36, 57, 58, 64, 83, 88, 91, 93, 101], "power": [9, 10, 88, 90, 91, 92, 94, 103], "automl": [9, 10, 79, 93], "system": [9, 10, 84, 85, 88, 90, 91, 102], "foundat": [9, 10, 79], "improv": [9, 10, 57, 82, 83, 87, 88, 92, 93, 94, 101, 102], "click": [9, 10, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "tune": [9, 10, 83, 84, 91, 92, 99], "serv": [9, 10, 13, 16, 96], "auto": [9, 10, 82, 83, 85, 87, 92, 93, 101], "free": [9, 10, 79, 84, 87, 88, 90, 91, 93, 94], "page": [10, 87, 93, 94], "variou": [10, 13, 30, 39, 53, 55, 79, 82, 86, 87, 90, 91, 92, 93, 94, 96, 98], "why": [10, 85, 91], "matter": [10, 36, 58, 83, 91], "didn": 10, "plu": [10, 101], "_score": 10, "badli": [10, 64, 82, 83, 103], "issue_scor": 10, "outlier_scor": [10, 28, 86, 87, 88, 90, 91, 94, 99], "atyp": [10, 66, 86, 87, 88, 90, 91, 94, 99], "datapoint": [10, 31, 43, 48, 52, 67, 70, 79, 82, 83, 84, 86, 87, 90, 91, 93, 100, 101], "is_issu": [10, 22], "is_outlier_issu": [10, 86, 87, 88, 90, 91, 94], "annot": [10, 36, 47, 57, 58, 59, 61, 62, 64, 65, 74, 77, 78, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 98, 102], "dissimilar": [10, 90, 91], "preced": 10, "incorrect": [10, 64, 67, 70, 82, 84, 85, 86, 87, 88, 90, 91, 94, 98, 101], "due": [10, 40, 43, 67, 71, 73, 84, 85, 86, 87, 88, 90, 91, 94, 101], "appear": [10, 36, 47, 58, 59, 62, 70, 87, 88, 90, 91, 101, 102], "now": [10, 40, 80, 82, 83, 84, 85, 87, 96, 98, 99, 101, 103], "token": [10, 42, 51, 73, 74, 75, 76, 77, 78, 93, 94, 95], "hamper": [10, 88, 92], "analyt": [10, 79, 93, 96], "lead": [10, 64, 67, 88, 98], "draw": [10, 85, 86, 87], "conclus": [10, 91], "veri": [10, 36, 58, 62, 64, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101], "rare": [10, 43, 65, 86, 87, 88, 90, 91, 93, 94], "anomal": [10, 67, 86, 87, 88, 90, 91, 94], "articl": [10, 40, 93], "blog": 10, "unexpect": [10, 37, 41, 91], "consequ": 10, "inspect": [10, 83, 84, 85, 87, 88, 94, 98, 101], "extrem": [10, 86, 87, 88, 90, 91, 93, 94], "record": [10, 37, 41, 84, 90, 101], "abbrevi": 10, "misspel": 10, "typo": [10, 78], "resolut": 10, "video": [10, 92], "audio": [10, 86, 87, 89, 93], "minor": [10, 51], "variat": 10, "translat": 10, "d": [10, 50, 82, 90, 91, 93, 94, 97, 101, 103], "constant": [10, 31, 69], "median": [10, 30, 50], "question": [10, 22, 79, 94], "nearli": [10, 22, 87, 88, 90, 91], "awar": [10, 80, 94], "presenc": [10, 94], "near_dupl": [10, 14, 19, 85, 86, 87, 88, 90, 91, 93, 94], "signific": [10, 90, 91, 94], "violat": [10, 90, 91, 94], "assumpt": [10, 90, 91, 94], "changepoint": [10, 90, 91, 94], "shift": [10, 90, 91, 94], "drift": [10, 87, 90, 94], "autocorrel": [10, 90, 91, 94], "almost": [10, 90, 91, 94], "adjac": [10, 90, 91, 94], "tend": [10, 36, 46, 90, 91, 94, 102, 103], "sequenti": [10, 37, 41, 56, 88], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 51, 52, 77, 82, 90, 91, 92, 93, 94, 100, 103], "x1": [10, 62, 65, 98], "x2": [10, 62, 65, 98], "10th": 10, "100th": 10, "90": [10, 77, 82, 90, 94, 100, 101], "similarli": [10, 37, 41, 86, 88, 90, 93, 98], "math": [10, 88], "behind": [10, 66, 94], "proper": [10, 52, 57, 62, 65, 82, 88, 91, 93, 96, 98], "scenario": [10, 67, 85, 86, 87], "underli": [10, 42, 66, 75, 77, 103], "stem": [10, 66, 99], "evolv": 10, "influenc": 10, "act": [10, 64, 86], "accordingli": [10, 32], "emploi": [10, 97, 99], "partit": [10, 100], "ahead": 10, "good": [10, 37, 41, 50, 56, 58, 64, 67, 71, 73, 74, 79, 85, 88, 90, 91], "problem": [10, 32, 40, 48, 74, 79, 86, 87, 88, 91, 93], "deploy": [10, 82, 83, 94, 101], "overlook": [10, 64, 98], "fact": 10, "thu": [10, 36, 41, 58, 82, 84, 90, 91, 94, 100, 103], "diagnos": [10, 87, 93], "rarest": [10, 87], "q": [10, 98], "subpar": 10, "special": [10, 51], "techniqu": [10, 98], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 87, 88, 90, 91, 94], "excess": [10, 88], "dark": [10, 102], "bright": [10, 103], "blurri": [10, 88], "lack": [10, 56], "unusu": [10, 98, 99], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 79, 87, 88, 90, 91, 95], "get_self_confidence_for_each_label": [10, 48, 67], "r": [10, 40, 69, 85, 86, 87, 101, 102], "tabular": [10, 79, 81, 86, 87, 89, 93, 96], "categor": [10, 66, 81, 82, 86, 87, 89, 93, 101], "encod": [10, 49, 65, 71, 74, 82, 83, 90, 91, 93, 101, 102], "miss": [10, 27, 37, 41, 52, 62, 64, 85, 90, 93, 98, 101], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 52, 66, 93], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 87], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 79, 92], "health_summary_kwarg": 10, "tandem": [10, 92], "view": [10, 37, 41, 42, 43, 73, 75, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 103], "ood_kwarg": 10, "outofdistribut": [10, 28, 66, 99], "outsid": [10, 93, 97], "outlierissuemanag": [10, 14, 21, 28, 86], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 86, 87, 88, 91, 93, 94, 96, 97, 98, 101, 102], "howev": [10, 37, 41, 52, 82, 83, 84, 88, 90, 91, 96, 100, 102], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 84, 86, 92, 96, 98], "fewer": [10, 43, 52, 98], "vice": [10, 58], "versa": [10, 58], "light": [10, 88, 92, 98, 102], "29": [10, 85, 88, 92, 96, 97, 98, 102, 103], "low_inform": [10, 88], "odd_aspect_ratio": [10, 88], "35": [10, 86, 92, 96, 97, 98], "odd_siz": [10, 88], "doc": [10, 37, 41, 79, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "studio": [11, 79, 87, 88, 90, 91, 93], "data_issu": [11, 15, 16, 33, 86], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 56, 67, 85, 86, 87, 88, 96], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 65, 96], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 88], "dataissu": [13, 15, 16, 33], "central": [13, 103], "repositori": 13, "strategi": [13, 48, 93], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 52, 59, 62, 65, 69, 71, 73, 85, 86, 87, 93], "recomput": [13, 83], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 58, 79], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 66, 86], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 71, 73], "stabl": [15, 21, 24, 29, 39, 44, 52, 55, 66, 80], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 94, 98, 102, 103], "creation": [16, 41], "execut": [16, 37, 41, 86, 93, 98], "coordin": [16, 62, 64, 65, 98, 103], "behavior": [16, 36, 37, 41, 65, 85, 93], "At": [16, 65, 93], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 56], "valuabl": 18, "vstack": [18, 52, 88, 92, 93, 94, 96, 97], "25": [18, 26, 37, 48, 50, 85, 87, 88, 92, 94, 96, 97, 98, 103], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 51, 52], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 85, 86, 87, 88, 93, 94, 96, 97], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 83, 91, 99], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 51, 52, 82, 84, 86, 88, 92, 94, 97], "near_duplicate_set": [19, 21, 86, 87, 88, 90, 91, 93, 94], "occurr": [19, 20, 22, 26, 27, 28, 31, 51], "median_nn_dist": 19, "near_duplicate_scor": [19, 86, 87, 88, 90, 91, 93, 94], "class_imbalance_scor": [20, 87], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 64, 79, 94, 103], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 66, 67, 86, 87, 88, 91, 94, 99], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 102], "priori": [22, 94], "abstract": [22, 32], "applic": [23, 57, 93, 94, 96, 103], "typevar": [23, 25, 37, 41, 51, 61, 64, 65], "scalartyp": [23, 25], "covari": [23, 25, 69, 101], "summary_dict": 23, "label_scor": [23, 25, 30, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 67, 71, 73, 98, 102], "empir": [26, 47, 57], "cumul": 26, "ecdf": 26, "histogram": [26, 90, 101], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 87, 90, 91, 94], "null_track": 27, "extend": [27, 49, 56, 88, 98, 99, 103], "superclass": 27, "arbitrari": [27, 36, 73, 77, 86, 99, 101], "prompt": 27, "address": [27, 83, 86, 87, 91, 93], "enabl": [27, 41], "null_scor": [27, 87], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "multipli": [30, 50], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 52, 65, 83, 103], "50": [31, 41, 85, 88, 93, 94, 96, 98, 99, 101], "keepdim": [31, 93], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 84, 96], "npt": 31, "int_": 31, "id": [31, 57, 86, 88, 93, 96], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 87], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": 32, "mainli": [32, 99, 103], "content": [32, 66, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "fetch": [32, 40, 84, 87, 93], "datset": 33, "exclud": [33, 42, 74, 78, 86, 93, 103], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 85, 86, 87], "continu": [34, 56, 82, 83, 88, 91, 93, 96, 98, 101, 103], "binari": [34, 48, 52, 59, 61, 94, 103], "simultan": [34, 101], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 86, 87], "typeerror": [34, 48], "12": [34, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 57, 58, 67, 85, 86, 87, 88, 92, 98, 100, 102], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 82, 83, 84, 87, 88, 90, 91, 96, 98, 99, 101, 103], "modifi": [36, 37, 40, 41, 52, 93, 94], "help": [36, 37, 41, 65, 79, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 96, 97, 101, 102, 103], "rank_classes_by_label_qu": [36, 87], "merg": [36, 51, 79, 92, 93, 103], "find_overlapping_class": [36, 93, 94], "problemat": [36, 58, 74, 78, 84, 98, 103], "unnorm": [36, 58, 94], "abov": [36, 37, 40, 41, 52, 57, 64, 65, 67, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "model_select": [36, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101], "cross_val_predict": [36, 41, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 100, 101], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 94], "cv": [36, 48, 82, 84, 85, 86, 87, 90, 94, 96], "df": [36, 52, 78, 84, 93], "overall_label_qu": [36, 58], "col": 36, "prob": [36, 51, 94, 100], "divid": [36, 58, 67], "label_nois": [36, 58], "human": [36, 92, 102, 103], "clearli": [36, 67, 88, 98, 102], "num": [36, 58, 92, 94], "overlap": [36, 79, 92, 93, 94], "ontolog": 36, "publish": [36, 103], "therefor": [36, 67], "vehicl": [36, 92], "truck": [36, 92, 99, 102], "intuit": [36, 58, 85], "car": [36, 92, 98, 102], "frequent": [36, 57, 90, 93, 101], "characterist": 36, "l": [36, 37, 41, 62, 64, 65], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 52, 58, 60, 74, 92, 93, 99, 100, 103], "cat": [36, 52, 58, 60, 92, 93, 99, 100], "captur": [36, 84, 98, 99, 102], "co": [36, 37, 38], "noisy_label": [36, 85, 86, 87, 97], "overlapping_class": 36, "descend": [36, 37, 41, 48, 58, 65], "overall_label_health_scor": [36, 58, 94], "half": [36, 37, 39, 41, 58, 92, 103], "health_scor": [36, 58], "classes_by_label_qu": [36, 87], "cnn": [37, 39, 41, 88], "cifar": [37, 38, 92, 99], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 65, 85, 86, 93, 96, 99, 100, 102, 103], "forward": [37, 38, 39, 41, 88, 96], "overridden": [37, 41], "although": [37, 41, 66, 82, 90], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 53, 58, 65, 73, 77, 93, 96, 97, 98, 100, 103], "former": [37, 41], "hook": [37, 41, 92], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 65], "recurs": [37, 41, 48], "submodul": [37, 41], "children": [37, 39, 41, 103], "nn": [37, 38, 41, 88], "init": [37, 41, 94], "no_grad": [37, 41, 88, 99], "init_weight": [37, 41], "linear": [37, 41, 83, 88, 91], "fill_": [37, 41], "net": [37, 41, 84, 88, 92], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 88], "tensor": [37, 38, 41, 83, 84, 88, 91, 99], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 84], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 99], "compil": [37, 39, 41, 56], "cpu": [37, 39, 41, 43, 84, 88], "move": [37, 41, 48, 80, 92], "cuda": [37, 39, 41, 84, 88], "devic": [37, 41, 84, 88], "gpu": [37, 41, 83, 84, 91], "live": [37, 41], "copi": [37, 41, 69, 82, 84, 85, 86, 87, 90, 93, 97, 100, 101], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 88, 97, 99], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 79, 86, 92, 96, 99, 103], "get_buff": [37, 39, 41], "target": [37, 38, 41, 69, 70, 99, 101], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 91], "resolv": [37, 41, 85, 103], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 88, 102], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 88], "break": [37, 41, 88, 98], "pickl": [37, 41, 98], "get_paramet": [37, 39, 41], "let": [37, 41, 66, 67, 82, 83, 84, 85, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 88], "16": [37, 41, 48, 56, 73, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 102, 103], "33": [37, 41, 92, 98], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 67, 85, 92, 98, 103], "diagram": [37, 41, 100], "degre": [37, 41], "queri": [37, 41, 87, 88, 93, 97], "named_modul": [37, 39, 41], "o": [37, 41, 50, 51, 84, 85, 86, 87, 92, 93, 94, 97, 98, 103], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 96], "preserv": [37, 41, 52], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 52, 53, 65, 86, 88, 93, 94, 96, 98, 99], "named_buff": [37, 39, 41], "prefix": [37, 41, 84, 103], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 83, 84, 91, 93], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 82, 90], "fire": [37, 41, 92], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 86, 87], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 88, 90, 101], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 83, 84, 91], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 56, 80, 84, 93], "design": [37, 41, 85], "ordereddict": [37, 41], "detach": [37, 41, 88], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 58, 64], "complex": [37, 41, 84], "integr": [37, 41, 79, 93], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 83, 91, 92], "desir": [37, 41, 51, 65], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 84], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 83, 91], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 88], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 98], "noisili": [38, 94], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 56, 88], "decim": [38, 52], "forget": [38, 48, 103], "rate_schedul": 38, "epoch": [38, 39, 41, 88, 93], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 67, 93], "250": [38, 86, 87, 94, 98], "epoch_decay_start": 38, "80": [38, 82, 90, 97, 101], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 83, 88, 91, 94], "train_load": [38, 41], "model1": [38, 94], "optimizer1": 38, "model2": [38, 94], "optimizer2": 38, "dataload": [38, 88, 99], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 55, 103], "wish": [39, 55, 99, 102, 103], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 93], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 72, 73, 74, 75, 76, 77, 78, 102, 103], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 71, 73, 85, 88, 93, 99, 102], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 88], "loader": [39, 41, 88], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 80], "mini": [40, 71, 73, 93], "low_self_confid": [40, 43, 59], "self_confid": [40, 43, 44, 48, 59, 61, 67, 75, 77, 82, 83, 93, 94], "conveni": [40, 83, 84, 91], "script": 40, "labels_fil": [40, 93], "pred_probs_fil": [40, 93], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 57, 102], "read": [40, 45, 87, 93, 94, 99, 103], "zarr": [40, 93], "memmap": [40, 102], "pythonspe": 40, "mmap": [40, 93], "hdf5": 40, "further": [40, 42, 58, 59, 61, 64, 65, 73, 74, 84, 93], "yourfil": 40, "npy": [40, 92, 93, 102], "mmap_mod": [40, 102], "tip": [40, 43, 56, 93], "save_arrai": 40, "your_arrai": 40, "disk": [40, 92, 93], "npz": [40, 103], "maxim": [40, 57, 71, 73, 102], "multiprocess": [40, 43, 59, 71, 73, 88, 93], "linux": [40, 71, 73], "physic": [40, 43, 71, 73, 98], "psutil": [40, 43, 71, 73], "labels_arrai": [40, 53], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 65, 86, 93, 98, 99], "store_result": 40, "becom": [40, 99], "verifi": [40, 93, 96, 99], "long": [40, 57, 66, 96], "enough": [40, 52, 93], "chunk": [40, 100], "ram": [40, 92], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 93], "shortcut": 40, "encount": [40, 43, 71], "1000": [40, 84, 91, 93, 99], "aggreg": [40, 44, 48, 57, 61, 64, 67, 77, 93, 94, 96], "seen": [40, 85, 93, 99, 103], "far": [40, 57], "label_quality_scor": [40, 61, 64, 67, 70, 94, 98], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 59, 61, 67, 75, 77], "low_normalized_margin": [40, 43, 59], "issue_indic": [40, 64, 88], "update_num_issu": 40, "arr": [40, 93], "chunksiz": 40, "convnet": 41, "bespok": [41, 56], "download": [41, 84, 88, 93, 99], "mnist": [41, 79, 84, 92], "handwritten": 41, "digit": [41, 84, 92], "last": [41, 48, 62, 65, 85, 86, 87, 93, 96, 98, 103], "sklearn_digits_test_s": 41, "64": [41, 82, 88, 90, 94, 98], "01": [41, 67, 69, 84, 94, 97, 98], "templat": 41, "flexibli": 41, "among": [41, 57, 94], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 52, 99], "train_label": [41, 83, 99], "scikit": [41, 52, 66, 79, 83, 84, 85, 86, 87, 90, 91, 93, 101], "span": 42, "sentenc": [42, 51, 75, 77, 78, 83, 91], "token_classif": [42, 51, 75, 77, 78, 93], "encourag": [43, 59, 67, 70], "multilabel_classif": [43, 58, 59, 61, 67, 93, 97], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 59, 67, 94], "num_to_remove_per_class": [43, 59], "bad": [43, 59, 64, 67, 91, 93], "seem": [43, 94, 97], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 59, 61, 67, 75, 77], "label_issues_idx": [43, 67], "entropi": [43, 45, 47, 48, 66, 67], "prune_by_class": [43, 59, 94], "predicted_neq_given": [43, 59, 94], "prune_counts_matrix": 43, "smallest": [43, 67], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 79, 83, 93], "too": [43, 48, 66, 87, 88, 93, 98], "thread": [43, 59], "window": [43, 84, 92], "shorter": [43, 62], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 52], "clip_noise_r": [44, 52], "clip_valu": [44, 52], "value_count": [44, 52, 93], "value_counts_fill_missing_class": [44, 52], "get_missing_class": [44, 52], "round_preserving_sum": [44, 52], "round_preserving_row_tot": [44, 52], "estimate_pu_f1": [44, 52], "confusion_matrix": [44, 52], "print_square_matrix": [44, 52], "print_noise_matrix": [44, 52, 94], "print_inverse_noise_matrix": [44, 52], "print_joint_matrix": [44, 52, 94], "compress_int_arrai": [44, 52], "train_val_split": [44, 52], "subset_x_i": [44, 52], "subset_label": [44, 52], "subset_data": [44, 52], "extract_indices_tf": [44, 52], "unshuffle_tensorflow_dataset": [44, 52], "is_torch_dataset": [44, 52], "is_tensorflow_dataset": [44, 52], "csr_vstack": [44, 52], "append_extra_datapoint": [44, 52], "get_num_class": [44, 52], "num_unique_class": [44, 52], "get_unique_class": [44, 52], "format_label": [44, 52], "smart_display_datafram": [44, 52], "force_two_dimens": [44, 52], "latent_algebra": [44, 80], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 97], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 97], "onehot2int": [44, 49, 97], "multilabel_scor": [44, 61], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 61], "softmin": [44, 48, 61, 64, 73, 77], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "transform_distances_to_scor": [44, 50], "correct_precision_error": [44, 50], "token_classification_util": [44, 103], "get_sent": [44, 51, 103], "filter_sent": [44, 51, 103], "process_token": [44, 51], "merge_prob": [44, 51], "color_sent": [44, 51], "assert_valid_input": [44, 53], "assert_valid_class_label": [44, 53], "assert_nonempty_input": [44, 53], "assert_indexing_work": [44, 53], "labels_to_arrai": [44, 53], "labels_to_list_multilabel": [44, 53], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 56, 57, 79, 96], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 52, 84], "behav": 45, "unnecessari": [45, 93], "slightli": [45, 82, 83, 85], "interv": [45, 48, 99], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 52, 69, 84, 96, 102, 103], "increas": [46, 50, 64, 66, 67, 84, 86, 93, 96, 97, 103], "dot": [46, 77, 93], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 57], "ensembl": [47, 48, 57, 67, 82, 90, 93, 97, 99, 101], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 57], "format_multiannotator_label": [47, 57, 96], "formatted_label": [47, 52], "old": [47, 52, 80, 84, 92], "check_consensus_label_class": 47, "consensus_label": [47, 57, 96], "consensus_method": [47, 57], "consensu": [47, 57, 79, 95, 103], "establish": [47, 56, 83, 101], "compute_soft_cross_entropi": 47, "soft": [47, 92], "find_best_temp_scal": 47, "coarse_search_rang": [47, 69, 93], "fine_search_s": [47, 69, 93], "temperatur": [47, 48, 64, 73, 77], "scale": [47, 50, 82, 92, 93, 99, 102], "factor": [47, 48, 50, 71, 73], "minim": [47, 64, 99], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 92], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 67], "get_confidence_weighted_entropy_for_each_label": [48, 67], "75": [48, 85, 86, 87, 92, 96, 97, 98, 101, 103], "scorer": 48, "alpha": [48, 61, 64, 85, 86, 87, 94, 97, 101], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 59, 90, 91, 94, 103], "formula": [48, 50], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 67, 94, 96, 102], "recent": [48, 103], "success": 48, "previou": [48, 88, 93, 98], "discount": 48, "s_ema": 48, "175": [48, 88, 94, 98], "underflow": 48, "nan": [48, 57, 82, 90, 96, 101], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 61], "n_sampl": 48, "n_label": 48, "worst": [48, 96], "class_label_quality_scor": 48, "42": [48, 91, 92, 98, 103], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 60, 61], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 84], "wider": 48, "splitter": 48, "kfold": [48, 88], "onevsrestclassifi": [48, 97], "randomforestclassifi": [48, 94, 97], "n_split": [48, 87, 88, 97], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 59, 65, 71, 74, 82, 90, 92, 93, 101, 102], "onehot_matrix": 49, "avg_dist": 50, "scaling_factor": 50, "exp": [50, 66, 67, 86], "dt": 50, "right": [50, 62, 65, 83, 91, 97, 98, 99], "strength": [50, 65], "pronounc": 50, "differenti": 50, "ly": 50, "rule": [50, 51, 92], "thumb": 50, "ood_features_scor": [50, 66, 99], "88988177": 50, "80519832": 50, "toler": 50, "minkowski": 50, "noth": 50, "epsilon": 50, "sensibl": 50, "fixed_scor": 50, "readabl": 51, "lambda": [51, 84, 86, 93, 96], "long_sent": 51, "headlin": 51, "charact": [51, 52], "s1": 51, "s2": 51, "processed_token": 51, "alecnlcb": 51, "entiti": [51, 79, 93, 103], "mapped_ent": 51, "unique_ident": 51, "loc": [51, 85, 86, 87, 88, 103], "nbitbas": [51, 61], "probs_merg": 51, "0125": [51, 77], "0375": 51, "075": 51, "025": 51, "color": [51, 74, 85, 86, 87, 90, 94, 97, 99, 101, 102], "red": [51, 65, 85, 86, 87, 92, 94, 97, 98, 99, 102], "colored_sent": 51, "termcolor": 51, "31msentenc": 51, "0m": 51, "ancillari": 52, "class_without_nois": 52, "any_other_class": 52, "choos": [52, 67, 82, 90, 93, 94, 101], "tradition": 52, "new_sum": 52, "fill": 52, "come": [52, 85, 86, 87, 93, 102], "major": [52, 57, 80, 85, 88, 99], "versu": [52, 94], "obviou": 52, "cgdeboer": 52, "iteround": 52, "reach": 52, "prob_s_eq_1": 52, "claesen": 52, "f1": [52, 65, 91, 94], "BE": 52, "left_nam": 52, "top_nam": 52, "titl": [52, 85, 86, 87, 94, 97, 99], "short_titl": 52, "round_plac": 52, "pretti": [52, 85, 94], "joint_matrix": 52, "num_possible_valu": 52, "holdout_idx": 52, "extract": [52, 66, 83, 84, 91, 96, 99, 102], "allow_shuffl": 52, "turn": [52, 79, 98], "shuffledataset": 52, "histori": 52, "pre_x": 52, "buffer_s": 52, "csr_matric": 52, "append": [52, 84, 85, 88, 92, 93, 94, 96, 97, 98, 99, 103], "bottom": [52, 62, 65, 98], "to_data": 52, "from_data": 52, "taken": 52, "label_matrix": 52, "canon": 52, "displai": [52, 65, 74, 78, 83, 84, 85, 91, 94, 103], "jupyt": [52, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "notebook": [52, 57, 84, 85, 87, 92, 93, 94, 96, 97, 98, 102, 103], "consol": 52, "html": [52, 62, 65, 66, 90, 93, 94], "allow_missing_class": 53, "allow_one_class": 53, "length_x": 53, "labellik": 53, "labels_list": [53, 59], "keraswrappermodel": [55, 56, 79], "keraswrappersequenti": [55, 56], "tf": [56, 84], "legaci": 56, "newer": 56, "interim": 56, "advis": [56, 97], "stabil": 56, "until": 56, "accommod": 56, "keraswrapp": 56, "huggingface_keras_imdb": 56, "unit": [56, 103], "model_kwarg": [56, 69], "compile_kwarg": 56, "sparsecategoricalcrossentropi": 56, "layer": [56, 83, 84, 91, 99], "dens": 56, "my_keras_model": 56, "from_logit": 56, "declar": 56, "apply_softmax": 56, "analysi": 57, "analyz": [57, 79, 94, 96, 97], "get_label_quality_multiannot": [57, 96], "vote": 57, "crowdsourc": [57, 79, 96], "dawid": [57, 96], "skene": [57, 96], "analog": [57, 85, 92, 96], "chosen": [57, 67, 93, 96], "crowdlab": [57, 96], "unlabel": [57, 88, 90, 91, 96, 99, 102], "decid": [57, 83, 91, 92, 96, 101, 103], "get_active_learning_scor": [57, 96], "activelab": [57, 96], "priorit": [57, 64, 98, 102, 103], "showcas": 57, "main": [57, 85], "best_qual": 57, "quality_method": 57, "calibrate_prob": 57, "return_detailed_qu": 57, "return_annotator_stat": 57, "return_weight": 57, "label_quality_score_kwarg": 57, "necessarili": [57, 65, 91, 94], "did": [57, 58, 82, 83, 84, 90, 94, 96, 101], "majority_vot": 57, "broken": [57, 65, 92, 101], "highest": [57, 65, 86, 88, 100], "0th": 57, "consensus_quality_scor": [57, 96], "annotator_agr": [57, 96], "reman": 57, "1st": 57, "2nd": [57, 71], "3rd": 57, "consensus_label_suffix": 57, "consensus_quality_score_suffix": 57, "suffix": 57, "emsembl": 57, "weigh": [57, 92], "agreement": [57, 96], "agre": 57, "prevent": [57, 93], "overconfid": [57, 100], "wrong": [57, 62, 64, 80, 83, 85, 86, 87, 91, 93, 94, 98], "detailed_label_qu": [57, 96], "annotator_stat": [57, 96], "model_weight": 57, "annotator_weight": 57, "warn": [57, 86, 87, 88, 90, 91, 93, 94], "labels_info": 57, "num_annot": [57, 96], "deriv": [57, 96], "quality_annotator_1": 57, "quality_annotator_2": 57, "quality_annotator_m": 57, "annotator_qu": [57, 96], "num_examples_label": [57, 96], "agreement_with_consensu": [57, 96], "worst_class": [57, 96], "trustworthi": [57, 96, 101], "get_label_quality_multiannotator_ensembl": 57, "weigtht": 57, "budget": 57, "retrain": [57, 83, 101], "active_learning_scor": 57, "active_learning_scores_unlabel": 57, "get_active_learning_scores_ensembl": 57, "henc": [57, 84, 86, 96], "get_majority_vote_label": [57, 96], "event": 57, "lastli": [57, 90], "convert_long_to_wide_dataset": 57, "labels_multiannotator_long": 57, "wide": [57, 82, 83, 84], "suitabl": [57, 82, 90], "labels_multiannotator_wid": 57, "common_multilabel_issu": [58, 60], "mutual": [58, 97], "exclus": [58, 97], "rank_classes_by_multilabel_qu": [58, 60], "overall_multilabel_health_scor": [58, 60], "multilabel_health_summari": [58, 60], "classes_by_multilabel_qu": 58, "inner": [59, 73], "find_multilabel_issues_per_class": [59, 60], "per_class_label_issu": 59, "label_issues_list": 59, "pred_probs_list": [59, 67, 88, 94], "anim": [60, 99], "rat": 60, "predat": 60, "pet": 60, "reptil": 60, "manner": [61, 82, 83, 96, 101], "box": [62, 64, 65, 92, 98], "object_detect": [62, 64, 65, 98], "return_indices_ranked_by_scor": [62, 98], "overlapping_label_check": [62, 64], "suboptim": [62, 64], "locat": [62, 64, 98, 102, 103], "bbox": [62, 65, 98], "image_nam": [62, 65], "y1": [62, 65, 98], "y2": [62, 65, 98], "later": [62, 65, 66, 83, 103], "corner": [62, 65, 98], "xyxi": [62, 65, 98], "io": [62, 65, 84, 92], "keras_cv": [62, 65], "bounding_box": [62, 65, 98], "detectron": [62, 65, 98], "detectron2": [62, 65, 98], "readthedoc": [62, 65], "en": [62, 65], "latest": [62, 65], "visual": [62, 63, 65, 82, 85, 86, 87, 88, 101, 103], "draw_box": [62, 65], "mmdetect": [62, 65, 98], "swap": [62, 64, 74, 78], "penal": [62, 64], "concern": [62, 64, 79, 87], "issues_from_scor": [63, 64, 72, 73, 74, 76, 77, 78, 98, 102, 103], "compute_overlooked_box_scor": [63, 64], "compute_badloc_box_scor": [63, 64], "compute_swap_box_scor": [63, 64], "pool_box_scores_per_imag": [63, 64], "object_counts_per_imag": [63, 65, 98], "bounding_box_size_distribut": [63, 65, 98], "class_label_distribut": [63, 65, 98], "get_sorted_bbox_count_idx": [63, 65], "plot_class_size_distribut": [63, 65], "plot_class_distribut": [63, 65], "get_average_per_class_confusion_matrix": [63, 65], "calculate_per_class_metr": [63, 65], "aggregation_weight": 64, "imperfect": [64, 93], "chose": [64, 96, 98], "imperfectli": [64, 98], "dirti": [64, 67, 70, 101], "subtyp": 64, "badloc": 64, "nonneg": 64, "high_probability_threshold": 64, "auxiliary_input": [64, 65], "vari": [64, 87], "iou": [64, 65], "heavili": 64, "auxiliarytypesdict": 64, "pred_label": [64, 83], "pred_label_prob": 64, "pred_bbox": 64, "lab_label": 64, "lab_bbox": 64, "similarity_matrix": 64, "min_possible_similar": 64, "scores_overlook": 64, "low_probability_threshold": 64, "scores_badloc": 64, "accident": [64, 83, 90, 91, 93], "scores_swap": 64, "box_scor": 64, "image_scor": [64, 73, 102], "discov": [65, 87, 103], "abnorm": [65, 88, 98], "auxiliari": [65, 99, 102], "_get_valid_inputs_for_compute_scor": 65, "object_count": 65, "down": 65, "bbox_siz": 65, "class_distribut": 65, "plot": [65, 85, 86, 87, 94, 97, 99, 101, 102], "sorted_idx": [65, 99], "class_to_show": 65, "hidden": [65, 85, 99], "max_class_to_show": 65, "prediction_threshold": 65, "overlai": [65, 98], "figsiz": [65, 85, 86, 87, 88, 94, 97, 99], "save_path": [65, 98], "blue": [65, 92, 94, 98], "overlaid": 65, "side": [65, 92, 98], "figur": [65, 94, 97, 99, 101], "extens": [65, 94, 96], "png": [65, 98], "pdf": [65, 66], "svg": 65, "matplotlib": [65, 85, 86, 87, 88, 94, 97, 98, 99, 101], "num_proc": [65, 88], "intersect": [65, 93], "tp": 65, "fp": 65, "ground": [65, 92, 94, 96, 101], "truth": [65, 94, 96, 101], "bias": 65, "avg_metr": 65, "distionari": 65, "95": [65, 75, 77, 90, 92, 94, 101], "per_class_metr": 65, "Of": 66, "li": 66, "smaller": [66, 85, 97, 98], "find_top_issu": [66, 67, 99], "reli": [66, 83, 84, 85, 86, 87, 91, 98, 99, 101], "dist_metr": 66, "subtract": [66, 67], "renorm": [66, 67, 93], "least_confid": 66, "sum_": 66, "log": [66, 67, 80], "softmax": [66, 73, 77, 88], "literatur": 66, "gen": 66, "liu": 66, "lochman": 66, "zach": 66, "openaccess": 66, "thecvf": 66, "cvpr2023": 66, "liu_gen_pushing_the_limits_of_softmax": 66, "based_out": 66, "distribution_detection_cvpr_2023_pap": 66, "fit_scor": [66, 99], "ood_predictions_scor": 66, "pretrain": [66, 83, 84, 91, 99], "adjust_confident_threshold": 66, "probabilist": [66, 82, 84, 86, 87, 90, 91, 99, 100], "order_label_issu": [67, 80], "whichev": [67, 100], "argsort": [67, 83, 88, 91, 94, 98, 99, 101], "max_": 67, "get_label_quality_ensemble_scor": [67, 93, 94], "weight_ensemble_members_bi": 67, "custom_weight": 67, "log_loss_search_t_valu": 67, "0001": [67, 92], "scheme": 67, "log_loss_search": 67, "log_loss": [67, 91], "1e0": 67, "1e1": 67, "1e2": 67, "2e2": 67, "quality_scor": [67, 99], "forth": 67, "top_issue_indic": 67, "rank_bi": [67, 80], "weird": [67, 78], "minu": 67, "prob_label": 67, "max_prob_not_label": 67, "idea": [67, 85, 98], "AND": [67, 91], "get_epistemic_uncertainti": [68, 69], "get_aleatoric_uncertainti": [68, 69], "corrupt": [69, 101], "linearregress": [69, 93, 101], "y_with_nois": 69, "n_boot": [69, 93], "include_aleatoric_uncertainti": [69, 93], "sole": [69, 82, 86, 96, 99], "bootstrap": [69, 93, 101], "resampl": [69, 84, 93], "epistem": [69, 93, 99, 101], "aleator": [69, 93, 101], "model_final_kwarg": 69, "coars": 69, "thorough": [69, 93], "fine": [69, 83, 84, 91, 99], "grain": 69, "grid": 69, "varianc": [69, 94], "epistemic_uncertainti": 69, "residu": [69, 70, 93], "deviat": [69, 98, 101], "aleatoric_uncertainti": 69, "outr": 70, "contin": 70, "raw": [70, 79, 80, 87, 88, 92, 93, 96, 98, 99, 101], "aka": [70, 84, 94, 98, 101, 103], "00323821": 70, "33692597": 70, "00191686": 70, "semant": [71, 73, 74, 95], "pixel": [71, 73, 74, 99, 102], "h": [71, 73, 74, 102], "height": [71, 73, 74, 102], "w": [71, 73, 74, 102], "width": [71, 73, 74, 102], "labels_one_hot": [71, 74, 102], "stream": [71, 85, 99, 103], "downsampl": [71, 73, 102], "shrink": [71, 73], "divis": [71, 73, 86], "common_label_issu": [72, 74, 76, 78, 102, 103], "filter_by_class": [72, 74, 102], "segmant": [73, 74], "num_pixel_issu": [73, 102], "product": [73, 88, 93], "pixel_scor": [73, 102], "highlight": [74, 78, 85, 86, 87, 90, 102], "enter": 74, "legend": [74, 85, 86, 87, 97, 98, 101, 102], "colormap": 74, "background": 74, "person": [74, 93, 98, 102, 103], "ambigu": [74, 78, 83, 84, 91, 92, 94, 103], "systemat": [74, 78, 96], "misunderstood": [74, 78], "issues_df": [74, 88], "class_index": 74, "issues_subset": [74, 78], "filter_by_token": [76, 78, 103], "token_score_method": 77, "sentence_score_method": 77, "sentence_score_kwarg": 77, "compris": [77, 78], "token_scor": [77, 103], "converg": 77, "toward": 77, "_softmin_sentence_scor": 77, "sentence_scor": [77, 103], "token_info": 77, "70": [77, 90], "02": [77, 86, 87, 94, 98, 99], "03": [77, 90, 92, 94, 98, 103], "04": [77, 90, 98, 103], "08": [77, 94, 98, 101, 103], "commonli": [78, 80, 86, 87, 97, 103], "But": [78, 91, 94, 101, 103], "restrict": [78, 93], "reliabl": [79, 82, 84, 93, 96, 102], "thousand": 79, "imagenet": [79, 92], "popular": [79, 96, 98], "centric": [79, 88, 90, 91, 95], "capabl": 79, "minut": [79, 82, 83, 84, 90, 91, 92, 96, 97, 98, 101, 102, 103], "conda": 79, "feature_embed": [79, 99], "Then": [79, 82, 83, 88, 93], "your_dataset": [79, 84, 86, 87, 88, 90, 91, 93], "column_name_of_label": [79, 84, 86, 87, 88, 90, 91], "plagu": [79, 87], "untrain": 79, "\u30c4": 79, "label_issues_info": [79, 87], "sklearn_compatible_model": 79, "framework": [79, 97, 98], "complianc": 79, "tag": [79, 97, 103], "sequenc": 79, "recognit": [79, 84, 93, 103], "train_data": [79, 82, 83, 99, 101], "gotten": 79, "test_data": [79, 82, 83, 85, 94, 97, 99, 101], "deal": [79, 87], "tutori": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "feel": [79, 84, 87, 93], "ask": [79, 93], "slack": [79, 93], "project": [79, 101], "welcom": 79, "commun": [79, 93], "guidelin": [79, 98], "piec": 79, "smart": [79, 88, 90, 91, 93], "edit": [79, 93], "easier": [79, 94], "unreli": [79, 82, 84, 90, 91], "link": [79, 84, 92, 98], "older": 80, "outlin": 80, "substitut": 80, "v2": [80, 82, 90], "get_noise_indic": 80, "psx": 80, "sorted_index_method": 80, "order_label_error": 80, "label_errors_bool": 80, "latent_estim": 80, "num_label_error": 80, "learningwithnoisylabel": 80, "neatli": 80, "organ": [80, 82, 90, 92, 103], "reorgan": 80, "baseline_method": 80, "incorpor": [80, 94], "research": [80, 94], "polyplex": 80, "terminologi": 80, "label_error": 80, "quickstart": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "sql": [82, 90], "databas": [82, 90], "excel": [82, 90], "parquet": [82, 90], "student": [82, 90, 101, 103], "grade": [82, 90, 101], "900": [82, 90, 101], "exam": [82, 90, 101], "letter": [82, 90, 103], "hundr": [82, 90], "mistak": [82, 83, 88, 90, 91], "No": [82, 83, 91, 93], "extratreesclassifi": 82, "extratre": 82, "ranked_label_issu": [82, 83], "branch": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "preprocess": [82, 83, 87, 90, 99, 101], "standardscal": [82, 90, 99], "labelencod": [82, 83], "train_test_split": [82, 83, 85, 86, 87, 99], "accuracy_scor": [82, 83, 84, 91, 94], "grades_data": [82, 90], "read_csv": [82, 83, 90, 91, 101], "demo": [82, 87, 90, 97], "head": [82, 83, 84, 87, 88, 90, 91, 92, 94, 96, 101], "stud_id": [82, 90], "exam_1": [82, 90, 101], "exam_2": [82, 90, 101], "exam_3": [82, 90, 101], "letter_grad": [82, 90], "f48f73": [82, 90], "53": [82, 85, 86, 87, 90, 92, 97, 98], "00": [82, 86, 87, 88, 90, 92, 99], "77": [82, 86, 87, 90, 98], "0bd4e7": [82, 90], "81": [82, 90, 91, 98, 101, 103], "great": [82, 85, 90, 92], "particip": [82, 90], "cb9d7a": [82, 90], "61": [82, 90, 94, 98, 101], "94": [82, 90, 92, 94, 98, 101], "78": [82, 90, 92, 94, 98, 101], "9acca4": [82, 90], "48": [82, 90, 92, 94, 98], "x_raw": [82, 90], "labels_raw": 82, "interg": [82, 83], "categorical_featur": [82, 101], "x_encod": [82, 90], "get_dummi": [82, 90, 101], "drop_first": [82, 90], "numeric_featur": [82, 90], "scaler": [82, 90, 99], "x_process": [82, 90], "fit_transform": [82, 90], "bring": [82, 83, 88, 90, 91, 96, 101], "byod": [82, 83, 88, 90, 91, 96, 101], "decis": [82, 85, 86, 87], "tress": 82, "held": [82, 84, 90, 91, 92, 98, 99, 100], "straightforward": [82, 84, 90], "benefit": [82, 84, 100, 102], "num_crossval_fold": [82, 84, 90, 96], "u": [82, 83, 84, 86, 88, 90, 93, 94, 96, 97, 100, 101, 102, 103], "tabl": [82, 90, 92, 96], "212": [82, 94], "review": [82, 83, 87, 90, 91, 92, 93, 94, 98, 101, 102, 103], "iloc": [82, 83, 84, 90, 91, 101], "58": [82, 87, 90, 92, 94, 98], "92": [82, 86, 94, 98], "93": [82, 92, 98, 101], "827": 82, "99": [82, 92, 94], "86": [82, 87, 88, 90, 94, 98, 101], "74": [82, 98, 101], "637": [82, 90], "79": [82, 92, 98], "65": [82, 86, 98], "cheat": 82, "0pt": 82, "120": [82, 86, 87], "97": [82, 92, 93, 94, 98, 101, 103], "233": 82, "68": [82, 92, 94, 98], "83": [82, 94, 98, 101, 103], "76": [82, 85, 94, 97, 98, 101], "suspici": [82, 90], "carefulli": [82, 88, 90, 91], "examin": [82, 85, 86, 87, 90, 98], "labels_train": 82, "labels_test": 82, "test_siz": [82, 83, 85, 86, 87], "acc_og": [82, 83], "783068783068783": 82, "robustli": [82, 83, 101], "14": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "acc_cl": [82, 83], "8095238095238095": 82, "especi": [82, 83, 85, 88, 93, 101], "blindli": [82, 83, 84, 93, 101], "trust": [82, 83, 84, 93, 94, 96, 100, 101], "effort": [82, 83, 101], "intent": [83, 91], "servic": [83, 91, 93], "onlin": [83, 91], "bank": [83, 91, 92], "banking77": [83, 91], "oo": [83, 91], "000": [83, 88, 91, 92, 103], "categori": [83, 88, 91], "shortlist": [83, 91, 101], "scope": [83, 91], "logist": [83, 85, 86, 87, 91, 96, 99], "probabilit": [83, 84], "drop": [83, 93, 96, 101], "earlier": [83, 103], "sentence_transform": [83, 91], "sentencetransform": [83, 91], "payment": [83, 91], "cancel_transf": [83, 91], "transfer": [83, 91], "fund": [83, 91], "cancel": [83, 91], "transact": [83, 91], "my": [83, 91], "revert": [83, 91], "morn": [83, 91], "realis": [83, 91], "yesterdai": [83, 91], "rent": [83, 91], "realli": [83, 91, 96, 102], "tomorrow": [83, 91], "raw_text": [83, 91], "raw_label": 83, "raw_train_text": 83, "raw_test_text": 83, "raw_train_label": 83, "raw_test_label": 83, "39": [83, 84, 86, 88, 91, 92, 93, 98, 101, 102, 103], "visa_or_mastercard": [83, 91], "apple_pay_or_google_pai": [83, 91], "card_payment_fee_charg": [83, 91], "lost_or_stolen_phon": [83, 91], "beneficiary_not_allow": [83, 91], "supported_cards_and_curr": [83, 91], "getting_spare_card": [83, 91], "change_pin": [83, 91], "card_about_to_expir": [83, 91], "card": [83, 91, 92], "utter": [83, 91], "encond": 83, "test_label": [83, 94, 97, 99], "suit": [83, 91, 92, 93], "electra": [83, 91], "discrimin": [83, 91], "googl": [83, 85, 91], "train_text": 83, "test_text": 83, "home": [83, 86, 87, 91, 92], "runner": [83, 86, 87, 91], "google_electra": [83, 91], "pool": [83, 91, 93, 99], "opt": [83, 84, 87, 88, 90, 91, 94], "hostedtoolcach": [83, 84, 87, 88, 90, 91, 94], "x64": [83, 84, 87, 88, 90, 91, 94], "lib": [83, 84, 87, 88, 90, 91, 94], "python3": [83, 84, 87, 88, 90, 91, 94], "site": [83, 84, 87, 88, 90, 91, 94], "_util": [83, 91], "831": [83, 91], "userwarn": [83, 84, 86, 87, 91], "typedstorag": [83, 91], "untypedstorag": [83, 91], "untyped_storag": [83, 91], "fget": [83, 91], "__get__": [83, 91], "owner": [83, 91], "leverag": [83, 84, 91, 93, 94, 96], "computation": [83, 84, 91], "intens": [83, 84, 91], "400": [83, 85, 91], "858371": 83, "547274": 83, "826228": 83, "966008": 83, "792449": 83, "identified_issu": [83, 101], "lowest_quality_label": [83, 84, 91, 94, 101], "to_numpi": [83, 91, 93, 101], "44": [83, 92, 97, 98], "646": 83, "390": 83, "628": 83, "121": [83, 85, 94], "702": 83, "863": [83, 84], "135": 83, "337": [83, 98], "735": 83, "print_as_df": 83, "inverse_transform": 83, "charg": [83, 91], "cash": [83, 91], "holidai": [83, 91], "sent": [83, 91, 103], "mine": [83, 91], "expir": [83, 91], "fight": 83, "hors": [83, 92, 99], "duck": [83, 92], "me": [83, 91], "whoever": [83, 91], "consum": [83, 101], "18": [83, 84, 91, 92, 93, 94, 98, 99, 101, 102], "baseline_model": [83, 101], "87": [83, 87, 88, 98, 101], "acceler": [83, 101], "19": [83, 84, 88, 91, 92, 93, 94, 98, 99, 101, 102], "89": [83, 85, 86, 90, 98, 101], "spoken": 84, "500": [84, 99, 103], "english": [84, 92], "pronunci": 84, "wav": 84, "huggingfac": [84, 86, 87, 88, 93], "voxceleb": 84, "speech": [84, 103], "your_pred_prob": [84, 85, 86, 87, 90, 91], "tensorflow_io": 84, "huggingface_hub": 84, "reproduc": [84, 90, 94, 96], "command": 84, "wget": [84, 98, 102, 103], "navig": 84, "browser": 84, "jakobovski": 84, "archiv": [84, 103], "v1": 84, "tar": [84, 99], "gz": [84, 99], "mkdir": [84, 103], "spoken_digit": 84, "xf": 84, "6_nicolas_32": 84, "data_path": 84, "listdir": 84, "nondeterminist": 84, "file_nam": 84, "endswith": 84, "file_path": 84, "join": [84, 85, 88, 93], "7_george_26": 84, "0_nicolas_24": 84, "0_nicolas_6": 84, "listen": 84, "display_exampl": 84, "expand": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "pulldown": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "colab": [84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "tfio": 84, "pathlib": 84, "ipython": 84, "load_wav_16k_mono": 84, "filenam": 84, "khz": 84, "file_cont": 84, "read_fil": 84, "sample_r": 84, "decode_wav": 84, "desired_channel": 84, "squeez": 84, "rate_in": 84, "rate_out": 84, "16000": 84, "wav_file_nam": 84, "audio_r": 84, "wav_file_exampl": 84, "plai": [84, 92, 93], "button": 84, "wav_file_name_exampl": 84, "7_jackson_43": 84, "hear": 84, "extractor": 84, "encoderclassifi": 84, "spkrec": 84, "xvect": 84, "feature_extractor": 84, "from_hparam": 84, "run_opt": 84, "uncom": 84, "ffmpeg": 84, "backend": 84, "wav_audio_file_path": 84, "torchaudio": 84, "extract_audio_embed": 84, "emb": [84, 88], "signal": 84, "encode_batch": 84, "embeddings_list": [84, 88], "embeddings_arrai": 84, "650": 84, "stft": 84, "return_complex": 84, "view_as_r": 84, "recov": 84, "trigger": 84, "aten": 84, "src": 84, "nativ": 84, "spectralop": 84, "cpp": 84, "_vf": 84, "n_fft": 84, "hop_length": 84, "win_length": 84, "attr": 84, "512": [84, 88], "196311": 84, "319459": 84, "478975": 84, "2890875": 84, "8170238": 84, "89265": 84, "24": [84, 92, 94, 96, 98, 101], "898056": 84, "256195": 84, "559641": 84, "559721": 84, "62067": 84, "285245": 84, "21": [84, 86, 92, 93, 94, 98, 101, 103], "709627": 84, "5033693": 84, "913803": 84, "819831": 84, "1831515": 84, "208763": 84, "084257": 84, "3210397": 84, "005453": 84, "216152": 84, "478235": 84, "6821785": 84, "053807": 84, "242471": 84, "091424": 84, "78334856": 84, "03954": 84, "23": [84, 88, 92, 94, 98, 101], "569176": 84, "761097": 84, "1258295": 84, "753237": 84, "3508866": 84, "598274": 84, "23712": 84, "2500": 84, "tol": 84, "decreas": [84, 93], "cv_accuraci": 84, "9708": 84, "9976": 84, "986": 84, "002161": 84, "176": [84, 92, 94, 97], "002483": 84, "2318": 84, "004411": 84, "1005": 84, "004857": 84, "1871": 84, "007494": 84, "investig": [84, 85], "040587": 84, "999207": 84, "999377": 84, "975220": 84, "999367": 84, "identified_label_issu": [84, 91], "sort_valu": [84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 101], "516": 84, "1946": 84, "469": 84, "2132": 84, "worth": [84, 94], "6_yweweler_25": 84, "7_nicolas_43": 84, "6_theo_27": 84, "6_yweweler_36": 84, "6_yweweler_14": 84, "6_yweweler_35": 84, "6_nicolas_8": 84, "sound": 84, "quit": [84, 99], "22": [84, 86, 88, 92, 93, 94, 97, 98, 103], "ve": [85, 92, 93, 94, 96, 98], "prove": 85, "monitor": [85, 92], "ran": 85, "data_monitor": 85, "your_datalab": 85, "new_data_batch": 85, "your_label": 85, "get_your_label": 85, "websit": [85, 92], "todo": 85, "get_ipython": 85, "e0b7615c1169c6d8fcae15be6477bd7327e82e00": 85, "cmd": 85, "dep": 85, "dependencies_test": 85, "missing_depend": 85, "__import__": 85, "importerror": 85, "sep": [85, 103], "npleas": 85, "toi": [85, 86, 87, 88, 92, 94, 96], "mid": [85, 86, 87], "workflow": [85, 95, 101], "unseen": 85, "inf": [85, 86, 87], "bins_map": [85, 86, 87], "create_data": [85, 86, 87], "800": 85, "y_bin": [85, 86, 87], "y_i": [85, 86, 87], "y_bin_idx": [85, 86, 87], "y_train": [85, 86, 87, 94, 101], "y_test": [85, 86, 87, 94, 101], "y_train_idx": [85, 86, 87], "y_test_idx": [85, 86, 87], "slide": [85, 86, 87, 92], "frame": [85, 86, 87], "x_out": [85, 86, 87], "tini": [85, 86, 87], "concaten": [85, 86, 87, 93, 100], "y_out": [85, 86, 87], "y_out_bin": [85, 86, 87], "y_out_bin_idx": [85, 86, 87], "exact_duplicate_idx": [85, 86, 87], "x_duplic": [85, 86, 87], "y_duplic": [85, 86, 87], "y_duplicate_idx": [85, 86, 87], "noisy_labels_idx": [85, 86, 87, 97], "train_x": 85, "test_x": 85, "train_y_tru": 85, "test_y_tru": 85, "train_i": 85, "test_i": 85, "train_y_idx": 85, "test_y_idx": 85, "scatter": [85, 86, 87, 94, 97, 101], "black": [85, 86, 87, 92, 101], "cyan": [85, 86, 87], "pyplot": [85, 86, 87, 88, 94, 97, 99, 101], "plt": [85, 86, 87, 88, 94, 97, 99, 101], "plot_data": [85, 86, 87, 94, 97, 101], "fig": [85, 86, 87, 88, 92, 99, 101], "ax": [85, 86, 87, 88, 99, 101], "subplot": [85, 86, 87, 88, 99], "set_titl": [85, 86, 87, 88, 99], "set_xlabel": [85, 86, 87], "x_1": [85, 86, 87], "fontsiz": [85, 86, 87, 88, 94, 97], "set_ylabel": [85, 86, 87], "x_2": [85, 86, 87], "set_xlim": [85, 86, 87], "set_ylim": [85, 86, 87], "linestyl": [85, 86, 87], "circl": [85, 86, 87, 94, 97], "misclassifi": [85, 86, 87], "zip": [85, 86, 87, 88, 98, 103], "label_err": [85, 86, 87], "180": [85, 86, 87, 98], "marker": [85, 86, 87], "facecolor": [85, 86, 87], "edgecolor": [85, 86, 87], "linewidth": [85, 86, 87, 99], "title_fontproperti": [85, 86, 87], "semibold": [85, 86, 87], "first_legend": [85, 86, 87], "align": [85, 86, 87], "markerscal": 85, "second_legend": [85, 86, 87], "46": [85, 90, 92, 94, 98, 103], "gca": [85, 86, 87], "add_artist": [85, 86, 87], "tight_layout": [85, 86, 87], "ideal": [85, 86, 87], "simplic": [85, 97], "327": [85, 98], "9297": 85, "000124": 85, "259": 85, "000725": 85, "269": 85, "000794": 85, "002061": 85, "125": [85, 86], "002908": 85, "fly": [85, 92], "feed": [85, 93], "simul": 85, "tqdm": [85, 88], "sleep": [85, 92], "generate_stream": 85, "sleep_tim": 85, "desc": 85, "singleton_stream": 85, "seamless": [85, 93], "singleton": 85, "batched_stream": 85, "processed_singleton": 85, "suggested_label": [85, 91], "250997": 85, "285757": 85, "43": [85, 86, 92, 94, 98], "120906": 85, "principl": 85, "processed_batch": 85, "51": [85, 86, 87, 90, 92, 94, 98], "002748": 85, "189996": 85, "093505": 85, "037250": 85, "149": [85, 98], "076397": 85, "154": 85, "294010": 85, "160": [85, 91, 101], "073622": 85, "166": [85, 88], "140832": 85, "167": [85, 92, 94, 98], "041743": 85, "181": 85, "169429": 85, "127304": 85, "235": [85, 98], "090310": 85, "254": [85, 92, 98], "183343": 85, "256": [85, 92, 93, 98], "048720": 85, "263": [85, 97, 98], "138820": 85, "292": 85, "239609": 85, "295": [85, 98], "022075": 85, "306": 85, "103040": 85, "343": 85, "234755": 85, "354": 85, "001612": 85, "359": 85, "068359": 85, "367": [85, 101], "015793": 85, "368": 85, "029022": 85, "391": 85, "106761": 85, "troublesom": 85, "623844": 85, "812647": 85, "816854": 85, "661968": 85, "632244": 85, "395": 85, "474599": 85, "396": 85, "653901": 85, "397": 85, "584554": 85, "398": 85, "817287": 85, "399": 85, "881545": 85, "183": 85, "937927": 85, "309": 85, "939505": 85, "133": 85, "947290": 85, "177": 85, "952187": 85, "314": [85, 98], "997293": 85, "27": [85, 90, 92, 94, 98, 103], "655501": 85, "underneath": 86, "hood": [86, 93], "alert": 86, "introduct": 86, "mayb": [86, 87, 91], "your_feature_matrix": [86, 87], "dup": [86, 87], "45": [86, 87, 92, 94, 98], "remaind": 86, "modal": [86, 87, 93, 96], "132": [86, 87, 94, 98], "9318": 86, "006940": 86, "007830": 86, "40": [86, 87, 91, 92], "014828": 86, "107": [86, 87, 94, 97], "021241": 86, "026407": 86, "notic": [86, 94, 96, 98], "3558": [86, 87], "126": [86, 87, 94, 98], "006636": [86, 87], "130": [86, 87], "012571": [86, 87], "129": [86, 87, 103], "127": [86, 87], "014909": [86, 87], "128": [86, 87, 88], "017443": [86, 87], "6160": [86, 87], "is_near_duplicate_issu": [86, 87, 88, 90, 91, 93, 94], "131": [86, 87, 102], "000000e": [86, 87], "000002": [86, 87], "463180e": [86, 87], "07": [86, 87, 88, 90, 94, 98, 101], "161148": [86, 87], "859087e": [86, 87], "30": [86, 87, 88, 92, 93, 97, 102, 103], "3453": 86, "029542": 86, "031182": 86, "057961": 86, "058244": 86, "348": 86, "378": 86, "357": 86, "34": [86, 92, 94, 96, 98, 103], "54": [86, 92, 94, 98], "039122": 86, "044598": 86, "105": [86, 98], "105196": 86, "133654": 86, "168033": 86, "101107": 86, "37": [86, 92], "183382": 86, "109": [86, 92, 98], "209259": 86, "211042": 86, "221316": 86, "average_ood_scor": 86, "34530442089193386": 86, "52": [86, 92, 98, 103], "169820": 86, "087324e": 86, "259024": 86, "583757e": 86, "91": [86, 98], "346458": 86, "341292e": 86, "specfi": 86, "new_lab": 86, "scoring_funct": 86, "div": 86, "rem": 86, "inv_scal": 86, "49": [86, 92, 94, 98], "superstitionissuemanag": 86, "unlucki": 86, "superstit": 86, "to_seri": 86, "issues_mask": 86, "summary_scor": 86, "9242": 86, "is_superstition_issu": 86, "superstition_scor": 86, "26": [86, 88, 92, 94, 96, 98], "047581": 86, "090635": 86, "129591": 86, "164840": 86, "lurk": [87, 88, 94], "_split": 87, "737": 87, "thoroughli": 87, "904": 87, "_base": [87, 88, 90, 91, 94], "246": [87, 88, 90, 91, 94, 98], "efficiencywarn": [87, 88, 90, 91, 94], "sort_graph_by_row_valu": [87, 88, 90, 91, 94], "warn_when_not_sort": [87, 88, 90, 91, 94], "8561": 87, "001908": 87, "003564": 87, "007331": 87, "008963": 87, "009664": 87, "0227": 87, "is_class_imbalance_issu": 87, "022727": 87, "conceptu": 87, "856061": 87, "355772": 87, "616034": 87, "821750": 87, "901562": 87, "betweeen": 87, "is_null_issu": 87, "is_non_iid_issu": [87, 90, 91, 94], "is_underperforming_group_issu": 87, "859131": 87, "417707": 87, "664083": 87, "970324": 87, "816953": 87, "375317": 87, "641516": 87, "890575": 87, "531021": 87, "460593": 87, "601188": 87, "826147": 87, "752808": 87, "321635": 87, "562539": 87, "948362": 87, "090243": 87, "472909": 87, "746763": 87, "878267": 87, "examples_w_issu": [87, 93], "013445": 87, "025184": 87, "026376": 87, "inde": [87, 91], "miscellan": [87, 103], "428571": 87, "111111": 87, "571429": 87, "407407": 87, "592593": 87, "337838": 87, "092593": 87, "662162": 87, "333333": [87, 92], "952381": 87, "666667": 87, "portion": 87, "huge": [87, 94], "worri": [87, 91], "critic": 87, "60": [88, 94, 101], "torchvis": [88, 99], "tensordataset": 88, "stratifiedkfold": [88, 97], "autonotebook": 88, "fashion_mnist": 88, "9m": 88, "lt": [88, 90, 91, 92, 96, 99], "7mb": 88, "18m": 88, "57": [88, 92, 94], "num_row": 88, "60000": 88, "transformed_dataset": 88, "with_format": 88, "255": [88, 92], "unsqueez": 88, "cpu_count": 88, "torch_dataset": 88, "quick": [88, 97], "super": [88, 90, 91], "relu": 88, "batchnorm2d": 88, "maxpool2d": 88, "lazylinear": 88, "flatten": 88, "get_test_accuraci": 88, "testload": [88, 99], "energi": 88, "trainload": [88, 99], "n_epoch": 88, "patienc": 88, "criterion": 88, "crossentropyloss": 88, "adamw": 88, "best_test_accuraci": 88, "start_epoch": 88, "running_loss": 88, "best_epoch": 88, "end_epoch": 88, "3f": [88, 101], "acc": [88, 94], "time_taken": 88, "compute_embed": 88, "compute_pred_prob": 88, "train_batch_s": 88, "num_work": 88, "worker": [88, 103], "train_id_list": 88, "test_id_list": 88, "train_id": 88, "test_id": 88, "embeddings_model": 88, "ntrain": 88, "trainset": 88, "testset": 88, "pin_memori": 88, "fold_embed": 88, "fold_pred_prob": 88, "finish": 88, "482": 88, "720": 88, "940": 88, "329": [88, 98], "88": [88, 92, 93, 94, 97, 98, 101], "195": 88, "775": 88, "493": 88, "060": 88, "963": 88, "330": [88, 98], "505": 88, "588": 88, "476": 88, "340": 88, "770": 88, "328": [88, 98], "310": 88, "552": 88, "reorder": 88, "hstack": [88, 93, 94, 96], "vision": 88, "grayscal": 88, "max_preval": 88, "7714": 88, "3772": 88, "3585": 88, "3651": 88, "27080": 88, "873833e": 88, "40378": 88, "915575e": 88, "25316": 88, "390277e": 88, "06": [88, 94, 98, 103], "2090": 88, "751164e": 88, "14999": 88, "881301e": 88, "9569": 88, "11262": 88, "000003": 88, "coat": [88, 92], "shirt": [88, 92], "19228": 88, "000010": 88, "dress": 88, "32657": 88, "000013": 88, "bag": [88, 92, 99, 100], "21282": 88, "000016": 88, "53564": 88, "000018": 88, "pullov": 88, "6321": 88, "30968": 88, "001267": 88, "30659": 88, "000022": [88, 103], "47824": 88, "001454": 88, "3370": 88, "000026": 88, "54565": 88, "001854": 88, "9762": 88, "258": 88, "47139": 88, "000033": 88, "166980": 88, "986195": 88, "997205": 88, "sandal": [88, 92], "948781": 88, "999358": 88, "54078": 88, "17371": 88, "000025": 88, "plot_label_issue_exampl": 88, "ncol": [88, 99], "nrow": [88, 99], "ceil": 88, "axes_list": 88, "label_issue_indic": 88, "gl": 88, "sl": 88, "fontdict": 88, "imshow": [88, 99], "cmap": [88, 101], "grai": 88, "subplots_adjust": 88, "hspace": 88, "outsiz": 88, "outlier_issu": [88, 91], "outlier_issues_df": 88, "depict": [88, 97, 98, 99, 100, 102], "plot_outlier_issues_exampl": 88, "n_comparison_imag": 88, "sample_from_class": 88, "number_of_sampl": 88, "non_outlier_indic": 88, "isnul": 88, "non_outlier_indices_excluding_curr": 88, "sampled_indic": 88, "label_scores_of_sampl": 88, "top_score_indic": 88, "top_label_indic": 88, "sampled_imag": 88, "get_image_given_label_and_sampl": 88, "image_from_dataset": 88, "corresponding_label": 88, "comparison_imag": 88, "images_to_plot": 88, "idlist": 88, "iterrow": 88, "near_duplicate_issu": [88, 93], "closest": 88, "counterpart": 88, "near_duplicate_issues_df": 88, "plot_near_duplicate_issue_exampl": 88, "seen_id_pair": 88, "get_image_and_given_label_and_predicted_label": 88, "duplicate_imag": 88, "nd_set": 88, "challeng": 88, "dark_issu": 88, "reveal": [88, 98, 102], "dark_scor": 88, "dark_issues_df": 88, "is_dark_issu": 88, "34848": 88, "203922": 88, "50270": 88, "204588": 88, "3936": 88, "213098": 88, "733": 88, "217686": 88, "8094": 88, "230118": 88, "plot_image_issue_exampl": 88, "28": [88, 91, 92, 94, 96, 103], "difficult": 88, "disproportion": 88, "lowinfo_issu": 88, "low_information_scor": 88, "lowinfo_issues_df": 88, "is_low_information_issu": 88, "53050": 88, "067975": 88, "40875": 88, "089929": 88, "9594": 88, "092601": 88, "34825": 88, "107744": 88, "37530": 88, "108516": 88, "lot": 88, "histgradientboostingclassifi": 90, "cat_featur": 90, "boost": [90, 93, 96, 101], "xgboost": [90, 93, 101], "think": [90, 91, 93, 97, 102, 103], "nonzero": 90, "358": 90, "294": [90, 98], "941": 90, "7109": 90, "000005": [90, 91], "886": 90, "000059": 90, "709": 90, "000104": 90, "723": 90, "000169": 90, "689": 90, "000181": 90, "3590": 90, "051882e": 90, "683133e": 90, "536582e": 90, "406589e": 90, "324246e": 90, "6165": 90, "582": 90, "185": [90, 92, 98], "187": [90, 92], "898": 90, "0014": [90, 92], "595": 90, "702427": 90, "147": [90, 94, 98], "711186": 90, "157": [90, 94], "721394": 90, "771": 90, "731979": 90, "740335": 90, "0014153602099278074": 90, "issue_result": 90, "000842": 90, "555944": 90, "004374": 90, "sorted_issu": 90, "73": [90, 92, 97, 98, 101], "deserv": 90, "outlier_result": 90, "sorted_outli": 90, "56": [90, 92, 101], "96": [90, 92, 94, 97, 98, 101], "style": [90, 102], "font": 90, "18px": 90, "ff00ff": 90, "bac": 90, "unintend": [90, 91], "duplicate_result": 90, "690": 90, "perhap": [90, 94, 96], "twice": 90, "67": [90, 92, 98, 101], "wari": [90, 91, 93], "dive": 91, "your_featur": 91, "text_embed": 91, "data_dict": [91, 94, 96], "85": [91, 98], "38": [91, 92, 98, 103], "9710": 91, "981": 91, "974": 91, "000146": 91, "982": [91, 92], "000224": 91, "971": 91, "000507": 91, "980": [91, 92], "000960": 91, "3584": 91, "994": 91, "009642": 91, "999": 91, "013067": 91, "013841": 91, "433": 91, "014722": 91, "989": 91, "018224": 91, "6070": 91, "095724": 91, "148": [91, 103], "006237": 91, "546": 91, "099341": 91, "514": 91, "006485": 91, "481": 91, "123418": 91, "008165": 91, "0000": [91, 92, 94], "313": [91, 98], "564102": 91, "572258": 91, "574915": 91, "31": [91, 92, 94, 96, 98], "575507": 91, "575874": 91, "792090": 91, "257611": 91, "698710": 91, "182121": 91, "771619": 91, "data_with_suggested_label": 91, "withdraw": 91, "monei": 91, "lowest_quality_outli": 91, "OR": 91, "636c65616e6c616220697320617765736f6d6521": 91, "phone": [91, 92], "gone": 91, "gt": [91, 96, 103], "samp": 91, "br": 91, "press": [91, 103], "nonsens": 91, "sens": 91, "detriment": 91, "duplicate_issu": 91, "fee": 91, "pai": 91, "go": [91, 92, 94], "strongli": 91, "p_valu": 91, "benign": 91, "curat": [91, 95], "mnist_test_set": 92, "imagenet_val_set": 92, "tench": 92, "goldfish": 92, "white": [92, 103], "shark": 92, "tiger": 92, "hammerhead": 92, "electr": 92, "rai": 92, "stingrai": 92, "cock": 92, "hen": 92, "ostrich": 92, "brambl": 92, "goldfinch": 92, "hous": 92, "finch": 92, "junco": 92, "indigo": 92, "bunt": 92, "american": [92, 103], "robin": 92, "bulbul": 92, "jai": 92, "magpi": 92, "chickade": 92, "dipper": 92, "kite": 92, "bald": 92, "eagl": 92, "vultur": 92, "grei": 92, "owl": 92, "salamand": 92, "smooth": 92, "newt": 92, "spot": [92, 93, 98], "axolotl": 92, "bullfrog": 92, "tree": 92, "frog": [92, 99], "tail": 92, "loggerhead": 92, "sea": 92, "turtl": 92, "leatherback": 92, "mud": 92, "terrapin": 92, "band": 92, "gecko": 92, "green": [92, 103], "iguana": 92, "carolina": 92, "anol": 92, "desert": 92, "grassland": 92, "whiptail": 92, "lizard": 92, "agama": 92, "frill": 92, "neck": 92, "allig": 92, "gila": 92, "monster": 92, "european": 92, "chameleon": 92, "komodo": 92, "dragon": 92, "nile": 92, "crocodil": 92, "triceratop": 92, "worm": 92, "snake": 92, "ring": 92, "eastern": 92, "hog": 92, "nose": 92, "kingsnak": 92, "garter": 92, "water": 92, "vine": 92, "night": 92, "boa": 92, "constrictor": 92, "african": 92, "rock": 92, "indian": 92, "cobra": 92, "mamba": 92, "saharan": 92, "horn": 92, "viper": 92, "diamondback": 92, "rattlesnak": 92, "sidewind": 92, "trilobit": 92, "harvestman": 92, "scorpion": 92, "yellow": 92, "garden": 92, "spider": 92, "barn": 92, "southern": 92, "widow": 92, "tarantula": 92, "wolf": 92, "tick": 92, "centiped": 92, "grous": 92, "ptarmigan": 92, "ruf": 92, "prairi": 92, "peacock": 92, "quail": 92, "partridg": 92, "parrot": 92, "macaw": 92, "sulphur": 92, "crest": 92, "cockatoo": 92, "lorikeet": 92, "coucal": 92, "bee": 92, "eater": 92, "hornbil": 92, "hummingbird": 92, "jacamar": 92, "toucan": 92, "breast": 92, "mergans": 92, "goos": 92, "swan": 92, "tusker": 92, "echidna": 92, "platypu": 92, "wallabi": 92, "koala": 92, "wombat": 92, "jellyfish": 92, "anemon": 92, "brain": 92, "coral": 92, "flatworm": 92, "nematod": 92, "conch": 92, "snail": 92, "slug": 92, "chiton": 92, "chamber": 92, "nautilu": 92, "dung": 92, "crab": 92, "fiddler": 92, "king": 92, "lobster": 92, "spini": 92, "crayfish": 92, "hermit": 92, "isopod": 92, "stork": 92, "spoonbil": 92, "flamingo": 92, "heron": 92, "egret": 92, "bittern": 92, "crane": 92, "bird": [92, 99], "limpkin": 92, "gallinul": 92, "coot": 92, "bustard": 92, "ruddi": 92, "turnston": 92, "dunlin": 92, "redshank": 92, "dowitch": 92, "oystercatch": 92, "pelican": 92, "penguin": 92, "albatross": 92, "whale": 92, "killer": 92, "dugong": 92, "lion": 92, "chihuahua": 92, "japanes": 92, "chin": 92, "maltes": 92, "pekinges": 92, "shih": 92, "tzu": 92, "charl": 92, "spaniel": 92, "papillon": 92, "terrier": 92, "rhodesian": 92, "ridgeback": 92, "afghan": [92, 103], "hound": 92, "basset": 92, "beagl": 92, "bloodhound": 92, "bluetick": 92, "coonhound": 92, "tan": 92, "walker": 92, "foxhound": 92, "redbon": 92, "borzoi": 92, "irish": 92, "wolfhound": 92, "italian": 92, "greyhound": 92, "whippet": 92, "ibizan": 92, "norwegian": 92, "elkhound": 92, "otterhound": 92, "saluki": 92, "scottish": 92, "deerhound": 92, "weimaran": 92, "staffordshir": 92, "bull": 92, "bedlington": 92, "border": 92, "kerri": 92, "norfolk": 92, "norwich": 92, "yorkshir": 92, "wire": 92, "fox": 92, "lakeland": 92, "sealyham": 92, "airedal": 92, "cairn": 92, "australian": 92, "dandi": 92, "dinmont": 92, "boston": 92, "miniatur": 92, "schnauzer": 92, "giant": 92, "tibetan": 92, "silki": 92, "wheaten": 92, "west": 92, "highland": 92, "lhasa": 92, "apso": 92, "flat": 92, "retriev": 92, "curli": 92, "golden": 92, "labrador": 92, "chesapeak": 92, "bai": 92, "german": [92, 103], "shorthair": 92, "pointer": 92, "vizsla": 92, "setter": 92, "gordon": 92, "brittani": 92, "clumber": 92, "springer": 92, "welsh": 92, "cocker": 92, "sussex": 92, "kuvasz": 92, "schipperk": 92, "groenendael": 92, "malinoi": 92, "briard": 92, "kelpi": 92, "komondor": 92, "sheepdog": 92, "shetland": 92, "colli": 92, "bouvier": 92, "de": 92, "flandr": 92, "rottweil": 92, "shepherd": 92, "dobermann": 92, "pinscher": 92, "swiss": [92, 103], "mountain": 92, "bernes": 92, "appenzel": 92, "sennenhund": 92, "entlebuch": 92, "boxer": 92, "bullmastiff": 92, "mastiff": 92, "french": 92, "bulldog": 92, "dane": 92, "st": 92, "bernard": 92, "huski": 92, "alaskan": 92, "malamut": 92, "siberian": 92, "dalmatian": 92, "affenpinsch": 92, "basenji": 92, "pug": 92, "leonberg": 92, "newfoundland": 92, "pyrenean": 92, "samoi": 92, "pomeranian": 92, "chow": 92, "keeshond": 92, "griffon": 92, "bruxelloi": 92, "pembrok": 92, "corgi": 92, "cardigan": 92, "poodl": 92, "mexican": 92, "hairless": 92, "tundra": 92, "coyot": 92, "dingo": 92, "dhole": 92, "wild": 92, "hyena": 92, "kit": 92, "arctic": 92, "tabbi": 92, "persian": 92, "siames": 92, "egyptian": 92, "mau": 92, "cougar": 92, "lynx": 92, "leopard": 92, "snow": 92, "jaguar": 92, "cheetah": 92, "brown": [92, 102], "bear": 92, "polar": 92, "sloth": 92, "mongoos": 92, "meerkat": 92, "beetl": 92, "ladybug": 92, "longhorn": 92, "leaf": 92, "rhinocero": 92, "weevil": 92, "ant": 92, "grasshopp": 92, "cricket": 92, "stick": 92, "insect": 92, "cockroach": 92, "manti": 92, "cicada": 92, "leafhopp": 92, "lacew": 92, "dragonfli": 92, "damselfli": 92, "admir": 92, "ringlet": 92, "monarch": 92, "butterfli": 92, "gossam": 92, "wing": 92, "starfish": 92, "urchin": 92, "cucumb": 92, "cottontail": 92, "rabbit": 92, "hare": 92, "angora": 92, "hamster": 92, "porcupin": 92, "squirrel": 92, "marmot": 92, "beaver": 92, "guinea": 92, "pig": 92, "sorrel": 92, "zebra": 92, "boar": 92, "warthog": 92, "hippopotamu": 92, "ox": 92, "buffalo": 92, "bison": 92, "bighorn": 92, "sheep": 92, "alpin": 92, "ibex": 92, "hartebeest": 92, "impala": 92, "gazel": 92, "dromedari": 92, "llama": 92, "weasel": 92, "mink": 92, "polecat": 92, "foot": 92, "ferret": 92, "otter": 92, "skunk": 92, "badger": 92, "armadillo": 92, "toed": 92, "orangutan": 92, "gorilla": 92, "chimpanze": 92, "gibbon": 92, "siamang": 92, "guenon": 92, "pata": 92, "monkei": 92, "baboon": 92, "macaqu": 92, "langur": 92, "colobu": 92, "probosci": 92, "marmoset": 92, "capuchin": 92, "howler": 92, "titi": 92, "geoffroi": 92, "lemur": 92, "indri": 92, "asian": 92, "eleph": 92, "bush": 92, "snoek": 92, "eel": 92, "coho": 92, "salmon": 92, "beauti": 92, "clownfish": 92, "sturgeon": 92, "garfish": 92, "lionfish": 92, "pufferfish": 92, "abacu": 92, "abaya": 92, "academ": 92, "gown": 92, "accordion": 92, "acoust": 92, "guitar": 92, "aircraft": 92, "carrier": 92, "airlin": 92, "airship": 92, "altar": 92, "ambul": 92, "amphibi": 92, "clock": [92, 103], "apiari": 92, "apron": 92, "wast": 92, "assault": 92, "rifl": 92, "backpack": 92, "bakeri": 92, "balanc": 92, "beam": 92, "balloon": 92, "ballpoint": 92, "pen": 92, "aid": 92, "banjo": 92, "balust": 92, "barbel": 92, "barber": 92, "chair": [92, 98], "barbershop": 92, "baromet": 92, "barrel": 92, "wheelbarrow": 92, "basebal": 92, "basketbal": 92, "bassinet": 92, "bassoon": 92, "swim": 92, "cap": 92, "bath": 92, "towel": 92, "bathtub": 92, "station": 92, "wagon": 92, "lighthous": 92, "beaker": 92, "militari": 92, "beer": 92, "bottl": 92, "glass": 92, "bell": 92, "cot": 92, "bib": 92, "bicycl": [92, 102], "bikini": 92, "binder": 92, "binocular": 92, "birdhous": 92, "boathous": 92, "bobsleigh": 92, "bolo": 92, "tie": 92, "poke": 92, "bonnet": 92, "bookcas": 92, "bookstor": 92, "bow": 92, "brass": 92, "bra": 92, "breakwat": 92, "breastplat": 92, "broom": 92, "bucket": 92, "buckl": 92, "bulletproof": 92, "vest": 92, "butcher": 92, "shop": 92, "taxicab": 92, "cauldron": 92, "candl": 92, "cannon": 92, "cano": 92, "mirror": [92, 98], "carousel": 92, "tool": [92, 94, 96], "carton": 92, "wheel": 92, "teller": 92, "cassett": 92, "player": 92, "castl": 92, "catamaran": 92, "cd": 92, "cello": 92, "mobil": [92, 103], "chain": 92, "fenc": [92, 102], "mail": 92, "chainsaw": 92, "chest": 92, "chiffoni": 92, "chime": 92, "china": 92, "cabinet": 92, "christma": 92, "stock": 92, "church": 92, "movi": 92, "theater": 92, "cleaver": 92, "cliff": 92, "dwell": 92, "cloak": 92, "clog": 92, "cocktail": 92, "shaker": 92, "coffe": 92, "mug": 92, "coffeemak": 92, "coil": 92, "lock": 92, "keyboard": 92, "confectioneri": 92, "ship": [92, 99], "corkscrew": 92, "cornet": 92, "cowboi": 92, "boot": 92, "hat": 92, "cradl": 92, "crash": 92, "helmet": 92, "crate": 92, "infant": 92, "bed": 92, "crock": 92, "pot": 92, "croquet": 92, "crutch": 92, "cuirass": 92, "dam": 92, "desk": 92, "desktop": 92, "rotari": 92, "dial": 92, "telephon": 92, "diaper": 92, "watch": 92, "dine": 92, "dishcloth": 92, "dishwash": 92, "disc": 92, "brake": 92, "dock": 92, "sled": 92, "dome": 92, "doormat": 92, "drill": 92, "rig": 92, "drum": 92, "drumstick": 92, "dumbbel": 92, "dutch": 92, "oven": 92, "fan": 92, "locomot": 92, "entertain": 92, "center": 92, "envelop": 92, "espresso": 92, "powder": 92, "feather": 92, "fireboat": 92, "engin": [92, 102], "screen": 92, "sheet": 92, "flagpol": 92, "flute": 92, "footbal": 92, "forklift": 92, "fountain": 92, "poster": 92, "freight": 92, "fry": 92, "pan": 92, "fur": 92, "garbag": 92, "ga": 92, "pump": 92, "goblet": 92, "kart": 92, "golf": 92, "cart": 92, "gondola": 92, "gong": 92, "grand": 92, "piano": 92, "greenhous": 92, "grill": 92, "groceri": 92, "guillotin": 92, "barrett": 92, "hair": 92, "sprai": 92, "hammer": 92, "dryer": 92, "hand": [92, 94], "handkerchief": 92, "drive": 92, "harmonica": 92, "harp": 92, "harvest": 92, "hatchet": 92, "holster": 92, "honeycomb": 92, "hoop": 92, "skirt": 92, "horizont": 92, "bar": 92, "drawn": 92, "hourglass": 92, "ipod": 92, "cloth": 92, "iron": 92, "jack": 92, "lantern": 92, "jean": 92, "jeep": 92, "jigsaw": 92, "puzzl": 92, "pull": 92, "rickshaw": 92, "joystick": 92, "kimono": 92, "knee": 92, "pad": 92, "knot": 92, "ladl": 92, "lampshad": 92, "laptop": 92, "lawn": 92, "mower": 92, "knife": 92, "lifeboat": 92, "lighter": 92, "limousin": 92, "ocean": 92, "liner": 92, "lipstick": 92, "slip": 92, "shoe": 92, "lotion": 92, "speaker": 92, "loup": 92, "sawmil": 92, "magnet": 92, "compass": 92, "mailbox": 92, "tight": 92, "tank": 92, "manhol": 92, "maraca": 92, "marimba": 92, "maypol": 92, "maze": 92, "cup": [92, 98], "medicin": 92, "megalith": 92, "microphon": 92, "microwav": 92, "milk": 92, "minibu": 92, "miniskirt": 92, "minivan": 92, "missil": 92, "mitten": [92, 93], "mix": 92, "bowl": 92, "modem": 92, "monasteri": 92, "mope": 92, "mortar": 92, "mosqu": 92, "mosquito": 92, "scooter": 92, "bike": 92, "tent": 92, "mous": [92, 93], "mousetrap": 92, "van": 92, "muzzl": 92, "nail": 92, "brace": 92, "necklac": 92, "nippl": 92, "obelisk": 92, "obo": 92, "ocarina": 92, "odomet": 92, "oil": 92, "oscilloscop": 92, "overskirt": 92, "bullock": 92, "oxygen": 92, "packet": 92, "paddl": 92, "padlock": 92, "paintbrush": 92, "pajama": 92, "palac": [92, 103], "parachut": 92, "park": 92, "bench": 92, "meter": 92, "passeng": 92, "patio": 92, "payphon": 92, "pedest": 92, "pencil": 92, "perfum": 92, "petri": 92, "dish": 92, "photocopi": 92, "plectrum": 92, "pickelhaub": 92, "picket": 92, "pickup": 92, "pier": 92, "piggi": 92, "pill": 92, "pillow": 92, "ping": 92, "pong": 92, "pinwheel": 92, "pirat": 92, "pitcher": 92, "plane": 92, "planetarium": 92, "plastic": 92, "plate": 92, "rack": 92, "plow": 92, "plunger": 92, "polaroid": 92, "camera": 92, "pole": [92, 102], "polic": 92, "poncho": 92, "billiard": 92, "soda": 92, "potter": 92, "prayer": 92, "rug": 92, "printer": 92, "prison": 92, "projectil": 92, "projector": 92, "hockei": 92, "puck": 92, "punch": 92, "purs": 92, "quill": 92, "quilt": 92, "race": 92, "racket": 92, "radiat": 92, "radio": 92, "telescop": 92, "rain": 92, "recreat": 92, "reel": 92, "reflex": 92, "refriger": 92, "remot": 92, "restaur": 92, "revolv": 92, "rotisseri": 92, "eras": 92, "rugbi": 92, "ruler": 92, "safe": 92, "safeti": 92, "salt": 92, "sarong": 92, "saxophon": 92, "scabbard": 92, "school": 92, "bu": [92, 102], "schooner": 92, "scoreboard": 92, "crt": 92, "screw": 92, "screwdriv": 92, "seat": 92, "belt": 92, "sew": 92, "shield": 92, "shoji": 92, "basket": 92, "shovel": 92, "shower": 92, "curtain": 92, "ski": 92, "door": 92, "slot": 92, "snorkel": 92, "snowmobil": 92, "snowplow": 92, "soap": 92, "dispens": 92, "soccer": [92, 103], "sock": [92, 93], "solar": 92, "thermal": 92, "collector": 92, "sombrero": 92, "soup": 92, "heater": 92, "shuttl": 92, "spatula": 92, "motorboat": 92, "web": 92, "spindl": 92, "sport": [92, 103], "spotlight": 92, "stage": 92, "steam": 92, "arch": 92, "bridg": 92, "steel": 92, "stethoscop": 92, "scarf": 92, "stone": 92, "wall": [92, 102], "stopwatch": 92, "stove": 92, "strainer": 92, "tram": 92, "stretcher": 92, "couch": 92, "stupa": 92, "submarin": 92, "sundial": 92, "sunglass": 92, "sunscreen": 92, "suspens": 92, "mop": 92, "sweatshirt": 92, "swimsuit": 92, "swing": 92, "switch": 92, "syring": 92, "lamp": 92, "tape": 92, "teapot": 92, "teddi": 92, "televis": [92, 103], "tenni": 92, "thatch": 92, "roof": 92, "front": 92, "thimbl": 92, "thresh": 92, "throne": 92, "tile": 92, "toaster": 92, "tobacco": 92, "toilet": 92, "totem": 92, "tow": 92, "tractor": 92, "semi": 92, "trailer": 92, "trai": 92, "trench": 92, "tricycl": 92, "trimaran": 92, "tripod": 92, "triumphal": 92, "trolleybu": 92, "trombon": 92, "tub": 92, "turnstil": 92, "typewrit": 92, "umbrella": 92, "unicycl": 92, "upright": 92, "vacuum": 92, "cleaner": 92, "vase": 92, "vault": 92, "velvet": 92, "vend": 92, "vestment": 92, "viaduct": 92, "violin": 92, "volleybal": 92, "waffl": 92, "wallet": 92, "wardrob": 92, "sink": 92, "wash": 92, "jug": 92, "tower": 92, "whiskei": 92, "whistl": 92, "wig": 92, "shade": [92, 102], "windsor": 92, "wine": 92, "wok": 92, "wooden": 92, "spoon": 92, "wool": 92, "rail": 92, "shipwreck": 92, "yawl": 92, "yurt": 92, "comic": 92, "book": 92, "crossword": 92, "traffic": [92, 98, 102], "sign": [92, 102, 103], "dust": 92, "jacket": [92, 98], "menu": 92, "guacamol": 92, "consomm": 92, "trifl": 92, "ic": 92, "cream": 92, "pop": 92, "baguett": 92, "bagel": 92, "pretzel": 92, "cheeseburg": 92, "mash": 92, "potato": 92, "cabbag": 92, "broccoli": 92, "cauliflow": 92, "zucchini": 92, "spaghetti": 92, "squash": 92, "acorn": 92, "butternut": 92, "artichok": 92, "pepper": [92, 93], "cardoon": 92, "mushroom": 92, "granni": 92, "smith": 92, "strawberri": 92, "orang": 92, "lemon": 92, "pineappl": 92, "banana": 92, "jackfruit": 92, "custard": 92, "appl": 92, "pomegran": 92, "hai": 92, "carbonara": 92, "chocol": 92, "syrup": 92, "dough": 92, "meatloaf": 92, "pizza": 92, "pie": 92, "burrito": 92, "eggnog": 92, "alp": 92, "bubbl": 92, "reef": 92, "geyser": 92, "lakeshor": 92, "promontori": 92, "shoal": 92, "seashor": 92, "vallei": 92, "volcano": 92, "bridegroom": 92, "scuba": 92, "diver": 92, "rapese": 92, "daisi": 92, "ladi": 92, "slipper": 92, "corn": 92, "rose": 92, "hip": 92, "chestnut": 92, "fungu": 92, "agar": 92, "gyromitra": 92, "stinkhorn": 92, "earth": 92, "star": 92, "wood": 92, "bolet": 92, "ear": 92, "cifar10_test_set": 92, "airplan": [92, 99], "automobil": [92, 99], "deer": [92, 99], "cifar100_test_set": 92, "aquarium_fish": 92, "babi": 92, "boi": 92, "camel": 92, "caterpillar": 92, "cattl": [92, 103], "cloud": 92, "dinosaur": 92, "dolphin": 92, "flatfish": 92, "forest": 92, "girl": 92, "kangaroo": 92, "lawn_mow": 92, "man": 92, "maple_tre": 92, "motorcycl": [92, 102], "oak_tre": 92, "orchid": 92, "palm_tre": 92, "pear": 92, "pickup_truck": 92, "pine_tre": 92, "plain": 92, "poppi": 92, "possum": 92, "raccoon": 92, "road": [92, 102], "rocket": 92, "seal": 92, "shrew": 92, "skyscrap": 92, "streetcar": 92, "sunflow": 92, "sweet_pepp": 92, "trout": 92, "tulip": 92, "willow_tre": 92, "woman": [92, 98], "caltech256": 92, "ak47": 92, "bat": 92, "glove": 92, "birdbath": 92, "blimp": 92, "bonsai": 92, "boom": 92, "breadmak": 92, "buddha": 92, "bulldoz": 92, "cactu": 92, "cake": 92, "tire": 92, "cartman": 92, "cereal": 92, "chandeli": 92, "chess": 92, "board": 92, "chimp": 92, "chopstick": 92, "coffin": 92, "coin": 92, "comet": 92, "cormor": 92, "globe": 92, "diamond": 92, "dice": 92, "doorknob": 92, "drink": 92, "straw": 92, "dumb": 92, "eiffel": 92, "elk": 92, "ewer": 92, "eyeglass": 92, "fern": 92, "fighter": 92, "jet": [92, 101], "extinguish": 92, "hydrant": 92, "firework": 92, "flashlight": 92, "floppi": 92, "fri": 92, "frisbe": 92, "galaxi": 92, "giraff": 92, "goat": 92, "gate": 92, "grape": 92, "pick": [92, 93], "hamburg": 92, "hammock": 92, "harpsichord": 92, "hawksbil": 92, "helicopt": 92, "hibiscu": 92, "homer": 92, "simpson": 92, "horsesho": 92, "air": 92, "skeleton": 92, "ibi": 92, "cone": 92, "iri": 92, "jesu": 92, "christ": 92, "joi": 92, "kayak": 92, "ketch": 92, "ladder": 92, "lath": 92, "licens": 92, "lightbulb": 92, "lightn": 92, "mandolin": 92, "mar": 92, "mattress": 92, "megaphon": 92, "menorah": 92, "microscop": 92, "minaret": 92, "minotaur": 92, "motorbik": 92, "mussel": 92, "neckti": 92, "octopu": 92, "palm": 92, "pilot": 92, "paperclip": 92, "shredder": 92, "pci": 92, "peopl": [92, 98], "pez": 92, "picnic": 92, "pram": 92, "prai": 92, "pyramid": 92, "rainbow": 92, "roulett": 92, "saddl": 92, "saturn": 92, "segwai": 92, "propel": 92, "sextant": 92, "music": 92, "skateboard": 92, "smokestack": 92, "sneaker": 92, "boat": 92, "stain": 92, "steer": 92, "stirrup": 92, "superman": 92, "sushi": 92, "armi": [92, 103], "sword": 92, "tambourin": 92, "teepe": 92, "court": 92, "theodolit": 92, "tomato": 92, "tombston": 92, "tour": 92, "pisa": 92, "treadmil": 92, "fork": 92, "tweezer": 92, "unicorn": 92, "vcr": 92, "waterfal": 92, "watermelon": 92, "weld": 92, "windmil": 92, "xylophon": 92, "yarmulk": 92, "yo": 92, "toad": 92, "twenty_news_test_set": 92, "alt": 92, "atheism": 92, "comp": 92, "graphic": [92, 102], "misc": [92, 103], "sy": 92, "ibm": 92, "pc": 92, "hardwar": 92, "mac": 92, "forsal": 92, "rec": 92, "sci": 92, "crypt": 92, "electron": 92, "med": 92, "soc": 92, "religion": 92, "christian": [92, 103], "talk": [92, 103], "polit": 92, "gun": 92, "mideast": 92, "amazon": 92, "neutral": 92, "imdb_test_set": 92, "all_class": 92, "20news_test_set": 92, "_load_classes_predprobs_label": 92, "dataset_nam": 92, "labelerror": 92, "url_bas": 92, "5392f6c71473055060be3044becdde1cbc18284d": 92, "url_label": 92, "original_test_label": 92, "_original_label": 92, "url_prob": 92, "cross_validated_predicted_prob": 92, "_pyx": 92, "num_part": 92, "datatset": 92, "bytesio": 92, "allow_pickl": 92, "pred_probs_part": 92, "url": 92, "_of_": 92, "nload": 92, "imdb": 92, "interpret": [92, 93, 94, 97, 101], "capit": 92, "29780": 92, "780": 92, "medic": [92, 103], "doctor": 92, "359223": 92, "640777": 92, "184": [92, 94], "258427": 92, "341176": 92, "263158": 92, "658824": 92, "337349": 92, "246575": 92, "662651": 92, "248": 92, "330000": 92, "355769": 92, "670000": 92, "251": [92, 98], "252": 92, "112": 92, "253": [92, 98], "022989": 92, "049505": 92, "190": [92, 94, 98], "66": 92, "002216": 92, "000974": 92, "59": [92, 98], "000873": 92, "000739": 92, "32635": 92, "32636": 92, "47": [92, 98], "32637": 92, "32638": 92, "32639": 92, "32640": 92, "051": 92, "002242": 92, "997758": 92, "002088": 92, "001045": 92, "997912": 92, "002053": 92, "997947": 92, "001980": 92, "000991": 92, "998020": 92, "001946": 92, "002915": 92, "998054": 92, "001938": 92, "002904": 92, "998062": 92, "001020": 92, "998980": 92, "001018": 92, "002035": 92, "998982": 92, "999009": 92, "0003": 92, "0002": 92, "36": [92, 103], "41": [92, 98, 101], "71": [92, 94, 98, 101], "071": 92, "067269": 92, "929": 92, "046": 92, "058243": 92, "954": 92, "035": 92, "032096": 92, "965": 92, "031": 92, "012232": 92, "969": 92, "022": 92, "025896": 92, "978": 92, "020": [92, 94], "013092": 92, "018": 92, "013065": 92, "016": 92, "030542": 92, "984": 92, "013": 92, "020833": 92, "987": 92, "012": 92, "010020": 92, "988": 92, "0073": 92, "0020": 92, "0016": 92, "0015": 92, "0013": 92, "0012": 92, "0010": 92, "0008": 92, "0007": 92, "0006": 92, "0005": 92, "0004": 92, "244": [92, 98], "98": [92, 93, 101, 103], "452381": 92, "459770": 92, "72": [92, 94, 97, 101], "523364": 92, "460784": 92, "446602": 92, "103774": 92, "030612": 92, "110092": 92, "049020": 92, "0034": 92, "0032": 92, "0026": 92, "0025": 92, "4945": 92, "4946": 92, "4947": 92, "4948": 92, "4949": 92, "4950": 92, "846": 92, "82": [92, 94, 98, 101], "7532": 92, "532": 92, "034483": 92, "009646": 92, "965517": 92, "030457": 92, "020513": 92, "969543": 92, "028061": 92, "035443": 92, "971939": 92, "025316": 92, "005168": 92, "974684": 92, "049751": 92, "979487": 92, "019920": 92, "042802": 92, "980080": 92, "017677": 92, "005115": 92, "982323": 92, "012987": 92, "005236": 92, "987013": 92, "012723": 92, "025126": 92, "987277": 92, "010989": 92, "008264": 92, "989011": 92, "010283": 92, "027778": 92, "989717": 92, "009677": 92, "990323": 92, "007614": 92, "010127": 92, "992386": 92, "005051": 92, "994949": 92, "005025": 92, "994975": 92, "005013": 92, "994987": 92, "001859": 92, "001328": 92, "000929": 92, "000664": 92, "186": [92, 94], "188": [92, 94, 97], "189": [92, 94], "snippet": 93, "nlp": [93, 103], "mind": [93, 94], "alphanumer": 93, "facilit": 93, "classlabel": 93, "guidanc": 93, "labels_str": 93, "datalab_str": 93, "labels_int": 93, "remap": 93, "datalab_int": 93, "my_dict": 93, "pet_nam": 93, "rover": 93, "rocki": 93, "speci": 93, "from_dict": 93, "datalab_dataset": 93, "number_of_class": 93, "total_number_of_data_point": 93, "alphabet": 93, "labels_proper_format": 93, "your_classifi": 93, "issues_datafram": 93, "class_predicted_for_flagged_exampl": 93, "class_predicted_for_all_exampl": 93, "grant": 93, "On": [93, 94, 98], "merged_dataset": 93, "label_column_nam": 93, "datataset": 93, "fair": [93, 94], "game": 93, "speedup": [93, 99], "flexibl": 93, "tempfil": 93, "mkdtemp": 93, "sped": 93, "anywai": 93, "pred_probs_merg": 93, "merge_rare_class": 93, "count_threshold": 93, "class_mapping_orig2new": 93, "heath_summari": 93, "num_examples_per_class": 93, "rare_class": 93, "num_classes_merg": 93, "other_class": 93, "labels_merg": 93, "new_c": 93, "merged_prob": 93, "new_class": 93, "original_class": 93, "num_check": 93, "ones_array_ref": 93, "isclos": 93, "though": [93, 94, 103], "successfulli": 93, "meaning": [93, 99], "virtuou": [93, 96], "cycl": [93, 96], "jointli": 93, "junk": 93, "clutter": 93, "unknown": 93, "caltech": 93, "combined_boolean_mask": 93, "mask1": 93, "mask2": 93, "gradientboostingclassifi": [93, 94], "true_error": [93, 94, 97], "101": [93, 98], "102": [93, 97, 98], "104": [93, 94, 98], "model_to_find_error": 93, "model_to_return": 93, "cl0": 93, "randomizedsearchcv": 93, "expens": 93, "param_distribut": 93, "learning_r": [93, 94], "max_depth": [93, 94], "magnitud": 93, "coeffici": [93, 101], "optin": 93, "environ": [93, 94], "rerun": [93, 94], "cell": [93, 94], "unabl": [93, 94], "render": [93, 94], "nbviewer": [93, 94], "nbsp": [93, 94], "cleanlearninginot": [93, 94], "fittedcleanlearn": [93, 94], "linearregressionlinearregress": 93, "n_init": 93, "fit_predict": 93, "continuous_column": 93, "categorical_column": 93, "data_df": 93, "feature_a": 93, "feature_b": 93, "unexpectedli": 93, "emphas": 93, "crucial": 93, "merge_duplicate_set": 93, "merge_kei": 93, "construct_group_kei": 93, "merged_set": 93, "consolidate_set": 93, "tolist": [93, 97], "issubset": 93, "frozenset": 93, "sets_list": 93, "mutabl": 93, "new_set": 93, "current_set": 93, "intersecting_set": 93, "lowest_score_strategi": 93, "sub_df": 93, "idxmin": 93, "filter_near_dupl": 93, "strategy_fn": 93, "strategy_kwarg": 93, "duplicate_row": 93, "group_kei": 93, "to_keep_indic": 93, "groupbi": 93, "explod": 93, "to_remov": 93, "isin": [93, 99], "kept": 93, "ids_to_remove_seri": 93, "tmp": 93, "ipykernel_7516": 93, "1995098996": 93, "deprecationwarn": 93, "dataframegroupbi": 93, "include_group": 93, "silenc": 93, "assist": 93, "streamlin": 93, "ux": 93, "agpl": 93, "compani": 93, "commerci": 93, "alter": 93, "email": 93, "team": 93, "discuss": 93, "anywher": 93, "profession": 93, "expert": 93, "depth": 94, "survei": [94, 103], "focus": [94, 96, 97, 101], "scienc": 94, "multivariate_norm": [94, 96, 97], "make_data": [94, 96], "cov": [94, 96, 97], "avg_trac": [94, 97], "py_tru": 94, "noise_matrix_tru": 94, "noise_marix": 94, "s_test": 94, "noisy_test_label": 94, "purpl": 94, "val": 94, "namespac": 94, "exec": 94, "markerfacecolor": [94, 97], "markeredgecolor": [94, 97, 101], "markers": [94, 97, 101], "markeredgewidth": [94, 97, 101], "realist": 94, "7560": 94, "637318e": 94, "896262e": 94, "548391e": 94, "923417e": 94, "375075e": 94, "3454": 94, "014051": 94, "020451": 94, "249": [94, 98], "042594": 94, "043859": 94, "045954": 94, "6120": 94, "023714": 94, "007136": 94, "119": [94, 98], "107266": 94, "103": [94, 98], "033738": 94, "238": [94, 98], "119505": 94, "236": [94, 98, 103], "037843": 94, "222": 94, "614915": 94, "122": [94, 98], "624422": 94, "625965": 94, "626079": 94, "118": 94, "627675": 94, "695223": 94, "323529": 94, "523015": 94, "013720": 94, "675727": 94, "646521": 94, "anyth": 94, "enhanc": [94, 96, 98], "magic": 94, "liter": 94, "identif": 94, "x27": 94, "logisticregressionlogisticregress": 94, "ever": 94, "092": 94, "040": 94, "024": 94, "004": 94, "surpris": 94, "1705": 94, "01936": 94, "ton": 94, "yourfavoritemodel1": 94, "merged_label": 94, "merged_test_label": 94, "newli": [94, 96], "yourfavoritemodel2": 94, "yourfavoritemodel3": 94, "cl3": 94, "takeawai": 94, "That": [94, 97], "randomli": 94, "my_test_pred_prob": 94, "my_test_pr": 94, "issues_test": 94, "corrected_test_label": 94, "pretend": 94, "cl_test_pr": 94, "69": [94, 101], "fairli": 94, "label_acc": 94, "percentag": 94, "offset": 94, "nquestion": 94, "overestim": 94, "answer": 94, "experienc": 94, "knowledg": 94, "prioiri": 94, "known": 94, "versatil": 94, "label_issues_indic": 94, "213": [94, 98], "218": [94, 98], "152": 94, "197": [94, 98], "196": [94, 98], "170": 94, "214": 94, "164": [94, 97], "198": [94, 98], "191": [94, 98], "63": [94, 98, 101], "117": [94, 101], "62": [94, 98, 101], "206": [94, 98], "115": [94, 98], "193": 94, "194": 94, "201": [94, 98], "174": 94, "163": [94, 103], "150": [94, 96, 98, 103], "169": [94, 103], "151": [94, 98], "168": 94, "precision_scor": 94, "recall_scor": 94, "f1_score": 94, "true_label_issu": 94, "filter_by_list": 94, "718750": [94, 96], "807018": 94, "912": 94, "733333": 94, "800000": 94, "721311": 94, "792793": 94, "908": 94, "676923": 94, "765217": 94, "892": 94, "567901": 94, "702290": 94, "844": 94, "gaug": 94, "label_issues_count": 94, "155": [94, 98], "156": 94, "172": [94, 97], "easiest": 94, "modular": 94, "penalti": 94, "l2": 94, "model3": 94, "n_estim": 94, "cv_pred_probs_1": 94, "cv_pred_probs_2": 94, "cv_pred_probs_3": 94, "label_quality_scores_best": 94, "cv_pred_probs_ensembl": 94, "label_quality_scores_bett": 94, "superior": [94, 100], "timm": 95, "glad": 96, "multiannotator_label": 96, "300": [96, 103], "noisier": 96, "111": [96, 101], "local_data": [96, 97], "true_labels_train": [96, 97], "noise_matrix_bett": 96, "noise_matrix_wors": 96, "transpos": [96, 99], "dropna": 96, "zfill": 96, "row_na_check": 96, "notna": 96, "reset_index": 96, "a0001": 96, "a0002": 96, "a0003": 96, "a0004": 96, "a0005": 96, "a0006": 96, "a0007": 96, "a0008": 96, "a0009": 96, "a0010": 96, "a0041": 96, "a0042": 96, "a0043": 96, "a0044": 96, "a0045": 96, "a0046": 96, "a0047": 96, "a0048": 96, "a0049": 96, "a0050": 96, "na": 96, "60856743": 96, "41693214": 96, "40908785": 96, "87147629": 96, "64941785": 96, "10774851": 96, "0524466": 96, "71853246": 96, "37169848": 96, "66031048": 96, "multiannotator_util": 96, "crude": 96, "straight": 96, "majority_vote_label": 96, "736118": 96, "757751": 96, "782232": 96, "715565": 96, "824256": 96, "quality_annotator_a0001": 96, "quality_annotator_a0002": 96, "quality_annotator_a0003": 96, "quality_annotator_a0004": 96, "quality_annotator_a0005": 96, "quality_annotator_a0006": 96, "quality_annotator_a0007": 96, "quality_annotator_a0008": 96, "quality_annotator_a0009": 96, "quality_annotator_a0010": 96, "quality_annotator_a0041": 96, "quality_annotator_a0042": 96, "quality_annotator_a0043": 96, "quality_annotator_a0044": 96, "quality_annotator_a0045": 96, "quality_annotator_a0046": 96, "quality_annotator_a0047": 96, "quality_annotator_a0048": 96, "quality_annotator_a0049": 96, "quality_annotator_a0050": 96, "070564": 96, "216078": 96, "119188": 96, "alongisd": 96, "244981": 96, "208333": 96, "295979": 96, "294118": 96, "324197": 96, "310345": 96, "355316": 96, "346154": 96, "439732": 96, "480000": 96, "a0031": 96, "523205": 96, "580645": 96, "a0034": 96, "535313": 96, "607143": 96, "a0021": 96, "606999": 96, "a0015": 96, "609526": 96, "678571": 96, "a0011": 96, "621103": 96, "692308": 96, "wors": 96, "improved_consensus_label": 96, "majority_vote_accuraci": 96, "cleanlab_label_accuraci": 96, "8581081081081081": 96, "9797297297297297": 96, "besid": 96, "sorted_consensus_quality_scor": 96, "worst_qual": 96, "better_qu": 96, "worst_quality_accuraci": 96, "better_quality_accuraci": 96, "9893238434163701": 96, "improved_pred_prob": 96, "treat": [96, 97, 101, 103], "analzi": 96, "copyright": 97, "advertis": 97, "violenc": 97, "nsfw": 97, "celeba": 97, "make_multilabel_data": 97, "boxes_coordin": 97, "box_multilabel": 97, "make_multi": 97, "bx1": 97, "by1": 97, "bx2": 97, "by2": 97, "label_list": 97, "ur": 97, "upper": 97, "inidx": 97, "logical_and": 97, "inv_d": 97, "labels_idx": 97, "true_labels_test": 97, "dict_unique_label": 97, "get_color_arrai": 97, "dcolor": 97, "aa4400": 97, "55227f": 97, "55a100": 97, "00ff00": 97, "007f7f": 97, "386b55": 97, "0000ff": 97, "y_onehot": 97, "single_class_label": 97, "stratifi": [97, 100], "kf": 97, "train_index": 97, "test_index": 97, "clf_cv": 97, "x_train_cv": 97, "x_test_cv": 97, "y_train_cv": 97, "y_test_cv": 97, "y_pred_cv": 97, "saw": 97, "num_to_displai": 97, "09": [97, 98, 101], "275": 97, "267": 97, "225": 97, "171": 97, "234": 97, "165": 97, "227": [97, 98], "262": [97, 98], "266": [97, 98], "139": 97, "143": [97, 98], "216": [97, 98, 103], "265": 97, "159": [97, 98], "despit": [97, 103], "suspect": 97, "888": 97, "8224": 97, "9632": 97, "968": 97, "6512": 97, "0444": 97, "774": 97, "labels_binary_format": 97, "labels_list_format": 97, "surround": 98, "scene": 98, "coco": 98, "everydai": 98, "has_label_issu": 98, "insal": 98, "nc": [98, 102, 103], "s3": [98, 102, 103], "amazonaw": [98, 102, 103], "objectdetectionbenchmark": 98, "tutorial_obj": 98, "pkl": 98, "example_imag": 98, "unzip": [98, 103], "_separate_label": 98, "_separate_predict": 98, "begin": 98, "image_path": 98, "rb": 98, "image_to_visu": 98, "seg_map": 98, "334": 98, "float32": 98, "bboxes_ignor": 98, "290": 98, "286": 98, "285": 98, "224": 98, "231": [98, 103], "293": 98, "289": 98, "282": 98, "281": 98, "271": 98, "280": 98, "277": 98, "279": 98, "287": 98, "299": 98, "276": 98, "307": 98, "321": 98, "326": 98, "333": 98, "261": 98, "319": 98, "257": 98, "283": 98, "243": 98, "303": 98, "316": 98, "247": 98, "323": 98, "226": 98, "228": 98, "232": 98, "219": 98, "239": 98, "240": 98, "209": 98, "242": 98, "202": 98, "230": 98, "215": 98, "220": 98, "229": 98, "217": [98, 103], "237": 98, "207": 98, "204": 98, "84": [98, 101, 103], "205": 98, "223": 98, "153": 98, "140": 98, "124": 98, "268": 98, "273": 98, "108": 98, "284": 98, "110": 98, "136": 98, "145": 98, "173": 98, "297": 98, "317": 98, "192": 98, "332": 98, "324": 98, "203": 98, "320": 98, "199": 98, "291": 98, "000000481413": 98, "jpg": 98, "42398": 98, "44503": 98, "29968": 98, "336": 98, "21005": 98, "9978472": 98, "forgot": 98, "drew": 98, "label_issue_idx": 98, "num_examples_to_show": 98, "138": 98, "candid": 98, "97489622": 98, "70610878": 98, "98764951": 98, "88899237": 98, "99085805": 98, "issue_idx": 98, "95569726e": 98, "03354841e": 98, "57510169e": 98, "58447666e": 98, "39755858e": 98, "issue_to_visu": 98, "000000009483": 98, "95569726168054e": 98, "addition": [98, 102], "visibl": 98, "missmatch": 98, "likelei": 98, "agnost": 98, "vaidat": 98, "inconsist": 98, "000000395701": 98, "033548411774308e": 98, "armchair": 98, "tv": 98, "000000154004": 98, "38300759625496356": 98, "foreground": 98, "000000448410": 98, "0008575101690203273": 98, "crowd": 98, "alon": 98, "explor": [98, 99], "resembl": [98, 99], "000000499768": 98, "9748962231208227": 98, "000000521141": 98, "8889923658893665": 98, "000000143931": 98, "9876495074395956": 98, "bonu": 98, "uncov": 98, "irregular": 98, "anomali": 98, "object_detection_util": 98, "calculate_bounding_box_area": 98, "num_imgs_to_show": 98, "lab_object_count": 98, "pred_object_count": 98, "000000430073": 98, "000000183709": 98, "000000189475": 98, "studi": 98, "label_norm": 98, "pred_norm": 98, "area": [98, 102], "lab_area": 98, "pred_area": 98, "lab_area_mean": 98, "lab_area_std": 98, "max_deviation_valu": 98, "max_deviation_class": 98, "deviation_valu": 98, "deviation_class": 98, "mean_area": 98, "std_area": 98, "class_area": 98, "deviations_awai": 98, "max_deviation_index": 98, "num_imgs_to_show_per_class": 98, "class_num": 98, "sorted_indic": 98, "000000422886": 98, "000000341828": 98, "000000461009": 98, "train_feature_embed": 99, "ood_train_feature_scor": 99, "test_feature_embed": 99, "ood_test_feature_scor": 99, "ood_train_predictions_scor": 99, "train_pred_prob": 99, "ood_test_predictions_scor": 99, "test_pred_prob": 99, "pylab": 99, "rcparam": 99, "baggingclassifi": 99, "therebi": 99, "rescal": 99, "transform_norm": 99, "totensor": 99, "root": 99, "animal_class": 99, "non_animal_class": 99, "animal_idx": 99, "test_idx": 99, "toronto": 99, "edu": 99, "kriz": 99, "170498071": 99, "72776359": 99, "59it": 99, "5000": 99, "plot_imag": 99, "visualize_outli": 99, "txt_class": 99, "img": [99, 101], "npimg": 99, "show_label": 99, "data_subset": 99, "resnet50": 99, "corpu": 99, "2048": 99, "embed_imag": 99, "create_model": 99, "strang": 99, "odd": 99, "train_ood_features_scor": 99, "top_train_ood_features_idx": 99, "fun": 99, "negat": 99, "homogen": 99, "bottom_train_ood_features_idx": 99, "test_ood_features_scor": 99, "top_ood_features_idx": 99, "inevit": 99, "trade": 99, "5th": 99, "percentil": 99, "fifth_percentil": 99, "plt_rang": 99, "hist": 99, "train_outlier_scor": 99, "ylabel": 99, "axvlin": 99, "test_outlier_scor": 99, "ood_features_indic": 99, "revisit": 99, "return_invers": 99, "train_feature_embeddings_sc": 99, "test_feature_embeddings_sc": 99, "train_pred_label": 99, "9702": 99, "train_ood_predictions_scor": 99, "test_ood_predictions_scor": 99, "lost": 99, "unsuit": 100, "ok": [100, 103], "convention": 100, "aforement": 100, "hypothet": 100, "contrast": 100, "tradit": 100, "disjoint": 100, "out_of_sample_pred_probs_for_a": 100, "out_of_sample_pred_probs_for_b": 100, "out_of_sample_pred_probs_for_c": 100, "out_of_sample_pred_prob": 100, "price": 101, "incom": 101, "ag": 101, "sensor": 101, "histgradientboostingregressor": 101, "r2_score": 101, "student_grades_r": 101, "final_scor": 101, "true_final_scor": 101, "homework": 101, "3d": 101, "hue": 101, "mpl_toolkit": 101, "mplot3d": 101, "axes3d": 101, "errors_idx": 101, "add_subplot": 101, "z": 101, "colorbar": 101, "errors_mask": 101, "feature_column": 101, "predicted_column": 101, "x_train_raw": 101, "x_test_raw": 101, "randomforestregressor": 101, "385101": 101, "499503": 101, "698255": 101, "776647": 101, "109373": 101, "170547": 101, "481096": 101, "984759": 101, "645270": 101, "795928": 101, "141": 101, "659": 101, "318": 101, "305": 101, "560": 101, "657": 101, "688": 101, "view_datapoint": 101, "concat": 101, "preds_og": 101, "r2_og": 101, "838": 101, "found_label_issu": 101, "preds_cl": 101, "r2_cl": 101, "926": 101, "favorit": 101, "968627e": 101, "228799": 101, "646674e": 101, "402962": 101, "323818e": 101, "952758": 101, "422144e": 101, "456908": 101, "465815e": 101, "753968": 101, "791186e": 101, "110719": 101, "485156e": 101, "670640": 101, "225300e": 101, "749976": 101, "499679e": 101, "947007": 101, "067882e": 101, "648396": 101, "synthia": 102, "imagesegment": 102, "given_mask": 102, "predicted_mask": 102, "set_printopt": [102, 103], "sky": 102, "sidewalk": 102, "veget": 102, "terrain": 102, "rider": 102, "pred_probs_filepath": 102, "1088": 102, "1920": 102, "label_filepath": 102, "synthia_class": 102, "maunal": 102, "100000": 102, "244800": 102, "leftmost": 102, "middl": [102, 103], "infact": 102, "rightmost": 102, "discrep": 102, "3263230": 102, "783379": 102, "275110": 102, "255792": 102, "78225": 102, "55990": 102, "54427": 102, "33591": 102, "24645": 102, "21308": 102, "15045": 102, "14171": 102, "13832": 102, "13498": 102, "11490": 102, "9164": 102, "8769": 102, "6999": 102, "6031": 102, "5011": 102, "mistakenli": 102, "class_issu": 102, "aim": [102, 103], "domin": 102, "bunch": 103, "conll": 103, "2003": 103, "love": 103, "n_i": 103, "optional_list_of_ordered_class_nam": 103, "deepai": 103, "conll2003": 103, "rm": 103, "tokenclassif": 103, "2024": 103, "2400": 103, "52e0": 103, "1a00": 103, "718": 103, "connect": 103, "443": 103, "await": 103, "982975": 103, "960k": 103, "959": 103, "94k": 103, "kb": 103, "mb": 103, "directori": 103, "inflat": 103, "17045998": 103, "16m": 103, "octet": 103, "26m": 103, "9mb": 103, "bert": 103, "read_npz": 103, "filepath": 103, "corrsespond": 103, "iob2": 103, "given_ent": 103, "entity_map": 103, "readfil": 103, "startswith": 103, "docstart": 103, "isalpha": 103, "isupp": 103, "indices_to_preview": 103, "nsentenc": 103, "eu": 103, "reject": 103, "boycott": 103, "british": 103, "lamb": 103, "00030412": 103, "00023826": 103, "99936208": 103, "00007009": 103, "00002545": 103, "99998795": 103, "00000401": 103, "00000218": 103, "00000455": 103, "00000131": 103, "00000749": 103, "99996115": 103, "00001371": 103, "0000087": 103, "00000895": 103, "99998936": 103, "00000382": 103, "00000178": 103, "00000366": 103, "00000137": 103, "99999101": 103, "00000266": 103, "00000174": 103, "0000035": 103, "00000109": 103, "99998768": 103, "00000482": 103, "00000202": 103, "00000438": 103, "0000011": 103, "00000465": 103, "99996392": 103, "00001105": 103, "0000116": 103, "00000878": 103, "99998671": 103, "00000364": 103, "00000213": 103, "00000472": 103, "00000281": 103, "99999073": 103, "00000211": 103, "00000159": 103, "00000442": 103, "00000115": 103, "peter": 103, "blackburn": 103, "00000358": 103, "00000529": 103, "99995623": 103, "0000129": 103, "0000024": 103, "00001812": 103, "99994141": 103, "00001645": 103, "00002162": 103, "brussel": 103, "1996": 103, "00001172": 103, "00000821": 103, "00004661": 103, "0000618": 103, "99987167": 103, "99999061": 103, "00000201": 103, "00000195": 103, "00000408": 103, "00000135": 103, "2254": 103, "2907": 103, "19392": 103, "9962": 103, "8904": 103, "19303": 103, "12918": 103, "9256": 103, "11855": 103, "18392": 103, "20426": 103, "19402": 103, "14744": 103, "19371": 103, "4645": 103, "10331": 103, "9430": 103, "6143": 103, "18367": 103, "12914": 103, "todai": 103, "weather": 103, "march": 103, "scalfaro": 103, "northern": 103, "himself": 103, "said": 103, "germani": 103, "nastja": 103, "rysich": 103, "north": 103, "spla": 103, "fought": 103, "khartoum": 103, "govern": 103, "south": 103, "1983": 103, "autonomi": 103, "animist": 103, "region": 103, "moslem": 103, "arabis": 103, "mayor": 103, "antonio": 103, "gonzalez": 103, "garcia": 103, "revolutionari": 103, "parti": 103, "wednesdai": 103, "troop": 103, "raid": 103, "farm": 103, "stole": 103, "rape": 103, "women": 103, "spring": 103, "chg": 103, "hrw": 103, "12pct": 103, "princ": 103, "photo": 103, "moment": 103, "spokeswoman": 103, "rainier": 103, "told": 103, "reuter": 103, "danila": 103, "carib": 103, "w224": 103, "equip": 103, "radiomet": 103, "earn": 103, "19996": 103, "london": 103, "denom": 103, "sale": 103, "uk": 103, "jp": 103, "fr": 103, "maccabi": 103, "hapoel": 103, "haifa": 103, "tel": 103, "aviv": 103, "hospit": 103, "rever": 103, "roman": 103, "cathol": 103, "nun": 103, "admit": 103, "calcutta": 103, "week": 103, "ago": 103, "fever": 103, "vomit": 103, "allianc": 103, "embattl": 103, "kabul": 103, "salang": 103, "highwai": 103, "mondai": 103, "tuesdai": 103, "suprem": 103, "council": 103, "led": 103, "jumbish": 103, "milli": 103, "movement": 103, "warlord": 103, "abdul": 103, "rashid": 103, "dostum": 103, "dollar": 103, "exchang": 103, "3570": 103, "12049": 103, "born": 103, "1937": 103, "provinc": 103, "anhui": 103, "dai": 103, "came": 103, "shanghai": 103, "citi": 103, "prolif": 103, "author": 103, "teacher": 103, "chines": 103, "16764": 103, "1990": 103, "historian": 103, "alan": 103, "john": 103, "percival": 103, "taylor": 103, "di": 103, "20446": 103, "pace": 103, "bowler": 103, "ian": 103, "harvei": 103, "claim": 103, "victoria": 103, "15514": 103, "cotti": 103, "osc": 103, "foreign": 103, "minist": 103, "7525": 103, "sultan": 103, "specter": 103, "met": 103, "crown": 103, "abdullah": 103, "defenc": 103, "aviat": 103, "jeddah": 103, "saudi": 103, "agenc": 103, "2288": 103, "hi": 103, "customari": 103, "outfit": 103, "champion": 103, "damp": 103, "scalp": 103, "canada": 103, "reign": 103, "olymp": 103, "donovan": 103, "bailei": 103, "1992": 103, "linford": 103, "christi": 103, "britain": 103, "1984": 103, "1988": 103, "carl": 103, "lewi": 103, "ambigi": 103, "punctuat": 103, "chicago": 103, "digest": 103, "philadelphia": 103, "usda": 103, "york": 103, "token_issu": 103, "471": 103, "kean": 103, "year": 103, "contract": 103, "manchest": 103, "19072": 103, "societi": 103, "bite": 103, "deliv": 103, "19910": 103, "father": 103, "clarenc": 103, "woolmer": 103, "renam": 103, "uttar": 103, "pradesh": 103, "india": 103, "ranji": 103, "trophi": 103, "nation": 103, "championship": 103, "captain": 103, "1949": 103, "15658": 103, "19879": 103, "iii": 103, "brian": 103, "shimer": 103, "randi": 103, "jone": 103, "19104": 103}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [55, 0, 0, "-", "models"], [57, 0, 0, "-", "multiannotator"], [60, 0, 0, "-", "multilabel_classification"], [63, 0, 0, "-", "object_detection"], [66, 0, 0, "-", "outlier"], [67, 0, 0, "-", "rank"], [68, 0, 0, "-", "regression"], [72, 0, 0, "-", "segmentation"], [76, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "outlier"], [51, 0, 0, "-", "token_classification_utils"], [52, 0, 0, "-", "util"], [53, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[50, 1, 1, "", "correct_precision_errors"], [50, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, 1, 1, "", "color_sentence"], [51, 1, 1, "", "filter_sentence"], [51, 1, 1, "", "get_sentence"], [51, 1, 1, "", "mapping"], [51, 1, 1, "", "merge_probs"], [51, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[52, 1, 1, "", "append_extra_datapoint"], [52, 1, 1, "", "clip_noise_rates"], [52, 1, 1, "", "clip_values"], [52, 1, 1, "", "compress_int_array"], [52, 1, 1, "", "confusion_matrix"], [52, 1, 1, "", "csr_vstack"], [52, 1, 1, "", "estimate_pu_f1"], [52, 1, 1, "", "extract_indices_tf"], [52, 1, 1, "", "force_two_dimensions"], [52, 1, 1, "", "format_labels"], [52, 1, 1, "", "get_missing_classes"], [52, 1, 1, "", "get_num_classes"], [52, 1, 1, "", "get_unique_classes"], [52, 1, 1, "", "is_tensorflow_dataset"], [52, 1, 1, "", "is_torch_dataset"], [52, 1, 1, "", "num_unique_classes"], [52, 1, 1, "", "print_inverse_noise_matrix"], [52, 1, 1, "", "print_joint_matrix"], [52, 1, 1, "", "print_noise_matrix"], [52, 1, 1, "", "print_square_matrix"], [52, 1, 1, "", "remove_noise_from_class"], [52, 1, 1, "", "round_preserving_row_totals"], [52, 1, 1, "", "round_preserving_sum"], [52, 1, 1, "", "smart_display_dataframe"], [52, 1, 1, "", "subset_X_y"], [52, 1, 1, "", "subset_data"], [52, 1, 1, "", "subset_labels"], [52, 1, 1, "", "train_val_split"], [52, 1, 1, "", "unshuffle_tensorflow_dataset"], [52, 1, 1, "", "value_counts"], [52, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[53, 1, 1, "", "assert_indexing_works"], [53, 1, 1, "", "assert_nonempty_input"], [53, 1, 1, "", "assert_valid_class_labels"], [53, 1, 1, "", "assert_valid_inputs"], [53, 1, 1, "", "labels_to_array"], [53, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[56, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[56, 2, 1, "", "KerasWrapperModel"], [56, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[57, 1, 1, "", "convert_long_to_wide_dataset"], [57, 1, 1, "", "get_active_learning_scores"], [57, 1, 1, "", "get_active_learning_scores_ensemble"], [57, 1, 1, "", "get_label_quality_multiannotator"], [57, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [57, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[58, 0, 0, "-", "dataset"], [59, 0, 0, "-", "filter"], [61, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[58, 1, 1, "", "common_multilabel_issues"], [58, 1, 1, "", "multilabel_health_summary"], [58, 1, 1, "", "overall_multilabel_health_score"], [58, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, 1, 1, "", "find_label_issues"], [59, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[62, 0, 0, "-", "filter"], [64, 0, 0, "-", "rank"], [65, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[62, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[64, 1, 1, "", "compute_badloc_box_scores"], [64, 1, 1, "", "compute_overlooked_box_scores"], [64, 1, 1, "", "compute_swap_box_scores"], [64, 1, 1, "", "get_label_quality_scores"], [64, 1, 1, "", "issues_from_scores"], [64, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[65, 1, 1, "", "bounding_box_size_distribution"], [65, 1, 1, "", "calculate_per_class_metrics"], [65, 1, 1, "", "class_label_distribution"], [65, 1, 1, "", "get_average_per_class_confusion_matrix"], [65, 1, 1, "", "get_sorted_bbox_count_idxs"], [65, 1, 1, "", "object_counts_per_image"], [65, 1, 1, "", "plot_class_distribution"], [65, 1, 1, "", "plot_class_size_distributions"], [65, 1, 1, "", "visualize"]], "cleanlab.outlier": [[66, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[66, 3, 1, "", "fit"], [66, 3, 1, "", "fit_score"], [66, 3, 1, "", "score"]], "cleanlab.rank": [[67, 1, 1, "", "find_top_issues"], [67, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [67, 1, 1, "", "get_label_quality_ensemble_scores"], [67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_normalized_margin_for_each_label"], [67, 1, 1, "", "get_self_confidence_for_each_label"], [67, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[69, 0, 0, "-", "learn"], [70, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[69, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[69, 3, 1, "", "__init_subclass__"], [69, 3, 1, "", "find_label_issues"], [69, 3, 1, "", "fit"], [69, 3, 1, "", "get_aleatoric_uncertainty"], [69, 3, 1, "", "get_epistemic_uncertainty"], [69, 3, 1, "", "get_label_issues"], [69, 3, 1, "", "get_metadata_routing"], [69, 3, 1, "", "get_params"], [69, 3, 1, "", "predict"], [69, 3, 1, "", "save_space"], [69, 3, 1, "", "score"], [69, 3, 1, "", "set_fit_request"], [69, 3, 1, "", "set_params"], [69, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[70, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[71, 0, 0, "-", "filter"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[71, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[74, 1, 1, "", "common_label_issues"], [74, 1, 1, "", "display_issues"], [74, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 82, 83, 84, 88, 90, 91, 93, 94, 97, 103], "count": [3, 94], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 85, 86, 87, 89, 90, 91, 94, 97], "creat": [7, 85, 86, 87, 94, 96], "your": [7, 79, 86, 87, 91, 93, 94], "own": 7, "issu": [7, 9, 10, 21, 30, 79, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 86], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 86], "us": [7, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "gener": 8, "cluster": [8, 93], "id": 8, "guid": [9, 11], "type": [9, 10, 94], "custom": [9, 86], "cleanlab": [9, 10, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "studio": [9, 10], "easi": [9, 10, 79, 88, 90, 91], "mode": [9, 10, 79, 88, 90, 91], "can": [10, 85, 87, 92, 93, 94, 96], "detect": [10, 87, 90, 91, 93, 94, 98, 99], "estim": [10, 94, 96, 97], "each": 10, "label": [10, 23, 25, 30, 79, 82, 83, 84, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "outlier": [10, 28, 50, 66, 88, 90, 91, 97, 99], "Near": [10, 87, 88, 90, 91], "duplic": [10, 19, 87, 88, 90, 91, 93, 97], "non": [10, 91], "iid": [10, 91], "class": [10, 80, 94, 102], "imbal": [10, 20], "imag": [10, 88, 99], "specif": [10, 21, 102], "underperform": [10, 93], "group": [10, 93], "null": [10, 27], "data": [10, 12, 79, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "valuat": 10, "option": 10, "paramet": [10, 94], "get": [11, 85, 86, 87, 96, 97, 98, 102, 103], "start": [11, 92], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 93, 94], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 68, 69, 70, 93, 101], "prioriti": 30, "order": 30, "find": [30, 79, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "underperforming_group": 31, "model_output": 32, "report": [33, 88], "dataset": [36, 58, 79, 83, 85, 87, 88, 91, 92, 93, 94, 97, 98, 99, 101, 102, 103], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 59, 62, 71, 75, 94], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "token_classification_util": 51, "util": 52, "valid": [53, 88, 100], "fasttext": 54, "model": [55, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101], "kera": 56, "multiannot": [57, 96], "multilabel_classif": 60, "rank": [61, 64, 67, 70, 73, 77, 94], "object_detect": 63, "summari": [65, 74, 78], "learn": [69, 82, 85, 87, 93, 94], "segment": [72, 102], "token_classif": [76, 103], "open": [79, 93], "sourc": [79, 93], "document": 79, "quickstart": 79, "1": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "instal": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "2": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "common": [79, 80, 103], "3": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "handl": [79, 93], "error": [79, 83, 88, 93, 94, 96, 97, 98, 101, 102, 103], "train": [79, 82, 83, 84, 93, 99, 101], "robust": [79, 82, 83, 94, 101], "noisi": [79, 82, 83, 94, 101], "4": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 98, 99, 101], "curat": [79, 92], "fix": [79, 93], "level": [79, 92, 94, 103], "5": [79, 82, 84, 85, 87, 88, 90, 94, 96, 101], "improv": [79, 96], "via": [79, 94, 96], "mani": [79, 94], "other": [79, 96, 98, 101], "techniqu": 79, "contribut": 79, "how": [80, 93, 94, 96, 97, 103], "migrat": 80, "version": 80, "0": 80, "from": [80, 82, 83, 85, 86, 87, 94, 101], "pre": [80, 84, 93, 99], "function": [80, 86], "name": 80, "chang": 80, "modul": [80, 94], "new": [80, 85], "remov": 80, "argument": [80, 86], "variabl": 80, "cleanlearn": [81, 93, 94], "tutori": [81, 89, 92, 95], "tabular": [82, 90], "scikit": 82, "requir": [82, 83, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "depend": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "load": [82, 83, 84, 85, 86, 87, 90, 91, 101], "process": [82, 90, 99, 101], "select": [82, 90], "comput": [82, 84, 88, 90, 91, 93, 96, 100], "out": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "sampl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "predict": [82, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 100], "probabl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "more": [82, 83, 85, 87, 94, 101], "text": [83, 91, 103], "format": [83, 91, 93, 97, 98], "defin": [83, 88, 91, 101], "potenti": [83, 96, 101], "audio": 84, "speechbrain": 84, "import": [84, 85, 86, 87, 88, 92, 94, 96], "them": [84, 92, 94], "featur": [84, 88, 99], "fit": 84, "linear": 84, "datamonitor": 85, "leverag": 85, "statist": [85, 96], "audit": [85, 86, 87], "skip": [85, 87, 92, 94, 96], "detail": [85, 87, 92, 94, 96], "classifi": [85, 86, 87], "6": [85, 94], "about": [85, 87], "addit": [85, 87], "workflow": [86, 94], "instanti": 86, "object": [86, 98], "increment": 86, "search": 86, "specifi": [86, 93], "nondefault": 86, "save": 86, "ad": 86, "A": 87, "unifi": 87, "all": [87, 94], "kind": [87, 98], "inform": [87, 88], "pytorch": [88, 99], "fetch": [88, 92], "normal": 88, "fashion": 88, "mnist": 88, "prepar": 88, "k": [88, 90, 100], "fold": [88, 100], "cross": [88, 100], "embed": [88, 99], "7": [88, 94], "view": 88, "most": [88, 103], "like": 88, "exampl": [88, 93, 94, 99], "sever": 88, "set": [88, 94], "dark": 88, "top": [88, 102], "low": 88, "numer": 90, "categor": 90, "column": 90, "construct": 90, "nearest": 90, "neighbour": 90, "graph": 90, "drift": [91, 97], "evalu": 92, "health": [92, 94], "8": [92, 94], "popular": 92, "faq": 93, "what": [93, 94, 100], "do": [93, 94], "i": [93, 94, 100], "infer": 93, "correct": 93, "ha": 93, "flag": 93, "should": 93, "v": 93, "test": [93, 94, 99], "big": 93, "limit": 93, "memori": 93, "why": 93, "isn": 93, "t": 93, "work": [93, 94, 96, 103], "me": 93, "differ": [93, 98], "clean": [93, 94], "final": 93, "hyperparamet": 93, "tune": 93, "onli": 93, "one": [93, 94, 97, 102], "doe": [93, 96, 103], "take": 93, "so": 93, "long": 93, "slice": 93, "when": [93, 94], "identifi": [93, 98], "run": 93, "licens": 93, "under": 93, "an": 93, "answer": 93, "question": 93, "The": 94, "centric": 94, "ai": 94, "machin": 94, "find_label_issu": 94, "line": 94, "code": 94, "visual": [94, 98, 99, 102], "twenti": 94, "lowest": 94, "qualiti": [94, 96, 97, 98, 102, 103], "see": 94, "now": 94, "let": 94, "": 94, "happen": 94, "we": 94, "merg": 94, "seafoam": 94, "green": 94, "yellow": 94, "too": 94, "you": 94, "re": 94, "One": 94, "score": [94, 96, 97, 98, 102, 103], "rule": 94, "overal": [94, 102], "accur": 94, "thi": 94, "directli": 94, "fulli": 94, "character": 94, "nois": 94, "matrix": [94, 97], "joint": 94, "prior": 94, "true": 94, "distribut": 94, "flip": 94, "rate": 94, "ani": 94, "again": 94, "support": 94, "lot": 94, "method": 94, "filter_bi": 94, "automat": 94, "everi": 94, "uniqu": 94, "num_label_issu": 94, "threshold": 94, "found": 94, "Not": 94, "sure": 94, "ensembl": 94, "multipl": [94, 96], "predictor": 94, "consensu": 96, "annot": 96, "initi": 96, "major": 96, "vote": 96, "better": 96, "compar": 96, "inspect": 96, "retrain": 96, "further": 96, "multi": 97, "beyond": 97, "mislabel": [97, 102, 103], "given": 97, "hot": 97, "binari": 97, "without": 97, "applic": 97, "real": 97, "download": [98, 102, 103], "objectlab": 98, "exploratori": 98, "analysi": 98, "timm": 99, "cifar10": 99, "some": 99, "pred_prob": [99, 102, 103], "wai": 101, "semant": 102, "which": 102, "ar": 102, "commonli": 102, "focus": 102, "token": 103, "word": 103, "sentenc": 103, "contain": 103, "particular": 103}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [50, "module-cleanlab.internal.outlier"], [66, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [68, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [58, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [59, "module-cleanlab.multilabel_classification.filter"], [62, "filter"], [71, "filter"], [75, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "util": [[52, "module-cleanlab.internal.util"]], "validation": [[53, "module-cleanlab.internal.validation"]], "fasttext": [[54, "fasttext"]], "models": [[55, "models"]], "keras": [[56, "module-cleanlab.models.keras"]], "multiannotator": [[57, "module-cleanlab.multiannotator"]], "multilabel_classification": [[60, "multilabel-classification"]], "rank": [[61, "module-cleanlab.multilabel_classification.rank"], [64, "module-cleanlab.object_detection.rank"], [67, "module-cleanlab.rank"], [73, "module-cleanlab.segmentation.rank"], [77, "module-cleanlab.token_classification.rank"]], "object_detection": [[63, "object-detection"]], "summary": [[65, "summary"], [74, "module-cleanlab.segmentation.summary"], [78, "module-cleanlab.token_classification.summary"]], "regression.learn": [[69, "module-cleanlab.regression.learn"]], "regression.rank": [[70, "module-cleanlab.regression.rank"]], "segmentation": [[72, "segmentation"]], "token_classification": [[76, "token-classification"]], "cleanlab open-source documentation": [[79, "cleanlab-open-source-documentation"]], "Quickstart": [[79, "quickstart"]], "1. Install cleanlab": [[79, "install-cleanlab"]], "2. Find common issues in your data": [[79, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[79, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[79, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[79, "improve-your-data-via-many-other-techniques"]], "Contributing": [[79, "contributing"]], "Easy Mode": [[79, "easy-mode"], [88, "Easy-Mode"], [90, "Easy-Mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[80, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[80, "function-and-class-name-changes"]], "Module name changes": [[80, "module-name-changes"]], "New modules": [[80, "new-modules"]], "Removed modules": [[80, "removed-modules"]], "Common argument and variable name changes": [[80, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[81, "cleanlearning-tutorials"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[82, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "1. Install required dependencies": [[82, "1.-Install-required-dependencies"], [83, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [91, "1.-Install-required-dependencies"], [101, "1.-Install-required-dependencies"]], "2. Load and process the data": [[82, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [101, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[82, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [90, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[82, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[82, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[83, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[83, "2.-Load-and-format-the-text-dataset"], [91, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[83, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[83, "4.-Train-a-more-robust-model-from-noisy-labels"], [101, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Audio Classification with SpeechBrain and Cleanlab": [[84, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[84, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[84, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[84, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[84, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[84, "5.-Use-cleanlab-to-find-label-issues"], [90, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[85, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[85, "1.-Install-and-import-required-dependencies"], [87, "1.-Install-and-import-required-dependencies"], [88, "1.-Install-and-import-required-dependencies"], [96, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[85, "2.-Create-and-load-the-data-(can-skip-these-details)"], [87, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[85, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [87, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[85, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [87, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[85, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[85, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "Datalab: Advanced workflows to audit your data": [[86, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[86, "Install-and-import-required-dependencies"]], "Create and load the data": [[86, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[86, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[86, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[86, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[86, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[86, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[86, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[87, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[87, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[87, "Get-additional-information"]], "Near duplicate issues": [[87, "Near-duplicate-issues"], [88, "Near-duplicate-issues"]], "Image Classification with PyTorch and Cleanlab": [[88, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[88, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[88, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[88, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[88, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[88, "7.-Use-cleanlab-to-find-issues"]], "View report": [[88, "View-report"]], "Label issues": [[88, "Label-issues"], [90, "Label-issues"], [91, "Label-issues"]], "View most likely examples with label errors": [[88, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[88, "Outlier-issues"], [90, "Outlier-issues"], [91, "Outlier-issues"]], "View most severe outliers": [[88, "View-most-severe-outliers"]], "View sets of near duplicate images": [[88, "View-sets-of-near-duplicate-images"]], "Dark images": [[88, "Dark-images"]], "View top examples of dark images": [[88, "View-top-examples-of-dark-images"]], "Low information images": [[88, "Low-information-images"]], "Datalab Tutorials": [[89, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[90, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[90, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[91, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[91, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[91, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[91, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[92, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[92, "Install-dependencies-and-import-them"], [94, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[92, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[92, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[93, "FAQ"]], "What data can cleanlab detect issues in?": [[93, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[93, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[93, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[93, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[93, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[93, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[93, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[93, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[93, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[93, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[93, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[93, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[93, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[93, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[94, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[94, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[94, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[94, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[94, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[94, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[94, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[94, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[94, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[94, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[94, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[94, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[94, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[94, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[94, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[94, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[94, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[94, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[94, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[95, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[96, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[96, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[96, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[96, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[96, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[96, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[96, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[96, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[96, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[97, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[97, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[97, "2.-Format-data,-labels,-and-model-predictions"], [98, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[97, "3.-Use-cleanlab-to-find-label-issues"], [98, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[97, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[97, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[97, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[97, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[97, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[98, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[98, "1.-Install-required-dependencies-and-download-data"], [102, "1.-Install-required-dependencies-and-download-data"], [103, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[98, "Get-label-quality-scores"], [102, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[98, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[98, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[98, "Other-uses-of-visualize"]], "Exploratory data analysis": [[98, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[99, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[99, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[99, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[99, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[99, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[99, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[100, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[100, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[100, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[101, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[101, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[101, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[102, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[102, "2.-Get-data,-labels,-and-pred_probs"], [103, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[102, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[102, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[102, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[103, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[103, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[103, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[103, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[103, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.outlier"], [51, "module-cleanlab.internal.token_classification_utils"], [52, "module-cleanlab.internal.util"], [53, "module-cleanlab.internal.validation"], [55, "module-cleanlab.models"], [56, "module-cleanlab.models.keras"], [57, "module-cleanlab.multiannotator"], [58, "module-cleanlab.multilabel_classification.dataset"], [59, "module-cleanlab.multilabel_classification.filter"], [60, "module-cleanlab.multilabel_classification"], [61, "module-cleanlab.multilabel_classification.rank"], [62, "module-cleanlab.object_detection.filter"], [63, "module-cleanlab.object_detection"], [64, "module-cleanlab.object_detection.rank"], [65, "module-cleanlab.object_detection.summary"], [66, "module-cleanlab.outlier"], [67, "module-cleanlab.rank"], [68, "module-cleanlab.regression"], [69, "module-cleanlab.regression.learn"], [70, "module-cleanlab.regression.rank"], [71, "module-cleanlab.segmentation.filter"], [72, "module-cleanlab.segmentation"], [73, "module-cleanlab.segmentation.rank"], [74, "module-cleanlab.segmentation.summary"], [75, "module-cleanlab.token_classification.filter"], [76, "module-cleanlab.token_classification"], [77, "module-cleanlab.token_classification.rank"], [78, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[50, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[52, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[53, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[55, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[56, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[57, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[58, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[60, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[61, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[62, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[62, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[63, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[64, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[65, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[66, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[66, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[67, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[68, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[69, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[69, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[69, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[70, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[70, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[71, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[71, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[72, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[73, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[74, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[75, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[75, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[76, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[77, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[78, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index ef9f11ec7..0b55b5e74 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:38.251786Z", - "iopub.status.busy": "2024-04-06T04:09:38.251371Z", - "iopub.status.idle": "2024-04-06T04:09:39.429558Z", - "shell.execute_reply": "2024-04-06T04:09:39.428963Z" + "iopub.execute_input": "2024-04-06T04:26:50.769823Z", + "iopub.status.busy": "2024-04-06T04:26:50.769660Z", + "iopub.status.idle": "2024-04-06T04:26:51.904390Z", + "shell.execute_reply": "2024-04-06T04:26:51.903868Z" }, "nbsphinx": "hidden" }, @@ -127,7 +127,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@76dfdd23fa2e7f058421aa1938be49b71a7ad5d9\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e0b7615c1169c6d8fcae15be6477bd7327e82e00\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -152,10 +152,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:39.432208Z", - "iopub.status.busy": "2024-04-06T04:09:39.431907Z", - "iopub.status.idle": "2024-04-06T04:09:39.450565Z", - "shell.execute_reply": "2024-04-06T04:09:39.450123Z" + "iopub.execute_input": "2024-04-06T04:26:51.906925Z", + "iopub.status.busy": "2024-04-06T04:26:51.906505Z", + "iopub.status.idle": "2024-04-06T04:26:51.925092Z", + "shell.execute_reply": "2024-04-06T04:26:51.924644Z" } }, "outputs": [], @@ -196,10 +196,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:39.452985Z", - "iopub.status.busy": "2024-04-06T04:09:39.452427Z", - "iopub.status.idle": "2024-04-06T04:09:39.641677Z", - "shell.execute_reply": "2024-04-06T04:09:39.641078Z" + "iopub.execute_input": "2024-04-06T04:26:51.927250Z", + "iopub.status.busy": "2024-04-06T04:26:51.926936Z", + "iopub.status.idle": "2024-04-06T04:26:52.095031Z", + "shell.execute_reply": "2024-04-06T04:26:52.094456Z" } }, "outputs": [ @@ -306,10 +306,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:39.672172Z", - "iopub.status.busy": "2024-04-06T04:09:39.671797Z", - "iopub.status.idle": "2024-04-06T04:09:39.675572Z", - "shell.execute_reply": "2024-04-06T04:09:39.675033Z" + "iopub.execute_input": "2024-04-06T04:26:52.125272Z", + "iopub.status.busy": "2024-04-06T04:26:52.125095Z", + "iopub.status.idle": "2024-04-06T04:26:52.128526Z", + "shell.execute_reply": "2024-04-06T04:26:52.128074Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:39.677501Z", - "iopub.status.busy": "2024-04-06T04:09:39.677316Z", - "iopub.status.idle": "2024-04-06T04:09:39.685572Z", - "shell.execute_reply": "2024-04-06T04:09:39.685120Z" + "iopub.execute_input": "2024-04-06T04:26:52.130584Z", + "iopub.status.busy": "2024-04-06T04:26:52.130251Z", + "iopub.status.idle": "2024-04-06T04:26:52.138357Z", + "shell.execute_reply": "2024-04-06T04:26:52.137794Z" } }, "outputs": [], @@ -385,10 +385,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:39.687602Z", - "iopub.status.busy": "2024-04-06T04:09:39.687281Z", - "iopub.status.idle": "2024-04-06T04:09:39.689924Z", - "shell.execute_reply": "2024-04-06T04:09:39.689398Z" + "iopub.execute_input": "2024-04-06T04:26:52.140399Z", + "iopub.status.busy": "2024-04-06T04:26:52.140214Z", + "iopub.status.idle": "2024-04-06T04:26:52.142650Z", + "shell.execute_reply": "2024-04-06T04:26:52.142235Z" } }, "outputs": [], @@ -410,10 +410,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:39.691926Z", - "iopub.status.busy": "2024-04-06T04:09:39.691538Z", - "iopub.status.idle": "2024-04-06T04:09:40.209715Z", - "shell.execute_reply": "2024-04-06T04:09:40.209193Z" + "iopub.execute_input": "2024-04-06T04:26:52.144478Z", + "iopub.status.busy": "2024-04-06T04:26:52.144308Z", + "iopub.status.idle": "2024-04-06T04:26:52.655201Z", + "shell.execute_reply": "2024-04-06T04:26:52.654687Z" } }, "outputs": [], @@ -447,10 +447,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:40.212050Z", - "iopub.status.busy": "2024-04-06T04:09:40.211852Z", - "iopub.status.idle": "2024-04-06T04:09:41.848617Z", - "shell.execute_reply": "2024-04-06T04:09:41.848061Z" + "iopub.execute_input": "2024-04-06T04:26:52.657171Z", + "iopub.status.busy": "2024-04-06T04:26:52.656995Z", + "iopub.status.idle": "2024-04-06T04:26:54.226322Z", + "shell.execute_reply": "2024-04-06T04:26:54.225696Z" } }, "outputs": [ @@ -482,10 +482,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:41.851074Z", - "iopub.status.busy": "2024-04-06T04:09:41.850564Z", - "iopub.status.idle": "2024-04-06T04:09:41.860630Z", - "shell.execute_reply": "2024-04-06T04:09:41.860197Z" + "iopub.execute_input": "2024-04-06T04:26:54.229079Z", + "iopub.status.busy": "2024-04-06T04:26:54.228374Z", + "iopub.status.idle": "2024-04-06T04:26:54.238321Z", + "shell.execute_reply": "2024-04-06T04:26:54.237839Z" } }, "outputs": [ @@ -606,10 +606,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:41.862706Z", - "iopub.status.busy": "2024-04-06T04:09:41.862353Z", - "iopub.status.idle": "2024-04-06T04:09:41.866398Z", - "shell.execute_reply": "2024-04-06T04:09:41.865986Z" + "iopub.execute_input": "2024-04-06T04:26:54.240174Z", + "iopub.status.busy": "2024-04-06T04:26:54.239999Z", + "iopub.status.idle": "2024-04-06T04:26:54.244001Z", + "shell.execute_reply": "2024-04-06T04:26:54.243600Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:41.868397Z", - "iopub.status.busy": "2024-04-06T04:09:41.868221Z", - "iopub.status.idle": "2024-04-06T04:09:41.874995Z", - "shell.execute_reply": "2024-04-06T04:09:41.874558Z" + "iopub.execute_input": "2024-04-06T04:26:54.245815Z", + "iopub.status.busy": "2024-04-06T04:26:54.245645Z", + "iopub.status.idle": "2024-04-06T04:26:54.252428Z", + "shell.execute_reply": "2024-04-06T04:26:54.252032Z" } }, "outputs": [], @@ -659,10 +659,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:41.876948Z", - "iopub.status.busy": "2024-04-06T04:09:41.876642Z", - "iopub.status.idle": "2024-04-06T04:09:41.988022Z", - "shell.execute_reply": "2024-04-06T04:09:41.987469Z" + "iopub.execute_input": "2024-04-06T04:26:54.254565Z", + "iopub.status.busy": "2024-04-06T04:26:54.254191Z", + "iopub.status.idle": "2024-04-06T04:26:54.363811Z", + "shell.execute_reply": "2024-04-06T04:26:54.363293Z" } }, "outputs": [ @@ -692,10 +692,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:41.990422Z", - "iopub.status.busy": "2024-04-06T04:09:41.990011Z", - "iopub.status.idle": "2024-04-06T04:09:41.992718Z", - "shell.execute_reply": "2024-04-06T04:09:41.992308Z" + "iopub.execute_input": "2024-04-06T04:26:54.365703Z", + "iopub.status.busy": "2024-04-06T04:26:54.365531Z", + "iopub.status.idle": "2024-04-06T04:26:54.368039Z", + "shell.execute_reply": "2024-04-06T04:26:54.367639Z" } }, "outputs": [], @@ -716,10 +716,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:41.994644Z", - "iopub.status.busy": "2024-04-06T04:09:41.994339Z", - "iopub.status.idle": "2024-04-06T04:09:43.948584Z", - "shell.execute_reply": "2024-04-06T04:09:43.947853Z" + "iopub.execute_input": "2024-04-06T04:26:54.369822Z", + "iopub.status.busy": "2024-04-06T04:26:54.369654Z", + "iopub.status.idle": "2024-04-06T04:26:56.249703Z", + "shell.execute_reply": "2024-04-06T04:26:56.248990Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:43.951633Z", - "iopub.status.busy": "2024-04-06T04:09:43.951045Z", - "iopub.status.idle": "2024-04-06T04:09:43.962564Z", - "shell.execute_reply": "2024-04-06T04:09:43.962106Z" + "iopub.execute_input": "2024-04-06T04:26:56.252825Z", + "iopub.status.busy": "2024-04-06T04:26:56.252085Z", + "iopub.status.idle": "2024-04-06T04:26:56.262987Z", + "shell.execute_reply": "2024-04-06T04:26:56.262497Z" } }, "outputs": [ @@ -772,10 +772,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-06T04:09:43.964516Z", - "iopub.status.busy": "2024-04-06T04:09:43.964339Z", - "iopub.status.idle": "2024-04-06T04:09:44.016755Z", - "shell.execute_reply": "2024-04-06T04:09:44.016258Z" + "iopub.execute_input": "2024-04-06T04:26:56.265020Z", + "iopub.status.busy": "2024-04-06T04:26:56.264831Z", + "iopub.status.idle": "2024-04-06T04:26:56.313621Z", + "shell.execute_reply": "2024-04-06T04:26:56.313208Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 42272437d..bac36fac4 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -783,7 +783,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'change_pin', 'getting_spare_card', 'lost_or_stolen_phone', 'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay'}
+Classes: {'cancel_transfer', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'card_about_to_expire'}