From cef458f7c45768cd998f4ff0d8e83992ccc439c1 Mon Sep 17 00:00:00 2001 From: elisno Date: Tue, 13 Feb 2024 01:09:42 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8 --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290603 -> 290603 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../cleanlab/datalab/datalab.doctree | Bin 179268 -> 179268 bytes .../guide/custom_issue_manager.doctree | Bin 29191 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 5977 -> 5977 bytes .../guide/issue_type_description.doctree | Bin 104403 -> 104403 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 55889 -> 55889 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4526 -> 4526 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 78620 -> 78620 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68053 -> 68053 bytes .../internal/issue_manager/index.doctree | Bin 5947 -> 5947 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88321 -> 88321 bytes .../internal/issue_manager/noniid.doctree | Bin 90559 -> 90559 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 75294 -> 75294 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 120431 -> 120431 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57047 -> 57047 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5316 -> 5316 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4492 -> 4492 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/outlier.doctree | Bin 17168 -> 17168 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../cleanlab/models/fasttext.doctree | Bin 2465 -> 2465 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5009 -> 5009 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 103926 -> 103926 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 164172 -> 164172 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 91933 -> 91933 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 52029 -> 52029 bytes .../cleanlab/segmentation/summary.doctree | Bin 68105 -> 68105 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79104 -> 79104 bytes master/.doctrees/environment.pickle | Bin 16829344 -> 16769933 bytes master/.doctrees/index.doctree | Bin 42561 -> 42561 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../.doctrees/nbsphinx/tutorials/audio.ipynb | 1282 +++++----- .../tutorials/datalab/datalab_advanced.ipynb | 346 +-- .../datalab/datalab_quickstart.ipynb | 143 +- .../nbsphinx/tutorials/datalab/tabular.ipynb | 150 +- .../nbsphinx/tutorials/datalab/text.ipynb | 1743 +++++++------- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 668 +++--- .../.doctrees/nbsphinx/tutorials/image.ipynb | 1934 ++++++++------- .../nbsphinx/tutorials/indepth_overview.ipynb | 223 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 526 ++--- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 1450 ++++++------ .../nbsphinx/tutorials/tabular.ipynb | 130 +- .../.doctrees/nbsphinx/tutorials/text.ipynb | 164 +- .../tutorials/token_classification.ipynb | 165 +- master/.doctrees/tutorials/audio.doctree | Bin 337201 -> 337203 bytes .../datalab/datalab_advanced.doctree | Bin 200322 -> 200322 bytes .../datalab/datalab_quickstart.doctree | Bin 147051 -> 146255 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3120 -> 3120 bytes .../tutorials/datalab/tabular.doctree | Bin 117969 -> 117347 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 293539 -> 292713 bytes .../tutorials/dataset_health.doctree | Bin 330445 -> 330445 bytes master/.doctrees/tutorials/faq.doctree | Bin 196491 -> 196491 bytes master/.doctrees/tutorials/image.doctree | Bin 513390 -> 501218 bytes .../tutorials/indepth_overview.doctree | Bin 221765 -> 220939 bytes master/.doctrees/tutorials/index.doctree | Bin 3232 -> 3232 bytes .../tutorials/multiannotator.doctree | Bin 137376 -> 137376 bytes .../multilabel_classification.doctree | Bin 65421 -> 65421 bytes .../tutorials/object_detection.doctree | Bin 140179 -> 140179 bytes master/.doctrees/tutorials/outliers.doctree | Bin 236511 -> 175038 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 107837 -> 107837 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 3178684 -> 3205353 bytes master/.doctrees/tutorials/tabular.doctree | Bin 59790 -> 59790 bytes master/.doctrees/tutorials/text.doctree | Bin 93598 -> 93598 bytes .../tutorials/token_classification.doctree | Bin 191450 -> 194680 bytes .../cleanlab/datalab/internal/report.html | 4 + .../datalab/guide/custom_issue_manager.rst | 5 +- master/_sources/tutorials/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- master/_sources/tutorials/tabular.ipynb | 2 +- master/_sources/tutorials/text.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- .../datalab/guide/custom_issue_manager.html | 5 +- master/searchindex.js | 2 +- master/tutorials/audio.html | 2 +- master/tutorials/audio.ipynb | 1282 +++++----- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 346 +-- .../tutorials/datalab/datalab_quickstart.html | 13 +- .../datalab/datalab_quickstart.ipynb | 143 +- master/tutorials/datalab/tabular.html | 12 +- master/tutorials/datalab/tabular.ipynb | 150 +- master/tutorials/datalab/text.html | 31 +- master/tutorials/datalab/text.ipynb | 1743 +++++++------- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 8 +- master/tutorials/faq.ipynb | 668 +++--- master/tutorials/image.html | 391 ++-- master/tutorials/image.ipynb | 1934 ++++++++------- master/tutorials/indepth_overview.html | 13 +- master/tutorials/indepth_overview.ipynb | 223 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 522 +---- master/tutorials/outliers.ipynb | 526 ++--- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 2080 +++++++++-------- master/tutorials/segmentation.ipynb | 1450 ++++++------ master/tutorials/tabular.ipynb | 130 +- master/tutorials/text.html | 2 +- master/tutorials/text.ipynb | 164 +- master/tutorials/token_classification.html | 70 +- master/tutorials/token_classification.ipynb | 165 +- versioning.js | 2 +- 167 files changed, 10928 insertions(+), 11452 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 2f6c20072..16fdd239a 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 1e676dfb23c1b4806ade92ec1431d809 +config: 044d5000f5b57e8bd384f58beb521078 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index c9a99f1eb462dbb7b94edc425e911012ea60f107..c8bf5eadaf78befa0c5098733bfb9a5d1dbf9299 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO^FhG~9Qp=E}?X{upzl5tW>qJfENnz^B=X|jPqN|J?OjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OFo1%l;|OMThJ41zw9d0uavuWz0Kun4_1`AbWep|5ej;|y0^5n%wvwS z4}i?r{pqNfXjC=Bt8Ft^lyQIJ=zkt8a2=A@nyZ1hf=P|lK(;ZtWHSevl@!RL;YBd! zgp>g@G|-B5z10ldUa%!j6?1mgZ48ctO?9XWK>yVn+K2|?&B2l0bBSx^oXjS!68?M^ zGQ;!zshGCYytVj{quQyZB4949nmf(VHy_OPtwdq%n;&+#=I&J!=DuFL2y188N0Gx| z^?5eRBFI6ow3M%~`)JWrmBMT=`Ex33hsn_lb{8gZ*x4hPT$0H?!sN&fHVKnsIjj;U zzszM}fJ|~op1@F}fJFf4pY1{KcCjxo*|&#v!{nwSb_^za_p&LNJaB-ufNP+hnq2H_ z9=7M}Y3?K&sszMaw{aI`-eVVr0RuT;XX$4KZz;jVbw+PImEIrbe&F$AP1>fxvugfo zJ6?f9%rtTvt@(H{cuiYnI7qsjKwc$Q4!YUFzo&s2Xt9s?@5ID@F_X(R(Y4HTXyXB= z?4)eE<2;Q{Kjve{F`GIuXk%FvUgp=(iP&`LiSywMw1)Y0?hto=@hE6O(x5dR5N{pG zJP~s$+4NRb#?)k8gmiJzM!Is;q@l0W)m&fkcWz#9Mn delta 4197 zcmbuC-%C?r7{__vbLOwMjwa3&Aqu5mlAD`u%Y+1@=!b4vLo-X$vqXoP7PPuZ)F?tQ zIKtb7kT9eR3#^koU3BABblF8gxrSgV6pjKx5-&O@rMlgBf57+qdA`qi-sgSKbUbG| zo-@Ts(Sm6iG^ z`vAza-Jgz%i6&Xme9AU`MH&wzkN)Sug4ZE=oxU1ONSIVx4d!Z-OBOxSBBenVjV~_8 z?T|94tC2RW>uq}Q_JSpOs+hCNPHk``tjj~y0Q#?9Q$`dJuMdv&ol9P8%*kx>DiJ7T zsve#nNXN9@`mM!>9Mw)Ol>l>T*4(YD-~2GwzY>GBZ+=+entNAunEQI|BCMTVA4Lv> z+2`39iy{ZX)Ka0u?xRIhbsDq46DG&9*j<>sVP%hCa#=R}2$Q2b*d$Dj=dmi7 z{4$?~0Wujw@&txzMJx(H|7;I>w~Kv&$^Jd87bZ8CuwyXUx0g-9Gb|E4*-uJbJ8{qp4ISI z+wlr)Vy1~(XwA<{!E4$q!$yY73FK8`=AfHh{CftNffldvft{E*AZGHpB6^m29&J3} zl$(-GZ-Qsg>BoHRIA&8X1}!Xy!ppoLorq0`s|h}wh1M{?&TZn(FCGI8$S`Qj1jJhh zvOvV`QZBufr7<~G7h$;AX(Lm*Vokw{jDn6JoALidr8HL{)gfQSaH$nf_eqLSGv#cG z7E9yEBhj=W!{!XKEX*WgVZU5M6CP=z1#G72P)l)5l5SuQjbyaoAdsGn0MAnjE{xy` b6&K0pZCLG2GSZ(ql)TvdNhjk+f6V?Hv>Ma@ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index a732b9b876986b66f7174854e97060c71253209b..516eebeb997e8cc58e999cb3eae69b7e53c0cd0f 100644 GIT binary patch delta 3571 zcmX@QLh$Gc!3~~_hVdDu`B{aQ8TzKFhRI3BNhyg2CZ=iThNh;;1_mif7Dfi9#ula) zsY%9`rj|xVCdQkq74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL2j`VGkd delta 3571 zcmX@QLh$Gc!3~~_hH3E`S!R_*7W&B+$p)q-Mi#~4c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL0|x*oLv diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index e0890850855d0db274e81a729fd924c3ac0b2735..2d4bcd11da021f074dd32bf992ac3892ee8dce55 100644 GIT binary patch delta 4495 zcmbuD?@Lor7{|G1KXhB#Wc`LwmPS<6+`P0wib_#9ja4g$iq@Q>nYtyBM&(wNMWx|k z+{9Q;GYAuw$2yF}7co}8NF5OrLl_icK`(>~-$dOz%lCWEAMklT-{+j?o^!a7C3R#; z9V+MYY8&~sGagIhUcNrB&S`SGP8;(1hJATFUuQ75oMxkeH<@{Jz0+jjEk?P0cGk&3B@xqE%vM3Ai9)zHF`M=#YG((h(T*s0P(pR1zA|TGXspL6aTg- zH2hqRj(pv5mIvFbfTUNmj!f3JLvu@u{>tTm%~@%3&&C?+5iq=DA8G1gu}7PmS?rNk zGmE{~UCv@}YcFH5A31*kXeUJ-6D;QLi^V{5a%8G5UzepmG9=4akd`_oo@y>U*d(3~ zH$TC8c9B!JyI}n;n>%|NfaYZI&U>9K_B(i##UAqyv)D8HWi0sUKnn{#9yr9(J06U% z*cXQ(7yrt@ei)fzu^XPuvf%wss{tSBO8DN8j>W#8oM6Fsy*LO6PlDkg$hZWJjA~um*zPKaDu39fjbTiAc$-l-TsZ!>r&qaA&5{Vo%ziT z0iNwtgg5G8QoE4Yic~@(7s+Ya7Ni7hp_F~O3>C{**299>`T}wqC_pB_0!Rsx{K*oO z1Mx3bqb96~YiUj;dH}d&s90c=7SOoJ*>LEwjy`Nben{v43kYHX1$}!CT?HI{LUA{; wC;R{GMY{pN38+}$51@bQxsRqGBPVipIuStGYf@iy@jW8_(^yR_2>PD>7ePNc9smFU delta 4495 zcmbuD?@Lor7{|G1o4PG+WBmpxOCu_3x*twRQ7H`Nn%i+^=sKa9?>*tJjQSn&R*Ho!-^8ooEAVX+?|Ct2`4FAf31li<`aWL$z%R`TZM zRwd|gGUJljOyYfg9AZ{?nMuj)N7$pujJ>fe{BtUgMCSHE?cSJN4(z+*rg9=at$@>g zaTz)CWd`=U^3&^&xSBOUw)z6A&Q2`nkI13Iv*3gGd$PelKe*s=7Afsi8w5!Br5?QCYZdpnoi z*^8%^ONvDULBxq@p_m6BNmFP&S8Q+4ugI26iK;u4f+zO5sTAl)?&n>SoE*eRwV7 zQIVNWC0K7%K-key9y_u*cX9qKbSRk^<;Ebx##*A*J{MFlTwEY1&KdFuS#4IY423a3 zA+JzVGr8$ZBTh{(z)^?MpQxbYHYcuwxmhB1c>pGvwwbm80!|5HCE{Yc1_2-=&F6p? zIgBHMJ<~2D%(-jAGS+MW!PdnM)5R%v^@0GcJpC3#jT5MY$M<$wW(u;-c6a?6Uc46dy114mw-0bOy) zzs8tNu+xuB12zc~0LVbVv7F`O{H=zQhc!{MJtfvWLwfkN?hD` z|3PqX?qbVP(A2Ru{E6LlC)H1f_W92@=8vvAYS!&R*J4U4G_(qFjfrsp!h;+Nwb>3H8jE$_?@L865sLA|5^Vi1J;1 zI_Fq#_?uulthP7&*#yj%k))>U!Y9yt1meEe8mk}_rxF8*Sd1OM^C$A|n% zv1FyUf(=3b)5{-?MO;SzG%r-YND*M%El`%3fXf{r%ouZM!+M^Nf8DOOll95@gP@I}v zl9`{U0AwaAl;;;^D`e&=6cpvB7o`>#>rKgEkDZcX1Jjsg#KOP;7BV2gjMgcQ9AJwT zvP>o?`s+?^5awW=m7$PjF!^Dy{N#V~+ycviJb94WiW$rqN*T(VOCnVm8KZ!z4F$rH z#53f*=TE*Bb&4s2WwM}+Y%*bH`77E|IF7^mB(=3+B0u^$T=g5jp_EC~%T?SMfKKVpq zHRCF{V|RnZHrFNbaWn0Js9uw+&$<_^@sm%+ryyg8_llST0w z$lbD8SAkU4B@pox7zJ66Ktu?L8#uY9RL9&0#PkFaXFqJfENnz^B=X|jPqN|J?qJfENnz^B=X|jPqN|J?qJfENnz^B=X|jPqN|J?OV delta 117 zcmX@AbyRDEFQZ{vd`6a8Ws!w`vPH6isfm$=u}PY_p{2P=Vyc0;QA(Ok-tsao_gq{F!z;MMyB9RC)hl>g z@!kShy^^2u_u%T4ygqOURA+CwSOFOyY zZQTdH;>1y$?`5IOOCtJTUAZVBH@9~MtLm3XXUj@=8N^A2J z{6aE-&EA1~J72-NXTula(kuD>R2G}MEo_R&K7&8&p2EEsi&K53xRJgG*WfVpwC>`$ z-ZN+l?gV^%d1$~5{Nv#QGy%5y){!S&sEe72RpQ~%AHXhZ19^t`QoH!dxP>M{)0{uy z;n$C6(LmTnLeuu^;A!#abWp5qX%W$rJ$P9hnqC0=%Co1xF9elmPaFLETPx5&Xt>Dz zWb)aWOW-W{$~)~5%sijH{$&t@3deW~MEmdhNm)T{E;u^YQAp;R={NOakh-yCI?d2bVKusjQrJM3k&LXR z{Vtp+?c_0RH=MaFhH1!65gK12r#fky+E7EcT!d7eicrRl6OH$)Y>cv~iCpz+r8lL~ z1ztYCotD6aYIz%8B)@%*x?FI~@1&5@DepvMVH?pTVU^o~2i$I^CYeFA{lAHYb|ROR z_~hSV+NdriX)_wIM|OPbSSLMEuM%&eq1Js6x)=-Uu z)Zzj!HGZ`W9Hs|wUkr!i?GeImjt-HlHssews8nS~X%NqgLtxdR21~rV35INsIUz-*buvpjl$T6?7g`%`un+X|2`k* zoafwoxbt7Q=Jm6KYSR5f2OB0wqoKj*V7R`nHX5l*H`X*Y)+JNn#@d%tkz~3l9gT#O zk;q_Os=lE?Owa;=Dz4tmKjqCKf*LCCou?wBbYiuR^QHCsQPsKN z0aW!$RWr~gF0TFv%X5O8!)sj7OcUa4w15{IyjYto_^+UFtjT@u^$ntV%jYiQ?)U z1-}yWVY9d4?w&WW?pg3fxb$-VFrLAtZV8(rw9nwr`lfL2h2mt=6kjGD!!_6p{T;h_ zZs0VUf**VyzLp+z0{?h84^4ojzI9}i19dSozDhhf`T*>rHjrbu5Z}c&#_G{TXqt1! zUHta33>pZ_NMPD}9c&hVPW#2$_I43I(T|tKf$0UXuRMF|emM& zJCo1MTm@&rH$LbJVdnYF-Rph~Ds1C%5bb^BkvH3D9e?}%Uuc4!a+HY6RR&M~SO~w= zZ7(*@3qKEla}eG~CRaRu6T2&Vg}G#M{U3Y4AhEeLjYYUy3{)8MttJ}cWB-<~f(B}H zl;sn4+vMQt-2xgj9ms2ZiIip3>42kq9R*~zjeb$D`l$~~rriw96jX=TP#hcRGLn(C zwBLafrJX#3?S?&<#UQ1f6ru4&a;k^6sSQ?TIo$` zae$XEZKowLp<3R87szj3q+SOc^E)Y^bjo|sSXf3hNl;~X-~qRqsYzzgZ2xa!p^M02 zB_8>AkT$BTF=|8u_SB9?P4>`p1rDZD(M6^_8=@+e?4zg?J2|G~HMCug9-vMtCbi`RZN#@CN8(Zor)d~p2%AJ|k|L?U V0xhcc9SVA&MDAAlf9%7R{{cq)hhP8z diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 5eeb9729cf94dd8e729b1b87adcdedcc068555aa..6637d9fba2a2129978143b0aa955481eacf043ec 100644 GIT binary patch delta 2705 zcmex*o8{|mmJOkdhVdDu`B{aQ8TzKFhRI3BNhyg2CZ=iThNh;;1_mif7Dfi9#ula) zsY%9`rj|xVCdQlF7@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqHrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqoYQ&~Z96V$@ nLSpiVBdn9H)(ULCzAv7Yd}B6$IASJDmUd8~z`yz0jcP^!20dl+ delta 1172 zcmcb(h56zZ<_*4#hH3E`S!R_*7W&B+$p)q-Mi#~oYQ&~Z96V$@ nLSpiVBdn9H)(ULCzAv7Yd}B6$IASJDmUd8~z`yz0jcP^!A*O4V diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 2808d7f7666d0b9069cba9b65189586f6777430e..3617212e80c1309bc419a2efe2eb5b1058cb5ca9 100644 GIT binary patch delta 117 zcmZ3dyiR$8KciuMhG~9Qp=E}?X{upzl5tW>qJfENnz^B=X|jPqN|J?(^b delta 117 zcmZ3dyiR$8Kcit`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}~<*Gn4! delta 1125 zcmeBu&(!;#X+t=pVOo4fmRV(yg?_R{vVp0Ik%h5Inz^B+xk+NGfw@sis&QhPWtxSt zL87s7vPr6`nc3zJMoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}~j_E2*G diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 750da413c5158647900db25add0d4d4a999a634b..a56964964c1d065c1eec894417265b75b600aefe 100644 GIT binary patch delta 62 zcmew$^+9TbE0bY-hG~9Qp=E}?X{upzl5tW>qJfENnz^B=X|jPqN|J?o=$K zw6T(TtLhDhPfTYOiOmzrQkNNn~AZYRUvz&J)2aUk?H1s>Vl5LryA z3m!zjqQC{fpp@9WJzkGeS6oVbM5!wlrY>7;*18&*nw98p&%MfQ{IE?>UDiSuU8deZ3$f6M5kX%1Uh88>AUi O$xKY!*C{dP2><}wdoDr% delta 2685 zcmbR9jAhOo=$K zw6T(TtLhDhPfTYOiOmzrQkNNn~AZYRUvz&J)2aUk?H1s>Vl5LryA z3m!zjqQC{fpp@9WJzkGeS6oVbM5!wlrY>7;*18&*nw98p&%MfQ{IE?>UDiSuU8deZ3$f6M5kX%1Uh88>AUi O$xKY!*C{dP2><}b);k6O diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 0cc8a4073eadfbea20f936d1100fe720460fe6eb..6943400488a2c6ff0e6783270b088bbd4272814a 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7w(%LJ`B{aQ8TzKFhRI3BNhyg2CZ=iThNh;;1_mif7Dfi9#ula) zsY%9`rj|xVCdT?H`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OWHR7i<6k delta 2632 zcmaERn&s_jmJNZ7wrTMhS!R_*7W&B+$p)q-Mi#~+`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OOMmBbWdH diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 30e9e79db3d3f8b823712857e2876c053529ced3..994bae1a9baf25fb071ce2eae59ee21ef88e41e6 100644 GIT binary patch delta 2466 zcmcaQndRzamJNZ7w(%LJ`B{aQ8TzKFhRI3BNhyg2CZ=iThNh;;1_mif7Dfi9#ula) zsY%9`rj|xVCdT?H`N_rl#rdU0$*GeSHHlAtOB5z{TF`hJHzI z0SJ>ES(_C#s>utkMUy`Sux>8VYaq|x5bb9SPB4+>cZl{JlO9TJzhL%;65FR(t)Rqq z5!+{!*nY`j88aC{SLm~DbGYjqa&lLp&*sh7y)w!0^X5XI1>`w)^X9Js>15bA8RS@p z;CtkRFi0y?xE>j{ZcdEoB-fwkV&;(-DYG|QB-OH$l@umS=FjAr{J2+`N_rl#rdU0$*GeSHHlAtOB5z{TF`hJHzI z0SJ>ES(_C#s>utkMUy`Sux>8VYaq|x5bb9SPB4+>cZl{JlO9TJzhL%;65FR(t)Rqq z5!+{!*nY`j88aC{SLm~DbGYjqa&lLp&*sh7y)w!0^X5XI1>`w)^X9Js>15bA8RS@p z;CtkRFi0y?xE>j{ZcdEoB-fwkV&;(-DYG|QB-OH$l@umS=FjAr{J2qJfENnz^B=X|jPqN|J?y delta 62 zcmdn3w_9&RB%@(kd`6a8Ws!w`vPH6isfm$=u}PY_p{2P=Vyc0;QA()yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NS;g7mQf delta 2506 zcmbRCjb++5mJN}NhH3E`S!R_*7W&B+$p)q-Mi#~)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NSc)&QUY diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index f0d1e12fa8988c710e5d96547ffc9172b80ed966..e62d50cc83e77622ab1f3287b810c466d3b43b6a 100644 GIT binary patch delta 3023 zcmZqN#M-!tb%Q6PVSI*ZepaDnhQ4X4VRDjjQc9wMiD{a-p{Z%Ifk8@=g^_`&v4yEc zYLc;~sil#TiSgzt#tURj=&(VuEZ!C@`*Vg-`C&;z6sxp&Y zTenqjC)ZYodOdP&b!=QuhOL_wTV%D+|<5KJbQZvfTvs%?~CTbC79- zz)a!I*Jd3fQ~PG0B~j%0yMFSnZ0^m8s~X7lJ4pMSO}g@A`uqO{q0QZwPLo%9)K3O! zm$-hAT)*o);N3j!ZXg?(jt6O9@2fUHaw? zzc=!d<#3SA(%VJ27_)gO&~GHpxJQF5{q>WgShg>6V7y9R!4Jx=tlM?m7;lrQe>%Sx ZBj@%5-i+J0$Z|iZInBRaDV*^>BLMtGk<9=A delta 3023 zcmZqN#M-!tb%Q6PVOo4fmRV(yg?_R{vVp0Ik%h5Inz^B+xk+NGfw@sis&QhPWtxSt zL87s7vPr6`nc3zl#tURj=&(VuEZ!C@`*Vg-`C&;z6sxp&Y zTenqjC)ZYodOdP&b!=QuhOL_wTV%D+|<5KJbQZvfTvs%?~CTbC79- zz)a!I*Jd3fQ~PG0B~j%0yMFSnZ0^m8s~X7lJ4pMSO}g@A`uqO{q0QZwPLo%9)K3O! zm$-hAT)*o);N3j!ZXg?(jt6O9@2fUHaw? zzc=!d<#3SA(%VJ27_)gO&~GHpxJQF5{q>WgShg>6V7y9R!4Jx=tlM?m7;lrQe>%Sx ZBj@%5-i+J0$Z|iZInBRaDV*^>BLKVnpjiL_ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index a9e664bd7b79bb7411545e0865cf8470e93398b0..53cf663169e520222f26c2bde0f5e7ef323b2370 100644 GIT binary patch delta 3004 zcmdmgn05bQ)(zf_hVdDu`B{aQ8TzKFhRI3BNhyg2CZ=iThNh;;1_mif7Dfi9#ula) zsY%9`rj|xVCdQj<7_XC|ZSuwidDCylGxASnWGN)wR*?3|3%GAy50}1zfY3 z$GF|aNOl5PSq%%7O+A9<-RmjrbIQf4e z>*fr%SOK!Nb8M~;XCg1@fNU3 zUqu6%Uf=woYCjX%4wu+mS=U3R&0vS0Z#Yef?I|rQD6#!o+fhnvPwncU#P;ny&6L>A zGQpp`5(AQCWT%8uqTOc39r7H%V6uEM-{$YLJIP4zn>Q|yAWqlU&>Dm+)*3c%n{$_Q?THST|e0W#=R> z=peyg-^sn1^?MO{&dAs*z_^0E@+4!b0HenCN*2aeUb37I(l5PzlMrJ*4+Z+K$}=9+ zAWMJKc27^nhva1%aLVV{{?w200l5a831Z}&{Aj!I^dEkVPTQ}AFs5;l<&C`U!1nVK FMgR`NuOk2e delta 3004 zcmdmgn05bQ)(zf_hH3E`S!R_*7W&B+$p)q-Mi#~Ay50}1zfY3 z$GF|aNOl5PSq%%7O+A9<-RmjrbIQf4e z>*fr%SOK!Nb8M~;XCg1@fNU3 zUqu6%Uf=woYCjX%4wu+mS=U3R&0vS0Z#Yef?I|rQD6#!o+fhnvPwncU#P;ny&6L>A zGQpp`5(AQCWT%8uqTOc39r7H%V6uEM-{$YLJIP4zn>Q|yAWqlU&>Dm+)*3c%n{$_Q?THST|e0W#=R> z=peyg-^sn1^?MO{&dAs*z_^0E@+4!b0HenCN*2aeUb37I(l5PzlMrJ*4+Z+K$}=9+ zAWMJKc27^nhva1%aLVV{{?w200l5a831Z}&{Aj!I^dEkVPTQ}AFs5;l<&C`U!1nVK FMgU9=y<-3X diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index b8d45cfdf032e4a9c8f28d743008e888976df7de..d9c1dcc23936c4d207608869e69e300ec7507818 100644 GIT binary patch delta 2688 zcmbuA%PWLY7{(js8=uJ-kt~R>hQ>y7`R14zWe~-bVuK{N&ydRk&4?PgBxRw|IAlRC z8NUoCRwu)R&x9D7kK6m`1O09^Pcyd>m}{=k~UJUvA6fK!Tw=)uZ4Bn zx)fRQby^*)$7y4%%WCy0F1wYR4#qv!85p2SH?@t z$x!wX356HvfiD(KVU;=ESXL9Dz?_&ok6LHhDQXqnyMUD*OKKCro-dv`!1%kpoJuQ3 z(Vk;fm1y9}8ZU~@*WM$6&!Xep(~wJYeH(Ize{u3OgpgDIGn;6w=>!jMqJoyrc z&=#q^*E<&CF@Gx2czRFtn8AVZ^*#f&59}e&ojNorV4(AnBR#N`D*jNMM$T!A5yXwl zDU=s}MqYc>uHxq_@5nc$;+q?(6xfq=i}Zdw0K91wj_C|wXz4{D?^6_=amTAj`)^q~&>r~`Dfn@h`UAarIynFU delta 2688 zcmbuA-77<39LF0wb1XBFTv(h!bED19*=ucxVx_o2l9!pCyxfQhO-xcQG|fXU$jc4N zh0RamO3IBJS17XNnj7It-cJ4k-~9ofKHu;2dw$Pzy`;WgQpajl7P+&x-!?wvF!>#R zvsJPQNef^A|rI8%}_%qqiwwbs~cjK0!PESULGTI%#t!5T|Kj9niXf-_XD*_(mJ>X95tX$0lCd|p zLtCWuUhi5+#{AhGPp0>zYy=0!*86nSIk1O3cgoO&ppMQ*j|Vn$YOL(83Ex-lsS^sT&mLr{tx`4YUMpiOm~T z8_4xFNc%tawM^tWeshBM5=v~osC$u2n}JDHVspOX3QBB$Vtkhp+xyIID6xII;$yJ(-T5?690~v+7Dca$Nw@F1}HmOxq!G|KEyh^XFaF-K5{Lahe9LXJif0%mJzMn8+jRD gl9zp3w<`!Uejr2dc1HsT&mLr{tx`4YUMpiOm~T z8_4xFNc%tawM^tWeshBM5=v~osC$u2n}JDHVspOX3QBB$Vtkhp+xyIID6xII;$yJ(-T5?690~v+7Dca$Nw@F1}HmOxq!G|KEyh^XFaF-K5{Lahe9LXJif0%mJzMn8+jRD gl9zp3w<`!Uejr2dc1H diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index d0eb36b9120fb4f33e2e653e1d8309f35b1ecad2..1b2a16885504208132e9cb9fcdc15d4845ef2b73 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#67hG~9Qp=E}?X{upzl5tW>qJfENnz^B=X|jPqN|J?JOFl}63PGo delta 62 zcmaDV^HgR-Fr#5wd`6a8Ws!w`vPH6isfm$=u}PY_p{2P=Vyc0;QA(JOFTi6BYmf diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 488c7ccff55eeaa1adde01c12e8521331fa15d49..12e3e95df346b20a723dfc6547977ab170cd25e8 100644 GIT binary patch delta 3483 zcmbuC!Ap~I7{~e5-f7KEY^4)RkRT!|-)+9O9STnag>smPC1GvTR-C#+dKBrrAI~-k3y2{D` z#+f?J+YPbm1tqy?vQj|#Zouf5runS^Sq{G7={_@EZyZ5{%fS_TvvUf`N}_vP{%nDo zULmFJt^%M;&CrF8^OovSV(N3mCsUvDP_K#ZIF#n`L_SKoK45+o3sBwfmF-yMPtyIJ1PR=0+>1*Mxr-RW*#i22`mWJceF*^W_CJ-P@4@ z(5$}sDc*CUf%nI)`V(a#e>9CW|G$ileqHk*iEl2^IrY0XGd60S9;u-V>W^EHNo+RZ zojqJb2l_;86u$MN)*J>Fvfw}|Z05@iPYkdcP(XX-)xY{p8TpHxs>^_WRyBilfA zi7T(>O(4GKhMAYv6uR>MA@W&}@#!U~v^Izu(9`EVAI-GylfWX3P^|b4+y4lU6%Ug2 zTh0u{C-JsKfthIT=VAk1V!6Od`yo6f?j2x<(8=XPbt0wW{OUx#c+|~~8=>B3c(!S` zSUt+VVu!oICv{#CQ4f38gg22a53@lW7rRcg4?8eE`DK!|i{(o!3Wgx`0*|rvosr_L bNpBoAzrl;}O*YvAxtG62jbiBm8`}O4pvV!k delta 3483 zcmbuC-%FEW6vugL@3iJ7w$h0uNDvW~uiM<_Md8&zp&TY+N$8kct5M;?K|ipe3#8P- zhp~%ltX3fuY;|xCMC3)%mE>-sn?)n&qMO(V>Y^CEk2iU{@BV<#`JV6hob$ZAl?{Dm zL!a$qU4gOS1;^E}tJCN5soi#~%VrNayLy~VpeNw6sa~7SXZLqI9CVG9 z0gN+shPUgY)eA~;$zY}l<+~1}Ul|s*17tb)lBfEObfa+;5iSRF^mg|&l9fdFxBS@# zHJu}+?VbXlOik1Ij&r8!QDW)~#3xgq@lcQ%MHkoYNp)J99GeiM?CoK4&l zMeIuS?_d!f>$~B3RMl}>hh0F9I?gVms@bs$>NW10LsfNwH-IXYgU8V;Z@#pMrh6w` z0Gib{KgoMfHt>O%S$m>PBA7Xz?(a zzh#Y3d=hVq7np(Oe=arPB~}WobP&Rm;{G9a1f5(yR40-u&aYms7mpq6gdXaBmS>vw ziq&K6D|Wb>d_v+e+6JMrSyI8r%B47wYEARwc-&rZ% cn()L>^P9Ywyv3$kAoudus8K9GWWziE0k_m5Qvd(} diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 0fdae0d0a307834693ae658d7779f9a4b32cd920..04b4b8af83587b4f43b771b132798d177c98c229 100644 GIT binary patch delta 3969 zcmbuB?MqW(7{ucG+E3m6jaoT&`7;+!jlf%VD!fc8BDscG>f!Jew`YE_!JmpnOiR zXwaFsG}etsSMfGTJjq| zG;#D2U=%)Qkj*E~qB)yRZbq%%Q=O>QczPDCX|}=-49w5m^>N@9ZLIl-46FF3MV~d9 zV`}^30kh(tVWpu1X;?#dHRb{}2@Q2O-@&YJ`A3UDv)*WL$E-7K=qy099`RnmzU>UZ zz6V=%_dRIVx(60CtI~TJwXW~qfLeDeR@7Sgcr9RM#ovQGj*5Sr&BLFO$6WD`h|s<@ z!Zo!{4wTbDE`HH%i2lrTYM{&*Jr+K+BVxy)V6JvMwh|u^fi3AWj;&1IqQU{A@ED@Yvr0bi7{O~@F(7uR)LJ$cObo^j==zG>)tv_H_f530Q`?}uyd7do{Xcq>w!_{Q= zmQ|g#U#oTQ@i;vun>EX6v3ecmY=_ldX>w#$R9f8LY_HQ|a$77OYo*O@7u_@mP=1$B z)M<=d9PL4*t9T0}9_O#IJ2VjbhACdc&_PjT(r{z)qa?_z;<}M^Jyw=VCyShPJ!^K> zXyE}$Aab00%-^umLVVTPf<+GT{NCj#Xy6ck%JHGriUZrDLF@Ire$<*;kPled?{c6O zjUBlN7=_;z;W4QDCAvD7Nh6J8m>O%`$ylLdqzw(erLhV0{DLXMn4Dysl#*y*Vwz@dXlj~lV33kzVPs%xY+-7V znq+KgYH4I-V!XMA@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*JeRrWmZ{ap`UD#Y+!0)WMOQQW^QO{ZjzX4U~ZI>YMhv6nPy>Z zkZ5e2Y?5kfX12M8@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je-bUEk(ga(dny1mOZ>&xs?3tt69KyNFLb(JLHd573xh|f^>JtzwZ4oLq3G6_2B4%W`)JSW zKnq~}elW-5Zfp+n#`0t)a4o5dho>AlR1w)WVmNip?O~ZcJRHlV#i$QEXb**Bb;UsF zgcc-eWf-thLQ7)bI+3R~%c*3;4_NhI5|L7y_sH|rQQcffReO`5`5R9^@FDZ~vGd)N zYzG}U6eZ+FX4cHk&MG3sM!2w9BHNnT30qjTt;3C!!<~!w#uTL} z*xa*F-{@2pV+f?soKvcUTVK@kHENutT52h-m%R_g9xYiTxmHcNo@2cLz+ z8Xa47Eb|CGXMLnV)-JYQVWx3gtrf;COe%lEXj-pWuwbZ>JC8-H-4LzOD))$;b&!fg z8@7!gT{+s5p};{pk~2`Nw-&ZG)WO!L`Uu+ftx-g~UN`wr>t%BlV5L&`4QgC$YehyF zQp0SO%c1$sO5~*vsng{3gn_Q?3ypNENZ&7Xq4x;2KKAva)|Y`i6y5Uc07@ZsAMJUq zH2}u%2Xj2^#^x}%u{@dzTuULTv{*z$$AVLpll5W;Sz1i@GVU&$I&TpxGjQVW GwymH4?u8ft diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index b1b81a13a6dfe1c40463d98ca43a98513c8d6566..0a6e42b9af1ca71b046d947045f72e34a203a927 100644 GIT binary patch delta 62 zcmew@^;>E~3zK1dhG~9Qp=E}?X{upzl5tW>qJfENnz^B=X|jPqN|J?E~3zK15d`6a8Ws!w`vPH6isfm$=u}PY_p{2P=Vyc0;QA(Ag*W3#8}h6-0u~hf+c$SGwlV?$Iyht5 delta 1253 zcmdlng>Ag*W3#8}h6-0u~hf+c$SGwlV?$%J*r> diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 3ab3b18f7476b372d3d5ab5097191e211dfbbe6d..a76ccdeccc11bb01873717c5c8e98ce5028fe010 100644 GIT binary patch delta 13101 zcmbuG`*VzE6vyYhmn0k6Y_9H?HiU^=R$@uCBt%oA5eY(+5V>f?B|<~RrP3m3BiQh$ zp+%KJjnuY1;%=B!N1HO5s0kA3#Wku;QDLIb?si6g&3FHR@Aq@gdCqg5_kG^oV-0PO zHMA{Fq`_0OEIHY^ky)XZ%zo)<;b|Gu%>6CX2llgA(#__Kw1_aXB|O3sk(m}AX^9LA z>mMGPk&`|@bbe0Wy!1?KLEl%chv;m-7Q0Agf~`Su(=n;I(ZkJTUE`69$!&`b2UJXI zU2O2T&P~;9Cymt#WRYkMZSQV<7~n7NjVEtgjBhtA6o-%PVZaFu3&R%Lev>;SooI^> zQoLF&wH5STK`ocbUYTs2Jgk*%yE)7kmX8ILl=6;!k&L!+G39=cewK~L$0IpY$}HQi zW+?9$zndIMA&rCdRYd8wlSqSYSk)U;tJbx7tuRJtN-3@V*J^97o#Y0df~Qn#&ric-Uh z2BB2L`f!wbb;A^t`g6%plzMn`G)gW0fKWtQE9ug=TK>WIegO1 zI=>dBS}$Bh*VRw~_i)Ec)hM;(@+LIb@~USjb;{LkC{gnNaaeR zabStLT&2HJZjw9sp<2z8)}Y#+M(TrV|1nWLs$J$!1JF7r22useJ>Hg5k=rBr(#~a_ zXf?{c@d~X&^EGs(0+idMJ8eO=lS8Noxu~<(YE>T^hjJI1=?JR*A)NN0bv6y4p#YZ) zBIq2-tQ$l#0jB*DiSG`k&rxpAXc~cXO)+Faxi^PX49Y$8CXGe4UyY;(fuK(Dq%<-D5j(}k>GV1%p3GG< zC<+$unoX)l%WulH_20c zQA@u76>xN}G>A8XVqtzn9?cr4!$T@Tdw``^FSz@zHPS(J^9m_8u>T9X2-hLsUunfT zMrAFWfOHs%i0xf0OsV9>mc=H0Qa;6&^ z$mx@cq1iTZFH<7Weq-s?0~TkUQ}&_7;Em@Mvo}}*j=7>lq30y4wF;X-vMBabJ;kjg zHCSZ(s=GlKmM+o2&tRMn2?^cQcIaFbQtZQx!Ro<|VC;4WH_z+};^UIT z^(58Dl`^;q>EOxBCaAToT?s^dG*>l>$4tSZO^#aciWN(%iJdWr6lVycSS@S00n3?B za22|o&tP@yMvGpe!OD8dIKE`!eO)Ym}(G@%G9Qom*HhFEM2m@yW${f zLo^Su{I06;(mM4PI<1^Jz4U6lr*5^l8dspGEz*2ACP?!Kem&T%N;0l3eO!trIz?+E zI`36|#KR&jg;ynOX7sheQ7V>(&q7@d$y-EkkR2Hsqy?~yYo|*g2^o^pki)FntPn6b zmfd|DJ#Ou_>A{E2Xy11L@#4=qSqynSG7T*TONYnk!-jKlbM9!%Tq%J;NC$6TS+6z0 zZz=X6!$#73!H17yOi70Tu2S?<25>>RwNdW^uf?~%`X>10psAOPUA`P_hw;*(1RjZd zB6Qzo55U3(n*NU@PiqxJmWU;~H)v-Jv4%Z+pN^&?SntD|~8 zS~MZWM)p6gUqB!Kc9| zbx>MpSXj`ktkgw8i?VVSrlwi)2E1xHLgxmy+C?hktc{9`j!DJMJ}xH9`nK7a+`7zg zNX4X)Owlhl_X2j$adD9=3q})J^@ft@;kOgGFm4_m3u+@xmKPOi{wnn zbFF(4(~uUkN%v0e4^XX?d=(|;q>KfK7F)2>XO2Xv!_y9+($yK`QR$*NFVI{~^CzQJ zH9H!m{;?3wwK69GrGB?$I-2Xb+y$ug(u#ak`p>F(G}pQhMxoSmYo?&o()?(Yx?{sr zlp0(x6r~zAg`m`HMbl8~&&4B9>d~!{D7EmD$0*fr$1IfE^D`4F{b~1dRC;IcY&6%0 z`xc{AI_Qf^tzW{_@*^`MybVDwxGF|S3N_i)2{76sp9&5l-i?aHcIuci$SUG zza2!W3Af>sF68cZl$!Y<0?jr0;YpOb>#y-BwXpFbN`3Meen$NL-zt=v_#E!05zS9P zDpwLs1WU~2D*cUe6WWj$s?}U+J*w?%q(D^rkBRD0?MiP7L+c#xOBE>hL`O{w+CZ9!a+jFt7^?jtg!Z9zHigj$ zfXjK|bRK2a4W&5%({_o(_lD8uD7SAUjYheqC<;Znw? zR|2jaN9gkuSC6L!!2S~>-li;;m$?3bn57u`P+)_;%SF>5s6#w;CK-W<9b#iTy$*_# zxN0^{d@>2+ zO)Z`4J|s7!eD)Zm&Ej@w4Cxm75!CY6#k9KvC>Bje$ta>vY98W!qY}mehba#Du4i9H zmR{L#4?JM10h8dEQkv!ii0z$guAor3cQUWa@*NtbM)QzLDgn+CN9CkV39|Lzh1_^jC&dkIW&X8?av5&mP(NiC@Riju{woG6rWP%9C{)=4 z2O_=h!6g_Hp=?A}z`lz{zoA5RHM~G#Zv(H{cV|UXj?PiaSTjipx~Se$WQIe->}H(yZ9?qCTx>Z%ffo|CNBDr^SHqR>lq z6}J;qf05~_?gd>~xt74u?IK#tB1RSvD+M6#DFOEt}_Pw=_vJ> zhf@wW5>yXo%HSfTgDbC`tk$-7CJ^z_0@WxUGx>`SS!%sARxGWibjKW$9U+K9wY2pH zEN4E!Rp@b2GqBr!^*V4L;W+ti4njJ3@#=%>O>`^>yUmI+)gT^~s?Du0!^>b;x@7it z#zE8uXl=!+d#c7O>eSolv~uM1(yQsdx;@m{xO_!zf#$(cewsJ%>%kUPl5uSdbSj$2 zWUYhfzF+ka4Fy^{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90IH1w_5c6? delta 1676 zcmeDE&D8swX+tohZCZRrmRV(yg?_R{vVp0Ik%h5Inz^B+xk+NGfw@sis&QhPWtxSt zL87s7vPr6`nVEh{esZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm902GA^`Tzg` diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index f4b73b4cbddcf72cf2c430f2035e6e98977fb6a3..c749929354b5da965abd2d93b8d0e2e881a4b5f9 100644 GIT binary patch delta 117 zcmX@2c|>zVIHO^FhG~9Qp=E}?X{upzl5tW>qJfENnz^B=X|jPqN|J?zVIHO@&d`6a8Ws!w`vPH6isfm$=u}PY_p{2P=Vyc0;QA(I_x*lz?>+ZUezh&X z+V(63k&!VyJ$}I$>(vvHQByPHXO*a)+!xXHQALTHF;&sEm>x@*nxPx28rAq6*hs*v z!Ag=3H0|hcp16)ym$lGvzSbA^64CnyKGRZjeEX5UE>dcaHz$stBB4`O`{HFH zX)L{>k$iS}KW&Pqxb?=Mp?Pca-L&(*e6Vtu8rc8-uJb@~;pF+%57*<)Q8rzGOSrff zhI~}`ML+x|3|&2W_#nsw#AN0vz-i|!ici*BopW~Kht^WagEK|Q5N@c3;QLMJqzdrM zZMaB<*Xwu9z;0K9zyrAAN-$A^&8`GzX5qCfL2V8U!t>VH!j|VyCJcE)aF4@Z$;~Mo zM@SLpu823v@QLu~*!7D{z#iOHfmXuLk!{E_uOQO%{dgBjM?- z7n%400etxlyu_8vqA*Oh)AljTa(}>!k85y<8ecb*{=vykT89ifzeNhMTV?R$$|k8w z+=dJa&9M#6JK)bf(mBfd39g9SG^rGH9x5Kp6k8saWK0~D-V*KsTYy6FgmCZ#o3yI3 K5B($3ua5r>?%Iz4 delta 3290 zcmbuB&1(}u7>9YcP3cG6q=sVZXGDVSLAuFqH(8<3q6ngg78MJEC8oQPqO>Rm3`o;J z1VN&8&`}GD1TENt+7Sl9wDluY5S3nv*B%7HlR~0`2WOi@&in2k@I1fY&dfWrxwV$u zTFdhkM68jsWBTO_@t$Nnsq|{mxT;yPh!N8grV@*enrgx_thlNqR5huYy}HisLOTK@ z17(Z#H|%V4p16TlQ3)7gAz0hgR2|43#JWyOXId<*CjZx<)ozBB0zPJwt zeOUNqAN)oPT`hU&Ajtj5Wa`PoDd#K~pR6`J=j_6d$Wq9|X9|!;+)#DF_gm0`74R>2 z;35{@sNXpQdt3Yrn zLkc-}1%9&xpAe6ZUB5sD?BTo1(2V#wvJDxkd<7q!tAd|CF2NaoVigo*n+zAOkBFzY zR%GG_1o*3O;6<)vh6}@FD{db%H2Vj<{7DrKVdHCt;y*aqf$NZ_=eJ5Bdbmq+f0S0mEAAO8@`> diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 8e53f4aea6e2dfcc0fe0dfadb519f12afd7c8576..4ecf7c102072c0c6ff12a93a393625a17139b12c 100644 GIT binary patch delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e39ZKN^9cq7=boQ5MuyMiXst2L>{7`h>#jvjH1hk ziCUI%mYx)CSi}lS>vL*$QmxczYY13ONEAbZSgA_UDq3QsM0(~iHEQ4vQ~o0ZPmVh_AZa5AYI6Z*?YWy zgjCCsceU?X2@X8SF8dY9uFLH;f!%=2Ruj0+W?HS-r;d!l@^#8XN6*7@cFHY3Xu}q( z(7tc{R#f`&5Boh_ue2yxrad{b1EXfzk|RgjFUR~5A;%Tu*enT(eNuc0LU+n<11UR| z9yUt+y&GzERtltEZ6BO<-wa91?0d6Pkj9QHD6>~(uR)sHAw88h38mWd*8x;}T)}yi zXkQL(UPqqCR~`g{wK=3}X&x#KSUrg5+OVborM8yMM5*UqhjVQ$PerM%8%xk!@4f*C z{CLZ+Q0nw;bI@F;{qhx*8oL7;j2t~2zcUS`&fN6~&GnyrHcGu#6@gM4_O3#yUslJV z)W6isMX6_h^EFD%t9uQlZm#!5rLl)9QR&Z*7NEIqKmI04Z8#BtO3OchsmD*k)Y8-N z&M7$a0IjfgE*UM8bRIsN)W#zyb#ZeADt)`<5-K&f!Z)4yi@hi{z3mFRu3vo#_pqs> z9i{H>tV46Xb^SjmwerSclzOwf2cYth#cZv8{p~UoyYKF70IQFtRlTQBD(i!>;lSsl)%ye zrsMLXfh2}JKNj+gY84Ld=W!F7m%2# z`cUSXT(%0>d%Sl8E98fYnIBzU%A(wH2%^U2ED?1e5yMYWu_J*XI`S%e$~}jTYuIMc zp_ppdvJr~w&)_6hU@h=hsbv4VluSu)%}J>6_La9TQhUx>YF_ia{<>^!{% z|Io*70m(nn8u-Hmh_K7>1l1enzzP2Jls@v*)kAB>B?9 zS<+(|FC4ys6JMAry@S+U-!VdLq)i#pD~Q9KGAWI6vZXypqw3;{B~le|)R7QxLiVN5 zEu*4x=`wP^=@DPpCLKc4C(5JFDvH<_jf(r*vzC2qpQ*Nsq^)$L3BATIO>6eY3 zZaG|(4H;I@fkX`RHBjs*XE4>r8B(8d!@)?E#fC=Yo`13+MlKuzY2asuvdQiQ;;`}N zrc(wF8nNHd>~={1^V(W(m=NklT%HvBxuFle5%r$u!XcPC+YC)3!9d8;XDEj&BEIV(R6BiYmd$kZQUNm4(dg0Fk`Z2OLNSWx~F(MoS`RM%yGcWqw@DkOI zP%6=rfIb|jSmEUnVn3<~Rn`Mjx^wJ$YnpNr#ZzOv@*X;N(Y@KqD7YVlcqqM>taQSC znLZ$Sk$Jv?-zd7nku;@hlIvS@*D*Dfw`^8gF)2;lqSPf}T3*52E;Q9PXy{JmS*1T=vjfpFOcoCGJ1sXKs<7szyKQq+g=PJhv);vbK; z`Kw;&^h6`as(HXVJKs-)*oVxast@p1M{}&|2IT4F(>`?}EqYFk4s^ZAxh@`?qC%&< zE^eEr_O1ZQT!{U6!AEKWW>97uoaIA>XVoTT$wc_&^p8e03c2BQadVTp0-5x6@vXnA z@i4jlqKf=-*|FZ`biGw=fXQ<&sSDwp7hO@4U~*c!x)UZ>b*QZ{dGs|E`I&~Z+Dp4s zrq0-chf^1q-{UBENlbk`F&n?*n8Ky*&|5_uwOSKXBFY zIkL8bdLFCDU`j%~8n`MPWy;*$t17!Ms0uAIX&-}We`j*qU%P}xLSx2gGO%EJ8e|`< zRU_oM3@wk}v}o6WtHYtC%y8}Bz(g+oK4|4f^Ry6t_jxUp*mD~AKUJp-374Hf{@)A3 zk2fc4!<}Cjm%Xfg04&D${Yd!DFuGn@5|#A?ralLqL{ZmGaGm)i@439QS5MuyMiXst2L;{S0B0_3xFp4fC zCTdy6S$a}5VG%1Rt=J1s*229H9@;rR)m$YI`Zm;t7b98zv0qH_M%+c-r zQ>0qXysLcANO0gm4%x3z9=zO99oPlP?A3v5?WR?VW9rBlEMJ#Abo4wdXP4aaqgHIO z3LJaKZ$YIW|D?}j@Rb%N%XB11v}4pvdve4`$EBD*A>_FHm+Y1V#W5+q7@@o5w}6yg zN)J0F{=p5kIx7WIuW}5`x@U%@rH(yWDM(|-<(E1tvsWWc?UbI(orF^DwzUA&5tn}s zB|4Tto7b7=u@wh^VC_z+T9S)O16B>7xz?}FN2x8PGg0c<*Wg@R%2H8k%Z6e!*E_Gn z0YBRO8l`%KX}^9ErN(ZD1|w$=$L~l(sWW#zM05QYpN&$lR)(Y0`aLUA>X%h< zDD|(^b5ZJ<-+ql!b8BBgshjG2QEBYK3RL>5Bl&2q+m5|~QtOWgpwhArVCu0GFty|q zymRtT-$yH~olQo|B%OoLCbi)(N?qJkj!NHZzKBZAE$~fe{$dYGO>e!7uIpD{!aZzi zZ$qiOI%?5eZ(jQ^O0Bql2&LZW>ISGhWHDRgSa+)w#qPZ`8^G$LX=Tqzl*)SHtM2yK zzelMv`eM;spXzT$srv^qKq?(#>?;sUkqSe{L<-Z`O_ci=BSSl?_T&(Tyv~Rjla`p+ zJhaRP#D+W#>`m!vvNF zFrAkl^(Qgp0ZP}7dx7mmxh2VL0h;gX6lO)a^HW(W%AKFao z)r&Gu=dhK)-s3&%Sph#-#Qf;W5*Fo-Ll8AAV~MB(i5Px?ik%4r(czcb6Ye=|Sj{$p z4nxh++iNp+{$0-$SL3m|MZ z!OQ>cd1mDAG_f`?2@(dc_yb~Rh5C0fz#5}`$FtZyKb>6WasHE z_{Uy$6G;BC*2s@@X6Dm2E2;GM19oo+>b2e|dC)LL>O>oXgu}CN3nrPQGw3#^9sW|g z_uvyJQN;UT#91^hR7yw0dfT>_h`tG)ELq{UZM8}_fMLkB;b%lkuLEDTx_bV~^O7$u zoFzSi@xtL7IPrz4(%VSg^&KO`M%tJmy@)u>DV5UbrEF<8(x|$)JWr|wjye+JjmW+f zx}{WDCS5}AH$CF>Tcv|&x?G5TXy|t7)qufoPTq4svT@?f#Mfp^sZ?Gg{R{|%gpGAP zfOobF{jOPh3+WWS*M!)UKKVk5MjdE#n^X_v?AqgvSEOk^XyO(BmJ;DBO^E$z z34MmU=uqIwqHe%oJbpp3yH^Y0;zj)ir3d~jpdTY^f|QBw9V5aakdNMHF!RFC4bM}} z2&Do&3FyOdiWOcSA@-y4P-Pu3rMt$iH>W8lP&_rnEAOFW7u}t$jDq_?h=H1F98OazCk=jU?mVid^5#uS3nrzBo0ZxmOv?*el_6X_+nT8OGv#HV zfX?7axLgM2H$Cz0+lr?vf`4==8-XU!BM>e-fs^3)QFS}e@dBAnjf(mJ-s#VoRQ%)7 zR)5tCot|jqSTz?|XV?3Q5c`lhRP_Pg>S&HtU5`ASeA=rnq(x7w(Sd_+a;}TVrl`;< zuZvsfsXfatXWTi|Rr+=S7#*B$%AmrtW~rmF;Q^OdfqzMSiB?s`ipj z75Q%4C7yjphiQb+Fr+eU`x(~SO z_#9bVPTh}GWH2QmUIkng&N5~0>QR+l=T(IknY53=w7)kw<*!{tBcU;4G#OYhJq>b< z)v6G3T!xm*Z&5+Be_}#zw?Y1O6+M3{GY1Jg@nrvApakP z;m4bjwc)O>i%Vb7J^&WuhkhjdW*7%wSrV1?1g1VGokUUBP8dA%apZ~g_ib9_blf1F urv!QIB-;fo0eArXK8(!kTGSLb!XOdGhi*l1;wcYXBosj!iN9`tYyKZYnaoiD diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 73dbe94693f7bda793c0a079abd66b7d2c2ab5d2..e297b99c14c10b65d4a358987c490f68d6ab1c4d 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%QsfVSI*ZepaDnhQ4X4VRDjjQc9wMiD{a-p{Z%Ifk8@=g^_`&v4yEc zYLc;~sil#TiSgtb#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3<=;>J delta 1139 zcmeBrz}oeIb%QsfVOo4fmRV(yg?_R{vVp0Ik%h5Inz^B+xk+NGfw@sis&QhPWtxSt zL87s7vPr6`nc3tT#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3B{5Z1 diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 623f1a5ce81f6237d795a088f2af9cf5c502b436..cd8ebbc4364e1dc65c106bcee8a6a3b9bb5a12bd 100644 GIT binary patch delta 117 zcmeBC?or<0&uAE*VVa*+XqlmJnrfJwWSo?eXkcQRW^QO|nrvW@l4N0IU}|h(YLS{` XY-ws~WMpEzxq-2pnG9_{kWYGPzzY?5YfXlZVem}+2dl#*(km}Z$~VQi3S XY@BS8YHDV-xq-2pnG9_%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi5A=JyH! delta 1690 zcmaDdi}lGY)(z2&hH3E`S!R_*7W&B+$p)q-Mi#~mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi69l>b@) diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 17fb60e5c130c1234188bc9ffec271b7dec34d76..4af2f373e307fc41c7534cdb37092412a4638fb7 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghVdDu`B{aQ8TzKFhRI3BNhyg2CZ=iThNh;;1_mif7Dfi9#ula) zsY%9`rj|xVCdQj*FtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$r0bS9LG6FXUpl@qf8#7=Z8|oUjRQXuQox|>s2ac#!Bw4}J;=T|J)lS`~7Iw}Mz;J##;j#fkS+6yXze{Qa zgGcZob2-J_d9QU4cee4`3CBTa8QjKCrOk?mf;TgJnT5AZK7e&y~z?dG^ zw+p(2bhJagi`Kbd-*z-`@PHF_tv}R&x}HC}7}(}KE3`KWI9NPEKQC&V0-`L_H<_ni za+ok@wzJd320OlDG~d}dbsUDW`bS2-@LoN(y#5GY_TYVL^zJ+`a0hV>43u*5I(|&_ zjw~=x%pD(gV6MeH>*HzUP}E)Xzd#+<(MjJH0lOel>+|oM(OSEH`~qCHo;cE^z1C=s zXr&|(Fc(tcupL<2kb4zt%NZkH<&(F@82IId7 z1R5LJi;*lTqPvo8w8WTYbqu^{uO)fNV`QWZDKMUWw#v5FkyprV@<%B{m>bCP7@}lo zQeZer=5~`i>ytC=x!zkGu~E{=58cLt+k&_6kCsw1mtA;lVw;+ObU@5Kp^ev z99kphoFNwA>Wsiz+g)N5eV54z;J_GBND-OsSO zP}$&&MON7)4)v3#GqD--YZfaV+mTFLfxSB123_D}GBt?Y@w6l(`WQlv>l3g6M?|56 zmQDjqdsa|yV)UFQxh8SnP1C1D59{Zw*tCbH0@X&? delta 5860 zcmb`L+e?%|7{-~=wawMt)=Jk5%u1rd+;!K}MH+#0(E+qHv%~Vat>jvHLOZM-J}WyD z%S0bbBt>-50jvfbqav*vEh-`+qC}JmqO2~eizsWpHI%yBXZr(w&-1+RymMe)1Whl3 zrmG5BSmoa2%h}P8m+8s#*t1<(c}`bVt|LF!rFiYRSsT4hr7FKF&uLejPLIo*os*Nf zvDVX=*;w1u;PJA6JDuGl4;*2uNV1$KMSUR{s-3=1E$qCZ9>e*Wm@5VhW&PG9{w}Tw z3?9Nq%w-gF=l#}U+}Xx!rkntsWpEomoislh3f{u(r54^g{UFwLmEWAX9jjaAZ)TTc zHLLv7oMou%@Z2uY_5A7#kmM8X8&EXac?vC6$&QPHrb6YZ`DNHdRC7yVjTLgOW|l$& zPcBZz>J8y6W0jc=lyu+$q(T`)w{UyuA#4|_+*i?xRju;&b$5Z;;sLh_z~uFy@)eaM zC_3W3g^Z-)KPC?8{GzU@F;C2mg<%)kXfH6I+ zcQ1e0gi`Kbl{|+>;|DY3ftvlR^x?VW86xilGEwC>RI9L?Fj~BMj08y6eoz4?4 zJ4~1}+tp=a!<}C-n(ykGISE5q-6JDk+*gM!uP=m`K6sxPzB{iUx`(*d50!B7I(kC* zj;wyDh&w*)#9WJb+Q&1+|nh(OPf*_yxFXJyE1td#%xQ z(MCxuU@oM>5j(K90rwi#o<2dma*?;j2>6u+bE72%@BD zQeZSn#WvCd>=5~`3$0Cx=x!kfGu~E{=58WJt!I}hJdoMAHfh*)BaA1rnB#6`w^2Qc^N5>R^A=g=-c4t7YME`R+8S?Ec zZugPvz-0U_WfSurlW1Vp|CM?7gk1a&GRvP4er^?2M;vz+N3~gD!9?o*G2vWLlgOeheYU^$FO3qoTk; zOJ)J4J*#MCZ1|iexn^$@Hs}X+u1tVSI*ZepaDnhQ4X4VRDjjQc9wMiD{a-p{Z%Ifk8@=g^_`&v4yEc zYLc;~sil#TiSgtKj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGmS$@Hs}X+u1tVOo4fmRV(yg?_R{vVp0Ik%h5Inz^B+xk+NGfw@sis&QhPWtxSt zL87s7vPr6`nc3tCj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGmATwyo> diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 544bf86775985e27063e2c86ebf4f51d3a757ca1..ce111a4f9c93bb1ca708beb7ad9b0ec6a8f65c8e 100644 GIT binary patch delta 491 zcmbQx#yFvkaf2_TVSI*ZepaDnhQ4X4VRDjjQc9wMiD{a-p{Z%Ifk8@=g^_`&v4yEc zYLc;~sil#TiSgt*#(QMwN^o@Fe1&NyITj{322cLTQb?AiE|c$b$W7Mb7T(Ok*3Uw| i5u3HR&ofh?y@x-BJgw(%LJ`B{aQ8TzKFhRI3BNhyg2CZ=iThNh;;1_mif7Dfi9#ula) zsY%9`rj|xVCdT?H`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5da_C^Pd0! delta 1705 zcmdlyhh_5|mJP*>wrTMhS!R_*7W&B+$p)q-Mi#~+`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dc`x`|kh% diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 22af7ae87b325aabf4c1cc624661376134250109..d3ee45f6b85e15f88e5cf00e8fb99184b7731788 100644 GIT binary patch delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaMpyNE0j9AOj?&Il4fj3MkWp_P#9Dwc3TWX$($(J zl7$Su;>})gW*ZCH3!A$vXBdpe$ugHfP=_Ws6)-XWAVT7tB@yDcW$q7n_yeBj^PF?< zIp3Rhe91VzWV~9$a=i_X7Jty$u)$H6TU%qV@m1UM9rYV?9gbR?%~w;9XLHyK90heX zcBjLcmzQr>TG=F^nz0tj5w7EyRD_<@m=w1*2+13zM^|Klq|MTnybbBnjI~*&rEbIO z4M=^)PZ%{IJJxPRsr6aqDD~C#I{~Vku?_<=WyTti&g>CX`oYsZsC3lUhDv|7pGT!n zY^+12Pi^Wz&$M{60I1U9iUMSjGrjS=2bG@Lx(}^$=*1l<^=xrFK$WGQS(Nx~i5(zD zx_fTNUX*&h4Ek1t=k(-GZP{^QR-rQ7fQ7r z`V^o_OUDpO^mXn5i0XCl%lgB`TIekpkR@F&q14=C_tt>aOTE1qH6W)&C)#1{$widf z*H?*BkAHjvr7oQDqtwOz3n+EV08I5<96+f(mz`*>{;PkX(tl+Tl^O}Y!|vfKgj!nB zA`3@OL_tGWF1@4g>M^O}9o5R_vBY>t?owWxj+NTkMr>QG$QOQ_G=p^8I)ikFbdTY3 z#U0YpEygMnF%NOt!;Ew~nf;2LohxD>R0Az(ve*}ER};gvh4rl}hH8*Xdp#^c2gW#d zi?2~K?PfB(%<`~(;S&Fwh=wU1Pm^WLY=Yvr#pl&5fnKj=8Q3@Up+QU|dmFo5Z$R#p9WO1bLX6La4E>aC*lAr@{DPu)ux_FrdvHq{WN)cfzQmym}t1wW0DK%2-95bP_5l#^{5xYa`)y|w} z25j-W!u6z!wmD`MKR#gp;5DUFRfv_ZB8BdHHebJ*e)MMZ$HnbCEMBPn(9<7`$AMdr zTB7-r;9V7}Hi^>A{48joT&XkBbBVkJT)q)~bOvulhxLv9deLI%T3XKM1!xhEOs;L> z$78T-rG!mBE8zwjE9M8ly%jbg)g&z%4q>3OSNKt!Z=i}Q-h=8V4#ZNRmPdi3p@j7z zA3u@`)}M1QT|Cpz6DaE)K8+Tkno!sKywHG!pv~R<2zr2B@0sa^Q{0CxgOq;m2esm` z&CL`$$aUZ_k?L{*)GCE1l4y9C-v>8yM4$g9zXtNduQ-cnoZ@lRcAGbY=O1yQ zhP%8Sh#{(Hc{w#r@vnd$kSd-4pz5zSD=%2_=K_xtD&0a~|IR-FB0RDp)v5{1qVx@_ zAID;zNOKSP74*}hno!CzUxz+Ivn`rbanqy$-x;LpKLWFhr3_8V$|zPRYjVIglIn6a O8Cqh6r2ZfLz5YMUt3Wyc delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaMpyNE41TfnY1obB+b~6j7%J01v;ouge?Y8GABy5 zWFdpEc(a!}vyFx9h0R@-GYm%KWSL7Ks6!K+3YZvw5Fv5Sk_hqJGWQ2O`~lDNdCs}_ zobOFLv22`JHeM}a+1~1UUv7JA{-&Dz8rx<^PQKmY&C4#xb9m}(c{#Opc8|Bfn{T&y z?DiT*-R9g}rHxGis#$BH9OXKWNkuSMV^Un&7D(P8-MS(RByEzm#2rYNX01&!C3y!{ zuV3oZe!{4J*|mNnlv%4^7G#d1(hr{QL#1Q34pjQH{X8mt zBCigWKDDI_J=5Z?0-#EZGXju>&-BJ~Zd7_^`+l^};TLwH)U(B%09BT{=TPFeC3b)q z?(Vr=ttj<+8T73P&FRVA$Sn#7{$|fkpjKI0F@x4QSy>Gb!(k_?Jt%eJwO*9EQo9$W zF74|^sp-BPfGQ6)-bIP`{VsqQKA7)XN>S>~{hLr~@0$lu>bbTClzQo{A(Xn**@IH8 zhdu?U($Y1I5^KBn0YvpW_@wu6u@-s@`ejMaizqew*u8Zi^-_O7M)k`X(T#RkdvXb- z1_G5R_4vm(Q0n3tA4**sxPVf(4Z>9S#X*$Xcewzq)pzwTRQj)ML8V55@33p63Za%( zG|R%#6A{qRmCNd}clDT5sUFkHrt$b#NbXc#or#v(xdv=otjZUEn=*rR+XjPl1$B?% za>W(Y(k;d+<1r6$+Rcn~I+6W~ot-mmAXEb_X)@Rs>(>&)xs3(Z6hk#grdBtL(}6LL z-Qw$%bi0`hFR>hKUpU48CZc|t$I?_8Gn=3|F7dgC#nJ0EEDigHJ~W7GU~gkL)FpPd zu~bUvV8hsiJT%yIkY!;%2{}dDhb)Hlz3e=ez)7k>R04DWPG!8vOcyV+7OelP`csk( zqSLwXH`9rQA6T@AT3}|ncZUUxSScc8MXHrPZVd*?FQrCmn`b6;HbN;vCSq?;z1ryu z%z!O^XQ-Z3(J{}g;>QQlq+>6dN!VyfXg?mk4)oj=&-(VKrfo@TuUnso{tvs$mH4< zemn}hR!Yd^vl4Eg@nYT%?yZmssU|6ra0mmHz08l|d;?Wf@jg^P*&a>)8Xf_Th7!^T zYx$96u>P!rsp6Rd9!DAP@ENoS)r5N9=Y<9=1a0l*N6-W8dCyGGpW?OXGDsTWK2R$T zOKuX~k=#ttLtFRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_V+`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VhG~9Qp=E}?X{upzl5tW>qJfENnz^B=X|jPqN|J?qJfENnz^B=X|jPqN|J?WzTo-b#4ENgiz z>uDpoLs9)qN6Z&>>h10}!()V7UDbM|#;xmZE?3y_R=ISKSNFCX9-r>3s;c&g^VFA_ zKE|GP)QXVyrW8Y2NVD_fw@70TcK1Lf{A|X#MLen;vSGNGaSmo+s8TKvzdYa8S-@j8 z*>(tT7JuvSWkYB{ls9e0&KwXgj?NZCs?Q@0XmGK+u6_ltD_0;E58Hw;}CiC=;l*49HQ*qIV>pr?Bs%-KTgmt zc6eb5Jb)@8u6-QW(#QGzt<)^07vBRtSYg@pVy4)hJOoVP8vpZmeG%y0)aMgDWLf|`XNzeyUqzq04hx2a4u%wG?bm>8- z4Rju#v#`KLjmM*uDUy={+s=OWUmZ<&Uiq!CAFIfpM>n6cVHIWX`mvz!vy%%J{wP7a z*x`jK@BpfWxcc#lmOjq!ZKWnLz4#vJ!3xW!7qi6nx)3|hCZLjr&f%Q zNtJsOK;}txakqiRXB@g$e%?j{z}ic}c}0Z8jSLmjJS_TQ2YKP+PL$FZtejC!NWP`+ zs-c3;!pg0cgk)PvxpNQ2VC6wORe=)~;0JVC!lof0Riym^5`n)Qpc8zdj;t!sDtOOc zdJ8yMEh1H})nx+})NnP+>-))u!d$@?>1d=d5N<}}oB6(-v|%OMSaPykjt1!%xLZ@D zq)N#!kZh}FG}+ZnBfyGVtH4!-EP1Do;y}n5ZzI4TC+JK14V8*5%uAm$zRbqISE_&S GSmr-S<-tt= diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 592dcc3ae58701a0a383e5ffcd061beb08783afd..c7a6e5f7071add0a11df03c50230c8391d211206 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`nVSI*ZepaDnhQ4X4VRDjjQc9wMiD{a-p{Z%Ifk8@=g^_`&v4yEc zYLc;~sil#TiSgtf#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y)h&@X`PP delta 1709 zcmX@x#dWreYeO`nVOo4fmRV(yg?_R{vVp0Ik%h5Inz^B+xk+NGfw@sis&QhPWtxSt zL87s7vPr6`nc3tX#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y%&7`62)S diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 75c19ce7e0741cbf3ead1fd2d7f3144beded03ab..b8116456c3d72d53980230eba0b924e81dd1a019 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVSI*ZepaDnhQ4X4VRDjjQc9wMiD{a-p{Z%Ifk8@=g^_`&v4yEc zYLc;~sil#TiSgz-MnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgS>OT_gYi delta 1200 zcmX@z%W}GxWrHuHVOo4fmRV(yg?_R{vVp0Ik%h5Inz^B+xk+NGfw@sis&QhPWtxSt zL87s7vPr6`nc3z#MnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgSUGV-x@Y diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 883a09319b60e016f2862ef790eb3a7dd66558e8..6efa95d2ddd299757127061703a94b86969dd33d 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVSI*ZepaDnhQ4X4VRDjjQc9wMiD{a-p{Z%Ifk8@=g^_`&v4yEc zYLc;~sil#TiSgzdMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFqJfENnz^B=X|jPqN|J?FL delta 139 zcmdm@wnc42A){Sdd`6a8Ws!w`vPH6isfm$=u}PY_p{2P=Vyc0;QA(MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~v>+IaN delta 760 zcmaF+p6Ts-rVZ|lhH3E`S!R_*7W&B+$p)q-Mi#~MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vsBhp# diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 77cd3b1e0e4afc4bc4c1c9894bd0a0123d7271c3..d19b949694b8ac470e4c6eec8e51192fdfc3ba3e 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVhVdDu`B{aQ8TzKFhRI3BNhyg2CZ=iThNh;;1_mif7Dfi9#ula) zsY%9`rj|xVCdQL%7&nrk%Yi3o@&=|wyg_K&uAE*VVa*+XqlmJnrfJwWSo?eXkcQRW^QO|nrvW@l4N0IU}|h(YLS{` XY-ws~WMpEzc>-fEIokY~_i+ONyg_K&uEwypOIx&S!AJ~Y>{kWYGPzzY?5YfXlZVem}+2dl#*(km}Z$~VQi3S XY@BS8YHDV-c>-fEIokY~_i+ON=*1z} diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 04ee25c533b5603aadecc3c5427f694f6f7e5602..0091dba35035a42411fcf330986fe5b19405b500 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hVdDu`B{aQ8TzKFhRI3BNhyg2CZ=iThNh;;1_mif7Dfi9#ula) zsY%9`rj|xVCdQL17~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0K`=9egFUf delta 1704 zcmdlyiF5NL&JFI2hH3E`S!R_*7W&B+$p)q-Mi#~Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0A%&|&Hw-a diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index a68d3cf85e1a5f0d932ab9fff1aaff578e516af9..d9dcf315861e06451eac77f43cceb04ca48c254e 100644 GIT binary patch delta 2442 zcmbu=-77Lb7e~3A>`JLG zekB)5O4?uGf+orZB`)M*W$_<;_6NK^@AEqko$#t5ylObyaIb!)~vY`4S^QMVy2DG0DVlb$ghmhlB+kMq}X> zNG?-)@^=bE*XY8ui`?FbbB&_eH`q}FZibFH}OOXRaEI)Aq}ADn|MCO95qn?o?u2>oYU6XfI?V*rRg) z4|G^qe=c?fe7C$n)Hkxjz@eX4dc#Eg71lqJM4lk{;8iSFfD**6x&{?G0|pZCqKTClztb?CmpS3!%}BJtCzb2a?} DONZeN delta 2442 zcmbu=-z!659LMpVi7^>Q5wnO8!?82lnT7mLLSc8pnw^&1aA7IG+7?Pk&&5$LC%aPW zi>Ks5NlE?!7c@~WC~+Yd%Hlux_yb;__j%5b&P~X06EYn3v3hkZFzJ|^QR;k(PinB+ z6xpsi>s?N}*DpD36MosNx>QA$yt3@G`x_h%zQ_nrarZF4PciW;-8QD_E@@te(L{I| zl1r4C`k4mNFrAvVklPz~hv_@_5<6;yg86S)HA3dXeXtr0T0lwGk`t6_We@04Yb&nN z>Os{4TD`aKfz_xYfs$Trew6ARdX!!$uK=aEyCVtu+#+<_at0K6+#R9b_TFTuIz@6% z&;Ziz;oU)qdMFT!W?+;DVx@F+JXD8q+IV_Q$0*-;Dx%!?&1#Hm{bpts9Tql*Ju1)N zKxY{n$j7dLZ&elvXA|2?{fA%dVyk(uPuC7dn31o=a)cOVlK!7VVnt=o+1QA-v(Aj# z>Yh$^XeqrC(|Jn2F3qIL-E7lj|F5L(CDrgB?EWX-wL(M<% Cfb8u6 diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 1b74cd328b17026e1fd144eeb94f23d1d706a76f..72f6f94eb831acf2a91c7722726d348f158ffc2e 100644 GIT binary patch delta 1369 zcmbPxj&<%i)(yUlhVdDu`B{aQ8TzKFhRI3BNhyg2CZ=iThNh;;1_mif7Dfi9#ula) zsY%9`rj|xVCdQNN7!Q-7YvX^T%}bb8v5=>AdS@yl|KtPgg=A@W*}RN{jXaxOCNJX< z-fY6l%SxWjlO3d3H}4h_U?)%eW(TPVa^h&?f0xM)3xzi;$gFN5&t{+QCCYDk97n>YU7p+}aDuG{bHG3IfQr*}F~FW2_7 S=8TcLWEo(z9auz7VFUobwyRA5 delta 1369 zcmbPxj&<%i)(yUlhH3E`S!R_*7W&B+$p)q-Mi#~AdS@yl|KtPgg=A@W*}RN{jXaxOCNJX< z-fY6l%SxWjlO3d3H}4h_U?)%eW(TPVa^h&?f0xM)3xzi;$gFN5&t{+QCCYDk97n>YU7p+}aDuG{bHG3IfQr*}F~FW2_7 S=8TcLWEo(z9auz7VFUmQL$TEW diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 34bd307ad9935d695d3943e2625ba3ceeb76ddea..8d56902d1b5574f4c5ea9b64dcf7176f47942650 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#hVdDu`B{aQ8TzKFhRI3BNhyg2CZ=iThNh;;1_mif7Dfi9#ula) zsY%9`rj|xVCdQL17P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY Da?MIC delta 2066 zcmZ4ggKhl}whiu#hH3E`S!R_*7W&B+$p)q-Mi#~P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY D(y&vk diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 30d78d820f6cbc73d01101f7c3e1989bc3300203..7039befa19b9906600ebb821212385f626704f25 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#67hG~9Qp=E}?X{upzl5tW>qJfENnz^B=X|jPqN|J?59P8HqG(P9{Lby-FxBOB;G~kJ)faqkQ+XbQ(etw5c~INsn*?jcYy8XPx91k;qWcrYF$7cS0aX1h&(FzK;be74T;X-2?nBcwhKjP zM;ow{3W?csEvW1KIHBmei&H4t7wG^{;fnqQFxf~Uap#%?MQg6V2T;*)3wCteeg!xt z^E`R?5ZXoId+n&}sfVWlSK)b-hE3CuSfsarW3oimk8h%RUYg#4y7oK`qpm~GOHkLq z%sA?5&c#qy+k7wTy5?mW>iS~=9@}NHOl&vTipAGcZfIH53hhg4r*)Jb98hA&LYADL zRtA)ChILb})Us+m(5a+SW|wjt*sT94xK1eX4c23jm$!yjW-FOIYGb54rKlWn zGCQ4_Q2Gx;DpjU_!^ZbHnTwA^WKi)sww*rNSsXYUnOahgq}--7I2?_Sl(5y5lf~ZP zL1=V2oB1>_h+`8P*LSfL8Y^KccBiULDMC`@DsZt#HtJ4bf+X5AKnry&4D>e1x9)eF z^@=6l$bDpQVI9DkCtyFH?qeFQ?O|?U;3gGFDs(u2*q>#nyXndRn*>%kPrzKlPI@=Q z>eB)HKi`YZ^x-@k)R&-;OZFKyTwz^-WEO*9_BHgvtu`T(_;2D|Chnw<>(u~SKa$_G RtZmj4m*c9GHTjwxCGKLM%N_PQOTF$;i^E&o+~Nv_OT#{wBjj>5xm!v+9xbs#RaL*&?z`hYE~a|I_$V*aP8yk=*u61<{~0kpZHUUb_uMt18>Da{Kj* z{dRq{(jpG*)iRB{^Aka~k3TI^^M%E~a=UQ>d0eR&S|Re7-~-+j5E>Dk!xIcd>0B3z z&W?t#lZuGh^I_C=ewq|_Q@?Y&&$(0QP=KgQPg$lMH%WE zoEb-5^|=JU<@a$IWaF#bS!zx*V0G zR%WKN6H5OPNTo)1+%)n1R%YWPF&R{{fqCe&nI(a0YMM`fg?i25wq`q(X-Ui2Zqvx`(a~ut{Kr^AyY_Y^C=@ ztT7v~|MR`rN*^zoM>qqi? Smbb%r;&NP-ll+axGkyayM#lmG diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 69829a19a5585ef5862bb514987f80641b99d1c4..7853cf49f6e7253602b516873feac094d88162be 100644 GIT binary patch delta 479 zcmaDpi}Cp^#tpHIhVdDu`B{aQ8TzKFhRI3BNhyg2CZ=iThNh;;1_mif7Dfi9#ula) zsY%9`rj|xVCdQNd7;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7jdq#FcIHO^FhG~9Qp=E}?X{upzl5tW>qJfENnz^B=X|jPqN|J?jdq#FcIHO@&d`6a8Ws!w`vPH6isfm$=u}PY_p{2P=Vyc0;QA(4|{lQk(xt&ETUzySi3eFqzuxIwdyS X)Sc!cPy6P&&P(>BYu(&4|{lQk(xt&ETUzySi3eFqzuxIwdyS X)Sc!cPy6P&&P(>BYu(&n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5daE|kI?`C delta 483 zcmX?gh4IuC#tq(#hH3E`S!R_*7W&B+$p)q-Mi#~n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dho6k}&`P diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index a219b9f53390320272fa51d320786794a180519e..1cda457d0a1eeeae8f8f3418577b77c7f37240d1 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_BHhG~9Qp=E}?X{upzl5tW>qJfENnz^B=X|jPqN|J?T`?v5<<`os*EXf|jN|6!b zn>Bb3kl}5h`(dsS-#nXtE_p!!GeTnX8=+PTT(Ox~bT*|fh>@saCO;@Qm&nYb!~?73 z`jg4D{Z5Pc=DSTrWZJ&@PK#g>nKtkJCbYTdyCRu3PX=lC`MKPZEZaf3hi7}gF=HVk E08m0PjsO4v delta 1013 zcmZp8#nSMKWrHuHVOo4fmRV(yg?_R{vVp0Ik%h5Inz^B+xk+NGfw@sis&QhPWtxSt zL87s7vPr6`nc3z#MkaE!ZDd-*M7nL0H!{Ufe#=@*md=>T`?v5<<`os*EXf|jN|6!b zn>Bb3kl}5h`(dsS-#nXtE_p!!GeTnX8=+PTT(Ox~bT*|fh>@saCO;@Qm&nYb!~?73 z`jg4D{Z5Pc=DSTrWZJ&@PK#g>nKtkJCbYTdyCRu3PX=lC`MKPZEZaf3hi7}gF=HVk E0OyuAP5=M^ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index 59b32e2705de585edc1c46159f76a1d57c1932e2..ba17758a97ac1039c6307d6fe99810724c7ffa3d 100644 GIT binary patch delta 2234456 zcmeFaXFwEJ+drI{UD#b_ciEZQT{R$7!wsm1qVI$5_^qC z>4#OnnYuXi7D1-dhvhCz#dk-pXV9w5ATQf12c1-^1JG}&Y3f_!zwUMKj-9g zUFnASq3I2>GIN@w$2LfdPZ?HkSZZ=y{RYDu#W!e>5*L>`tZ_nIgL;h{G)@~WmH=7m{G~YVsn$n zjFhqlg))B9rJ;7oGgK!fM2AV1L4g*}{DSGQ=d9fK|Qq#suabdnp9grhFs>76n zPcrj-*^)4DJJUN%x-g`Pv^m8a#MK`i#Flu2vNDS=DEz0FFIYJ;&z~)Uy|(amq(>2T zLGH-BC@F8SC{0cB1tBNJKuH@Rg5{lg8w4%u)3BCwf3O|I%}#gIltcK{YnccsCp=8L z99l~{meNX^6&49BaY1e%D=p8DEwO>APkW)R7o~tE(z;p>DL2Z8i2=dyhQvUCV6b!B zuv$z@smJ69sqh^ySQI4jD}5#Jp&?Selu(czIVeW*Na3WWWBrjA}C4CglGl5`r!i+$%yu?yz z->icCQ5k8uQsIz5rmoa_T3swbkI8=0tt6ck73BcTynsk)M}H0qed%e}x>9_L(B*3YKc7FrKGK+3KCs+2RR7Kl$r z@#O&v+^#)9Oo-arpo+n5-kq(B$D~y}qH-qZ1 zVj3|#4GvDTwei>zN=!~3!;^E$OK{jpo^|}0P_Q#0Clo~txR{ye z<5}Wa8K=WDM&(P(qQg;)151+*;nF8V>RMljV`Px{x4(fwvT$BNeQ>zrGB^e+BbBG^ zhf)R^mTUk-nH(h^gG5 z{+N0XQ}65;h$(=nhL;GHgQ?`w!MJWCrpB)z)G!qQ zwYwZs?_g@+r-a&%Df=CO>rx?AI7|0^tM!21(zWX7r%*K_^e>#Y%*_b*O zdl*v%n7ZGNP}?x29ZINKm}>OVQQWcwQ+fS9#?(Aag%+Q{)HqCC@HmC39hfS-9!JRW zm>lFdjVothD)$kgN-?GNID_jJVCvL^bC?=~sqtB#W9k5=LhaWuH5^k5T6~GAbWEL1 zCR8z|w1xVcxNS?KDW={Wa0}N>!PKYugxX75rrySN6EL;<+&7q7iK)$rcQN%Q zruJnJY7VCIlE1}uyD^n%Exd=x(U|NzlTdk>^8bWTOEC3ltaKA)i0zoVI_@c^Mq%ol zt^FXY z4Uuaw>HB2SABb9vsoCx7>6<`m8m4?^%9vV>sb_DDGoZSIn7Tf&)T4=XY*a^Pi!^0} z7dV^9nxweVW@eexa`YerN}}`1BT9NnJ7;&1?q?Y!_oWu8RhbD~T;9-2T9Y$Uy0XF| zJ)UZilE#PnulALG$%>FJmWN2Smv~FP*N&7rWQ71p z+0(RA#P}#_-MEfY&+%=fl)`4xXXBen^Jm6NrQ>Xnj+GuyFiG!BZ_9xB6B{x)m^DPH zP=tv^Xp$qsC?!m4EbW;#019{vx9T~5nnF*9^g^ldO@F38_R{IMaw?(IrnW(?pz#kW z#yPl3ZjQO7h*s<88a2?V|O3rU5 z_*6tiycUuSQB~LE_|ScPV|29|U_>`g>kFyakCb z^9PRUb&LpR6)fvHf4)unYz2?Ul_jHr301s<@zF@T(5oSbO7>&iE%O@UA$D*y8eYCS zG!LRd6!dsD1Mr~RCGCK!!;uX}HtK){*e5L;9V|^+9S89~lm^emwRqh3C=Z5Z6Q$MV zJ*4!}#1E?myzV6>y&GvjlPVfF*iKqxCuz!pTvFp*ajD(BB=1lr1TPH;?Ys!qrjj6(~HVDwN-Y7>hFQ`8Q%W!2yw3N4` z2h0Q(@YUJD-YCT^p8-WIoj=hFmGDyZN;9(nH!dxp8r6r5#^B;@E9*%CtBT<0M^ihB zlK3|>rLuS9rMl%lQoGdw*a|GQC>CoR^QrBWm zDqUkXpfv%~-8ofUT$jR@48u9ebB#f=t@FgAuwrsJxzI;?zTPTXauP|p@3nR$L|qH@ z!xIXs+p;x7e0vdfIZPtqe9c=nivBu4H+y0JOaS*dVpvb{k|pE=Lzx z;Nktp?$W@mqolCy1ya_I0`Pb`t{DaV8!a$MbKe^+o!XiYj=+wP%g9}icj#DVJ_H{n zJ=hh(mQ0u8x2M8OU+K+V2CfvZ5RmYb0dIJ>K=S;sQ1aX}Rr1_d2(r4oYmgT0nFzK& zU+oSr#!2SA(?HM@D8QoKBkd5 z=~LJ;{Ybvl{n#WhDDZ|s>i*FqFa(ueKRQ;raBMPDU%Gi@0+{^Gb-k2*I1e~}fpxDR z&y$88DU=2roeW~1LMab?902G1>=W@!5k3~;;}LW;pxYIscjY#W^uq}+ceKXNJSw@L zY{6{V)&682^MBva0y}&7*mpfYHJX7CqtDFIsem||$a=xm6Su4D-MVGD(G>^HR$zzpH?N(hS*k;`8TPm3_g;JT^$myS_?Y|Dn>nZ*0=VC-z+z zZhY+y7nIxX-mMu@;I7`^onRr7-w(MpMe6=zXNa_G+5I~j2w3=dYYhN*U3_9fC|^Gt zTLTnms=!@dzxIcLvn%JfpU`RWA1Bc%^e=pR@b^EE%YvU6xrSWiG?qE-2IDhU&lJ=Y zYlMMW3&jFP6LYMlSY>7=7kUL~c_yc(Sd9gyCp4ZsTVxDch`GRvIaE_jyAN{!$|ry7 z$H*8vfZ6Y+5)?d&V*=!-wU}OdC|&X=ZdQ3<3{!?o`5=~28{aZS9fL$1QjZyk&ifiL z`=G1kf>)VOpc&-$t(fm14>_hC^CKLTvR7y387en+XZEUAB`&Fs4I~a@^x)PJvnapQ zmq|n>M@j*o0gMP%v5c>58_1NqtF;zlAww1|kkE6|nJ{$TJ%&kv)|0)*G2bC2o=;*% z8dY*wIGqWW{fe36eif33uC0(fcpdY(TH|2cja!&C$m(6*V_G3^%-PKhK?2|ZkQs{3 zT@I4-)}!QXJi+{h%JpZNMaYY*&olq%;Cba0X1M{Lo8M%9MRfgpOdHg0+)vCAL^poQ zTt$It`GsMSfrP)9^N7CnH)B?77;uqeqUB8n*59KdP`?z}RT`CcCU6bB+1^OtSwUB~sDRMhNLDFNKe5H$tBV%M0}836<2%lGY? zvq+B*eKmJb>@JPed~Jc}iA^;lQTcbxHFLG_T+l|-0i6$Y&_tuL@crwWQHbu-RdWEv zy3j{c;s(zv2WZk!Km8DmCu--Nr1=!Z{{3XleRTdJMe`dvUrN&qME&bzYQ~}V>qcw- zMCGfpG+(20VUFe^D(_yPDML7S#%UHK{K-=YZ7$N>M)i-UX*R30KMuVhka>e00y<7` z7hf$|s`^C(G&a*0rkkyDQn5yY1_94XHOtj`CR_-@fwyTx{EZeCu%6Hz=yo#bcaHnQJI)C}TW)Ct_*&fXnwZh$yHBl<3!)$ru zKFw^TS^a~W&1wZGJfta6na#50tw%JYkpR9QY1XP0VCZp;QMCn(C&{$3;k0@eJUye? zs9Jz#7c?u81+HJzY*%Z6=*ya8s$DSmGfe>!Kzmia3p!rY99J#C_AfOXkN|yeXf~;} zz^bn`yHva2*=@}@B*3V&AAiDqOp-GR3m`yg{-f+lvBO5J5idm`)EHy=bwDF@Ya2g{91rE7%d($ zYHPnhwD6{Ik6bcDJ4?;|ICNyBoSmkfg;pqkWoW-aE2Ep^wX2YDMQ>_Pqw-GE zv$<~phdtU(h+o-0tq(eHIi&SL?LI!Ly^ZAAa8etI=u2m` z$56lW^V++Jo^VO)f#|nC)pj+&^X2PWcZB!F9W9=77Tnd&K2bepeo zJ=R;EW^sEPnNsiV*3}5leQUd=`@{3$R&H?nagThyt=kzj_sGzn-N4O_&keGpliS-+ zOtNt^v7?(vg8aKgw-YL*Ccpp!yMykVGTi0Xz1-4}up9ci;h>({&utE}jOSoCJMvf9 zFt_fim3W@!W(HY*^wxpw2falQce7)rJTu)*SE*C~5fwUJ8s+xAnvHR6tO`CRxpyv6 zXI}wPr+geyCuFi)08*#bRJS@R$5=OT;b6vGdD2X`D2N0u4eM!>_s?;QsR^7(&M$Xc zf$T3XA_6~H?A8t0zxfKcJS6bWHEwHBkoDc-_867Fw!@88$*~8#|N5B+N$1-RCcIHiS2+_nF^zKiWw#V0; z-EA=%FAuct|04Rn#eJfmx*4<^ShYgSgQ4f!>13!<%9Qz!cupJrj9lTTAz7)zNB+cxaSU+qs9TTzYf^2m$DxWM+cG4(>;xJgr}I z_wrC@!bouBbepd7^B(SM;|e46lDGGBH$Yo~9PLP}d~SeyHcHdY)7+=1OjQ`RK4@Vd z=?@lv*(Oy!mEm4bWtcj#LgX!@+`mD-oHxdOISS7@dG1!^<2D8Eom6HzygQ)>t9I!` z;D{P2fNpthiezb$dw-Qd;sWR`Pbh+RghKu{&3zsccE)t~F(?p!o$cON+?wc&U{jzH&%B9)z_aw>Yu(z>X#Lf`XO%-`NNAz{dcoS{k#%V-(#-s z80v3bKq?+*(rKWWDYInjONo>%3|dyE2U3J~a;3 zPG1V+wa$HMvi@aL>G_FAt!W8RSO8CY$#~*@5o~L`8nM@zQ(~SH@&ID+lA}z zkZ@deSNGftO1bK9T^A(n14fU-ajQm;!?BN>{wNAZFP(k_GIya_-&W1D1h`nC_VVSP zUV6cs*@Rz909#}AD^zHPo-Kf{G>;7Ok~sY%H8To-USAjd+f^SV>+0zrGt4IW_xgH= z7M^{Y=$oK(ujcw|=p55VpU0_?v4X=Ab$wfc!%Ovcyj_{lO~1qgTI_s({k$501s^>5mWBG?k$7vD=+$gEBUBmYkflhnfvak0vw^GizaU|H ztkb_+BQH)}ub))25TCV44<9bVfZAHa(bjRB9=_MG3EX*4Ke*%^Qm9-lkD)^ z&S)5k+U?*Cq5#jwYZ+1v@Elpk0Jlaq$?@?9RWm~HAdfgOH0quY7`E5|l6e5k9? z{qGi#rwWfaF;A{HnB<4;4C~+oESGmP{BD8gIY|a=l0L%>*d&e846*L8e8fn@2@am? zjx!9@!}F{{gT_Y%duaMtaK!DA0StY;j=TK#B0~c-|6_M{SYr@WxD&WwLcMAu5$|s& zs_foDR9U#o5Q@BUKsH=M-d?cJ@F${64;wy2UhVji!4r9{|2ab*I-kE{7zoWRN8T`e zuI4E>v~&k>tDQkFzj@z~>j{yb{AK8(W(-synSs|^9%lI>>v0GPJkQ;uISRY;oCo&V z0+R>!**J>_R&=@511mb#%i|zwS3kf*i^OOW;{l(xZIVB(>yd+e->8X)2OLv!oAw?* zBE!{5^nm;1n`E}T$3=Ahw1>w*bS~@V0r$~2$!+_1Y*V3z4AoeQ@DHYX>`kaq>^R2j zb@F$>BdaoYGT-$WYN$D8ldT@pkf{#t^kB^JeE6_O7c?x47d_6RSh#kTm}c7-9#@bl zrhVlBZ!DncZg@nYSQ>rXW3-yvcV`Hn{|Aow{bPrS^7J1(vY@-j*zownV}P35xk_Le z0{?-c<|M;CK;Hhq%sJ4={@lvpD0$C|JE7usLk@0ayvNFO{JHhW5cLDOC&+MNb+`s7 z)&@1>aIAgbg8K>i{YkaC$J#)oR=9T@pz z!H(_5VtHn`aSw7*%Shu5b@^*%+6n*0eds_rx6AjCZNnsEy?s0TS#h&h#xx2}cFfw3@|lzLyEdZ?umI$FCv8q&9xxT<|Q?gy({#(Iy6oRx%Tx43LMmsolDBFCgt4w)e%p|hy7+NzELxr5rUk2%k+r} zOm@WB!0DSN5m*M9edXMTrsgb>?#N@)C>4uZjJ@HBDPGNtiB$tJ9Aa*zNb@+! zTwEh*gkk2sD$~e_J?Ul-_^J@fvwm4>gC$GuoNdljX^D2%&#dAJtqf&otJ(x>CG#eQ{g8!bH9yh7CRhs0 zW@QDlZ;3fu-3ZT;&nz`xRA9EORGTQWka13YHm8A zC40yo+svP+45l9P!1v56)NBny&Yi)9BW4SD$lB_HwGEDq&>^yIfgo9(-gjRBbFIqx{it<^gI=1TezdKg`i&_`x3#o6jnX=L7$m zv%ScIxVhc4OB%UcGRgCrvihD@8S^cC;P$8(o>!vnTgTQUG-GEHtGxztPEk}70IW5?HTJ%#65b~^MIo8-0wVxC^rND z{Nx#=G^q2l=NP4Q>u;VwDee8Q=S~I8uCe5(+4dmeaEEu74LXb3vELb#B7^}3%L4UL zbcc77vw6$c>Z1rE0El1)MKO^!&~kc!4$P@#w}8@y1Keb@)zZqOZffWZRt+_41J}CWu>BC%mhot zK>TB(B~%$_u~RMEl?D%|TlTBm;lRdq1KrCl92mMP&vzBN@pNr=#2b8tr@{1OgOHizt5BRH&w^4rYl4Yf$ z&d|>))rtJv;-RS1?n}#gMV*kZE!R{o`8tDF?^}%E&lzr_yx<$lR4s8&^!Ju>wX=x~ z5sxa8nI2mXDDr;!%yM5DPFMf33|2EwBy;>5;DCnT#y_bNFJl1Ko?ZdqLKJ^OMM6iL&eD-6cTnj0$XjM&c#9U4e(c4| zA#wb0mRv4Q;CFkF%OTBq#*bWP_v33T4b~0dgO$sxgZN$w!mG*rITLB?oyEVSA(z{8 z`KL;Q_s8+SGo*C?1U^PV_EtnIa0C;Mx{E2rGeo0R$9TI zQ=f|9?1BY`!n%&uj!{`D$)g+@d3gnCj&bQ3Dd~>n;ltBX^79<@+cxSl5to;KGe@KCM(~OmYkO{YJwv$kBe+)n@q5SQ~rj2n7&&sVL zcV3KRT$&>{EhTI8=rm}={M-ppXT&QxFE3-n7^r48gei2|$B~zk1q~E|Og=0t3;j=p zNJqwS=oZ)kDiVXuilj-*8dIlZ$99g6$f;eE$G~sP=R#O08y5s^ut^Lfe76ZHO1 z(c1IBAFUw%{lPZoE?_3`e!z0gjrXur$_92WHaoNrjm#_H$&hrv~` z?0qA6GTf^(`==4~c*wV4%)r>k90W}Dc&^i;%+2obYlC-T--2P8>)>_2@0nL#seTar z|6}0)>tmq)|7r}Bzf(T7d`fwQ;(KRIF`nT1JC+EoV1l8N=+Z6+LQN(9~bN4&5B@1 zz4dxfw}d~$6rx6C=z{KdtlimS6KGxAW(ALvC-Tf}RGY=jpmbPZ0y*u(R$$&-zPWw{ z@l_%CY%V`i!KxHWsf4VbPv(Q{{UwZPPkd^y`$sd=5Q*|Ui+V78LC z0rEEUos1*Rkk=NJQ`5}g$ya<^c+2bWk(f>u!vsZuM>k9>>Jk{9iC3B7&VJATO zw~O~8GrJ+ly1+x8GVpOpabD&Q7=lyEaaAUi4aBDv7U~f=T&onKLH9and6aKr9ABwg zt|v9<3aDa5jFRCs8+71e;F~(|n12MnV|R?-Z=6A~08jQ<6a7&EJ#=Uxz|_rwHrcl$ z@5`7LQ#~2LtTVuW!|+S51mkL|9JGGs-Bklyg6!PrMn<{|fZ@^wyxE!Wz$^gWPw{rJ zDld8{yU!EsOyoz1dn?7z5Kk?D6*6xFXS?w48qd%?&@%{iC(6z}TQgv+h?<@J0(@TYtaJN#iqrJ_!a z03O%S$YfkI(*b{l|8Z~@(rFYrM503&I*dSvRCsVs@u*obZc>b^iwl%tA3-`}v2bVX zY1BD0#zLm?i${17oco+_t4ET-q_CdM#PF$FJ8lVTiM>(|E(HjQ@WcF-1?cL(F$aTE z??(y2(d#zfql%(}fiFsRcag6404pK=+4yOOSnw z4-%YOC#}utaNrw0j*F#gv2^f_7%W{ABHg{ae5mMT%9F8Dn+HMP@>gB43$;BUT-DoZ9oMTW zi~6ASy;gB-H-*n&Fz;u6B4vOI7QpW*U(c082$SMTXN%E zd9-?Dj$`u(4|XaKZu^QYL7iXt7S$>fT#xsy!V1~?#g+~p^pLHs?Ey}1&d{-dvYouI z+~X(y9fny4uHJ_Mv%%Sr*uL%qKAzbDk{>kDyE<5UXzhryuf3 zFM>`^YGeVH6P!i!84suZA#H=X&t0)EE7-S)Tbs4yysBex=rKRYl|iBQcZlZd)jz9p zP`vu9VsWhiN`K}jRL26l^##LJbt~&HfD7OAEx16z8NAR&^#S&)uYhBejS#B!YlXRZ zfc;AIa`CIua?St3uLZyIGc;TxB@Z6yN8V}g2I~IFC+Zfw`3l?%dIe-pV|}&#U^}pV z%St=g{wMFp4WPPVHSiGVtEiERjnxv2UNXo7T>Oh~WOWWWk+>f61wH&MwW4?mQd3$Fdcx8+JHc~PQcO9Zg`iLEu2ZEZv_I{lDE@b~}n z`&f1jlmae-{hgY4z0d*VED~(;tE{k;;dW6RQC_DKUBC++;k*D7U0v|DR#?fN5WuBF zUVfmJo6wLuOTkQa6B3zI;G&yQ#+{_?p~UB=HeMXDoaQiPbB*E+ud_(K#FtKUNUIeNMOs zx>yAd_%Byoc!dyNW|5?=m#gM0?=T738tzqB{6->}#0v|!MpQ+7H{ms=8(8flL~uQ* za-74uiezXG6hTf0VE`4$wTLhf2?Q_l45$M6Bv$Ca zRS>a^H;Ih5T@i06h(8e-sR2 z<7|x=c~lmOBvC}+kt~uDEO@b8)0cOQskWnCcB?HEu-xlZN1WGpEYOFsJ+0u#Wf@6#fe=4*p`GA-xp=T9HrxHsPC6>A3E>dvUQ%Y0|9u@;_KwAjQdq|P@ zh%4>^1^3KCHQ{A!AGr^TM!0UfPZ@-pb8+GHCT-uJkEf#rJLO)ni)Gu zO`di<0au53ql4h6f>;^CY`C3dyhvBrPzAOg+=+pYMFGlq)nTuFUD#Iz8;9`hj>0;w zBZZ0GU(`v+(Lhs?pnY|K@EYjWStw%r!+)mUS@31A*huKo)^rJ7#Y!%2uz|8J!slEL z#SnX85(Gvmb_!L2y)Z%1Zid}8#kL`C$bmiIw+B>##D0J)eC&tSu8_+W$Sp7Up#l<| z=`Jj-g6N{0((nc49`z7*b0;Z=PXAp}{P!tUi#7a25$8tr{%c3nJPA7W7N%Fhc9BVG z=qi&uppP(u;r^i5y5x!u)eab&-1!Z`&Tu*}XBgv%ncGkJnDeAcam1|YFHF_Iwv`d{ zBOByJf<@<5ZJy}#B3qm%_6&quK-I5cd_yn=bvS>VhQ@J8fPT)wYdd$3^A za9x~DT=%BB5iw{G>Uq!SNx~p@s28Z8EF^KsE-2JY(TkuA_9E-~0nV0`NN5|v4;1$8 z;s(YI6Ec{w;Px;fj~nl7jD@3MdlT6F{~1%+%%h53YfU3YjzSE23zQZsU;GF`c;u}P)O|T~##xx{egkJ@Z zGT2YZVLKfZ)Crg;JrM-uR6)E=Lz+z zU{75Jv0LT~esG6xU_P9$#<@c0DbVmg2;&)PY=K~{23lTLAlR5H*e(uIRD8if&Bh5k zG~9BEuS-fBOzci~gt;aEC28fyNpShGheE??WtX#n8p8~@_4Nur`R-&PT4Op+HzB*x z**~?6;LbVA$!_#2R>o zs4l)#8oDTGmwjdkEi|U4POdO><9+?NXTckhHqLTvNw%pE@SH8obm>qwLF)j=XA22j zZ>j@R0{3BHhaM$DAxCi_8@~UP2q8>5aLf@xxlF1Tw&QR`>3pPgKgx_5#EcMi)LbF@ zrDDvY04v3qClpi>6C4f5xgUj)IYbEUX_^O))t0*ii+%iSD&0yzzp*4sr z6U1sI>{|v6LhB6~hJp{v;Ltq=J}VP~x#OffqcR=b&-d89h9!DV!@FlauR&O z)1|_+7omqL(8;dQgI%FVz8qS+LP&cN`Yi?eZCB_bSLnGfhyHD)(6TB!Bg*$u)p=1b6RqcD@Z?gBz(u`B{|4Vj~j{fe_8mHF}NP5xk$(3;_% zI$Pi+8wHh3pdS54D3?{1!u|#2n{5>qYE34;%Gj^Sjd+%^Im=0IH2HzIb_#ri_xbl>_H0b?!Z+s)oCQuB$@_Mpd+ZL*I+AMRuCO7R?tYA9c~*<- zN!7xklL}wYM~^kxL4IVlu(Vw7ZADL*m50aUh{zrM!1F!A_A20bDRNzg`79qSKM0p1 zW2<7Pu(=9&kpeF66|7YHabh>!3wMBN!JXKP2=)?J?1c*UT0c;>QfLuT1{)M)?n6(j zje2+>&#kM`E}}NkzyjM9A>} zLC6Wj*oVQ*LqcX1RxUCs4P9ikgQPbHXyt2%g(Q}HOv&Q1KAS|?(7kaOesoM25>)NI zU!@rfz>|N4I$-oi!t0#Dzj9>YcNK!%odwRQtnB(G*m+hE4Kt@uPRGTa!dBc61} zLj}=Y+(fDZ2h&)8vJ`w9+`a*qf{s6`+%gmsE@MFF%Wx>tsFk}Q@b%imm*Gb23RmPM z3i3vR?6PZLfed?9?ArGOacu-|V7UkvK=*Z`sR}=rSXH{asBf1&uLz&HamOiHu=*Di z^)FHtSp9Q~kY84-ehE?kIC%RyeB4Q+;!&C{893lKs4lO8u;5a$A%J`4%HXlW;9ta` z7d5F=Vt4pj_^1jtHtotenQq|Ko5Doa9suNBN zBXq124;;VnCh*5Cp>1`%5^oEGs_?>kd~q9YT{jH?zutz+pk`Isq_B+%2c`qK{XL8j z%Qsc-{3_LG_>B~MLnf=__3d3@Y!zNd@4+d2 zD%kiflwq1HmqLZh9K@whb!K_+opAa^ymbU`gDc(|1rNT){t~>`e-Qqtf`?qX@Uiy@ z_H+Pv@3MD1ceX01@~Xv2g3MkCK(AW7S)HhT@56f=IudcT+$a*mnFrwFefV^u@ELwO zjl=sVMbtlt@1ouk1FHiKeF#&-3!tMqz!$aWJrpb~e3O3lLpa98z$zh_!g>ah>;dKd z9ma;)r&@gZmq$WFrV0a>;jDO;9?oRr@QIN5KTIC)kjZ1z&+x{m9VH)L(zJFKICHFQ zd@AHITu*16YjTyyxTkvK!&N$ft!NA3j?S%$^wF) z6bL5%2E~2>ajt?`>WWyRATD`1V&We#SI~$qrdD{rpj*J7!gq!R8vI(#E3e3!zXT1# z?V$v4neRdMHj+#K7P6qPU*2)aiyg7AXZqDBm3H9_EajTphX1-Xm|CWtJ2 zJ%h-?x3-%|Ke&09@cIMvg8v?`3O2ss4i6&xHIc5cp$crhAlHr2O2oN3aby)l7q=@7 zUr_UHy?B`Ax=|eQ$|;)@FLG~CrFi93Y80nxU|aGC@ggU3po>Yo#EuBU%O_lgUpH~Z zlc$?S_>gjfE8tyEag`JBoWs{cK4cM13|mYP*=|APsZMZ5I=`GtP3d zad-^0@)CPXTo%OWE#qjm~oNW}E~T)D=@Wsy&Laa1a$M_G1o! zX|ZAh?hw@pT2BdqeToTB;SgvEmUV3J0S?EB5tJRz5j7+S8Jjd0WXBgaY!`_L4;3wFd>1X0mOm0L@b5~%(1xPUMmf?cKDiw% zYbYiKQSsxfM_1Se`^d_rc_T5AiwmywEWYiv)o~U$yUKqw63^(_7Qy5zvdoPL%O`!ZR051r{4q~dUS`&hj4q`D^PO-uZ zf-+};(`J?Cz7KLfnjp%nUK2mivhNZT)^eKgA(5vl2D~+$3vP80cWHJ9Ghp?8))(yP zDh4q7!G*4(gFEPC2v7oI_PSV$Jqh`sO!PydNIx(8oiN)2JiCdjxjht&i_MgV?<3sC z)cEFx;A?{&*1zUQG$=vT$CHDN0hkac=&$1!p zSHE0uaR}xAzlkUhf=M=@`M4;fwEO`n)6rJd(p5ZP&__)F9|q5TGI%2U!od?8Qg!e+ zVw?pp213_Y7!nDZH$*ob+dKphCg%%bt;(9a}j7RZ{_H0=tJU~&bI z?|OKEfD}=0qXl;vQ{7WuI;Kvih_g6}5*kl%rOpDUDdnT7VlvCFe!+BBMSQv!G2Out z;t$$g5R91a11BsoUF{61@au)}+O<)wmoly+eVx%~fvWCCH`2)pp zGy@mIRW#j687{!L8p&O3w{?`5{*rtYIa+*|`;8JC+wPgOfU;eaG2#~n#tkIT6h}}| z7pw?CcS5GK%3H^a%{81)EoYG9@oS$fUT1670?#Ikd0Z$}>kPKwS|r$FYmt%Lcw%_A z&AAWXHD2NAQ;S3!&BMiL6-{lm@Q*d+8HHjb!*!nY-Nt_23YCAO-9j_*oNza@UijiXTUUCE_s;#v)qgzV>*ye-~f zXFv(ilPQRVhY>BOi((Z_kz(jqqj(r~n+}H&?FpAqcx$>?^pa5Unjsc(J17}ZC^)t` z3!I^VuFy)LYeSfk&cpA%*P1Cdhl9W+G8!vpp)tsy`fH|mR(lablR^JT@1Gy@kiRy4f;L#;9!4W0wd zNQ>=a#?m?BkpGVZ|5w>M*utyTpxYksy)3D8JlkwNNHW`1u z3&a%4yqy)^4QrDqrCGR`x1wnRM5-`vK&NVCcd>BELNWJ$uyAW);m$zp#EqxaK*sed za2C+U1wQsQezIecn5E&SJDcFW6)LB7R|KR{$lajtGBMDDEq}osJ*(@1ewq$GT`zvj ztOtuXh@H8O6ib{K_>FKG^&VA<69cQR)IkGYNT`*;B@*`%rQdNG$ybNI@@=CZR(lBE!&O z2YLl*8#*MQ=Y6s0a1cEn--iz9VMpdG{)O<^1zmPThbHLI5FJ{e9kW-_;VL?Oh7RkI zY-`XV2OY+sgM<#H=G1jmcYc~^XR*bbOF2pJoV|8Xaf0&K~f`k~dEq?Hd1L72lC>#*@rw2G7 z;Agv(fLMyIa6sUfjd4H>Kv97M!hxa!2Lyio4hKXbezgHd#BLN8uOR2+r@uHL@bgg| z5OJsi2L#^U#{q$NpK(Co4M`jj>6HO73ti!Wz;}N*An>g=4hVdc8y3LjC)z>hJ>p6RPK|rTF02>|cJ3DwO+ieFdtO#SZc17? z{DFJo2jU#AMJR+;e(eu8(K~`9p|v}O&;=uKucBto`(GPy1ZV@ms=Z=>XBAKjvmpL! z(TalKHC2FiJ=dLDJ^)8K$uSC6tAyrDi)`45U>j0YEPFl3po(mxFxJpnPs<_gA$Us;j_{9eFrIaJUeo}0}CWV2nC&kxYB3)K zoe^KBWc4GKn?}i6EmSCx^~o8ro7YQZ1xIu0`D!9EuYvrtVh6iS1yrR(p=7N9ZKZt3 z=qw!Z+r=LSZ$i?oM~9Z^&NT+H zf*8YIgE3Ja(xhp=`hnW|6R~4VRrO)Qz`}ls)WyPLUn5~NbHk`_twddfcgfHwAb4@t zF5qxWuQ2W=YJ^9?7vOe%YdiA2v+K@MbcHf*NxFKO;rGtM;r}~>UtOx*xT;No+5%kt`Fv1MX)9A~KKxVnQi5!gQ!cXR(ZRRKAv@C#3WqXImLlyxe_8r*JR zwSzvNiIJ=+92CJb=Nax|pd+uEIVK!^eV`R6ouN_lVPGuX`75H?NbwE>$v-$!sx<_t zp&??wg)=e!cW#!eB4F71;h^=8*5U9h^IwP!80`S4B-p?9UTrYuOHs!SqIBjHto0Xm zY8nSsCZC&I*Hr-VUx}Mke8d>*4TTA0dxwJw*To>NH^qth3qBW_fC^~u^aw|HbFJCL zaKJZ(|8irS)w+~>9a#Ew^Z<8n zil>>~VEZjGmfJ&dMy5gE)@0vz+J=X@4q7Kcn>j9=0j>M=^#UuRy?J1{CE9@Tj_6k- zvuzIt@db82ZaXCfHrr)avu#n#wox(Lp>M=e?mMd6f5&X!C}!JO)ocOZiMLo&1bF_P zSeNsRaE>5kGSIz)CJrS3Rq@E=@w%=&;{)QJiuE*AjaJ$Pj>f^?i@r57nl1v^e-Oht z9VG`cnh=c&=vdPtsoJni1PL|YAK^AtOR5*jA3}_)shd^yYOVKc&2&blXbh5mv3fA| z(KUQB)XCqMjSmO6ciCQJ>%hS`$=2CU4}B;HUe(5ggG-Bp13}WWlv zkIHoG6gH6A2hA(i=k`(3;BfdF70}@z6UXk308FG`9N6=VSRb4{7~~1`Z&_P&KU4kj zVCw#>s4@r9(!n?AQ4B(+D4N)v5hM{gc6IXrw|)~(YJDQ1VX{BI=L-U!!(8nL$%+ZQ z!lO_)ua@J(VuoSrVd73~Lx6xjS1bhWC?=9D#=QJ|H(wJ|q}k^x6! zDJr0?m_bw<9tn1C@X2LXSCX!pUS~cA{#t7!cap-a)axTfuekT&C!DHL%L@eUvB6*J zy8SnlJ4}>2ObLRO`^Htd14Ns>igM2?Nt{x50*4+35X>oX{~&(hebI*jXqW_m?CYjz zMj|Psv_);dYP0J62yiLQnhf?Eto=DEHG&+Itr-~TVV%o0jjD`g5d6Ef4cCS$Xw6xB zvrVHw>n^s=i4C0wuan9s{f^ATW@x36xb=+ zI+!P$~w0gY+6ddhoovVQYfvIN_9UR3OK);8u@ljxPFYCYnBy#2{Bis<#fUXcZ zy*%>_Du{~$!P9M`Kh&>k{MSPT%AHF0>9#mfIxR{B-Qulr+*Yb;=SS9%g+E3bfkUv? z*6x8d;OLwVVcdsQ8)(@yc6St&BacOahhFKl@Rj+&r zax1hTdVYp~1ojych#ugZC<*a>2wv)bMVHoWsp||hz4B=`iX}|pPg3gl0;OqgI?7zo&yN@-~UJZ*( zb2KP>&Fatoii5P55r<{wNf?wR-e7yeLth<^*q~@|&ez&Iz>LJE{r3kYHn`o)r!E-j zXPv`EQ0n0u(BDxzx??ES0`AwevC~MfEnXTz>4F0Ty4qW!##x>)LR+D$Y;pyH8C$6R z3uG?5#fW`}`~4n8lHc(FnC2*#lH|8I(At~pPw~eN=;JJ?bilIzhUfJTtAp(xjgmkw z4H{xa4*0Bc3|I$GY!=iIj{JZTh&yeco|HIno6onuoi2fmv7#fQ0sp>lcY7gfjSW72a8T1o z6+VOF;Gq5jHO4;s5?x`ReMx*)ZBWmTMtgw`rJ^r&AkM!TXQPH*1$N&k6c15gZf9$l z{az)5?<*O6PZ$`TL2*3{Fd^0v;M*wcz!w(^Gor1tIVJ|;E3*(@C>W>$yij0b$U@;C z#E7)4^zfn@h1O8;VI8jL!1&`*Fz`2!TDUUg*J{7Zi(TG=#z}DD0Ke0-sGOMqy zQCKDc%d7C8aQxwAtqV$%tnmM$Hn9%ic2Q#DjQ5_ipmIF?7Z~T;ssYYC3QAwI2C$oA z@Kl51-_*<+rM(Pg0P&x}|4NqF%-TBOXr<+pt>CScjMNnVm9v;+yDhFAuTd>;4~Y?;RLL^*n&Ho6xeCkaD|wsU!gcp@tF&Jqf)9 zLN5t~4o3@BqzKs2ND;}{kYEQCgNi|HV8w!fd~Dc2R4hobcYgEc?cL5^E`EQ%#NR); z%`4O1ym>RP;s~YN#)uk<>g|T(J={NVRgi;sShjnV=4yo?EQ3UHu4gCs<-Dzi4Lq^K z`8sfQ4qlQH0%arIBVE+trEjFekPhd~`s5p>AZ{t&Ho5KwYHBMvqQ?o6_^48w(I`iB zo`Qvm@3>ZSL~kcblf2rCFOpY#1dZ}y#ybzKfiT{m^m5-9RLg5N-L*svCewo({-AN+|Oz(tN#mc4d{3JG2G?Ha91Ur@D1ow1_v9^Lx;FQds0;A1NyTpfd=#^Tgd^v z+|KaPR8q46eROFiMnb)Yx|eFlZQv~M4}#Krtd$(p(b%_=6YQU{y21n)!K*>?-ozAW zlkZ-w{lscejDN9}jPcLWuZ;2apkUzOaQDWLT}T8u2&@b_2+D4ungxki!151LTH}}a z*XJJ~+2kJ}BTn6Xlu;GnAEXH&Rx3ID16VZy9qqSo=^LxHV`YSY0Fec5d|n4v7of1f z-BBY#$TQdl*`wWUsy8lEn?>+0mDZa12zi1Cp4*5~MLq(pDvaW()%FpH7Ecw}(jX_y zSfP2Hn0iC;l}eavrbs0tdkl@N%glt-@$OC9n!v)@Nott7vNaqZ5*M$nWVxadAo2}- z)pX(ncT&if)_B(HpVlebR#rwdg0dN+3fx_(8Px5q$wzav#61P>})&1FYKE6PSn5}teWLcQoFYC3-r<~cUs6epFrEp z#!zECav`Qah6@^apYG0xlFkxO@d;>n8|f^0MQIYy9Pvd0nj;0ooTWys{mxQnzrIfn zs^B&AV~GE-()n(;-+!tHSIl+K)vmMIl1|h*JHapf{|NaCBM5NsmNrt+SITz5Nm?-g zz2<_sb1io&fq^cC5p%$u@xes!AwZ;B19KFOjR!Mv$={1{I7F`THRG(K-?@?!VA%F`qI z68EhdJ~Zm@?KC~|6H6d(>RcP?O?_==_-HCAsZp3R0)u%ljP;@67FyxH6|ot3EzT^_!9s6+__k!PfYiqAf27# zOS^^TbkC&PMo;Y#QH*(VP<)T4Wyn)V!Kn-3jkNtNnhn7TeZtUcyHnq~4Z1NSAKsB7F}fC09Imllz1c(zdNqdTeT{ z*51w+QBVgsI3z4XZPV6P0kwNu$oVtAeK^+v1+tCV9n=(aNySk1AhFp(c1#Qt&s|s;n;e=_4docs7u4_k~$4Rjew-Ckm+uVtj1ufJ>xkFNYmlMNu6&P@Q zVou1}3EM~YxFZZfmbBA3U65PP?@`dqP@YBR)!O3(T~zv*mRdM| z`9?wkCE6w+TtcZ2!zys!iv^_O=7-#P`+N&l%}+e5+d$TB3dK*j2SD~tcXKtTJ9+N-SB0?&mDs zT8Sl#h>eV;kel11*SV@kcSwF*3G?w(aqV9BIvnO1Rl%4trL@1QK&J3w)cPH4HS!l{ z5;bJ;+8u;4_lIltVQh2L0e2KUz0Vz|rLfvU1e&dcI&^==JwT1?AXT{ZDR&dKV+VNd zDIDUm0;)0nv+&{8*OREbzS<90xSOg&I>7M?cXMrM)wM0=a1*Un+pkItg)Uh#MWHMp zO+xmBCb2>m9jYuO6iLAgCZBc>Q2vzK-99E_K*-e{6j&1zF<85{YMQJ!eAh~v{tT|( zZb{Q`To=Boqze{%XP7Q1pTP^yqMWgp`*~%}XBm`p?c|*TtDkdsP_$3xe$EanQoWw|tA`=Yz0s%Ap#7u`*@&`eupX}qqLX^+=xL}n20YvfDr z#*9nr2}Z<5?pOe}p=w$ts4t_QHVeemm}6=e3{(0m?j}Jo(I~|*@fpd=$yYYlJ2|94 zGm>Ye4oN|_f_GnaKUQ6TyWU}Urm9V44BD+QDO38}lk8mbw^QKM8}2(pR%R-2XnOM$ zZMB^*{O#%Lm0UbG1QXA~2%`}ke9N7#F3ptBaMLI*Fp5#!fssb>qJd*|myHK?N(|!A z^X3J0;He|-fkA=c;5Rt>d@go@=)zn$2+ zV#~X3yukRcfbz@&%5)356l%E#{cc-47Fy90|+ zgGnw!5|rCf@Yt%N-ly({sy2m{4>m@1kd-EO6k}8pM1HA6RvbFzo}y@rSxt)NhJEfH zrmTh?pW|%J8kQ;4S6K-=zHnPNafyW=bv=?X!R!#>h!$(X`75G2Ga&gu|SinBDn!$j>X3Wk)K6YRUOk2R(mF21<059#B3vA? zJVnA&kV-LwQ1WmMC+*6Ace`NQE}c%OT~L02>~GyO)gL;_^CR=eMTEhJ^YxaH{Hr?> z<_(ERgo9tzt6lnYt2%IUzTQHn9~lx6uX;Mc@$Ycodt4`5J5ep<87-p|8)6!Fq9YMe zPPOp1uLql3cu@aTJq+4>~vsY=p;mOHRTyX&-A{#j5d>U57?GyUWzhWs zn8gLKObQ?%DDL?{b6nI@bsds^a98ut)d;Y;on~=6jnPBg-WbU3WQ)6ro#6C~IH~v9 zkM6PBU91{enQ#4F!&-B?-LB>nN=iL+R8V{TCj~Buj%S?|_)d00aZ*4JqRZZIVe&8T zvyS;UIwP?0SN9Ft8AcAxZGXoSXm0yVCpowMnVsRE+pgJ80g~zjtyY$;HZ(mQ1e5nN z3gu~imKMzlBYCE}RfRpFW-KHhsnbG@$b$TJdZw1_EHzSO@s!kwSjLWL^&9^W zNCvEZz-$QHYU^Udq7RZdfnij^Gwt0zi5f?Hi;=FAm)*(ARq!YNsB5z1;@V}=GQ698 z%$iCruJIHsOtYjYQrt_L4i^vUY5GRN2`$HL5?{0&vk8(FJ&o@#hI~c;E-#3ZmDKdK z$S11)infc1la%psmO#q53)@i~Sb5OS@GIkgKtdFJdN87&_L>cyR`K*8=)A8&N*%pG z`;e8T7Jb*!!LuxbXvYlF!Q_`v2Y+U{s5vtsGIvgDmFgp^3M~mrN0wahD??@VX-Sv* zdP7z33=`_>NvhFVs>!PYC0CRCY#P$!Lfu6jvBLKe%Mi#!2CeXY!!l67a)nQM9oBjzDTH99fn7}PVz&(~ zNB(2Mj$|1G8#55L0cES|G|`e+u8rUyKLT1o3@$6Vg18>VOe=`2kX%6=(OLAh35i(3 zw_#i$6aV^F5Z5D(Vg(V~%Gv8iF}`U-*ts}8N6Tl#Qb^G1cRcR(+*66E>Vz(E`l-Ye zt&kNFfq^=%3-kVF;;Uuiu-9Nwik5ef0%d<<>ej-{>iBr5ms8aIE^HUrl>#!iA9;)* zT0^8muxoj$SULQ3OYQ0spar6+nAA|e3b%_h9Kwl8+~B9pw_V&WVJ#ZoXQ#+ZLByh= zRwh!(UM+{VsrpIn`M_c{19YH^oO?K6=UQ_Qdm8DRmG>aKF^-fU*tv4%;eS>OZR(CI zS-~2J*58hyl+&XUBDkryemP;B~?CG1Pw(2U^(%P_GQoa^lneuh+8btYUnIzHe zwOb}kMt%YxEsfX^`J@vg!%C(}CzdQZjPB~-uwqpU9p69l+CXI^Q|ryJSe(IfiACJ& z*EHm+t~haYU`&d(mSq!3Kks;(fR!)v>qd%>& zWXa=Hn@5__*o&uX{PR zqg8e89}xDz#SzP3nx|Mjt7K>ON5_<&`Z9UR%f-2RjH3SBRo=vazjPDBr1rU1BwgH7 zkAkv}`WiL9n~azfyV>gQ4;W*+F|}>ljUwiNCOs900pqYljF!v0>Mpn{ORvs}c%=L) zMTfGUdaR~1N+?w9EE2dWjqWA`;|ATtbprdf!K?;0Ssq*-WmdhTcSU7w~d?gkB(q0TI21PI~5+Dk|=sy+!($c<{|3%S)Fy2`6g&Z7#7t4@Mwy7znR_u^1~Q7`?5 zydVWi?x;~$D1v^g^$zfQZ~aE?9OFrDN@EGaVO7pS_F#Q*-q&`z-(RgM8Qb>jL$&(d z?fxaVl~u;%t=C<~?eVNIg-K?28LFqV4Dz!v!w%Iuv0M?VM+t4?q567=9H_fhtVEIe zAXeUoh9dQGEJH-<{|-n7>e@V3$p?+%uplxOoKm#@c{hr~T;vVP(?n6QZnYi*+mA=o zR&Ic-A$p2>V|QzVnLxoc@k?8XVuRTMZ6hN>C~v|Sq6Du}!b*@Ib~I04rEO!W0re~& ziPt+gRL?aSZl9_Mw*0dM#*+djg>n1D7lm>AkP~MZM~Y8A)fdCPgpT zj#m%#01ECmtiTQQ+otHb+R4D;?*%FT*xkAtw%?7#e+Vpo-dUU?``{$X$bJuUN0B`% zBqRIfJ!E8$C9KH4VNd)L|N0{PJyQ1*P()7MU%|+t$o|po`b4dVraC zV=BAwDuWfG(4%Ef=4y56N#T`7q)=?X2cDay52(gM80o^M*?NT9xF?J42MheXAEz*a zXiV93RcyLCs;69?8^d$O1)E}ZP94!xMifc2yHzKm@RR0Z$gK+`c?wc0j6unsYWIi= zM0KyCuIed+3H+sCV(mhcf{9nvdwa?d;(o@bKZGdbO|z#bg%B>*G(BL?PQ4YJT8bS% za)GXi2qGH(*;y?Q7%5#@`oMtt3d&ZjvE9umA}{!$NZ>7ZM^70_lp(29pBN=1EKhcTur67woW}-t#tbb)QLEch%&;U-(9N=?ps_9m4O@Bw z1r4Z9{-EK?o)k1FOCfuuK3ET;#@;2cW2OFMUXZMkd#bJBfWnwAqJ=}+V#Wx$Ln~PV z4Lggo<*>8B&hQUAH6?)}g-teK=?MkF+lM%a+XeH--BfP z*YuuexfCdf4#@+BJ&=E`?nYpzuSQ_+u;S!tAux&)PO%J%6aEd3N$YvqPppm)82MOL zut`4F>}>L}RPP=*ex2S_jmUvNuG5>S4e(hGF>kz40OkF9F2h2Bfsy0X(1baGRbp5P zJ1}U>Qpp#y>sf&TuSbCa!|l@y(O$MM)>XhHU#y$>B44Z1!3lkiHJiv0?)9jOYR} z+^U*&KDG{Bl5q%jZ$>SCQEG4EB7vT3?@*f_9v8fBC(CVed4UyQWhE#s;E)grsS`@f z*2Pnz2I=By@kP3L`d@T0FDD=_V1ArW1<)Usalv^%@C$z67bNiDalw^ALxMZBdbvm& zj|L)Hf@n{r9^^lPE^~5@8U?4GjtI*OwM+Qus$p0#Qr?TX=6>BeV%Wq+!2*OJh`o(- ztpH*29T*_AXZ0vR2wuew5C*Uc6d?40oNc)9my;V98%z!?S?DZjhXq##mRw3D73?rV zkf#pUOEH4eC8L5&WQn2zR!Bw#mr402Bw`6GDtJ(QiGO`jL1wPB+b9>O<|`t>YG^wu z*v(Sys9+zavZ$bf6%tW_@`PZBZv{M*D;Hjf9EuE(j^}6T{i_!m*!mEGcV3{>vgGl> z6M_)logZeD`ND(dO0J9!KINId=s-CsX)k-XVH7l+-K{#)!RXX53SEo{D@@=iNO29r z1mQ#xzNm`F9?-ihYDg~`FyOBvU}!74Q55at!^f6u!^JhdYeS2N^+GkhmkcCY^s<$} z7f9gc^P3;T)iB!Anb}La#Eyo2Uqx*>j-n7Yr zsaHZl}A>KMLtQ=QkiudT( ztLu8nMT%<}Nq(uWVN$&%m{c*)82=whb)_ZMm5dOQ>h?gXE)U>vDJq6D;CP(D5N=uY zpMjn3vC1%fQlh{E)lvi=aO&z-aiXZTKkzTn@p4O##D*C``iJ+=T;YmMf$yKxH{}H> zP{SyM+WH;s55^riU}|r>N09sS2X-zoDf^3E(m%@8ED9kKOjz({!~o4?XlbAdg3fF7 zmZ3;GD@?vulit$z>cldLc+9Y4kv=S!_7{py&0`U?(X_u1YtgF3I99=jhoX_0EJH*i z(fD(o= zdx`y#u=jX`sh0MZF=`cC*xgdRCmm>xno; zXSjX3<23|>!;BXNH1Y~x5?|yMzJxqDBNWnqaw&hn4l0%|FhXfhUQ+2x`h=kUqh`?o zDJL1XaEN>v^N~OgLuIVJ7{Ufa{WO|l{zn~3at)GjnwKB*uiK|B=)$u zZ(w}VzYlDELr+r&^pWcqzYEs5D!ym)%Hxz_j55;2cLOU9VI@SIqH{=ygp}%csf#m3 zS<=N>;)`@~7E*+|$nHwCb@5#|{g&R}V4kF}z0nPqami9Y$Yp+z%Ops)f%juLenfAC z6Lmiy(X-_>E3%dR@V-xzFG+o$=6gvBQ}89Jv#q^r1mIQpXR)_`-CDI)-$p6x7kkTb zHg@%G%_z@HSJD50CzIZeX`zZ=d>RUd9k14uqyI^vHSB_WBo*I=YAY_srK{L~5npum z^)PW2D_!%vNqo^&!M}+wy6|F+*RZet;R9A7= z2i=~uW~KO~>vqnFFS=6Xq}XLm`?kx(23gvhJ3?&kqwRv9i&a`$Cw@gNbTp%7lj@dg@GhveL|?&huF2m>x4a%@S5(=((2u&?Ga63^)K|r z27q|LPu<-|>?1>IkIvNLk^kwM=NsHmTj`~~bM5f7+SuN$B&gSef_jyM>ik|+pkBf= zcgm{8jYIH;Pgpyk<6t=Yp58(G#t-uhXQ^glK=L@Po%|q{R6@P_3;V19w zALa#vzP0+$H~)&;a*ICHPrK^&^~w57AGp*lE)CkO8c-M3yp`Tqjp_?!CvgjIj9mtD zHX75_27PI|JEk-g7b@y6nm%LNf_al?&%e!^*jEH>?cvD4z8dt{VI;!mAL;2abp!xz zhwAo)q>uGmG=?4aexc_jR4U0BuSotxpQO0D*wpla9j&8oS9|w`L;sk~wZ3+aq%*fF zI*0Y8GiGY*zHsWYImPX@@rKGhZe9Aqfm8Y&8pB2uCRQrRC`7dqhYCMEt+!BIb8Tw+ zz@Z!BQ=sD+{Wfihoh-Gdc%l-9Pl`1DLcdyLbpo+jj}=zJ2B*%&q=jtgYdt))$q7CW z-@PomgnOVO2P~-0s+CVs>cBmr$@N?g?DX~-Pw}b!12t64XV1x#W$p^~Yh72=eSIk~ zRrXb^{YLMis2^E+`3d87?;vBU`e9Y=eYP*fpCPSLObeeIYeK{tPZlJ3+EiO6NMn-n zE_`$jcay!#=|C-x`CTM%eSfE~TueFISH7q7`STrKgi!qJFpr};i+8H_U>UJ_D@dbwAMGpNsfve-3p+PcbNj)? zkCK~dy%`B;%JLLkClDCLYZr<41(L(T%KeZ$#n<}fHER9Uv>y_3e$+o!XZ4d468O9B z8+|e~h-?%F7cWf@gW%&63wbwkiclY-9}x*$AFg8!dv!ml6R&nL3$%l* zD(OT~VAbcGRfSF{YeZVEke5#-l<6XgLS#>Ao%m>Ic~%WmCX2+jK(FouX*zFFKN%JL z^{0M=#tOh*#q0)e{H5O>FK_4-RUKGe?jkBc>U z83YAA6EZp)^+3CtPOHQm4oU1zmvM(`Rqp}Sriz{(PP z2Y(M~q4w!7?~Kdo52wFKF<_`_L_rVL=%GyxTE5UOPy085BZSQ%#?}Uz2%)474Xaac z^OnNoqqW@{t00DkRP}N{;r(N4PG1-XkzLHDiK3o-qGyBn694+=Z~I&Gw<3dUq9PK= z*E$2r2_pl1FFGt$D`d8r*?CdY6aET&0h1*}=|JJ>( zQJq;*p8`avTTrCFr+E^e31n=OO`;r@fsF2pb~0=pYUIJj%$kv*F+`9ZW~|iSXDG-& zr2E_cCsHX)YTVy{e_JoOQ9~8`A+W}wZYO%rJfm)u@SYE7aoFGbF z(ZJ}hvBE+@EwBB%{_-Hh*Zt*DjSZ2;o!SsaE=h>aF$@?W86IHgS`5D#Wjq@?9h2eU zy=JmD(=I^Tr%bJa+l9fn-4%n^t4$g}_s+Q{*`O>%FZ(B^Hnesdqm=b=hvH6dZ_a`q2aD^%_*i43Ba3W*Mx2q1S83(P z8BMfbm_X3xPSby|6MQD#dkp@FGZNMBQO+aW8DU=0|7Yc+O@a~eMhcGIOYujoKTw*b zV?w3KELrz}U9dq)v-E4caZHOGXsfvx9TV(&*72KgRsuWY09f-=PMX%3rP@6*MWj-X zJVre-9{%Y&JPeXcGy?`D8Id6!1}bp;wXw1EvG5u-79R&a*wkpDbz|@-AnH7@3iH=@ zAoaI!!M;4VhE^G}Yu8DOv1zxi4(m8jY%t5IoY8KeY`~O(!r*n=x@lAG#7ec3Y?}JW z_T{obZNqJBcul{~B+DA>?i3^6xKeDm^XGBHL^ciaCn3MMv2b-4*e5TGs<~1JuR3;AJ`(iSV@sHH8>2h|p<&@(nombP$F*xJGb%i8L2bJP}N zkWX7o@kQEV4yr<1UTb08T3K7lS{g}e>p^gQVN|M?A)r{Eh%hS+TiOXWZoi?>VRNVw zqc$B>Nn>7UWi&*M`3!&5UPzGGZ)A5D>mssr8@T27v_=CnkfjD_jCBoIKUTuln29Wv zG^XhE`?X~+Q-)UoSBnrP43w1{vcPu)+fWy6L{ zqnhD7MHCUPO+vY(2KJHhEl;r;v!sUcZRxBCcST7jV`_+cdXS87@s}3d?fCZZ8zM}+ zO7(0L*i;%>8^XF75L$OI8q^lo8I862_~q*bk+#DR{tiq|r=MI9XyEq=`u2!Nxy>9&X0fH0+r~msuCYO#G+5plJDJfyeXg)7iOv}u z#DS&@WXBCg=HlX9<7`;CLXnp=P`w6QLEPATot-12rgc?e*%%B9UCfGD#PxYjEHrOh zzR75zK7kTl5X z0}ro=XakXhjJYAThoEsdIV%RbZ@$K@)g9vO5lRRsW6=*j6&D&-IS7gxB6p)WxZN?> zm{g5@6Jp{=xhy-tWiE8l0U8OixLE$OIQ$(s7aidFM~pYLPK>58IrH>9SQKfs1XFAf2$y*-k_-BNncy3kmzeZy+iM0j8MVLODkVUjUGQ6uxmAmPb|jeKIO2ggFpI9M>H`jfO_d5|*|N2@SSl<2IjMFQ8lx_QzZ zh33i5+IO1q6||mSQ_Ly1P98RGS+svxOhC4wk ziEZs{V_|hwYbreKMb(Ay7m`7Au98i1y4e)@l#1YW9GBuSosx2K2&tMqbEM zd2&F9C23Jv>~jP2(Y3*6y7|qHPBznCmP!Qhd#1zZA1NZkX-IMiGBhu zcj-aAbT7V`yWHrbUOiN9+P#+HMV-u3)(SM%Lf6qi8aTkJ1A(V&w9qvZ${#Z7z+Y>O zSh?gieWh_seR!x03Gi1ed6ljzMbrx^I00XC|&FLa0amTO%>6{HNxt}*_sJSXw_wZ=TH-!Qw=iMfcpUUq^n zu&v3(FSLk3?N1Td>g$c|+C&?LTt=gHrt!n%MPqXVb2A#KEmX{<+s0M|=F)pYm`m>o zjUFb}s^kliMi5TCqlSrvr`sUnCYFY>7R&M+CM{f||mK<(JD zDnj2+hsi)~r>NmucoKmcUL{?&!ANwyWrMQfv|onFIPEt(N5*MCRfR;&4}yf^w6_qJ zh|?Tc>^LnhU&d((`AD5L>4lxziqkxpi*KP+j$G36Wt`?<=Q*P_yjp6MgkNO~)wf1{y`99?sINkCimj$A z>|7s%B{e4rZ^O0Wika_eMi4~aJM-mvxZm$E#%YhT8YusCdGYJce4vY8p9##Rm3GX< zO{N{S*PXfD;ndu5wW0jYI?dpor*M=AAz~GMHwD@ya2MK8J;z`q z_>^7fpnbw{nW#ct`U>$yUHS@SNbDtd%+6YddRe~QHIn&&v90oW8vCHJSleV%K^-Bl z#7^)LQPUnL{HfjALpESGir$Chi|ab~1?GxTRJjlGcN*QamjW|s5XGuu5LLEA{w`y< z5rlB>J;UYjIb^qy>Ki^;IXQgZFg!qO`0)9yKuyEv576ilV`#!XB7rN;dPW>64ow~X z!BR0K&4Y_qW>$Ms1qc)zy;`-r4x!Nq^!y087#@}6dfuj>k9FxT_&Sct7d*?X33%AY4$RzD6yNZ;E*i-AQK_WRkGI9_nnnbdx@9ln(>~e@?sun&H zsjj5=VItKhjkYhxf37wg3E3m!nrh8id2&zFMpmJ|9YzLGUwTq7b)-G*pd~SY#jkhj3VS+Z96|~!JBBvC4Xoreh4;lZc$|~6Wve8<*id7TEC)5aqP0`PS<(MQ z$^uI^6K&ZnOiavim@}lLHzdzV({$U$`9>gN$Z;5K6zV;R#vmoGMVf&h)>wE#P(@?m ziIJ7u+X~zg5rb3G_5z~ZGCAQb1Mf2A{D@%kYdgV*y5#YidB9@u3oBg`Ss#ktHR?jk z*^#$vA)_41n+_CEUPkK0P#6`ETe@s?OMLN!!pVjKdGdK$tV!YIpD12`I2nW&?;j)O zc)0txk?tE0Svff#o*5Z19-1ti>?;VM@i1=`tbfNSNccm@j1P!k+Cr?r0dcsZjb>ES zVEDps)w)&G7o7X$8Lo|BplLvy!xHT7HcO%nU;X4yMs<)1k zd){ufL0WuA zD<|Xa$l*|M!;cBDW>sW_Q&=`E(Jfm;*#FAV3Rg!?)>yJ2%-W}TC5k`<#Ir_8 zyE+{yjWVZd=4cdTr4hg_Qhg0gBS5>+as=qW%9BaW7+pnE^%xyQgfs%Q9L+|6W(**W z08K_qO5IpWi~vX}jR134L8g+NQW^o;e_?g9)7rqd%7$9e<*YGI(O3$XyT#2cn;Wv(yvLEv7Ms@$*6DqgQ&=0CiFid| zq_E{x@kOTk)zOtqwcNed@H^wtpfeFq)X)xRUpiYKt~zf-ius5N?UXGB8Tfo`C-^uh z`LA&9)_%32v*_nXlx+;YD}I4~t$Dy8gm}-7mWKPCi$-&w;b!He;eK!QzZmYsF(`U6 z+)c*7-b=>Bg!6(VZn!^WG*To(3zDrwMXR5Q5IEt3zx<_Dvt z4W9UuahEnaurT?m!^cRUbGV&r`JA`?Yz);{vaPZTPR;+0v&^U7zBLW6cA!4kb&RwY z>ufmWh?XA7(lky`{;7nAL+&19g&Oy;;xwgyCxPBlbTO&&+~31vAmvG;ovVqcC0*a<$&B`?<8jNo+#tu92scOm9>t(%R4_3Ny$vR`+gU#njS zp~l;OtnAm_>X@B<{hF1N{W@W6K)>b_6jKBN)UUmeUe{cm&|W0)Zk@zPq;8GN<-OqH zdS)YdWSTKdd}U~hSRr!JCiY3K_Iw4JT1!Sl5*xZ)3vAd{G|?!`yj@#oCsQ<$uvR1x z<y09_aJfXfg zR-RaW*)Ag;u7hK%@D|=4E4>A;sNw7VxDTfQj%C$ppgxN#;D2O8P#`8792Ah3Rh~Oc zr_Lbt*Rpl{BF(NED=ckYdE-HKAVW8E)msrbdKzd$jzyW%w7TPvgi0<^s7UpRhs<2+ zILpj6W);ZHCBwo5v#Q-$t;b0_=irp=Tmqz|n*B8o11CHpe20L*T}~6N@|9LkebyUZ>d@R@t9@lC8=3$*pX4Cn#GKlYWArB=<86VX1J#$ z!%T$o?Qt!`7!9Oqe=t@1Myi_fl}tF|>AQinhE>F`Ia0_pJk|E9xV zS~|Q%)N<(X38};4ooDSRgGoyKmdMOipBXRB`hM|mR%vZDOk*5~hLcBz3?_b`CV7!^ zQs1Nrh?>;5q4*;8Z8(9{*Tol$;E<6p#9*gQ{gCiDB)xOj(hsSXA5tp`iJd>iasoIGy}R2lF1Suc&FIVkeNtf%9_hR3FwFZr&&qhsAXWzXLb#JlWCI;l?4` z!r|MW^;B(?jZCij2EpzfIf3qqESs!HK=Yq_MuGh(-5gdQRmPgNn>j(cdQ<7wa`l2k z7Up?tgE0uE(ivh_LH5h;`0O!X%4`}X>dDS{yZ9P20s40_+a-(?|L`u^QzTfDCU=jH zuiwK`sY_P#VIQ1=lOpzToOjvKt&TaeoB53EQJzebLfyKXt+jo2vW!#cqK!x4Qo+r@2V`IW=VW;=}~3jtZPWTz*9m?cw=K~68UAV(0im?Z03U@L=d=CVYpPc$?eN?UnG z7s#zVV_7AdcN&Qs(SuHEPLUj{w!0aNB z&`c>qB1A1u1#5#DY?}8QfHa92%B%uuwsG%jFEb0u_PnNrF=esMHtV83vxkO9F7zLp zucjGi1q!m=UyCoY-Cq|3x*lH%qEbSec|-fcrNQP9xd%XYeLvh^ae=Z^LQcr9eS8;d zVT!z1>ym(d9{>0+))Fb~Vl9#9C3}t-=wdDLD=yY*^Yo%>Mu&8}k-W5K4I3(uUc6oF zvba-&?o;?)95bfl%QuMwksHOIreZfJojvR!_C3))xFupg25sKCK`a~5;{F-2071(d z?}@3ZkHwz^5uH(Fy<9kg(CKa5X8!G9=xGg>dPks9sRiJs~VFl_g^V(XC46RNtGU>!o_Oxu8MgoW7Ic#S!NE za0d!Hc~^18NVARN%4N9mW|p`i)qbxn$CCjI)|%O{a=a(P#Sy~kj?sF>2ct2ZbLDe< zc*9c)j2LUS3Y~z-F!s;04P%-~%T~zCZN3oO3CfB+EfsXjy=K>##{w^>npp^^<6^{a z?yGH4dF&|&VI5G~6<}d+?tiLrUkY5OO#+!pHk#f7bwva-1*VP=kaz)fMe79QQ zjjn{Z1Qt%gS&+4h2E{0a)_qgK5Z+Q?7CR9x%#R+DSgEK(Z0mL2A-^fffoe>nHbbPG{tP5WYeR` zW)OI=S3Mw9vIKS%nkBGusu>Xk|FF;9!_<>_!*yeP>*nI*6;ZB_D-rQQ6+~c^<&z?$ zOgD3*E7Ji>r<*gXLi-O#TWccgWW@VlRVYo^M7k*qnXd}zYctKIPNbsQDwFrHz|eNf z+LLvm{8~>`B5y{kM|%ZND9W6U5I)@!ii3$itt=36JjGbX~qIp%mL&H#?AqAdvxY?>At-!!|UuLl`YD}u8} z7o@>I-j0ow+3@yUv$1Oqr=IMccx^|SDPfm?Ft*A6AJ&HME(=0pNe%YIr}(Yg+$HFx z4Ex6IuGqG~^eF14iE>vz{?bKO_!Q4EE`#Jy0t35ZL0!b16CsMd${-|uMV;_b$QFl$0$33<@ zZ05nyrRKw~vm5}n@Q~;m0|9*D1VEeoAChT8yMT83qxAec{cjPO{qc$xq3BTdXX7T~ z253D$%Dg@r<>xFSJ#>|VE47=qalYT;eDPPBRaZX;uMesU#LogN2CPN{;#{< zTvCk#b$%k1XW;o8%w*Ry963qtvp}isx1_dDN)7(%HxKWIZ|Rxq`jJ=uZ)A7TlHERs z>`I#q2!q#eHmAW|H=Dad?FJ_k-}9jsz|C_M3FQ^kLG&1l+KB$17|my+g*b>0F3DJ)zL+;u77e1 z*I1t8_a@bmRdF|^$mdQ*hoU*I1^4WUY97-iuq_7{;f>;vot%himLlVBRK?{SE14rP zO`&3~l=e|^&RWE8B?JR(e#vf*6YZEqCKI2mz;9e=8JG~K_M9Y7&2>fFA})yxV#d5( z&7ZU{!(242WleeVk? z9W|a|lhy>@zSoR)?c%vMeTDa#DGn?hUC;B9J_JZ#BiQrzN<25kvq_3)?>CDaFy#AW zu2a0E03@5q%02(Dxqk)b3N@hvAXR7>9RN90Bxg;Jt!&&(1d;WjL9Qn(@vzV=TE{S^ zh%fxtcm3jF?9O-%QQ`-p2sc(Qac#`MUT*{FH~r#@7XW;d0A%Jr-)W9?c^t`MMiNB6 zncP;)+=ufl>)M>xcA2lZ+Vd*H`ASR|DMUjZ>8bOoaQf}UMA)=$c63GCN6hV^uKt1b zW9<6Y=8fJ{V8_RadPV+T^P5m*5*&NpOn`DI2!#nxnHjEW974`do*^NVr{JcP%zAMy z{IJ=ixMuq;-rCT>=9Hz@Z@j

RW_EINh?xg{%-}}= zGZ_Q=)`q2f8%%(ny<%dO=iuvS5X1|-9C7qa6&$@TIa1Lehd*Z)F*ydB5_F;ANugJg0%!_|C@$egv@5;85$@@ZJmNjjB2oiVmWw44ul#2o}^@Q^^OY zJoym;hfbK8p`u5?^8uyW5jnRx0&vqWt@6^=h|#!DTW`Vz{tJts); zqh!G3!)AgjgJ+P2z3@14v*-4Ly72L%<``-jwck{D`upSz*8pCc`07&?Un7VwQnnr5 z{wCbCGbIb!Oo@qRI%Vxv&w$fM&0NN~mELkH589Y+YF2r8Ycv*xZEIA7{UAc6M#xMTnQ1s^aB#;zg+0{5QFtGhi^A&Z!#lX6^%wewQI1$9a0m;Ato>q~1z@DuDW1j+r~vzlr*WFy^?~!=+ARYEIN&megP7)DiVr z@0ho$#x!{A9qb++UXO@(PpiU3PMt^;r4y_Ivbr}_H>?mlS?7k5X;F>zQH8h4+*itg>Omp6wo z5LPA*MP%HQA6LSR9A?RoX)5=Bm|KG_o>5TcgD||YWL4Z81 z>l5owm-1Zug_*3nn)3=I&$Q{5p5jMrYO zvgoAng@<~l8f5}8Egyh?*`lB(C#8ImWeyzc9#tQHywpDq23;~+yIyB_WP}+6v-j|H+O-k) zgSpK08Lx31JR{VPNH+$l?@yO+d_Hg{e6;J=O2vLe`QZ60SM3?dkk7@(M#D%#+~|SX zcmzv_@4jpv3&~%GH*v-Ag6mo&df|-eX$M6w*NzvsXro?mYQ?*s1#tPVM%el1ne}3C zE2)i_%Fmv5oA*s5%ibOG7~L@M;y?iB8dB7~*jvT+5NDthDQe3=Cr8lsCY1bYHcLD# zQh99igoF2A&8@C}oD~Xds(D1q*^sdgw7of!wwk%pRlrjYc~XYB#)%Xf5DudRU1k%= zNK|{l|Nb!NC2b9c3=zh)h9onh0YIqdEqHI>>{uwg z(j5WGo(PXCX(mGVb;3iUW#e$+X$aoi6326>Wy@bn8>4odNqb9NSv;F$-(hAI?V3B2 z+BF3Girie1F_Z1p7Wjmy9r#Gp!&c1GHI9Z-AF1aV{uB$ zLyUYm>S$Ce+%DwW%?YIb_^?P}{V@}gBRs!`zKY4RA06gZNZv13#m+lY-u`}caHi}> z2RR7QkJN8x%BB2sJcodPT@~fbH)`u4g&mOXswkb{2>Avf;^gIZ~)`GiS-hY&^@~m|}x{I5)QnlzlKL8OpS{magR-X4DVyLrh0W zi#gOY7*=q19Mq5XeB`>G*AW&(-84%!(XBj(xZO|{w|CESn2;D|LafN?dPqv}WI3^k zxpgKOt0X5G@()M3D^4YNx~b~^S&)By)C^X^EqxtFg&hsCn;hnp3+IegN)A$qu-ugF zxk**utAr&rNCk4$_*lyo=kd67puJuf1R3P2T@+vBs$HB_m8YE zr$@lj2?AkvYlH9MFi6(wp* zM{0ujikl6mT6nS&P4N%+q*RgM6FJQi+be>Td7kj8y8H)HpXHj!!P2XClPV&U6jw1% zr}eWHv*r5PDxPDnpDmwVg;lzKw!MBP*r)Zg=mi1_@osIZF9xNpr-c(QjmOE8^D^Ps zim7$s*n!Bw>by$r!N2(qOlinWO4 z3j79-WqFESzi|}8e8$+sTP1&*Ed%0X^BaUEUL$Q6X9$~`hPVZ@<<(SN&wY93Y_?;y zgBO#@ie-u~vSOLus;pS|uAT!ytXPk3o(fl-UaIk_L0)ax+28Yk>Y5`BU&I_HUSar@Fi=K$ ztYemywg!3TNT;yO%dB6WInr0I!(ovL%$OrhU^|{eSX%!ZmTnSD2sVebgNT75PX`9S zF?6XMJbBEQkzo-;oX2JmLBw}nx~VdpiwzeImUQh5xp|&-t}7f6M0=FSHVBKc#ctWA z#dBcc6YeC)xF-Q!grT16TsH>P91>lr(shE@ELeNryBcgB=E<#G0*5P6qWDX9nC>9a zYQMLkTfXPxkX>_v+wZ+|r2T$^(?Vi??BB%v+#G4cg_tXE3yfmiThGWof_Sn#3tW$I zJVHMiM^@2?1>yllP-eW+Zu6ea6qP0l$@~0Tpdq{cjrbzF{mq;pb{k1Z#-j$=g|Kk6 zr;kCCh?dFl0d9{Qu*Fe>_JzKq2ACp`8vG!DU%)^9qXr^{9W@YnUfTGA80e^h_{F0J zU3S*cRrT*`@95lDgS&YTi8X%OPq0_ah|x4#EirhKpV&uq?SWo-Cg9k?sD>fPG?ZP) z8w?vJcv@>|b1|PpkPL0pVtYeI#u9CaohZJ9Whj|leGc$6K(j5Uib7#yfv16ryN}BX zJa4L<=EA%}Pn+=092qDN)K7-j3q9?$Y&)GOD@_ayQ#;Rv(GxubgH|2T_GArgfcP=3H_sn%R4ft+}B_HgNGp1`}(;j*fj>Li0m~ zQE;*Qg-G~ynkN!2_RDMr;gdbpIAF46@1l5^)2VMNY-;3=jK9rc&K)$srKuf8K-u>* zW8u_@*vQb^yi4ao)X3P_aA&bMUo2dt0Q7jN(5(1uiYHM?E)@*iF8q0OjwfIQV`VcCTasOX`;Rvg9SZ7s{<- z@+XaYD{2RXxhLjqd+%ORXb=AJcQ28`x|hiF64s^Ss~Fo!oOFqdDDD9_&+?2^-h)%K zaN6SpQP~+X9*QzUR$>F?JYU$ho}dQ1%Rdo;iRkgbFY@|CDpcZNe(mRJnVJc)7k1=7=f%HTzh7~#<5!(Td zy|cKD+F%~JCQx*XJ1Qh`9v)18WpQ`7;+gaoZdFtuEw+>u(ZEyBq~`?UTd!u$gU8+VXE@ZHdBWwnDkcbYxOB;r;s9=UsY=B|=1EVzc#$W{3?g4I){x!k zv-7EFx~~Xtn`Fy&$8mE zca~1<=bXMuI?=AS_dZd-cyiRdXqzNU`N|<;wWo7sUYlqUYPaQB9sNdP=)cAr&YeGQx!9p%EU~wAQ1+rUemEZm&(XwSg*ZzU)IB zt)FVfq*c7meA$P@=^lf#VA&`{AdkPCIv0}`(tExFm%eD!MC;3FrvYA^e^GPii}MKC zus-}eA-f8(RqVshN8X1Dr3Xt#Y_#XchIg!TeGi*O`CA| zLt*$1vZ%9AEuYZ)snbwUVpn#MhVf3FFE7|`ajWNMjTL}Hw|f2;t}XC)3LHu4MfMmw z3GbKiSTC|`3*>G0b?sdL@OfXghfllh3lDkfLEcu+8m*a)0kAo(SJ{K$^)_9A!%BH- zJj^fkbkI5m*2^AHyNeOL9!-z*0?*ajU{(vc9jW$TAm>DSFM#7Kk`0;w)}{rPDzZ!A z-8ji`=N+Cw+N!`(%NNM&Qg3o*;NelRT93K3TAz0=JXyOvun65Bjz#F!R3wI$>VtD5 z=VtzCp~OJZ_i?5eD(k>qUwZ0?c(WEj{s=dYVRZTB> z@Ex9FRr|xv6u#sTC@)K`foUB8f*_XzrI;s&o%egL*XkGhr7Do&<;Nm{Y>Kt(+EI~q zT^~$MiGgm0*oHV4Xj*L8mx&#<5q7fl+{Lk$ z5G)KS$7iKztd% zE3~anJiUSL!M|0cQt;FiJGp;1$&5XoTeb4Q8gvoJBgM4KKzoGcQZL(dIH^AL`#C*D zeYw~^Cat~7%8Bl#yeQbgciuO;Lp+GFQ8!*Ik2GG$>9lVV->FQ8J_vMz8E=me7t9cQv~@(cSsc^XT$R8lbc zhm*+roWfew#_lDE#%Dr>}Ox*dr$Q~d2zG+&>DHK1w9{qVB33S^0Q^|kX zyA7kDc>S2_%n4ZmZm?m24x0xdvE+psdtGzHp<%eV|BKLyw_fz@Rn)qRq{EHBbaME7 zLVPD!`--d?8{C+MmWChx&Tf0&gG4I#yc;hPF;$M5g6xO~a}&;bE^3olT^h;XPOTADYJrVK_~~lW zB6)sz;^8J?6}#W^G*m*aN5U`d$M=R$9q}~MZe$erJ+_~=pTR>jwjPI^J@4SG@5?OR4z&+*-rrtCp>~AVIU+R}8j;T9?aQJo^2Xke zVi$8(9JS3#rQ-W+R(!2SPer2Y`@^eHBt?W*wXj==@G3|z^j=0oinsm37w>uQ(^vr! zUUh@F-}mg+8ZWlBl>(YmMJ>7xu@ikxSIJ{F?9pF)3gMrYbz-3Y2N8E@U2P09j-#NX z(_$Ikv|lVY8fW|-QlO1+79EMVROft(5$-a~2(`JS`Et=}fl}JZ&NPFff-8 zU@k+T!)>P`CTTx7i;h&zO9Zu+*o{lkGD-Qog&?9*ZsycpiVdHFx?~%)PZhlF7FQM2 zwSohy-MYpq(SWDMFLnlW$tHzx@`c4rK?lWl-Iu^sUwMWnwi8Hs|4C$2$WV^VWgo_Y zFqd8b11+8E%C(`&SgWGP*$7h&AIZ`c*!<-9zFL8uB!~TrXYh#o$R!o^&v{A}jn%LR z{=^ZY5^-m31acr0lY;Qkc~2SK^Q{&MC(nC+*OoIh!eXgcFOjo@*Rl-TWUXDohP(|+ zER)q;l(j-u1)L@;#%mL01t`nm;w4Y21GR0jDwSTc#6Qa(1~2@8jtgfB5mOK`VhIp? zmwxc9P#%Z5KYF@_KWVdolRUHr_wJ9LBJCMFokT0v;P3*OjX!z1YOIbe*BF~9>lk7= zC+hpWyef%0^j!R^umF4_0May(NTj3A`{JM6ijRK5fL;3|um(BHzbui?@-Hm+czA3o zTwXK(P9++)N5nSO+)ELzwfckYHcgFO%9<=`Dcz>0J6f#P)@a(j4=H~~WT~#Dw4Fh7 zF+k*!M=n!3gmher2c=imZmeaoY?{pI!13fRg|-7dnJz)8Uon)US(ySnUEs&TQ|o76 zPH(3Q7KMM#SY-ZrI8T-bw)eGauv^h)Fk)!tz-};WQ!1}XF7CctVtXp#OYDk16?r|p zL2qr9oo=hh5&$*!=72g2A8FSJ7P%U9*ER&Hqb^x0C-E5~Td!DuwT{j?$rO_|Ws9-f z|G0!Ui7OW&-xJ#!TGfty0ZQ|{v2e^tZmm5XfLO+l`<6;=*~fCJ9Y3oR+etYBX5HBK z+EJECt@tKy#SdjGM)FpyXfCy+oAxaHgwdJjmDB9I^| zH3mfx6eS`m*8(U$=>$P)fY7oay$gs0K_iHmP^}cZq7Zx*P^4I&<;ibm_S}2sw)gpc z6aKk5*)lUbGdo*n*3nvbJgs8Gx}LWC0`=wEPczG3|7o(wH0=0xm+@t1T>(#&aVd^y z{3mxwLLxkg8P{0v1XXa4sY@{6jvR20Fo5Y%D}aUZU_}Vk>3_P?^<02~;b4by;5c60 z$ALelxMFbKmiTsa6hM`wcg8paz}vcw5<%T&65+bdla+24KT^-}nkE)7a)R_aS*a1P zsseB>daA~UdhBYurf(>j|KIT)#AZ9)Ka@m4VcBGCjRAty3Og=X&IJ%JWa>YfxN}nF?io;q#Awj zX^Qm5%)OQI#?xwchPRayhKF)UlbMeXx&`jA_UJqcE!sPhr0F`8*DUeeZFRlJiE@*MZ6T4+fRoKT$O4o zP#Cu-g(1?rd`zT8V~iZp5tM*dj;tn0OrJU?Xyus1R*s({9kg;RlXu?e7~x)y34Gx= z-KMm->_!K?WO>d`!Q;P7*}1c$hyK$THLCr>a{UV`n9=#v)D6*l@Ulg9ZyA>K&zghB zwP!Jx6LM~h+5zI|{p%?+r1&>B9dM)UoFglVwZtcQP^jeCYLpR({~E{lHr*;KBxe1;v#rw|8~)Q7Em0 zS06O}F?IP4Zd+NG?;r&)-{p8aBG`8D? zyP?I=OVe^RF&VKD^`O*!oZaN*!}Vk2n#PZmWA9wT{nLy^lb>}LK9?4&j~}b1Sk9h~ zIbt3|bMgaNAI`r#z>ueVf-){0OW`oZbG*n3$542LgxXT(tQ50oOj z8WRP8EMd-trhzc!n6XXgRK;q**aOJe?($@gqrJG`hxDytDqVLxZ>Rd;=jWAspAnh; z$N&8tUM`4tPLc!fa8!>CpvQlCuZlc&ha*eBZk)Qo7g&gvM`te7Y8aI?&bsyldmEMl zS#70jPYL7HwWrKG9pyM@u!%G{es$%Er&wajKU;n_0za0@8mk@Fb*JeA9E~--(>Qhd z0)Oec)0)>B#uQH*=xCwoL&s5YATf-!`y{BVo;!}FwzUof$15K(4v%44$@1(a zh(J%&VBq=A@eLaZ`0(?bbo?1i;0AcmICb7K0K|yrEo1L>d@KrCHR|gH7ouWnWdzq< zWY?wr_&L5$Og9JT(r!28(#y|x1n1IrI^@!JI$)p+RVC+~oyDWU zMG4Kr7MgJ(xh-#PCf7XbXeVX{XN~LCrn4q{^sz=l<#tD$`f7Tm8i1_gvL_P1svpjPMr_vKa5w) zpC5UV6>#0W>;ybha(;XS)A9Rwbz6eSqv;pW1?!=~viWF7c}8fmcA)ju^|PRD{u@}; zCIq$ev`wcqjFSb4!*W&&?b$-!f3JjH6sH5tb!{P>wEj$3s7!3k;@gTHi%;PJjmF~xsPb0laGT`+FCqluWuT8^Wb zHe0S;;^-JUh%KE!cL|IDO-vT9)-t8*#WryBIyGK)T2+2MfDzcEPoF@c>cwmaRC_*EtSh|PQz8f>G=~QC(}{ zst6~PuhmbNaW`FTFEeL?CuoIrvF${qi)|TQG}ju034E?~z17V0i86Po<9qQKt8wl0 zQ1{ws0=StR?};gXe7U2M7PWXH@ZpoR=Aw|1K+IeiiJ5B@GXwi|=}O1571G9e7W3vY zI*55M1v77s)vB2jRZq@**WE)tJ~?%fILzu^LpC0;5h5G4iNz<@IVNk`1(~zKkuEMW zti-wRBXRCO;W#&bqhor7IQOl^xo;UA#JQMBL2CDJ)ex;r7HxJssl%#{ZdjE~^mjJ8 zMFY0qH*431V%In2$S-1>LVRcVZY2vk*K;L>8H&93PLL;;rDjF-nPlC#yA288MuHZ4 zy(X#mHu|C6;k|;xR0}tr0)=tt&i}DO6ZmDtIWIU&U4L?t8t33IjdQCmq{PU^@tzEs z{;Z?1%q()m$~A}URFN*Y^d-SDD=4>tzHE}ZRJWWplEg13MX*8}Cq)_%PyFeC_-o1M zzy)A?a!iK`Hc{rh4lB|{g}WT}#3Du=DMfLxQWRKPFc&z11EaRvQ6%1B)$E=$abI}{ z#$`m4{-%wK4ASgL?6zImD~`IF{?jBmufD5^_=QnGY`q+bt^b5$>xvS`AUP!UT!OsX zr`|Q<=moiYuOm%dV3ZL{<0c0w@_DP7-vY^vUAsj+EWrB#O%N-}O)XVkc?)JVfQ8J` z>{s?Xp3*Ay0%Y>+mb#5ZABGlLsP(`KR#b?PJ%<64!)Pb4aZ34&lO^$+C(FE+t`u=I zqXn5(b2ujO-rrTVrpsh`_JCuin8+$zI}Oyv`LS>XES`7Rk*-0w_cx9>>WfVbHSulT z|KeLwIKG`Z>KI=kzO9-puN0@=AXYJ2h;Iji`L+OFyN}HJD%`5)?mRjH51JkI@w7vH zqjaZJG-se-&EHFZGEbdQKgBbAD}4=|;=>}EoEK)HPe;~(i0(^pL<>H0+?5oD-`-|< zl3un*%=7JZbkt$TV9v*m3~j9}g+KbbJlxnwa3OiT$JS=_+WQ)`u-d}1?A|-(FLzrU zUt#fgFtxg|$u2Zjf|HH?riEZx^2$JGb`rzoQxzl~;*8`Zy^V0_bmtxXqSKvsfM$3{ z-S`$u)1l;P*fGIF$rnF&oDN)D$8BabF%pL)WS2(ys1 zDUlQu0F#3L!pI>7?Jz|t=#2~s^kQo(s$C>Zw@itop@4}rlw%?d4Z~;e&p;Nw?(@RG z9lgYZj0EDw{Zr)H_4wxAs%pt%G|R<~UU)jF@RGYeUy}kq(gx#X^@CFVzr``FRBf)(Ro5Fj=2X@;e z^ok$EN`}_%5$^}rdyW;O9>D-{CQ*;rjfJU4yo_JeBVK+ca*ud_is})||A3tuHvf?Y ze>y&`wxs)YDrUIMs*~W5m+x|Q7RMPmzE091`yD&gM^pY+6&ypVzn_{U3kJD96kplU zSqC|7$@MbJCAmU|zk}%4O;v-4J~gO^{1ZuUjj0iOh;~|z)Zx0^X@*c8Y~UrodQ;UU zzXlAEzn5rfa1iATvyq%WHB2YLTYnLdwJ03yF{8RqwcIXyhDCNu1Z4ffAp<|mW`Hcc zlG7d9vdq}**7~DUDHNZ0JS;K@To<-wV-&L3z$GhdoSZ79rlJe}2$=wrKqkR3^;*`96H7*vO zYj8G9(x(9eGCEQCMMfuTT4bXGgp+5QtA_JJfYG5fRd$?nx^N>PYdo{9OdUJbM@{~} z%WY+f;q)&`6D@6^>V&=NG&Q7L9zHB3hGp6#3Y4G`r5DR3%L5sy3DA$4vJ4tg!cgvQ zGEJ>cY5_h=<*HcIE;-+IF1?C6iybc0Jli>aLS2V_0v-3uGY-rwuO4=o8V$?>VqMS{UZ z!of?fVxoA-xL^}9R^me>qV}`UNUO7Et#oD^379}O3U~>gQyFq}J!gSv#>znxvh_yK zD$k8ZEQ1DAh#po=7S(swi^_b~@~`O1%lOu3T4$Ns%o%CdulKWRZ2b-?_FWhFZv$uj zT5$-B#A1alK}z5k(C1tB=HV)f1jo7m?!uCf=5w z%qS=JOuz&md+4I{bI{7%#2Tq$1uF|ZYN)pKe>HH^v+CA#Km+O4^kS@L-I^|7Fll^1 zhb3*UB6fmJEZv%B(p8%iOksV!8G8s_Jw1bv$&i%c7a5W=peg+3#2qc1XG0Ci_?FJe z;tximZAgB#Q+=rOPnX-=<1ISaxNYTJAmXM2wU)w?RVM>sOjj3r-va;O{TSTc?{E!-kRV5F^+X#t*~E@52KUf8nwV-QscS>v zj8a*~{p@b4&z(*Yw8eZ@1XjCNw7@x$nz(E_UfWJx6!&Y*Sl&$VI8AC?zt$v#Mtrwo zC{LX(GgrgD{{Nt4r$x!Gu$1hGM9J&_cS=&$x*8aa61c59!<8!IHq~n;K493XXHzsH zC@fQ#)-XeB70z(A5Z{EWq(ht6erG1hkvlyN0ve7R^Pw!7JROf$!BY=nm6+4ih;x$- z*wg-H5D+F$4HdRwNd`$cn_yh-5{!b#;ChYDGS~$+G9^md(rUQUgth=HsM8K=u>ZJKE_lx^xue>;HxXj+{_yP%J9fTHG<<_!Ow5_h}@ z^>DV;#>xdfoTJ=;DA3F#+i;kfIgy-pcMQuR{i3tIFQe<0^R69nCc~I)gSBQ5(oT^y zL@vez8X}=ZYxldhiWgWBpd}mL8amO(={BCX)5#L1%8{A3$H@_2dwWG40-j!}n^u>% z!#0TrW<)TFCuYbi+ngDsmzG5YPqvrpHrMw9`~4>I`59`?z$lRRoFODN?tmv<@KpcA zLEkt-J)g7~m9wk90085}q1sHpJ}a(7V}g$>5HJ5Lz1~cjd55#1XuyivEliskp@r!) zsf7Z0=d<}I&n9)#Ju~eF3MT_f;wMk%+B20?STq#H$n`)iKK3LAv(hBPL7dvuH$BVr z(KF?g5h?ZM{=rV`g0M9@JrRk}yfB28z2!-B7a-}}Xg|)-FSyHjz2FJN>YQ(KqBV>7 zL5g^70dkxoKMAIlYUacG1@B*Evx*TL*{oObi)_}bGb7oooV%T;LT%O)_c*UgG1M6o z1$)&h!sTbI5wxH@IaA&Ce$USE(USjm#jI4}Eotz^(bFlN#6=spGE#9FX&sa7L?1@) zk27JKnvr%kW)`$LWd3yBEV5DB-*RoPbEt5KEmX%}Xy^UTL849ALh1fO04Yfx8|u7I z^bT9H`z&?+dr)vLEeIi(;#l7Is}2#$f{V}{a43SSLPd0v%b%3jbQMXU@iL5QF}M>PLo=NR!ya7mhnzGPuK6r4+Kg52Cwo=)QZ;9SB2xg5)} z#SQKkKLnS|IhBDF<9nUrkD$yYMcu5{bQD!)2Z@s8!&I^tP>gY(&b$)Bje1G${wI!m+949g(0HqzfCS zH6Gn!rzp#N6DE-5g{EOFkmAf+(;)OCD@TJ8IGjy@L20m^ZVgJAJ<{gDZDKUma`1#e z^9PRQQzkjhMMExoLT?&BJ6p}q8zD$;t1(#5BxiSh@N6{(`I0yhS_Q7F>j?Ps}BVjr|N1Yl4^izz3paUj4 z?c|t12#wXk8d-}wPmHxnpN90jE77pg`_$=$zg->0&vts)-fIQ;;4rE8YWYEWNWGU8 z3+lZmM2)~2mOil>xX}UoU)>r;gSh(^Lr_ELvuFF7FN^fRs@Zz8e5FOr>PPLkYR|n13hx}Hx8GI9)8E(bqvX(a_#xR6x1|R=W z4LNdCN-bFu<&G7+5;eEzRQ+gx=xZ*SsLPd-^TZqm2?qpyhSla7b_Q?rdS9D2+WD-_ zYa_LJN4Pex_1bMNif)2!&OMyq3T++kX)=NoBPLZ%ZWWNK1nV(^TKb*%meER${K{(N zS9S(9vXw0QIj%?4KhVh1y#rFkb#ra?vsWp9M`~ou+%ST@JlJfm|HqOnZA~F|>_H5> zZIMG$JH;mV3P@G$gbiH%j4e`%728i4$g*P#>+3hoR?D4Cu>ZI?yN$JlmOH&MflU$M z6~~p%(Ykl8GF*?c^8U8N+s38q!W|3$D_qmjZfOr-4O5;N*|=E@1LfTz(t zx5n$e=lY4JHQIVsgNR#y5$HVu64HxAG%cb=qWT>kTcq5_vJT*A?WTpI~)Nh#=$)3(r-HspJOB$U4 zI^7Uzzyadu{OCNT0RY6&c_Bkbqw~B-m{!aS zbEktwXTU_GGsi@i1j5MHTVF2N1D6D<&+{*9{3o^}H#_Ue<4<}j>-&Lrye?3^uDiPS zh8(rinc%LEl=8j(I7T`i*e0?BpDJ1C*h%|wtVP;<0>4O`Pt1$7?NDQv^W#u;ZnoPw zOq^%vK_x78{>D!A(UAXX1=Shux>bgIv1x9(rlI>W@wbhF>GOXqeU6!L_cGFF$N+sF zpgZTQeJ(dEV5@SS`4LpP!Td0)OdDMQ7~SX-!!+6ZyOMI5EoIz8g~e-KytxNw5n1)C z>fIn{I9&?a>x|QHp0Cd3f5+BwF@MFHOJZgTJ{DW}n3(UxR+5*zwsFVn z?^wc}i1cycKFkQFOBXD`$6Z87mo83WVUp<=_(d}PBAiT1liYn0nOnUd(w{Q@u(MCn zc|V}<{eZq#fP{VN^*qkYQ{~r(oqg3+Sl_vbHAndq&XMrB$v^#3Tp$IbxJ>r`j9@Rr zk3S?2rm&DanCGPk7T2No|6fSqNBBh{1`_c~FWtsJg2H72p&1iE{tj&c1s60vZ2~vzL*8C26vT&3>&`ANlUS!A3LShVLfD1CxC> zDOjuyTNbb!oBzYmp7Mrwoul-u0u^qkv&{Vr510JmhN2-Z28A0!!9Y};=@=E~R$20% zGu^n)Pwc<~NiXcC+&5YDVW}30`QyvqK_MzmTRF1pB}0C8%y}{P9u8gY22uE$Nd+o= zjgiL+D5A*se*!iPeE0P};d5t}@ec<8`qZc9%3uJ0*#OYjcb}5#kY5vGkTX8NC~Y04TYj;t z@Z0i>4I?J+$^vzl@9Y=O*8?Rxs!i>V@|!Q6uf^W702)Hwavhb#!!Yw!c)YsvoXWyP&*8I@BIs`=r+5~I&+Ls zyyBGh$wQOE*P-w>8@_T%V+OB5&znzOppJ7VFOcv^SCYK?Z|7~s>X2f~7tkiXv7P6D zXd9_#x*!{)+ZeC$>?uu6uMRnM*A3u9?3@%i>|3~%^&u}tWSp?zf5mfb_>c|olVr(v z&ick>UWSlBwhxIve2!6Vp)G4kNGdN>ji}9Y2+5G2qnl|9lbUSsQtFBL zP77$ZAW!snH zGM><3s_T;$;ts+Mv|(*-LL|H;<2iX0^BGK08)lTY^8#5vJNsA2ULr+CC{7GsqwSYF zesMN2N;pE$lba+BVEce;R_vO2KRYYVmq02gfDNY$*o2dd{A)IdQ52h!-<_>={hNhq z41>Sq-Jf#9Z837}NOy+JNr7u8moJ&7JU*>9ON;3|Wbu+pbmp zBBqEm)>V^QY=C;zULX*f^>n1PtA2H%JelBXf$QwiZm)48uL%0qN4~MEe#HsX+7mYIs?4kk zNdJaDH#)I+Fi%Ft92L7AW!c zU!=lw_&EA*RTl(q*|SImZZTft*omRV!3;gD7#d?URC7oLUL~Raqr$Z7X%TCUknn&AVNkh`0@`l#J(C* zYZ}nMO}KLu+`l3ElGVRYY;wh^07BQMe~ZPce+y0+@w6qTaILJ0ly=oCFIN3~L}8-q zaic4*2iCn$%`Z{zyj~Zor&X4%+JnU(`BhX5c31NK2aD;S<9-DLf;GiGO(QBrehFj4 zyV&}m^WK{~>a^1%%BCROH6fWI8N-JK07GY1joKtt9@e8j;oh-do1qp(H#-M!K zD@=)YEmk%^yPm7Frn{Czv8u|)Q*n%YZmxFob=B|qVACF82O>dDLk zSFB850g<^X$~--BiF7t{wKEbqDagHA?JBDWZuc#UhrvGslo0Sx=8wX1=qzqdq|9C6e$j&r=k zu6HbUeHMmY?%m0jp5!>Jv+LDqP7@EIVr@nAA*^7$WnsRC3f5v<0`L* zw!7Bi;NJbWT@QJo?ZW=oRa=37V9nFh?bMcG&$J9TXfY0E5iR#(7(0f+3wZB#aD5y& zVW+)`^BrBIjav&@2gcQW_Dw7W^2jiMQ1K0jkwJl5j6n>KT=0709a?`G-`myJc$jC< z-bnvK=FmK*kQ|zgalF`qOAsRPUxmu_OoLG2aPh>T6{&C1UW#E_01zJF8U1}L>{rAp=fh+1* zxX!lkCRbbiZD{L*u4K6*vr(e{PN7;t--%T5Zkfr+r02acG>h>*Pp0nq@LmYZLJK1b z%W^!R01wMz1Z3eRd=f`uX#&zu+xb5uAllCV1;1!J{}-SZk7!_*%W}dSzfi?xId!Y+ z!vGB|eyzJJUNfpoDCrwMNc&<~3gnUYymHo*Ty z1I3W21jxYS*T0>F%3pGaD?@(^_>Ia>@m1cIO8MOgn=5}6jx6<9>P6!uPeI#SJ36@1 zF)AXnPNC~)OkzwDhXM#t(~wD|-RH0{Y4>^jBJDm8N!t@sGHAB=IKrFan#%2((3vWCU)&FERo*EF&Y37|sa%RUG%I ztGgE1|7oVR`Y~6&k;5B6V_k2SVj<5zbuGraf({THbIu6Y^Ttqyg2p=izGbS{kK#Gh z>mi4FJ;gkkvW#M$7*lyM>Y9@Q0QUO1%cyIHQFH)Ao%23kmwG*c-e`f|%(DsfdJFW< z{~Kt3zkh3))$iX40e#d0{gDD4((j{ySbD9^2%sAKQeqf6dGD1A=DAG$)@4B>8S6^T z<$}MQPD#Re@o87I{yQ)jN4JljhMNBYO~PJvFOtgpM-NW>&b`ioi9E&96NSHtia%2I zIY=c%t%hHusMVf}G#6Vi*7Z>s9o;_8HP=YP`T--8hoxA!^RK~bV3@pj$i-NB;!LVT zzA(Wx(`e7|sB^OnXaRWW7`O5qFe%pIA7s?0PR<~Q4!v4EC-Kb*174oB8)XCV zLN>hTWlZ4NbZQ1UJ^*xT7KR7j^yl!@Y>oVU3dFp3{gaw#@KWm3%<){1awPfftalw^ zB}e$JfDN_cVga1v9q4$jv3%p(I`L*Y7T|i};&jrKpLTy<;>kGW?{H1U6D`+NN{Kdh za4dAtb!mE|e4~^n`~9+ww|Fve{3f|3N*DTbmS1*AE%eJaPDQL#)~{~U5L5$=A0t+{ zJgZTokP0y8_}Xk_T#Z<()s}jmz*@MvH%qVr3Br1@I)E3WE~QQ|%;ikOO6#QdF`Sq} zQ%X=23USeHxe9S%bl`<)E2HglWl_5=SK%zSB1Yf36~kHRt(V(wsYVM9;7a3^K6=yT z$|cna#n2_S_Hr5DJ|!zqYP6)|O2jB6pU#O0m(0i{{30_l2}laRq?W4RwoHiiJ1-!)r0r(MDp*Ik!{pUg(-*yvXn>;bzhb^I_?dp80c?D+KyUDvCQ&r7L}KW};Dj(-8MQpf*gx$5{70V7+w zI+`0XkN5ckPGV|?^B?1HoAx%V2G?0$Q}e+QddHphf!?6wo3J!iOw`!^0ySW+8m? z|BjI2Rs^)rwvV$oHnNWtxB^P6z!f3Y$UrU+TT6$=`6E{ZwvaX_Lzs~P?^OCjSKOz3 z61Z@HcVxKQtWcpVxDNXApc9bEIDjOP$vB8#WHJt}h-5M#I&T%(d}EN^D303%$1=v3 zyme$VK4U2s;%jlCfVP5I_)+6B!=vWN7eMR~J=*w(=g=G(a_p6H^_6O69Jdn4^L0F0 z8N&_=&5@leBdv@95Y3SX_ z_XipOA{;5+%h6C92d%WWf>z%T&fL6dxN88p#G7$E$5+oNa=9~Wh>Pb`3K|?H;W&0rmejz<$Gfd#|b^EPwkI_E3Kp= zY6B?!Y8R2nfLQ9~{b7Y#`W0hY((708i}d;WP>Vty;VvZ z&a`ZtB-g$MBP37}s0wd$;@2jp%`%#E`e+aQ)V>NGhZ3(cj3yi|#(guo@)Vr*i7uEz z*7HZXX1{BjF(9BwQBoiMj#bJD^bVc_138b|GGZ0QZAmjm@j_$+9$Td>%Xqk$`e9s~ z*m_vP8q%#GEyF<^{va)g4x9sx0CWo)LR1Ni>=q^&!?Xk@=iZjqN6%TMrkGt;$x*f9 zyJ`Ryya0{eoIqm1PE4^_kbcPZZ~gcxa$PY_@}kt1_pG*@Qf)DKTO@d?+zeR!Ein%B z`ZVo5V9~VGPZK)%8C6#U1wI9(*?474Q8Ym(#z-v5t0@wTk;=;=QJN`ReH3s*r0Hrk zc?zHoW3ZSVks?0NaByhJZ+lwH8;`qUbhzJ+Jk*jDX!1;~yxPY{^yv#!E}E%x#pcw5 zQ(w~kh=OVYmK!u9IPmQm13CtFaRp#g;9a#*&mRny^~gqA@JTA}Rmy zHLykgNG!%OhC!L4FgU$SS5p|4GGhlXj;2W4hAi%_Z(c1+$EMtG91SUO&|d)V><%=} zgcLaCF96GhBzb(O^Iqfk;8Oa}z-`=|sJsRk;nOvHZvnFXfme)LybSG7KsIeK0GV+8 z`4OWTFF_`?(HaH61J5D&CsyCv40oZcfJ+C4TQR!xA_N{P`@qwZ2V<=mxx5(R7;NDf z!E@|3KsE+iF(&eCf)6@P|pXRR$<{) zK#e3%t_~VWU?P!P=4z#X06=h8Wduf9`K8;rdNTdL_2NxXoxt(qDK1*tRlzVT#uuC_ z8bmIgt=J#}O5W1=jDw{yXZUOBd1}H6_04SaN1ptLji3YN$AgL+bn9BXrm1d0OfN81sr~(X+ zPi6k)3M6(iB(y?!;Q6)@ufuDD7eBjr%Hkyn*QsX(CN6HI*53h0Vc8B3#$nJ==x=}G3q?6!iZQlF~= z+_Cx`#zZkr@e-sVpI9353C~g84TGZmybgA^Hi{JESDsHIy<&;^ zz3K^r)`v0F)WYuTSql*nwlDyZ-NMjh40#e*n%dP8(AtLbJ7WPSjD$AVYSLVu15L65 zo@{|8VZak(8_%aEZMK^9a=0c@Y?Jl8Nr(uW6oANXQfM+pHwi3FO`2^ti6Wa^mGRZx zUG)8n`PvUMucrGRBbyhbbyhD-QH06NTJCN7uniQr#CV7o zjc?`{22bDNW|TIHC<^Q*7@~v?%vOk!`#6XN>*2=CT!-7gj?wS2XzT?|!Q%$t9xY-5 zW;e8m;j=40xiEFcMa=VvgcdPd@QW5PTQ)>m#3a{ozZqr`)577t&p5!zrLDvLEXBf` z|8B)sD#PS$x1O_ulNcW{H0mbVNqN@gZfpFTXVB)@$qm-VA>4b>ewHO}cU|LGUP_rX zOH@~t@~{hxYUBebv}<^h*QAlJ_C}?Uj*ZY>-w=#2wM2QPwY#HomaDrl{LUf3rNJ)% zu7B{;J8q51_-J zea*ks6D<>WIh)Cp+iTU8arNC#2kPdPUCtZj@%ruujK!Q~q?-jS#UdmB*tO8j6PqAT zxIfZ}v6f0e2{9*#KZD@I;s< zde?1KVx6-wRIIRKtA`gft`Wz2~tSF z8h(+0wM~%(ytBFcSfE7d9?y{$?uQL0*7x-=l4uf3vGC>}za|oG<5rPHjOGl55@zE~ zN|+sa4ha)-NSM7gDPi{ECCJS5fVy~vXTT;h2cd!l5G2SjE%P?oqy!niDO8Xzv~joA zp91{2^v2*J+P`FchC9J*gfwvJ)#5~v^mvNJMZ`tYn~tSPdNc5gq&Fj+^k~%K{>45> z_b-sG4m*1%E%rlN;)k>(1kybPc#xYC)yO+e=HB4$sqTAOLid4uOqSf>?i%%2fmWRR zW!-L?{usm%fCwTjysHrOa`^E_5Wy4{K?L)>6i#4Vfn0m6R#P4SE>3GNTTC-6a_p)? zOiT`pQ~=A5PUvz?e%+n%x;EWRuY@=A=&JA^_(eAcZ^g?;bl=H=mk{Vq%RD?`r9HUK&c1#)GR z3I!s5w$Ur1=z;S~p!HW0Gv(@BtvoI`S3Yo$mfJJk)eVkcdBpJ)UwbQX2^dh#mn|w= z0YD@K0I6KuwyRs$^g5fBUmX0UC?Naq?h#WQ+s)lV(>p`fTeaJX%+0n$v@8=Ib^W}1 zy0%$`nc80oBvI{&VGlkq;<4P}k1zK2-0Tks(nRJw0Yo+!>=2q8{FBo24ey@B^jIXKs!rsy;*tNjJVr9O^jmIPOftIN$|!6*L&QqN1jJ5 zH_HVDb+V8>J~v4{akF|NIUe|ePb7zt5dc<)e^q+B-w>>TJlWfQM(kmPWTl#2MJY=- zyUX2A-vhAmsPAPv!>{jemVX!_UdBFC-z6d5M`ILAjQsF6_if^18;?xw>u#a~e}uvA z{Ro7xwkXXdSKrw)TE3m*?k&C!to%Sy_<9ulqqwholK7KVxN--CkDwUezX6Z&R?bhG z)vcU4Z;iZ5)O_9+wOzFO^RyK%QUY`P>5xIY;3*q>))OrPa~n&H)vZ;RqaFsA!y$(% zyATy^Cx<5(FZIkr^H9yPIKMLJ_V5Q5d%p$R^P@@8hb{(-MNeU|`Vtf}O)uK)9|${{ zSVdj$xd$o2e|_;VzTHeyRX1=oP=Q~<1k3!LY;C5?6J1j$h+Nj9xVzkQ^hchTrT^4! zA|7KI&^L$a!=I1PFQ0y1?Hdp&w80BBP;iWnf_RU- z*QRijq}zhjCkyOk34JnKw&+nYDg;9$7rf_AmLtzszDI0icxX5oIaZ4?)?q3wm_Gtd zfPHnDZt6G5mRqM(mVI7NTP{jiwY9gKx4{b=S8g}mF)TSX(@c{ivXd9Ln(~ z%emv?#pkRDN#x^568Tz5B$i7=lXH{eyX)^iZ*L6f`<_?(9{X&_Fzv!)+X83xL=l`? zcuSMYGN&{xTd)f9N+&a0-}AiM%z5Q`wd=ifsJleCw%8h%IslrwMUEN(P36hhRQoBB z>$j*QX_3LoP+MDViJ*O5wvhG(wUyoxX}(3Z_41(9W`LWvcxu~#t)|imb!hUihuk9s zOIGbn*h1|DpJh_xayT-^wnT6;96uX(;67;DJJ~b+{@u2l^;JifG9w zMP@HbztB=|x-|l`+iwkJcIsI7gbFdc;a0`$hKv+qb}vle%&uoKA$2Q7pa=?#BJO1X zt_|1kwh?l!k9_r(nBxCVbf;)h)3&O(C}KK8?q}pPkr-K^7-=xA-7Hs>I9lPPsD9xQ zh(b^{GdW(CPGiX+Ex{K=jav{8wKp6f6~8wi<3FYBeK}$zEFBuhd)l(x9T%&+ z^tsz8l!}!@C-h=$lbA4$QZH=?&yRWLk1vLgGE(2vADdwk=oo?p8?*=yBu}J z3`QOH#+utOftxyb&U2%?t2RZ(uW~~KF$k(6-e8rW8xAO+QY%Uzz6-+FrvTSsIMF9< zQ=wFzT;{%B)4$zDp;W{A7-k<2^-eED7+`z7K$;kii9>RMiE*Rjs>#e1?s87|EH!NZg3N0PuW7btw9%k2 z7!$Y}wzZmi{R*^rbIQgcb1|L*{2)VI z2=?9T9#fHSqAz@bBCLpoj1=P3E5V$aZ#5?W1v|isc$-xNcEOgE5hX*FWZdnmlhTyjqVTD_35FD)}@7t!fe!kn`{xo1Q3R^!n%IKZ$r$o)|c4vUy zmItz{+X?<{o(i}^!K}4F7Ts~qkjFm-_lh+&8VnQlZ4{C=Qs~iy)a`U)Ag*V*xB(TF zx?Pi_;?wF2`0#gJV0kk*%4{W{+6B94zB#{}OS|~K zz3v1}EMWwaq!-u;K2j>;JDc^WxjUtb#nO|Pn!EXr7}t$R=ey+*`EmWy?@ zW3sfw-BcW7=|P$ofgTDZGAB^;ekgUf)r}XG=1~lh*cX-Ntw;D=^X4&xS4No0GVU8K zuJC40iAZ?SW(}GVk9Tfx<#@XY>~EcOWF;|hK2amnNb8znY0|o8_(fXR4Cq2<60UWS zM@D7tc4bsgJminCb}v_VNM!B1-E7b#+e*uVed-M z!H2&B{=CJYTc#%dw1J``_0xZQkzDje)g90dYeH!s3_vd36aNXA=65>^Lzwr(&Te1?_{ZJM;zYn zjDoV{ZyH=FM?4g;EpfmM687F_yLtbMA`1%Sf2Q8 zdE+xas3U;OjnnTHTSCCX5rEi)sbpiX$ec3wmZ(F(f!xFzsp1GL@1Ol1*b!mjaAJpY z)NhNmeCI0UsK0-Qy@@aOGN2&z9x~;*vS@9Gy5P47O5)|Y^*d-&TJUy2OW|SH>odbz zLeOTqKUb{?kW)90!7u9OF-4IkGtO_^pM`er4&S=-MP01!JAKE_oopxgJNHKw+=V#4 z+?62jTjQxE^Hye5ky+>56GR6aj~X}%_788S6=84g4S&dYrJ#Map5pf4f^>$MtxC$& z%P>VRd$Ve4QW(O$tpJekXb(GojLiE1mfhB29;=}a^PENY_`*!U7^HwqKwc4=fK++; z{jn3X?pBz`O@Nz`OT$Y}hV!_X$x`VYY0b}ZakAukf&u!c_$$*;cvc;oW{gjo8(qF&`)nt|k;#n?6ti4 z4;LwK{!jvbwg~t&n1GR;I=7C%!>j*y?C9Dr7SYC(5`MvoAaG>?86~c?sBHSIhL5_T)PK?`f=6}|1y|4RvOJu7*++CBH zX8N*Qt4Y$evQ^#4C{ zXjOC{U`F?9YdxM4Wp>odcB+{RIo6*Au|n)A_tOZUTdw;VLR=LU{_c2JoMVY_wIE`Ud_qQc(FFA>mL^TR?j@h5UH4Mt1ySx!H9?&nZJr6xIhvprRWY{-2LiG> z6Wy{&WeFq>$4ly#O`@IQBdj70^)MlORK}%w8pZ{wl)e{iPa8+)0^=U z9z8dnB6_pZ_T;wvOX`A5H~MS&)Q5+o7DjO|*+Q@8pSw!!hhIzzJwP7y+M{wvtofuH zkOvCBCL@A|tP{y;gTzxj6=$vG^rR19QmlA_frV9+2R8lhxL3?(srIdn8JJ2_whU z#7CBF8-CH4xouaZG1HxFeh^~6Hn&YNHTg~h6Xy+Ny56-L0q2mg3_i3=nXVE$!$(O) z{O_q(7Tp~WAqv~1^%7@o=*nt^LFX;orCjgD@2s@nYJp=5F}Emdq+90JH;0NEyMZm1 zM*55CVmBE#?UEeTz#JqRh7=lie>2Tr1^^|=V?*H);w~Wt|A=a;cigQm2=)og?S~nD zFMM%#V6M6#h(&M@0Vp9Xc^%XGi_yU)X|*xZ!tzXDZa*C|{Lc8IATSpm%j!JxCTI#r zg6{ZYOK?F#ve80P9GKfrhYWPa7l#8gtX4oSM}YqL;&gCHLh!kT;6h+-KOHil6&=N& zff*J8$fd28OS{w^%J8b82BOz?*#i-r2DnDZSC3cQ`>71LJ^Hj~skZfMi>YM2%AnUylXx6}|ICe^!_H zdiyI%X>Vs4T6gm;{qa}S!|5Y=2JS>W`bvcP(l|M)pP6AW#f3Yz-IChq55J;(^&hrD zfwv95xUdjjmw}+yVzHfry9LAaf=Eap%ufgsdMzE0ko#f)65D<86#$6OrN0`8sf{e@ z6O*p*R_H=^R}Q?Qg0}@U3g1lE9+o@%m@dK4;pS0e<+P7nMGazH73Ee%4aeeo?L zE?9#sr+r>kY0xjMlC43!oUK9RxG(f#TTyKVVl|Wk-S&#VW1`=_sLQI6?j#p0-AU#d zIO)yfd9T=_0&wzjlf&U%ta#JZ-6dWO3o9L7}?a=aaLo;@eF@s;YAE=>{6CVja?j} zvFjo5wLVCq83zQtLjlTK5spz}CSA<-n*b#mbjo z{LHeceU~D%@4un#yENEr0j}(}FcBxVkKyF)3r$A9e!-Ge``!<1AG-GIx58MG2p;rp z!K~wA>Uyx~xR~nts;&9dSI8@%3#PIW-tzAs{Hiie_pwUU=)2|Fhd^oYG2~E-G5l4v z9~)pX&_Zbgu$r~5x`V-lp58;2^@ysh+kin%5D`GI6eWudssW4a24GMC!KYjH zqKZxVd`lTvTc}0VWyD2`sw?fQHMp{(W@|tglEUIL^N6aB2W)G7%?mR}@2|ld( z@0I&tqZoD`bxoKyP`20T*du9cuPMvL#axtQk0vKgPHQ0G!#`yR+T066r?<`?HNDpM z1Wd1oj4;#n9(&aEnmpor?ope2br3$^+>2reVRLU#5=-#01JTeP-5@MXLbw~hNCI)eh5XoeTVi^r{2n&-~4&xVz<#0r?6pt}ago@=-S8(RLWs*Bdt~!}gP3C=Ax0^W4 zh#)C_ZYTJN$Ujl;t|DP2R-n*b&GR^vsIJ&3n5cfVM0J(rlBj-EqWY1g2Z<^S&E5-^ zs6Jw%68`Pc{4|+0$?ZbQs_W)n)r-(?UH9x&z32j>g0#iNkJ0!C8Fav4^0KP^&jP1d1g;_y+|!f z{1D4F$wL7s77DYZi3F>2v&|YadQL_@Wct`|yN;PHf_E zi;(usU&CDn+PKhAgk)nM!7u9JRX)Pc&-XA#b!02h@q|3-ZQosHPB(8b#$o%3pQHCm z2zzyt@>GACB|`z6PUJsb{?4+quOkEA>AF-+-ZR4#dRALGe1`e9K4-6dY;c{HVy=x% zj+klQYb>@C_R6eZ>hy_%B64-_wo_wSSxC}0R!fmE=c!(ui zO!Ur_nfc~+<0F=ZZ10n7lOz;Lfwkq8zwa2PJyHD5T=P{e^$J%18GnAopWpH45B&KH zfBp-MIeBn!yT;zj@Ne!@-o5w^*Gc@Ld7+IeR-yVgw!VAqK#cyfa%caxE;+ftd@wOA zC*+?6<{YEuYk)aKk!sgq$xy(DUzT2J=8|y>%?(BhD-p~JhoUbK2(hBZ6X3G%{Q}xF zcyXib{AMzBU0O5w?jo~C)s6_T(`&?o9!%8MnzM!6xdlXB*5iz3; zveOg~hS+2$hD9MSN^^cvSPAWw``k6%a>r6LJ83j(h$SbRJY_&ZF|5EJpx$6W&rhC) zjhTW!2L4pTpWgV>1Aivq&sg|*%G{U+1=-kYr{WixuE`ZM zUBzW9%_>@K0AvUrT7{xzk;@i4d(B< zW1n*2ckQ!f5#QCL96@XEQ`^D|g2QXn--muGt)zRCxvm_ycziT^^jiDm(#>W=QH!Bp zyVH|hs~slrSx($O<#iLgPdQkuc;4J9db4VvLD{u_Kne0{J?v`aUlFrUh138}`28y` ztFAfni`b^x1^ib26^UUa;VmkDKIVX0pO%N#6iS5-h#R@wKm8!8E z@=|nDeephZf>vPX`nCN)`L&%m8~1}*RTk_>t0g<^FlURMHVO%%wW4c;LF_HsXGPZ- zR%EsnZ?Jk(dUzg43|mDe?=%;Pk678YuX_6FC-)08eOB;;S2xuMaL)wCpo;60$d5yskxY7*{z*7c+%wsXJVGo z9P6vp*Cf3y*ZhyhhJ5`MzSs%USQK~W6TGhUC-!)|(A9lQ`#bnsGI_^R2g zyqyhHqPpJvb==9hK^9zyiZSm*Qg}~kV$%kFqZopDQy06(PL^5wJlXQzo72i^0%u7i z!w5xGG`L1(x%<|rIC<>%UwX;?ubJ*fG$ynNzy z^KLOQsCq5Cx;14S`?|WQmUC!93SHq-UJ2M=YPJk04OXq2EOOL{VU$FxsljtV$*u$sIef?&2h8V0DFaA$&8FVEa=723 zz9_MJjP{%?dDHBgU>C9g%h$m>eQleB;`WEkM>X+p29?M>Bd;DdZxd%&dN?v;6q%N7{wAuhQsBG z56r!x1*e74hVw;}k(FfX)RuKnrB93~~J z7Hgy>rSwnDXie;~p~$Sy%>JU3B~VlM$Sa?j(*g>TRC2z7(dvVs(oq0Uu02rC6T>p7 zIJpLV!%`8rzGuHoy*}O<03DmnOhcUzWhn-`^NCg|`VDaR&2+>&B#|QEU*GtEuw$!2 z0?d6W;&wB+^S{3|llPo4s|!r`6(rK)Hq~n;OqPn(qoA0&u^U_-AK?-$gNo}_-;h6* zne_vp2MN$xN>zG8ovA_G5(pQaQ2hB>^8-!X84R%R8?x%xW=GMNWsovH#1g2XSi;xP z+A`-$v$p(ao2Pnk%{0ZQu|d^!Ky>ySvt4L$;>(<%;!%K2@g<0`G~&z3pyCJ}E;8R3 z06mB=ZYAM9iZ2>;>llbY;5RwUa#m9F6t2-cV6}-eDAiUFufY z|49L&plE*S)oPc=$=f&o3mRo}&!-H{=G1`R(ZcFlEHo&TL&@*XQn}_C#|LuFyAW+} z#muIQ^~-OlRR{c~m=0Z{5@KW*Q4d}oukUFfFJCfO>PaOk>Q9{#yDRwD9|I3c<-FuJa^#&C-7@_jc)F#BaBAB5Dr8V!ijJ~aPLlTrBI!?YBsKrBJa0Yzn@V>tp5rVIO|`tIPj{a$SQ8l zudLp+;J8Qs$;K1FY21t`?p4WSXi=_GE1Z&98pa$rN+XzqhNYqAV0N^pJh2~a-Ayc2 zmLQRlLJVw=37mm7OO++4Q5qaNsW+=j^W$@9@_F4Jc3mG+F#dyf8Hb);`j0Ro?n=B> zKM$r91OJ4v;ofs^sK7r{fO#jTN7WZo1F=FFg2LDseKNG?N@A9II+z3wQ*BA{6rh(z ziqjR^l-Ndr-@Mg5=QVwEsTvmGFAfXE$?+biroUIJBKI6;#QS^EJCP*+Ss2N~K=5Sw zy3Vesqrk&evwAcZ@Zq1Dk<@>{1TMKlmgGt;sZ)@itE?LKnhq6X+b;cY8w=^j{!)2z zo#Xc6k##%?n%>}miqzBSfK9ERY4r|7=q{}fP zhvYkAJhBC7m{N$JEFh@!8jHxsk$WSqSrZ9s1+?^PSyK^FP7qB#v1?wxu zU485U6}@LHqlz?iB_?p@{>x(SlZv_IK(mw8x+cth(PHkCLCh^V3ReBa2A&vA|MY+g z=<_+l?dRjik@)zv;$tkIrD(F_J89|ga9NtneA7`OE!E#Ypkn*H&!{3k{ua!~;}##^ zMLw2_n1i-flTlwCY#OQ@R0G1hHcu$14_G|krnA1GR9W^lU=1T#_SMkYhb837ds}!8 z1#X+sj`Q%Ao`=Nkj2hgf&Ca$He5>(_yygG{;u2YKFtsWM@~I_{cXEvu!)z34OPiwk zS`a$DK~f$+(VF1-idoL%3-tlYw;yZ zpo!VVb{?F_(hjQ zuF3@+JPnM^SeSwmHG!>b3`*3bqvt?uz>Gn*IGEbWKVz;eGdp`?WQ{KzE#&+gJr4-S zApl`*pOeNW+6g{VDsTx-g2v8Pix@z>NHnvdD`m~x*tVH=Na<>a;LMSm+cuMZdxPrq zJfw8AH!EW6X!k>;qcua0#`?=CeLQUfR;Hw)jSeXlZN$Kliavfwspv?SK`Q#FLQyLO z#kfNeR1|QKigFx5DjJ5@-iC*iiq<$3prSe5JdL7P09Bx(Z}e%DrokJ@-9SYfBB5MG zYck4DcJo{k8(0EuxW)%pS<6c7#M4#f*k-5t6ak5&i%YLz9_i#h{34y)cZe=7C2^&M zJi4S1e@NL*cp2y2!~pfQCbaiS?M6?3<)VF}yJwU5*v2kNFW3JIkv!vfx+WC8ME?QFU8>OFB4lDhvb{Lv$btk`mYL(^A!Jdwx>RC(X4hpB9 zfRZfeHw-1Jr`A;N9O6k6%^4QdPOWhS1UJY9xt@#w{U`GY2uL?Mf*{=t!*B1`mTtbw zbh8Q_+8s3tdw9|c`+6!z4+P>sNz;cnXs8c5tWNE|#)fb$J^{qEQ&a#_1b zRgVSNyO)))Rh2>W=?2nDsyYU1kgATwFH+U9Ko*AA3a6^aELAo8d5(ou)gh>=IWp%? z@R?b}$RRDAZzuRDsYpyWvYvnm;<^uVeJD2B(3yg+JFLv-?%-TfPS_fll5ed_cgehpgoVhRV`bcf+rT06c#-9GcNN$gWWC$S%>E004{%Wqr z4B%Q&?+&A<-nEC-$TRD3z{rz4)YC$HMrIF%Y1h;vsz0wq!Seo`&m>K!@Dws_Hfss? zXLC+)y%}~1Hd89Btj8qrEWk$N$ehC}cG_CIn!Iw}lO3V36*g_h5f(Nr0$2*0##-U) zy~q`^BS#P=*^#68MRw#UumkK!VmLc8r}*TM^-o-xHpbi&CyxxmPREPWIh~43Q!>O!3 z?Hug+x33=^Jp;(hHwx>z-TKU}QnWzH)02h(6CYLFtmG z3Albt7rkugOt81UsRTPPIF|$qxg^-(Zz{n)!b*`~A9^!_m3rz;vQnXf)xhO6|NpV} z-hojSUE{F#E(sxX6Vi4=+SX74fh6>9f`}jxLQzl;+QxOz_NEv+;0TmS+ zV2h0=4~W!6=|zelMTO8rLEt-c=I+kf&F1-iZ=!$5X3os%bEcnb@5B#%6&+~}A+fg$ zpY%EyH)}(HaWkK@*A1TyUpR<9F>EudC5gbv|<`5Q@X-TP1wUSUnY1Owy zE9|q2#V@q#;!3S*ecrw{gjF3=?F*w;D*C>wk?U2F)I3ffS1LW^f30fx*sIQF)}oi~ z^LdPOWc<9JQk%1V3OO$LY$2$5_in&1hh-n^=4EF|1H8oe#|C+cG3HRWdh9xZic5^z zA3~5G`bnsC)O9CI{6V=jwvPWnCKIho0C@Wm0GK`Fq(IP)#|&>*$EuL~6alQs3y|;6 zv_GJkS00H7^2+1q#9eIW!U=BPcNa7fgsw!p(rBz`_&QH5fR7K62Hx~m$9&-jht+t+Eg9#C&-V+}PTPsR& z77C{BeJJ%k%V7`~(}Vs(8bH9o``X$;UiKQ?SHY*i6?TpO_(7%!?JHW!8>QcJks?&v zCz_d0fp-zSYwV7EZMy)r=7o2{=c?BJfKP!nI4FM2-iZ-0#N0z}ELw@%C{GokE8kXc zBap^mQeXVSU{Zf$WkbZ%^X=< z`+GND@U=af+uyK9@%(uyk-qLvn#u0pYNHx0l2!L#F6d+T{|bJ=&~f-~Pdfj7vAs!Z zz5vlU(1!4eaR8Htt|6skGzY%Tr^!RNZG@$=NFG{7DvF^|+rqU^D)rKR8|CmQ*z$X+ zNFb{HAeyD|LR)Sod~ORbGUJnsncr6Fq!KLrHe0E9E1CGdeY$2`QzbZm@2y8{k~u^p zHz}8csrzs}d{ZSue8MJ`K9tG<&)sYpb>sgQBv8TTUEXUOW%|&Hv@=cGO@e7Rtc-T+ z|2u6=9!hAFaGOu)Vz`BBGTa8&$8cL1R9y$jRPIpPM8w6o3W~TaOx(@3lGp%Lg#qwy z@cmxaJX@O(Fz6SUFZ6jq9>dF2@e9Mt)J>Izmrp*mZwd@A_>J^+pV?oJTBHQ=%~h7D zA~IK5#B(-*FFW&e_+l4K-16tEYX3$Y!ri!Bmpeh`aa^gen52_=foiD<}JfkX~JMt+n*{G?IeZzBD;yC6|CBmHMfSW2x(ce~pTq3t) z^Wb{9c0E$h-Yj#?WD_U`LG^jc9-Gb2Q|6O8xHPzRb0u+Oz-EknQ9@8d z86H2}ELT1sllmy$`<03Jr4-Mg;&EKkzC)yAZxV!J2BI%8Ih~<6#Y7~>NJT%V?1qyMv6W_P?ssw1P9D`PZb3)+DZM)|=X?4Hy*0tJoSe-fPbjrL}Y7ARexHzhct zB*080#4X7Liu4Cx2=T)Ep-nJ>x^W9IfDtZN{K5#AyQQ)ScVM%9RbYg}9h6_T*w66? zx7#Bvu<0V-s0|g^D(uJIu|>X7yG=oT3{`t`1rt0zsu0U?7J`!Zku7F|$LXXthO?<# zWH@_v3t#hu^KSNbaD|1cLfMnfJJ`3u6~0szAh)}XZyT08m~9WPRSFs&m(YS8Apl&! z0YIg5EGJNKM>9_$RKca(v+yxF`zTgxt5P(|5Vlp~P9y-t4FHwIu`Yos+)xD{$$|Ws znI6+Pb|h7iLR*tU4+2060Kg26cM^a?4$uJPn8NX4QWcSpHjz&v07MP|k-d>$I|es^ z@OiJP5CHh_;zT#J$;t3@;Go?B!_T6Povo2X#rU4DV2c`ktZH`qh2RE9pOt*|A$#{! z@S(slrw_p-4-XpIUuNrx6nM2_@Z0HCyu1B^NMRZsC$CDZRd~(eXP+t|!_RI}ic$6v z@GO>&_n^f+@1gexfQ!1Ag6DVrvF3Jp`5s9{pz(=g_E{DzPR(W!>b z$5ynZ)bJ0a4QiNHQ5rV0JMJR2m2ycFrChB@h$6GsNd=!|e+4!-b$h|o?F9lAx}A4D zCy5t!vdz$AO6B2CT&Z#)9J8ZKE15f`0sve%Qn@fM6K6k>rI_uJMG{PS_S3vnp8d2W z03^}0G7`BVNQk2!Ac03egakeM834`1(a)WPkUILgy)tUUOXbneN+l6I(hx^KKo5_8 z2tA(jkG*rsT+0pG4dOqUFyuP?A>)rwxNt10aC9tE;BzcY{Wz8I8su2!(XI`nKHH|5DZK$dG9#5;4QWWD_#of%=2O$EsOwH6LM-z z`6R>9RZj(aLPSarMGPuP@l~%c{tn^EU$Jq7Rg@6p?_;Kjj}a)w zUy%Y*n+=ONhlkB2K$Nohe@VF@gp}oXK~B$?q?CfBkdl%_DT4|UIi`N3rAo@NN=p5A zm|%(gk0-avrPl7Pa;dcgMpCiVI!f3_$#K*7uqY*y0Ga<$yUvHkINVJ8QTYRkd{v2D zabRaZR*Z@evb4WZVs?=*fSbMN1hP*0;W9s?xYBA(h$==~h*BS;BIl#t>qmZg1bjlP zH>r<3tS9gxz86$sQ+l9eFrbHFzDG4zF!McjQ#iko`5sA$iWYj8AEmNe{OFef*IHx_ zCTg3vV97ktx3qx;hultjSy05q)@<<$7hAJ`46)b}snV<@DTE&rdnjce-B@TSvGj zRkJ|M=x^I1vZWRB8|{wA*d8IUIse3sgq`3L8L(5~qf(e{O0&RG~?JcaW!>5NoJo=G`hK-mb9>YUI zB+TOV|E9xTA4iR6wSNj^UV|idz@LMC~1x`Q>Y0(&Cqut%4*fdMEGukb?6EfO0s_*zUDgZl44fX6#GBuPjg^-tAVQ#3& zLTocP)JOKARaq=fYULQkw`M?YD9VIw%~B%fT)$Z_0l)YuL+vBOKx=^6i4 za9cRegs+q3iFV>So%Wr;)k&zr_b^9$PZXJ7+lCCnqSMXln4V$_VGHkDKgmnxPc?Te z4m2O`wB6gn@ncjE!j;@^Gy0Jto;TgvSL?xxJ2~XtkNmC#>N9#tl|yt1C^=p;?juOK z_E>BNFM8f+n;3$Y_ulQ0_n=R|RNk_U<3{5#+Hg`E$1q#yHh4?I*4FWb@e*xO#_ROe zr)`%Tb**UwtCEqp`R`wME-;FUH z776Y3(4OO~J2++=dnp|0?=%sgpb$j7u()+5_ylZKwPzHFXm=u79k|BrwIR8VX-4fG z#K#ah+abA5qYy;CdTQ59Z3pgy8I34ZVAr7?ZiET+kRi+HOlv5qb9bmbSw^c^^Jl;P$-JLJYZ6330ICwO^R$H=OMo+<%$eG_zuTC>Wr@W)kHH zvtnVW`IHvtoloxBw(30;9)39_FGc`0c*XUkv4Ij=Q^(cQSSLzwR&p;mE^HF=>@@u* zepgS&XyccF+RJP`^@BTbsc0Oeki2*8E+1u{VqmQjHei|Z%DgMtwm)&L?{n$_Fk4y-)1m%FFFe}`NL z@8P|NJF<9MAICS^Zoai=ywm8olX%n`A!Xa0Qp&azf>Mf)KUi+tDVN1Ye+owt`|c$E zHB^ddP!TyU_BoZgadHSd1dJ+8H3?gZ&*p8m~|eQMNgz zY;!0CWxGDYv0Y!blP`=;s%Lyc!Nq5ihUp(u(Z1b@+ey(>Giz^bp6)xT-g$rUs=O$Qr`4cf2`d>S76VA9? z0rj60b&XxqvFd`@g7)E(x z#bWfvfa2x1Cb_w@Z*&d5^+890p0}GjM>{f&n}QfN{qRQ0b{e^YrgvUe(5#7ez-*^YCfr_@svV zwB49v%XpD853{P9WHOZJcgr+exwj=%CCyePBQ~bl3gAeN)YW-aBi2Y?d{OstU0(*C zaVp^+@h_&+T6nlkB!8kPwFP&Mb9h8Ltu$Uc#zV_`eO)(2-wE}nBxM-8sVc;JPTx*V zcx1OsqC+Fe=_egURhwLib*7DH$7vCIDd_q}YaOGM(icm+_zR+h&bGGfmdmq^yJ=1> zqvjscWni{-d$oD0vBysc)2e*GTc!kA^+}UR?wy|0oR{y0JB_(xU1{8LZv-tH@={Vt zjmE$crrt8LC~v6MMtewiZnFoq8b!1Uv!;~;)3fKjcA_DVN=T37(UToj+&CawuD?fW zxjy9wwcK5lP%WpM!n^jMmV)uhvpPvvtzj3J>imB%9ujALOoBWdY&cq95kZL+n$&uaTm-#QHP%iheQPbinhm_ z+8$52LT$eptnG28@Q?2a$_{0GP8(NO(YbA`wKPQvcQ?K-DR{|on^t2#5W*Z~#?O=_ zYH=^s;t8omM!c18o#_}`?f$mY)Ync*AN6%vlu+;d$rPegdZ&iz$c(7H|8@w7+$%!> z&}GoqDsqylhOY+h{>)qtbHrk}iJZ-cVh9+i#GlW|jjEv>Tsf+>!ln z_4CGiWj}9BnLXtjF;}bD~!Kz#+}2LEpWK_!XtH4_`nW*Bl&~{j{Egpd-2+!v4>JcRqUXu z_(iHBpvSO9j#1U_F=eLIWt2WjeKA<-t)`TlOsT{6NzaDAeNtokA(%M$b~*KrV8SL6 z%PoOPg-AaXV%Fk)4@TivU3r$)`($D{qwPM@3Dsn(O^xxC6Ex|YqJ(zcai$3$-zNu+K}#Kl z#uv05ZaV!`4d6lsDG+xp}Rb?PtJt~Z-5M5Wy>9QO*_ELKXK$32Pp%n!hKYQ zCqt+(5)hPeU5zSYpr_|v0eC1fKx7?38`i$0;A5>oR{lxz|?MMF$jH%Zj zftZSOqk_Nc+WE@wsytCd2h_9o^J(8YvW#rX3u?2UD4`zM*p#y&Fqx6^nQ<>|^6#m0 zgd*cp=g=ozecsJp4F^#(dCnR~Bcqs-&N&b_Orwf>?SCt7;dhSu)pEdTe9>Bm%a}%) zK$U$ItgUJ-+MW+A2aS5rzi*L zbH7s6T?nN*9LLe;ZhX>HQ|8&Lw&NYy&(D^)S{X+uL#V~@13`{=&=ha~esjJIH*<|- zQOkFT03%P&_}hcKf8qhzF`=DLEja4Ic;FxP2JVxiUVrGkm5qA0Lx&y#N%!90>R1`L zA&+NzOSd^j8Fy25#GzRJU{V6C;=s1HdeM2_=+n`>bazs?$hc&>Q=U^8_vsjIli!l znuYY|la@Jp^6~;_I7wL7Wsl=N;}~TZt$mo3m^@9d##eiAEMAsaFP4{nn>y0?i(r?Q zzF=B9{AZx%>jr4)3qDK34+TO?hhWls9<2G5HI*Mvsn^MH2V>LiKl4RzCBmnp-l*j; zvMCrH4#46QvPMS=K{o6^YrG__p2L72|Nq!1z9k`5-xug`*A6-w>w|t44wuNc^aO{y z>u2e3=Y@3C;eMv#y0*Gb8^bAO5h4-~1UDLrRrvmI?2V~s1pl!*rzq;9Z?pjAH4%-m1d{#40GyeHe$2emi z7U#?)5EVhR!7 zWevfo_if($f+J0z4qjxQ8#k?qN5cc0=9O3#7)4-!oI+FFBrh(rU1gL>$ z5{f0Un^WO5;s7baFAb*62yV5PRtZdlX(b?^&1U?J$(@V~1jb{}rS!B?ME=?(g}*!M zXu5t-C3gy4kstcQ(alOl@ZpduB56~S4gv_>ELr?QH%mTPxtjsYI6UQ@aqJB-Jl$RH zm}fK-n0#RZ-71Ten5;}MtEO9>x!_3Uz0SdK*o9!19@Xifj1>JS1S3VKgYs+B2K-P= zV!#T)q&M%N9GV&)4B=Bl${ji3_|E4c9(&QzPJb8_CoUo63Eb41GAXg;Unk#Tqa~(B z1TpOT&xqP+lV`;*w8^v5CLzX^-~M#02w{mcm%tM9DP6S0tE9xFJH46{1-|-k$9m&4 zf|%pokY&I!yjwHAqY#LU=6xCfiziw}DFx%jmu0;8nxjYU4*~GV-E(g+Uls6K;~I=K zPSV;yrXOUTKq{9gKv6knQVBZ*()xW;+}b&YRP+xIVyXngPAjPP$%imWijhgdC>}uY z>dS`$k9qYagm%3j9Q0p($>lF-&W4c4w0Kayl~IOaF6z?f5GS*lfeWsM_7SAf&F(xT z#-_n(ABd*ZzvfX~IRC*F``wgjTmk$GrcU4sYdFJ=Ar!ZG(`-COOT=9fHdd72sP+Lb z4s%}Ny&maaldrTn<9K04kEX`U0WHK$iW!IG`R)t~f%9Ew$-+eEJ(~XhA$h?2A%)`s z?|X;HYW9mm^18vDqME#^BaQ>bbp!2f?lPRVc>|(q8gEl9c*q;`sMg%F^$;B8jSEXR zN+}#qc{fukdk@JgDFIZtwykvwNhDQ&8*0o=xLH33&EOG^ae*R4w#zBPYm#k75aLAu zfd|iaD>4jMBp?CSto*vV?J!>!=kgeJ4ui}-Pe-N`4inY54-Xnip5Q=&h~+|@f7*RLwJg;PX+t&W83JV)fM1L8i?@c|DyenqyGM|h@9cDAXa($dQSA3i>>)Y;WR98Ta;8O55vc!9qKMJ| zp{DeI+JyUzW%~bIe#Q;{&uMEEdNyTikz}ia{|kwmBsd!z0VGrh5FRNyK!8VL2gp8s zr!^oJU}=xKfGeOf`v0=Se*ed(NY6n(uqNi|V-LyKF=HUy!&4;V6qN#pj^m<44ITA( zOiO1h&uxslDzkWnrr!%fl+GjJI zJ@vniNG^{-KvNEdK& zcVJAWb5n>}+%t`xFB!wBoH&asBqb)@>SQFu4S)m9ohdx?zL}Z1o{!*6n9%CG# zBPVr_{UYyDKaBsHIb1@p<9+BCGVOUg$C(4uo}t^q5)4`yFZyZ&`OrM)aI2c}ED~gK z#sa%{e@$)v78o*3D3MITvff>z(FA{<70|Z+Ecz?*kqC z?zI}bC=ztj?Y~GjT?^H~O(88>OdDsXK#tK%sj>*C=%w|JLJ4|leenyuwEoe`y!6|) z&Q&42bVB{t!uf`F&Iv}YK;oNxpsThgB_{Fd|E=cIuc(XDD$=9H^Y=SApD_9p66mFn zByCJ*`20lSf5TGrUPpOZN9P!0bcI^?2iB5_&qytkU2pzT;>zc9osE31Ol6aI)>|D_ z>qIhzpDVDUL(e}dx0lY`?XmHOcRS-boYxq1Cf&knl2Xxsb1&ykolRsC2UVq84#7?ITgi%(1ZesJx4giOtH7ROv&@7)!uF zDaMAC+-bTaVK_lW*Vm{0OkkslAm^pNbuKDmDY?%0oR#CTC=zV z0s|_~Olx+8AMOSnxB^K%<``yFGvbax3!kt0Y3k9($QY7(?Egx1O?PMgK%#4&PjO-T zNTVsG2y4unc+p@j(gG~<;#~{vj4DC25?RfR&LJD=N5IpLr`dSXa`-GtfRN%`qoO)s z*9*GD?1_78@}h_8M5aA1ccyH|`f)VcZxceqr1gb*!?u zv7wi9eL&nO`A>l}Rx_qh*)Uv8CM706)xEyR%L`#^d-bq-ql{MxcDYkD7d~ep_LSeH z5Zo!6d(1q zCVrs{rTvO76mo}q{4u%pc;`Upx&UXAnYr&7jV^{*prQ?!QWVw;j}Z*5h^?J831HbN%=$ ziR*`c#o;h&nyBX6AmVF2@if-Ag1UXPE~F{eK>;+?MnJ`4k@7CEHZFud|5eV_-Uj4i zNwElI5euKB<3Qgx2B9WwqQs{OOm)}%IHpoETGF~GQq$u^q}<~ul0ik1`R$qL>Te2WmC(mv+w zU|b`}G2B=~kn>*UIgdM!7zrnUzR&G2*uw3FA!^4Rz?gY%$VJ_0JWlK2;lKc1Hrd%j2R515Ozio^^_<2>v$&cNi(#}{SVY5*0PClVo@;5d#K@SZVtigP&32_D?& zOyzjp=6b)3aJ}_OzG#ZGU)ojSQglYJm--m4x^ua60jTX=Mq(UD@r zA>(#hg2AY-D8WE^^*G5^XN(D`DF%)QPRfDf0Sdu^15?#aJ1JAu?Vab0)ZytquAQFe zIWPIvPIFJn$l6-8HwO!htlBf8RvOP8;LX&4h!`mXh{%!RVvN-wq{VWnhl27O87sSD&*1XswMk@uNX z=1I~=o|N0xB2k@jj$*)V>(i!QPg97}Yvd_8ZW*V5C10??!6D)l8MkbwD$%Z9s`j@Ks&!t3&&)hbF`#NkpOP*+nnK3h;ohLXcuKxNe2GF(tJA1fc_^*obJ*uj z$&-NRC<0f${Z@VHDft9(IfWqVk0|PILZQYdh=3Y*>jO}$Cx|}*7I6x;gW|`-fHI2z z;3;_+K)Rbe3;^^Z^PCZYUhP>6oe2*K(3yX(7DbEAE+~@C8J6FOdj`3PnQe|X#cXp% zENz4?LhC3O!E|$mgVt6aLYtt6=%Y@_{c`AdhkK`eZsgL2=osyPlaA4zLS&y4Pt6DX z2D?G{u}9Z!+#6W>F}v}pWjHQ6V!xC1E~2`8mc%T$6R0qoV&I8%`YLI zh?UoHOf+7j%%Ygw6q8ek67y4^n4eQPin*MMxvEkzKcZp^YC_BaYD&zC#UjsKU~Lp` zPJnR7jXx=ODAzetu5%Oua={~z^D*5l(Z9nZ+pqh(jF{hvQ=(kP@5Fq`zlSiNNG7L8 z{7%d#s0q0Os42NB7K_YsfwfVtGfFOTjH3+~fvl6>_oQ4f6hLSeimi4rnK z%Vcu;lfTPA^Av4>Qa-MvjDx+wq1$7c8zc^F=NM=TRyq3{ z^+kK%XpLKP9#Ue`o&IgLmM!D?gtg9^@SVOSUOp zUf_Zsic#DJ3&E(j#UFBS#Qulc8}VNXw10de1;03_-}8suCW-c>Mr$ManvKqcv=)K@ zo&Gv0MZCpDOH9=WinzV?n5c~=d0hNLlRRFjNqVnyeip(cJ=Qz#GKwi(G|5Y(#H2fY zWi?F#7l6Zg_H*tBjJFAPX^w@aIXVroK=K?@ufwb24c#4ohKkxDHvWV7>&Knu9G zIA1faP?D(pOQggkIek?%m0z&H5y1COt6?*2&} z$2lRJ z#Wg^@#yUs*!rO=g#knz_xwjI>Ie29Gl-QNWLyX3_|0({rTdeJIw;UBks`!OH z`JDI#`wP3BlOn|J1>ouvJ~ZmCuKdkC&J4zdMo_=Se9R}V&b+WgYGnQ#RVsdoiNN&7 ztFEEty^~t-g~QK8^7OneLwVdj=krkkB;>;S%$PPA+86xHKH%$1#ew8Yq)pU6J1x_1 z^!hWtD(N@0OU?)RpaafmMyT_`lg{BGC9XzlEBv##0VESJbeaflGX4mz*7082s{?A~x0~Kh37`<>%l)98xEy=(W#?r+zs+;uq)p zRd||)(gRO2y@qxb?)N(#>?%>T_Jq3|FS7Ovj}xrWsBu}u7RY~i3F1OqYZLzSm3M0L z?~gfi`G)UC8hq6;=WVPd;U8S7XS{cZz)jIK6VjL|7y%W&x4Hn)ZC0H;p(p=)tG%b? zd#jyLN4&Qp=JNR?AQ!KU?Y!{9FpqXWpLD`mpFI%B0wn7NuhH(4RA>EeiA>!T%o0Ie zxhL$cy6=P5i+Rm*(0akigoKhUr<~!MUVKLS1pF&}qU4R=ok^Nj!oU2(nZv#!LiqjQ zbK(bU(GQwhoM$w?$lEoMzp%vBnrGb|AIsaFaaOToAd_~udQh+2*@7)6JP5Cteduaf z+zwGl&G|7g=Lct`XS6=+oXSp;=F%0W1-FIs6u&D#Tj2_jLKDh53GMhiL7O3p%&eL( zh~H*bO=32`M@%~-&l!7MaBdFh;mZ%W+Vde7oyS;Cx$0xCY}fGo#;U-Fry3WsO2FFD z8p~BkIashEFI|?_&Z-K1l)N{VWBSWwe>p#8w<|b5+|J!k?^7;!_Vdem>}BUn_F!-Y zFR2g_+uIgG7N8)nz*10^Z3xXl8>)C-_Y110t3&;ui`x~ z(DSS2M^fHU7*ES@bbX;p_?j;6eB)D5fU8+hhf00;qvl%8%1C7#05OgHmU7&!VOtb* z?ohXzx3IW=wwx@7Z78^A&VEx+Vdv)jP-#Ste!N^R_-B1xBTg&FrLguIFOGEC_@RA~ z_4Qvsu`_I`>=)9yIL6gSk2;InY^?TKr9VJBTxS3fS8hv3SYq|0v$)G<0UPkLnfa{+ zKCyWhjL*&eH*K{XxO(kMXUzf;oBU=G>{aKw?Zq7QpJFSU3qQFY#o8uEeGX)j1!-T#bSY68TEz>JU&0 zAu39ORHMSJ zCc>Gv{rIf3?Z>1s+IBZI6kqe$O8{uwodlzPG}yL)4{aNSkJ|PhY1?aoh)vsGrr0CS zp))GuN^YfbwU4n-{Mn{};?`h0UT*Aqv7~k+zKYuHzcc9wB^V=YL2P zkj~$N=N|PwX_)lL$;hfs6V^atMa53|fLC>6%>^%fk z{p@A)^1)%5><7{Ud0bC<)Y4qbv_t%pG*<(5gw&MGO?jxPX7V<1Kv*377JF@AgROQ~ zqtvA$reG{KQ|9d@2&@iQ7e)(Eue(e}*GoqAW#xEjnvuB5dk%BCN|rcXV|3kfo~L?T zJy_lI%0EEro(Wz>ySBWd<~lDeW>^VPXjR zBsqhZKB(8TJuJxL`gpAPh3n(7=W%_^ibWHANj|4!QX^NaR&h?UC)4#adx@}K*3{jJ z%_RkASGoGZhem+&cDyh#CN_VX0{U2*{&m%-r+G_UllX)z7iaG)#9T~`5<^h(E;$cV z&SmZtUXtzV#J(g=z&jiA+-_lQZK2!YL?`S0Nnw0Jj_X^tl{CfK&c^d{wzK}cxF2BS z*MCXw#eNO0bp&)PKB;$s0Koe)WTtO`iUW40Ur@f8^N;I(?FcGxUL!452mJnA;w*(! zL@p99NcmF7>sv?CRCWXNSpeO(o zDA;)0HZB(%MXDeffCi9hwLrUtJx6LGg-Irb*#w{{02FU&h8txy-XJib2ZEW!_(~L+A6Eia%JRm&95* zF7gJeVzEV&&wpO}FYsanP!qY#*~5eo4wpru0EhG?(Bu87%rUz3T;YC=%^)p+HS-f+ zFI<$fz84e}XMLE_{GE&bjOMZIJynBD?BAvq`2;P(h(-9K9x#7e2&(koLKGCmoQF`9 za~@hy+|%U^sDZ=s^B3jd`Rqk8cs4FspAQpnc9JlLf~~%KC(}&1jwv9@H7kDD3|;#Z zpCB^JpUMxx$%gCKi8OlDpYjDF5eHmarun{dQO;?vDD)gX8B=lB{S%J_S^Yr#a=xf} zc<(`wiVC-{a{k1rN}v>uFVj&9YT|gzR3Z^iDlw=ak>}s$x}VX~vRbfayZUIC z2J8;P9x6^;;18$^ON~T6?RMAPfKs%@kpNpX;ivk$CYVX(+4x|@xPE-{Pw8q;Dkz!+ z)5_2NQ=auRuAt~<^TyxWlqhVGR9JwIIqz{dhWu8bRrBeGpd?(3P?FjSDoErr2fFSJ zs3v679uv4a>C(-bl&l@(O3~PE!kFqm+fAXiE2t8x+$YpI1yy}VgQF0?Bm7gDTyTlP zFP9)DTjurUYiWAL^{@ zCDlp!I$sjIp{?Y5j9ghp5c%e1&`^fUS>uy3^ud=fvotFV#4q`m#S>w1;%qKmE6<}!Cf`Bxj2$5f5>IS{D}>}sGG0r&t1YjP3^goWusif zH2s51m_C|)MC28t+wAP$v-BmG)ZnIi5;Il@%lB=-i z?PJugF9roeHfgq)umg^QJDc%8h(bE#y@?ji(-*+WNkU2!Z51CgHr31alg8j1Ro%T( zTRHHZ%Tplg zED>;rDEcp%l9K3?Uwgzgrds;@$JF0HLj5 zh8{H(KZh56Y>AkieXW)bbg4d_t$LXWqd}j^{LGNkF??AK_(JivXCYy9$8oL+mOK8E z38UFS!kf=uwf;oCBcyr*$FbDU#J6rt2wLf2xBvm`)>5k#qGaSu?W}JLt-U;}8 z+?=E|nWwwq3`ZLR=y)wHrN(mL5Hn7*PYJJnGb|-$SP{a@+du1iv|3*NfvNEi2z9^4 zw~0dP<#1jRpz+0j$!LM8r`ZvL<6qG>q>lAx$+hu>dt-Cr%u>3>UK)d_LG=IV(;s=4b*6kfQwZKU=Wrkd7T^4M2k zHuBG30o_-nU2Z?abwt1OZ_GB$1`$%iMdsbwHrtd^Y?R*gOJbTqj_+BsUBBud!uM52JL|HK339*hzfVN_Qi>KuB0Ox& zwA%zZsk5iMU3|i)kV!jcY)mb_aI~w+^9hVW@0bF=LwNEFyfIkdx1@v%O@a6N{}cl2 zuV3PrS`(%Uz5_me@+EoHJ02o79Q9g5%v8Kj^U_ycoh(t8Wj<+E`?7Ly=vkfl>UPmg zyNubSQy&f<%L&HHCqp}{wT1Q;&VvTN?mDaK%`VHcUHDggZlk2m0+&P6@3_nlec;Go z0}1Os)9U>%liARS%l~sWG{cdS*0y@wexUcg%s+h7mBacHZhS_Ke@qn8&RTF;9{%?P ziNxW5d4cC;_9AHtHt1iqUiE=KRUtq`2y;Py3MnvBZ_hJ|w*OwO1Ofy(OlA?*NmK z5Sbk%t*WEA!wRoYahT4xunvTiy^T^@^75siz4DJ-@6}*eU|2o8#M6L9!7n;@#MyYQ zD@1>ZS1OJUpudN!YT&Rdd}3CLlZ6q=er;ulLh5V!73pi&FJmrb)`7IDj<(t=yaC$6 zWaZ;Ob46(S@GF@7nB7B2`n%}eR7FK0R0JbS4?d$sN}cL@mp=Fk<~(MD2_JriO%7Jr zKvS>*SIpTSJnUlgNK?=ntYI4kyX9=v&ZiKJ%@DTyu{j%zAd>xOLP!(Wa7ZNeuW=he ze;om7k3HYIz6)4);-!ns6|M)^&x9LLs5~af->XV}$fmEaRuq1T&syt>z^upYtisNV z$HQ%kKdx}`P@i2V0CBit`QwUA7r@|$ziYtm(*SD-4!ytgG5>X?={v6Yw~d==U-SFc zxUwv1|G@d@e<2I*$GHt`y8R!ySNyxcN+RtfoYFf-G3AZV77eTVy){w!>vl; zIuy-%%m|2si^z|YTL}f9W+mUftz85zJg>S%{KE69TX;vb8$6~t?^2~cqSMz^%bb(>vMms?V}4Fb;xYRieb`tBfy|M0P!T^{xyQjRVal047b2`<$i=!kR=aNnj`O+18v?6-?noN)6)zb1uScKf_* zbI%4=eUIr~qXhx#U3U_S;9U+Lb4-hwce8ypJ47HNCe-oX5#0CyR+)F)DbpNV2{NBe zy`zy^m5A1QNi;&2`b+#mmxAd#xRi~$6o7EY{*HfSy!g4)wK>#eZ~73PlLfASddTT` z?)=g9F^jtjZOs!DcRBc0B5Roc860idG*K;%4T zE&>onw}oKU>%1!ObVpnbVf9`=x-ud#>rn5jW=whTq$5S|b5+I^r=UQs&Im~rQ*t+_ z?q_!pkTAR58yVdCc2$K07=Fk$f>{a3XTiv;nEaR(DHvb0$CYoRcvR(*p}#v4HGTY5 zmHfDpn*8t|j;=N$i_fq^TX-FPt{{oNHc$LQUz-O?5xKQPIUBHwgVXgs1H<`m`(5AA zaK>ST`iU(iQlNJ&Tb|mkrz-UEP>r#vB=4XrPh;y9QhCAeJK$U#W^X3|Fp+tf4NyGH zK0=^)f(igUL0x%O9yVwHZ5hO_kXm?1ddWmy>l!G^>^%xOKoNN&fg*AM2;|yIe(0!c zAj>9j)jIPU=GJ8$2^5I}z{eUU<@!Kz<~g`ig_nJlf6hvfqZ9~ObY69*DJNtf*TdE`IXi`)X&o>xIUaP z|KV!QmR8!Rd|HDBAsQV`Yrxi2+9+p9x;>zgZ$_FrS+qgLTjWUy(FHF$<9eDMBv{4y zE!!^&a5PxKdzZVGST2L?L#?%4>>pAUdSi1wF|kRuc8x4g!mrEZkYIiDO+OrkV{*s~ z*VM@?D<_CR$L6K1Kd#ABp#4x)JTTmIO`ZZ#mT?|c_+@Iy*ayyw&-QM-4%9Ia<%(Yz zh;o55@h*l2A~}&tx#(IO9C_OFx_`P}V0Vb-bZ}e!de?S6RiUrjR42a?95+mstKY&l z$q_RDp7k%+bXKJ3U_{bJaqVwcOE#XAt6o3qx{Mjq2~@-kXf=t!&J!l>yZ5@t$_;bi z%W&6hF{vrygSJTG|CE#~{EJNdYX}tZkBFIj>kZls;y>wMixfHSUitgbh6tDSHr39j zHSb8?`>Jar9~D=_$_QLWn1btS>?INAgusIlru@1YVal($x~Gm5o?&`K^TS8{`x%Td}<^8MqqA0y+$mL zK%t+umYN ztWU+zwB2xTq@k%~NtD~Fu{}g~HRs-;N_}Ljd5S!l7fyE7=Cj^QNs(*3-xUct-97;Z zZRu&jE)xJQu}<*OvF`fp1S!Yab_gcD$3eB5((Sx)oVzQtX{rkfOqMuJ=Z8N|Y0lCK z1lM z6>yisog{Pn^@fkRf8mZ#JubwfLFY#zFHCD3^DZTAW&;Qt;Ht2;D+_LS8&>hJ?Q8^( z&z3?>z-WPOw5W?NR3v_(3l#xF;6fp%*=5i_@2@wMKUT;619c`b!*0)?PjbJ-rV$SD zl4~(3K$T8|o25@T$m6+PtgNR3`k1TE*KEe5xDT;+6i&5mVS7%M`Y3r9Yy9wz^vUd7 z1(U<$mpreoJB=^AlAZ;x1bn~ke0A-F#L6%U%j*-tj}qL&VW+6v?#_nK(1D?cr7jlu zsck0{f@;cI>Tuu5ju8-8IG;D^c1KkLKd6H9((ekxjUx)9`EKU2Dv|GIE{OsRJfM=i ziS=6W87u9Nu-ZBlt0jebyN>C6%_A8pj8Uk^{j^?R=e_^T^so#9z`5P5u{T1;l0)CJ zu{E(9!pO(=3$pT-Baf}?&eB~lc*4M^1Bpr9-N}I@#0!xCn&KXp$mSPN3Sl>2kI;F} zxd!lx5nSyNcOG05hJDR?!`LXo8D22FPZR_QUixR)N0#Sx7^eCr*JIO20~7@x{yb;O zf|oF6Lre)4=IpKRoApUj81^*50Twl9s85)+~da+(lHX*puxWGyir`PMucyOiJft9unOCG|O2368O zu<*0z(p#_<1OP57Hzu?Xcu`w-OSXvsaq9qDK>+V=a(O>HN-E&)z#$XuIRZem&UJ$_ z1=2*`tGJ$n-B3eW4>3bSg4xPv-kbb5OCq%py|sqqx;_E;xz+(X^sn>|tObGM>cz@) z#`sn*pkVEurZ&E9PQ9TlpVUMGx0(b75r859(6Y9a{aM6ge_n?pAWvd zN@>D<&K+$&zbsaG&0%DTDv`s;JE8!iDR_C#1kb%C1ur<0HTGXp5m++Ek<~TiII>zn zukDL74%{jrEJ<&eNA?4iCXP^0F}WPh|NW*TEQ(g?RlX%*ju{>>UZZ)8Sl z$>7J6@6lK~X@ZU=QvC(6i2-*-4W5%)H&6e%246llqX`#T{@BfdZB1q7g-K=RDX3EB zU16p&e;=Zhi6hy-Fr`iXzA!nGRZwUDFgYv(5ge8Y5vfm7;M1o_?#HGnZp6!h0DYQI zz-UvcPfi-4K4}%D&l1q5Q)7!sZKX=mM2=k@!va+)vih<0fo)AyerKxkI|UW0oOeAZ zi5GUV&9M9o>O9-Y=3<9b4H5Otr<41sPESdl8bqh?lA*J$Ib16*9_UVEy9o|;*_fh9E|oTz-s{ z$UdGBAs2_12wZt-Z=rI<$E6vWH1c$SNY@-7Y9^;CsEqSeV^hDQT4-c1ho=k#MQDGG82ZdwHFOEzd3 zNy^0%N}I-?ngCm1(@4440<%7<3VbYjr}CWV-D&!m2;V-)!inw%`d1OW>?U^|j>-GJ z=4U6m6H=#&)^tw$utFzx+3&QHf*}0rR)TG#XoUvYBz~a*HdShXnUmdL1{eT0u4X*r z9?Xss^5BQ&ZI?r;)W<`0GQy)7U?(&T^Z2n#3cEDHdC;5KhYYI)vY6{yVFSx~*wQF| zBrTo64?hI05Q0N5y!01V*e9(Ju)tVz_vsYAu*?&tdus8+&x3K&YsnqRa{@Cp$N@qM z4MGZh$}mYOgIJpj*3lp>#4j{R3!Xj89qQ)Md(+%sSFnec%=6~J>y05RlDn{cq6uY| zTUDu#ljm4fPqOX$A?z)HJscO2RZYQs7gFNvXj4hNz4d zSs;F)MHYmx2&VQUFP!~|;PI_U?PvYakLV*mqK^;}&4D1!++2{@?-M?**xgy~BTHBI zBV2qM6Z=^fpVmr-9`JP5bSROj{k{;GKZXDKQ~QY$lG;zeyqFd06G#%bHNKJd312wJ zeNz>#tzx1yktS|JV3sLJo!3C**TCFK&x$AC_?&!)xX_1p1^bH&Pz;dq3~s zH3ad$0&&QOhmhOE=KK!vzlmbM4fmiMiKRPk3ycx{3xjCfKJgQK^36g#@EbnnxwHup z;v5IKd5Y(a)o?*i}VF(Ed>WyB1&cT_Y<`zBTDZW<)B^me2RN`ONbE2LJiiq;3{l zq|TpiA6u8zA$86U@C?%vBIQ6oBsM8lcSrI?$qk+SP)3}cFX#~4J%Ne(==ovtvLx7Tl7za^Li(U=F3$CV^Lg?XVdY?^h+91uv3oA;C3 zOp&+lO*h=eo&s{NZg`LQSNlF=D90y!Yj-5}=GT9B8vOd(?pJDj2;%dt%iNjlW1t``fgf120#3L&F^EIL?I2vZvhM2;FMt@m}7PQ zCOm10`+athGzE*n&Ft~P?e@!dkfC?X`!IK&4~pbXUq z5XqO9d%D{~m;><2L%Cibx)(80fiFt*wCAlpa?fP-nUbUIBgj0HMGCZ5o_>0LMz+a4 z3hL_|(?6?nG!aJU2fuPh@L5aUFS5=GIq$v7-H;bOZ?v_AAnCn{@rBFaNUTp#i+PPR z+F4bZk3~@*x7G`KCxr2Z%iW{dy{eXoR~g)SF+Edbymw~(?s_4Uo9s(x*Ux1WgKNf& zA0TQL%&Fgk%?Jjr{@c<>e+pHGcyOz?5)q1@@Vpl0?FT6M%42mLj8x;`Q*PbP`0^&6 zq1^bw9g!yL$vY|Eh+pDQUs95OOwQA85&-IdPElZv2$SCO$TWO1DamRA!jSAwN@Cdv zhitCcIvH#;sRITXp>JR^BrnZLiUSph)2%4v2Dey&C0_P$(jZ>YeN5G&4thhhzMAnh zH#g2pI}t3;3dN8)ykL(yql$$w^Z9|bRoU3~xnndVba?NZJPuxTGHej5VJK~4s4aRz zi!?M*itAVKGF)7%BqT|}Eif~L)xhnBD64|PsJ`g0o=%Q=NZ|7Xu2pbzy_tfG{xCw% zGRTP7!3d@Qmu#_J^+xa&A#qp=gmBM+5aI<>;J#o`LE^kF4a0cB8n~B7AtJ7E=b409 zJ>XRms{E4E}7Vw_j z+8BHmJOhkS>Xx)U+h9Hr9~0%Zxn@E3W`3tv&8H7dLAdg zItgCi=e}FjFo1)7Qk1DR_~B>8r?vPFqL6CM2K zfl@*hHMW^*Y;Q=7O}fwK=F7OJInSM%T5Y%6;L{uYsHnH!MIm*&b*60JNw?FzGWEc9 z(zu%1`$tir+Urrbi19a$y36#s(Gbw#Xrq3#VioWLx0-`%f4GyFgK*>TwKs`Es=icU5qhl#56sTHAJ+TIKlLQ|7h_Wi#HPlY z<*{g(6U~J8Tu%_JDB~kk#%H9Afx&z0Z|-}m-jB2~Qk*e_uwR_H!Qwnt+>3NohwRK)P#Zs4L)>f{L6B}H1H>l0E znhoIoZt#doaaKN6DXq>*YCcX=He7Q5sObf@<;ofURr8d>=}D2i=(77d3=TzC+zr{| zL)YT##J|Jcy zjpEs_!vGRfqpCt^Kk)Jz@W%fK!ic}O{1L3t^`^vYrABk#NS(s87-fsNIrCOZTMn@<>lOzh2KC&QC;m7Frs_z)jNiNgmdaaDxi17eidMc}xfwg=l+= zz~`z`$X#r41MN4ab<1GzqoP-K5rxz%9l(&7^`*whEuM12GlShpnpRhd{S^T*BKchs zGAlvOnA)CyYD@xZGPT1qgf6OU0#(;bq12`P@4+T1_G-AEWgIAOQWm`6fFBhVw?Gt9 z#XWAy^@yoByyN^SX$p#iy|J#rPPf2hHzPdUw`+0x5f_T2IL&{hd9jjCa^24^& zmheV;WUM@2f{!}+6)X1UERnHrlc#BF0xuer(n8DRg$+FQSrbwVcyG>E_l(Te8^)53 z(>hjO;h}>#pOorpjTrL^?MVz!`)R@cPr z=lT|xgG7Z*$#!=+$a?uS!R0V zF9eDnSr*`t=cPwpB(;=Bo~3?sy;6@97||o)N1#V0#z~J%icfmW7r!k(m z${Z48K!>Dwg+p3H=+j%uV=_I1*-eBL%6ns+`EaN=f%to_b|YWi($kU+Awb+zzcG$q zY3y+@XzrH@J3~m?vNLF3@?}jt!)oG2FeHXJEc~RrZ%UZFmwK(zjPu)aV3>L=pFxg4Csl4^c;*M22Vc_FTn_zRTE+ImtL zAolx(+?}^4HMJP==JnF(cm)<7uSdp{=w2s2)XwmtA#g)8H2Nmb_-fJ3+ zya`3#J|yz8Uu!o4?nl*cn53n|EED9GO0f^N&pJ^E^5FJMnU48hz4{ ztiKyCd*V7_M%ojX5xc693A1#3OxTzGacOYt4@ea;Oj${RuRC~`^3^way0UeoE}(-1 zdAGSE6GJwL(@WYL$?zufr+A+CW24@c)#ACeJIb^$HX?_gu+&U}?UbO5f#5gs3j@J# zppeP}!BU9OA`tYy#q$*n1oD)!e^<}5tVTkBznj6}236`~qI%P@r})e}Pe<|6gRUh0 z;ZrG7S&E_{qX8c8B_{B^n8qz5gMrz#^+q}X@eN3;VCbwadM5$JXDsmv@`N#WLdwmo zAh@bPWa*Ir<6cT~M>aSZj7;=UnDC4-gfhHw2^`KCU+2Snc^dEy$Ld%asU?pXuf(Gp z+sr`)9@sxC$l=@f=?T)M2N!s{q{fM2>dIG%gDF?WG!&&VFkt_NdY zUACJsQHaAX_yitOF55KbVN0@Amq|BLtpGOb<83J)$J@$B+DJ+0-PTEeL*r8&tazUAxL z!kO`2?GQl*!%Ly~h2f@Lq!>-9=j{Ow=D!~-si2d zhhG@#$&fvq)RH~C$QsUnW=A;Zl$lc z@-c_9@_6P{XH{beY}cU$47OG=Q!;a;XS&8LHXv+zKF+kVFQLM|^-iERRF2$J5leEB1u=hgFP6R`jd80Bll%~7(BcJq`XCS*F5tOO!o@VgXIrkz4oWev`fQoBU z|40=2k2Wr*FqJSk>j}?l8QO>dGPKRN1&6lgf)Iwb_KD_vylGktZ#vGCnYvbpLF3y( zBA1G9xPjX_kYRY9xFEQ7o~j~eA|-2|^3>5-A5|`5IjpNyQ*+=ZO~t@%=h<4{!R(&E zhA>%y>qTssD8-Q*E@n^g>}8XJtKprZrxWE9rl$!M!&%Hmt=2p(+HRSf2t8Sgb}>$> z;No$1qKagYpJ~zyo)%H$y3Kosv6QKERiD5xNjzc$&^n9))( z-pjj1PbSLumyadNr>t|H@jT9cBs^j;DvW)AX{L-@2@qv;es9#b{0j2nfOCR?QNE*8 zzH_1Eo9MOJG16o(TNV3tu&s!d`zZIVekbbVQfC>o{n8$3k&MyK-Q95V)Z6KQe@2le(^EabE=^^zZN&* zCR2X#Mc3LR*86DDWjuURRgW*ZKHKx4 z#%zHI0-~b%g-wc04&Nlo`t`ilCWr6F0wE6HO~fx8zMCXfzE!XQCPrebpbhtY7j*fs z$y!%OarFysGvu9!f#OzT|0KGV_(YQ2N*qV3p>yF`&SOa`VC&B%RkD|85h!uz9Dex2 z3IxpV`urprIu;Os=#Tnq6!Vg#%C^oy3fwxUh@saFu!T^o_x20Qqv)}GMEiD+k1fD_U7$z&qhT0wo>RU^+WEO_tX z6IY~U@zqN_-Pj!pxtfUDLXh+hNR|n=Mw1rk1-RLDf3jQ(k4%k(qx- zYkC?lyXUlnZ~G9QHqJzo+xWq(3>yy{2B$;g3s2PM6TY#>rVbFasrg$FX4C``52{}w zAmFpA`D1S=7ivVQHm1+P@781^<8jfoEff6mbcAUDyVPCUX zhL1k#?XK?y1&ah-`&A{mSl|8svG(2ZQ5Mg`KF=iql1(59IUv1Uc@hFifP@YqvR+v$4d~d=HHz;!@r#N_p0Rc5O>*t$!RVPn-iX^au$udE(qJL51g{soqgr ze+@c-@Q$7ZJr&-@24GU$YlraH-o9=MBVMHX2m=Fkb&3PyCjxbKA+^xPb%-M@^@)?~ z50oVcX0_AWQ*Re1*R`?<06?qOwOYkVBIDz{M50SH$G5a!La+ngjd} zwID}&g2zgTE{k*U4+UDZVf(}v+OU0q!EZs%4ZGe=wVFn2;O)`DymDt+Y1m1Ve$!eM ze`BV4P*=ZNzX^NEcd0@A%0~|H;C81i3;Wx|Kt}2dadMx$vi0(K8SQ1fFL-reWE{Z(@qJ78q_y)!v0_hJTOFi?o&d#w<8XjxbDfWq zduLz8dB@?;-%Yb?_i*jKG`oIpyc~wl3pr3be4Gdd>@d7&@P2YvQfc%>bjHG4!gVv(SNHev@tmf46T)gwxUr^Nc4sDb_QdGUpf_`GaH zMh}PZU!t8oV>)83v+u7#W*R(y%fIpi?put7>ZN@ zFUUU|@gBqNJ+wdFWnZTC(RBE|;)a$#EPPAA+y#HU(FQ~ci8dheTzIMWYH@wHm-v$? zPPgDS&R@k5G(6e%ia1q+$9gu3{d_!A@Q>I##l6@{u|I%&Hjjw~MqJ|T22+Ym7fz+x ziZLF&-LHfVM5DSzbRq1Sd4dFJUaocP^Ef|pJZ%cZy~{t5R-k`}dXmG}yc*q*XK#pX zW*I1M$GS11Ts%caACnwW_G`$#@6F1r6Ki*{DHM=m>z3Eh1gl3tW zsPirEX4&jI%5&-4&hgqclIKOOC&%fF62%s54*&9W+GGFsgUy1VC$w3-_~*22Hj5&H z{#F!qzeu4Se7eN!eM@(0qCDK3^nkq)FV}6ivJDhS#WRkgs6PHco~#K35A06Dbo4FD z&o>PfLIF2lUdGV+i_8RG`9*k3t*`hlSoL9xP-}qparH@*bKyC^q;2$V(u#@gI`b*N zrfmp6OUQ(q8yh3?*&ifH=()kmx50_Vvp|K2J&n;|Pm?kpb$GpA>ac`|-vT#nj;(5D z@HNjjYsBs6(~1~N0_dJT*F$eL!5RRwD=bOec8}+|7a-`vSCd3 zq9}c^4msky3!6xDPTc2oi5xuZ;(;&Dy0DvRF#*6bF9{42oO5A!(JZ8Jo(TcZxYQyX zIO8&~(E}msg$TYoqj@);eJL%<5)Yv7Z8;^G(TZY-NzuPg~&GZ)1E0C4LBjvs#7q(9NuiAWe*S| zZq>8*XrZdkX%qFg;l`S{ce7^pTZGT((CCi)P zY(O&69~=V;`HE(6K?uiyVaa&iCEQmt4&0lR%?}KM31<0t8@z5hJ0-GH{m6ep>%}Y5 zY%N$XN)C<`Q$-5x13d(N1$wt+pS$90KCOv5lWec6&OD*r;6;KrU^*wedqmm_wV<_t z1uu)Ubrc^8ZZ#3y#(;t=k50_y`P0rg@v?ZmW%h`a*&~z^l-W*^LS^=#Waj}XGyi+y z>>~=H-m=^8MW$qj7uwwLL~L_#c9Z$?!>O&=-xMW^?*b8DPzvf@w2$7&E1!Jvv@^r; zsr!1%?^h|mUnwalKWmDg{LV_2eoB@X#aX&2;IX>(7MO$gXagGk6LeK^-Kul4_Xc37 z`#_S-ss)t*K7R35TWdCmVn(?Yi`uHcj*)VU2_U!XVSI&V>&Xw?Vr$Chq}pQZ=+jyH ziH8v&vIBz;QwS)xSt5n%9lY`>IO~-now)~>*(%v$TCLu)TYwnAe4JMLuw+5Lll1zH&H<1;OlP>Q0vL_`;s8fZ9y5E|LM$;>k;yrd9bkca#D(RJ0$zdRCy z4?l?|2+F8#UXT*|4JCGs){1LgZ3WtIzRWdgYddEtO$9#+ZsN1SHMkonYN^gQR&vK^ z=i_kMaaLWq=?{3Zr@@CGH?#e@DMa%1-l?MfuhABIfBKjd2zY|G@N?wweV~)A0WUx4 zgfkge_oneuFJYs+kKQZj~ z7sJDnZ?42}(EHOP2E2?9PLVnPOA)qR&HrGHO87p@yV>Hb0h}~fe6qZhACx99<+G49 zLJ}?;z%}AhTL+&1+U&4+|6!Pdl&b(V1t6g(c(k6=zT;zTsdzKLxQFemre~x{PZ0i_ zp5WQV5Qii^GBH;w!nw7!Fh0AN?RC8*jaU7Xn$8AM#?&~IGuqZ!&KSm|1?tGAUkLCR z95Fiu+O;tWT+Tjq^~9EN;3mV;59Gb^iIi*xAATw@OQg_#-B&a~0gMR0jJ0L+oiT|k z*e$dcn89InQ$e$BS%p>qYT8{%f%o5)V~^HD&lyhyx#hD z5n4-JENAdx(t#pN7L-wa`%8-Kf)tt9s%Pye_4O5*o&%hV`~DYvWyT->DLK@=e58$O zmeDpDy?~9Sm{D#csobUnk{b+BMdF#4=JoHVLxGNx_gdsJ`0$lm^gMsL4N`0kv`Obs zJQ&07ruD=kUv#R!ir#6~^YlM7>R{hYqwW-qqKtZ)`2H88o|-0C^}1Eq-tk>0z*W8e z<88CpCzLL+{8fCAqyVpIx!;la( zR}>+;G7@52e@nA-CK$u50jPC-W0N~FAK1jg)Fd5No$i@z%d#}J>pb!Tgh$$xZ&>vh zyIhOmO=m4=a^%pK5clEzB9ydLQ)j|`aA~+>)}h_LKzH+aLFC^lRr-y#HJGzvVo`AWdqNnIc5Vx zHa74SnvD${fLhmNyF3Q>>1bm2HKhWh>3`*3?$;^;Nbs z1^~>SE=Y+9NDA+9jV(bhwxg;wz_m}fP=0B;4I;6?g>uV&kJ2@sV~f!bD5aY$fK#O_ zrPxl`(_4#+m@#J}RlW)X8UK!jI_p&(T|yCx&KW*~X%8BrY-?yUGig*z)1 z&Po(cEFua^;3|RLBXMdj`a0VIAKi1Gz0MY=u|^Ik=~+NPbqgjb3QG09dfJolkKk28 zxMUu~UmIdfVDSWnRJZ01scsoG2b*}&%AT2;gCD%n)}A$|xu|Uch;=n{NON+Io z`XL>5rjkN5n4>JS#d5r_e6>TGm1Y7qZDE}tb06%H2C+L!ND>##o1ppEDxyVv%!`#~ zd71|}+ubv*FPlQE0pC64o#nt)Ja?9_h4mV7XStSAP@_iOExu5r z?gpWN35yA&Q5xTRuWdYc-eUVW+-KIncNE5TYWK`EZ z@R!)xTf)n4g;U43XUE6zhi+&*RcDt=7 z0{~_}LDdVujO!((dXG80BiY_NYx5$nbZM(@0K~e6JEh6WcY5`v^8+@g z5Hfe_6(`E3_Db{zrihH-Hh(;E13h2SLZtoUQXRrfYtX zamTkEErmP2*@oKjEudM5G~4jfhC99iT>7T1$N~lBEnWW_1KC>t!ust7KQ;so{P>rZ;SAUd zfhu4qg8&sElmUC&zk+r<&w9p|?2AB5*AteCq9|u&etj5U{9g7=>>CPg#n6^T?6^ol zKMq>nj9qXUc&>7IgEv^%}T7uua( z=>g|TQ~B)8wmks`fSb42mawsuYqUKhNs2;Sy|JX=v;JTt&-=w zU>l&%NS9_L>#K;7{PL?dJd=W*`HpmHoF4YCszVN1kf&)58Yjp>;{;IA00dylH9ege zfKxBqT1f*yi%J79BppW*VgU9FglGT`rz-<+W;{%;gI=-aCQKKZ)Cvrvrhj@~8*U;?+xC1V7MDic;#S$7AUj0Aba< zlsX@}z-CPTA-(~h{cK_g`+`vAUOpx5E{(-!012K>1SeM5W*WkT*2E3vNkMfNDpRIwFwgJcp?OU@9yfPU>_0E$w zoget0t=RgMpaAX1dhvz!V|_*~_M@ySA%s8BH?bXGeiAN5o@-|h=L?4GysWJr(qrSb|HJDfYD|Io8_^!cNDLB=xu6;;qiFKH$h59#Ke4+jg z2fARQ9B}F773j}m>E)(_whsdgWy?RZJsDnUQUZrz@sQ>XB*~n?!jN;~kZnNm43et| ztf!Yf&Ahb8?k3RjaAiyYe6DJK{1Z3_yN(tXqn@^!mwpANd(A(#EbS5RcOu`_xM?$M zKu9g67EEdBo%dWiY|FO1$h zr~BbiNtQ{5o!CqqKN(2MJAQJ!kJvC%-bVy%;yxmy*m&vEw2T@lR^H^z#BASWFyn>% z_|=wR?W}CbT8D3B77;v*2emN+XD#y_~0$SP?K zWNijz?MBI3IAu*;?wBfhV-qO^;jiiynet9zNhbQLf;w?0k!_$Qk-8`SsC&rr1`viv z3wF`MNZ1Za*xrDI;f2J{L^IIA{uKgBUP$DhpOy|HingRAECiw!<7Lk$CC%FBQo870 z`zW62UsI(gLPq~uYXvE2pLFqs_DOG5%lP=&DckMIlm31J%<%#bA=v?hv$#>4O%46SV z#k2}KIXDTBbWUgQ(-LT8_eh{eX$At_gFvl(;0i|)J4v$< zGGr6TG5p@Cu{W@*T9d{_@E0Zc2%3R&o{PNvPg^$@PcsnkMH8?#xs8?YU+Jh|xwIIz zKu&8pCF)6YkZ{PsDN!lSLC}!np&6${wKP0levfM99YfCK+Y`h_asz&4NP39nn%2^l zX!Jmk=b*fH$(EncUdV_JDNU)+VCf^9Z*CvAg3YINiE*V<{dGHw-9Vw@(6XGSpsl)F zq@X1Q_0CzCHq~8nXL78@o}(pUY$?`S%b{fh$xuVfB5T5(+FQIL%ns`nBpc^s`tH_b zP}$#FPRc-F-a$oK-q)dx#Jg%6TFX&|BEnH6oTjJ;(eCM#(3hR1IB_LA^11N?>&4eu$M8^hjn|Yu;l@dc1qw4Y89o7M2C+o?#QMRb_Z=E~6F21X+%4 z`jf3?0H(FAWdNo#_a&cUnG^&L+(wp^u0e8$bS=HI$TdvyBu23iTN!)MrSJ6zZxgIW2g3f%P8C+aTCq3alw? z4=E%S_bn>jg8`*0u9)jP0nOt%F{?&|H()y{6uhHyZeEjg{Ztm-HD{-3Ha6i&isZaR z!f5Zncv2RC%Qd)cUIRg?9-fUC%~|7YqL;9W(4IFL8zwr)^;CaeVmH#ts5;kW^OWye#xs)P>5lit4%hF? z#%SJbCCQg7P|N+q{djhuUWpOCt3}a59Z+GXypF;`FWNuF$`3@sn>m&1lcV`AOME!< zDd4p^+8m^TFP|7>_jZwUK}n0)Clm$pc`#eror5HYGWxS(^eoBuEVcRS)nBzUdQvh9 zxR6nbOHLR3Q>=VJ!=xPMlWelLF93UGJoZ(VokMy6vX_}7*~=t3ial6V9H|#V{^nMx ztRKmj?DgS`TifMIqBewAwX)}i(_RTiV{AgERv=0x@bU`{GqoJa9YrO%^G~tzuHi}j znNKoux8-wthyd7uCvSr|c3|CLQCtPJdmP3Q5w_)SOzffG31gC&8$CoR#}R#%Nb!v5 zxS}rt+G#KH6`A%__A)ImED${7ZgRQ{IrX&-7|(8#WVA_ma7*?q1%XTX8$@n_zA8t~ zjDR+r8U0KPB5glX+Aw%sP#X+h$3ohWwnNLPw;_XDlQx06kqBRxU=BzvrBS&|(f)D| zghITWD+f(ehyIZi|7cPyVzl^rOi)^#&!S!%5iZV&`U=8vPE;tqa86X%rj|L;`gZnL z0?diJwug)48*}ZYtb&RG*8#_p6otF`&3a9ImhkTF?Q_^%0$45qR<@B#fVa>b^l$l$t)eux!8Y-QZLqDjHh816eMf*c*xkim#@?rBQT%&Iib7kD zPqS@F40qAt~Y%3QaGuwJ6kIf71EiH3BZE(3=e3X8zYJ;8vCT)Y( z6bZHgO;N&7NJ^}?iPG2+mWnTIgQcIJgsUMgqCt3v;Cx=E@o{ zgA)bJny34;z>#e~D1_WvSm;n7S{P6|^5h)}f zh{$tcpn^15HrkyWnPCwhi>(bibb6*<=1_*MSm+xB0m65DFAmq@-S!W}@n1YvTr5sR z;-Swg;tS6PJ|@mb;Zd!8ajpRm-#jb6@XW*zu^Wh+r!R{=0^F#WB9`)Su{ugD2jG%J z{0Pz6(2%|0?#j~}vMJ_KXwI}I4@_1FLeUIg9pk~(C=B?Sc1QXY8$V}m@2HEq%PMgU{ z)~bY{Pz#jhs|V!W8lcje^Ml)jU8=28>kETZ!w4q0-s8CX{^OT|qmPLy*inMzsDHez zxH{0@k)Nlj3^nx+AQIOxUOLo1ReOnVA8IevjdnbIn7v<=2~+K-LU_2T;NBf?H?w84 zfM9^H$5X7aJnQ6?t7G0bxe#CIf*s@e!@)B;)>i5JF|Y;@0LN(G4ob9xKVE$oDPDcY zEEk~UIg=JHY$zZ@%g>boWfC1p1}hf;u=z)|lL2MMk`#r$-c6sq;A~Ug(wS7jQ^(jJ z3HL!^hL?eBLXl(bPPUj(AOp+XECsmb$OwC@TqJnC`(x^TirsJ*AIxO$?!F4JI68OJfO49LQ~gR)NK7Q*fvR)pO-I|h~s z&^E5e+lhOHuwP!)(a_uF@`KZ0)i5uYXfxg|Y{RQ6?KvVgbHYl0`Y71imEdH(l;B0# z{w-(NZ`Jfsxw8G?zxQ6D`^H)J0b0-^pq#fp?dZU6p*)}-ED$_&=BNYJxpX?%D&E2Se>zl@g40>HRNSg_PSgP20eM5mtSMgVmDG!P(L0QDO5kM zNBMGZ5Td!cQb%UYu|LYT(fYW}x#JCcUCze`9t-l)J9CcVM4Wicq+RiEzJ@!nJ^K`Ru*T@`OM$c=}&a zk-XJ0dmUa-78YlRc8Fh^XU}GbC~lPIAO6xj;LD=^p^|3keETXEmPeFZ^tk9j{`DK? z$=8=ZG)1FTiSGh!l=vr~Ue$&RH0r9?V2Kj%@6rwdxNzhdlq=5$WG=Ap_cfb%&beTr z{rm92gfg`kH<~1ovjKzoFV*$}8NX>DDWb4dAFfwtdz|ObO=`%OZ%&QojZQh1vr2-3 zW9X&;NL{n@Way@mx7vrW1+=MmJ@L&3ZFUwC_#;om$-XZv?_L6WL%|Y;xgM_!CIk-UvIk-XQp?vfG z&V1IN7DE7i+e6d|XD%B_a}X)y2mo5OAhEMNsS&Vg^5nt8oh6R`L9Ru4I^T7=ESb@w zVv3QX_siqEo2KUQUDr6ectcDFPEy&(ywhVm#UBs3^65m!4OmVb34@0iee9m(C=!`F~rmhf&|LS z9h4?dh^cC}ohG9p-}ypa4Y?$N`Cy71+Om+J+hlFS_ESu_*7t!(K~n_%RO~GBu|-L< z*^jg!F4BGvOkJBE7ydoTQH!**i<4IBdIz4eGu6(5IsibA%ZqZqssoXGM2A3fzuOvF zs9yx_7F&ye30I&gCb>rIpJL@%rAevGCmEElkY|7G3enojJ-y@Y<(}T9NA2IR-jq7z zt49aPR}Ye-__{JF>0`^-4)80Yg`Jg=0^GZEqmQQCP3wT$HW5pOkUUy-6|eeeT%JB0 z5P3GBhErHlgGC_a#efU9xo)NTD8z*n&D{Zoh}&EeOPmETJkX9+{6IeNgx*5C!e859 z@5;1}L{ITJ?cqPe_VPd{?wJ_VN%p$E6fN zjD-nFc3+}UL&cFQy;}#WqOJI%`@@3W{hqbosIhjGJXF+dph$GUY?7lC)jTyeprbrB zR!j=XebRm%NiQ7H5qqI;d*G?DJ{@Hz1Z*gGicQMhKLy?~*<}BS`6T1n;scxQmFy-; zh&Ws9TM%~8to*et_U^vPrifZ~^oq#bX897jw%BI*00u2_A>loUUuiE0r$$e0ao)S2 zMTX_Yjw+_!%aj<5skg18jH&nE8eEL2=R=LOvDNjQ?O+g;e+c}Xv>Fp!WoWFN5A(q`)zfb@$Rtv1G2@CK=5JOeQ3X;=p;c2 z9sd3VLLhF0cAjf*+q1NtylQT|i?yKy*Lxb1#eaDRmU7MmDiI6iS5V_qsfDZTSBJW* zciEe3K_dX2445~HBF5RuFkW%cGZmaD1r@OK@3uO|W5hh(`dD2D>K&Fr&}1k&`0y27 z)O8|-if*7}Yd|NArd1|erV3mh9rj8ON!5UqzE5=QvA?gitD8m*L8AN?Q(`{ z>^QAbZ?S=Q52^<*8w8;v@fe`XVp3@je`#pt>~;#c9B9g?y{8CKT_j#myF-mfmW=q z#PnR?RTzYSd_^{6z_3vMUMpK`p(m|*(P8_O`nb+Ao?AI300lON3d~hgV2zL37t~c? zBRm3w4_|>r-{dc_p^_PWP-l#IrdON4sVTyUe{P8Q*HE);0q_{dZ5suTTy3IU?Le-= zef$u<<{mgC1OjTq?_Hh}U9Ud$tcOkb@MCkIKbspATTd!BzcPPQHr-iY+pU^K@1l-W z2X!Hk(O!TRKI<{I5nXUp^5ZZ$EDkwr#n0uOYRsF=ZPKVdD@B%z9yZ~_kIiI39##Lp z6k8W0n_9M@Hpg6vgLDtO80-heWA8$%egvGTn6$q7#~u0Bb7}pp0bBvsA#mrq*?L$e zfP@Y#wbOLT zlf!tH25YMrq;1xpbsAeu!WV6Ck*Gbx|M>+D(mg{dLW}pIf0M)LK${p0d5^#CS$xdq zq;htGR!6&cJTkp5s|0@3eN_YJFQE>#>bj9eNxee5D@B0^jo#bwL$)2GFRR9hA#4~9In?R{SL6%WL&I~Nb zGQQ@`q(uIoXsBg0h!kVH!H2I%qZf)4D$)@^oCv)(w5!|*!02xG(|Z4*M3i9jv>NUMEcQ1Pr@YmKShO`l0IHee2j6u&+yZzl+;JUi*NyOkC!VrN3gn@+|E9jy zzQrj`D>sttZXKBR2u4brp1zM{ZgIP_= zLmaN*eJ1uh*96}XwM_xNSnfkSRLQT z1kix$8NBKpdj;Rp%(0ERDS_D1FOU>PK=s%4YU!s)#J9Z!x@_ckR3jguIc6h6Ha7A* zG#eW^0HLn8yUB=eC*vFi>~~rPA#OPklBsu77mfAqz@BI27%v*1Q=~MZIo^u=r36O` zJ4b>38y$E#Xd_WJZ4v(>5mc*ncV6fmYQg8l!n&UP$l~RlfHj$(#xYa+@OTku)xqT#G-WDEoGo!uDCwQc)UEf{W zlVvo=R5i%PaBtVsY;58HB)hKbF73%U0P3+P(8S9O@JlwRCdNo_Ppc-rPJpFNTtV=t zNN<}-lDt_{?qBP9TExesSZS80#ma#^5$Ww6S`Bzsk=_DV@kDz2xVwz>R!b=o>5cN@ zK`kXzVm&QTqmun3zEH`2`WGbwlJNrjYpoq81B_6ovK(t!a6UltbY4^|jie|Fs_Q*M zi5bGKrA9-3IWr`hvo?;0Svt9rqu~J$LcS(yB-cg4qL5d$pLS7BdT z1)P(bh}79ec*uDOIF^ifJ<9>)V5$ z?CmJ=t>A~Rq4ZUH*1#9T|LNmc2oI;t@9P-EDk*T2$LndbzzJb0mJ~XA`j+=Y*+`~(wJrS}rvg~I;{zOv+1r#?v~;^kio#p{ZG8vOKOs;Jge!{Wl^?}5 z;Xl66po#eE$G#xQ(A;T9qyWqR7aXU3EWeMx+c3o%fGpP`c&tbSj)UVHi=>61rKE+} z(Zd`-iG|P$fH$-dp#{=HoE;CFcijd#x+WYFL{SUz2Bp#r8x2rZy9 zT_v6AbLEamexNY1E&r&(aSQv6(1UR)iqDc1MMXWfe%-JH2N9Y>dIBiV*o4y~y{B}a zo6;Q9eTHnDsp&Ku-RA)GxwM{gruNk&M~P((JXOL1hw_F`}lN6sa9iz>B8sDbUYWnj*zGhd_G5#$brvw{NOCdfa298 zSK+AssO|$09IL&C1cTZ|pv$-`0r0tY_7rhfZegF&(&)Z^)KebX+y@$V*j5@7u(oXI zhe3@$#E z@PZAVx{2(Cr*8C!Uh;DDQc53+;Z~7C#ei|2*7j0ypVrX|c)D#hWoV;hD4a5+qK`Zx zIbxhbz_?E<6>+zk#NqAc&uB>`?yxU$4_kf#x-jh1Z?r7Zb(Yd~DIi@K_9T!uJIb8xW$axm=EcQgkV3m^xNVJrF;bxs||F4I!T#or1t>ti+(2Bg&?2Oz81 zPq8!`!9z9$kD;I1(ozUMtB)W&FN|g&-H=i7r>!d+NOJ^W2s=`>59X;j2T`=|Tj?0j zrqYrKd?EtRW!KRhgbq2lgtCO@AoPhQbbVfLjEWl*ufoDR) za=b2LNF-sTi^%iwzXFjM@(Dh?L#9{=DAn@|U=y164izZQmPG2p#h&NDLH;>qXItBs#0wh&`PG-(1NDgkbqCse)W{< z(0W95j{2)k7H>Q#;dZu>LP7m`rcn0HXGo5xZ;H@QZ-a0rr9!+gk}oaaTU6`^1L}^5 z`=sxL76Ho#=ZC8P=ZIqzk@TJYQ)4@bHPIX7E$C{=TM)^i zyd_^Pc}pevlD9<2@u(~W6+QTYBiGNUBWtl&OQQ~mPGSf%j7jA=uMF7&zeKfd&znL|T)G;86W_7>GoSrw=IIIEcR|QappW zH^!5G@@i>vPSFZza=xRC{)UX!usHe&$tL@fR>wKeXV4DfTEu&R0Io#{%5V;p+>fXj zQkEc6Jd|OCr}q71gr|x}{#PJQN!FP!?!2jGDZVk8`Jd{%Sn z!@C`Xc%>^T*|@sDoTMnU)nC+oQUi;5Yj}C9Q$ec^IcBmA1i0K2U)N7A>b*pBa3u}H zJ3%&vcUniYaZxV-ovtVP;hwm57f<=bF&lQnSA62g(GT^LOJ@;j@e%sRASMyq=?MXl z`oniq3>edfrYK1$3?+$7cAO zq$uRoU)8G_p5)oLrOsrL{Q;b36$ckH!~4r7NTNC3Ca{F}SD}UA!>oyI5P(P*>o42j zyr&IdKGIh2+F!ImDzDrg+gR_`pQm)PH;otYXcPQFc;?Uqqhd&c5`uzXVl5W6u>}T- zFKmH<{cGz3(Z?Le0|>v=iUc$wr|rvA!ZoW1GAxzOYSR4b&!HD`%zGoju^-YOWdS=^Zc3 zJzki5YQP-ZP98eD@1*170D%QI{^0nD9T)XInlJ9}7k@!g6!PjLb#7-~72#aX&;RJC zVrL0pxp)%*mFrA@xp>pyCkJQ20|<4vbO1M!N;94P^-KNv+VK!zx=GpKPAs8Du@+{r z#lPEPc=F)*Xg)n8y@~kBX1O&gV(-;`-EWRj8oP&*jVl>lZmQGPsA$&Ml|DG{qOfsIV;xOFr(=ysL8k-S z8Lyg8`~#v$yg>`1r?`E9bbz;$9OWqt7E* zXGOb%C;ttHzzz(MZZCjG|B!;0{-J-0mB;?$XwQ6-(R)dL_;?6tV@^CA?s##4ykDMh z(J_X#C;}cmT?(0rDU!^@kQ`(tslfx+U>I_)@scV_c9CML4Jn9BX%KST;*`OGaWdMa zi1MXni0ncg5FuL>kz~t1#mZM-aU?UJWMm89d5A)6GA^y+?SZ?Tf3Z1~E@W-CVr@3b zQSD^jNWQB`?qb|c3Q4w>`LV?%TNY4mzBQ_}t#+Ga4A3BB6pdueKgG)L4st%te3DJZ zX4GVi^KQ=BY#${JIon&rE4n)q*>Q5`3dLm# znDc4T&RmpW_qMaI)?!5g^|qUpR>y#_(fmXjP^lNo=>kxO(}j_=AW}BWkFs|B<8bGU zI$S0J%kf*?s;zbBHF2KQEOS8`cxCQ7N+n9;8h>dlGNln7S>=d&RG162lxlfw7O#qS z&SkSGC}_^2gc>DXv`FPiSW~KO>de<3=UbaPd$Tn(S1hRzR8jKK!lQz?0s>g2Q^4+B zG0qkm+fAYEe$gmuYLXKzp}h`LSiEXtQ$DaoN@L#GRu;_5lbuc3ep(fmX_Diep$v*E z&3Y8txWsuUJ5CGwQQTDG_)<{Zfp3Y4fH`h4&l%?ILD*7+Y?p;9ziS$5c^Qb>y`yPg z?S+?PorcCD2NDhU<0D4m2p<@jk0e^vqsywlMNdP;J` z<&k>$K!0WwHKAAt?%Orsf+0O*Aa9)rmi2{Vaquq2eRra>o5m_AHb1tSNo-?lVQV(6 zifpZ!GBGTy23HMIoNL%3TG)@P<`U1%gsZVNxKhN7^5bgQK>l;8if9OK$@&t87JWU6Ke-EQ&2G2f}Yqx$V zm_!G8pZG!tc^`1%J8}0ovoQ|mz5vc_hSPbBouuMIXZ9PCqL5dAQZHwAr3iV(UpzW9 zj^CW_EMXT22J~uU0^oF==cO6WwTzVj5gyk7y~c*Tq61iG@l2K;R6=}OTaBX0zD3cm z-Jj`Xd}pS!4eL^)e1`z#(XAaqi=tawQli}2@iYq^?h+shfl0n_uFQGxuy*)+>NSEnzY*sU7<*5?s3Es=Mc5!yq4vXwUeRqj;m?#42 zF!`rgc|u1B6y}qR{tSA8Z%8G=7Ybf0Azp5BDRAmhWptS0OQn|^PjV0sXprdvegMM5 z2h;Y^8n`&SmkRHQ6rKgT5*O~D{*DwMdz03~rQ)4HtXL}ERO+P(eZSyAq-CX7DpCkd z5M;GaU41`kKOgSv98xzY5bL{ND|BAeEXjkEBbZ7_Mxi7QA{v!B$fHpQ`#X*3b)rw9 zX<>2^7A4duYNbWIPN3dz5Fb$F?8OGqY%yRHWDycsAy5Y4k9o=e zR)iAxDwo1nzTiv>6P*o{s>TxLG!R4}UvNIH>h+<*ptx$!b$n5Y^Db6R%lVP5{N!bW z_}2AVJ+x^&dziC;u%$?tJcw7#%I=|$AH+)sfdMKTndOOD1%ht`Z^cf}zm#_T~w`(A&FFe4)2@BQQ|I+XIlv!G>!-M2b!SI5}TleN=+?K%UhOqtt7& z+@)pCKAH}{MbPfnw+hgU;Ey+Gw@C2@?KUvag~3<_d<;@AJ}^lAe-ZwAp>Lp9IQZO8 zgs{XAnJvZbP`nMjQGDT**>U1F72asPD8BH@)(&xh02JM!66oGaOp8c07;NVn`5o4}u+>I_R2;I4IThp70ji3{Nm-lE=1D#8^JBl0%( z8%g5Gz&XmmI(Mkc`JNVmmc39|h%)#SkO8whs8K<5hrkT97~&^2&C0jlEasNS);HoM z!*XNzzL~&;09k{HFj86Pt+ES zulrO69}Gyo>ud||p6z_K4rB4!O6S9j62;F=Xg7ps&u!j-KT!oEK+zDscy(%va9RdD zz*gZ&{Mb*?PJO}5Jsa#vpKOwsf^fu&s;lf{1wKR@Pr=Xg!q!gt=_?9R4P7RAj+ZIjd*v33_d zEeP7P(KVAMPn&)pb!Z-->V555zInbggFQo2XbRUY?#hME-kPs&VH}K$i=1b|TMqSfzP3Zu&4{)niJVJrIh34B zc9Jrl?(=<}8{M6AE3_XgBtT{K>i}q6eTT~E*SVcerSh*Pw+QE%`<_F zJeZ}j?lc?0LpA}g#lXbWh~`(XaF(+Xv@l{BqOeS+Ifw;v081{LOLGtbhBd#XS&FSlDnP zTfCn+{&8m?7EP1!8hF@nZdvW@8KA=3FGe=wyP6rn{NB~hSY{7YHE4~qt8Z1DB!`N! zC=ZMB(Wpk*A#v zE!r*o#BP6@ged*SDIIuQ?(2T;nWC|~; zhQk)dwRfCtePy@!W#`>>mEB(+*};dO>=FcJ)B;_QZ2cx>S0grXHsz$=GHk^U?uCW| zWK@RkHLp2~HGS9!860>7MTx>2BC1Kvt0}zk0fg7$4d?xJ6<)~*rFih+C%n1-!Yh*e z^c$f<0^d%n)LU9hJkU{E+C%R0x15_b@co;-4XMEwE zJz|0nKQVpaFQ%s?BTvBP4lzYoGsRfXj?rrM7S$JC48Dr>zVj9>C}bq`%Y`$Hj;tYk zc|8e~SrG4WyjG(YH8Oxv8@125rmjM}YNXOF_%I1Uqh=E+v}1zB5PjuuCA5;c#!A+n zR;#zrUe&4--*w4iZ-N=BJ3r$|v~WByHOE-ADaIuZbD;@yMlS-fJSvy2~` zf2Ik~zat*vAiPs&gKQb$5hi^23G*hALWMaLS%n43#iyOEJ>jVDrSKQ!P;*|yMnNp-VF zs_@|_)kFSLeO^lS86nj<+BZ@F&-e0TPG`f~P5H&i$5CnepRDMrVTs*&Y#Ti}?y3_TmM)NCwI=iu}C`n>KinfUq+6yj? z;yrdjyxUQ76hBvzb|2rQ8@Lh$)^h+~)YzyWF}b5X7=*@XfABRIofmj&P*@ay?lrv$ zhgjBY^s>>s^s=)htDqF45XaUg#OYFq0S(Eb6~=6yJ>XOWzNsXtQN0BkJ`%`+75S&c zB0Id7e9oE3yJ|)R6X{;p0|k7uzkr7U{lc&e1~n0WlA#+**(0=`*i*MWIJ(~Yn#vP{ zj78e>e07lVjP4%I7d>Ja>{W^i7ffENO`>m&#sw4KDN9v|(Ocg-8V_A)n^rY23ZkF! z=keLma!>F_9jP5JH!?P9dgK_s zCDh1f(PM~wQ5_nOsijXPj0w=EJ`Xb-{(VDPQ8zf_X}YQK0`ZN={i}Zz0q@JJJ}dX)gX@l##<`P~0fIskI63 zx>|%cm6u!>9mVr*iH@vyC(;RHH((v>vOTG{~lSg$BcEcBod{a#g3X0Zc#_yK!H=On@<#A8{DD z%%H>w;YAG)DO7lNWJ*sRD=k3&EU?SN0dW3Y^3 zM(N%5Z_>Lzko4kP)lYhs#n6`ck^y}94wX?)i4-cn1(L7%N__Z`!K<{|e=R)5gi`z4K`fY)KgKieN}f9kMZO;xw9#w|fIn>zX zg9i+DcQ)GaCLbpS>kp0NIZvcJ_~v{gMt>N7h_L7)41vEUC^_KX;V_9$UUwRr22HWhO^Ebof zh0;5F8GrjUuzPuLqou~aq$FYE9wjLXW%V!hYTOt2xzCcWVdn^7*`z3O-wK$WOcS`@pz(Zg5<%KBP=)7d~Dv6n+TpIxYC5+Vv@A-1~UJ z7)pb%5AmP)R~%^;k;gl-uXGQKA<$IA3ZdZx26IFO)TO!N3w3EOkOfEltW=pi^*$Mg zcEf$3#0b%10$7&nn|Ke0F@rB3Vpw_E_3$X%BZG`P**zv<@)Sk!og_s;ul}Q6>b6NB zy@#zOfKlDx;tMwMW}0C(@ndE3*@DMtHa2kp5?zm$NdvM3{(}M0VGn)8a5$O$p=wxs zvS6QT*hd9O+OW419O}t}Pe_t{vS6uyt&eCCAM;_QS)MjpS|*?vR#D;$)henS)hZ^CS}k?wj5X$JzJ_Y+IAgTN zG6eu{kB0L%#Rf@Hh^sHvQ**xh9~{fMyTX{ux)bQqT6Hd$15gpoG4%(s{~T|$Vx4I= z>Q4YdU7gCMwc0+x$Y;}N6)!}~q;h4guBZ7J>td3kui`!`b1 zTBVkIRe9@Vqp!XW8cK|S$y1DE?Ma9ZWi(CbBp^~vwo??sM9EF2=V&t8D4T!Hr_CbL zMja203AIvqs!@fk&`7;0YRCake8~atU$n`_ORqD=yJK8HzpqO5m~LDTW1mTZG)ARI zNs7WgB1pUHs`_cws_8}|?={Pq!Oju*Y6w&fd70*T8&dzNTnvFt`D?R{DE1RABL^Rn z;*r*ArCH-Ejjk-V0+PMG#^WqmtQDSdkmjRiSu3QL=g}OKAjrj)+cVzw6VTQ#?ga5f4#Ad-EHDmquw%-qL5eD z*MlBcekPnBIF{0aceoMud7mUG2BttwBjt`!`qCy z+P5H^JZ#{+I>mm1Y<9!)l%1z1dz@mT;UD4zxJuQ8C_?_XG-H=Z9G zl9m|&dgae49oSR;6(ErBnPo;spz`0s5h%BRd4VAN8C#NX1+l=BaDym|a#knVd>CK+ zUiMAw6ABJ*$9*JH@YEW#Jl@#b@_yAE%Q@f~U%dI1*1%=iGjQ4kB9zoTe{~VmD>ftf z{wC+6*mzM*onn+v;QTlq7vMt_y&|kT;=-+>Wk}z`^V$byKlRh6G5sygm!!( zA$J0#ptZ^qUudoJCdm6a)XS1H!3HagD?X#4G*m_R8LQbqQQy=3a5mVVq$s@Azt?X# zb(byS!_X#VmF$_uu}&h(=~Pi>C}I5qm!po z)57wwY#%5JUOeg5PYRUStDgr+3OC5{kTEJ@tVpK4x{#6vfu$08Nm8@x*>;+YD(4m{ zsB%CTs@w+;8{1$(df_8RIy+3u;||cF3AHHPi3xHC=y_4aqinbXw10wBw)ZJ8RJM14 z2cc~42~yc!gyRda&%?ITk}$}tRR_uxp&FGfb|R#pvc-unRJOQ@wJ4i=_iCe2pkcAW z3vh)QVDti%GaYwU{Q0 zVWQK2B8V~17~yPz4{Tv9SJ4#I-1|ieYAy&sXs)~bU89L+**Z~O4u64GLFL^%u@>ch zeWFy}d7_F(d3Qf=cMuazD&ryIFl=qW~GAQq1nqvm#JyaXM6HreC==H(3 zVozFI3*e9ufc=rB@XAEE?@_+I*lzg?3T=%_NoD^~yvX7owV@22ge*o-l(5`?AUdUu zVlobqulQzkiog=Wk8d%O^n^)V+iIk-q)8wdPgf9_v^c(dSFQUg=@OeSgMaQf+98hJ zLqlVIr3oX73_;8`P?pe2JPFzqC-Ib*V59X~T2y%IQ8kKQBYDMuFHlWHuW4GN(AY^3$#HGF zru@?7P7V3#myNsG{S>qx73z(&dnbt)I<0w!L&p5@CrNqz{uA%T@XfCnee_L0=>?-X z&kvfO#23EPz7a3JIEY!F7p3t!BdsSQ8Cd!3SB*BzCt0{9gfsPC+FHUHkRmusFga5+ z0%vC9Z~ffpVfB%{>W241VEv0mp_SSTsORaTXr{jvkkCwjC%({3e+OvAo!uHffqUGJ zz-D^W>&9d3G9?O~g1OI&>xR+Ky%Xio0T8#TclcjO*DXRDw_uD6%#{G5*5RLoR$ z|5F3gAGKi$o)SQqXxIgOH0(aip<%Cl#GV;OaiCpa1UfA2`s~TluFrtuio&i_?Vxr& z@*}XQ`BR_~Jsl7&>U04ZwO>7M*JX-nQ4>o^d8JUrSh^SvWo_gK4;h{GkyE63jjsx7 ze*b}kjrf{TA)&nFW1|r$0>5)aPR-b2-esV zLNfPbF-+R~MT*5)hmBtoA0XvxWAQP?;$I2jgvCood|0G_B#Uj18q=9ivS~K95wu*G z4ebFw_cPdx@+t2pl2A$ieM%(22aY(VNECx060@1bh||nRE0kq`YW&BDc73hX;3*LZ zql-h%cLEd+Ip2#f9CE$~yn%p36Tl3+yf zML!x1_(M0vMe~Lyj19~>6`*_69><-isdC(jm?~$akAH2%^LxIAO~%$W%4YbLUEZ-# zKh~#4u>!ML2@?|yG|^Gr-=VL8lQnBqUo zEfFYjn5&*Dhq=E_8sihfMKT@c{v^Ve!yFztT1hF!iOGM}BH?U>4{R|pd4{Io$hBUi z;K&71z$x|S)5Zsu|4oIJtFK3=vUhxHOiydin~aUi)Zd(1%lLI*Dvl=+)uNsnzr;bE zEv0SsH>R2+*c%isUV_ceY?QA50C2_Q6+hB!98SKk4dd@q(a4AUVC3Sp2MZvPLs(60 zYw`y%o_!%RNoUh!l-7u8K(R+_5oPGKT9|A;O^z!RCC7K?fJJ<=#0Mb`D^0?KTe9tx zEitZWZl3)soNin{RSqlbrpjT3HXRvOHgx|DqDu~@l%majLcm3BQ=am`X>wRO`nz!^ zaUvc&4{Psaxt zT49qTH36!aCI=?q3pz3eI%ArD7|i-cfB zL-lX<92K&!7>t*9jBUuv)+9!AmzMqtYeq4PQ9+C52U)rb9p2c*(Ts;$fPv|cG>YW# zmBX@XRBGv43Bo~I`4vn02-deo(VjJm#_-tS^tr68Mo~ETO-aEZlk-E;V@2@vVs?Fv z@^gI4Co~Q zX+a!X+(Sasn`+@33E2?Y>(8QO^M$F`TOK)xN9+-)V`DQG9&&R!61L-OqcVZ z;ORi5$C{h-AZ>arCcQD#!&j&Xb6m`Wbl?q5x(_Zi>E{}@%!EVeRmZd75y;5&I`2Ap zdP@X*mIz0^vYkg60dcBVw)3aUSGEgi_QAC5iM4V#V7h#8n~D=3+|Cgo=$r&l$_KY= z!97voo=kCrj3?;hYZGtf{|PxhzU_nD++|xzk>W0!AQvCs_OCIJpH5E48$RB0`0ln( zIUH?jh@j1Me0Q5~iA`@{rL6*@LT@Q&x_ot;_B~G?bb55=cM4L`g6|SvXu)?)ug#fH zicb&nb>`h!3F+N6_8H|EP4=fGMIo(EumxD~c!8HcnAU`!NlKr>ekRc60gF@6dU>rwg=NT$@gk*xo;Ss}AG#8IE1fbLP14uSAEuJ?>1)JS$29WRRrQQP)mgpJkXoa2T z&a`|8whk69x4Dn*ZLXqwe8nwX`E%gIz!GfUz#CTH*2YlO}==Bx5;nJO7E(FshS*~ z+8&XxUVx@eeJjOEJ#7i6)(Qfa>dW8W&GpS zJ<|WEIcst6Er5rM!*c}yrQj<1U00Gs>{ae8Vy|*Y8AV<7!TQ-N^HuIa1h_O;0noWh zXOUOAr_w4o2ZFuTtJ4SQ<+J3%7{1EAs79%qd`sc0+z-|$wbHlLz6r5qY>R&>{rOq) zXxbYz2M>@z4hCrZfaYL;HpmeH+7y}7*>|)A+TIfi>Tfg$p+XKoRqt|Zv(0vtvFjk4 zfR5q#Fn261hVZSkCDjJaLHLk^FLUS79Hbg@JfOA7@MzZlmGH{pKw1nz_gA3D(i{X0 zIe4OOI?X}QkmCW3bH7?z9*3IDS>B;$-;nh7di8ASUCeHi(1dp#n%*U$R0xfZH?64@ z%?G(3pmgA%vuI(9x(+({AoqO~q73d&Q_xav5GiO`L6^yc+;7v8IOy!2EeD<5Bu5Q8 z_#pR}v!yZSvnH7qPXBy%EpxI{v(?I;0Oy@>;^W+hp=HDqwY&L=G3jxPBE+F4oTjMg ztM_zD=*t>a5(N}4TEaR39fhyn=B8EU6Tr=AB|PG@3nIA1(1IQjt>gJq(i7a{Zit<% zF}q(q^#m}jXBuDq4bTgCRZDw~Z<(8}p62dDA)t&4Dy57INDh_pxJo7CqADWeF_pE* z*i~7pj7LFAz|SQphw#33>LA)c)*FLYusYVG3D=Nv2h$kRPO#Od->PULpTK z+P*t3s-tT-_bwo?1JbboQfynn8pVpS7Zgh@v4DxjU;}#x)L5}Aqe)aOiHWgbEF_kw z>D7|1DeChiPc%g_#S}}vGiUDZJ$G61<_G!wW4+9oQ|FxNr4)>ups;5=P&E5e6k^|Y zIR^X2{~C9cy-6vceP7k=`znEWPM%x>8{_lbS4bxLq{EjL8Txy#hQ`^G3&0ZI>c(w5 z7br!2_QaGcXHR@{iTmOtHN2!QHdU7Is#WKwXG2%5kOYsMJpmSS_QaD{hT0%k&YoB( z8-4bqp5#@2YN!d|iP;kaGckLjT;K&c5TFKD(0kCH@CIX}Yf)oM*PNq zCG&`1?Fny+DqU+7Mbcf1W^}t2#xKvm7k7wF_CV9zi=s*Q%E?LgQ>b?xVe2Wba4cmt zKQ+}76SSHDTyYD}cEfcRS<@_uY##wjkJ?>P0l$a^97Jsnw*rX=yq|&MfZ9=Aoh!{t zdCH!+XG*yjybT$!gBVipD?e~HT1A!l)X8TzsKlu0_fpgE34my-R+}W(cmgJQ_%dAe zkoCB?naA)+-YO}fs-g%K`OKU8y{0Z@EYQ$qb_^5YxDlAqMonfEV zR7>rk&IF>ViH~}Z1h{zA`w;?{gR9I6)STc|P4U3DGL)zZj4@~^W2vTRiuTC2A=#~_ z@&G@u%+f+W_HYdPGp?6g)EA*45_=tXVIsWRGEok?4pL39YfvImTwMbkj-K0GYl?bi zlB})HQ3M>#yjOwh7p3aP3PjBHDsSnUv)3p+9CMu(I&^@m#+AhuxW;>;e8#WZWa3#U zsE6e#g_iS=;K3QYKf>R9Yu{^TIwmYSkru2%Fq9P=iv%C&1^el+Cf* z{%Yi8X=b0va;yl_%NHg{?@81z+DMD`35hZ|(#jI-aHKU-eBnrIB#`&IZGiu`&~m-} zNQ>84X&KFCQ^9evaXLxS_!fR&`7snsHty#oaOGRk>7<&xY+P(Vwvup=r%ade+>J1c z_Y?)VC;60RJY$WeAzMbFVvaA;i>TR4`OP(!SOsEcn`Mgo@Ko~fYgS&?vYwxEl;=KS zX~4yU;L!8Bxz-X9yHpUS-SH`ulX&?!lBQ@z(Kzw4zd~T=>ua?dM7=A}uvFd?Usx*d zRah#k)?0q^QYvq4u#98hPyw)1u8fWjXuT`HweDsaBQm;JLWi7&7u#9S+khOB%mx4?A;=aYPux;$k&l*GiN zwL;W-Q{<%U&w?^7imxauEDD;USwdqai{jLjxQ3BJek_UR;tNZnIk4~^A6=fZ{Nkk~ z=5Mx4WW5cR5JzZxkQ9x7;q^+F1YYDIF2O508$XtfB(&vJ{O~Dq{yT?4+@WC_K1C}M z_|QuXC&0bPnLTWZJb~RA{-;+sCE>4#nQe0js^Tb?wcO%x0$;hy604Ss;`4S}>auqP z3laydd0zkO{=DsO@L|id7IXAlkU@L;Eci+Ap4h)WglhLI1&7hX)U zP#n0&O9K+c8B;v|{b8Q?#Ph`q#X-QO;-|AXeuJlxY+}zmo+bHJY$?V)%D2R>E8NEQ zn^+{rRrhmZO$L{y3dBq)t`gYAgbPmMOcE6gHY8t&FRaKq3-KX-{O-$s8A$W2U7;=b zrTrGWnlP28T}et)HTy+=Z;z#}3AU&6Red`~hQbcc7ll~+#Lr_O z7NOEgqtZg70$`+K%6=FMb&n+pme?}(S!xA8EYuk+e)bwE4A3a_)hGa1qp-_OA#XoW z*d>rRi=R1Q5F*1wjlwvM0)RCN)4)xH4BPqM5}+_m7;>EWS!1NIRHLv+qX1xy!g2!z z|K$R?0HE+7Q-7Y^eViX3_=05_+fN-3cirxp$}=8q6v6u(v zU3uOSi^cq#AcytHO`dkc(vfGji3v>qMNbu9LcPN5%C{u&)KLSTpK66Ceb?XcEuCKq zHZ%uL(>Z6nXG!Gdqn4IF5s=E;=M0SIBaT{P%~2%Nl}{}Vd45y>5PtHg#ioSugm+<4 zCVtn0wN3HU;Hc;8liTp=$1JvRUx7sD(E_LO!^bQg%Cp@1#28<0Ic^!`(?amQIsDrw z{^W5>ggMoNZ_%*YA-p)JhFxi{vsF7z6B`*4c>LJ#IDYo0&_tej+~UVG*CvHUco71| z#FtI+1}RRzV@VGym(@@3Xu)$P)d-FDQWV*Mz_&H;Z0BDF4-4gGZEl3}_OAoumM1M~ zmAH8=W5bO^UgsT43cq{O63i$^@}yMTkYQo`a=)6Am(Tj_vD5H*DX-45yzK{yjv3c$y*4{2K2#p7%FaHo;UtK*-f8xr#){|8GUSFG~sqvAklr5|> zQ`ow|<;{mLQc&4k(X_Mb2I|fGT#JY(o%y;YPEkuiQF!=DDLwKgj6&5fr}1HbSn8WE z5tUu>(@OcA`0%x9;>2?!ex~LyGn{t`_2=#1u~g@?-nR6uf-4P#XK<&#V`*ppln8*% ze#f)qJ`%!oP|r`3SNO$Wvm7*sOgGdGeNDBdgU4TtY+#Nd5LD>ge4jRIjp;a2=BE-K z3{~q-$I-F!CqMnZ#U8%jlVQm8qBE8R0}mlt`HVq8RopKMqTyAkXQZ#-<62;EtnBe| ztwVgxjy(qP#tr?4BZ9M^s76o9YhvfZ9A+<^y@{-baSFH zYkxIv24Az=);!Rdu5kh2`ALmhncI3okpVyr3}$?3nQ9(r%-Ub=H$&<%$_TI&1^C#N z8Mq2*p6mhRNFOj=^v_Rj6vgjcvWzts8ngCSmuU2#Fak6U04mlw&Chy5kpn$oV1*-U$q3Qa5V?Mm}L=?P=)U47N5$oy~K()g-8qv^);n}E?DulCJgo2am32mP&5p#yAPdD*_G#^%R}=%>@H>1?z} zz&<k+%nM0I=xd~_`CvXVv!1U5plTNTm-)WyO~QCedXE5pmPNt)T47NE zJgm$z$MlrTVq0`1S$B%2N_m1K|;Zc&$zC|-6G=D~`1=ueieLJTp_ZYE;z z)68n~Oo-<1|6~a_q+%hSafx)!t4Qw=kuH`O2@0`ZY_@J}ZE>0kv+Ebjqn>ONd8=P7 z4)v#*JmF+wJ@YSKS(g#k@H_;>g28`Q+_EIa{4MAAZdp=1IXB?W-z+wts9DgZuYSYQ zz+3~qT!S3hibXYQtwziuorc6&d|SW9O$^-gf44Mf_;=i)!FAnHpTxIawr2EZjkz zHIpBh0#j+P-nJYyPb4CspO2j-{d}wraQXS=cOsU?YzVv$?oES#+2Qd1jHO`xTo{-Z ziMN3l&*G;>Srg4mbxhsa)yJt;>!em5mED&2B6_F=v*a=%$bpVd*}k-u$y!}8UnkO_@xRlI|D6tS89yJ^V^u%c&Ic#a%>J`IyciwF z2cWR(F1x;Av*p4Nse_?C!Ijwi;9U^05)0hW#DtqPu}4BQ?_JG$%1l#Hsc$`$`r6-` zpqRT6*-)uYv!zFM(g7}|a7{7`;IJlXeprVSzZpT58t+vpu^6d7q$vg5P$|MqD&>(7 z&4Yuidl^ZE8Iu|I1fKF{Tf2D;kp-0KSQP6MXeN0D$!Ol^t$+|iDw?IkYK(aXdA5Z-VZ0l^GnBTY$`o-yoRE%cXer|ay)f# z=R}Rp<`4B`IboACTnRKmX1?X+8hyLJ*o@G_j(lqd{&&AM!^>(|&zRcJfisV9)J!sWnBx(AFcH;CZ3_tQ z;OjXDFT*#~+R&U2s8Rh!t(AGcNAGhAY1N5R2&F0CR@d4=Z8S$dml4tg zp41vv$NG_J6Bsq);+SwgxRo`+{3MYA8)vjErRGW-`={?{4PO5!?r&*(H!Q9`j%#= z6=)}=k@ycPi(exGm0IE(9$kQ!yVYpeavPb{MGc=LFMjtD5ZPgKxu4pgD3x`xT?m_G_-CuTXhzqZtt(wht7z-K@T-?t~?guMTYEz zx$>MM9o5-*%ltu+W|AETbZQ{b`^GXL8pm+iZ!+kQ^btJqq~f5t{BxVNLu`Ubp+UlQ zv9z(=--k)2o?q6uI9Yh_B~#VvJBSsulYf}3h==KHV69q=_P8#20fVwNSeRE}xVvxw{9-(57 z;;Ff^M*-Zh@g>}3kb3)W?X_xJ9OmkQ0}lyNWMddhR+8x&_wyxR``jQ{9^(?{{3% z(z?oP8@Tn~h}Bc6*1hJD9(Kd(VYr^?t{(m^mZALHnr&g9-^1`i{a+2OeF z418LQ2!7JxBz~_`kH0fd#_ukX)fm6u&6Dv9+%SF#HyOVk2{L|ZBF69ec`|-aL2QYG zQ71q(5x>pyfTI?U7{850ftj8ks8{pkV*wRqE!)|;OB9V27yBG=D7Y^o>My|= zE4cge;R`Fc`|`1Zixj1zRd6meh=r_v)-F+Wj@1Q&`8j=qO^~35bc5Y=gC$+uF@kh| z5fwlJ&+Ttbi@GVeNf&f`gYPuCy~cN%w!H=tV0+EgjA%hK0)E_EM??zQIwD}%xNI|4 zEGdl^Ka<70FitcFidF-AD1$_(L5&0_*g9|F=_iIIktN!P2U!!;*7>+sLutt~Mq3+` z<@#J$*oEc#M*c!_m|EJ+)266h_^_D~!92c3a1Ay@$bcI4&lg9{dZiB}DF74kRXC>d zZ38aVuO4D8fsGz%4_U{t@q|9dV*t2LKMj)gb$T{~=7KAh@0V-zQ-p%8B6j#t3Arh_$Ij!P7Od=Fhi1>5MXp0UM}#g_XmCTPwyu2O3w+ zy;vn15ag=)Q^T!~R$@?g;Bjj@znEnWW|X>IAuk(YO;MiX37OVfK@_ST7`XI9cmwrh zzP=XCPE&)4M^}{-QvB7M`&MQQR)KJ^{`^QU!ph|#PgUMSPCspZ3|F3c;=|TE>il7ZAtAJGcW2ux1Z0=NvT(D`KwU+W^b@GcVj)^9o*5kyn!bQ!ad|;u<-Gv>?IB)!qIDwM zNeJ^a)$wqY7gpIj3gq&zEyr4)->i#f zkXQALon-CFE_-HEzTmmjtj*bV3c%BpUlhpGly@iu-zNYRVX^j09bpQ%;mF2)Smb=- zxriP*-_0H`{dr}owKsFnY$&B=zC0+}ib4bd#lmy*t*u!%3c$mhfP!nMpct;5#?G)l z$VSp^NO`zMIfp`!@^DFc9t9v}Krv9xn`Q0JIL(HX*J+fWrVymOPEtNd0Z18843s~f z1C-yR*^u&E8s&==f|TD9l%sh14?*$lDup6>z%!7qmj@}z)hPtY-<5*L zQUFp06hT=zCCa>SMSh4&%zeU#%O&P@A@%+Ei1}9k>W9F0^xJ56%LgW?=ZkH=3F z)nr>g&K6kxV+D>Jg7gs5h(BE`&xZ=+%JUA9g;r1bBEi+-XDzT!VtuG4cn?qVoNhML zkOe9qHm6$x8%p7LGH=j=3aZ-C3*_hk#lg`5$i(N(?UuyHwH#2H`3hQZ79t7$PcSqOIq|5B?VYercK z8>o#I%4Lmz%@J`Ypcjb>tJoDQ8WS8*>bJqVLs5q;lwC3SUth+^&y5a*F{JekC7*ZR zXmzmpR9EbY&4c_f;a9#VR=5yXG=dD(L(ziZn!K1>6ZmtRthFoIK~rY&jACm|Hj4^_ zF11CZ&^lu}NGJMdQ=mk|bME=qpkH@@;$e+(YL~S#H3s$;_vtKfqhBr$*l#z=Z$xi?u#$OxX#O zDNcc+Jt$qS@89}yxrXLpwtkf~mdW}!EPoFOj%M&-th>U}MGAGa22z*0k4rzh{0CSo zi=tK8TJX%KuoiF-)>3m9%9XL6^>P^R@|^XYvV_;zZB1dzC|5MvqQ5iRdTBIcnDYJ4 zMJDo7^Whb-_Q(!{TIhrZ=#M{QOmnd45 zO?kx4!C=Zuk;#F4_I~Rt%4OcR#A;{%p7vVq@Zn*@d!9D@RBHH>!z8ufaGFt1uLe^u>)kkhgA2GC$37RpLct;Qhf`T><;B?9`zas^feU- zn@Ru09xic3E7h+wmxzAdx`oAvT&`gkMq1g-W|gTs-4dxa7t3%1KIlE41HTk!U%s%U zTQq;F=`Xc;alv)QFTZJBZhBy`%5Ro*v#?H74m4;Qknw8J-iyn(oon8%)czA)=r)V_ zrgy9ftPPa|?U?0h$5c(f`(fJYRD)zbEXC&JmkxDn%ul4)T8poCY$_%5@0fLx&emnt zf@_Ig`NVFyfjsk!^;MszfGJOJVQav)Q1)oeCn~b$v(lQOo-KhtUt_Bg$8$chGJd1r zdLW4d{m^+8f=}W?`kx&llS<*I+UHEcsNVns^sNO%eAcm~IN?ji$?~$aM3(n6B+t);?7--8gBwaa0U6-D*$MJ*KHNS~FcvPg@S# zN%62HKQ3AUYVvJ5p34;2l0yThx8$c6$(H=YqKaGcGjJP?kv%+F%G71yvF#>5_ye7428Hc z{Qwi@f_VHlLG_sUcDIRmlYl^UA5L#Q$Q2mefkWwOcGg7e6E#?1;6m~c@r4W2 zLzc>mjQfjK8C*%mZWT_=eX~Rs@`mrN3yp=G@ryN84C$X>Q*Bmbp!|XxCb?ZpBm{8Z3d`t_LY9+ma!m*?mER`j_gF@UT4RaxJVGQJ|du#B(#O&O0{D$Drv&tA&-BX(OCKr7zgNQ%b1%Een}`ZZXTNr|b& zAG!szyur(Wu&Wd5E-6#sGOdhbC>+Z;aG5M)D}}f*RRAadZmq|Ff=(DC*^4&W0n20| z-*gvp`#-GliCqD?(5HXaC)SJd7U4f@ zrT^n?>*ML(##0-r7`W|UwFdIoyVk7%8wP7h!nwV{?b$Mtq=&XL zpRc)R?U_E0KsBuk{}t(${AKORwi4=cebx)V>@CaiD&Y->ZDG8&Pjm==ypyJi4<|cJ zY2fPI0k}r%aO0kEUsmX+bu*$WAnARntr~w^wbfFz6*h`0SJ-C2C0x+XMB?Ha?g9Q> z@W-8g|K&YRwsx^wL<04v*;GP&=@AEg-y4#}m8`QoF|X1rcunnJGzG7CyCYK28)q%U zZGJ_5wgMKh98z7ujQ941ESKB-LI^~arwdEotUpk-FPE3sISE|e+h^rhB5aL$Ni!v& z{H%S8<#LzYe}x#@q8{#&Q|j}KFq?KoAut!a{upI0@9y(ViQ=mQY|V@rp*N;o)Ey*f zc2Mr{tUy}_^$$>3+=`w{MMk4c5Gm9s9JT@k^AfXdw_3PdZW38ZvGA5Y@Uw~)-6$0e zqKd*X7&uU-EYdZNo=>RiGRQrFN*;=@P5@JjErB3E-je=0!Qm+XE9K<>p}K9H`h_O? zR}=w7zxa2eUzMVpiRgS*s4bp2oVKF&2_;+_YHQC7DSAPCC^dOS*91x;nXf2~va;|( z;(Mr0h)6LM$GhRS@`QRen64i;*q4`W@~g&^`-Q|6C3g>N zCD|!(DlnVq0&}L?l{ZX4usc<^kY}}P5Xb6L7WnAy$w*sz6<43-uzrJNMBXvO~&C5{z8u1$PlNEQ|Ulb)CtXqM0c zwkfQPreIM0C{i$}o&-mNx7GQ^MB6;I+6sC9YQPEryIKI;nBlvkf*FbM6>?+7M}nez zV}^1gEsjX0?OISM*{OAHeVHLekEMGumVVS?={xbKj3ufZQ9+NTG|IyrOLe^C0R^;kal1LC0!1*qB5X~idGz|;?1$pARrBnAv z{-xd4oNXa2Wc+wxn!Onu?BlvIyiaQPY<7sEV27<_h1}w{XNBysRX{?#DgdWk`y|^2 zz&QVzWLqLc;M>WzF0q>hNg8>xD39}LNhxA}_;dCpO%|R1*qNS~7iku;X{dBb+wO4+ z`<|wIplTb54X9b!jnbm17+L`cTj0KRbtR;rkD0_5`j}~D#dY>fu%Vdy+1u2%+^eU} zucD^~wXoIUmcP0=xv9BrT~Mr$N~=FKpQ}fbh|k5YBtBP@1keA zWw%@@J*}))axkCmu!L~@y4)+dIqO3ypyTyiDIKrtO6hnNP!x`*hC^PQVJd26OMqL? z6ISu{OvkXQ&MrP^1fofhAeGY235MJ8O_D0YNT^ZNN z^mUR%-0cK)x0gsBP20kMMJS&Rw%+U_p)P&S3%~3On$H!#8+&=JZNeF*31l~s_>)u7|d#bHm(dpaiZ2ue@0k&qcZqJ|)f9#K<# zp-0qQRdFqJSo4Tooox%e)Tc`F`Vi{UA-wR*?!8J@Lg)|`WI%_ota9}y-|1nCg)3~Y_OP{y?Jby4hpajRg$}XmZydq~x{4}dPr7ZXSBH3_ zN)FMF!%)J9x9bb_#CN@Ir9sc>8oBC;10;#m6VFk%c$(zVR4)9tBpb%wAk?K>c;T1* z`YJh!*eXjsz&(e=Lkez1`QaSWMgC$xTcY|oSX>M#UKfO^D{QBna7ck$b^c>W79E>y zo|usHs|La$g?V)aLyDTK<&ff{ zplBRY=#pteifWYX?*nb=%#h+9Qm8(w<&nytp=8DUN!coVH9U%{MikHo6kR9>eL&$I z4=A9;wE@MBA-0Y@`pbpVrXUJ8GPe1p{on_`(1i z4~kVZSqvqC0d{QY|EB=UUwo}P|7Do%c+g^ECauO@MUqHtEnZEk+yx|$rfrpD3x&FU zre7^SIn&mH?IbK@fO%n>y<@cuu(_+TS|tIN;tsGE`I}h~U@w8iMS$%PglT}~Q%86LGQdQX<$0o?pjj}=KB6fYW#>f-Mp+&>lNh)|l*NjDVS)Tc-mNe`)Y&VLUrMyy zuYRvZ-j9?BM&7lGBJVdX@?I1u#>ms9)gtd3N){roE)k-2!1!Qh$e;(}f3!e64{jg= z@yu!&h*W!`qaKL$)oKqh;EG24Gfrv3uS^8{pjk1*|+_ok1;$QnUHt!~>jYinh;kNb(lWZ*wxiePS zdhx#|*($T;6HX|{@y$I#8<@8eP6wviqImIS+X&@Vp$0tGdTtUVoC`{bc|~MHx7A{d z;w3ojQT*MWq1(+L5^6Vpvv*r}`K~X))u!VqF7W(Rx#GbtR%aKW9s1D;uMxosH^hhg z2bRWxrVpo>ff)>gb<=ZmDn~LnTWoWjR|B-KN<%QXZpY6^0s+xU5)JN9x zRUg5$*ywV+MiO2*ZeC&P(6#*Bd|USjFYI95{ffyCyckn5tb|Cj#X1i(n+)(CUQq8fUTM%2K_`?1WDb%w*5HfX8&#uKC zd8J7!ZRrXNT1W8Y?)&q;l@&(~Tqk$^0S~bSO?i)}ZLxLZ#aCJe@}6sKU#d;lNzZLg z+2U@z#()YN8Tp7op`l89o>pvYqIqpM{^Yt!)v9PA=Q_53q7o}pcX2;tOoLP-1d#Kf*;vvYspqou4tg;)Igiu2D-e-R+-!Q z&^C)*wt){1+dS`Sn}wR-1)6O>f7139J4x}XY@6dc3u&8D@SZ5e^gkiy#5y*1m9j&l zd`*q=6B-5MY*n{T(fnjec!R3=4xG0cu?=)>#ElBn1S(Sy*c+eRVc5Imry?X&e%=dPC* z4y62H8p@8+TuAtcB>WZyAmJk#;ZG<82_JD2##|H{ypg^QM-c1*8f7pNCK9)U0b0P8V z8u3FEg2cD$#9yI6B);8E94*p*Y|seyIn9N{Kh=m|qYxzisUY5#{YC*u_){bd7fpjF zwc@9$M?^OGAW7E!|c6G!vLPJv3e|n4_$F_`Ek*byyk2YO%(|0up%DZ#O{$FYV`Cl zkrg!vlmnc>MR==0)PsZuWWo8AmPI^axwSS=Z)9(6TI-TA{(p8m<0Lyr8P~gHgb$;P zd}d>NDtnG5qmb)0Aq@ydA(aSMhVrbJ)5A-P&)Bw_)EF)= zTJVm-pZ&o0A#+kLc(T#T`SqXd9hsFv@XV4vYU{vd-?t;pgQJD^T)6<%jOhBR>D)C! z3{&eB$x)kLEVZQez(%g$8u%FvrDdghh$~pT@yq>#nz9@!1kM+Z7b)o9&?3v%hHv@q zH7ysc`qiq>R!|Jw4Y-tu%{k7*o1os}?V3#Nroj2z3);R+xG#&83cf51*EwDg6B=<{ zLe=r0v6$Y==5n9nYcw~CcG^RI&e#$OT2$n;6mx||AVD8BOknVy~9^KC0`Me*1#ZT)%oYqrOXL_{IRy1iXv_c0L{#_Qq|moJXk;UV1L2X|6aHu98G zdu{&Q^MjkSW|VWr8mRLcZ-ggHY#mu+3K3jF-CXKPrJOwUE_6O^8+mTW`jI^I2is|N zfJVISkD%5NN&<-w+{n-WXsgWzQV7~1=qI>rJ^m~BIdnKMgm?J~w(8-Zv#;BN**KbC z)OtaJg3ChVcy5`k2|xP-yhk|nhAqfQ-Y9#0DSJPo?2al52zD0?n zG_PyYyiOq~&Bj}B{_7%5MrmFz9r>HBwZaStMsXTSaZXclBKgQaY@e%tYSK*f8Pb{k zMTw&{cQk44PzXx%z-^EwbQAG!l;#c(x?|hK4Ec@1Sfnt&8->ZfYdaLM;Xc>#fh(hw z8l}ze*}@cdKjnc!HQ6MctqFyoP~ZOrmoaps$wDZ#$)*ka>@!&T{5SlEv}X@_<~Kn` zS*;o{gc^GPz$(>9-Xz~ffM9{goEq_*QxDdP)vF0DqG;U88MCG)`yrM`IeYY=?2^6# z6P`P2%`bN|`6?ffdh@hiZ{o}5hMFFP)?PNJokd#1H?&!K%7@MBMeP&P;F`pK@r7#= z`$0WeDrBKzz=~U)Bi72xn&Z=?gI0kk2d%FNnJ)0y1bd6vPedvmw4SEng@e}O1UpyRTT~Gow63meugsv;RV~Ex zQ|tQpvDYbGyqB+IJ$niJlqQS1H|`UWf|6>t%u!6Ox3#IheVqE;lk&>E#0K`h>;|QS zs~tb^GY#y0*bfu{)o`zHoq;yez51lQGVdFb6=cB9_a~*78`}FSEb=Kxan(84w+($t zHh-ZMg1bCFw%VUz4QMj%@`Q|XZO4EiL<-YI(iZfBcv>@ihbXTSfycS;xYH3eU8u1{ z6L*&Npn_oQrXy(sR|66b^@oG3`cVI2NYyNJdghx$`#Dt1URc~BF3 z95ZD1P(4VtY(u5$g9!?H%E+aRhWs8f zYQx=i|F?|#K>r*Ff&={z%5gj+=(OPCwtwOS)ukcc`CBILv3?{iJ-4NJNOSwvpqqpv z9qRu<(&bS9=2LR0Pcd-eDpvQFP$?JXhrOuMF)i$4l%UYfx}Cw(vlhnlyoo;ZSxu5I z)|p%Ly#Cew`Po$a!zRGtH^cfz6x9uU+GG)b)G^h>RPo*!qa;103HKt6KJ$>~!Bjh$ zMP+x}szTR;{D>H^T60g%NyElx+n1&8FrHL!a0KDB1P7q(09#CdbG4S z!~TQHF4CNMMD>%+a*p5=3c)#o)k`08s$iCFsY(M@M!~ol>W9tx5~cd*W;x*jZ5~$= zx>_T2w{0%v2l_niaJv{*o>9mE#o^bhb;hT9+Wg1@4> ze0TpTH$7{$@FK|dsfRcOC|K z*9Lsc!*+PCw^`R9qe$piA*_a3DohI1lt84}(k0+t0@Pu4@44Xm$=v7cdHBbw; z${pD&DHxq<*;c)BQa5hZtHO+TmAa&7(OIfHgNuy6q*(!aCW|ltX znG(h0&IE)Rg~ys@^b~u0_7&Twx++5#949mva8 zyF8!v9jaC1s|P#~XW9dqvLdS|uzi#puI0e**vkVT;lqi08k-Zf&Bx5?ZU21RZ1^@D*$9(wjOYNN*+eW;)0wL}k=@RaRh^|T8KOlnfX3)gl z3M=D9p*7;|*O^1zez>^MUQ=ZcP|E0s?Y2ojY)2t_OFVF!))Eh3Y||@Ecr!Qm zDXmB6(Gm}mjtKN+OH3JQjxm$c##$4kLdT$)rDJ%eXf3fJ8OteJFQ~1z(aP6R+IpjXuF9@cs^|ybX@2k>h3I~uZrA+4 zXFG9ltdQ>G8GBq6Qt)=YLh|r~5z-HUzVrjiNb`fbls5VSNQHhtGfO}4Ows(nkgWSb zTS^)Iz>pEGxaVNtF=j|c{E%G5hfnMq(4Y1B2SnQT3yAhYBy)ZzCmZ<>@NNAAhIzsN z>PX;FHsv4S7Y+!BHR20bD!S(1mMx;_=t%};(FUs?45)8JM;AEtc&D+ZC%^@Ae(#jZ zo}z@Zc;knajl>0>+0IkCIhx?$EFDt8T@|Hp%2UhuIOdglMc*CNQkUyq<~^$5a2efzHP*68~%(D|uhntB{Z`f2J* zF!>>FRZ@14@W7G$J;B~JlGisP#O#2ES!_gzqZnAR*4m+0tZKs@dPIqx2x`<0d`FRm zQ9Q8=L9M<+%5-nL+<^cx;Y~>cXik)=uSg*>HRXRj($TlH!+!f`CN_a)$En)v9kPwc zrVw-t+=eh8RKaZs3n?5`$)~EUB&y&(1bx&G@94o{iR^6N^RWGUX5a$_K_|7foTCXV zZBiSy5cE~{^W;((M;{_!E@~3x0KZgfe}EmJ0707c7Dr1V_JSE>>ZQSTX6IhC7r<>9 zK+($QyafB9E>LVF`w3T%+J~}FD8PfPHvjX1B&+V;A@?IB9yj z8c6&$AAa2a5W7tQ9>m8;nSV19FP(eB-a%n?cM@mB`ZRtguXWO1Cn%mku=0(UGBhXY zXg3uwLQmOyFp7awiNtV^Ng-l(%BBW1)EANUGS%Rn{n3&?d}x959V zJO2K4`wwgf)d`o5w~`c%dEug}Egcs1^h(eG6K#=)p z3PI)oaWU8T{pQhZNP4zLdIg0bX@DT<_a;Gy@VX(TKi6AxIP; zNc0?qAW?w0chC)+xJU*Z)hy361d!3{kKZJizb$PU7;Mr#!|Al3^|vk zVEs5pq@ax2!AAoUE<>(^m*t8blO1FM-W(pC#UR;ITMN>t7b?q~9!!h9L zaf>aIE{wJUyYd-q45F5ktbl}_jycbeb;vheGU7VqdnCJDhkP601+7Mxmr*W5e&vav zzO4xfh!qN{ZHs>W9|);0M5?>Ag-D-WgfbfDzFl(1v2F%!Y50!h5b4znJoG#J!%?)@ zh=q!WCC6|_bNl?DB*KoaLc*PGx`NnIOWGw@At{Dj_tOQ_mWe4>vg7yxO4GgLIFjae z%UC-1NBc#Snz0MF7<L;R#&j5>@84{$xh*QlqhtD)6F6Q-4fbE?4P&)I(wF~kDtD6uggkkcI?vb zfueSu>{E~KlD%`NJNSXHj3(-{yJYWtC&k0w`Lz z?I}*_@jvWI3cEvd;yl9dGzCX*=U%H8hU&PQR5^Gn>K;(^%aA&1$g@1-mOY7uJxlxs zbqao#=oIs;L8rQL*}83Gq-_nXWAEBOWrh?ekOt}o6JO;Mkpw5cVYu|`E*zS`lP^Mj zI28#0;k|~&nhp@PUK*`$Y5BN&Y5jx}*h}j#zOa|p|Je$9X&dH)JJBO%T$~^)ZKODS z6gHlk1AA$Ykra)2;jF6l(s=t3i-P&^9`c;jE0IEw06?&Fl0qTK93U>{ z*g3)Ne%)v`B;83PJ&;0>G(b?VQ51rt0pcR9_b%trY)E>RM!JwfkTgJ$^b-_mg&Z(GqN?{0723|yGhX?X@Iy$ z>)p#(nhiPS;3hQV5a;2zDJ9KFDnQ(Z{5pz;Kb#+mlR)iFCTf80&Dx&K9Y(dpVj030|Os zM{c)M9k6%VBhFFj&4jKh$e*8kCDV^>rNnVZ;jeLy8SDT}#vO$vA_b*&-OfR>Xp=8t z@s1ww1ljO-M<4bE0n3BJItA@S-7CAXcNlq+WCbSJ443en1jktAbN)qwqd)tS zZE(CGiA8xOwi~;erNK!KyTX3?8)8}~y6kTyyW()PkelPnspM(Svn=>|P{~!LVV7M; z(t61TB_c2a!iP~v*=e6hlTpecnv@0v4=J@nd=LHuDfLeK zIuHeS4{j*ObItRz)2`b=>l?3-93s8ifrAe`97zk#Z6ZF{>DU@{h%lnv_2VR6ZW=uF zyzH)14B1`RMbb7iQhubn{t>0Ach_ldw{)ew8aeiv)c-t>-Ss+N^N9GsNUzBcd|-Qr z{X*%BUZ+yV*EDx@Vr3NI(Qo(LLkeB=+X3nP{f^p3BvH7rx}LRV&yq?-dhK;7N$e*l zh!m_Zpnrtj_W0)U(@pL6KyeQ?C9pJ#Av(EmaZRIM4%fvsdt@IMDrKJa7E9viTKH90 zT8bR<@deh5;^QH|#sb=cXAbcVR1@~dxyHCXvL8Q#=0^FZddSzbbVwV=Gb&p{bK+2F z#U44kzJfxq=N|tiYhZfXrO_@5M~z_O)2-0~qegYZbkoL3)2`sPIyjax0~=8YapiI@ zC7iVSz3T&x*`^Ob6x`K(`2oie_9@AQVXuC)ho4G!*x5%0h}cniy(6?N*Jv{O#Yg;9 zCr1Y&YP=NnoKUQT`u-j{RX)D6W4g(AFU$iRjgI5KU4TX4UgBe-22rZ!GS&e7xN|xJ?!*wHSK+|418}3qKWOv6LwfkOvxw|8m^`;V__&ufgJq-Y1 zI^Uj-c`S=2qv?8j<(()6>*~RKSue*V(_ByrORr|SqbHkBDWU{z3JH`Ef~!`h&c_M&L* z;2t!7Eab;Q<0s+^2aTVAkTA6$M9+q)>#n>VS<3o3-Uw2^*vr$dz+LD*S&p;@7X=#D zI`!OlpJ;PQhT$bF6h`IInuu+?DeyBjyKA-k?h`xi1aK(=mQ2kqfn_t1h?!9Y!Si%{sMRDs3Znd5@WSUt zRi@7~f1y7d zhuzN8rl?(b-e^Y(Yq$?Gph*(<$?MbVkraRlGZ#Kq`C&KQLKnqPc5fcU%eLJJ;)@=2 zyp!&YMHMcGDfpkGPwDkB4u6GpCc-m=cFlW`tkwzG6{q^#U%OIXpH|F z*=z!vNzy$T&-TVRw;W@wo9~6OxMFSfK6%C3TFMC9!j=1Y?l(zkypk7vi1Of29)9q? zkgN#}5*#>G?~z`Fr_0HzaLpQWbmls~P)qmmtW(y};(vI6Ig4vgp8E02lN@{atr?C` zzIn0(HhIo;1ghZjVtXB*KGV^dL$L;iZ}$Oj512G+^dl3;XFWDyefG6|Vz*r*{y@9r zME>d&NAF6!*XfcD&UA(;{?1QD;f>6GS_D?Lh9f7~<7ZgbKfb>JddtMJt5t{oq7x>&EfSUmi|U+wbRD4U-~y*(;V%)?q&p3f-hFFcmLvKkX?T zCCn=-?roK?Q^24Zyljf2TIuCkj#Nb*4RVS?hyStALz>iu>uBdVjw^+H&s;|$TS;Zd zJHD1dR`JAbxdPv~Ule#_>Xf zMMFX2bziS9bS!3mCBzkQu2v-}nkyBqsbT@I-h3l~KfDNrIgy0AoT2r?FFT?{%+SX2 z?u#A6n2n;~TvdY-obObUc<3f5mvfz4nfa;Cty0(n<+8SuS=FQxv4tWdsse5}MHRKo z(WH7bkkBWlw#&PjD3+X*Bz|L=!#`Bu$$6<9@fBUd{g*rH$3}=hs8{?& z9UvpM-ry*jq8VHm0PX|U4&dhr8raFo7hl-P$}f>K^NAv0ajQ?geewW)X`y4hm(o60 zrzz~ZTj3}P+9Zf*{RHiP?QJAUG*AtB<_mr{byJC$-%I0{UkVOP-$3#J0qjhysFGjw z=OeZ|{P}a=tKt0mLdS4+gs|Yk8Kb-~%|2Yhi%Sw?_(!W9b=hkaMLafK5emNivuTav z7`sSOgg+^t@X!s8=Ikm3h^bEj*a!}mxy}*KZc!*se}01I=>eB6fEz~hht@kDWYrJo z#^va&<^yuhHkLwgVih2{sfm&N#0IF>Y!ocWD`u{|0K@Cd*L-VB7E%1ABF9M9k>*4e z?KKvCDFj&n1ZJG0c*Bj3dMuNIkp)~VWMuIun@KYv^{E>5#T0_n0fLjx8z=+`Pt^&l zA84UhL0Rgd_Xb$FT zePx^;4t}NOAodnjM9vrtZPW>@KXeP&?;{GuWxjI0Fi=YI|x}gayf>d+TqCNd!Cj3HQXhg^n#qLNutIHdfqYVY4 z>01H>TK%wct$r7HK-AGJh*-V^PVsI_iw*Y`M9^khZyK0qG`7|@Q{u4hYh?y$pmo;{ z^uw5CvOc@jm_DThLIot9`iEu&!6X;DQwt^Wr)Y3J>8UeHc} zQ0l0ZK^$GF@g7S3zT5E_J58}ssS}z~CnyA!I^|jp{}{|Emcu`#Sx~VLD^lzVDrN|i z-g_Mhq^Pu+bYPGB)(z}YEkg>bmFaiMPtmo?-RD@yf)5h!M1=wmO3w?V5L5`ywj~01 zKh(>0DHxTBKUhJ~I}er*`YR=lc%qGVTpxI&HU{3PjUffK2}!=}ryO)U9&`ck=lQdL zGz$&IhUtJ8ML_V}L%vP;MO$(Rf2pHisBd;2 zC=3fCZIf65Rb8~Lb>@;3N<>Cg2*1+7_DGcXOnl>E$1`v*e%4vv2u8DDrLN521xFl> zV?@-B$-pW+8{akFDLCSrG_UfrM;xtU^&k$B{hnDwCi%klfKr%_J4lmptw_fVlb9tm zOIiaEOCh*noHL*p#BXF=U_OAHCzSz4^IxyiCrT4|q*jV%VLfEven`SzH z5V~56O!e4@lqrtA&K{IQ^nbTv#w*ah6nf$2D)rg2@e1^-#~gb?)ZY)vu^RjjW3^cB zyb#`rXTI+^>JxX!x~`BNW5m-zUHj@3TXfib_?A-OJ_Nku>-POZp@ z3%nR{!pDw`N(ybtJp`{yFYRVw@SztZ+HQkLp|+a|vTL7G+G3k>~x~va1)2ly9JSZTms?PTiT8 z{L<2D%nYU3lV|?usLV?)(2bs?4st7yaUE9WTs46+trglOuWU8;(Ujp+}&WUAC`P z5(|efV^dZANChDfd!&2_U{h6A=18opxy?s-?|f%nW~OqWxsyc-jR1cT3?e}FJtC(T z%aqg!>;Z~bmHMN-PTkN_Y5w`5lFeWG)zN^BqYSam7*mnKrgkXQ_O>`*e&@SZow&JrY7_P=RR;%BdvCN#HvI*xF5PHlXG$rFFR@8L zy<3sG=F*}MlbaZOf{L?o<+Powf&_Sbmq9|*F;>V#BkLz!M^bKGc`K9iIaB*mmA@RG z8qYdVRYb`tZTYrHXCqvBDnBLBlV1sR8r4yJojoh3&LlOpRMyL>R0^R^*lVKNqEaA>gtggu9nrX$ZKu%(7C$rOJ>De#ft@T=yfl~8OZbEoRuEumuMC&p~9dA zKk~HTUd@8LH4AQju=ON%mEu*!g5PKsggy1tg6---|MQ(Dsj z)#@+FnbXjhNU&g_2k|RbXRGpS+qGXR?}ji4tK=&8BsJhA;e0V>DgXw#L!?mO^Ai%m zh35NA{zaGJt=NL5(5AGk@7&1JC^Clnxo$x|Jf~AiL;i!qiJLSq)FGn`bpu9KLmk>+ zgJjA}#)zNTEjN%awm46lW&!_0-s7`Q~KxuA@GePnB1|;LB)_{!PQW??c|E<92H@z7B z%ps_7OWHbp_>Ya9^($$9^%DAgZFY&ug4Q=3^>F$xjG8GIg!SKM(ITI#ajQy&5ph(u zQWxA7laqt1Z-xhQ%l*#x)wW0Z@Ao@xd_|fpMXY061De-Xs{7IM)kAK3XJejuzcT^=%W+ zqTtINdRT#k@zX=SHI?zl%Etos*nn)EN=AShd`x!Mf~go-cQh6$w81nBxnzSWYHrp4 zm<)tD-JG0truYfJHL1(T4~6bjI!(ql6Eey+(|}Rc0#F_(FPx#9?4Faf^nxn){t>BG zUZm<~%njDv)35>nu|~nTUq1y`O}U#9`~R#n2B_EoS|uNi4P&Vv8wW72-l&s8cr>Z(Pp@1NoLL=M{*Yv>azN-!i^YBrBn8(SUm@GT>1!2851| zlW%>#ksr?~yzb9`FRT1w-m|>;5ocreEENdt_nxQyo|YOa+e`CDIpKPV%M_(5ru$Me z-FEn2><8C|<3)3!CaEZ1RGs91yUwZ7K`YNhboRJ;$CFiDwR%O~=RZd7BRj6=i<9Z^6hTuKT z6t|_17A;PNr$66q33Kc%*Yd>Cj zGi0(Y8K|fG>AH z0WBWFL)Ut%TjE|W-{#@`U+_FA$W?ijpZ{Yo%N0~cWkFM?h!kq-03jR+aKD#jv)8A< zIfZqk_*F4vT6r#7HBy?fz?r6)#=Z>K9BqWfv+njzQ^_&;4gzokIJl)aQkAK!WHLNPF zobobHSmA8WUZ(P(CI91TNf^=?Jo81(l4l3DeUROv_*Jpw&*iyLOO}pU?F?4b*pqzX z8fOz$=cH$F*X9{py#=@BWclEJYOQm4WoysqlYHws=z&F33D9t@L<$Y*2!8$vn8yh{ zDI`a z!Om00Xv6m_u;J%k9Px{-&POWgh|1f1>n^8_y-fu`gZ=1fus5VmuWAOv8c;b!>|7Ot z-E$MC1}jb8>9i?o!&7|d)6O=`O1Ytx>hqiXpt|u_~mCR-y|oV z;>Ek1R+dObLc4VqDKviT2pK!5F{fnw-aU~zjSZn_Rk0iNUNz#>Zd^E8DL7gk#isyR z!Evv4ZP^0K6wR0Scjj9m%@=7naRL_&_`{*#&b;8uYYx70ud`_-9Z#KoN;bl?sZ?me zts;e5aE4TJs%F9e&G>(`eRq6R#r8P&CV`MlNDp;GLJ2+FLd|BAfJjHMU9e!ud%;uiEd)N1Q&{_IXtUU5g!c?q7QqgN2_ATr>k+&LWv#G1h-I?<&tIn> z(N8VqH{VFF&X+DqPhe-LJZSh6|77^f((tCW5v1$~Zr9RBmhxwJ!@0I2R1CCq#4

  • O3pn#M`4e|qd8&>O z5KNwYGD#>@ioererJ5j^*xxEKh6!rahxuC@+N8?La_JN}tG8oAn{=MDBz>4Rm=`U9 zb>p6{wYY(X#aW`7_(w)Z=r0?jObzmZcBm zCwO{w_z+O)FX@?V1r-I&x-^(s*GaSbl?(GX`BnsPE>BOtO`m}M(LO8EQ`iqw8Z>B$ zzd^rKDlb+BeSTM)-`E9;CmwGUZgn?c*J&$0-2gcJh>00NKAGCnCY@FJg?LyQhGTke zvIWNMZSD+~;*X(S;Nw?;OPWMN4tuU;w_q-R_z)q}u3g(Myvo}2W^6PS3uEX=-g8&b+&|$LtK5$peXyF0 z;d{>0z_oqzsG=V#9yuUhE7J)6nH zflIfhr?OR49JJagf2*yOR{KR+?Wb+&pR)?fiLc-}+^(S+PCa5dkLm8TGe)~HC50~! zl9G~^2c)FTyPS>7we$e#c)__gcbLV*3-8WV%*bHPsCeQ=tPp{LZe>yo?a@#G(^+&w z4)ibPflk>C2Pht0&d=@!|LbhLqMR-!q!~m&^U{ z`>9+)yZC?kYj-aQDpGXM<B$ds2L{zZ#PaHB14mZ#8%m?$*Kd1Nt_A5KjmHq|##& z+!9Rs19GfP&WO8;_Cv6%n04f~moV^h+4Uo^sMST1_ZlZ-caGF%I?g}}>KX^6g8J0)U%45Oa zWyDPuT)!S%cx-rP3h!H*UX9;4mp(o8HQ>qD?$4>m-k{vkmahb{<#cIF(-g#)T&i3- z9y9HkDIAuoUxt3+m|Gx*_W#ZN>Fwc_(q(PxzvtFz3d?0bq<9xE1?5jR;;p83B7 zXUtx?ls+zWKd|FxcV?urgOo8Ea9cahurah3&xbq}OwAWSP5<*DT8O>bZRW2K5KPt`CJ8a}Pxsesu%Vf0bjyxURkdZ- zln)di3bT*biutZEdmZ*2)eiI9H^H=9ZZU{>eyV;Y`)!|}TDVf4pIS)eKn=J0YdBwN zI8TiozDkr**?tc@PLa#wB1a4sCL>~_UH)j`3`R%;Bsp#lx%O&WXDtC|OQ7>auWkN8VMiNbrB_4;?G zEg&}D7xr^l~i^d_+&!-MFy(uY7Mm zB_CGG&j@Tc4g7(6_HRSK18RKuz}$Ll3FU+)C=OzRl@yJ2STY zR#@b-0{rl^!ghZvz=dF@De#rD!qLEXpA|5&fxjD(Z6-Ww6Stri{u(^8&G=Pbf(e%( zwdUQM*lU?DNWz;ii@vdk@x@K-Jy^3U~1*Qb!TSU>KRd~l&RDr;d7yF6pm6{Vy_@t!oRoL+IO zD!dcf`+>~!Hjv1|$s1&i)PWPqfe^KZM72wA=JkhSzAn^1*OzwBB|#e>2;jqPJVkor~+l^Ua;? zvFr>n1{YVlCejvV9w4gqwKoRWuF)Xr9w7z}&%NRo4$r+n5^fO-9GD6o zM!WF-(Fv>NSEk0TmY-J3dA??QHjjcKg-?M(Zp|8A_8sj)3ZEJj#3jIq7JB7BE602Q zOr(T5PPo^%UhT3-If=FF-aWlfpZ_b>%!U9vEmc}>s zvco&l*Xr5zI={<7-_hOPnY9f7^_oHPif0R%^HYE4Qzz7^rAPc;HoV}{U-q!q*8Ba= z*Y>dI*ir>?I*^QV!`wH1PqPth2yMpPx1pEgcFISeF{-galq4p+zQZyF>e)p%X6g+Iuu4=N88dA`ZCqJ9nA&Jgb zGTvAX^cK=!tmq?tVXWu_+W4oNsXHAYJ%D7D8@ z6Jfd;MOu^!ll~8wKEtLE!ZO56662a#*hGsJvv7d@?j#H5`LF&VqsFj5Xw>*>puGm1 zX<9YV-qQA}piG0t2+9hB#`PC6_p|S4Gafp?>*SPcn!q78Qp6#_+fCz@fiOaT(o&N zZ5HF9H(tZ146`>fBY=(#c}!GTld5S1!H^z46ZDw(PQC6Lc|&j98hJx+^cuXOH;Ed< zK;i`-*qie%Y`EZo&FH_>va__8tf zt}JRT0mkfXD6BqvNU?d($DN7AoeDFxFumqln7B>a@R%O&Fy3QgRv2*@^?5=QDlYeE zWbw@!2v8W{T|yQN@NV%71H5}}@LP$&!S)YH%i|A@w?A)D4B~!By$SZaSy!qg2I-EZ zMTt?K&x2qQl=W$541afL+W|=y)bk%&E2D6`wKNJ(c+qZyn`URf2sQXaLM9rT+7ltU zh{DBDb2BSz>?zugZjbj;K1-W13P-s+o3z%V4f*;2GGosRB+Kf@@t+g^LnGnjNlK#|MUQlAs<-=EG z+;(9KW0DkAKsdwt?Ax6Cwe5WU8&KixAU*OcvRgz84uabL*t(X-4y&76Yqi|UFws(h zehV*|Xn&LaMTw!S8^ly>IJ;KHJ9PEXb;M5S>IS^3o8U+n#u~sAMO(Z9pa`A<8$IdB zt!gP249J9eP*l-*1S~N*!E{8QYbJz1pGz0N(C5jyQeo2n0n=Hm4hoz!n>x`u*#8?Dl#+lPpBe@3l?_0q;5*1X2p^wY2wmR-rx9)=SW)K_Hhh z!%_^dN&VQ=40*zqYCUZ&1mUXZtcs;8= z+eXnaI&4}OBs!F=lhNTlfuf?r)MuTo^>v`}2hPO82cjymb(9_^`hEZMxV6hXZ;oX`^|l;YoGJ%)^sZtLOtuxmLT zbPz}Y#`^=d0st&zqJGI7!rq~b{WMdB$8;rV-15wO+2<7APf!K_i4+vj1piuP{8cyb zH*6{Dm?)F!`LY$Tsk@p2Vf|v*L)9-7OVlq3#j{pszNG2f*ZbEm2CAxGOsH7DP;MF5>ih#xmGgbV;2{V=V{Es~?aR2i3SDYK4kQT+Yob_!_ zK50wl$RrEG`QM^Cwe-0#CP8+c`wtpCbijy#@cl|O<7)2s7AoFvg_P8M9}=;#;^oGr z)|+S_?pWS_VTj5^s|R)KO@zhn<5AjzdGe5G!8{4d%H79jvbKll8&!%7-3a}@xQ|Jz z!p0yevdTu8v{nm}Bt>f1`P3inHg=sd$LyE_U+>b>Hp&%n!vIe8f^l+LaDvZwwdO_p z@?+pYFs4TnyR!7iE>kIR@AD!YRe`i}XoKAL+%NuZRT!p6L{S66M~0uuY+bl7b0B+y zN{ShyL=eUCR-djK3||Ws8=1HEWp-xIQFyF}4R}?I|7#=G!|)13-XC^n;bD7hyaA(V zKDH6_TcSxSHFzaFc7?rD5}jsbT(KbjR7in7`I-2IKKa?kAO-P|mH%G~;zzmX5Nt5Q z(~L0w>#z3S>=$Ypbnu@@i&CMS1@UgSgV5x$i<;cam;G)};xQ$i(%4Z`pZMJ1Rxt)$ z^^Guu7wRQ)e4cfSLW!DLyC!Jlu&7NSq|ZOZ(=6x^=;+(MkiEFvd}4i!$w&# zf4i|Pw!kBgH`dr|>CHCr&(_%6*ft2JG>R;tQY`BMAL+KQwLiyNP#Ms%@Mia%P3mU% zwzMB#De-PXAGW#*{njRXMr1RApuu=WnvsL(b8 zoX>wS0NfzPP&6h@D%Uc+C->fhV`R_ov=2zKpq?MSS-RroP1F^i*k!M#r)=i0?y|dV z(Lzk>idTu0GNFg z(k1tzMvE4-rka6cHjBNe9A2w`eB~q)DV5(wgE1!BC$U0G3sbK_ODzN6-b}WlKBe%O zdJTBB74;Dejo9`EJlu*h02IN=U>>m*Wi6N5ilXxYl*5V&<`sI(1|bA`%trAGJ!T_t z^MAgFTTxq%*hgD9%iBloz1Rt=4LZva(xTW-D#urUaXdd@o=Bcj$@3c1wg63^bK+5r z8=K`GQZ((sJtXLXPuXTN8|@K$NILYuXNtS%S74CE{*i^u`InUo?%zyZ@ZnST>biFe zfBKX?!**GyN?q_E(OtSA9(u)Vu^!?sj zr0<&$4Bzjy1>XWpzE2>cbyX^(>MDo+WQ%m@&nOez0Wq-E)ANsncAb+t>U?+DwrNZ)TSv}#J> z{UnZ++w_fiYJ@{c47frHn<0fF3Q`!8Lu@daCvQweXZIxPJphdX3%n2lmN$JyFZIQt zN2lk13vV>RpQp7774q*B@?jwBC4ONb>jgqs1hRt`G3<|9_MU7Q)e&RZ5YnO~nKZdv z3BLz#q&Y?;SrE=2w^io)$F`OQ8k=#DEJ7S48!&8Czo7%wg8nV|(7B_vZJdyi2A@Gh zX!!`slj^CYF;3gjFNcfosm!L$_y`LC)F}k5aMdkRoZNv>5PR4P;=(BGts;x#?gpy4a;aAt&)7R9@q zFe5dj+jgD5bugnI zyNd$h@~_MGAj`i8x644@M4+fZUUVpzTmbrDCDw8n^Xy3HcDj z9@7?b=f|`k@5q=NOzZ_Pml7ML7TysS7fB7bte(S345wl=FqS(zCJFpxSFnMyPrSqP z3HyV}hO+l=?`a*f6)4Ya?`h7q(|#Cmd8|+0EENbm*S8-K%g*(Ecc;fiq*kRhu;jO( z$IKh{&+78N9Xw6hCCU=_&jiNIQ||lB7=C&x>LxwqNx(m0zWJhrJP9aTFj;{M<1+(! z67WxT5|AQb#gfh!W;uc!SoZuGIM3x_z&};N(wNdS3YNQRGZrk3|C9xb38AcDVQCa$ z!g^PCl#1h-=Qy}rK%9AwmThyynP+MWx%FV+7%YTw`VkU*hs@{NC z1v{5)i>mxtUk6-VhZsPL=nE1^oMWzPl1&W;AaF-dPlqHL63IwmS+QIQgBfIn_=Oo{ z1#q-1D?W8QtX@WdvLcK>o#A+Z?V+k+2H8Pc6z_7sk+7$gBaWYL?ii3{K|TNEpR%Ig z@@H8df#kcZg`+k+c)HfYk!w3CWTH7^8xd0G4E(-a*bad6&Gd4=Isj5vV>%&OthILJ zX)J*>VNGj`7cDfRQ!I{7*pMQj6V?|k=!9SZbixhq*LX^Aw}a0uN=s$!DFSAi+#NwO z&0Rat1KD+96`5&@__Bp*P4%oDeB+KL9aw8hOguBwTkMeMNb2*_Zm=B1b0l?k;5ibL z&f@*XcHD6*J2H{joJfw7@-;ypC*|wn7f#C8frI~~!~^iJ9%ibfZcC;0w5VKI4%V&beg7Hn4hEoVjKGJ!%Dl81m7 zE+pZH;Vwp8W;;nU#^pmhWL!2Ol*MK3cR7d7t%Pp}Jkc)ZwvR-@utcdPD_o+7MaPN{9#kSlDz;U-@GW!o9EDtmm?c_b1Ht3>%3F9R;mMvK4 z&)bPEsZHml_c(e%V(54;B!(?~(7lit<_VJ28w)9qJUE!leIIa~!1mBSobKYYjqEUO z#_7Iir}!{lTQdSo_pW?>FUReC2?-BjgAL-;5@aW3iO*AOjrRP(ZqjBc;ADq~Ron$i z`m&l3P`k-fA9Rejf)@%^^M?-s!m>^_aR80F*=`7)Xu(kFDkj-5b+w@MFm<^_3(iLv z9ZX#}9(GI$>A6eiy}M-8W%p1Fj8b>)3X;1X-6gBXEkX_zrSPEShE^4$^)9<){^~#p zV*a{gm&{*oo;uK%zZ||`TFR&jeyfKI?X)_MukG#nMM@KWf7!pFC$szfEmpohY znb5Uupu8XR;ZHi+>i^!wi{5i|)TSU5a!> z3nFGWnSh4lRHM!4I5E39-bffgE^4>b;2MgS9MBJenQS($S8j;m4iH0!ZW*GM82$?bL&lSHg?9T;mmSKN#-^asv zRDtEj;_d>+Q1(5w0LK2sq($+b^v>;XEc)VJXyG)^=p+l``Kxxzf@>kn9Ao3{p{E@6 z;1jUVKjr9RTO~xIA$}2&Q5IZDqZ|bqJ3!lUB@frKhVvhub~MsX@gq+=9PA7Q!DAXH zb_a<|mv@V+S)+Cc3{_G?g~s7qrCDQc|7~Q*0m2sXeD*t@iXk8||Lh&lc(dqukmkO3 zJ*`;u9$@YZ{J0SyFz_ggNm&f!5dxUnX&+TqJnk%>G}F^sXALM-G4E{#s;Zw%sF(vX zDH7&@R-y%S0E{8#fGN*8UetT-;TxkHrLqT12t(?&G!X`;&|O+ef48O+bVqEtB&66G*t=x{y1q-yeAcw)9*LD z=6IWh?getbDU7GSuD8W~Q$;i#k6+smUTI_|Vx z6H?PDe}t$Zw*}U8ZPSYPUFU)6H_4I8no)6#OxBz>V5KNM& zO2EdHrLP2B6G>Z*;-MF97V?F3-wV-bf#*2}KMVsK8V#b&Wf=R%dTN+hVC3i~U}*_x zk`3Me6-o}>|3%S)?hgZn?mzEq&w`M-AlIXdJZbDhih+BGv*o~BpO^S*uPg)W2{cs( zPTudlQ=28QZ1^%TWsfG6Jh=zzrXK6vxLGI(D-| zq*K2CYuG@!Y{_1Eav}O1M~23(|96DTd&`Qz7bEut42me^6KOL}v#5Q%=>SIu7Daoo z2s8vzMPS4}8DxNu2r_X7fRgy4R31+`oaYPPb9B-{2?3iB0J{f<2~RmdTzr$=MY&^0 zG!Rrh*kzy8?u`#1w)Ca&WX{oMRIl$oQ4h9_6V}5Crl>utbOEYDzT^OQAYa+6R+6q+ z>RHbwnOKN=&_Go+)@%FZz;*w{Q(t2r{da^pO0}pJp4YkU3rB=rXFf-*e*ehPhW%)w zAYNJj#$PMN`D>*W5X3YPAlm!;WVJYRpR5)OpW7IzNnl$5Fg1a!6{%b59BV}y@W5g| zf5e<|QwWYZ^v&PjaQL^1rk4>}0II;;I-I;h`wiqLTX|^y)hcB^x zu-Ws2rq3&ZQm@IKy#JioWSfDdUIjE^p-$(wdQP$>R1`y}<+K@f0zj!#AO`BR)f(ev zcMS_3h;h^sqrnc3!vf>hE>9&safhcqyJCsPc6!=aqcvrb`-v-+DRXV7$7X>s=Y@Mh zdCJd@#>{4kmiw|hUhO&xlS~*Lk-$N?rp#^${_1WRRFlcX_g47f-JS+4*B_&i0Q7yc zTu*N_{pINsrjMK6P%gYpRQ#rfDsln_xj1UCCthO@QcgI^hMIY_53K{xeEU9lUK)tj zqQvtE8)=Dgro_|IjA3Z{vL(i!`z?92Jm49?xFrTI#Y|H9*&#`q%HIwN#WN3j9@W?a zN)_#pBkF`=+KeUuK>ovFPX{XuvE{eg665tsuP|fJ?(&czl2jq&f7A1%)%IXK?u3|XXw)l1x!w$$*B^^XsQ5K$oUB$ta6qZm% z#A_feFz|pZOwO%$I5allzaxx0AZxCZrJiru+Y}y`p$3CA$zbvUxyd$82;Vl|=vM+f zb3m3KqYuD`4jS~4n^oFCgiZ*6?gvmiC*%rjT+@ ziy69$Hj6o}!D|!3##2s(L=agOu?pHRBw0A?Vae}Ncs*|Ub-BJHxWH&D~1oY&Mi zyl}-+M`KkF8iax%#2=L7;JxN~h3_mO#Q^48hlzqH5E~v8Wp6IgO0lkgP}cB35i7(1 z*{LIpWd1fAWF+Cw&0VL8;;%nF<=;sxTqq+Q$4LsIwYUgRy#zb#JCkNTG0Gzw=v<6 zdRlu{J*_p7QyC%tkbGL}qVzBj8T8cC+H{_G%Tb$`e4cqHYe&KT*sHQB=a6*D^h44q z1L!q5BzNzu#ZnJz=^O(6FpI%dME@Epgh2m#Li|GidIGpv`d9O_j!_o7cXOsY!}#B4 z;fTa5R3&t>7f6fZU7i>2v{J`G_CBF0*I(}*l5Y;pqdoZM5cJ@iL*LOJd~*nT@Xeta zFvPHCOSF(Qe>%^-;IQfA4wd<94dWDPC2@*$@bFRU5a~|7{({48n=Tkp4}P9<#x)$g zN%R6cNSpCIQ1Inl1@V7&So;4?L6Z9a)kDhv;fFyC6D|6G9m)g!|LP&>|0aYo|JToh;UQZk zmkN4lRCO$ss;a!Y?P2NFcTgt6t>O%9bq+CyPt~2R__-U7xFi!LU|aNEN)nx=d{apvEGyidb+_wZM;9kdxkn|7mvT?Xr{5J|2zB$0S_$2%SEqJ za6c6k`ImTVn6s@u;xGmVqN3^_CRA*z4?WC>UA1@AAChnh0b<^Nn7&g~Od0#>rS``b z2{{L{RTR=sMD;e&N-5$Z$=YVHR+NCXF-h=6B03gayhxNtod=*XbV;Y==WfL~lS%~* z3}5HPFAQJjfuUvi8dk~qrbYN_7w(+OB99PZAaV`pMj907azAcNNpx1_OB-i>&gu~A zGK3``ky}VLj)L58kuYi}qlogC2}@l5`?p9p!{q zr6?G_emO*u9!GnSH1y>JvS*PN!rI~(giACaF7Tt>U`gHb<14_wF> zcozZOfScgVi2PDus1UZ%>#EN^V{ZQu3Jk9eUZC?$Mafu zsl$#0$a)}{tmgt{y^`dt6Te50pl18#2p?YCY4c-#$=!ujJPM$`=#ERAZ}|19&Srj~ z;#fagw8l|s(OMJ_Em{qFEU!3BJ1RfHE5G!b`57^ zmP1+N$$U>R)}4>y*DIq4Yq+#@jwdT4A&~hI$bQ3X*D|?-geVvvKb6RL}GIvYR61ku8bj6 z+got#s-d$sFFK#on8!459$}aM0Y_b-_LsmJ$-<8jpTYXvpspT#g~1)<@Or=Y7cX@> z+Y&=4O6QL1#S1%Uy{)k{N=%4KETK|%onvw>zo%=~9M+P;8<8&enDonbv>S&l8+t7L zvfD9hzYG+h?=r_6cuYFx{ zMvxSDF^mCGHq4L%qJu5*>0$r?j0j)W>i&e{hh5GLoy{|mHV=!ML7(EVG%Ie{+<8u8 zKTrg$Y#qOOo3a(O8Qt#({zpsaU^6_d)4Q;3{-7a1lP`TRtDhOzAb!jrL;oQ_e^qmR zr}PJ*h5jUfC~eM(nc9krC$akJqw-MRF8|r9VE+VLiEXyxy_rsUUYUHH_=DdRRy(OR zj>~<-$-T4wrLi_91X%8ev^WlXN4AHP8T>Hvk<|2|`$PGH|G?MSyV5>kOGHb3C)#F# z_Qp5aIjpxOMzeldDP|0aK<#)@_2>vP`;_Fa~3}DY5=gwO7bM>*udBGiNi9GWT=XLfu#Y2K0^QrBfo!Q5< z!;hd6a;`xTsx2oUzO+{jqKabs^l`aq04m{5p5X(Ej2+~GJ4ZsA!f3oVD64}G!zLh; z10Z1rlns+wCp_QLd4ip#viePh+EV$GXwY=NJ3s3Lt8l`g!*RE2Ll0L27EYVdu`8V5 zv%5IGeh6h{Nv#ty{3TOF41YDC$1?miJYgOFNU%gC*()e z+fwEm>pBK#!FYE)A-}3k>JkngQEx)Vtc*7wdzZ6;S#R`GhUimzq*5ojnxDEasRw#bqGOX}K zkY!l&dz}A&?nCZzuX8dhqNc(vs4q#261<$3zV+b1DvDpZ&-qxA1@-)&PRJF{CoulT zKJW2f&RW`fUh#fsrtK#o6D{38Cql~OVQ`1zE9_5Gvp5j>nLp-M3W86sPSF;8dUag1 z;D~*8LO#7J5*IO6I;k#Vtb7vseai#f{0Tc5#Gm3%%FUnkf}~nG;a$brN#m|!jnc#N z7;j^2a#B7mYeu_~U87*^T3WEf+Zd%q_(9OD3O5?1{4E8NdO`n^GR&&BwAXQPkzkV zl^vqM!bW6{t2&!v7sEM@Pjvmfm@%gBC>Tj(GKuVqn#aWEk)w2Jn% zPLt^*!mn11=e^|&cI!{tX&Lbk2)Z=lC!97SegdV55r0FE2v>*~c%~kBxDLyq{jg}1 zXYS!Ur~kmX^JzSHUxhF(g6*^YMLpfRJP(G+z-+yB9q|}X3 z7WjIyAS|oFK+VLx`ysDDKfX}*S^&qF{)yw;7S=3#sSLR;yDy>!GjYX~hTj~DAFXXWfZfQoL^{cEg_Ak4dRU1r?xXz z7pK1BY^$-o6cn?X0jjojcAe(KkHSZ9nth)2tj5myBM{mur+}P7_#P{!M#LM`R3}iw zb9m3q%leyzo*~oMkGm37z>lh2oY{PubE0L=h4$TjfhpUF)^2{ zK6Ui>8JRA=7APcLXovXH51dK(Et5l(oRKZ6oK@K(<}Bd)3ZAlTp|i6=c-A;8GX>%4 z%M_Artq@>|iNbYOCW;Ko0yT03qwYP68Zk;;CJ7)alSH6GxZvq^RxWrR2w-+^FlPNE zvq-{>QJEg}J>ZyP(X-}^Obx5g$kae5h=C+hLtS3` zKMApX)5@$@+51!l43EZ4Q!)SDvpjFB!_F`Knl+Klr|=ja1K{VKmEjTaM0ku304O{w zPq$c0NQ2@!e{RGNR1Tp;WKf*HI;*>;?-nCrT1Xgjs6=5x#h^&t)MqpBb_|Mt30W{G zUJ$=9C|&>+g9Sx!ISh)K^ZvgqB>MC2qu>)!AASi>xvQK5fqZ_2@i2n4C`HP#kSK;A z9ImnYgs5CPq{6=Q`FhQnoA%(+0ebL&PA=`i3LJW{0=J!$tA^p{vbwW}C>YlEy%gy| zv_IuzeowL8{Q>ql)VW3j^oZIw$i& z=sB7fW-W$w!y5k6VpuoS5_D-^s6-iwbpzxDFP~iOT*tPWxI;^%i~{i?BR6boJ3z*3)+xO@)FKOXfXJc5iW zC9}>CUU8{hicbM$`Daj5y+F+<=RhFbCkcQ$cutjb<4UqdGbd$=@yb9@Zr!X@mUD0I z&l<|wQg}Zh6?}Fn#w)EEggGaEMfiq)dD=QIrf+eB24HMyHMn5cz^MKf7c^4gPac zmLrnNBrHeBs>f24h={$3#gl(^7VG*#7eAq`x8gY&dn^9ooNQT;zI*!x>BhCr$K>bvMz3+c&kj;EVeH*UT9hJ_Zl7N< z@Qc&fRYFw8-oHy_>NP`!}~}e_2Hi?*Le{to)ZO$O+3LwRHn8 zR{+;qA;1v}^3=a%L0rf2sGt zI|OiS_fH&qN{*3)BNy+13r%EIZenOuoD&J8k+)IJJNN+FvAzpRDAK(AfJFOH9)^154HOGmD2E zbq<7A!TteM71#5G;nePpK}U7Y1j9{)Lpwi2dhKxe9HnM0?yo3rI-hvb`4rnl;r#?v z>isFX7bRAS&;eJJ2SghMv|IqS4Vej}pA+rvpo2}YjxfYkfG-1tZ(AsuS32W-hDBZ= zbJI^|l{qV2DBByV#B0TRUuU%_k`O%JV5N|%Uyv0=C7v4UYQ^W+q9bepKp>A1xAA5k z)0`-b_x4~Oe_n))%E1%~*FPLKgu5N+w>A@0(kQ zod3oJnczlTpb4(YHD_)3&_tJO&Rp9Yf;LTXqbM^>a6KlZKgD*Knni*4lt1P+3W8g; z>yJAs^61*$e0G%fVL~*})p33kIwr(x6bTdJWzm8O@hO-?&(}?=JR{V1GQXgqGlf@7 z^==PIx~S4)wTl4mt9CG*B=EclFr4)zA9XIu9JxVoAvscyxrh%rX7uP99!W`Jj>LS@ z23X>~A|Be0EL;5(%R4PtihLqi;$!U?N)OY?lm~}51r5s-Gc2OANoB!MJ_3L*1H(jV zt6#hzw|S_I4Ltd5yKV#T88(3smaiKc+dk{b+Es`ymOkC7a3F_IfVN{Y7yP}`8nVE5d!*&TF{3L|*{;4=V$ksQ9oTbaMn z%-fIcq%vS6H?Y)YCEJwDk22T2>?DQvlUc#TcV2|eQD(puq7VmBKp;xlsNuqj(edDs zRa`w;BXnh? zee`endc}i(%ZO>gIsbvbWyH+=n?}qvNv7UuR^KzHcD3PB_h08WxrDQS6PS5lnX7AEwj7y(*yxl`S{9EUjJl;0!W7>}g zcIS%eVzqg{08~$G2dPgDn8oBsm87 zjV7V)YtoIa6D=6vVIc4o`zLd}KZl$GHjZ34V|#{Ti14bP2&Ts6zhyKhYViH*TwU}d zf6LeF4^Ue8di_3_+~VWq@Kx$Y;LUjH^dGPS{cV{)#Q?lm?iDKb+nLfmvo-eCpWS1jH?m5i(;cbT`mO~mIp6c>f=es4`A5g5_hDz zYOoHJIt+?B_!>Jb;=7<~Y&C+d*sc55Ns2aDr(NuSIWa;(F7v@GQqYlfr}f^LKgM@SJ9@*ZEGDD?(i2gyHW`Vpk=2 zdEPNYR{PRj@3X%MVHy9xr%$yWsEjMNoEew!$@K&lWM&b4Mdwa3LR0hnaTl_H}qafmy+2REcc;C?3Xxc8%;kI(MVb9ZM z+?*bIt|rw0+iYiAx z%XFp185*c4Jerqex{}QTpuqTE!Z(zq5_qA@vuv_1CX4`B|A9&53$k5ru~I6R-;k>1y9pChP1qGO&2cTEixx~Z zTQ12|Q}jo{$dHsP@cwdQbSkSuF?z0S&`(dk5@e*BUg2|VG)|cob1{yQ(JJEmAFSI< zuW<$QP1Phq&|s||%*J1l4`y{BCC=>Jx-2Vps)>Q59?VXDB(`|xrZIQy4|p5 zRe7|%&lQn{T5!B(@NC!nB8s2S_l9WfU;lur%Er-GWPV8b**%C&qVU4}@dhh(faLWn z@}Vx^VNq@XD1uLckwsBn{N5AZX&U>2k~Cfo_?kB3#QlPI=;mr-hBxw>!A9M9_lc65 zb$2aiYbiCXkmjs#r-f_>QGP1$rm`KhAE*0PIo^RUjvnN5?r~*A(V^D)o)O+;GT)U5 zz?Daj^fvZmFD|vh*B`D>uBhW$-m|BxaTFC-=RH53oWh5n%x=gcuab$3?~bhHjqi4~ z@MBQ+xs9fHLdTtD(B|e_U>>#d93$t{YjNpZV_^E0%+< zsu%`8jNBl$L zDJ<|w<6!&mdn$}ySgbBX0L7Bqe`_ChUC>v7!OTzK3@fYGg-n=Y;h0GCtuHWP+U}mT zPe_9GR*Cq9^;QY!9_;V~#9v%DPU!7=*J9n6*T?le_Y5R8(?z1H;yvku@+}$pf+^kv zzAnKP&!b=R&SEjwfUv17V%KC@6n>4*?dR&j8d3o+*gryhaKq2TQwO=a>cCrj%r%OQq5w#=KoNbB_8?K{L84P>4-ze)M3cB@ zqPGwGfn(9qsk=Mx_64$wFmH5;bgNEG1>v*NR zP~TW~-+J4d8h2AP(Pj57o;Td(G7Eq;Q~;#E=n2JVrg^{7n3Kwewc>^u-d3zNZ5HWB zcV3tG2?QcwaoNQmAxZ%HE@hm_rylWsX2I;y6)p#R)E_qlaQU2fyziMY4AU0)OgoaI zqG{o>li;Qu7tFK?hQZXS6(Pcznckje5&Vp+U`@sqJ8^vVEbnXDyL`e}S67=sT2-Yc zaGXXP-t%5$pHf|np;$nhaVS1jLt#R|_lcMJ!-fD1zi+nJYe9YKY;QW-Y>Cl%4%psA z-cNCLjKrh~Dn5L!_Z@f@%TIAt51PQS9KS``V>y0Zv|u?7QNh^xsc}Q?{M5QZoC$YI zs@(`uj;Gy_J0--E>Kz%v9;KwPLNSJ2-Fx`p4N;-U(^LGpdEP_pNs5F6_%v-1gB=1eJn<`7G5Q17 z<0VJnz1i0+G0uJkamR##Wr-n^syK!eFPP|RAHqJORB-O0XMRbWQ5*o|^LGMY6GlNl z_roDep{sPUH-r5`v2cif3N}P*EQY9Hx64iZQPnJhanJg0mzgmx63`9@DAO`gbMxG7 z%ov7p7c4RQE(Ti%Di?lJDHn0mfBsdx8D#z?+zgz5!IfL~YIYMdV?)%&lxdlA3tr2% zn=vp#e({~x8{!3dPk!gkWH}TSza`=cCU57PBJo60cj@_#tCjUwJh{aCfSEapi^-rb z++(Jz4ctOX38JICPFv6-0K=>N>`e{; zR*o{u5@X-b-X>-Ya1^yaY6x3L*3IK?$~DGEOTDkK#gv|*`%knPbzgkbUw1`r(M`EL z2C}#c3gGt)sD#Voy}x)H!~DW8zA$%Zy=V1r^8k zDl6RotM^M*^%ijl!wR)&Gg_hQEq^Q2mqtyvC9MEtajj!mLGgPA%mk~V$RWaCvHGdQ zHzsJ!3NH8&yT!Cw&zDtY>a3Hw}LqR z^S1(>9v(M%;`0L-KEbtluA1x#O5DosO1{CjuE@<& zb_cS4c2@w8-I6=={lO9&&bvD3U?2fW3K|6orZyHycq)ZvdN?(<$=fZ7mgxZQOYyif ze^iK#E5&2t7p@eK0XJAF2JXzyFM>VGl?w^Wya5@Ryl|mw5r4RtEDvuGVt?l@Pu4RcU1Tq!j*fhBTW8Fr*#NbQaa zJa$q}bJmOYAOYx^+9)H74WK=^)VhP`d=D!_DL^7$`oTABJDxS(1VoU zr9DV_Y#C+ehwh$97FNxVuE0wdwWy_EhRJ4Jaxi#_D_#4Zzq7>E#}+Nf(pB44GB|S8 z)^VTrDYl%l$5mU*kGH>SgVCzSlLx}%(xsFx*4!scyl=5hw7G13q3^E1H|~czU@z^) zIuSKfZ`;Gcupp`u_#iiRu(L|SSn|R7nSDIM>QKQ)cApJ#8 zDBiHtbx32O8kvO{0&wZZXfuX@P>qi};{Cw_0gJq33xwj*quy$MEc~RaD5IuHI$Q$0 z@vG};y@ke8f6MGbv{6e26TBFR;^%*JMQZF0Dutm zP_{LvyxEpNtYM7`$N8=M}q~bMa(apQdqpuD2PRK@l)hOx1A4 z1nwTs=5yD%nn#k!B3CDGYJAzp-VW?_N(xseuV_5?j@G&QD2*>%);w1qq4E8Rt#hNO zo^)xlXM?LmXWJ+pT$&hDOy$Z=8rP1w)Y2sC0e21F<8_yt_jxuup7*%mweh`|yyMtW zO30|Z&(dZbqN5s*x&n(!6M`6`c!RULpy-gsC(QRI7XNU?+a`oX>i$zY=U)RudGbzI z28*YC$R-k21ijs`6;6A^Qbcc{bElr&oHa7_h+_ivVQ1CSf89DSIFylL8V*sc6On7l zSpsaQcFcC0*&62PM0xt;%*k_Snh|h{8`?c=g*8VL8~wBgwHv0iD=_s4?Vbpx-M{`9 z?dF!a;OifhxSz07X`fHU`LAU=%vcytPwaQK4gDApc;~*pijQIS!(f6h zgy&)^teS=<{~(l9#%wZ%=7}ZV6#mu@R}&spDZ7eUAXEcaD8Eq&ga%q9FFg(`eZ1yB zfNmxDB5B7Axk^b0=sl!`@Qoin*tB@oVOOHYj#1jiyf{ajktG}!I|>uq1P@*!S08Z( z8|9>j3Xi!yWsxENE`kch(`Kd6oKja?Vk1>=hldDVa^YQAP?+{BHt-3Lo=rS$HI2`T z%I>H`XehYi&Lwmd+gP`+~>Llb>{d#one!IAgG~ zo=Kb0z;AOu11m)*O9Sgb)z5MY;2{9Wgz$Yo{7nQCx0iqx1*44YkFRZI~hwup_+!l3p-HWb|E$Zs%zg-`)i&T3&uTn}{ ze8u%gHEejOthGZ!MXjxh=z0NQDWOW+F9^Rj81k2lUmmi<1*3a&uvl*0?@9;@QUKHi7r_JV-!rYD6Tnd5@aNp;1 z!rT^bH_Z#>1zp_kNMU~8QJJO{-DwGiI1w_516z*QNSgVJ3;v2Kx|?as`QD1|#%yH( z>t#V$ueV^mpo_afTp;V>tZ;Xz_K%t$m6{(9V1GCW`@byM3(YOqb1l-{@}IctkzqVM z3<|5LFyec76ryrikmy`B%-Zttf$D>YIkG4IqX2d#fHOdVX2Ar=3?e{~p&xmumNtX; zjCQxv?+N4kD#A3oFMwIkV9fehFcX7qsqOJD?mB+jmL2;TMR|&>qR$BB5zVvx#s`-- z0hSDOspq=62kB975~5I7UGA2`OUAnj^;uzZjq*O}=a_Wg4W{U)ps1*dsYBu6*%@KD zNYUQ}%u-iwJwrJ4dJq-PcVBjLX7(tJt)}ep;E;i=Rs}1=u-+mULBC`Xc6`}xOejBh zuiIYyW>$7PogJd&ak*oVSEWlyn0dK#m0hGrM$LAEHskPIgin==rHu&zmo^3$b=Bti zu;PVnvulO0>J^C_VMVdGQ?`qx(q<%Hy`o&um=Lh!Z(dO@Xj)PnF?5<6E~vH&g}D_2 zM-JCBhMXxf6arUV&zQIxHn^X%^ofb<854q`*I+9ISg0lN=R0R7n5}`zjZ?}!PZ3eM ze+5zQ_5VdVT+RfMbv9+`Qw~=$CIno`eA_Mi4t-HYezRM4TlNh_#0Sp{gUI@G#j+Jl z6mcUsO7FcZ+e0FTF&uB+m3^1lPGW|UP_94|1xqJ)?5r9aNauVQ-?%R;SBJ?i%20x> zykHM6ZRS4BN~tD({-Wy8(-l?e9$m>O-D4|}S&dO7s#1{TP_t6tT$H7|F&P!B%5XG7 zld7omhH~B%@c%aeO^d8;gRwiKel;Z|6L}_)nJzQ3YJ4nB*4!24@1D|;u43}}84lh=R z8^f_W)K>EegWT|OEjA^xt{{suRy_!y^7#tHjd#26)mT_%;#gQ98p^4idabg5fmoyp zL^D|#W>dn8p+I~=XDO62<~oCNs&tH6mHlf&Cq**qqSmw-2gg}i)`lhotPKq=>R>~9 zWwGsDy?E$D?z$oDK1vD`*PH=xZsk$hj2!N(EDJ;vf~cY3>Yx3+-7VNiih@abSmhwD zIgT&u?{02#O{@i8TOr_9w+R8&`cA5~grcBY z#lh5C`9G+Im7$5LA>}U0(x(>nXiM9IA=LEQNljI$`QzT?i8$YaD}-@__0fR@ugG zvk2mg!einLc(tM2h->5AwK;s8;@}hw;dIv zY5BH^^1|}%$Qbwgta>Dw**F=B#=3J@Ds9HeP(6}&dB$DOi~w`3D=+yfDZ<%jQ1fB= z1+53!n-6sM@8|9}AkUG}{IQnK=FR&%90U5baygp2TQzSru%Eki^VTj`hMVKNnP7_s zEQvA`_u}v;W@qnYxwIM6RBO?KN`=WZl@%${R62Kza}Q;AQ+Q060q}Q4%83hjIB^32 z+5iBoY^qU_d^1e|i#y(`7yt6_>^C$vg7QPtjr}M)ojpUFh3T{ryvGE0e+&4M3GO@C zB!75)L?m~70?#}H8C>(i#daT9AtZeY&td}+9A)1SD)Pq)0cg4T8;FMA5c*JYu)GBwar+VIc;CS=pV5{=v&azW=22*KT`9KhU~Hx!q9oyZ7dK_kqAcS zxEK*sy~n*Hlg${0OtmaAwBI|_MAQkRBN8~ulI{;EY;^If?AB(=;3wT{39)hVs>`J4 z9Fv!Me>XpSCcBf8#AS{#OV!mG{+J2HdlqCb(Ad2c6?1ae&fI6Kdb zU>;ay4b$*oJj276TTLXz(_zDo>LB_?rnZ>=Vn*$7k>X+PP#SF1ZZTOq&=HecOaZJ; zGg&*Frqr=^z|VmNz#nI1k108dcoZ59pAM(dW*pq)C|N=TkgFLbBQcQmi^R$lM;J!p zkb^LJo$n55!SSWRjlsazN$@CYdwB6^DLfjcna>x?A%o(!(&Iv6tQrQ1UsyE^iVCu= z^x6k*tFPrgGTS|dO`xh{=`fD8_)3TJ-I{Qiy+dfqJ*4STat~=rl-xtw(cRve6$OBO zDZ#WU-0`9N?j#G@@+U{hqGAkCGWLYnNALu419yJp?qZuP$kLkP8OkT`#l{Z4VR3qU zwu3gq!_00W2czKOesOvuc9?cy1lkWX#PTT8Sr`W2x?qDqQxRzLCvN-gl^c)qrFYva z>N}!%L1~*BW-(#rce80#{1n_q#l@p=aRS7*-GxWtqD2cHg#!!1QMk`SnpFvrFU{L2 zFupY3q)HHNTUX(EKR0(VqN#dezCjgv5UwsIh6mwNs>p+I(N*L@I93G@!ZDN7=+Y$- zi4jS3w0wR5BBLLS5X8|BMv7nP2P3Nl@q>51a!<1;p-0Sjk7tvpl;{VqkrtmH%qnLI z9la&{E%qTHjLx9VF8tcvRi9NwxP`iM4NGQ^yYUVw|#g4w2oEpknN|0#U3f2yd(QP z_7`o&+TpxtK}prlkO>o~bfstjp;J0CRJ7ofp2_(&}ccMwP<;?lM0PTJ6jc}?aQ98v4NBXF3b&u z)q93{y!0nnn2Yb-7QePXySB#0{R5KPh#f1CID3mi;*!E3ukL4?2qMBkGJR~cOk@Ut zBK34MZX^`XS?c~&V_#B=)&hSfc-y&tH2V}=W&#&a#(#|FosMO9VL#Fyto6hN4*J$; z{$qi+4%<$o2 zW;czZ2=oGn$}wc};ROyq@{Pa29v(&Dz7sKxbz2Ni&B$uVYEwMauVze;iP$Jc9?Bs4 zadCNrrFNJZOuR*A2n79J4f|&S!>*VRn1F~~tgUrNYnE3yeO%5UeC~X92Yz!MxXGJzFfi!9 zPFj3H|Nnqrb-pISHJW`ysLL{FPK+#r-h;nl*TjN<{;U`k)?>=TdZawK24~eKrSS2~ z(^L7`P40@7R{(uHx5j&3%5KQhHoKeKW(l4&Q@zk}|`|`hc zxhGmwGBBwt@%6jiPqBQe1kUWoNQ-Y~m*aCuunTrKUlN{^!1w4mAF&C9x}4eLV&z*< zlWC7Q#i@-eEOC3-`?MV&00V}20IZGW8_&bJh>}&|sYw=6=Z}e%{*V`2<`3`?c=vvH zUG1mB1MW_?F@iK5mHw0$RynOUq_^evgYL?_=!CMB^P?Munw3hPnPf{qJQHm^$Vb^Tv)e81MbJ{w12acg9()H85& zUyYMnBXo3ooXBXUjpB38xovC|C52&i{A>1l?0wpdVRBR)&z+Rn$czBWHRR%Zgsgxf zU{U)dAc*&s9*vVl?L#2EcwdRCZoID)#~=F3y@73^WN`D_m>=reunnM5zPm&5o(t}D zjh*`M2*=`hY|Wex*bNE_0lo_hizl-YwY&ku#Uj}RD~6Cv4<*M{&_}#Vaf}bY0*~wh z916U6VDqJbf z096-hb>ma3WT*>?0Zr^U*$f~>Z!I+ozGq+_p&KbV-I8bs^raz~m6(Rc3PCUpJtKZ$ z8hR!^pd{mSZ`ud(Wj8E0lV;p>-x)qblh=6j4>qSaWz(pBn1d#h7GDl3$JP?w1mCA( zMpZs^q$7StR>ouO3&KIJtv?Ya#7ov|$zPaPEF{UF8!z+98}T%+G}SZeX}|NHdPW!9 zTtS^CmPwSING!$2^o*7ozbhg`-VG{Fq~l)po_O5Lwnv&U#BD;mlvtLr{WuJRZ!_t4 zfog1LH|Cx(j@x;F5`wI6QWC6n>sdLYW?|{^iiPg<$_e?`{A~_`oB1Otbks`K-R8fP1h@v7E1fS)J1+b$i#flVvXU^=sdv@>5^ZUZ* z_s`~L=FI7HX6Ee7>~U%n%zKYx?&+?66di^#tEIUQt2j!&$D84DPjQX0!HZ!ARXLFs zBUfWUBjWwEh0Yu~M@GptIiSVlvISt$D*^xrNzs&JUvIv`zpvr$5<^|mR|TGp9sLo( z3U>63;um)GjbMeK2Z{=6x$g@y$E+3U9_cElGGW)=OGRZeGgah;;Y=-+pr z&S)KSHY$X_cse7;^&_pv+qb`yz8$!8?l*oq8aCd4BwCnVHZjKCt`aj!)Wqq${QBxC z={E7zq8;LVM)|_INR$Babzhu|M2Zrei-7WQE|M87=OWn@7Uv=@qATdJ@Ii4rPe8>I za}l*Ew739^!lo3LH5n zsl?c$wvZBEkGj#%rU22st^))y#}(N=KDVK}wd*Zffrs_>f!4*I+-IX@YI;s1_i)#j z0bpOi4S(Xsiwm>{PwYXBa=I1VsPTD?6xVfHjY~eLw&BMQL&nAs=S4Q^#7O)pvd4zS-5Cf+7Aw6aUS$2Ju4;ZdV>hYY;Wm_)ud)K8U%>_D0J% zwI0-GCFCcjyAzc~d}+Gd8^2emgodV#R7bc}y>>nKdDlafJ}$c+akgAWL2&!=kQQz@ zu(O$#<5mH@vi2!jjD2!*3_s8pmY=o;V#G|aXqm})N=xODFV~7H&&hI+S6r`AteAMV z+M0RgLoqzNZ(cqxYU!>XZ$o4TDA595%6s+l9Ru>OD6Y>aP7Ep=-0oc0*R)s&pnS%& zG&h6+ZN9@R-R8izRMo!YhV5F$g>+vg!wc|I~2Lv%?F0*0FSA zCSCs%BL;pWGhbJvJM<_pm+b#tK^Zx2_)uVLO4$;)11&}iw~k$t=Wc6<7Yx<57&70} zc=+i;w}+hID*Uhf$P-+i*6ur1*LWLQu>!KNC(4ES=vcnx9d}{*hEe$s!1ZANr9oZU zU{u52G`%o;OJTBjBZ(#L+?ZF!0;?YLIp&;`$|1zPV z0%aCYE`|l#@=x(97KCn@Ti`dE}#Q8oQDyh?qIRWz?npV6hea!%XRQ;o=qk=U+udpF^ zC^%mFX=fpSff@;tibGogjLs06F9^9amh25tMh7#8*;7VHAL5%fYloFabq%`YyiF&wp zb4n}5^ZL8HsDdGpx(L8Df_k$^UASnxcee*>ay>Y&nP!IeS=ZlHr7tR+G>s6ek2XZn?zu{*0)Sz#$9=O4U z(Wd$NVSGUE=nVeVV0T|vj$q3-+sC=1MoN5h$NvMO_qloz#5i|UyMrbgy7OGaXpNXv zDc!lZ%-vlrtS9G=`Ewd{blpLraE5gowvXn=`&4b_T0pB2$!&;4DHMOqJE(&QSJt_n zoM~kOF>9vP?jCon@)+M;>dubuEKt*#R!d3?XIdNY%b(%eVJjA&$jf%N+(tn#wZHZL z{6g1$T8wivtED+_vbDT0(mmQ`D}kHvo^*Xm(FkkCd`wDw&Y4}0UtgU6jO!w)lP_L= zswXGQf72RNHPl#>@re4wX~c|H`AORAY(2i`BwT{`(u4WkU8xib=gJN1OZ0A9gXp2g zLSI0ual#DMIAI3-c=1QVru>nv!4wSf4>0kMr!|NlYH%)oC#^x$P$N()XNi|optM@6 z@*D9rish3z5Gk0o#K($z$n=&YdmJn+I;-1m}60BjU*d~5qsMy9Y zPK1HmdY`uq%+NWfgx7p5KQh4nd3@OF{F_~esEp_Y2S^Da+h$EZcYQ?aWY+V2zGn*b zy<_!>u77qysXv&yzDjFQ*HDAH4sYP_643_D2&l!nCpI`=A$((UOvC>tMVrfl7bp*? zXj(!fzIMC2XH09s7b?1q_=SpY(}2(3nxFFjuIbYo@&~*6Pzh1fJxK|nd+3q;^{(-x zPIkA^4dfgA(gsA;^8&zTHIUtA8LdH8Lk+6>5n6+84K=80K#fbx3K%=HCBMr*d9%3< zraPs9N~R@5Sisqc@1E#x9`l}Pf|@=qexat1|F4=pG}}GG^(`fin*NfM5aLCT=fCZ` zO6sJh|1?z?9tV8*hC5Ut)L<51_B?k7S6y0-dW34!&95OK-dg)L&b3f@qe-NY|cX16$W+XxyU;EJLa5lQ85FK~BMT|KEl zn3imFpF3L}6vrpu=gxEurq!6091vGQ{%&*}B+cBdmlw#C zx!>I>2<`5R+-V`R;zIbI+Q|)Fb0~4#&UAN0#23ZM?OKF5+@jEPcYb0}^7D4*&#s94 z79aVo0pvGTM1IHrM*jQ~_rM_JcSUE1@tF_0la$x_BM-V$Tt@;pI9w42CnN_p?H^p~ zZWvVj?a$`-2txnXW$uj7vp|#gTAts;^YVQ?(KH^V#Pz| zLZ+kG<}WxG`neqD4UzGrkBYfag5_f7N|Ux!`JR3G1Jq>rn9)jiXICR+r(n^fS zEK*{R`DS9mhR)0+!6XT0Z| z&QyoT^Aiudo4HD9HRjESLhGPg!Y9Pbl`nC9et9jdd@TmdJ3;!z^PgVM&$rXIR=xr7 z#qo0KR%5-pw`(!w2$OFXym>nGzIgKu6L2I>Kw1DM14Z#NX)%3+8@?*`6vc=tn0tHO z>b&f5ev0}`JYR7*zp3k43WIvsU6CFR2GPUc8{KKOEjG-{)t};?P3~@X`oYv-fookV6gT3iYI^259F{gNe|mhG9qYJ1DLz6r;m)8cWal!{ng#(foBTSAxU) ziJr|RYxM+a2x#Zvz(nZd;ODpUV-#02iV+Pl{Ry|Ox)b>BC*0XComQg_S|(KBi}?wG zzIf_McP3%c>dqA>BLZ1ns zQ?J0}1&u*Gai_bF>yVQULDNEVWNQS;i|F!eJKZh9)nlN3aruYUH!_1X!0ZKG%KGLV zup-9n#W#WjoN|0Ce&Lkk+k}d<7eG#CFMfE@JtxTf-`)G&6J38(vBXra=n5$@Sy-~- z2GbnrFTsnkm_*W-#B5Kg%~u?eJ31PuH4^2ld-&PRT72n2crB1Y;W35K%nrZjQk!wE zPEIJbAW=@x`_dYmT|y1aF7sR?Xbny*p#~?Gzy(gwgD9aaB2i{0eovs8iQTWd_&RR_7*@y$dTbnX!?%+xQwIDS4+zBqoKqQYb> z?qd6b7Gw4n8sLj#TLTD6P1gLK+MH2v@!D9~C2fBpp>w3VF%e%KE9+%h(sRcmBd7w% zUbb@eVt!-DfhQ5)!??drP(WLm$0#C`%HdT8>|<*|VXfJMktAmeIkXxhw3bvsgl?Y{ zs4Sc_CiC{9`(vXR(2E~D! z^Xx9SN0Jg>%wBqfF+2V<_k*tH1hHJZ!!|hFA&^UJFuFnwM%O}GgV7agFuKAS?qGSvgfm@9@_kQcv z*m%*x46VDrb~masR}`S&X7YJnGSAlGt(u*@_{411H|}QYu4KNHdDC2b0!Z(ui1hwI z((}G`rvxSaqsyCUCk=tBM|=R6Hl^Warq3xuI3%4EB{(F3{c%Y8Gg%Hve^FS}+wYS3 zz>U?R4P}_6io-GK60{JTnJ!UW)|gbkArSYapTwA?T;jz)!h+BSFNP$!vHE9<2KO@k z2#zf_R-a6kdzn54=EcTpDmodA`0aJP2VKQBvf{m;r8+Yh^#F;)#_DgQyfqcqc-jEp zg-)R*IGT=c$e)byHnGE614sac(GBGQGCtPZ#kGW@vtFRCqQyvMNkcxSt~bTr06BUh z7%aYQwILUtQagZ|MZEMX%meX!JuoKXZy?YJ1X?-wWHmndo2c-R;SC{kwIQpsDwHKw zzyWBxHYB6PX&Zxft($4U&l<|n;vxkVqXl8cykOyH!Z9?%5yPTy;_FKB;D}-Oi`}=i z=@CPNm~X^@zJMb}{YK!RIASyqzi`B8&?s=k!0p^sF1zmxGHk#u&no=Q%kCnVTj21y zI}RIJq{KIDJa~h{Mx!h46|Qasu^cu!HRm2xxN+_5)1d z1FpHX_yU2K4goDFAshnQHuiq&nnsHuE;p#YI$myQzlrZqGP6QvHwxjWmCO{^TndS4 z&zX%Xn9VJ2Bv0o|5KYYZtb}AXUOiN+?C7%kJFT`dZS`MT;|R*Kc^%-+pIfa`o&-L% zRM)>KpBN4wuZYjRz^Aw?n(~R^a0|2$;cyGZWrf3|v>3ZPG{7mkt${xts?z`;?0!zz zAR1DuOd*)egy31QsYnR^NUHEg`#M%@b1M2>Be|_Cuc}r()`rR)Dxk&cDJwGgqN>{M zt}2a*SK}4I28JuR)Cb)w5+^6#jV`%U2#TMvf7+WR^ zW-zu)62CCEOln*~Y^fUonhyNb8%{|-iO`B%_fyd@wk#kezSy$l24hQRo|o}U&e{`yE zZB?%ZTh%kBPriMX{O-hO{F&NXtN1m78tobLD0z%mvwLM^@}%mSeO%wrI-Iw*d$Ct# zBMS#zMY_JEC}G|jRbGiZxPXwE0Y+qzQqm zjb*gCN@#H_+BBvlFxo%^j5f9g{%E88D(oab43zMTz)5GsR8TYGbV!jArxPWFz0PWF z9sw*!krC&!1`u&HuHVgK;t3+-7&-qZ@udMbA#wK8G!l@^A2`3 zqwr|>&xU!usyj_w3D?f0(`wwO&@!z8%jc)zK7|OX4wVln@#aKXJe&3es$AJVIK@t0 z7_?3RY#QJd@ekO>ux0_63aAYL5dT7I0@ADXV;bu(836tlKb@x)MA$UG zW~8@A4DA}e@B{vV;b)Q11BRc);unUW#c36Up9kA$bAyDRzHPOBuB}v|ID6VeN_^pG zP36PSyl-3d<+ZMyt;!Fz)5f}s1g9k%t;Vtx@#Py)y~~I5x!rulyoODA{%4IE#VAdDI92frajH$w>;z}ZPJuHi zv`Ja}o&4DjT9+8y7UV#z@8sSADPC3ISzhvaqmByv;47x5f1kkw>M(drEh~i2g3Vf0 zCQ24fE!z!BnzgD4)|I7*t3}%Hgy4`A*(^l-m=_b~$z60qp3;l|Jg!C6Io%W)W|4-U zZ8*+zZ5I$#g_f3!$7=DIz84;|#G~<>@MtO?=fvZpc#Jv~@d&*Dk8tt$6Z1R8NmD$LyI!1j!831}Vlx@; z$^Jbd#JH&pUxK0<4Pd7C+6`i*O(P%)U{G-RFVUl0!Xl!fubdAo$f^fkRY zY;ffYKlY7PINBLa#8{EdcOQUVHru*uEcPz&2ebE&nghKb@5=e>Ex0jO%iz5Rcj)fw z7l5U=iKSOcVq!?#Ih8N#-Jt=Tz^_%L9d=C)0Kb(I%^28$#Xy@tqS!uD(tIEQ$^DdO z)e9;dj_A-p{qq80^of8*TWOiH}H%O`}Y za-DzLSBqCCT$42a2!Q^T&|EXP1A`V*`fE{U3zJCgrcO)NY$`1&Y@nRrI|cv|_>OR| zfgLjVq_JtMTrC2cG&7qBJGgTiW{?1zr`>rxRsne0a6V@P{r%lu@ssozw`jfO4 zY>*{2kIdFbs{KG>*c-_++0@z!;FzA%lD}7PXgJTGtWB=OiVoPCs}?uoBd2J&te8*} zR;qo6D4>=v;-{x-1!}iu{Neyl29J1D>&+Hht-ue9_=USFmyrifl=~3B(v44<2V@GH z@iQ}X3fH8-$1+}+rd*5YY~--*<~pvQhfaO^=&u+H^u&$G);!-LRTYOEo=i zQxh*)QZJk@xLf;G4NvDYW@;^&E8X8|q?W?c{q7T~#-yW`Af>QjmR3?prKq9leAjF( zi-i(eLMwHehytn=C7qv{3R$u1sFoIL**E;9IoeRx+G=^Dno)Bk4Kaoi58}1Xq=oZp z^R=t$h;&}%9&n&h7E!615~`YsQZ?v6#~!>bmj8SpqXs{{SPSRv=EK*PCoa$$R90a_ z(s}EJz`+p00V-^+Q(=Qlh4oLD-L3n*+7oP*)$E3~wZbBBX1VV5bvXX=Ga2Fh)cxA) zq5FXvKY!Al%wDqSN`<{Z6?TLuEGfQYEMGTOtIH>!hfj81Sgh5rq^^|b_<;ws*6cY# z8&&m*D4@Rej48=3Q&k@>fynfe)$E2<^@BwqP*qXOw71o$=KRbuEtSPIw|6?&XsK*~ zcO2q0w}{)3YEpA6Je`=I4&iBqmRCs?sWqDO>nk*!)gWXsDzy{^R7dc!6v4;jogrZ> zv#wWH!Tl@w=y2jO4Gcex5*_qEG($!|o z#QSCMns@7k$J&NcGnvp7;xJygdFN_vv5P`*@2B28Ubsfv#}*L*PF&DN6)m(1#Pk7Y zZ8vapI1F_oc;ds_0QRtjn9qAy8xPV2yacLH9r0nU9y8_jC8 zupCV=rG~e_gf@$_S2X2WHPv)c>wgo+nmIw1cTx)k2&TB7Xf6*WR-hL?uUWH+yk~Mw z1n>2u78SYtkS}0z!qDTP@t#tKyR21k!uJck(A{CTomQ^REIkcv0^)lM$hW$4LjZ`k3Gsi&~MPTajH z?qL@0+$_CGR3L6ZI!_C$?_|Cq&o8J}jW6%lK0&#I&pW6!V$%sFT(wRkl$80rq;cYHGsm=A~-D^2%eNfX)& z^A}9?s=f<}w>#~SebuQZm4)^SlM2)#mAS{XhHRx11m|46piSqz>oQn@ z%)3Y{Iq&)+(>d=FE#$oG6~V}59)ChJ;=oY$dDj_YUYK_sWk)QwAu#tyC_C+J@|pz! z6Q?nG-WY6Paf8? zl+Qb(tq$tKTW-*WF+KIpm)ZsPwk3}A-Xm6lPnsqFC*&?&ER5&ZzXtC;X_1iL8-!-r zC#Ls)^NqHQT_7#cd(WBf_Py}lNi3|T-)tP~Lt9Gk#`@Sb{d$G+S>J25c<$m}(c)Jo zOL8`eqfKJ?q_bKt2H9bsJ4n2438a2+dT<4tJ3aU_;GcLfX(c`Qm28Ix*A*?K2ags! zh=1=DJ27}d#1C=2^EoXt4m4zU&DTVM85O{rGdZRLCs;DbsC?MjZkz>Sx-`M$a{@33 zaq0P@3A*$>;upH~JuNGCX`m^ia_o8Sjv%?656)|s*anLa>5C6r1wJ-z=$x~d4PmzN zvx^YJp0=<{Hw;3qY+FkiL|?w7eaBuQEzr$gGTq^YmhxmYM$u24P#-#=7Pr&8vWrfr zpG^OIfiM3Pj;rqc9n#1X)`HK@{T-riQB6I8Rc~b(80lAOC68?Q=&$`l>&lXyQ1KE< zLCm+X9A~}ez*6gUmm2)t%aATCc7pcsquTu!%-6;{>qk3KUAv+UXY-s;vm8)~*PySh zbwaJSpm4rZfqCqGjm7xBi*VDDD)0r9@uOCi?EqDi-be7r-nSC02lv>K%#&y#d*2&^ zs~!B`e`_gm;0yK+x0=|{$~<9K`5j9d=yd}sm$#MPTF*BA9JLUexu-K$39g4R_w^@w2Kvoi_;6!xbyJq5jzlR?Cok`qM%r^8uludRw)Yn|BD+b69OR zU^Jr(u4-$z$*MNajjLLCt30KO-lq0Rfr=)d{^W)bfLs^2ZCszKtykr@h3gNqH5Pq~^@mK>AF?VX>q$|1N5~qFiPF7n zJE=s@pQ4;U@8^7dwBCVmZYGl+lAKct$ho5+mXC@7+tN~$XPI4|-)rc1ua0yo~K@M^Ox)DI=e<{QIyM6lxmvKbLJN@T z({`r82pgGO^LwqO|13?qPL@?^>0d3>_}C~tpLHd*$aN=;IDB6}*TMjGEQdFD)&mX9 zPf!}jwxhtb04+sfT4*+p8XpT5SZHx%2{X?WW}a1PnLt^~57yNUww_d?ES$>nxL+1w z0V0d}WgH-ZvQQEz3oSsdXWO~%-9UeYy>HP*u0_61F_}JQ)k&t$XH=`s*T?B@AO{>QLY^*1# zbKvXR?|2)tc~11RDEbF{=v$`hO@fMno)>0Bao)SC=n{Cl#wo=J3O(LvKY=oG7U4Ve$FZ}^>3=9^;-%dynP61|W^ z7)K3E{R*o3VgJeth&L>M`oU0o%d{` z7qV;%yIlSSAy<~=k;^|%TYVYpOj?NL7sPC@SMRR2^T^d7uIq+7fd<=waEW%O6KJX* z2$wn)uwq~8M1{5jG-P2zTFHe?Jz&hXu!$5c}v*H&z!n4v57)jI$&XPl#l)b>8>7aL)DO{6~5AF7* z@U_Xe>*TB3o0d-*05f9v!7p~{@Cl!Ls!`31mjwD3;o(1bAxg-(3sF~w`$t{?Oyb-H zEPYRP*4tNZ6()CocA*lm*3EE*=2#4@R*Ym`y}O?4Vx*K$dEMxthUV~%-Sq{5 z@SA_@)6y01gbx9{JmdF14Q&m0>6A7->ijK)qpQW6a>Us&BhCMbmTu<7qe0YA_P0lF zFaDxPzt@#V>2BHDx<|Z)+&p(iafp^td~2e>~2ij^#XnEUW zy|d!#;>4L?;WY0Xpg7@ec=oMrc-F!5F8)b>y%xXFS!=>)_0cP_`*`J^WwHENAHB7U zQsAYF^850vX?3gd)K<6F=DUV#uBxlbh5(;D`CcV9f&z!|w_hE4o3fBM@29^|dzO%8 zj(E%yk9)uIYb;k?Y=cV+J?{U{D1RZ{q^y&KL$D`SVVSU{@4upi^j}d|h9reVWdndmrERB;{7cWRaD9?c>*kx`m34WJ zxU(^fC!LRqRG&q5A%|n042TUG0nNMzhh~Qf4xy95{Ylf*&V15>Vb%EQ!FoIPp+Js3 z?LA&R!FLMaeXCUb!j3lW#yeUBKmLdw&94v9zbXnwVpHWwoVZ&b!{_ePtCp`HrjJnA zFO~#cxeA+94t*O|8gdQPap>~R8vC16&ue11c}e>!S?U$kUoIaudr+iWJy(1za#QU~ z0+hb|_=UF|p?_+l;GN(piVFZFBJ$F`o|y87N9tn~mYQp+TzTDSSe`yw4^vnMDUNL7 zDN<8&@lXN5YaRdyz^jba>np5)AP{(Y*ZNBavaX~Q(H7+LE93NA1HrFsl?kKYp8kWD9;!PAOhGxg>PdbdgpM?PDJnV+L2gu%Yz zNJ65m$n2{R2nM7fdGXn(I{eYe9UfIS@a0qWvFZk}_F_GO*Lph%?%4P(DqNH#H_hv+ zt_3rQ7=YV1SLa&WH!GmAW@?A_Atyj;JdE*ght%qOfMJW_O(5LJEf6+z@?eFn$n1u@ zZm5sUmJ&Z8kYr@6myrjQTpT9Ou ze_oBx<1=rEOiE&&<-(%-tjs!>sW!-y3oh(EP4jT$Zg_nmzc@-?#LukFjpv&mfB=x$ z!>GsOwZV~jOKwb@1tGC{@J^-wpfmKY}p4?O)nJ4#%ADgZpV?9YT zj1zNz@{CXcDTax`q!zi44@dFImLL+6yq7w;FEghY+x5iGaT@ip9=}EbKZ&#vN!%@we_i>cv68^ zh0Y?P0zWYWf(3?z3sy*o3DRN9&gb&T1v%c3l-3XuzHXGl(pp=dDgvR}sP&D7g!d{R z5>`B@Z;&D3yZiMlMeWvF9=7V%x*WpcP(_)-Pd%WwU{eXterr!^O*;H6Xeka7iH@-Q zKKP2*u7|+b(A^vH3&}r(@g5IW%HqJ_V{ogQzEsa-69^M%@nxcbI_|jEvWt&yExUNZ zGW`PEN}5>~Z|`ioS+<3bqn%!^7pNoPUzmN%u>jP9V?iNGY>ovTz-+#){J{(l6!^T) z>X-7DAJX@`D1_X~|H?{zC;O2w2a0V5U)XTv7JX-x`sZIS-;kB>l;U8}toq5)t1r@C2*WM}EnU8#3@%p0rVK z5_&5jhJ7=S)ZxQ7g7RlubSy*11fgCws|{bVMvvn$oAf1Y8EJ;*en6W05mJuke!wz! zExzovja^r8s(JYOCpr|{Z&<&@kc?5{k?Lx{a-2tRLknYkys?=qp2?)~7 zbJfZrbg^4iU}Mp(lrg;5Hho-o;VZINEfg5VzrJ22eh2ibSpuH+s&S%#_9{}~b8F#P zK(t%*N2Jv{J(?Y`2$0?sglyUVwxTzUX77>~!piE=ws?UJ`;=6mnW4fF zIL{Ig>d}bf#g<-v`h^#Ahh%kCqZzl`}|N89wG%wz(N5$sYa=S5qEK5Av{+Lcd!L2sk5{#GU5 z@}<#N?cGl9%pOH5V2WXGXNFqq7};%35ZulTAh?~msGZE7XI%~%!X6-?NajA1%vw@` zWad7Y)?A@fo^(PW6=+YWz_-yaRL^CHoS=C0?EqkVrd2o9$57%SeK`9M0Y!#BFd6!m zR9JFDttI!bP7ve>KztnGZt+u{1~T6Id3Y_c=~cZyi^vy#Dm?)SR?j!Lz>^A#Aks01(&#Z>Mp~5xoby zlfWU3sV0quq{5;BwJUD-#_*o!A`;n3Cx}p-0`EvnN#Ls@G5pX`*cr5)Kq8f=Oe!yu z3X2NVg0}M5o6cG!@RXl`{AT7m`V4l4Kq7(9O#SdNI`cycoa65+qbX@ZhJDa@K~H6|{pb5b-xBF#^T6H1{-An?UD>S#BIam~ncw zASeDc0-*~p3L&sKh&R7*m}aVl>&X-YvwkdB-Jp6 znkmq&Ub3d!dfxUV%; z?#Ye#40euDKnw3V2eb-!@x4EQ^DSD<7=HRL){I?ufC181KG!!!5TuZ4#0zGAj_@pC zwF)fPg`v7FFIiZpx>~z{zcNy*BWQ@*Vd4%8tkiH16Ec_}K6gswu2Tp$D?!Zn{|q}8 z-{Y9XO(}4qG_^`mW`6}a=i;yQxeD_-P{JN`SO#_>rHIyB!1*`&>I%RIJHR6ZR(PrK zxOfkzb8qq=Iv=oleGOZ4u}~+Hn>X1~HjBe@5_p!d zcx?Ig@AWwX>Js$%M0X=gyp0H9DlI-Q~@7$6_RJ$NCmk3X!QwDqqrjmQ=8N=tZV2f}jT{SaDZqFZLEeT>LYnbO07NEf83~LieOQ8W)Ri zZYG@9UsKp=f&#PmH81L|+4rPWSV%d|AHS$S6bL=)l0KXL6$st>7u^#GJxwvnn5(_z zv}pa)pn!|H^=;q|^O;9lsaWW^>^D7GVT}n!lwr{C`cl@Mlp>wR?Rmi;FggZ+fBqCC z17xDlKf9(q;R*c?(Wyhyp5PpN9aXOzWTqeZZV4KB4;0-PvL zIuRg8CnCswPPB>OMJEDSbRq(aPQ+-ziDpI&TdkU34OnuVN6!2si%)L+M>AgZmwpFt zdP%QgYk-D9cX@#j6o#>Z0p3{NKrx!zO0h9|&)fg4adDoJW@`uIT#+(D=qa1$uVj(R zVh-BREZ0JeQwqC4aG?p#nIOcJZw!E#>g%4!GFm1}kIS)o>K zBZYKj^J9yEAFV*}`>c>k5Tg|U7Og;Fr4?uaYU{x|AT=$;0Vr;0;VPeCmNi0kbRDm3N-jGpTYN#8Z`J0YViFP8QfGV z;75ZK{62%9Ac)c60E-4Eu+rePz%n>3wI&)r60B%-3WklBM;S91Ewvh7`^U!LMjIV% zjnU!*V~okHW=E@Mpv5T-%i^>Y8(S7n{znXGaf(6oZ*^4%xzlcOfxH`IR6XN2)`=iP zQx|lUrY;~AVCr<9mFN&g_nfPr*B!G=mJH_7I*ZCKzMB_f*iS&rQov=qB`=xKXXqV8Xb(eLL z)+I!I0v#o&(YgSO)+Mmgy0l-7enHFF_ z=+@EGn9)+?ebc&eRd~DIo`K3Oe6GjP*hE6XuXLr%A;k2~mfn|j>DZ1e&pbXMEcJ!v z!Z<}qW6*m#*C=312|4V)6zoLJoF?G}Kv)YV^+KO~`KZtof5_|5+Q?McUIL01+htm8 z7pd@fX!S^ESgz+ZWJgIYTI_X)u>U3&6aAWu744+3KnN{H2>C2_mS9JV0W4aKz)FkJ z0<_q_^NqHQmZI9)dX0P*QfO%x)keXv@nx@(9@zNmtZ~g)^glNKy}+1cYmA!TZr8lE z75=^gxfT8n7`0!4J13_W@X~fUnf!F$2sbMv)T|YGM^Wlqk;5k_G@cdNWm(9`LI|CA zS82>flUBkgYH1+}Rg>VNJXj*hP<5x0rw%Q|FHW#Qq!|+1JQc2^>0c=M>sUzn8_YI1 zq4CJ)S_fNCa|Q*G2O+2#{yAsaw%9BbTcgT`G#0k(U#P-cMk@Z|fA7@j%S zRh_>+&SB?( z%}BrS(cvp5fx8DM^UWksa-*)i`eY-Or8wy%cO^>A^wViHB{-eoQ-aW0^G@69eD4$^ zPwm{5UzlRFV_lqNI#M!yEHYD#_CeJqQul!s@7rycGR^oGyqkM(nlV_J!P9Ry^4Lr# z;pvp{y?(+aPZ(_p{w~s9w|C`xo`C!BZYNmKURRzl3e=5VdAlc#Hf%GgMO$s4G`9I^ zOn%CsGFUXk#3zu(g}P&_^O|=V>B_4-?=I+>uQ}-)qI8b==?tG?w5mv!7;~FANW{-96XQp8UrQ$G^Ddv=}wr-X=%NP(+yPMg= zmc3nCoo}CIG*Rny;~&j}bZ3KZ4*!qsM*K1bE?k%S-QQ;$S%izO(r!`Rc>X%0X+o5R z#kY^32;cn_!3&cee9v=6Hp{bM#Mz5vcxz;Y^8C;ViG0o*aGzq))!r`G_R;WZ6-*2Q zYBU!?EmydB`uW&yBQ3NyV3fPRcF%>ha9=_oIU;8a+!k-W?il8m85S`ZPtX z)y<~Qr{){OLS_f*bD^ov`v?>0qxVoQR`|IP`XuqBn-qF3-?zYMkucXnQlUDZv|#+| z^bq~cHT6euN&WfUJ)Hl&5V9`^;rI~v{2_u4`947Te#_4{_+DJ5MN!aZo+iP0nV{kqQh3sf!I=4e8E@Ee3b0(%tU3 z@QsprD}3)IYIgVe?L7||8ez4&)H9F}e#>km#37R8B}R9aLQspbR&aFabt5T(fLCZ2 zgEY3>{BnFm-Id2rREJ|sRm1tU|1_yiOa!v#(VSQ7(N3Exw*#PI6NjYmRebT=b~xEGecv)o8j=J9jOjmGRA zCsT6>QxE!?3Vp~(i?T@dkoukpXpoMw&W#&aRR`LwA$Yz$Pc@}&F!UCgt0s*hkZ?i~a^xF&T4H{1X7sg|POT?3Oe(nP! zOYPi)CwvHlS{H%^P1up2*b1t_JMQt7VIRMQryeorduN}7-JMD{D}D)7@<$tuUN8?i zy~St{GPQ>}i=E1cZ-P#Ix093UPEHp3IoY(?=t*?lQ|kJ5(LjFMHn4Jvs4Rdp|2U~m zysc_={`?lBDY!Cn^SF#LE4SLXY4(`0 zP5rnBKR(U4S^0uzKMwP=(@q9Hb29LQp8+vPBMcNv20r1tpMW{&Cj^l-MN^C96fLyK zazPwM;3Ska2-hg`dADPV<|ENV`d9!B-F=lF-EQ+~OD-`o29p2K zW;f3cPX2aAgjK44!9KSI^kJ?P?NxE7FyponP z_h2(NOB#nt&5F~0m7dsV+@cosl$nB}o-)RYf;(R@idlar4}B;PC4L?bylC_zF4MJgv|4Nf&>QBQS4u&0CO$#`OB{x$q59oLZj~|ZGA@1W!AE0KHvO?k*gfzJr5a4 z>^Ol&8@@yNKPmb5;QmNFRa({x&X$&qh0)(UuHX{?V{Y1-bNQqLRQBn(SuxwL-A=C> zb3!irwEN|&MtAk5UOekCBw^HEmIoty*C~6hUOpF_@S4$$sJFjV?-l;$YcTX(Au^(R z8xpLj-YZhQ1h7K&x=CA~daLk~H{flMrQ<88W3_WHIi2o8+MpC2;j;|>eQL#r`HziJDkX$^6StCiz_>lgzMvWPp8~ zVF%DSRkdDqUjD9;p}fMseb;Ek4m%0GObNZ~Clv9Xp_91aC*<^8vtn{DTU=0&L-z0| zqSOe!x|h+E|8yMIwZ97W_F=y}Ik`kRxvALa!u{X3X?CF0?0KTu^8^!W7Bf1v{%vHc zb&I+8-ynAVVn=_8DJGuQ*iUTS2Zlk+NQpHF0Xk$Bg0t(^#d3Dt)`>rt;xF{$cg(DP z_(5`eKrkzQlxkJ?z`Lgx;r{Q*hx*qiZ>P<706VN)KkP4@ptt51dUdD@Yg7D6`daIK z)t*fSUPiaP!W%jBYALdJ+tSWqv>5K_MZYu30L6;pv*C#lcV4R6S{|4Ln`L zzddRE81bZ~DR`xDd`FFZw#zEwcn0Z7u$u2+QPEbb*2meBos~a#Go`=hcK+b!uu
    F353dr_ zj^z=~G0INfShsmd$37wa^!bQJtTU;`5v+Y55@Cz`U^r*Uk(e-*eZaFX8R?aH-RkSW zVSMvnMpZQr$Uy9j8!6~hDLjNBJb|$A7o%wiDzVR19b3auJ8k_^^4-^qp&jsA?{*6OA3&}8Gbp$)6@otW=+}@sfJaE#DFz!&8dGsMbVcWwzUWK0?uEek&1glU|NSD55mKT2byEbkF z!pmHSlTrb%cInH#%<~|l;HcFr%+sGuA>cw!0vwmh0pP#7JZ;%MLBJo3@VFxgI7|hs zQ%tK#1M3tM?<-F+0Ws0x6D;>Ok693n0J`jc4WoF{m6!~+ji3Wh?!XWAYZxAFgEm)c zkCp#W({nXk-Pc!KW(L=5MAX-U1M;E;yfGJcLW$W zmVMP%zD@axR9JgyuYgX)o$1#|EymT$AisZ&RIMMzRTqseym+HGp^l{_ zKzC$y1Kfx-T-Ufz^H>G)EY^B(Eu4iaU_&>It*Tl0vur2O|+5V4> zFEsV+32Z#~{>;Yg;6FCLHQf^**tk61)0Z9pZ;kP24ONwJ5;eP@TnB#6!AmmupQ*-j zKC6{S>_iq$!nx*&;BhUCTKs^HrG5|Lo!p*CzFW(w!&raIwS z#jWtP6ovwGEBsRgs~8Gwf?{Lb3QrrO;fwp*4F7Yw@g{qh;6mLUmAX4h%F+H}d%1cB zL=}6Vzaq7uyD;mVcq<02VbzV5R100d6y= z1-Q*Tae&-ro=k88*XB$xegH9h`T(2>+IV07mdBe=X8EtVdx?-S_nVUvG1)It->@mX z{Ox>CoWlANE-)zf8X$vmFH&KteB1!3@-kA3?mC9@J#9eX+})vb^F<&~LvJP2d^%rD zNTALE7IjWwrOs&qIvnmfr==)>f6ux41nAWRZ-Sm8BrFp=Mn!ohhzXLP_vFP{7BF{4 zPgPC*G4BCC31J1kb*UchD>oOv(HHLl zkFd>BI2_YWV6 zYkGR>^4Yg|!a2JN7c0))khwM zQ)WWI@O7$}ABYX-Ik$O+@tU`JwkWUhJ-2x>*&7aV&_J(JX^sam(8;NuNtHFwLDN77 z31t-IOQ#_FO+ogRgMkh!?03=vyA57^ebdcm=1jdgSeLm@WpUkHVdm@xI*sx>UpE5| zu~GhTJU_OhV=vZ-u!WhB-v{w!UqVcy;HZEE0ZF^qFFpluYRU3zGd*3D&^`do4_);b ztRJD^8@SZsn@Ok`esf?ayL*mjMkQ?+(gSoJ@qAcw20#4CACzH=Q--cL%X>>Z-zzn8tg+4V^u-UExyxSM%KH`>FrLhRw@p!whk|f8^!L@=T3$ivrrw6A4%N zdL(h6r;s0B?K#7i(<<@0z(37X*70`S(}ryz5dINKd02>I-rVxUU^!E`UqG6#N??N5 zp4XV4SjirT_6Q4;DTU>O<=8}dJ@ccdX9Gcx%K0E+)ps{ib9o%|D6R5eko1Nq#l$D5 z-a3x?^NT_xgLIQj5A%P;6e&9(>*eAq7)tg^dAar2?z2ys6mW?PT z7F(~4XwJqFf|!*gEydaYSUz+sWF=`SHr~7yhQJyB*tp$e@M?uN#uaS(5V=^bKg6$V z+*v>!1^~^S1*E(9!i(sdD`Ikb#Ox3p;HH9|;umfz*f~UgugbdN7^Zqk=bW+p*C#yX zK|prDhM6L5(sirZ{nf1U)KchQ(_+Tp1Rsuu)ct z+~8>mIMEbvG66vWv)qHT6)NA1;PU0wwiqzKnly?}d>)o2l&XVM6OeGq9r1Sq;m04< z*jiDFQSC#n?DK3>%ZJKz^a}(W!_sq<^~0b$h`cUhnqu(|DV`tqRIRD*87fc3?;uG0 zu~*$T)ZAq>RK|ieLuK5(;DkPYx-kp4GpO^r2Ryr3m0^~H0pcR2kOC{}(o!qqUT>Hb zu>ol#L{wt=iVtZnNKF|QT+9UGBjylENrk-ZnPB4xL*R8&?4K;LF$7YZSs{@0EMFKB z-55jQ5WzTxz@g$7hQOi2Dhh#rz2bQ}Fa)kS3=!}Sy9Uh3-ECH>kMxpPZZHB)Z1O`* zo^`fceZKkaTE#IzNR%xYCWF+O*F7y{kRniWx5}-&_zh2KH11Zxnb&&3Du$@7{Ky-g zv2hDT0qwh!EMYiCC`bczRM^v`7?bkP4U=f6WqBEZSfk(56j+3s-0??dv{pO^NldekwqCh<}O!oUPfB`Yz z@(_~#$mG&Qsg2RaV?(0(?p(r&tervm(}o6j(99Rw`y*rNhmc*GK}7A#V6^ zYxGfW4HQ#MyqZ`hs3IrFgaC9G-`}E(VNe_HR|m!e zYEmm65I^>HO3`C59y}%l!Fcev_=WM{@!=K4gTo(t_6NoT{`!Al56MBhO3Z-pqE+gn zz2pWy>46@9e(ldSc*(mRs`Bg2tB#5ZLZa-Q;W8j>{1on{!o?VYlCzfQh6gOhz7ou0 zNcfS@|I9No?j2D;`%JkdPC0}GxWM!mt3(dx@{4QWDDsPIq}m@7)GNeW)aoTN@${nr zl>x!GWoyGdH&=SL;?t5V1X$#4o(OGd`mLvVAoz>l!j6dELBMgtPXP88zJq-O zqk@2s``%L!i2dX5JxkdgLBJ24g?w}X_V^z>CG7qn;COX1fb)5GhDY)0KY9kTbwR)| z4pXcSEt)}qXc51c$4k$7F0p3_LMx$p0EnVr9VFG3U%gmjMIrUgiu@|Cj%7*nV&Z2? z_#}8SX`|}k)`XwWH%5NTBUYb;;)EqRbm0I41ku;=~$Pig7 z*RZ5-a4}-2f0xK<;uR-NF;7MH)>-ni@nTF*?LqMyVl32TH;Fr)RW{5gZ4)mr6PF zO6554HOMPA-BTl3;{XX>zE~^*C5{8z1kX4QJS~3VIPi37MdLurE1nZU#(}O^Jv-QI zcInM=;E+}7qrK#<%1;cFtL3caJ+6BevrjF=VnN&`X0>8o3S5>d5^Q*f#K)!b^A7(8 zJ)P8Ic(2i8`>|i_E&HnHEhxO#J_yfc@0ZGfWs{Pl%YlVJ$$@2mX~1&0-U!es4lKzd z_%bzTdffYhIE|$*5pHm@*(W4tmcp8fmUKDnPw}a(M#wk08Ue9FLG}pJjoOWn%i&}J zN|StvGYTt{3Sh<5F|GIXLxrHpdPL3Wyh{4c)CS`nl zR9PUs5ps(PC5SsFX#vKc7i#2mv-2gctiYSoPZ3TqLq{9q4iQ>_LFA4Ra)-#&5%T`p zqqD2Pr+;hZtYe`gE$2hk-!xLH{w7j^_lwmXX~w?#qz08AGm`jW4Fl*=2oNlh=w`i;<#Xp#;^H=Q;5x({P|t;oDQHpQJcLi* zgl-s{MoUG6zHs^oW1)XC<~#xS{pR?0+{R|*q=}ub5RduNtQrv=pPsBfynLVxs+5A#RK@nOm+xonuoOWNgR z$#;-%5JI?iz&Cq`MX9exSShhH;3s$`>{p}}D0K{cX4QZEK=~=qO>k}VDJbUgww>9> zq%o4jOxOoJze7%edU!P9aR{qF#&SqMdn{IzO7_Z=@^hHNGVO3hES(gfzVMx+tyC;- z+K(|kzaxQ1H}Q_KL{fW>kpsN5f5%y#5-F$Tl)~NZ|3BKEJHD!7Y0tUTYyt@(p@onD zp>vavP;Mm&AU)DSI!L{=gl3~8pw!SIOASSOO9En4L_kzjL_nVf>2^>lc6|!p?Cjoq z<`%y1{gU_nLoU0s({^TdcFvwXmT_K;;1o3&C1<0`D7jisgjo@r8yc`Yt92xa(e5SF z1yKq&H}eF~xLnT{zi_#pKPtd-JuK7FhF=eg2#O>xC3?`E>MmbUPPtsCPULD2&NUvK zYa~ve4?F%9;N9fZ4wl{QpcrTb5%m$=y+*5>a?YM&ul*dpBs`ke+Hjlk(C(HpJh~I4 z)W-}G@>OJfvp4`@*K4Cp@MduoH+8m*Wgn4YxRRe6B@>7RD7kd+03z_Yuuyvh%9@as7LE8WsC3K;cX)^-s##D0q7 zXRxEi5T$Z-6Fgk>pm&wxEVo{&4Q4ec?sArnGHxW%RQMHPM`o^eiI#;^Tm^7G zNxXt7`ds)m>$`yIWK38illYMxS+13JbMf8t!m}+#iSKfjYa_!V{a!Xc5%|Imbn#=+ zqa5%Hzi+$U3BT|Qs0~`fFZ{AzXS_^tS6D;-~Y7vA1kxEWWf*i!Br}09M4TFia8a_r$}9{R{*^ivre#m+a+>Td@qmdIcobT@eFd zMQjfYQ^dX-@i1aj0SJf*SQp;nRReC{A;cyHBsN|V17Jlg0){DKPmOvQvFnnUfOX+z zS7*G5Eec3%z9I&|ir8BQv2tS`Mr;-Ufn);KbyWP*7VcvqlI;jcY?~qmz>1g?hAGL` zjcXpzv$SFtL>~r$GyGn*r7a)ohzd&o zz-Se}#4?mKq4*K3uzR&ge!NqQ5T5n=op9cCyybjA5-W;N;+}5p$1|o_$`tLHV0ler zcMJ)HT6R8L|5-jg?`*SOq<4+KV>;mjPui|0pKcHdxB5Of(`5w zgx0++&h$zPL<6;op@MjtK4`2wZvMkFmJw_t8I@gRP3Q6HLyA2i$j&+s6@2-n|JWjU zajB=Ko#M@BSuE@=LJ(B~=Rv$wqMrlR4r$d)o5u&wwu~*2YK}?O93wPQH8*@!^QvUJ zNU3IGw&f}ID;))HR>|f&>L<@AB`U`g^V!S zsgX-0wRPfH6PMwX9@o(uxbUjL=tN&uyl_6;4Gx#c4IbxrUcVDols?b$q^5UsNe_U( zh6fBuN(AdGcO9S>45kpM3KGh{td13wf9Ka!`dfXyQzv4}`WQq@7Y>C!0 zT=EU43_?{*c=&43Kz(5XKu&=gxXUG-VS0|m#decn!Wpdp4RuM*c1U{gRi^CK5c@K| zFa_zOp-sHg7t`{wAUFo0_O(N~RcD>a@{YP`ENbtlutd6{l{cn9BM_mwtI z8QOr*2%1ULx`{s!Av;A?*Sn&;a5Ko|kj8pPF#SVGskvvX1y%8~cD0oRBJ!P#s9eix zMj&{0W}1Wlk!xAUIug!6qpIZ4&S>>y1TU1_QNsDFYb}qneg<}ap{jF4l>p>ieaDGH zLk(VWKbYY}GNOBn)Ly!4oGdhqg1>N3`C%CNjcIHEU$(*0vQ&RS!B4!=s}>{Fcw&mR zww^MM51V3#gkqzmT$q59)&C9RSO0N*;YLeB6tLs%E@`4crBa0^M*_#iV=HOJ#Uo>3 z-(oHv=*8junW_DQSsp=Kc+=jI-#r-FjJ-r!W1n%P2OkyKPt z>Vv*v9B+NZ(xh^}fX2w8QX-(hvzwQz&M2waZMNEc);359wDE=}wU;dEg0t*kOHD8E z#QpX-p7)ZaF$)g>zV+>v5xFC}0NXEEqO>}ENRcI$#SuWkwHC|o6EmWi6VreEwx1PaAH$lA5l+IZhTh4v&)sj)HNrz(MCso1c~*Ni4?gRAA+# zw&4;CV{K!c_=UBNapPrG@{AaQM;AUABi}|y-EGil3K@Nr_TC7eg? zgTnhNgN}6m0EAsD#}nt@Lq-Vahnv)49uxV{H%r&hw#wh)C9EnB!9;?<8bBq30D+Z3 z;Mws;5Qq|RG6;Mkeu@98E9`Qj_^{)5s`K*smda7Urgu=7DH=#nC>on@X|1u#q#2{a z`Tma0qC5=MhWO%C`g)7!=gwJRl&00;OaG1v^2GK>--Upg_TmppYH_ z+$$*PgD3EzMV1&glt3ca11Z-o$+iB;c;0k}rA~MNwq;zPY+ziV4I(bUXQa?d@vX4i z<1sd9-^;d`BOio$%^t=FVmxjS1VZ zf6X!@&*dgK_sHcr4xH_p#FYP$L@g_J~OsXEnufI|uDE+7b;bt#qLx}>!a6bKY zOEz5b3=eeAa8D?T3_!_s31;bP%P79~III}A3|3?e2|NOJ^q%Ga2N)tfpTMH$YcKJ{ zla^s!1cdZ?HW7Y_|GKZO6uk$5q&5G8N%ZLzzNUZ+_V+n{Hdv!5o9VnaU&o!^f3kKO@`L|zMsuz<- z(_Jv!yoDVbGWg+fcvMp5Nj^&YQHpbGqTFat7->sq4Fr%16D3fU9ydwu;sLp+z_@jF z{E#__uf5o`Ht*Kxp{90HO}!XEQ_kj~shM{zF~!sme1P+@dvNr0 z8=;KadD~Yzo0R|?m3BJ)WSPf4C&Mts`sXK0J@y4@6)BeXIiLBnrIQ!5_K!1;|Nb+a zUHZizdfqRVCSK66n=X!zYoA-QHG^-e_(>fzgZSp(ET>DwWq_e}-)5`J>ccO$tDySp zWDrA5%y_typO|i~%1``ZsZ-o(sKryuTBBGk!U0Z08___GG%7=07gUX()U5G*`S(pX zu)bsz%t9|dShtGA2h-cW8T`&bYaK73VyaU_Y`vFcK(7XWX&h);7Yb|lVX;ZNZ&_Mu zIk3bR9kkV9D+zO;)HHof2+ymvD>}DksUUqRRq#fsVE;vDO{le)g|;lyq6`!7mSwKP z;D={&QMCs}16A#OrP}9&YB#Yr$bgb~{&A(S=e!k$2H3fj^|a|Guz2*>rg7|hLJ{rn zTdJO4{}=m9Ib*BF@0PNb<>$IUz?@OWTHJuCeJL&ROTr7Pt8Au^x~?mAU6GcU_mrbL zANq-HJgXrf{|hTl)l9kKT=7;Mt~f6RSwAV2286hFI=&8TOGu*TQZk9>re{7Zn;FWi zVf=?+YmH+1t;wFL7H9b35gPS1R5VcYvM6y{WXk0wrEzp={`W0gJI*Rvlh{;(Ap3h; zcYRhSzk0{klx2~Q#8;go^chsPMVUN%Sc}+Ip}$u0$>vi&imz9K)J&h6DbMv%#!#}2 zzLI4clF^XR`qHG*xxY3o!^eeN;aGgQ^;y{ay%uh*%}x@LaJr6BktZS|74OqNP2sOCH!-SUx#dE}G zBF#}8vzW;G*14w3lTAFPiaC~DB|M@^KlfGXcMmhdjQU`NUztaRl_Us#qBQ&o;R7}N zm#>CDlER%=8h)%s!U$Gjis3>fFg=}3kt-1(Cz{J`YQ3m8pTaLSwKiZa2`LO|NmIxQ zlsW}hATPs%P0pa=8eTjwB(9f?CsZ+<^%M=%Et@FT8%~jaxv7tRG8;{Xl|(Ni4CGQT zMX-OapuyfSCK>E@IU$2O$)P$~A3!Itohjy{=`4ML(#Zls6?L-TS0~Raw&y6FSn8SA zvJ+%j_s`*((4=+=4Y|3s#~bw%Q)DJhAxn};A2Zk>R>cQ6dIs@LR_n*6Kc~QH+Rw*? z^NQUQD)YzMc>ajLyBYb*w-1Q7yXHsHX7@QFxm5%TgnN0e)fy@HUFDf;KyRs^P~PWTL*R&Uz1a z;Hc{JX;#LspSW2rHwkJYSgxV>&j~#Q$swvpln>VX8-|{@(T1 z-QZgVd9!`7bP}QMAb8 zXYJ+r(jLX$-srWbNx!d6m_U_2DjKLE)|w_=ENYrGL{Mo6Kl=eZoUL&%p{j8Hmh!(d z4<=M#{RuwQwPT=1*Cy!Xg>B5K-cTjbc3*=xs%<<#b*`_qsMIQ8hu19ah+%68W2o&F zRNI@SwgY6`SQfwhxV2VsSM(*oqj32pgaOoap=h9*UZkX%uQWZQqnWd}$S^F#rF1ek zVrNM!#?`m@?SZf`Q|OYcU~d?#P{m?tueo#P~^R6!tE2SOQ_V1VL15%CjfIt}WxB2@Wf0 z^@89SD%I7ANgaZUx{tJ$(n|FOiae#j+?YL1XbUUUdJ81#fXNd9bcKsh==fVz__cAx zUgbl&16erlzC#?-j^-CmHjU=deasb@Xm^Jop}|ViL<7}ex*_DMg!|?7&eLTSDBst- zi7h0#L^o*knfowuW@vXyF(EPj?J4H&5r8os+!Nnry2ht^~UY6L7-+dfe>v zVhJTG^p$9yzeIG}VlKlH-(aHkl<8l9(>%~zmwiH{!Abj&NON6Ins?+d9;jtab(G^> zGOWdYNTh!-U51Yj2oosSPribk@e%ADHC0f*o5#vLY0Pv9j9xcADOUqPF11#aIMv!g z182yeYpufbCL~6%ctQ(9ZR01&!e)8WKO(@wHnf=W)l~mU6Myz;a{_}OUd9~WSu{{% zt}B^`Q(YJ4L5V$or1=*%gp4Y_VzM=*mst2qisuhj#Rl=}GvG-0-Dj;UO!I)(Zet-1 zEFe@-MbA+ct&}SAwyC?1LH#G;M@J~Hu;X@les^Z^Z7K_x6iZST;Q|Bbc3+LnR2q9m zXbhg8o`KU@Lr*nr%bR9dSF@MN_~Pp>OFyEN_l&plLZ3o-*vRBwDKQ zlytq1ytS0^@}ogTe=YocSf(sTDwoZ>j36$5s)N zsN7{#xtpYN1MJ#YScCYptBReon-+sM@rf7w@YZI&XrS6$prm&DjrxAS&uRs;J)rDC+7u>)7Hh1Yd!AhP`QyX7IyX zJ>{PEQO^w}!BwT6O;wsrWKjaDYJBTXl^0^l1VpHs@@K+FdqO|8mgoKRtbdr= zJZ<6+7MYu{c7(i8mX<2;sMPSWr~MaANDWhYbYEv#e$ifR7u6k4^W|G%t{j9s<`=_! zm1gyktL4+uQ_uBv_F>b=@DkXTHrbyDQC`ud?bh0wX(Q+?V}-dH%Og}#XX}a1b_dW| zlU>#^#kH?opt@z1Ig!B+kD;KdUiDSgDjzA9D^(p_Z641)Aj3LgjQ3gXlv! z_-u=hhWPattrLr>BE7>iaEt?V)PWF29gX+ZQ9H?g+B4GMFj!@gQ6({=nTT6U;}=d_ z)7(eDmcCUjm^V3Wjo{t3n`3g1K&}iw%JEIx&B^?q?B+qd;;Yt$rd`jN_@EtTJKIB; zLEY`})g4@5?W?;BN3D~KtGlgAcUuWz)ZJUYy33Qg+n{v!&oS$Cc9D!KiS9m;x`Q*8 zM0a3S;e7Kxb0Xie`?i&j+GnoEYlTGz@xS+)t=N{k-&~{ABhNxM5w^CqlfQPxQ&QFL z`{+#%e%3$kpL@ePt(b~4{RLBoYb5;exE5+I8W{3QA%2&d`$cK)o2Qc6@SXYQeyo{* zR9=Y{se-4IQka#rii(s8!1(C`IG;n|OHh;2;(6?c?s`kg;A%l$YL9N)D~P{)$XuUq zdCyv(ha84y`&oA&cf0+Lb*yO|@B)i0oa8!euFNJ7R?%GHRnrgMEA5j3G!856@ZxHG zB#_2qitxjuHq`h+(Lj^7;f8>iI1G7KIDFI6u9%bhBmDMD=K5?CK@v94R+l?=BsDVa z1R9w|=7wxH=@utSwCzN)L(e|!K*@@oNp(w7pVv1%D^HYA_E5$*ePvwlFC&S`T;z}( za!4p{pSS*`eao{iSQFVzA{I{A*F>zJ15DWd53M7MJ7G6KnU{~5;~4z#p0Lt0d?xIw zAq>A>p>B|d6K3XDUpEhA)dY0O7cV_>hTQgDdX}zUT%?gjkVe+f^pqLA>1S3eOCuD8 znsg_8|5ALY9A97SGQ&TV47+G8&Ug02nFEt`h6*L{!y~Ae^zgyHdTOaeNS?vFU$Xwn zCX*2uLAt#SHSK3eD;{v1JOeL+^8&}?6fvivgpv~gJbra*EiZ7yzWI}+WR@2I-27=$ zLx1oq|8Cua6$AjE_;>4?{@}>_8v(%aVp}R|34)(K$xtEnmvhg-6T4wwSnrvBhUo}B z3wrsLu!2@_k6OV4X$1jFOEEjF!TiDUTb23EnazuR$nZzL~GvWN-N3btTCp=;B=>!*nyH|^TGyRG@_s*9W7wmF1q`b$ zUv0LL0;kNB%6$D3^By*fjKcTvx|B*zG%WzR!qOAXY!T_kwPGHTYc=GBfe#-#9!qRc zf=azMi%+_1eKeRbH-@hWYE_4~{v0-R`v_C9_pIpvo^cNnEm5AotzNutr`XByc`261l$(FrV-LVjWV<#YF!Y*b$Z1j|oxa|4(23 zKa~8R!x@A%f5j7!zpkcpS^Cjn<8hK_^a2=7FLyX!?TuFd`m{vCVJ&r zB=pyw1zaR2`5Ys?cLTEdk{o6T0UGz3rG_U94rn411oXtc5FiYhj9mqPSv9@qEcuA2 zH(?vYRCmhpkXinIh3}3G;9T@BAWKd_Er&l4;q*h}bh3|d5G9N+ZXqS@XkwI2xajO>(Xc94)n&F!U{dpUsS zW|?fgi)q28ouDs#NeO;<>+3zyK&Sl$CBqh_ue|vw&#{POSSnsNoa9%?I{ zThX?#)L@~+JD(@VvY~_zR3dzr&!a?_RH9dD8{bm`M8$ni$<%MQiAVlrj$!b_Gk+K( zXNU%>x!yj)^_VRkvvrx&p=>!BUJ?y1@g}16;Mq|&PiZ8ycgG-pzq0LwsR;Pi?!!si zR|sKL*%6|$Q&MH#`Ib1!y{20#;}KPC#Xa|KDx7UvQ!&0agTLNt``A})2fZcI_bIhi z(BhwBH_32ZUB17c+{pAZ2zOnJk7K`*ZhVq|j|lf*w*Qm-&Gk}CwwJsKNW~{1C}U_2 zVOc)r@Qt@z+CHzD!m}z>YTAyOlCwQlI9uIf>Pwr?r`NMJWb+AqRM$SyK*PXu zN|r4#X{F?ezx)6mvgn<`$hRTqtA$oGKp zqOkz)ce^G{6c>%v;LB%KYiRlf%&YL1>J8X$-Yme!WZ|Md{iiH>+t^57e!LLN+s3?_ z)Vt&*xIQZ}#g@f0n%I8Pt7psC$l9m=cKj1Mc3kU4H4;fJ@71-?QqltRK$B_ZSqDdapuNWAeZI1}#Z zfp2hs2%n~!WC7v6A$U=^FNkn=0|*B@n^wG5U)b_rx7v!c<;Tgp>Xr+Bc*~{F@tM3! zQm)TXF1^wm8TLN&5$sw-d=T##7at?Dl%Y;r5U(2tlR2rJjqy%#@wGf1bxO4W8a!iU zYF*Y!P@~a3c@By0X>sA0BQnjP>$WMpGqzqd6k# zH{}_Z;@asWj7AJnV9|ITA~-Hyhgd~SsftqJ;&&n!QL0LS$l2_P&aJHAQDK1t^-)S^>?rbT+J#JtjE`Gc#sCM?FwoG=?z|QejwqtYTt!%H% zk=MT;Zf{Fr7k!~Vo+Cf^@-68|oSV{1hYtAEO9YQ;+^sJAmGl;dJI0A#{L~8|7q`Y& z2_T#6WtcF$^JU0uX)XB|oj|#-eb6g{5mKNnD6Uui!t?`t8SoqoOIt4_qz3-OPuV9xp?~w zt1F=7?KAvN4_obUgRuHAR@b?_Zcp1*FLLN6evlpK^2A=Y4v~aaw_&=hK>QwjnF&9) zKy>W^cp1E2e6@Y4UcB8i~&);9(?qh@7Es6Z-FWZd< zH`S7SY5}J73Er(AxXMujvAkZXh{rx|Yr)<%+Se4e>7^IV<*D0SG-sb0?QZz4{cR0c z5ow1Cw8OZcDKY@>u9xPD>!YId&2!P*wIARssrJhJ(#G2r%b>0Q%9jnW)erd%(0VR7 z;=!YA)!0@-Ny|^G#Y4};*dj@*TS1CQL%5Hvdi}^U&$;KOtoVgfx_Yaad-qz__AT+Akv8_pwo>)gv7`IQn})v zlO|B*IWz(0iFi4cAQavTFDrvy4!=0U)-ftxkf0e_bwU%&z|6;wv^~bwkXDRE)qKaT zBoGOsY-y1Mkz3<}H+1Oz0vH|ofcS+*b3htR72{$vv=h9?4yehsFtk)la1S2j}LnlF`ZAx0vG@6J8Rc89q%#e{xseKCOagj!gu9? z@ifw}&=o+xt$C{H0O)Y*p!hxPJ0Fyl47Sy0$PP#y6hu@Af?LOY&??c^O0w35OrDS$;e%Mo_q1`GRGDJ zm)lR6V`~#-6)36O#}OLn_J7Z@-C*NMD?UHRtDmNlR(v`?ejcCov!$aKxN-N>JRfjv zJYV&^ZHgB(9AHV;*7KqBY>n7P0uN3a&+nWX*+O4C&+t^!&Uvu48d$0p+=#;X)cLl! z%5}vcDiE;FZ~R@Vx)&LdRz~@Oj->=eNO^}eU`TmOG+;=n3+k+p`nUe&Jbpui64}=T z6qDc^girkrJV*^|(L6{1sT^2~NNJ^C0ie4{QS1sCjrz@60C&-qo)6&4sPK)xD?B9! z6hom?>)CrnUNnZgjm-rNW{q;T*FOQ$;>$^I&65`kzX1$GFp4C?(lN0+9Le0W6gG!; zLLK5;TOR6iGITOjuL=vT=8Mo|<|CHb#Pi4y}Xa2G>xieZkpAXxg zJc4cUhE6AV733yG7)A)f#MBf(bAkds1CmxX@N_^O!=B*m$W9P&Tn-IMLL_fwJRi2e z5n0qR*QS-$KbX&BPun^Z1}gf)XD)W6MH0vN*aO54469`4J>lcQ)C2um?mgOsf8EG`P9QSyTMjj9I*6mo1d9`#fz#WB}~0 zkOeY6{sxl^dwH+SHa72e<+8ZLiC(~;-eT(z6|w;2r{U!fgJCY>Wl_jhTX~Ju7jVjT z!J&Jxc+!Bevi<^oew(d{7vzd+j+gZI3uHv;NJa>6(c1A9d!e>-y?QBlSwMW{q2~g* zwT>2$G_0g9kYOd2pfJM9Skj8D0C;K+l-Vh`h$}kq2z%)i9@=qIaW4IIYd@0JB_#7- zPI+8kw19VCmE4}?kPczkmF9~ERIsWFED%z|haDzY4dMrO+salUxW)i1Mq?PoFTC)0 z6JD#KeF)p>jZ|h;1ha}G+xW>nwvnvJ8=A79a+DVZ3u*c`P&YWUKcdZw#jh&|MFixI z&)#S27)eaU!#G$Udf0Wr1bWyF@e4id#)5~XF&FpSRs>9AR+rFKUeC9M@ajt)X8!uS zcE)=gv<+bYCi+1i{oQC7qb4Bdzd(2ctF#c%DW}1mX@!Nd#ur06a6bzj_&H}Y>A>ngucdi}ix?yM;FmaTH=@M)t)jhsAXwcO1LKzqy6Obw}9GKy-n6ekDFFL{xkE-zz@3m*` zN%}s}_cljec7XIEg+0C$iX?>)LP6Xq-6c7W7vv>|>OcoS@kr@lsxs3+?KU14h$>PQ z4c;g{1+G4{KkS*tE|hnjkHWUx(t1z?(Vj81XvI-mw8nli(8^De;YP}s0Oj(xfo)e( z`=a5;Y>#RzXpx}=%y0q^DziwYIBCaiAF>+WW75M78tO{=s*7aO0mCrqFaQ)2CIEn) zl>W#f-tFHh9dyBz$WHtKzh5Y_lL#L21{9wr1b)G=^w6TdKUZd>&5)C8!>)a2SbwryUi34YDy-FI!1*ij-8 zM!X`U!OcKU3GVa8f-XEj4C65e4LU8?O%s?r*Cd|D^wx9@AnCPg?`@d@oEhl4cv&DSId0T_TB%tT1 zCBp|pF($q%h|z%hBB5@Smr1L8x`Y;huqrRN5yGI+v=zV5Xxc7**lOG6!-piXgV-RV z6||JcjRrUA66ddr|7DvR833_s++w+i^;+!K=8}(Xb+j40@M9>#juWgL@WU*Z9iU>Sz z84oWeTgH=%1|4}Le{66q=I)@GDO5q~WahY-Z_lL;;P z`Br5rngo7a-za{uzOj7-EvzZ3D!6;G+=TPRaudFKv8)JE{Xj*~mU|5n(wH2BXJc7f zB@p9us_!91i1u^Pgy z%KE%4&wyMunsDbfW|x7SXZFeq=iQzuTSq=?Bj)9ShB?J3-CyvC4mUvjLWdiW^Du|| z`-}gl^fvx0+jcgM=nH)|(`axrUgCTfD1~t6JMptwj)7f1%2@z%i$^)@Nr%XGHAwhw zf(bO%!u02I$kUud1Q4^|gNPx5pYK_w5j#P85zRpl8V$uq)Xgoto_Wd+_9P2ucRGcCb%ceOP#%a z03yK41pNA<_Tj+-PANwS}gBLj;HWesk z6H_)~FK(X_CWpabz2Fjq!3OaQgTV&i?P1j@sP^YS67EvKsUQ>A;2XJ36($E#Vhzt(v1f(L&Hy03_#GkqJFyozdVXol}C3X=AZ(Q?Nal$CR}%U@scj<+G{+ z_})%VN^|xG>A=+tI-r&l$rG+rh-2qTuPEqf1wz4H^!)%No^Sz*%>N=?mUQ1Pc=E42MNs7;llt(ID8lxZ8*Gz zw4%cUI66E9M~5#Dc;G#*sB&TiDo!m(R2KBx$CpXJ9YAoS-x@>JUJ?FnIw69<;dIFU~}Fiz|h4Rn3qw;ba{bk}AoP7qvf zt8ne*_Zrxj@H+{1@$n;Ln`~fHtMFSeyW*kk=MSf=*7Q$dB7}>>2y|UPRBr%)SkMFV zvs^Cd#7I26f}x@Fm{x$K=scywFLa(#a1CnUvnpCs`$m7~`KqaXG^;6wQ@^QZG`Oke z>@L3FV1W`|0tn&PLKB`~2?lm72{u_F3zSZy9czL*bVR2%ugRK_4xgf608U+vSNK*a z`x69Mq3pB5s8EhEI+2||ik<03yJSanoP&aCAJXxkv4h85E3a_Jg`vsz`r2x~AlY6o zaSb5zD@-;P6lko7BqWW(Bx!X|lMvo0OzsfF&_Z^KUuYpaA8H|8TLen^YPE!H?>M24 zk@cw2;3i$-Z12@-2^o zl4F?xzwGfXX)SR^222O581)swD@p}Ldu{d?H1->5#%E*8--#~IU0){0>W{4COTJ8w zWBN*9Tsa`d>ia85tPWl&WA#;mNX6=Ro%TB6zlsKwS7lSbt&rE5P?C6uPr}#9jr6)J z`BIizpVjlFR(mC(mJop2`V@OyC4XxCLW(`cOFrDr`vLkYhR;Z~XR|JZ4b)4cG<#>g z&r1GenmwNNBfZ9*1HCAx!&izs2V!&EmaY^*bTa{zg7=I@@cdMJ1ixN4p%PJ*isM~C zOz{pV<-&)11?k8A;bYU7 zRdS{8>J6SwY)K`-omR<}9!B6w?}w`SD&D=ZJ*~143EV-`^(!}bw|9&rk;>Brn#Xm1 zx?ljK_>GZ$Vk7tN*){kfgMSdAv9b>Ty&*!#mX;!lR#W8huv--p}VL_Hxmp%#~Ju!a^_ zWNDjFMq@Kcv*!y>?0M3PackykxhtdKxGUSVTJFj=lMy)Q8&;D!-y`RoO%+gdSH=NK zgilU}8{zXfX+<^w9Cu|D9Cu~FAMVPc$J&d%D+5J`sEp?sLKt^t*H_D3*%zckI8OK# z(SUkZRoAPlRrO|!+LaMpZkuqyC{lI(+Z(B>ZWx%=di}?08Mi~=9v!#U`S752XhCaa z+=dYtxBXE43bQ75Xn}c?J2YZ29=^fk(1ThC7SMxQieKnKE!RBEgW69D6uILv>|in%7ZHBp%@q4Xe~=TT4E&#*$;Iw~!WFI%5rVXx3u;7u=F!_Vj2XM2I8 z6lVfJVj@ZrW7bw6AW>PRWZ8}~glo-Bf(uVSd?Olgt$}&y{;d6^UMg1}!7GysJ#>em z=aRS+nu}{q$b2zgtu^ZST}pCvsJ2F~HGdI$;87iU%Ch!lpc8YiZ`R1A=1XuYvD8p* zA@^#;W7?e$=e1_rKV$7FGvatW9+WfWRp-3g09WF4-QFyFV~q{@&jt<1<*9S*1uTPr zYo2*}inawAY0I zqG;;}nUX7uw&O=7JjV_Zoqyd+JQ!u|!aVNAD zo)bz8z$ciiX)vb%QVdjMB%7TU+TUb%jAl|FGe%dITKZm1TB~sh)iqX@6SE5-n;K-| zvUvW(_=GvEs`nT=6AC-KKfMvj{ty}iGN@wPQF&z!Nogcx?l|?j`HJ~NX+q2 zBDLMbW%kD+Nt|+rTM_Co$oCZdVvz48eqoUB#UB>rS1h-0^-q)Vxf)wxugLFaCiG(y zhzc;=k2MdM2`#_!Qu1J<6 zAXRR3j@y%qaTkyhA1={eYZvir=UV%mV8W%^W%piZZ^hmqjNvYO4H%s$91wWCFEZ+w zfTZeJNrsB&bVWJqp+vwwC(R-+Ap=!zLZ5Be5Dh{UoyGAn&Ud!BLugOD0 zN;hT?2z?Cv_-^XoTt@!yxs3eZf!B%1Pua&^_rPQJApXTx`&`zA@MXk0Lvt#Uc38_V zY=f9H$QwMpk^!ln)%BMmiL+=rj1vA$fE2oR2;@147C{(vdz0%Jzr7vy;lzYJU7%ug z^m&3CboBY+7draQ4Zjt{UGozjXIqGX=;#}b1~>hj^(Auj zu{`EqtyM}_WMIdX4&Kg%N$vvMZ}?;5Cn{F15*dI4*TJ#z;?|bb%qYeuE)CJZNf|%dIryb!${s;D!JTxaEmR%?PxQ=~C8ZgNN2qVe!0vAbM z#_S5kIadk+U=q7RNqO=+ZJpscM&3}Kwu<~tTPO273XTHQ2mp!kff7a*R3N`Mm9wcvf!0WyZac$*iW5A+vJL zRYfO?>@zf$9|%0$4}2dmBeJ^_1l*XVcWA4~?f^_?cN8A8I|H-I?v8;-;(hgfLd-OO z%DbUoq!c>PylG#^#*i^szIbnYf|X^ER+MjypL~jgky1V#kYeIz2&e$M0f3mLuIp*yCm0ur zpC35UhfMsaL1W@a0+>4lwB9s%h>q1224#THPP~`lt4~ z?9l+=Uw;S>u_$(o`Hcl6jro)-e3xnSNA{zdK6rz8&)UihKAarFM{EhJ8D)%A?}gEk zD9=wH+rMWM2`h#?(@AUQ>#ZMy>oZUsKWG$Zfj{)U-K}f*<3{N9KF~bwqP>|HEYwRI z^2HbJacsXYY|!U+yDw}yd)*i8&(H0(yuiSE;&``f@Xht}KCmDfFk4ww_&`9O{bW#O z{@{|m3H!namOp>lp5TQSRrbYYdn5LX4{Uw-zx(^Py1C)%=T~R1p1Hb#-1JgC`pk1B z3E?|iMIl%1;Tj9xXc(m-Q)SYM<`=w?e{#*9^?$A1{6A?X#JP=K^hxQF?vcfF4`(mtl=B^(XZ_tyufii zoDl%>m2bcn{18|E)^1@-1Ay=T*1p9b97}my0)PkK1UsSFedMj-FE1u=uM=FDz#SD0 zn7~0;g#uj*{_ZV%zUksd_gh3{0KP@EktA?mZWD1TCv3Ud<&2lMeK(C#*Nv3Ij80IP| zG9_Cz{Qx2iR4Pw1{b7Hf9Wt7Y5*(Qevt;lfnTt7p+G}gLireu8EPxT7ml$1#C_J2tVr#BB9%W8} zls?_G8Vzm^N^&-;u)Jd^-Zv5v0I{nJzfjpxQ*WN<&d$VP^^h^c#*b2GqXy;i-X=#% zR2RV&P1IT%Y!*SH)?8zwj24b_p3(_EnlzEL;+&7llMgv5I6mZ@mnR=`E+8XtANpJ# z31chsyr-UQ5?pS3aKR|@WbBkL2~q_81W08C}#6RoQUtL=-P!;&v z^uT)w3s^S;yW9$O*(~2D8B99xeG=#}-X|GPdhvn~=*7z}I{=i}K?UI2)qbKM>M=4I5xu3I;y=uN&T`JrJ>#>nZt5PE1r4DzhA7&(DAGU=pl@)A{a$^TE0dy z>-PkBjbsPuL)SjMS-SQS(t)mBxS6>2@y*h;mk228+6Mqixb^`u+;HuWNh`WGfTL?u zaCGe*fCnlcQQO4`RGK>ZNQFUv{dKeS*WU?l^jBl3It=&oW_3Q?q|5b_;Bs4@Ydb#~ z?YPFmwis6G$%euWlocd~kS+8Ll7|1;ptvovQi5-gSiQ%j`_pK-Mb>)a_=NJJ2pEj#qK-!TkgfbmqN7jL`$7a71B-}E zkekF8&1&Z8ps_K8@X7IxboiEcOtPaPn@ZZnCuH=Dtt2YV+A6;xGekhS3*S};TrE`C zs5l9Nd-`gcfFGU`k(lPi7(U|6k4S8w!E><|jySf?m%BBTyB8#PA%r`41o!XA#F)y< z#XzbSK`*mbVw4v>jHBm2&>FE<2q6(ik-z&@5*vHLqvFm=#hoJ~P;qA{YZn76u3ja7 z#`r5%M^7&@sD`1{6CI{|!1b2ui4ED$-qh50+J?sEGkuO)Uel*ac0f%|A0;c7!M*Jo2N60rdjdQqCb6SGm&;NeiKPYsJWnZr z?{N+xBay=al*6%sIeaX!VYs0w4~M*Py0ZplMX1ytu-Z1U`m}72(n6Ca+BH(Gp5Drq z#g64$`Q2Vg@kNfdjz4s^lCbMpM2StQ>e14oE$tog8rvHPoN%PBp4z!hE}zRAB(`No z$(YPjw#O<73qVg&k9%H5{!?`r6&uq$EzHxeu)V;y4uo4Te`uIEOJf%aHV?yu1GVaZ ztT?#R#j%CmB4dQd>AwJ_WCwi0hjid%{X{40krx8Ss(Qr!6*VBh2bn=uO384#sxK&~ ztNwyv;y_P1T_gzTIci+@h5ys(2+^4diA}tS8Ue^kXkj9EYa36j-aO4vzrypaQa`B7 zTm7mZ)gMvRzgc2)oed^f1F2uxOaB*y0W>XY&^+<3#wL+Lcwl$v2jv^GCrK;%7=ZD! zEfYt3!5acC^nuqV@z)=BjPQa+>;<{bMnOKn`lJ_pq*uw%c+j`lodL(*(kn?`;3oz+ z(o9=mhVdNPQeQ18xWz?aq&AIRAcO-cNR=ngf^CWObjt=ip4HfoWDu(2Ca5C6=74Ah zKRjD8R7FDnzNL8ni}20j2c*k0D0Xedn*M_p9ci7y!nPZz1iW^WHy-Y&?F9|5(5d{= z2uF(JuW?GFc|uLSVeS)-ex(utA0PHr<7#|kTB4P;Am~wW{2W%&b{;eW3NuNx*E@<; zmw9^pc7Cr(t5m%Sr1yC(Be<zXAF2^l)n2f=>UtYUxBX*Ru z;LPY{8?_ER;u8@H z?z3zvyam96@O;p@n8_NRnN)K@W>P+oCaWpO2ht=nc5g*Qc8wdL4uUb<0Cg0cZXB5Tn5@LWwWP0-7QG&)$inA_HJ| zW$uvMkH>eow;$qqR{r;sjtbfw&Yp6#kIEEG(Oi3=!KHll2(GuA#}<=Th&bs{1ANCV zAQ1QvXftWRhd>)e13m;A0Q{&+SwGcZ-68L&dyT-05{vdSPt9_WV|)7BJ7k$S#JWI4yo~jLAR{kh)!?bq9QZ9hW&!7@pgk>;XpIiV>*LR6IWkz>PD3JNjWe{b zim$OdWib0R+cA)}@E(&M?gyTO7FdqA6VzL)J#t;L&s_hO}JOdd#)nWiB`q2crsG~eg zxm)KuIx|jyeGFQq%4BMa;41iCy1rwlyanE%tkO0D%JJSV;zXWl1!u%)^_rlJ(dwA^ zh0*F5sQY2}b^$ecZ`V6Hj!gltt1iJoN!-()n3xzYuB(2BeM+=~G3z6v!7WHh&g8hs z9cQ-<#IpEvYp1Nf{7pKr`T`wL)`{Rl4kgxRLAwlhz!D7fVj=pQouafehSebeSk`(1CcTk`BZR9d5jd z;sa3ubnE(hr;ONVce*1sek1I&>DCH-_F9KHwLNdGqi59DLQ6DkpC@X=<45@;%{D%C zo#PdjM;Jjrl$b+cyGwH;woH*63-ysxC{{SL!qMK0? zg_|8MOoBveR7`dK^sY52PNykiHw1O@8ful@21#T&d^ce^b~mydOz_dyP*3lY>6stj zcmcR&w|x7^=1Za_CDBfj2%#i^H*xtl-i|6bKiNB|I-^8z!8v6p#O;+Xm>2v|$qBGB z@lJUDE_phA|1Lc15JBeH7*iCp!*NYxS(H!D>netssN%qk-C~ic$z#49R;g(HE=MJe zt?(Y19&QX$rIn?-dEr$@L{ZZ{ju{%iT_E=k;t8Swsv`X6-B?`V-QHXgmF+@C(-*sX8!?OPoPX0X)51E^#>r-~rvo-uUDaSIHQo0{sP^b157W~Gg;=br1e_mO9bf-RZO|QI1u3HAYI-Nz~aor+OWDF2Phlh}a>sDhy9@niV;uo%4P4+x|-2!TI z-J12HV{^cDYeVr5_`4U9GCV35wxoS~M40iJ>deerVZ7!`P?LR>XbYFJG^4>STh4!r zgQ<}Lu)BKgk-^-)#~sWUzU*kIjpT=4cJz+wCHSEsytTm~X5P8;t=0LKGnVRn=&7a^ zdCgZHEx0+$+D-gw!zL1FjOtEbeB%fNM)f(Q0i*hC(SVce1Qtb9|KX@3R?|1_kx_j! z8GuRi2A+7*q3)jDvquK?kphSWbtwO*o^V9w_6sS?I6;8BR}t1tC-;D5d@-OlJ4L!Z zfn7Up5HXzvP>k!8iiqoyN|es`U{wDa;4rFxOHd-qUmDo-dy?f~f{X@rzDEXiAFfB6 z%I{UX2(}kwrLU8g-AmSth`p$h5Q?7eAONon=#&5k^i>AeZrgOhl;92mu7!I??I85o zdoZZO-Q=Q8e9j?~%rYGcJBT{G){B+H_=j&f=Cf{;aZiLdOhyIkE_>xR;^(&=Ic%8s znDlTz@WFfKHUfrWjP(QP2mnyXsS=n;8r-sdh(#H=)apQR$l#X$uA{4_FWW1Fn*p!l zJB7#KM*Pd8DR5B?ZaW2e3~sx`FAQ$G_C7qg0W}%iUVH!lFDWm>Z=G|5@CqL|-eM<- zelVOJGaB5|{5LXlqtcH2NFTf$1)EK)S2$9sPy$V$KV_nDd_BDLk@V5ZRN#&A#k- zTVn^kN2XUY2C4h(_wjEx*Y+9t8$qLJ@8jpMIns1s0b_+hM)l|Jllj=p z>y9VcSKh=_$-x+-eEd4fW9Cb5IL5PIy~m^z1{L^E$Y81t!vqgC{qW@)C{#rm3n1b9 z4TFVw@#99_oK$hYjGkBksY}Kf1&}7B6$>B$CJP`G9t$7_b1J8d-7ljpkP+NR832kt z;U24~5nk4!R{B?X=C_V6tPf!X(+2~adRjvU%TM7gdpog6*GKG^@z#J3mlbOYkMWk+ zxjRA$x50S(tRRo^c82(c@pi`khsRr>Cgbh#9~>_POeQz|H9}q|Mpyj>Uo`y*1ZK~fqye+%iJ}3s=cT}!$e!Q-x1+YELrJi>{rqq7IM6XI{qyKS0zQFsJFNxnMiBbpsRV7~FMO9&egkr~hdX9n6?XfPH zBrK532AdNFl8Faofn?kPERaN!38!Nqk#1gexU_SV##$dVX2e(q49ii4W7|Qp$bMhe z8Kkjp-Xqh)jX^5&?s~9jSb66FjbA%&F3*NP9A0I^gAW>OZDj+S>g{?^9t}@ch3jWT{=?T#peEPP>yb_#aQ);ZTtAQgo){{>dFlEJ z9)X^D3hsIsU)9;4#R~@M3HQcEgIlhW+~I|#AfTSd9yJil^)oGBE=avd2QEm^feX@b z(t!&Sbl`&I1ORcaJpivRN4{K;;_}@KQs zLt4>}>idpcNFeY<*K;=$%J7P{oG!MWbomTc=fde=T)hsGA-H<&6Aid})dxAm)7a9n z&d>CB^JVGh41vd}e;O{!aG#vgKIVmWoz2-?0Yn$CQ~7G~f*+nq$Hfcd{g3%F-rpg; zi2Qqs{7--6814mfd;m+4W4J$V;B#A)3#7tu{~FAw2>1K)Ww_s+FT*|25FLY0UhkG_ zc84Vw7$O+a-k2u!)G?tzo-TT`fwPCky8LH@IuyvALO~AjJsW_5whj+g|jv0-kcGbq8HA2m`_mtZG2h0vUDTyO`zqqNdK_Y>77~ zD(V^o)#Vin759UJoAqLO-eV~D3VZ|M9)@D%^~2eeput1%Uh~6)D>UoIUMDaBXFROGecudaptwvgyMM z@w6067N9D$HFY}Mhj$hYD69&xT?+Ypr*nW8NwIN{@`I$TVlaM=@PWZNTQp!W29;wl zo|xi1u5IS#R3}^#M!+##ZXz7R%`I97h{crQ)DBL&ye@ZLp?o)b4MidDxaroiQ5mgJ zz8am)yLWb~D{f{9`Qb7v$}?VOWgeUKDf_}3jS3Kkz$&s_Ei8f)mt!^kkwd)JkkrWB z+szs>{Se4VYv=cg6ngL>ndJM3;i%+?{4c(|gR=(vi?CuGrSyaT4P=}HFIq=WOgg|C z6Be*06Vu6=!jecU9@cEkWBXtv4I{IzL~C#ei!j=6LT73I{Xc{L#L>mO{JYN1j@s3S zfL)Scm5G|&?w-z1vgVIQ5?^xn2!F&#G*xhnk!YIug^_65A&f);?qE4s&@6~M(jSud zmEbx(;gEdxW6pQ^px&^{Im0o6EjHBYX1pXX4Iz5z<|&mVF}P_3`Cksf}SH|^`}6SYZTr4e)iB_oo>a{$Jo4incAPk!h7j;lr> z#7m7u`Td-Wbk>M8%Y&S)nps&h(kcvIZ*-Xddw}z_7dV`1ZNvv#o7L4HJpaA{ z#S0vd+|D>GkKE28Bap9WC|?T#@RevY&+ot(-UKy z+A-5{xDdQdhTuYQL^R++Fdr^xYCP!>-)(a`Q0wP%NNadIZYZf{~se& zs@CX5nKH*5Pa4Bodyh#cMy8H7*k6>zau|l$ufd7JSN}!Kev39vaIVtWAc7Db15W*RJysZ0KE>jWNmK;7OR$@CXZyh)E{$zC+jA3uCi`s2UIFqGvymE~#xS$zCaX)g;P#f_tc zJ-l(0OtylYsU{or?K9a5z&+WWdN&Kw_~n_nS{a)@{vtp0@+RufP+qT zU*ub6fFpy81qQ4LT7uMs5s&7JWC|D zOh|Sc4Q>WwJ}+G7!szHTDC2bSBah_Nf;anHSLWSj-wIZ@Gq2~{mpY$_dQ~Wrrc^tKX7Oa~ z!PVyR>;=LOZc0OsH7n+(6s;jx?n<{1w74t1wcNRu9U`qa(%RPL*C#fsufO&Zzi`7@ zpS@0c@eALt^30V^b;|0Umy9c**9$Oi5y%>^o?`37bRSw z2EExVfrS==-W3))a%-6E;LdSnz{qFuX)#N>pc|44)Cu)|mUhxN{$ zUIcwKr~s)3vCRM82IqXeOOXtVhQd|qN5RoB&Tn-7%K8(|4Sf%%twP`bL)&);R#hwy zdrlf;6G%v*g+S;vh1^g>ZVMek5u_-+2ni?%C<-c|B4~i1!YZJEVlRL#bV5;zbVQ_s zi1el+Anlu--FtU#3HXEey+0mtc6Qp%&d$#6*$ZgW-V`6LhTp%B^ujm0=krc;Gpruu z@tM7Kb2DnOiGI*q&dYe$1Kmq$bp?THflAMNp)NPy^HEwQVH6$n-LDC2%y$nm0fppY^R)at> zw@g^VqrZf0mJj-(DycPDV?XE@zJ%yO(J_P25~&0seo6lLuQDP1kjN@YN_^lA+OPe&)*28!n|_eKcL#gZinHH&{Oly;u z$~1pLLB>Qjm=Mzz7*3!l(cq={6cbr{6|sRlWo?GT1e%zB`!K7sRBkvAug$0lKMq0Y zYW?3OP_*|9zH~jP?}Lr%FZ9Kp{6mJt1KXeWDpE~X+IRU8a_P;4mezh3fui=CeYCG4 zO}Rm84>Y~BSIj_ru}fj#1uA8!2ru{8ksMib)c zia~{C5VbPOunL5xKT9k0xMidW-GTJMk;fu*Hv+|x@4(mWmqlpeYKmT#lwAD!gAs># zGfyN%`r?&FJbfe>y9|~&YYQXL-6u}FsiIw!1RJ~pLD$6cyE59vl7!l|pAv~WZs=wS zHE=^WTl|F^y4lMLt4zPRJL5awUEG+TGnVpJ`*lTmk+zMCVeUuwy@AVzigJX(e$qs7 z^9K0>xI-Ir-7>OwJ5G>r^L2zGsjb@$f`ogatIOmbtLSp=t+*G02HXpkBn?I7&L4A$}_G zvBMb_1MYDh&d7;dE7YSKsxOJYxS?usBx59dnlP6S^_}W-pBt)CJbnP2@Qol8F=ak` zG-E1zg+Sd~0b?59aSU>&>7)@?$|=irQew_t?p`U`P=QJIQc*7p0NqQyvYaOr)UD#d z5VK+*OfNxW@^=)}{oP>sL>QgiuclD3q~`One`Kumz}5-FP9N<2OD8i*dlL7ODp&?V zDi!AHum4zglzAGo5_KD`gi7rxy0CWsiyP`PgI%QpxOaqiC=`@1uP*1UHo>I{itZ(r z`bLfNL9w=;&sc1hT;VNNjIS2Bg{ZYcPb%C(R2Kl;LVz3VEkv^watqOd;A38wxq`Sv z#}zW@1~u~2K?EBPr`MUpU!prcRVvj0AT;!-h-hh5J|^1#NOfTpXSUEwR>x?Dy~{)+1v zjRM#zO6L~b)cTPE#Hg-XA$I~4)15gR`+2enZ{r*!z0knFQUm`X4IJ$@@C@T2<00|C z>~q{Mwgg(rI636N6}JSGtJeM|VTUORpyQT+qQi9S&Wf$no`QB-#pfE<8XkJPwJ|HM zl>3^>q!+4FVI}dG#Fc*hr7$gUBj6)eCSl-G0QUeC6XiN{tga)lE1>hpx2+|4`ygvI z)}8dm2=@pTum4JSgbR0DJR7QJe8};-jfkVUOwHE>Tf2K$L??gG5mqii@%LAJMr;|l zKD>&CAMQr`wDJ||GV1ITbz=-Rn~>GR`T>FBV9n;)p;n6rw$89L4>e=>N|DKb#8we9 zT9Y3MRB8f7y9~c1qv@zLcKJ$KZ3lXo$7%${=q*4H=lh(`3b(d2Ujg?Pm#cj6Ccsp4 zr>!>$f1S4KJ}ULPwo;|7Wmf65HExymV)VyStB5~VUFF9gMat?!JbIN(S)&O(e+E^u zM6A*&D?eP?DvtMYv@lz3ONgLBn}SfD232$%tE54Jo|mB%LO39ZOTwY>FXX1?HEDUW zKqu|9Q`BU&HAH+amlan_0BH6{`ru7M-r7ig$85A(rYRa-eY{4| zfkjOI7gemSP1b_&!3!0O!c!}o9ar-rK~P}pL|XAIvHfZ?wR^6{v&8Udfh99lh~tUD zsgzyjhr zB?|nxPGKX-Pq$93=%E+}db|Nqo$$dx-(ocnO|#bbK*vPiXT*G_#0zax2bs)9D8du# z75UL|b!VDc1u|Q2Pg-%cYeV(w4tj|K4Ve<$UGO(s6kxh;+Mo-pMU}Ng>I(}Z5kzYF z9&UVN>nMYbrEDP{knvZk^XLLhamd536V-JlPpWb!Qfsw*_;pGXtJ7rMle)Saqs3FH z#hV4>c8w0(ov^MiwG3Q}LW+!dnVt{!h_$#(b(kX3S?uHypD+=$QTOZ_FTLCc;&aL2L_L?1YSuGSf-FLb3!oF8<35ujEM*)FFA{(Xe%XfKvT0bn15AA^aVuq&?lwao+kW_d9Q9!4{x{pfs=B-hw@Y*#x6<$yK zLIu|>pvrIaH!va<_94DvjZB4C5PCWl_Ca5=MyJB;Jn4hpiTUsq0>!~R50Z&|*oWAe zH8LLtqF&ZgntulfA|L)5{uTM~Jc&p$6or^ark%)#V+#pH`@30N#FBi=m86P94pZZL zYhh|(YFuCZg{g75;NqJ5#e=8D;XKcpT9o(t zC8LZ?jUU&1WNO@RtxS!3ttF}Pi{4mc*2>g)=rElc0}NB+*#sF=V`#wC7)WAj>_@lk zo@-@l+JxFzKwlHgk_8$Hc_AW%$#cXV&|AW5*c zR*0;tt|bhx(znH)3j6Y(2^e$Y-2y;!V%iZ)cSD@1)eW4Q|2KB$Tc+9zVdqfnGQHW^2)nF8*_H6sj`w-eTFHYO z#w1ML`V%e~lfV`$+oaa_K*!Y0hpzX?<;&DeD&QqSZ zCNYYQOR(mku1OqQCn~q4^M`a#trWnDtk?dE)aUh2ZNwr76bHP>dYQgabe-;0UN6&~ zs-zpHI~CWH$(Fp{&%lXvM~kQ~egZcv+fr^?^=5>NOE}Eme9%#su71$x8E_|=qHA4- zC|#Z)-B6cos>|sAi!PYDQEuAMQwbNBE||JebQF$Fh86t%_59#~)Mjh}>4v%6JSyB* z>)p9qIGH7|<*)E~s?D#tr?j)S^Du~)@2G(ZT#s89nZEf98+aDJlL$U65)v|blyh%^ z`=-|O>?o05CvKXYDxe-*uM)T0>viJx&=1;Qaae9r%|n0i<6@Aw5m6NJYy4Oq{2=c& zB8tx2d_?(sz0TWsySKecm?=ai9K;$w$dt{8PSqb|$_Df>W%EI}3+;^~gUXt-e~{my z`Vk;|)(`T0`X!z++bYhdb7xzdz)G=sw)OeAS%M}_t6m{Y@O=7@(W&pUEd(mV(zB^H z_A`N^7i{@~w|*|QvIjc&SXQI|ff1^OZ_@1GON*T!bgRvW%(Wh1e``2-zU!QTqGmyI zow)=y5JtFCvNr0|34f|%lo!4U8sN`<`=Dzculnh;?Ne)cU%4){ z2&~E8@q^xbID7%;!{V{Bnbq0ne$a<}Zf)d?jtZ>wLPv$$cN!7zi;vQ5_lIw6ZeA8U z;;)9I7{|Qugki3HX>I617V}5#SL!hv;!j-cF!<81th3m4LJ&6?x}SO}z^h+O{-K4| zg$4`RpgkRz)i!~alz_+$>NhZ=NHeah#W#=yrrZX-uC5ak%DrP~0zZKfuVqkA2nc4b zyXwKb!+_Li5B_+OW5f4w0XCJeMb{76z%AceTX~?PFKfqX>Zi~6u!iM)`{2-a@j?%$ z!gb@va#OqU$=^d2oLWdrIM}PZ2@-b6xAyTs7bECv1u_z@KvidO>aT1PA*r(fZA5kD z_~i{M3;1Y*&H_H6eMR|Z0Uf8WH^?l2jFH$OG$CP45udj~mT%?}dO8j8k!8*Xk_OCO z=amNRBSdf%cY;u&a^pj1+Xfj;fu2`1RdT%p2oOyJW`bj;ypvOpi~D)z%Y~tjm*|X` zn(r%sV@$Gsxt3tD0^-77W+QkoF8pQ1U%2p>-B{Sdk6(T}*IK#n>i=hX_P^m2NdyGuqA}Io#dtx-q+m05qx^c3N{Z3?TfvcP zIGG5GSFC;@0CB~NtrY;gV&&lD4_H4nj`BWRq44k_z*&~{;oE{xF z$?1``NluU6d#ugb6W&puI)9UN=x;YkhoF+);`4bT zsr-E22Xm+zU>Fn60ai{11B_poSKTaM6a%O8ix&xWAOT|3rE6Y-jD|!GSF{w-2s4^0 zKY=^R7%l#iG5V*%V)Sd5t;_vBU-;?$2jA&`Tc74TwxuTW`hQv9Wi}xOjrHjo;F3P~ z!PuQ=T{KM@<{$n^hWU2zuXv8j57X?dpHu+<$(7%*tJeC)Gu(OAIy^2*kfiatA>m;x zbR_2AzG|%nKlVbv=;!T!OsvT!5h&)t<9?Daw^DT6_gB~eKfOE43*8vUKmXTS!I${l zUs5gX3omRFh$rra3rUnX%5vxi+$dhjEdI5uDlP(lw66n~+I z2W~+RFZq+``57eF+2K#XU$`m(XM8tqMmyVF-+TmoG@K6&wuSL5!#0SO6C|m(mev55 zR1fkqCvY9{5x%^LEt(%PZ3~!1Q67{mGaU|Z+7T7o1Unpnz19Hchbk?7z_$KjCp=x?b5*mI;E zbClal1MV}$Mq`v=&k%~3omgKU5zKEEvAxPBlcw=!VQcVpQCl73O@6eftu~uM8Zo#} z-$K@`xm)C#HC$lH1cOI1Ta6Nv1OPP-l-@F#w_&y<4_@fCK8W6e<_|fUTHRpFi5!?m z>5i&~1_3y34p}3%}hgJvEH58pNlEHb~$%&!#%q6~ZLpa-%F0@ZUL?`iO^U zUbaw_sY;j{Ms3xT2UEic0l-NJ9@wXt{id0?l^-+Gs<32&iboi=w~~Qtv{e=_=)f5< zwgzT(z`B$g$EuU=80f}LN~+A-6DS5n=PQ)oyr`bHBEQG8@ z1RHh5M+%k@DC)WhScv?DqKk1O9--)d32KR7kDU!Y#ASOQY2O9}NIc-j@e0b>TAD(5 zzj))e%9}_PYNYpMe-eQ(Q^TJL*0j~7!3$e?pD!%^S->{!D`LhFDbyoF4{eiTLJz?{ z&WF@E!Vzz<({Z{{!PYL81Tt6f7O@Z$rP@LOTt@1Mzi=6;v#qd1>CuX|`M!&Xvy$x@ z){JO^XFd)MaB+Q*S`R+R+$-2pk`Eb?95thfWgzRJIml(B+cuf*bcTP$BH%}a>`vR{ zBG6=;YY|wS(gc3JwyG`Gc%Da9vvrBhj7u9mG?7?Ba24$#}zwzcr9QW3tjHY}4H_|@9BWVVU)M6G_HTJ0uUMNqB8vjKcwN@6rm ze)CMo%+$o9QQ2P!1ZwArymz9lOJOpfCY&)wPuwQwI?)mLBJnhPm%N!0u>p<4$~B3CrkMKZLVKZ=UWin0pu9Zd z-=fu7S<;B4Z)nmf;ypM&qmw;whYUAaJ22dk5_U8nf1^>f>zF5fCtuOt)+TPCkc`gM z4n$O}Vc)vl=zG?b$RcvPxc1)t90Wt`_wpaBV}b8R9wuO%eONPmlt6LzJq+S>veoiH z7pZQ%=A)|Dgbyr#k*g!3^BX2x1{>@dLKD+Z-Bp!gN9^P&of_M!wza7}q6aM%eMB$$ z;mem@Y&Q%xjgUnJ=2$F^7$;CvU>eX)v)DY)@tk>BBTE|l)E|01OIZ(eT{~Ltg&qJx z$Qv3y(qQ#ys~5fr(j2UB8RtPBcMjSns&e`IPO*U3PqMkMeP;eA<0Lk;z>gbWq>RPe z2dM2;3Kd_;U)(vfu_eO;+e;et9NJka4f%$s)m^2L-w-uOw>)FAxLtZK!T76vn^w5I ztP7OdCC>xq^tZhZk1XAzQz_Xgd6!I@CfO|)SyR#nhxq8@@XL&CDO4!kbQd2s$Y%FI z*E67(A9UR8QR>1-CA0?W6y3p7#@HJ0MKQ%fO%M$8E{&uluCq%XIXu?XQpaGg5^nx% zqdwt!2|9h%B#HMJVw=p~CVf!u{mm^^**pS8$A23n5Svtr?j^UnWjRC2y`%mv25*CV ziLE54vnzk`6Sj#4+er9ep0nep`bGKBVYX`Ku3hrC!+$0yA}=s@2nO`IqQk%ja)a=6 z;gIfB2Yx@iYLqsZ@{5hT__8)IBPnBjXTk@4{jPj_TMIlha*IfTX2QLE&~ELFXr^1c zcvw42QxA0a=l4A6Ih*)=+=Yn-rG&ihou9FSF-7 z`(%+3QY@a?E%zGG%}aQN&=(M3uVMDu&C?&Tv@nHCqRgNNPa(#TF~c$gSqS*xv9^xv z3omI14RzC&cEL|Q!n<0wo6B~~PdzltYSKOw9e+oKth27vN-W-(8159@F)`dF{=&p? z*Y3jW;lNG)j>?`FZLj)0{F(NE+nc!)Y(?-l#JOd>tvfqM%!7&IDGhLGllwp5`6>(e zSx+QP6z_l?M4}i;8Zc3W222!h?3Rh5?ZvW9Sq*}P-K+d8y2tPx4+qy|^+_wzfL0d` z%&`2ZmHqE-nPL65+qI$le3q@8+2v>6;eA_r+`qySG@&}7O(XYl@4ae!j`b$2MYa<6 zyLZ1H1Op4`A54Ox#uEhU)h|GL8tvD6vJFa0q|4$oTRIPa%{GKhB~UShF|TQWYY4M{ z=eJ&iY<+=l!s3)Mk4NM}y8ShQqjl%~ERHnPPaPMKR?J_a6|FnxXTEqpJpR0LimeUX zN3bw8-Xm$BBygm?htj@6T9G!ix@g10(lI=KuB{&{wnsY;(hlXv=7QXD1dg;r_sDPB zYLW&d3k@!^!XXMVQt`KJmHCrnEmezj0l5ZsfQNfLd_s?{x~BXp5g!g7%kzkzDm0EE zP%;8QynXCrLNJU7J;Yxa5qj+5FMMFDLVnMr2bidN!`{630$Zf-u=kt+Gj{~h5QqIq z4IoU@XWHIolXa7! z7~@}<>9hZi&wasC1x=GHeQhd!q$Y1cXfAlXhilHA{yfDq=U(}f*X+TRu1Ad&@o;0APp#d!o zbkULh%XM_Vt<^n!SX~Oa`7BQq+6@)S^zzEzu2)d0YI2 z#=MQj4A;lz5dL|GI^h-ae|p){)MVyfz*HWJiFK1#Eh%Q$UOwzqOA;$aT6O&}bT6qN zmf9=pha%MJr25@SmKsqy&Z%=Lb1&aF$^X0iPg9mJOP1k8L-?w#V5+5pUmd^r*4EaS>CkDG#K1YghquqORcG&cbDTvv ze&R>TvESRO`{j2#&+>%_Kd~Jl35yzRnrC3bav>kq_w_^$uY^VI`Dnj|OKjcDpZD?( zZ(5qOU%a{!;nWUj*IumX@LNl5MPmsaI$hv9)ujB^%WN%7cFB{VDiLU}tu8aDb6_dB zGRUWL%L!KGS3O_wvck9;^+NckZ(FLGC4S{Q-?r3b(F6rIq7i)Yj~*M*_+RBl)N_Du zyaO9i&0Rf;QRG*Ceznc!!B}rZeb57cm7Azyvn?H26DkR0l_fN~`c|=#5Y1siFWf`v zcE#QJRn`qg&#}PUMUN7C7%aw(Dpizcud`J#2JpOfwwmm5f`PjC^VWU1U)_zlmMTPd z^+NQczw(B2Ev-EG`qN#ZcTu{Rn`aru@~9-9x~py96sbG(^3q+AbLrl5gDulwUwP8= zahA%`Sw2%Tq;Im#Vyiv-Q2VQGBRqvE><_)XWKiT>GF;dUXSnPTp@;S#{gI`fdGc4j z=p#!CJ55^A_9wh;|Ce9eAN$x+huB_u{h?oZ!Y7tQ51#&Puh91?y-$B)`IeQ~rzeS+ zdG<2IkY18yk59Q2QOdarQMk<8)A(r0*T$>GV^Cod;F z?1@e#RG96RgwR89Ch<)noF>sjR1LyC0uHb66->YpUTg@JI=EG*PoX~|=oG+}uf^us=R`C-jInFaScofN^Ru7bk* zF@lO)_Cp$V@t;iwvFqLlSN6$VIb^@~QB3xr0q@_%kOs{2paFAb;GQDRS^VgoU9eA9 z0X_x)8j;=&zPNq;l&z9kZ$Dpj%GM&TKuAHW0G|`F@K~jESmOd_C9Lt<-J;<^_k99; z_KYo-r4x#H(AtRr@SwGW0N_C@=zs^UPwtlot-}ebh$rUI{Uq-jvtJ&x))QFj>Kz`m z4hAf7&^nlO$4V&P;F?aLSl3`ai40e>Dd#&(i_RAIi96>?LoT8Tb zM_MMFSO(HJvAPqc>ORC#KJE$}3Q(TzAnS{Lkb{U&9XMe`@JIi#bz(6GKnZ=xBP&X4 zrEX-DI3NS)|SNIybc$mGCliH_6psu z*h4pr-#+yA?U!->7vAm$#QF6;Vk$ywIEWd`@gmwtPqsdysvYUD12WdX;)zbBRHt4O zl$6i|W4)GAky=9r94o}s-(I^77tzRsb_GKb6hs(~`AP_YVR)hV3&Ze2-rF&_Xg$c0m` z^P~ZTC^TRYy+IlYwgCvBuIw(VEoWN2cbW=uprKnT^KuuK<*K$yPTR>UjSCq*o zEH%x(2l-THug3a&bL&mHJ>iGjEL(aNzueA-+2J>2C_S;q^O1{M2A7vS(nTyUY>EKj z^70GsUCe&V{QRI?UA`okXqr!{u=#$3#nt6Qz!Iy=hork+UA7V^t}cL%s|!WP)nz`x z#MK2qqI?g~#r@zZ;Bw+OU0(xX#qvV+bT2P_RFr)c3p}LV4G5`Vq%EaF%tMFd{op^M z?ZpiiM>^?K!pa1S(#IX*AII9Od!W0Q2QqGoN2x<{?>D%ly(O~}V(ybg)|^0*h4m00 zSjt|-16@nh%?~=BMpEi{8tJ2OI$vDTo+3Z#2ElOg@j;3~B=_&F1e7=gC7?OU%}rr0 zSgw3^ymgS=NPd%u=g;=4oHp%{TnH9;qGy%R@~F2A<`bcz7cK@GNs+rnTn85e>K!T5 z(%Z$7z~l)z47IghSj&tfNuHW>boYk-Su z?(_!?|CMf7rnB3cu&hk~E6gN+%KIPjXUAASytA(ylHvR?m|uqT>6Pr|&G^Io>q>T8 z+!aBUhV!F@4d%odmF<79YKQgw!YF(8wxwo3%HaTh)JUqrQc1J;KEz1k#}dKs^p6xZ zIV|gi@d8st*|}Bib?);D@{E&dCCqAvXWU4u@C=P1P*g4tAy^Ua@AQvhX(x8@1ddP&#HSkgqq9evZ3RQ;nNfO6jX6&^Kh zmEL`OSca~*L()dFO`d(IC<-0k=}ELZOz4GC!iU`A!z4plf7d_I%JBBcd|gdXe>yOv#6~48sOrboA-e6BB?R3vldUA#5!u~GH1*>B6G&x zqyckAXwav`Pmoqj9HCVtjz%lKI77^9an9mL^6ZvJWVERZzc?kMO_4O zhL7)#$ncR*8ZdmoPt0f7)$^Kbj>yO{O(4;Y_rfDGax5ghb>!Gfpt$k_I;KVx9Ye>* zKnEUliTglP=C*4Q=3e+HYK}392^}HuKl~bL& zJg4M@9vGf{NQDs+Sh(~U1s)lk(l(Y%5BI>p48y4Ok?4<6>0|L1Mx~EIrKeKq<%94i z#N~rQ{9J4MTRu^VZ)js5#tMian8B>j02kNXnGYC|T4dS3WP3GX8H{!xmBHu)X~19v z4Ppb!&p%=pSMV?d0Sx!9+o4VDUHyoez3r$BKlw0DGW`71!Cu*nKE^M1u(yiaCiu|! zvy?E#WM^5ew0*4HG41Y{>=e{aYhYG8#{aFImda|7RtyVO_~O1ExlZaaj1A$@0#n8Y zC_U9lOiOC?Kd@tD5m|#ScZ~1oY_H`ZEuH~36>O=NWr)PMKYWA$aDVu)0O0;`8}HD? z{%OGQW9n&<5d>8{En+Z(U$+# zY2z^&kvjFXKgte~KIjVvd)n>BNgm(JZeyoOqx)dqfCC>-fB5Sd9?mmjA>O^Wy>Yab zSB)uf)8{Ivbe6@ID=wpW7hds_~+S4^1+#71Q=6R##*Wbl7D z-}(y_+%D(OE*_ z+mIb!7PGNmG)UTe8w|vV*N1AKJy!&f4F`e|2eNtWp8M%gQ{-lP#}LoW~7^PYzC?Xv_6X^&F0UnLDldz7RdHX7ufK^l=Z^zxuxnea>E$Z6=LK8+y5D!x>{N?>5HXi5(|cNc)JQeVH^MZP@Mz zn=Bn`ugva{Mx+hBT(t4xYX0*;yVUQVV`)Ugxv0G!t4iR4v>E-oyzgfr4M-LmJjj+F zXK&8h5-cII(NdCql)#Z}OCUQ6L~eI3ygVCBT9G!ix@k|ak7E-E0+M|}lFcJTee zWaIZ9X+^To>Lx3$@E&^E{s_w_SV;RDN&5!^N7~;Y?HF#IXs^w7lUAe+tsb=ZUU0N$ z=Li#D&%9W~g{`YN_ATSo}u$$x}QV{|O#hr+!(spR}U0v`;No)%cSqzY9_LZ_ksYZTK;N(NcpRgR=517 z^$(u%u04U-Nh>PQ$>qD=P3BRp9M=DxltQ0cNNGWrhk+04gxtQ-LNQ z*juw7s1R-i)+hzmkXBTnU}meLGym>h-rV;GJm}Y`5<5UJ7Pof}G^h?Ie07NY)Sf^F zAy)2EfgkEX`JoOJfI6)5)ZxdE;BdXfNq=5c?4U7zm>>pTE#m z!mE4IH)wh(p?<~$7@`uCAu2%uLJ7#?fPMQ3?3vUH3?A@uP&-oK~Mg0y9*CGD9UO0G0UASBbHU z?JuzFR1mikSCkT0NUK&N9C8p5n2Mhw?kMhJu~RxQnWazp`jeLy>P{gKq5;beEQsh2n!t+-?5irqysm8a@OE^ot^Ok&Qq#b)0FhXcVO*QzILau zP~#Cfhkx(kDq23YGG&KWrU10^pWarU%f=ERWaR&#H#1JjDLa}p;wn2b#8HFaTw+gR zQ%Mspv8H`c3JMTXn4?a4#P9c)+2^u+LJq|!u+(>p@eOH2F{T!W@4ZeGcT{1U zNE3?jjS_?Q5n_Z9z#wifRX>(rSpl>NP2;+ zEn{;C-?_n_;yw?EZ>`P)Jfu*`$>=4u_^S0TmnopnR z$L7~B6Y%tDcoh95v$O!<kse~An#|YyoL7byB*fN< zT`u}#{b+^w3+qQKU_d;N6B?YrY7bBS$^Nph1Kj?}UI89eEWZVAvg{%9;K1+H04)mN zxCI7&i}%1+*lI5;2ENHwd+C%@(D5zcCs+5hJZ8jy3?P2M_eIY)Jmuk zKc^vj#7h!8Xfwkm@{1u)CCto@PK<3Ow84RHE&jrRZhfY(f&P7$Jmj~4)+0e?#k_*~PLZ|^Bqak|0V~8DynV0RecZl65I^a<67k}YU?=N(ym+rTZ^&RT52kdcym!Uf! zw=pfA{Y7NJQNE}FgnhT$DXFK$#>r*qN1;IOHky+ZHhF3lG|3Qi9Lk zb=V!!sOL04?_rMu0%4qteJfU9G!h_n7iUJ(e_!l;oC)etiB#1zEz-HyS?4-y@4(g{QmG5qCU&;Tuidx2@erw1BQ=Ci=r zW4gEf9oz%PeaP?jvMDow#9gL)3u)CcnvwUozfYQQ+~*1a9rv%*xPR>$cL3nHFC$%X z-1EK1ef_=1y^WOcTkmmK@I_?Y=lUIYg*ZnGqsILm4I$%BOrdSg<4(i4Ulkp2+^>nh zaNMsII__o9*eCjq`;q7EkvQ&V@pGJ=g|$5L9MDn=pcwV|a1GEBxJUiX4*R2xBD}*5 zdtIH&g`KmBeojtx`#Ck$ z0f4*dmZU2Vc{9GoaL}uY51;d$>S9YxrgTRsp;L5~Wm4Zpt7vqXiRb)Hbw!|-7Df$u zbq&!&9#2f+$KX8DZj=#=d(1@98^`}u@fVK&tNhqCkJDIJ61V3v9259t@vDunVshHQ z2PF8K1_2e=JR%fM`#BomN1jeN?G27DkmD2ni-_<)V!(j@?gb#=q1*rfzLgt@;8#^S z{TtwN7dPo72jLwpi?^E;kS27Kl>(q6gG%{#C|}v(@)ZDJBJeBekG`_U+gE<`<11d( z)UHxYc=E}Quc*dt(pOgc^%aG)OberYC0|3Nue8r8%c3<<4-Fr44WdKLd6##@ioei1 zV$T=0Dm-`HKGWAdRxP%dmYcjfK!a~z3(J06mazW^Mu>34c}AeeS?Hov8Sh$u@8_F#hyNzoJX-|l7@>>w1mtk@{sY+ zLl5z(SpnsY^RnAzKRJKTx{nrB+&Lt%Of~cnmHJy@vIMg}_kEot?-Me>V* zjtJwgnL&=K>z1v$!@=cJof^$BB4gt7j8M)nyoV5B>e@e09?GATta z+|_w|OUJmNnR+{K3=nY5D0JQu0zjP?>ShfCs$5WuTa^p^CjhXTq#qW8s$KBjboQ6b zD_xMA&Jq{=jiy2>uF0v<4AT%YnnV+AKKFd@Ez1mxn#CugUO1TD1R)&EZWjuRK#V#3 zR2hnY(J(?TP{V)*PdVhQ$eto%;ebA&0a_wHFAN5BFz|!8^Q6y!hKd0l@?@X>1N7F! zy)p%>2G`p33NW}!d>SaNoTJ5%&x}nAcg$kB1PU`gD^AyU2FZSt2?m}WVg+j+fudKu zD*(zXh8K6V30R~Y!dS%j7k4DH???~yhp&D7AzO0%O8LXPe*Hlq&C=wQKTtu%)5;}@ z#@g^ue^@hmVi_Kh7GH#mauc_dax^Ay3%OE~$L2d4@+TfnDanVOf!#-Tl%s46$xt*! zKCZN*9^Vn=i08kSc0}?!QH~P)PHBg@Eh-#7us{-c?Q8J@_u#yZ-v zB+=1TPx2i8CuG0c1Vj9055G~aP;D?$UivzyChr;VXiR>Y2kqukp7;5yW*>g>8%H{C z72G+L*D3ADDBQAL;oBxKYDS67Sk{}!f|gxWp%7Vyp=HZIraS2Ia+`k`A0O0eAa9q@ zFr1I;T(20$v3wF}<3q9fJU?k@@YF1z<$>1agkK1|xLn-)RZ zeM6k%dA_3(lJ=T$PsuLRNEc!97(zp=2HP|}BT-dn$Y7NlL-8LL4UDz)YZ;{|w%r9*L7bflU8q2ba82Nln`iEfW zGU@9T9nFYIM@svw&=N_LmaXLYj$I*8FS|Z1`~68U(5{4#R*lc848MsPb_vA5)gfH` zg{wpOC0re1^(WfYuX*Il4deO6cM>WEL|uZ*g%bm+uo%%-Pp?cae#*{_yu|0{)U)&Z ze9J-HO7S|KS)3EoH_K0O%3XBdw^Z}zS98=1G#g#w(?`@BDE=M)TD@{SabHwZo_9Ga zl(+2P8Qwulg|n)QDUMKnq_$&9KyOgI!~Q|lSYM(zp8oX&o!!4MFa(J9YEakX^e->b z(d9m_2#s&=cqO1aupNGIPz45mXnVu=$x$x|0KG8OJ&J4TEo#~L}h7keKO34C1 zJ+A0w^f)7!4{zm2;@z4!cCk#->w%4Amki8c_?J4|jyJ#&%Gn$n0&{>JPbraEi47%; z(O!e8y`DjPMS0ju{FV)D08|N69f$cR**{heAy{rMzq5N7iSX9?HbIdl@^WM!NZT*q3MvJYb7Te*^ z!`^!XJgoPYGqt#NbHIbm#Z`Q6OGjn4iU@&L`_0>G%azrZ2&=uw{vjRkQo+%{oL1~M zfr=E|_=m4)?Wp8|4cSf>e~|e1moo1XFY^|Us1(XCT^^^ld_V6u_IU2J)gej_W-CLDiN|o(6(!AjKpdl>$FYT2$fhwds ztMdZ`F>M!fCjc<`&ZAI~rl=1*dqV$``N?)|!Zp1e0}Zp;U%W1Mk;{HXc62QJdKaQ?y}!0if>CM9JOgFPT@38{l}FjV9fUfsUTM*Av=) z&?xOku^!ldqqH2ZS%ulxj;^txeCr^`O=B_NJlFw03P)r^J1(SlTq*4sMwdc9|LI0` z_>OhY;AZB99h@bsMfUl%`@7XF-wgBITIZQ)OpW*;gGpAO0##*UM2=%yFz zW+t<<1d6^2XwudcAKBFPPU?1X?q4bKhKN7FFC}GglsN&;s$sw&wa*Wj{{ns zbFChgN_@0|o0yLY6c?vyY4^1UKzrqk3ogbM5QnJ^) z39KCHf?=cd6(U--EAn`Qiq_|0XN4$#qT#hx$_a0B5`enNIp)>i5gzu!o1B~fmRC2I z3XgP{--GF`4IgFQiF`OZT?D{mbhb@!jAu_0JRBWSnF!0#P{n-5bt94yFvr2Fupz9P z@e)sd83yYW-G}2~jVBg?*ES+wailS7kPfdnD#U4nsLzclk14M>ntL!sjR#$k8h7Cx za$yc8munwsd@ru)MS3N@2zS-jf`D z?wCfjNebfiCp-GHqr?Ol!VYSHi}eGBupaJhelgx|gd=L^>y8+H@ij+xc2)C&uhZa@ zzrR2a@e3xaUx#Hb=pXIk_zBxz!g_7^sW%+*iTaX$WX-++?(Px3g5Z^MV2Ck{bdWJ@ zFL*t?a8ORiuv&sE#;{cQ3lG$}eRk(qzW#?ZCHS`QLn7mVg=bXTNA$q=53rojn8^Qt zQB9jLnl&I~@d3Y{XL9-(tQ7&Hqr&;tD2b>-BJKBEUB-tfD1peJjCI_4p;B26(Jqj(}WAI-U9#TijW>2_+s^r^C3<3 z(jogTLJ@<)bOFGiZ~?|ngzUMOa)z@{2_6Q8aVN?$*d$`a{*W}fgMhj6AD;5Eqas^P zTG2GiscAO(nnpx{C@sHw#_2=Ykp{tcQj{5nMFLQf>5nxbl|Aq|SnP+8w16sC;ROF(mc*** zUKkl+E7|8mkLx`tS8*u|Cq4res^n`qwd1vE)EiQS87yL}e+)@s1ccZ7jZnz|FKu6! z7BHsrMROevPmhPwu~;(STrmpfy$p|ogya|=2aCTjJPwApef;0RhLf_+eyh(9@SC}i zh4kQ$z3*7fULsb+;QFElxCDQYU*~mkD#|k!IM%UQnmQ(l#!O+;Hs%{w<>&6}KXmkE zUwa{$UtN`%WC3ZwUK?B%Hf+a$>d0Y{{LK=`bGzj7| ze=Als^qTftBn@pIq(At~@i2=cSV+3mH7R#Z(txC)0Z7Mi^9$JiH6X1>99mt(@r!0Z zLy|omrh#5V&VT8MlBbyjS1upVUd81jRxcmD1V3Cp9=|4!Gl7`rYB5&ZA|H-369U+i zL`XdU8ROk&2*D8NKe2>}%acHC`IyK=fs9k&Rq+>2fmeBlZyZ(qo@)X#_qk?QzmwtJ z2in5);ETR@g!4P!Iyjq8^uQVMt_HaD$o(I%dxtI2gyoLuTjei5k_Pk_XwZKCGigPC zfmZaFMKGM=%YFR1{yf1#XFRQl-yjW092zw7qSs+KRD=fNLkvwDebJ9GvKL;{zL+K5 zkf2F7&HcI0Kn;dQVoesedv#FXo-kFH;!!COYx37m=I130ay2m`Q zh5IM_z9y~cRnUsQH|M&1tIIFt>+-RjLD$g-m^&2Z#_;I{j@S_C2D^Ca4UTqkQv?fI z{K_UgF?F5S3SN&mK%lw?f1E%uy8|?yuyas?2fnC-HToZz_hI%c2tr=?bJ90Ng^Au$0_V3+U#!Id+L0i8bC$%145z=vFS z%g&qd-<+==L%Y~d6&{l}QFrcmYx3Ki`pS}K~*uh^N zW7r;|Fs_6xV`5@qcCf*zzyN590=Z{eYuJ(Z4|& zx%th@4z9ot9dOi%J1!)o!DE{i8SmxcNz*L?6x-fL|0^XbvVRF_d@^Orkl^ur;c=|Y z{@R}HA>q-3T7eEv#g9)=;`* zBVf5>o7bpgQGTdwP7PxyAAcOqsGigvWjQN{YWnOAxnUC{tFIJ{8xdS1UaO_5kAxQl zgR$juDlh_)>^GIm>1a%soZs~3JdJXG*DvQ*<#Srxi}RxLIgLFy<3_pT4Y^Ua-;f*S zj2rUfT{;+8MkD^|no`2w@!`*(g~&LO_lUo6BJa6T*hGe#Xijc9FP za5kUO02k}r5AJ_9<4!N{5l1opM=eAxL;QM}VR$1^PGCJ3)w9CHS-a*1EFh$0P` zYCwa|L=#9Wrn%56QVru4UvmMDiyM)4BwJ6BZ9y84EHr4ckC0X*3$2*J+`553H&oJ( zS+Z}!Ow+rqg9(mu^5PxAm1*vY8{TQ|^MW6yxv$*hc;gO;dB&)ddLYD&JNa|8u>|TG z9*{$N#!NvJJ%fwC&@=c=|DG|J=l|_^)5j_Dr(bb&HrOI!4)lsIG{D6+_v`!j3d}@% zPjdFkuYb)EWv~sJysW3LgTeVawY9ODr<8NX^6-D*Ldp?>B!<>FFk_grB#$sd%Cqyj zO}y*~hu_0*IO?$*8Z6W612_5fC}&?5ehUob3b3)xt~}!9nBqLbky9~J96#n38TM?W zena|<81WXoLl9ZX8EqE5CEtonpgrNONTVp99}HsT{Tf`JCFw?dVA9p8iH1u#pke-x z^`m*->fnm3HEoS`zEFKeFn$5@&_k1Ri-I6SpX@(s$bh%tp7C8J>qW_UOEy$DdPp`# z!#yS2(JCf^O{T5NOv!h%(6YMl!s4DLwWaw#pxwp0nqYpMOW*;=U}rt{w}ztuepBOV-X@+PWP}EE zk!afRpIjv3wseu|w5K2$aeKyaCp=lD;V6O&KU2fy7(j#ej*hf7)|p$F`CZfoQhdUF zq=tKNpP=EM+|dK_XzRT^K!_kbpx}ByEn!D|T=g?bK^YjGU1)`f+0hAX^iF7{0&J!eD22P71h?T+OhHgYloL1vj^p2-17^it&l(QczOX2^? z6H4BZx+l?|Lidt)&=Z`~SETF;V36(-=<6RuVMQkX=C(OraxCise8t%y) z9f8x z%L4@aA2U@ba9MYWH)&`<5BQNZpa-~m{7f3q1E4{Bz;CowgaXkGLV>yZrp(&>q%GO2 zZU*r8*pRCH_Izg-W*BZq;IMt~%G;00Db36LX@}1W-glNOEZE)x^-eW)@D~n*6pi)I zMea^NzUkVXPOs&xTr>gL$=&I~;vr@EzFN-eaUhUq=JzShTEtxwaXXIpNJYzIjYV9H zV|9t>qQ+v@Ge3HvGLrXE3WqS&4#HQsj`L25U{gxefpEHg2xl>pFNV;V#<;)!T0TR>DD1C{@SneyXNL`oT8#*hfVZ^E=mb!t;V# zNLMWPZREG=JMC;Efol&rOrThW12o>J?2v9A_(F7IP4#0T>%kyKGkfeBO~aM>XSXtV zhmx6P^Q$&;mM~bLsizQfdB_api*s{&G5Et3Wo5|{{Wg|B(McXM`LUKw%XpxB2^A*G za5wKNR6YpR+FL*Mr=DoGfDwA2yV0{TK)S{=!kCe@P zf%PN}UQE=(q}}h%q(ZsO4sqHg)OZk=;8;Q`s1~w~O(e{4+~14Oe2PsaP?T+=$>*CK$qvabj&m@YMWg=-VuTmtmuiKSDEX1bBYqOd zQ{KrL7>{3XVHrv5r5*?chCFh0L^OY~PRR27C+dX2Q|Q|@Em^V=S3>wp?VXXlNm58j zc7U|Q)1>n;Q1E^oAkC*?0&jw7hUzg-AkG)Ro0I0j#cQAx>Q6XO_3_8H;!CO$6R{9c zl&_iEdJGE>&<=+6vrqv*#aF?SBwqJDnB_dosuMh{pW)-OmEp%9_BhM3%A^&8<*-uC zs+#HWz11GL4VOV$#jOvc5w}0$RPWHWfN#Nm@rsstzc|a6&}L9CX;$V1J)ChKyu__L zvp3Yx_rfRDeF+CWg$*bIT&7DJqMJ*+M6+!ewmhDVGJ3pPQ&;mId5I$>zL*z!1Y;B=reC_@Q|0=Zr}RhCf>&M z&n@NQke*>=lvK5ITo-4AhY)y+#uxAKGjNNBfVqCn@fRYbn7MwqEc(PtRUPk7-Me@D zjYU0W6opA6L6|~5TWiLH7cOa)$UpDy{Fj9XYKPX2S~O5PYEjav9W^0PI%*}-ir16M z2kK?rtP|+pQ^`uCULyr=YkI)6pxn?^n?iIEuG*Y1!uz34!pP{r=M8}*g9Zk?9;#=A z2cKx^tH4zFsxg=sCqSqN7pv%$rJM-GK-$V(IDs8fI?I4Ym|xJ#xa>2Zyypu9R@2nXly|XsqgMqX<;ZrZje;_5Zz=MzSPGE|W zG%H9(()Qjw+7KSy{qXQ|PZtmAo?fa*_cWg3!=80k;$ud*z0(**xV+$piuIofsIxzO zGwa@anPr3T>7E{Zq_%C+^5gB*P{@>Owy>KakVLL&^(fm+m|!-$K>%FYES?6} z&KNS79U*w==6D)>Ktq*2_+0}5!!s6{t#}fvycaA7tB!v->e3JXuU~W`vZZ|i8%P5WetZQZWtaFG9yQCE3PWB;_$Aj2< zAz%$WZmTc;!sE93A$)QD7W5YwT~FJLe8u^x?{QoIi4aX$d(mH=M&WT=8x3%=ebD2! zd^m1{lFj3qvOH<)7a}TIt<7E`eEzwnF}(I`&H?O2f`x}DWBBFQV0Se|!$r-|7{f13 z1MqAOmLUcD70TBM5)Jq(QuSPq5rPIQi?@I zh#UM#Tkqlqidb+__edi#7w>2dr@Sj_Fy*a0Aepw_!vjo^+FeCAl!04O0>Tm#c*QVi6|hSU|s8R3~u(L7}i8+MNWSUkl3W<4r7~9~1yuLI+k@Lib^X zCG>JY2(PD=4rbjw$RzvU_FWKXx{Fj{C0h(jdiCD!a;^n01QL`V94q@MHLd4 z(Ck&U_7PzVN9@CzgliqoK3G&1&x5{kRyEj6jlqRD0dD{kES|$3?xX-6_7e&aj`2pQ zteaCzFL6}eeCplAQDyUOUgQHdgCtlshdE++BHK(cEVkh!>Eec`2s#(M9tL1d5`Sf**4dMRSTSM2pjGRMDKW!J@g1 z(9%Wobmm<&Z=msrfA|#5HA7W22ZlaH^FEpuDVk5(q>ASJ^G$NPK&gY5-Rw-4Me{+M zVdSID7$8U*x_c{FFV{! z6LxenO~7(9O#pN=O~7(HoUs#*!Uqv4#oP@eXmm48z@nhplRbCuj<}De9dRH14SKoV zTm&8{s^zP8J5RB>gqqt)joCBzz(LDw(&lzi$YF-P%-g_=z~vxuM+i zmN$>Ao#N|7EJUUbCTGIGGK#{IK(KPr?q}ldz-iNx;%Q z34ppM0h3dmwnR#FPl86>lYpgr_PTdRbWhq5-Scg*x+s=|dx|oT`6aliD0s|)Xd((8 z??BKKC7w430}Q{@1i%%3FXuK(<5=SPnBeIW&j%W+)W8xC0m~B4@^D$=S*h`5iDxMt ztqtM6ff!3X+5s!eIXbo_2{U23$k~C#m;i*+j zR(PrvBNd+J1PgD+Ig5!~Y3h1hXWfcBTPIKX6Y_+98Z39V&`H;MM$y*)w6`BF$xfyn zVMl8YM_JMs*9|C!!v9c%<$ioPkG$lp&%UAXyKL(fnGF=3vfZN_DBI&2OxRY&dvWYC zZM@gE9`w`OdSzQyTzd#^)4{gm--NJVnl#|PUUjHO;I0mOU!O)>#l9ZMiG984@&YXI zWDzX%f>y<)7xXq-R|wUO!VD&~;f2O*4VPX34cZIF($@dt1?Ff)H;?ud;{gqLQSv?A zfP%O>e4*h|5NOaBC703G!o9)GejCN7><{V&5B6s?oU&IJC9?xE|Ilt>!THK2!fjda>7Ttf`3a*Z{= zx9CvPPi)GrT8x%^9;GD2Apf^=PnQT%?(xq>mV1g9^C8etGAp_e|A&R1@syJ;^n6IbSm^nZ0C2nVua-eod*UN8+lncxX}A{k z>;=4i$;`O?lTn#vp!lQ_WVNR|Fu`gM{Nb*#XrYD?DC*EXQkHxux|d9<32rJ|BoH%J^_}*)%4`%J^_Gl<}z_Z7U3?igiq~PPBi<=Mo#wHW8d9 ze#a#3epwkG6c~{4X>apl8K3+P4s}ctW_F;3LT)JG%MK1Jopp1_#(8~BA zbCvPoQvAlrLT!z`^kjUJW?IK2nTA+LRnlh?YdGyXCP)D7I@(~6Dw95swR3zRu4j1O z{j`2vv`YG1$7;PhYJFX_O8VT%YH3Tomd3(L`rI3>_8MFdl=QLnU?pQv8YO+WG)nqB z7p;;$yOc8Lc6H70%Js$A)NE9aI|as+lytt7c%et7ZVc zt7c%9^vPh2l+!nyq48Zc11oBZ2XZe=O+3r81eZwGx+z9k z>lP-AtaSqurac-svXla{N0!TKu44zuOka*sX8Ni>_r09^fk5tlR_fs%V_B(RH!Lgt z-m=mk{H1-%rTrQx&Cg1iG_q1Ajaw-LD=TFHZlw&&azBk@?Wsgo%Fwu#GBC5!wil)* zE9KN=rDdoJnE*m7r3BDiv{sn_nt%(7Oox=?0w@zeBbfkNiib&nXDPN5KrmuctycL;tW^6G$;kaiWv;k?r^SY0~h$M#E%cn`f9 zldXR_xw>*#mZ521!b!K|$ffdHq4GHuj(V3|vS4k6N&mI0_(F>NR2JLiRT_Bp3|=$i zVwFp&V#(Z!9eC%>g0<}w^4qc-$5GVYMG1y1=1;?7ku08`j>Yq`*m6A<56EKE4OrYKi})L{NR-73vUo`rsW)TMP8Pr4 zg2g#moLYj#8CmSS6^m+FEG%7ylw_}kei{Ex&@rNvK z+KI(7S!{g@i-%ELe!wDE7H`SokSs?1hy{IZ{zv(XzDRz} zG5kdzr>=h-f6)hvLH@!o*Ct$2(dH-oNna^FE`QPIAE*3`zh=N&g^nf*pF4rS>HAsT zuOI^}^CI{nf}<}zX%Ho+`V#c(xwPvCqVvz8c^t39wOU_Bw1p}j^F(=2^07?l zvoP*b6#D3+s+HFUCAh{W&{u4O6@wiKdcotYnGlq0EoF^Q?Ime-v#bMEZ%c!9``&j)FN;x|tu`LkM86_-@Ns20nnzw%ZQfRfv2tlpvJ#7I^RqGaA>+ZQhLCZYBf80P zT#N#&N&g?dqjc?@Rw3vv;q5LDr$Et+wrQ~H!D$`D6<+Q$pz=?L1Iqd(gcVlWQ29&7 zH_J!V{{EV(lBRL+ywh7sNuweoPpBH^I>%MBHw-8@3$4bmgL+V_JtX z;OaI;p>{hwKN+)m0mz%T_G~4#1!Aw5;&>zw`|=9MW#Yv^?3AgF2LiEg8&tnc91O&M ze44`^&?fgc+_DErhA2me%LwG8|iDqkSYDyeznUFWW1#6sa2gS}&@!lRl$q%tHaPKU~ zy?SaqtUf(xqLvDkS38o{Z2l~5&7x20LD}ipFj;q~&>W<-fXbB)7apc7zt)intNOQU z9v55yoS*G*=)>ZnytliZ7$F6cGnfIZQ3cwil7ad*eIjd3fId|xg4*$I7jMUjuxFJc z1~$!i#I2j$Ft*y5>v&n$7g%~&P>p&RplMs7>Kgon%KfYlRqr~+Yg?2Oajr;5y9G&5XHyv+@4;T@xJSSgm9R^>l39Zcq3_+TQi>Z{ULp+p};TCQ! zDqxt)1xXJ4=G=^hj&DN##`dpzFD(|PEOMlX^Q=9jPP~Oo+Ej3LHfRD{wz|7$dtlyT z$Bw@hE}$P{N-OGur~F~adt=Wj}#r=&W+6`f_ZWz4kd{r-Y6QuJU@x$Nnk zo4}(l8hw4xk$nLi+|n`Zzv+RV-UOoF#C`NBKc#Oxo*V|xJQ)%NP>Zq^&RtaeNjzp)16&~$)Vw}kgDJZVEctN8K-|Iq>%3!87p$3MTo z^S9%zA}avX@-u)$XS+jt#|IHzp*O7qtN)B`4lC9;MvK^{_Jk$Zc9PdBU&yE{at;G{pY#gQx-$}=GA z{*G-S9E{FKByw#DV>82}#bAbFvp%`bVfrzIlN;h&h=~l{ha;UTxWd2I?nFz7yfZ6K zT+c9=xb<~gL&kbXn!n6N_oK{pjK){y{~YR)?YQ9DSI?o3HG#^LMtZb~Vqh#Ar}=|W;OZqP&Fa9s=efvg7mpUIHcYx1+Opmr+ru^O($1FccBPzc0vHY`)P7UDQEv0Rf z&D3pX_lzoc{MyuO__3_gHkaUr{~I&>c8rcowCz5NVc49x-CO*W-49~uoFR2#xPPVH z1}cafH#)c+m}tpEsj} zd)mja`Wf8w?D(eLQ1OR9=Avtp(=}hjS@$&PBcht48m(E6EKBu>=04mSR5@-I?R}9j zLH&K7bliK;@uD8Sm8E*?=8*DJULRqwik#<+sj@;IAo4Wy?k60R#aM=9cWI=>dzx=; zsg4!IdmgJG-dMqTH+tGpA=WS?oA*kK_ZHvUQXMPk^wVP-N4mszR!ah~))r7HUT5_- z?^i6|ANbam>R3U%lhcY@iEmgf@y1%4cN~O2@3=wy&5^>%Ug5R)V1u3Q}t03N3 z!Fk{Pf@6W`!jNpR3UIFFYQREDBkz6rgp2lmEk0B9`@SKa@UIOky}T z|M3?8xxTffI#y8IZ(tR~db|(o7aks2Ebd`AHtRbR;FPN*E6lgDR7W^*euh;L=R18k zH{CX}R2*VBHs}3Tqrdd6E!DAtloI)8gLdL4R!jW%`|uwyHKI(^P4pSE_UigmJy9t= z*0;7)#|oQ&Dyt>_I;89{GGTMaOA~Nb%j0-8Egz@4I7h?GeU6rm_T!qcye@5x$FHrZ zhVlcUv4Sl+m@9Ln>Q6MIRXtK-t5v;N3f~XeZ#ps)_em(<20UdiG;wh18`Ik44rL8S zZ{z^lAhVDLyaL!Y1MiM4SMC!WrtvKG8lfM~p)v1RZ$20+qVa^psD!l!e(F%4vP$v=- z6*J#;^blJa2Kt@x`liGhHhqtw5#R+{dT}DadyZbwb{nkYGXP(`=U5debJP2dMD100 z;eAK4c+Fqj%QcBRWQ%+I14n8war%dj{yyUTbYr!P>qZU~y!oNyFYyy=396G#D?MACcP+iZBVJ zm}g&g`4^bA6J-o-bv))WMklGGBBNOa8QG5MT1WkgBv^f~(N0{+YSF;D!Qq4TGxga? zHCWlAB>6zSyM{|qXIEORZDiJ=G86_mPYp;A0a7FPX${tC4Uz2Nww&&cQ)Zz)0u?RKa|}g0d1g?@>K}h}e5#AY z7PdW;88vO8%%~}=u+1p5g)*bAtkyQ8&Mj&%qkb*88O7K`X&s?h~#xCUF%evryRFwVhUp;wYctAM<-FqfN})tNG$m4)U@mX zd|0@#es6JuA3+Ebz~Rz5`9An$9)}y4sp1ZXkLFQG_?2xZ7Sw?MpdUV79ykAY#}mHT zz8TxKF8~3gMINs3Vcxcm9n0e>OLeVPO?k$;laWL815tL&qZ zyF?a)(t3{QWS|V)vxsC54Cy3Xj6hmx2qHqxLt#w?qX5!ec5c0TuQJL=2>Lfzd{cTWHj&bm8DKkUa&W0MIT!#NE+-eCK}oH1$!aJnv`* z74?kU;S*s*`0$W+kYukL)+sLEUddaIVR^VQO@A{Pj$|6m;l=(FUE-jh(2)H&HjBI0 zZzk}EcMi~^(9l>ezG6Tc`~7GtMT7gotfE$Rqh**vkzRYH@HcR%q~ZN98E>M-t8vye zGN$PNSmK*T8V(VXVhfS{LN3AUElE87@D(3r+$tI~Ac?;uC75{Ys;a;I#IKGvChD0f zs`puriK9gpZRc|vwg|8M z4tzXvcM3Tl9Vbos>*0LTWU9WPP@3FKD9({n-5QpJF-hcn5S8W^LnY_q(_r%5+rAlD z=>w&1?77JhuxfhGMA+8c7^vZ1usJ?{I>5wGhsp+qX6SFK4#fs6pC988X1Y64?B62M zaI$&P$h67WQjJ|b+p6Vq88jydi0r`hDQBIZW>+T=b zUlXw$AB|f_e9|Su_gN_0FaoJjywjkntz7hr^jh0@!Vu$Qa5t zY2)FCbfZhecpL8NwyUF&Ev~lVAiGV7o`uf^DQSiah8?NbP%s9VoyRb5JkHkgz{3q3D3Jo)iD}0&A2YU80+g<5pT&h~+ zMyJX}?s09GRL5Acmx&-Hya;!8F|s0FwBa5loa}IUhepQ2Vd3U3eILla5Q%=KA-Hl=5G=r0Sw}&vSB{OxoE+a0a+}SA6 zhbX6qF+n8wq3Wko)%K3F_iK3%)$&t*E&rmYaZK;qQZ3Nm^)d#D9DnBhTf(y5#yg@v ztMFsqQ!($|l8;McNa<_r(9136*wcJ5k@2wXbZtKa#CQhx|b3fiE`Wrv#H(R{_ z7+@5OWsHa9tuJW_>$@1;BbL||YW!2-Cld#0gAG^XzXVq07?TCVS0U1-yC#RifE_)D zhg7w!1AiGk@y-)QYcG-8v5~mu2QHB>Af0E4T;VpdS*+Px^=}CtcEoju%l1=*g?OW% zB0h5%Kj=p+MSNwTlD}hZBSm~|DdKCp!bcHjZMagz*D%*5m80;j6%7q;twa*ffFUz$h#R4Sp!NTcg1PQT`>TPrI`HK zU}K{$su+vP8;sWQ?4`yC@hpSVT&{v?LygOQu*qeh6KD)m6U;>MCLgn$t+<(0d*=vl-^wfTp+NA1TdP{z0rL5g9oSkqR5f`TR9=p2C6`PF z%mB)OTU7six#7^nBdigm>v5CNjqYSn()A;dIN7+{2V3fz1!ium0X8KH!jFB#R99CR z_>rHq#LP(fbDbvMwsF*yOq*p4h22*f@~8}ndmB1TH#!C)-ZMq>&K=>a>FgOJO-v18 zO;1SPsfAfVe5dMJvyEa+^yA`WYPeS$WjeiB1)7daFKGi?o*k4ThOi2+(db2OYS>YY zY2#T~x6C#8hH8{*G|HoOmC5s2SLZNsw5}qeT2~o`8pM-V8m(Z%b>2ageWBHqV@hKb zet>v5a+Ps_LuuQSg?-|at?!-b3v{uQHHaqLOAqy~noHllujcvy6QXo}!anvi9;r*{&1 zTVK2MK|`g+!?q{Fp7((gabzWa>R{&J2BjkQf*kq}X%HXCq3n8$2ishbIIXn77$0Kv zhS!On7o=N$X@f)`I_b97{ZPNZ7{q9$+wsAoF0UNgpp6eyg(5fMDTT3ZVdhz*k0@hI zXx!y~T^o%b{j%2Bz<{)(tsRHqp1lbytE}It1$(G5#$yBCA;Ga<{6Kn%Pg}_S(vycp ztPR0B(i9f`F*G`mSf+Vl+e(^H0d(}>fY}O7nMeJm%#K@)6`H7K@@dLE(UumOh$rj{ zkM+J`gDBqB5tpo&;VSF(1H{7@w;2V3L+SYmqT;;0jgGNL7_X=F9IWbvp_UFCp z!1XIJ;5mIk4sBQAUY&99EMxbsLi?@P&O27rEgw)y~^adI9>BKQ^`VXTNr?`?7vyb<_sq@j4=`y=^!0 zp^RR)J(MgfOyF?a*(9}B&L){r*z zP%N?;RIU;shz199NA-(f_-I%q_peNbbFF7|5Q7;7J!z5@i`&e|@{vGxGl8SZa0uJ7 z`vIee4<^o(LUCmf%ts!?P?EJmrOBw(OBlLrwPgI=L&m^hjXrsKj|_1aBk+vGk%x`h zKK!Z8+c+k+nG~{lQjg(2sD9C_rE1-#MU~N~>VA0CxB+wL)3@Ps%h!FX>B01?+i-a~ zV8d0G;B_c?3>P$p&-#9ZVN>5z9huY@+&hN<6&U$37MS3{5OlVy3x zDd1!oqf#f!GO_D;NuA}`8yruIGd5W5 z9_X!~^9(B8ly(LldC}G300VX#7xU5&*++`_jftZJJxOWa#;W&8rGE%-E}`Vd z&_d|Kq7$#D*Ms!E#uK6!qoCNTdz#w7b!Qc}hbTx>9-@fVdOd`e2V3@AVQJt4dd zpV3`Eg;pWY_ryyMr07t!G@w9rz9&Gk=X?(|*k?pRXRTq3nByn^j>G-Cz) zR7Va5RSaVe8hx>k zcO6uHq}`p}MeCZmU1`)sc<~)21bgTCz4uL{-1FPhoeAO}rcUbEE(Y*+%%YQhf`0EA z1HCW4dNty~#AMlmqzz^Kv z)ZQwgo~d186u+YHMFq(4^ks%`>veZcdfl(|D(8)iPqpVE<0E{IR?WCz?;Jqk>619J zGCbXiV<_+E!8THO`lmlOwebvZqr9Z2y6_XDxh5KQWCnw=sSq3>Qv!594~KfEh~BcJ zT8LUR8oQe*9cwV3&K=2oJgZQGZ9mo-NiHqC9UkK401D3xCXu!x9D@eDQ};;?;qgy! z4xhZNM?)VD6lxB;AcxLblRCgZUmEG0m`tXAN2U5Rw(2Q1;;w*Vql|>UqOt8CJkf~^ z67cn{qPSaSBPcdnCVx?Ew5(%|vC%VM84m@EjUN2kI4JI89l}AdUQ*m_Lp{=$ufO=% z2=DfI>gQxQ+va(52lCvrZZXkrG+OT&tw;r(pj{qbPBwgz}JUgRM^$a#iDNy|`ek zV=boa2EEd|kwGcuS_j3y8f$&9DdyUJDD+}tF5B+v!k51pb;TN6a5bKToQ8=i8=|&L z7%NN=yBSn^2z1}hGk6G!W7EQhCwAJw&!>$J(Aw3pDZW8J<19YCdY_Tg3P&e)4t1gx zE-?G|WhX29x2h9(vwyJ_PfIR5+^X)R_H4WrsHVb%08G|TpeR%8jJ&L^5IF@}=Kqlr z$Q9usBF08w>JZ?v;&SwSaQTF2~);g5IqhSX3~#yI0bO;cM1RsY~J zXg4YXJ`Xk1<#QGp)tnDC>6wf47Bc(n0pLn)9ep0j*-=4XC*UW^RZeUA)C)CY!|hrvvN^)uv%{?wbigC z4kvQ($7Gv2t0+hHKF037brv24Q{=)0OMUpXgnSXD1>B;bTcUJ_jm!_g!Er%~xkG2e?LxfqRi4Ke_g}`kx zl!3Hi6?O>RKSPDU*{s%UAbQ`78e*718DtzGxQ0T>n_4So9?eysQ7i?)OsoomlYtH! zlre$yPz({(Lor6-Jwn`Czam54$JsKBkzqT>>$6o81NVB1peowzN-gX>Km>0g88DYe z2J8pG?`OuCae_lB2;0b-LdMH6%45w^9}=?L6B~xtgCAnefnvwM5!2v5*x206IZ)`; z5_>D7bv5RlAST{?PQ1@~$u;4SHROj_1rB){9BkDvQU3vlTwbGkjMdsh{(VhDep(H= zj%&JhsIVnp&Xd%TqgWbpCe~-jMW$`=G~|e=hMZBTOon}KEs+sPEz8c)uyGn1Ha|c- z3~iVlBRG`io_$=T2V+fZ0LP^4660Mq~H3J$AIy!cPpunQEtn z$3iir>IvDM$Kf~BT9^~WwZ81Ft=2UX>hW*1)q+g5)mqQ+X)u#pPw4_VZOuM`2Zgp~ zstpK^B<-_SOT0vgj0jB=w=q8CSLJ3)yH#Rj0)6!OnoQbo;YTI0p&4*;Y-qYT=ubu7 zct39~+jM=)uw@!r9N_@(ri(*ukM>8V@@VH6jn{fH*A=|Wpi#>q9RJ}f~ zdW*Zj&_X1ne0S9Mohl^rNm$IWu1u|vkfn3Hccsd@3c7PfilDnvSHj88W^L|D_1xf- zP*C&bV{}~Wn7m|!ZZJ6@FJ7Qq9iEVH?$YbOnR2sA>Ds$x{J$BFWSEQV%Z}qouP4wO z=}uTNs!6Btjk4{ei#xl(p`Y+BBf2&3ZU#mKIa8OH*M7T6x8@aX%WnXizdq3b9`9lb zJtqsE?_%!Lw!_U`%{JjxOd@F09Vzg}m?mAqpW)!D9(bs`3NG(vmIlG!e0oTi@O}RH zA;=g;jcbC3=jV`UPn!;Alj(d2Ai_XCI9!krq&#S z7?|3_>>1(16;6%sHUu)RXi^WtdYTD!e!{jv%FSB5AKIHQjhU@IQN6b(hVyM2cEt`v z$|718v9gGhMH5*xlSM*TwCk70xMS?jMyO6{U1dm=0EfFxPix}S7Hege6p*>0D<)1S zG%@1uwACkn(c+CLYSwJ)V$B)}k+UWN--)+whK$Fv;Y+gc9CKu0Fo}26TH>0;TiV0+JIr42NUr&G z_;S`A*!!TXAaR+5@LfNb59OcYGGz;p!(Q#(fa7R?%Nab)sLBGOHF$j4mr(9`paG6$W87<*gY`80dLiB z9tOSL=1@52G9TA|fJfYB_wZx9^Q)H?U8a9ecGf%QxqufQQD5?=!M6vQ%W5&ztzn~P z!rysjlJ+$u9ZIhR=wJ9*K3{Q|)9{ZLfAM?Eb z$T#igrK9`QKIsaTe+|k({TwVb^YlGkVejxEPJLHbNO>wwG&TG z3Wbiv=7tC#EOnt;REhaw_ypdbLthn*FDzpai{J8X|H(i%g@vQcx-c?pWDGPLVh#$Q z!$d(;X5RR?Ai^tVcT;J~&{FgE@THt2=P5@!bz{d(-PCvT7I#zM$s2j8IU{^aaNG^u zD9aeWomZ#KDH)<;jl7v8`~_ZvLMpTkP&v%Z*A~nF)Q8n;YAWRdXS9otfwHbn0h@=L z%^S@{es)&yIlAN{oOc!W?sKH*qq@mwv3POl<&|M@d_WQU+8i^s+2oSRSrxCz`^qFA zl`uRef6ax3Bh0LX+447EI>tzVvN1R`!h9h7lnv+#S_e1YvN+PL#ibvf^+8St8qDzU zpE+x}OjU0iWoBvNmvr~G0qs?;aOb_vw65w1Acg5;%$*Sp8700!SAJtMv3yfV~&=Y ze@66YLaoL$y3Bks++=Xo7|dLS!sb?Cp}MO(EZ$WdqxFZq*O~p+9R53$iL0kvcc8dU z-`E|BdO2G{!DO>h_-2m1IJ01aeouGG&O`^S zzmLG7S!Q?b7!*%2vtn!;u%0iWe7R2#BEPt6!v^r<6f;qK3F=pvso}2#2;EbY(6>E8 zlct)jg9@c>JL@!5O*QcW+od6~!VkL3w{54E8U^|dC|IUG7NPd!g$_NZo5!^9^Spti z-E)?9&+!`4?jGy?nvj?*wAGfWso{;Y*n}aSMrEmtSAb4iWT{Q_v2LJVud&q{uZ#o* zQ~HAowr<{#8L#l}To^?UC%?wM^*M-|Z6<_sDxl`tZ_c~3=*{`?JkEh!u(PJ-UYbRB z!-U|PrQV&dp}F+=q_#puxH3n(1up zZOzcwvp(8mAHkp)b>n+MEg}fRGBbnW zQ=av)K>Vp!qa)<}X@N?zb!2@|&9`YgU}|i2_BG}}J$%2-6TN3Dwq70BHQ(&k z_zhO)SrX1e=(Xkz5k6I_OVq@}HVJh}Fhr%P2@A|o;SAapa8mSz1CK>Cf|F_Wq8qkeWpo0ZFDu6|a{Ep3tf6Vp&GJpZ`>=Mg?&*QP00WW&%f zdx$pP+}^4fDbM%TUsB;Sz&g89o@ACfuWR$}X0^iW3trgWzx0O411M7cJLId=2lrFk_V!g%Y(G}$6!C>ZJdi|*CwY6e1&(%x~ zlaFv(yL}+CIqN21nqcJ;GXX=^ZA;9Q@K*zxu=n4ZaKPJyy-Uqj3HDS7YyxPvn&W*H zA~O%`mMqK)|CURYiHAUS%I`1vQp@!nKQBsyIY$kqGPMl2tvaqlcz91gdlL;LMA@4h z&@)fLcrNMzEw&V!<(+DN=F&s}oKl8OwxF{|Pj>|S9u(-V8b zp|Fx9k!Z6~W8ZwGIXav{Y2Fp+&3dXM5Dj{&Wat!{BAdW?b-ie4I z0-k_q8CuZ`1;Un4y=|QQrP6W}-##N)_yrMubc|nWe}? zrs?#hsD;kBt?vBn?28C!b6WcBk7Q+7luxAYnjTYb%XbBr$b+C76KcbjG64F*636zY3>Qt082nF{#o zQYidzk2yqq8k|ObJ~0GEz~ZaI@GnUa+0qpT=hmB1aCC#&Q~dP*N4jmJ*;kzR!`1dy z=Wa6lYZ0syC=0!LDs10uCX1+E_Fz^mcNXG_mG)ck*%`x!Q#+i6iF+hxzT@JWXUUqh zUg`r69T{V?61li*?O{tbdN{g-F=JzREzB3JA!-=z(*VlXaEQkSpSvhyxP`s~ar8cO zd5Au^7kv#w{*TF;%c`>q#Y_#?ewFIM?BQKh{ z@@>*XrW;U$G1a$LnYyNZ1GnwOwdFh3I8x(ROpPad(I+25?mz{Utt`X6%M)f{Ew!k9 z0bf38ri(9_K+>V!+fRp|Djj}g>F{7qQGGc1l(|C0Nla@UtZL(QL)piZ`v_IMp^wR-QC;P(2iR!i-+CM znR&I;klv#=y!E`^7g**1=tS%xrNdlTK<{%hhx*Q`3?2_z8=!N6chc`2C4ykob~Wn@?Df zjjw{UFPZJdDkhus^`yVPZc{zE)za5LFPnIeGozwuiLPKcoY?Q3mip_xtygRq=0(rT zSG`T)N-Y~(U%;`~aHZb(nz>QOJwyN3aqAb-$F_LV>Upl!h(2U|`W-k;yA-7WI_aix z;>?fr*UbAN3_873`+0E=rtd>Xc+R)uh0!f!d-!^HR`uqzrP$vdat?v_-!%J+uB_#x z-R!r_LeYmo$&q*M1FLmci$L@TA8|TFK@fCGIWX?ZxhBK7E?Sdy_FU|c>luAit{t_c#=IIA>%!A z4W>cfj5|g=h>zcliHJr^kYC-AW1O?WGsfS%YbMlkktebYm^$>_ZTgW?WPaR!QwLprLld_8ruN$&vn;O@pBM#8e4`QFt(TU zwdVtkEh5vUP7y(<V zLNl#Mx~oK(^;txkd>Kc^AoTf}AhA)!pkC^c$upms4@LMOsHY_ler|3T6IheWzc42h zme~Lq6H=uA$VEk2m6$_uHiu1Lnj^&=n>(QSbpZLvnYbV_D`xjq&q$K59$ObSA2#QR zrHmHG+yEtbuL%o9a^*xv?R`ncT99Fxio^|;-t23XD($8K~3Xr@t7hG znd-;G-ce0tJmjJfNdEiJW||L_hPv*m+#AUP``e~9{^q^0P`2yj8` z273y^GPGV$(!i;vbVq4@3X*gc=Ruo&zp!|1dVH{g@J?=}o5_%)*q~uIz^G?ZMlmtB0 zU%e5vL1I%95IrTn+tGNUHV771na!b~J&t69Q0Jw=eCYk5&WA+U0Hn3nMe?C_ZGfi{ z%OAWbA37Sw?KGp6BVAL^St^>^B9tRdzP)ds#x~F+x1z}a?Codq?=iJZIoay9oa9xu0Lw|Pv?0n#E|&mW z8L;d0I?UgVoG*w+7#=wpTACji09Dz=3EWa}#uw=?4p2UF52GR`Ua?97Jhm^rBAkDG z_)+~pwsMMx7{1pj>id~yLq5&Mx7c2u-c`rtf}G+T*~%%t!Dwx#_$$^*r+Avx(r}$( zO!f2jaM2w+lBe{G!Fk5#D4tDoY|9~@jdPd@w9N6EfaDp1yp;FiOl|M=Dr+Elub0-f zb>`|-*^`N<4ZUBtuom_b*5bYQfJC@YVupqt-bS}V7@B8gR@G^W1S^m zb)^mP2wr~QMfs{xa5&9*jaX_kRvzl4*{)Ax8|aZ%u_Q-%s6W%4bHyebL3yZId#9yq zIm$r+ju<*9QSFaJAEURYvt$AblGC`n2m#Ixnc>N?BZMrBn7FHR@o1kMKXR6rZFKh!7_NXn) z(bw53s2p+;T#j@R>&{Jx31ggTk^iZ$bClqia-G)7q`X{x464U=c%Ly^Qek8tAv8;a zAMr}*?@s0_fA)W}jXy#J`I#inp4{D@l$n8@A#dk{>e&M} z8;FBpIqMwVRTQ8Ha(0~5>+Il7Hw6np$;i!dGE(3BzUrHAID2ZMgf+poz=DCw0tjCTvS>T6UKOxHBg-9gNh1-pBFeg zh?NW%n_nn68WEd=oWp#e-grxF`8VS7qxb~#n!%SxMlhD1d5UgHTm6+(0{~cl1Weaj|Ygapx)rY38bs<2xpULXNK`z_XChAt=oOnO#cS zggI)WV8@x&yTK~D5oQ>O4gY%A2ty6)9l#l$)(Om zL-i33^%Ba-gR}9*iLo&$30~61YI1T?*@qrqycj5@ZGfSZoH+@1Nhl95ZeqQl@PZy}x>*CgYqTg~P`NtkZbLoYU_SvEw4AJZj(Rt+=-3O}l+I$spa7#>Yw+N9rNsKx&lUMm;>O@>q z`Z!bB!Z==wwxC@Fhvqxmi)$F1Oku9cOyLI8#}s00Q?SlHBYTPiID6X`IMlWU4z+Dz z3u_430!Jg_HP<<(L@=nYFK6WB%NZh6Ep+AtqinGVqkvccjgkbvxX3w8aDHS~qft?o zSy9sAIy5ioc&8i6@m3fr0yxX~Qv`5Y0z7k>B7hjD+QBz=+BQjp5#?lq(ZcB+3xk; z7?dKc$nBw#fulk}jGQcoAu95e+ng0XqHPE9JR=S+d)W$SxeqZJ&qy5cwu5pt zr+0)XNb~Uo6r_FYE5HFVNNddTJVQ7IK3wIzO8m+QWOydua!Rrl+f*%9J`7ZN_VH@x zv!S}?V&U1IwT+S!ZCdNn7Ea6JGv-%4VUmnnC_ZcE!d6mz)?EIg_^i3B#`tXNdgr2G z@mZI$-!EHrQBE zw-1ho{9nU{i)Z~&rEKjf$h_Z~C0_HdoYl3BY(3q_w&S<3cH(`142tERLP;`HgdL=& z=iTSLS^VseN|Jt5lK%3qq!#~(Uw*?kJw=$?9%j-aNx@o=6uS1UhQXkS(QsK2BSTUV zW134n!9ffwV(clU;rHeiKICklkSoDFWbDXVN+Ba2*;+07vlh~dK&Q1#29+y<-rucG zYXzXwX|3Tw(CI`EL-#m3?`f?HMkJRkDMNnvCn5+D9q73>2*DAz(afh06vuwLJ)<^p ztY^|Rh*s-MA6sBgI(A*{e%u+ai92k#Jf)rrw{6Fb#RdkII@9iev>ndpeXy~0g^6n= zB8`l7dxVc1It21O<3&#H83`aKhqIJI=lga#UlSiNJe28xMa#wt&8?!PcX*|YoPTsf z)k{WuZj|KCj=GtH{@tw{bWgW>yk)o6ddl(+BFMB8XKzPK9BM~P97-Ca$6K+3uv2#Q zTIj=)i0SbbCq{o+EZSUdCVr-+5Ai5i(A&jU!C*Nc0t+e zxI4OaV+TY$g0f4@^93rkS1{JL407( zc~bLNrPk{pK48Sb`#$rKGuux#y(~;`)*fZ#0WC+_X?~PigVa?+$+iV&h3{!a&~0PNP=?p$X9*3n+u>P-t+*f^kaMgH3epW zj1Qou`b(O`CC#-ZE&T+aK-p8#D+%^|f^4`TvVlgQI=hKwjJdP{9Xn1B#sbj4`xN8c z4Z+dX8WKXClCQcw^qI4-*d7G;$XZ7%oFAVb24g;VCcvFvJEP#%&z(_XFGH5TS_jlZ3$1nl^=I@ml~j_ zO7;LJD^o)Dqyf&})&Pf6cj&PahmtW+e3Z}HK??#$BVvk=IF#a}u@|Jv{oa``I2{Rn z{(EPxnDuYOm@H}MLr1!=hw8C(Pf4UVFusyWq-WeJG4PaIC6Tr=))dulmH;7DQ9FL) z?VuAhzy9ppE5Zx?%!iUk^%>Mo9&sookCF?OF{Lte*%K`Zw*2FHIG$eUU6&|#WE)dU zWlW4M<&N0jYU@FUlFMX}p>QsMLJ@V4=#%oD7O|+>2zVWa=0Bn78!^u1=B4@koC1cxer-qU6LYg;sKc zA*tlVBY5+;d^-a%tmH&@DeaXz?#B%2UJ2x>iEXUSl$uD;TvtMB9T5*R9(KlyKCGo= zfb`nYKn9goulFfZNs0h;dhO`aAn25&VCVr!ib;%!k`yRoN*z~HL=YkhhOP-hKuHQl zAXQWV8@}#Z>m&u*Q)GBgTa=ZaSY6kJA8@?ghJz=0nz&j5dD6j$nvxC=FgjWmw@Lsl z&uE62beL5ASp(O4ZQYI2nnGFo{4QcIqrefcc6=`sDgXKcua*AweH@>AjdtQgRzZvV zyG6{u9)ZOXuI_sGBIRH0hFhmLkUjZV&ffN~99q)QHCmiw!f0*e7*UN}>4F2ux{|LC z%@7gA*m<6u;Apg_HjZ@7^dVju>2in`jEOoOwaw(b29Y5sanB zVrdI7@Pg!c&w8nkSaRUcq5jcOjq3znE64TPVl}SUu?ia3 zdByg)>Pw21ud@a=+8$WzImrYlZsKY#ID30sIh3?d=b1RvyN7&$HG@W+V-YQ-L^za& zo!)7A=7Pj0o4MvjFk;ULcoUoZ7z?rhhOC~&(0+(RX%xy)TQmxQqtFS;w7Q|yof2JN zYvKgsXphG+YdnteS~(seC2BlEOKcOS@z6@xcr+^U8IKryJgj?gkbg?*pypwWy*(aW zs68GW>K%`ctQj;O9E)i8q`Hy>hkC}t+S3oXAP3shGY&p``VvM?1HusPJv{?@sA*3> z{zB9c)5hhF@Flmm<#Ydy9QB#zM`>@%Z}~S$(i?5dg9s*1wElwRWQL3!$PAAvGt{e# z=wO)sBrfMNh~5gbI=FK6&A9yT9W+Y3#n_X#ctZj_-aP~YTc&)5p_3{9%1s&H%9Wof^Z1Me+mx+cDd+ooXIHY|05Uc_lF0 z?LT-G5f@yLnEVH$^Q>OvKgL~et9$6x6SQ9X(ua1bZJ0j`VP~)Lw+pp03h(f-4{GWmkngk~czWRn=8J zU8WWy0d!6KJ(BHuEW8&^O9;DgTGmz2yV)-y4c-6rVo!DdQ@=)IYI#Ik-f`40&*zPA zy8lVOT1ziAYw~5Cy0WO0XU6H^`3>@T7o8DHlTYpF+212FNX9^$?un`|yN=gL%~Ka# zx9#UL#X;G8(gyC2b6k#ftJe$LAoj^xIX#!ps{Llhb5&HsHIa8k%6qLpE!=NQ^-8Gy zcB#5@fUCYHezuuXSKx5bbs|9m`L=?rxBsHY-CLLash$p8t*2!-l8}lHR%!zX?2jl`9E$=ea6tai;{f zbW?~i1aH{rHMEt$A710DoZ~8tsgM9ZTDe2iT^Iv~z~Z=~&JbFN;q!HjOxi46SGDe% zl-f)-*&uzsl7g={7MG#7>WjS{=5oRI1wF&67Ztn0v^w{rNGQ7hSYw!e4~88NvKC0~ zt;smvS>IZd_Ns=^r5xI1s2c2=QcJDjs|?46xH^hWOf>22WeMOqyT{VmdTfup?&ox= zYp3{-k^Lt+d(YC@dXLVkQD@~^$Uiu^eYXtlB`zto2bU~t&p)kewy>~Lbu-drB-f^u z#@o1P4s^17=q1ks>m(X3>Dd{YbxhB|-Z(_MT}u|)-teM_yosda=?GhDgaFP>o_ z(_Pov9R^pIyDo>ka@V8y%FUT_S6{J!wa8<&_}UH9TOTdJ#8+0HWhF5nakQHM=5%}1n^OstvWihI^%Lz zcTGIT2>uI$)*d1L`piW zwL+sPdGC!!Z`FHdx?(iF1)UX!XD=T!oq#$LRhGgVRUb zVz}nu;PALG*l?BWe4U$7BvjUSXNo0ExL1ES)}+7Nx&CT%kD**Z@wVeX=3%C55fe@N zx=#YQz7|*=nWyvx1Fv;;gRE;^h2j}TOFCP1JR~e8(cfb|Wi#+-Lc1<6M@BM-3e7=! z>JasLiKHRw^AbVAr;0>e#O3EDA{V-LMff1lT}jn3i(HNH?E6sL{Hu=OhjwS(65hM; zFT0uEaP%VXr9|y5hO+Bj3q&JdaTDT#NUCT!RHf^$yTSFlXw4|JC9YCEWvEK6Ck_QX z$5<))`6Kiis$N6MV-=`t>opXtr9*`y{A=Z*LcHZ<%Tiaqj=U+uzv&j&Ffp59QVV8S z0v53fTL9M50m;Ze8?+NE{81LI9z4)jMx9$-bH#%Uk7R7MWIV+xY#CT<%Xrxzg?h5p zSIRBRU6+f`7$!;iXegB2F*qxX!EGT}Nt!zAUrYQyBK}&U{LlK>Mh#=R`aRdWMp4Mb z{<_9I`nrZ-1b{Os6+g$8xym)6i9}YP&}cIZf5|^@UR$v*95Vj?u|0gS$`zH+P@?cT z_lIq=uw@6{w^panHA|#RdjHkEwpU(y%(y=6={};aXwP`>J&(qn!vI?%-G$-(C4iDS zXwvjVbjO>ObM(=}=z4xJmf?HXu#v-R@Bx#DsT=xHCGv*;mXO_QcBD2;J+vLnSm6j- z-#jlGrjky0!_0jc(qtqSN9lc#f2=#lr}e0N^%=N0rbW-hm(!7+7jBUe>(M`K!<}p$I&3adaCU&v@+RN56Hq_Jl<^O?9 zXnl`sqIlD04k&U$To7p$`%vTZYu)J^Tvg%-qoC>b`7pIIonRIAe8XCrZ-4vO(tP_| zj$yw3FX&3 zNQtc0jXR|9{jm4}SC52!63Ul~r%}+S! z@{NZd=>Ohuvdv{p8rw*o_DTjc=$~UJni~Xzj}na?Peasm!3&o0e2;w+GXvGV*_@^H;%CGgu_8l*Wb(@ zLD%1e&$gKjR$sy>yP{dHe$NQdUM*=WHrmyIvM$%|vc&`@-X0pE9#SNYfXo+42I*3W z{5Da5kag>uchL60q32vJ#Y_GoUi>!^Zz&NWvLofMhqr`-J?l0KK>_NL941NHp>@UE z3?{tWu$GX zq@zTrdZ)%DMcPQOjyAsJ%8VH*xzkjz?g?o+625u~^B+waTbclQFXR3uhe728h>&O= zvz`b$+Wt8Zl3#IU`jDe03ZnxAHCD~cUL&IP=#h|_iJmL*>%m*}@{zFT>%j)@{{MLu zA5By+k<`D5|JJ`N?Ea;EJGdR|pY`Fc@grgMw}Z!t@r*6?@9=AwtGJaxW&gDCFza

    MBPuKqaY1;%n<>9jzrCaeB zTeSEp8Fgbxabqch+{!`ui`>e=kpbZtU^q4z`n=`Z8O)({+wb~9{J5U7c}}4 zTOZ({7`}2)hes+0C9#!*nkq&93CG`e^-DM-q1-`z#Z)49FxBHOch%KIC2JZad4N^M?%G4ZaQ`r1+Iap(;wO5TsT2)W9Q3vaVMQJC^P)+)`1 zHZI>u{xnm*m%nJHd_Ss&nUep7Yg@3HGT=+sE8>#TNN+_9_DuQ9ZofzN@|_nsQ?jR^ zt^R$~RbPFHv-F5-uxR8f9g`=4f-4%1R&&PrmFo%7no-b{NEvM}m= z?x5P#W8U_tm?hEprhe4}18bQD9S0soHx$zuTbc|vF#t`5>m@+#=TS}aj==11D&~c3 z9$kk%4=Ce7p+ymo@01S@2=5mCahx&?3u6zhg6;fza9ro&V+@? zRn7$7V0$Jooq4QL8U@XSZzX@43E#u1-!L1serQzu;E8vOG+EywmO zIA^!rBllwN#=&IEIGN~{VF!kawYOj46tH3d{(u`P3Tj49tpl6!p zk3w5vM4=rwwuQtzrdLG6D`#CJ#8QS&)AlAy7O)Ci7S@ui_J87;ocsMzNEV`aWYM&) zL3=ce?8e7B6zADu1KeHD{wCMxob={AN$*lMG?4Dpl zJ+d!;b{{_x4{h$jo9{=~ce}(@wg?px29a5DOoo^-fXPIJ?2LRjUh?z1)dw%1$N)?$%?+saf&PSdi}+X*%JmOVR&fGQBfHKZoNh zecg{^)vWj)vSZ!3g16W^AsRE~d5p5+N;nzoE{-dZ&7}EID1Xs>D8&6+4_9lRtd@hA zf*(gb29Gp$m&H>$PK}0_;TMCgk0X9D*!no4gwR>IVUl$z7T&XP62i{H$+`-9_I3*J4$B<|ZBx$3z=}e( z-{rbYtNS=PAZXy~Xq;39GF+jK#toPnQ5Sw|=I$+)$u5zKZh~^dZGB8}i4B#%q~$E1 zUi%Q(b3!f_c0BH`2XzzN?-vFWvAXsm%2V9KVMuX7Gq^j^{hN5$?f_H`7*v?>kOc5a z!{kHNbvU69ACGCHJqtN4+-=44jGVMW9}lcn=Dy>j;hk#pkY2X%wukc@3NAXQk9$H; zU2LhfE~-%%@9O&Daq5^H{x6To;gOlY^}1znzO}oPs9(lL{ZIFJy$)XBir-j@S>b;& zF1k#ej7wh5Vx+Ei?ZZV2(ErEP={#L3!_;EyQ{m*gg zkjIGj?t4TpMvfy>2%QVZ)oSOQ;mdYMWL@Cp`3)Ww5uSd-z3ZZe$s})XAMDMl$Ih&Ba_Nfn0OLRClye zSnY6khJBsgzl+-$<$t5Jm6p;<%hWf#&Quq7al5rT&!QyA=zOd-{F9MaPdv{BONCX} zq_9_Qg>CATUkZ&nxoee4_YAA{1U}Wp_3a7P0VeWap2mQ+;b+_iwt6AIM#OdeB7qKOM{6csx0*x-{DztKnBSr{uVMi5a{%Xbres zj>>iS30!opE?0*oTbAL6HW&7ahaI!?n!`V11~rF0qw*r*v9Yx>4o}mQw2AQKKzC;` zku}I;9MQK*AUBTjQr)?D#dS&^PN+Q&_d2nW5#odzR*U&G z9QSz=TK3XN1Cl@zdO}GMq$*Y5p1bErkS-;3I9lkP5So-gh(MNJrAbRfjED+Y-YQtY zh9W3fQIw{l*!a%QK6lUD!F`-sDxg zTI;a4C_N#$*ZoNDyp)`9sLE4mAaKA~x9rqF(oXiX2@sIYZ%)|1s!ukE_ zpgUpd)+&7UrvoB*!cJ>2KbPGpme&{sU+!$#XO8J7gCB0YfTBP3-^B8j z1&}Ik)DY>}Dg)QzoZrB4wm5~QleT3Y0#!Fjp!0MoZ&*+3hk?_95})1O4sVfCnnI9M z{RwiR6eK8cL2v7mWtms?CjwE|K371!nf2E$UYoOa?%H~CdsURWOsi||N30V-D#Gzb z|HeoWa`=LAC4Rk^UFV+$&23n_=MU=2llQqbi#Lf`nZkgTimf2gfAIclNU8eO%rVcd)jc)WYZxeCf==d8$ z+!hesD0mWdqaB5@Gd?K^-+Sp`H9jdxT%FsGJ~mh$lRP%mniuR*L4Hzl#W3rqOd~8^ z)wK?+I|0Br*5{eel}~}sYvs?hw&s~JVd0L>W(^mu+?}Nk(c!cVc+o-gtrhv9#KE_rM zBJHnOd#FzhmAeNE!NV=GMe{L}lI?7lS1q`gkv|^d_96n`5oPP4ZW}6(ADtuxC_6mg z1g$`J1u06n3h412%g;zf#PG36A2X(>rzWSfTcnoYQu$fZ|Bt}2_0I-<%P>>FO#0A@ z&`0#~Gm?9;+N3rLA#s?@`#wwx1b!uv=g+XVVeJXrjb4RTn1F@8A@1y1$r|fNsv_=Q z2JTU$0CD${xTg`gi5psZ;QnL|;Lame5%&rM_ZCusxK{|=(cJNKZ~{9(3QYpg)Pq3n zY!J*Fq$(0PWf1s~6d-|9lKCqHZsLYk0=KeI$iKTkrM%kOwkC8sjHsEBTP4qs5-sLn zVv^MMLwWluwm$q+lD%TQXd=^cA;aO9_|r(s!Ec`by)_~ZW{IZ>?-5<=97;aus~y^VO^H?Fl{g?gkg!W-l*o?{&d0LH<=!(M4p>i7;!QV8=R5zSZ6 zt6D$ciQ#Z!=C^9~SWi!aaI~QyI7rPH&WqZ2ZU11Y;{t}T<2JnyY5`N6z0mrnqRtwQ zYZql!@s-8aiAvyh=prBe9xS?d(#{HhyVaj692|}zpoc2VT526#Cda#xZ(asmY$RN` z9q+3GNL7Omm+{_OU{PF*+w!UP8TKJ*3hGg&rHcB2NdZHY{NZw~f;S11>kKS{3Kl#LZ)!Grb!2azY5dao{Cc)vwuoTEpm35H6N)Lv#N-kY28A$H@y^Wj z;quPRQDDLw8ya1(q8L%5b|w<65i& z{Bo-yD1#Efcf9B;hY~)rq&W&dU~S90&A3;IXN|FibH`hyO$6|O`yf%}*w_S~vfCQX z;4e2}T)<%jta3sIIAMz=gl&Fwme?L-m`j+C5(oHF@_8G|^J!nm2eFy_CfmNR4 zEiky|=Fy$*Bc)+)eaQL-TTM`)-!F^cR+gkB1;;^fR-SOQTM%DVXwBd~3auNJVt%s_ zywY*Xfso=cKT>>MO3|l*hc5^gTHC|NgRQZp6ly@x$UwgFOmYH)A0^bV@+aO>J?z!j z1BO)lr=~RKUp;Sa!e2>EX(N8MWj_*(Wft=HB?(g@pM0)S5Kk($eis-v3Z}cGMM_p>4)6XYYXYiwhJR=$jAf46~MoDKD2>gk# z!}eiv|KJX0Q^;)N%Rg66SnDy(g!A*+c8A(wl>F`zX&?fBE6==ErCeEzf!fyOi;B5% zr*T32w^u={&%A2Q4V(=O@x~oeYO%S5H5B+ve*%BXhrrRcX1;o(5DJVquLyknez(Nf=`nGlM4cZA&a0k@5j$)yo8GWl$T zyv^$)W^i5rS14}tM!jn-4ECrX(^QuCtV@}Lup&}C4$TC(qmMGIgfiZ@{>O%!IJsEf ztAk;C=L2hNHklM)LI4UdZ7^W8%z3oSj(wc1AhksEfTu=7%oSVhF}8t}VEd=c_Ttc5 zjE~+p`$OyezanG#gp>Wt@pnG7_F=^Y4=A*en>)&LK7y>&o8E;9@0Cwcj{>ETIM65N1n5`3!#ho2wbM!BT$^S8!uQh*aOU(i0WRug zxlRYU8mC;7IJN5x&*AwNefCv3C`mNl*o6 z(%0UlIFnxEe|>9xjJ-w*y=Ibc*5pj;0cr^|3BFfX|9k7h>O*7X?3wbtHCBZ?1(?l) zZg|d~UW69To?G8r3t7c6P|aMNJNUgHtV38i0>#-g=bH5iwdxpt{+hK~K-DpF`UpU! zAFb&ukyJ)XC&(V1VY2iaJG!H_D>qERNmMLqY`GOd1{JpC7I96x^3x`-__vEu|%vU&SEkjW0a z0xPzBQYaz>THmqdk*agyD$|(e$@SH-!O@v%bAy<;-1dADK4mdiY z&;GQIWswAm(`fiT>j1UhSUHXAjWwnb0RFiLr*uRYF@q7iDxkHI?8)-+~FM3ggTX5DS91Dc1dZd(#ztgC8pElvr@PK!^=X?|G>4^*0N^RHDP!g7?M~z5>Fv&>DsEJD z80TlMrH{jnD$9Mryy3EV&Re!e)W^o*)rRO+CN7s^If35Q3id8)^KtU!kvcpvO>4o! zLdpfHHGvddTZ*O~AbciVvv*3U8; z$(#|TbyC+do*+eW45%{3w zyadX2wtGBJJ)?#4pN>`t$}7sT{%64_GU) z65GI}ncN0`0kq9?YF8Z(gNjo-alCYUE#kCxahC*JbXFfHeB!Le>}h?`+OVrQt6%hP zSBKO%waPY!JxT!i2W{P$_#3C?i_l|neK4YiHk)-P)vo4h4%IPUJ`wLA1>ybdNxbl_ zI=xlrcs}uyj)`n6DaENgYP_GRJZ(Hq<={lo!WDh;jFg%w>M)SRXODLgB=K_qlw^LU zErodjVt8JqlyZE1l9uXG1lH7{+JJ9yccT?>DDEjXA1}XHbA)hO1onv?6aXoR;;dR) zyrP~NFVC63OR8e0-uBn2Pi3bpv{QV07ux{!4cVvYQzkCgByfV@(LTLmuzJvB6<=lu zm_SBZn9_#?z+=qX)Yqm5Rs%3UA3QvQpQ*2fvN+NV*{(9d&sfx%Aou?X+x$YZmK0~I zlkwOwd}VQTGRq*%h0rYy0iZo8PHU*aspZk6BC6jA zU;^Vd^jzl1ee`ICh+q? z8P(Ykf*lkphA(Waz3KtQt_;GibWqHmh({5k$&{i)h^}HM!7N;bzsljW9I?e(6Rki| z3i;KCweC?qvGT4>HET4P`)-0@&S1GzGtfD2LLg79mQp7gei)A8E%6H-#ak2nI||S` zbQF7aC;2(>I4x$wa4t0beg#Bldkbc7lP3ON8q~AE!Fl980%mT?8_7=TGSeEn_7W~)n z7JkrR;_U+Hv0UqPX`?lQt-jQ*S`1&=M(Y~)uV9DT{EH@k#bEO-3VW2$M|=OdcbitU z21IeiOCQs!!M@1hRv;UGtDZluI4@f zw)(J*CSs{)J}5aiWXVI0xAev#e0Ib7VH|&5(HlR)3JC&KyMu<>?W1bv2P>-G z=3Z0e#_^o^>v0v=%HZRi(8B?78w4S$g3}0PP(kBWGTa;c+${3g8@p=4<=)umS#ocT zG{C(vJQ+6Co8qUWIbJwfJuEO*hRK8(*8mBz30;g*C%SYoK>R{o4B+`sXmxx>$y2kW z@jGMl6D2Pyqdpe5O=-m+)3x<1Uhres3{=J11YoLS{6wOPRn01{p5~U7qreU+-B>FV zF{)ye4@%CK1w%Br=yNtKBid&%a4Pl?A||>_Sz3mctoE5G+C(tqQC9YW3Ck4ORG{ul88n5kZHlLM|a}szR1MC5v4kMW_lZyc>T^YIvyv!RwNg z^N67eH$*d3g`46Rs=`fFg&1F+3dr&uEUI%fId<#DIRXxRi%fO9OEqgo{o_XbuN(2d zh?tp(m-5pN`zXGAfVRiyE!l&mRxEJ@zpuPg7B*Nb$47N4--y>9q`kyqCP6<9vm*}U zJ0eVgt1Gz=itt!g$HXpuoDXu&+LMHj%VTXwW%Oq);MsWb7Gu*%@{oNGQbA-z>6XfEl;C|izYG%2%ikU>P_M;#%e9&Y6~!( zwqb-Xn6|0%4q=RFLo*Pe-t8i34H1!kIZkV@1lKmf5I*G33{2qm30hOu(1gpY{I|YQ zg4EiR`4RLr8 zM!HwojS6?ZvnEvuir*(;M6@m|;tYjZyUI43y-Bd*>i#tWFa#mKGC7LZnWGJ5S4cfv z++PBzf6_6QT_OdLTUxFDIay|i{~`qUt=02jNTdYd5;WlIpnS^HaGtluo>)4O26wV0tEUmG|ofgQgg-n8F0*`AY{q zs_Ikl6;q}Y9B}_b510;BZ`VvpVlznzCV!?%>?NhO&@CJZqi3 zfigwPk9JMSFPH#eI%hNtu2DSoDeWnR?Inz$OE>346{%9BDWAAZTf&a{Z(@A(jW)q& zFBUA-d=4AVi8|v#1Y-iz9lGdEUy@2d4&|`Q%i&8Kd#U4O#~kxWioM4zmeI?zU3y zFh4!JKpUsL$bT%*YO$9{b!71ce=NS?W>H%lir01Ekt!SPl% z$CwWEV-dH%;;^zi1gS^|*6>{!Tt)oC0JzFD@9ZF6HFc>1W(Uh{)#m%Uf%@)N?I3^l8BJW= z#PG7AKq~_Q7xCN;WsGa#%D;oPGZD+k(g!7H+i8684s9*#MJi+P)E(Z37Llc6nv5*R zlL{EXIn4_2YU^aSgj7Hb3#Q4dm1{`>wuAx<{StPABJL!m?$A$Jz<2D|?1H!%TAm;^ zkwCFQ;2lzc1fal-EiaH#lR&X20Sql~k(wA<{ya^Fmb}ps94|o?E~E<96!`k{e$9CD z-j850uC(>+AO#q<%$P32mRY0#t<$vWehlcM>9_-^&FTjP!M&-yfz=naM!fY=?F2hP*ust!8yzVo1?c3m+I0`(6TWrY0zR5< z1Qwr=I@qW4{`&Nl*(ZE`@I9kXKn?pusbQbI05Saj3vd*iLa|TJd-UlU7Cpn%6zopr z8FE}IlLEKTRvXRWJC19KER~dEM;grVGdQhgxCaNlcD)&LaDWbWgwnx|cmdFB!yfUA zaH{r$6Iw8%<=CZAAZ-lO`2c%+wFeA{*tG08UHa~J)1~juCOo6Y&Jh5Y#^RHB8)rz} z+f1rr_tyLC-X61i=)Kp>TAR{55R? z`<7HeeB$|W^{RpJoQV*h9;dSvWMn)&PHctC%Lv<#E-rW`$O2tli1>vrE@URUxRSY; zkTlS?v$nuI?^dJ^bSCb$B#=xSh8B{L1EjvY^?LW{Q@KDI=5476s zT>=+VNO@aIMXWkYhW4M%L@QxIZty?@ura8uEs-D2bC$+)feuWBQ#3i}wGMIDynFHr z;SE-nv!Q5S={~;Em~zY zNJTWuv9qLEjwJI5#wjwIua$f!qu}i44n+k_+UH zv*ZFfn94qow~HR#R85;Dm&$1bn|LaL-~-n7v5h zxfMYQKKsE+kjm;G8_DA@X^C*&x9ugZF3X|h#M*zZzpkw?y5^}?H=eMy2mms2rB3OA zsgxi8P(j@2ov66cJ9z~+F-59CJ0bdM)b5_>i2w%jzf33CSCw{SXZ?tM2_|TPB0Z9s1 z8U@-WBA#ErfddHt5H?U3|C}XHg8WGeursOOX+s!=3Z(q$+gcNj9}EGs=%FhEdf^8Z zP$2P8@_)iKwBUs^o?#Yq5*n!xo;R;*azKmO#?uq6W}8z8W~p&~`;po5>4{UNpR$Zh zS$Wf&0Nie=3`u`5NkjP;Hz1Bl|1mO>+keuYSKyiJ-?fqIAUKA;7~VHJ*)gsYzrQ9i zh<|cj`!;Yf^p&@}uQgy#(O!#7b_-|wiMR4+<4w>IkJ${*F&yYzbzPRN5ucv|kHF22 ztXGLYdP6JC`--k^R1e68F*)BeB!WqUhdbu zSt3aN5BV!)ibRI;@hR8Ci`)FBJ)x+UIr4!-_}3ioZ7ZGSc-AAm%8A?ljri(6wFtiZ zuC^(#$s8Ddyz<`^ez{yP9;i>9<7fCEn}fq2;W_;HkOt2gs7LboceUF5`)^uS=3~Q^ zQo1+UCk}mzmM^+vgRB<@gJ?dkSwZAr8!b<%FU5CFUbhI=CCsmaEP0i>_2T!utx=X z^YYLCv?=T$VFho#>@xu_Ol5g59j6hfM&)%|ZCBYz6S>&9sZ(KHIXs5X6Ki!$gE$dy zV7=#AsXkv_vtt7hM6T@=$urkYisI)wL{|^EJO@^r9ikK2SEN4rWoa{%H1; zG!qIsm8q4-uxUzDb=+LJ{G32ZiN~kLNKz#Os+m%p zo>at{e&}60W{dL>Cd^23#Wlu?VpV4p6MweksMgTt`Y>lN@9sk1XI7)o%sUxK92~{K9qe zcXM%_Os=ScQIS_vSA^Tv`7$vhE8E7i|A+w4#QbFfT-0-Sm(lyA#@fPphyp&PYNTx{ zi<)Q7R7{|T&yzXc;CW=F+K|-3ENK0C#>Ji1qy*d7hxXzG0JO&qb{~CkTIR`%JC|c@ z39!#Q_=9qhjMT&Rsq#B-SH;#Z$~~;k!GaW??jOyMRI%COECN6s$seY?@ERNOBohgr zpt=rzsQTbidpnR}3>!}{Vg_^x0pMb8p#b1w4mymxEu-RWIcyWDhw(F?C)aYE6u??; zwR#j}7;df2j*$X1r$zJpxcigy0G?cxzfs7W2$+Q6Xz=BrxR z;R^tDV5EoBR>J%a_Q&r8U;N&!YikgfEu?|EY8?I_K#)FG4_Ki9lypB3S6$d2&vpwM zb9q$npdNe(x>ao!WorH)+9h%6X^)_UCTg$vg(hlmws$J;6<(BVb3~J*jvEoABHU-R zqMvtTJLblAtOPbZq&1p{HL$Jnkr*ugu7NE~VebnBG&A@q0hs>f{cLiW^Nd+#kkQey zJi3}T**2QL+`(o%x_aHjF7tyv$T@$?HXdC~-V0BYWLoVN_~)s%2J9YbjG02;jWJVL zyeG|8Q(>X=O$ng&Wb@_zSUf4f?JFq2?W<27whd${q!i_ZN28z$THXp!Ros6LZf4ue zI+3bKp`AgYJ1Ia4P=FMUJ!0F#GD)dP0jjtt;Pb6BNi9rZPUYtxgA1^kZH`8fz02{5@AyQy+0HtmY;K7h6pCaa0THDr!{td%Hv!F`e$fzJP zL@;-f)Hh)!yAE%~ix$$sd?AR7KV3=Czq4id0Augza^4~s%_Qg*!n{a=sz1%=`5(Z} z=Fg-+m_GO>6iCd+d-r$eqvd1B2^#Xh`M|celu|t4zl>D|Xwt-59XkZ+D0-ESWDNW%; zg9*TuuX>}aZ4+Ba$m7YKcmY6%VB8rYE#=o|ezMy3v3##~@n*a7@~j1ECy(JMEd--* z4PAVbw;2fMMXh1+37c(`!k#18Pzj9g&qJSNM-7Wi3CR$m}H z>oHG%dBWB*0LaLMGNlJL$4DrH;8B67;8B4Hz@0;JrZHE z9wH^QV1axyqC~+wKylI9E?Tdyl#nHiLc8((Ix7cC%&JDb%K+Od_B!DdC)LRX(jc8A z1vsg;{~Fd;{bB*1IJ|ojyG%+k3jW+*2Y*c2`7+QJiGDB_A|tOfk)6fwSSRMltbBC|OE~s^crdl$@`NJ);Fr2} z1JV{6iPwi0no|hehLM(Uys%6!Lc4tkBlKmWmH-ABZX@?Z>6gktX(_(KdSke)o2vGK zx68$cY~Ww~kj=S1(Lpjh8`k7{RUW+48p|_t`qk#?JK-xl2)jPo78^JZq#!f4^Qk;U z!hX&|KWm=l3o&DBp`*>e+GTAh@Fwyb-?R*BRkoh3hI0q@v9@Mx24M=+K<4Q;3m{!p zPlZFRXF)e60mqP@HNF{ANZN|HpsYNpha?%eL2z|~t%EvYp?pUgzZo<=%NC$07x?Un zwtDPyN?C~V6Mv%oMvBtIGHjV-8(O*`YIX2=pzQj5NFAPk+*X(Ww=p1?3Aigpa?9~| z0i<$#-{|1k;=(Dm`Uiw6$SPC}|c@rMep)YWx4tiXvlTjGIqzi!i`08E&I@7b4+oG2L*}0*jlp? zQUDVGzN_49Xh#Lmiu|EKD^{^JmfF%;T~ZTK)LhKZEw%Mz%}7D}$@ZT7{9f1k6A)km z(ucI1#}~;2x){P0%^t~LT48G+ zcU*LxD(Evr7GhOc+$Gl*sIoDHTMUwRc{dzIYG6_^n*hYBh|LiITovu&+w*Mq*+x-ru%fj6$(TH@tfE`3BoYmQMJ? z9@&@36BBk)090al$R=AqMxlt*3f-Y%YP#9>H=9Y?BGRc#e{ra2f5lJ*6M$<8HD{-7I{S{WB&J_=bNVqE z_ItKGzpHNpUa-rypZ!HzVl-P=H8d#FY;LSC?uyR$sN0Z#{){b`v8PO}6yz$Gs9%v^ zJpvA>Fe)TSy}Lw2+0FU(_|Tw;5;cEC4QS4@zKaZsM=sIagcw@yas$p?i{wq5Nm65! z)xsdQ;O)A?wZD}xjUaOm8^i$Xpw3(@6Zdw)Cg#M&-_pP=l240`e2V9vx77(E6;GeH z!8`hgedSLkKjnLhDT74=nLmjhVB(^@i_0uZKOvP4s`V+E_Xa*OcfZ|iA}_OSp^Rek zKH-pUV_-3W#lt;G>^NzG34~*QSbp6H%U>S0CB>QJ5H1y@h@gx+0uSF&fS9YwVafd# z$vqry5d%Jolsl+!tI3GOT90@U`XWB zB8-%BU$pJ=S~s?DT&)$KcHFjtJtj~Y793-oRwls3L0K+X!+OriLyp^m_*bvlD)6zB zQzN+jgzZh%)1-r84`lhypLK;0`ckq7I*!y7F-XAZrN$oUY*HeU+sbI3@tJ``(dF+e zZ&yr=_R%S)eW?sZGEds-xaZ|W$PGc7jPPiG$+hq zg8Hi|w!c^rfr_;UKi98wX|_W>|!kQrKw@!Uy)9i?w1bxBJONw1!2vt=^h)ohuO?*afW$sQ%R zFyGZ`nV%S@%QDP&MUk##16lkwQgxp5$n`orJ*ihvgvpGNDQ><@roT!QJPa5y{ng({ ze-XA_>931IPT;HN{lXL&8WF8Ed(XCn%^-Z^z)gW3ig&@LkOGWtdcAM!>;c8tW+HSG zVjEc8!<>;1Sh&G3P90^FPFRI4=tAozEeWj9XuxS z*3V$|)q`Ndci6}@cNu5r$)$Wyh&`@&=I6FZAI)tFRNhs$})puWe~1s~03~DbKUNhNRN= zl1-FvY_%9+$ej}>Gt0O_odv_CbZ%a^-6M+Zm7e8FB%4;s6cs9U!O0FR%10^KMf9_8 z369XuzAb*CpM86|_sJsgv+`t7hwp6f`AkHdE>jlN$>%q_UY*Y`Kd?MMYXF8zA7n>O*51*RBCJ?Ym!1HJJ~F^m-i(XUTgVfgjxw`}9$Zi(Jgzy1Xg z2l{nPg3TfPqDQ*u-EJnSfi8MA0bqt9 zq#Gy{WAkUEO28v%wbdQKxjW@hJ{JfYs)PMfb7j9&Qh@!co-6y6Knl=e$L0F5*vYxR zJEd01l_>|Hg}tJ*uvcCHBjrG$*sJ?yuaq79)IYYL*kHmP_Gf_6p8=%6%ni)UmAQf0 zq!e=l(`BbhzH_mdpS}-UiDaNeW?(W1M`Q*j6FlzBz?NJiGq8=6qUbjH6Wx9kUBlRQ zfyNu;%jC9CNXWW?2x-p-Xm`h&Ay?Jb8IetCT zzQxzkyAPu5wG{TPz+xCYd~xE632XalG(vwLG^cz*FB(*0qZm3cEDNY=i-YAEDsw-rqrj^jsT87NmiUEWUvG z={nd}Su~MB#Ua5i{0Z;$4}2u3@QeWv!(NcHSO=RqokvlF-X^Xl_q20 zp&1o;!m1JFSs}rVG0EEmfNQ)r1puuR=mtI}G3Z>^3jDh|_G#=JQW>4ySF7X-^ea+; zE6}@j?T<1FMH_Qzm9*}k^Y9dVV}8G$eGRkZ0X-TJRLqk&E0O}l*)SPCYCxfgvs|8m zvlwtzQdl$640%k;lL1B=DL{t|ht`_&&zry(ME-ua8 zgFD!GH_r$*-Y2Cft26#&^_i3v5*Ylpr6!&l3jpjgvY=!@2u5T9okU5}PNF2e05QB= zb9+Zdp(x2^o|24gVc*LlR(t7QC}iJMbU4Yn2!LynVIpPtY8k7HBvnz0LxF}*jhna{HBLRWO1`}^Xtm6r zJV`KM{siBv=(Ad~)@8MuHH=QSlG+$WZ8BNo=i1ue=Jl+03s1M&%keLRhexqu(m*iC z_iFYg_@Z6ORmN$_Vi4LwakSRKuO7D5h&wIJ1zJPn^}izo>D~5rNIek%iu$0z|0a`v zJflwy8m3Tgl9rg?CpBFD)@d>jA@lo#JJ}DY>c6W=i1L58tH!VPwM7)?cd>INph~_> zF$Tg9YChuOPnT`OOk=ftKZ98}A2W?$K8ArfBTW8`7vQ3yA*4Mx?uL~ptqke`^r(Zs{KSgJ_BU8A5f;X0OHF`_@7xDM?ukeGRpVp3LyW)4Bq2jHA2gjC^F?SD%g6V%2lGpr z-NSjz<$U=#XS}FvoKUX_WmURXW0VwnCNDq?ueRL2$fKGtZAv+TtAqL*&c*iX z?R@DpMiB%#@W)pc|l3yr=kCRMR7IsaE*^1S*2cPOzh*;<1r6Ol{zogio2EQVM2 z1e?R3mJS5iL=V)enLYo1G5eKd7B-Ap z54YEfGd0Gz-1Q#8HhZ}J5~BbV?-|MWag%Rc*Ai8uUBz{6@EW2`;{8M4m7x-Q@@u$bzPcxke42`JO1h{%smP5iGgbP`J6T7sZKFB$r zTqBpZuTHd&VUtJ;w3_4B$TN3Nesv1mK3v_hlE#*MS6bp(DQk13)@&!KgbD1ev{G;O z5-CSYFVOO6{`XY-W9&okO7F``s&kFZbNlHK+V6qTnA&e#mXZc?S=w=pX~3(9Cenc4 z7r(@xc;AXoXmdT4e=)-z9`~dupw_&z02n3}t@(sZ>r1TMS`&&k{BiGgDyadlSVtGn zon`+fAUMVZ!$v23lRk+b+1@#U)iB}myBjfUc~G`}WXT2z{M>wdJ(lL9LE?P-0)Gwo z*5$bT7q9VP9oMDHMCN%d@yt4@5qn5gp%Lm%pyP8bTDXpCgSvGc zE=8j^nh5CJz=xFiI=LWSvd+yP#uJy#HZq>LNcqEfVk)=)palH6E|8!8uyS4Y7iocP z-u1_3U;(ljD2yPV|8V7GbB0IC8GeVqxY53j-61GpD9aKy^R?iC%oyG!Cv2_u%FeTrS2eQv^+nS*D6#7_&?*@XpSgF$+kB z4^EjFtL))RcH8^O48C+dZrmHdYn(qD(N5hksCb7}e_RO=kijRze`qvM5Sb1Co9ygb z;h~4-u5}8?vdPXu_>SJ(we_&fiRAV`o6`y5$w2A!K6}SfTu&LCXzjyS?ze|zBSJTq z;%voG;G?tn-{YgGH1>%2W>rI3I<6Fkn#nWy0?Bp)-#tOdS^1FDa0H6AJ zGaG*4_3a(v5Iml~ZzhgI;NiE=#I6f&mwzEr(wN>}AQoA;gzPAE9%2hVadCWhMe%7E z=qJ3EJVouox1>X2DD!~5342Zq07~K@pZFC#l#uyoT#)042^GJDiOC&X`gMCzM%8HE z?V$Y^pNR8HkNET__FnwTA;<-sGdY(1Sp9QAQ2Yl1N+ToMG5KALTN7K>Q?C^8!L6+I z*w@}zt`r0Zsb7Nrx9{4XXMZ13nq58)Z37~M`0Qi$uhoW}4|>7gh&ARODo~HlZ(6anlESaPYi}Jf&HK|3Ejb_D zM{mOC6x*{)F$X~yBl(1r_UdX~&X2xmPiA!q`Kw>c`*oG=0!Rn0mS881XB`fxxF+?# zN@^mPx0-S<*|)Pyf&!KJ)|<8A5No&SQVy5oP#I8?CO)55o%4()*6zjjm+gw8JjETa z*qgCso;(;*T><1a`Ibyo59jA@*kkxBuiC4XMY>83Uv<)+ z%5n%-LbyEa^Qq;-y@d-e4S5K6wjtcjzqP5zcb&4YXU7Si2PokeN)mQScyRBoUAet> z7UPXxx4))b;kRG6*JodQ@?l8%OFvTnSxQ;eK=%)Ig9k!|d>?(&Ub{@9y~wNn&t98d zB&?ul&sBAn6zv7Ghy2ug$w7)C+Ss@3yMimPch9^6IH6W4DT!a1$&y($6E2Ne>hOL{ zS&Gw`GGV_2<^+yd<4)s(_-|+JtsxG#=c)tNbM0MN`3>^yksLSm$@MZQEn#FvugB@( z9=LN|uGi#0*H9}J^oTCa^P8sC>Ajv$dLJ0-O&D@noru{2NUcr}qn8=LsJKJft)BjQ zaGu%JW7N0_m!p<75H6JDt>>5O>#Z%cl{su|zgHt1J81J&vYyUJ8yq|QXwrRepO$Mf z=^6@U9_$c+#TTzTDsVyRU0C2{T?$T79+K*~`mtKEQPc}Tzi}OLpXYpRzvI&#Z7;Pu zDhBblR@gtDU9HDcV=~$}{xqSYV;E|bo)iaCb-yTGUD##&z1#jTtm+Xz> zgTx+?b=6>>=vWP%muIGb~orrHwO4tsR%`bJ!>XK+~T!Qwd_j1r$~0 zH=gsQ{W~_-vzkMl2@-`*Y*}WS1qD1Y-z~c&=^u2DzXe0+JP{ z=r4LQ*okA;F9@jF^+$MWxHV7x-RRUGo^9&MPW|eyQ_4oqPTiE9ioR~5aZL;7Z|mh( z+pihyUNG4eYsn}wbY>e~M^da{(8RUzl%MUJ8L?9Q zs-m~yA-~uUvnSmjN?9<_#I zZd*bH6qOK0689*V|7rhBZMcbtf0|K~HTG;&uV6rI8#QGU8m!1^C6-E?@FWF{5skpTD1Su6xOPY{wl1#}J*?>*bg!}&UKOa(nw%8B(3+gwgw`b3!Z3gL>3T{*l-)vTew*jMl(gJioVwE3( zHnj;DtC03GR{4M@R@5`YL}h6cItV^~5!5kBY@oaqt=Yu~U)y}kP9 zX8u7Zy$<`!n+QgZcl}Wbgl{Q-+Oeq$-5MXI*Y`z5hLEIF1sp?24+w^kanbq+kKSVl zxejQH*C(Eau@N_B95MO;)@%z%&zyn|HEoM=pp_Kh$fZ9VQb+B&MVe-fl)48^>CDg9 z){Q;A60W9)*~1-EAFoAvXgo*lZr7-g>zjkpe{|v?W)6Dq{l1ttS>ztWHbJc9=~MvSa>~U zpQs$q=Lb(}5afwXIv==~g4po2w$)qQ{NhnWI#JO9QM*K##&GsmfgT;uZ{im^px?Im zbwG0x^+hG4*e*%>dKSDD+MD`ec$`Wm^nrPt!n5`u{%=iPXK^NWx5tV0LDCt!Rfe+H zYw1f^6VFzLGikI{I+JAl*I51f!R5=NR0pgjJPK)#9z_k@ieYBBs4ZQ}An~jER(`Rr zUOzro{6T$6c>$18HR4Q6+YBdQnrs_q!cCW=4Ci0e*V|ZVBjQoAz1tL?9mDvS$$ADO zEgq0RagAL?<9UrCggAPYtpp&v3NBMEn*A-_06q*+{s5; zAWzJOf9Wr9r*ZTzHeg8HA^`d0$%q@?EpV}UT|hnL50T&hSip7TTJD=DAX0AF zwJswNj*<;?g?};IjqtCkCn{ql8MWQde66|Nt)U|PtKl?Nw35_#LKEV03Cu%W4~ zxAT8H=r!4+K8d&VN4$$kT!ezvOF=t{XAX|3#2ZKIN$Q~OGE^MwlZyfVxENz{AwtEt z|BDOWxU)XpV;ICFgio}aig4Xj1PnB&?S??3Ta;lBQYIDny?D&B6@J1YSKfafm`3e5ZAf9~@a z0z%GTh%zVU;NF8a;{1jB9(dKpom;kg0Q>gk+xprP$CC;AX1Qr8$_SsaKi+7xMAzpH5;%if^QVVMV>Q8H_kO&HlgB|n0vWHOTU=Ma}75g z`iBl*i076X@tX5If^TctxdL~r*Hd}lbp0Uv&tzS82oE^?E1)#^p^T6N4k0__0f(?1 zUSh!m4wfDAfJ5WpVWrqH_u#gL#e)Mp+(02Nsh9pKP7iX)yisqxI^W(`mmdf$exiro zLQ$LTkcS@NU-Of3Sub`DD$eYsS5VX^ckt1@_10{Fr#N6+GObw~SSg63a+Tp&&qKMD zCJi4kY{Iy~qsOmxj^vqr^h5vu_m2H=TwU!6FA?av>CkrH zA-7z+0e@mM@=QPdTegZcMLid45z)}Q?FzFk?h)E|$S=Twfba`&O?JrFTpR5$UUN0I z%{5V+4FQKp%eNY+ulK3&n;wk98)LfHIkqW(VGyYP1wY26TgBm2j*m9c30bBA0s{RScz$-0nXIxNkG>ZvSp zr^n

    WA%g*T=VBZw=Fjum&Zn{v6amF>B%lX+I3&N^D%k(GfiJ;VzZ$NzNd^}TCr?5UC!&yCUB zdQ=pXPi(T+{J_mqfDC*nPv~r%e8pHjQ{A>xY>>59Ch+&BYH4*wPX-}iNM~X&PM{ME zeEv9nE-NAoVSk#8hyENVQ0z|;KR6!N?XBhgDr3Z;WaHTU~ir&Z#!SDROI7P3= zQawp`5=q^t8z%cMo8bI_JErOdhynTlqI2-+bM%hNwc?yYxr1_@V`a(vE zP#TIu443>83Vdlt2&MSPIeHhB6?>yT)wH==B1cJKQMRrHoZS`3Z`VvpV(*a>w^WpO z{3yi*Qz=eg?^-+3X^N_<6xC5fRD_}-Dh~*VDysNoj{XCrI0y$~z?DL?i|VzVGI#mi zPPtb8c&A*eo!=?f%F)kw=(I6mA_UYmVK8@@_KeJ3KI~cFSYtJQMy|0+OoB(BaZdu= ztxI`E9=NY-qA^t$!WVe#Rju`mWHsU$H>3!;D<6pJdtImCqfq zvq%$YQswPe=t*q0Swv?3nrGz9Uq?#agRJKJ>-9FX*JA3&nS*RR4o9igT&Z`m5Wses zc}u_6DVZJfq}z$NtDeYWOrY5du;4uG*Rhej<0`$XM{k5ms51Dt=7+|>MtNE_lvVWEAqK(bZazmlWyiAjKC#e;BH_6mw@HO zFI)na+l@=Wn2Vw|rlBytb~zn9jUVtgWB`;s!#l}Z(n7nj-+)3qkAGvkaUNela6K3z z$T0Yydp#&1WIZU#oJdfR!1MTj^HW?e#d&;>u((B4&s72}=iU=O7-A5)#uMEI;OlaY zH*SO8-O@quf_-bVo1g!sQ%8Aty)6Ml1tFN+X{8QLx$E$HC4Ot09?Q3H)PHdJBC)H~ zBtQ_U1wZSpc-zhT3zkg6K0m#;s~$f{Kxkw|$&*E1)^1$nStd~oC>LDijR(aM$Jn!$ z^)B5i&&{NHlHG$7T^B zKRTdygUvV_VD{} zcCBqWODUs(-ZBLAiCaMLzoZW;tAJkTzn##NEw58@D4-v_1$4>~&?|-lof_a+V)>i4 zdk_Np(-6=rC?Mr-y7{ z9<<$q5Lt#v1rt+-$>L+}y@L3o|AR?4n z)tbtuyaTE=l~P4HZSa=UB%=ot3^~m{qu;O`qV0qekI3`(2+x}BM9<-y2w<~~4=usH zl_GK0Lwsmy?QWTxTfJMR=6pCYc#g%IXrXoZ=`)=Y z)t~qB(@Pwqt5gt_@Uh~q;+ObSKHxC8+w}-O;;bV)K2Q|Uxp$L@lIMJ)e`j%sDy~=; zqrw}a4sB%fr~;1|ScXtY&c~W=86+UMRJgHMo^QQAffa3K2WLg5J z_Y---Ur!{lZ^kM4CebTyZ+9#L1UH5U^8D7S(Uex0) z%V>l4J0DNvw`PXbSC8)F6F=#gXgNlU5nqvk@1%)OIS-r3fC$f`dSbl2?D2X$EVx{X z=nLjrJoYMnYsjoB|dRdqiZM$suHif7z1j&fXiwedUVS-6>N=JMV zCP*T}{pWjbHbtJml1`ez1s`Bj7Z4Ylm?N0-jXp1MB!KyqPaU-^qdl4kMu&SdI@x42 z^gB3+V=AO^R&X%I(epc9vv@#+V3mP{Ykj{j zBwzVS-|5pNA1%|O=ml7VD3+^K3}}Qe6Nu4;+_F)E)lNDe@IOZsUwH#gMBO3;INDzy zB%L?+OZ)4*sXt{Y|15CgvR!UltEl{TMThYn^#AtDkH|cKOYdu`UZQ@&tfmc=XYoda zr2#EXoSgB5TJ2f94Z*Ab329?U1po=B0OIrWfEhPK{BVgz{LX%9#AzLA#4kW=Fydi% zM6c0^j}qkX@DG2}8^_-iP-=oNQsLmuD_p6Jr!1rK{@lCe7>_E#crTz3F=<)0fS_`H z&fEQ=e`(o5tDxE5@T@f38)%6yvwiGY!)zDRnrM-Z%5f2&h(U{_oaVRx)|)A#_~5_v z*6NXG@eYIK2yKYwd;S|Wli}5GJ<0L~EkmRiypeu~NYzomu(08PP1%V$}#RH6{297OMbhO|J&%sTEH9!`>&hnpLU`aRta&_q^iZSkh6k{AM zK{1ZMuYanxfX^H+)aqDT(c;@}97EMd4xq~m=ybri`T^=9Ut(=?0L7NjgtRe+(}6m) zu8s8@z!7huw7BVE z=O2*HXaU8G9(JC@tL7e%KFBpXfQV=P^kgItduJ`FgD2RvfnSL~D*bj0KLo$5`OVdq8mHzpvm(v3P*R$g5R>f;gNFqmGa4 ztQMNkLCtn`Vmgs{-b8uuTACwA^ zaF8ef-u($VDCbQGZG(e?C*oQ_199rk(u$Vjs5~NZs+|tvsJJE~Ak1&A$Ext}#OWQQ zWc1V@{t(gAz!F&c8CXV1Ebf^H{E)Hr!`*xrcMD43ooC?9{lB@BDgxZ0ij=^z)4)MacFo!!*8#yRRl zm^h9508J0^3vrHS!A%JU+*VBBE#n=JS^5(=Pn+IZSE0p+@s7d1T4Yvtw6l!&)dJo= zYJ<1dOE8dn$mkT$ui>!Ao8^Xh?ohcv-ntFP$B=Kz;Z(j9&C=kjE9v24NHJifK9me4 z28??scNj4GtX+IQ(NQf>eg2RcFh={VxSwbL=;#_n9lnd?OE#VElYcjP>c%OK2p(VG@ss6yDhZ4kza|i)6S)tDWTxeJ zf?I}*KBzf=J0!!!)CP_@7IqkzaJgf5xTsb*ESKg1kSGz~44BZ+(a%!TcikF?WvrM+ zi!oM&k{#Ef^(T!SO)YI{F-DD0j8P*H!Kl#>vluo0aY#muw2q7#FCCIm;~%2)7&VR) zl>XqG(;N-se-ls|HGV~9gi+(v7xXO4WXc^zjbD1V%<`xrqQ<8v1ebb?1O(06mxtv2 zvW`t1i!D28#oH_F@V<9TN1SCV1!Kfh_*R|X@O|rvk2#VoFVj-Ab}t^5*6x3YWyCP< zFvfH0^8gngKi&#(an8X5FM4ke2zu{#nmampRz&Z;>9F+P>jAZh*)Ftj6k7hJoQRlB zxhFetj}~AD{<|}=AHOv#Ery3xoYXTQ>WJZJV~&7eTzV!tqeSr2?HsLT(3{9J+B%x4 z&>xYrP(zPM?;T1Tq4z$Q9@Io_c|-;Tt!c3c2$bd~&Va{(^woV~O#(n2_@om#24hbhFSRj_PsO zR1dt9whq)pq-qu&mJUDXu#E1mQ8G9)z7r7F%rJ8`0fkchwU*4~USnqDiEfUup>=GI$oA zw+gjGCa(~swEu}!{*|CKyn(d#6VO*d)Jw?QxqL51Zv8p6IsO5yCh1b39^sv_yS; z>!+n`pu}@!rmzCyW5s@GV|)-^B;x~GN5%(t3o$+j4;O?mK5&X((7-XkQ71k`{6PbR zdqk)_e}LndC5y6%3i+p~LmQ3rs3Ky6MHGS-Fh@Ypviw;nV}rm<$4tvMTCu3s;|{)K zB*X@rDA<)$S{hJXWH{90v>c;@V=xTj%*E?PaxLWKr-nFMt3^f9nHJFo=uGhj*B3A% z$F)SuWm=5*J~#0F;Kr9e#_@0f;E~BA4}_+x+62`_5aQ7RbX6V@bXEI?JL-B?L@%?x zNCqM6iewP7X@ujTCFwa3pIiOKwn_EpWa6kgEipya>N!JHZD=`mt;KUvRGpvm5LMIX zq^O$G2BxS6J|{($NsAF*e*>S>jSocyczD`}qpLC6z?2m5kCO7>A0_1hK}k&-3#&m2 zmQKB3oTHKDX^LL>^catdZl(KwtbKQ26-CgvcPWIt4J3qw8c66RKfKwiwpRv?{IH{jBbadIPBQnophR%=i3Z~AVTBUTZuVTGV zI)7}?6RSLZNIC~P$~-Luy-JTh%=oY-(DKDWFeuDsHh)hMSG7JtX7&q;7fme!V5ZOr zAzTIXMkS5WyRMS2kAg&@y9FN=;98}OF4-&a!qJc)n7+iw50ZGztD}?Z3k!rsNT*dw z(nhO1l0u)gjOK2L2}hIiS)43Q%Kc)ehmTDv6re9$#e%h8L^*R@Qio{nEj=6|9#A-4 zg&ZlIuEr+{r>j@x98SS4QaHW(X3~7W;dFW4r{*Ib-xRXLgrqa#0M`eF)4dF0v?cYw zV%d9AQj$2$7^wNVAC@Vnpl|V8gR!?9LDD`s={a$W*E1*SH{s<02GwgYMyx^Awi@L3 z_)4=vzSZ6eG~v#HI|bCUt5iVcI22H|?Q-k1q?GWpC=|uh2FUHKY&1QoYRoBw^2oT0 z%TDuc+S}5MOGq(wr*F;178H!BE)F3#WJd^%!JVK4yw63OnRG|Iz!B*s!_d_#Rt)7O z7%S3GE$Ne_=~GwJ26Hi;my@5Fyjl(0*{jv`qrqx*^V4{!0iTu?<9Q9`xbBxo(7#+Q zXRma|iLZGvty+Js2nMWK4LgH_<7#X09l0o1Lmdg?v@$!v5v7WS$>g-8@&P|Xot1^+ z%7}xUEXldgkn@Bo=i=EgnFg{n>xI8G>veqIr>>s0S}t6kR6*RzM&_nL=8;LJ|D2?z z*~tVqts4-vCQvT9mrza=Sp)sxF*p(@a*a}3+!|ADbCa5C<7NN3@V3O#NIGaTVMdK| zqCTgyvOc^{0I?^mg4Ga91yb|DRY^_sPHSY?YG_CoUXcXoUNB{9#gsFb+1Zy6F93QWZIKaT2{CrAf90$z!qd)`v;M1us&Q z?7^#5`ZEx0c5TOMvh>Z!p!8Y`l3HnE8E+;T_L4Qqu$S->ZxRF_oLKr%QdzN?my&wc z8|v9@s)yEIepsW-`UhUajK}BJsCfK4FD8O#41(89f^>Nq5K;lzLXi}{Bwy!v4bU-N zw8&5Twm?YVOO_^$3FBav1Qq^)Ss>}$g6P%x?;j^s^+Q88`Xs55sPKO!@<~#Ce?;0Y zOR6Fo{2z&&S(cRGk4WQBlUj?8|3@N!eVWwSsyoULK3d~7AzG(N22;Y!#tu#Z*AhCf zR_iq5I2-b)V-e!KLfAmGt$D01Z56VH#x75JAX5J5Kq%Zry9O-y9-g{639prnw zhUp+T{-7M>W?oDVa=juLu=@wAgG7SpAhQ!R9ppKvLk{wHPF5MHA?I~dPI8bymK-Gf zH63JNx^j@g>CCK%jGj)-)xu@gYFM*`a6tYs8x{1AmC_CWSS1^o3I>@vUNUju9#Lt@ zb7A^tX`|^MJ90YUACu(xRWQ6Q*rs#rm#&;+GOtCA=wonC@p4DssJ$m&Sd&!BO3v#V zqh~RdG9#hX`RyN+fsF+v8U{uSYzr)`F>U?;A>6>^_VlC^Fd=kwMI#}2@(*lHmP&ryzzfhLM$dnJ@18dtdEdV@m zmXdhC$mu;cC;g!7rPi8Bd=bBhtKeAC$lC3qd6wp333(``@pX|WrSbLfiPHFbYjaNH zArqrC{+Azd1+lhk)q>anWI_r2dVGQk9rwY&>WBaE488*whBA2Cb-k5?DT8nCTXT~I1vB`g z976FX10m!N+Ji1IgCBk%X@a=P5h>BRwpJxN*LVpfI{4B|&$mv!NXWkq=y^s6`MRKW zDn3Q7Qws&_=Vc_-)-{0QJ2M~~SEgeL8>dR?hlLNNADJ2O8q)%%VSIV5T1&YApIJ)! zNp$1_kmPOGDaqUN5>xVL49N%aVv;=Bko-l98m&Lr-C{k+D|!wF7Havay5n zq0aviA)e0nycBvFx`tlK{cgd>Sa8Nr$aRZCPAY{&A7l8OE}rT=0)2oo{Rp%%K7mXW zpNg&L=7RAl8X+E;Xk|+~leA7xST8r8fyK63mI^3T_4UfWnyfeMOP)EKR4c|D4aT}o z6}!XwrGU<(mBaX^{E>C-PIy{qY~8LMau zmZ@5LS;SqRr`_P$F)T*yLjly56MRxzPT(C}QiUS^cAS88bXr*N`>9-THR*YUWH>4h zZ3i6wqr<|EPmROE2%*EmzaW#t@bj|g<6Q`0hlQ~$g|<5%2gOWS%+;ob?_s__rLDWR7#+i`t|R+HMIuZ6gz&Kje# zfXoPW*7*8O2!HuE00OBdU;{gA9L&IgfMYZ@IoG*_I%|9|GigtfKf zzmrO8q9PMnoiDC{5FTDRb9TPC{swivxFM$i;iQ$M^Tl;HsPn~JzYfhs*Gd$z`1?7_ zL8ptkWFCFz;S1lua~Pc}e&e5{>0$ZjYQ{C;GOJG1LcQMxb;ub0(jj9yllE$m{jxSi z_6xSx6VtdN=uFzA4Rq~;tZ}z;gq9{9`Rq&o|4*W!Dqew=ei>q~Cf?*cXn)`*zTNfu z26a;JHDHbxLoLm3e^aFMdRmnZUF6o|&2!l=ujs2y7IawcRT)vq-a)2iMTW}!!oCys z;~f(A8sZ%1N*X!EG@@VKK<6CchOL`nc2{mSb6j33V6P;Ob6%vGhrXKm#Sr_j(oFjG zf_7aK;Tzdl&a-O5HY)7{53U+I6??Fd{l~!iz)rqa-ceCBbvK&!qPK#Tu}?bG z0_`*(Z?7m1J_F~&N?wl&m6?U@x$e1|8|9KHdo59u^CoR|LkJ)C)s2=^-H4}%7m1;~ zN}lyJSW$-$%PlQ!Z>bp;l-w^QbY3xgMqnB+llz>GO5#1vmb5gBYiXgLDqGNs;Tg)CIV@ude+6ovR{-csdd?Pi%&n6C zkmJkRD~mrkOHxw4O+HFGXDI2kQj*-2=IAC*ma}&gB@opUN@)#b(QHR|S+JTtREOY7 zOY9{!N&9<_hFBp%u6@rDX04U+o+D5GOe-p#^}q;E8`@0=Z`N4TyKa(6mF+b}cP=4n zRC6J|vGWUkyPmwsGgeo0hOwGf$sQ>;m&vvD1te{Ph59waBIWq1_Ob&0GgUNlRfnVq zU-fpP2I%eKsCm47vzW#!pibw_7++7!;!xD9HcjrYX0M(dT`rmAt}d4N;_K5k$@3lB z6t`B$v-T&O!sE$j!xe0)RxVV2onX(&v_IAUPTJ~IApP@qS zKDn^Ay`0#``Jq)8x`_}z^mi-CcWja)XLm@Di|g3G5&@f8XXSa|Kebtf6JWu^No;-l z6TQl28P~wxP{ebNG~z35W^tt6W_6nYj`)bwqDADm=I;D*Nsv8QHrF#t$afmrb8&eG zsY)-mStd2IR}tm72;>3UBZTWJPPIfUC6^|`ofO>~+c%0nyjq@h)ziyiWh*nJ&?g9= zZDy}8D>t*J229=@C^Mf6DJl;&vqy@lTmVwtM6SAbnd&kUyB3kxo7?N>)>)2|ds=|1 z#&MRUs-?cF8f!FUG^%QcSi@`NSxeu0i8C$DtJWw~wrg$QuAP#i4P)iqcS&a*_Uqa#x!(y|N#hJjE2&&7^SxS$ z7!1)eIWRL=CcNMboAda3xJ;g7&&9na%5%?5yjv`!Ff>GdD*9zJwcr3LXgUWw)&XX8KXVF87dpv+dfPbLo9Fhme+Y@^i~z^ zfCX0>m{z#l*w=naZ?RR*?+4rQocCmTE0B1OK-GQu1U7n z7mc_8q_2Ly`l@dd1%`GvbBU1`7*c*EUct7-VlO z`wp_dr+p|h2f@Hxz}b`D;I=-z-kO#u^iR3oy5`bdX>+7)2n4!0oENDm-B(3vhKk-X zR8;6W`)aX|*UPhtb{i^s$D*Re@1z9D5%szU$MQ)wyCgp(W0%`Q`K$q?U8o);_*oPWWCcid2}SKxOCyHNnIVbF=Ohn&CEMz|CGOo z?9vzRmmV?NF65GZHv(m;mvf(Yw%I1nz6>_jhKoR28|tgImPV7B%dD}Gcb>>_&Jg2x zwLF{HSTBe3ZAY zj7L8d^!f*9M#_s*b3eu$Kg!Ri0cQv2jH)X1im$4=P($>NKdMN#db)kDn8B;%)r_>M zUJg7lC>UNgRQ8`~zp5>l9pAP$7ArYZ(h?jcwrUC1e!+^=df}4v&ZSjG_0j$tF>>5T zxz-kZWjFkNdyM#!3qZ>H*;iSgsiu5lDC^}}_N#K{T(#PjXFZ+q66bn~{j@-+Y&P4z zUJv<6-k%MjF7zj6$fT%XxpWyfC%y1bo+JuZ=PSzQbL>@f>5FvzCmHd+y`<1NSJF-e zgm7o{L^a@{p`GuZj}DQ|7u#PGt$AI1H{UuDA@q(dZ|{6wkfj1E6_#JjvpWL1{RD5D z11lAiOKyet)RTWw7gRiB;SI0U;i4)ZZ4LX0-mTNRs`oMztrw!H6QEiTd~QG=IVj}v zZMIt#Cie;o)f0hhmG({MrlkdCM{Guj^MdqHt&ysO@5SL+_&X$x(g-$4z6;>EZOYv ze|TN$@LLG^k2^fycHZHIwyO>=yqygX-01?FDV^V2hDWLG{yJPBn$h9;@!9C`KqScR zJV+H%hu>lyo((Y*_0xbl{5n0#7FBhdS81%f<%m!1E3{!U?lV}Ef04I;5x3s4ia*d z(|W=V`D7KmlCHIbjTKU1b?Mvy6Hj_G(qso2nV(4$yd(*f6GAeD+_brKo>mS6s_cM0 zC`+r>7Vu!^XQbXFgz$k^Q95^mO_bZA{7w0E`yufRua;-4>+j`YT3rX(JfLu>e0n|P zbz8UETjA5w+FNqvdYF~J&DoO%r!x)CRT>2QqrC2`IoFEI@X1y4w(K)m?%xQUCv(oE zug`t;H9@szoT0Cio9sKq23{@C`htya*dxG!>#N2~4GPG7+rW-MUkkL~WuI*z@SmJB zsp=e4)eWnv$ikNV;3_CL&4IwX8Mr>?>2et>C>u?=i<6wEr5o76g$gf4ORl^;{(C zlplOMWxMJW^qbqN!MZQ3n*__)zg$J+`i$JqQofgC58F$L?>T?!l4A(rZgRP5%r{1t zq-43ai>tg^o`?M|(rAc`C_m>O;TBDr(-8}7A>@JW0VILwk zGQ#R?gCABY8+NG!%IE&He;^L?D&7MQ+5x4hh*P(`+xN*-?(lk$yO- zV}02e(bvICMLSBu^3T~@5bM6q#^-a!XN{MSvxuW?PJG~6)z?I@4(c1QyIo88%HqsB zFrPb^jq*N5`GlA97ysC+`lCE=Z@ZF6lMWE3?JkvHzFEu>r)TY!ON%+mi(A>q!@Y&x zu6X1n-~Xu>gaE4UWLx7wAjO5OeF20nLAn*eT~oT?}BPu zJ}|&@D;@^e5YIC;A@Z?(qz6C;Y$^hIyipberyFHksK(IcST#WBcv2yLw>o3;jzu^e zOfwOp29t!rR6!K&35@@tVI7@@%kUs>rt&@I8KvPRRu@2$WF>nUSXu(p(-) zz7`?>&F6SpL^J9tj`-o1617*wk<1XsBoWW6s5pXOS>3D7$(5tO#wQ|jptbFieOh2q zAfti;$5KJzG4w11g(`@nfy*s7FI)*4&lAv71r}9R9=Y!&Lj?@b6DdMLSqE_1kOCwks~VDg3{gLj`5n19GzUm z9OyXwUd0?Hj>*dSF zg#{q};9gn$Z`jq8k&WNaoZoLIKZ-%w`R!FP$hSpt-Wa6c+AGi9f|a*B*;r+9R!>Y; z6oztOWrQKnB!(fq$Ugb@9eAHuY#*~M(p%I%rnj>Dyn4e(l!M-4bRg>!i5l-yk*H}l z1`Robb|wRgMgF9xLx&bcQ7p1R$dNx+!g1f)d*sg3zFERd{T5Mrh9`uJoZ&~bP$7m z(9}1E;H@q3c!ie|k7o=Xu~mV`BwkEBpxDD>+xfOdWNf^{DHiyk89b!o@g*-M9&$f@ zD?_C75+pC@b#c^^G&zDs&{^&r^i4r62oEx}PG zM#q16?D~rtlcd-+F~RYHxQ2Kh1E9r+@Ry&>eaJ%V`nM*8tjnA(MW3gBW}GPcJVG2A z=3roS1pMjRj!~inN5r_J6_FF0I7*5lynw<^^`BMPN#G^qKI7pt>fQ}ljeb_{^TK`# zJCXOi$_Z9srwAb6Wi%EJJ^ zX^kA6gau5k8syWej~Y8>ij7<_Y8Bi$fE~1!7g$?$$kVFB9EVzUfVb*Y&aE<1gtbPi zEX=4?R!B3)Ggg79L2JwgEp6^tBf<_atE40+{{c#JIAIF;NbJs+E=tf$S+(up!~u$ zj!T_%$+t~+%r@aivt!IrWPC*4!f!xlM|Uef>XQSishiBEQZiw6f;jQxUYKzV}^@@#1-2#gjr*)rQECT^*gZfpV)Gg6?FFgkcq~ki&9);6asQ z+^ioLB;Q@;=p`0#R4+YU9#kJF_>vc^0DaI1(7Xf#v?gWTco@VKqCJe7KOdGX4*8%O z-!j~9@HoSZi3gNWG82A3e2b#q>;<9p|7t$_IJ?6_pQgER_#5J*e^l z#8LS`@k8*`Q3cwnRS|=ruT)CbQKMLed(OSxZeyCtC4JSPV4@h=s zq8~>j58vyMn#T6xB^0j0_iFj)X$49Jj64)5C;$@CQ;cECHGqcdf$(6$#b@k$h zWW+6Jxu_IVaAP?Yc)+L9nwJ#WnO%FOetvmyprf8PR|XGqG!`-&uQ{C8QZKK1&pMh$ z`eCJ#7z-x~j1~xmmAlV6(yby6|{@;@lZ!qahao#0{`TV`rF&6QqMc86*e0cp)xbzASc!hDK4_J!k8?V zKkq25hi1q_&pXNrk-@B$c!gw`oux--sCW#$b$OVh0@I+EnbM$z7irJ}Aq~!X!7;@u z6unJ7w=*G7wtvylK-A&F;44)tHW7J%h!)yJBzd@_rD*$qs2?-J@s71Vb>lvtZhUp5 zv_Ys=GV>3(lNxGJLe6VQ>In;klvwIO{zAe6CM6y^pj8nYIC<&> z3nJ8yO8@#b$J3gRY+C*@W#qXrwkqOhP66-av9j7W)=|w0A?77scf2Of@~VEBN6P|l zIF9)6#(U=GT?uI>vUvUMtf}$4#=&gF(k8NiLC`_QK&AxI2?G`r#1@Az8EXj#@FFI( z9Vp5j<^u-v!#IR^oG9go%@3>mFwugGOD|0iv%%Hruy=6L(o4g`YU!meuSQERwGJy; z;tqRcp=8PG;xSp`A&N;w$fs!drP!&C`Tmk6ZJOgdv51RE$#*2vxl$cpiMP7_qkPgMP+yb)GYDf+`pzLQkh^Vq3j-|4nxnPR;-WPFH z_R|e{Etieb9EmaCAe1LRlDC$UAGkT;E76>7 zEM4Gu)93B6e3U%C$kAHF zGd{}U_~D#V^{8CB*s)c#h1*GTaa#~?y0PQ4JX z9aRov0xzZdFCLWEGu*xW?4%6NASZUQ9foB<`r**Jhhh&8@_9LQ1Npq_P+R#tj-`BF z&-uQTXnuy0r9*ab$LbsaK;ZX7^@xREQ ztHH+PZ20P0leYdU(6uI(3gm>Md_}9wE0e!#^BpYT_2XdjcSpZ-^bvzOm}Kksi}H7t z3O=j?l)tmEf?TM+JQo@j8qJjh`XFZqV}ZQLbmT`~WClKw7n$)3d68(#8+oH%6qqpX z?n+(hnBXtzaDNZ4=9ltDkR$krK@1U6Q}g6_TFCzO;f(j5^$wfNTm=*G6^w=Q0e+aK zEdNC%9o5%33dx77Az9hU>(L-ya;ks49Ql*6RHAKG&$NP(14**y?}3oAXO5-p`Ga3n z3`ZPg&$saDd-+YeqfX3neCFmn9|0b_MRQJ%U+Y+}iF+JQOBT)7J94vR0iN4bV1)RG z(saEaaFehOr@W*9OO65zgRhLn3_9E=VpZ7aF7&IwmJ>bVO<)a_P^ol$&-v zAT%Z);#2#KB@YWfTJosMNm5|0gb=b-=rdY5&A%De*IIByn&~w;re=CgcnQt)CcIiS zzpS&xQ9hvSF=Nf6J4d4Vp6i&I>BGU2h#wtwwOexJR!7CcrrgFyZ-Iqc@v!h3`LJzS zd1Gq*eDd*DM^*i`V`_nRY&KS-IIAg~RiqzQYL;l>M6*N-geFS2euVdZ7BEee8iHbA zVx(2Vu4t*3Kc*%|=@z+gVze3|9#vBgboiLcfsR^mabk3cx8V%7q3oRSJB9RHzo<`$ z>_4XFM!R`Unj7sf#98eXht|w(znVs-zM~w15RW+2^AC1A-U=x5tI>z$EHyAOi zJB;Ha)qlmDtjxUDK_nFJ*D7UdH%xiTl8l7Wr5vQbb-tt#>&+Ok1d%1qUqoc5J$KKP5AyFe+4Ea@Mi{)uh;mI!RkfmgiI}NTt zxY#xNEtHwu{7ifzH$U^&9FxWO4mxJ}^X@|qIp&B@c>Bq_FJ=&fbLyNtdUv>Js-*1p zn!A{cKkVo#zGp0yclX0IW#zBRyH7aSvzTmj#PO=w&FhhO$4~LW_kKvZxD>8!RnO$# zb0A9oeKn9${+(kf|33d$<=+uU`S&~cv|2v-#nCusB|dZiz7PQx|32-QBUTd+I6Q8h zJ2!JKa_y+SqMYMhPMJJz_;Dr!dE79B(6|FV(zyHagkz&9&k@Pv#vNB4H;$K($2}Vi zm&;W7%~4%%cwF}S4c15-a~v8i_2tB~p26DYxH(ww{3`KPVpK|gtU|))Q==95sC~QH z872=Xl3(J!UA^ydwQZ_@Hio?!!=c2mjtx%tx;Ty$wCSW7OMEumMVzhId$%gx|5X_k9{$+XFoiF|$G6TUVVfe?>OWOIiv zI@XHH9Fdkz@rGbgo`dQAs0BhMSYSuK{Ic_9N4(zjgfhYAycWg$#wW~}uXli>SDt_Y zW?|Ylb3TSKa*zrbly6kO>L{-dI3c@TbyOAuv$5{aS-(K6>u7i6OV=FLV*W?2 za^p3K6Becv<;$EA@ri=Orzdg@ z67Sz|yy7oN*l)rVU^8zx1&Q?xVsK8Kmir(vJJa#8_?gjEQNa(Fl>I00yA`G6u`HN( z{lTkv1A>0`gqr;Sc0$d-;X`#%GW-^7eqD6W*ekK7btUPT9vu&313yux{e}v6Md!eg zLdHR0ra}hCqL2aKh-z`i(KQ@VRK%!s5}ppqWp^CaWA-DI`|orvHcfC3CE7d5q5n9# zi0W9;6HRDVQ1IVe%?d!L-Q=QwVUeyXC#l{^a)^2-i4YpPpkUhKboZ`fDjd5ku)Jfe z=*RIXYVTv@>4%l^T9T6? z7Y;(0eL^lg_A#U}7BIQ+9>~u)#n2Trgr^uQC0Hzs*+pC@@5YTcEFIIoTPJheHMGp}$GzL-26oH`Y+%6(TdjoVDbNx^Vpt9q5h* z)MKsc=+I-R##mF0CPTO`e{Q(v@^oj7&P8mz4Wv?wG%K&e2FB@u&aT1&CYA2Ezn~H8ZloSp~8PZugw$?8#2Ku6Ct>jYSEGb&?0_cudnYJZ3RPM_M z9LMl7jAORZ2%%#Rub`fq${OzQQu1JkvtXguvFPlBr=FUTk`Mw1r9fX>XSIdHd>|z5 z;Il9yl~^Fu_7+Ig$DAsLf+XMiNYVukARP*I!a*}$Kr}w{Lt}%@*+h>1yjn3?OgO8H z!@Lq|5)Q|aG7j(puQIgPLIgsIXgZpoN1l}Cuj!%=e5;?I<^0j*9M`{deKYGB%w zC=<(o`e8XFRN21$l-Kqlxvir$MFb;vYRIco?on4bQH?19vMS94+&h( z!X3&6rOX0t$fZGg#b|soR``&gTH!mDV^rS|<@9^zW^6R{-%>8ITG(R{Lx|M8p1B#( z8W#4>)EHPomMiLPCRQ*O#=;(hcv`;vl$!bl6mt$0I~fAFG6>wXrbm54+n+X{QenPE zac66BCL1=*5l^bV^x)Ha_D2kraaQYpP-d+EF)U;K?-b1si++zK^nEJZX?Vha>6ng8 z8Uc5x*s|J0#4JY?9{T5VYP1;GJjVH)CL)jm5BqsJkmJ#Lh&+3{O>kHNMjJlg@=4G5 z^h2ec!SL}9R-is(G9jdoEfS$5v$5&8>}jagwPH0nBF;HjG~ktR6I5hr-wJh4%ZyLq zq;c8PX!Z5wl9+;_*|B0zRwgq0tr@jd5D~v`i@L{7O9S%Q42}XapTzT~dlO zj8~!*XDC9*0f2c?it|Bv=a*tSN2EA1`LxPyCi4;s&4>2EPN)@CofWkO@_1Eey!eQt zV8GNrgjRX?bANtXISkurc`x2so$0_>I|5b|4J@q416m-Ib6lz9>@O@}bd350Qe&b% z4y49>qi_{xrZ~>!qDCDx8g-PH_%!OeYSaymLXEo08+A9wMj5-4fE6{$!ipMYfk4!M zK8!Q!n&WFsTEkZnILKEvjXVk=cumu-8`32pgp7!F^Xz{cMT+@ca zv^}F{`5+9e02z_D;j zXb%Sa#0Smb^uXX0c8=K!ae@-!w6KG-k|@E8i3t>2n8dyWKD&+&n!zODoa&gCyqK6k z2{C#5WoN8#@M2`5CCC9Oke5;}gPrqdduMbGmPENs9cZM=WjL0~Ws09w@8%Il?CKcn3@RY`AbQzFj~5xE9R$gA!*ejVUft?yUgb5esdZ;$8Wa@6B9Xc*!k05 zW_}l4OMJ+|!7*(sgIxAWc$!~rO z>|kG{_7yB(J8Q_#yE)TD(0O3v^<3BvO-2lac4)kSeEo=`Z7aY_r-=idWkd;HN^L1} zp0%aC956_=MaxJk8<}D@#>lOJ$xvvFg$Xsr0-<2M?P+JC6_FbA*xHx_J)NndJC}+& z#ibhK;ss`7QdDDx@ltBcbG$L5a%_yT%^jFvV=PRlF%}3l=FdLP7FI-Rj2-xSduFxx zoC`$l_(Zki6JB7pV}okPCSFSISjXG3E5~*eP_Y-7U^^^Ks2vsvwc|;$v!xZ0+OdSU zqlOH71~TotTqvUNWsX1BJ<~%dl`GM%b#lq(3ZGKm&eH&gv?V%e)`u?tN5b4j0 zsXe`Udxo0rp&LZZA!B4lz=kql3ma;W1w!33Whj`L1x)Q}2@I8)fwOO^e-5g{*Z=d- z_cwrL6}TvN4h*Zp9TKhnk=`D2FU?#c6vce;2Z-$P)h2GpA1dY-=fxEBp~Q^&m3T2F7Enxy1u&s_ zpM$Uz@6UmpD&BJ}74LU|S;79}qKKp7eRt%A|Ejf%ey?0BCf}IkjEFgnC_MJ>Mu4YH z14cP#iauOUIuNzXw^C1zGGMebF`APBf)uYo&t#l0BQ_c5EBHjl`N|(;oPKw(?fPBq zU|aW^Gu5w^zV}~PDST=rO8zy*c~Z>ctsyI&$sk5+QvW-qXI^&>6CW`a%2fR@OtYoQ+p|-MAj-@Ph${%E@B@stiYSf?bg#UUj!zn4_#yU&Lv6GyUF$)omTkCWL zFl((Y>5DZbkcbCNCOgfyW>JnpCd+9-buwAdH<@fL#3qxijZb8y&ACT(;Y}br?Z6;L6aEWtT3C+F*RGgsIRhqMGlu62lVA3Od(iqY zX3Apyuutjzr?S|IWXJ#p|D+G!jpaFV-Q1xJlj|Jz8i(*=sB<=P@GX$2IYreO0f&d zpk96-CKw64iq{3gM>ke}1n+E?JSbNK_EJWC=8Tp%=K|pDTv**`@4rrKvyNWrg0hkv z_>+~C1TxA>IF_;!{eqfsBaSkYSMjOj1v%vdFq2~V4>yxQ1bEDZCfxLuq}Mr^Cfo() z=l%vSQuKoPP9a|7bm^2$8i&v{`yGUkje){xh4gDsN<@e9;#&(YzC-(xR5vF%vy^&; zmJT)W_3^70)FGQsvAn%l$}7^_vqehh=MKDAUVrBTt&?gqjeZ!lue?=IN_x4bn1D10 zGLb$Ff-HQZL6CJJhopCioUz3Dsz2Lry%cOe^deC3^a$C0FoPJJQ>W)K@qlkih07}+ zJG+ZwjJmRYKm1aPUR1V!?i1%|QG-`8Z67|iyvDO|RPmznsA&!Jca%@Qa;m!&JxMLT z4$p@A-LjT$(ceGm-hS|#e(vlkMrXqhpV}$jicM}ehepwWDgi{)fZ|wcK*9NKx?c!! z)PP!sPbDtOOJ6#x#}vhX_<#yPfT#OtK+%V^zT#jSP-*WB&h-iw_Fgdy+s`?D8dzI6 zga+0|gwVi(-o#hb>EYixSL*sn_#W3WXIXKI*T`y;G*CN^id1{011?^KZT(+_*9w64 z%fxR-Hqwt?l-nA1DJhQfdNkWjxL+bcdo0sd!urrtm$*WZ>O)2~^pc{gFM}I!qg)M% zD4dbbfv8^QlAOKL87Ip5Qq^PO#%Ir)v4HCS$*NoDV0|s)M{vxC9HEi&%)x=B1KM5+ zoOfto8PPr))z+M<%b=<)lLfapo1m<-8+R#T(3|&R2_a**4lfmu0(f+5!Z1!xEhjO0 z+9;X$qq8nh+qTtN$7s1##PCsC9oXhDa;>w1NXtenl@ps!#88j)dI&qGZ!1o%yZ-$p z`R*N9Ctsb7(h5!qKEFEe|jJ}G(Gv>d(4 zWr`sGTc_wPFRPf;IvcqboLrJ3_dj;a;LEC8p36pR5GVDLSF-=HU$mL?cEHPn)NI6N zaANbk#IReilM`*7d`2BC6jhSpVL?^JAwI$>e*UanEbWcicu~dAbqYr3Q!W08;wN{E z+z;Vy(jzD=#m}SoMDg?Jfh~P8CGJ$wo0+&27juw~;^Jdyi;9aJOU1=M!J6=- zIpV0eI2;*1mIE`KRbn0>l!wKOTrCt9=~IcXav>=!w%F1p*J07pDMGx&iBn9R$srUI zrz3=7B6JDG#21b_Ki0HQW%x1hl%MkoEq*oZzz@LQe1*gpd;iJ(CkGebX7CX%l44OmKpecm;A-Z(cK< zU_k0MBZcpHO_Ey~drf)4vAiC7LDR!5gF2Lrea3Mp8~d2ihBxUW|ADv1KpE~8tF0qt zbcGhmaHO`Iz8gw#iC}LwdOJD2qh5OCS`?Ap{^3WD=<73u8@Ve0=rRfevahl`~UcRQ>!80HM-U!_vc;K5iOW%<{ z;0DC|4E;gf>i{8tP!FHTAJn^^qd&NJ&*}FP=I`!1Ul(?y;2C1%4>~c3!8y;DFhjhy z$%KcnPaaD=wi_hE{v`2tP$K(v?BfwiY zm{Ov=+(hhAafm#iyMo0=PMo~KQ4S$*kbw~L2B7b40j?4HTuoLDE?rvUv|hh?T_rJD zydru9?JuQD?}qk(2iFbHuEFYPu_3Cj!@^*;IIHd zTUsTjvB34mB&G$qI)4F##zI|uqOnl-uN=q1;tJIdkd zZ8f48#E?HPOWG#CSvFU1(T`C#Mihe>{8IY)cMehdOPkT}E{pg9#SWqh0j5*Jv)RSu=fc5!X+e=)h%x ztu3wOied#r3!5!AE}?D%LOD-0tu7xGgE88R*P?rBnpf!R5YKQh-BZ)+hScn?CUed` z3Su;k^8h_=1kN2fySkiT!u5w3$LsnN#JJ;o3av6Htm0`*AfiZbM_+4VrX*P_QrAPy~?{Z zP1tTi8$1Jz%wr6-Ym?00H#Wxc#z?&VCOy5fD?}4^PSeLb7#C<;s+u=0wf8fE!7Wo58;n#bj19pj z3S&dy(^>Fc4Zkl}!KKiROYg+H()`W!232!S6BD?o6p7wo5W}oe-_PS*4?cNcN*?I% zDkfuUxVnpX84DGT{4h#;l6{Bye`5WRGu>zlF%MG<$O=4!@GY<`85a6*`3=Qe6YP;Uo#IGDqIa@+qSFV?_ zJgN(p6JF^RERJ&Gbol5xhfq|xf)I)-ph7x*c)OnKQ=w%tdBN{=(I0_^@zX_*I0;&z zYSO^fS1+6?7c_9e2dsESTKFj>2PC?TYja{V)tXO+ywuRur|<=&MQSoUI1pENaAfBK zr$lNMXn@oueBZC{`zfCWORb5ku)Oqdg)q@58{2w}ZEG*vJB?j6BmJ;dv%~CM>7Iv~ zO*7i7P?$%f_h} zjs{7K1bBq>eS}y#(b>W^HsJeA_>lE@QAVt`)WFra6-?&MO6GtJP`=}`t(-j6Ah@9R z4PqD>_ZPfAW!#@)sc|RB` zaF$GH=c*z?vY5HjVnAS)nE~mAvOH#&)ZSH{^@48UYHrlV_O7-t1G4>uOeik)2bL}yMOuPoLJO$4t& zUs)|>+Oa|WA=7-I9C@i`VL86D>lJOVyxrMVRy@aPYj9DaY!OrlF5B+nswIZ=GK`&J zi2dp_FwEfVZXM+8&aRHKN|GzgN(Eyb)2FeSeGq5_qqt-H?9dofN~4rZiP>Bt@_P=sp35~>?B*(=aJQX7 z49 zKt=^Rj-&$J7U)Y{s6-qU=!*RfPbXyG95}u};eK4~%d%(Zod#r#wF|ud7MPmtS%T@du|%3r7z) zga*Q0gwQ|$Wz)h@^li0pRP;8N7FS|ned|p=1_H|5HdbQK-BK&D;fN6<(|V4GxAE#^ z{rTm#x4^;Pg)s)NBjCm{=(v_vA#nvZimS;hoZL3r<%sT$M9Jj);1ijApW8W_{Fc{T zQ~Y_@nPXfZh*!CQWbz{!#9*8{D~}$wbVz1VS!$XqST=dx)mKbmER@~*VVW}ewzB(1 zZ@4Ck`Mip0_w!KIo%Q!_tM$`2$GP0%d;h54SyA7A)74Jw^^dyKi%Ksra}bUO#x$Uy z1_sAc17p~2H82oI4UB*BX_~A$(N!;IGCuQx@gf2&1LNC?u11=8#Nm{aE?Z$w5J7hs zI;NxABe`g@tAii>!c$=Br-(0p0VM26Utf!rE3Xfak_{)h2FenCJgx7jjHkAAerPP=>Ipy#(;kbA^g@Jp4wH>mlI9_88jlj6Xgtb0IgH04 z@}IX|es?H;pXypCR&Y6KJbuF<2IoBQP)@64hk0*EW|;gce|#~ye0Gx{Id7J$zSzQ; z(a4PQ!#-uRbiV7_BYxq?G$tqXbH{^An>eRcUGWDmrNbN)cMl5y3mSZ;^%_Tnn9NU<6| zl86D&$>s%E_A0=i#&T=H!bPHUkdp??ARwRuILA@}yyL%W#2}6uF(>h9kev99t5(baeC8vj zGXgxla{hp;M*5R)Tp#P=9Ea10$;*KsPp{-tpYb`(iPMO=!yzsX|O!cAO`0=4;FG{OV+xc z7jH7^YMl7tmog4?g}d%(oV?GgnByevt{Nw)&{25im&VCA{&By!tA@&YUQA)-3z@hP zBI9meKqCbTHW^Vj6(3#EIS5JvWdhV!1BGL$fif8E1w#wssDbhiK24B+Ziay}4xjlz zc@6=Vf%422*AiVk zWe<}NkGMkAM%BQ5t_EU0bs)agC?_8I!Eb!n^}7`xr)zoM=j!RG z0^%HJ3U5g}$a7u8>WGr}%~q-}h7>~xjh_!;J3O3%lhuB4oz&~!SBKyl@(Q%At*(r_ zWLZpUbze>30zlbn-+#^fYR79$UYYi#_J$JNm)e(?&^l#LAF}$8`znT=zNhxRBT?M! zY9VTDqpcD!9)!r~84xEXW}`gLm-5?+GRZq&w@?f10YF!-TwJ)Am4UfWwHhZ(ZlMYi zHm;m4c3-_Nj0W1+a{U3TrXeD|!YhB#}fhhFP9 zU-7S)idpny`*Bjb7n_e6pi`c~R*Bw>f<4 zQSJfDRcbv@p7^wkz2K@GX|~4m1&ar=&jpy9#c?v!oO8R{*AwkI7@MQVJ&+@Jw{L2# zK(F+&(T)K@@O!8r|H!B|^<-vzd{m5yW$5!~i^dY$H<9N$1O#b&RrinBc*Lfey-%Z2Z{sKZ`!KOoG>#MG*elN6mH;+qxTR*&3RK9r4 zwMKlwl}ce{8G{(|r~W7W>i^{$EYcZu6-@l_OZh>@-GC+kpERsLX2z{cR+} z7ZxoV#ZWz3|KWiOBWT) zACX^UT~e;`UB+*qGrXHFvXye#)J4>%Idh7;ClNx!2rP*boJzX8ulSoI(q6C|U}(4( z>;^A^1S3fgdZg~D%=d`(G-WLTGOnPTwtS3| zAhh3?Q=FuaL}Y#tR6d~cqd>W3R8S>RH5=24UZxRxUByb9Bs&DVt1n}KlMhuc^Xo&kHEWPX0^FK403jZo(qjL3P!V24Fp=X@z6j};p`wU@ zx1mvZX@U-#!RrmQF<5BKyI$p0DZzRPOO1KgfJa`TD8X9Gv8kiiaG|K9R|@w{@iRwM zFR1Z*NP9S#?r^q1sNc^U{r(5XrG7taHcJ1?+S{ef-Znmf#0eXp2jL+00VL}ApvOkf z=X>m9ZhF9DmN-Q`R*949`k4QbtvnFn9&K$irBE*wayJnbIUh`+tcY}PV&zD8Ln|0f z2JW^tduWZ>LzDzr2PY;$+*2|GqS)38g`n8h8=ok)^?ppTP4J7o&_~AxR!S+iL4F(M zZeE1S4DaiqS!4rD2KGg^(2HzHU)rHd8!Z4KiHpK6Hy?z=2jI`MyWr;;_<1#@eZHrj z8uxys6fAs;3TC{TvI6`y0tq>I10a_JBHLmks_4Kwt47;~jYj7w;c7PieM=l69^RIK zmq+1J`rywp{P_}p9`AvlfW7c@Z6Ew(;!o3q@Y521<{pNh`S=rg6n^OAz#seqPxM*U z`M<&weSmMx33ysR9)CYLg~j+&94{NDJBxSVwSsh;;S{{Bjc$u;h1XfpHC#I0=|fj7 zX?PC;-4XLAo@b|1@xS7kPC6Od7Ed(Mv9LC{r<=~NjK;mOwC{LJR^T&FrO?i-dANmy zw$QwQFZF4=!Z3X0NbhGq$Cn!P{-h(WiPDnqU|blYHLXcF&!v@sMVLxaDpv^|IK}lP zGOM`z4>2A4+Y_N_*>egFq$qs}goGMxO9!XShdKk~`3;dVaz;tFXo{oh)s*#M11W>X z!w-FShFdgHBnM~?I~}?V$)u#ojFRqi;=62Izb39VrK5c5(%OaezNOp)wEVOKauDuS ztNHn7)#RaX!(ywDQ4{$K-p#~pHzY9f*on-j6fspC&BiK&v-(;Nk8{VA{olo(BA3Ux z%Y`6&;PJK`aDGU8S+qp%YD9gAUQ2!{9U*ghX3>;3rlPxmu!ymAP^W=@wexx2 zwbOmxa|H^gkErC14bVG0k+bh~9E^X@PwnuGOinEpDjRfYA1TMgyMGHD4sDnF`nYS@ zMlvmE7uTkwBW)j>^`-WyyRGdj1^^>Z(m#Ge zYfcu-#24HS+eZJG>gaR;5S9~1hZe?9rpq@PyF=l9CDNmUC9T11X(?rxnYwGNWQTexGyAd{(5 zYvc@HwGL3SYyISscJ3N-XrkL?TWD5Ojy`io`B0fx>(oCq)YK0?t<|%;X_Ym82kOgO zxiht&P*+9ex2@eJZ9A9{UWIKl6m~GX!b-@@uiXXZ!#3{Xc~adbxxKBsy4Ym0H&l1t zS9R+R)up5AR@?5FHIyrP!~it(0Yk=pP%y?9wY<#y)E#FlsG0UluIJ8Ea^>UR#Ra4M zUzzORMqi}+^hNBc>Y?)IPVOJ|78)Fla96XnWKv;2$k?&16W}`tXt;W3P1bDguBE5K zVEo7)Cl7UT*UgLet26>`kap17jDSjGD!)JV{fX~m3QoxvmKr16=#+j4;oiQ!rp96& zO)hQct}ef|yZ72&GVA@920fhd;s#wXylkjUcDb(xeh7?Z!a;Xk+X5zn*PNxH#!rdAmp;&j-} z-L<4#(AT}v*1$xNH5aUDIP*tAzCJwcZd3!aIV;r-o>Yz|+n&L-BlD3kdOg)=a?Q*vib92$+nLe z9?Gb}Yg;7zHG>o34|REde2=EKb=HE)GOexN5^7mUe>2uS&UTn#66phq^f?A6(g#T9 zXu0H#;PSQ`*3!zd#e;ID;1TBr6p=3uai`ew1$cX0DK{WMX0+&4FO1Trvep76 zxDKTg2Z2WerDP0sJ9Fw(ZGt;hFQ?Bt?2Z$>-_^2lDD---t~F)&M0cf#a@YX6Y{7{f z%jt5$^X^(PaR}z4MVJkJEOG5vWu`s2n3$RNX8;NhJpyFS&F&I5j!Bv6NdK5dW(w%u z%+xm759)U>x@!qW)QCBY{-~Xo?6gI3>rzKolQS}C|Ay^j6QaD!h%s8ISd36|1u&+T zX7s2lSL_@4vc4%muBird)h@#1SR+o@_YW3JDS2q{%yg$!L^|1sdP z6InHKeNABz4qabEPy{+3@(?|Ju(WPcdlQ_`5C*3)+$|8jn&BZ{wU!zK8Bk~-0|V1Z z%wnkIf@UfP3mKdk%!I{h^lo2S3k=#&>Y+_eB8TRalc*L*PJ*K-ClLwy@j8iW$cLQ7 zaeS&4C_7AaH;Ac%|8OS}Wy)hX37GeMW;>hG2DFY)8qi=V=75e3QUkgStK=EbS}B?KK18heAT^#r zS86pypV|G0`R-3`ub70DwL7%L#!)8F z!!70IU=^``Sl}LEn`t7bd~#Z_GWJQ(dW=|C7P{NnKK8|01T>z7dEN?EKoJEBC=uUm zEifVqlu|_T5O1>B-QD&pL#6R{#2|iw6%cVKAmX>I1wed4_f~MY#zUK;l^;c8(s<^`v_ zBee5!;&-r!3^rqC;o3pOQm_4O`xqH-=+<^CI&`6WdOn%;WpYaep$*rT7LYsRX6JEd zAT_zO;vvuua%Uy*iQHLIIGj^wk0Nn+5blfCHn_`lKt1*01IJje30i&ea5DR$cQFS zm$0qmWxK!^(PzMyZgf`$i{7`>SF@C`1nE z(Cz=x_TGU}7R}?h&y$3bY&uCGBq0O{A%u`nLWd*-2qhsQ&pme+0wffLNLR3-fE581 z5Lgro*su$to`?$AP&(GvhG18^?X}`>cJ{e@X74V(e#7VIA9$JFDLXSe+veF#Ryft| zgvr<;M@S2Q=u$=m0+Wi|kSC>o;iq_agMP$<`c5GF5lluqH-~0feF!@}F88wpR8e?d z?C{(4q0RZqt*#Ccr36W+PA`E1u@gN8{=cKDM+i6_ue(g^rx!Mt6Q%wH!xvlhKF#H_ zAgj4gs5$#5jEz|6UmJy55FpgSH((yW+P|_m^NmBV9MvAw;(l#0Hpf$TdYX}j;n~N-Y?Q} zXm9k!PVjh)oyUcU7&}jhUl==2G;c6=&e#`hA7jM+s@o#M!flg7W38~M*-&5D{6E;o z=)#Y_Th$is&g~q}6Ar=_MhlydjGY_WXZB05fnMhI@!>LbcCyRlR1nUoaPuM~T&{b9 zNRG%NS|)~Lw4_yJwEPq9lJL%`ViN@mjFzVOl^D)ncpKLL@!}5}Ezj9*Vns{bkgp*U zqH~Lry7OGqqux3)w@uoLkaKJZiI6h|6gw=a4I^aM`!IOk=wG=oO%KNgwwA#M<$#7oTwl*c=B&iRMnpmd$!BmPzN3=*_E5jJboZXroqlmR$LM-FVQMRHo`5RK8}kKh9p2(!8KdjX z1ZqcD3Ppv*Y_IO7Z;arFr_^+bxS!yl`tP;c`h-tm$G@t|OR+u43bB-Iudk~L7y(#r za$|&alX($xAc3Z0h*i6f2(h#adqXUA84R&s3JEd9ekFcki2W)8LoB0P#Ug@;%*W`z z`SagajZDHa=?cE+rNb5%W5-Z=aUO;ZX#FywO%Ifiy zEgEnz(GggQL`R->qUwC6U^!f*FO4K8cpxyGP~w3Wo}|Q!{X^U?oiBDOaKorZtR!(! z+F49xaO(M|2!#+<`J5Y47lwca_<+JqZTaY#9b0kF$*MsS84N0*Qc`%)^@f$F*2ad4 zU&7y(Pi*|;9P`v3i#(IS-#k?{E-@vLdVL<_TJv#5A#mx7r|#2sC7PDErq1{-t3cH4 z4*&S9ARs;~U{O7Y%k!r!T-Z!d20cB&>mtXM@&|r^Il}}&02}C*4NRY~Frv%`ieK2i z3Fq0qr9W1+){6@GrXQbED~k-}sCtm+)8k~}-9M-|Vzv}IG?W^zd!n=xzhl_1F?$e&YMBTUGa~50?&#ygK zRha0uwIO~<|6 zLfS^cUvGU~AP?r!BE={N$&}mToAJC&u}S(N#tUB_*R7e52)f8pUUaEGj9(pMWU)b! zKn=S{pGe-elQCE(tM(^gOZMgG+ewy1or!I}MzcQr;Kx2lsO6d6XT%Y&Mma?>aGdvOXD=&^K;rD1@)( zbEjN5dDe`&X){;X&*hcO=)t!&H>Ui*I~_k;XY}XG!i^}sCX%lYH#)1LRgQ9H@?XP^ zy3pky5s$7iy0BXVWLw&hZ0m$rA3kMad?%3 zVp_3K#cb_L@N7yj9?>Fm2&yIg)k(%&)`P$~2w%bnwKS^q9C+R;&Pd=~X z54JSsgp_#O0_Edd8CNn&mZK8Gl8r)UQmUv#K-iFMv=4%CHrXgA<1QFeZ+kCY>sg1Pc- zvnyZS##p62%R8nUQzAWtfMtMf>4uBFOyJT0t(Gqzrh6;{>}YFT9df|i4uE1iC^0VD zLEJoAO0yNJzV0eY+DzzMu~T$izIedkWIm>yagWGwZU>$145=uiT2*@^3oZ>^&>nir zAGCDwMzcGwo!c)D-gbcC-ZwrVu7yR*Z31S*_7|dHaaoWA1hLj_vZAa^LuN5Pv=)>8&UsAW$HgtY0W2OL8eB1 zXCqRj;-`^Vsp~$`|H2a-ImRp665g_lQ5w0FaJO9bmM+FKY$bt9S6!KFtkIW7%UCg> ztMOsT#%L?r0d&itI(!+0IHxszx$)nK^n0Fhr}h$GlW(+-+(B4dB7L22EM{*IxD?6L z4WhsfDbm{JQzLk1*R7C3)y>G|H+MJOA@5rPYCHJf-Hic^Qugmk@lt`?rL>8`yAqG7 zsIDX--0FWyG}t2I$k7w=nIV4)_FuN^z|K+0!M)(JXV`|+e~*?&znHr{y})SH;>|lP zP-ifeUCl}5R4gkToL8o0ol(y3DK--Evy%?Jjn6f`T?}7Y?7k5G@0rur7^;O1kMYhv zM#3-O{7ys>{L*9?Z#&ZH7Z^kwaJMU@DdP;}Y$SX#{qf;bZN%)OQK{mVq-px#82;7( z2zZ03Frw?kT_hlMN>eB#%je=F6n^yKjBqUm(~~_P4>U$<>?%sYo(J9#W6c9^qUB=x zqFvWOOIL!*c2s4oEeVT*ItPo4ipI?b(H3d?RWW?@L?crb5LK zdC(~3X(h%PIOvET0t$PRw#R3^*BWTk+r)aC%i#2(Y^X8te43^0{p79;TtD@7sL|Z#6jm*{?>4#n_AyCbBkEZ%!w2cXQ^?q z4GfFvP@vd(Xp8#R{=)xiSx=D@+Zj+5?)dcjr>~us^>*D_T_n2V#>l!6@If2YOXanX zW#mW+@qpHbW6Vx-BZad@iZu4L&zDezOCXKPEp{X^dmH6T%!kvlE`|CIsPEzlwi0 z1~4`TV2Gsf1~7J389y)&#i-oxuF|*0%5#OMV&P(ScOt*nVYKA8I*d{5U_jlyc3qK< z;&!CGx9XFh~45pxPgHHB1r-+R|8&BvQjqML4oz>hA{{%bVcR zbJA*9bk`jWYr!a*82sA8SARRJjjA$HTOM%a#KAA|rV_%wmPs^N;esN*^=;_FIYyd6CzSJiU`%>W2c^EI6 zX0+omy*tK72rThzDG0|G_i(i3Gn^=)vBhbWy(t8`AHmsNV>pU%q&nQ66Wj z!P=g@ogbTKv{gC#Da@*=c!qY9E0xb`)@MArrq|);Jn1T9e+ntBPQ#Dgc(hz=}|R>H>T#5XVs^@RdB zbXQt`#Vn(Jyxn?hF$EHcGdVvAmQCp#LAk-!Sh^=?w$WN+28H7?*`{fo&M2+H9`yDc z*le5VkC|p;TDNgfOxR+4A-V;>;S%FZe)%QFIX0W(gB$keEAD$Jkyk7m5JsHadJd3M z5}mzBkB`Sik{%P!ca3u7@<-6HRi9Ws+NH$;yq+Y`)nYlBPcx&$YY9X0T1P z7>#j%L&n%5jS)#)5hfOk>O<0qIjn^Ua2KDBL{jcyeB~9P>AY}oNG{t=*%m$TF4Jz| zI~E(Mj3UTwnu|J2&SW3b`q*`W0~%aGh+Q@%TP3ma?FmVI*>%Q16^xUq_^XUO_M<;# zwW4;?mB?Sd3KriABaA0uEl58QLaB8CHB*HwK4zBbOI7=M-ZUItHI_|jp#d{n@QoLb zONpQbw*3aSkoGI2#ln7Cf3B^9m4L{O3tXs-Xn`H-pKX{Z7n2|W+Ax!_pf;=}a4u}9 z1IEt9Mhc@C(ujF($1`j$ML;700vb_4KqD#;+lUGnjhH&tQOK72Q&vSlBmQTs1MY#R z6@@wA2_#TgZ=U`%e3}DY>To0+$wxxxfTMZsPabolQLO(KXQ%Wlu~UQ-e(+?+j{0jY zckEv|5v@tBvoHC7sU zv&+XpEQa(1xs*M$%J@L9hkclOM;4o|aP;m(Ol?4i^Z!AIjrrtXC{3T7z$0fk+Of%0 z6x7)gf1TCI7LB)bwr{NgFZ@!p^VZoNHV3M+m^+LYLS6;yo{cX~XRj+Py-M5FfYJ^I zQQ9|mHfn1_=nJ+2kFGZ|*h^FhRM#PEyi^smH3o_-&U z#fel5R9IgDp?xx*FM0|Z6_Y6YWS9Gmr&&2gJ8!j(v^hw%d0=}fNei6^TzGz5Njr9# z!cUwqY`7;oPish9i-TzEkxhotNNs7e_(KoFd}J1t0+n^UfKX*kmra>wDeJ&jj_cVb zigw=0dcfvDd~EI2i4lC+>5N#OQtxQR)1NdV`H07jn?nvHhVeXSa(i}2k;3Yq`o4x# z_)%~bcH`$-JDTy_CmXfTie2?hNJ4|dzBj2nsLT`o%6wfm^%YB*cVsxGvkQ_)zY&Xw zxG%&6fZE_M8_m)X?svhEiu+yPikX3RRl%2X=7u|7K?e7Fpe=X2M$d)s0?*7Yj_1)Y z8I^Km9KY2_Di4CSd{yJ81dE?FCh)E=!+}J_GsdNCIBhNNU5TBj@*xBajTZ~X^JIFA z)e@Q#@^ z<7bUze%n_UU&Q_-EVyu>kYAzk8=q-9kcGDdp584G^txXyzxm1Xn;`Pl|LEs8@v@ma zUopbH9z@Zk2YnpiL3x5XdJtUqeh~I&Z+z7llKP{Nmb%dqD!%PTIMFJk@}nDl>W@Bv zRzWwS1TB?|CZQWSMQwB=m-vNl_w%-8*a3_c-?+ultNsA|@qr_oJruzAzJ~a2mV6^f!`B>kWW@(I8(c{2zN$JGn{f&R z_hHfwG>?y=jb7!$qjf&925k2h@XM1t>M$sLjnarBV{K` zBjp6}&T5Evf#m%UM)GoQCHM0vYr3B|it@xg+0$!3H(E1VU!+^*@PieOG`%*NpRRDU zXA>zJs%d;fqE45hMiGC4!#Do%$JK3!Pub$4PpRyMPbm@btmyLUmL?zu!twd*#Ma^}v!#Mi3BjS=jw!61 zR>kQcJP{!-VPG}11SbSgVlP7Km16I#K!-ZG2mw)$2~G>HQ|gN8=)%@;P}VwmAX`a` zkpDuP0v@IZ(Q17{YceZ%{3oNccUC|v%UQv>WdB)#N3g_M!H(8qR*=MR|JfLsnjpY* zYH$G+O-v0uWd|JHG`5?7!Ns*3kc3AKymna;mmIx53!IG0DC7ncpmdNSQtJnWPei<_Pio7 zMb0Z)QbY`gEmCmQ2+Rw}ShLd6lkE`n=&Yi}Hv)p%wjKupmhf=Lpp+oI?RiDt6gh15 z4-lYtLjnv96hI7G@j(ROhgvvNbkKo4p%|Yc$Ew-@hBXZ_tQQO;NQ-eg5sV#%epS^X z^eYey{S~Jjz5Kww(7%LAhM_kQpS5)O>D5lGz4L$KXR566MCngn7wWK{>^crkBR=l@ zR>YVTea!{@w$K*s)?Pn2B7(Y+9j|G}B94jidcP0{ z5A46erx0Phu!&<#u%JEeWjJ7ge$$j^f99xS-_R!8;rj~$w!}K0rWK=Z@`4MSyODzNtUNnE+drCOn~JuSje8J8-9El?1lG9gF{>f!P5 z2**Z#XL*=!rB18KAbBLkKS+)c%rHp8bB-7!wMfUH)SpEwXplTgn}zEqu>;H3$2-Dx z_-Y83P7A+|YV^_x75H0}BZ@g`^X+Iii-K|eG+jV2+WpMWMms)X*V8H(=N6^PIJbzF z_~M+#`8~0YPV5d^ieYX|Y6Fww`=LNgj>iZTCD2V35W0KL%ljx&Pb<&(?Fclr$Mjt z-hQVzB}TZ}H6tPtNT=}mBJ_4KAuSg&V1OGfeqn$cofbU6od~)?c^=QjVNAmFgeziW zy7Qk?9QAA(Rf-)Arx38!hVzbw$hpI`m}C*_V)?AsicPkN@R3`U3(~BBcPlNzfVUtG z1D1K{bl@cJ4boq$D%U2&L`p*y3Qxkb%Jhq z12?`gB4KDEP5<=LTm?C+e>&hs;7{7MOZ?79`FkJb?*p8&f23R`?e5@M7%Un2mQ2U* zks)n>gVjf^WaJ0}BFV@hZGf{*5(y0XK z5(0$iqcCK^=Aqe(|G-48@^|_kuA<#vOix zGMyrLIow#-ut?VgL%6xfF-PTKw_!yv1kBc^ji%Y!_fZTxTN|2=+1f`I_G-;tC5|lZ zX}-9`(OQQB{LGos6TO#O#(E-Bv5Y;zK14a*WNyDc8qNYiz-a-e^s^w5AmO9TE)3+x=|$PAeS9i8FdN8tLU@!%c7bD&#g z;CScPQ!tO+wxacI?9Y}JsRY!DT`6m{B4A(+G{qn}&_xsh<0c@WH53H2h61s3pcSy4 z13lKCGE*v|H82NS0i!j3@L6L^jiXpQBKwxO7ggKO0o0qvM8Oux9tp?WQI&w`%Y%l` zUt-2PI


    vRG-*D}`A`p3i8?6uy`SO(9n7U49epQv5`CYpr9ruD<}zB0dp@ z|6>aD-|s_;!=d-bHRolM9Ys88vSUTa(F`ly`E%NAm`Zo&JMZnA_fNifA_Fri)hWlm zDUPv?Q__Nvk3bg8Z-yWC1W^oXapwetPB%UflJ(|!A&~n1ZiYyx>=IT#1aeUM<`u?J z7T1nYz|E>gzR(3KU7$y|6FUP%+Pi$tG)J+181yN=+KuVnKAeBF3R28=UguzZ1$Q*( zDc?+mm^U*4Uh%7UjMsa&lZnuM6?wclg9YsxnAVoG3$EG%zWLo#5qyT{cvBv|#t2_C zp+#eM;IL8M+R4P|Zd5d(?08c^sIt4t_UrISh)}d%e-DqE3Dc!|ihAB!zKC!U>4si4 zl5yk&dr*=4tI4=+WivgY@XM zg^ottg2vJ5`nTts9){Zo`cpAbd$j^WyKf(>X$9?N;yLD0UrO=L+v(;I7F2s(OJ;=g zrKdCEL^gE?Uh$KoiO8nT;peV%Ow`u%y6YjE=x#+6&?KLID5POkZfZc41w7_w*cjS* zgQGDwR|utstZ5IMM8k_S82qq(3$?nR4SK zq{8{!J_4E<&+lI5c!DK#AX>4vlw%1PDu@;2dGm|7s>u?TLkP>WwX6;@iJ>no!6XJK zv6C1|m118K1JuDJhV~s~CUp?O>)Unk?U;4qhgLYccvBE)Ww}ol(E)dt6L6mlGpT0@ zzPP)58Q-|laZzeJ0ib;`ib`hhD`O`0LRyCV%8~x)3uqNgfu#g3<%>3mGl_(?qBd?U zbMXr|mN}nuw<9yr&XGZH!Bu}`2jN7&{QuxThM2c7-uY#t8;|(R(UKR|J76$+x~a*w z&=%P~^#lQ1%{ot?vSj$=S)-Lqrhb#KkS7$cb+D4D-={^m&-~8@keh?tDr+sf|lk*%kYq^ov4it)n5EUhiaecpHppn6tI&y)lv62Zi-amlFX_8 zduN%)%ckR#I@zG!9XbUiXLd=aO6Pq0L%`_$`n&P|R1sUroPI$Z&k4V>;4 z_7#QTbmFOV{Tj120W(cupHph~mgVmhj9Zrf6%Y(wBQrg)Wm%}PgpL66Iz8^hz-=YZ z!d6-=E$}4;=vf_Q@>4b~#;vr>jtxxadO(3VbpS0{SpjhBfJxOq3J7Y-N~(_Kl^#c0 z5Z-o9z^INgC!jn)fDsJ|;0h)H<^%*6z?)PZ+mU1j%!WTiX29G4zB3!*yC4|fv;Q$V z#s~84D7S`Gt&7|M1%g{UkX9Y%2lnL#+)1Uwjk-X5%&S(wxHS~jk>_u%E7m&FwCWv{ z9=gYN=^oo@0lJ56qPHy*y-Vw$j~r@9RY!uU%Fjerw(xf8BY^^7TJ1QS{Z_tsr?1D0VT!tEX9RxiaMsnt1IGPOFFBBH9YL8_qFSoW6U zM$zu%O|7>5$`%;6998zhuM~*wS1Q=&S0SkaN@fgE@VfYbwEI+|8;mu=F0x7IxtjuZ}zrns% z0F`6>HX#^}@h^y9IL5z_<)6s1y^YKnIQEKTeXxQ3)mI(s**mn2_P~CSfGzIJ?`-_Q z4(k(xAKmYWBeXmLLHru~#4kO0jPR0(Ec&0%F*?fuohWViGX2lQjt#M~jgENSgvq0)i;B{#X{7 z1nk`B$n#DDXk|GG*puZy3Aj$M#7V$1kOF6(oA)~^Q;!Li(n-KRs$+4wZ{<SRZ9s$8V0E)BIs1MSL zVx-Xbf`!Go=U!T3&m=zYBxe#|(qasKM>{nT`c6TCm`Q-D)tN+#tpbATwi2m)t{HEtJnW*5I*HTy_vK#9$R4L=2fu4Z5(C470Q4R3ayUZPq`r zEeOUI$Ejd!G3=|27hzw4VA#jBY8C7Y`v#Q|!>(GE2z!vxAtIt0|H|2%jzz*Gx=iuxA%}3!2iamr6F2djvRB+Q#`YX^JU+(nhw3Z09 zAxE;U_;`jEVSGH2Eh8*Y!1x%XDfPRuNqoHZH`tGW;iDy-9H>$G?e4}WI9rz}7mVs{yEyk!*$2b1kVAPq_Sw{B3i>{G$M*!Lcl5M!TO(HHv^upRrp`Jeciszf68 zX~U%!@TJn;;78(9BQ1Z;_a-Vqe|Me^)vG5AS|m1aGP@R6ICr8!n?tfoa6 z8%uL!Y%Ix<``Q-KM5L8vMC_d79}yP`mKYJ2fD|})y!>~Fh=T>3M#Nky zo4sp^>D4P}8SYwk@khUfR>56MO3>1`XbQT^CQ%#R3>Y8()?@~fZqQGU)x`MCf`g#2poYw60CJ(1ro+#!g+DE@(5mJ8}5#XsfZpONC9)#9I(;-CMBf8G=SJSOhFe^~r;RQ&TP z{4>vb)-0=Dkh>X4EkQC%ki-&1UxKJh5N*jk`S#hU)mf4|UQ~_Tn+hh#eTevl+?V;d z9~8fk`+Z*S^&f~|)zBjGa9W7?u{g0=Z+=oU8#Chh-sD-RT%IkSfS4ifM8+$ZUlVu0 zzAXM3lm!3aRX87uUwEa-RB=ND-ZpVgd_jy~m>v-yc;IJL6GZAVeo*kc_=QQ*+e9+j zR`E}S*ha?#p}bAFqb~mGA@=@on{|&^8R1&%Q8Du4T%xluAM_#dGMmA>j+owL?G=~w z=G9^5t?ZO2^TrSe%zf83X&uLF?t_;Kj$>EN4}rGuLv5R7=v{L7`X**d8|8u$YZSNd za)s>4&5=2hdh;%XI`pSfesp+9nBJs|2m<*b&?<#;qOwhIQSO+|_ct+fLg3hlpX)PY z6fbRR_GO)Xl-qS74@qSbFt8RAjOBIbF?+0RmB(S>)4GP|qHAf%L~22@qV#OHB-iZ=J~ zz0qb%xTf~YX!9F(8x==1mN2x|n#;P#$4r)xs+J||fu(%b=8;%)f%X8;j58Orhe$Glv@QwR_Ah99<|UY)YV6&Apk`$jAClA(gST3~ zKw>N0Qk9}`^ow;Z%>$9A2s`MEb=Rl!+gq7a*)IexpHdl_Y?g&Ub$&Quc6WXt*_;{D zBv;Q|c#vmddq^)ORfu4hJu8LCH8j#ks}X>UHl zMo?DxmK5(`uF%uqMpp3%*1$~jKuEQ>Y*c-7F76<3e8A?V+(wO|82+B`>5gKG1~D;}LcAgT z(esM5bv(L{DIc)8CC^+Ks(%PRCbCoE|CpV6&Br0(yiW(hp}pfuUBdCa+)}fk>k%~sWj~48|zDx z_@4KU7xJqvgFMz1j`NgpOjlkv&P-!ts2HLv$Itgy+i2MweNRY|@D!|67>hd^$%{^>s?mr2+3dxxCK~Hc5&v&g)<-hZ&Z*9J@cN{1 z-nq&=sZHXo46}euQCNH3td44KmeicKfDdw*jk&Yf*3`H>KGHPv*f`1+HMQ7ZQ`MHH zAdo`-cP>wRXm})#`HySD+Hf zcWN*44r9%J>}5p&uLfVB8hq2I!HODlLL+jQeHzrBft=McS zFfztn$)6Z+KF&^2WOeg}cB1iR%7-Zmbn4epOYafc=GEr53KbKeD>=>rMoh!~*i`MRM6`mAi0#OeP zWHwmZWb@8QrH04`>*F~$*}Pt3)%j`wkrAd10z~lg1WOM6to9UBx%no1^s0@_Foo{F>hjy%E7t&ftd7?%6Qd)wP zp~OD0zg8*sk)KG(C-9%IaxP-)X;tLGEgp~16666THV=?X8TioHB^ zsN=OVGI3t#T*~^=y2zx!Vp2*=kO`EW9WybJFZ^3?%S@%%#{}wlnc&f013gsSE4y}) zt8>W3`C8kjtthvyEAx5XwWiS$s#qJ=*9)HFPrTxQ?|l1sNB;hb(%96gq6&?m zRkVYM(>yu5UrL3>!Eg4$M%|Buk*W6DQuvgir@INeiP9At44zAGFz0LR4hqL*^`y33jJE?Vpxt6u6(CVzXo z%k2bExV@baXUlHwXFSU@ZiDr|!cPoSsR1<=QQ^4rDt3}eAx=6Yz84TY>72^zqMeyM zFI6w*X9hkJ<}p^9U+Sz`52%1!urO=IGtbZ-^2{@omSBr9Eia{qJoZbY#hC1o+(WiD zGI?g42EQS{L%+T|f4PmjOAA|g>!Bi`E)O;X*=(MnbaP8PW4$?=Eee8^c$Ya!Me;MS^&zt=qj2MscbU05TSsZ)$HcRXomp%H z1*3fH_?~;s?P`6rHMFm%ma^0jC_2flGt^zigk`SiR2Kl$844Mt* z2@#D)1r70#kuO4|rby#gO*}#6D*hvd<}kFuD#1=uHX& z-WQ-iFb-vT%m|JBN@@6waw$Fy*`XVcJpS{%dAlA_z&DmTTk|E`%>FEHi7eo4 zUNGmfNLqr|gB0Ev-JNAnuonRxMnS-ZlWns$QljPsvKKcg;Jc>PCV0BMXx^o zB>?e0T0fVc-S~R~|N9AZ9N$syjAEkDHzHwl`{ZRfOsb|}Ay^1hSB5WCWLcg~UYuk0ne z^JTrTJM*sZnN#(R7K>-zGkdUy6e2)9@_vALyLJ&@oCzn*x4v&iGXeMYYQH|(MY6ls zW*4lFT0*Jn5_5-8iRbmDssAxw(%7ezANtaVmM?usOW|&!{}|zFldP|lD@PzKl_oH z!Isk!w9=B^c3;=m!XL2k2sBeqX{Ncot-+pOyf!T!5pZuhbcj{%>$Ng z9-t*?n-?wHyi7~bHZM@yyxEX#`b*mY1GEigKy7n`l1JMB2HJ*V_{B8s2fpPOI8FYE zBBN|)sBGt?Y{9~sEgf1)MH-BmRnvrrB)Fzrf%6C(H#D z{^)5NRZrtj{AIquE~E6&(JtvLgTN)U1RZTzUl{~$p(SX{oBNU=z~PUeL12({G+=;^ zMj22?dxDZjM*|FWG>U;iK;PAu&-vPH&t9cCDAEop(tasYkQi;tgzlws5bmWw&^&8H zoQ4WU^CX2j^Vo4J2bgz2hczJ=Xcvh8>R%AI_{70=OkOn*Pej6lesm?Pgdr`xjQ!0CeC+RMnA$6t)13ST04!FfVHhx=nMME8~l3HVxeEy!`T(* z>?gNZiu<9(g?bM!pVWa&N{VG$feV_PazT?=mJjV}3I*au`y2~%2 zzK0DD@v-VR-Fe+dRg;*9ii2CW&j^Uzvh~20ZJ4IN4Z3`IQU-gM)kL{(^3Bg^dUBDex=1o^d~}8@9#4s?9+4;M1|G-h)$kR zsVDd6MX%MhWhwoMen7vyc+9xgIa*7e-_GkBnf-a}2Tr+Nb@;aO-Wr_LBsl$u&WV~- z#onaC!6Hbe@M^D1{oKb?sz$JpK#k zKz4v4pgPi1I)+C;B};kh_{L7oui0m`o>-TXu3ah#e*&$48`7*YIy*1Yf9Nllq=ny1 z4CRk@cJ^ogr4)qF+E2VN2Lk9%N&zfMiQYy?(r1K{WzW)2_Ls|2R~P5&deQ*Nregmk zp?qL2ut^y}91(TXY5;#P*LgQXA6GuAZIrgHjucQ zK+=y7ka04Q3t$apN&X1HPPDfV@C?= z-p!eAd{Jv>H=Z{bwpNTc=s8|p?!1IOM+@w3x0ixNef>F5ib!x* z5QG3kvu-KC)4XyFOdy^bD5Kq+3g?C3Eg(k<|Ea<`f}QavuASuTDxKx*q*9>Lu9mdn zModck(J{^&^q4_Bzsfm-B@7}?jY7u_;=ffnr?NPuL=9JCCE=(+G8$S^dpbCrEi~3o zK@=X@3m{&PEa9_n5M1|`U2KomiidRJuYFXoSYHU44L0>*}A%u?mDHwfuJ)eD%vp}scM>Vm!e3sTnUtP~fPjG&!*7x)M z39>coK*iAM^@|7j>&g`in;HS4KlGBG?y}kT5M7m!of~_s6 z6hvE5Q=Drw*1V87jIFI$3dYFXypYei$k|gxu+`O$A_#Rw3d&v=ZNZQJ0zrRKe=RBq zftb(<*{tV368MT&UiU{PubBNuG_Oc^Zs7x5W~55W&lHoTf|?XcQ+y~*K?Yt+gOB%z zC+u8B@iAv8(SV-QyL4;RX$$K7+CBQ>^zB4Se4_CmZ`2kt8^y3U!% zH-DLBvJV1ky`$EeeOL2->@=-~X<+ctfp|O5OY6jZ=XBPz2pa88%@G{65MFdW^z;N; zAkam@wID*w@6EGVJEhc@L>2<4F_Wu&94@@Vc^&Idt0ITqlEVmEfE=LUT9{P3lmbCK z{c!YPO{I;=f^%q1q&-8@UPud&HWUcjw|QoM+<;~Aw~bM0`}?r1FDw|ET-7cpgJp-$%kpQ zM93{l?7YAnrC5+JJd!q;Z*1nW9?JC;%1b{QaARL);A4eWW+1I7GXqx^VrF0rRIxGx ztC1_e{3hq{)Q1I>CIjA1T^KJxlHaVqQ4@tWn%C2D;UWm9L0sx)y>;e;u5YbZ6mJY(Cxm15uCX`BYXMJ8Q!vCO2i zWwyQr1?ng)}Z;6bKqGZ?MmJB9)I9Y;bWH(o-3#%v)+bRm!w#uhe0f7X%)(WTBSFok5)NnS%qRqtGxVz*DB={3#~F{ zyVolBZVze|uQ--fRO-Si3dFXG0=BI(pGtsMQ7WQU6bM@74?nABd#%lHtk z4H=&jK?~3-Pgz#kLQBvpPf)9D_p=I#Wmf(!aM(3;dB>0U>56q`4}kZ?y(u{3tEh} z`Hb4;q_mBgw&4M@9naIGX@CuyhO$A^RIrd?#Ou&1P#HBxE6W3B1%jIUcE7WbDPUW3 zsgyEmPN|5RQy{3hH>BpYhs2VuH!m!O$Gz@{sX5$ktgVtTxBx3$zpYpv8dp#*c*a>K zAaYUS*>G4K8ecq29vaV}by1Depv3n{`epEkwY>{|*jU@j^WS%7uxBYf->I>_g%H(t@R$#razcTp##8vB58&uZ zp^2x)b(EOz)L0)sOdi3P4U;FvpiMk6K0~XcHctwO)FuaQ_VgV5(D`{NYhFs+2Dc>_ zrQI8$mC7g+MoVpXPA!%0+=dnljX{=x_5++{+MlF!D)rgI&!yW+mkulCC)+ven8M0$ zC2LjHC_C@5aU6g9nDcj5LCeHKL?2Zu&uB)`65Oe^yH$HBLun~Jqq&G8pi0ES8-q%g z0%yYVb;AU>#pJZ}26j2EZFibQ6f8Q8emTe^jz<&((NHprwB&&U%pc%*q_h;bs7Zvj z%7=jdPdXDk6Tfk$Y3y;z3Y-40)%1sHiC@#L4@DkOn*J(9u$vB*f;IhJTH9{=ClriL zf7fcdg5cM5OP<5B=??@n-6|ha>Vc-icT~-WtBzZyhYptp52Yo3tw=V+Zx zro7PNwN~3}X^CIk^JLp=yluy0iK{4r-FB#Cw|!23XRhbDUz|rZwwzYS#^V9bY6=#O zj}#SyoiHc_a37)K+mcYe^bcnydx%mI%~GiR#kF6ZgTx6#G_U>9`IJ1d_$PYL`_t2w z^YB06qi+St&mvah{>_#}Y62``snP0#9C9KeJx~4RY^|{`{rTxfEwdb@C4Oe7kj?;VJthh9acbYN8FriFBjcYf#vD#WSe; zg|K)A^?>+=XHXA}Xy^>;m*%cpgPcL}z2UCC>?OZ;TSrja2-xC&KG)g8ruGnCIK)ik zXIij?Xt;^Aq<5q>rv2%ez@ zcpP$sYjLjr?3_~IJFhqbrV(dEA8{=no&m}GEu@Aejf8f4cW?!9J$|G-wCF%f@X!KE z;Kqc0th-X;BM-$k`4wywt%a0JEy~rj1SvxaQl6@m_$WiMpsarct~sr$GO+=b`OZNO zjIho@XhnGr^2`W%4gyuIbC9)y=K-FRGYq!RB zQ%oG126l0eVh1T$j7lL;k+)qJovLEk-J_=8#z@v914x2a&;)xV_p4e;OD%hg-Ow_X32e}VsfZ`WuQUu-aFLxh2>wAtcO z@=z_TuWO6OT9*;u$L*P7_(SX~fVcU%L8|N^ zzy`NxC>zTSDk*7n1E`GKGqkdF0|kO6z#}*XY`H-$yOh;3;F?6Y)YIdN;$o>C9dZyD)&o+)5FEX^*Lhow1`1e!XloH%$v zd4s05ZWB;QUsMi(L4nwTVHD-mfUsz41s_el!#1^e6Ai8g!H$keUb&;>K38Xmq2g1M zg_I2rKnn!KI{@K3D1Sfc`c}WQoTq<2wjH~RBG{X9>!=zYD#vd*w6(m#aP`+$m&@(L z)f5$7DrUacLw^}ix4Js8owOKT>P1R)5Bwqa-9_9!KL zDhS!dA2^elLKe3WS5Qj0g&5P}NE5AG?#V9Tm2OwD4vNJM#5SXev!P;B1cWHIhv(*M z*U%27PgD7o(gG$Si zN(1UrX$l)#XeLo#p!aS(z z2$nq7O(p@_%u~6*2N@eK(ZaPZk^qK>6wsgea0^o@yUY*-yi;%pHP-UGf`BdN%kMs~4A3FG zqTEd9Gp}uEhn`j9xVW9+; zu>B*H0B6_NI%7VQ^l3DSlVTpsUHN(Awk z6GLp`ctzp91+FXE7qlW0|I8wOmX;uKC_&&JISw@6BCKySX~ z_mm22`AsXz<@d-6x%`GI*7CbcCH$Jgk1cWyPMs*AbopIIWbza(cJPHMuIpUc8Y`x7?B<`|>bjAQpkQ1)7FY6jZ*X~31YA58iMn*D zuJFRe<5WrxhnOh>fi1Td) zg0nl!N>sqMalWE*;7U%Zi1fp@#E4-}Q-*3~nVQShd6oaQSO z(dr$?$Q9icm2&NV$Gxrxb@m}8h{k`9FVW@0pv0F36Ayog6(=Q&OGAY$E)Ach^7*n$ zH26&OX;{CAskOF|AA1AVhoD$R z5y9@(%BR+lA- z82@Oy>tcO9eE%ZuD7~Aq!Weo7VWn;2D_?Wr{9*P>uFCj8PKG@FS6JZ^D4=Q$-~2kL z)@{feCZB%UbwXo@DSKN_`z<}~r^U9OzOwZ64J}4JeL;lR&o-#1RfnfgOA5dr;^Jr=3eX3=mo3S37YX)AG(^bX_Ppw zBo|YN7>pvW5fB`Vp67FZcUgDDSFD;D=Gp&|>j{nBMNx2`xein>F3DL(OE9wHx^lBA z*OgDxVjRk!^aCn&<( zYjBO~kDsZcis_!VMzpzDUj>~;T%-Q>m##h<>q$wW{qmjCe)+V-9vO!_rA|lEVjLNV zImvM4fIq|{5p3tDPitueY;c`G*;wm@iz#VbCqQLfC(z1rouEKaad^h3fPK^a8z^Da zyHXF)%bN~u$5a0dk7i04t~D0k)2uJ!|ANSp<1UAaZyWCsijT%q7=aL(Dk{#^bDeUP zXIYQKXALoY?DhF@7wmx{p*-f4>wb2CQbt?uv23}Amf%+opF8DO4qws|G~-cf##7Ra zArQ|veo1Hd3oDrcSfCv#3(Jn7F5;$WN2rW;q?M%|6$lz)t++Q&0izA@-n=wQ84ama zM0~s+PXXigczOR5HB;q^>fddvAJ5Wm6MYGueX54c`)eTJ!BhwyI@mX-__T)rb{v;d1_e!QP8#b+p0)7wJq(;SaF_5mvx6ughJ0ai6in*rgN? z*Bj}>;D&IQoTJsch+s9$Lo1_9&)70~Ai56?VTWiPP^?^4z$I+4=OD*qA1$>*!j~=? z627Lz*ox0-E6&JPctb)9+m);}Fp%dPkFY$I4_X}$p_;gfKMAXA`_{bScB<8J*EE3i zn^ZK+ReD%+XXq@AlC&4qnG`HI>1l4yl2CV<#=rUHvp5yakE8XDh00OfMg6*EmS?0{ z^s8Vb6c=nL<1i4DhbxJ6mf&+8m=}o)HYN!9a3)$Se&I~C*4@xdbWbz)s$i4Q`&YFgjM}bZaM#)&D<6IFXnE>_Y~YL6jbz9RpT2W5tX1nEd4ystwxxM1o zQhr0UyMO9U;y0bn&84E?bPk@f`->f>U_1PONWr-If7mToxC#RJ!6^RmQ+bVfob_;= z`(k#0@)2hed|bTyQvOmaH%|W{Sd^um6?L#Fp>je+k>Gl}&vSD5{1$Fg5380p=zZ71 zoz23l0n0o4z|PUMn$Jvdm$9Zwi8#u&IaqHfh4B22?o_^Fa%hL73rKY!iNO&NV)x?;Xun9GX*HH~3A9zB zfOu_nn7cm@=`j`-D^>3J2D;)Ywi&eq4 zU#%T0{c0V>!UnFU4ZKe_&~mC&+o`PMBZcXUIc|r_53P#pu(6(8q=S6N!GSGA7gIqlqHK(WSiI!qAX!14SqAqkG>=fp1@&(Dnw zGM)pu^w6yOk}iBvzPlZWD+=k=CCpRzX}c0l{NhFTM1H%lX$@2g z75~KK!atGXpUL8%I`PkH@y|;5XI_12(+e)RdUaO4K)4wzFTsjSu+oxw^_$^xYEc1+ z;j5)ctf`OKSTC{qW#U&!7x;(2njV`K0zdiU#AZc}duFzfi`UslDi5WKw4%y@Pomh&$%IWVF+lFFP>O3ihow%&SCw8 zj!>^XYs649nAZ+S2`}$Wz)(SS@8y>^ep0lhvQ;7<)C?x|D;#1>Ogak3Cic* z#`9V1a9_yhF6f->S>MOKL1%8#3@#=DsV)Jba~j%G4zq^=`ZQ2P{J1Q3F-7)83jLxQ zxffg8e{_5!EQ=yuera_SQ#e<4H75nt#+&D*jWuhhMz!#~Imo?R*H-Wq#qNvr6*YWL zUt=Plup&3yGi9(lR)eREFDr5PV$ahC!vwke?Rh7<>d(~3kX`X^Nv!@#jd;5|pWija zy{>VMzgyePSC+#_w3%{)-d+~}p1*CLKvfs%kJiYSr<<3$_p$FN9_$pFjg&+Gnot*y zOK$?jJZO~i>I5y4H(%O0a&7LPas0`V@L02BY3DqCdTnk5zh$I*S!m2SIH0=bRrf#^ z2fuvX$EUKWaYSV)=&7|S~kbvI@=7<${?@W48%Y7!L!RdtiUs%ovq zjI&hrDX(kl$#J^jF`xAm`+O9(j_?rgYH#wKal5B#p|1b~zT)ihR($&8>Sp|4jk_t| zTu>d!UQ;-GmA8{B?|@XE_6}cM{=9}{4a*M6 zxnkxs0-1So0~#|=IUdYBO))12Q9NW*#H<~Vf*S{A#jnG1s+!A!XcybGCz=gxAkL=U zA0sw>o?lU<6y($}w+AsiZ8N~T)Qu&>-V15TqD+;ZCB*2WC_`kOC}oH-BXXk5<3ao{ z+WeGs3gLleBXic2#VT1;V*KDCgT@S8QLt287|>$_^umD)o#BPl#MYKKzqja)xP3C82f6sUX~MWRy?tjz}KJ&A1lY(V#Kr z2M(re)OXKlx7q(p7uPO~EMs2hBI)GhoUu85HB-+8lYA2}nxbe3AtSAaoE26|U&V7K zTJFRmgxUs#72U^pY@n-^W;WuKv}CTIE0@gmIfj-t(JwffXu0CTU{`(fUXG=eO{ZKo zsAa<+xOBVb5#M}qUwW)o&EA|3kJ2g-pLg_}W3M}>~qGiT%sQrYba_|>X_-?<#BfS-AB!t+8^fOTo2qLnH@ zfzVoWqg??rclB!^+LtW|_ohFVGf6Y+=dor&aa<=)Rzn?*i5ZkzttcU)qu z@*>2|N7Cw=oj48EMY}u}&As3c%sN2dAu3NztIxvO+OP*@l>6bztlZB)E}L>cKuodE ziDm9bfspH~Er8fpz_jXrep;HtoXRCr)v1J!=XjzxgbYd%yLZ4A;!@6wR;fxz_csf3 zYN}wWg_?P4Gx%f?ZWkWn0;vM_SrxF4W9)Wt1|kC6!Rs7NzJHbb{$1&NY`FpLz&d6L zYRL6mjph2UxoC1d5R>aUv2?uxu^Wv7Cf6s8ifn3z=d*Al*DHj?-{Y)vys3cgR#PEg zc3YLW9BMW3`7H3N=Z9)FR>RpZ}SormB$YYqworbhxp4u1t!>LO+FDchS(1;MSd! z+d_jze}wo34cfYUIN#d3o5YE!)+TVnXTcxPV&IX5^Q&`u=wtKc&fQ4PW$)Y#&zBbU z&-YtIyLNjyIa#!eTLimyO}+Q5%Q+uzp5c`CTKp6U#1j~&IGSpKPGDTjm)mroax@j@ zBVL%RvM?BeN2}!2FK2hf))~N4qSaG5Ra7lFF=oSzMR}ZSf(xe_cyB(HGbh|M2B`7W zN$jgwHj?!-)(g!g2MD-3r?N;-*6WBiKj%2YQU^qcM&7havRT*Uawy`f4G^uLflCLf zaSYAc?P6Hx#HtLC4LfOod_<$?&YbpPU3~I)?96Fy_TW-Te%Aq_<*uB@W>=00ke?)T zDj5Ot(|6}g3>)E-e`oS2N)HbZKWA^w(y&6G_(uD3 zGR&1+3WoQ44QG;T|xlwZ4Z|S_(dft-oaT61(hPf_9me=`WPa+GXZbch-&3F7pGZpLUu1 z<1gA}?mtlOGB?9TDP1Jg0yeYoS%#~}a!wVqi1hw&Jg0*#z z%Gb~Zyt-)(O*@Ql^D@vH+S9q}ZLXp1rcuheHv1fxPRr@0|H{$f`5g|Yp63!m_;Nak zRh;-B=TGzdzu~kNk-?l@Kg!87wZWjlAH}|uV%T4UVC1gZxS|O^7#`;hwoTS@IY{!h z?H}i8W<@TUPFA=^IJTRq984!GDh`$>D-;GC1DGmnA*QGrx6w7#Y{$jXG^{m3Xks`W zLJf1ej=|Q%(8Y;qF4cc9o6!z|KX7B<%|SA!+jp>>8D?=dduG^cu$&pT9xP{u_Y9W# z+~u5{Oe*9i(ai9`zjHR0GIw!GduF&D1metaJ4f3y!{dYH%4$)3? zPaAJZxeCny=bqG@s9TTo_q{OpO!RsUM?)A*Z9)yVPzK$DqDq&mSs}GkzaetAuD+-m%8q z$fzi@p{*6m5**FV-5f#FpS45f^ydWygVUe(`(Oe&RL*|HQ1&U#yPOnfSK4_g{d0~W z>E|u!*A7)(w>!xH$F;!Xso~4Q1LNGsQV#gWe#BLl^M5u`!ijWh#5opdr zF|@LyUGjW{@`>Gp+)*&GYXH|CI*w@K+NWtz-a{#lmtk?li$jyVb5$L;J;{Tpt8b3x zBI!8i(Q1yL%*QyGhRLi~2OA=)hGV!ngX8RJQV|E!G-<{#*;^?L*jpt}M_MYpb&OIm zgQiJ`xHy`V>_>=9NJ31)88gxTO2HKEoaoTNQQf@2>1l59)-X0x`WXJeEwmBhQXNM# z{WS;yJm~%k=dveCFAtLwrTq{`xT&{in4Bn;8V)A-qIBHY{7eG@+$L|+G)FznOy-3C zd6HR?gK1ln&b=vMnl>FT>R!6&M@JRC(QuLaqobPHgmY5y8V+a0YXg7yi&wL9f$d=H zvlvCi`i73rR9k3kGk&-%b;NLgsi_}UD#z}JdB8F+U_Tr;0nMd;_#ym7{qRF#Tw~Z$ z4c-xmY~najOgHQeYw9ScnM-)d?SA-i2DY>>dhQPU;XNOImniZYrj!=#B9o)VsOF9= zb3N0;_6CYkU$9PexZ82vJjgkyliVwowSX@81V>OmwHG{%m)D+CF#b*w(9}up9M1aS ztDKg^Uy-gqu2>-ZU@!pk*b~fVoPzq` zMg_7D?!+;q957V2Yz5<24rrfp`V{keT-pG$fYXxvA(s3}97FN}L-OY;7{7c#`{dK` zv5}LJ=(U#U-5f)r0Yjo+P%tQ(Mn+q*{SoQAoRq|$x5R(WF(e)^Al~|j^tyufn-4TT z^J$DKHr}AoV?uu;RD94F#Tn!nH3up&)EI>#W`H*2?57oXg(s z*HDy8sox{4%LsfRxqhbEHBdyXEyB8sIAa8@)#5uaQqV#@e&Z3|^SvBXH8YnX>D(ie zW9?-)|5lEO&T?cY2Ps$Vx5wtGTpf)q`-UAcU}P&(!!gX9%(3?9yp)4!be;?*;aWmr zpwZbj#M&=W4586^Hy1~v^D_t`zpR7a3PVV6}Upr~}8$TK74IJIqr9G$h1EDXu0n*l~O^(N*x zmg;6DPDw5-JXzJyM#^1`c#egy8m&iy8jO^$s-$x?6(wyXD@sfF!zv2BsA7B5I%*I< zQnY>wPLC^U0vvCVmgA~u7h|5skq~COIb4PSCb(=>(Q-MKGm`CMWDjs`(H|Tszqq;7 zslG!r9N~!6FjEO^j=_#bfvbj+|H@SI4AsT+nr;BbG7mUntw9nXT_tsG&*Q~pix zxEP(88;0BKv~fQU*JHHOn}eesjHh&>AKOdYha3})nP?@I`Vp}?&6y#O@=vp&_zOG4 zMGxNowA4Pzzv)p&lDIx^%pmd0!;Yz$#p$_&TPl}5>L~E0O>!L2jg58*WVvvQD|rJ# z`BZ=#AW!n|9YrVkjs1ZFE)_*Z>bpnDgZ$TDsS$abwapUdxHM+USE z64#gKloOlc+;zOU(_rPT|7(<3)-h)Y{!hpG_fBmQDV{wPmL&Fl=4vW(`j@IG@@6_# z>3@zA`zyE`8aJ5}F2p#Sij?)`(jomGV>)~2rAEth{Ry)jOK;=&ux;U`O76;GKaYwK znIn5NG2n+kA{*^;cB8I2adbe%{XiAbLBBpq9#Ee)$8pMNh*Uh7v6{qf?k=eI>1m_o ziFj0)14pp0d9TlNOw;s!qs7<-jpEnPKWw7Ai$UlVOKo>QN2$IjBT zMvIrqu7N34y-qWtrZ6wDi>{iyZ$o<}+4m__POnHn4%rVZ2mqaeN7EwL%2Z z;p=yxV_k6nz4|$LiQaekx|m2V0J-w;wX@K%DN3Qh!`JtCJ1ldo)Qt1YsLM|{24%i! z1JE++i1yxoM?`g6=vq`>CxRjef*zQ?!3uXoHamU0@DyiiJB&*3O};TUmw`U7!d_XbB-W2cI>Bro(! zMwgx2=x`dRI3bEZF2%pi;UFI1DVrTFjY}%r5`0_{Y`%~&+xU$WqTrvT;F4om9iiPn zS-y@_5tihi6v=B}%9v_2;DjJquRE4D6^zy#fuaFHF3J2hD#hroV(W;!pUqC%SXwvx z>JrZc7y~&W%FngrkK+iG4+vcN8`D*UG##?25Y_eT}y`A&P#@68$kpplCpVTiO_3sR+w#z;d&XZyDn@^l_}xQ1(qr zb~HzzY(S9g$|}N=4OrTyxHejzkqFW5@pc5UV!xw}ei;ZSI8zNqD4_qXs-GS$QXg^- ziMfpZ0v&_si5h`^eSLR&@}~&q^N-i;{sV?wxa`Usf6y^nGx{()wQA0);`<3xYZ?v) zr9S)mzqQCHr1f1LpCL9LbaWPL+n0z^WZ>W+@~&1WbGu`YuhTS*-pq*oM;wnDlNo@l z8ar8wG#*AMt)xHoF7rAr>c$F{E>kZYM=MpMkRfio426Y{3L5L%$I({>#xo2H1M6UY zE3o1GbtZ^SM;)^j=!HhWoOR66-?+k9|U2i%rD&)Qi zR%N@0)&>VJNrZ?w79Hyya?X*Vi5@RikH(+RX~ue{0t2LI{`BU?76!ypY3s$s3yy^f zF;z;NlY_g4JvTl=?5{thzPR?GBN8rDf(mIUzCSs*x#kV1m9STU^nxqAe|g(hD_0J7 zh{}IubW(KqidHU&d^JjLA;ylc5E*N|hQUiKaP_X0N1~3tfcxn^#~ID|ofQpwg-rct zE8u=+2x=*LA2?n#%m?lGr1}MNJi>2q^3<1|Sw>|>>F)$lIzA4rkdx=yhe5{gT-N=S z^~Mj1@3Zc&ZZu^As6$DAPv{$;6r-SePGt>J8LAy zDcZ0f(0*XG(m*VV@BF*5oav-WSqkdl$dj>@A;@hhr_EaWwg+ji(AdGS|Y|R;|umj4Z}TjSG0l*_?-*9RNrWL%wrtS1h6Epgc&l-3W{_AL?8Jn3>a`Jl1$?F+H+G-`C zwZkIiM@MzT%Lpi#4@yh*6BGQ+|8gBijo1P^n(Ihg*UO6GDyU-KXCm#20gI?&IJw^< zF>1fFivG<6v1GrqnsJQ@Ae+9jZ2HBv>CImpHCdPBGs&t+MG1CE0e}QC@mI&QD%9U4 zB|Ic+vf@K_;~vfE$&^w}c6~@T zm#z#!eoIe^tRI&5P=r|a>!4c30ER}NX&!0k$cOyZn0L!jkGafxbQ$DR@GJ7sWdVSM zmC?@SD$wt-MV7~ws7A=xhk=khwko8@>dAQG3dv&}KpyM-kP`d5!kl@Uae^r&kG*7h z>?MW(kJS_Djm+e*_rPNpwipTGOVd%#c%RXb+uo7JUY2g7t}v!_^J>g*jij}ph5B-? zg~I6!{3g$T@iMugR!7$L^~+PS5X#-#ZBaJ}|K z*|eHZq;U34coM|Iaitn0vyskvXPuX9cd|1@(Mr|yd$O~m(UU2|iG@N&b^OKyrMoIn zdu8om%*FYsqL}epzjDFM`#x&k)EN5@%n2gvOzCKanHuBZhk1u8Hl#W~H&!xP*q@4N zwVkzKeMK!~n~Ka3xaT6W>o{uy1vU!tXp45g1y}>Irj~P|@hhi>Lg_z(9-Qj`$PiS* z$Vqm*+I;|!Qy;*|vA7C9mAUfS(&ZE=#79q~I+IGF5g;f*eE*@dnZidEbYr4YK|AU> zuNmE#EUX~C^CVf8&J00qA^LT#mhPTJw>KNP3`;|uQ{*>=napsQlfu~sY6Ns`vpvzv zkgf*#G}LkVG}KLJBFR^q-YRXt9G6BqP7T&n7lrjRs%y)|^@h&s#!AMCm5=!$Z5bJ) zZ4~FzolPQXtFUpYyY7N_RNW;jvvJQhi|RyCgmn@CND%uPIpY;5)yYfD2C5UzH?y(R zsj!ek%bsWuA<8sy&JVjVDMEZZE3Ciq4wK>!V>rM{zWrp9-NB5j+Z&o;Oau5XE9JlFt&&pEY@C`7)t48eS%nX{ul51z+^lL0V3!k;a~@stq;yqJd{ryJ3e z{rob=OB;_-2$dU;0yZAuQvRdeH|q5!(`z>Z0&>N==6>;D3F?L$`7!q=(AGMVn&6E;o_Zcch?fF*LNN+ zzDpk(DXzD5R`=$$c6JRjrUpu)^HHD<8}Vd@q!nqF&B3hLg#M-mbbhy{mJYF_1xRt*+oFz?eF>N>MJp!A3{^H`oeGD{hl>FlRRv+il;xgA^eVtEh##vTu%3Qy0 z1N@omqj#9OhVvXH#Myq%6~-sFbeXSCd9Hb@I2-6wS#WU*Pgnn7QwYjLe?LWLqQ4RQ z-A*fAZ9D=+w^9W}RPqspsPz7fxkj}>qAHKbY-b~mz|uqYe^l#5hxW9cEWmsinT=dWuoIn*&`VR#$ry0@)ub0*K!2P2LvPxt+e$H z6>G^~pvb4R^~;#i!&5?@=)e9%{)@q!Z9 z`J52NyDjl!I0D7HQG9D-stUIx!!>|RGNrAHI3Y@Y!jk+nN1)^-o+PqH?~ zSzx@uX;A3tN9pQ8jPL*lx=NXpfXh(nz)7qz|%H6N- zQ)OCv783HbHpr({fFd7P0RaHmoqpq$7yjOw3lm(_=k8Up| zavpOwHhyFhXfY9_zQi17lVAzQCmgA6l$ZvEvc{O=nIq=HoPmoZ^`rXcS2rsBBQvf2 zIWq)LroMhEEiLsmQ{`QKr{}>U-e|+5L2YO1_e_)ZcMn6@bL{MCa*ll;!&3eA1~#le z_cVX~(O#Tgf7VC+AfM__k&pEk0I+t~I23(A>F`IGcJd#mqUyu@`4owE-7jX$RQEy5 zxnH}gE6n7-=F|NC!>jhZ2}_-4HRAx2M*iC~O^mCRmlVn1RCko;J;k6j&vpe-n%Ax%>z)wMK^3Iv zzzPZgB#3P*VW)#bp`bOy`K-pZjPlb1BAk;^4ZTw2bcJB9`H##$2pD`6k-ps~z2$Vd zvE7;p0S8zc+byQcFzqs3Zfrw0LkVWv3)Z&>TsUoPa{$G|PCFj(%`|bd$IzZ)Q_i1N z#ifnTisHjdjt7k~%m|8(5uhJeup=0PDiAZy+U%nBkPe%}a8z|OrP10_ae2M7nGQBn zy4kkby3zrJQ!sJixW^@4+)8_Nb{qjE)iI}pTB)bng}c-%H#*0wQ1Y~rZq`nSO`Blm za#A(ia``dKgv~S>ww#GZ2p5nfkElYAdYtl=FmU{LD0ypZ{z5 z`M(T-&Cp6Zmztr5rw;VwI!=%6P&C*R;5wi@KC^FeIGzC1JmIHXk$5}z{rM(4zPOt4FB+fS?KZwc92+i z!htrbsmV+h^_T}4z>ahvryi4&`;DVCw02r7-Va-puQ7fy?v+5}-m#6NbaZjHQ9Ucl zuvrBFtaP*j^><)DSoQpqYLAs%y%A{Ct&sI>-POUhP(5=1)-!A_LM?RkPYhzc&hDB~ zd#2q)sG6(Kl+|3FA;^=Im~K7ON=&z9XzIOM0w2x{y3X`hEoG){?^$OdKmmDAQGnhH z03?V%pLcFip?>cTn<-mKfog`;7Y(s&nJ_a{6%}P%12d_bLI>k81(B!qfmZdLAuTif_iD}zy*1-eNKn;Rxpa$^{ zlW8{yAg2bw$-$tm+J8jLldxL)igA%8Us#s>VAmhzrHeC!>Q9l3^%nq05Wk;t7OGHx z{l(6b^%pnG4nHu%s=t_7GM1{$3RQpBDLt-|>W>4c{)z(XZ^aq#fzg$zrTWVNjW}Ru zFa$+CZ8^KZ4oppZ7?zyounZkG%OCUs(_!ln1jwh_J4 zec#BMDNeobPdSRVANb%_wo!awXB(40BqSM0*+w70A3%Ru0d$MmX$R0BR=t#-9V&pV zV=`|rb_^h4DZ;XdsUJBz`MOK7wwCj8qw#DzTq$lE%%->z-+fF5LzUhasnW>O=|G4z z>LbL;WWN&x<`;bcsKTCxhl!!uYrp|GXT#K@kA-|+Z#MZ}TO&?<1RcGYDw9fc@lWen zu-UMz#;npZCXB+4R{u*7>RbKehvDA&7oFENeb;Pp>)gO<#vaB+&OY8NGF^WLe1JXw zv+)1>4>ZAv>$oEWTIpM7i|o|ABx5V%qBa%%u+~&RKU?Oi-ey>8Q)ex47l8nCRXCBP zTouTpHWVc9d{$&*?MG4Na~R%#R>d_HWa574x;{O-M=f;Wl zQJIbP3Xh5Wak*8EN{`u?|@V&oXI1ph%AtIr48!iWBL-C#LIsU&K3$ecwA;1gAA@@v%~HwJ~jH+pOC>>VS|M|wya}N99y&% zV&6??qC)Lcm1L{3PI)m^-uAbg{lbkGm^@0)on!z~@PZf>?y9N~f;+8EjQ1EddP;ji zw2yEVDAZ*9vt>$@6<pX4=t*V?Sz8!S>=OC5FQ%JIG?j52sp<2l2%A}q_N zW`+p`zMl!Q)%2MwDn+^G8hseH7&UFAnoOn!ubX_ftgEvo>LoXd#-H#}?ITPKDJg7L z#t_?LpdKeO6gDE*TP!I$mvhxJ7BdXh{6z6;Iaij#ks9loU~CK~{65yzSs|qMN&CM0 zgQ-6&?@9}%rj~aynEFVZt9~$bbiB)9yca;NPXy0k=9!nW7(ZGe@u2NT`>G2&aI8wL z22^;}1q2XXbzu`&Vh%xM;Z+yZ7HQkQwYAYbN@lMU=E%Oc1oU{&_iD3g4pJ1MM=F^J z3f@bRagp&n{la=;y6hrt9zZCCT_1l@3cLP1N?{u;g^fE$sbRI@Zm+V5u8erX$lZ5; zqIl^jdDX?zQNF7#;FrAWqB)9g0{{50xH={E^ilUZ;GwH7@CROXAx2kr-Ok;9 z@TKJRf{9KYgx_kw5Qjpi8+bl|9fdIWvbeN#ui#MK`BI~0s%ZfGYdPRx# zH@-;~=Zn#>|&@5#a}qmEgFCOnR@%O3wXCOZh00w+rBhnY!%Tj z)%Bt=+14d3plc~6A(UdpdTE-QL}P|`eN|V6X3YBscI%#|VD^#KUB@+JWpV6Dwsz~H zB*rc_*L1DEjc-Qb4ZZ4OX)RZ`C?;%Pgt#%V>3t%7LWPo|U2RwW@a*`uTQDjY6kXAHW-=v~g zP}emyZV=OA)pWt6qSEe;VL)g-2MfO_>YH3d;t$~;f7By{MLpsQNGlej;3;6#+IHC> zx;1dQ!?gME*K1!k7c}3xIS;Q^Y9uy27h6iCZ;MIL_skRRkGdO|LX#kJC&|b?_L{q< zS!F&*qbRL7pFOXd#K1s6VLI;rAxw*suP2KaUU%n<>Wy5JGmBHR`u5daIO@t1n@o2J zv99%~Sg|QJEy6pzvFi!lY{SYU-&t*q5T1DEw#eIAdVxpqoz>o)nXZna$!CxG_Vp~{ z_=Sku>3Mt>moXLfbV&<``0C&e9&i9vlg0E8-SPC|>Z2`OUugP-`SOky_@C}*IqMx( zMzqNoRYl}g{Ubu`o9T!Xc_%kkDa!12kJz}l0FHe(@0TE=myV4Ipb*D;_OGa~nJ+qY z=-=F2$2|rYP|Al|SAjOTzASc9ICOfY={3Dk`NK!ADA+n*UhXokjq8cqX#c*FRSsJL z4dHs1Q4LM_!NMA!8hI|TzL!z;b4%0$(qJHw(s&40Lz31@cOptKe?S4fL`m zgdSb)GH$-S++`Gmkaf9BTrn-6V5E0rcbBOZ+jShcqpoAJm{G!0LhLRW*}%KCr>mJ} zj^V|!?@=AWz`ln0|DbxfIgJUnFHVgwMqk0y1@ao}#4Oh@<_gYtVlZ4ZvVacJ>5CSK zm@RN^X4c@L_nW&o72UVFosr><(x*5D-Me|*rl5;EzrD}pHZO8A6r_D1Iy~TNZhp-X z#Qy=DTf>uW$)$$0H-A;o{(C!thAzYaV@b!Dey;Im%;PMg$k?dI>71BZg=0twU_eP5 zv%Z4y$%nU+^Ov|9iM&%0iRcj0@qK^SQ)U-VPdYkUI{I=9=>QBBWP`)?xH&*U`xU`~ za;}IjAq`P?bZTm!%hjsv3~-8l6X_&D&!BKFc@ybisBgT9bhO*mBpP|-QK~|;WCon4 zbhSvHicmhH4dec%t4FDiE8^DEHK0QSIhS)1JhUv1f800R`$Vp5tZqKdkpcYHHKGbX zJP4XB#(WjwHlO93blc=%gwS@+&;|Te(04c`J?3}raoXxJ&v6W0{EQcPKsx38U{?e4 zD~_d$Cck(*#Gvy7An?-3!pG&&C))|u{m-Bgw~7Na;`^404f3fzd?8c;lWF)us1_?W zk8@?4aSNfSzCIEqpYdHqns3t;`b;}}ZqEuG;Ce1E@b>RnS zqd4N)cpSaJbzvOoz=4TwlXJ*sR(PgzX_5ZY1F8DCMPl^R57aO(aBi~ntq_)e%q%_r zcvLM`E4HN+kE&jbM+HK?NuS4EYg91x1HRil^7KEfu=$G{h`oXKTL=S7E>^>a_14yv zM2Z>t_(G}z!Tvy-M)4xrFE?Ve*KiimLbUG+sgqaXS|$7*?J&YR>IWXD6(?@rCGa7Z zb#`J?LZ2qy^rbF`ZgyR)HeUIrXL-A_tusCui(&h$Xi#}!JmETG_6y=lNvaiT0+AiF z@Xk{MZ{Ovv`*d?CC#SCI-IcD!<`@pfjsqS?$t!YIFNPlORSp-2i(LK8nSo4UAYF7g z+%BmYwtd3Y)Lb6O0czT=at5_HP{m8Y+&jak*3@XeDL)-l80|SZ?uVES6im zHi1<+9Tw9TZ ziwhfEbyZF@n1!=-REOIk=wkDdOIVoEtS%fOzF8gRuh(zSd{Wb^E}@L9S)Fr`=TiVv z?AAa7Kw$P6yJgBgCoQ3Dwwc6bz^mHXdY2`XS2eqG3^d-mMat65`tVw0@f!NTOOEe9 zAUl4@wB7@R*!2Y{_^w~77+bj_d|g_YSyNvEcVm@Ht!j?ss;D5tLaBLJ76c}Bm$$lF z=}-*Hc*Fmc@y^=jY8JKxgJ&! zvHL=aJu1cG?09ecyf$IrZjrw-Gs)m0v?=cDBE3|bRP$X9#^z28GY@8_7URcr2QyoT zT?K(<4nbMJ=B(tyFGCsiqcnMuN?_b1YYi z6&J@@{bdk&hg|c3DDU|9KXM6ceMYsK&&c?Zy>6?1!BR! z>6B0i+`d&W?G?p}8z1_%V~`X#o*Hs0+;7q9sZ{pn)4iOOHf=f;%8jA>IfgcE0Auey z4OGznO`A^Q#81o|dk5-KPEU#^S&AO#7*Yfn+JRc7VEj5JsXAz5sF^eS5NjoA6Rt7Gz2gz}A{cX-{w#!v%qi#J^G#>bo7e4031 zI_G-Qe3yf1y6~pBe%5s|6#bWh^!l5Hf@Z#o0-9gE9cbHYoEf%`9x=n0u@Iv9g@zDn zlW#ATyGAG8c2&~MDx8v5O^M6oswt6UXgWyOzBXA#-^ZEFIGVcNM$1BUz3l*jUGJ-f za@)u*fOQcpsH6pnsuC9@3dG(vQowSmTEBXPSn`=`jGnuU?#4Isxq-Aj;SOcsh-LDu zB^a1p;BqC~23i?cMIUWYC=lw`D}Y{nj3jOuZ6Aq&AG!W8S8yZ9y@i&03ps|0KqK3B zFa<}pXE>VNyET;chiv!K?vZW1^+6k`B=@Q+(Y*@9-aS&l{@tUuxk)(gRp4}Xc=>jZ zI986`$NZJ_rBz8+xlF30E1`<{-;kAL-SVpFqe@aBR7s2NN}^q)6`#A_*385wSaYFT zN`U9o;ZU`iz%l+^B(dmQSEMepzrA#zrG-DIwHE&8t41|6xCmPJ0|S1b6Cm8bft1Y| z(9fuWDv)asw1K2Rr~=zvb-k@hwtJ-!Tr&1bah%^@gCg^5S2I-xExF5!nb)D;$0avJ zx%b3u*9grlU91#P?7!EL=k z4BE*1TpQnZd6nxT_X7uPyCf?0LJiQ~b@}KCx$AO~Gn1hogfR3=W+?5t6lW+^A~#f4 zq5`pZT@)}GXz#j|SS~l~N-bxRi|t1X7maQf=gD%wftz*c$&}>IU05e)ecYz#qp?SU zPzb<0kcEJ_5Cv}nm0Kn!v~XJzEe&qM$OQ+r&2HQ_8icwa#5V}h>s{$F-InTumdiEn z5Y9l}9uT51V}S#gxL6om;=jTG|wfMN!x-*G5x;P&an&7Hl3}V3SA>BRJ)0j#}>5b$LB`= z0>M&&yIvSB*Z(O3@5{?BN$!ix+3o*;5KH>G}%hQAP=ljl4 z!7q7wa4>2a0RQ;UQ6Yq#qe5H(t?60<51k&wAM{Yx|HH|nGS$>G3vk+MFeX)o2%$bGf+C$8DV!EV7~a3wxVI1-HM*q|<^+%ecL_ zaZIE`Im0a~V52Vv9^zMXbg)+??oN_4j{Dl!u; z9CByIwnYH1z4(>#_)zRhd0Hzj$-T$u!`ZOW(6drE0&BiEU8ym~o7;K^FwK z3w>NCOgn%r%53BNK%(foI|NF5rKWqeQL@Mm zKT=E5!ivO&_KxO}fynf-dOaPGxZPq@3&a+7(K{lR9`CVC9$Cjd+h`p~NlIE2(aw>$ z)zTdaS7(xTQUD0J)k;1$Z1fN0O}S9ElO~nu-j(upq!8Yv?VR*)n#GC@-{i)KO=a+G z>YF1Y%kBjC*tAO01ry(F;m%RTk{##IYITjWLTL(E=u$1+)m3t`A~l%uvzG1@mC`O?lK^sG z0pqL_MOfaM6C=wDGNW?(fYtB{ftz>6KvhjetSzswY+Kt>rnZ7YX@^=qekHJ>Fn_ zg$OZxJqZZhzMBgz96uT@6!PQPLM9>mfE%Vdl`A&Zp9kvg1FIS@GAzk|HkABVZTa*n zGsverAN;R9GqA1xsSq8W8JKEZ3Y2&;l*F%Xi81$k8l%OyM_>e5Odpr(tK`R};j8RW z0*kHhZ|_N-O59n7Lx=irO;Y6Rg?n<9^;4tIEkl5vlh}ch@zxs+?rhtM|Lx7Q^(%*8^G` z&lW>}rk}fYG4$Z>NRfVFKwabYVwjFU;7(MTPGk+PE{y)}CdS2L=vVi5kKqwO-A9t$ zeOO25SnS{wJX~vBKX-1jV zcH_XoMF*yh?+tiVWuh9|_um0qjTDt$))1W9pXqTY1@m|pdh#o1M&l4nt@GST1}jpa zFJfgJ2KXZ0JH1tYlor+9mI{;5%lVI`h~xq84Mrauj(%t(Hnz!sT<^YGTrbxbzNc@S ze==;qYWO6oN?1jN(x-|{R-h5qkvDDxOp{y44~!-XnH-oP1noP&HrPEi!dT2KpuT&- zYT0)$un|_@J!4$n3Vq9J*>`WV(X#J;YITTCYCj-Y-wijJUl`?1Ha0Q=)OFLn2Co4z ze*OOj!&29MI+XbLr1&uG1L>&A#?@lx`wvu76xdxL6py+H{^KkRP6)!7|z4W@)z!f&hPF+OJ83IUD#0psofQdl{CI?-LjR4A!~N}uFz zYjg`B*Fo~8%=|7Yz1<5sReEY;hPE2}>DB?ZcQHn(#F=2rrYY_Qs%$vLI@p*VK#69I z%g(Q&l2QSe1(1e8$;9y(v#Lr9^RMdS^+#dn;Hlym#$M=?5@2r)v2m&!rnCX%V05Kv z?%n~!U5wKKbZGLoee>I?W{{`f*t;pq_%MK;>;^L`T9Z3022Jj04EQF18l_+8m)`}W zGqxBNGiJJ*8h-^af$3#txeK`Ifjx*7e5@_VF8#y)`SH3Lx7HurL0x*Xjgwt^+*;YC zhhU;Ey8jLH@8`cAF%p2ZD3*Du) zs1deAUw__qK>mZqgErjXpT~(Z1M|DDO^AKFH48npmin-AL4DZULR;>ZbMw@^w)*k4a&CT{NuiE% zMnq;^{cF(iQNOCjw+u@i{8cGFHc0%>fWSlxcJPpYt0vC3C{Y%*P%qE5_Yoz{hLYPN`3?{4NRboE$!e6TL>0)>=xWC|e^{of22 zLzyZVBdm**fQv3RV_bqN2ku6#qd&4vjQg@*bz>^yB{L_7GIJi8iR-fTBM;On)=C;~ znZ6Y=nBaMv#^onKE#kgA; zmBgc4-GjxW`&9D+hXTtH^_V%@EG_PZNthL?e%BKE>%ui8O(FXJSGLlyWgdks|& zZ$ZsLf?S&`+8=V~u-23&hXL<;xdhS$k2G4yeTYT9^ z+?nxwHJj{hvi(c*FV=b?hGCGWZmm;Fe#fJo*O zdj3NN`(Wb`QN&Cc08D8WY{!3=;r=S^)RMq~C=~@3JVsLclhgu7$-Bg~Im!2l!mkEC zYP3KjcyEE0br{IZ_aU}C|b>F|&A5}Fq1nH6HmHv@Z!%$MBGumPyde@8^_25i9WjtK3bXm`}z zq!fA>+FPN#B4W_3Z_0^xj=Ix~8U7N$3o98OD?d5ahWdsnPyGN{D2kqsiIuIt_eCIQK*I|pKsp53~V*mBB!fBY1LQ+?Afi$dnb zfzrBP1bOn0#r&tqzmWVL_{X0YM+nP{Bd&ndVmS)dW3=G?A`6FAs3yKENa<^Z6ll4RLcfq~_MPahc-z{=Fi_h7a7`Zo_L(lsWL>$A%Bxjm;(8BKoBBU|@|d zMDsf8^Eb-;^X`w_Tg=m(jXs9KtdAJ+Z+E0FBfS?~cm3DLu%WGxf`*=={R8p0lTIVE zPua#`LVFIlAFmW?_<4;;k@Bhg+pxPf!C=w@E<({av8Lzu_07NYwYiDz6$#tF5&D1! zx+RFmXL#WIgG=s8x9jEKMTg7oCg$(lUF7A;XdQ1izsQ39D81}`dYT80bvNc^xO~Ii z?{@8IC{nLO9invZw(pV>Bfah~+~qVqXA`Vj+^tL}SLt`#1IQmLLH9Z|+@*PL zF=Igd?Hn4R`n|8{7k8R@A2)*hH8Id%S+YdEHp!?w`IWoST*%q(#9eUx5x7h1B^vzz zUh@SR9U%GeTlf89&A0B|+5yq^8XSo`#Fe7ML`qV_^uP1hQRy#jzZm=`Qlr zF0P$Cbw1EjJEW(!TApfp!@WY(y5ZhqUg5lV;;zfmU0YRmjn0mb6sLc1{~l&+ju4q+ zOC^Z)ALd4jZ+>(~nNgdIX`OoM&2n`W)C(qTwp-@e#pB^-?~8CIBX4uvOUFj|TtNSs{Y{MDvz>RuKDPFs!`Z2e# zL8N#3AMTP`_#jXva%bf=Gly`czGkWq2<5-A(tk4K8j9#yd6mSJ>-o`l;yBM{@%l}7 zL({`eA;--^2zQ**a$Nt-)LOm&y5(-5nMItD?oJvKIQA^JT+&};M|ofY>~0Z*&5`a; zf}t1hPl6pl7@v~G*o#s1;2UTfN(RLc~6VvZxPB{-1|I|=msR3w?#a~0>wXXGov^d&u{AyPl=l!yVFgD0UCEt zv837U_O(Otnz2$MWyz2drp`6ubRI233 z((idnjI8A8YqkoMP|lW6Qf?XCEtaKWZvtPyBs68@poo@}z#wL}=~PKv@v&KcA9kvARD^XR*wlK?1vm64=i#F#3K^ z6O=^xLe*ltjAAs%hD-j7Zq%OKsNnjPoDnK)AB3Xi;6J3V(o)a z75U}U@(VI_bj+d(31ZWT+*YjruHp3&#o7@tL=HIPo{+(m! zv)FQ5q(iLF3vm(d{rCv#R`O~zc98-yb8tx z-C|T9IU%8V59X>|VsN7XF08Cye3j*$*~2q4%oMy(R8h;f%5G;l$56L(?T>_#Vpng^ zX?-tL8JyNI_j4M1tlAyQFE4;>xH$>^5`*V8c5IcM&kin!f}6(gcR&t~-|ulWdHzBu z4WCKR%Sl2jR6vKR;eR?z{mWK4fd3XG@uyG{!?yW4O&Y*K5)I(NCU0ur#}w&5r&ZAt zx6yNoX7aYch^`32@YbrJQM{I4%Y}ZPW?>+m4pWi75iozX?!;4Baar-5%QHwbbN+_ax^7HmZI|CcFWlfHx zU3!YXOV>V;lMMRQ`%RdNW77RKm;&Or>1DUGz@$&TO@zn^J?u5X17d={O|QFM4*zMK zfr?riFvUi4b3pj|W*YvhZ>OUwW(t=9Vc1n1@A_#8ZM!@dU~c!DNMEB5E9lnl?p@8|`UgKFS&L-y1j>Bo}YtTxlWn5v#^{npd_v=bCbvJAp}x5V>!UN;5e~ z(0R_@XGhgB*D*>=Q}$8`skXiy3*({6j~($itK4~Zx$!)Ny1<8x1Gpy)Us>V%60D}^ zRKz*7f=)%8$6s_R;{0|x6=BBW&LHLc;~^oIc>holGr_Z{xE;JJ6FmFPuXus%9lS3X z*wVge&F$~tWzX;o7w%TMvEtl^qdJ* z?vUGZC3eVLqH1yq+L5YiQ_!~D!q>+3H`{VD64Y{s+&AmVF(d#mshb_~;`-}jtCF1ev~2}#Lfz9ZB4(MVrbtiLJ9!t+_SDwQH#s$pEN7tl@%oxG979u>OH(37>sNNj zPVGyMrcUj1z!cl5T?YiNoaT$mb3JYJPoaYEao($gBI>mjMKl&G5b6guPQACXYLVTK zlz#?_=Zj?OM}qm^n(x^Zz>odND?4Pj|1v}@zH)xgGuNwa69OPX;Exnykn zKG9;#m4Y66_A_$Yav!Hbzi7S1h2^mEhmThWPhH&4kZ<()I|Mul-Bjy=#PTu{9n{Xe z1h2DliR2%}4)RaSC7vCo0;aWcW0clHq#S^cu%L`|2J_esIcDsEdd6XGCsYFtYfo}D z6gL|YV#m!Z`b%Ieu4j*NQYzyMe^9gyP)ROorSNPt6$q{8!gtEUqd)kKr-4anruM+Zdl$d2VZrV%+Zqev@&lHt5z%J`fNyRRj zR1MJ|ZZBO9lKV+0x!>4w>0^B+m-d&!_Q?IEh&?O>$y9Am2xpW9 zgwIs`S|3Ex29xRx%n;QA;g}(+!-bQ#DMM5vl!hjIdQj8dgC6st&Xm?lSFo}VWn6Vt+cJKKxi5^X}6r% zKeStZVRtktuZd=!;kHl{Jq5Lki=9&(Lrrw?dCv*`(jM7FKj&yWXg&>9l5b_u_}l15 zdt@8^h|96tX!u^)Moa7s419er1%7biGFoi@x2KuEiGl)ZqVPX7(QbNe;KP}E-5`lI zLrH8(62s8>xbqYSw#r>p#b}Ci@EXOr;x&qM1>%o$73z<37dMXLTqX2po)j=;o<{#8 ztCe|DSnbTyjQ@onGfxV?-9(e%Bt^7RNQ!6$LiPH`70+L$0w#aH3$&&88Zm7{tEzgXPyBxGcLTPu?$k@+$iS<1|t1 zkFer2SWBJ#_A~}(T%ZNJb7)~Ve)04O>#*N?QKVCl*mi#>wwEoIUKIhO1-vSfXe!oI zuXyPcKl>+KVG@E$ z^x6Bx(Tu#aelmYID_UBN*u%oN_n+SM)KIC?Z-Lo+x!D%!`CFcQ{Gxn? zO~u$4=v>kdh|i4NuDZ_?ZOz=D#rbD)ONtjO^GoSvL;z;c4Z5a0ys28_Ly6Tq;5ps*}nBb`um zKzz8@c7nIXK5Pml52`U4RBS7Y9d=OGed2-K8D<5}WEVSygR$6pg@a;q>D)Axfyxa} z<%El=ak(|k#+-`^4_tVglFAiOcuoRa5H?2~fIVduZQz^XAnVr?l zT8I82aIIu@wL=uRMJIE=HCu2V+;n3BW05yIB)b$~!`2i`kaCD3N>4f@qH0OE!Y*ec zG4^=BN^JYf>X4NI2;ZgDKJw3ZC{;6lw@lUK!%JNKQwd>s^)~l5UxG$nO@)5NU^5t&>}Bq5#D$ z9ny2J>J<))dW~`$nw2;M86AH(gj=cu0&_#Jh|I>hO;}ylkqxdK7q$0%Zf#S6_-8(5 zOHPQ*I)D&2cb;ehV@@zX?a%i7d;ZOD=T;EAn&!4q`R(@T;r!ShRYIDLAAcveq6(%J zPT9lK?>B9~Q*uk$E`^qCox0%L>Z}?txfQnzt)S%A6ZnggTTh4+cSDySeCWc_B6p4Q zt@V+6a?>?)r&1FC2UFV^*iyS_^POk4DvDkE;5!mHcrnm?o~dAGE{f4y@Z4dU+RAU8 z`Vo}rS&$iaxzS_Xjepbr`+b|&m2MgSAY*cbP7KLMPf%*;Vb1BT>3 zrC|K>0qv6?b18qe`64GH(a&0!SC1WSXSx!X1K|5$tO_^OJf zIVTWE&PgC7gqA=;?+~OYJ#?ib9RjyfA_4&{APBK5NE28q#r}}`-qR}`1hG&9C`d;X z0Z}O`P2iiI-FtWT+#8=i`2Hc6*=ajFyF0UU&K{c+1ziTqTXnk*xtsD9&X9OJhVtb_ ztxviQc^y7WO~F{xD#IbPrlnJcYFgDPB^GxwCH(Jh@!-a`hO0_PZ6XnL`DE~z z2n1Nw>K%z-L|||&oq&fesj45ctQFo5ENeYXc`Dr=pbp&%hewTjCF&bHSA3k2~S(r1;hc?I@*G#Em+n% z7!apehiG%?w8i{3kk1bL1F+>MSkds8*R}QrMBuTP@=+%(e+5KnbBi|P9)4X&2tT+g z!ZODWX@~-NWCH^5%pCrzvR2xsqO4WnQ!+a^TcaFHA2XzBIM-Ssu2|F}T(PLt_ES;R zY9GcBK8+rcVfPS2ynq@QVo6K4121U}2iCl#l}%ZPENu)${^5sB<3B}1N5QHgDq6r< zRJ1e^c+3N1jmJFNSmQB|2H{ZyR_W5w=O)&((pQVQS&=q}JjN`) zI-j{&d$m3{%dQr4vn=JK=4QLqVs3Vz%{VvP8&wf5RK>|)r_=^Rt5zx-_ zjE5X7{YHKq9}yhU&9R^b%8G)PrZu{GAyD}K-eq*Np_^-l47s@u4Y~PSR5^5W9WhkU z(!f~ITJb+gWkE|L#Tmly|Ft*&6MA0I(&*I;*+=PdhG>XthG<~N4Ebrbm?391X1t*F zV}7G_dG+5<5n0gEq~a9OAUH)#kS?bPDQKmvaZC}j)Eahj{ooXfHemgw!5T3;8qpS< z9h-`|Y8z|vnH;Uw=#!()8ZkNQP&Q~ORnO|TM%1$gP#l~geex6Ig9bT6u$Tp6ulU6_0(Efzj`K& z@znen&rpo9b_FVn+Lfj|E`V6OdY7`soB&kFy$&yPYXms3U~L>&&DuDy6e5dPN8ff9 zuU=YAidS3LisDreO)aU%s78EAH39edt-+O;hKnVv3z2a1Zo{+NL0m^rFKbv-UsA(L zUPl}Zj3EzjRpcR0Ad9aPHLR)>U-h6a1!E7Yt`leW8UYRh7O^rZ0S*EX;F+~X!26P@ zl#xZON`T6b>x;9@6>way+NH8Z*Wux6l(mi)u!^k10#*PDSdSR?B!>cF9hbGA$FbwG zTJuUtq zZB?!sN2$;QfC~GrQ91f9%T;{%A=fED^oOg4IS!qdNZu1!Lzo%Fb&9V$4GYtM4ckb{?p(^BR?-^Ri&IPIex&b97#+ z{ekTKJL^ToD%g2Zu}a#YJDuo!ab-eTF)GILJ{wY(En7cihFzJ`sLt1>VC;P54Qx}| zkcv8iqZ_hfRbhh|!(tnp-H-~zZ4hG^vq6-sima0*tKn2ESTC#xvIgY~Ko80q_5_NL z z2DA&j*feJ6kU@59sslHR)sjPmSpxNT4dEALZe(qD52ZYd=_>;r zuU56wT7s1mpv(CYs#U;URjUS5ROCKDa34tW6cxF{7umT{zNHPweXHdDgVqw_zLj#9R~6o*sL1`A z;BIYp4%s#2E)y!MKMgnRRyQjkqEFD7EXZ0u?Z&O`yCc*jelz@Fc9BAcf+i*lHT>(EPhha)74#EBS`bJp} zYebRoAgump;^?M6ZNZ}(EQfXdOdQ>Gr_Ji*?j0drmvJ3*N%V;{*+!Z~5= zC|Ep1Neozvl9(m~g1p-1JcG?Fm{gI~>k|uKHU+!$!htsUc#@<+c+i6NF&!Ez92DO| zTn{5H9WhiN)4-U2VSTL9KcL6@m_{Fpx!B}lE_^^6!z~R5!!0b0X<+m`RT_I>i#Yi2 zO!WY}d(Dnp^6~FJTg1UXH@T{fspUh~#x$vT@UKBI?5q2k$U|yJzjDXDSxQ*cLHUU!%?FJor9lejRxSxRQxFdyAN;vndxfQP*w}6Lmdp#)-N*KLKAr z1DU8G04FN^#md-mXy%o%lVKc>=Ew2p5J#hgt9cZtDhgwo&UjJ^CPV+$OoslgK|=nm zLqqbh!hEP5D)G!9Jlhs@is>UO>{{765B{5AX&I}ELGvjfXm%JnfGlP`G=1^5|X3W?s zX2uNKg2kLATg9YUN?SrJD%=tkxeuQJLp3RkcUkvzSE~IkWrB866|r4gMMZ26#o-gf z*pZKnLtBIMBBQ3Oq51Ask(O&h(21dU=)_v@(1|q&jwjZ`G%z=$F^%gWE^p?>BrkZC z_?);l8Z+T@Vax>Dg2t@Uqq3%1^>eYrRHbYj=IrsgypD$A z;5ySyNC|(CC5ssuu7(f~pgBPZo^ohH(45deG^f@-G^YkZbK-kl8W{aD{&U?g#VvQQ zQeDxMbEPTg(iXhsZYh`&K1XRUr!CmOCHeL5Q|uq^@p$c}+H2&smmm#qxuep^Eq5$7 zQ!E8|!5tv;4>H;mSzLMf{paF_yC1?-JCUDizoKe9X2P#AM$!yTt_$NgUTP3DIbLw5 zfzjl%9VQo*$nx8q-dlE?@ZPet1vg2oL^j?gT=+iP9CBf!Aox0GdoTy3XvtrCY^*Ms-wEEoTAvd zPA;2$+19m{1+hbWnthmJ^O%p>9Q*98!DV!8tWEwB8T;_H$Q+T=@=NcDXV1!Lb|l6}_*RNvpF1laeNMBg=hN8e@L>3Pw2(96+xsqk3UcWV@v zgXb9KSwgAOErT|QSf@PhP%6wKvNCp9S_JEq7buak$W;nPi(HTv(Fo8YSf`BrQuo3x z#sy&!4c}oAS&aHcSOoNPSVSs(P+7#-&y4=A`-66nZ`QSQ2$$6!e94v$c6AK(Ulc1pa)=M>zpSTy!27?^UPsYY*SAtIc72`fx<(+zJXELr zmQrEYfeO2>Q8~IUzupXwtMRUX5Y~06Fx+#`yY9L)+hR}n$heC-Wx`jw(}j7wtjxuI z#g{($W?cnJqjez$fQ8`vs@xD^|uf)R^aV&Q-=({MjXe>dJTEu>Z z#Y!uhOTtNAH8`nd)zVLO09%IjN7kI&*q=K1qTQpE1}m3JJBdC{YUhrqokSWev@-{M z#RiTN9tMZa@?|^4QZCTiUW6~(mEv3dy{umOpDhCpz2e}z)YU%|1*B4N9>gn{CE$36 zS1`9wmGNkB6Nkv7K~ljy_LT@)PEZ02OOJpBBGwnrK?6ze4}K-0qJxwJMnzb_G`|+v ze!;JaBcXr-&=OHVJTwRaJli)x00#D&03L(b`>9A(zRddyjbd!#gVCDX1mCu6Ni{&5 zG~*D>CNm#%?KJy*%?3a2s&4nA1gLVa{8aXYRDNQDt2Q}QmS0KkPFZ0IQ-i3u=y8h3 z=en&U@`JV26J70fFrF^I^bbh4KjCVmld9?YCZ*@oQ%A&D9qX8yMi{Gi`C7PPv#&#L zh;>Zu%o^sktYgxu1{ncyy)oB9TyM;OiR+EO&aaL+c8cru2z5;M;8fQt_QZ4YBqUV9 z{E>7~3cjmX?Q&iF?5l()sa8f1m3`%FQLSwFG`xEqza2CPp59|kEEdQi7jbPZRMw2% zF7Gs^SiFK|RM4@Y@;KgZL9ws`)?~Y=fOV!VSOJ3;tbh&BT0#{tXyz3#u7J4Bm~>B? zjQ2xTzpev9SoMqcUfyO5eGgT?IE}o`m}_yJ&3MsuU+NVOrPZ(RiEIYduR4L^FS*)8 z*)yo>xYVqed~YH4{L8L6#;dH%3|CM4b&7(gSM!D4c%~PAl<+R=F~`L({2e^gHSA8l zHJR%gBfoAnW4k!)4_ES&S+1GJde(lntE;^+Oh0(|laGF6{a}p+{md7(vz%YE`jyE3 zgp*TKfizZcZf3a%wn_U>lS1r7tufK;#!IepY|$&OqHNUfSq~Z~+4fglo$XU$svQ42 zRenKLqFw-j;oq1no)|$h5vyqS;Cp;(80s{t36|bU&v*T0$LxU424@Nu9~EUm5gllh zSR6~GMEI~u84khK9xl*X;i?jt^{NZL9(ylE#6z40JH&}X1KNTo3iv6W?mNVm*^@To z_Rw`lK0DeVXn-A!j~~7)^1u$3H_4l7Q4VU$91qz1fc#O~i~`2yCt#`&fTM!f@Ph>0 zG#{WmFmZ?8VdAd!4ik3`!k2rj0O`=s3HgVVF>X{kBHyTvFLe2B4Xk#XHIyEA8x2wI zHX0arn~WXeFs{xHJlABG7rSoR$0j)}|e6z7_$JBbtHV3yvQkGE8X2I(#M;sl7nvDC!iSV9+Z zEVVA;SZWY7X1xzxZ`m3cjd@TR6C=u+JH%FA2CT;;%90?0N0eiz{y3i=<`6ZX8sRr2 z;NW@lN3JUN%M=~E`(l3GWum*vcc0xUJ|U4yd8qL2$(=&Ohha3Nh8W*%rRb>PW?jRR z1rGy&)jj-hHTx(6kqyIR>rcM%uLhrUk3VR3BI3RiJ9U__&Mos*h;>68;rzHm)2)YHJ| zFMFl+H!JIl3&ZK!twKGzg@@ebYw^fhFRlfKdcFBC4E1{NiV*4nyR?GUvKzpsY(H_e zOvVcrZVzM%$sxB-Pa38JM*5JRGdt<^+bp~_h1L2=>*&PcPC@^_$Hix`8 zE_-D(|6et1%f_$VHUOHbJ=BKNZHc_r@Tv6{T?S-sef!6S=w(!QQs;1N&u zH;X|X{Cw$&58)Sn_rd)U{KC7T-{vpB<9qa{_@h7g6wwJD20=sxPno4oiGtp>*bPHKTIy?E9%NNlWAK#TNo|->AJ}FRrt7~Djd1)7$-Mar!<5D1FyKA^% zmfFoWdpr%TGP{*`^(gFV@JhY&baT(^zwtodPAV{0cB2zFspD^;s! z5W5@**~Ndv<-1e6d@k+sIT43;IqS5`XHxTx(k|1ExhfgfO+t4!cDYWtQ@cPa8XI{3 zq{}i2R@wtg*;^GojjSs0E4WPaiNsvBz&3kA6UnT%hh?;Uus(O1Av0ao*@@EUYp}XM zxDxNsOmO={kISyQRyiUVt<;(W=&UNcN6e~HdvI2L5PRBXSbYfD-5BXX!kic>aOI4v zqG3#CWzV^qSyQMmZk%HN-kNb<6vl~axVsRGUth8$bN%eqn>-LgH$A%=hecR zdA?V^lX1bF!KQZdSZw8^o;bGRh^x$<+G&q)pglx7+Ua)=pboTCcI9hfr@)3MJ>?9m zNFMR{yI7YCweW$)ykj}!A`hY)y`9MtZ5$3F?6Go zuhlHcre1S3zeDqw)$`cI>#!SCCsNTqT{wW+r;6-B#XOu~fw?za$%f@7ba&%Og9Ue^ zB1?#KH)DI=jgJoPUAqFq;{)&Aa#b-3z5wD_dOdGz>m@2UXr||gndTBRjd>YnTN%SW z;7-l-R339@^(kjPMWmvc-sb>nrYX`)lcbqyMY(@9tTlx0Zp;*rW||acrsSA;M(7sV z4~I7kBouZRHQ;b8y@ z3|9$;c?6COfj}`#W@FxrX=`_F1t|KK6kUuopy*pd zbU6Y?(LjKQ|Bvq#hyVGQ4-fxW_VP508o9R+%YLdxnnf@fIBo^AC&=dK{d-c}wTl6o zJn!$!MUG@~sqV%pBRG^U0li2sPcHY=V;JH0BwE4}(3RccSB<#Cl$omu?50@5Wz+nf zm8Z(PzqH&6EYm|5hoGua;=oy>kBcoI=lxFwLT4S9c9D>TFKbV!K$pZAs>_Xom>DHwP=)XLe)mcMF)e7zpnTG{c z`)ik{s)mVrbl>fXWtqLRYFNpHCaBD|-dQceX>OeJG_$HX(2cj*unhNo;n-l;SXM93 zQ^RWFAmL-Nsc%-PBcQ+5FKe`h&X@jF<#W-(+`4=4uW!|D;C{ofe1s)- zKkcbP1zFlacP(oqY2w{Cd@Q$-yJ^S(8U zpyQwbI)5lN3_UPyu)CCDy&VC+xeLrid*SH6JZRPX53@BerKvm4h+Csr!p?Nk{Y)B5 z^<*uuK2vahHrAXiZ0>%^T(h5DDBi0CYt_QNC2H?}n0n=-N^>ZGqQ)Y;_&U}#MU6sy z*eI}-E#0ln7x!T~!g!9&_Pgr@e68H03RyRaY@FoRxFkNw;fG_AKi=NGKFTWkO$g3b zEdld3-{S8WRr;GkY*p={wXL$G8TPlj?6)ocMrO%xLg8&xWkAgvRIp#7QdvHEU-TPR z=h3X%nh0D+ni8fsI{=eEB&=Zyms(h`k<}#v`tirIDutuh`*2aq*a+B*y1LtI*f_Cs z2qyXvr~zwEGYu10j4{33>DJQ(J*f5KiH`oE);A_*wYBC&K+oynF7M=Cfu-?Ie&9fl zf`MV166^}$_zQZ%6k8n$e@tG_G$($0Yr6y0gnpKNGOMc-vogbe9*uy0zL&eD6TJf4 zzG6`ir@2vY(4%yW@LS%E+{a>*7%p_ix60dsHq7he?jO#3YHn5oD=`9k(WkOTXy}ev zE1ggGcfM*J>gO(DS~Uqv$EtM?X+q^{e#`beo7E&A8eF#8MWDfDi^@^UR$qdSE(aoT z*>a-GWotwP{98lZ^E8zl29Qtb>jvOKMme|pa$K(B7+kelc--Tx7Zp6TYL#H|UiSlL z?zdv;8trwz8ui+@a_ItS*BMzk7GdaIy5!@{L=&-e{Ryicyl!JW7l5VfF~izQWan-6 zbThtX>7RL0Yy}2YXHO{D-TGF6xRz~My(RrEKx_xAAm(Sc$#ix#Rx6?$So~`=D)Uv7&5n*~lhfBlBLZ9N{#D^Y+ORMkw zJK|N9y;U{3*|`wit^ZaOyr0`Ap89)wpQwP2-G>!WV>C0yfKeYJoG}6&&H=#)ba7ta zhV1qj_c8Oi11#SqspWvQoSZM^2mxHVn0zjwTbInN5plG?34;wLT;1ljjW`lz)_X&43s}UjO<}>Rb z4DIe_EBMVH3IO{pnB=ZWd{;ihOvUEy0n<_dO58O6ffzP*r@Oq_?;u;e(_PUT;FQ>h zNc1U*W1e(Z`Fn{EwDDwV5^+g~$G2-(6NwPMnrmoipb2d~6E&zJp8h|HYv;nQMf-|V zrZjxzcx2y9xFIOvWf-{HOpQO5Dh` zz)JNd{tGMBn+}Rf^>mJn>CntwETe4iVJztx_mW7*B88rHU$VX<9l~RgZxkRXcly%1 zs_gYCQ6kjYNQnr7vwvb~FSw6dw+I2ABwRlzPDSkRptG{v zjOP&0z@H|x%8&+rlwe%vhVN|r$ueJYCo}$$YU>_?gIw!=C%9&k20Wjr%QELc_}7iV z@q7XZ@MuJG#iNno1PN90eJ74aBoZEtOeIJtdXf}9gEXM%Nka6S1dgJCfQnx9J#^?} zf`nXGNv>N+19F8=T=5R&5jb)M0>#yBog?kY@U&!jl{6s3)0|;4D|S7mniYLW4GMAv zD#;bbK-^-I&uAO--E*SO9h8SS#3RHZ&K?-{;2};aK$C|!4Y)x5-{a*S(|J^G{z&HJp^0l5DEbdaU*?KS*^6$3nm^*F)9L~r~dk?2|QBQ#fV zncMY?d#(nBRrz&e7F)Ft!h$&jn};ptj6-VifAf%tTN)f<85i6GQk4GkXn@LczwD{2 ziNOUi=a7gYMja9l&85BQ`PKTI2u0;L2bG5(y7CJfc*a>23d$cgrZcW9yZDj284s{n zi>2;{X1JCz1)=1qB?X|C8+0uL$NqH38m!q0_;)(v8nWRl-8L)RtX~4_y2>3J1*n{LZ=No*w+oZEv?;%v!-!5sv#I+Kd(R{#OB@N1Q=rz z0_>wj0qAZ=R=US(P~24)edQf%EhemSOQys<{_TENqr;IIby)YGxBuh*+S*3=V0S(f z-C> zpBQGVBO+{WO;CB*Y_>Q;oaKm!n_&*{xY=xS1RoK#nh+wi%9wJc>zh8HgzIXop`;b9 z;vp=@z;7P;0ZY7~23X=7!tfX05UzKn!FSji_2Y@7QyteY9~z_+JGW3rIOk@IU_Ws@0pw#OE0OtUv8x)HEHgmf>!+4Ty-tMk#O(i7Q!AYcpFR2dJD(R_9 z_8NJfL0My>K>;W$lxV>5`J$cfO4hqhfs2U1fJ?`pv)VY$L7*;XQoo1Y4ZS&lft@BQSXNbT*mB7J!-Btfy;NrdRZ!Bs} zT*ACZh0F8=PnIr&X$*;3NE$;Tu3$Qm4FL3}hmJX-pdh2+E!Q{#~XqEzY{rSl#E{i7fs*Sd#lF5h{&IjvzR@_c3!qubRLrn@qphrqNn?e`wpK7?ajdZs@P)` zGg%>i_N@DY^^^k3lp>cyXiA|`VoEWe5aAmC3J2gC4-TtRid6&;qw;0PWl8}*LbFb# z6ch^U@9XAQFqHi9-R%S&!`d&7tBvfN;~3V$$GhrXa1TsT`pcApa>Zbs0&rnka$JOj zAAq>dz3VVcDQ*#&sQh)QJX?DeV?xxMXA?mHSDC$i9ljU2VpaNXFPTkfhVg|KfsQV9QTl|rnzg^id($lqw|2`7ZD zpCG)^){mV~wtn_RKDL$_LV>np@Z{R> z11ehcDRZvs90&77N>zN#40x;1Jxl=RE1ya;ta0-G#KC*3;+?-4jz}{cqujU|ASTuZ z@JwVg$QV9oT4jO)-wP9%-z!(b(SqlmC}YEBi_3T#^1l4Fcm6Js%lXPlAY%d{+WckvxTBbd8bxP!^l) zscj7>BpAv2z7MTB@V)}?9W0&1wKjS(v&gA@f3iPHkI^LH(p}rN_r|=)18uD zAd=<>B}J9?RJ#*NJb*Wsf6sDuyQ^3$ouZZ!QENg&h5@|Vw*GOiW_?*MhK(-kNr%ti z%`WSyV(oXz+e73X3wG_J6i@ZP?ONbMil?e!Q7huY*Xet)&^7r!$Uzgs0# zOcPv_cr=UQdx=xvNEp5+^IsUgC!fkMeE;p^VTIU|G|yX+V)z;9o~2e@&V|PCH5DKz zeENrX8N3C;19Jdazw2pI;d-A`d?Y<4~+E_Gj7 z+0)M&>BJhYurN5yM~(_kTb+`@DZv!MX%$c>cnY2XXfil`jsI$OijA)3xi6(T{|^mL zs}Y5Ga4O!bSV*9F@ZB=~j;`&7XBm4lH0_ldo;dqW#a2eCm1}yoTFVt!MybmA5h7f_HgW*2Uob8zNrRQ|qi2a8IA~9CKyc6?Xlf8Rd7o#dVZBZeanqSk0BX~r(BP&M!+vV%sb(x^#ahA6 zvy#x^&a+hY9KJl5*BW-7*H}g->^y4JWVlPYfM>1@~}q#mg%Wv?RSdX zL&O~miYwg4Q}s^7!Imm}_owLHRj0V$l{nM<5o5gnkM5aeeq|4EF6cuI^O{K^l)W1spV zk%cF;`^6@cRWrB)@!bHozg(^XZhuelU%34}^<#e9-_nkr4gQr(a z0fKU;e{`2SAH0SI>62nCHod7Esx>X4fI(^5|N2qvd8<0ZTV|US0>eFT-H+lp=u?*4 z!vkgCuActZK_}9Fij>OA?Hbk3y5K}Q4|4eX4Yx=GKjtycv)u0R1hjoxIU=6&00BSc zF;Mgbt1@Xv)zVK3hWC&LJU4=di#>as?-8OhZqpYg zG`!>bH26W~;v(c8tN6-&`c_}h@76O4EcfZBIfU-h8YS%0sciJwLRr?Ugc8^Nc^rW2 zK3Gs~*8d@RxZ$lhEjK*)p>KFtrKV86;lVq;n>_Fy>rR5r_dDY&wmFC9+6PXH9eea? zv16-_$Q_$<#yyV$_=;gHpOmWDiNAuKfFF7%uv$%_xNDdC zN$lEX2qWCJlYdf+ZKa>`>w(<0DO>CT1z-=Z={>;u?*PANkYRNpl6e=*`+pKAH}|WC z;K|Jp1tKRmK(OkSzGY)cBR*nD7%)7zp#XJoGl9_I9zfA>4>&u*^RT5s`GHz{5X&!S zhXKLvRCvfU(6AN|ZrGjIWp`dz4Z-fLR3OqFAi#qtLLd&JC;;_J9p&k0Q7Ar-IcJoo ziS;#Mjn89JG$igY+VgTau`$Ne+B)(-i8qXa4O(N#Ey9#VcxYz4&j-D=Iqx*?b8yVpG87;v_by+<>m7RIc%0Q%aVJS$1ew`w&dAsBhR4ORo8vvD*_0tUv25zuP6Mm~ zgbUwfj6Tem3(E{%jo0%G$@|7SF-Pf`SnGJnfn+`hviTN*GDW(Cfm zHmg!+0Zg;Aq_c9ff*+w4oY%NnQ7EqS_0EcQzCJ<6b-vD7wazy?E7tk_XT(mWdLefz z$`;po3c%Pl;jCB`<3V0%m+}*#xJ$XE_N?YC4}Xja6~_XI1fb57rOs0bIqLib(fP%E zb(VV*$O;*V>l~8FSFFJfb+MN4Z$g1f`0}$Xr>ZN(R`B2ozEy$93J&mOf> zaNSKk2j;_dw;cb4>u$Mo`K`Mv=6R+@NHGGB&i6zcR%6bAF1+_BKv3{>c9%KE!Yi&A zHhq<+2wV87r;XKKi4d#rqDo0kODJGaZg#tKV)1?YHO~oakV3$0!|2C0zv1a@_JSfa zFHVmq?U*WzQSI*yhU=jwCKX~e-t=^^rV~tDw_jj+Z$jAkI)URl`vS1$j}3oF8gQM3 z23%)B_Tpjv%dn>wc=}qK2^O+lFWBxTaAdn)vOP)~kS#O>+2S`3e_RAloc~F%knJVG zw&2fdOfjKbE7KD zSRzINH!&A!N4A3`+fk$e*+K&vcM@qpj)OuR(FhGc1a0RLBxE~VvVDg%AX{iawyQ`3 zvYoB7ox22*)2|56ibuNvz$*nP0c~)#RH6k2oY>p71)Id#j3+Qujv6# z1?vUUh^JT2D2@;b8=pdv4H)9b@PHwfFe$^FEN>rk3DCf`r`A#@vkwWgPmoy@3?0LJ zP6anv355TsZ>H=5lttI-RkHRt`RyS5;Bio?+=^E4Wie0+zmQ^4?QpN^ybj)tzCc*< zy{Z~VgFF4+=^UhkP|X;8j_w>dB3jaG10 zv$Rj0K-@;pYSXIvi*if!f{MS0`)ezz2I&U3{pI(YEq}q=PpwSVEZm^^FUk!%0gnTH z@4->ySDoGm*Z!uvQmp$35xN1^g}p$@AL;ayR`dfmVL2Lp^U^pt0@j3qC6>nFFMeq8 z`Csrui`I)yCeIQkuP7$yO+bv^r0MmMx2O3LaN7zm3ooPG_`{+9BHRL^m*`Hsz8(c^ zL(uTaRJ$()9Fcr+NV(7iYGuJvrpxlGZ!@scQ=R9dn zba^?#9}aZ5C#L8w*yt&9$b;Kjg@08}kki}SjosMgsivWcqukw|23Bc`%P$2u%#Q5_ z@1{%<8{ZVJ8IHYkPb6%0B|>ut3GXDnT~8(8%d*w@Ou$uF-kz;nQ{8dUo3KRP)Ex&| zqzO&h`&aR{aAX>MTX=K?8hl%r(%=CDUUHC2(D7|y5P@#zM3-+1zY+l-FFBz2+yE)c z0G2o+BnA-g=%#_~_{mFf(%*l`^Kq25fk?nfzvfpl>DQ=+;G~~2>UHzmU&W+9sG7y3 z-~X$c^xp#yI_dZPDkl9NLWE28bs*wP^O{7*>tnl((ZdxJGv`$j1KYX<^kTP23xz02jZ<8%}g&dgoZ?I_;@% zwRI4gHGX5ioQ6jO!UVPY$h3-tiJX7d()!Fn&Mkp!0#(+rCdf~!>RzC35I96wI@W~mNfWLKhkg@lLS!0T6Mm0C zgKGk%QENi<1?7XdCV&WB6P)OBO(+!sA8!z#_>MIpL97YH0AfuD{2E#lGQaTF4b-~g zF$}8>k$`JL%L`&nXsH@-O;}|Pydai?EY%{GgZ>xPaxe_Y>2lEff>;iE6C#WO)RR|J zE{G?uatR7943i1pY4BSH0{Gw=@Wpk3^2K!l^v899=r0b3DFEZ8kvCyeq);5EBR64g z|A(l8hr<*NiC?_sxnCp3LxyG-LN?}yJAnnaJsE~|kZ?mA?-w?<_LBxQ3cmJq9_$QX zeYAcht!R&P#2#0LJ#eAK*Phg-Am4xhA!rCH1OrD3z`hKM^8Tdhf_=#g^(An!ptp%( zRllg57rRmUqHvYUssUXkoo$Hr&M@Z{WYgkD_ck*x3cqQi(1hQ#yr}%93-F?T)AXY7 zo2G;)6gwJzmJ$uQE07V;8~Iq;i?j=&K^NBA3hs?vCoU9=$vokkh)fbV(2Xr53l z6!4kA0Vl1d8^n*sGQn+yliNpx+iC~5DBvQ(N6L=7vQe3>D(Nk25%UU9rT{!7qX1mg z_zQb1KH1BU4*621@xb#jN`k{(;iB%kA0&9&8&>os$C#U!#F(3^L5}&XL>TjOm&917 zsb(?ODVNk(*8m=LtV>-IV_k|6;aKx@(QJK5g!pYqD-L!m!m=y;mV=EUKCr~)fwIKq z0rbaNLG%|!r2w22l}dRRSrm%P!^KkG`s{W&v@EU+6a(oNl=cqO=+L~kb@Q^kGTyD$ z8>CA(qu3>8v>TjaDY!K5y(!)u=6|GdKUU4cxT}aIHad*EOd59?AwuKs=^k6(Ja9=o z5B(i!#q|Cg!t#`2iSH)@OPopY7m~2_`B~*sqi$S+r;XpU(yW`56MysX8sSv|Q4-fg z3cyj!t>o=wQ7F!+d0>1+TdM^H#(mg15`hV~8T)g?oU#qbbb-hnpMTt1D ztGpL9g3Rpr-^H2u%6VR9RVHM3ewqHecxJ!+OZ-?L_DSLU`rTOB(PP z6dF!W>05$zJs+25<&ai>7HUE(9yEh=QPCs_sNQpu@2jK%`9cF8uf9(jkR>z(S>pL> zJ|i*P~l1-0`7n&@H0b@!#7;+XobHNH2L}vADVSFVi}!;K34SNLzXT zr%uW*^{STXJ!oC|8%lY?p;L09(^`8snO31cw2pR3%{~(n8Y}VuLK@iA&I|XnCpw7A z5hD4pB_Wc>%T);xu1u9U09PiM1N?Y7aIB-ZreU=vh`6V<_(MbtEmVWt)K*j-yvrQ$ zhj@W{kZR^-C_faGdi3y$E4YUKA$Iru;Fs|JwAt$q5is;3G@;aZ7{0c&_;NA0p^@*U4j%;;~%tfN$R>bobuFmBOt|Q;MG|ZUbKYRPjs7 zi@&n6Rq@&jMuLziYCp^uJX8cOVh^M2a1R4};vPoqDIypO;CmSV5|>4Rczxq_q6O|= z6a%-u&R-3#s?o`i5-x?c|5W}KnYi26gX?R=5H+>6$`Lw@nyAn`uQy90!J%BV(fhPf zpB?vkJ6a70Io7x9{i(M97Jp(*9!-}py;MoI=%FD^Q`9^tD&_%|h?RK?;G4A3ln+M+ zYxRniVBY%&R_6ng`+GADYZ#G_KJEQe__S9wNT0^9y-oR3_;jvnMxQn(6TPRwZyvG+ zoqEEb!l@?^B0M;I2N3ze*?Xjc`?I;2a9bg`p%t*m0qigWrtHvvKzH;XqPy@P3JCcR z1)~2PAX=acXc+6@Dmn@fM=bn`%(H(-hko~Fi@{~WiSZ!l#{VX6Ik>q-jD8n)MfofG z9n}r}jsik{XQp3aCw$%xRz*UOj#vJQa=hAC{@(HA^P5xxIvxdJbm;n1M2FJp*jJx< z=URP;X!NmRvx3;h0~2BI!}b(;B@FF7=RDIg2A8(+|ert zci|NjfWtI+o41{%L3x>}+ZC-3ff^&dmSL?Tx?m@k$xbX&4YCt(WN^g%>WWAox2tB6 z;e4U`0JqVnkMoLo!>deNu84WFh0v(Y;1?j|o563S6(`Tnilcc=ScOkT+zo&w?gsET zbW~s_ToucB;#K8S`08j;mM}?fRH;|>W!%`pW{>lxSekBpPiQEaHFh$)M={HEFpB~% zVo#v#a883+arB5;#pqE09u-i4T-V`lpAke2oYWKzeRPQ$Uwm@0p;#>OD#S{#dGRbJ z9d;(3#k@+mVXQEZ1A?)_s@3jBfjv9CS%&c+mirW>F&`6r+^AP6BW%1HS|xF4mR%L2 zy^PS{XhS-i2qh_RdGo+kQL_Gypx{8kXAFV^bxPQlk2qGWfh`|#euDF~w}QxMuLd(( z%7;fL*Ft=Z!YtugZ$mYmfRD&$2@R@;mGAN_;~DV9^lQX}_(Gm~Ewri_HIZX5r~rQI z{o1fTV;!{(5OWW2=j576xOPLXAqUsG+tL^&^cvyh;3pi$IrV~miW0go8a$EGs;ABB z{aLHLIqjM_(S6y;@I}Iq1sPs^4lD?LlQ}!F9QSSOUjzV8P{^w|-{)f>ui~5sgDL$F z-=_VNh(-VVoCAXXhi`*F{-XC$!#YV2`HM~FQ5f20{mNQLNdpdF+81_J^N(xHcxzw< z>k4VbwdAtumI;>_@)Z^aaL;samEtN6k@x8yWkp{0_SPg|1tSdcJ0%4Y4W2EWdD(l$ zO1(~;2R=hbLwD|*YnHi*Uk368!4y%V2*c(HI#G&->2~?Kv3@Vf8AwH-@UNAEL$|!JKB0gaTkxd z;kP~_$jlypo#gb>2pJ~L&tDgB)jZ9Lz3MH=@I}&hoJb2P(nxEqqumIw%s0G^tgi?h z6Ys!vlF%O@t(bj7D`wwMgM$1zmJ0-d>jtmmAlq96j%?4v#hU!dIs1n49pnfNL5`Tu z=VK0)&p&ou=JNzoDVu<@KFvN{<*8C;jmc}vGY6)yLC!7q9 z5C-rNW>BNvgX?pRa7WZM;vtavmx!kd{sra=9@g;MOM$;a-819=5&;#sk;sdIjo2qB zKa7FEnivBSYl;|%0z!EW1!7*)h^T=f5XHd27xQ8YRe5p8|4EE_F(u~t2^$~+qQq?ZJ?L(sT zC-9pm!rVhJ5q|fkNQ8kqIt1Y^9D)LHgfJ1-pga+tb`$$xj1RQ>!du?3ej!?L^`p*$ ze*B{@7W@b;e3+Y2fXdCHZYeZ$F^Yy}J1s<-FiEkxlygIbdoI`%c(|7ZDJv`5 zQ`O~w;7+CTGPBDqky3Oc1eln0Vwrnos@orM`0*9&Jh)MGxFzOm2SS5>6iUpD9CmBB zw~{rEU|?Q0T5+9xOO%FzE9Pau6*F=88!9!imJq20d;GcTG1i!Yqsq;~*kW#WR2uTQlkH)}_N-zXG$iSA3)8qQRExT; z`~U|7;6c^mZifaVs9GpJGeJ*0#ZdWK<=Y}ZtLk8BRs=r5vTBCni5DF~55>+)yNVfF z8`?Xbp^drk;b^X$%+Kn=ph`c){LDkdq8|?7fS@1Z#S_(zcqf_G69f_Sv&U|W{OmE( zfKG<_+05G_KbuWjac6j$bn6Y(t-R^p%Ei^DC?A}9jBPjp=?N8q30fH9I3fbK_k&7Nzh2x988pW(!vw85~sOzQFP_MMA4OX z|Iu5;A|D-Kxj%Y+$p{dUSBTFdsQ1KVWkxO9RVd&-TCuIcf3eI3ac8Dn;0%A^{~Xy5 z|9r>)dFNaBXA%7KNOs4<1q$%5ym7P_5#NEN~xZs*BA!>z!mJ6^IV4zM*4aY!We*DJ+NS`^ zxiGFv*Zu?|)tWxw&U58eJxV9DHB~QIZ2qGI+$?TGVsZB0U%mH5l=IM?%gO!2doSzX zy-QNy`QN+^40|H!26Jy6+9h=YhtM36_LOB59SR>|n>M-!YkA3Qv0kx>#n{qmqnpIN zKo~`f&$*SpIjk*v>))qqa_S;%YT@^bn=ce#c>~9lU@OY>Da*kz>{4yJ z6zhN43v&RR0YCHxNSPmwC}UG8tjAl!sk$;h3|IHW`NS$wYdEVPDpt1FQH64vj_P85 zT7b>IFtioh^i0jzJNRNQn6#CxNnPA*lsDqQy?o~bx9VeGTlT^YZ!+tCHYq7^{!edN zBkCk{DtAVd-#8fkfJx)TNwh80^Cv-io$CrSWk|timDGjcyfS8CU$7=8Xbu^BP~B`L^#{ zy9p)Z-k12D)B745A+p@_!!ymRz~+5lW9IrJDb_q$faSIyT92K0Af=3XtN=4=4DVnb z0s+JQ_#xb6IxKRQW`9?JC5#y9o)_zTC{Al<{4==oM^-90Z~?zSeBasnS*#f+6KipL~~tKH2gWVaH70gZ4tgosVgCHs*P| zNy#S(IM~Sr228@9y;9h|C|^r^8NpyDzZ~UFj!eT6qK2lhN&VnMi@$x4T#WxpV#l}k zPh`h8^{Q@fp==Vik9^SFXt2!V4>z>)Xv^Xj!?7iAr?07foVHwy9+7QqBL=Z<`+XG)X0L#bZRpoN&89tIvl|UdHzyb@uZq7Nd#i}A zNDAP|1F$#~e)0dx2U@aMu+2q$NvU8W-9w+Cs-E0ArY;*&D7mFwoYUi80y8P0S#~-b zv!GP1s1!4ro%k)TqFs)*yGsxAnPp7AwKT!0R?TGYpL`ACP>cFSV1wd4aJB4|#%{;@ z?&LrXXCF94yjk32o9m8h_R5Kyg;JYvE$DnJO4Z`aHqN+A3QZp|tP86fcXwLYVS)lb z#`%&>yE_$yTT8c)j&iLIBW2GO^POWU6@9U0(AaM!_?no*O?V>PU)#>sc*3e?4kfl8 zZ?f6jht{`-8D?n_j1<+00PlXXt?wFn8qog@rP({6U>;S=roR6HyIZPo7V6u$GL(AG9&=zzl44*f`NAFxCD%hK8GkVl| z(#!1;J!)!pR5{Yoh9V9Eftg+W4uS4E4|TIoQW>Hv@S&0@(2Q-)?d71zyMJgp8&=s@ z#lB3*+|wTteY($IM($oJk+Rx-7pfth#J0j5eN>~@HMhKL?XaIMC${0 zpK{85+(!f_&$IqKIyb@cqzhHHH zD#gd47#bx;J6u4E$9=WzIg~&Oc)5}9UR?kzrES>C(nVv5H>C@2@p>++P=_I?WH{V;a0r`q^(b$ql_y|yqYrzt*m zV+Y&R)|aj0Bmchbd_(Q46kqZ$+1|Gx0{)4?zG`-CLE@fh*Bw!;ST1a%dIv%Sk>VtX z0z_8#z&+I*6nqvf@93*%*Ktx5BRpPh-}P{NwLOCcA>lPesftAGiLcp1iJU| z)h%f6r8;<}$Ug7yYo_D#xnPuJ3B7zJ*^Sn|c-CuxuYzqAa`?G%k?k4aD;G}7 zHZ5#Xkd+_kt6`@)i3)Pf82W^!BhJ5H2g2%7*GU3$rVjGej35W+UuFdS0a?BYI=-^O zgA`xdVA5b;V;vv$LH>S<&*yhhu6S@JRjw7w7Pq}sk=5v#9j~)cA|InHq{s(czK%M+ z68R#<$0g_@%XIt7>iC#9scodBSag3aC=#BPCE{aE@SsSZD*bD_L`6^if-UwCPc^*0 zc~SOOst719JhiwIDp&eV%oqkMz}_%)bka>6tU2iqfNk2RC^}lJMc;zf{HjAs*gw-I zZm}ppW;x|EQgkY`S+$3J4eXng0&RARee#gcrQ@TNxF@=#*+rv?JL8y~VjD+-+h|%j zY@8}=e4! zDM3)ej7Bh-G=fMm!ac&2J)#-J2pt0}C-{0t*-IS!!u+j@pn5+rX0mUzVXvk5*pHU4 z#X;gp!Mq=F95Fa$=dz46yCPfogs&MJGd8XaD>>CyU1!B@IB(It9qn%@C-joFtY|K* z$KjGO$oh%mbIDPFDE4-pBDA+(b5fXV!RGw%N+WPMVr5~6Pr-WpbfezDsurY)ksMK4 z>>Y{89WiPl=rq~q>R`M%f0i#f@Xj;7W>I#7!uo^=vwck=vmTo=-FZk-)t;1+= z!q?+qI^kKd-8~Bis=w&FZP*V|8gy3vxovwO1*0oHSePA|=4%;83FOv3Wpu&B`CpiY zm}@!&at~9|jDh3Yu{}*{c}$?^Cx!DX#l9Ccxv)GL1RxrhGR2cYG99anj&?5`n&q)Z zJ(l;r?_TGYFHKTgVxn=YgQ!8HxN$$3 zVNzDFv9BCU`^jBA5MaKBhJApNsOf*4g3)&mun%5?rBcJk6?A*kp>6Gp6dza61ML0R zebaP&?ucYTsv~T*A3A;V{g^sz#~Z$$W_%Hrdu?1<*7Qw~mRN-N6|n7U6k+a`kkuBW z4X8%(w|pb*$`s7;nfnv4{H*g)v1H?^FXY0vJyyY?JiY=DQ-lXuN$i;gzBy*5RN!|2g@#I8>vGZ+JZWyEQ0m19|dz$aDw+1`9|3q0k;LwNe*Po2s(Yc*!P$DIO@AzDC6G?+`_rR@pd~FSTCTZYD<1&<;4dAd)c485h!Lw}24Becl z+d!D`QKc??s~l{d!S;;l7tK~C#g`!1(%}2~JZNqFH{x`V23SR>!!q!U6*rr~)f4=x z-#4R~WACdZw0KRfPZ+lFO(8;nE!hu|;WwXcNtiX`IaZts|67e3(B6C(&OIhU;pP=M zMDY%VPY=OgSS$Hut@;@hKWbomeyLg|>Q)grxqU9GvRxpC_$)v4H{kgk?r4j?DWCBF zd<2H4|3%3;iJa(nb8R4;`T6D#k539zUFNH9Mpcdx=l*8p7?yL@o672Zmk5hwzvNgJ zSn0cu4O!`1Vs?sQ)+%3By9@0*uLPL)$EfqkzA?NMpq-hqTL1R-xU;grNV8oGOZks4 z({4wl;$}C3L+A-*>li%RH(IhyYkYOtiEn&A*pn$4o=@K4b!}j=k>*4p!E71Buz1ic zhUM)Y-jQuG%Eq!Xul0&&GXlQytWv=DcGSCI(~F6%)9m-D3TUsliM>_|dnJ-HMt*F3 z51j0>Dc}EEojp2tcmgZ;ec~M+?T$1SupO&mjaxv~Km&f}G~gT3fUj}`zF~h$Del^K z`=sq&b=WTTbYd)_=#IDPcf~Wkr=i;GUV+zJ7 zrf#e_&$j8ahyfRpEJH87?-6D$QVczes%6O|e9MZ4P*T6@UAZSX%qShEuksT-KNT*MBY8X`_54Sod#yZBzfn z%}gD8F10(B)^N37M|H&&Yu3v{?{MKn2Ma!5zM3-T#jn8r1HL7Oy`93TadomAx))hVeIm3>-p0hX$lz#;0lJ zFm+)OgleW}xscynnB*6~(8Y}AfgYDcrhO^mAca@vlCyd`!h^n!1*xPJ0Av|#EK$QG4hW)$;R zNmL#q&yheJ9@=Q)po+(%+(Py2T~rE~2&$4$$}_o=JY~?RurQ}Va^4x5%*vgG+MWjH z!#4kN+rn(aQ~s*<87hJgosNt=%AE5})xpY(uTy$HiaH|FPx&2OLDRwE3U-`hD(KkA z#P!aw(mEK8XV zO!Ql z4rU!YS5u#lV>o%c%f7)n7{>wEy;mqbj$=4Ij-v*4jN^O%fC-MH#stT)28fWMq6+&>!rljhL>n&UWF6F6SNh_@(3Brb7Cyx$n=C0xmgPe zRU#9#gji=l9*(9aFEpBVfq30<#RP@O1&354!XeclIHV13_&VDf7?;)VXWG`V%TVq( zH#J10@A((hbu=)J2_DqdqVzbX8Y0r;m}+3hn6~%_OmIv!COD>Bv@vBx+YV;7m$Jhl z9TG3*=MdV0LyA}SJr>W54%rp#3ACAysqqNQwEXhB!u;8{r{lxtXxdvp!Fdsu> z5LaD({b`2H^2UtLG^gR3+bDTn0r^qp?8oDRmD!2V#?NpbvzdESw%3j=>YO2aMx|L6 zhc1=7GCWw*kkw1Lf2LWvC`&&*w6a~565;%z4*)Q+3OV=gi zl*X+0UsND236vI&H9_+h3I6gC=wC|kx3|~+1Nu(I{gLG3HnZ~|(B~t+)nb2V`}p6} z=XM=kk_}4oH;$nHrX>G(`{LizWB+kA)69aa*+}U_1Cj6vwi+9$(4!$1m7g6%zxpV1eJ@igttaij_bpplU>561|;>&7*t{?>s87>E>emg zU)n#%ZoxTx#PQ*|I!y7K5D2vKX*NCgu2TGtEWWzG2wPUh|DN5Oa2I)gk7AhTn_Y^r zyj?s|n6b-Z75yeFA`~+>mM1KTxr}~@OFVY6gZ-E5!+aPDm^xvjv$a#U}yppyc z=LLfE2HJp}frN1O+XpBHGTkSc{zzMp={~{qGHpPnKoVq%nZBJsh6b4yNf0(DLt8M@ zhZdFTSEJ3y8k&QwG1HGQ#@U_0gJh;(iH)q{PZ#MvMHT6OLl`JM-S5T)V!GcqL8kj{ zs`~Fu?aceQ3>>JFA$+ni?KGzQzpa5v&=9IHru&22#@u1LkIoiv527sb<%H(d{R8Y# z6s*>@M=6-EYvw30D9`i532-5L!AW3@VpVIxgQyxlCZ7*;R5XIj^TSjN9IxpwWY~)+ zPo>+36wGxq7O^*K`)ld=81`YJzlP#tHob_=sspNp^T)32p!kyi<8}Sb!|^e@KjuU? z7bS@3M&pnAV0M3j5=eapW%%z2=g-z<_=nnNapLw;pGo!o)pdM_X$uMe(oBm_=B7Eg z$-F+5gE4{tx5vDGWtGx}0z(`4zcB2klm>&$#>GXD*_gJd4Y^x!xgqzU?YJR#DXt=q zfh-}@-_U|NqUZI>Lu6hL;xNF}#Hq9)he`np$-JH`$@6-R3L`xYBEmJE*K1&z3d+2G z8Wn-LgNBSe7B=y}6i30)tjBvZ(^#LT{(AOXlmWjMYBMl=5oT?yPN8$drGmoqbp zv)K;~uM>E!xqp*kf2J|y4^3~7gR+6Ps6qKQI4B2cI}XZzGAQ5w&q0y79Eig~(Zs1i zxk{y|LE%dBLD8siP&5b{6!UWpEC;2IT|ALY3LFm&56Qb0ZeL%QgOhN|f+9`qO8DfzO4?{d35{-Jf8cr?T0!Kbc?kPw;0jU|AA>g zOc~-_9Rbh0@@MHs&=zzH%<*&C$xg7CJWX5CDW)WbW~%veqIfxjOjViV7gv*2-sv-f zwd&$e(ZwmZc!$bSZo!r0ZlNiOZlOWYrq6ZtchC`WTrtOAPuZhigwrqV1`qmcVBB14 zwJVs+Zg%sRvv*S_IItQvDlxx1MD-dNmB1DLB&E+siN8MSkQjmf*Nz2i*q8qS{o_6T z2|7L6xK5oO?d?KIWO9UTtYc#*9(&OLybk7_nEO;+i*m@P2m5cJ+Ti zU!;#ek_9^U@sG5d{sa2Def?D&%JbyB%ReBk-VeeBZSc?o@RVl=rO#*ZtM~Umqtj#8 zZ?6H>b0~d2rtAJ?Ofj7vXY^2*1ahJ8v3zJ9al$j7^1}%|CrM1`IkW{QG@kG*NfIYK zOKCIC=ns?BjQ%7^obHer&G2+b&FAtWh5&K6&THbp*}B;~s08%0R?kLTMv@4BGxbr<_fl3}DN}d-=#uFvs83J*z6G=~8LNvL!glG_Sd_36Ez<96|TY^j+96JpM zN%3Gu1LN4ugh7#Ghle_Kii;zXR9L0?0ZtiQt;It)dQ=7}?);6dtr8>^04;*C7$&&) zbGF~Kz+Wt)ckJDX!mko(FRQIW&j<3VRAWb!K@BiFslo4 z#{BjRiiVuG2+rTo2IRa&ay~^{kTbLdIb*&U!DQJvFd(6PapNd|MUgL3RFN+Z05N*L z7@G`s$9%DPvdkA>9qn(Hn!^>L`Qjj|8Rm=lOhy?_A3U_cr3_D}Do`+A%FHs!B8v+r zz|^NfBm#UULnDA(qcdByY~-E11P+fIDenkYp-WP^ScTp)&JP8}E)=ew*6vNge43hF zlG)BjAcfKhFeU2DacQ=x$x81qyac=O=??`1GavQC1EmjB&dQLFP%t;7@i2ShaX&nO zOB)a$?f5(eOZ-I>{BP;_sza|)eBL48e_^7(q642lI^F6C|GoA{PW&iPgmurGlCD!Y zEFhCY%>r2L{fhF#g&d2$+c+2(BJgcU3Wo>&GuhwNuz#TFxFwxP7F*H@+M-gAtDqg$ zd9TxUT<-r&R(n#xl44JSNuVc$Y7phE?;sENBu$A8pKh)BQg83>TV=~c`0l+^&wofbs3>5SSlAjlkE>`BM#hGG)jI)|kLDUw|-g0&P&^I=iGC*H>sej_b^l zYFyv?-{V?L#2OPyigDHCsd4=e6%!g)6R2?K*Qjt{H3%9Nb4m>?2eyvAlXAx~)$owK z*L1&Ew}zVa$00!gcXY~6l-n)7_TK&D&?FdIP23nI5_K7F{x!KQB2CDR5;YlOR1smR0^lCO{TCR zs!8_&7Oy5X)aZFNss8`5_TAxC70tt*bCUqs1QJ3LQb|H5fh3gBAqfx&B_R-yP9ofP z5}Mdh5l~bR5Kv%6lwwCg!4?&1Hf&%(u_K_q>Wk9!wJUtHv*+HObMB3PPx$?l=Vo?x zW_EUVW_Pw6s3XoRr#F{VC6Etyldhwf*xM-I)i(LM))cOFMmr)_Q*?Z&p-f=$e&lp|(i_iu0> zi#SNZ%2^zxU}0F=LH@&LIBgP$kGo3W2Ei}h=zPSAZ<8!ewjofm>o+-TA}&&r%H$g) zSWRdIJOPH11>)m=Q$i5@Z??d!)Pir5%)GQ`kqoY@7U;K`hI6$v9C*SUjJz(GFgoz4$Pk8ANvGRL)1&fY)mdzY~+M8<*7_{?1v!IXuHLq$Hhk1qvFr);yTM>_@iFB5@<^iWeFCOm#(lfKJS8+w+IT?!fR5; z-I;sYkp_S|Hz1`R-X~ zcE}q5<}<7A%VuvX1g_0;P19dXKo87oyS9qfk0gl4J#x8wr?ar>E`dr{5HIsxJHc}V z@@Vq3v#<6&AMvy^mz}mV_%CJfD>CS;eZ^-!6P(2>&p3Y%!UCJoB+=K5X!zytKWK&) z$ye`o_QqCdNj&-$XBXhn>v?ClV9i+cyt9OnX7HW&xHI@)&pRtvE+HJ<-&LZ$%%87u zPPbr3Z*Z3+2WW>F4;<5n)36V{;OwNcVnPtvh)fSFBT&IcFHYod?1J1RL5Be^9>OWT zZhULL??vb3eDCma3Gh+K+LxVW%uNVDKX&C61447OX-W(FoJ2ln-pnqJuM*(S#mAF! z1&!u>-`hQ+n;A-Y^V3VfUYz%|NNa1RiD_>pe`{2=bKM3wP2Xw9g}3?Cea?9iE0l0% zBX+E9*v7#V;R5cFrfu1JRgOletyOYs4`T0yfY_Jugz zUv&=AcR^b&ukOTlTe)QOv#&byv=fEn=&Ch-6?8LsIT!n(ZqzXDG6$FE*@#oGV_0$ZU zPW}FKXIJ(GVTF3plWltW%#`|LQ!jrVbN(kHPGHH|gX!NIA9uFU(~^1iac4TqP{lIF zrY4g?kd=%NXh8$=PdGc(vjKWsGLOFKY86D3exdF}UNLh@ls+h#FFNVWVuS7S450Fq z`Q^F)OJ`0@Kf4Bi(}^#gH!#v@^o4<#G0AcifUYb(y!?b7&NqGSJfh#4%uAkj=CIrC z65T>2TAhq;0yG4Zgn~`me(P+^M4@jIfxZ8rz3n%e zEt;1sJ;&1ToL90MQtgsQ#j}coMQ7Pxwhrg-oO1pNrh4FeX8}7wxr$NoIaS#ysWSAe zb9Rr5=bu)%+woPWilZ(?eU6WlO$P!$tg8CUuBxMELynlLy8pxChgejKs&=WWf+=2E z7|cy)Kj~$K#Gc2_e_h z41QQu`lMZ@w_BU1FP17@HwZ3wcG}~fkg~Fpvt#jbY8;<0*_90_gQPWYFK!xYBQ_= zI^a8{C1DCG7Gk)Bz3Gx>fP?tLuqj@apa_eg)`6$p)u(r?0{XZa%~Qn-r*E-rRVJ3$ z?fJgn9hrJ&syw0EHkBXVS6#&h2gMqou(pJ{MzW~{tL#@-xjs=L;6c|PMo*f|t|eGL zjvd%q&380@E}zrDmB(%+Xh>{sDqsE3tTF6vQh@bW73qaKl;ZxKkXW3loi%pSm28_G zRWwd}Ofq+T_>cMRQ0s)?L|L?$XNpXSr`=y=j&IxJn{=2mt21!SeC=W0T_zLu+1W=31+< zu>||%W?1Ksg0JI=yz(ej;9DY#Ta88wnOA1js+^a7<8tbr7Gw^2O$$tw>%XM(IbGbD zF-lG5cVGn@I1|MP8=hVW>8RQ)IPIlGm>>WZ9^?Jb6>j70j z^?KZ=*ORJT>h&1a>-Tl))x6#TY;g0?!p6VJ#I!Vv{YqWwLN?JEq>}242m(#u@T^K& zP0yCD8RD(b!(?a^%G&Q^& z4}y+FUZ|NGSLSs!pv_bN9yq`vl4xj304ix{f_NgcK!43@&o$TPxb}yzBSaoF#WBprc6=^aKtjS;~GPsQ!_w1HQOG7f8O-x0434hUv`sNZFjZ`6M8zEo=dfQ1*1~Wm%*iw)?-mTzyzq0u_Qe z0F9^L(b|Zn79KXcHjlc| zwv_FL_wq;dgL%r;>GDypJ^frm*!6^kXo7Yvyix8-X4eupHh61)*Ce)_K(QyTP4~aF z+EiIvhTMCb%hLzA3ia9P@;NV7;OeD6W-?ER8Z?k?w~>RlK#=+41dhy$3tb)9UIInt zj|XMmQZj$U!n|hQ09OKhcGN~fJ0=+(BXDHcZIEjM`-wo2;jy3$&4;f(L5A9FzOcwO zocI`18MH5Oc5$J|wNGO)8OpY825CO{XRpYMi(NOebW#r`{;}9Kl(i>NlsG+u^P#S> z7Id4fbddTAU~}Ct*GH^?5JWF`<8WA|7859X<$?^JFv4}41s$b2R_1EOCK7a%3ebm@ zz<8k4ZBk_gl`6I-q14q?V{-{b6zlqtu72zW0u^FK3N&A)WihYZeW5R(UFsUlf1kFz zv4w_`bp@dzWYy;KiKC#&l%vAl6o@@!G>j99ZS%z00Sz-f@jKvR$;_hWP`PV?#@;3z z&=bFrAt!5Zr~)&h;Az<}GVru4JE4l@oZ|Bg6-@L~88}ySz#N>Hy`!}vleL~wK460$ z+`>jpDlThjFFp@BW z9i@|%i_^H}MM;)L=)mym%NLY4X~^H}l{GDb*5&Vo%uUDlCHu6L?@I3PZ98O`gs32mBUM&E=DY`nAaz{%%mco`3e4J}9 zX-WETT}%I5JNm$kKKf!Pgu^IoA*lt;m0xVu=L0s#q*e2rY2c4RByk>vy-JaVNc)IL zH6T)3jeSgUe49n=0|Gt2!`&`|08C@7&2x6rL6_o~96Lksu`#D;V}4VO5eo<6I{Qdl zB-HsQPrH{`_+u{|He0yQ-$HTs*0Q3TUwBQGYakgZ{iSprTFH^pK~XVvFt*w?NFUuwX7Hx=QtHTk(#+JBPD*cKTOS`nUM$e>2N9l7wnsBY5Q< zuH3s9ei|LfyG<)$;@x@e%qHRdi`lLQabyANPqBof!FT8RqdKxWQZNO#yG!F97joj+ zlqbY5Je%@FD|z<&9zhK+H$!%bA5JZB^O0A&Znx)}de@}PbyaHYHEWYQ@R2(*dXG>* zpKO=%f*I^t_2)aTbVczyu6A9|-dEIR#tFY=y-z`XJdGpJCitjM&BNEYhHC7;3d2l1 zv6L*WmCQSxY$dZeaK4-I-Pgg)Lu*Ye67p2*);Fivn14zjIAtRL6x-TL4)agB1PeTZ znepn_8ZR2N{-jjUfY)X!m%^MkrJ*aIjUa_s6;n@86_Y|fp)vL3vZG>N?Fy62RiqTT zTp_tY>ZyG=DN{_KriIC83tV@x4R%yy!c8VyNhvbnlF7V9@L`x5QmD87-P#0Tdq_al4%L3c%Xq&GIoALJE;V9x{+G$+5AdR51V)!9Y7HT*auk zx@_K`3_J=ZFOz`;RVD*>fk%O4U~_>YlYxr`OYtv$tBEh{`a?T@{kdV$$wveV%?s`p z0Gb!XUEw>dB9Gv!Zg#k>}1nu=|%2vCEYwS5v5vRIu-{mT2y9pF$;Lm~Sh{G}z9jDYvJ~Ml0Xz%5mAIjViZU7y7M<}xR@iweWft{ zZt|WsJpIG!B))Q;>nPLOs=l?6GC$t&_dkm^n?S z9K{?cRRC~W1`b@@5#Yzx!^TD*f(O&^tMz-#7%$#^=?9|8Gq4C?6vV9(>J>W&Y&s-cSL zbk>7NwP*n3$j$0vPQ+h%1g1Eh+sZrE?oF;)8rwwh#bQF+z;m{^k|Q=KxY?}9e@|+} zZ{FhSpgqI4Z*gU_=M;)uPwZ?<=16Ie#>G*Te&bGj8vmp0QB|; zT{A3DOY^T_$A~bfhyV)V4@1I$LXpBv4JP$tXaBWw;v=q7OJ$s6-UDqAGks7gUNPwQ zsF)x(Yo|;W*Jn}fWTq^N6yUn%qR5oBAy8Zj13Ip=2)dam>p@UqFqlg$z{gA(!Ivim zF;g~_)bWwW6&XcG#rBizuA7~$4-a#0JhL@sL8NK2J| z47i}OEnL*1b}u2XG%iFFi&|2N*e->lwyv4&0PoX&dMMv}`}8z+l+Z+#(F&+C@x+>i zxJ~Kb{u2c;>MfN~-#7d9El2;$&$&+METX;5R2#OJrrMAcpsDtM(RBw)B~Y{_Ku7Hn zbkkIG2&z&X;G?M$d}*qEcEOHkA*tgdk9wx)sGuDe+s876ZRT``z6?{saSCjY#%Z$4 zDK!XP*J@S#t=+JDJHuA9sWKKbVdv#L-xP-p?q<YjNXzUBZ636bR(u^WLRRttCI(}?#W&!@E%5n5+=L8RV zK3c!fUS>4RC`m$ynV$qMXnhtgxTVmngR*O7eSj~lFNjq6g$)|;RbvLE>g_u4^pC1C zSO-c$BmmlUAbzE52TTAsgkM>7YgVhEvZ3h`*@%k>fX;dsW)u`E2CepyRpa7m6rO+G zgpitF4!R!Jn3KqeYOm}d6M>bgK)K9Dd~mHR)iJLFi2Qz3I=ew3NzZvLX`yy2-~WlL z8$|E>|sI{eT!^?4K?p5pnmoLf!d$_ z{QrRkFPnYj3gufqgh16GQ<-F40w8`n{>SGygatmZql8^xC5XMeCqm@Q7A^FDPXK*^2D8= zyVkNBiCk#X*JVnRzD^Y=lWwc8%9Oe7yHv3><~wP7?vw4o;flF!w6<^~uTi;&Ikv4=5DL?5?C1 zbcUJC&IN2CQd*W@B+O=CORUsfnqY70B9WBoMpzb z2S^2M%|_aqZK^ex%~sZDex`?zm)UFzz+Sl3Y~od_iI~o&t5-;8XYeP^xOzH12e}R( zfLl19bM34vN&g&_F0MU%O~iyV1=IACRLnD3XpNDWcoC0~m%yh?_?E5XQuyY=anWQt z)LjmmFZil+u0rC4P57rEq%S+1a-YN{g3^UP9zVp_FG&)|j{xg!Oc2L*gnq*Wah&*t z3F5ep!4kyy`X&F-HQk;d?!yazf|FF)qW%-Y0wA&BKaH5Fpg!KqufC+yh#mQp(bJpo zh!A%}9+l>f;Ya@mhXeX4J|tBfguBrfS|`50p89THW4`Za*AiAv>-w{{BjGJ@_+o}W zyd%d9a5cdy6KO(^LdYFEr#X-K4R$UU6D$};W(Ig+N11B8ik_D@%I za$ixfoxC>LP5{jQg(HI5HN*aLHP_h(1dMB`RTo@s*yjW)7Gl~5JnEvWbs#p}Rp`Uc z1Y-Yo5%$9aXe0Jzos=MgcBDY_Z9FgHQ~!1?;w^M{bSdWX0_WSK+=R2??23xSH}>6xAQ(NOoD7IaKDb`Y4` zMHiV#P09unZe@fPSX83EHiREu^+ql~7qyBpQMgSESQrwRd`oZW{)SbPI%1xnd3a?b zcXEVB!C@hKrh28mxRVSxx2Y1j)VP_?VeXW>E6%0LQ}nAk$(VBph8}F7YB!1UAv#RC zF#;3HG6K)u*(f%g5XBg}Y5w3;Mo}>Ui+9`Dvji6dFh#@4DUt3umddyYaH5=i)%1|o z`W0~GUObyMt+BhBeL@JL4vtD4993}CK{{W!GVyZ#JSgJ3S?TO2RV)>8)~1NRr6ROL z{6v(y3tX5*Jsj=C_uuDA3TQE&)Fdp;=}ELZn^7n><%qQ@Vm_fwm9P_s?rN=4v@*)+`UWN&RZuyBIYTAjv_rlMS4++1gb7hbazQsW5qll z`zWb>Pon!89?`-ra`HGQc*vCSZY3ek3FrU=M7YfK@7`r@L=u*$S230LU?K0OW88oN;{B_94Y=a8T3%3KcI4 zObv=PQDI@IzLsENn4PN-@C5%`t=$!DCBagmdRdMP)%TN9qyYtZN8kxk;E&SUGJbN3 zJC|3y7Mi5Dg|D89djh5H+%EQ-9UXT#_nBOdkW%CV1vnw72#v^KCrGJcwNJ6q+REQ2 z-fWm27sMX0U;Gn;Bp_#A7$Ahfj^V-pbOr1YMhg@5V3vhX?J5y16?BRu(H;enW5ciNWh-=efsP>Y?i#29k?K?GR|Mh^JyhkMHS=bc6xSMv{oLk;-n;z}54^dH_wDbN*-E~&zdKJiRmGI5BKV#Hw`D_*y-FI3abN7}S)jIb ze`sfAvAAJCDL}fvml+Xw_(1mnf15t*TG2{D-+~&4vVLbb|Lv;4)c@?}MQt3fgVq=A zj7wt&RJm06t5o5KrNU7Y(Z4jzXl5vto9{0HBUHJCk=oe$me2>sG?0%R8N#&AeE$JC})An|j>?&Lr+zK!iG zSj@jtz+;${F80Ucw*I&<%>4)JL5N|0bnPO?LswN`_D9-*h_?FhEw@-=-BI}_yu7V?!`$r#HrN{$HrN}hns(0(C)BYs@S|-)G~r%J9jW+L9#1T- zQZUk8V!^T*^AbWHjX8kg!(}j4rBI|`+qb;;U&$=ocX>1w4ErG$nqiI$Odt+|up%bb zUBL&7$$l>UFDCm333;6Czbyd1xThxj-*w^Xugz#f`QXI*8`>lPlRY9FGA0neghDab z|AI2{ClEgaY$4LyAgU=6&h^u~D&s|wQU$;wQqS@33oMV~`Ll?f2^6!41VF>_(5_}U z9!@G?lZJF9MmDyq-^pSYQQ4UJdKe+kZ<*x2hfx4_=#a_oPOO@6L2ICBI3jU8Q7HCf zHt-ipO6}@b5-vCB1O^ZX%Hy7D>P4sDxZ2nx1i;nCX7LMG8=JeNr}Q3LMQlVk1pxiXftoF|-Dw)Tg`nUJbpN&X z8EB8|++AU&Cp-f`a-DBR)M6gYJ6m>>2g#HI8uJzNtn*I()I6NG;t6k-NF=ppw9>>GlP(e=x2GP-`L3aID%qnqjZ z{!-;Ky#5Ac{R@$>Jn8w&R>r7SnwK>N8xbi98?q3wK`Sk2*2c3|dCGuM1GF;E`zQeY z;&EUO@eSUQ-MP>$-z0_izbkHZ7s4ZG04mh4=q4lF<%GBhC#+lmq#1B9gEl;8&(KZ! zm3cCobrnI!a4 z>z1yu>FmeAziEoBQoA_}x zt2el-HKzAa$_BNTB&&*M5`b33uoy?Hh)h?E0H8kvlTatEa|s^C#w#DT$HxCYtYYIW zkN9F^?IZ3yIMBTMX?GS=;xyy^9<_zWl@HrOqY1D^2Y&x!Dl~Q^LTOu74(5)n5Ea|@ zAW?A*!NjPzs)vk}!7Tt>x5fUGYnYR~e+kGQ*;&5KdZGgq8~iHM1W ziHwOm_BV(PCzN46P-(%kHkutFxEK;CMGT1)fF5`S@D@uxPy;UcTJ@08CkEhReH8`& zizQ!ZPhvB|0CWNH8Gu^yrS+5%F@xY^=t%9U6ryMKl+%O_;7-I1$V4a<5iyR`!ic!J za(I{q$Rb4d^h<>Ca6H8o5{)GinHL~uQXGFAGzb*qAOXze0}J%As)e{*qodFt0^^9QOdwr=>$TT~q!G5Ej>?(5kZ z#X>F6VuLU?PV>z#y4SFfULc7tTKm^$m-WK+nf4by`4VivCI>}oE|K)Vdg4)tI=EE6 z?7k`F9Ec@j9T5d%o%SKm+3g+{B`{>DD;CVo@nyT=wUW~UN+aFJq>!l zaRkrqHmcq$GJFmVwAw(f$c8K0X7HP$ATsz(762OjNF7{})x5Re-BM@ObyqaQ4y}mM zV$QC(FfYpie09g!$B7iI;wbYVoK48O=3a-$X9fd_6NQ4pORf;Uka-UrywW9i%;`$@W z2Ly_dgaFKr#;f$cem+C+u~DaJqkdD3!UdJ;=caN&MW~xs=?OjTjKgM2_xW3jk%W#& z6-kIIO7M3DxI%H!JG&1+Fp}hmUl>Vp`d}ns$zy&uz)(=} zON^4`)9N2+;kyAR*^P=O-}0(wM5=LvfS}6{kp@QD^1~D7Hsd)Tr8VavU%MyQR2J3G&a=cUU$;Yn*Ov5>NZhdZWq9nEvDYTkek`Hwp_WF-j4Pku3^Ia6}? z;X517o(m_)v~S#_8txDUPxk@qdUbMfQ`H#rA@v90?O-E?pXfRxGv30<^g2+1zuh4& zk!OGFE{=B-E~dtXet3FZaY0S(x9%cMyMY%JRe#DC9&gzscfUa21ApckLmFIm+59zz zfGnMB?0~MCzos3Q8OT;N#JGd!o^qejzTs)#!&LSwAzCg^JN`%`p7UsQykjkJD%dkQ zx1kUNY;URjvPAbE-2GTcU#O23a)DTgrl5lU|AB?1^PFX#Fh1b4dw&F_E}oD}=ecLx z@3M5oRG3f+&yJj4pHFdsWens$45@C+2qV5)uZpeF&$%1uEQc_P?&rqX zy^dae!}#t;TlZ#t2+o#{hEwaoSN|!J7viJWfIX#ZaOAQr7#H&* z`D6diCFC#n?QleH`CsmVtkzEZ-C(rM!TRPu(pERaXYU)En5>j)wx1{!t%#3IZ5moL z`GR|_#?BHkwxoh7ow(?3#eOBw^fGVh+9{st0jO)wdRnnY{nYRin0$ujnHzvAsV3QQ zb

    WJN2{xbfnxd2zJ^ky(7Qf;prSug>PG>4`Kanb@-AHPkRflFgv0l^Xk1_Lp8la zJstGO%N02}0GjD*9sJ}ocg65c_vowHR8`J#AS^6z(ts~quV15G&eNND;?_0tJnxv* zPYwel=Q}xlFW)@ue0T1Rzu1=d4fhOXgcrw-IJ7~}V~Yp}VSx@n;}!Sm>HLl`&&~Y5 z%+uIjvo(L`zahEo?qD@f{uPpF!MCZyoJmo2)UqmgI)f!m}?x z1t)6Xb;t6?{A`RTS34kdztnNu)I0otpqZyfFmlJA(#Nv%LCM{^Lmwn5#qmyYo*Num zf76>C=qI0}AmVYG9?fgEq>*Ca#nn{Dd+ygF6Z-qdjIUjJ37)MiUBOAavJ*YG=?VR% zUwt>xbI6fvO5y-QJhx5f1V$*LD8#Y0kv@=!0z9>snl!7Kob35Z(~JA_Eni>hB4Z*m zpau%hPy7(m#xYUw{<>vrHkk;E)_@O)j^}gQdwTG5ufuElmm2-7VHUr)VrhjL);H9D z;s=3tRL#_MPo)MIpZ8~Y-1^P^#g|qpIetha;iTT2mqZ(B{9sGZgBrXx-O7{29w!Yi zyW2BOdqlLE2G(c$%V+E_7x6E$G@cL3gx7>CrnQLT3lG=p=@ua<2SMTV?k^RM_@XwR zKI{P^hcLgUZwLU!ar4;dCfOM|4*0m>ef{N=_8lKu(U>3nLa*SfGDd~+rv`zy{*+J> zQ{NcldON9)tfa(u0JQZ2Rwz{Fe{Nk{AYd@WKab3W2_fobRlinAaX~r`n8+vBBQiZ# zM_LegL3Uy<{${4+Cw|a-uo0wQ?qA0AxZqXfsqV}i z&pT`ysiEb1%Jr%F@}%?}Qjq(g7YpDFb8ohQ6hMvkT-;}ZTM3|>;rhgUd9CUmf`ql# zKn73%49wS|@<^$l zfvAgj!azsZgoJGq%2}xuwOk)&a+pjCkOLH86Yw?qDpIOA0E&gf1}$PJTWm!w*B6=` z?ji-q0SbUaZ?>5fDB@7+BaR1c>ax9t-X$SMDcJ3TK`qi4!Qxw5cr)|_=pts6lzZ}w z0}*hI2{6r!?jgZe{A-@I!QWRKFNw=eXBqs#G*&->Pu)|J>g%;yRSqB4z){ZLCr!Ym z&Dl|&0>`lexFXTe(SaQ&#bQ;Xe^wwfQmbp;H)nU%Yh$STrVk< zDdZAW+DBZMOXr(Mf-a0get7eYHmq6|^YoV9={kf9+<+8jIL|YV524Xwny`%%ywE#4(L{=mbwI$4@{9 z*Y7{^q6x6F{*4HNmiTiaUwzJ15TnSNOSALP!yx&@FizkZ#o$cSfWk^|%>>X6gt zKc{%!j~u5M_`2xNsh+o4g@Ti*e{7}aK7HH(*)eZcdd@m#L&Gtp0#JMtj}VlL5G9DY zn4^M3-)t1>!%U410hPl;EHw$!J&(Z_6Oq6_zBG8FXRaqXf~!Jvc;QXVX9mcdn9r$V zj@G|(fEr%<-T`R+k(SZL4}a4nQ{N7FurZ-?(5A3-!Urwg4v6P(cszewpekwc6_G;N zlm!jOO*~&|KpKPcfU#DhuQ9uFNMQ}=V}-^V4pheESA`xjP`a8BRZ4Y{Hc;v!LlsM1 zqz)vy$QoFuE)oGx=tA%jx*&X{E^L6fnvB_=WX*zy?a_dM7%|Yl;zVOj_?4a!8kht43w{u%vZ&-QS)e{ZkLU+hTZfj&Qu;XH6sed!FCB&qFscQ zY?loX&nvF+cr0kx$9TW$2_gvgaX{sJuZ2FQP}IpJt4{cZD; z%e$(S>g79AFQ-(o)XO(iFaN7kFRQ|4`1K-K3B3?jQZF_@Jip^cPj3qv>IEM~X+B7q zEb1ko^7{FnJWFNmIS+h;cRnm)ZoI`4u3`4P#DY=qL{(c009E;xO_lQ(cs^pKgul|_ zut9Rj3{$117N4B#?ZJ2a6cxtbSv|Q-cMplnKqU~ZHw?+#K@qY6?s^#3|XX z;Og-n2)g|4eBsRzjH$`0IeDl(-L{SPE7z8K+Opq?1lW-xt)u@uNJP_op1m>RlBUrS zWER;+enOW*pyP0-X454t*sJjqx*L{xJ`8oF7Qz1Koerm-S|mTA+v$^-LA-WcTsTi$ zU*4GiRRfus1uNlg>IHXs9&!u>^z$)=X{@M78Iefx=!Hef5cQEonBcKGyn;2J(t1pG zVTo~--mi#vU+XDi{Rmqz4Uf4(0O(SqcM)ukIpGcdBAL&bu+H-WyM|N~KEXfZ=l5;I zp)G950a(2EI>&7m^!;yoOZdKz``2?Na+N+;34~vV>{euciub(?_{{9RoA;q3Cy^7ix}9ouS1_%n-sc%zPpxWOdHnq_*W60DqEZhE09EQEW*Z(fm71~9b3Hpr zs=<2g@_I_4f1!w56qNE!OgNvv+4ELN!@;1S^yrjy77o9BYeZB~*kEFI%?6{{#aJd% zm%-acmtDs9?egaE`ycQm)>lk@FrV_ECx_`o1k_d=0ifEtXg26CQ(ILJd7fvzNHvTs z7Y92cdH>dtv8<33flDdTdkyCAJnZQhSf}(RBZF^z(jSckCeCsx^-H$c?t|qJ0{JZ+ z(jq#w3E%y!Bc4a?1h25;R&Nad{xQ!p`mKZc{->+6+3lnu*gLn--dQbs$LbU=uJn%P z6?d1`(`#M@3Dtv7c)GI%gf;fcg91Q%=~hD zwwFM$Q)&kD7bA^v7W7M2^|Pj`=MA>1dSc(v;e5dk&u1a$Kn}k1RwIi~+J*g&iakRW z`&Tf<-n7Cy>QWTzI5ikfM*P|_k--oDm_yYz9%57Nx29^p7OH)iWr%V!kpl{?;HO_! z7Mn4Izx*6b(O`kY~pL+pJWik;@C{r6R zYWK!Hf6dL)4tTm)Z8UPfryK9T#falGUaG(U7&C--+6CTr3}G+S*>s*=ougE1@VmmL zLu4rH`LgF(wt`f@1g{I{1pF!!Oteyd@-^73@I|MnlWoIm4(;(UO@9{k){LLs>uJfJ zC+tyqPfO*^PDyJTTy@TRI$Z5Z-uxAqa6L&lqP~vU_4S0cDf(lkzLH;sDD@4gekuC; z%E|;byDa)j`@9q5*S+p}B_y&K25jkp&^D|I{PK+h)D`19KQIkVPbdyDMXLSI)0wCJ zXoT|(2kLEUjt0f%$b}z%0Z?_B0zjQ&h>(bU!dfeqrZ)a{#}3w?RKFC}!Lchl6H8p_ z?`Rgze=90Xmb1;YcRf#PF8=l9z3YkQ2Zt0k<>#7} z)_2n8r~nmiDK5-l@WZOY#dZ}=wzY18slv@e3rDhhNOfF{o(QQL$~F_In0dlo&lZPa za8c|__K9l)qZs2m}97_eF>(iUp7=ub%3@{Ik}&BQZ&88P(JcgPdk=H7zyp@ z?S`rer6uthyVK_LyQAy;f*)1AC5CzyX}rXFxl)n?P~t2x$E92}ha*|5Asr{L>q?5*&w(J}c78U&iRrDW06b&Xk zww{W1d^$3zUX8SQ_}=6xxR_TVYVYNiP!wFy|?MWvR)wcpLa#?!jD z3g;FLt{Mf9-@bDsOS9ekUwFyp&*L7(XPx%kuMZx^8=ryAj$$GUdPYc*38LzR=;&cV zf;fhu6Q>~zU4Pb-R8KwX1;cosbFc<1AVOdacM1R<`~6f?ak|)hn2h16ryVodJW?I) zcT?}`EVhV1(S89<+AqaNc5(Jxz%_yFOxGz=Y2A6n&&|R`HVJlpa`=g%$%%SW5!X6+ z2J7*#9`-m3)*Va;j|-C3GUAHld6!9B3Zwa+`@QXW$9Z>O2FK;&}!i@k4*Z z$sD&8wOpTO62F=hAaN)_;#$R zq3HuOD`md4fpG;pY{e|s51OQplL90S1t|7uQlP|!QYtp@AL_k|g^jRwo34+L3U5XV zkT?_|@eER+h>L1}xVkl1t6ipD2Dzp=ZM5dXK*VX1*dSJEoP@&~-beWzgIdHgQZCPt zybTqZQ5uKmNAM&`vEcfqI8#zKg6F;lX_q!JAzhMB3e(&Uhe(E*=h@y>wh9MEvTM#a z^1iIG@kC}z@{?7P65$5)@gsO;gm+0m6^>DFZV>eKk=|Yb=>GI7yERCaRgJy-|Dg)E zRdIm){H>IbZk9S2TNixOxIQy{7}!(H_e91LW|dpLH?rpm01s_EBLLgPNu850R^gjq zHMceOW^3#)K~x($2cdtqxRN3cs#0@9r~kX&*B#%D2wPV>ErXp>#kh?FP9=9PEMEMP z#qmFAv^a7RQ6^A*M|JwgdAm8jgd*I?fgk=@S=PcBt4EZ`%WsWKRDsyU(Zc!pc3zp` z(3_WtJ)CZg(%sqCo2P#XRy@L)#3)%j$5C-rVxgW>!dIsoZCPhK?M{StA4xlc&<^9d zd*cQO;#!qrv`F~jw@6_+>((bl@U(riQuRMd`1w*utNukW&@_KjEHpT? z(#_k=YVs#qdpqj2@UVz5O-dgvKDAU@d|IhujAWBx`A!EEe3vGWHk!SpZGIjG{=x64 zyq9C->xHE}I@f5$2HJ_kSy3zTk|4wvwD%U8g4>AWcyg7>@#L`+pKd39B@&OMj=&sL zAT92Uq}S!JvH{}x!iPiCEoeAX#J9}vCF0?@3aH#O&zNbgEG+Z| z(XHkOw7^2~9L=6iUPEVl2}NR}rKX9hQqyt1lk5G=@lmO?&`(scw9unAZ8^RwtINhj%t!Q#dDpKJe!YNrnXlHwayg9u4n;uTPmr6c9%KCBj0 z*(^RwP(ur%8X*=0oq`rbnu6!+b}0aEk*C$n?&V#nv$;eLw4wKIhv~r$1S)Juo6Gn0 z^%hyM!CS1?SB~U|?(}wLt4Reojo5>4p4~i4UqRcnVI!3(9mSWx6*QQ`l%3-87IXzqimkz`_z0 zviq4eJ@}^AQ^MF$!Vf23b4SX(JgP*o1WOJePSh`t&J7vp{fwO^1d&(TrjR`LGl8P= zPxBLlyn_R=7xtLkiZv)xwrOG?De{gC#Kyx$34z$}5B3fT#Kt2ynKo?wwAo-PxUIqF zQ(&~g;)ou&7x2J^zSvh2Gt}EmV`B*eNCsa$(q@!7(I(# zU8Y8*))DM|5lZnT8EQOD|N>xsrArNN@IBL7#3<`UkE5?bAB^ z@N3#6gh0f~vPAz{cAan7 z@JW-rPqDj*6te$1^s#p%1$B6Kb=l`ku9)dy~H1H#^`wq$O zt0iUFeeV+b+NX7O-$SG1z@em7_uUC?6WvGJCcDoDi036&cnd6OIB>*_pU?2BffG>g z?RO&Lt@VWVmjPdK2F*7eDw^)SsIj)ARrA&GX*pWzzojar`tLtl4xa*5EcM@aG#Ng_ zM*qX`=?R6XfA|rge|_3$`5Ly96k-Qd5(fIL(Sh?I96vor%MPHlRR@U1i4Gu*lN~?- zbE>=^3x;3!j1!^IbJ2R}xwcn(bL*(Q^Q*}t0Q?Hz=|?;*+jyVpZnvE%&wqC_hl-El?Mh!xU4h)o^k`E6ubk%x={+RdgLpp@Vxz;yJ6l~F(EWu zPcQciiSPDYM{1yuSKEZ_T66w7Z@Gi5CWtsR@u=qtAO|TPwt|$3u)}NL>E4L9oAyT} zzi^{BQGd9cpL}+1CVQ0NVG|!DP24G)XkAH6Y#!Q{%qY!o`L5tM-2_8|vb9Z?OvI&x zAzrq+Jt1@fJ4m2t4=D@1dF&{G;(YHQ-@Xv$dlXx6Nmb#dt-SqAxby)x^GKtPHCq;W zmxi*7Hj<7%p|jsf4ozn8!|!QO1Y8|Nk5Nz*;ZHtoiMQB_-NHMN??`A89;4*wDCPLI zoX?p*y;DumQn9Rg=GUaIvX% zXs(5yFoi(L+K&;=p*!CZ+c;c@{=jXZ%_&X7i4mK<^*=c-XaA>JxZ@nyMeUEB`^q%d z>2kcjRP*>6Z)2SuByAB!;dpC|X+-eDYDBooIZmKxL~rra+*`;j*g=daTN=^pV}ucP zpWmxWQvVh4?tv5b+Bi z=Nd9rKF)PPU_UO>-L<^ne(&jEyKggpH=6K^&d>&Y*+%aKRw;-)A*#R?39%11Spj^! zm)~9QeK-yWz(@1rk6moU(}sp7@c7N(1+P;qa92*hYOLH)n>|);sGUgfn$K1dEZoLf z4yBLHisex!ircV_q!jjY%5^BkJt7~C`~^va*z*JnX*`WI`m@(a0ak|sUv<1j97GMq zEKqYp?@~VfVK2N;BDQ}BmfZdsH`c!Wb4qZ+?VlgV%I%*irJ=o(X9+MSI?U~#2}&Zo zFZ|{s-kt0Z1(eUG;GM `$x-`sJ$QaM1k0^B?mjS*qYZOYPX4`s}k(&zwqkjjrh5HLR&j# z0MEVGgtlX|>^!R|&w0o*lJW$#WQ7E0igRSjRHWW4Qs8`X{Zrnt7AP+DvM-kxTv9Kq!#^Km(FBSLsr_Axwm{J=+K)5M zB9q`_o7#?3W}$Z*C+3`81MMPN*@gM>2g>+`7a-VB0CqxSASP}Z{jHjcE}ISl<+91} z^|?*qFVJOI3!%|v&k(=RWzQHF)Mb14ZM(dSg8A)|m%X#uZKV0=t#4KUAKT@tFVR~c z+U>oQ-LD8sAH9B@^wDd_k)spO*|ByiEIb;4rxy;|vECXdcj`YQ1?Zlk0C(#DOA6FZ zJ(Qx41`*Il2Wh;q2J|X?wD(nS3+bZ?mh{o{p}KX8K59I43;O8hhu&6flPZ-dk`3e4aCdBl=HfPcbAjfI1Gvr3 zp$HQs@WbCjxRJAeyxhonl@y>S*-J?42ggfKVxcVDBitFUJO-OYv%d;yz$kGHD!3K( zpYd{Y@LM~FuPBG}l0zirVD1d^@iGBJ$%Cgc-%Svj6A2iiIhla50pfYi32zwxd2MJe zU$W8D%u)e8+ybB^@&Y%4T;k&}T|e+{XIT@J!c=#)n;^TZohp^xWo|+bm>{?K2B~uF zFb!U3`PfVeI7%nf*T0u`1?z!RBb}LC&*1`FToHU2cK{8v(V>G2-0u33*C2u z+=ZqL&>)sgkOr~BPIoDx%Y)Iya4G4Uo5b*s+JSy*g4}`LX(zm$5Z)DxFz!AFC5#64 z{sd`YN9}|U6T-(O;b8U!lyTpXszTY9=xSkKq^qTU*#Kx?!z^ejRn=f3=|-_XVW})` zUQ>XuMy<6F-rRKdS!Cvy-cMK-p+zimqG^$;)N~-YGc<6bOtKcKV(CE&ClU`ba-x}J zwTwb@XQ&?(qD{gNzfGdacqU4dF-QUW5Emh?Uo|m^EuziznH($2pUnDl7qP%8nE zXKW3Ei_N7QdG7a+Uz`UXPQ1MB5&!n!QH>#;=LDFT$(|%EFnD|+0KVXXxyJmjjq4qM zK_8rNnUTRRkP4{kKd7o3PC`}NjD7#pEj#MJ0G^o6{zwVvkp5IeZ_Y4xHp}5u)QH_W|(>C%F$ys$-J--o3Np_!rNFHsUKY zs@n0J{;Y!FRs-j_&!)KJgUo&(ec)HG#&!|y;Ow_X0s5HoEWiJfX1`;2RNRlz@~h<+ zvch8c7r($4@pi`mj6#SJP#vC8o%os_|73T_8xM=A)MJARKYeP$u-x3x`S1!*glf=Z5x;tG!g%$6m;7X*J zK*6Pz=mk^c-D!$0GE3`@bgXA$NsY1y){n4*4UgEG{!NTM8oPpk(OGV~*AvRKqm6NT z^%S``Gn1g;M9|=?CxR#QpTpI!nM`da!2AWB7lEK0^UrsNpas4xhp}1;9^%IIOD_OCK7EvZWIN` zXwzFk~^);d(L|if}Fn zKl~ElDWM{`)MB(@LkJv=5#CU;P}fIImD52Bahwh&PnAm(N*nu5%=R^duSz%Cv1&U5 z_z;4X!8MXWBxPW(D1igc_$dc9;cPHfPB@7I<&573FpqFkC{7&35$=sdJe+h=ESv-3 z5pD{_y8a{FJN}hGOxKWfW+xzzaKG{|mCYmEw#sAK2me^le}vmoPpnl!gzgJy0bayw8zbQKwyoLlN2~ z{P5eQupPB-?ph(&&3Oa^=a!ub4?Vvkh;`z^IlMwzC*^>vpm7y)6*R$4cq}D6Js4p$ zdr8<_Im18xl`||LqH>Ma>?S+m>nY(S!3g8ZIVfRVId86zE9VF7ls8h!+a%>60}1Y8 zY$M7HOqZl}b@VGXG0`n5>N53_SliGaM znFS#=*LF9a(b(^#oqn6tf3A>A=bu%n=`auWG+uQ?S4xK&Q>jb}jj~B4G0K$6I*pP+ z5gH}@@EawXOt(sDGTli5+F}<%8gfP_2OHfYs2}5KF|1OWBBhIta&!Ku2%hsxRtv{? z;EfB$iFOv3Qx;BSVe4UBFG?P!Rl+~&y!L$fN1WGQKq%vR?HdSXeQBjUuT7;7<9J>h zsG%38;uGtEUJ=WF(krI*sBRJfmr0zIK4|gtf9*y8j5w zMJmwe(IN&Jzp@VrF|?kA%cd}`QX0<@RcIQ|W_VLkJF^bnp=0M%p?o>;2cjbFk0AZ) ze}_){j*lE-4AGAOAE6GyN2d(eE+ zAvN1Z7=tzDCQ_*JJnahECDT-?>XIm)vuSo1-&Sf2fajLZl|t_;zJCp-l^(KCdd>=_#%p8r(_>Zefb8T?@GQ$z;r6pDtO5;7VLl|oT36~Nro z3p%^BvoRqx3(Ad&8vB5dRLZF}l~b!qP37PtuRmNNA2vOsilt6YQJwsTIS zQz?RtPzqrqm0|orGU+y-N4#y4u{&~s#w&gbEo2iETz-B^q_-S^%`f~En$1Wx zjzh+`*r?QI^21YLi7}fHP{XErni@9R^?ct{qpQ{1i`7Llvbty?hs~&I@@zEaYg=5H zn53N?cB_W+6XlUz*?mMB%<8Qd0J*}L#4+nw`%CC{y=I!6CcH@SF-$#21lM1kCXAKc*cNqsmSflC6 zOr&2<-NfL99X#0>N(yCc{Af(JBV~FR-<&$WJ!?UVu}MkORbS}srw5q@YBP+sG0KIt zlzkC8o%fz$Ol6cGZh;<{VRYpSuEALhNLQi*=Gd9Ws6fo4GmRmvj0ogIziyV%#e$9v z$=}r}lpmXA7$HumgU_llH>s`cYZ`6SoauGA<)CfC2l;55Z1!cgUL$<*nC5~jjc?cr z0u_hPS`ZU9PhOIW^5iAFV0@KvRAY~jy3vtUgZRFW^hS;cpx?40!Ui(<;h##O!@xT{ zFA%8kqS^yI=USsjAU59Nc{>n0={lp*f-Ra$6l0!g+X%)byzYkS@|<7)dB*b^J4fmH zMAm-br8gK)vL8sHji~tvp6{$g`Mw(swOt6Pa=pZwv1WTUyc))2t@lh*e#pLP7&==xS zhBHfy5y>wKFioC5q}n7NW#A+4ni*QNY^iaB#!jdr4%Sz}z9Rr(c-jg6&N8FWf`~&G zPfq_quyN>~;D?qQ4_UC$?ZHz`3-rb=o_43vmqociKr;cR{9S~L`0zxR^miW%2EIcP za4LB;-?6hpJzwfn9TBOY0A)VrO|%Fq%se?u$VQcSj5JXN;l88^80LBj00v>`N({o= z^TLkm<6LqFcLKqOCQsMLlGZw=yUZP2+FXbZ_;rg>P>2gr_~BO@DiyNUoJ=fA?I zpOHWoXT#qW8LhQ`-E#q z0q#!S%+EgrOR)zCTfLeu<%|C3!$k$Zaqwvrr9)c$L(%t3( zA?pFVw*+H!w};)*-DV$w2k1V0)R>SwLX=Ur(L+gzN9}HW%$TmRPZU&ses+6mWj(i_ z(3@d@q?m`>J|x8PaN8LIz>)a90N_XjRp8;a86O(^SR;?$SmXi;zuOZEM;^rCwop}y zYtEH=nnxzUGE|9NZl-$FxYM$D`fgZ)9~L})9vl;3iGU@R;DUizZ4w4@wP^#y^UNLa z>M@0i2((UQ>_-w2a0O1W(0@$cDW>5B4acz#yu~ExqFW}vCp~R!XIB#}^hl_OIi?=w zs8Ul8%S}DpsY;|C?x1?Or!GC*X6ivO5PBdCq#kSlGvi937>V(`%*#XuR0KssMYO3g zCR%u)B4*kYG2#W|Lw1r7Q;IldD&m+bHIoqHu#)yWuY3t!=lN5W%Ckzp5@k3-;V@tN z>y=$1iBW?WOe(%@QnRe@ahd6mKG?Y(l{7ie)md1Q#AgrW83 zSwzt;p?}gYsec#uXM-q%>)$lSFbcqa`M_-KtNzB~YJ<8-z%y?v5r6Fqm?Bl-5OlC2woUmw;KN7IyHHM0MocSNXdk8_0uCpXN~Pt(Ep>jiu#K@YDBOn z32h9kZxDbSEdqc;8Je!b>Pdn}yeKqJgwH6btKOT%}Oy3xT(Ys~>?Z z;xzV>&yBa)2trILqPR*bqF9xhif~p*MYvUoRK&C@qKG+lDqB93P6ga5_R(KiWc zw4v7pz-L1k4)EycS5@Xt;D1O3^qVKCF3w6_L{g&&gD+yh(a~d48SE2Ez#kAkgo+{{ zybf}k@?k_su2%hz@+Am>MZV1MjMrH%!Nab_MO;S$RUv^waS`V~Iy$J@Y~^555nDN+ zn)G;CwOqtnTZu*Tf;*4V2q$+Uc`uX z|4V1FYB>2^wQzMJLc}f+a$|&8Dt=*vSjrcjhBGy`>#QE0c*a;(VtG+kDt7t0OI)8t zwL25RrwDdA(+9vKFZ-8cdt1EeneT6N=1Hvu%8^0Nq z!ItcBh53=lMl+z|6L@hM66yHq>}UnTPiO0mW{8z-f&6xMs4De|x_oQ>?FK&MI-K`= zwQvDzqX^>_>bM}BjMg*c=da;fax|ayTH#pMhgK7(fP2gk_nZ5(p`-v-=~#dZ^sY0+ zoTC@t*Q8l|T}(jp$@*n8&^#RCbI0??gmu!58PX>9jR`AFZY}6<2hI6jp4AmYu!)6i zuKHizI>zrF+(4iruIY1U@U+983=2BmIKDV0zCJ5+pGLFzLcJ=C%~t$sV2cG_ZC#@v z{2fQtAa)-CfTq%U#jV{#cz#G#j<%G~38`wPt>L$YRCTn}#DyQWXa}h-S_IgOL#yTm zVs{9u8qQt`#I6mi8fn26dC>lM3&ib0zvgjL(h{(|tFJKbZ*bXV?H8??zoy;VQ1j5S zu?{LM|GV7dUa7DdCHiA#xN5?2Y|Q0`R_;dw2q8p0xG`Ujp&dF&gL5gtp>e51>_o8J}z=9Ee*z-~#2 zo;Z_NMpng!Btro|ylG=|`Kxwz&p5sT0 zbN1eyy*E*R^nKrpmzg;;b7tnWIc2?^zE~=cl(jR+F!!p9;$wP*f*(a9q#=&B+WwqtOHt;8kGRp?}_qMT+)O zSutYcyB$YI6(Pbt1FVc4%V-yMEGm3>{Ex`2Cdx9AR6c7$%na1(FzZpqnrh-wgTDH) z-h|18#+4ym{z*4MI#<)yFt)T4`>G=-N87`oG+}BSoz)&bO5}>ps;lKOBpl#sEWUki zOmp>+%bYLSPP*Vp{p%h3NA5;is+!T5_qfE)1zGJZ5~$?_P;$-SfHQ3V4=>d~d!GrX z>ESg5Py~XNY5F>+a@H2@Hls7AhhH~^+%2bv%aFbIoV=JjDX4CYSuNv51ukrQES!hq0FwT4Y}Wm1T|;nvf5El6 z;AAOS=YmD|s#)FtT<(#o-~ld|rlnti{cuKp%_V2#Z^3`zX&buE#GQfDQbD^5EKa@6 z$%yq{Q4Um`+OrdXQG0f}i)qijCyp&83OyYo@j}z2qT2JSX+dy*pBaPN^E?yaRbbiT zf7G6viXBe|M~e7*SrMZ5q>gj7t)>X$COv14XXP3>uh zHTMdDgr*|v-E1mSL?!I&+_J}*1;QX*K~s?tvx91@@4DqwWb^Ex)R=WBgm)ZsOsUv$ z$Zz3%WCCT+v7>I*J@y=?bt-B%7+cCt++hG}nm;0dnkH0-n&zgQpl7vE4}gufWG>3f zc;o?`G7P)=HVoxEP7aDw6Fl-;)72T4mT6TztQ|J=$PC51DA=2!fTNLBBX1*wEM+u9 z5J#_Sb8#7sU_O$@B$$U2fINK9q{*-J0Iu06k381O zH473-t4?u6sz%8JE(#zjMo6YcA7}{IeDT z7XMtD*D*(XoY9$G=Y9q?yG{-TZ*^DCf}t`dRMXBga&pvZZjM)^qe89bm}|Gi#hIQm zW>8E7tW;Jm=-63fAY9O;t9y(puZ18os!XeC9;4W8(Jf3fOuc=E(cF4Pso7u=>a=Y5 zi#jb^b}^k+g;rVX1G}nL1%<7$jw)IVGVn$@CR{6;0I%F-2mVoC^{_a!C@rGku1XptJWcFkJf`x(c-9Uwn%crRlNroBHNwSUj@YN2LLgSA(Dnj z1id5mZC+3>Z5qSERC94{{QT^)(w=FpM>#SlOK_vtQw-vD?yQ30YidDgT>st9h?3C)Ov-n2vqAD z!&=n(lp##D;1y~H2aU#wE4PCZ{GK-n!1cMo;9Q??7@X;oto_Ci|IcWFDq*yEtsgbX8Z0VUpJpyKI0ElM z8}4et;TSCFE?=;uFsvCYKw=4&;{&tSXb)IP`>O*c$zEn0Ly$EFh{6ZJYm*tAtN{hg zPG%v){{29CM6%w@3KQ!`NEf4zImoc2kWs3D!M&x-aCw1Y|DWMv@V~}5c=;#!dcIE? zmTUDRgL_MXR>_*}A=B0W&!7QwP|z5jh-I8e1bBjiranht&=>_;aX1DIy3Q9gT^ZI4 z8X&O*&61Ij=g6><_E(2KB!kAq5NHiV(9krKAxKw1m{GHWVKHj{UXQ!P;Ju5LCf{JT8HVr{Gvnq}hV{kG|4*+QjD=T#sn<6QYtidBhVT}n$O)Nz&yfRlroqYU zjv9;=$p8d~jyUVd!aI31EAbMi6hUl;O*+GxVS{D)z;vcm+9TRHD`|hY9+2q9E``C# z6r(1~sCk4TNKHVPQL~<5|9;f0Hh3RorIEL?8kLEb^O*vMB#peKUSJ5L)a}XM`ONDK z`TvX=FaJ*&ivX>DWJrrvwkc+0m|8U#Ur#4*f-Z6<^Y@0y)#ApKtZu5;3HAM$BZ9h_ zRvdvd8E=WM9D)4|y3N5i_zn|Gm0- z#O--mNq9UVLd`NMsOzT475xV@vwFnT!?_|~(N{1hkF=sc z_tAKVm_DCeK(v|pHH zvi!EVP7^g{s;LiY3S=Vnr{Ek5J!;D2L`Y4!oFgLZn3lkpK^v+k;_n0}sqVT^VA+e7dk5DtKu*&6a%bKapWr|bsZ59Hkw)L_LR&UQ*p=g^KjhPq~ zAPK*@AQ+aqFi*uUwQNVH28o>fsCX@(p(){Zm~7u#BxY3&SD%?GcPOl#=FTUgVp-LU z%by^SQlnfTa7lpvAWIXKp0!kZT$uTo_iy-6VI9j36sy1=QN z{3pHRP3hqWq-yf(q*tWZqna{Hzp&uU`<$Yy#l z>wc~KG;1@pkoCQk)yx7gJJtvPtQ?&o;|fq3bsYtDs=691jc4fY3=IBBo6Go^Q8{y( zjLMk|Yewa|X+~7$GBiddd=<>J?v81HBPgrMmI?AGD7ice%BMgS1?5R5iX3@@iF&?B zNBRY&MU)YgAQywu_CAP7onxz}edsUdT_)zUBE|ScrB93zmApz6l_jRjmon7prsuIn zBIUWPlH%BtFcMRv)~6TM2K=LwiKFP`;>_r@KruQk0E|u!peRe6d7!n{i0O!fh=q)z zGoT#JSX2J297U(493=UbX=rHUg;OI!3u-@=RaVi)FlJ_mW=@wOn#r(ch)$bsgy;;0 zrVxEt^gZS602WOD8zE|Zdj{lDh;n%pqFX@}h3IxBib8ZV6LqjiZ~BF(MU)YuAeTb) zJcywXea>IZStjOUkz)Kp)F;LWQC=kq(T|M~{nTI7M@-c1B1QSfCzD0-$z_@GX@O#V zS^yZI96<5;+tBf)#i{c!JCB@UHY5sCPD??`0cICk^UumrkXp)NkPgTCTZ2@ze?IFc z?LNlKjL|MLWQ=xUSTjb4&oE*%gQ00~A3B3=d)jCGjUcTf`%w@`LCOVEkj?{H6r}T+ zEDTb0E|;}pMp1o^UzA#8$tYF2i1;_N+S>Mk7z)w@{$loUF;5gJ#xF{JVvH!|b)qP} zFhdUS^{@Jdcl9MM=B*;d_(v#{LlMg5m=S7$VuV@%7@-^>d(a_+%7{}Jvy!ws%o-G- zoR%V#1I!2wndukVoQxur189&>gOJ06;@(02@gZsd(;72AW^~qvr-*UtS)XCe=uDew zL}zD)rszza$)dCO%)b$x#+wEpkfM_dr05(6vM4$yFj*9xW4NqIGyg_(T4Wi0C%lL0Yt82YjNs9LFv&?9R54?nb9kAHU=+L8TRkmO- z-pgRpAhQ!zu5^;dKq9lPqc>DKzpbMq{0Gl9z+*pX7CMo|)|z+*!Z?w|(uHlAHRy!p z3RIj9H>|{8bhu&VtYQu~WGw1f5f5Ya&Hcz0BJ8L8R}4Jr&|2L2D9f!KUQ}(U@84uFiW1c3foe#Vg-}PtDF7A zEP2>!`z$jx3x}dhFF*(>**pU9WQ^CV5^psQzV9hH= zC(3#=X4J%cB7mAW_>4}JZ7zDf>cjvh4+F|+D)dW*+{*~PK8=GTIIMOB{z zwxKSr2L7ThuEv~Vy0{jpiUGX!qp!AB$VRY!Ae5rg9%o(cubz0OSxi+i1a zZ?`K~vOdBJ6YE^k#W+`SieX71qtpck_m(pE$KPRC-(KhcORKLK2QU95-?@taF)Y`r z^jzj_G!xW?cE_U_0u<_AW__~vm3w7=g${pj>mHcV2@As~iHxV$C$#n1o+I#tg;Ag< zhkKpq+xZ;Au(b2(=@5obRno`@(L)=bMFg+C#~iuwIgK&!ZG8T{noXXILE2GndKM#t zHa(kx9^PZj+WWzc)QxlHaGL&paPOEN=oUVlHaGo5!)e^tHkY=G=}F_w_BM_N+G7k# z;|-7rdIO%*|Ksh??Mw{Y{(O#sNhjL=e1$rH!JwoPkkj2VPVT3YF}^O-l$P;gYCurLfe)v4$C&bwHeC`mS@mBQy0<_$mEtMr$;SgOgYAuCznH8p0yY=Xfno@XSI2LTb@yI zCLIr%#En_wV$3~HQ=YNsxxFB)zN4n9bv28dTb^p)d2(Lgk6~#w+MDDX+kV65$%(zS zqoBP{Q=YN+*>#@W`{eS_5|IIvY4gmzPf^&|Q96p*hF39vThG@0QLH^a#y%|N@KX61}sJP=4J zC@zpvP_Kb3NU<TLo39;v;58L#IM;RzfIm|$GcGxH$ua2+-W z8XB&{au_QL83-hBt`ZC?wk{k6xG0G zzR7e>f*e1YIB&j*f#gk^mB0|IKl>41^=U1}S~yELv5A_m-9w|MbkoHv&zxlM z1lP@Ht+RKb|J1RUnh#2<_~+qv@aG}?Gp#-RnSy^l$3LIoAFTuYDUE;H;GdTGXL=g^ zc^Ln6rJJZAV6wd%W4sudx=Jh}j*E!fBI2}&xGW+Li>UOX$@V-&PeWpA%KOrEqm~+{-CJ_~3ab@l`iR**T<$&)9HZ zzY@AN4*z`65&pc5f5-^gXo(9w;Lm0JGk75Up>M*^8VtYa%fn9$gr;Tn4hdu6owX#7K$v}fT(FuHsh ziH9ud(B}48@Qd=7&E~)_T+>Xp50(KC1wQvhg-Ecss&501VtemS&BcUHTPopWAmPGs zpJR>I0>eX^08@Y6;ku2jl-g`QE|-#QU#Fn*@CQ}nq^Tao$v*j}-7 z5JJ{4PG0c}iG;4>D->L~-;t+?1`j$yRH$`$TYG|d*O?hD&h&SLDI3J){*HS3CJW>9 zV@9gE^J(PEoe&YO?wOB+Y?AnNfTMGSDbcvdzCyGg=vZbI(C)c0-IUWJWssw>e%6n7 zBY92!8B>7m<@wM94J|o1GLZRvapUx2mI7S|D;(xa;Uu7Jx%3mN7)zxOyqkqVG6IOHuej%@8s3 zwa|O%k|27ziC2d^O6wNsJKMTO6&a{|?mbXfk8tczY$*$%4_#p!qoynn*>^@|3RmB# zvZ7rlXI1e>+q;_ZG%bu3tKJ&cMx>POUkbjF*u9i!)yY|%VH4X9t)h-yAQCQ(X|9jw zRzXL>R|>!?azRcpIuR&e950=v4C)>&+KqOkC5;%L?6zmO8s9j1Owy>4O-GK-Ol+1s zwnb8M@~Fhb(IZ{!S9B+SjNO#hnXU(v+;_ z0(=eW>muE}?w;K&z|9Yexk2!izQcCMHT|Zga_3=|;#sJ-PXB;`4TYBd3qmL8g^aPd z`I2i?R1u==-$LDOV`Ibtr(>xe^eA&>_$!Wns`@Bpmf=Fq4VS~M#|02nmIUe_3-C$h zK6-Obv9ta7ergkwf}T?j%XakB(>WPQy6;iC)1eRL7-9ezy1U_?2;GsLqi+XIu&aQk z^d)FO>C573S$e`yG20OqDdv`*psgKIGbp;$#4%$hj9zE|4lK1S2>vnJJ!%~chMAX3 zmDf2NoFOJCZ;KrdIR-``wcO_0fV#jxMQZus&11hsIFI^wEe^QoX>}V!_oZ?6qN9M|b3rohCC5^#{mxKr0_mycRS|tp>&vy3FAn|Cz@Lu|P z&Kh|{nmkI$3B>6~X{$ZzBqN3DQuDb6-3lD&7a7wWm-TlT0S&*5m(jbwA$e6Ol9#wW z-En_xfP7vDftdpR4i}VAdu*EM(|(VpA=IlCzHwP_V5XynB6`i27Rvs^)l2M~@2Kq? z=M!T>8j9EjjtH^i&ghDI-G#uwJGNw28aG-LEO4~N?o*U})Y04qJ{OsHhty-$GUiz2 z7Sg_+II={FO4>NFp6?&oyT?X}thtUfALQ!H@ij#6OU}A_UyI0PS-r&Rg^mzyC=R@` zDq?buQ6}jF%V?e_Y+s=nn5rqpK7p%OfYB;Y_Us@u~xm5DRFNP<6;TWoV z*m6ftz1$)mbx?H`3SeeQw-m^1l+{~L;ItI@g&)De7bt*_j#vwjgp?1XON!T5K(~jwM$1WPzVd3(#AlK@czWq6jo|%!z#WD7_`BySQ-D+cQlG z(X$ZjZLyT#qX(uJFQUg)^`*QN#-_4R++6EuLlc_yi+rIO{-U$3@(7}0MObL5`q6V( zK~n-uxyH8d0w28uLSqj-YmrY+%-!hEvVy|Y^Q^y~1<&U?mMO{yqVEPrQ~f$GMS8wx z>iN0UlRA%0?%~ZM%>J#s47In#xs4F6Z*wkY4{?`+(Qhyo?cC%TV5O(IbO7hqd084a z-q`HuB94~J4$iF<79`+b{q*R?JpOReWb!dG%oaZ98@p1KE6j*zO(S9kD4O@z-1<9D zr*{)4_sbrVjEgVY6-)kAxt3MLLub+(ipFKf)0DVm!NqNkVXE3=u}JuGT#WF9R!%Oq z`01F4%A(Ko;Oa7C#0O-rQZWBXT{y0H)JU`dC7?#(FG@g-T1*M33e*$R3wShpH2P#1 zsH)iN*k_3&yBq_fiN+W=yu3ZQWW%J9XTFg%LP+M>@J|~$P{;)MGs(#4*b%aLk}pex zI6H}(HDBgjWx!2Zr_k+c??yK%Cp>$gx31#PSE5_Y|x4JL+jW zPz|cqCb7D}(Me>qiwQ~JYC`cB8f4knd!Hz09&o&H56h6%R~`3>!pC64^K!Xir9&-B ziQA)^^%IE?RSXu3tM`i#&m40^2CcIn19e5hqe^s51TQzuOb9Ld^6tUy5<6gciWVMxU(SVk? z9O8B9Kll<0$QvqlR2WvTV9HU)BE?o>iLux%vBbC74G~Wrv&C$_(Oju59vECYO~4lo zIV|Ort&&=63A_*OXsp#)VhO}LVs5k2ZPXe|xTA#@&qQ7=>+CL4W<&%t}F{Z~d(PzE~*r#&=bJS&R$7)ZB}eLZXU@5&IqJ zBk?8SbI&*))fhoR-&2lIMSH=jZyk{s-M4M}c@v5nQvb33A2q(wA}oGfq?mQQREqY7 z$sPNwI=O?Cwoyfhw7wMZSWDFv=YFx(S3d!-!nc5wTjI(&heK1BTB6V( z`a=?_x0cWvSgY($l~_)#uSAK2*I~{<-z5M_S__}aa1Pa)_>+_5MoZ-z2PytoWTpZZ z*2HbJbcXHwvLg!-v>FBp;iH^mv~i38jA3Xz%3wa(A4|*uOUxf(SYi$cFZ2A*vd3#% z7=g)rgTeeUKWy%{8V&G^x4vf&pJD{WA4+=plX>6)=g!(yMukFhuZ$)(_1d8)LW&|!>?H4Ih#=Am=>mZCITV8d9lza<9L7aWBWmS!p6wn1!Q%`~8YK=(} zVLAQai%f&vkz(fL2emLPA#(!yGWhkD$h_!CihUiSystQ8#@J$U6EXq?&|6edvBu_|Vl+8)Xvuvo!J)BmRL|8p+pu@%p`ft6zdEX8aszIfZQ7;b|+^p0b^md^xJ;JmlGa}(_;2BpBs z2bbUr)E06Gg0(k(FU8zaM!MxN>Dr?94X zT1dx?D>(n2qok_+>`zUfu=*YZ6Vc{#M~FhRVR#f{xfplLk!__k3>#~D(Kv!-5kvF7Q6D+p&_*yZP@_%)*Yo8b z1Sm|+_u|}oc!x&0-C9X{j+~S8%M?- zUQV-|7&D-a<2%eUBJ)c}H?>eUQ}yd*GO-r(mE$=@``llLbH5MK6kv+M`Y}WLf>l*k z$Zx~gR+t_#qxCM2*3cE!X#LfQ){j8|Mk^P9(drK{zPHB7l5RT&Ye`no>4D`+e&=Xu zfl`pq*;cx>miCv0T`9*!do_{+j&esC-cEWBfP%Np9azbu^jBVT3>S+eFk!UF`pJ=LfkN=4tG6glQhnav@G~r3v~B(@=RR3cgJbQ^7;O_n zf$#Iw6D#C*RG(r9bbIcwDs9zcE6hI1_UsDzEma##7{uyDBih;W0D|9@)8U7=RYTRD zaNVcA3(@qMJ3)Kj#L&!E_I>X#zUn7tG~Emv*F?=*A-^fdm|{yYzA3k9g^V#?5sEQC zK(rY2hvSycpoY=sY;iWz%C7V&ERzJ-MlHr6qc_^>>}i3L(FLf02~=oum_RLPs5tAv z1GWAvX@F?FQntCq3`=(Ju~OQ-7en~$-hCyr`=FKncJB-jvOE0nv%7nxw0pLRk#_HM zVnBO^u~lcR^fh8Kd*_wX?2IQfJJti6Hm?Vn-475gRs=go#jP)C+#|r_JCEUL%IFM7 zBz78IQk1RPqKUTKs;tojSP5~yv~#gVHaVgJD8(EB`5)&(?InL^*c#UGvOk50^$qxWe=0$di zvXD_vmhqIMVaO_0u|6&`*F zkJaIa8A0QYI_nmk4R_vAwR96M=l6wEI@iz!GAOF1rmqq?C!9{5ksIFqy#h3|@m6|c zD1<`GqMYljG6ILfI2kzit&&dex{6L037l@SiHbpGsR!nI)ka1+Xr+|o|6-X;@?V1i z6O;UJ!N2i?VTS{B#2o))2=z__%^d$rtK=Yg!CJ_e(*0+Z*=*G}R{7c&P3fKmB!q}| zh82ZmTX(Ul%Z4BYh;awvF;Lo2j!tDNt9|Y<`YBZI4}awf7RNc^XnvGGHC+XcU{DGl z{P45RppXy2<3qH;R&O<2l54Hh)*7%cuMn$@uRYF`a;n~kjjs!P`~8RE+XXOmC{ zfCX6Jy({CzuQgruw4PRBaM>5XSk0&fDgJFWXOdNMn%DKJ?rfwD_h*qfW{4KTfW%>Y z?Uqp%zSQa{t>s~~)a(Mpe^|rWG_Wu&V(0y3;jl+bYND_vd{}|=rG{G$?1;|)!*o8K zNo9){?1_yl(0oPCVwAQ7j-wj1C2#_N(U!o8)$)GeCR_kfSG*OuB?w0yXKFM-V z-pCtJ^!Hht9Hc_fDJRR77iStcn<}?Ob|WX8ec83IihcvhsTm%DWey&diNC%NmJ$P# zD~OAyhH3RcGw=KBqvv?vUuQ`@vr^(>L+5TabPaC8q$(jo=>S5ATjKukXxmAsV(OV; zNj9*E*w(dDHPOdayPjCo*x6jGzs9R{O_A>gN6?l+9TSSbP|Iaw?mZ<4TME_JmaADx zeAuioNVH2BT1gyAbgs}^n_^ISdTc8M90qAUjHCotL|lDvQhAa1c6>$gev)&SFGa0(A))=9S z5DeWWIY>Sm{`f){AuMzeXD5MJ5qq~a;`~0xc+tmQzlFHf(%DDdXT;8K|JdmVGB9>Z zqav^Zep((*J^S*oTH5o-i?lq$V&}XG#a|RVqyJg#KyuMxCa#35dT|AVhnc;(d>iM^bSa>th~Ul5(@JgL|!tu=OyDy_v` zqgc`CT4d+kn%zT0SpSwK@vLNz-1P3PMB`4*iE4+nbPiHWU2De3>KtdYwTWLfhU0)r zI`mLCDwhlqD{_X0t37}kH;Z2E?40@!OhhU-S6i(W-*#~(YOR>;oxPmt5yKI{9oZZe z>8LhcD|d^2>*}1UO=P8@Q|cw!Cv>=%O+Jeqn=5XgDB9~uTq~}=Holvv+OI~47=EAg zhO$v~=;2J#HZ$=)g9(3w?InXXQHQP-nLV9@{;|!JwPIW^XJc(GlTIcp@Hg2iS&!w0 z$$r1(>?_9B^|TjfzH$u`bB?wQ6LFV4b+uO*r@p(K)x_D}(9gVSgvHwo>#ODK{PpjoWrDLm zagK&3EB#`z)H=MS+Z0V(C|tdZlt$?;UPH1~fL<^8Y~}Si%z#^n9n&jlU~u2|9&AQ| z4#x4=2&oSpk1e8Q+r!t&ExtDfI#+3oK;*yeY%3lgp?xn%xv3K=A0OB4pYptdskES=-$ebEA3&i?@b2cWZN5(VS7v{_4zi zwAZIjT_>)db7W~7{0Y{X1bEg}%VPvdO4?uj#gL$_H{C)K06{x@l^DWg z4p?Lkdm~|^oMW{nR-*oDqxHs?BtsBeKoHw>hA`Oz)~hq^8jiD4!Q<=(-^mO?d;wwZ z7CyqTCUYS1GB>vjw=hy-v;i35e&J&b0X+JvfbbTlt-|8M2e%40+;ldwIo1VXTw|B6Axt{I%Mdiv}zlz0kG)w$wWQH7Dy9U~GWZxZUXlv^JKB z&7AB^*GD0MX714A(c$NYBi!v2Er$_;Q)Sjlos}z-sk0dN=EKfa>c(7|mf6e@Fk+5T z1lEF2qW0!e&H_#&hP~))2LlY?r6?raN`2LCI+xW=g;v zxHlG3tR}b!8a=Y1Mds?+&UAQjjpA_CqhmCYx!>7X3?1+OO^Xng7GapbtdQm}%dlkr zdP17N0Yi}a>xlf77V|e37W3CYyfnWG+|M7kR|#P}O!IS*1f9FLRD#B#Wd2uGcXMqB z-IqXGi5> zw0)z39~L@SD%x%)+Km0}hVi#^EQVaICC&`(ID=xHRUoIs*o=IQz{A+ui;R@m%g^j+EIc zUfSrb)fLXos=7gJU*X)ZmE2&7&GbmK->D!ul-M9M#=pagVAbgIqRcAi8MV>|@$xF? zG_49NZo0k32I=-%42y18t8I`8Pg;Q`Zm_tVNj6R#R{=JSU2W-*f~l5)j5gJRS#6IP zlfclM)m)rw?CPj&u|!AN_0EBcHjZg%M#m`Nja$2;7#5l)!>Tk;XR#XEmTmx(Um4X@U2kmhO#=XKHEHm}H%NlrdZ@cM$epIW41tYa-N_iL zM>ohEF?3S2%QS6++-2hIU@l^8?qM}>`-E4+7gvGM&6}MC7U<2pP-WcU6K8ihLzFWj zNpYoHD2N+v>v0*_7S#;tA8%vqyv_N5qW#8dXPWztVeUH&>od1nexuyli`r$mB*npEG$7qe8Ylz7&0H)AB>mJ8n*vItl&nT20y&9QZV+Y({9t^Hu)ej z^O#quTnOv4j7^%#o5b8)SeNyE(pgJu;9n*_rgn&48KE>wgV}EOtkI1MLXJ6KR>X>D zsFC47k$VD4cV?w&oM^X+wg@7rIg|Z)~hm#eCfkr>$ zgxdxFWynA)5XubHP{f~dPSEl>F^<(IPC4snPctZ4DSuN@qlO{<2(L4!QdFG{(xtr4 z3!%R|;{_ZT~{YJs08@D7gVCIbbrTS(w ztY{8j1_9nVJZ+WUJu>(+TkXw3BH`A9)wH^-fUg@=Yi>3NR$Eh`#bHN*we8M{ZEOkf zZ|VWzhc~JPjn-jPlxAv=&2qlki(zT#>CTv{gEsTIrkb!>K716wvd;^Bk`;qvwm(NF z=QtyP zw!ZBAK`nU+;G*$+5Jgv55vu#ET+?@bn&w}0Hew6fx-zC;61M@ay~LP6hgFkqcWQ+U ziUAsmWZr{)GerKccU$LPaHfh8i-(uBu<&cOhOFl|%jwwp&2lGVtil#ERMhHQyk3oc&Dn_c5ylhY5nIIhjgE#| z1mgl7)csm32B2CYg|}9%#O+*14YB-!GfI3bB0??2{iarv6F zqqg4^A#fk;9C*F1L)lRb#lm>em{0!F|)Z<%ZTCwu`&XL-iepJd;k#Ze2 za6e*j%C237Qg|8RHba;hI>1tj&C7e~%bvkn$X2kbktHGxg0{-sVnv1^=70d^6-4~r z`)X*l7}k^kBwh)W#4E1;z9im3XfKq+W0W$9w-T!2P2zWD>>*o4gO8oPEM=&RHun>z zY?b>7Q(0MBRXwzowdi?U<*KUxR?K6hi{Hjq_$PV89x7-?dk?%e*oI@)p&r~0gP3BJ zQY`$;SyIuqGce6r`n=<5qU~o;v;eG`4}Sq`Z%&P3Vofo|20atAM!<*O$`^<)on39p zOXB)B&ZXJ~#u&P)n&NE4%!b-k2F3nLxgZh>q2uS&a!4E$UP{a;bWT)07T**?>-vIefU|Fc#0@6T<;{=Gs$=J(F- zidtctIP?QF$>?ohbEDaqwv1y?il*po;-w#*?JVSe(bQy{jHYI+ELAUY8;hp)+junf zW)(9YIt58x?>Hw~B>7d$pp4w+s~9fW87sp^XQ}2bglA&Kkch6b%VoY6mHy|Px4xkZ z7os$(yHRr*)uC^rZ0Go2@#yGsRwLikUR@00aZSINVJY3VcblC4>}LoXD0g#1|67p9XJ)C@v`_z} zm>~H(6<3eI!j)84OYN7xEc~kKim?{9bYEgb8FGWa!a^zOs%Vd1U5#Rm|18H!=76 zZT+{yg!n*M6KbV&*197=Xi5w}d=1K+5<9lbm~b&H#e{u3YaCOzTVtZ*c9|96JfSVr z6&XL3ZUFro1q!biIqF8^78OF690JbKz>u62Ctadv1eqQCFAI{2%+_5)Ezp~ozA4ub z9R37jPd?+EsW3U5L;c39=l_fYd7T#~uh)eN<8flI*S{?1Y7bW_7$fpJU8OLb{xL(6 z(>*EohY9z8?LBPD4p^C2uU1X7?JyliF1gEH61v0ZlGI37Gxb+MVl(~Nus)YS6+hQx zaG>>@ly|MtI4PNuhOHzfo=nNfh~t(Du2Gi4WQ|*!VEdBU@7m_<2+F-Os+yL==zT3gowdUZQ`=H79Y((jeHW|;qeSnh z2{qyJ&+5vqSZx|BkMWR>KtdS5G%{E3g`H`$&q?m;7IF2&XHObzVe|>W~^vkNN*=j1RiMJ%pE@K z(#o*pPBVDOx(WiAb(EYS6*_akB z$FE8|#kQKR#L!A68(2h`M|D$8xXdcyQC$^E&8_8Xp|MhO|A3Cx_G4wRD?oDhKzBPU zIVQ};_)*$`p(tB6sE$bA(Yca{OK>$37wWjmT1r}HLF%-f;@d)Jsy2i1qItr@+z<

    `-H$HQii^QbdpWOAt-RiE=qIZ2)s6_{yL9qFyQM!VuLIKP#!xe3(36X;% zb$16D6x*n>6JEb|?Fgi%7X3^h_5T{V`dX;{^of-bPJpQ9g^I zwJ2XPumGgB=ntq5twn#tU$hqeai=_W%+{i~TuFdOYp<^nv+HMfh$fVr8G6^5_SYcR z=;-ll-t(IXq4!7rK;FN?AK&>+gs}6Qh_lmSACN$AzFvp2^!`YCvg=+h4SP?g(aFcM z)!0EIP#97N_v1+jI#sa}7gXzDNxIK5w=`A^u<%7!e4=#Q>s1=)O?CmE>e^tJe4?~5 zg8&X&^s;gHzRJea!=iVKLQNb!m7$5osa*z&#w}fA(uGn2)1L+C)w(387Mk-u`oDPH?TWKfOyH41K(# z>!Eu%k3zgY+Dl{ywUt&R&j0OA7#{E4deFy zIy-dp*GWpV+({M6if!J1iBm1a4wiD=J;9;|_OZ=PtKkM1>2w8Hm- zu)CuZtwr=p_Bp%ciPq@@T=POL1R}L@<<=r?pzAIDU5j?U_gdd#U~fP7Pu^=ahJfVU z8DE8o5m~Na`I5~y{jyu@pEFtV3D+W|+dtbaQ@gbvaGlWa@*?!G>aSpO%#_Xa|-04)E5bvuI73>j-aCT_fYCr@4+$jEGu9rDGOrhU}oYk zwxRlHPDY$FBMx5a&A?m!JBZ%{QgY$8YAPDY#|cZi(d=Lq6_!QlJ_#}H@0csY|b8jNvu)ot*&gKr)~obO7` z;T%Dn?;4z|atv_>jF&Sezbh0OA>zt7*NSpqLTs4t+)k74+;Vz)=T^PCTV!@|4+%qZ z`KV1Vl=`KpJi*l{_A`X?ru{mPIDFJb&~Vj{Yf3$5V)Fg>GH>*C``#83s`uf%=^>5f zS*{EENDih~bTbh`${MFvEhXt4*(tn``P}0q1k=h8nisxYBCcE*Sqk3oceg0$Q`Xq_+GlQ56tMDs(WcO2Dy7!Y3b=o(^oY z21)gOl+xB~a+>Vn6IzHH&z5PRB#5M(q9%Ne_sJYL7@2Ngm}(fA>q`5?`N`R_MaWL< z-ldfI;6XR6O!kS3(_J0)?nTS)T#W2~rfe9hdzH5rB^D@FWbn@B7zo}3L8;eG`zZCQZ{cV#?kM;?0@}5F zz(jiAJ|pYeYcC{Q;e`ujoyb|~iq+R~7U07H>Y07Ad7R@IdPMb9F^0Ra&(bo~b^9nw zWaSOd)7GKKV5xH0SS*#J#$ticGq+F8ciF9k6#94=S^v(WAUwosC8YAdEpT1m%(IV zZUz%p5QE85K?)`d1bW{1f<9|pk1G1pTo;NaJX@`w=V0s{Ly^#XilTv7J>FecytK|0 zZe>8>gs**pBgdrIWK3%(8t9Y=zD7nMVK*UeD3aPcm&y% zXcdc{RP_K#ZX&Adp@LOG?(>Qsd4PG6syMr}d!$~4gRzQggK#67+Yl%aV;ZJFz{s4Y@lL%OJ4APjJW!`rcDZgcHa_2FDR z%?gG9PuO|Xhj0wFhodL5kE>G-$o4Rmqp3YSbby+4V0)N%z`s3s07C5nepuQ=f=CHX zZvxMiCGBxl*SByiwTTTJ@_T$;DZ73i$Ccd)b5j*#~I=~+6&AqN_ z`ndpxr;1~Eff(9wFbMytbdu^hAa3SmSJ5pR`x==tMC2cH`5BGcn8l3L#%dgJwXx~n zSX99$tWED$kxsM}#c5-~7mvGCMgPseXq;Kp_!=57YCNy-@L|_fJ>(#>H-u+fQFsNm zSkA307tiF^C_+9xt1^hgLF_@&*B&gpK+3Z;LLUML0^|jC)GO~lwGQY zxzF1wRuH>XO9jc@76^^6HIBQ+TM2Q9QfmPVqdAf(2cK|V)bqH;WXeN^DGzZBnQ~4Q z_i^@q^4<6 z-*gt55S?W)AvwzeA!oHa<9f(SNX|NFIt#Z$75IwOSyxAO60B)(H`D{`9@q`l$M9-E z>q-+DwR&nALcL2f+7iusC3})O7wZ0YRyBPdFGQ){*?&^^WslK?Z|awF7BrAAP{Bnm zuvRyHiiOoD_H<$-Zd_VZQyux3PgmUJv93v>lEzmG`RbUdOolGF>(0o$OBfH%ypJR}~@N{x#GPPa;lv*>zGc32Q@NpkfL{E%7)dqmT@{;(=tkixcY{xr?(atN4omy8#xg%UT-ko&oRUpFvR#c#}H$<$;=p29_bP% zBE}aC#_w|sF$N4V{(@tO@dXRxvoAOAr`w>FS-o@DU>wdd#27HZI7;l88B|lR%F)FA zE^$|XdrW?$shGgHI?lDcTp@%}K$?mdkZG#7px1&lRXCCxX)2Uj_?Wo*Rd$ouuMy1i zRPR`#6Z2Gmn)&a?t3dgyb64;6v1HohGuupAy$@$j2`uM(u0nkz2h+!#G7(})U@;OH z!trBHc>P+LEK)vz{KLZxO`C@iCI{n*<3{(+zhb#jKlLYEj0@aP{V5l}8`lAbvN(xy zh3|8bG#=qA$J#Xn!~aXzzZTia?ph)-R_z#&FZ`Jorn$)Xhvc;Gdyav*$VzzY_~wtU zT6#Em-q-$Ueh_-Nm}P#I!^RkX$awP@2=U|-%D}b@bPTL(_io;F2i$~2+R242~R>6ErrxSzQUQf@ApCM=|8qJDiyp3hwUJ)G3jKeMQa ziJku*mf`wej=^wMOB|6o7xjpLy#7&KmGmRlc>SLduP6lL)gpxA)dHc(CB7P9CG=(L z#MZkq(}sa(rJ%wbe21v&v#dxXD5leu?njMOfC9%|iGHn(J z&5UnC{pl6fLzJ!+VIu~YEcnlFaFRivX3+;dGWm$~$YhQokE}L4vetsZEZEB8)Zgmo zk)=S0JqQXxk646|M=TKRK?-secNs-L&4rrjt`|5M{ZbMMMd61-9o8bIE3O%?c#jt~ zUGa8tb@|xpib&HH#`W>jM+7;*qN>bT`I?qN%4=z6tfncVT1hQhM3;8A)=M2_ac}0X zLOGanSEY{1+*M!!%3W10ssQD#ECpol%BQE1-GFZb_~ou1l>L&W0y1|s5q!#`tl$UD zy%bI!aq%=l^#q=nc<9M7v|2t2xhrM7xLMX+Teov8Etba~Ehg{q&{1#R;gH-Eu#E%= zQfpEIMQ0#qP=getn?H)32s08QQNUtl)9uH<=x$^hNeh5*L-4I z{l8p8j3g@|m4CH@JJkxN^0e_rkBoR9to71P}?3Y-g%%* zWI)jbQRmt0=Au#DpGtkIqI;pWDD{BdDURVma5)?at+M;7-hrz^q1h%+hGrX%q0pp6 z&Y(P*6MKN8DK-b>6%(7I^8917FF+_Z;YU%iIRo$%o3l8cVso055|~(BD6ZCaLt^!i zOst{^3eCQGW*!GF3*4^duBPt{V7s+Awy^p#*iya?xKUVI6!(RtipIk}-C{h7OACbJ z>W2jPR4XC5sU@&5x)92@wXE(wsei&1CO6$O+;od$$W4^G{KIfliF{^Ya?@|cxhW*y z-%WSCZh{}Cn<#ZzEng_*#RN5WZa5OV76`g43|TqWEBg6-*Wx z2~{;>i_(K%-~_d$$QV*8M7;(J8pshUZ;AY7Zur=D|IlXof4L}gU3L?}FiaZjvSe}j zr&320IAhZUzG$L6!D59X;&*AMz~MxD!Z)0>Z|c5J{YBbH|B;K${KVc%{Vrdg0KW+p z@F_V|Z^>nu`XwV+>Q?~k#>I--`w8(|a~M(k@&cq>uP2I`bv|e+SFxqL9-DO<-wNo? zd5vi4PS!0DnxCC->0Y5{b3&RoTL{V57h1W`Sj&^cx_}aR@;&(pnG}5sX0MbK#YqZe zno8JV(;Fy_q$p3t_)GwqA^Z^M9@K)8qI>ZdB}Ml>QEXB)s-1g&QAyF8?c9g;GnN|p zlARkdOoeVwac|Z?;zcNncl`;O z3Vlx~o!n8v^IDbr^j`z0ezsCk!Zh+psF&C7$O|$Gefzm%#g1QVG**b8L$4n|RNEv{ z-+O{Gbrp)#TjX?huPApJbO}h*aeDdP^y4Cz<@1-ydvjkGRZ-4hjkIM|z8!voNnL=aL=#n+n`A^Da=iQH7 zZA8jL_F!>loIOH(+uMCd|D0<|75rFM@MDgE3a(U@V=^INI|k`f=%Og)S%+1bbB$+tk^W=d=OF`3fZS+wx2#R-4h6fSdG zMM{d(8#}_P0GofU;i?|lk@wg>c;!JND?_+W;bcF@hxq5)Uzy_ zphLzTmkt@nG31a(j?0c^fdzvdOHMJ0uRLz;RN!IKEEov!_9)3gpIGFOPb?6!DZY_u zB{VZzPg=A=p9Gf2XELo|(UyOg#}KsD*`1ccrT>6dZyZGZie z3${#gH&#nd17e|+4~rDh2Pa19Gk952_Tl1`U0^Ev^)z>*2(vYmmpQjdqTzIR?a)b# zB_D(~Gq@atCY``RsJy5=!(CnH#n||Bn3tmQ2TIZSV=aK=&sl$3Ws^?2x@F+(KltA}sdqG*cPdj{p z`=8v4NNZrZ!Gz~Wui}*qy4dj+ZhF(+`Ei_ApM}BQj~BcWmgcZS{CYJ)d5Etd8xMlBKM^9qJ*uzcVXEr3v1;r z98yUXHUWY0Q-@S7ShN^6*Yt;2rR2rhNeJPK53Y*5Sevrcy)SegD+$S`%=z)6(s!e3 z%jJfZ)-7t#HD3<# zM#k}f%UNO59;jFlw%VPh*xm!1<*cxcQQw1*yfZ3O9G%rNMATX9{!LY$k~0|FQ!H%h zO61)F8eD{DYo%~C^eK6fH*LLp!985$wVDJqgG)NY;?!RYa*sP&=)ZCoVBZ!QkLvJX zx>F#pcm7x)?>uf4?#J|I7Ny~sYUJz4iI+=yipnWJirX999o6rE4ZhQfR~}*M4luYb zbYDzm^_>Et)EnPbeFON9ACsDUu~JA>5$>_S4&B`ZN2a*E$(>tdW83?0`ETxtA#q}3 z^Gc0Gzb)?X^;wp>`qD4c7}y&^|E3D@@<`gO978$*299o35Mlo- zQ%7&Z(Zn9moPEliDxLNIoQjzA0VeQ?4SgiXkYK>j4aH4RGq|A`Rh$R#dA^*-+$~G4 zfU1kk*veIPPAX4*O?pZ`(AV~HcVYw*%9PSdlnVb8+ZqmQ9J>_Zyh%;r#-uxn)EL)u zUFpK$WdD+DI0?;#8Xb1Or0?cnzmi559#}Hx2&{JUc}ZFV^q%^FCVqX(Qvp8wJv2_l z$HJ$L&h{K!NqI)3^5NwO>g!&7npS5vFoU@L&d_MFCEwjC!mNyO z^ebO{m+u~JRe|PZ0hAWyDIxYb*TR<&(?3Bl&A29mXDZvr7nDEduA%59PXgRGr@%#B ziIZ|sSAt_G9R~XsVIpz6CrBLXZSSO<#D|BfYZfwGa#udddiOdf<#J&qTs^^uhoVkG zF3R2w3ezgvB7|0S76|2vdiL?WrFY|EXv4I3Ur!Ug4+leSd#T+{iue0^x(5_U(?=FX ztNiS#Wu^5qw2`^6s73KL^BMO!eLClf@fBmbNRvwpRuTt=mSV>w`1HW<7!}4%t^YkO zul%JC@Vu|+n>kC`Q4)qn1jht=Bu#yiTvAOxZXraUgPw}7M-OgGA$iz?7_q^Fa$fM30h(`145t}@EA zL!ZWZ`s$s-p;Yf_&xl#0Jy}+Il*HoQI6cKAnenc!gV@51k`e17rJTKFL8D9VHHvb7wG9gd+Qw=9j-@nSaWXpvW9e=wL}B>y8}3tj&?y$#H0bm> z)Vq`@c+)+mWEkK?!iYzsMcIm4C6RZ$RHz=o>3u_vTJ{v{fn!dYW6tX5%A`h`$`~i7 zf=-FOZ@Y(ErTaP8AZ2`p#1IV;kAlL@Phofx~ z;*}5FmGuQ&CbonMoEj=2hg8w;LpapKQGyuNc%XALUHnZRqprJaS$R+{wiDc~HjGP~ z?C@Da961W(x`wNtJT23HA3ZJ8ei!^ir3pOvtiOn0@8C~2alXFk{?Ya^xPy+xe9DVa zM(rcRsCl-^5y~mw5KgDGu0t_8Z390{FUl-wpO7ZDGN8Or{A$Uk$U5|c`8N;+T7^F6ujALfm(M5qybhTJRU8L051UsCOcN zEk!W%SF?gMU%EG`wu5L{c_V zYyYjMzru0Y1;VQqmkZ%kf~62dd3Eu5M0ULX0jI~70`!M(yXyzgr|I7oL7MX&w0{e0 zzj4gad^;~o9cSn7-3RpGGc44o>4oj9(LgW9!KjoPd`9g20UEuffS)MiE@_~s6+gm~ zqBiGAQGa%6bSbguC-*!x>5R~Sc6ZmCavHN=ZhXcU{t<9B7e6Li5?4ebwRZO?k#Wb} zj&;t)mr81%5qWpqy{uyWI%k8FDa<%kT5M_r!5|708&G;v~ zfHKBPwm7PK?&ak)Yc2~?qB6Z#(V8uSgzzLZ%{n1(^Drr>a<4duTOGC6^ap2YbpUZ~>G|>?;%-uQ`Ji?7pFmUkoV&(2h`iFCheS}_p=CvrGM)vY z(PyDLmGDoMvk+1EL3gu;#y)F^xEk#-KIqO^p&=+>Z$WcOcE*T}A)cYpmzc#&0wY*& zoiTPXK!*IPdp#6g8~*rqF%ZIbF%V}bsaPNT?K2oD##i0b%X<2V9j{g{t@b{PEjASn zKZB}CBL4cmG9qz*c(m;|5JaDLN4+52ma|X0JCQX7)Hsp3!qZ7)w2KKzx0_J>MM35G z7lKL@wk|9!p1CkAQ*@{^l)O|y^hp{TBnE_gIuCSnizM(a_Jy9gP)TJljOQYMyOc53?{vS}ze_-E%J+QQ%{)TQ^f6 zJ^xtdoP3Wo>}KsSF|?+qvk0x}Ijl}RCsKOAH?tpNTKH_}VK$siHf*9MpA$PvP8`r? z*}oMdaf(CyTHBMXJ4_V}E3Wdl;sm2oV+|{YUGhADAGH5a-@^;j6!6UN59(s>Wlvj? z;Tj&M9x;L?&m|lYX6q_5RuVlM3`u=j!oA(nQ|~n>WP%@rCLW7A>E#K zUT%P0k9i8E6)95tFI0`Pdj1i{pZEibB-)+qCZvM`_2aN5ifdh z6o__~8rw%(VkPRYK57!cW0+B*e``-~ZI_kG5V-BU{47+S729701ioXSov|Y7id9|I zj)}(xv>&emH_9vw(y>3YO*oy710%G+Z_W2_$Z3*-Mvuv0x2ZakU}U@(@9j2-aCkZv@}XY zxVyazUBH5%RDq0$B8U{h0v1k1rAv{nG^Hv^Z_*SI{%_vw-M-zs3&{8VKluIjcbS>j z-@KW5Gdru1YG5RVn{6=!mDKDpkOI@Pp6FY4QZWvwQiy<=!%Q!izV+Nc?TEOJUro2N6Od#64 z#RL-RexkLlwxoP$0*umWX**~HaIN?X`+6fxGm#nlmY3puybdUXZ;MrHXN#1SBc!$c zvaN%BXoE;eAJQwYa4|brs@ra876NOIhX~V+lEO-GrSB{tzd5wXmBeK z8o~;sK(hkh1ykIF1h)d;1XI?MLNtPVBU`g^SiGV2s>5J2?;e=4m%xDDniWI^m6Y6U zOmAD90St&}w)>Spc&PN>JS^Qxc=EBGwm>D)2;1?EFy(K8(JPE)lkR6o=I@QT4Q6iL zOo=eHgm(kR^#}G%Xf^h$`?hYA311yFwQi{tWovFF4SmEcB~nB_V)A`2r87b3 z6|*NPL@_&W61!fcwID-0I@E`Z=FvmIjWmzOO_8txwp2-ZiO}F4EsbXj2ihuG$Lr;q zLx0p~a5~>@hZi1R>6a?MwFzI8Rp#pr`D8(S&m4}Fgbubn&etE7Wt+73E+LNNeXf=Q zD8Yn1{P4sJm}WhZ7ps3pXx%2!UpDAXu)jc>(t}yvvB?m%3O0#1E)7_{32}M+Cee+E zWTG390<9ZO9b$W1xk4y&ld#=$9ZAZcq?Fqvh&N;HUa)sC186=~aR4s`oQK=Rs!kc zHxWK0h2KbHS>s8zCf-0e*JpofapeWqObEfTOH+RQjYpwG0xUTxk^es`UZ%O<014> z2#nkd#@k{P%XdaMh1L}&!1S87M*Ia6Y#o#c(wg9J_=2sL0Rr$hQ>v53sEeOj*o(F- zbHg~HxeVXdu`k&w8(JeHjowKJVz!rTHI=pmgm82HC0i8(81`Z`Pagt-o$_bli@wc+ zC)(;N!%WRVIddl3x>|{He5|Q$?;g~x$vQG|p(Ln=&sRst?Pbb;hO3D(# z1NOLgzY{&~T~dLH;b#(*FG#6JCo+Iwk0T&jkK1l)E_xia#~w%8GbF(eB`8NsFxcZb zSA4QUL2$}Q3bY<~VyZ1)`NN2$1DVrBi~c|WMG!nW%{Jfq$QG}^ilKw8trK5_O*;;$ zSod_>V7cTL)^C$qo?V*2&&CZ+4_2%?2p_3(Zs3VMd*%a-S_MwEy5ZrJvqV%r2iHA`aey!=;6bn7P#|uB?=wh8BFT&uMYP z5n3Wtk^;?elbP)eWila!9jn6|5O`*iQXGnSGmqBd**a#cTK?tP6K3;$EZi|8XnaON z?fP57fN+2{b8R0g?-NQ$f6kk>0%a8`#aQz`dwHHM+e%vdjC|DuCxnbPV`>O0fk-Uv z}qC3q?Ju5mq>riJue4X;E`L^wr zB3s4D1f|$kuQ%(HDA}^r>z|fTXo`muUW4`ALdWBldt0E>C1Z__*T3ks2TK*MAs{yTd zPFD7B!n>{}?U2Hs;IDk6_%xV-A5s84SYzrst2o>SZ#me`tGf(`MX=iOCwc3v@KJ9H{$9*c+oz3&ztkiX3QsWa_pV0e40?kJ>w(WSt%%J8%R6d z2HBya@XNCnM``74UT=~^wt0*{cNOGX^ng`cNPCwZUS+GU+$F4_u;VB631V`qpai8F zLGO_`h_`18o~d1ieeheC(gtwsqNP5yJ*K1+NDL7i$`c|Qu@fKL8nH{C+De(hwfS@# z6S#aA6u=M75@vn$tci77({uaJA={Hh5FvNxK8I;!9x26{LDn{AUv2AbXpXwLyc%W( zV@Pw48e{;$jW9yNhogEz(VQb{%2nS!*Om-{nt#kAc7RQ=1`NMe`Ubcx?;o!qj>d58 z8)8zEvNYACcL{NhLixhPFXP83BK?E7CwyhQVUfSvrk|q-(2^bh*48SLB;q{jX`UeF z$0s6=a=LhY;u!yh$0v@lg==lqA_wxuI2K_3-P48f)su$nY_t7l-QWF>vhKq$*Ur9K zZ`-2$Ni>4VZcMdb*GoOJO!?1fey0@M4uWdgF+HvBhf-eA?INwdY?JLXC5nLQDdO^Q zFFyY|SHyOaEKfDI>Lw@Z4KS4*wFRc!?TxJ-WqZ1|s}0|@=P!6D&loGa$*tjPU!E%; zY^>07MY~TP1ytWN8B`=tpo=6+yB{0KS*-d^P3Bb#Ci`&F2^NqC{6=>q2g8Ah@ z>hk87OKjKj%e1A)FJFQ!WKVuM6xwO|E)}sC%7TKJWx{h z5k@g^csARnC_j-Zj2`>8v)aEs*WOBCwCSq8Q+8>)*eSb0fN_3$VY@eCOSf6$BaoTh zv0ZGGUEy3&Hh~bv90MUdmgUoQH=%=v0@nNh!%pP)fKfk3(V>zKr=5{8!9}<){s{Se zC7uAHI`H$jwMi*zBK~`J^pI_vp*h6SE=ohv(i=jdb>E+C)vW}%XPWOl+}7oLJlv*q zBM4A$oxb<#P44@>IM&9EOpdkb!f97$0Kwx&Y<&&v>C!j}36C_lj@lad;ZL{gr0<1Y zUnRiE-$cUSY{8!&!|IF`oUl2JlyI5hBLgvzw#l%XkmkC@DXH=)FU2@}g~eL!c<*pi z_jkY8no7!E0)flSo!^T!$WFZi*C5m7v)_wp=6StFEILjT`EGoVGYu{uewO=JsN>5G zj+QSs2wJh+AO+fTQDI-P?t5MSMzzeB7o40ye33z-YYJ&Xt^Jd6}*9`?a?IEwNop^c^-egjPT$WAZQ zBJcJmD}B?}%G_F;oQC$FD=zem=f;w$t~MEN=sh@*^DJ8< zSp5z=mDkqt%1$_AQY9`JhfL$n!c(oKkRO-7Iwo+)46l{sVWoeZ$3TNvSzOFj@hdsDJEvQpH1D$-sa1l(&{ z9tQDL)*#6Kv!(2=q6K@h zV+2U9}rHNy0;u3gN$iZu_lzox7rIB?;K8?^kL2<0%T z@=l#r?P7bb3`;S}X>VaA&3))-?_v1R!FMB4b&NjK z$0v7->0@KPjYtbO*zN5la@*banLfsdrEBVL@m7R^plSN8H8pd(v}i@UqzoinV0;=z z3b-<)foyXn``d@8v9i6Vm7w(r@!DG&gdZ)$FV{N4++ElaxqSEzYV>MoZ75&IXRqlsbcT0>@*VU zP+9Ldb%ikuxY&fuxH2p`-tLxvesF?`Z2i+m%0RZ-zLtHQU@r;U2camf-Vd1nL&e(Gc3dJK+bn&i2%*SdyhT9$KDtI$*2At~44N%*sD*UnFk;JQ@7`yj`z0X4&oCmHa!@wu| z*L-VN3ih8WOzPyNV9?h(30&+-EBm>iQ9zC@+;yZJyV=?vZXH9Zqt-^~TAL`eCZF2F zUnHo*-KscS+1g&3HEe6I_^`g^WM$gf6Rl248P)X$FQMwP3t@(8>WXV`pKbksf@Q+> z0AX{@E(za?)cS}Y1i2-?Y*@=$!>wY8V zd;d{*c$W2jc4$#?nbi8u_H))72I;()NnItyp1|~9psan?@KRU%W7eR3r2CxQIy5`d z579i!K9TF+*3JHvwE_jfOOPV>i9CPUK9<iq|$evxZ}x2YY-M{_#S}ud0K1}1S8KR!0pQ8A6qJ|nT>UBdR+0ftZovb@(Geo^rL;Vx2LDW!#hu62Cw#Qk|&}zgF)n5GkeEfo6 zGW%JjABedS|34c3(zFKgLk+SXMQac>)Ob*Xy~?p8nf4~uG};VNC;cE4-i+2DYN$ch zYi0xMU1&AphiVUg+z$!lQhYyTXpOSr?4uoULDY$6_G0YkZdoORih?rOp8O`!RthQh zN6zmR`y(@Q?TMkhp|~S!JZGZlK2~w?&^l2TUQ8p(CDM@?UXhjXr2QA`M9Mi2Dp41C zLkjsKZGx}Pe=*R$!#bN5n;^Ag_y$P4Woj7(!uP{hZtbKfycDOs7eO?Bn!ZV%y_#g* zNL%9#FKd4g`KqdiJ_UYDQKY{?B$*bu?gwnJQ?}RD#Bfr%Z-1&~Zh7nZ1 z79o~Gi5m!h!~}p3KvQe7zqYv7Zs3cLG{m~vzJ);|Ze91I4tpBh!a|YayK4H5$x}b# zj*0bY+D5;wpzDuhikA7Kcy$a^jIWOA?xnp8(Dp}h3Ar!9-7l3b!b0-xFG(ZWoP2v* z>uCS-1pc?jG)s9%fYy^h~nxOOWyYwZvnQWx}y7e;yQ~V~h zl|Kq6T}f-uNx!Mzz84EA?s&?w<40I`@oz-$GBo0MZf&RH9QqMG6pnk_R@fi6d58% zOuII0KknLC=hB9F@68;dX3HWl2R~Y7fj}>|Y-U0UdIS70dV_vIf6aao2*06C(1u?U zq&e*q!3^%H5ZiqTJmNir1wK?M;-l*E)PD zefpk#nl+!|#D2W;r?eF7^R$?glJeP|#rEOG_9jZ&d4B^X?8dFZhe)W-acvm3JOAjQMK-40|p7F!oxuhu@p_8`Q`C z@=TodG_A*Y@GC)UxeD#@XfgzOJetfA7iiB1E)c%GM947$p0tdt${;utKRkBW`GNL=Y za7ehr3$zBK`p58zReAm)5z80QYP8*3L^+n_hs?434JbjcfFCBWz?t9%sK*KBCR&en zTt_g=yM)?36HJa4ec}zU+Wu$Z&SL&4)!#WXJ`+6SgX|PV_J!V?w=e?B}hKhl!+ULi~7YWm=2@CGs#k_ARUzd;xHHPw)qDbgjLr z4?t6E6Mt=S{a`?DiXqx&r$G)J54LAGmRoyKoG1tXoT@d87IQg*ctf_b+_33J5EC(N zztTVq1J*cjJ>j9SP^rh9o9yGPQz;R2(8-5|gHEP3xT5HkT&kM9@URF6i)i(#m9|`1 zNb|3mi$wf~hiNpZQYKGdc4^y}KnCN3fec=?x{+cAxwWfS0RXRBH2~nqUS+Gjnsq;g z!a5$-SKKj$(pZ3(AduwBPlcmVW;~N=x@)r7mBBU8J4Of<$gQ@qqmw>r$#EFxsQy zo|i?WSd(bVe~Wxk@sWf4L-uCY)r5}t$blcqd7p#6_{S!nIc(o*-9bS_680yNpxy-T z!4uS{d|I5)TR?)kvqBqS%JWaX0p_R6{0vfivR+6e z9@L=Da?JYYfF{;YX){Fqv4(m*twGdKgZblc=G2L^?xxjp>LFt~jX8*>S^t47m06S$WBHh^RHdpZTuhm0w_ z7~|SIARkYE$6vMAm#oWaa~!Le91&yn5F9i_=Ek$+i5yK_c$tTK@lCiqw?<|KO;||9?c=fKSwCCpMI*Eib30{Nkv{ z|ASv({$FQ6OR~RvROJ7C33~JY@}8rtAm84`y3aqsU6kMvK@d)YEeL|E>ip5e`MZIh zNjDm62HoJ4dJ%XApCB#(--iSHZ2U<3W~*|HI5YOsV#h>3EkFeR_ zivzYi}yE!y0E_)O7uMe zLou$Pa8KYJ$`Xd5p)s~h5|V`LUr4?!S?<{UGh z9aNXa$l*cmTA_{slJx+^j4rZIbCG?t#$UGg(lL=CxI!CZ0KPzUZn+J%!QBC_^qG_T zHL#rV_y+ti`i8zc5O!Q-d&?XrP0&3;juW@5eBA4H_)5nacqf#h2lqGN&8Npb3Ij-kbzP07htRB}u;wl`7IURN?u!Vt6D_uNf2}T(B5y*>v)x798 z+62Amq=x)TpN3)ZIUjs42u1>QqA!mNCo&+`orsIZoyZ^>I+3A-JCVC}RYyt58h(Os zh~~j8a79{-LuvR4R=T>QvL66+ojU#iaLh1JFd0;P$;-eTy3VN@jxE;a6sPVw?P)RR z%>oTs>>H({{6L^I{mc+@^Ajwimg5a0fQdORQEy-ly=?(#nZzu&NMpWAiJ+rRJRuxy zBCXNWnD3qt?)4t6M)z89LXRVsk3cwMka`PB(7oV?(Y+WBVBbMKrZKnDdi1SL1hc&F zgx9%nVB~ml0DJ2M8NkkQYfm800{=##Cls ziWB9)ROSF$%;gB;4Mi%`0AeCmP9%B^#L!J&1O?N1*Tp9s&s%3wD(IzCPYN%cN^8(d z$4{^DwEX@_vHDnHsOFQbr6+YSl|Mh}^(9<=EP_h@DjUbnt!%)KRyLI2G-XI5M`L3{ zoFcpmD2N>Hk&PWiCF=#s4+?Td6XcAchA;Gje$hHa(O-xQVTX`^Awq=w;uQir#NCrx zM}r@xj)uEPH2^Oz^lDPP*oCVRyp|MbXISWQ#MsmBf_C|iK|<{kkIL)o6< z2%Km=4&UH>8xkP=?ZGLqlH=+8$?!K%=XWf)t*;|KOkXR< zi9o!TJ=)Jv-MW_IK;z)xbD9=&<5-}fn7sHx;N;~mGlaC39qsQ(_Co>9ubeWOAKI_U zg!5Pi{FrbllLZs>DB7OqTA+QYY{$38_NGBclXVT{4M(^S<=!P(W{%^iHI?Gky|V!= z<_eHgPqA~kj@?E86TNCew+4EAkc01DquH10X2%U2nn$Frf*Ux`nOG1TIMD%Mw9IHt zmicXmaCeo#j%bTK`jozt6X6$*Eg#}&9ZB=39yVal0rziS=Um|a%`E;4_itvM5--5{ z+rNQ4C*B)Wa;Rgr-(8&l;Cs>V_Dmn~sz!giqbTb;%yHQIA=Q$;f%85o)%EcT~0I4rK*QtfHWnBTOe!}ErEJ}!>>jm*0y{f0r`0&^;sD7hF1vp%$!4Kk7-fe=vp&n;MAx-`7XvIH!`UO?z-Y#@zY z@(W{^6dMA?PZPJr9vO661eYLMgTY0AB_QUs);Hq}jd+Bqe42QD?bBYb$CX_LfWy8C zKTLfSQz*?mcw5kV>`hH5-cEk-V%My2nxs$$acn$=lIMeM0LA7M*t~I2s=#J0c2u$& znDlg|+7jr8_auXUuqPQxuqWYL0fu6nk>L)&Ta+p60JNdriH5!Dc-lw|a5S}kWCoA) z3x0~>O98Y_EH=0pT7bsI#?uf+`C_95cnM!@G=;zUV&kNVjy6^u;;PW_It%yH} zF1*@iu}d7S-L;s~_s%SocX_d}mV4z=M<)s14wBx7#mTp{Ju2WU z%I{X4--{!M)g^I9+kIF~;h$R$drgKC)3|Yrw&rV|2-@1qq8K-570*3r*1)F9~ z59(fUdjNg`x7Qx+J`!G%xi<84opGGT7G;qm3f+g+I4VlYcREr|Mf*%=^zzqQ${Ws#&vdSh z?FMVRps}HB>o<<>mIG(CZ*@XF-t51Dpve5zu}L{Y3IM10_9jOMnS>{1o%p9nrS-f8 zF1Ct^gaeVyeRQp3iX1GT^NJ4y@dKj;8ysDgl6pB|IAf!up)8*h3{TtW7-6Y!PGeI( z=Z@dx2$mFrk%blow#ILEM3lX&Gs}Nr%mnsWkThc_$BwMX;=gl@ zjQ-F+9!<<5?CRaHIxM=HGf8P?l%PY|#(Dw4U6l2S3QJ|{wm`D}Dbj*rj9qY}Ym(AO zFXpUMt>5POruYab052WGCT@4sR|<^P zwSp68XXbqZKG$b<-sE#^!fCjtH^&UOjCdWmL#@5oTzhh`q12cBvLC;1SqVJ4a+h~_Qfu$*Y# zQvR6DqIWpT$s>T(76U4>ZaW-Rq^WGg4o8xtvK2cV6Xk8^*uqne7VPVNj>_S>M{2hg zeg|rV6Gv?APRFatVZs-B^o$FZl4W!l?Y*4uz~`i|N|#~VcR9Msr~TvCE;R%E3+uv1 za69dHC~Wm^M`}5)%qhj4nOUf&*@LF#P3L51Fv}iC&EhKj2J38Q>&uNO$F3Z6g|I$* z9GOxPw&0YbrCA8=qY?6XK2<8iI_`H^sR92M25cg9c@IznwZ%vc9&I1Vd*nRuQUZ9< ztd$2#=ST8paUO)-yzF#Nca~>Ib~r-V>AjAr@V>1-cB%`YsPjap2|&VQYkxY`E~<|@ zujw@SN5|(lTy^xm0zWj z(g?QrXGfwL#HPF+p!JF)j=v18rIKnKTREqAHOmsv^7?&Y)sZaf^sl0|gC{hMRH5`4kn)*Z^0)C+WL^C7MK`xV@Aryb{HrJ~-1 zp-uW#c^tkw|7K8CwqQapg$+IDXf0R0z+$H5HBhS4#^)V5a+M20ZHX7y`hIyy!a85| zXkU{3bKcR2M7E|v!ipDIrwfiY2C7_nL>F31!n(WkMMra4ZhwKt%mJinbAgmJWizd6 zWI=YfAom}a9V;a{`vN=pnOaN9H8P&UPV9l>cbOXZ!vOQOfysjVU4J;z3FGYqjXoDx z`D+l3`w&E{8mS5F*fmGA@-iufKGJ~oyXPp$I$n45lAdGhW7IMRxY%@X{qxryD`dd> z#tj&Ie6U(?IwF-1{a{t3SuFpiqn^YHQq<}Jv6sH(n8&eyaLbWqz;05uCY@P>?&tn= zOq1l}VAW5C)Kg9pMxbNn$VWBBo%d^Y(q%db?Hy(>{|%F~!vv3s5v`#QBR}48oRySf z7j?%*t^au!v|gH&dbG~<^XxrGQ=@(;JlFo5a_WA$*u^=Q)eK+U*^(Nkqz1r!SW+7n zj+;%8)xCh6b+h=xzSW{8DbEDJzOcTUUMTk7tY#5)1;>7{h+5CUyGfy)eENoabWt^2 zf^VcwFQzuKPSsg}xpwOTu?3UHrAEwICQFa-e|fX@dhh%WCNWcr16cwKt2G!X?me;k z31x{1f}JP`E(svdmrzF-Kp@QYmA+#AOR80ruL%&iRy}rkV{V%K#YGG&(s!(}qV^)a zv8#}3>P0-VXu!(l_iZ`(BF{Y4ul5S3^C66(ZM*m=Mh}f{2p?%OyAtOts+=L5oh+q} zmH)UXV##$bK=Au|-vi8gs|+aRiy?mqYlW-Blr+Bx&xNbKy$Ji1QD<9PXb7b< ztW*SeDPd3y4GZ3~L|b}6tC$KwF-mWOmg}LQ&0`7DB{3chxI{+l<&kQnA1y517pY1H zA|@Bs)J0*5l@)p&!${QO)w88pbde^-lut<&4M)(aE3q*#Y9(XOrkEfm)nlb&)dkWD zwlY@jXdr{5vaJq$m_9L1&4F+C6~w9am7|0j#^l4A>Q7%HLvi~eWlFK3vuf1|&(o(T z1B9YhuyXOxnJFJg3O__QGF}}f-D79t)dq@mS$9Yz^^ZnMxlBks_a>YQ*z^+1iBg8YDao5;kaiSp+gli}Oe(lUhr{BSZ^a>D8;FUX;gPHqVOk z1Zo1n`@w?y%p-GH=d5LQ+0=UKNY=i-T2d03pXfQdhzc83O#Kp!l6VyY>61^pk z7>qAei6BnFmjR*p0%@rv^)0wIYDJPdN?Aj&U_ckW$*Wb|$My#%@L7aiTRi zMO`ef0eff(AYz1k!IAqi?oLF0rV}Beve*MdDzXEq>SCC;k4aOkzmtAbDJz#jc9 zZ>7GjoYl*T_e^OG9(PjHPedElZTZXNGQ4#1P*^-rK;u&H1z$#R+528wwOzo>JbK)z!)HQGQP(=zkAsdbeRMnuiT7jFS3{wWncr$TCRhCci$^)cmDQcA^iTf3{J zB?FMji(e6zA_{iTcv`i{bv^}@sw?j+o}GG^qsKfIX=gA**p5Cp*PNY0nE5fh6 z+1}^Wq0)2i&bg|?(r!4HWE6jl<&W|F@gjdrBACvgwHU5~!A2a!5Hh(bwc#}Wg=8pyZu?QZy zQ%X8Ahi7NnoP&oAot?Loomg_A44Etx2)PG8sN8IQdW*8|Z}ZeYq|V=PB5V0$J%4QE zkInqCg+I3O$M^iPlRtLz$6o&Ufj{>1$3gx$%pX7V$5AFdr?xEmKL35f%;*Zi=*kCX zw9!!YJvbfk+fcPx=nanYPk7|!A@)0F>>C93GY^X0UE8LC6V=>{yOUmodYTLTt|M;1SaSeGg{&D^|!9&|o{)p#)#_~r77b%TDa(I?GlRt{_ ztXB|!FurD+%^&aaKNs@HcK+DHAGLX2;ZgqR!XF*^V+4P=_@gcdt95A{JUj89?fK(% zKIfdyAA9(pJNaWRA8)^g$CQ#aoG#}u$KcE%kHS|-C-d@&{P6*Qyw4wzJQ9ZUhlM{L z;g3YleO>;r@jsvAkNy0yk3Ys$pG*hC~};<{fQ_8!z03`k4D7A1R8Ok z*NE%+FEnBmuMt~&jW~?|s>Q8Tl|RsiE%`6BA+FfahFf?Uw_zSmj*oB)AK;IOJYHCu zKicv~bN)c1j_1G7sEhb7G%C*U(5Sb085$M44;po#*Qh)AFSKcx$EJA=Vfa`wG1&OMsdVd*2)G0I54DDpKFTp(W*a*ZnmW7Mj}d0&M+NL73q%bLtJ)+BbeF!MaXR z2g=K?iSc>w1a-M(-8F4)0Ht_hk|JdMMTqF79My-wZCmYorA9%-TA;^^YH#IdBhe0J z59tN`7Z*7X(6P2_!z;2UUjpNu)mv~ro8j8LicV5HVP!-F>i&l zcL|#Hi_{MC?Q7yPvfFwEhz;3fwtpg!4Y}^|nOV%fSG30i0&x5xC^0VydKzr_F6aE- zA{dAano3FoFTg~nNoukZPmrQ4{}x$@KvrzB`n!@wkfB6L*Tu<_BvR4&Yo7i2y?Caj z&Gn*e-Cw;@m3E{$_6;>hZgpLp44l!iVyN8xIzPRuZHKi#P&_4ESGD#&w4f8t8ZA+a z%J9eD{jlNx))aNVGK8Q;r9rJ%X|?}_(n8tZGE!=^evrgyUd>Nfr)lbb>qMO>8Ze$c z*R5DfHf|1Nf`sj)iR|WdwUtlHSk`H$8pMXpP@iDO3TX2pGt~~p=G@UM>8jAa9ZA?? zTW6{{b-v)tc)VEifC%9xq%Am%!9$&|Lo)Y!T@Hr!+#>90-J(}$9=ds!x=uN&7Yh%C z_FiQhJ#>@al>4fQzp}(buj(yDZ}aug!jY8|$Seiw&x+-S-iJ`4dzy#dBUI2s$1}B` zT=oV#$<$P(JOM)ojkrM^w8{bJZzI2EmVB z3bkIv#T&ddfUIo2J-I>beY_K**!rurE3#Je)T>HYLR0j~mzyhW#&hYF*wnYwW^$h! z?1#4?b=;4%L)o99vJa-R!)|X$_U4m-p~VVIXc-(^_TiilM))UZMHo-WA}wnR>DC zMQHEUsnHi(=}rCkVs+w+F1=+SUo0G14T0>}57j-&D+C!z^rDbRd6870Gj{r*V-eQt zV>MTr$JTwUKCZk?T7WBRTflQ~k_fx>rfDCT1lLD}$^|_wxWXS8TwSZw{>nE5KRP7T zdX;B%NWb#3sh_A%-f!S{pZ`Q1A}I$6EtK|3zi!V+C)tV5z!85Xm0Zw*?0!j*D!>bF zai(+8EGFr8+9|q&?5WjiFDs#=`N@&hkk+@{GWI>`ARFOUml&IKCy&zmvxb<)TXCTA z{V!BUgmK>NndKyWsg72v5n_C?5K%=h&|Qy}|4PkPQuHd}YkWJ4OkNU&5eWu%^(%D@ zd@DV6Eo}I{x(0-6M{uAWTi;^q_d-s$HK_olKPB~N>$gHyH;a_dJg#QTeQ)W?mWHsI z->8|yk+hF^a;%=+EnQ1mW%FBNcczJsS{L=2*xma6TVP=dXWXI8)Z2-UJ5A$x8mT}> zftO_1_>(y8yN{Ub?C*~`PR{81! zh%$WxI5m8wj@w}T7S+n;ZBWD5>0XUW!I#yBlw=(?s+E-kgh8~+51NcWkcz7t0n<6w zcaz#&xj@QMqBB$?c(aB}G=H<2K_t>nC34ih5^0sY?=O*i<#%elq*VIT*iYngf3kX8 z)kLKnso<^@lmG=R^s-Wx?Rv9WF}BRrD_BV)jgbGke-giXf@SUo{`Y*N#*yxuCM;5p z?fpS*LgdoQ%luiWUm17(NaxkulJuKv;$&|7@6{_xf5NDDp-OsPy5C-xz<$}Gc9zvY z*@VB;ihM!RNEtyeaT`l6wr;N)qqs;px^cPlY6dvJeHZK|Oe2-3r&p<--r#x~NL2Kg z;KpTEkydWkR5Vn_>eKZW?os>8UucY1-mA7!zR_D_2ZWZ zt$g(Zi1)^iur~h3W0$%;t*q}wwV5LSW%On^YJxJ}BTRc_Y!(y=t+{w**{}m@RizvO zM#;+jr8~162Y(z??L>?xgc$eCVrb=mKY$qX4ynhLR)j7_jb?v|Xx@xeAlI=!sgKFM z|6+Z90-x$jYLVSul-)tdZbLTZXT$odf#8`_@C_bXWuw1D4-DX5#vVxekmjAF2eK1K zR9m#)fs;EdW~J(h4AfgkK_o^*!f|xAUZ8t8Yj{lEVp;wdd|`WyTmimV1}_X$Kd#mb zS_Q4yf;DPc7Fwi9gz~8l%uqoeQw4paDQLn8wF)t+c1-vKw)%vcZ~Z_=Ay#K3UTH0t zY1&#$nu2WFGG2^>C4W(GTTXfyeq1S$7<7j7+W9c>dN=Z|Fy)*MEqMK%@_Jq4b<`;} zhVa@<81q;5!6~(^^;aE*HW9+PLdn~vF7Yc{_nSK3*ql#&~m}Em^X%6 zxW#w-%&cAk3jaNec)_oD3A^2~M%GO}LLi3;n zFLbS|#OcLCYta7qEw#I`J$D|`gS!fLO27_>E0HytrG!Qn)$!=UY4hpuzu+Ka6Xdd~ z(o%0I2sYCgY^GNT2H^;Hn$lA*^)|nATkUK$G&k|rP4L&~!T4KR>kgc}9cLyqTH|Z9 zUZE*2;gi`V*w6n!_?W5JA$QVfmU9=5lN(@6%xUL%hu@z$<%`CWQV>Xz=kv!Y{y51WTRGTfc<6hn9NlC@H3`v7 zMii3~d@_PgMzG1Qyp^zlGPcF+8iG2;BBZ{avw+lbsf^Td)JN(V%8)vCbxu9+^lf|_ zxHuOVQYCM)Rkm7{-4lyCdk0zOjI7BfTzMhf{lP!ef-UYl!Oq7ew({6J#pOT$=C5fd zu<_xeW1HRNc(|sfJoC`IZmjW=*UB=Wps>$h{k3#SjuOpqja3M7&Z$%44iw|=5KfhY)Oea?pfuWv*ln_$HOZ! zUy5PfDmtetqxEvZJf4Y6uH+m7@3AhZ3zoA4M4K#=E7DOB-8=Ic@Pf>~K}* z2&LFRCYR=UtSFs`cFkXq-t2F&9zRmec|eKKiy3GluAtOlh3z?eB36kaH6E475&y6O zHJr_T!T88lF95{gN1ekA5L}By4e>&YltYY8x0wCeiSNoS|IwpQHE;AGQ9!#`kiff# z)pC9=$xr`-XXlABYWkAG7jc7X=OT^+GBU4D)* zSH~Z78UAqn3mfAU(^bzoM44<-FUGDa6ZKNkdprTMr9VpkLD-%I=Uiohjt>2Sg>3n? zhO&&5dVIkGO0)+|=1fxyDP-&91n|WjL2fa+$l_&nvQKk2||rL+=uR z&~C2BVs8V$l%lFLC)eSa4U>Ye_^FE0yqUoAk9ecJ!V}KK+WH&iMu9vm01zKPxgYz) z8vhXN+!N0Ek$!pv^g}kkfzzq9=B${9)+#OZQa|qbl0OFggSe$9op7wUzm8A%=g3Ad z*bE}29{-g4-(`0jIVTuEOp!-BEo-Fc<%w9`*utd7wsSmIFE3qZ>ua5CFHc8XR+24u zS!kc(O|4TngVg@vy8S0Z9Uus~%NlQWRd;{i)Y(;%muU#1@AB&~T3Z)W1l%8DWX^!uhqN?B-N7>+^Ahec8&Ht{fz# z9=k}pS=-jm0$+$yZJbS%v;HBLw{d=KfG`z$fx!I{^pNFi)t zcV{I_p2wQO_X1n9B-9CO+S$13?#1n$Z(F2CH3VSIs~^m5qfmJ4++k2sh%rmvPn~oJ6-7_I15l*uZ!sx#Y(wd9 z9lW|fQ{D6h7Zcn@+0HSF@<=hS0x&S4TEa=GCoox{DIDG`S>6C+Kb;R}1KmrTDOF7{ zY~ACf6c+ouGm6a^5?YnaUvB$yq)li~9+}-p&UgflaEkp4?B=;1={B^kY6$8QgOtkzv9k>>sMzpWOVj~xoaW}O) zYe72MGrrx*s77v#w38Bq|)jEoGrYRpTeFUQCB^DYz zy0gC!-M*a%j4QR0rAFQo7JAwhMH)DUJ-%x&W8Bv+G}yNPR~LO{j5XK7PcGo`5!P+VUKAT64??Ea`>R`V$%koL|h&uUtL z3X84mtYIK$8mwN_bZwLyyj5tO1P@~i=WPA40JHw;!a*@>7bRpfE9al{(K*$psa zjf6UHKdJ7{Zsk&B`3(($XT+LA5%3X9o*=UcGhN|UeaIRqvxQH%qKXArMiwfG-({qK z2zN|7R|!d3YqWsK^y-=J_V4&nv6$?A-rluM*-5~0?y;hStFE%2lzQhLJ6Uo^SDpdF zWX^?tXki@tm*!mRYt998##WKd=lzF@&U|# zJztx|z%aOUTX$D6In#oppx@cS*P8YEGW!shm>uw8kjxIA;Wdw!ZOI9UP^u4zPg;c6 z2N)5b;0%)yv9SouL4%yn4SBG*{5f$h5YIa~(54Eyrsfzl^}1P8WN4f&G$ry#`q1dE zm+6u%@+wQiGoYV(oV`R4>8GY{UKHv?H^=1B@L{fg7OAR$_w@5P3XjW-Qf&N87hPt+ zJDIP+bnZV3*$>>+Ya8V5y!xGvQWvAh9VyEuk=q$XKI3xDlHrSCs4|bpgD5b(k@`4~C>jjO8cs|;1IPK~IMc0B}JK^QAkCLhF zvLHUSg_njW&nQmjx33FNq+yh-xcr!=ki?gt);#f*FvYb{QvTsCqDN#gaUh9={u=*A zB+%FXWhWnCus(M3Y5f+)%N2?k=VoP#1n%W!picC1o=sq}Gh83b$r`-Jq$ zm;+)NDEZ%v<~D=W_xJfeMa(|mi^@y}r$w_|Q-b9DB7p~|e9dyIz;Mg`=^L)cipZ}N z37k-vYzE1l?{WmmtVrNt>1{6v4*b4rHyaoT)^22G+zUA1Gvoh9=VsgAbFB@u>-NrK z*KuVx_Y>;({A%|29eSysmDg%+P2uvbK;-~45`Dy;WMuG-2Sy_nS?VQct#Ua`6i6_{%ReV%8Jmf(?lHB%d(8F%aYKF}NHP6wR z{i|I|mAZO4S(xr{yQaw1in3l`xcVss6c?s=`md=G4%ej?Xvw6DZ^W}smeSem-j}Xm z1F&gbve^&I{?{ec8ZedDmWrNb<_<%rhEUc~&V!o=X-;$?=Qh9!GY9HK6vMen@2_1i zTI3fs1fDQ9o+7|7HUvJSWL#n9!1?h)R+xnfp|4Et@5wXQyKYO$a$*3!L`186LJGYr z#O18jCRc_J0Q+c@tA(=3KSYPkF1wYGKtGRV7dE>dQw|tGI!MdmtA?&+1_CBi|N37t z^;xs2Yq5~qi{s&_i_zYx{Bt^neT(JgC9Qtb;r5FK6Yv1#+ z_AMy!KWIImp~<|oP>A+74MN|4&}vl7JZLoldAuU)gBD9@GbNI>+vQp=_2lvwGFiK$ z8L+#+bjv+zx2uLE<#DjbapThO98b20MUn@MRoLrVB8}ouUHq=9N_YVR3}0O#!Wf6I z2E_^;zWnIcJU1f;as0H_4`{V7%{pf;E5r8u;QF@kq+b;op`|YnyhTo5&9k4Vl>rKBsjFWTOD?N2k+MscnBz6l;fm; z2NTvmC0Svce|GIMw}p+xBd#Zut9}8xABFT3MQ(}>aenynKMYXLeTRV>TxH&6>(%NL zI?CmW8^c0Gani3%>$fnd^Y)SIEaZgitemL9dq#n}6dvP3h2rK>APh?U$Av=K*9QO+ z7Yc=FpJWjD{&C@%;^w%}gUU?eLZjL!qQVd?UZ$cEQ z1grn`3$X?eQ#2Z)Nou6%4aN`b5e|b#@bz^;(+TnNGbM}>sRw5>z(nOKs3Q?+eDS%d zvQvZiL?k^)xM>RDjO;U(ez{TJ)_g6s~@udUPx0Mfk-R8lIYp7^UD{vKvtaMs|I6E42kQR>D{ z*2(u|vYRQK!2o@*1Jsc|SoihWGvWSOg!Xj7JPM9ouzN}Df+T&|fpw10_nXx%)SwSB zDY(X^HSfZp&~HR z$2Q2u$fpJI`Hx4w!)ches~Fc)!1EikIm`M)y1~ESt-3*cDv+Mw>nXZ(G_{^H>xm@5 zPYXTy>{QLKmS4>xmrw#ntLEC>iA5FkuUqWSf#;jBn3w04XA73iF6JIqJ3m*P6J>i2 zJr7@eqBV9&uAl@CYn@EE-975&TP<=;C2&~l?F9)C)+`E>;`1MqFZ;MQe89L6lbte| z>>)O@8fv`po&q)#i=qb(i33?^+>2!jVv~d1!&<$#S7u+N<%cPKLG8qoM3!BD-J|^w zLetZ(QT_aV$`F5mBt1XW7Z6r=UbY{2`rr%#81G`{WS3t%%9FtaG^aI@vl1X|y(rvD zIA(Qs)?@j>viz=wz!SLMp$K^3f=@1Gw$7&;a4)j)tszkQZbtpL!`67Cy!tu600+!= zDCU{NHY&0{b6`!L%s(UlR!CQzsF~~+f#8<=qel6iB>83`J#4B8gylEM-^Et7$`{+r zeDld~Xq@APquq>z#^VLe^4pWt{5D|Xe>8V^i+7Z8*0p*5=Ss5GPxl~RzVN@~k8liU*~k1b=Wi-eGrY2cKd;Vpm7pRT6gU_CJD@}0YpaN!p zP%2Ss{vyRrsK72;3uPoJzy%O~=g-cbb>`PKx30>zIrC$c*ZhIV_F%RuYE%USjA^mb zwQvz0c--$<1jP1^`;Gse-BJD|*f{Qg%y|qD4L^W7K;RkoKOUZ+EXm(%2t46%D@B0e z@UviZIQ)S7;QwOa&o&5r|CGTEumzkfC*ArFDl-}Q;gtVNa;Z{*dv%^>Go_U1)%<{e zFIIMJ{_ApdslYwkW(I>({&{k}Qh{gJ!@UpzhJ8qt9fMfCa?z|rvS|DRZSen_xE#aP zZyt;SSb@w_vIN61{ob!ijyU!ciZqW$?g{y$dds6r1wP~WlBS>$9BpMdvtT;m=<@0( zhK0*xbrN5os-7dkQzLJZIS zZ!W}JXKDOw@OUep`#(^Kqs}!$@N@s{le71mr7rNo1#s83UUMXpx$67Cig~U|EV9I8 zk%t(ArW#H1FIR#~*!sA)kvZZAZDF7*zVNxb1jy3}N0ga6+l;Kzp>0{%iPkm!F?DA64K7hTWq z+Ar+vDDk=Gv9rZYIxHmcdtXO1WtE24)&0KrWevgizO4E&_nTm?LSoM~?(hH6dgOq{ z)4v-H$ke@QhKE5s5FfM;rnhZqHZGnzt-0uMaFzH10J7-x6(9v&~dK@yr> z`;0RhAkMC$ma8t}YK4nNs(Zj{W8QHXIDYV|0d2BFG|-I0pct%?rk5J zy+s8lE{jv`aQKW%AeSv&RCN20P@k!Gd}!c68({{+K${X8cnw|21Hl?^8qQ~urZ*RZ zL(L9*OX&aqH^#g|PiX1d197LRA* zwEE{loU)-A0>kL}LY%U>2O@w|ZW2yOmVO^$%Rq~p6($QjL=a6fn&4js(YA(2fQNlXejyL#LuS; zQU{2iWRX0G#g-pI=c&0=WOMkO5EeLm_SUTRyg)$bsjr6x4xd?OFbtpXh6Nt*2YVst zfKOx^&1LeLr{)S9{Qt(#q5mR=5{~zy6-Wr(CzNOip;p5sJ)zf!4~}D(Kh6(!M_eCn zkCQKj1>G*v=^Nd$#B{6$J=B@j{dWFoEc60y#kLIm5jk|{qwb9|`d26L` z(s79wsw{)9Pnsq^0Gire&tE#+OHw zanJaC#4|zBIoat+*||9b($aIYQ&JP_XQiiP)lW-I8<3lrm7SQt_I^=N#yx(@nAfD3 zl%%Aj^t9}x%*@oRl-z^?85!wGX*tCUAudL+koa~g0q_nL1>8UyHna>`zffO0JnVA_mso4nw zl2fuXGBcC1GwLTN=B8yPC#0vPvBoJQBisoYBbG}s$%z9}Q!~<16BDzNQ<4+2vvSjN zb90l^vog~`u7m+@yEO6}DJH#8vWYot?{^~-?n^hc=g6vTUH1`I*74+s*y!AZq~y$u z)ST?>)TES@)YPm2*#j~YazS~?*~u9L-0R0p8x|BjAU89iepXU)N+O7ynv|WDmR7%h za{c6#l(gjR+%#d5n1Lf#NR{hn<>q8$*UwJR$;?X00TX8@4aiPQ0HXlvZ1{xgvft%*{rW~m0YV2;Kk?g=U9CNp@ADS8>`w3nza5O!N}BKfxOMc%wd?N@GK@R+NKR+maSoYy_j=}Z){b_s z$DiwRSzLa%*WvKwc)a-lVEMV=E;fL{7T2w59c{jt%&C{*_V_KiR=33loO%nqUc1-p zviV_59xyZgUYd~i*G6{p9Q>#*9LUWeD3Ty|ZesDstFuM)7wAu3kA?*24 z;YKjEj-a}HFN^`455(@v$puIU%yC-$)_jM9G%vU_6?>YomU5kH-|-t-r_H6Vons_9 zXHG%P(=w@R7>vwLhQ6`pk_-=+Q;x@O%gu3n91hTj-|NcBEwF-b*=!DrG{0E}ubl%{ zYV-PB)?83Xjw9FY&Gi)c!JS-APHQcG{h};OHK!&5~aLke{0i z0Pcpd`CX0zcY)s@owyig2GA%#W)5i4Zgqe<-T5#MA56bqr`w-zAuV=)oDyXdLk3Kf zPP@(Fw>tCP4rnje=5g8`;0n}wtyXE=lF!xBwPdSKvPhY8yUs9)f7xWRN`hy}SYNdO-BY_43pE7xWryBn`<8$EI; zaF>wbD)8Gq0DL(P@L8J;CQN_63)Jng`f^-WS9Iu_kDmgUGwd}NW=)u{Gi&KKpG?do zF0!C+QP*A&IibnT>Bs?Cv*x%QHkjp{K5#xyK8!D?z@F>N1x~ABP%uEZH^=33I=m1A z`6*)N0Pr|-0B>A2XB5J&okF-4)!5aZQ;SvRt83RHD-ZRvsc%3~WjGvi;OXj~8GafT z+HEc{N0@(n`2dR+h)MG8R!GeRiuix4@qR$|(Tc^LYRZK}Qf7TKqXA z(rRtYzo0Q+E|{sy3E`v13jtTY!;<55`7IFDxbmg2Mw-xS>DopdgNr6-cx&nVgzICN z&;}PZ%W&sgpm&$e<$VR~@bJq4azx5bqMcIk6l3hbon{OWemAz!Qk z<2CNsB~56xb-Jh~#8U{N!;q}C5I`0{MQ@HX-|hhSf@u;g*9Q^3CCBgd z*!ThYw4QJ%@9GhBF83zlUeOHG_3(NdF=&$hur}IBt(-SWWO7t z^MV2kSRFZBuo|LSx@zg@23{e?EU*H&IUIJI7s3*k71WXM_Pd zKL)MZybh}sK-6Uiqk~}CW4D8mT46Qhqst-E!XibEHwYOPhtq4%&9%ew4<-s&8(8zL zZo9L9u5X;VF#B|cs?60gYU!Ii;3=AvSxeVBB?~qost-55~R9E>=sg@PyEMD;afFQKyWYd>E}0!bDe&9YSDm zm;#?2mX(0`xt<)q6#Qm-ygq+Hjz1TcT6TxmX3K?HD+d-eHmB3=^1xcSYSQYbgpRo| z?%W&?gjRG-ly8BB9W1H=SFErK^^+EXJ0bEt^)W=g#=T0BZ>_!3S$K9Io28Evd6hTU z3n3M((cQVZ4hOgl%*_zdJ6#^9#bUKd!D0ps#A?g2yDdHdL|Acn?LMCsW__5xbKQP# z6jsnMch#bn9JQ0wVuqXp8p|r*C&!3wGK|M#Cli1Acy`j(9Ju-buL_BO?TP%gC-T>x zh{3j<+GqdT6T!PNf9;9x$X|ORwQk4!wI_nN zdH&iH`D;()uRRg@d-nfwPh`IIsPgTt*x{(|T2Hv#t#LR-dZT?!peUgGUh%oH>(Yol zSaegW_Or?4M6hV62sx9pLq)R$_=A*&i#`_)lPgM#a+8Mt-heE*`G!k6w1me7Dw7v2 z@f7r4zR=gZz_Z-5rSKn+V71agDn^`k3ipzZk)qK_kG5(^b{_h?3)v7UYI4P4IB-)@ z2#vtMw1o;rQc-v>9G|Hugt~u=y<`n9y1hqF=dkxh-lu=DHz)r||6>tZF*Qd`wQ8%Zb>J&>{}DPv#jX7M&fspI7h_AS$Xvze4cv4{BR@E z>@vuIKdQ2*Y0FcT0d}a2{so7AnvfG$tZTD**GIicW+385k5;RzN+*WSQ*!-BtF=kU znWPOa^7xHKMW%Ks@$N}vZ;|xGO6OFil(x?f-YY#d1}>#jQ(4M!CLIzoVa|>Y(ZL&v z{DR4%v`Rdg#gj~KQ~;fi6D=uZZdK9F#F}Hcn#r^+V1p&*T}y`U&Tm5+ZY)|te%^jX zvWonHCdK2@6y8&$lkbRIGPGlHYV@PcMQufspX)~SrjYT~MP9R4`Jol@G!1qp$E%C7 zO{%p9S(OO6+4PX z3(t|acNC2?y`a=1T#Fr~77t%Qi|21CatR+0*Uq8=rjPVnOp{vt=LNJl@z$anO=tC+ zN|&1YPHL*P=5WcbT}6|SaAgr;GXeFalI-0@`%KBL6`x^t+!_@yJ5Fv**44zJE$%vT;w*2oWgX+f!s$^+8Riv!cEXX*`HG2{6T7I$5x)4axk%(~=x0xXWf5hd84;Mk47WbvqW-pdyKWb4O9KV48!AGmEAC z#|5ZxqP=*$(3(7QSCJ>7GAaFNv(2$@Fa;se&Tz5Yc?067ZDXH z+7e00(VjQK6Vg8isswRoYx*Lh^n`S}Lgmz;qQ_Om#Am)Wq^~5jl%M&2SYi-8U#WC8 zT==y4rLENtl9tb=5XgC#4K|e{52j81FDcf%@0A zNXR7zirzGRqx?hxah&)?>#d7|D@SM za51XDn;t4UBM2?X;irqN)s1d-BiC7wNW-R)1lK{_Xh>x-NF|;Xg1xD8|Mnf71qy;(UW(ksyqg=wsK_F2(dL-Ipzuzi!bZRXQ!L^CpYo zFqCw5wd%I{<3+nOjO}cqWM{uU4l_jw(i*ih=}Gz3N~wlS%d{*_lO&q^WKo`A+N3nc zrX!^08znWXspIV7|`aZ1iZ^nrx7~YmhNqs3L zdZ2Z1S8LMwUqvm1A1OKSPLyb>=S%l7$}j)+^`=eXKvWF4ey2>+Zei` z;RrO{P?I8h^jOgZ(NsVgl2#1N@Us=6wvk_&Qj^zRsOeOwvgw!T>#&nvce3r@z(}<$ zF0X4Msbu_b<^%(#o6!)N@$W$eEFQkO4Vn0C(NHw@9*Hfg%s7)KE8bsLk-`AJhB0W-R9=c%LU#_-&`l4gA(~-`?Pqb^r0nTCz=F;_? zhTo6_tQ{A;OKjFwx;Gf}0CQX9K+FUFo8SSbp+x)MpV}5V_f?Glf(IQ`4O-{kAG%_c z+m^qz>xA*Zm{nKK;8Eod&lmk$czEmK;x?(boq>Be(i66L>{YI<*@>5!FK^4|KXA59 zyu*avr_zv!5*bP+fM#Tk+J)z%i^Sr;3#MYqoi-HQU~FS3e$?!M&d}@;?kaM)yfTFd z^@|HyYeoR1xPI}grX7fr_>`Z$O({*B^7FvTVjBr4xwtkBxo>=B8hP_Sr48Uje-K{g zdPr$n+Dv#H70}RAc!=EJxVT1Dk%pd12$^@AEF;vVv>Wiv(%?+d^fqb{)_I-Cq2%IG zrVmjm>*sAUt7-B5W>gz*5&TD8eFR}!1aG$`OIHN9C3L}_jXAF-8J7f2#~<>ULpHQ1 zPEirkQ6XTuJ#kbL5GJ4t8n=de?ol}!gt>WQ*LLa~#hu$BWZ;k`6Mj>WC3>b+F(f}5 zEH@B?mI1f{1})v&vB?$PzRo07y^D399W)$+0x!tk4Jq;tN%np=wRoR##G6M*)^)A= zkgwaoPS!Fy4%rbE^S@dt)sXK~iuogV*QAN|Y**Y*F#TO=kInqZl>Z?s9g$1(=^fL8 z=SBvMW32Vp zPyyrP`F7-)1;Nf{R8!t4Y3>QGG96RbA4uNx1U(`UojF+9QG+Px4PIwD%M)$rGOaP0 znjc&wJWrZu7pEoi)u_EnedA~s)dj)tR5iI_zn(a31|HSdzW`-`T6JZ?c+WjiQGIgo?rWX!d2tZz`f$p z#MG-eDlU|%V-D@3BaAJ2nL|%(&qvFn+Z#s9hQrYGXhVv;6Ou<)^(kJcGlMnlTl|b^ zC(;cKF_X5pZ%8`)<5bU<-K9_f{y*;Hpd)Ejn@yBb4WWOb>EoI-WURILfaz(aIWnwJI9H~Rxy~$1&s^uy4*Xm=i0qzUtod?*;TROJL1DHbMP9uNdFBiy zcDRlRBa3l*jWu}4C^3QZn$fNfe0Bn5NoJB?IJ-q^Me{Wy;Q_L1Xz^t9)R{uxf~RMX z86EDx=PFVt+QulTh-0~m&;Ym70ZO?xP;jz_DMTzhNFu$;GEtDPAzePmzhGUY*HIT| zcwKy}t&8Y&Ba1(4C^kvc*F$GnDh<<^0oO#o%PXGONbHctr-@JmIh-eXVOsIa4aJ^m ze4Yq}q##bhW`@KyR=qTqCjtrnTc##ePM*3+AH`f6x`HKEctLR&!88K~9*gW4&MrU& zY!081M&@{n%TzTvppCs8i#n2`v%-9s{8ytECl(aXGnJwO2AZo$V_&gVRgr<_>_>t& z)277QXMM%_s@fbh-XO~x@pDnoSfw&d_G~eIn_PSp)P>WxJwjR3fyRg6Hw2A$E-e03 zd`qT}LF1d4oDGV*K~b<{EjCXu%r0bRMDBP?~jAzhgn)ev+#9G z_D2MUkO|XNf}ckC832J#+w#BlN7Cb9@$I!N$-a=5WE~zU-e9^0BouR87SCOs-jH1W z>M0vp+-G7#6Z~KNXYdX=n!8FV)rbT((bs$uHfS_yqJ0h(w@)%{R@$Sx6rIT8DV}W8 z&8U?5_hxeTaR@=V+LKK8B~~navUoLLu@hG#FY{FaT|=4(Q0|ZtB{R zNk1|1n1(0~f+3CC%2%_z9jaGKY8U+G1i^3A5&XZBOBU7_?==wo9$AWa#{~aEtCEN7 zi%%K|em_rgrd>(L`oin_f`2Sd5fgl5ZSWE#_&b^4N040=8ylhY#2Y0=>4iiZQss4k zc40MYgAT|&Z*NQ|U9(DlGW`M~h`}pEHulbAQif8>knI<8v{Olysy2r}ugJqy_gHrX zI-;@*7K^N(zdKv(k)ej6Zj?nG7|Mp<5DY!orDU-niFeK_r5f>$i6)^-h<7w;qOVq#%oI!=GL>G~YN<0SV5_ALndGDOCF>Gv=4jMx zzp>;#RZR{%Qso29YL? zc8Z|Q=8~|uLZ%1UXfe5bj0ux7)R>paqsBBS(MAnJ?lprKLyEkvbi8#>fP7mf|0(rW zY2@lpsWl{0T@uP<37a5AiQjF7WMdvkmFBiNa;=b21+stGAwSmxt;+shd##~8%i0Q$ zljB4uPU$1tz@f}oDrF8I4rcP-XK$4REypS7Rg4`}OR_&t+*LAY2!WSPD(fv=zIf3V z`O&Sjzrm+rsfvcjbVmkxQ6m0E5;4l9{3SLn1)qtfa6>8)Z!UR9s7H=GUou~F8!T7m zN62CpS`(eMqhy>Qw$9Rr=)oKb$=q4;ir6JfAE7UeQ|KV{@8An+g#J=b1OMhUFqCPa z{vywE-|7ofK`fUt^#D+T1YZ}71nOMMwa=$>viSLQrX=cw+}DM-m247L=&Nd?EX8YN zRguy?CFjI-2AZ1AQ+$7W$!f9MKvVPL6grw(lErIkCNN+ymuldQ!Cb0QyYM`jb63gj zrsrVTG1p@=$E&D-g_6&a=-!f9s*2on5X+aW?xyZWu!NrudXnbn?#LFu2kFS$T1Q{m zFv3JR)R_`aNm`6e37&gOR*9xg5_v3=Y}5(SvpM01EPhTn1tovZoKU11bnTX((}}ly z8;l2p&0Bu-p8X}+sp7a!`jKQTCGS|Ng_`K(7fN1873X)-hpB(arW_~P_)$rdRB=fs zeVj^ZD19>;3(ab-Xh(s9)Hr36s_Lz&)P`1DB&kswtiSSylKnd0CCC3*^1SIDY9;cV zL?b)lF0%Ni61V9tRIUVcw=1O@(^EmixHF&w5ymuya;5dtno&SPZyLK19k^$!s1NmO4*q0httep!tRl(OvZdcZ#OCbjl$rVaRZZFjGMs2)7Z+tXPpS-uJ+wVMk}ZrOp1uL) z*!E?VLmk^00l!JMGxX&Z-N;LQ0^493VB|5&S%Aq|ba{Cf-gHJliFS0UX#*7gb-$S! zQslj)8nRAwi9RsiNUYUCe4ONZJYr=T9JSj5?hf#Q62_iJHXdFzTyq`#x~#c9QY-Wr zL*RG^Axe(E9_UYw_gm3cldNYWDPoM1T~-+A*a7YX0NDU?U|4Y~ddyqFzw6^$@1PvNUANud*%}wZ3cwhEqfQ*9B%~Kt^%MGzu?4K%Qv_JXQc{Bq8~) z1(NoAa-Hs+sP#dzq#mS(wZW4G9!SUyl_52)$Lg@>L-u2z#pfuIAfdLc8ZBOlUITHNq(fv+IPX7O6>khR-UBxfbftfk)^;@lV*pHWM4(()P77p=cjiK-&s>ki z>$LeS1(qC~m>N=WJ0U;6(?-+KdMy?&WdDaOpVs_*x5wpiOKEnS_b%EebTsaoJ-(1x zOV9aIitQJ-1x94#_#s`kBiChhLJDe&AKp^1x_r5INC*pgWSw?tC>`Nh1<0`PE+{B~ z?5BReAJVSU*FPZZGRWIcgw2pnSI!m=IZ2(aT&u?quNSzjPPfhPg#6c#n%fOEBsIG340Z&%g+&;eza)swOJdpXNz+w#CX*G{ z1;+g4X@7azU!I1aa`~Tnnw0xS_<_#LlQggReJfANcqXM&ZVH+IMqooNAKD7Y?isg1 z`iM6J8{24SRDt_Bx9=R%fQ10BMu*P2?J}VS`yWd~IAT_4g?|g*B$0kQJ`h`UCBxnd z*c+~Z`@EIiuOyy#PIYfoSPgf6D%<9hNMW!|y)A`TwIk!_goifR0_UGA+mj=sPNxYA zNzb0;Mwkn_r`ZsN$qHrM`ovA21 z4Ljl$g}Y%RrJ}Ggt-qr10GxoMXQ{K{e+$|5t}gU1c5l2Z{fk`=>qh@#*JirYzu0m6 zOXy$hWL*#Vt8F3s&e@X|vTd$j^e+%L%d68!PHnS@Jg~H9N1-M<tbT=f zNLQAwVMP3{bmh|jQLddv;K=yk08*?J&lk!`HezaS{m&%C3qDh1^eC^?OW z$0}$1(E$o=5}J9(N%D^e4wws3_hec7a9-ytPzkinLVu+f&8#~*BvRI$jwb_sL~{hS zN*;J~^F(t6F7Y%j&J!Zhq<;t63L159POMAb`aF=Wt{TsXW4;g97w)Nqw#l9^0-vbs zTN?%P(v_jfNqO*K$kDZtdE!f5iFI9Mtoa|f)x!hV=Ls*6s?z~C*?20c32LZ~6t1fp z@+?@_m)!7mV7YLj`kO$J`BU81vi8M!Efq%EN%Wu4#)qYTgla1KkP_oeKNYy4-hZJ2 zN&n$QmiZj2DhXNWrdStYLOw^H`cELBu1W=g`j^wr{8VfI(YD_OnhNI5xDz^-R?1l9 zoIDxbq%1#rgV|Ly5eZNhfLee(0O~F+>l;uM|1T2EthszH?SvlRj7?&{3_{beU1(v9*R&5GSHitE; zzFre3Q&*)*M1qhL9RDq_-25*rS_Xgbp%TU2;4cQU z95huxQ$a_qt@q8ntmK{yR{@wX~CVO|o zElR`jC|i`sytFAuk0!x8Q*})5%nmTUG*fV$d5v0gF!M%GNn9)x(wXU%#!U}#piL63 zG6$a*%r~ReTia9RRI7D;U$ z>~4OEr=VTXt$H;9hgLU8My?)Ce89-))HQgcs{#@!VTkx;cLs2p_))FXo0Kp_{I5ic zGKMJ7vptbi@Oq7X9Vj_Q*6KMP$nF1!Tcl`a$W=VO-7n42UZ-8 zV0_Qnw15iD02SuK?+PkN`EmkM6ERFE;+tTY;Jbv!gt?a(VuImF6ih&qfgwd+bCQ+1 zr&aXZV?}n+ya(F`#qR95mhxK5*GARN#XSP;v#M)w9+B693R}*h^B7Yt%7dhIm#NpC zoI~doMvB(73Td_mspJwgiH`XLJV@peCvgdLi4P=~K*R5@(J1zbpY-{OW#GYbL1}cv z20fH%5B1nbzenm9VrmbDCz{eL)T6DVXI!K9j94ZeF{g(zX~G>}ldXrbfAodlk$Tee@<^J7!~7~H zWh;-D$j{S*51U`YKd?3W$GC)66<-3O)5%;_mrmx$m10SM)WfMec2%hif~9_`*Hi5Y zLeIG6X~vJg!vK&cygoa)SWK7OhH>;tq*yk@-u5O~irVF%m~KVTrmHwGL#RyR@ux*^R;0O3D)RF3bcS zJejjf>V+BMuAVGkiMkqRgt4qjYPH0TuvRs|OUuDW^`iJbR|SudMJpwi=&~{UDB?J7 zl5yAFPc2z;chs>qP4wGE!RG|?H>g2rFXt>SVRHDUCppl#_$PH;PTY^m;>Mj3D()yt zFJ(6MLUsn*4OuL|l(`iyW}TUOk=ad)_p1q%Ew?V10G1ZxgkCJUl)66K`f%Z@wCyBd zf=ex>CgXJbxW<^6pC`<>c+`n%d6owlIT_8oUTTz?O&K8Pz}HK33qod{;cgzJaBXzVt+7rP7ojK z#hYLz0O?m*Cz!D)0McgB zJQp{}u;`hORtzxva53X)Zg2AP#^9@J0yasm(yBXlQ?Q@9F56eF(5M?7yg8U5s4H{m z^Sj0Xw9y9-F;QRjRS6u}78%RvbD*~xeeR=d8lcZU_+3FCa&L9;U*bRHHe%rOBHsoB zp9g#M;Ij`(w86)4ESlhBNRih}HTv4Y=WK5td`{zWE8s(pe6jgX!AvIJ5llFWr65D9 zoQ|S#A11sS@=V*Z0pyvlHcuc2N|q;+4m*MsLON{(XZBI((|P)|TY{BBZ%WXg?6R(G zgN|e=R9)g!F+8HT#L$tf2BgKlpp@PRovl1AX(jPSyM~B)AVRZ&Ms2jb=y@RuL9EWD ztm3nAvm{X_T)cQ<6NMACC}Nx}pJOpa6x|nW zk|cbuuZY<^#V-efBScZ`t3NSc87GM;fpdfp<4Wj&9N~pNhV!z9f%EQwcIq^0BX?Ly zs@m^`cUKMuKQZ_1i)Lb&IUM}mFLE?ms!rM`X1myZOmR1s6z# zefrqlm!Cd%;&I2OkCrvRH2B*kQf9wu*mRlkZZbK1xNHi!Gp#g>^nWtgo?I!Ew@Au# zHX%o|x3nb_ek`s>nlCJEFWAYl7fafc(xb)c(ac7nr_H44tHIXdA8eozY4_bqv-ntF z7D_wfhft(W${fawnS-;O5(T^U!pvq zq^?3hY)lg+Rd4KS6`kEK1iNBAQ1jALMz?neZ8h6)G280ecs!$Vf1A9tqVC-DVJzYX8AWFuqvd;3l zg+`fg#l^HUh^oHp27RgOa}(QPjlQ(kMOe&rxi=$^&*_$Mw$Ff&r$vi=Co(v zcQmKHQ5b4UuHJsO5joZ)lp}s3w-%e-KH^(rv)juSHoKu@kI#^ymxVObo*E8Fb8%!y zk#~fOfX|FUB_T8;o&(+<(Sqe5E+ z^AXGiL#SK(FY0CfCoX0Pb%dNA6Plo|58KmOWbxQgAM@9^K06V5g#0)*`Bz+DX@9gyvTe%Mwd8>{4N}OGv7uh(rZ!~EwE1LO1BT3UMh_<~zD#XRULGCl zOa3mjN>+EuLH1N6v$%h-17FRvKW;=W9UmG*es0@5nG6~qnr!ZhJLb+1OxI`$=>e@Y zbo3y9c$}-s?xo~38*Wph@({|40V)rK-$5kuVJ>oFVrZr~M{XmA#WVRf7#5GT@wPh< zO0-uRhGV%1EcVmU^H{71p;8gTiR#ZrG~xND2ig!GuajiJ*O&;UVbOpdMzrEgvUuitK5 zxH1!6x>Rs=H%CgAEeJg#v{NWETZb|(eP2FaQJ&U{meyL1pmDvv`$UHg{244U}N@uF(~*rkAmZcUCbK9SS)r6<<9{B zw!`lT{~#(ID?BPS0q}R&bYe^sz6FMUx7m60+YTjv4*ET>gMQQG9GSl_{bPt%=Vm-Qz)bb`?Hb}0z`hW5aN-luj$&^u1K{zIVmA~G*+&>Ju2 zI+Tf$9(r~d+ld{1kK0LXXA15sJ-;^eQ?fYKp^tZyKY$xsUXVh8*hpEL6QY8X91J9@l4~ z)S^mo=qIf zxW__H^Eq5!8cX!pW1)3|nt%&YUq>>ItBdU_oPHuSQZTp7L26`^Lwj7pCWn?eq~@v6 zE_Gcdgy)|Q^)UCs1Z;8ug3-@}veX0|)*sPejEOGcV2ELqnD<_N5O@6c0t@z7>b1!^ ziX+q2_XNtN0pjPu?{QD=7Jcm5P;Wt8BsUTZd9UOfVW2-XhxeU4DEV_h|KD`@njtTf z!VXRf+xP)+&|fV{frtLomqPC}5)b9*L;tt3IuAldgj;T;4*+oc4-Wz-bpK%|?SY5> zYM?T}n$47Jj5T%MfA|7fo1wr?aRU2FOJFG8{ag}QLcF`P>&mp~)o+KIB#Dij`m=yb zPD)qb$*iv?`s;h4o07zKPW@S67*AsUFl0^=FLAP2KyyJdE=EEg_zHHUx)Zn+dnTjwP~Gg9(^| z1UDBv>l6^rp`Crm!zV+N%&XM>h4V6&qmnq>#5chT8L!bzpN57A=C!CQVKdPA&tOaW zMqJF$cdb*}6ju>&V7f?_p}PP0=+O3ox`qshaSpFhrF3KosvdT#ar6PopaG8Vhu@*& z*v>)IFGH`2ugh)3VDuHf4F;o+I2nwhUEKZDUeiU(?{F_~WkxS$L(*^*%Eo~!{sjG2 z;cwE_@j^q=yZ{vd52s8Hzj1On$B%(S(i%w)Jd(CJ6z9)0zms+TamYffT>Wjr7JiRdbbDm^b{qV7R;`J{5FuEpA zq7z2vOF9w9yZBJxGT_8uY8yc%gY{8&0DV)fkOV+8w)loLTW722>*nwj(fkzV2BN`i zGO=0MWquJCvrzRZaiP_2yPf)X4|B2`NnNi0W1H|7 z>iQgSO|^If-KLN$+J&#oP|qwpvKC77Mtb}3D6<9kPCvzF^hPCdPl=;)OG!ni+lOle z^B`1Jnm2ZJii|Q}ii_F2G007#>0zsyfJN=ce%;l>JOdN3s2vElcMNY=6EK;rAG&pn zxeyb?dT5Xt?xH4OJ-~vc0hyN>wwME$D%QTvi}GkNrQHI*$I+=9xxRDw3*iZ=iP((xDBlE~(S$olR+n%J zIuvz_TW?)pI1Xh-Lo>M{MP6q*a(*I<3*eMm0AKOkb933}k^uO*Y*)8%Wh1dsuKrxs zOLm$1xjJ*1m@BOczNJ0zbJ^!^L+JdJa*d(0&Z~khGJ8~%2I3M20GD_=%gr@57$^K5 zH<;LTX2z#|qHpAcyNaaf;nL*jTRGuAqBtX0f0Dae=5wmlZcTKJJKUhYcqK>`Cb_;^ z-ylL92|6nk?K>pgPK)t~h?#M{uB^(IN$69?t;vz`-JGnn=4RDf7@b)WUF zQ0p#X)-!gGTUm~3vSsVm-^}-6W?&NAWv)CQmBe~MGuf)39W5YwtU*jfNZkr?Isj=Z~ zb=%6(mtS%H_|X^P2$`A((}SuLb}qj~KcpNsIUXSc$HBC&stP#YnH;Y!$~Je#_1VVM z5pr;RxJX@}lhd8La(Zk+c%xwMj~iuUSv4uV%RC$x!&pX=g_FZ;#s2-scay`DHK>+M z2`@6w;HXBBo>Rl4Db>oU;X*YPHxupE;FCFb9Sv^3lo9OMfHl3yf3|J4)e6iNv8$#JNaw$X&IrHQMmvR+oNA1HFN>ubWB&tR`qin%gepR2hsQSzL1G9c z)7TqunXR%f%QV)OeBFOXTd^tJGoi`GlA(plOUNzbPWNnB0Wz-axrogE@DwCL?E#2d z+5QT0}`midfT~SE;sVJoFR}?mdD*_dTw8e@-+ExW? zqXKB*Zzb>8?eM>aOd@yCzgSw2JLzBS^59+cFLvc;Fa3+1v%8!A#e%bz`{3<8{!Rb+vR^|oca||M`sm^9B6llPAlg^c)WhU5?P7 zSoRV5E634(^cZa#Iqq28GgX88!Xy32?p;OgNe^#$dYdOGxint-SFA~L^wm~FlA!IV z=i|;J1OSc9g78;eYiOMx;Gb({jTX|9ifiTcaO|hTr%7L5IFbY{lhPgOS+MO?6Mf$o ze!h{I-k*gGC~uqZk4v%u;KaddY$JV-FVh<;?3 z@KHN*;4{vs#JccUpWEV2etGI3D-I& z3>wP|%||Hxj=BbK*qT|>QU@q*!-RzNBxg-)g{!ddNITbsa|ClXE@xMVd*KqcUd$dq zs{S6HqON=9@8PNDL0WZpSA=g>*QN49qLA~ZVV0OEiv+PBUeiF^QZq%~BN(n(s%AOIs7oU;4DW zIf{#^AtXUXGUVNz)72Cly2#1YaQBjmhHMW1B8YDy6(O6D6RBY;ZTC>uh{-J`iG?8Q z_(w%0CEB+GR13id-_W7mOV*b_rZBo@MjwX0grC?NFba<~bWai*k~2@ko`bw$(4gKx zg_7-lpB})kp}rg-t)X<1SQrjK*)c$-qD?`@?g(#8)iEQ;fmUhGrM$A(pnZR7I&-2D zIu06zD7L#+%TBdP$fBL$7tIq;a}0NoLN`i|peB!ZfbdRTgXgK5S7`M|H*^*jOG=SX z1vMx{O5xOb1^mR+N!a@dq21w+g>`C`mLqDW(j^0Vm0kfQ+TVo@xmUD#!Q- z=FcJ83BUPs0H_Rh5bmQq$83@wNgr(V@*<1aI4iwPF)RaFi46v+T|Q}$;<%iR{0)AJ z+emEN2Mz<>`cQaZlGtew+u-S}?A9oflGC+iNDb6PUyFv*>XG%&hdXMWe2mlOHJ0zU z#|ala5#E?24j;sC>L?_!Y-JgPbT)O;V8HZ5P@_S-_5MvFQQc}npO${(RU+-j={?1$ zrIQ+!P7*eI4V@$}Qj1MSU-oOyUSK}M@& z8R>ww;RqBrN1&}u5gqbkc&cE2k}?$Y0`|pQQM5(24Rr%xpLG1@}RH*^+1 z;AHzg5)S7W@5E)x9xh6G71q1tzFSV1qpe;IL;jVsoSaXirkI>RN|5tA{}VZ*?R2%6 zxalMBQYr+TWqAG#Cuf<{2Xo@@sEB{OEdKVm4!axB>do*S=AO8iePlU){)%j~9T(GB zDVbJ;zS)7YG&1zfa2mPcNVus+1G~y5_c4#;8xVUACgYF7XE#-kG}c1QPSj#nC$iNL zloHt{?22jBRw9MG*<|;y6Qvp2!3W5eMWt)WncrLXCX0ukc-FiM50BkqT#ia8GOI$7 zJdfrAUYjPG_ip$q!Mq+d$bykq}JQm)juFrPM&kuNHfVut<IiwAT;eOpbsvx&0cQX`38oCs85~ z^Cl-JZ2OI~yK|IFZM&<1pCpK*Yp&?_ns75gOodN{)NaA61zcS!jY&XQJ^m=CWgX8ZJOvUzf!}P zj~e8S>MdE%xBSt)a!3mhEw_z$MI{7H_?-^jVFX*Cp1h7E8VAnw;Ieqrs21 z-C>Rs#q>d<-LX_%`(?X{t@ZDrJZjtBUib;w-GO?gxq|qTVt0{M%SShO9?>(yJ1~^T zw!KiIz1lY%f?{(hJT;`q`&>2X+Ec8Y8OoASrP1o(u~x-=n8 zml7NOM^<3NVN7~8q{XQX1IU7*#dcD9YC}Kz*I=OoZ6x9SM5U3ld?Vw}?41Lb-+^ip zx^kotoQo6SF-m>5b!#C%|T!3sHlAqqiU&Zb=2$b=tOHbZ-e zGbB+;6R)C_=(?t*rv+hoEefeG=UrJQDGHvwZP|>Ao`ing?QR; zn?lYXDegmdT~TTx+m4pBfQJmu?=5amGSf?&kjpx3OCi_1Skf*!q*rNfGWoDaX|hm9 zvXRN~fbqnTj65i-l7a!bvi)UAZ1a4srdgGW$(!Q>78ReRYl}Nbe0J|&+M4p&C3^Fi z(rL-0)W0HGs3Vy-S%5bjL#4`HWldghG3K=`*+_FCU8qd0$)w>GrA>vplijoeR54Ov zn7bma2v?LdcVrF6&W&ymb{x)UKWZdZRqYej&AU;srGW)#1Hn&ruPQAtuK>-fVyTR4 zP)TBtu!trqN{LpjF8xI?m!qnLohj~ERc<%mfQxCkBbE;*k(S{sH31jKTrG=B-9JPV z2`e^r4SqqfJR!4=@F3Gx>UBXqt}v=||MrTC5Zz<;IqQNz^HmiYIS;aH4cYvLS@9r3(UWKW<{{*w+%xil6y z#7p^6BXlieB>WV&j2N=RCyKQ~*L}sKwYN00DrmD0wNn8zLQ(v@D zNIv9Anr$upK@|T!g1@PzkbDs%A%|}(Rc@*wxbaBp5cA;m8?aY&TWBPs(ZBjKjEV&- z!}!ptmNx#O)<(i^r?HuTFQHD^c7R^<6PO#eXtzAL#ch5b7qdmy6J*?u(ks>VDd?aL zf*QnDe1vSTxpMJ|HRg|So7`7|pEXFCiPRCV&a3c>g<0$8@6Hx~=4|sP%8NE?orRy` zw%IM(W>@Klg4l9oe7Vn-UCl-+^bEItNw9;n)DE<6jTvg^B48_7C*eX*!iGLfW<9pz z9E@1!&}#tv1ViW1E9;KZIZecQBlXcMRX*%Dd!!C}%>X9owc8Q22Ohl!0F}Wv)?CUk zb{Oe{UcH6O7cbf(H^$PJ$#tk^)Z1dsWcH}!HPA~jlTDngHgK{+i=s+NR{WxfEQ*}S ziQfBg>3ksy$LeOd>RCzhh{4|65?sQrWMJnIFUws zoi0QNK2f>}&ZUgh|MprIZ$c-Q+AC>G+%l4%j4O>*Rl%#O?$}nK)>R#`?MBj~Q+cas z-ZK>2k}gGt!>}#=hH|&rgo{~3m2@d-|7_`U4T8s?EgfP`*CLqqTxm}=0f&a0&_Lqm z%Z{ogKVLdVFz4V_IXK*+LCZ|Hj^fx(CcId>AXPhfB{!`qb&=m*EbV8WuI2@UZD$1bt9IzgKVsk)r;_Ib_f^eTq8Vg(ZAyNka)tB;Nzg5_EI(nq<%uX;^%<(skl0-)@mq#eTOpsho*o>kX>m{0plSTf7P#OFQ&(3 zy7tixeq#1Pk71$swb!xIACiR8v>k&j$_8>4h)bnbYNEHFEL~7fn8ms`K55f}Ck=d2 z`g~Gjc&3bf=_*v3&|OKV$D7bW|KXQOCvW;*#-o3?%M2&#Y$~vrmcZltkzdVoOv4J< zk*GSHzsWnVR#pP&8T$jgPf9cLy!oHfD$%?X^TeTSZ&?!R=Hgh>BYthaP+fz^8hd@R zEKt;nEIv~@AwwH$K``_XLEbL1?EM@2kS5=kjxs-^W(`31NmN2@PaVbNvT>282d}6f zJ^6jQrjClo-|TZ6T;PdOGyFZDV5>DyqP=Zk$iF838dBtqHO_r= zsmyvT{vM8a=RkM}`~)Lcfw20%W-~Fex*j<&J(L`6B}Pi?iQZBAQTY^ErSnJWAo3hw z4WjbYQM6wkk>PV?hlnmB52T}r`T9j|DdZu8gF*9K3M?pR$%Cpn0dD35h=THsk^uRj zJo-!H$e{Y-gQN5#@mpkW?w4AqAsc=u-xZzPJmRh|J_qvC3&-#0={`AEJ})}INu-Y$ z-PSg8lPJDDN`If>*%&pGHDoKI`EbxK!@ZJ%#G6L(;l)Nn?cB&~r|xlhwOTz17;Nkl z??@PYe|lt_U~V`X*$Rup&n2x{U~YzsS%BDZG_hnxo>3EUVfDWdUvUFun+zH4XEY#X zS&=j5Zn$OEAxlos7ZH1grhZ zP!XT=il{s2Wy-u!Cjd><5%l254^0BLw14DR^8%1z+$y-Zb0q2|R_9{+8!Po!G%)g> zd6hwb6O8-2;LvWGDlM1v4g0^_y9l5!yzgH{Stw%LsUjExrWlgVS~wGWX? zYwI!mI%GYR{5i4Re62)WbmTOFi}*1&@(&Q}9E80ujhu(DHX|aP8i+rS(GTJl%F6o* zyihZv;aSOD+I&KL;Gye%pfcE6eTOpqhp@|oY)b>X;-cz3R&69b#_AeLH~1+&*P+Gr z?!3r$K^#3+AHa6V%v>t9P!oN6e58>m&Kj!^V7K!mgC|8w1+j3fK7id9C(!}0;V@Qu zb)_#jsQO!GH{irT9obYUSRHjou&ru+)DgiBk~8HyQ=)^WMXrOTGvM_JuY={?wdCy463&+fk)ECXKV177|ec^x9;j3iXl$|LAGG@%nG+x{1 z)|YMwG@rf3Vm_s24Hoxbp%QBQ>c#z0N%F7FUbCd0`5dY$y;(HBAhO6TUXILziQkf3 zJy|$MmiQub^oZJM5{c)=MmsjE-YaO39a|V#VD80{jU*ecjEn>_GV$4>q3CS*+p?V1 z!_%5P)irnld?3mB)xyZ7di&Lb=S9-Vnm|#&_@+kQOVZKTvsXo4ZNomF$}WYZPK4Wc z4r#yw#8@s8_CE=^NJP)&Wc-rIc+ozP>{=4(oV09kL-O6x6CIQG!14L!Z=IMT4jW1a zE{*g^nt6Fcvh&dAT~jB*Ze^u;k;m&>)ceY7uU+B0c1z)7myx5tkreUsu`~xs2XW%% zn*PNO8W+*Oz?{4Pt+1H>$-YUJ(7)JLSAhP-Rsuo# z7if-UC}~8c398*p9$4D5BSheXu8BO=NUXY?O7@( zG;~O$Tp9;Mkv&P~w@|B+>o5N5#1hj7N-(ma=Gbe)Oh6YW#fb&$+8U*H`#b9sY$xhiku&<60?{a)yj%c~XW9vr-dDPReX?S4E^kF!fYw@NLOiGP+$r zTTLq?Hw&iWsI9}BBAv+bCyFhmv8WUTI!+v(M?C8zcc`jUF`{9}i82P)(lt$#kuY{F zH8k&`i`42Gygg|p$}p9nK~Rw+WyyImRx33?Sv>-+qkF0%tprnrQcgf9GfY*efXXA8 z)&Ngq7yc%Y!*>;pA}?)@r1F%VNa;tLZKgdOxllo>w?qn6wW&0bVC1wJm_yd1oHpa} zJO(N#ZH6LKIc)|em2xuNR~@-a5MRwhX)_cmIc9*IlGIglTwIWCkAg5;$5JVi{}hUra?|) zu@#|-GfXMt6c1*eLi1*r(oiY2j3lVW(q^dYQ{^J_n=J_d_bq8Cb7!QrC_2U|8bT&9 zH<3!)S8%(D*n1_2K_hF%9YRf)Ny>gpEpj5_jRse8xBL+Yr9}&mPp^Bp1w1(yp5)1L4;B@;obev%Zy@?G@Z7kN{B zhttDRM9%c^WP%AMGt>ViNt(D6VzfdVlF&J6) zXk?IKq6-#MaS_pGi8(58JsC|=$!J6qPDE&va~vH(EWJD0BM9Z3{Hd|HbUfQ5KshcH z8NDyDu~=%LCi>wEkx&yc0wRM?Jem|=aTG_6P(4(Q=RfNxef%1u(Agj;l=L7@8_xsA zIN*cdAV5kOOC^GoAf1HM`?Rj5g(E60Bz(d!bcejAs_R579}&yJ@Ty90!%Z*iEA9oX zxNcGJu}Dx5Ka=TW$a(_NGmm~fK~OJ1$sh7)wCia+=nkqu>)c~Occ_|@qrXS2d>$s# z1Wkh_-8?66B*FZXnPh|aWE*nhr;&!FAN}7#@5wIYmi&_g$*la7ok@pJBhAR2-jiD{ zw6YK+ExucsB6gd=@0Z2xG%riOwU#Y0S3@Rz9$83w`=Ha?eJ9(K+rNyoBhB5PwjsZL z9_dWT7m=3ai0@l!k z#?}!dhN;|zVMMdjkt0+^^8>2L=KSy zCCih^)|$vO;&}t-n#DB}ef_@?vmiE`$Zv)#J$vIM*zyq^ekl!=Gx)du{|)}tUn19= z224~Nd`E@zt2GRsJTRrQFZt!yh(Brk#D*kmM?pG?{1&mArl5A%cEQAnB>8t(H&4Vr zz#1q;>0qhcLEc1Z+hdGU6-Cx;+k=caANkr;tW=6J%uN$!|@E zlw!8^gDA_iD0Now8Uy7a6D_MWY8NVstfUz-Qb?-?Wp9|?)n~6tW)C+er7~FDuq<0N zf2xpPE^X~S)wpbp=^LduzO}bF2`ZDm+fIf}h>GsibRr*aJ2}Jjw@Hd!GgJAL%rKX& zQq`tQas=?3HP~Y@NgWlwO@(y;@OfglNos7*rrc>`dlviz1{1^f^k!uyK^!8}$FO}M zqG#BC$s``zv!LY9!S+3Ly!?``c8Fh0PNbBjk<9sbcR@?LLTUKi(vC!`OG240hu`IN zdUAZZ`Cf-7-{bcB{5f_{f!FG{SZy}Q`roRoBBQoSLwlCB71vGDT_on+BilhaWsp7# z&Aq`^DlrbvLT8fZH&-+?`vlOYbi7y+x}38BtxK+;3QJg*=-klJSeE47fsFH_#QlgO zZnR8%2wR&nqmodYvZus1C+SDVkI4MICN)qKeWq<$CxLvMQ8s`a@3*2YdKgu~i6=NB zGOK;rPVw|4{n_)mIEBva`H#3VtSDT3NKX$3I6WADKh{#j{c1(j5gT5vgRh`tjy)!` ztN+MPx=m&thqirbsHCTlfP%Ujcbu1J8VSa;$IJaq_&=$Tu4Bgib5?M&T5F-$;&AVBbKa8cs)LBgcgXRWX{wmI>+W`@J2Y$TmPD`V9u}|1;S}=og|i^>f$C5*Tp%BhmLY6a*}zH*fpKR zWp%kNu;?i8_zN69OMb2^*OKG36}a==es`{)IY~uEZIzgh6i?M(f(({bvx*!YrnLlF z9@k8Qhs>L*gJH8_SQx|V>>;uAO&9GU`AFMV=7b0nvrGu#ODm$WQ;7N zXJj`aH(q+%01}>5)|k{>TJ{O~EYHYaCh*kbMwRUnKQr)`>2V4je|a*l6+EfjrKgbF zIfc~SUxv#ZU7Wwnse`|uu(IPcel5~rn%-I@lxcC={kble*PrXQIs9HiGDD*ti2$P zo38(Lbvs8w7R@iK7UxaZkFs{hDe$a;oWeDoU#4eG*O|gQ0;3q2>h2Xcs>NSNueg(X zMf~8H&K55k+SUYJZPL<}>IOHNSWxyjnSI;IBjSDo-R+kLa!*Wm_wP9=isI7-x_g)> zx#Z510Z0U7puET9Br)Yh)&?&@BizfBH-hY{*w_dyBsZxvSho+=7kuvGnL29YZ!>t$ z`Ath3aBBUTeJ3|1iS1_SyUt6pU{YtuOO*HapKMT1>@h>%b>84fhOQ`Eoh0^~q3=8I z#YuF;-)aW+odog!23Eiy5~`aLF8I^e$E2$L-V}1Axa_!TAqXSpp6pB1$0cP$OiNKI zJ01$v$dboTUaqRoeTzCNkDNw!a+B~$G`_KR!R&oWJa62ZLSBC2WN~ZF1CPWLD*M^A zL(QXf(lL9RQi{IE0z)iQ$G6n{BmhBYD>P}Mqf5(PNisd8w8wwB{8=6^CTE`piRH^# z^`d*$lyw!&hZTDGAWEOnoV9;NAJadSV(Iq5=}(0w!eJ7+u55#vCjK&o=|e=rPV^rp zNB&+`WI|oAI|AtA>MwdMM&GR{OA}3JQIqV%_%En{DIRJN;XgNJlL<-9^2zx}S0t;5 zI1~6yqd#N<2qv)5Ks)MVg?UM;jDPIB$??p}&SIyT>Ti-6Gvl=UY2P&X36w2GpWULH zHbB@c_Lu2n-z43L9==Hq5N7h9B-3U}ZmDzF*KiohNz>YljV#zy_LGjWU$wdHLDOQ& zsQfJs^dcL3p;D@0?5(K~6O3JxCTiYVc1SR-QQG5;JyXu*h{@UA12Tb>{b<^RC>e~f z`xx6%Df^(kiTrv~*+Z(@oCS5#=ttXvFeh;zjPg%99I;S|-|44BIRf?1Dqtl$~kmCG7SfRxdy_p76 z9<>!W0DeM>`~HrypM}{ndCc=?AabU-5wm#L9{?rVrx7$Y5HmeRX9(^LDe^8;jk)$1 zb?q!ZDk{T6Mjtqie6jgXVJ98?e9iBE<7BPfEYa5x_#{4nJoDA&3DW7Z4m*Ms!u?Ek zG)Y{B{&(`Jd`oG!1S^H7QU{4rkEN^CS+Ka{;v zmRSAS%+hP3MfU~A3Q=hAX+dlUFQ2J18z~>aS8{~pmjl7yXr~#~*S3b_^uo69*#D7@ z=bAMn2OiklK)htOez3bH-kgr+#M!*&PR%lmb1y)DXfoBP4X0wCc&zLN(=-rGY{q0r zxc~98KBjr7lp*1?*~IlkS(d6ghiujIAl044=hh20ryVMDV%fFVf_PAt4O1CqPaD+2 zlB(r+hP@Oa?v%-6pmsANXP|Z+z@9o;K^RK@98kMMHQd@k?d91#sJ(!P90Rq4ry}l- zKNZoJY-nEIggq6JWOp|qhmV$Z!tX?gQeoYWYRmM z+$@T7^g(91oH+6rj6gYuk2W+uOaPe|q^f#H@712n9FCtP&}vnqHabW8PbvB1o2yEl zCfghZbK+5YMqi~=BT7FOg{-^nMbi+a7CjQ$h0up0OruaK!>b{4$XD6ry;aq-x|EMI z&C;m(3jF~$%pu!xS+Z&lwUA9+Lx!kW#FO_qpO;t8QXZM3hPM#qQ5)V$;3pKb_1Uzg zO584!$KZ`1at3eZb9i_wff8+aGaP|t%w|ZDcUmVwuRQcuxS_v@rJ-}% z?a}VN%3o_Nem+P4`_a#``aYc#`+igv+-5 zBd0&VN5%!3<#)|lWKVP13+>6!ndR|>d8RgVb&Vtieu^7OY(jv&zd5<(k0c3B+D<}- zUIpcb$r;(~QY$sl>Vf6M>Is)ovdNm!aV(ogO62em3j{7;nI%AtJkdoC788Ntibjhgl z4@A=qh$HUq(Ur0k)J@jC(UdbnsLb>U%7iwSJqkZbX38#_XHFx)k~$kkV! zXwc^Ch<9%0e_t9qKl4B3FCWuH{CS@K%>Rn4^q;^@wDSi76LjYPg!aJC{O<#m!OZ^- zWf;veb^c!d95P8mQT3j$Hj^Inb(qT1e> zggT)F5<*QvN9y(>H3))2D1r(iWh)SoBE?WcNJvO_vzr9Sr3;8)ML==%i3%1(K{R$z z6zuveplIy=&YhXvxpQ}BmY~n?_XqF$9&YZObMLvQ-E-TyQZBP=#2RY&$|VIi*JW>> zs_kJiXcTXLK_NVOIaS-kn4%~e9_DK3tB^l%Dy_L)ff5~Ybizy_#8LY}zpg|Zw)Uuv zU-Y0qL`Y(XrVUI?_;nQSHG*7uuJ(#tsxnu*LCohTypY13kwJ+G+ZRMB zR682oUr|t@fTg%_lf(sO%TX>6u2=~{M=X;Sd0cUNVYbOMrFkVy(=@LJ@F{9uT~Tmd z!P{&%2|eP3I}_+a$dZh9JfsL;8%)#k!Me1o&c1XpvZt%1a1}Z|f$H=P1l5%Ly~c*8`T0y^qEO6ZSqxcxj^+*Y0K# z8U-??M=F6!_fTBAo8l62jBlsNC2@e3CtZ6!+gZS}&rQ>IypfcuN5l$h_?){77O?32 z-hyp&xNK%~PQkr&Km!@gAf=`5L|M_6S53EB%kC?WVKo{bx_AYvqY6T_g z@s+NnUV?3(QnT%7&u7RzulQi&kcI^1lzF?wj??Cyd7$9F`fQ;~+q^%PB$n^eFz*#W z12*p*+yZUhZotwp@2QyJzhmC-EA@#s?8I_#&w0<9e=6NSO2zf^D`k^Rx7ZQMhnC>q9nQj`b# zpBSw@pf8MvC}CvjzG|d)SFM#q8#aRIpiRV9y2g=x6FPgWe{;UPx}bjoccoj_3~DXq z7NQmXP)WZ%H`*~_XNvfyk$$Lj19CmKO?=ac8$l2j4VBV{%cW$fg#MHDVjKRtw+o(Q zxrs6e5hA&WQejPdq8pt!Rj^M1PDM#M5(AWtMj1}HQzZl)CC#k|IMLIf`QH?bX4atU zZ;0i`)tEZ{-u1QtJC#BCx(>{DKeBD{RNTQjg+cBBQ6uHi z8>(OuBgjQNw5Ihz;i3-h?DZdyW?!Kc_5`Lv-J`t-pP~xe6=ifNOhQ}h7xrbpkm`s8 zh@TR52#&2fMgd-gl7GjswZeU-9h=bgmR_Z;rh1iKCwASM!6&GO_H6Z%3csksTD;oP zVFyWaMz4lP>kUNU=&&_zf%a(4087VAnqYznGpY6DuMMGBT3nhTb4duHDJBttp<859 zOkj9ZYGDz}7J9Y))fkD6e6fZa9$qwVnSlHq3gb-vZlMv+w<(;(vUhv6z1GYqiiX!( zAxebJ@zP$)tuKzLlsIbdwXRjlBWCtTdXA{BMmN?MDy&-w?T7E~#C|9XPzdec*OuVB zqyz;EAIAPHp+}7SM*>|i?z1s`dKXIm9phf1X57)9ck?L?yt6OLG~oa^Vc;F$lZt__ z?_5|~haKY6Ht=FeWLZ8910MiHU<2=tTc8cR17PVGcm^i;?-=+>r9#neFv_W1icW2O-yu;T%o1d@6_Weux9baI4ke7*oA+L&G-?@?oWwy%bDp;s?qrj`l!*~C$!+A$ z%OzqGxxDdB>Z4J83#YSR`h?ecI08wy`$6pSy-tuOX`IILy1oy37o9EIEWMSZKWCg# zPkbwY3-8qcAFcwPdv)QP3UF$!c~)Yal2&jfG0s~FLC-b6P&n_b-`0(0=lGTGYZfL? zJv5sMpP)_AD7&Jq*A%X1*GT9Q$Gw_B7aaFIzc9cNmz8It^TP_;v4)rj%XMj2oo(u3 zWPcyq+k;eZ4-n+yc_!h49wK{7%$%Ip6^>-9{n{Sr7fDzr#R_UrgAs*~upjva2h>IF znC4#;#&31e;cjEPOQqlY1wW*ES-froG1@uU zFeg*ri+xyMe({UTp~=Rt1Z7N@OI5tsl_EQiPb!?7n3PL^%CCNLE9GL*wZC%xe7IcE zxT+tUI~~pSYeG#cg^2(^Z{OIXa!x&1vjy zSiZbxW(TX^1ZfIwK!(L=F`2CnpUdJkxotRKh|lRpS>NTR@Z|?{CnaW@Juau!X7yQJ zJ~yQMbUVEszt!k7d#rB18yLc$KZc%W(tTc!53-Kf93H2|ZZtTIRN4=> zKgfNG$&Ayi5mg_}HNdrM-v&*$)&-0;EXvRLdOP>ab0>~*?*kO#trvIGb+t zCbQpVcK9rQqu=3jx_m~5#pd!jd=48ApwO2%O^bcWu*PY&`jC5atA?1F1ycc_d@nnGgd5{$!&2MAhD#yXNJ5LJ~PjhRn1LI*U!L;&OVJ&QKqFT ziJvw&cR7=1(U+6E11QI}VZG9K@Xgg>a!+)_$=nv1ae8J(Stkp- zr@P$-v%~4LdaZVg3G4#8ZS&cTUZ=_D@!I+Q{d2L^+09^{pubL+0T^X=I4phxD6C_a4#>=9^Lac*lhF;? zPq9KmC(I_B(eL#7tX6Q6CcDvLa9CUhkI!lYHha*#>eDUwxv21dCfy8)?tC`8+XLyn zY|s;f)nj(Mymq(G04&0)+mbi*T)l@$*KZi*7b9b)e!DIk_8K;{eOF=EUS_+MuroJ! z4!gzbFk9V_3dZAsbgovn+Y9<5q;eIz6*q+|D4N31;)uzlG_-iSsf70GbIyqk&3hu0 zmZ9G>!OpJC^t!BGm&jGXYsfojxgAq2D2Z`%?6R39Tk|-qejFK^yat=a zVf8>4y&jv>={ETwU%ZhYI{^;|cB|FnaoEAVo2(YQ1BXX&jh|&%jjv?6h!I2BNWJiWVd5UJm?5gmEvv@t`!QKM*c!7mHD z^)%SCZG%~X!C`lRKA4?C z!Z?Ub4K}aC@Avpz5ZJ*kj{(NNGaQ0hn|`xaY`T84=+%dp8GC^l7;L7<*ai_H zwsJcRX^^qb;xsz(cx-Yzoqn_19vP<%cDo4@KtfJ>Y-%pQ3o=4FVNM2CiNjw6iWiya zz*GW4NSE1YcluzYcRHP*q6P=(h|BLWTM;M-%mOFpLMR!hZ7GzD)3ji5Ke4MbGa!lt zzXqv}&A4R`Hg&7XXfi-*r19>PcmYaLFb!D)vz6g;@O+_17>vAe#Ya40aAy1WKI4=xwR29JKLFw=vmGG43gC#>#*4&RuYgr;|1-6g~2Hn>e*o5ks{ z*(`SWFAUsPx6=)iE{oMGulwNj605`GHX7_!AB@H@Pqlzk1osHjQRtIZj77#QKK&rm z&gjR{i~|qTVAKw;)#0+ifCym=$X6T^#RxM_>(cU%OTT5aINUAky}D~p138bw^B9BC z1N?{ivKy8TV7rK7N11aoFTJUiktLquo+Hx5q7WrT@?!{qgw3@FP5f&Muh zV5j@QJsLnKEfD0wt3IHJ5VaY64ztY$Z#Ia=BrH^Bz~UfG;J|%)z>dvcBTP5&;)w%{ z&gjD(>LOiq81V#z7 zK@Y6V8pyd%oMyd39G0%%s<=|}*|62EVcu=`+s#g++hz4woMw1N$z%l6umc+*!uLp# zmlNhekdhWu*6XtP+;%4{sK6A??KPSpy}4iN1uU~dAPLKeCh#{#@InTo-E4LOrV&=d zEaD&tgYx zBb>(yJgT?4g}7*(5hsr>g5_X2s9XU-rLLsBN=u8Qm6Tn^;hzadl_>SQP>XcE&iPGf zM^UINn)_YIidIZmJ?-+Yz~x`T*ytC`)@?(R5Lt|j0*fhp*vocv*NvcFv^UI7_5 zqNrTsshyuk6zxkBvb=~lG|9^yh}pGmP+cLh#c@9C=AFZsWZ@4(y(_L5m1Bf|b6!FD zS8X}Pe1{yPi)`$MQE2;|{Ei7#@Pg8;ypKD>WtT&vi*Bs@Ib6dC_CPxx`z#gp8dKD= z#R*6q6HJ=ra{FfWnmK>|Lf`y#IYZs3`VW-CwubxZV~W}^UQ{-wD3kdR?HyCpD(^d} zq9kVnyt7r31J%R7)8QSOk{n!hNe-^B1Zu$lwuWm_B{^Q9{6qZj!km4OjDGpLZaM4> zxELh7ua$s*{hAH`B;sGf`(1VLFX45gy7-rHWu_kf1xWToCkw$e-%IDxx6kcP@8 z6?JIV7Pl>k5C4MOCk@fr=|yR4x4+*DWiHEi^lI>X-7CaPjDsj$aTO!9;Jn zWS)AE)kQ()6T)_sGP!6m>h3RU$hMt<=C#htPP;}yOSA#BV{)H1sO6NRgGo0L5U8RO zo(G$AWwAGDDp~Amuq2zkX$E?HYLQ8aV649^yPZriCw7Z$6}hGrJUC-Z(HY`e7Pe4Ma z6?HZi>#T@dCqKnobb?8GK&P%IVqN#>*R_4|*p4xMBKaX`gm{m$mn>B!M5MbBMMwoj zNI;MlISplg?rMhidH0x-UZZIxb@)$y)dKb!=y80@sTHkHzj>RmSAZ& z!Z6V4-JplTTy$j5;#MeWX3;cs>$q)=loenVAiA6x+q6(q4Vrgr(N5+HRI#wAT{L4) z*Qo8~$Xx3XTLr4_u^|=hoK^G$(^RMdZU3!PdezM2ol^{A^q*-~szCqhr731)<+_#WD{r6W@) zG|VRaiG&ms`M5)(pTH(+M1wl!H6vD214p-SGrb66FWB zZec{371bHS_voYC4k%y{pKcq#e0C8Aafc{!Wt~D5jCJ_{<|kzps^-5mwhA$$5n5Js zds5vT=!`VFB6yn8m(-XnInqCr&DPC9W1m@^MQCDPY@L!a9aCgt*b4iB@0KxMSb-g0ibtq0*hA-4@>dtq$|l*DG9wHR^9nl zQ9@c(Z(nRjuUdQd&`>@8Nn3FbCh2OjA)(i)j^as4BgkUt^$>K}Q9QU2h6eW|#4!$3 zv3YJPddc}?Q#AYWgnFp2v$(agJ}Q`bD^?6bbusZ9DSMe)@Jn#J?*j#7{I=w(;_*qh zlLTXi5gPTW*zOz>M2O!e_ANe}w2~|qLiT;m9gd_mWU&ykue=qVZBv$tn)EMDR>2Yi z{Y`3E``ayPtwf;o^K%sfH9{>F*2tk&Eg5+p7%4{rJ%4 zFxqdJ2ef2vM@L%b_NkljCq%U0po#&DGP!wQMWWk=$aQD235~h1s0k4O)teRRJMn;l z@)h~a;l)>?QscTL)Ny#RiS0OxPJ0sdy4f5fsz9b#YYlpLc=0LLGKFW3-K8kZG5Qj<&-c%_g2Nsy9oJN$jhfDh#Hz@S?@hv6kXkpel}eYT{sO z(2|BFJ@}`xi~A1W>^2<%^rcarys0=Vk=?5!f$S)Xh6IXf z3C#O9Brq9EfKEIX-!9I|f*{hgeIRm>&coP!YH`n0_SacLWJqM=k=4^LF{cJsD`w-t z&z}+cc>#avhnj9Ksh8+u>Ro{v-&x#|%{hqjd#=iCAsg&_KteRA-C@k@ubXvIST&MX zM5G}md#XeW*7J+!4e?T2kK5=cmAc)g;xAwcZQdQltCH9uw`u!^KP6(a#2RY&I|_?O zHDYhLP1`x7OYgQvQTkUF&q!i@x6#RvWcCk?prEl&OYEm!?HzEN@TL-xjH(-kZ6~=0 zLI9nCQiTBY6S1jDphhVHab&w_pE8BL2p3O?YfFr{Hfo4#$BiW$AiJH8xO@^L4@lzL zleMduWsmAeYc_?!|2b^U5{7+CM_RcN6isP86eF#Tq_l`sRsW3*bcJ=H$pttC+l&E#F>oQ8rdG(&PLVa?--nfJ%~8y)}2ib zbA%oz01*m3uC*gsB~f$9j%1w386xl)BXUMud684A@#Bva`#E+N^zON(Q;6peW!9uh z58BQYYpCG|yjuM~|P25!VrQaiNUj@@v@BI?`Gu5q?UN7J4;v?Oyg2v78v&|g!!E?kn#s6Vh`y6eZuatOV5o@SHV?N6t z$dCNKco>6L`WH6h+kRhMz_7#TXxqR}stP{sLh%}woiIn+1|E*0Xh_01hqi$>b4Vxj zKa#{VwUoq~7)h+wki^5k6z@!6cj!psMTsZdBuVh^{!yHg$R5z){M$5&k6lxgz&@kH z`Oll2x8!}-I05;d1R zW)7T7`;UHe)&0i@>1%=wnF*LZF%J#P>?x66KE6S$rH23Z$~Db6W+p}>9~zc1?xrzv zt!r*?$SfA+Ks_`pqdgNv(@@^)=hAMY-(1pd5OQz=u?jiVe&}2!k#lK7=V`?w;u_OQ zA}rV!Bee%Lq$b4R%!_fP_K8IOQAuh-9L}857TPxyf*6J~U&RqxO%zQ-XwSw7?Lmdm z{ztz4FSQ5Fqeadu^Ekqpd71Sy5>-FAW~yo!{=D?y*K)Cf z8Z_s*k`4TA#cM7!NUMD?aZRR1G?(pHfW zJU-V4-%gLh18-L!g<*}>pU6zYOw<{LJ4$?+Al6dDdz+M;NMvSd^WH*XAXuTzhC;UEM%E+$M^d;^?KzG3 z!gxp&1`$U-AhJ;G*3D zW#jOYH4RzweC?TK=O~JXcSxE~>m{5LA@q_65r3csPpb+AJa9(wrluS57wfL!A#xnql^wA_+r^YpC7^>0L2ZCog>-7~W!g)`Tw1s|Dyeo}rZPsBVGUWn`rqv>P)=IuS#g)&omToI zd%uqSZb%Y09PW|ihbmHb3`G4a0?qketx8i^_K=PwJrpwkc$?BU81{sY5O0s5XbAD{ z7$Js9A^wk?PhKtM@q3Iseo>bPzaz7BK_ZiiDsCuMpL!KZ3~9Dd8lyLMEL5!BwZkCVu`G|&E@Mz!E zkHtqM%C8b@s1f7GQH!*P;+H54DSn)?NITkpBZ{ISE&C$DjS$jmzlfC9|Hy^Ej~QQk zKT;v`pNJnrBKK%N^8V7&dCl1S7HP+ipGutB0}NMM6l%C+2I%w?iQuRfu3L2yBy``@; zgn<+=`XbFm#RE|^4ek6kMmyiplEIs_3~KL7awKvt&6iX+uAMI#c?a!FuDwIum(1o% ze`OdSW~R>a);kjQZn2gc{_Dp}XRyp7ZK-`mW1Kit`WC|!#gW>NQ8W#yO}&HmDc9cd zFZdL;N$mviXp8_J))2s>M@lCoGOxrDKm+MY;)#d=Dvy>vg^x39noVmOsfKP-TYbn3*Z%#LVYRv?S;>6y8L9nd~K{q@pw9oT;GJ{?** zR&~jBsKgj2u2J;_D5UA17Pwm6D>^eEpcWUlgVz6^Gan$4Q9EZ&aO5_DBScu3BXT4r zEWGlU(w!~XqFn7L!`4)sF&2n5)bOL52D+uOC|5ho@Y5*Ybq%a(!S2b`4l_^`h15u* zM=Q~h;Q{hwcup?q5s0yLI?evt`|&;!HJ9eck2bvsH$rsn16o+`X$VUU32StO^|D0x z1xZ+9NLYWdwyfTwFr<*MTtM?SL`X5DvUtqS^-g%5bOfVqctsp$e z@WrYg#5f|*B8BxX*7hLhCFZzrwW=Ou3jRW#A>SKNbt6N8gumxTzLIFUWH+*2<_+OX zDn;HXeTm}U3IE-Uz~Z`SMa`B*{0}n%`E}X7i?uz>@?_D&+%MK!!~Z-d@J1u{X&tTI zN}~)}5nvjzujpv)Q&AKRt-S|#mh>={i#0q9$@a1Y**6EQaJuNW&4C{5v>dbv{tFkxj&2T&7`6oX zUXt@7+zKzrnFjqS$+;bu$Vphr;LjZ4j(G_G5^kc0@h{L@sU ziVeNKC(wyIDL0Rf{3kFf?YLZke+l<)pb;^J%Bp(;FL3Y65a>wXPzQ8>-iC?XCq$|1 zy3kORabI8<^FEq>U!acyWygJiQSD^1rJVz^S>gIS-~RrrFHc+?voz;BSOSk|0`v5MwIsA!EvH<;(X4)+eIgPs@G0{$OAkmn{RMTQ@B~*ukcic+V@NKL`GJ24x@=Sd*+_6tf$#^PRjXVeylpIW*>i!P6{Ik&f}PQzq9$gpHwE1Ya}nev+&OQHs-FzB zL$@9cG*X~bM&D0VK2oA+UfJ?gKH-JH`wVv-(FADA5O~qPQA75cW$3CG13~T@;wuO@ z#N9#^;ND`$|GX3!MniT$=hA}pk?nY3FgIHT=k?=(as>`W^*|M>@ile++Y&|k+Q_B*lG#KL}V@@*+sZ!$!3Ou45CLhqG@B;{mT%uaADhM-k80Z z5Yc1NVbA^W2`Yiebsoy=%4byvCbH~H5`N^m_zMI+1Q~tVhnLYe#qVDx#u*y=hN)ri2BvUrh*H5P|M+fT7~6a~8gMGGN`XUZ!wgXylnqBoBeX#YLHp&|v^G?| z57Vfj%azJ77*naP3uB!{Wolw;U zRSf>nhXI!1RufE@9ab4pDmcT{XzAHNZv`|Zgcbjc5DFDSfcy>YBa{I46C9)_A$#GI zECBw;j|1%)_GL-}FA?~H1Rjl%z}|mE0z^QdDuL+G9Y$kYvdz&apFtdRf#AI05zD_$ zXh?))>;4%wZ&I+?eP?&H{R>d`s<+S zfz!=b(7Mj8_$PGzqB*@wF?HfB0*CQK5XI?x{~1m{6vOEz=khzUvt>>T zxyf!NctvUT3?-}ke;0U=Ev8sqNT3U>o*TpJ8UF~Yi6KT+snO>1fmgV_ad`XGKf~MS zDBfnX$0@cRBltqG^?4;*AH5J*&wfI&^(=udu=V8_wm$!_u$BM)r@(TS^}m}bAt&wadeS7P%e<83x4IFfrTtLM*b$7Cou^=E2{IiPGSKkzizNhfrA-I5cjbb zaU1Ie=P=w_qTVBeK#bM~!S38a>3q! z_YfDfD)1;Gr4&-J9GsIBypiRO5p_rXBhg1G!IJ`A$UrrwNwA7}2YucoIGH;|R3Z?# zu4%BGeJc+cCkL~LVeQLUh6&mmqj_X=^5FD)a_~ro>RdWH$bN{<|Jke;YS28mjZ0if zm=T^@Gjf5fh*8uZqb5KMH2NsNiBszXDZ%6fu8mx~IJJg3)pcA)qEyhuHY?HkmO+;S z973`QoK*$#kygQ(3P?f8uWJq9!&JckXdS#I7F?LhPE-Lua#N^{0$dIaZ&d;RqHVB3 z0gj2O>aaBt-PaBjd$|fqpY&jE3<~=56WahTtO9;pM$o7L$GY4px>A*Wg_K%FDV3<) zh$JgY2x<M#1?+=Q&~Ri*_;vf>yt=Sa zFXBf+qZ0(aFt9wfk`9gbL5X_uFx@W5Gk}ZkbbCdo<6pe_WhH$~-`SjYqjA4yp2*IXw z?}^wiO+rRv(1gysTH1zK`~OK4Ky0Qk75>w!{uj;rt1c~1l^;_~9#HUz45SVyp!}+( zD>D6luitEUTm4qA)nbDe)qPH{3*PcI8R7A6mmQA$HeavcbXMnbqk0bwTnXgUpxPB~n(2_%;0RR|lstOciEl%tZznEtf(=Zww8-4?Z5S z$a@SjLS7VsG!LRnd8_Edf-|-F@2B`*d(*g8DS%p0|6AqD8f*x-;@@O_KTb&z#TunFpR z3NqSEy*`-EO;N#q=lY;27F&q+=c<5zH7+djxk{pHVe;1S#^5q0j0}^5gHvRC+9lN%C=io3uaVJ+$&~mo$LO0ttM&=4B<3W$7I!u0zn>DkE`h6GD65w+1s68; z5(|0c4$ft`MB=kNL2FHv3fh-gh@STboeJ<|9`+`C`+`|qPZjW&e8C44;M8nuf2{sM zr=y*{=z;w)h4&i!=$)h4afQ(pXklG+3?@%~qLmGwh>6zG8No@-*;x{PWTG{bz=w%e zKX?-&zd~`uC%aH|78+Y`x+1=W$<}9zKIa#%=z&60cXVPmQXQ`%2&Yyq*D5=1&I`WI zvInS+KSbaQGtA8~Jzx8e^gN!cM0`Q;HH~G#ZH2)-+$We)c_DsOr?YYa;XnWgA9Tq6 zMb)bGasCpmYHU%EXSv_x>QTk%vd+j+670n#td^<3W&45}_ zMBIyIP!&lWw$XIiDI!VR|r-b(G4FwtQCZa}_)xGR`vFHefh(2iA54Y9fCzJ<2 zVYyjE9m41*tS2oXN(EYHq4R5lV`HI(71^R#=;Zam%?fDTGh)1HAdxm>wK(4RCwz5I@277aB z)GA|V7YT}|LP7FmDFrpnO{&YxMhEW;4nj>Hh17p=^bhYIU^1b6^!-6MM^J+( zJ|#Lw7xT%_z0}BrxB&NQ;8T% zJOf7|bf{`PGZD=`2wHO`g~T=~M&}Pgc&~~w=utrFtAg_Eqrs~cC=j^$xoj24*Z81a z0V#+^aCB2uz@L9C*hv9SNhM9<6jv--ZGE{8(#c|%fzBR9Nr zM}ln>&=lWVNqk$b&$k^BZH^P{q~YA-F`Hn7`pUvUk3AdQr5vD3p0V@HS`=P4@%VcnsmFMI{neb$i7+8>G*q1$JWq$P0vUBtlVpQ z`ocXe&|~kx=Kt9>+8a*OB;kD^)>6Ztd_UNfVZUFay<|0=LP0lv5Dc+wiT0A!oG6CI zlGS@4q9Kb$5}QrW0|7cqRw_)Tx15M21{LTWd1kN(xlZ1hf-am1exU9y_|MMFCZP{Y6cN3dA}`&Ws!;U1+?Zeq%cShh*2V7bI~ zZP_-eBPf`sDk;Lg0P%p~65M}HfYiDmrovC!Zi)316=+y$ex**CjZwE$)Vf~TVQyF{ zWvD~s0u@6&t7@pKIQ)zC%N~KlRC0adwW9mDvIjXoQ7Wu~>`5wH%}y!hdp9au&nS?v z{Sj*uUrSsj+Z1mwjc!sloZ<3`nxkPnf&ZNqXQM^UbAUe=x4 zMtl(>(JJ(E^Ri_M3`}fuStZU(ja4Ehqik@Cuv`PdTXA)}TWZ-k?yw9XdbOb~%4TrK zh*F{9!>C?b*>D9k)$k8e!-sSm7AEbzTb6yya$gZ`2tn+CHqgTNM5)m7SLjTevaSkf zVPVVCw(Ja-7?5>I5URIb*>1=e&ZU=?Do`k5f0T&*EIzRdGRhuixhsi=1Y*Z`C>zWf ziBiG&Um3s;6n0U7%hX;?fJdoi0jF)}vakXNlS`~2)kx%a4v5nmEvdpYo`l{-R3S!h z(GOk9f?N(kO;l}(!0{KUQ4(Dk0%A7(lo0f=^OwR6ikYjF)~8dpy;iYLQIYN z$deDBh>_=&E6W~FWVVawk%4C`fi4U@B>_5W%!d;7s8N@G)qzJBBfGiUOB2zKzpCu` z%LL_k<(xPG@RHbZ>Hq-G8_O2o%6yHhArmLdJ^)5nVO8f#w0)~EEZ|q%h#lk40*L9f z=&H2WaQ!*|!3#k0Q%o-fVnaLPe9H@%Txt3HlFqk8o9feo}fpz$w;J!*}0Vwv1u3gW5y&a})|n-&J;j zogCDTu}?%XG-7NUbQfg8b_mjX+ZqU=V{JkpX_zmBKx)6I|ENTpBoWcPyUW*Q^_Bhg zMDc=X#h$Wl`iEMx&!Y2ZgT2wRd&)lIwh&|s)BBBb0WnfR--PM?yZ9-En3V-p96tNL zvOX;Luw0)ouvI;@r!Ja%cCCqfg7_i~F%R>7A1rIgC{VBmCVXk+DGRbi@e%Lpy=9Mc zuM<@YLwK~Y_lPgJu>=4`#xAB-3LM-T;d(!lBto_(sCbO)RYK6N_iN0x=#|0zZwf|3 zqWtQ^gxmcKlc(->e}_+^RSA~`A30E#T#soZqDS0r%Q6{VaJz|RwEF%I3a##Tb!k_1 zySf=-3&X(6Ooz*Kjs~@)E13Oy+51c$#!^2T)IN%!;Z!D+(G&NTOx#tViHZA_=*aWN6m;g9viG?Mu%5`9rsC}-Lg9N$JyF&OqNt_9Ta+qr{l}vr zjf6tsj}jV7ZB#!SmA;_xNk_}f^_Y)D^oYWLNT3S}e>_IvpM{ctN8z)Ty;XlknHcwz zLbSp+2x%)k+c~5?XpWNv)2WTLIi5)P7XzQn^4L6lo!BRU%j8w_$1sKJqsKw` zB)U?;nD(A2>)eigL&A?(Q#FAvSksdsdiXdfiBaRci*7gMF@$hhx)>0mfYWM@9%`50 z;NW|qw#>n!p#co{8zG74REdZVK2u@4c)hEf4Z&2mL0HxUVfMJaPRPL}6Q#oJu|ZgT z-hO!9P_hCCww1f0K;2L_*O9_$gsTQV3p=}4p&hBgbksC4)DHDaPi>^AgVK~QR7e(T zit)Jm4Et80DOta*8_ix9R%*#GOtZR{3=yf1EGoX$AT+Kn>yhvyS~88m7qnz#nAVaZ zP@?X0b*YyXgxChr#mH_{7q}e_sp1D2WntRqmPY%m3^IOi7W#tS9oF`_DbkZocZn6$ z@H0|Ew=gUZ8RM0Y$I3BDTM7mBYY{rhz7W>-w4I|E8lHALNJqIDP%1J%_U4HSC+TS7 zqWRvlmVB>?;rj&*zNfbib!ROWepK7gDF!WmWMv~{Y#VAL6@A9AP0O`qVwTv|s9Z3f z8uVCtXe^*2sO=m6=Zw%;Ci<77L#Q#swlCKf*Hv_FPjw7+k_dT?L3eZ>(+EA=In+Wf zda!G#5o;{hULqbGsS>px5)yB@E;C)Nj)k;9D}n5^MQri%OrM*>FGl~3srTFS61B>adYSxVpwj%0ed;7Ew| z@u`?i?bz7O36=iJvF;`Kk@1Q?$M+-ml+%9XZnDerE7Zu{C-f0}L`P?DmQ>;?v4R@@ zm?3l>!@j1Ym@Wzhm6}4w*pGDdZe|2S);sFn$Ph*3fSC%?iGqEtCXD#VX{XTUe(^lMCb!4*wF?DHdU|ibE(7KC0sIEghk4 z37k=`5ARllI44mctP&dEtXEu2OJAvjUsV6tu}z!hW_3<{Z*;DbW9aK!{TNfDo$6~ z<2DjV(8e_=JTreN?)ung7H1LD#e7M*lzauw-^CXX3EjgCdE|WEE0(Xzc@+MW^CVO{ zUs~qei3^0aQ6(xB|H}4E=#wr+c0kmpgkhnt;;e$fhW2CIdZVj`hZb?K6CD<`>s7fx zMY}3gwM!KT-Fa=O7#4}UUKi@aeJj_BuPofdepMk{X(vM1EfPz~%ES;hZ$#(|hO1wx zumdS$S7IgqOm?UU4)+tEsim`RYBdX2@81|5I?QDfm_lsqbcY6W-H1{lHqNX>Q^tmZ z3UDf<-LBFQ5z-R&NOn>lQr^8jbf3B}KpVz|c5&kgny|1^$I1n=u=xANhjufZTmB|) zLN32CRKn#DrI7b;FYB%p5Anu;H<%Dw$mJ=)N27NpghpVT&J#oJ6-|tt7+S%tBftd{ z&A2&qH3k<>+>%XDBHAl)j_i=Q!`W~WL@?Y#M8(2()|y*FOF5n>6|8mq6j) zOm>UM>2TTC9W$?x^pOm-JaHsq%8hwrL-hsiX> zX&VJ+g|ahk`fZ!h`2!(GhQVZVTFqXM+i3MzY)-G+Y4lp$PK)2;_81%ve(Z!Q=!VT< zF*s~Khu7>hTg+y+%Vu|YtVXxZW_9_TsCoxV<+q;-J;0=!olb)fYIHk{7K_8|v|9a6 zr`=|^d5vC!4V_=)h}UrY1&dAS)eWJm(8xoft{HII++_Fp ztyY`OX0e;$vaJmyWPsb~9)rc;=a1xJnYev^liP3gIn8F1#pv+393HpL ze|6PiCe!BdnH)~H!C*GSZFZl}>2MglZky3$Gg(~*tAn4%EPj%S*CIOK0vR*)8#G(t z{9vvf-I^EbXf~QHMvJ|-#WZt4pZSwJEMML;vxC#=v$~wXX{*_0G1x(woIa-?C^p%= z2A@ytRYsia_b7SC=@h=sem?8N(A>lfufy!OfRz|c zJ`a4exy&vbunUyb<@Y+BX#Xm(95AvVlkPCujac$tiv=Wa1U_0#Sn2&fgU#Yc=etC0 zOuuE9O|Y@JO&>W{Wk8t^hZQ=;6ksamag*uyT4!g8#eF`@vUnSlr!N~bWh{Pub#yCD%c9ROH<%Xko(Q$b zh|?i#SzXcG??P7e;JqQ&<$>(-Kz4Z`181zXw#x&VVhp`JkX;_g@^>FwhTVBoBa@YB0g?nzt?|0IAtwZ*b7$b6peG<@|(x{vqUS+z-+i2Ctqm=Z;?9 zIlX40bIrc#3m^YP%P)lbGasNQE`+XO6V{-FA45G@O9?Xk7@Ejtm7>6pp@opYhWRPf zm&rx_e+td0mjVk%LB|Yqe*JnoRPi$U?5EH)c2p%AUK291wzX(!O~{gm=_wINDarW> zvT>H=U)*Cv>L$4q z{}ODdfNxSKyqM+gm%m|*QElbMrAI;tY;^wV^(|1NFPB}*KCu=Vi}FWsPb%@nHAv=h zH1E^3#iEP&u3^5U3oqPP`aNLJCygtOD6MH9THXCqQ;UXAUhfaI;jvTek?m zt^lVx(p+4`?7&Tn8Z__L zqMhs&>xE&pi#)8#Qt1+did^&8r}B;4hfl%Y`+Ai1(t1B(+1+E|vvMliCU(n7fTPc| zi#l~<|A=hzs0dQtFswo6bN4vdE+TEc)M&GdZ7HjXY7DVAq=cX~W}ukN_sk#57I1^t z%hn(DnjHtqrG(drXxz|flZ0nhMM0apgg0>$<=T*7XH8%DxEtppO0iBQ02mtd=C+#@ z@K~?}x5tPaAR5EcX~7@s7JiXs7Yow425s-LyaS;P*T*1f7#dNnO1Gy%x1%R*UBgm5=a{N(frti)g_KPm?r;(2|rJSEVnv`tV(p8$Qy3j@rW;*{)I@5wUer z*3p-3T1B7esE_tv9ag<>s@n-!Vi(=*a-f#J&JzD%$9TvXsm%L1R_r)+?MFQ>Wh4fusN&l2fPsjCNk!s}1-H#wCvD6BfIW6JhNac1 zQr5~#;_z0H!-PxNM5-2XbY{?q@BnmfV0aDtDD>~SrBgbpjS6>(^gJw9Qp5i?DBPVv z*5ToP=*(3MTdLwn&vQg@(3ZjB-R#>{!nv)sYK`oZ8o^vux!Jo93_*Fbcas+X5ygKo zBXONst_8l_ixa>Wg#cp0C0#ojaqyC4mW*htXp97Rpk@^r2BY0+Gx%&~3+&H%Y_P}X z_4=%Sx5sMtI*eAdulcHy%s4K3OrC}Up=3~}~7hqI%{Fq42T(OQC z1a{#=-;NAFkDeW;XB#IeJg^N1+B+)T0xdVLYJ_SAhp)tcc3{?F0>~?mvRK}X)S+=| z^)^JGTD?h2EaNG$)ZSi>DCAO0dpUJU_Hr`DUXF`mP_dW1bfej4^|@f@((bhQ3_h3F z;k9}_cC*v(_1b)*xj6KJBy;&Zj=6j!vf>jhb2%GhF2}Xxa*UEot;dn~6=JEqxuk8N zk6@;3AVL(vTu$B?exEgL&>lj*5lQJK;@9xKCWHquXzf%zGxMv!fw zH{DOXBexF*Z>x@;GJ)+3pUXV!sh>qLUh9nn|>L zB~}0rGJC=U81_%#lk$2)RKv4dQYh#VU-&<46&A}&M4~{5*FsgGbATZz`@o*IRo4%$gRY$$ zZjXMogd3qbZ_g0^?9Cm(0+1#^cx|wg%)*g`0>~2}kVY+4;d-Si;D;z*q150+95r~6 zRD-VQ`P*T-{e@IVWV-#SvW~uNbqu>-gc9|eSQ@+&O+lV+U$pw)64PfU70p`{mUD_U z+oZ4gP2jtl=FeXgzK${Cx?-+-%cAp0qU$YIQiHPY2p?buW2|v%3!T|BDTLqZqJ8Uo zb*m>12iIf7zG%B~QJSg+%#C7eSU`_Wq6MUFqAj4wroU?e7cG-TN|{7n>V$VR6oOe5 zM=*I&!3dW}zgrsK%re`=IwHEbSy@M4wm7Eac~J82=wb=(ckLs}<1lGguKgSnd#)Ox zc&s)ne&xk$a2YLLBb=IZdQ3LA1)mv)!?N%`Iy{V&5eEtl>anU7^NFZ!hGmP@wJq}Q z#aU1t$kHRdK}B2|`(P6tq#RSxGGem(JQf$R3Z(lklG<1qAYA1oF*{{59lj@TR=5Ap zR)=3@du`Sp`8G+kbQdeA;jbzV+ZcAhX6=!0JB5P2SQFmIj@qmps_cnkXjpvL&2;>p z3_Q9Np(cr(LrS$ec2tGX+OMCl8(j( zf-dhaVSIcB`y_Isa%$kCo4JoDwzrc73iD-6j~oXkfyOog7&@C%!-0l;VE3pEwaMPn+0fqN5To?J9 zusK4+Y9C6SRH6fqV`4QW1ht%<{V6?0X0umsQ7YshOofg@_J{A#Fes!jKHj)F+_^3~ zxI3KAM$~blvWC9w&@Hq&_TM5p3k`MD?S!g2>SAQq$7$eT&-K%71K5Hs!u+_m+B7hd zfL~dgfXi5y4`A1dxLwt7BiZ2zT=5vmmjj14Mepni&*JVP1e`x_y`Q_EC=hf+xH@^) z7V++nY#otg>_pw-u4WB7`~JE??9)1QMbeWKxZ*bI&^_Unt=Lz#2%Fr5uCW!KG(1rO38!@qb3F)1IH)reF~{Iw5r8i{7Cxx} z$NSg>Ly^Q#C0%O9tAwD9cWX>CLp1m8=R2`CY*kwD^_Wl{3my&M2@BqIJiNFbJ6ozG zV#K#9E9uMLw3RmE(OY$mShq8>5fdZ0E=KmFVlw8B-Ux3{Kk0?SZ-zhNwi9BK{q9z| zl+cN@Z-wh7a(m@(wBLP75}guVO>{~KT6E7TL?=AobexjfF(t!ejuJc%-wCPNPlp?E z>?f4e&MGVE%f1{VwdbKkePW{91zBLkgiIGB`)5U`HFl$kCr=xr_J4-6h#etrTcpd% zY$bzwR$Pe&{WqM=cHO2ODE}qNu9H|x4NCqx`~~aSrX45Om2y``G3I>}zL_1qO>>z$ zyKw{q?Qc{b*(xQv)E;+9d@h$r^uS^0wvp{>A~BQ-Kk4w~qPd@f6M;sLu*BznF3tUg z8r=WzT=+WFJh#$_UikqIG5T{W)7T0fIkb^@6pF}!SzI{^+w5cJ-X%1#17&EU?N^uUa`x^X~9e%&H<8USkjZG+Ti!vwPogo}xP+gtx zOEe&BB`3!Cc0fFajL}l4hWm|#ZPUTr_P;5>Nf4!G~+=Y3Vto#8$t=*#M zmiO*N$uE~L;VuxMxGMyqH%g%A(Du6JgImiCi+uPdLb`GK+Eomk3Ts(DPL=ctQcd67 ziO!z^ra-OTkaeIk6>Y6w{yNufyDUtq8!oBFPTLW)wR{)Xp8%yKGFbw3 zZbv)nDg+<-V%v_Y|5K60bV6rS${lEXyCw|@iAI_N(suL);@x+m^rZ3v&ZFI=M`{v4 z@#0bJTHn+=>2;=SMNq{v0zKu298`u-yi209(yxn=?XRW%Rcxp2F9h8e12-{>5$*30 zf+>Ri?Z*X#{W1GRCL10tCz(7`;@IBpq7A-5*HcZ@BiP_)1Oz4V9I3L8fM~Emrdn>2 zQ11xTUg2w19kyZp`=HLKEwXiY2vL~YnWgO6QWN)KC;c0eFD+~8CQ zV$JB}NHqGIwH?tzQ!DC5Iy`V1d=ff*8_^5OuvbVe&)gvz_9_CD>hKZ?bcNVqf~d%s zr656U*fV9)2?dBW)lU3+n1xYw?x!gYnLX&XcI6pp-@fwBg6ITseZ8-|3(DVoGL5^3 zB8jMSr9{#mG%r0GI1|IzE^t@MGln4n^4~K1f?AsWTRUj8e_hm}=+?Gq_P-D;5zPK4 zTtJ%rPa=~C-Bi(q;8&5vuOCom$MOkWtDUkT2-UQ}1yVJF)%PGED0L{7>gu{vwE7mP zx;uDt>}ZGV0Oe#ZL<$ZZG0!G%*K*SmSTWs;tT`lP11Y2)7di+d93OAGJGi5F7Bzk;1Mfb3R z0HxSdE`cuDNxO&0mpcGib`O;Rr{x|hrMm7AS-dZ`aYM$3f0LdtLYo_C1J95!6}nyV z=S!);jUCCA&4vCkj#oz{SdB=Y4@r29gI@ixGL z3sLRa2&^(?J5LzE0Y!BMsuRIOC`r*k|z=QU#@)R`ijfw{7sn;upGIqK= zEzxceAj#w;CA1{Q#=QK3iy!5ATiScwZrr?GMu z?KBQc99s@wu+zAUu46kD_LwFkP|&2{I2J>Nvg3FY zO0^uv^HTkbchQa`(v3yC1joUaT2cOMZ=|3xFTGYDWz8;6gJ{-*j{F~U?*SiG(ftp5 zH=!;_O96!>AfO=P_Ck|@4K+aIv0;I&C{k6bbh{!Z+1-p{MMY^+1X+sGr1#K^lprFA z0s#>p>wBi{&Yit?W1i>#n+dxA{xk`aZsmcC~#0t_T zclwqz<0V072|e4HOy@tQPNe#DHF|{ExtWosPM4hsuTh|JJPv6Lbb3x?E90e1r%nXA zmvF`f`w;}gK}gW_lu}lfGdc86oQV)EO`k4DA0N^QCpnUh zf=!4cS%(WmN3srXS5_Y-9%05>12x!@oR)cfC-5MSg3M z?uZjv0nB1fM7ahH9iVfTc!IHBF^x zp?I+B!uh-AA;%fU_;%#+!A6nnVr=-gxQpR}nn6%-AWDCfziwYMl)t$!Ed`sSX}^tk zE4Rc8sWIT8z{8V-mzcFJ~gBt86ZjyPl7I+Xh zaf?79xryHyv-S`uV>i({p*v0i-4QpD0?guWq7Nz?rQ;_4W~@^_mE8o_;3_!jf};)v zzKz-pzFcl~p`lYl_@rZgaMxf3l1YS8*y=h_(?x}8QaQ@rzd6%5R?tvFNOg8E&!|tS zvnUcsC1a#A(kY+H(FL!0jVn(cT6}_)7aWD=UZpBy`r4;7%m6v0g_uh?93;eEVh}p+ zKHLJ<-lh+S@Xmkrq0K$SqErX7MLO!-P9!9zSTE=&nW7F8WzDD5SsWHfB~us~>3(Vo z0js=b56lNR-!K3(Ngv(~=z{|b<5jpDa=4L->NR_=fnjnNGPF#?m^x{Yt&fL1t~pUi znGwf`BxOA&B}^p2ZwN5_6T>he*Wi1!U_?PyWx0+t)kpuzPdd06-(XC8KKUo$%s&O)cM&^Z8T&}VMknR zM6bf1#$m#6O7pV?6Ljbd3e{HyQatj)O4O8*zKA7vp`L3CYYOW+uYHah?Fu4reGl8I zm!^rXW9**8+ICTf;{PQ)%j4n=nt_@&3gx2-&xYV2VRYy=w5n041OBrn)i|$ZA^9`Y zxI)lCQnn52a@hSa;+YN1Il0C6zDutV=(26p+f_CPF<{CQA)IY+$g||TF56GFS^a-Dq zGjX^=Kj9-_sV*ujj$!G4l;U(}1?@N}!H!Sr*zw5G!UDrfN$l8zS><_V$7tEHLW5#> zlNwUf^!G_kQ0|n1;f5JA^|Q+!;Vro7rLWjbB&HX?V)JArSlv@Ws~=a%x3fjhYgof}e{bQsdjMb=FG`@r0rFe+TxdQt2VSv;ju_sY8s;a+#rpxd$N|tf zl>2_c^TzY~9X`uCJf{P`vkBnaODHQV)EZYo7&e(LFCy2>RxctHhMl2Q1;dWGK!Bm4 z<7|1GHj&w?9n|1$T3?yRqXG{C!KVZYJkkQ5CoyJ&Kw!L0do-atP66GKZJGm^#kOgN zA}G~65`K~KcFdOdX^v2Us;HbCs-2;P3G79?q&XRPRiZb+}qIBbYK>-PyZ?I10 z%%<2}Cy+|IzQ#yb&z5&#yk-U0jXWqi2y}X9ystA}D`r!0LiZ9lxnMIvFbqzTf>M~X zS4csjYLWyLqUOH^*(EiLS$~&j)1dC^Iq``jsaeEGYtA8R3WLpSs?DK0EMO)H&AS1i z$qvhkB_cbl*T@bF&7EIxJ(_=KNhZRXCopD19xBQ(+VrJ)lSuin-Z?VL`+yP4N z_TYX7=E3U+qDAnh!RkhyA&TCSjaeOV#0y@3al39#b3M$(KkqTM& zKm-XrT)1-}+~-9Z=(T!9H^7;La(k#dTKPbz71y`;!B8t|3ZiZ&K?h0Qg{j2$Tv{C z}W@ys~fTP;fKoncZ(=9=f$7`AzhEmHsArJ|_q->A912IDRh0_?rT$q~}&f8m4** zw&yj4Fnaj#6qrd;^KL+Dg72@;tlb6ofZRmZvT+P8JE^b>_vVDgk&cTp$44P-~vNcRj%D zRRc9W3z?)h%PiUmEC{x91qwX)g6$77ULDc2V|=&VhW02-1Wr|B9$m_-0K+)AJy5E* zlpkUItIU&^a;}A89(}CxDw;S6;`5!~?M_Y28Ixl{^)d)3;Na35u$5b0~Uhz6N5Q+I` z%+n77PBK=nqYK9ix)`8y31VEVksua021C$}JP(3{z=o=V4P{29RUq7HFm>DAhW0v@ z3zuz9gR~C|D*33SF(iwT7JEkSPBU&4w3H0;6BBLiJnBP^2&9rh&M?x0#2~`_;uZVo z{4&i+Gr~7MB^7x`pd$7n2AC2Le+Ng8?c&2NYKoQ7t0Ow4%#VXga(3sLpwNYODDgKq zO!dy;4EQ$rT9p5xr@8n~JdN-)1ac*ROnd;-7EAyLmAuWr1j7(-laC8TZ<9Y?J{h>o zEY=-ra47MN%wwp)gSeX)1qx}N{KA+`!a{d33{B{b6F_fd({LB?ihG(*pj6M({Ki<{ zHDC5LT!TC2Q%^G)Ef~MIA-eD|cpAVDJjbmTYKT*{e=Zsb`3>5Y^;&$CrdwIoq#(_> zR#00)Qc4y2BI~O8)U_NGNF@vX&D7Y7JY_1^!Yg)hixAiH(|rA)Lt(w{noolc=v@LH zm+LE#3w(?6IGXnC-bTbSDcA)!g-5!nc2`^YdgZahcY|})t0vazh;~ldo2`h=h+%3k zh{I7bOidmEsqkW;PZQ%i2=%%G$rwsRAG??^Sc*kYe}( zIlOrqOpxes-VzK$98NJV5FJkO0@>lzXBG=V4R$z7Wgd$K9>n2n5h$ct(||GC00QHq z$i)fWaSG^;c$_zYS={5Cg;G6_lgW6$0q^;#-%{l&OvZ_^MP`({>2MQt;r)ZD2CJQ9 zjigv0I~9jChOVx}T7Xc!1A8(w>qyH555s{*jn8#qmBS>f@;UW4SpunKpvH{!n$P83 z4zJ0C#>61R;aGr9??5Aq@ybL>y+W2{R)zkS&IP!D1`rSjH3MA8eEa@u(ec+0R>L;( zdA zzMs=GknV9^g%F5$WuUd>4VuY##u5kA7_DAsPBV0trU5emQBtceuH@_blDA@#!!#6p zj{xIW!0oDoou?^jW%->p74$pHKbQT^5;{9$fez0!!LOJb_Q1gCq1VQYQv$&B-M`p%xwtoyD1BGG2D^K z_b0<}hCqsEs4&CajI=%~%`T*GX$a{hytWQ7h~v2RLjAy@J>yqrAqgCmKjZUSnEhP9 z-##Y^CPc^54>#OR@=M5H6TjV_j=HxjY)}3o3g0DYfgveqaVzWfb{N9K>Bc?+rKE3X zM)`1DUx5#=eUR3Yw^D9jNJ0W3#f10vn*bl2VsfoU;s?FKCC`n9wkqsFbn)1?q@(wm zgxbY5dqI*{$U3>5$*X1!V^P7ZlWzY6EkbAkwaH0MUmVIK)MDHc2_c>PYHq?31*y=*$^bQO)+>XR@!2U;hD}jG95`v?xu}Jn? zRTrt_B_!tmG+U%U2m_f}vMB?W|6^UG59g<2Ew~{iPuF-++|vn`th%TYEIFovmh>lB z(xYQZxaH^uG}&F)4AmVpqapgsQP|$#f~5ZK!_p07lNk6pX0FlPz~r_gVAK$`a}^p< z&%rZV;){-M!OY`jux+X`yp~}K9SBVzydrakdykqC5mQ`{PQ1Wf*cI+Ra)n1o$ z-l!Ru4H#dC?={L13T}ogWb$(hwci(=9pk1mtfdLVx}`FPbwLG()%At!^z2`#ogRJ2 z^)QsG@>L$h1;Qp#c@ULZ3mYSRqk<5CEMj)L?+dz7d{*W&Qs6^2imwY4Qk4G%WA+LN zjURH2jCU!-7M$unT1&1}$Oope4WsfI%6As_(R|Rgly#9$8?RE|sKB-9{za7Lj%^Wy zm3A*{7^e+i(EZ(UfmG6K1tb0D3weLXYYuYx@%~Qv8BMenYNs8qVyq5Q`N>Tw@c0pr zjC4~9mv1e|haYBo;sODxhIbds=Q$Q47#tfN{{3f~q2sif~=M%pwg z!6p9I~T(TM<83r!omt7AEEoi+x zk6v{5-`@#FA^1Ll3j};CC#Zd;e3Ns`V#lHs<5iZ#CqLn1zy*vC z!FZ-XAr%uEl{U zc~B%@YJ`SN-Y`VIy9lE5k2B>$IQucz*py+sPf$`q#UD(P{3X-}^cP4ad;H2sgG*!| zz-xTaIPL?+0i9kV%5RL9ZwY-S1l>!|O1NO%K`?Lu@?AzqDcoR3t0ojQk}oqNmPokD zh@0X)K|je9DOKrKXDS@6;R_BI3Z#-L{$}FOqoxoX1h1I`qmOe{fSIHi?*v4hLH4N7;m7@Y9vsZJd!BN3oGLJh19>iljB2Y-vq84NJAP9`3 zf;$qr;}p;xi3)OnSv)Ej1EqRVL0!f>XQ><&a21*?CGG;{`$J~(qC9@EgD%2f_#z|7 zN}{w8{UD+n*?nZr6fwv+A&VlLbBm-_ryN$^5Mtvv)ygyg8p7?^1BVoazZ&3%3mezc|EKFVl|- zZer{Ml&usMa810+D9kSp3)$g4_k457U^I0&`91WfO&RDE{e8>yEg8mRf-chJcd*V5 zFQXv;Ss<0vwlLBQ@RlrG=PNwZ;Wa;T9SO**FV_$LZH(7XR7Y|H$YJ_hdN#`iJOBb> zuumEtvVy*zvQ2p?6Mb)39*2&kZ%5W~^W_xm9R*UXuP}gaM(Rf9qQWj3 z6%Jg%GUb6E#=AhpdpbbX!dn0X3|jja0rTE*Aqyx$1fNZR6TyA@(%izN@nUwGD|(-0 z@`~P#&{p1x-sPX5UU+0uhz*$Vw*C|_LL%}P38o>)Uw{h)9UQOy4r`z8rEH943?>+MJ1eFNd7ukAJPtFgE{E7Y4mpZ#iF5*t-Q% zN$(zv)DCYr!fcmr3*faDU_cZl(9io)e|^tq{48J6^&LczR!S~h6A%tV{@%$U2T?e( zdivdHKm5h?%|I<)XMbRQ2MS6^u@m?_<9}e$XGro0k;NlS9vFUMu@_MEF-4J-vNeU0SJr~x zr-IPmhwYaD{oQmHNsIo!1>+Ft|AGrd=>PJiyeIcEt6f41-YtatjlYURfw0KH1&jqj z{*3~KG$VYB*Y&9EBR~Lohdbjd+1YTaO8|0wA?bOl3p)n5`zw9u_hbCeewBSg zpfXXj$@`)9RL#!?*(Ehcuny;bMWMbyAeGd7nvs4@)D%$8E8ry{JmLi9z)upK_XL8I zJkB5Sv?S;D5QI+In1;_D+}vm{t4EF zbc1VG$iaQX73w8kl_q6dp%0bknSsnJbkd~SuE0SMy*)&D(A;o^m^>hSMpQ_GAy@IF z+MO`-aPBoumC8kvF2XqCG${kzQdx2lUgz?F?EH8^ntHD@=^kA{5jI>P#Zylh=~o!( zQ=o`CnC3Nusg3CUJBC+*E_d`jH$@cwzV0%dJ)`yEz}Fb-!C>}_aH$Qbu8vH(n7z^J zD7>mMq(xx|I5;2j3%uKfFXMsV6F^afZ{mU9MCnDb6H^*1MtE!3kg!Zm)-(*oFJ7Z3}A@4^zLZx^1^G;`}0Gc==kBwc(^9t z2@J4!LSj@g6Hm<&+*}0{qu#0@KK@R?#~&ah^c!0TRp~elR}y?^=5$PBDx|Mu{+V3I z(+ZCE^p0CTjkVw|M@q-3zfu!Xf2a`kKT2$xUqMUuUMYK;2dE(uEJ-fpc{+(Dqs%Tt zm?hbTJkL{8Y8wA5sR_N1C%jTWWoB)x1vkEwGBc1EUrd>KV5R8E{zrD-R6)D1O|biF z$?o)l?e|d1eJ2USPT~SFk~_Ilj;ppZ8_eHA^L zORFxL4_~O(l%?k(F{7$5lAAGD?#v9uOpy-0304rPnIDh71r$ zC1v(8(#KcHYY49iK;w9rHUa4L+`s|GD*z!64%47}Dca$J^#s9im`1WFJ`kjn6e(pK z-&sZ1g)anBNs%LrbOBXFSSESRT(CPnRt08~SiBn$iv(eZ@Qfls*ghJBk>rWP`kjBv zIzI%+);vtzpMb&Dl(e$qty2|5V~y3a7p%Hky`E4swt-R=8e8E40gXy4H0_k?iToL6 ztd^@O81Io;bQ4&Rebr+Eg*5CxFlN0$UVM()jr1l&1)QKIu5giSv6=xpGNVaG{kYWx zj+zfw&oS=JNMmwtAxtc;NH!?)PSJyK%S+P_HV;OBrx&z>Z^dlMM7LxVw1U!-3-FNS z9YF_amS17Lyt$gfb%8)Cse6f$ezsbME3cWwl_Q5J>wpg6nxPfrU9O6zo`NqRl7rJX zsfN= zNF@z_W2C=O4Fz-anoBTXfMcaJF0wG*ysHSUCGVzW5u~Y)rtE$lly4jE?qLm%h7!*@K39U*fD+}H!)nGzb;5lgbH8Q;K2Ia+Yk-~eZ zU=p&}4#EWjybXia$g5vfW~(Qm1~0aSGLI<&4}$NH1PW<7RAbEE2Z8Z(&?yPsaSG^; zEVliCSsdM8L#f_#P$T2rZ;iazauxh*=$Q#z%F`yr1UXUlOw-AoJZ%&>EG;@nuH>OL z3pTpIQ;3xUj$M~=emsa;u;y`yyiUDk$}AB*ZLr@Uk%N@0wCWx zbh8mnIHz*NT%Cn|N9?E#V@b)}(?c+4}1^Oe7_*Ws3R*!r1hG21A>#spfF4eYK?D@%n5Nr!40e4f<$^v&z1;HKqS_XFksGkV##ez`?xEJCA5!?&Emce};v(|j5 z!QkE}^Vlu$AmBbNP)Kv2Ib(Jb1jgXrozNYpfbIym=K!-fxT~+#2low(_nfa~aB~%A zeoetmk{m2;UG&5TCpo~Yh%SWRlBQ`67PRU#9NM&8t2^(_tg~ioDY)AUq>|1zF;eGR z8Qi?a291f11l&D<4pwl@@Z@I33tqi57O}Teo6+CWLe2%u1_ALxj?*28miR4rlJF4M znWQ{0od*kwNLY8V&YxUMvHrY3D(P%vq!Xyl!kW%&#==PAHT}uB^up@PyUM1u2kp19F3RX^k#ZlnHs{t7^eg(8^e8rRCs&dS zcz^=m3YCNcP4sQdG(IWV1EWaLv^x{FA2R0@J!_mGP)e4&i&2ijmJ^?+@QP8;HtsjV z>-2+yd#a%+*A&sn-_UQJyu5Om{BW-=I18=&d8XYCP9&$_#(T8x=OL9(o!yZx-p@k{ zpYv@@H!c!%l&oy#N}!MypT`)pK_D*# z8Oo!iH(|1Hf_Auqo)9>IT|CSvTCeYHyo@_!6G3D7gn%nzT~D1&!aY4rj}~O0iIzh{ z5-;MxRVi-x_H^lu1seDCkd~|3AIdb&7j&1_=qH(UbJo+iWSu}NnW-NmUAY`DxR2DTGd=RnYR&{m$$8Bsx>nnDq&$@Y*vX{aguF=R1_}(598e02MGq`IPK1Q2i zaM;Nwt(C4~sp2Sp_Tx;s44Fsm&oo{Zl$D_LGLxcg1NAgDH|j#^c}7}wqwHyTO$s!Q zMKVej^4wOW{r={Qj8zIMxvi*+QbtW6`4}$RIS>tpGXvZx*FHTPU&#occ=8l9NOjoZ zYu)&3)`ncUj+rAD6}C8Z9sV#9&_mWGF-IpsN68#-Fu~ewq@JahKq^g>*BEIJY7Sv@ z#B1)^NIgqCtR?*_jxd3ESLdkm#IwL?k8y!#>C8u#icLmVDx<25lH?Qk7c%)qV*Z+b zWY`ATkMtq5mFGvo74##YZj}AV$8^fY{D_!MqO8I*kU~)N6Jzf%6MY3ksCn_uGMEND zqeOUv7QPdE8;sHyXkwd5IprjjI8e@A1tg)QGt5666U0(VR<}QtVf;xLL1{8hXX2gN zNU>?yq>IgIjP$PrZ1S4lsiD{>oib4F13K9Jh_U*eV)IOV@(NR&i*{-wy>Z9MR(g8l z4*rX1%F;-Pq7FfNNzpm1OUovLI`n(@qMFJOBmr&)qq<|0yp;2rTQ^a_S`X(Y8#|`qY?6+A@K`S(J6SX?yg6d3dJg!Py4h9uKglPkRrhkUBPc8PjsG{*Q7d zwpDPHE+>rAMV(P1AK|)sGug;!nshHSiE%Sqdr8($_GS|0YkIxIu@?LgP0ISIzFE`j zU91E{o~)oDdv2Dedmgnzd_iEh8Ie19{vKU)oxu#(tk#*3j<4Zqgm4MIg&1GO^F$Ie zpJhf1ax=qKJWoNxp_eb&#RmD^ND_qvE;)l44_5J9utEwI>u^$II_DoJ=yj zMwunt!gDKcnuR*&7N+8Rc$!MmLwQ}p&q>C(L5#1?7;j4$<7j1!aii+6!j$(ITX=1u zIT|{wh+YRLe5$kQ7WGO+PrmPfQq?)st++tk6W)pnhrn7T-O1CK*(!Gn-4phc`S=As zWKTFspuo$y5KK2=%!XmX&FDhb9rYA{yju-Q*m+=~$h|xrfpKhOXn1Rj{;^b3)=x*; zTDq8rtJH2wl;)B}1&O7Ysx{-Za0?9{w+f_^axEF@Myj0YP-Z>h1wUT9jw?Zqk&bWC zKSsKN@moigAh+`@q`#%xdAN}CK}h^~i{zDEwKYEAl2T^I`HwAhdzLPcO3~s?jI`cX zIa=g3S8t`!;vaF*gmL6u&1WNFP#PnWl+q3xk|d?HMD;>NqmAt)Ap|B?CPX{TgkR1h z-~hf(F|3H*8z^iqniA^DdSd1HC)gD-`k&Y;FS$W5fEZy?+)ftELe6qt!3832UqOY> z!IQubmN(3a6ckhuwij+@w->ik?9P#S%@lYM?5+?fq?yo;FTZSM;*>8k zis4&YRG$Qlop$qVz>9)09j1t4|cK-!{zRQ z&k@1hJvX8gy+Y~6KLo8LDBQt%`*kbDcfDW=U_bov}Sy^77R|UPm+-X%H=Il8jZ;8xBvoYt)q_2-zHU1KyyiygVa9vIHaS&=Yp`}3O;v$Bw6)UZ zKhWu=n0l+DyWWHc&89wwj41z2c9tRliObavi4Q3 zw4~pYOz0Q4Q&hh%kV^XXW2A3W{RCln&6_Y*I2i@LZO%m&5Xie~M{Ds~uB=7XLh!u0 zM|#nXbWkAs>_#f|I(ewu zEnpU3zaNKEy|mJijCZXaGMu>zHFi)q!e+abs-srNFIdCLxp=92=cq~7z4^f*;dKr^p7 z0z-vg`v7K=yu2Hbm%R2-19wB#=dm~_i$@-h-0YD+p-UP8ra4&>wIh0s3LVDg@9E;sO!S5AKu!UBJwBAJkw# zKP&SXDexeGeqErDY+uNjy#fN`^?77Mcbo#cBY@5aW^q7&2Bms{jxgT&J7qv~6}s=F z`5pSnWGOay#JD%OSz zkA)uNaiN`L!l|s?H#=od!D|k3lMzqxGtlXU_wO)X2Y1p}!9W%%K;}}eMRj4}*UK@( z-;JrgRr4!wBq^(KX=0Wcv>_%+D~TgjGSPGJl2xWL(iSDeDuRRIHO)$> zg8^oegW=t*1xvLp$TfDy#wQMDDseD+>10?dojR^u4}FP0WfH@r)OJI6!^BXB6?RHm zSz*Pj3VNZjC9)S94eBR)p$`P35HIvDE)c!YyCt$0`ixm?D%4;vv`XgjmB52|p zWizwZF{r_grONI&fCvu*E?_)}W62aKq&c#MF>A1!Iu^rjxjRk)-4Vxfm@2}KADp}O z9m@{J`|vK=v2Ya*?9xacv!TKodj}^bihWv=m_0V({gO=MeS&%tS`IJ~@^@1Y(qABz zEU|}?26xLIgxC0>aomH913JC^%)aXAwWEAL1AR;2;!<@7sla_`C63wJn#hMFwGzjW z8Jj}R93!T9PtZ>?#WAMe)ZNr^EEGs3QygZb^Qb8V$H8mnz_8=J4=|H-d$oH2EeItUSS#tb=o2;wwP_g7;c?T}@&I1Mbp{g_uFEbIl?V*VD3Z!@%3I}3k zjPx-qbHe3*y!K&gEOr&q@ICtL`X$Ei;XQO+2N9&n%Z0mr56K#Xl&XpK57CQE-Cp3>#1lD%AZ>>y{14Z>G&(7{4}nkU;$qHF|O@m0CrelA!Uqrbi2@l z{>?+@e<&h14?zMG9x{?C#*`@$7+?{FOtHV1i2rS-m{J3rX9b?YpQTe(!p3P36!^r} zQJyVE@{m&Z5^QK@wA83UvnZ6k%!`ver1ZV|^QBI#1$Q?RnEs*?YJusr3QYf_tgeO? zwCL?fxsvE@x>AEASd`pC)F+8WvzdJ!VHRb#5DlRw)f|KtQWJU$(S*JFSwn4NE%+ed ztRcapJw%m~Zk_A8S9E6oBm0{xX#e?|_Ww+>KRwCb4W-0T9?uAJa?}Ym9o;^Se$Huw)VmM?-pzVn4=9h{NF?A9UU0@v zM#AG~l)SRyu4sjQ$TkFl~)6^I4b)?sor7G{fzh3`(;#e6^zgu zy_9I;sy*~lB1kppaRS~qWY-c6y>@Gc@nu1NX|DHSeLTOPV)k8uR8sX}M*0@KtOS>N z2w7jerkJZnj&&9Qo!+s|ql{PaehOOXUIHx_Y$6DTL5puC0^N3&7UYq8iI|?`W}>IA z-I{JJ5hRzC46@#~?Wce~C6G!=dKu{ns-!T|yyh5;7~XCHGf8CL4TwzeY{cCVJU>kF zjBh03DacR)Ul zaf13{7)hc1s9+QV?cTURgm&)(GPDOVYdrup7}{fH9-{>w1ln&16q4x&GiI-W!1$bZ zbV7HW0=gs6?gh+Z&{pQ51ua8KUMPB+@$Yp&hBsHE=K=Z%8Q)9sw8O>N7K0rYZy-SGUa;*os_~k^3DY9~U9=Vw)rYF9eh^v`#Fb)<;&F5H$^$${< z-zbnuYK~{5*B>Nm3OMIA%@0zX12ai#-VI1iaNZMJli++L#W|#i;A@H47~xBbxbXS< z61~7AfWbg$*xp?ToqBM0e+)=XN6x=^p|Bx;=-ePiG zeTce%>jhHD91%u(-67cp@R}TGOw=a}eS4tOJAFkp(32fQ>=qK}TY?go$_P^7hc{ld z^Vs%AU;}uUH4U`#oYNm}u4Kr8GZ3^2m2T%jg#SjC1CYZp^QUCf8FSYNac znP|XP+fx*Q|5L{VV<>55d5Y;3^b~6k$(~|0oncbA|Gi)o;wetz0?|{PJS2OH8O&Ox zP=h^1wZn0Y5FV+xfbk%nqLDx$&5D_fS^8n>DN+y1-Ej)&j(CbAR1x-w#tk=w>v@XL z81Ey8h^G)XlU#*EC^t7`GQ4U>6L;-NLp?X|s*Z986=bHk+QJ9o$L<(t=qOh~xVd`f z`b@Y=Lfr()Cqxfs7#|RHmB6x?$x(Vcq?=o@28umzW@Co(?}%18;qV_MH8cuyJ|176)PGltUf8~pt?-VGNMCDx%e zGuNjp?a}-XcV&oe(8TD$bmIqtijp>Jr< z@S0g%brNN)13EpQQBnil-Ix0e=vx96mns5M;V7d&%3rsy8Oq;WmXH17>m8@HLd`xrXlctrLNyyiUD zo_L3vNAndlMF7w+FoIAE&nCp<@FKXErD ztt>zBM+N;v=&0-`3P63)PpC3K=78<>(3V=0KHZ)PBd2*&&?hkZ8aD+M;Bn-ak0j0c zaJIG4Tgu_nQ=QSp*S4j{?g^SdcyosFpfGaM46MzB+k2E^@SH#@&A=Lr^anZvg#&+H z^F1{Y%l9xGBN)`ohA}c;-_yBDZVTM2Id8duyN>ePg5aeYd{;U9f)(Bp;zuoQqpGwUFSsqi{wa0T^P6xwN+MyHNuig^_wl$NFs}&x%a|(^EI1wRZg3w*WnWCrQc>ow4n1h>r9oM*`RHp^ zloN+Wnkjdp<6nmEM0u-19%Ddg1>WRVbiBBBP25S1)uE26rlgY*0y!2Z1q4RQPj5Cy zJyYuV(BDgk)mAlX+BG7kesyQ#p*BgyvHvgCB%JvCxEs-wKGT{T-aC$zVZ$05QXrG+ z(GgvZZ)0&;{5$l!P{IW)Z$f>{16+^JtPOo+h%z48f1!yZp6O;>q~_7y@WF93v2a)e z;WG)Q>IT%G<3|U2I%1p zp*7i4@l2YHyBUIiQDtMZ3qCtsI=L6f z`}R-=9rA1q@^(8yPwJ4HHOL>`8S1JchgsbM?c5o%8oO$cKUNYNtRg3}|5g&R8Sm2| ze`Qx_Y9cvNwVww0;oTv>id;g=6Nxs3A&SkHws99DSY2ZfhsbE@VVF{?2Fhz#yd*$* z8R`X~ysL8%Osm*G=LNq~}64NagVZIL&c`PRP=gi;K~?ZOZY zjfPvGfu$k4ai361=HT{HwB~TAP(@B$@o5c8;)+Ga#7q9BL3!p#Xo!j@5h44#8Fpi> z6LD~G5gHu}wN;Uqt$(8#dgfSYrZGz(&qa~j(7@xNA_Iu6lmc`_Vd7d^g*Lp4iS@@f zRgp{6Z~XtG>Gy&>{cc2ce}nyb?-S}d_yCqM$sGI_)C+TP&`J0{vN`+1bo9l^(4B^- z88?K`5O@)X{R-CQ*V zFBw0f!cN0;gq*i`(X_>htJPG|0GYsn#j88N4}D@-d_q57jj)kiNEuu~s~S$~fL5Ie z^`w`*UHi`1R}33YkT^;+e0@h|(D>c4lMVY%=!dT#$6D~nOG>kyk5$YQ7SXA6G!mm% zjlrNBkpEyHX8n_a5H=0fzLhr(sox5-P#6T;xzI@^2Ptb=x{RhB7ci?dp-iqs-#H)Z ztH41gG;0#-dm#fAJU%=}v*{A4DSD6V!V=Z&i$7O2hwVV=*psQU-eba%cv8G$r|fY-6^0i46$)%lAfy=+0k421R*0 zZd=_^*(0~V>(|i7%ItVc-BI}_)>3Cwo=+H+L6tEoCn`89hZ9ESfX=9FzyFO4)bNkc zdgbSGM&%5%O&K4R$J3_Vit_#n1*pHuN}poKe-2fuAoKq6kaI!i=J-3bMoEvi)E%Q= zV=Z;Y=v=}W9jJ^k`m2ItblXYUi*-4v>BXY8Qo=CvAH%juau;$HBi-0MOu1Y^tv`Id z1L~VQx;lEjN_ZF@qzfOuep9S$qB1ycZ(TGQWxg*~4WCxV$6M--RQ*^>osoL*r0nCm zoU8;NmuZBE!!6Sc82dw_3KlvVV9yN6k4gGmI3mzIOSJ1@bXUF9P zY$mJUTs~FqjguNGTjIu^(DoVa1tpsq zd*exdHY{DdyY3_^`PYapwE_x6bYu%WPi1W3TzC%X#h+#uc6*~!X9R5~r#}A7zyaZ5 z{g>f=Eir=b4!02#2Cq#2k*$AE0LQP|;6PRCgx^!rP}8%?u+f^yQ|~(>&lOa5tgr(* zQa9Y0!eV~i@F=APX3`!VZ#S%==3;M>nM|t}9u4^~(CS{zHQpI(pfmrk{!X6%zv>Oi zWobwt#(*KIGQjgpVB|j=lk3!Dl5nuA5k>TWE_PQ6a7K!6>Fh0XyX$G?TPOQ zspLO$hsLN#N`uAkULQBb{KLXA`U^OL~8uoOu)m%l?j zbWEqr^=Lx%x9keM+e~=yEoJ5@6_56YlvDDS^7rrbwv!+ZISnsN@txdrLd&j zdP+t~E~pbzneSxkU-`Z2Rjnq5$A)j{Uku*&!H%`i>eZ9}g+6IKAsaoRJXZ&G=pL?v z+J7~+HhQdkxGLJ!JbW!O^$%Z9KHQBQlK(r>FeC;8FwC zz9n1>zKRBe(#Nj#o$yg?I`yWC$(l^Ah3d5*-xl>eH1-~pQ8uZmraDEP!;R78?%^9^ z>a>Wq?GnDM62q3PMg{c9?+Ex95$*FuF=$94bDhNQL8@L#oW zVni#4!#IqKDUyTccNv|bxhyrSMVJ5Hr*u5r1E=I=DHkxM`4CG34zh0(&SNyF1>ZKT zR>hW>xfDD?JT{xoF?Brl5n8n~@^Yx|yc%fm=&;+;6^Ad2%Bo&9Hr#)1bNG!5o@Qaq zhfq$fvsUmc148*OS_J5m!ihqA86RnyQ zei=K75`*!3{S&Mg*hH%SJ&mfOFN_bLQw)v2*FUp*LvC_*Vz|FzX!E`Pq1Dt_6P@W= z1s?sYpShl|jB)s=g5&VW_r%u=)Ab>0H?8T4F1#4-V!2D6s<6$V33kLOw~ZDjB6og(V!M^J*O6ZGN!x|zN?%kTOJnP>=-e@VVr^0qFW3cquh$f zqp|7nQjPHD^IG)5ZSPmZHiL0-oK}7`wusFtfgOG{mJz+?_3&MaajnpjJdMgKe9mgz zDwL7~`?cSrW^aVQRFO*u_KOoc0=c!qDM1ts&AwDkH~e(9xa-8`hD$K{#fPgGu!u=Q zs-K`f7GGSC+7^Wi4Yf{F9z3L~aazTrz2Wlra!B^%VQ*uVGw}(79Z_ve0RulB)`!W9P}!OKIjFBPr3zX$Km10c@C#wOcOa)e zA~W*j{Hujw7kYnPld8r{iLK$!)2Pp)@bfAGuzwSB3~mwha3r0X z#>{AEbPA=!kKTL+)sBWAQjrryyJ=9iToU%EC?$`Zn<&wLOb(l`Pc>t-WQuu0)q^3E!1sXz_!--~EV5(~NSsf`)FIaVr|sCsGwn?K%2}=+2UG zKPB3?B>b&naQvX}jOR*xqRV%OO(}-kf6#Zv%VJGLXDmEF&qnp054TI{Z~Q@a#wj34 zlI8I#Y%XDpD(;NmQ4dnWNmf$WJ;SpNgc-5d!DogGMQz&l%ga8zf*z9hE0q}R5B3+L~( z=>h4|Q{iWf7iBBq9Ypr|cqxd-+&BJ3Qa=?`GH+WNTKau>s`09`@rg%PuL-BaEsfQM zQnGqobrvaS!krVz2b}@(Yc$Bup9yzWkxNTh%GES{Qi}?+Fk$AZDP(18Tn%mFOBmiX z-1$j!NKi1(g5`q-%^k0agcRi}{15H46BanhqShYjW8Ud{H0j51Na;;E@+Is6HH-F! zu4m;XtUb#8APi^0ri477q$+8yVM$x$)mIsz{6pF2&&nJ1iBx0t+C|Tm(BKQOQNLZ@ zsN;gfjrvr{Hf_lU~X zD1ZHgKH141R(y`~Ge2#M{#-wyo$&xxUEa)R?~RvgKoQ;~1t><}`8hmCF`kN(%6s|i z7+M5wG|hGQFX5LI&7-}c#gFpJ+XPCq z_wh*;&_rR<7I_Y=vK&bg%?GG8e?l#FLLeEWnybNhC2CY6H&jzzCcH?}7JgE$`Nq&K zY!F{St2c)6=MeEuUWijB;qu04{zsv#hW!WO-sGS%_+!#|#fLQz;*|0Az5ZAn9H4DAgjKskUlGskELxV8&NK|~R zYSe)?vB(en?2TyKBO{s{cK)Q^if+ROOcLyEhI-({PcW{xM&34@VLbRcb4tylyYhtnS%g#)4b|mvuT}g76b))I+(RX;Ga8^a?nu9!Rx{eTQ)HQ9d`_q-XwTSA=K=Ap>wD#}Zk zS&}$&GL!0g%H>M5b)QIDRprgNxpmW&-;c*K1Vok+3Q+T#Fk&cuy z5Sh~=X~OFTFlOy8mIyAzZH!$Kg9utI#MVQUMiI-|PlT8>> z2@WWEn;p0fjS}GwR~1e)PfhnQ71dk`4{~Z+^#X}BHKWA?iEU}L_|A~XA!EjcI7mpe zm?abt6BK;i%!mqYktV2MK)n{iQRX*^jHx$f@uDS(P)8HnM&aD_xtfM97vxa!L?SKk zhlGmv(tb1zSFJ7$6%!0s!2zpN7mTeA6|ansG&c;rpk6TsVe2JXF`k5a;KW14)QOQV z46iaCe8G50&7-~H=?n6~AUGTt5RGSBYCZo+q?oitUPG1MUh z17K)QlY1sdaxJ&X8wy;IxS_bWTnqI`u#g*>U6ICy{$HSpZ6@UiTM3O>@E^|^YXwa- zA;CmrlbGoA8k)Dlgd9=S;|EMrV~*b-GUX>a)GqP)+2 z8%nhIxk>fV+~+23k@qClTyvjG4Df?wfbZ3^Cp=F%Ne!T0ovuXt&Wt>%pzmfyGEv{0 z;Z@O=S&=mKnIX~^wVn;a(ZhWjH3$Q}*Tq}+A?H*m;^Nkemh>50JzY{(Ae4Kd9p#u`*etbkqhW&(a3)_o z;Zw!~VGYarD)N|dt{_V+0Bb%wUK)zIL;Q=RhaJR=Z$hY&yv;G(hMkD5!=}Gi^E~Gy zQ%uc_G{pyD%3jh`^BnASVpAOL9W{OzR|b(Iu%CnitaI_qw~Tnmx(J6~KPGYm{fQvt zVJTb{g5Q(Sl;m7uTl%nc=bFgiYKD40%O_wL6C3c($O%|e+L@-s>eQq2Il*ET9H7j4 zpq%;y?B1;qOLm4kQP|5htDB9#wdT*U`GB-8E^G(&z=$7!_1PAA!|)Je0g+^3^YM2{ zEZQ5o{458O?Vv!n2>+8t>JZ-rr5;}0~& z$9HX$PeozdnY=$+J-Y4uU~lA^a`u7;*$(xNeUZD$$;7*#dcC7SX*{P^g1%OleKuYS z@RR0NUOQ@qMf)Q^D#kzJr1Gw_1G9p_jqEznA4M~aQOBXke#Kbxa@>gIVe1gj;#Ab> zn@BrjeW42PKWk%JKoohcr4KsxZln?Fa|oiMjz=O_s~Exa-4^KCBav>#<`NG>&CAj3 zqmgdvj-^d$r$o7_6H0I-f@T_ax>bcJvMHT?9308rmt&5ET!DHg7Bb1E^fsz@-M^xR zrSK@*;Aidme$=CG-(Jaso2*q&rf$2e=S7lgpt&7Q+9EF>>#VsQC8~!d)eF_4Cu~Qj zP}S8gY%%`hF^o`ou)g=Ow{8? zC>z(~wMOW*AEE5{ndcg!YtBTjMtPxEu0_XxVPD-<=RBILqkD-s!S)_gpoh|KDAG{yz zC~Q{I`xhhEpqw%|^2jfXq!$3khDfau0&E(olct#<^Nl34&~L+iARU0qfr+l_0Y77k%pDrxnb*wG{aTD zkk^TB)_N-ivGMtnnp3nNs{0G<#qjnNZTLBo*)S((z~B+ENgWg%{M10tGfxa2L^r9Z zXIUhpQcUTs6S)qh{ld1Z|9_F{bKi(&sQY}_Zs}eu^`T^C)aF;1hm}7cGF4mF2fG0} z$gcJO02g)GJFC>eHT^~ZwX?Y~nJJ}A-N zmLv@i{)2#GjY@HyZHbVt{~pR+9!ZEJ-ll4+;|P|;In7Yq#d4>-Kfwiw`;$e2X@vcW z(EkG5e>=2l#fTch<$7=blDKpVdlU_$CE25BPz!sMEhIWepQjctG9JU?YHv|?3e%C1 zh(WHfMM>V>KDI@9x@vLXa-Mg!t49-%>OTCu$*5dWiN-b_f5ipX2&mx`Wq;Od5ItP2 zctEPLj=+FCB<$m#IKY@Gl#-jbO|^@A8R}d?Ljn^Y)@jp5r%g1gPVo#y)u^Oy@g!re zOh4s`iMQiEq}MHvG83zn0`w(dUrizJx4y#=xPnUR7eAD3aX5TV9|Rx{ug?Y-O1gtK zuf=S(S)Cr6&+dy(Z1BS1)NGs00>|WjzsYGg+gwhc%O11_-F7Rq37C8ylzV<;T6DtX zF|R3E4!h0a@S0r#v(s&}23($?$!B(Y99FZ}Y4M|Jy-<2|)knn#l$>(9cB5(67Wc|2 zr)x7RYkS0u#$1hRXFL23lhtbSJ3T=w2yF8Nye5m;24Z@gPKPO)|6nobVhY-VKA*{N z2bpYElfxafIDP(Lz~%6{12%WGo@wMtCCB4%`~5+)$?G;*z#W5EMqb(*aK zr`Z=Ze~v%}bI|TE`yGC--4n36EDot1V!4czhnS-|u!g!J0mglg^t9Wg{O+%?h}kFmUj2#ci?$ zd@heWU~+haW~bBVH3iM6WJz&awC?NZRb_m6L(>d8?$-06K6yQEz3rYp$>*cPr>6Fl zW3Oh9wn6@_Q!;YO(ael;w?E%1+v;?igO;Ep2vf=Ca(TUOAL!|}+FgE=-)4y}m^2cj z%W8KxV3Z(;ciLd+y#N|F44B_<0b2#ov>GpPba}i%x7lT}+U+h6OkS@y=&)O1Dwy4F zp9=>5*c6Vga=H$nM@{J7oN~JMp|a1Xn9$!QK$p*NvDpHyK+tLl+AKD=*YEe)15gwQ zm>oVp)5YR4+wDQO*9<>^1~6y>;d~aS*=_N-d~_Upjyf_&$#S|(UR%&_ahc4ZH~i1z zciCW;TfG*0(2MF#JCYVHcy#0}C8wOO0|aH+<#oMaWpN9%>i&_nFw$CPgPGkfo5OAL zgU<`tEimB#b1+sew+S?$o-Zc=(s^7?htKMA+bll2H|Tc+ecpg4;4#CaLtC`)-jOSm zY@f{rQwP}jvDdQ%+!(qJo7r!-1gutnH23)<0JG#>qJrg9Eai5HeT4(n?24{$>#(%7 z31AC&>_G?I3+!|G!HK&~03oZ_r0QUCT zoqiZQRL}oOI?AyX*NXP-GIFdk-kW@w91?z#&QFg-U5?c}7;X1$ADNL|j%o;owsp22 zu0M7G;QS5;45-8AhG}In1-vjxT^^@DYQA?A=~XY>O5k) z!P3@5e5b<)p2HjTxxFy2T+X1!?lT44unzbEOEy@6>OC-WP--@4?DYX;Om@H5W`moc zy#eqeR+ANw<#odRyr&qJGpikt>wu@<@E$DJ`m03GlR)((FGl``*S-yen5P{W3gC3 zFSFa_w!mUwHJSXd5_+-wYZ&c$0YaxNkHzhE_*@q7rGPTK*BgL;U7))ShS`pk*I|(` z4g3Vwz2rT^J+-hdXC?0$KBoJL3*|jsoO81okY;=0nb^AK@Y*2$3E1p*v)yK~`@n<1 zN*oMY0#1<1#iAy=-(mqb3{gYCYYPAbZLq|-eNHcqGyE=8HuiZH)XEzqHPp(Pon|$) zHM!}md|}HjM>Pa9%|P0Xn)lUbv>*ZgD~E zVfEW!PQ&6Kuz5`ol(}IcF+&7WGUYub8-g-e!2))d$?k^C4G6hB0q|lDi^mbLSiRU* z9BbwD>p{nVDDIhEPQR#R;TRJdf3~<*4lK8xfD`Bm{0?v( zZm-t|%O-rbc`Gc^bYUy6Yl62X$vbZP;0rBL=Xu3V(7(r_9MBuOfhh)lBVYs1@AaGQ zW~;>pVR;ZBPn}lI>@km~Hn9hMLHHLS1xlI07r5c-cqXLfo0uHIN| zLQ~#EwXm7pykb*!z-NW_^THY(fcfLL z`C-(etH)0noSI{@xNLA{0DBz2A4U)FZGvVPL<=m^K`=(NqD9J?A=mmf(Fra(B_07%kHz;;po5u0~+)| z-08CU&G?hfBO69P*ij4gC%6tx=DLS!h@oFW@Z3+Zn)8{t3 z?GTq*JXV**4u>pelM~`cdTg?|`KVb+R`M>1m&i%pqm>-$IOrl)_i%B8st|U!bpqM} zT}=XB3!V*D2dH8Ltb1UHV9V%)iQ;!f^OvKcso6dd4K%Vq{A30*TfA1-MniPwcX>^q zNJ8`oJMmdSgCGU)-h`b~wrVq$iKr<@8CHGPqd2W)AFYVePcxFbZ5bL<<4%Y4(5>cEFAR z3=ZFJ;=tDIgws-RkWPmMVpGuG3Wpp%tJ&pe>#^5qhtiy&jc`qoi^;%oK7d4 zq{6vh=}Lsx<4=@wyCo5DR`O1%7CdIW!3@DpTbonZuE7Zm9Eh0zKlZ*eFsh>a+dCUl zC!r)Hgd`+^&>{3*LvKs(MTqpE^d>ccB9YLf%qCj{N)ZcKSSx~pq9}rjqJk8$gMj)N zl=jZdy}S3^xh3fHf1gi$FfMcFcV^C+Q>ITgom!=RVmiUoVl0&~ot7F;XMLz0D!i5O zsFFM*Mdu(_OG_;qY3z8d^^~BVjkLK-kX;KF(#Uu^hDa@eEjGldO3oE*Z${{&X=Cn9 z_1~N7zces9?+?(pZH`RY{s{h_pe_(k*?s(ms>MvnF{N7amy{Z0tQ~kms z!@a3~(*=`zQ~md*`tMEk%UiSVP4(+n817B=-<#^cH`RY{s{h_pzv24Ay{Ue~6^!6i ze@BUK#(#Trf5Y1oe$k&FAXzz2lqVnLEbCgrS&P%ku?+ilGCi%3ou!bEff$^s7#}Gg zGQWDAtWTJ3oRvsVdfJDsU>}eAvxaZ&DwXB`s2_IUeZ6xU(7!n!lVvSkU!j%7r0h-7 zIPA>ku>10BOeWc%U8)hDQ_e;IRd)i}yLnv#*?5yAgx+E)Ddb?El_|DOIfdl-P0}>< z+jBIr6TMF1a$S=D-o^@HIZNnSi~J-~^vd_;>Dnv_uep`JpqL*uck=job!U#BK5gdg zO*x;?2N&}3gV_&^f3PmUSZLO!oDY5>o?D~=%BGj9-y(5g!|2`A`H6E$y%w7jZ8>d! zBQyH0OhQe6BUNvc8i_yBL+trc>|&j|lOM{SIGz$X$CA>>@dvL~MmPQ>kKZQAXl^li zzVFHkOIOlL<>fFA^EhXDIgFdUoI*GI%b3XH70=6Iwaw!d%%fFezq4sY@^V;p@@O^K z-=_R8t3n<6eA^F2y}`4wQ&!W- zvf7T`=v8{6rM9E5^Z_$~24wx#?MYFuvP{ZJ_Mn$m<29-Ln zRjyPskw9aGKxc(OV-o_Uo|FlU5ebY^2uxK7j4~n6<0+Xyo=9M&LVzd)R+sfN=u-3jJ7s1V7O)<2@qY zso+-&RSk9X*=6yXu zmpAM^xp;S?TKu1hx@^6Uuxuv+4c{O+kb_EdcbFi}IMnHVxdx}j8a!Aj01V1B=0mv# zz0=eh>_`){NdriBZ)(e#w*>w#R2H)$$1%C|A!6Q?s=B;qKIVD1R96chR$Z5?@(H<) zt!k>-Hr3Q+oA`-b@F&`Wiv=5b=2JP_4Q;mGBr-EVl8W_4xK6B3ekNDrQa!aAo$CiM zL5UWAF4MQ)7G#y%P?z`Y7joXYV&2yq>+)uNDHrcc+5=4yWwc+9ey)Sr{LWp`4j5RerP)TZ}g-l({g6Cm{gDM zSswcU-3XdZZ~LU%vYXIDRPIAZAjw7D@ywDL- zZpxiN8?j%s>_~Ec;>v`LzSDI{+M;F6>qgw9HxTj*azb00iyb?$0~AkYR9tFL*bGuAZ64NWDWqsry(F@3iQ@|14swtaLzktK-Af(A z@N+O(YV=qqlKS-Ot~Q#Rcyb->w6F%@i|i?C<)dT{Vc8^m%*uLX`7+09+c8R_%yP$C zd>j@rqv8U4tV%+8dH2IRB)!a{toZjqR+SA>v~+0_S+v42!1f&_`pF8%VEhBfNkyO` zsyu=A?OhNJebmw0c9Rkv@~ER9zHLENc`W1ayCAx9rDGO~y^q{j>6nMh-xscQ_@~?v zE2>;SSoS_rG~8*)y}$1&N4|vXSP)Z&?=?yw=6kpwXhKE)nkJmFW^s9c<<*XUHrxf4 z$Cbvn)-fIThRIZEI+N^mjzOr)edLvOj%^00RqGu~@K^!Wi45LA3!!BYX^E|3G%So- z_Nh{-N9Jj zV=mqx(CtKXJNhy%(pxzzYEgpb#~NvVtwrTY{mqUK@g7L{V4Jme^vr!^$QDO6{0#ge z(2O^s=?^E4&Jz9*Lb;*39gbe;$bF<=p(8%FhKxP}bMXdiQs8(PpNGjDe7nHWPXQ;h z|4%D)ZE zAO&PsoMlGPS%NDRts%8YgQKV7NZO2*uj2ZEIJd-Pm7#hvLx31L(T#fh_8XVR`xki~ z-$_zia&V}lE9twsO(`IWMmiw%A;EgqRV4vPGcObH&i=pj3ahffT)v2N|`CHDm;ZD7WXn$)wnT8obp3b zbebc`Q8goua&&NJ6y^QnUUQs`@(+E@aXAV_AabqwjtRgbrs`0#MHCZ$r*0x52NxCg zGZf)RCQ#X}0Atb$IbagB#d)XdB$c{qOtsJ3QFBDf_ID&Jug-VGO^~@EHKgAt0cuG7 zKFX~@Y#%r_k^j8!cns!8Yy@V~&J)^(m|NkJ-Qa#I1JQ{0Q-Kg;kegYh|Hj9TwGw`V)sN4&((YGw z%;I#i?}Vc=J_M7c-T8L(1|p3%p7r4k6``_4K>+t3pVfq?f}2MKWRv(P4bpIJ7`C~nD# z>VocC*p;}j$;FF~U+}9?)*GInc6Z?PoYwdtOwNv2U`Mao3wRQG#t5@0QDs&DyN2NzPuB{Ej9bA^o?dK| zNZM^j8u322GmON%xdxMub}#-WmfrUf38%JBuNrkw%Z}ULt@xovw}oS+UqM_dmRd~?AF{xtAT)PkehXD z$hwe%*GS)QHb&sgQXt}U7yI1n%QJCPn9N;YW+_rOv>;sz5d7Jr3cK23|9Sjdtx+dB zlC?{tn55M~>~K~;lgKxOegmE?H@u*UG*^ZPeAp}q=RRz7Del9fO0%&lpK~2T`aVlb ztWUe}73QXbajTZQKrNJUgBtPf+ITi;xGmX*`AUf{%ndmXxUjPDvTHg`JT#MJS1cGv z?i^oG4>fH}Hk??PM*5yuP@YW11relcQb8P<`R>9*l6zu7ls`GTpjotSv#$YJc6E8I z^v|)RZs}!MdX>ptelx1Ekq<3YG-jX7fmr2bB>k(!3&_X47d23-+*Gb@jaIqkS#7KO zAF5sOV6=318AnIU?=XG9Y9+tJWLT@)*0o9}>qD3HzDq&g>|W3&TKcDu`q89r>Iy7< z#cFEdV8$X@S@)GPaWF5I5(9!;&KhPiZZgnrF)ZA5U+z7Ueast2LM9dXOuP55Pb&BT z$Ar>tlb1v)MhqvJK&{|@+Yx(+!hx8OG$`i<&|X+P8^ z`+zGlg<}6Vj}%M@LAEgSo@X}^@ZOBD(RtwIPfqMe}kqN!|4YkKi6*pfYS#G@~m>(fgb6HmU(~c_83h zW2P{S*5CLxFRp?nhH3rHI99TWx@6ODluBTDf9HvUdZkdVLLlI87DEEu-%Jh@{Y`e5 znZL1Q!qDGXBJ7JaY?s{6c{)t&=j;eFt+A0ElCwZU?@-pvOk}yD9|vRt#pKy$`K`%x zcflNas5Yf}eqHv@W#}^ttH~3oO!gFfk1kpm&4wVt#Ax0O6T|b4FunHz)0ze%7Q-{x z1YnSx_Wwz}R~DrBM;8^elW^H^pznNY^XOLUY7=2HpV}-NP6lr)=xhKuvaO&7u5AS9 z`DDRwT7WQMa4YiB)-z~PprfJ95wMDYN8U#IW$%n5J+>DVrdr$jcsXanj)Fbbi$wO1 z$hGtNnIvv!fg6v7-0}X&=x~B}6%53q;TPUN83|JK{$iJ*zp%zUuQ43@kVb7X{fomH z=<#r^zj%z5Y~n8-q2FYG!KQcodv+J3OK6)yAmA^2kU)CFxveC+O;WoS@kqFtyRhWJ z&|O#}?5{Jf#qNp9{HFr*$6?)t?#V|o^P297RJ?Cb!S--;CEUCpa!66nOX0-0AM#VU z+z&a)3K07tABF2J8T3OwU=@a8?;rO=-c+i`r=iQN@X>RrDu*q{4GL7L=$ zKd>Kwm}Z8rwmY(9a7`#lKwI$ z3v3eZ0HMHyt%nu1Eftpi(F6;14FBmJh@ z6?ysVg4tx}*9B|P3z4!H57^f8kO;ReXQb%!Hb(xhY->E@+b~=+_R$5U^0wQAJs^tD z!paNb`m`(ot&tV`$DJ+kHX}I`*F^gh6ACvqi`~5XKJ7b_w0&HD9cdXmzGU14?Brj~DNF?FXDP^rQQBBuFUnk%>dJ++p+332Y z=>vrm(HBv~`#|9o{3Sr}y$*5eQe+oJJSU^%eaD}Gyef5h*Y!_h3umHVqsXXnh4b-M zkWnPsRUvw*WTO6;#upBga2N(`vIqsL*iE5k!`4-#yO}{;3or)7CGWQxG^y|cP8SOV z>-jyD0wL5mhG=sHLIIT<+k0m38%h-}*fXOsqz~OVy6l|-b^WUqtA$AbX->Zdt-iYd zu_=Y6ku*fc%dw+J6oj+TA+;yVo-K$2%U{jO!B-2CZ8`e&FUz_c_R1^~_EC&mgUHcG zdQ8joBe2#&%vdHfEyj$)(+mHOlD08Atw{Yv4<{JTH&0O7&4-C`Y;a@lhvM^CDPn9` z#w1lqvz`Kmc}rNOp(pys!@SWztIQWHMt7G35H4DMT(~T^hxDbW zwI?jw;+WVL|2!(Zscj5hRIpZciJU*uCXRf+rSNCmEgC3>(64IE zumv>S2)cJ*em(!}g2Iy$o(8eJcRVGUJn1aV!BgND);lh*dizL)>cnVz&Z7Mfb^JSB zg-=L$ErjsRhZ8-8_v0-vnQlI$hbb9{7 zaSY0cQEKs~T#I-OdDZt8`5taYjyI`OyM*u>NiP=odPgQ1`DEc+_!2CajqcNa0x4?r z48()7bWXU9vyT73Q-vuKmSTY7@PXByzr2{#d9N^ytlwUU$!K~^ojl*IMI_1DSUZgz zTk}&y;Alq##In&B-NKSSvM`w(KvFfpeXPR$Et&g-zm4lh-*}$Y7X-inOv?^+TDqwT zZH_=F3ox7*Mlmn|)+S~Ceky}BIjs(&i05=cB%-s~ED`|!){wGD(Senb6HgcJ4oCfB zv}325vhs!z&=O&9qG7k>d5MKF;>yVUAk&(a5r3b3 zg~^h%iCi66INH#kw^kZ@gG`{@VqNJ1}Dh?zg{8Gta6R?_?P zwK04d1PFgV7e2~)nJlZbJPk~B7)Vl_>HrII2D!mhN56k4_wRIazhEqPQfhzUXVPtR zu@6xMazhb2xjlAWYk$F8Opv8Zo6CNbh>JZ~_!>&32s6=-3m{BHe_bc~3p}T$Kl9Jz z52l)|<)6dDq5sS~h3`tZS83qZgm^ejVFHqq_wLqvw=fgo;SkGR;?-Y5N|AL(3a8-* z;5R(5wYR>%$b`?10!5`GWMjBLQ|7~}?#?NiyAg#A|d zZkpv;Nc&>CZQ^#hx}@Uoh0oykm?8xRtK6HsQ--AfQ8)p=1HUkDl6nB70E<$lFus&M zL+pPF8%X#p$SR+on(=30Yy1OD=9>)8mLcKAg;lix!83oY2wq!$(02h7)#eaQ^t?t* z*+l)8j>|GoOj*H9%UYNz{U)0!UsPZGSD}PZb%j9CI3WSqILqpcv#gnMTJm6MoR$dt zuNtmRj5A8zE!U4U*jd-m^?VEjE81r* z^{BQ%ZeX90bYlgxx*MgOGx6(8LjqREhJ&fEfE2xLQSZO;i8%6CsPh~AKFG;~E*OoK zQ^cU9W@IVa9HOOE2&WizGX@tg7h}qbndjLYRUpE?-wJs+P%c}95 zW)@-~RMA2}1T)ADEMx#VztR~;jwCx*l@MxZkY+hoq&UARq2v4|$*tsk8}Fc!4cZ%z za@)!gcdD}k-Uh$$MH3%L(OcrMaK32rXqxjibcpIex^q8%7a+v-jS-5#-!3PwNW2B| zs?_XO8J)}J31!k^s$nP>LffG=IX-=8DA^MiQy%!YfHbvjWaQtp zIRcJ~N}MmZOww9=|8M)CzOmX~fSqw?;@^7EZ?b>my@2OxJD-x!WQ9PW7cc=5;QpSorpwmW#Mi+2BYHE|+{5Jxuq}<8KJ*a< znDql53j$2~0oxg04avFVk0*hC!1`Fre!78ZMK1^X0S38&ms_Ls13qZtJcgw>V1Uf1 zZMS0SlJ3OI4+N%f>AzLa#e3m@gA~<+1T=f2+*A0enbU<6HPqRe<#d?BW=3o@4@q~F zPSIxO6Dq#t12S`gvk`#bjHIa!^HX59V6)P0kU4%SnE!k$ zXSjqW#F1ZGI~(IkI_l%%m}6~5)?czk0>?)bf@3IueEH&L8)q28%OPG^JT6cmOE|?W zv@njZLI9r_$T5awg*cN5b6nA*0L3srU4$4WA-Xa7^$yM!_-XKs@QJAH#1Nx-;dO8(ERt8b z7B4`j65EvWt5GCV39_fRb3?>tq--f7=f_JG{KNVj{Ad8yXC0jNaq{)GgxERT50Ms=5D245E^zLABy=GjdDgx_&Y6{ zp8vT3QuH47ITlHEt6SEXmo(9r&pdS7o`F!jw$E{g6>QSyxJkc(G1cc|oJT`Zl0qQR z=co`52=G2fNW9qRxXI;jbhnTt4~BgXON9NnhHH~C73gzxCNpX{bu$kgC{Mx8mfG>~ z&(3j9Ersr<{F!w+K3Cd)giN8>KViD_n^I_6ym^P?iU@gQuCs3`w3I^3x*QP^^3=nK zc#|&2P?;@Z>Y;<2-E3fGAX%}?0R~nExj~nsGD%<1D$bw0#QBYcpJ6JZPCYDux06&? zSkaRE=jvWJf?|Tx2U#~Z^+E3os{St2RAKty9oXX4{XLdD^CWaZQ1!Er09W;+I#qv1 zk+I2jbXqn8hNtwTRDHi|IX5R|-<=uf-}U_C+-I?4+``Z>A%&c<$c9OkfQfwZMj~Mo{u|6;pQMG;oZM!H6OzS zk84_i*nf4FA>MkAMUt2bQHf;F%cY`mdzha^D;uRi8dPhTs3j%z^V%yK1}i3C{yH$< zxf_j2AkrFVM?4x*=Zix#);P!G2{4)NGU-gJuXXl_X1S@tJw-Rt<<}t3=R0eVNx!s; z(Ndvz_GFNYYn_eoLP&*GT^dc&S~-)n`Gxq_Az4yJ_ZZqYB7D2 za}53*CiA|^u>?|kv$LfZz+?zU?_CTU-*~AF)<%`CVwv_{qI;=L*8Vg%gHA9MHFByu zCjVxYG>N9g^qU-1_zdOC#5q0`#aEESF^#4TrheNassg}s4|6Ah2UD z7)`+d-XJ%KrfcYNCN_~j;aTTtyoZTfji$8o_$)}#tL{eDjJnRFHKst{^dF6!mw`SK zn*IY;vWdRGCpVnD1+=>Vi9OEp68c`%_hs{DcgNpC0$kxg)(QH(3T87_mP{CGyd}cE zRl~MP?-3|RnMCpER&*lQckK>g`RLZhk$cM${IavF=J-~B!{b}kD4C#KjgN0tNfeK7 zMJHM+qyg)qLV|9GL2jUsyLq>Rr1+h`rCO^logAVa6w=`p=Z_`yJlZNsKJQiMEVGt0H)!O(Io5%xbA*W&hmmHE;Ywanv+0`uT@*$DcL64RP+vH$aroxLMb z?TY4yziuh*UZWy0-r!%gqI~$PEGt3W;2%*@Z@plLe<-VQz##tB;jcfH>M=oD3Tw0= ztdXLyz!d#3Sy;M#{`qH|4e4%}istdXSEM|Koi9@;_IEh%e8z_IE1JjmAp(SCS9m1W z|L}LtQa0qGII|!>Hi$C`@^j>dLD{sv+8{s7x>W{?t@6+J`gc|;r!ONE0Xn>om27G@C$dnwST4k?`trbkG^O| za%axvbdp)BdYBf*{pl%y0FF;t51SoH_8u)4>vvvpZb3LA38*)lPXm4Uxr&6e^r#B! zIyKrH0q+*@jEf>E22K&wCeKCg%0ShUw9cUltBZ+eOrzf@mB7C5Wq&wt*ibu#K)^G$ zh6K20tU($)qw$PsNoJnWk_SW2Xo;|IHsSg~f$Pbz(n2qOLXd0Fi`QPgRrZ!MM(#;v<+773BeEfG-tce+1l^ZV5x4#(aYCyM?CkMx} zyl;<_0Re6X*F_;;H8lfE1`N%>5@A2CVY%e4eT!tVYu}WzLq)Ca7X-WZ70LXon_4vL zL%Z`i@OlQ8pue7>4-}1Y|Grl;@83s_muQ>wLrhIc`aY-j2p~{M1NJQx(jYfb$S;+s zvbwD6P@1*w9#nMKRnAq2A7yMo-A!8#QuMleHj?jbIUVa7j_3uR&Es76<3fPoJ!`D4 ztelS|mtS-?=Q~57o)98TQVd? z?6LMqk>i%h0)!J0nYzTMb-c z#M#Kz6uV(AuJ4;uNS(&6*#`K&Zw*)QWtvd@FO6L-@$*Lb+$OFkw0L1AxSH|?oR*!S z=HE5Lbx8WQ_OYZ=GuN9XXy_G1nPZx}_9qy>lt&*AWABG^4;Oepoc}}re)yRbGOCrU zr_D#NOPl6gT@y91kL46SLR!08A!-m=tz8{azi_g$wW}H06Gh%??dlo2lU{|8 z-!clAf>OOtVJTs_dL(qvB?mmR%XhTLKQcb6l*+q#CJ&E?3Bwyt_8BZZu5>uQ1G z6G&`3*XXbqI(MBvXAVitxjZ{$Q_lT~6Hp^9j zmL`+uvRu7TTnf3FMXPi&g=BSb^J{o;qo{${^6mR?H#-e5oZw(Xnj7vG+Gi~Zuu za<|zpzKnN={o<>I_f?|5_#~Uee({Mp#D4LSp^g3GAv%Qp;&Htc`^EitDEq}UeooF% zx&>k0qbbA5`k%(uBFC<5?~5z2uYqvg&*reB^7LVh(e&M-gF6WE_g>`xB+ z^C0^(mHnB{{>)^5X0tzY*`N9B&jR*m5&N^G5^3Ah)irh?`v-s5Nx5fdP$f3uL-(IH zeyDc50W&!RE0Gfu3oDY+yfjP(I5WoGgUfC>=(&?tLzUo z*0B7K(?7Fvx`o}xE(BvKd9!l%&^{;q7yFb$OC=4)FYOYxc?I8eM5H;xTZOX%sOxhC z-XVRakL&Gl^kOAGxz#CnSwjA}|5Dh=!(5fi?P2xce6e4&So0@HwOM7IdxycfRM{2w z@<<1~K41bNeap^nLbeWf?Z;<8`KoeN`3fY{61ce4vebFuP`lFJ6*=W~n2}2y&yUAg%q}C!%?)huVCFi$CWRk*c z*S9D!l`MV0m5!5ARSAPW3mKL6%zoyQ)eOiO+FeM2l0&%^X)9yc8D6MLB4S zs~cVklX*>+rjqMZTyJRsLPeCvCl}sbMf{r|a*dMkPFNJLLFzQuOuPps^BU|-C6}hT z7H9!N4H9KhJXvxLs2}Q=qH9j5dF0x(t@oqPQ%S$+TYKVDVtu5~cp)2ezbXqfILTCl zYt3?vM^{tHhFPx3_%}$cYz-&WtQ48VuYiYNKz6NWC6QCJU7Ju?8ksuB<-ieXz%m%! zSe3;}GTl;X^7ze)=Eb?LmrG@c*>97J?s}Z(%Ei@Ta)TzcSCy7VKAlgS zP6J>K6s1-omE4GPb&t0w++SsZs|&*2A$ft5G?|mm)|?0}tcX?H!WX^e{m(CU?MHYb zERXBk*feq^*L4k#gi5ljF;(JJc|gv@xv^=0%1Ku_^e z^B$%Cv;d?7f4U)U%Su;Q3{kQtnZ44r9`6=FcC;Z)9%E|&tZr4*#;K~W8xLS|U;qyu zLLsX9NPqFTRhz~V8=-Sf2_)@@>~dt!xE&4g$FN4MJ%LOb%jJFuvs`0MGa}Dbj~>^7 z>0AMi)^hj4-@#yN+w~3o>b{uN#+1F_|%Cp>OS&1mw`#0Kgu5MK-$5GIeD}4RkB;kd8qMsMBBc zUDWwInxiIi-N1vMYTdfXMQOk)EaS^OAvjkAeEXz`W1;UE!#riN6YjEW!_-HZO zpRS#td7afn=?IEvEnlJED3!pJ_v=pA4GDdr5C}}rd`iqIK(LhpSt%iBEM%4U|MZk=y@ba>qJn348bG;c583JZ55hAcl#8O;ZdY@>048&j zo>`f^x|`00X#j$!cI(Rm77AjgcO z9Ne_Ey#LA`*JI_-4-`t{6)0<;9-x%PACxYZ%gPLnuXBR&hhC9pg4HeUS+;zIvgqZ?&~L!YZGPAFx`gT}1Oi^J4kW<6T!kv4mn&1n(#u&gVd&*7 z5%vW6_1x4C=o$ka%<891I1pxl8LFI<|BvKcSu5w@>$$T8VNZv$V((ak%`*>agiTI- zbyA1Fr28@m3jU4&mF0iiu3Hu_i>nH4I#fW>Y z_9@BV12wjEE51BOkp$9i9)P84O&)}?9pw~cwEEL-70yVP| znM5yx-QZF;kVj;g+h!>J7PL)pDv4Zkor;obFhaUJRaLQFRBBXJrb6#jz2#~fF127V z`ISO&b)O2mF2Z(&x*rIWx-*#W$v_nrt-M}VHG{hW{bhWWGvs~MF?82~cFR?$4AGoY z0*zy15`vA>L2jH<4`$CEKmYDp=Zv;>bn|@1MnE1asP8N3~QmZ zx&ER5uA_e@kiD`j6$bU>#Ggw$MOmoHCa5Mg$oN=yHR(ke9dO`#Ae=iDm#!H$W&E$4 zN)r>7&jnfLm-(N8l@>hdSCD658oqe9OCn2e)AQUn88r+0XstBhUoxp;|A`82j8Jq{ zaZi$}5=x;E?VcnR(k}=xv5P+yySSihkgp8v0_^|LDjxSo>Ht_)LNIG? zkehWzNQ3-2Nu=KM9ZLECtmOVc!o8~kYvVo79#u(Fy89K}1AgIM)pK>+^`c-Z@3hl= zBnT~j6283u8G%>R*nPGHIkCv!%x zzAzl`gmq$`L7f4$Pg6>M3g+R%g&(T9lO?>7GaO^N>{Y)atR7n2)IAd zZ)&^vw|8?tCee*4*~e+S1{$VRbqYa0UdPz;v(j2w zM*?R@SF@^^*#0W|P1P~--5~c#X@^$Do`i6&V(Y7mw!f;nrR`g?VQBlt2=d@i_s94c z6fF-^lZLq;!Jorq9;S{}CtZiT2WbI9pXGb&wgB$PxJv%~5pKGYhiXt62Q-@%9(`Mu zEI+;eA2Q>Xn_hJ^!hN2cePdD#W*>vuS&h^sQ~NcgMt_r{UukEW-A0s94Dzdu8P3kP zHRYGCWf<3v=H*fBnrcKKs90l)HQL4BKjV*;HmRYV>T1YXH&L&8^czsG;}5t;pxz2T z;KF)BJlC&gHAMZYSHoC@bax0rKU2M+m%`LDn%nKKRObho zg67Hk=O1?oM``x54*Dwx>3V?z&TDJ*e%u5>4r;L_GIL)CT4teM%w zFu^rS{!r?Ynp$tRkk!q^o6V=+D1ksndCe;KLx?E&fH&I&@!Xr`))c+j{F?tOZ{{}g zX4!uq?kfpwAA;2u{MbR6ZNZQEYv#NEu86*^Y3{PK8HbNwhwzXkOJc(2t@yKh!NjcSR9^;8QPtZZhj zFH@k0^$xk8tcW_*GWSz!L`e0s?h6&rKngLN7&{zwd4uoL|RqtgmKwgmW>g^ zqyih`U-+p$O6`<@BAa%}{jVv1yL||6gcab9XF%)xY zjTWReQj`|xc@2}LrR#Z3jrUXtAwQ3r8|`;h^pp=l3u~LZu}77f&6kN4`kC^ z9zQ+~%jYB8vyD9M@hOBH-a9JIw#H>C6a z+8hB79$@OW=>7Yk2kK~j-)L4r6URT2exrp3da6s>di-dif)65@h`b zl$9_|`)W|u{LZ;II(sG}bV?BRNl1VT`=CzPuhub(vRXC+jjrg5DrYdsVTrJ(Y1l6L zpgyWA?qRwUWE$L7Ar<@o?BS^6Yy6fC#KH1GorC=^>sScq^a|-0{;enY-hyb!B&~0SNARs3J0L@xclL zgVE*?Ow4}2#$fm>a3{F-C8NMB`!QBQ6L)-+egp3K@8Q%P|E%Bx?)V3YXC6ZOlt_QM z;ZsoqaOBPfwao4RfNmk6=4e`ojTrbNV68K?L9+#`ib*RqrQhUM;*R|4SkFTtXpll6&`kXy0p3h)$%Y0V z_~1IdLnO{)_~80ow$NQOy;8$;$$orkrs&5P1$ox^agsHQUd-HOisw3VWSUR9<|~c2 zS*8LfUCFYCJiE!Bg|nl{qYrsrM7uK0{rg6N4B0c)^9OpBBIppnaDSpRfMB9Fc!u_g zO!2*=MLefw!yEAD1`T83&kb^eUB+AGPRvU)Jg02@7JE)#9#vi@FlP%%ufS|bl zVZR~)Ede9fz- zdvIOqiQVP4^(-B1Y+7e;^oXi;Li6i}&dp4Oh_08p;#dsZTf?!j}=YwQbIQ}13 zcvjh>-S8thpZ!Q0aX;o6hMxlIWSP&?iF8@z>5AO-$huXYY6dX>g;k!#5`ImGd;W3H zUkt~$Ey3c11KRd)6fJ@EmA7;B&G-C>qE7pX4o8ITSRF`lePZm**!wIEFH zXgE*ND~r~x_bkCzAe8quC~DFM&pe?pCYK%f2@ieCy*?FTz|gr|MsD=Hjwp=trzuPr zcb_-q@2yRAAQYVpNYm%OSW^rno(VVuq?3NNcXTFE4o?r1T%Qbac-mkHllkK>|FnQ8 z&Kd>uDDX@+1N1ZkOfK~F)&c~kE*ddKpG~3H)H*$*tWQbVPs{HjUvheK@KjiQP}$(AND0 zJzk$p8Ox8+fbPsM2J}F82K2pPiFyXE$)-Jat0&jYwEx=bxfXAHGsBiAJz1fAbs=!! z4gZJ!!kgFXlZD$ogTrj}pih2{$t3%;OEqjcJ*vsK-ZZXG8tm{)2#uuHkl&sxU2(Mo zdX$dSc6e$cRFB}Dp8hDW9vQRK)2PxUDxv(i33F!7o-}@D-N_G4pE+&r_=m<%ojq$) z&I|R)-kqMtOJAdT@^V;Nd9)1nw=rEj&dXu+^Ku@g9pJni#DC}Uzl>%cMbp3PT{0ih zf9CLQe#h7^elYK2_KR-|JkEacomnT?FCH8}VZZ2*sK$LcpR%7kntsN9arb(X{o=mm zbM}k23z_j~%4pKAQfh7T%5G0x((!3(9Y3;<0R!*X<{LZuu0ERvZa{pm(#O5(?oD3|Flr!@z4I^0N~K8qH|V(|fynoctb4_?7Iy>X ztM`s1bOy<^1RnQkS)^>KbxHo6uX^6MMGuBq;Vu1Dyxsihd zpekFb@=_;+@`ILSRE1d){`)`n^pePx^mUl*Pn;FW{ykJeeJMS5TYyTXiUAdqP2C2~ zqK>JQ+X5!Y6$Xc0)uI~8MQO(B=rXKS>%{t_g|wly>KqLtzK|5D7~`GV~J3 zgUVJU^)@VBg4cr_tPj;4J75ZL=k*QclmD8$tlfavI>@}h0_Btcl|T1fkeb{0hAw-1Ux9p-ac5w6|V@h$7;taw2^c$r@mlF7_$keYqZz1%f zLLe|W`VJD{gQF7-#lg}04J`*pmW-%_BQWeVM)=Qu;~9dYOE*$2T71duL| zU+Sm(x}egH$g(=#Dh4qB)(f6=3D?o#VlR5$WjNlyhsE*n3uwzp|2J(pm9~O%M!at$ zZs&$(qul186%L2;GvZ@psG*CPr?05o7hd#($APCq38-hp=fh-bTXr^7+4*qQZ7kCRl(P8w@MkPUcijZ4Tf@`}H()vb zwGm#s4IhRA;Zr`r%GpaPha$BEXzS>f2eml@MNpmQ= z^c%40nx(zB=%z@8K)|N2Ljv5UFE$cw`ZRB9qellV>#v$KnCi4d*ehr_Hks-K=aZ|F zYpcCkU^__V#++yEc93o4dYt!6qk*&ss<}~`CFpOIZbeB1MY`-|XNGd*78Ki@6rJ(3 zBnS4-i@@rw(v=&_uFqsO$$)b;QtFmc407kF8b37q<01Hb9e^h zg%4+F4=5NC7VkXmh9Dk8yZ))(rDlaUi z3At9wJ3AWYhjFq7L~#CjoTM-wC-pG@i8|go5^kfz*)zQ-5XJF032{75W~i(M&htao zxXtREqc%stBq`(EIX2R`ir~!&(nNCpgh#ywU>vKdiG$3h-++T$)xi5!sFW+?1O9O_ z#B={RnaWhV-zd9@WuM2A57kM6K94cN|5pp|bcA<9+4EN3(S#go?d=%71AKwj_a;aO zgIx;S+s0cBLl`sjp7>({U`IQe`19I&TS(f>LCrf40f9Q@w)eWV`2{WSYpUhDvbm#+~4tAHz{msC+~1mSh^vMXQ%qX5BD4=X&t=B z$^BitF&LIE&$$+Kp>k{lsc<3Ca=ATd0D=$(7zu&x$07&1df&o5A<>|`2f$QTl#S+- zpMuu`2p_qQ7ZIpuQ&P5vceb{K4L!X5@H{aur{2EPtVC^Qfs;X|oP68U`xRaXsR})& zAqLQY;}k~eodUb_0X;)`?e9>R@prMhn0STl^c(OBQGL9b651R>a<49r^LOd%Z7HF{ z3OVW|`fcCbBT7SUTv02jspulMH#OV!V{Ge+ms7n1=t5Z{>{B!%FzG^pm-ntT6~}^? zf&u`m#hN#2NV`GaQ{>^&xzVKKAn!SPTs14ktGf|G_4zZD<}KBXi?-OmW3ab9lIWX% zG2WDoW3I-N^^@kNfm>5l=pqq1dYE^gL=QFup=srpq=F4WDs)v4%H6a6<`mRS+z@oB zsbv?=K=NW2u0$_R!bf>`n|0dWA4OeeHkFdT)0TQaNLIC1Q51UtzqX0|cE8t;r-7Vc zO=uoW=1zlVl%0kS!8>4iA^=TmMp|Wir)o=JZU6*$ry_Q3eW^w10=zayz#an}6=@Wi z26(%)hqrogGtRTDekNA@H2o%9F;(K~{^GIT8IttAj1R>2cOjm~_7|FohWm6gGsCs4 zy`kY+BJ3|}_$}FRe{Uul?p4UMdNPHyud^YZL|xfA2I1!7mOa&6UQ^mFqPc9Or0k`2 zt;v|I1&v7VrFAXYuXZSZ{4WIvd3n0`aYQVHe?EvX5&m?Y@P{|IbdLr?6`KGojT+{stn{{vm~> z&i9VcmLs^e%Zj+P)&A#h?RSlC@o@{gG6I!qq3xoe7Us_Fj;t5T#&7?T1>SWMs-zGI zc()`-fP1&F7NU2%)BJzs-R{$zGcVb@b!#D-RAJbkD|2Y1 zVcWzUz>Fik>3D>J6VE$wzC-}5tOU(Y$u)8 z9N}$E$~g1Fz-(uwmjB;%m$cjHU5v-G8U|FC`)qbxDE21Zh24*3YX>K&^oS77mp>PQL|RT6O=E1>Ph{ z+9l%yZhSk$bG?0{rRc^VZ)v8tmMj={QY{hoK^mq@*4s~2y#>b*k3+tJD}Tc6?IuZ= zm;fwBlOvP{{7I%#Ox6!s(V9&0d5OFedHT>5b=g0+Nw>Http}J72-N&5i`alax|O-7 z&j~`Hrw7*hJ>%LAp6@dx9B(-7(mS$*A!7$}?Rok6n7k-z2}-ikIn7<`l`bEd!Loq+F$$=uWi zwU|odA{85L=|^5oCDpoMqj(1_BdF4;Pl9AsMD!OA#ZSps zF-q@wGf?!)FsrZ&FwX zDzW@_lgN4RT9dV(d8;ptYQy&YPN9pVc{wBK2!iex<|*wc zsk|IUFfWHu$;&C?e{ZnA>h9o5G;idGBKS4#B$q9QA>=LxB0*lHG zc#q@VFqwKEJKENUJ2ybMj2Yq5P8{l=ewp?jqu&B_6sC^;>RpcC1L?94a$oTdMQ^ns z#aFyfVh9uYDQ8e@*=yc0=wcf(>l*ECeh+E$x?gCco?fV=N=A7K5lV*Ekv)aD^EdB1 z=yn_O(C>8ge_vZw8|A=rbU!^g^TuD^vLtu!s1(xocW)GV@DFcK90s%UV02$wF1A>; zROMB}o4ih0@qdBZs!GLPG^Fp&{l~imRcT9x{z=)Y3Tf~C)4K!LfhoMSs=CsYhYQo& z@+*I=O7lN_-5V+49*`*Spzit0J0JIl$-Jx{y0VnF3Ah|ft6?%@$wo8E%RqWW-I+U@W4DMvE83D% zx4lcWMX(+*;81x=4_1ylHDwp`%WcJ7%&KrI%eoGs@^(O*I@VG)EPpN64eY#B>!v)trX>>$>0raMHizmqr#-x~3Ar+8*K%A8<*N2| z{s76UY0zKXw|5~2hn$Wh{la_;$=TiBNYspaD7I%gx*f1ruBxTlkwxLYA;D~{fq>Au z$wGt0$=j9hkMMmVNmWVFK5q)~-N>l4WpY_e7DxHgLG$*|qj~en^M7FPGNi9(XD}6= zZtrpiFFLr+m&G_!!j3pA+?IZ$Bmx_kH$?lQY|`Cyw6mM)2WI+YrbND2ytkU^WJ0Gc^fMit*=r3*zi^$%itB>wT?p>Gs;X+Zo_miZ4eC5bSS> zY(bDi|A|Vz)lzhIKu_sD@F7e+kPe10)!UQ#>Anmj*!$_eRk#y`@vhX?%D#sYg{4&S zZN{)PAh%%<#r+8dOv>=p&;kUea`jBf8yAzR`reW797vRRQf9O#EvoyLN6!FX6rO*q z?t1}02GV7of3D$s0#VqKn!c_W!sI=wyhU6P6(}dKmT#;UAcU;t`pO&oG}vZ(tz4xs zZnkavo%X@mkG)e0Iz_SCnK-mJ={MP-@r?`3>-rv*&}ju9@MvE`0^G6>x91)$RG#@D zGeUe-%qBf7E3f)8VAIA3KYe*{feqWTfbt6+6y<$Ch?lPnncdj;AiZt`Le)-JB24BM zOEZ!a=WJ+|)WVehy4(X;}?GN})?jIGGxQ5Y;l<;on33sL3U`aWwkL|lks3HpVo0w_?h5CzKJl0}xCIou&i z-EyDHB$OOcBgbUVy#d>5XHV{_l&t2?_P*=%6&O~(Kzver(;vcQuB$Yo99{GX9$mf> z5$I4Bsou%gHyQ#I7x-i+-#B~~BKUmW(9XU-HeS%Ii^&W>th$q-!w-r88?8Gz_wfU@3=lVd zejqh$bGm%*SZ?m9RJ=rlBPxRZeJNp$2+X}x6 zn(~H$rtpF18-soG@I{DJ)!`CM=IU^<1GzH9*GUTyy!u=EqW+CnKMY+Q-)6u!2FG>` zdUgIZTA7aKZatcQQ{6gQI^5R})lu+)z+4mJxmz#aQ50-rcimJ`@9Ga$x93T@;bzJNiv3Gx`)b6a zl^w-RH$jB`C1s0M5R$su=P8f2P>6QZjSAVM%&^bw2$y0(%$U}Z%y_k+m85Hh0W!ku zt|)`15F-Z|>l@@|4M(P>tWWZPywx`^1i#0G9EcxW``_tEigx%O!0*5>++6CbEpe*OM|ss;#8|Li(A-4M|)ce+uf&b2F@fg6bkM1|GkS>G6gA|4u;oq;rOCmc9!N339(~@|7f%+ktafwv_~vK8CFf|mg_Tizx0L(+dOFA421&pg3FZ=3hE6Ei!ciE`M z_@g0#8V~(HA(EwQNQD@5S^OdIqpm~!SulY9MgwDVSRGUqO$y_7}o#hax z0kC2+R42B`pcoM2z_L56h#IKqFV^w5FV{SL!FJ4}E}gaUts|?T$*`q8{RZOO@cq6K zXtaV4#J7nnt|m5^T$+CDhwt7Stw zDPP(RrD}scp)}Z2GKFIQ{KLK{Z0Oa_Jhp+CYgC9^fZPbZucoZFTl_Icee)%MsiVF% z5_+G~Fbj6Of;3Em9bF{jZL(I^CM!G3)0_Vv$4O+>G2c1-Clh!e%*lN}*0aA2lbK=I zXhwOMq(|^!QkgD*5I3biJCmEosk6`k_$1uK6TYpuG6Zb+(bF5z68NDt4M4EHSFLTY z#L*#{`l)ZX*~DhO&wMW2TT`#e1sw_Bzt|Hbt2XIxdD7>T@JR3xOv#Od$y|ywqbx-| zf=h9(h(IH|kg2D9&uEL_Qp{a4Erj&^(wBi(K@^`oqo@zQ^u3}*3EuKOMU;>;dC4{A zYu{Y#gGAXpQL1Vk?;AjAbYp9hwNCq{pclIka@scyzbw*-Q)wJkXzcAGulYR(@~Q%s zR~WxL<9h&o(1mpW#y0_f2r}|@Ye4ivh3JuziTc-`^@Y<}XbWl|Db&tdQ)5eoAPNN- z)5w+IRrJkyAAN-I7A#R{$x>Z`74eq5)rI`{t?y?oN-&C#jhchS2HoavSSMA;^cN3E zCq@4(KaYv(bk# zg!&?M3qCiNJ-Po+-y(F~LiCdIw9$VQ(Ubd&eHT$gH*?8{iHO&(Q@@l*5oUsq2_j4c z|65nN3-FCj|3B|)*#)?ZW&nq`405Y874|q%w(^QNf4v*NEHk0NRD*cf&p- zzy@2Qn zQuHS{l(*7gAiJ4?d}Hl zbT3Npu8n_{SY1rwUlRSM#y_$+rsyzgso(?QuNlPi@K>d~82*yFn}t719t^{uCBoiH z!*$8wZ(MgV{AEL)b>VL@<;^Vobx>MvflMI~{?>Lkcf#F7h#dYr6k_Iu1CQ7(=x*YL z=XDpuU$!iMefTqwrA7EN$PN7NK#kaWE*t_odDvIsz zZs^(237v%AAvZlV2~AoE9qA+xN~DF}A%M~$A&{Yyd&4cUf{GWhAa)TD6hsh($g@2Q zV2jWCJ2SI;@7dYi8^ZJP*U!(#d@i%+oSAdxobQ~Oot?2ju{rR}k7C|KE$oj;a<(c! zgR!kx0E4k5eMK0X!_+i;c@j{GyMVDZ7HYpNsQm(NwGd3lu-XX7CbzZskmM_%ofVL6 zR6Fkymr&$w*WUiPB!2^;@%OI5=rd>ksI^^W8Emt+lH}h5MAKd$i$yeD=*y$&6+=fH z>l-kgH0cd7n$YdUCe#Sl@=KA7Ws9qkZPE5gp*UMZ{#HK5zT0XU=2(oqK4P5f*xMg(k5>la;_T=121xx#M1p;Y3H{*&pr2?$-@SvqkDi{b z{=eA4-d33}(koD)0Yo%87iW*Dty}cgwNpqJA5*(nuc#Rc=qa>F2BWZC=7=sF*f(AK z`so2+H*L2C0OWENw0)X|o$YN)$wyTI8UQ?v1uy_O&`$(_+nG+hSA9yOla%28w89?t>XQ5`=w=oEr_^5inM)}0F79PtA<5AfD!j2 zWn|iSkjhE+#Hb14rX*Tm+>|sPjtI7xXk0NX7SHX^u3A3`v?d%(ygKMBteQ1$kH(gnEkV=&;`WJ9NLh%=_xc<1$`K1|E>!p-v!H3Ghz#~`;RDS zoa8rv2w~yyj3;jFVDP;Y?6x53e$KDKb|=iwV7o;UgKhL3ZaB$kXg9qsEuadfupN*i zDOh)@YVoi=ElJdQvQK9{Y#*F#50#|VRC&Yk1pYKkySRBJmr_JdZnY03@1@%Zk+3X# zC_kfM!!~L9>M=pZ@WaIlt%wMDo>$ZkT7;HpUp`{o1QH)yBnIc`-mWY5VuT8>{o+t>Kv;DF`4%WAE>C?G=OMzN!?! ziz8`;eS@(O1{YBS#4NA%0IMu7pbmEd7rk{_7Y`Tn28eKx;Zs}>7grbCt4i_~(9J5# zOICYsBbQJ_S~<3KB4M2!waD^i_B0L^w;WsA`pPoo0|Ts6z+s}i$;<7(%1;7^RSG!9 z$6=8It{WhxfEm1Nj47Z=&xpQ%$3T%%!e055_X+}vkGV}vfZ}3Qs)!G?z=#h&VMjH` zhuZ@fKA>}vJ{}NoUVH~eLaR(B)Bq6V*ERN!m9S)MNSO5xLBf1pH?Rbv@^8*2a;IcH zE+o*lSl~h|JQH!@+Issm$@|oLyHk>fsj{?eVlbA);Gs*h2oJHz_X-{!)>)ugUX`L74=Yh=%6n6XAEI?sx~VDKgrdyK5K8YmzGngKp; zf(-n%SmizTijop9@}flJNfTZ)Eh!$iD(MC*66aWQ*QJ9QvgdC>l}o@!#Z1MKGqiqpR%Byl>-IE|mO1#G@)Iv0>5>6}jC z;_>>ofg)ZP`E=Ifwe1Apb@{{g0i^9K_HyK*$L(9>YJ;rt`jXm(l?O2!7I~LFVP7K2 zO$J%x^(O)gnfa9c7daX@tf2Z|J`M}04jCj)^om$l7?IkkyjA<#x|(BELFFj|C^NrG$4`FY+GIR`5?g zZ{IJ=AFBd1EcgfuU|8@vgoysSlotnCC2!_t0_#v@zY8!Zue&k4crYkESOf!kum*rS zFz^BxRE8s$2U~}KW%Z8Wx?DmLf$)cApp*7Vd|J2d1G)lq(mq>mKiC=(LPaTn2+hg0 z6M#Z(UbAP)_XDpLHq`g=T3|!1!D1RG4`yBSzXgXzCG3@1yjKu7Oy@Q=1&6Hw4rAW3 zCzKh-z=7QCl2LRU_B_D!X^_y;Vs@18Ypx+ZEr5iU#J2! zP`H5wFi?080!I%DZ*kAN2N^;)oyHcRfDUu5OzfNOiRkp&kRhg+Kv;s%-~)RyY4?h~ zEKLwv6YZbX91WkwQ?$fQ+(*8pUub_QE0mEm9PlHIV)v+gDobTOfrW+nrY1Aog9guT#!a%`{B$ z&#B%;#eUT_kVt2sB>QB+F%o>JhEfP(PbE;!E(1PkCU(Z|=Q$!(LXF!&LzqqSeO&vTGJ} zl!l6c1|{?aGOI&a0_tFz>ICFSTC3BVC3wAEP2?m&^S-#@0+v7E)11BPEBCd%eULm^ z(0n2mz_2{op!x$ttrEO|I^2cU+jUwOkL6k9{Ihm`j6MSNEk4C{NgjDccC;n$-L_XJ z{chSv%LSmQ)#BW4)p=c9R1vuzaa9z4Xiaji!8RStBy(FyP1a4)bf7zV|yQ zN*q_((VTLRmQM|}26LB>%>vBxsR`g-pZ6A4K?js?;az4-{7iaGoadm$2oq{FD}1bk zz4e>Fw-BrsaTA-tIyv{Vy<1cYgLJfrM+=Oz!pg%C2q26{hX;fV6Enf0dts+%@5D~1 znO%m7Al4Cd^MROu-y!wr_T=&3?N!N)|G*kXyZ_jS$RmbXyY&mIHx1?Tm|G851^i|| zAWt1;ot&H$dBK5OQr?mBB4C4T#PrSe+Zr1=`8sSEXp!zBRlc0x2&p@0n7E|Tk>SR_ui8GcTZh!gMYUsTfbh=L|!^V@8pYUTP$8L&F8(Ptsbpv?6_H8-k}Q6oID!~ zU{1aq96|5o^G9&#usFR}udCJ?HB$Z4j^g2?VS7iIq`VNoytDox^UgP#_sp1uP2`UR z^IpW(5isO^y?L`D9p2LNZNa?XV*$*(R}AKTf5g4QkgYnkEieSF!qg=v|1eJIYCUM4 z{wDW?3ElpVj@IOAvZD<-(9sbqMZ*U!fwpt*R6EqhWfqYwyhSH#dM>}a7Qi)yM3z+f5SIc%r|I(G2hq=!nClqSg+efTVYtQ zTYWDKcDRHFd&h4uG&sI#?bOGm&x-M4uj)$IR4?{|7dMflAFZADC4qy0^EM{~dpj0O za7RID$6!;Jeci`p;j&jnmwoeI^uRlJ(gP?pi5e+p#}OkLq?o$voc@mc%Zy^4O7bq- z@j`MRU^8<}R9CN&Vj>(d@*YI-`z18VLT(b|kn^}nc#7)J)(At{vx6Ot$txWlup>L! zkqVb0g3GW?^Wo(5pI-)(rm6E9ny!0YRy}A7m#*S16Zc*x$29WZV1UnU4>%f0b}F-@ z^$OZGQ4)A?o^-_8dB5;6VCO|$wQ;1F-p#ugUG+@~yQ zqu@3x8yU0tR#eb?aC1Q7u`iv5vO#(1B#j zSVw31l_BKxSVw)i`6%+uSVxPMRNjVkkOY5w!_iF}(m@FP1qtx?ZFobnA$=(9LE4c1 z3j5uh();he>IVNzXBR1Sr@z>B3q9yBb~a#7`ip%c+l&5U-_<@qf3aP6z2R4_bhfFu z4=rS`hWpZA&=dUbEA{57H0|!If#V&|m6OMf5^ud4_g~(6H9gf)F?rb{b6^ z!e-_47tBbkufNiha)6yl+3D2V{Q4^k7JmIzbh=}gvL4m%|3bLt!>AZ)U{e{Wi(P-^ z9r2JukwbDZ3BPhKYldT-asZX{y9?f%??{q!N0BWv9p5XMjbHcV*Fn873s+8V&vJ~D zUl>IO&35!tUc$2BMP8Ep{3v?xSscmwHmE{`5GplU#Us^zsM(Et5WIlaSdhumW{xwaJSi#b@= zqw1^i>bs8S=hy|RK4`h4kECSis@buxAz{{9jEkAIGDedMD;+jHgP?p3Ui*wYsJ-?o z2W(&4i>qNC#7v)$i&^b^N0Z*G9n19$Lhb6kUE~gG&tKyRmy|bfHFPNt8L~E418RPeM>{S&}IrpkEW5|~q9ShW?e8VV42DJ?d zBQ?yC@!TQ9RzgzOJ@TEVb{vNC3475j3G1kI@alH5De9aYoPCG=veiV zxN89n)z8SvFNt&PckB+5Z*ps)PDwU0sGV|qkvm@go7aUdee)Z7TwvBpV_AQivZh+F za&JfJt=!}Y1Ac? z>(cO1$82Q|ZaD=dRNW&1t3%ilxVp{Yg1&b*>>RD9_UvmcZyT#$+ulrDq9%mmEBFoY z45Vml+n+q{=nRKSs{*vOZ6_AM7GJZ+vbAmWVfF@c`;dzsCt8Er0yL6E;1Qi0(Tl*kjMIBiN7_6K4~mCp$b&|{U>C2Dvn3tcBJ*8Bqf-ZX#QH| zf@6XlJf289-cCem_jlYz<;IhfZ4Ql4+8Knj#zHbT9GaqZ#WX?||2-GiX*?O!?oguK z+EAZL0QK3297-%#3S@yfiiq^`_E>qsc;+u?tC7Dmf8df!jVFoS^G!66#*@si9qql- zKXO!-lohy*=iko9GmYQ5q$SYC9d9mCaxkf&P7x>F29;LMPps{4jrw4-)_mKPoYk^> zJab;t=KqIF+B}|Q|LsVWq4LD(IyKZ*Ed;~Vd9wz2>#E}`rILkU!~_xh+JgQd z!?&EyLvRST3Jbx3v_uQR%(EY+NE28DB6C$x&6PBPhu~a;kl8vRGz1^UG=lkqRe6~c zcnr=q)TmKFjVuWJfHZ#)Iw!CoL~o3IrcSD)%I*UOfhaW5qSpi#hPAS7O_zO^yDeP% zZ&`R`RAg*SBsuwSN9~Fcac$_oZ3&SH@$KSBm83H>YV`=jpu68TYxZQQ@a+VK3a0i9Rb`!@z+nOE z7Xnag*^AIufD5%}*v42GcF+%wP|>i3j<@>N?iP^6Xjx#mFF+l724-3%1)+gp+Avkc zaw#0A8e&?(v~^Y5`YFt`$i1{Dby7G|fi%HTT0LMWhE(8)4SsOcua#)!R@7d4U6@;y zfS&38KmdIjs`@}%%#pDB1Th0?%Sm-d7X1&Aut^D#a6Z_5_MWcj#o`>$--v{}uvHim z?xZCe60&4uCwK%TBdC{~tM=NS!lCe(LCR4qg=HhBFpc0(EmV1Lg4fV=DL; z@i4MYcwAI`baZ^Ytz9gs65*UtyJv}5GS{D}Q7a&a5`iiqN4_`{s+3E$j@uYjw^FGb z66<4H!Ok|7wsxuriQ1D;;AVEEkVyKRbqqB%Xp|}_G?n2YdGnm30m+(FsxBG$V`Oku zx+=!@Yif;?$dRj#&^j~Y87P{Wmq$6)Jms@9Np-ph=BS8m1s#%cd3$x>VX$~-wSawV z24j;6u-Hk}G%1zC;$%!Km^WUfP37iA0i!(`51m94IFKg5qE?TT%3v{g6Ac$;LmO!r znjgSt_;`XWr`n-*H%m7&8k@P<<^Z~NQFVhrF^9Jyd&LO63swr$NeZSPFy4N)u6-3%=D;l@~mbL*#FU z8Z`>2kwN4KAfJWupkF?WlO|dxi+xnlAAmvh=%^`i4xAF^Y~+pZ`JrW_W8sbSJURn};7=#(sphLJ>+Xu_2Lg_e_p+U4E|FqG`~KX*FQfrfEsjc zB=7VuUe)sfnm<}?KGbOrRA*8}pz?Ckdj(YEN(fYcLr3U=>JRR-0#G%Ygy4e#RTwS7 zKqZBd!tcO$Bc98ufI2oswOPGM9IUz-B;AiCF|ZnnX#^KaRpkww#J~!Uw)NHOU(`s_ zsOqt&xuxX_ePl ziDlSTkz!Y@Ex{Ham(VUQh9pkSpGmgoovNlM3r1w*WQ#XLrQRmOSYZ2vk&_1jzGmMv zg|As^%eR7YD15mC81f;NHh+=`U)qyA&0=g0`@$q^_?n^0%HtMe@U`}~4!*ReZJNa3 zOUfYG+fUW-+ruX1hYFh7ryuGk^)jI|*sVdYNIqX(|5@&OEx}$E?&}j1;na-E$Jjms zt}Re?x-^O7+AT~gIOQCb_FHaCV`a3t7a279mTZZ8nh~wpglwr zwCb>DUGHO5AA=Fdm8VYylf8MTDg?ADQ#>>c#WPg~wP=y5Obyy1(+@hUPGT^J-g*5& z5m`J!{eL)TU3w=thc@2#Ac=p`T@;O1Rz~yIM6d!tf`D~Xux%LDO`;_l)}60;DMd;X zbFvkx(NfYl%&jvBS&M}*nA?qMgictg%G*gB9#1BWDqTTdYp7MDf?8Q#HWnoMG4A;^ z>%?r0Dt~O6n3!prj7sD9Mo2{Y(~z3QM8!wN#*-r<`E^*FCPYL;*kWVUsVdxNQyiJS z$;BE*q6!oPxh&GK)Tx@vC2SQMlfnMgwaw(Tl;4cJa_Q7qRk-8b19(l%-wB~NEvuR!)x$Z5SSgOS1~qxcnoD@Scxy~!N7Vlb`XX4_O+2#w15-4JeR z586%UxK)pw49<^dQ}AlODY#Y>Sb?p#fy;F4kY8VVK;O;O8fJ=`kQo#mEjAvtai`jN zs1~JTDC$S>sK0gkd_8n@LLw)>S1H-9JAo?nl6AvmF(rEhY+!_`$FXG?Ocl@)4W{Vw znp8l04R`Ba)nu;89HveiguH`=Fqrxj(@_6GU9eA;cLm%8R@Wr>5(X+ngNa7qV*bMt zF$c)=gVbM>trM|4Rk}lUK7Asl>2h!~2dX{fWXChL%ErV-B}B#XmkgC609|Ymk#R7u zv_-ayC-$GV&ybStfUrta7YzIMs8C_3Hz-kAp9lt*D^`ssiOcCD@ zXiw%&;Y(p4O;`%k>H%|5#0ox0eVb)kPM&G?)%%92eVA{U5Sl5SCn|zs<7riqgVeoE z6Rmxd#YF27MhlyZ@E02Y!$j+73DN5;m>edQHGlN&V|9Vru8M)s)*R{zZ54;wNA8NQpJA>hS9HpX?pw%d=XZ_q&=je z_iU|Fv2nI&a^!bM{fZG3yP_jwA|s-r+eMJuZ@)vaD=<;vj%|&tk*RTZge(r+|*o$U~j4< zqo!&Iwu+ps?K4viG9fg-v|dAL?%5;&FcUh_rrEEZuMrfLa32|zb2c=fOlGx5u{8t; zJEOMKHI+ly2}~>a+&e1m3sXf1)1DjyZ=~}@7dMQ49Zaig6n)q&_+K<=7>K>9ftarU zxrs#8Gq+!;q4yIrQ!=$b51`6>sw&{cC<#OPOyLx9P3&Dxdan|&_e%(2)uxFFSmkME z30N$Y`o=ScUQx6}10ME%GisWMUKdq+MNH%9HQXR&2$sU&YbvG@TxwG74Om2vU78jxr*Z7sN6yzgSEp=TTzpJyTr7K`St){{ zPK+%wCOS4AR`5@jIx|CpGxbHn5FH`Odj7poGctp`MCZHJ$(A_N-0KFp9jE192jcy? z7fM~PsmgglIsG0E?a8y6p%{$4H_bW;D^z7YJB=q{_JsWIXrRBLK0ZhiWAj6$MI@u| zxoTuW{JC;Ii}6H5uvnFl)BOO<&8f}ImPA%IJ6AWbP--^iCiW-+$o{Ri_8agdx~r^I zI`VVD`@T?V?@JefOndSt_$7TU3DSgIOsnT0_z>M!2EMdyHq0LT>s^Fe#!OceGE)~( zS_NqTw`%*LZgcc%HcdpY%AE9Gq1Vk4qSu4a6Z#eXVW7Wp`nVKZg`w9XTB4y>!xUKM zN*BTF2i08j(>ZwUH3->-g)s1X0@DcY^P?)SAf1EPE<=qP1=PsED+8qY!Rt)A_2jWg zm7PJlcGt~;H6>=kDXBE?IzTd4pRZRgK0ZDnAts)`eB^^=Y+OW4Onh9s7@m8YRq(MJj?)8VN z?te4`G0>|1kTq!i<>TO>^-@1w-gTeMcZ~iEEDuXu@{$;m^5FIwBz*Y!vSn3cu@{ee z6Wos8o+KyV87-JAG$OXangH*Uy2Oj>iaaO_-_pMLyze3YY*se#IIMdRTzG~L`yXMV#{AI@xBwL za+Oq@9e;>}*mZ-XPp~8gVn1LS!Ivtl^1cU;p=)5D_-jQufJSwkJ!K1F&w)@MmPu7f z#>jkrO{LlH@ucc%HP5LI35#J!yr$GMZcAHArcMr7+}*!!&{$wN>Rs&EV-*BSVcE1=PsWuiv>gMdbE+SoWG> zJ$1CHqJIa2=%RcRlYAx38OtuzCRwu&l`X4Tk4CGgFI&$aY(cCy zHM8MhBBf;Afm~+Cm$7XGJ0`0790$LmGszDytzgH_D(!pRj%cE;Jvj}%L6^jildjWs z3B6Vg*o93b!Lus4VInz5a2Y?6#j2jg)HNd$O~_RJPk`okSDO!YnMrdcA^7fSWZU=Pp|9h5yVQ-rcUs=a#5qh8i^rsF6WgSCGcSl6`i#Z>BYt4Nzrw1&iphOw*$COpaywB=P-=;pJ_S zHrNXmZ-Y(aU**^45f+ya9T#DXArZ??&640C-Qws@%I}8W37zeS%c06~Y#ADaXr?%V z%vhx@h1JP4olFiPD>8MH$swx7Z)-MUlgS%1t)Xj}kAp*3{na|?8lgUZ28>T9lPlxM z`O#PElJH9xOCxjH-TCl64t?#RnJaAA=_GmRol-NS4J9ehT&zQ`FF9X27{0Oa^@UM5 zvt7_ETbH+T~Tuv(Z_@W4?jZS`4VPNqGnGK=SAAWg{0w0gii48g#kIzA7Z zT3c>8bVrI%y~(CKBxYK7382XYRTF51IhJ*pDPma@PI|AfY+?zqY&!IbJ}sLD`a|>! zY1uYx6_%E5rX@No+dNCevdOBwHq7E!_LM=&<5&vAvXhub@T4iKyqCaV=qF2$8*0=j zphkve4}&y6mKDyj#<%b1>Yff&{>JtZ5N#gWy_QAhP6394i0O5cIaSjp8EJ#=m)wDY$drp;!;DM&D!tGFQd2F zxx%a@$W!ltlG$u1x&C0WGMUYKV_Q(0p~==#wWY8TGB3XYiD+|noiY~F3qH6|r5`z4 zL^JKla5%1pF6{RJ3jGXIs|&2cW|*sKU$PnIY(B#rVsry)CZ2SuuGP*)ZZEr1!<yf_2eg&5L_nLyN$(Y)ttug)9RZ{30qsfd(*mGfz*b>^cAl2#0PXy2 z5zyAC_BuP81KLjpDYvnd#FsBk4bBka5GC+yRdI3#$Ftjp3N;F-km1=W5bwvcW*OFa zwqBKe3Jd~xhCE(V;w_SR09M4Dr102Bjmp`gqX4;JOTK?eEFl{9wniqjOCU!EzCA;F z(1eitn@UI;wmltcO2!@7FR#iAhpH<*uw{h&B3o^JSFjA7XpY3RLPTy+X@_Nq6HV>O zVBq${+KdcqSlgz`8VtMe;V23+-=%{!ty!HjIILxo6vszl$62bdy2cSS*EQX#Fsa z;6HX%-UIMrgJx*4h8i^rsF5LBC6MMvw1?(cBbrl{U1^S(p=nwub9jd4B+`g0VZro6 z@|fs^$T-Ny5)bCrQNt`DA}%U6nw|euIo3$_xGIax;YembrbDtP)yJ!$8)$-- zNzRSF60S2@o;zP%sfW)Hn90sP{7w>}*d0((lgYyqNW zy-Gl^qiSQ%f;Z9G=9idO@W3M~?G0{2WL@pab^6i`d=sPz2&UBoMqvmB{`AdFhG2%i zH)_GWWSG%QjFe2@khv&c1s%Mq4p6^2ij|)uqS%iajPzci*zppgSjV{{ip7Ke5cdL# zjl))9C^njw=um9*ToJ`yQtkENT#jNZ3{sY2DGbH3FpXgUmsNS2=W-NVYN%18fEpQ! z4Fzd_6gxcE8pU2!We)|5=;xW57K7$;6myfjmp^V&-WD4h5fwu}prmVNY(%t0*b)+; z7&0?@I*>HVjFO?9MoFsNhL0#s=|qW%wX&-#XR&o?G@{w#yQJki+AQ-1rlVFwbZ?Ok zr*yN-w^Y@yYQ|z9Ry5Zd#NP37a1gtEN(W-^s*m4-UZ5bhhS)tHH$@hsD_f#|^w=Lj za}!Dvivj8v6f2QgtmZrv&jNnEueP(=JdR&&Fs%kSFjqvfcusn+ zknBCHPt}5^GL%A9(o>J=EKWd zqFur{^GKC0&i?3=(&e<@wL3yX%@2YjneCk&B@fAXHM=PZu{mp_B`R2ehtGg)Bqj9C zS<+~Mg!M3Nt7jzeT~NbkVcWbkn^&cK>)hAMAjClK8KD^Y{p3{Jh!_)nV(hddbV@vjHAm z`{P&P4^@RFTtE>y7oPK^ymh|yC?^N;ojFV9Yal6Lz{2?q1JI|MDbTx5?5cNHXR+R~ z5rc!k043O=cEVu97cGo9wX5?{`J(_vtg4#iqGrSnp2ALKXg6nXa(L;y5c004ur2-P zQ2A?aSktbkB}xhJ?#z<^104E$G5wtv=Ht-1Lb$T|{rTc}_2RwgiY6uOik1sRe{QzG z#GjR--^<+BGIPiB9WByxN#zHe@ub7TH415SExR14`+ze+?zX_%(_5>?x}S?KA|E~A z{8b*ZfO)!UhuB1p-hG@4nVjF9l&)G%FOBg^G0VHiO*n50Gv1jdyoBBE zkuc1eqeL%6s=`3GXUb~Rp8iHzD zWWu4=cJlJ#uJVomU9{JV*KnVMz7w^z2+@JSt1u{$6t-O6k%UtOp_!T&OCrnb@|WJ4dq zGjLzNTGO1gp6r|@|E%(BS3vxL`Pm8npF)r6uQ&dXc}zVy;xD)cV?h}DK0BZerpH(Z zn&nBix*`M{Ls0H6ist>i<&ClH%JSN_YKB?9G_h?kM3<^ zJoGzqk$7`vy+r|m)I@g?NE=>xLcWhDmL}8`2uau4E9#Q6)15CW6KET?>nQx5I~5nR zt5qgIOJ_JAGGSnMWi2sd@XU0!(lZF2{>DG#>F?_L96UWqwlC5<`2pM+f|KusXUNIJ zGn_Nz<0`-A+@w#)pcGGa z^7{hkjG)=RcI$vbN%=PfijpdDt^%1y^w$);oSqsm2 z1ZI$x&Asw!XF-shuL{sYFb@l0A-H+5c-7EaQl-VA24yWS8Vab0X&46NNRmrIqkR)) zrh4Aa<&EWYg6d~*%LVW`rC0rh_0F&|^4EguUtj@D_4f^`pQ5V6?XAWkHlPxBp>{2* z_D@8G9kxE=`xmT%wl5O|N1LR7N3y#t2uCZLp-aS(w%QVtk+z6r<}O_kmJpd56_qkM zGInBALUiopxOh0kC^jO-W}9eBjZaM>hpVmL5MB%s9Oc$}buGF55|*)>uEU0_SGTr- z@1FQNtT6F!xr7bT!D&)ibyS7*_l}3^$>~Q)W}DUFXd$*TsN)+<0T?ZH@7r8z z>bx1#cg#;eP63pi1LM0RRtpF%nChs_pK}Uf!@Iz+7KstGCZ7IbF;-nLQtX0mybDTCPnnmt=+63}iM|g?2#1|@m{9!Ce9q8eXDmAG71%WqpAJy6577QQgO8`ZmBj9>96mam+#yo4_Rs*EMruQ4CDe}t>9XAC(?D! zjnX8^>Fmf?F9&YPYU?X|K%N8^{(IM8(-pH+QJ&&*u9D{k=#yz02TAM(<3Nja!xckG zOT{>fW369zAN+}TOebI{d{+$Wt8${EbS7BirRO;0+X(9;XK(n8g?dJO@fO9&1t zbPk%ic13G4`_datw$`Il#?kGCka!ll4M5vf(9Xmv+zIE_2`V9qCUtfwX3_=@N(+ zyP^5y@Y!WzeszFZ^WK2c6BLxHd9zM9w@S)qw6(g$kbWnfU6p_1Vg^c|EhAr?bnehI z2$1pgKLi=abbUGKxr51471D4h&Gdu*BDUUzJ%X2`SQlm&^qDVyntM;Z?o5%SRw};+ z7R|8$1{T$pixaD0GHC3f`u6}cUe)Pqff?vXTlj8dz@bFsx`VjNrmj2trE+A^tsMzv zrt!6m6Ss708R^&%$X!u&Q)qROin!-{nK; z?suJ&WMwC9w9aeUP`V!%Gq2sboV;@u*8Fq~g4cfV4|(lnT`#hMZtHk^6X|uo>sA@N zu)A^+TU_wnm*E-m-HYd)1rnSk!hK)!-78oC^W8TMzWegM^4-sMT3h%onh}>>AmD{2PXNv@aoLl#KJ@2<4Ijc%a zZ`wwkyTSr;OfW8G-r9QwIex|YmY!bl)*l0V>mA3_f7mEMwp?|7r)1!ku*{S#a4*Ki ztbrLTNbIN1I6VVxU<3cQ0;x1#h{tvzxBqpphW9_8I)}+hHkQgNTUzKGs_e$atg`GC zq}6B6BYFm*vLLg{*bBrdH(=TF2o_4W6`@y7rA=6wBbG3~4K57<>st_muuqoHuF$8p z@6u*iq_%IvGam6Qwaxy*xuJ~wr7A#+_VYTgh`yvYuM;m`8Q`1*}hUA zD+g#ZEn;OaJVUWk|99tDSw5}`&|<}l1+ZAjhc9wr8i>}?_EJB%7nxlToz}(2%D+rw zrI71wGD2?7necMCo!4Dmq-RN(NhT&osPD!iC>I$xAA(){Y$zEJ4oLsEnYNJfS z9PAz1ts7DW8Q8`IyT%A?g(+*p$>+hY=at2njcN0};@U&mHim#yTpNF{#!}&}n2Rwyok+MEnLw< zJ+JGDH%faSuj*udNeT*`dpt5qbYmMg_b zPa4*C4OZk#zom%AaJIJVfRTY&rn(t@tGce%A-F;6+tbx`U4JXhFbDId^YvUW$ z`mRIzY6RbyW?}>68)&5lTghno**Z+T-8?f{9+;^g1d?bgEe3(U@C*$CTf$xCOUctz z0ooui84F;8z~D?a2%vq%eKYyC6N?w80hKUa7!1gfl&Mpj4uHAcGn>e{g6cWA<-+VR zOHkbeO6hVB_>`Zj^6?s}68DDw7g?kGfHF#0>ON=(bXUz%2WRkq8!zETIP3a zlHnU)+E;A7kS)5bpe?jOl%?>DBMP`!b8l|ED@1~eIJf`}Q3w{mVr$K6F|Axmjug;J zjoT3d_Q+kt)(M@)#mCm`8X0e>U3P`@ z7kMA=>}n=S-}^!%Kvcae@RGjwyLL%``B-^WnSS5&zQ#%|ti3KrL3N4h$CfDTqBQ>` zqqbU|H0hJOj;W7WOnHAubir~@>oq8-gjI)6{vnsYp?846H%Y?}&4$q4t|szULGewv z;ldEQUaxpaA6LHY78E~(`I+Kb2F2I^6N=w4WEZhy)w`mf>v-vqv$T2YVuG65r44e~ zl@C!lfsJuJ$@O|egGuUOm>Qj3LmGD6TSvjXL_p&|{vp>4Dg&NXM1qF8Mux?uq$R+? zI=0xfn3(9a)R>gil$41nacQ>rcw0(*wD77)fN*OAD1#Y0?rFe z@eXQ7zLmm@sWy^aUFjOupqN^#j9d)I?+;%TOjfRPRc;U&KhYMS5NV5t??t0iQ&SVt zq9fs=lgQZE_=%Bm-o!x<&n^`j3DIfs@zImwqoXIqCd8(u zM#fH>WQ$2jizlmGxuM>yv5Ov+!UI-2(Kd;ke{)epcrg`6k%n(AiX$7hyPA>;A&W!8 zQYI(F#-*jiBt*refyYdaPq9q|r%H>MoC-VUCVOpz7tb!$pqTA+RVKOMCWGi)#XDi$ zq7~B0z`c^%s7-jIJ_ARNPfG65v;X*F95F#p9TCV}aOy#$v2DUh+Ucz|iqnjMS2l;6 zpSQ-yJA+`2bai!7ccH8A{|DOt2U?)`{{KLuxO7*6mMH(WhV7+oZuSLR`7-=%7fN;L z2j(@%(|cTxg$G{wN>dlfvi7>33>|H{NS1r(Kw=s8ZtY!f;wZ-hQWf@(h_d(HHz3^x zf79P1nH~0Bk!!9c?;UU@mc1~x+B;OOvBdnR}0`uZ$p2vPY&ABU+go5cJvopE^JSKfu%^s!}Z6Ln|ZF+l|)+P zdo$Ac(}wyqt6y*zO2N}u{^@>ri(Q@NnWIQy3UnK_^@c?;D?!!rFz8v7Oc5sIb3yvgDI7n zp_zr?4rpfSID@QcRaQ?VD>|SoxSEy8nqZJMR+R-OMElw`HlQrHBazA4V375QDvKal zj|7wj*OW0?Pa9-CrOJ8*$$BcFEVw#|$@myax*GSe!0cF8G9!yrLN5p=V9^t`K z^${K{5~Z;0LpVI2$!Tkl(@K@oQI*pwpd2{En#mb%kTXP;Gf9;*B%mBPJ(kH?X^^u_ zm9s^avn-$-IH!@x@fhSdRXNY8a-0F>z-ehr&Uu5Jv#OkHs+_Y{a{AqRgN5nN;<%2p}qdwFx2xwGcanV7Z%=FEh~pj4ksc-0j_&fatlR2r`n zeIa}u^@SSVr@wQRl_W^keN}{0TEQ#olY>9GYE=9@$WTpq;8#0e1QGj9*K(!5p#gn( z1IX4}u5aM{Er0!etm~gws-*SLhs`^*{`rRb=cx4$_|bI&&d2iCKgYWMb0x0-yjuSO zL;ZWz`g{E18b(@v?+PLCD@A%7wPde#Oa3ZxOa4|{@|K|`ud6Lt@~f*zx`^t3-Maq4 zrAyiqLrRmbFIH<@j;1a!L)oNHC3GI{zpSLT45zIL%+)B!h7Z9i|uZ2JHB zsWG$CGZLn@k4dvlOpQvNloAmgGda!{6EiU)Vp3{+WJF9_P& zr6omLulfDWb;S22V$Hvdb*2Bgt{nNZO_jRdDu24hl~O8UPP!~t9|-vS%6@7Vho$h> zd%sEUJ#t8W#Hud2oGj&DrZh$6guPAMQrbN+2*}Cpsza-jvSr-%pcwkEu%Oy<{q^L{ zGVUA&OJj>Ls3GNeI;m@j^!gj^$zNsN>B>M{A5(tS3v+@)QK=T_RQIc=s?_oRP|lqp zE2)TtS}jQ)x8D15u)DmhjKh!Uk`QW5Mc$euOu}A`53cAwEGsK;Ig`3%y?1OC_Y_%K zf*%P|E1O8Ad$zpE)!kPlB^R^OeyZp1r>X{4QuyPc8swQ!_bN*t7+b$;3|U#zJx+NF zi}pEBI!c}3@H%G{$!jc^BN5l< zR+0N|Am>`TAFSqgw+6i8=nbS}D|ehw5!<41u$9}TOu!WkYVAH31Wn=y5Z}iAZqRJ{ zFNy#ls9{_85Hmscw(cv+YAlH1$-C{`NBq)q+PnV_+K!|hj)22Tu>PXyR1I{dWBVgl z+T1TIkK+0SNDMbI`pF%R8s4`f-ObC$$2PDNN>FSzGBEJiT%X{cR|^9g4l!ceA61*Q z?cnY!|FMoN?%>YuZZd38C|9GgRQldviGG6dA#M8)P(C+(KQH-%60s7JJ$6@nvMQ}s z`5@r*rhL-4heUtDDexiJS5msMI~Zlk-1J^Bi>A|ACXb1@NF~2d|J+YQq!ay9K>xVt zpELBqDf(v#{j-q%*+>8EhClPudn0k{)2XNpOw4*FVgs zKJJQDLpOrC*rcESg1Re^!YPl`%*ngjmV__MjBi{155QM;gQK35C$TLlJKbi~k6w$+ zx9g$}*%mBhV3m0>q+dVxOr<-j-=9M??uv?`29_}U>niW7E8M>e%AAEHkJ(qx`+9$O z@6yUBB$Vwcs_z$Bo$H8&FkH)>IJA^^?_hVXtV|8SUekoV%I$-#$@RyW(5*XzoQ zHj+WJ9sQIgSPUJhB{+1e1{{ILHpBT_RNE*L@*P+CcBIn?_mA@Sjl}k#yGYrA#Zla- z>K9R$i^$^g!=IKagl<9Pe#4TKHM{DPGNasHxnLtXG0GjGJcbDQX102x-IJ83aWUJE z@YqK3@o4vIJp)ZMP(##F!+nPh={VNCPJVwQd3~&VlX3yqC@5H;D|qhC_02}IDaGAgPs`4v`aQ)xK`Fh-A2mFO0|xe1PbXZkf;s?vS$u2H zPuVl5v7sNabFx_F@z%Du7|=qr34{&oxtXxACJFyCr7Af*$sMW0U{%<-5j|Uj+Khjg2}nBuQycs;YZA(-8YeeQ{3&1Oyv6CQ<^Aa%@|rwb;lVQ zcHW%YM44qqUvU~FMFCosX~y)|GA(N8Cm&4!W+}wpG)!!o7g~)U@OLifu49Q2PG0|<|9pN%71F`t@9o-sBK7? z*E7p)la%vVOWKX3>xa8LDVK3E>%#M!$o>rXL=%R#bKLRDH)ag4%yG}rGYHn|&Na}r zj*dgBwSqQVTdSv$l^@)8ZJzr*S+2I3Sqt?{A0va>Gq)GH-{0JE9gnKILnE6HqbAZDljS6Ri z!oJUc*m*cl?b+8@c5c?~#tC*%rFcp~q1dp`@gO`0N&Lu?=H8C0-Ipc#WmSl}B`5d= zQOK%@eHCOk_?-UxhJ&PGypw+CVzIY1pho_UIcR@MK#qP{e7E-rSLVD>eNbsx6q){r zd$V#2_pE>Z{T(XyS&0shEXm9Dc@!FS0<-MX^-1f(Bq@X(>FxxC`is!*fWZ~E`06q3 zjk53@^+t~k?pc!5jLXnEqp>K1bw;Hv;y&ZDTda2622{e|4R@@z8=CApl}J6K=p@yC zxL*4qV#~WWURfD^n>CPYum9ep$a`&zdrt+}DhQVBL?Tk>g`%x`e$YD1!)n$Rq8=`k zy?l2B`Wkck7DD$_)qIdv!p{ftpEERYi}5HxblOl7ZMZsdpeazNt^rRQVlx3DjW6KM zqoy~vRy$$~gZH;>D;}%{$MWdBCg03%Xj5e#x0~VEp^AMy^}L-AxLe6&@w2N!yb%Z7 z-DNnW9fa2-Stl2EM_Vm@hD<6g@ur^OQj5GrdF~dar4J}uM{)16pRK0IMqKV?rKB5_ zZ7|xh?B{6Z%QJ1~QyG-^Nd^<02f9)6hOFbRR>S!Xf4*N^jVSM~Tz!Wfsk~)!w zq4{vu!4vN8l2UUk@*b8tJ_Q*>7%pX_P0g(&=P7pwBR%=;DR(!;X2w7cyWh|=(BY|x z-^huok@f8b7c`8>dI}9dz5SndFOihNxN5{)vQ**Ah;^%I4$6dIYcA-9vp$F$mztH;qw^OM_&;MK)R-V$gq^cx-O$Hse@{zGXJC zQGo63Ce;3kNRpkxXm#(7cid|wWeIJpHVD(nJ91~&Kje;&>pFy;Zc9`z(o(n`ew&%5 zaM`>^G*_H_#$8F44-2mNgeZi$;_hvtD`u;SG%AuH&T--4~R0xR|Xt&@~|P?F?rHITY44;Tu`GT^8y55iI8zXxYk4Z!AHh zZ+h9Ctf!}gENa$yvu5Gtk{15u5)(fXV-`)_O{gJe$vaov8?0twQ$Kcpt1Q8K_-0{E z7NTMwKx?zGq(a&shU_aa&zC&=n(&GHu%u)o@qBHUt@!N5#muPLS>(bscbXN$V`dD0 zUWZ;V)WCY}B{TY83*DJ|dZE|8ReKF9$lp1ZzTv(uDHpL+|N7M@xR_~kF^d#@?p|!d zko*O_ySr(|@ckEVj|szTUqbdNWupk7H3UIZNaE4^>zQyo`jxxCQcdKLp-qFnc4z1r zgxv6Z69cdz&X8DO6B+&HCnJ=x^MX5M>(@u(Xe$F`7SZtBpIMN~-?|UVLsS`BVlhyZ z!Jw>Dwut7@*?i=*K=XhKnWA|>j-*y|%owW;##r)?7z4e3voHo}aCmcFZ|D#1Ns{t9ZJU-turPTg+k5dx zcaWsKf*;YqVnO^NE~N|=DINHOlWr<1-Qz;^bv&RWe{oNhmG5y4 zzIuPbrL3XfXOmw4aTi$7m)kBX2K0M>bKkG07h#i~B|Jw#*6L4~HuvTdv>59tiePSK+b+gf%k5UHUbqK*&C$l0y9lo^s<4EPKu2+Us-pqNDpf)yqpes3^YbWx9saLhZur?ZkZ9YwLEt?6rhe zA})K)*=|hb(X!Vp+Hfsg=(1PfL$*y;QIZ-W7qc?g+j?`oVP-CrT)xW9WnArgara#B ztQwv$$@^$U&*PE=huY)?TIkA9+g8X0!Yy(qb|2sp$kghdP_kj{j=lzC0oJ zWih99n{{TozBBoVj1oih2=lJ5<9SL_5^|6;3DY<2T6?_!@Rt$}`UiAC#6~=N6rwyl zM?dHfp=}9(M+4zG)UM6p)=M{%Bzcx9L_?(Mq7aHmaD!vYv(D=1xQ~H3_jJ%N5KWLQ z?-R7&EjC;j?{oFq-)!VrC&@y!?Q@r@KlxsQS0mxUe-u|-* zynUK`=1KCeIpUcg{;+*P4UC_;gd%TZOV3qFF26%O0ol*;n#i)VwP%zh*9I2-J$-(b z(>@jpaQGodyr=J~>UW^s6!F`lJiklwGF6Bc@ry+vEC)&3 zA?6@scihvE|6XSUcCb-_puS6Nxe)UCI`zrEc+V{PRYCg`q70_}V+QT>cigLxFQSTz z85q<52fzO3Pi^Z_L2SB^fql!>7cww!hfbd9737LL*{%%J^y@zLVxQoh#60~fx09z| zKhYY*^y^#IPjGai^y_Qd>i;hN`VR^-D_eEjsSlO=cLolXPVn3pDhMXwZDVdJdE8EG zm>i~BYc!Wo-^j)Eyzv4ksIo7qi>-jky}EhXg{+#I$RRDaW&c;y9L%;t{I z>?Dtl^`z?=gn4Q06EoFVe2q43YFs@q8U-zJUWQ&QA6# zB+~Z6_GD$MXR-1#Zi{~*@ds4wb75_QmvoTcon=T_&3U|EP4sM$6eSn+H`N&}uRf~k zj0N!bf!_?gQJ*xJ>^Y&-5&6*@i^om)k`M}bF!WEz6+_6DYlZ#+^)Q`(2job4MW=c33Ez@jG2vT? z755_Pqnz(DznJy*9M7{#A$1T99Q`ZP zU*lqmMnOPG&W*njt>+Nn=u?yMAm@kKL%pr%dte`DX@Y8FVkJ_JG)TSinF2rj4H3j% zHxcWtvdHtJq}0c3{`NP;#SBgB6Y};F&qNc3Guso}DRE{Dg-bn+Oc)}Tc{(V4%oyHS z=6S({fxWsIZN|`Jg=d+bL0Ihj%tZCO0i3V&VMk8@TTS$UvywJ20N^Zx=e`W0xwmqr z=b9w%RfTAPvr81h0B0=`0cRPxSAg@2Uh@eHYr&?p0GIH+K}5iL6)TPa=hcTj4*641 z%?fb-P&@BqEcBcrS9IGI{IkD&lUOHHvU-NUPfF@~&no$E;IPW2%KJDh;O8SE z!q2PZp21Hgem6(-7Eg>!`kX2Z@xsq;veIT3LI5FGsjh0I2R2`7fKD3LQ>gyzODF1< z;(JdYSb8JN>aAzXY|mTD0NfaVveFL~`=Z4sy&=8b!jP<(^LVds_xvR(X-FV?&p87Z zGyF>1MI1Xl`>hyOnlS_sPx}yDgZee{c;fj($;KS)>%qr%c|0=IGi?M@&SHA!L_=-F%hcR_jb{Xel>n@U>=Xpl?6+aQ`v8na^6u2JxNe#+1wbo%%nM1#xLiG7K-JL7G za}e9__QOAY*|XcHvFQexmhc>*f6GH2*c{SZm7$@3Pf-X%f7@;m{afzlXk+n8HK0DG zIcGqQr0zNkB>ui5S)Pxyr*C`ah%FbET4wpwXBTfA@^~i7@>W6pO`;H{{z8NLvvykz zegXBk3(ZI9G%r5eKDJvN{Eqq**Pp0-10cV5VS$heQR0^}ngy2IBgk^t`7-d3oa=>-E2l zs*9}KL(JFz*6!i!f3s-~;`-mzJ;qcCt^cLbR% zVQYJn@6(b#RkhMselK%h%gi10WBOcg;(MO;k~jW6&wfe%9b{Mq_rHBIEQ0$2?>YGu zgPR`<+-*n2Zo7+B!qfVGGprH@hK8ScUOe;z&lOo|zZZFtkPZEYs_}UmJ80$jhn~+R zr8DOB&xw2DVwS&k-s_!s+0#M_!5nIic7>?fX^j40VF+BJ$4>4g#j$IP3yk*Al)aRa7dIn)7psae}vfhaR z9=M6`cm%4bI~JRv?}@W}o4}#$NBX$@d-uPgjSR3F@D)6V$^lAPLe%mr&wqmCvitZb zrsadB_6b7R5Oiy=I0Svg9Lj9(zFu1)wY`gksHsl-;u9j?SbjlDPhefA6Y3P() z`;2+V|EOz5>AHqt#FG^Yn!rhfC!azXQF^}+-om6whUdOeY0i>VsUa7kAw&aF1Ve}l z`$dG1_us1|HI3?Snxrxl4APrmfY^Q^NA1T=Ampg9OK_V+vW|NedIw4c70Z&?XI+tG zRkfuJP2X3~RGlS#KQYf&r|jqX>JVC+n6LKRZ}c0KulA-I{CD}PcHdQ?e3co`t~cHR zGvlFjbuTxbAziKb;_iB6>|36yHW ze-mD?Oi9HYED`oLEEpk!5|tYjWa+D*c^g{s{1n;M7iTP6Z_~KIAuE|!G|U&1lOvCnJ}=oR9-WNr&|_W)-y0OzGFt) zy|vhKA&)IIu?HI_xW}Pw2j;mS+1sYzweY~(4jQV<{Ml^_)`qe@u`0m%#;c9&taP>% zteut4{$V&Py-X2kxw!@TF85Zepnq>JN9?mQ8wJgSuV`+bFKi&++)3)$3X+3*?11#eNiz~$R;&VHK|g1TU|0Rdw41D&s_=*l?oY+=?FWp@y+f9 z1C)uVoS)k|sYgL)Mh+^oZ%Q5{*`H0XNn#TVx{mgwOLhQ!Jj;`v$8hgw$gQj`u=*=v)0xj5^rIzf|0Va3l;IVPc&Z7d)!mm*;nTc1j=W+%Vp`n3F|@ zdRSD&Jn^t7fB!Tzvhp*Dat0Ly%W{J}ezcaKp{WUj#kZm+uH;|Ch8NTHaH(kCHgvd@ zzpAK!K8rxxq@whwgXH;P1;>0XrMxIipBahfL{#Tk|0j? zXC9WtcsqHR;LNnCT-3C}=^`eg&j8C~#+{H)5a&ZLwhn4jH4wjUfu zzf*E&9-j(Wymt$zhkvo&WZ4S-#9kN(MI0I z6gj+9$^Fm-(*+(+%?Zw@I}&8#bYpL=cbDn!xZO>p0d>9~r3NtS+7tBi9Xa9u#rY-97IuDT`Zocd{zOQAn!cll zISmAWB8wbdwu*HG{&0-Z2e|uBU?0CXeTP+F{BZncHy|i=`t#NSIKc`#{ffP&k1j() zkeiBqy{7-+*+fUci=dxi=iZ+_h5I$S_w>FF(;TIPkpDn`{Rh(@wd%72FC7VDkA674 zrss;?sAV5cf7(0>%KDltzR&dfo>CLZsq*7{@J3)I^9YS+KNgfp&!~88_Km*N%eg&~ z)GF>$Hdg3U&r_Qo#+V`}F0A#*^!6_E2tFC%=YH17aNSJ$_U5P4;co`~&4j<-;BOZE z&4#}@@HZF!GT?6>{QVAp^B3OybV2mo$LZ_ZTY*c~H?PpRj7)`paiTW}l04q*FoOLr z?9hG8T|aZGr#%fGF~Pc}Gd+wa02D=nTSj31_0|Wt+fQVVG|YU`JcD+^23s){HHXKW zS=QzLexmWqNXnz3Hly&a^D$AGNv<+K5m)3l?eQJ*6UcF~{_$n-KTTwx#bkOtbQmsm zjO%wg2!Q}SHlgK_I*#*X(;--AsCk;iWjs3~0lSatqi>+U_~A@=8w8aYsaBsJRs%8~$$ZQ@04I3NPJecz%$jC>e4p0sMwyK~ zZRr3N!TBoVyO{@Q%X_31EmD4wA0_)W#?Cg*9PH_1nfm=nZ0lp0wLI@ri8l54LZ>G6 zkNwn=5L!+#RROP$tHZ|s^?eQZ*h%J6U<~)fq4HxO6QuxtZMsF%%zIt#Old%s0>4uO zSPG1rq?ZD0l2Ze{&=?F-yW^-cXw?6Gh3&v3z1rPJV?uo-%Ukoy1t+Uq>UJhdU z&t@KX@03Q=df!Hk;CjzW*Vp^v^rBktf78hSd%e3S>+AhCjhn3ZuU^c2%YENu=k`%9S{-1R0qulFn3fQ)vT&$t`G0H^gXUng2|vcq~0o2;+*+v)$e>-|5o zec{=cGYedvcOY#4Zi=`1s`;rPrIdUhlZi0+ry1(APXF{MzOY*dC^+2xCX2hL2T)6# z70P@rAjRJ1YBsFJ^ondqhs>FkMhqMwZrQ@mZE!8W2S_s51sqNfb8`WpD7t{w5!eNs ztdDSiKADwzJu}8*8o*a>s1ana4Dyr7;`Z&n#0ptu{KF9o@9UD;*yUMEG{o)Oxsw@o z4|A!+;LCmVFb^e=E3zi@I#u=944ITz({olI;)Xdsc?)7O4bWoo$XHev9t*!kys8xe zdYVO_^3vOx-8~Ug$oWA+tT2Tw>zY}^Q-MmjE5ztMHo1dF7ry&WrpM)JNXPQLt7$k? z&Soqr+Q>~x)Mevj!N2gi(QwmCu=pDtUC*$#A58V%pX7Opd*MK&Pl8MkDfUmYyJyyL zyWSMz6^Fh~$0LWfnxb>)lT*Z6c4(Is8iG+c{pWgSV^T9&HT%Y?1f*qOHlXJ>4cO_eMbR#~@tmj!tN1!WwrxgI|>|p4tb!;YDu=_|&PXQgKCc4lkvzvK z{H=n&Ecp8a{#L`^nuSpxXOD_#7EsJpjQ=;H8|@$jPPOYGm>p0F46o#yT&)tTIV^jx zCkV!wNfrA6_t3)#Sj2!ORkzb0KRmmKRi8Z;IHZLq+HL?AZYGbka}s3( ztmycBH8T4k>8UJhbas+i->53z&<6y7Vb->PYIXAnoMF=j zR~=6ueS{mP7&s>TbMpWm4&kpDn{e#;%i%;y{z}sMOTLnI>{N3(IEH)az+wz!q#SHJ zHhY&lQ;t_G_B$Ofc7E^$BXiTAO?9dS3yr}bFv8k}j!0?Bqt0eV}^a`7mFyuQvwiNr{{Os!DmdbY%hkWcmR?q$7H2pqT!=8F` zyWifhq#>{P$ChTDJZbl^G7k@Vh8%12?64B@lc;ZjY4Z)ShUwS+t~ylpk4@97`r6ZQ z4O!3ZgAlIi%>KunS9YhimHE_)UH=^~y0`z&7TtJ}4rI}d6=%+N(Iq5$-%L!5kM(+! z;$l0;M<>O-;f?8%Y0hh|r$i!in!}p=eVV@J#yXvu zG5VP){56PnC*~dViMe}bJ7HOK#{|fhTN?W{71>>vxtoccmTS&E-FeM@BK^B9j9y_k znhp8VzaHe8oB#Nb-u`3t+!dxfuetuZy{%6SdBHzcuDPe59P%VNM%G*nFzvMFzV(}S zSaUZlYwnoSnLVtZ+5dwz*V}w*?{dwVzklHH3m4q$r24Sg%dA(<)MRpJ>r2z^skb2M z%W(GO(?j4*m5a0cx_cLL@_&>OqzY447VcS+?RB}oF68`<)`qaJmSxX&k0|7{jq{J7 zr;S9`gGUz44s05HA9;J?OVh>1$)V|KQ$-Zg^t917nw}|>#lEJ=%Is%co@~H^vT=$# zYdSl=D!aNTi%PIcjLpi9_w1mDu@Hp;*;(0JYzAci0Rv9h4R~>NcC2}TRwd6M+2;2T zKGZ$H6F9@{vDnLnyU1ZskhQ?V^J}uB;PzS~#M_TZ0Xs*|WHtZ=gC)bw8fprd3^(8l ztOYE-h`Zqoqkx5{#)G*l4)tqokio?2rj^vZ>=)cE$8($K7*^pYOgrE zCj6TpuwHHcj)F5_0X(BMg=sbDz#01QVNZdU_0b)h(Dg+}Y7QH1vgmT}5~xfIP`?)f z)N355Mc<7~Vx5lfEpGZCN*`OG*8Mk7c^064pHV1B*#Mx!MH)Lc+WfA!<(spYv2y#T zmUdSkXI#;~&D~YI0ZuyX`hlq)R{HaR5R3efwy})P)iL#b=)}wSLnxru=XJw=79sMQqQK z;1!k}w?!pa_E`2(m*++9tl~&suVGX3HF}g&Tma}X*XIG1tOEplrrM71j!3R*GlDay z=SzKr`^Dc_;>qkrHUqFTJ3=3TPT{SH_EAjH2k;q!PGzsQnE_o|WH(^Y>Fn0#0b0=+ zDBmJWQI|L4oyp$j@@%43u_WHPX>Y7&Cq0ZM@uuI{rE}TCEdy$@Md!00@SL<8ka!^* zZg8X$&AT8w?|S`{eZ}LRMNYle$1iC!3fF-sZ~yxjx!tAgf&X!(WEPA3wn76|=W_N( zo|@Db|D~4jNOIU%R0~6{WIyflL=&O7xboe<+0S?$riT&NXqf4dpDURMXur_mGGOzJ zcJ;hjLoIZ*xGJ08HqF0x;qE-k{Nwx@chKR-`4y0nALpO0LofOhIbQuZ_od_U$GOWa z{m1#0Sx!IBg}QHB%NIH#WBoD%Ii3fS9W-v*OY$cCc@H zQ_u=MTP`x#Guo_r0^Rr)1mqt}jh52RxchvWsEKtc6*DIY};0 z!fXOXfo~G^FkYI8nGH)I=M&E}R9A~8TI#l#&63MaO0HydYL(;(7>({ny*>O(ccA>H zQe7>SB&j=0ghEc4k_-hv64R62U`=yO%>#}NNSvJPUNVdA_T>EFSz5?^kIDH!mp}Mp z-5@TUrMI#t2-Om_H&f4ORTa9b{twn+)4N=UCjgh!F-=IX?3g(D{+6j&hn_hk`EVVU z;ztyJ@pb4b#j=`DtIV3bH0(igCZ3R(1>5l}v{U}1H23fv z*0w=Zc8M0o{hg zIWe&zs~4VAJ|H?ank9$lM3joIS3N2&I@TM{GBP*xWSbm>ofd8gXZJ;r%(|8={=S?FN=m>(e7>-kAw1bMWDTB| zrJGrEIE73uES+AIs@nxRByW{u3t$Wk!ZO-VtHOAcB+b-BAId~=yDGEPqoJjPZ*vmC zGP^bZ;zuYOUNxt@QO%amXf-x!OHn~KYQ>M3*r*jNco)vt_@x!Ak4#G|PR{J>61SFf1taycSbL9J!}8!O zs-vBUF4Eo?a|I>6XP%kli_&Z{&P z&>o*FxaqHlazX;Vv5840a*By(1vhhgvLUsoRISaJ_y#d7`2+Z^-dQWBobBjd^M{3d zvM40l3QU!*E(b_BL2akH8hqWQ?q)do=6Xa)HY$japia(pCaCwMt&IYrx%cdR0A5dm ziGXm8uTqx6rQBRHm$MXnfUI#&x#BU1SKInIp^A?HuaHHkwc7~>PV<7D!WrQ?sYw!NlRwU$oFbCIlq%idBw zx4NiVR9w~XF1e~Vz-z9YQXzUPSB;{WAXg3NM<`dhhiB+Jm@gz+X&Hi}GA&kqr&f@o zd{jqEoBqgw5Bko~_fHglav4{Etm!@U)ZDzX-_*z;Y0+^V0F)EHh zklDOg0zxWRJT@*NHrB*QiBW98s;$UKRIDf|F{(inJ6}5&DXFae_+Iy|3-<)gb6#XW zNGIL%1Sj1`bv3vKN!^HfIwvVfD2zsUkdqqDbKWC;FKva+6MH0>U)zc(&u#P8 z5hK0?OUjxlk!?Jf){2u*c{^dNLunD5fnurbJQ8P3u$m6ZjO>}!W8xe z(l;4;fs`s#i;8r9x=Yeo1aO*3XMxB=tw7pCQ9;t#$&Z*wXD6I!bKB$>iPtumWfind zEJpsNMv!yL{7x2}mL+4Qxl+Hgf-Gp8Smsj-FdtG*0hsqwj;lUPo&>uuN79)f%@=^T zX3|k{Y?x<|PGGz@DT%pKb1I7U6qV>@2gdG9gX1{z)&(%-b-1^-N^ zx*A@yr0!&a7vUcznFy!@|G3hOh)FG?=6YO6SMhz@_@%>wOY{83VrYuL7_x@~gN0(q zUW&nPEF^&6WdM+&_RO?)p3Y1QglbVSQ|4VV(@i)PW@fr3QdVQ8>hlR%lJ+oR@*NyaG6N>YRG+`_@K zL09jy0dpl?*{;VGa;|V;!EX1aqN^~UMYYWFvicq1r#?O^A&%5aQ87tz%sVcqc4AlV=5SW+wVVpZU`cv0No>`Hi4mSO3W~N6bETt002ID=n@n{z0M!RtC(PH0 zOG$oJAn`iMwU~qSoGm`ta@t=7KDc!oLa@@dZpzC+^EqjSv1OfeLPfYnm4H|c%PmM@ zjbC?=B2 zfLh%w_ePbQukYWkadxd*RD`wVP6&(KO4*bRE0`9|+Fa~YmUO=#0}NnIYozriMFvUh zb$*1BmizSudO5XSV%BkiAgh5ED_>G8SWhvkqn(2t(%x|Hc@#TWwRwp9OUtZE3uYZ~ zJiTcNFz6>K_re9vm!kGa^RFz>>nRmTy9It;3JFY#iiyU0N^H`iVxyxPB(ac`^*uN< zRR~aGSwDc7g`9^T3-D5Thr!7ehlP5!Q3SO0c0{^Zus~4LNvf-%bwKJK6KL^eM=o_K z>0t#AZsTq(aNfoplJ*WS5ZgHLLEG6V?=~#(Q&I&HDX)}FFddwj+me$Kk?S}CDG{k@ zG~!e>ldM(^r@y7Il`;h{#ZX<26Ct4EQnz8I-cVAKdYOWnDzWpYco%^89W^#q6GG^? zse?>u)i=kBNkGa(e-Z!>$t18qgTb{g#NpG@VVHx|PGn`jz|Z)@Y}M%xE0CL{9~0_D zMMvlEgpSC~t=|It=KAStz`#mHGbl1hMN|0^N<}VsCXJsco7VR~61((FK}q=*Yq``K zQqo?kqb1KpX>TW_2)`PaYo3|>fGACPa{~It3#jp6+0RX`8!Y*FVFlE`axQq;oIee< z_O}XeY^K=wt?3U$&lE0<6-G?SuPRL`6q?A-xGEY}~1+1%gOhqJ{F!U5CP zhkGh5bY6Te`5D6Sg@U9SQe6$dn=+=l3-$U*Nov7p#0Uwh*+OT6x-D(hS||t#=GO>H zc~)VeAgGrH=7bgpc;e$3FBZ%Ioy>iP?HQO;fhgz@J@}1jJP{*EU1;DMLzR>ubp$8f zlP3pLRSly+srrGyh)|c3^a7-Lvxyrs-+iE_frycpATg>B%JCKw(|3cMLdKYW)g2`% zURpW|uMHa zYE!E+Z)O_3_@lI8a_l}G6@kf{c9Iu4S4v@Wo}&Pcx$~p~Is^gnb~h)W;?YrYuxG=& z17hIr09bC`1a@HVq@GAX_TuW9lLQ6Xi?cpk8}8{yq0rV>Rq5g@fC1mceL!_J*eXfg z)I~Z8DM=3)ZIIA+i=0WQvb5D>ksu+MUt5yOvv!LJ2?>ahg!~XSh+~m&`&zQyoTUtf zQho)7AR!6aiV>t~G;j^12c)y<5Kt(P5LMMMij=C01xAE~lq3_7<|G8hw20L-5HXSv zB*)D$IaOKXL9l_h^&A63CbAXtz}T5u)A2b6&C!RXqc91nj!2=gf1%!4$`h(ZRT2wQTUqaSku_%h3 zw^(XREgh^fxoa?0;b(yS3^b7DUgv&`ZJMjCF|mzi10k)xU_(gBI$+tTiN0YOk4zUm zaNDLyw4AGsu%Pu8RA3K5+l8}H6(6usOnh{rxcC-~D=9Y4o7f_jwGsXebc5X^KPXUFErS%*r zc#QMm4=dUNl_YJ>lTepT3vrFde~&uakS2q2bnIe5PjlA+`v}aiq2kAkrPW`b!a6Q> z5+hJo8(z$nX%N&{xZa;Ya+^AnYO?Gop5skOA-6A&?%ODc-)OALYv zjEjQ(NMvkogeQhy`HoG9@kYbt{}AtFB&g5;B`BZ=rZm+Ptzv6i(oWRz@ff z55WoG9dFJ|0;~atWP3?rb#ThYmYkZx5GyXmy%~xHRGgR`1|w9_O9|U(P<529Hdrc{ zsX5ivpn65>He0H9mz1Q*Qc*X7H7#H@4+PBXrr_@Ulwhy>c{Xgr_)vD{H)xSzy4ZyX zoFuZr0uM&mqY$q?Te^)mgq&)b3(PKil{g4l8t@_bj|y?(Gb6tjaE=pkd2n| zBPKRl3g_K??q$zWNTh!MnjS=Oy-`bh6Ge!A8xft_D^wsr%S6osE>F5sXG~I2*ZN zTIRfc>n&|HS|(Ts=GPXb^6a5y1`A1$dYzL!B!xm0?;&+s3Z;QS!J^Q%xi5_MUvE;- zVd_gm*O;iEbhr01!9+u-t_IUbQujLn6WPHj$v^;`@8H0i7POiNg2o*jWXQ*xpdfMx zE1BOsd(TSP-5CmcSn~>T^>gVeOk+*g{+KQ$~?s#7aSKXFt?OO=7rUet0yKh-TWDh-$s>F275 zM)rr-K9y6ERa=-- zJjk068v|Vutc;r6$_WZ7MA;2JC-3_7ifrf|C=LTfPj8Blw(x$GQS=0ac(wE$)z#1( zDs{hJuJeS{2Kl)CE$ zjD)|GBp*%&=P$6PfuiOCP>{bM#ZnIC)VPySBN{oRp$Qa>^hzP#|17JcGo`609$6tOs-JG=ln;tZ zN`SZ8@sg@?U{q2f+(d929+U(AvJ-up9?ludBmxVG(Qpkf;}5u9U=a;kTV8XdWAhREV>Sq_Z%QJ?|v0(0S*6 zp;}bDv-B=`ryIa-E~Vav_+h1LrPL1;6)dF&^CKqS8N5>GofQ(VZ&wQ5nPssugIYn} zSxI%YWLYWgErpceJGmK_8I=aih`jR^STlHM|4L`xSuJgU1&Ek=M@7+prJr{y6pxCD ziH;Gp6Ae2Q)@$$%q#diIQ;1+4t0XdQN4V!EjaOSp>!eRtAzn^7gJ-Eu5a`L6E;8lWhV18}sDbFqg&XRIM134zFpmuI(=@{e-1g1&WIxK}8 z#E1^ije{5=dXk2%L9|7>+H{rRnpdc<2GK^T`;vf&6g^7v{3^jUU`-2H%>w~r`=~!Z zZP-5YiS|+Bi_ku@MF2wt;&BjThyx07dz*9{^3R@iK3l1?&f7w@s90y`U9!#`fY;1A zzlq$`SZ6au1zBe!KVo8?jd0@4{i8h+uXU>g>s+u{IZLe|>jY*wudKb&Ua>5}I%h32 zDh-$sS;q(V4c4id<;*$UJVmNW)TqcGp@H3$#;h%?6Vk875Hn|QIa+=+F+h{ zvz(ddxU|(KOE3@2uPsF7*&|uVJflK$;d(y8V*H*fYrg*7TtO5B20$AN8ILG^ zPb1e*Iw!sTHcODtc&e+RbV};}B2Xgaqa;58)_lhW*0h+_JPgw5BhpM6 zux8NAJAXLS%uQ*#%pW?hu-F%xUHqs;lASmb#-M2J@auNk%F>a8EV&4`-SQl(t6x zA!r8X*Or{}tUq841rDc~Kpr~QHy&Bv2yF1aqOS^3K!7;W7#388u;w%a*0h+_JPI)1DuptmA6WCM?gkyaXvsV)o){!94vemOiGIka>nu9qk;1OM8P?BlEaEHfAOF zb11DBg%sa{^ek947-;rtWFXsHW-7@!o)x3Dw;-vATCWx?6cz(NUvWvXNl`50CUkaU z;$jon!Ld7gvSoG>e15WYtj!pFc5)q!U0Yi6+>S`c8D0LrPgCG$CQj!{L1Ob6HPCz8Z z)I8ZTN%)hrtJ+2dyH>Mak3hX+8`rK!{O8?>7(;5KyGf?1C*5q#r?Pp0$TO>vcE~M4 z@u*o;tkdu=S?6;A(_HI(3ej6xX9C3pS?5=NgtCtNS2)e)EmgEc>*qCsak4B{R!}R* zI9sTWmLxIK-bP3T-pE;DnNexLj9BY1ux2pLKWm(8odju{0V3utm5O4-8p1LOv5B!s zl4WAOu`F_YzGN9g5)c#XWg%y_L@*>7Ll6jpSXOWj?pF-Sc3wYCq)TP81<5=}bv0-j zN!|Oib&^q%YA_n1K$3Yl+qukXENxZG7G)01ul?jJ&q~9R6J?Gh7ZIaaP&~#qFT;bc zNG^uNfW_bzLrSoDnZ~PeOLOVti`jx(dQx2tn`Tn?U4aeZ7A5Hl2=n3wtZ9*|c_313 z;Edqui4B}aEad*LDzG0O0p>K^H-bZgF$5&8k%jpBl=Kyn&AzZ1wni^(J{77(MKRCZ zCB>`;OwAOtN@Su|*c_v%AjKT!M@$rR7|yntVp>bQ4rB|83Cbbs39SV1BgzU=Ohu}r zd*pw#Bj8wB%L?ti3C+0X)>}Oy?~6FYE(44AlvxO(#v0j z>kiRL-Y94l^NJ=Q2Ckr|4$1As-h3%H#3Bi)mL9?Wd;)&hj3I$AB#uRu$_w|rNaNPl zQwQnOvk*5gXx^o|8b42@q!;1jsckH;%39pLQ?1{S+)tfrVd+AXR(SJdU6=jz+Gb^oI2I=N!R0 z^Qo?eQYWc9SD-{#M@eP@*1$ThpS5^Ny`d&-EmZj9_5r)HOR^tYe10E`>u3%FgU9e@ zrTB9|aIrrJb{FFDThe35K6~!jo~?7wDxq3b-1E*|a!<)zoqLMs+LbqT;i&ogcrAWJ zu?9Z3QHv$tv}c0u61N9(1qZdXSZhJ8AqRD!I$GxRkoMZ=3Jz*vo|&YF(tJQ_@CRBW z!Lq;Paec-zuEAE2zre_LL(xml6)7y(y%9u(S2fp9N}&O9aqzt6mD~unvTJToP)u|J zfAAjLJ!wzmmWLM<+A83-9|+1(AtX61)blgNMq7cONPih%!+B~h)zxt9BXxg+EHH1p zlw`WXiq}N0H5@DB7HM0&K9V-43%ro87{N|^CSAEZBG=DXVSxY*yv*^7+zPBs4+A{x z2LWMK2tx2|G!Q*tE+-2J-Vq9j2HpVa{DE9SUstKF2Hs~<_mTjQ(3g^2fK$Nf>wp$M z$xk)m2%*C1%MEFCIu+VOjXLJu;{XK)3LIA65ef{onvbkn?mn6ME9rh!KC|&e2YEK) zzFd8)RvdMU?rDy1?vl+?d^(#w4G6$m*D9%0iVN02J@^q5oAnrZKBp-;se>e5-F$+> z(kwQ9pf-@hCQ=G5SLLCoD#7aZfbK0vgoT{U4V6qKf{lCu z-kA+dRf5g7DiPFxs!FhHRuvOywe!d#)S&2FRoXiY>A;&vn=Lac4VV#kb~C}6!AvFcop*LKrR|x3 zh0@NRV4{bqu7=fIsT-fKGm((XEsC$LgglfnvK-ydCSWI!=jG5#ML&}VohR)3No9KX5&-A9ugjUjaJ zQ8+X{S}H^6mM{3|E2^tOw@~VSA)q6Cq$K^|1n~N)n*jph2Q^n!Ax-PCJ=m4UejNe* zYz+z{w%t>#k;|mQ*rpfa?{eucB&hx7Z*rc&M=7C2$w#a1l8<%(SUkOguXo6rniRD^`2OI*J|)2SPcU0Y8D(zCbL3M%@7>S{Qxm%5*FoSKri zs42lmFxX(C;cK1y+Z&~+kJgI*HcYQ|eU)Qf)*1{H$irh<6LTwxxCfNqoxJKsOt0aRvD zjdG$`lNw)?Bkydycb#3u^B5d8_mvv)BZ?gG%VCYy=@ribiB{4&K`|XIR$ir6kYajK z9W7N3N_#!H=ZUP-%f(B(U$xAtv|v`Odg8#MQS}U4=Unw1mGiX; z-2C?m4%XX0Dwe+M1>>y90?tT`fp<>3=H^xjg6Av~;L-RA7k})*lD6_bv|kp;Wvu@N zUpU)8H#amujS&;~>q%X`t40(kVPmwhRt7FZ4=DAjXe_(rvSueI+-LA zPNS1NiU-n34nJa|6S#=U6Hj}wVI_&y>J5TZPFO4*qn40Uu2UT?IqsA8u0RTKPB~`G zO3sneg1hp-C)_8k1fzmjW^GS!ZFJ_9YH|j6Xo|<9ZIe_y%QpCVB{VQGDIUAZm7ySx zk71ii!PkR0t3ZQO6GfICjo0lDZhfgJ(_6cZL;8YqN_(U&xC4WowA+0Qo$nqgE|!>F#*9gY|g@RT5p z3uJ@pb0cD+siuRg0~`;e8%T^ZdvY5V$5U@aPND|<^q0s>jehRgM3x28PcT11>Bk+sN#8ytNVH0B64cYc zVx=y%g4EN5>S)xHDD5@cBpSwbEi)<&m=U*5fnZH=4*&FWr%ldVr$*9t;3j?Rq@r+b z@)J(^pxCHb{?sToX5zf?;tj9p76a+PQvyl^6$`vfA~G%?DaUpcwgW$>L2E1O3F+7; z5Hv4mhErV)pk%50KM2Bny-G=jC_r$-GQup>KN{(rJCmcg|OWp##yr~bt!-~}S-DAK&qo*|AMqPpg_<|s%1u{0W%`KJO$PadYN3{OfT)F z?WX_`^Ythd#ghesUhXO73u4`m!d37XuQ$r8C1VwGWxcv-y7jocD;V2E|9 zAWOZ+SAuP{wSq`_Hj}lgA@z>*xa4L*LXlKgL+VYbTV=D}w^5Qxn*|AhHI0PSJj)U!LN=lu*|45U`Ax4p_GMe#lB^&=FA zWlQ6E>y6XOsVhpG0j)lZSVOdrEF`UQ1s{ zj{>&{)~P~uIWok@Po?g?EOHDK{d|8&u0knkI9Nb5ka?oEI5W>@(q8x$!93uDwgQ!R zt}UX{S$`e2M-Za1yMXq0j2GTZi}wx!^=M)N9Kr*P0~Mlau#h4~ZE4&Z-+UweOxYs% z<}IqLVf3Zcecix_AgH7rxwNSp3~B+ZsUToZIqvT_vu+_iudUx06)+9I6_p@Df*PVb zN@}q0q@yr{JRi!4)U*Syo^hA}pnZ^0TbK zIPg+Y|5zf%#|Tqs=-Qh4Mf&#?gwCs-*Qu@s(`c#t+E%^VQIc0+w81%jwmNgp7-{R3 zt%7r4er*XV&z{`s=bTU()dB|0b^;!Zyw_1C7ro^rCHo-+rEtVdmmXM2{r#e~+{U+_T*@j%?dd!%W{D3K~ z$|%M5az!v|R6ieVLr$`Na$v5UqM|UZ^_NvZVcTT8r=AZUD~ykWZVxA>V8K1n-gvkd z2X7Fp+7`ADJ?i_)IB5+_N)Kf{xYmLDd}RZaCAosZ5<5R}bGYY6ii)-f7fY9i0xF!Q zrczxE!39!x(l(u@lw`bu3QMD<+mNPgp;{s~3(*7`+$q?SrM&<;2crC-S+o$eeO#-4v`I^cZ4ZS)gKd>`f5$e#UFWE- z2HP^JdrH7YxJyY+0Qmei!5s(y$woEJ_pI{@D5oHEs>k`FWIEVKHmim&95aFNls^-~ zx0BV#-6V7UA>9n)PS{@jD!KzEy8l-;51yJV-wx9jYb43Wbk*4XK7iU+dO8~li3 zr-Fzbon71YBFQI#>bzYL)3+8QUsEGUOg~W_EkE+4y^-5Rk@U4?Mx_BWVv*DVtQm~7 zc)N3zv|ifo0DzdQBo)QW+x=`59uOTRxTsVj7D;hlFYEvMx}HoiQCT~UUTb%U`&p<= zad`8*)yjY_>%u)dC!Du9rOitTVNm$ph< zN4JY|3Fg1_HN|&~FqD zB%$g2h$12E3QdO-ZQiOKl|W6|Ay{ag#Y!Hvf-LkW)zQ-An6$SWl7V-H@+>nd4VV#G zXd+lMSm@RcXBIjsZBGP5%v~WB#WXnt1;Rc>g01kb@XedXq-3vClQ>Y3H4SeLkVO8cLU?ZXW|Bf}xW3=F+BaFsOyB zrh<@>fX3}$JKI48Bu=kgT);ggSoh|znX^L%V;isgOG>gE(qEX!o_~JXp?8hG5voPC zQ@ed9G(@(S8#uO>uF+bNms&k^o+5)(bcP=>QPCMV>t-r)2Z`JD{@y95C}bB|VOei% zY8A{6C?m*3HK>ZlL;=!VwOxXV?%AbJs5D?gWTN9Dm@90;V>=RDyPS!rgfx8|63tu= zsThtxqVcAYVxoKCCP6Rj+{Fhs7RGwx;Ksu0Pp9?Z1yPt^638Vis}_899yVjfaWx`q z9K2JtGmThVQ01gs9Ux*}{Pdx^8af`S`~EJy_)(IcFxsG;!MmI(=N@UR=Pp4xFu%6` zlxHvR@>5P&U^Ius^|r5)3NWLZ?>V-tnGc>ORU(23FikjOMTa0JGiaO|CK1xNDRB1r zh4__JSHq-&)LkktAnnaX={5n>z%D zbaSJfPvnUu!lQ+FeXsNyQjSm!S-A(r%GDY}YlV7I(M{zb$fdiu@36vdz3M5q+pg+~ zhok1_CSv#z#S-{Fju@8Z%C$6xs!80uy9M36XtDGhwS;`rmFj5OQ(fA7W4CAwJ!i~H zeyWrf+>Qf2VPmKs7&Qu@?{+&khHAIu_YV@L&5d$-`81|LBA9Fv$B2dm5|fMVd0 zin1x|d$Mbd88>gklw`gF2#cSMyPexXb)~KO0w8P$P2~Tk?I7jcICwQ8---S8mM>fY;V%S& z;sg)}C+4s?%?gV^no?Psw!g($m`958EElgS(CG z*OKc+x&2DIOCo9qXq&fRFF@q5UbUL%Q;G-HJRk8RiijdRLl0<=UV$`{Kz+DJaL~^d zBcrJiBUM9nkWGNaOf8L{T+1=bAmS-;1*=t-8gdjTNkqDMvX-X1^k zguy+A@ZDx?NQ<3SJUqLVDBk-6%mc3w^(&NA3T#!2T@jpjs8kY@7>+M<`I`cut*57@ zlg9x7PCUi-Is$i0khZSw5hW1JuN4T&vm*e!WSuYx z0$E@p%*eNWopf0Me-#h{1bpK-5&?>(L2CfDm5zG%3c`7c>T21PB6XjD_kaL1lX^%= zn(h_#5LnZ~Rr5f&xZ{G{_-LrF3Y*mrXa!HbKWZZ~;2d@8{n8+an`aJ2*0T_ApOfCg zOr#DXEuVMy7@RY-Ol}drCgVkeb81|?8C0zHfDxaKsMT#$P_beoi^(?} zfGR1g;ztdG0&WEr>vozAYuu+g31TcDZKk6!fQglkR#Bvoj+XNyijJ@wv>bB4yaj77 zFLU8nPAP}qw@Ql`RFxiI};Ew zcY{y_4WxWdV=b5oX8Jm7pV(3?bd=yRl8$INgIO�Kf8{XS( z_@J#%J|nXxw`BFc_f<4Y1G!Yd^QlEBhcblcV;Zss z&wJ9v5BCWo8cKCFc)Cg5!3I18JSF{>OPjjEpcbo|3Svbr`h73!G2T~=v7xZb=854C zoP;)Vs7wpL&=lHy-Ce?tsnT7T$DWDi?$w(=V}xo^?Z$c=gyg!&99}t3wvdN7w3g=2 zevyw_AyoWNvL=vu-28}%dE9^M%+p6=c6*;-o(C*e?x$9ec@n6O#yowcy_i1*^W1Nl zQE9-8$UN6YG*{U9@1Xnhr!(<K;zyhte& z6BXM4uBrR-da{|L;pfmVmz5B_JR+p|x{B=jXxMo8g=&X}gYippAJX`><@L36vKPe9 z3!%YOSHr5m)cxj9eFvr_U%_aDd4B!VnR&jHw!ZpPFb~YHtw!b9d!RAc7s1B3eJ`C|0?EOfLtCh>2GX}u zccTD_EO#YY2T=3o5LnYfR`Wo}NI;Mu?dSQT3yEs(8ef=2Y>Mk@A-?_~eT8`l0g?55 zNvvnBCA43t7ZnMm-3bYi(&wT5dg)Vhzg_9`G#oXzgqrgslz?2#S;$k?me6pC+vEEM z33anrdYf8866!~Fw450s?R~Ugw1nO^W+lI0O6zfyVoRtA7&WS(U-mnFE3S^kmb4gaYEd;yA9XUW4HIg=?0>=LY0Nc$UzB zwFNandXotObJp2Nbv1CtO5L?^TFreQCGjZ~u--Ym-?{HIPTKMb6tM4;$^T9JKFYb@ z_xp(l?nv}TML}g4#ko{yi-jkWR$_B{3iYvI!?cP=KHW93VNTfig`xcYD8J znTk|b10`MRhQg~-&08)d2{|BoJhw4Cl16Hp-&qTFrGx=UW^4p^JFRPR9Ku>7>b z=6@6qENq7GBa~O%Lk{SL&0LAppaX(a=2)!!My(*HWKkV0Lo%ej<&Xz_OZA&&Mx_BW zVqr57tQll-@PKn=vq0J&2#A;~8x_Tu2mC}53h!BoPx7*i3;v7i-lRCzx?O%Mn=#rK z8We9U@BbFOm5@`5gM3ri@Nmy<3V^npR!AqW0|1<3LJyLqr-8LZ>XtjGbBvOdfzd`~ zQ|q8}WwT7$Dsxa&HZZ^TGp{`R_kck#DoWQDxXVy9x&WmHam~F*abGh(JsrEpm+Pt3tfZmEOWkq`D!6!WRb&>iP5eqNJYuyQH2BfYVGp zvqe5?)U%bsfz(sLkC>>Z08X^Io3ma5wc((ko{JVM=c$$C6+5~HAJP^R;rtEKoSTKD zLhXbv2Rm<>RB6Ga$UgZng~2`#9&%=%&C-58fMRaws6gO7++CreGiN{i3dcl8!)dk?+N#IQ>a z+-fR_8#yTVAgl71FQ$;le%Y>azyb{BfKPXpaN-f^EX-ohKWh%^?VZ^|wWxMh$M1xO z$ae5D2iDTw`A1}?Mn(4?CJcd86wZ%ODsqLh&ZBZIUllwlajS4x&{2}bQarVUl~7Bn zqy1|AE$uZwEOuA%#;hcHlvV{H#jgsM1*--py?fYsdv#XMQC5uBzAC69@*Eab(b)5F z{USCYAv%!~Q({~c-0y>Lkngbpn9D&SYQnlOwi1|&D98l~7TAP#o5DSVC>+{)`&YU; z5a8f-(XUijgYKf#9dlT(iZh;Z*U@38aU>$0@P1Vs3u!GYr6+J^>}hhH8h^d!(A zt5Cp&kH{lEIVemx1otQ)K^Y1m5P_*w${2-GtUn{l93jh5 zV^voPaYLPlPiylD!cvEIp8DqyQd&{*RA32Mg?DjN&?86maw!qQ2OAnky+%Pnj(UY3 zF>%x@taF;R15`pn*6xVlsLw5yKBbnBqtd93mN_M*y&*>gM}2C{O7cT#wL>X(fSw1V z21U(1;!IH+D{I3|xwD$$*C{3eczsfk6f`h8e&_93=}= z1E#Wcu)t7uaCt{?2{3A~&ZVQytW#S~@e?0RyR0gfQAY*g3<}7D$5Rs% z65|Bp#ChZ6;LHV#SRaB*nohc@MG59#gpR?k7wNJm;M} zdExd!u|gbuL^?W(4V!9L>kL1NbVEM3{26K%RjJeXPDqDr$+B6-;@oJ~=3<|+`G;b99P8H=F*LU|6e$ks|p z<^aO{vN~APB31K1q?}y>_8cq8HZ;tOvbx-BD|~-4rD|Td9wx@Jw-Eo@N&g_hNVA75 z)SY~xrr@g%gJ&0I8S~1WFbe64m;OsHV@mvGSH{$bqvp%!b@&m*1NcNm9X22jSYIn+ zUXxfo^p{|i6pN*&sU<99I#L}iH#$mtulyy-n5T_d$uE)8dI+Vsd8z?MjWXtoznsgM zE^>+*!nC$|QUO)}%g-(qf)c#2_kn&6-#*1fCB!#~W)sT6C*7f#F$rO@z?T^!Z~ll3 z6Gq1gQRfFHg?q-*__cM^T{`y@#Lqcq9@W*b>MC_-!&x@(pOj>#0tIWBoWGp+Pu--g znF18tKmEl2P3t`6+^E0&G!qucp&7M>UrQIj;I(wcF~P+VIxZ*J0LMi5#}QzT(O@-T zdP@fn{Ur$II@Q&H=_z%u2w(`oD9J^Dm-lX^g5;&y7)+wO+UnSX+YCq;Po#0*4i;6)x{nII!gC$&Z+*rYFnTXYD0_D#7Z0LQu_*7EAx5mXK=Fsg4GI zKWT3~cRY%ntJ*xo^*>`~a+;K8cOl(Wf9FFbz_6cg;M>5%Hs^M1McK)C1s*9qL~-FOjYK<0dJMO;ZOi@CbA_sE5Dt{8{|E@ZyCXu# zBNa+|PGN;C6nxT|g}#;c&Iz!vul%R@x7JryPVPA&sOZF_d0_#732S@Vcb^IsuebMT zoEPDj5S*6L<7xzgQ}-lUu^J7fNe>@7DQKt()zxTdh}3O#Qg7oZNzzF{Ll3coN33le zHP;@QI=qF<2`TtZeoC;HGf?z$X1@vN{6KP^$1c!v&*#DGSu|)c(6@BwNf!Jloqv;0 zt{TZ?xxda&c{Dq)Y4CkygY^t*7u5!9BqfYwAp49i%O zAHk}<2DHUF$s+Fj>-uodLw`FjxGB=T8t`cVUJx~+x*8o#l)8y**eO#_M+xF!FrrdW zC+918Wb)wc(a%=Bd>tOTk>^&et8{58?r*W>g4wl=i1MpCXz(o;CmS)2 zs7PntosbS8N_Yu@%V+88Y!{iR6-PHHE=W9A`4LJy?yG+@t*f&@B6b;`0j`(+lBe=1 zvYgP$z5IyZN?YjaP!)}HGNrjXr$krh-c$O7N&_auuFeG!jO^;PI_2EeSt4y;fLt?o zbyN^%A=h|U2Pz?W&0YtfjJWt%_}r+vbQRBU*KOnL!Pa+xo}pESm(+o8;BiU+IDY*C zzBe-(+Q;2#;M&4kEuHHMfpe-EKy@{cR!ZH^PU(9uCHVwKBiCTnGxC%(*g!h!ceD)n5h}Y#49iLY&73D5$Zp3eva5Wv6HJYD=6o)bbK~TtR6Wn*rv0^(reTbmN>nsj+Q4|q`jV}MTzs8 zF)R7OQd*Co6gxf%VALpahM#sWadyZl5`<~3gPU?N); z1j^4vhKi0>sOK7mK!fYJbo=sY!AND#ki6z_ksLZKb%R+(s4t4~-KveWq>xrGnHJ)@ zi~tZNHQfw>61In8PnTrf21#-<;vi^XsD64fRIH)K72^I0>3%Gq+qPL01z$K!{q-4a zOgAjyE5fJUPu&Skk)o&z2bngDIziyDnEmz8LRasdE>|#x11p)Y_z}ud?yt`1<;htI zRR1%Ap{7`@Orlnhp%zgcEpN_Ad-FwR@J5k)l9;th%sB7|OJb?zf4ILJOpn!3KQQg* zDHpuP?_OU=+fBzsIZwYcdU2#8`uL2XsGI$vO_Z1rm&ndf&a0?04W8{PxU#(`8#7#7 zBDRVTmVwUn-;Uyp!|+M=%M=N1wcV5+UN|GjDfq0m+Q_f`RjFIztWHi!5(uM>3aQ#z zXL7nOZ3VLAcwc44`$BH;L8}^+cW2KCb{fh6CAbX%_NxQ)!U;LN}?7mMvwZy{nKDyb}bMHuzHDvy$H@rIjtDc;|B#SoQOdyUID| zIw?fXktIfJy=oQFinD$as!%-98xx(xSqNTo$nRj4_Z0#KMFi*)ytNG2$B+c_F?dhm zBj*T{XltsHbSvSUV4XHpSA!{B>OON$XB{PZ3Pu~O^Ts)6)~P6MJ;kzGNY-(|OECDq zwWX*$j6LUP9(Zpd05f1#9$Xj`z~IIAD&N4aRe(li2n~=9l^NiCO#{}ziIh(EKPL*H zpQx?|P8F#;Qh-CURY`sXi1~G~{zjN2yVP8Hl_7#whq zIPW}cBea#eyJWf=(%lt29aRgO>~)r&HOig+b&9gwdGIdT<}?6qW}A~D3pKVWcb=>Q zB#AQoh$0DmgHM_Bdc9Ly;#B&)pc=2mN_}btsirB_(bA-jwAc8&XaLo>%&0VAMl5lH zz?wlZub+2r05y=dgU;(Uj*24Syq{i5vUW3IJ0F#pjY6O?UP-pyv8Z5 zO9Mfgz}oEGf;EmsjDt6RwJXBYp9Zh3rv&L>KM0=hzeZAB4X7BYI}Cy`@4u8}r~(G} zU(?S!H-X}$t)b^d6A0$l${Xd`$DqMCUr^qZVxf$3esgK>s|%vidEc0o{5UAB)+oh>P)jgsu+Y>C&V^1(IYmo8m^L_6EG;ew z68bY8`i(KM@X2K4A6QqDJ8tgtKYn+PZpP zx|IcykI4Bnn5t?ZwUMgZ;q;oRM@hCQG?04ETyU;)o|U$?2%xd`lf@=HZ$d`-w&H?d zpT_%PlPRK?#DmD-hjeaDhwEB~j3ART!z3{wbI(6yL2AgnB3&%~k6@e{RF^|TGUFww zTa87&YHjlqmnN?}QtXTe}fki*@xZtWrXNL|? zS7|;C63%@2O9k@7KZJPTqcBPEWeO;KpkR(qU}<4#JsHprTvRm++9ty@?!Y=0!PzQl z;hxeLjSOJg!s;bG3c4uDooZB9z(6=fuEk=HLRm?QKy#rLBrA z<1@9l3KIX;_EyTnfQtt4z^w&d*mbVQ%~d>qeKp>7$a%*Q3Cs{0PCL2)p?Qvmt3mUT zbg}hC!8u*2t_IBqQuhr34XJXJq%#1_cUG;9APL{7xdMa~cUDbCyc6vHrz9(TI4@dv z9-{)5;V-!qK!|8DsG)^8`iXQD@{CkAWVsGzk=;#=oDYO%Q8jWtyAygLmDn;s+`P3~ zERs;GZ}wAAGI~HGhaaHy;@T^~*BUwfC1SfS3W~XHGE_G`#dCvNLW&8wL{^-ZDg&gw zGM7YobHkXGB!tr1C8XHM*#`6A>Izwqli<4KT;2?nQ*4vj^wS2~nNk65zDTGhJ}!aZ zuL4v9FK~hT4P#kU&zv5dY~Ue5i!5?JJg9|Lj*aX`xWBM91wdO@L#1~u0RX+JA<|X{mYk+2r=|F}MmfsE7MBdlktkrTBM`z@rDCZg zK)@P+i&)tYeHB^j8Bib@5(O*1By}_mS%YV!baTWdK|8akt_IIAsXJZ3Luf}yrU1yC zc19S1k}OkmwGdLHp|km7Np}4rG<518h630o3Z4L1<=Du00&LN}CbKf>^=6))HhrCq z7mdwT>-URtb2a8J$puQO5Ft^|mfD;pI>#AQJ@ zLr=j)h^QD@*aW~E!`K(EuS;e3gye?>B_{eMfgp)y_{F=9ng|E=@3Jn!GlGVzEu@*! zr8Eea^UQRrt3fkW>P`mt&D$v@nW&(^(q{Q(=T6RaX=~zT(aC}NwcUmC><5-M7?`5Y zdALCr;>LnTgpHp9oP9nIUPx#iNNsPEEULlJ| z^L4)T6_SgTGo(BSy=-tv-LH$1OBUV+c>i%jss?d{kgj*o^bGy!?< zvvMK%6@n5q$w7Fqnh7@1B;Hba5uRN%U~L8Yq)Xc%m_5*&p{g1-YozK)fsOVOFeN>% z&_F_Q|LaUBInv(oD}qqK1#Q_W=Qe`|Zw&*Zgh^CH!4jPi4UdpuR~T3&g2)0mVt~uN z?6!Fj3J{k2|0N4hgJq-it?IvmSQ4nNhRa&18^a2wLe6kpNJc5CS4epm$_-YvNY#80 zDH6=9{5&ARtT6~iop&C)iZ6n3g0V<2zz(|8g!2ld(~xk4VaU2|FV-!8uQJ|vQ+-rX zvdq@IWSQ?dx)zrC4gj#S%xnq^vdm0=M6nEBjhYGP9a=KvJnoQyO=HPZeC<3NEJoH+ zBShW1G>(VsO)KBooyxA= zpI=(jD5W%#Sk&#E;jCqi!c_XNhgS%8p9N>1o51CFuxR=KJUliprmNTZ9<3q z&|p6*(7M7qZC*>t54Nc3;LYMn#u?z2hzf%D8wErIuapd8+BLyTSyWd8uej7*F2ExJ zD#;Q!1-w@?&47XYuBy3S<Al>fbzQ3^RI#ZRuZddyx!cp_{5pn#8;uw4* z2HaO#VC9VviCOe@!B*|4rC#-SwF;(&kgU2<6)kPbOLK2s7i9H1sM4!WnBh)z#3uPwFm) z({AqTC`qP*iI+&O0uIx2wg^>`rZPD~OZxgQjxr%@K&Ku2!P0J4>QFcDG zK7|2AMHo^OiU<<06OohAh|zf(w}#P!(%IA31u+HPAnB}ObidSf-$0BAF)7JyK$;WN zX(MKmdupx;LYm62mDlCI;kN8P7Wv5|p=?i`e0UL$0>Tt($PdHASe?50_CR5%^>p{i z^tGh>b@}wR*UW2O*RPqEN8M6IcFnx*U9!~6a4O98)JuQ>tY)pA`i$a&mCz^rh+?UO zm2*40Zs_Gy0|{8)8-k$5T8xaLMv$TAP#rCQ8cKUJZ-}3WCJ`PbxoCNHmEC(U7P~ zXtm+YS|k`-FWq0lflo+(Am&U>POEMaL#0vy^~u(?&Od z??<^dz(eRO%|iUFZDi}T2v)W|B%3h`z9Y#;v8-`$Z8Z88p$u&)wU>T1xFw34=2TZB z-WQ~9vs-#`qa;mWG~$8u^2#k|dU;9OYH~}^3(T*rJmpzk&=?Hgmdbe5AEDq7h>)e` z?o46v9rEGzrHB}p7@!O^3rwJVN(0qE=_H-&drR<38r9W6c~$BT5ulJ{QIbIbEpPvT zH7!In4}^&1vVi9%lFJK%T*h@W#cV`&+AJ_dmRX3muS;(s*$BIkH9JqNS$`jB+1a9G zm^bf)VaRsy2taDCTMmj0)asTJx5)}Xb_wK1D7&}~XT5-`_oQM^24u~d^< zLW)VEI$FBCBkjfA7Tc?u#;oK=OKG`K3frsT5+bfEETdU&0yyJHG(F@5Hvt+m(Wp?a zLALpcCdr$~xdlp?pt!i0X!vLp-fO&~9VDJ13*<5u(s56?AR1jVti$GTPhT3gwxaq- zuX;n+d=E8*>S_?ZFLl4Wt<#K>4201J&5Xb8-1YfD+8QWe?muZ8JdDjxv$l^?{-xd~ zWFw*!WW(c+YQI^MjV?iCkZp7cBD0D{t0D85^l;g2!8O~cu7=FVQnx@LL%2psHUPeS z=d{d-lBAWIE0s%|24CYufpqgep&LB{j1Bolmtbty3-R|0=`Um)VH>i3uiVnxIR}Mm zQMGfvyi3BVU5sUH%x^+2m_JyolubGF3>-DLbDrWyOoa0kJ72*{I0GeSPZndnW~_b5 z)7@g}9cl>)=X0u~<;*wI-Y3PF>$kPZu6K-CNoFXmC%Lp~$);e?U)Q*PW#=pA71GNY zET?EHOl!Ry70_eFSiw8_%>(0O;*;c_iQj9|Yw(VqY+OJ11@~%_P9f>x>}EIEA83Ne zv>oA|Wi;mhkGJa%tfE@p-ZV-=i9iBL=z>U1FCZNYB@_{qPVAzH*nKvzcL9~P3j(&M zAoecUfK*Uypa|--^91`-(cgFG%(*)|doMruC;Sz5X6MX&JLkJ|W_Qo3Idv;L^!x$d z{O33PD{Yh1RruV(x-|!Q6(?*MEY?g;Qt7}jMNI_z)wkZzBH{LkcWJ}!UA(b-mUW8R zzFEk2@ll928-_%lx7aA!agIKNi@l|?m3RLcSR7HbwvfR-L<84WkM^?WSGHz+EFBr- z2%lN8Bm_`$M5Les=q`3H67hD_Zdjg{C3O`*i&-}#LI4TUagr7hFS52~FpMqeu|aNb z>V|p722Y)uf#zBe>D=PYy|S`L?69_<O< z27+BlxBfaa_wOg+oPiP`NI0hf0nANR;VhK6P=#}|IpPQ>?*w#aZ~=#J7%VQ}0}R*= z5z95JLq=9gBg8dtNF9|b%h=v)NCx%bM;9Ud1z& zv9}9c$@ZEhcsuq~4vy@hnJ2ESbM6mZStgd&9HN;}96mi!Ox$9l7b1@yxh8h;WdfNI zGFrth&#`xh!#l$+Go-FU<|)>l;v*w)bJAmtbVvdWF6ni#4GQbBaT<7FY_)k6~rR0+iMKgMsI1+ zhGWxy4H@}K8X;b3m?);2;*~XQE-BIS%1?Gcadn)=#steN)v)jLO1H%Lyz(a7u7=GZ zuecyKBp6=F^S-?aw-idu^TT$zR9sfpyVNe17A!&iQV^0YEL+~v`_IkzDT|7*gfH_d z?t3RQ?Qj{enn5+})R08WEmNef0%rs39+RjG7$-RzXZyS|2YT^%rHXAG4Zy%F2^e2Z zIOo~GL`y6S7NOyS=;(fvmpi5s`$t<~sPCJ)0>K+#!g2y8yA+(u2y#byY zj#(~s6+#Yo@i^M_&lK^WfUN;WnC4xaROnR}ht#{tTxK*~7z}^bW{lF^s z;_UnEECv!hBWCa0cJ@X)G^dx;C)a$mFI*#7@prso7OY=>vDv72COb(?f8v?e=7{8( zNNcZRe0ah1F$2~r$rdsFLY7LUB_f-0siU&x6Sg-z$u5{m{ZR$OIjvSCr5oVsFlssH z2DE6Bh;m{s4R-Jd>DIDZFS&S{CPirnw^a)AOKm?msW=zkB;NkSvN;~HjxR}s#OqkH zInz*1X6Tf)msDk>-5>*3Q|eoG>zX7>I!mOk0_jWEy(dYNj+5N!(4bcE)6fIy#DwE( zwsoh4gPzQ}#{R9AOU}b9aj8vJ1M+Fjani56fd(BcdK||vkC6G`7|Ia>izk7zSq7}Y z+09OF#C0`%^NrM1;Ou1G|5$JY-#E!<$St#C+USQVa?6c%rI8LvKq5@5X37zc`ws8sob?cJPg$>tJ&RB@@C z)?_0c(r_XSMvI%slit#qd+W~p%|lGIrWM<`fW{|#YZqO4dZy-QmqV zVT1g7o)c_ym{5}jk5JCs5c{#3WVW=;ORqp*rrM&Sh{n0L0hf6T_LHCYEc!Bpis2a> zdU{!9x!2&i%4{tlOeO^c0ZiJYh)Jn1Y0BQUO0hK4Tk5LZY0SFaQ*>j-Ne)i2Weu#E zvPNW-8)t(J-*jdYkOCFkuy(rOMbvC6Sj3d+t$$IX5Qyn$?WY*4Ir}-@j1`k;#wP2w zOkdKizqU+^#+Xq1@mSyG*gGIt)?5Yz!c4P5;zCUGfH@+WCgA~GzhGY`gAuzw#j?y> zAuF#-E5tG%NF9|anQZS}836c!icc~5+eXZVWjgU6+2e;fKX@Xha6wn;9Htw3A4ZF@7Wf%L%(TBfyX z5PxDF#BQcHuw>I+>MFA7z`9+%rRRmaHBQ9La0WDpzpCoQ_BuDPt19@QRvFH_ zrVR|=^kEcs@4|D&5+*8anr*Gjil+dWGQ1fZFii=@kO6{ex(r?MPY-r=GF&xf&e>8| z!E`X|&hcRqv))NhH_{;qFsNd7Lm_6fvP!$dBrr9GJ2duoEU9kkUA7ICnoWpMB$N&I&azpRkhEz z5)xvhugsAEBYlNr4mNZO7%Y5c`w}#C8aEU(jf^xfN1TyOudX{KRjMdHDr9S|8(KbU z&`>j=)A*u+<)iI37XISHp$+5nQ7PNrju?V```PjACyZ(F7iv_Wq095(I z15Qn-YVXb4R+$lYn<4_WL@%=+EJd_!FJ6vdFEN536){z}*r^)r-sD_XpTttWFT^4! zFs+d;a~d^@Rp#`;(ctawp5}<-1A2R*r`OR7FQ~>cV23oarOud;rBTunl{yttN2SR) zwl}SjT~LkkM-@L#PU{eoQun3{jQSPN{6_KHHxqb>F4nYKP`Q9QHIgiohyApoEK`tc zch<5jqeZmUl4Th!qTQD6m(i;UHJx3%yOCv?r=_k!YBK9S(MYq5lRWMqp$ca`^y0N} zrn0TaEhN;!x!e3L_d0aW-GNKJrLuQQo(<2;E^Jm)kn48UvOMDpK|w%_V6i--MFh*& zGE@c2iR|7NxT=O{_DEd?O9kux&%z>j#z}rfYMJKE7Zjk#DmTm>76n>VAq{4?j8cvE zoPx4cqeT={=f+}Q8AruvC$poS%xE!}RqY$;WmO~6t-oc}to`Jhag8wTaHAez`GuK=FSeS2SGiqlvwtRD2$kIY-iTLJ0siV^647T?`W6L)S z{ZYlWa$0AQl=x;AjQV`@HcDQsuwwQ{&*C9wS<{MdTtFu`wtTZQwW>{WL0%DF0Ww7m zW>#q#zM4m$u)42ZK!z<(O1(3mT#iTg)53!J&n?eP`$C4UX4OUP*Y?JiZ2l*86-?)| z?k|ls**M9M4i6%mCaLks=0djhqs3$1Rfpo4zQ+Po<6Qd$u63&F!+0>$5FYq+Rk_zT zy{fg4`FPAuugcN_!lPHJn2-vO%h|6(QZ362k-7?xOIddS;zWrjSjI{ErCOFb#M}Ke z(%3YpL_)c-KCu`O)gS}rcC9Mbe$xg1v}^PN8x$x~3g{H=q!{E%cJgF1NKA$~p|QV2 z+VentRx;P@C$lU@jszPvw<2=MEcW{gFGxIyS)MgV0?hKPxg_$J?Rp04sZ>iUABBv( zFO3kXd?$5OcHF@BzCsR|XZGHw0mYSZ3b>PRl4I8|>rxxQp3f(#Y4Q2w7Ph|1o~-!9 z#qwBcluxn}OYk7ts;?{CCKc!B7ubC$43{Jo1_i5++>~LsM4v$06C9Ejf9l-9E_F$> zR5C#7DsXON-M(p>N}QwwXA=}eB}YLo-s)&E+bRKEW_5(|)zZOv)(M`0No>S%UxklJd)~@ z$v02eCz&kYPcqq>rpe?(n{v@I#gfV25)UGiKg|(ICJBGy+6BA64>3}|r&%^>*F;Pl zvXX6%I4d1f)}N9pRZNly;2&mlJ-yv^;EI`(lN(2}y`}F57|bbQOzQvsY~$g6%h)FI z`z?>L`JWL-u;1e1*qs(-k~YcM{i&$fwOdMxz1-j4o8wVkq9ltC*+N_rKBZ$GUN$&G zMy#gLGwjl=CYDXEkh%(;)vSA&K}X(La)OI-vQH*nllXPXQ*7#D1FrqXZDf}HTisrA z4xS7LO?hHN=QaaC+5IOrwK1%sB?Jl;C;Aiu0-X zR$Wh+2pdlDmQ5vE<~`*{C^X$@CtE4iC&+^fM_?(mplelT%)qEfi5b|B+FL<&ud=r= zFIq05iSgew;uUcl`$MZ*U$?Q>?kBx;XsYR@ZPQq_%1|5)c3lRUBaRrT>oUmOv<=Cq zJ{$ffW7fZ^rI_PGmS##zRIr>Yb<_{hTWoJ`Q(Lgi^hXs*;k5dblvY7yFzQz=w>OPn zwQS%a@Xa|Bkg8f-K*dch*X$Wz)x`TVttu_Kq_m)<&=O8j8NN_Q?;ET<3F1|`RoDn8 zD5YoW|2{g7l%7C;O5&iH=N)!(Ra476>!q&3td@1(!~+L7P^D*?|^xyl>~u+CLp#m`~Z*}-UC-psPj!y!v6q@_)Vps|*V#$mieL*^A6zF)8PQWMYIhE$p$fnHS4Ai>jmTh*1jC?DNP>u7C)KOXT58L|_ zxnSt#TN+SY8K;1|@n%kp?Y};?0qprq(>^^u(Ok^R+erl<|wJF zFlxxUqw#2Su%>a6kvQ9@n3JFvuQ$_}ZH)wKrZ{ml55+GO0AQd1j*s;sum?>oLmbwa%W~}R3K*S|=lH1a4 zhX&SEcy1hoXF4>gYfN%dho+&osqJkoz5C9HUTPH?*u^D*go8p`tKAhT+=|^@W3n(N zxxCWcCzm__s!wuhor=8Kk4N-=NY~`@z0EyEE(abca-YbhnK>fKC861Yx=EAGNTnTU z*(E<@rH`~i>@rO1m_!lC=dis&-qOrU+oeh96B^ZNVN`06zgEsd^6F+A<2WsMu;<>wdWmD>AA_}mYwnoWD&p5r}v0g_8g+CRN8!)ts4 zPJQhHth%&#F2re<%lOr#I)weZ^gzopp43%Xbz$9G4OX&e;{*#FEVOX?H$sj_G6%D% z1%S?w42D;;&^dMyF0^?R_=%gV(!9qGuS!i}bnMhK=%hctu-q%T1q&oC$0vD9a&Z@q zUN^nr7FhUxp#a!7K{!>(*cDE>?C?4`Y{+N3)Kxh3WZjPmryT#&@jX*-Pdp%Ufca;C zbw09LXBs*Qu&f|(V*&yqqGU5B5m6UQM5`86HCa4AdfEMOOjazuHI9&CO=%%!pCZqE z_8*xkIy>TFngru^o@XAW5#62d@k3RQFDVr5CodJY(7cof3^0ooFC8P1AznJ#9Fe>f zIocc7u2L2~r3~4)7M7OI4;eW}8X;P`PU@&jP{#JIYGI3>b7(-pTTWq|5tP#MsvP!w zQhKCC{Gz8nTQ8@Rbx+5|GNMJ8mRBKc!OJE0~?>De4U0)$6I~b*37hZ5)m~44`-j>Xkm%!W2vjq8^XFDw$SB}lf37! zBBt5}y?86GVQlL?i`Ae<3sb%MT>}^2xwZxuUs06}b<^^ymVT%eS8N?E>B`s9kX>gu zjTy_=@+}c)&0C6@tUxPg=hIqR*6Jd46==g*w_{7)`*D(XEp5pJYlf*rHo9@vSdf-H zbV6!lbA5=chA6V~BT?~28OzsDv5wUK3m?X?|09eKF>9zJTKF~8+zyrX_@?+#`^i-o zw$xm89wHBO)jbjq;;K8%5y@2vcj9^mZ*)yyq!zcdWc6~$$_vuU;JN4rNfnhi6WLrP z(!;#v@Iq)nr-1>fd|Cu+#8gY~-%=7mZpM4bVKSS>M#8FkaxvV}GD=doHC#}HcN%GnKqQk>Q*{tP>wJ#5&@(o#pMtALup zx^40DYH*e2Bw09{fFW8cf?hmYs$g4LUizV^Tj`ciL-V)%RdUWHw~7*zd5H=j8AcKy zEa-(@icvvj$CMI8;G)=4f@p#aTanN#c6D4UOG2}xu7c5*kOr ziuvz`Nw$bkHwf8r*R#0wm9hdqO+~RHH?e_t`06WID6|E8arbm~7vqRZN!$awv87Kr z)AH++a^~zO<-FQTQ_f2^8C7|-L&8Cnv&|flloQ$JjT;t7#IqQutw=<(xmF}Y%qTMQ zw=_cKQ46V~(&TKm*DS-9N7(5R1BzsD3R`V5tho|BAsY_gS}(|mUml&$)<3W(tM0Rl zWpk@2^R!7W$tx=>GSp+f;ESCq#^r6AV>l-)iQHS2o20Y{uD~ne<7B*Q3e97W$}=p> zoFsJ>HW#z*aT%IroMZ;h_F3j%(2KWByOeFs09t05hVj)J#d$U&BT6x?84XM(>^N-D zsMx)M=p`#8nY$COK7d-n62jyz8K=VJ8uo25d^0PuRZ>@Bas})D+hQVU#YrAUCYhHQ zU`<8n#zBN;6_$YOe&2e_DXr~=^aDjWnO^b=#7$S&7f>|sX%9uhUdJA8HaQowdfC*9 zs6_0c^%CjU-&4gm?hB=eWn!W?ZU&Z#>PvSAWX7swy5eZ?o_c3<#L-H{+AS54OkK#_ z!k~4?w6t<~$jDG>glOehsbkVaT!aN|56in5_)+cfc}{A0P^W}JshG)uL7GjGR~Hp0 zT#y;Rnz@b5=OB<^FUSSbCew0CyES+~Hovr_xX{~vPgUELVtj!CuY-3Ov0%1W_YRsp zJ=a#H3I*&*knhczg)J!BuMM1uJqhr(c!!?&I{0E4xSC7%vS*7jEx-I*>MD@#WZj1h zNU{s$1j`*DRK&c7VB^ut-E0a^LKD4Ucs2Q)W4GW6o2Au;_tC?tc@npi4K^KDRAo7A zmY%+Rq&M~hESLgfADR2!GVL?M)SM@f`BX-$kXgcsbtJwyAAI!qFkpbGsw$e(Br;TtoMMhR>Y>MZPVpiq z1uB}y7_t*vTk5$XWaL_DgsA6UsiQ8z<81HF*0!R#mIf3#8+y-l$BIafX{83qQ>kwP=;;$0tD2=mt)zGU*@gt_I8FL zpcp68e&}0e{A!-P$liU>+A`2CsjIMhmUX|!#zet&l#_hpkRb|6Y7>7Q^*r19#@ju+ za!BL@3yykj&^fmm7hAGWYDz&aVPt;j9Yz5n3TOzFKt|aXK6xskbWj^HQ58yS+1n0n zEE||u1Dly7J5SBK`ivR zIU-po;c;BbU@K<>BlTz-OG6t&R%)abqM^^Ej!K$JwzmzbVR|_=p%I-1Mx^rRL0BUa zn)?lUIa%?mpISEkAWR0U9~Z>3Hc{?r;`Mo_s%c^w8Z@-1D$dI*^wKvinq$hJ?C5d4 zPm|~6eT@16w9~}PeK&N@jwMR!ugJe_|BfJ zS~xDCud^)S^ln&MCS@W8K#*GJIwS#^u(EkI-reh-#jxJ&n)9lj_g*ldACWnk1BaINhoGx`#ZX~h2Q*vw(b4+MN zr-2cvh{=UDnnl#ZxiKex71NMy=fY;Nig8i&$`Pbelv{wWCD{_DC>I=e|MEE=QHqvC z*1eNq2}MiR{`f#f+M_aFHE+_{rw4N^qr4_{6*f&+_a*orTst|*^9~CtVcvyay!K5q zw)H&lGTmW}uUZ<;vt_ulX5j=TX`N)^!^;ntR+qh1m5eWg1DA#CHkA{h#FP>?D?v9g zrG(EKOYxeU8_-S~hVOx=;1|KnLTe2?pVtqPrN5KiO4f)etuO+~s3fK*WfT@Sm z%eY00rY7F@B?!5?d39_AD8`)hYP8H_;6pL?)_x1t%VNKgeX&cL?m4=oX=zpKtE6eW zFO(yCPE!rgq3-b{V1Svb%9_h0GE|XVY>qhEq21CiZmW5x17mh!TgyB5hpgNqtq||5 zmO3hTI8Dsj)bu;_Eornd39rwiLZ7dC_3<03h$ZIpYm6Lam& za5Qg<3(XRNnm6DcUy@`b-llKgC+6{wyEAB^{)3EI&8*(+(RXbv^CY!XGfQM>ch)_i zon{^<+2fEP=4lPRc+At2ZS4VChIuf)nuyM`uW@Z1^CTA+8%%7mVlkm+4GNhYLdz~8 zqL_ej{Nn*kN@bi1lOp!5u$^U_a;dA>IFEIQTTBF6PI7oV+oORs6`>mk5fas$Wv&xZ zP4_6(WW@>#Bx5hN1cEO0*?V!dgk43734#&xb&j2{(H*w_SXG||P2YWC7qP-y+D;cV z_aXQ&v%D!GA!b=?js%!xEv{a$Ez_UDdbOQpmM=n9c1SD4EWb(}l_vw(-jB!z)0Wv0 z8qsNBL}HZ}VU1X2aKYA+Nc;GtGK5XP2$MllaX~!S&XP*s0oAQj3QF@z3eY+*ce?SG zRle8p;alf;pJw5=Sqa8Hertx;Z(#5o%%YNfG?G`Z$M-P{+Y7c(vuGr{mD}Dj%W$cy zc=rg_J&w1CYy=9kAa`CHf zknwiBX>Li`AgL!avpr^;lUT?InHPtewPWZU0_GAKtODjJcJ4wrXNs9cQda>pnssmX zff1#SlipyYLlR(6Md^k@lyv7CiSXj#)kVT<5l@HC)mhOv9Rd{1^V&l}b4Rm>FfCX` z%+sga`Aej~*VZSa9J4QsBKYr117oOO`P^oms#h9y5SdS`l46boSS6){W|hedR$>Rs zDu;xubd^?!Rr*OC#VS+SUP%YbDqTY(It`3Stn!bI#x`IgQ@rh)D`&L(_0N>3>+Zvb zGuZS$m}X!Vk##PJzr5A&Rpxt#4yevZ#+#d{LuMXdorACLmXw*DiD~C^&w@BOlK$Ah>S8%)4-bI6gSRU9W1B()!uvc z*y{G)M~6rAK*t1T;VcM1K_Ttgi<@)VO$;HpMaoPD7gL5Mv% z>cXX4$5@5SXdDf8Vn&)Hj$$GcwxapBi`%Z^5}wbf9of;6%o!m&r%5|RGV`R4N|p=Q z-o+hlv-dQARFV8n>qwH)>kPwSl;#%oWR`S{-|W4ZhZtr}t7fkYXmH198IzS*ke5$< zlLSsF@Y;@8aHgqYS|=Cg1ts*2Zxk{98D>i1d%gUL?^k8yYD!(jZoSyiQq8+kSD`eY zb?Z86s&SHP2M3ieUqLTkqxTB7Rc+y*M(>OEZ`J5^9zKU_Z5B!39K69n5V%Q*&+pQ= zzEQ@s5h9Blp##dvCOqBj^wDY1N#vkH=SKE2v6Cg79I0#25!rDq>$dh5{uOA-I6*5T zz*Eqx7o|ozX<~IFJ!dc&k~-L223jZ0x9g;hodQvd(7-${CBnfC*^9$Bv%`bUkTF}o z13FS&BcA5#M!NO)G~dE~As)e&XBvz{_04RcfLW^Qn_DF|RNpKxM;!T3KW0HEUEkcs zsNK}bQqNP$%IH*SgqY_osiLyxb~d-xCdbBW%T02qm6}t+m{j3h2ZKKA{0GSy@7;tu z+5B~|8C*EIIIiww8E3#)%pE*=h9`t8j<3!(43b}p8fWRxi)MR299P}M8#S&P?{0=Q z(z`5c=?xqg`}Eyy@$H4g&he+%1MJ~Hoh$*hmb!|7?ql7SoizbDNjlEgQ1%TAb zdu;-Wgz(9P(I^?WqM=9F*CXMpse3ArS&6i62cTncUgdJ+P)CcHegIs z5|>!$KFdPeX8{6}2Qi|cG{`-T6D5WMg?Y_hT>m$_j+BgD3teGnceH!c`1kr;YpvWD zE)qr1Go5u2^rX#B#X}!TNQj5tGe-hE^d7EeuzRzb!Fs2&<)Pn0R(_FIh=>{=B<7(a zq9@rNz6R8yir+E+B{Ztj!l=YVwHSluTlyvF;2ad6h@NHhwJ;eZA{Pj@ouZFSfry%T zV?a1bg@xD_-H?%aD+V7Lpe_!m2>WR&2{kJ~K~21|$IBDJVmQ&Ya*mYYt10#x`#0<$ zOGDG7u7c_%)}3UbQmq^(od^p)70o>;J{7&f_9g;9)5?JlYGOL?1|JlqBK+nP3Oi1& zZXFGinmM4MY>SYQF?NK|s}n#_8&7r!1x{UUnq3QJ)C!@u*~^>Yr6HjQrLIEgb=G~r zM@UpkPI|wQ4oQGP6|Nf!;ZjcrsZn`zbvqCAgS|z~wbzk>cQ`A;K~-x<1t+d&M=^q+ z95IR4clKL5O&eF$3LQFOYz4Q+^XPAnp$>MV{*P>EPQ+w*_ zDVS?F$?(-&`Oy&x1xL($C;0*yX1YMIrb2b&AXH)@WW@(dEDN=c6Bua7r9(KT^sZuNDL?TxHFuYEd-{Os+Rd4B6im~#Yi4(zI{pFQm3tUE?=_cJUC$+LKii$OSZ^tEHbQkD{Pyd@ojAB}Ju$C9V`ID#KHM z&(_ZI8vZ-3eCBht8Q#?R@`@gn8ENlGFw`XbAA4Hc)iTgmQda@@3+sN~RWp#2Y?cb^|H)ePi{RWRjR0rX~gE%18n)M;T*s)g=_MW2xVhs=!EA8Nw( z?}g1^E#v~Z>);?6HA&1Xirxk*#?z-o_BNO!BVUdg2Dz6$1N-VYDhf##PQ!lfncd>g zuMGCEMK?=CJ*BQ9q61mCTQ^NaPSOQu6EZ|ZgP<3$6l%$~x^%Op5XM*af%B|+w@khHy_dt5wnS`G%`n=6{>^UNgc&GUD;k1KC_G;qd{+PO^qC)2X#sqlqlyj8xX(s zFyN5*l+&Hfe}+JUl;Z;Vv|E&Nu(l}4&vSR(i^~e}i%uPB(2bDcc1UrVw|dmF*50&# z<0+TuNyI^Tdho~f8EI2x%xWSPuv5n#Vp(Rc)K&QOVcpplAJzVG(pj+JGtE^1Fdoz7 zvAtOU%`Cd$gPMNMy9tLxnWl-?bQSo70yT`m2pqX=v|*d9kYLoZObg8Y?Vol>)hEXc+)s{a+Ff%@YWHAS z^W3J*Tk&-~91Y%b?`@7acA&dny}Rq_K7@hl(cN;)xR906(h70R@lr?q7!756GrHUU z&gjsHP6Hzn!5j>0eob>l_xJ>J1lv9sHiHD?qBy9#Aej98Qnb76V?9L$d2Xv@BABSm ztQPQXa@r~xwG8g!gwCQzJ(kLt)kGT0e%;&Ma?G<*SK%{?b)Q5G!KRLrta5lzB~uB# zc>FS&ZLI=khF>tgns?5#yKr@RDaHIkVVW6*-jxN%t*00Qo^4TZh-1QM5jfwZac-H;Xf+Oa$ll+dfGEE&=Q=z(X5Gqm3L1rAHm{C5(G)Xj9SBFLv z6DPDTJ;bb1?oMKNk#(_2rek;A+ex*m_4Rnq)cxd|@jW!xj79vIovNNWPohGV$l2zI zl{i*L;WG z4vhM=v%W|C-p&a;#Od~A)!T6ao!Y}v&y1JRDJ&>0DzLZP4Zq|T*$-YduZtm~k2}qL zC5FVKuRDDygI9BFHhcD24?{c`rAk$W)2XcbTMx}UPV%z@gm|Y}&-ksJ)7aL}77%LX zd}jYvtsLjzr?}dNf13OU3~Rulo9v7YefR37wJ2efgrNB}hQK1zr>B^j3Yl}*#U4E^ z>kN~+1{#qZXR_`fZ}p9V=8Y5dHv-<}5b)hrmE+Az&g&{nxZyrEC=5wG)m#YTo>RSD zUsv~v8CdySF|eRZK5H+|p2yCfYDS9Lyg8|dZr+R~-TG_ZT(~c+Bi4L(7<@y`o7;gx zn0a23*bwtPZ;k|*=XraL1|74otN01In2~#?r)8e4Axj@hOAG%(14pW;tht2EePfej z`)kYbEfkX)W>}FLPVX5j-PpalYs1yB>vK<&Uh%nSK9926p1tPI+E^j2?CEn)Qc+=k zzPEZtO>3_%vnCnO!sivZr+o|o#gWrP9)^bE$mto69=+nvxa--|gL~N`Xpq!ZWOOy_ z9@nmT&w#vMPce_c72CMm7k&*N8pk7fj!mVZVY17^J*0l7_ zZ11B*PyHB5N;YW5P@t!Nwyy&XE`>hFZvepNXrFPxGZpRRz~gta_D&OXReZ zT;7Yyq6nUnbAgK#bVK2Gyphu87D$=YCN*sre-J+eN(sYKdyR3Gc3cd6D?7f@WN*93 zgI@Yq=XMek|KE1vN1Hv}udUC8*y4SmDY0byq?ay^w%9CH#nA!1#VjF;+G8*ZP}ClK zDb$UxI~lJ(kfEmG(;;N3tvTW>QE`+nbreV4#rCkv%kv=EUG0uYPiWhlmVn|aIW0U) zfb^iJpMSN1ant9h-th_QJ|5y%bF$pF!^QGbFR$YZHF**2l#^V8+pA@zrKpS^uE}J2 zD#ROEgOI6hpWfS2 z)m2hgLAZ={=UWJKw`8V^x4WG5Qdscm>P|o$Z_T!X?Oh5?&6*89sD+I4?$q91?hrgch@MNUu^A$R-Q6(bW5!wPn9N?ymO7q(1-)&cS&Xj2{m_ksjN0k@K!e+JH* zwOp;#Rlq&Ux|Kd~BIlfRot1WIxF9_NRuvR(JU~I+Y2;G-_BHK;xfBiq!6ps^BqHI$ zN+wBu-i!ZFu>U`KYga_MOR&MNUb@WMLYnopw0mkl*{f3@&0g*M#44~3!_iwKxBGUz$BclP4Ps)j_4^T!l<E_7bqDkKf$x_gH<_R2%n`l}^sptaJh*$MjV-)%6k&s;RCqM>2FIx1~8v%Tk$9Ogy%he9Jd4U9<5?Rl^kC8LCobK^I+ zKV;kUU^Cd_}+ zi>F9uuj3{Vc85tT+I!pkp4&PmD}Bm_8+vm;hVqilgLeOO zMb+krq@qZ*y)vo;wTrRZkZ0-WhmfW3r6r=HNPhh3wVUnju{mLucaiV?kwx}6%?(yc zO{ljpmQPI`u}>JDC5k!Qe&KQ6vS+I%l#A;1JV{S^#U*%^O3+hTL8-k1cTGyM65=!D z1*PT|T&DNkE-N8@=j2W zlcTJZa0;k4UI*$gHdXE|{oHk+`q{r#2g*5!uPYitazOZt6OI(O;;356VJM;sQKT|F zkWxq-KQ(~VYY zrPO~ywoI8|S*gulq69HzYjGgTH}>Ls19ts&leaP2Pp_GIlkaWcczw2b6ZR3(uCHZW zf2;3j}u%Q>B|DlBp8X3v|)cgi&i+U|Fg#WF=2pA(lE^ z>ZqcrDcc)TV2h@_(1=b0BT~`S7}k7dItkm_#Cyu|K(^f&HiJczi=qMEE<^jtd!=tp zR$_iZi8u3M*BM8BUhH1?xU?J#w}OBiKaWMl_KlA<{ZJhQgr>MRC({cbSIX$sOv`2u z=M`8^x>M>Zq%v9ec0?0=Ho!?1Ib^6U{y6mF^_kkRtwli3^qDZeYOXlXF2T*Xfi?L_ zh_BG^gxl!peUCOLfN2aiAu+x4F*}Ah08fn!S;5nZ-P`~-O@Z{8)K&1bW8G~Q9#Moi z$yTJ8c{%{rRIqLw1WQE`(qhiZHKltA>(i6LJSyrySPcus>{6~C#I9nP*i}(df$kpt z*W0wSs$G52&cXXhJH@wmtj_nw{(N3DQ6Cim0nAgyI+G+W#5xnr5y?7{iC)J)!VRSE zjN14@%RCo`ES)DU5%b(2b<9-|zdJqH-ZgOEcE2O%`2)vL98Xf}B8`FFCmv2xk;Yi_s*B{}8ijAhFc;x%#}e}rLS{`{^R4z$Z~n^n=Xk_IN>EX{F2e%>;muEV zMqlhLzd?qt=2j^?^;V&!o^4WBK~>1QTL>z(P;`q5w#yJ=L+);=(B42itu zrT-mh8adBiFErGXXCqsBUQH`nm{~wN4A@Za8S05CB~%Ra#FWlA&>UDK=BI*YAUoI; zUrjT#bFkD^bGaYucE)WBu(F^XC+SdRX$RH}?TEy3!$a|dEZ2^U!3VSBqs-v`qXJ^ZGaOgDoK|Kdf3DA!*|2?KAJJ>Ss7QB- zEbXy%LDX}%IU=bi;ci^UV3+6!#_5hCOFOTIth^+x5bbP~Ix1m~WP8;}3)3Zf zDKw(fz=%}v+y-k=vPsy5q>NYajAGlj!Dg`FaZxNR@<}Ec-<-s5$I(?-Qc+Q1u9tgp zrKOtK;E{h>%>`?uBeke zrE3zf4LXt0LX*ctM&kq-sgNjE;vprVSQlyk1w&3}|B;lj>!6#9{O-`06ui*iZPqjY zp#PHhx3~NBbKCcv`>kunbbK7U`~4g5#Lwz*KmOu5%{%^$Mt*GdHkF(+zW0{L6S#e| z*E7m1_JxB4SFSN2%kI!CHZ4{4^SMNWC}_JmA}J`c-ChON9Xf%r`lOg>s8wQ#KgSv# zaC?My2Ji+CkCdk!U_{O&@lh+G?5QL=kqxJN^E+1K>DOyIr+TY<;4k&b3#a#qb&r}v zAK4)JL4YE>f*G$#bSjVX5vN%2NhKHD`^A=>np{zXkHTD7lbVc86-^=J9tgm+!>Vi3 zp10?CFJ4j8Jf=>H(dmuFqIn#k_u`snF}19vxlb?5NE)3f}G4LU`#3p)(1hdt}%Oq6^vAJ4(F4)6p%GstTcV zSrwa*10lgcPVlHrLW&p9{h2gW@w(AQSt-%f`(_RiO`TzB>e(AOf09i82pA~R1~+o% zXeovI!Cw5oi2Z-xWO0m^(YuBPLM8JDxYiKVuBIxIAz z)4+&SJ+*^1zk2!?_K=BJJzdSV+rehAdU8=@mqz&s_t?q`i;DvH*a}L@u$6s!dCeT} z(gVo6$5&|{fZecfX!?N)C4gX4eT^SocQ@j>s}6`2ksGI!3Uj zLUrRHRO%QZGuE#{!y3$Eo?;8c?FR>cbZ28vxPwJxPvNqiP8 z!K&65@!Y*H#3M?k5nkSr;jYmUzyQ-#)lIV{GDJSJ%n?aGky&2e5H4H9rM!=EJGsmf z&`lvr*Go%8K=(@>a~;Gl)%|SmZsR?-jjs1cj-h!nNvUmgJPb#w+EMBg=L+rleW4ps=iJg)*Eu&L z@G#XpDd8ZhS!Iq$s!3RdYZk0?USgmg>uYJ|osg9}X@zL!3#p^B<7KwD9XVjSM0KGN zod!mvI_F_ni*idsQos0h&KkD;Fl+|v92dokzJ^ll5KqH|B5ECvsk9_oJt>y*;mB**WK~D0+jxL=zY5QheyhG_LR3h_zNs zF=6&!BNn*&XA@kfNeC1JZDf~E#`QP#&pfHC;HqZbi+#An)OXSgt(4kFC;Pz*O*dw? zl~Vg?Q2ET%NMCQ)yEVOHM?!(l+#E~}73hQ7dGWjc4m*!jja?5t(AV!B%@|#u%=F&A zFq0^RHXDRx?`V_FP*nr{Cea{b`q>D@44ThSVFkkN2?>V6Z6`ba*rArA z-jccsxNle&`=kRnK{`(Gs?9-){;`K8_=xW6T;sUa(qq!l8nGo+5m9`PgbE8CmZ-&RqRLL)j2 zj7U{fKCIC^T>3<1Nu+=LBI*w|oez`2BFY8Pr@tYlkx3=F*jt|{sW>;c#M}MuJ99ix zQjRZ3guq+dc@dEjcD+_-4C;$}YLCe<)r3lHW}nx4xWBED)=FIk$v^D(EATtm5pt3j z9RyS#y$8K`9ia%1`yy~M9U+Xb+9b}i6}SL+Tg}u(**0#PYPqkPmui6u9!>9f^7@gc zFv{WhqY6GcV4aW@k8J}~g6J0+wt}cJySf{$n!2d*0Fj@Hb5dA0#T&eU%Sb^yPMTT8C?2BC& z_3W?vL>X4Kz9^?zGfc4kc&2f>0Xp<_(G*|+JE}&SFOi|j=2CM+(oW=3Z}9cuKGA`U z+eHH`^(+lpx=&gn>Um1)s3dB^_Ey<6p{K9!^G6m5U_W`9D%N65E4ulc4$XBs-n76S7s1U3n{438F} zI+7APW$ih2nQ6Oa>}s-gV25@NuzZvJvqZy@mG#Y9u$zw>B}TO@uV)*|@g7*K9N1 zFjLNp*oc9Y*pKa8?XO7ZL)hPQ%%Cw_Msv-Suq~t0uB^|6Sow&B?vss zI&Vujh;`mDM;zS(%h6+iYxN7~fjI`oGf=txB>d)Tg53F9(Du!kZieC)%V|&AZo+*algQ^LfcYOv~{wYtX zZRWl98R`IvQ&J32+FiJ!+*|n>o&b#{C5*Z^s7?3&*@!Nag;-f2xGs|rD7c2P%NN0A zQxx4MbroELSQkrE2bahxC%wr^&1x(GRuuqlJODs9&5$O8a==9+8`m}sg1x7) zN*JX?(Z0Bs2oC26UNEWa6O)+l&km&0NWAT_gmmlgv7_Pp!cd}h^tHh|^uEV`Y|^UQ zD0Q%yIK)y7%@M~^v?OadSTD&&F>1+!El2eTS?MONP+int>L`vXXM1IX?UJlpXhf%h z5ot*lfi<6;rVWn2CL71LBd{4L zjE1-Nk++GOvQk2#dCy^$c9D!+&9=$x-T8wpIW3U73Z;pxdm|zVuF{<3I)@4o({kv= zTcsV#wypzmhL|wEnwQSAb8t<}D$Nm7V;5y~syUo!u?BL=4rvIS96g22SS3R2O^Jd+ ztb#pX1J4aVeI#`iV$)dnJ&TwqlbqxoL}za1!-auF z@nw$!BEt0vDz*}Z`_EoNIG#g5l8U99nC*Ys*&f{x>Eeg$vwAvdU${xIX|Ex=dg?wT zR`oO%M}w`Ra&siWOXWi}FP+L@jTmBi>CBLo+0qK}(&bV|<1fRS5lyb+d*NLV|moBy*@;q9uDfs!?p3{=Cp~ zV_v{ZW(H6=9!SCC#5B#nRQY}rOGvI z?+qk`S)x7Zk1EP(r*(^w4rzD;4Ehz&SIEeCk6GWq=5MfO)$+^*bL~*m3d-}gmDFN0 z+M+zOVG)r|Das-0Pv1~li`N^KWa-8Q8D34-fCTr^3cZ1SKgvu?9;POfi03wTE8;EP zj4x@e`Ji%IT9(vTC@o<9jA5E`oTLTLCP;QSt-2xtwRnuPh)uN^W~(3QD#~%r{f$dv zDCfFEYqL0ZH?tZf73R4X_21oV@xCiT6BQ=_H$rDX8_-Qq7GZow%Xkgh2z>5lCr223 zR-_#-RTVTItIn{{2o`aYsl#lYGr~q1W0=2fc2GYExp47O;F=jZwRkMbq(V5VCvreF zL79u{I_;_$?p}8FS~FbC1=m$W^@3{->DJ$ZYsr2x&U3>w<2-FMQ8CUIi3>5#2j+-l zoP}+wDooY}A0k@DfNdUT$>xuck>8{dBAc|s#I#envYhQTJj~WKzlBD08W@pknvJmU zGfmIK;ukd!v+a$r87yjC6gBwdeUxR2a!ZQo!NeR?F!^QJ5v{|B1+zWk8DEACEb_~| zwcW7DBA)Rj?yR-I($MDt8yD{}`vCD~%L^z`K;Jwr4~ zoEU`%M5Bd#E+KTQj9MY|JbQWzuC7^CJuGzc*dmTE&KF=facvVg{+q)MCnjQ~)FjbDYG|szg7ynk>+SEAN ziHOomzq__&S`>ra-q?cffpyG11_n|PC=f_QKCz^P(T6f_h0%NL=Vth6xM!!-RTynz z-EVx1L_ALVrIk|08CF$o=f=DCaNF5A(2Pf&ol4W$$&F&5LnIQ48)Azi#B5WP`2o9) zbQByUx;V{@$9Qv~dQ%R)Tz})P`dngd*-ru*e1s;T0SF#*RuRw%5)vYy3UeetKov)5 z0{Vo(ntp^OpesXG=1VI?K#Qf00)HFZTXcl2c;<&jbQ&0u7-%xA5d*CqR8JJTGxG1F^1rxu;% znDQN^8#B{3%h1)-`i}kEc!Z^&Z=|k*=_}U#4`KP*=jePRZ33?a-?`+n_OK*k0RbR&qhsdd~e2lpy z#6DlyzVfOQumF!4ib;pXCq|RS03~psK#$eVi|XuWb{;7yNJ#W}jy}Tg@hnNGsmC|# zf7=%V5_EaBfjM-G>k0%PCZR_pBt$|Fnj?~g%x4D7rBZ#KKNzrOM_MA<5VG{Pv_wR- zRqCkh`IGH^V3UL%k$&4BS^SVW&1FV9q~ZNA>Q_X6B2nY@dj8=d?l&iPZ*+SSZ2@q= z0p9%2GFyvWaG~9Eq@|~_k|OM<2ztsv^Cs6@a@2cgdc;e<01r>&p}I{Yu+@j9Bws}5 ztRDYfW?Gx!@h4it=JtuiR>LhB^_IGdjFMQl`*2N0PI55LwwN4)W)IZjaZw7JI(WD( zgD|`*2%KXF4i{u(qr)7-qQnHgyW;I~&(e?<5hh@uwn>DdImbujI2om)o@VUYbhu_J zpYx@zLL`-S&$ft&Yw09s!hLfu3)WPCZX5(?I4A8MlcdBsNzJ`+L$S^T>16rd`awH=RAb$K;^j;t|vLPCI=~wIlAUUqSly*XC*29QpJAJ##4Nv1+)k zde++|6uAcm&g#ZJiFt%sOlG2tEItcgNsjaJAFMh0hFw z@Yk$dPYi=SS}A;ALcoAvvco44G7rf}6*4{9yJZHM6=^R^RRu~nR(;-rA}Gd5oB4Hq*_M#d^;3UD-dUp&_wakM}!o!pUnsuwb5y+&Gc86UDTR$3u) zIZ^7EL=m&Ci0xGv&xa(84GriNFd%WuAu#3_FjtL?&n;za`ViO*a*GS1>qy(unXw!X zi1nI-8@>6ZB}_7=S6t+6ybc>9c6bhthAD9(#NPG+Z)bX=Zw*WB$qO%dKO=3K3|{?c z4`C1QA8E^&=cTR!Y5?m#ZGZ~3bewdxLx-pa`#8s?nn7%DH4rpZ10U2+z4Pv#k(O%O zy@clpXPg~H$^MK3hM5E29_?M`;bFm8QUdAEmms~rqPB5LnT6O+Qv)%f^u3H+p){O5 z{TiN{(k3!WB(6f~FxK7Uqa>2eN&m1?YU;qMirbBcxQTy|C3{}2?IklH8af3x`?X*O zsMrqH{t7l6$^K#tK|x|hcQ&qyZqCQ0^|_cDy)XPD>Y54IHYxb})=>x^(^b_q7f48` zBstd{32@K3qcr!7W3bK|Wx3~$kd@n|72=*prH=ZMI*RQ*ILa0_w}(b_8W@qt=L}dQ z^4WAPx;dlbbI(LJeFjVhxyJ=@8aBo>x39oGZITNM3-CD&vu2_XXJBjRwMp3Jr|F7- z%sfAz=jFD=H#9&x*nCu3gL-z%Q2{MDLYj&<>1QAMC@;{*eZfV(#MVB)lJ*TxNpNQqvM2!1HWX)3+#05tRRt3tAe&i6^H!!o5bvpI{fWmxqkDtTROF zD%QDxbq9>rtm7p8a5kYstTPdM@m5p+Vq5)ypkW=1uUN-<)^)VcIu?cP=V3{~0MPAn z&<^g18-S#Uurb6F7ImDvyj7}WvqLRMMcbUC%F<4nB^3# zsTkcjh>DOQ1=GuLsAwig*j@I?f$2J>PeUmUo%!Z0bszy^HNCryy2bVI~x4D5q`)jmepJP*{ z4WhC3=7=*wSjn}j2_P^U_2^rez&1;*XHOk@vEB!Z2EV^5Ug%o z48M#vl#}bN{2ptD>9=CdP*PNkJ20li!87eedEWeIvB~Pxov55+iu2CJP7?QRjVIpm z(%TtnXUXWz>=GGxC%brtH~4(l#kof6E3|HB{VM=du-b8wc{tnWox7nIk9Rz_H4hLP z-Z^88o|DeI({OEmL!gs(2LrX0je%+KVeglFb)RDOBw+HzfC;-j)}lVJ`1%q;=p`Ak zLTCwl`J6#$McPKGs=&F2RjVyHf_|K20|GJh^IRxYHw;3hatE1F_6t^1@xsaQ9{D96 z7!=d5dvWvub`*oeu6TYNtvfm&Th;pN=&aZm#u0_jLEi3p;liim*kIxFP^ACzNZJuN z8tmu{Ge;a_P)BFjSWN>DGiHPFF)H(x=*b}~CrB%KuT-6qDpgFbh>7*JyJ|y9U z(0EP(;}PxjhcUm}xpQoM+IgH!_lM0O?YJ2Fj#adiScX?a$IP#7hn_LMM4#*JUcX_s zPdg#;j@uTt^l2w5M(Y?K4jOlUZARL2GIsTo{wzEA)L2{SR7+ij)03>b-ryAK=Q!zG z4jd|Wwj=O(r1Lb}dkX*>(t!`E5OCf-F;x1Ek%9`HSJ=b9;GrpaT1j2SI4`hn`Z%Iv!8lIRbev@zSW|JjaS$gl z4w9n0L0x+VV478ktVUfg_*-NX=rZ^ZP)%|0`IqYvZsoL`@-tk?I2 zY(#l;>Ns8AoP^*pIaPUcqlAP?lk3b8Ni>n`ym7bI$j4LPVyvznXL;takda5E5vp%q zl{zX#-e!9*A`#514v)})f{C2M)ka{yEPpxd`CPMYT>O<)C0oCoPNvtlMH0GLE*lr+ zo2=yA;!-@&Mok>dqY^&Nk2-=IR#Q3 z>oz$`mo-k(7-#!sO&93JW0*~BtMO69Fp=LaH0q%g=iM*3EL_@TCjuI8=I40RG56(K z>>6vrbS#sTAZ2D+8sr?wq=J= z>?GrlvSb5ehHONVxnX{>V9;a8$cl~SqJ+*>vSF;zry*7ZLfpP zV1?tNc=M=XneN^%1SBa$-uye)ujetFn{xW1YP53cO@K zSO%|V)h>3hKfd&0wqu?sb=9=`o^_8Juerxb#^7w9duBlo+!OQlhySvzG2XamP%Y)o z*ph1hQtadW>pMQmJ`BW;vbvV3QJ8w;^Ec)}WUQ=m7z(2xa3rKq<`4tn#vs9^bO^5N zB?Jnt-`MS|am`K1bHCJ8aQ(!(cU!mw3pvRh2nvg=2!7BE2qtvF2yU#tR!U5SY?fBC(iq;vT;%H4p|1eO^kM`#Ohz?K4NP#p$Omw8w zQ5kbUx_t_6*wJ44&*<=k#&Zf7kBBG@#(W|=<>>fCl*FdfU^7TWE`~-&TOxYDc^zJ7 zG+Po76M18b>yptp%`LW{syM^DDm|=#zB8T-9Exq^x1`tMP0--!XgKB;+YeP-EyGun zs|ovfInXp*bhp%1P&Hy*5Ag)sJ5F+&!-iH`tDqOJ4oYQPw*f!1(!%&^1>!ur>}bnE zvlHub5)q@fy{ryzL7M33GZm>Bbva2UcoO)a%m^G8aMZ~V6&x+uttz->xaJF~tKewP zy4x)rf<>IgLK@&?60*4JnEK?*LL@dXe zBa&Dm$9ffY=11_^1@bNb90qH`1Y74^6tZ-Iv@|%m`jk|uqOfnv=B}Gymsc0~gNk%< zS`$c0n+uME(J0A89`|nud7;&HyciR)z6Ti_ap0jiZYDU46# zt*Vh8_@*5JU?c(<@QprBn6#WI=BC0VkDY5i(bCN!QdeQpi*>t9BuqqU<0PFX+R_FO zux$;OHg2ppEdo^9ASE`8L1_cNu@_av^a}WfbHSHTRAaQKBA*M`Q{337i@mHGIe{og zJZy|l5J9*8Zdw)ZC-q!1QB%*qfIygfmPlNPdhRtx0@QP_xjwS1Q^tVZg{_QC_jpan z$Scwa)im!&9hEA5*aekjQ38%0Jgr^rkP?J z7t5^^y|s%r^zpvwRM#%4tT5lMv20~iTv(8gx67CQylA#}SLcvC$;iEVKd#U4X6{;+ z?%mR@u8A^XRW?B-t@$zW=hqSJYT7ZDbGk@f1=>*7?Rbpl94Bdqvk4-qZpxq+uev#m zZM8ebRyP=5l>pAOM#p%&r`2V8_Z(b@J#Y+6cA^;s&ioY*ARpYVuDuozG?&B>5FnFe zkcx0dvttvE@#c1@UXdzQ6&@p4b(Y0L@Qst4e2i`Az?h284TI>YdyHh*S%GHGk{+nl zRFo9VPd!`~_~BD9w`mVW7LR2QZ#9V+vwgE*qF>tFxwSq^oALX}FRve?`QHX$qU(iXeiECKtqq$5>`*QdHM20e5%D9f8~_F2WWK z3tqtUey@fOr~h|rhBtjOQZKiZ^;3*K9?RL?c0tRu2{KYOVNPIo#vN-JWR}!bsLW*D zlTcd*s}?6Y9%uUuaw+uU^=gh|TgMw@`BAuW_HWg)a311efuHdy@>k31+8b0BjH=6a zQLg@U>qu|TC@>5GU_=%$Lgt(4QsB-ZWbTvEDr8P$5AVXoG)twYq^?5dWY%3}kr7e4nsJ=F;t~sr>!ZE+I-7lk{n+cJ z_m1&NQWV<&kX55?Btq4Aso#v@MY0Aqf|a`B}2oN@u1?f{!XPH{1` zofPGioRmC#t)N8ID@jGgrI=7mF7f1!W!fgI(^Jgpj%)6c2&fq~pWR$M$#TsqsjJYs zgmwRokb+#}Bo8}ys9Jdgdhx22%h=Y#fY9_}FuwXdcb?rk$y6%^9HIHCcELG{>5yok zqaSfX%`r^780XMb{9Fd90J)YO`xK5DiuqmYDnPDe-JdNWf?}Lx_as}cz?urrjf3#0 zAJf*1L;aXbY(J*)adqyps?b0(QsUsC(ArHF(@ME}J-dsE7zh+E7-MRn=4P9-U=kxqosDC0!ddV@1-_tKTQorgKmnpf*27t?W*CG+GJ z7ZeKSNyO*qyfbfHcc!UoKs>R;>Ft+in(C%~V&GKsCA%UouMs{}{Her3O|kpf$*q%# zbFzOHx()5c8BJ5+_5-|Eo1WF*Tkw6NY?$4}=kJ=VdB{n2I?#xR8cvB{^W4L>b{fEj zM7CPoRIA20{2^W~omN*wL7O>AP(>E5EAnbDttFmh;>y{x>FtZ>cCn=s{YaKk6))~pJY8^M$hc!coMt_l&- zT~R`^*E<*+*vLODVmn^@EAspy_V+k5Ud&b0jLEuNgIAQHTYue}NB5JG7EaNWbTbeL zQ_|BC7ow!q=172&R-3CNyETt9U@NCsHrgCAvPl}D!skn=qY`E%+xrY@VY)S&Xh3m= zoWe@V7hyO%GQ!M0Sd1#7dp?fdE&sjlUSqWaA!Yy%X*Cb)7 zl<%!Mb;}%Y^ri8{dH;Nv;Z-h(C!SZcF(d7usqtsnOYCNcskZhhle!A9=UBIBs^%Og z$;a6Q4{=U8^y1Y%FR-nAKxk?ojIW9V=ULmSwo^0q@;dA-N)VaJmtxStyJmBLs4MqA z3Cb*T1kLo@>)MI4tb|aREhAOD^E!KXDo{BE?HZ}7KzWr_FSVcu+HsPLrrP=k##D%I z7=%dm&qF3#iEf^=baUAq(F<#07I8gvbqoo`^{{qUWb~Wt>_a9gV{*>&DSr9$P3PKr z-1}zTesazGQ#IGTYqL+4KmU_>5ZC-_j!3Ra_!So~*tw}>q<)%e$)?RTF^9-XhB@M_ z5ZUyQIx0=7*xtd@EZJmWL#P0|IRy+ztE?YvFx>MEQzv+lp9 zX^wG{^KrJ%F^ixVub1;a+dAK1&Aprx?ceIR-+6ePH}_CH=r{Uu^nNK+%QS$pa4Th{ob$r>c<{Zq`Q+=A*Q&gWc z^TmGBO!jn5Gp(n`DrpAbXt0;l&m3_CLA{)Q(>2X}#Xyx#_m*CcUQWo!6lsK5=1i%h zQsiqkclvZM?@IJ?LgP6Fj7Ka}2xERdvtW9BmieAd7s6(cWn2t-)1xfYHo3SU7atLh z(o9NGF1{gC;-#0@%(m5xQoyFRcpPw3Gi)Mvjxb?69F?<^$-(D`tLTTQ37YQ_Ns|^-J$OduX~}%wVI{+){dY z#-T$`^?_l~R(GN(F6gA+ZWbAQia_Ky8KpwxFZS#wcxLz|ZHCBFg~;!$+i-?nKsibB z3|q;-nu^bjgZSvi6LO)pmU$&+Fs6Rd0=mBWd-3pZ_7K)%(@O8@KCPr5S)a5LIS|um zKOU)>IYZORGz1PCs(QIX!a;S%Jaa_SN@SiFnHg^0BpqlUu)Ac2tzedgEG?0ih+CeK zIx0Pq+1_d-fmtps@kbRErqjBFq_k$b5JsaM6M4^DIAd?!n?^j$h1R@UH@TqBn_;=; zze|xuC8b4W-q`QzTBnwpCyDb5O3a(z^ia+H4@h~VsN7rqVr7Oma9v#s?}_v$yA*&*Ov!^Rtf7K?TA}troOEaUS)xz8OLtUd3vl((}p*QZk zx=hPm_!wwzZ`4gmD3iclVKqBljhZ)qGad^Bg`qzk#|-TrQ(7TdNlnE*>~~>>Ww3Io zs}StLy2C3pgE`6JINN8i3h2cvn0m3T!-1(Om@vL7D4b_`6;bBGc8DfUulcsRRspoq zn_#an@K*aoC)Ox|vD(Hvn?RZ`16Lpwv$L1LSyMwTmbwb0eAZoLK@xoBB)3%98Vc4_ z$Zi~jY-*^qmrObnPxbJ5Docc+qXb7`&&1dmQIs!h&qe;1vga?E6pqPI&(HLWtFqJU zv$*QFpUm`ag=VI&Y-%cIYI2;I8pKSE%@N5=35}1_YqkN5R0DJi%tJlBLRPv)mq23Kt^iUW=dl2YTO+_EC< zHXbdf3W^JJd*jyfCHOG$H*ez!mZ+Tb4{~qqkslEk;YpX6XQvOw^FEhI5Y!|a#g1Nh zoY(Qy>WfmPs>16?R=pW91y^oPa)ZN%N~s5-7mtWWu&o<_p&=p+Z)T;K7tXQsytP-N zHFW=jsC~fQ43nt?n2Rh-)Q;}`5X!8elEw;*)XriRGC^3qEdfwijc2D{htr0Twn|+E z))?0Pz=96^TL}c&vb}l7+v;cz4Jc-TQy66g_I30lVb3R_<;Tab zj%Kp;Bk5%QnuLqxu;VQeUHUD4tN)L;>kO=-YTDiu1QLM=Bp@XTVlSi@JJ<^dme;PJ zB1MrRDvER~3KH5P9RU@j3W!*csC0qcB#4Ry>|L>Uzvs-Eb9e6Sz4_oz{%F{loip?7 zoafG&-94LEm{Wk)(fzupw8%U*NF;Q~J9xeMi@F|ctHOe0w)YI7oCMmmrV$g@ zdHB*zwlq5AeM~sQBkcpcCQ57Ee2W*@s2Ag4WC92JSo3%9qt6{VQ%DJ=l$*swRVeji zZx6oNQc#xERVdxYx-D-eltd&>()?yiL9nLS*NyX%S2lHfhXmxv^%-EGtCB0yh+u07 zZc%atmCr5_6aWm@VInSL^u4k{j8xgpmW@^itgMt)h>bQ&9hETmu)Xz23#`==Rt83N8W@oZ zqA{@MbJ3SbO1wnT`q#heM103HHB?FuVcTP1GrAyhQH;Jh!bA9lE-WZCG}N+AL0(Y_ zUcAojyP=QQ?rZbo?L+H%DO#GndS`m-!QJCes0Z1v#O{`MT1s7o&q&s7 z)?L$%lQhNIga^@14)o#`K=-q)rrm7;gz;4s;5<7Bx6aHP6QCRHR7%lfN;PL-CY8^> z(AyKLpyG(bH(~(}*rv5O(MkxI&N5iVG-KGoi{PLscDhSl1N2o9E3@$uhAw!DP>0T>dTQ%?C2cb1f&$K9JYrCSYI^t&985!n7?HI z&$)N@EfLl^lrX|CK0-B3pu;Rg^tE#^PiCS!UdKR(YH|5RJJP)$-p5+ZfEzfGAetn@ zRuC;@H_LF54fQOPx(cGFSobL(B5}c;bgq$h2$fN^LheSw2Q3XC)TZ8Ha+wHdmQO$} z13{Kgu1NQmBv<$n3kyY8p*4?99Kx&V{)#J&=TJleS%zsy%LwofZo;`Ut$@nwG8wv>TH`1^VA9OmG`0_z5e zjFAasQ1Ud1Ehc>4l`$)PHnN{@!B0az-%DME&+DxFwZ%tFawqu$31*r+u%@DQ;~-kP zbC0Ch($OxlTG)%KVnU(ASKAj*G);SoDWyEz%pSseY_dt~L1ZJ|O#jPpVJ+VNdUJo+ zM(hi8W=~z~oB;qZHx<*|B4Ht>xyc-nOcO%$Wd9T#pM39|%~IczajU8H zK08&}(^AdXQdeR04(op2Q&WwTeB!_$s`(Fk@me~&+14i(3~K3A+P~F(dgtMeo|bZE z98rPKcoHsV5tRsByfe;ztCQF70<5rXspyL%*bF_gqO~~9VUyWQOiYE%C+uU3UY2GG zq^`nd59{Xi(v2J^IiZ)O8CWwkBeKekv%|#SApsfi-3?%wAsH3;=4&L-NF)^*k*jO~ zaFJZCy%QsR#@^wbwU1)=YyQ{MUq`+8c5SYszC1u~c^EH0MX#eCK;%Jgc~;^<-13Y$ zBDp2u8CT&&Ao$*Z`w7R0s}e?3`j-H z99Z-DVSBQrQZM!BXr|`sF+pYnZ2vJf2MA&!| z&;Ni+TGq+WiJXP|$Jk`K^M;Jn7QN$7nLpX5jNX<`a-^=p=2zA|zPF|mCpiXZ6Bf&l z+cqi$wRnZg?`-Or-nMYT@am`BIo70ighjADnF-I^mr;S5g)pH`jpLD&L?;!nfJX2# zO5{8rm78Uxibz6@?HZvg+%xscJyKVp@(+h{r$t57D^4__;A|oXhD3{9x=ick)5`X*YLiy#G)Cqez(a@I zdTUzQVzW<`EI&v%h*rKeN1|xuTU@(nTB*lCebw92N~2rF93m@+m?O>#@k$%1W3ogL zdVRLn+Us9uhi%V<4)H>X_*)f9P7@;&zkFt+`prvAo=_aRH9oyG;2}OkFwrd<7tF_A z*}rJfpi*h<{V=?uesXR}P7e0Iur1+&Qasa4+v$K~0t)DG7L?lkbig!m#I)N=R|$if zSQ+f&wYOTjxl`&Y$QrY5e+!vv)Hvzwut1bU70e^I#;;(Svc20a>_42gEyesL8#T_o zt8R^u&Y==1ZUO@c+Exd|)0#2#CA1X{Sf@$s6A7XPGHeA=Yj$%!F16vFwNh6>bQtTt z=tCrO&Pi7rX@}5!idM+oNO+~)r7K+LR9|sEb z6Yad9$1HaKWBl~Q?Ah$;t$Q|GtZHrbYz{v_N;(v8o<~&1FMpf-A z)Qc#1*(YF^y&JAXJrw)&w3p^JNu4hdP*bgdy_|EKWuq6Ru0kt^b)QE>(QO+iS>ezj zCfW|Yc-2oH+gbqxP1^?JqcCWbFe&8SkkqK9zDMrdoOzpNr4w#9zx)()=lK;)q97|9 zUeQa)G+GV%g0bS9N^pHAAy9Cg%x-@Lw+%BT_7Q2U;3{U_|14Z$+B?bLNITQTfi+bX zxp5G$sftpLHa-z2_OYBaHDJY)R)~`p zNgb6oXR*C!`dCi#0wX#Nj7Xf+57vB6db3Y_PCAcm_k+!7PI6K7>Em-!Qb7s&6kWco zXlC;(ACD>9_t!7J4?V+JQhG-ld=y(s?=ycTV^`Cw3;Xw3AInDnNnM3gN7nrdu|%_x zll<;*AvS7!dwe#!m~H(I>~6&FrhW8$bdG)8$LAjlK-zm1O)dQxcuwRO*gqJK=}7cOQRkRzG`3 zExyiv-Tsh{xOp|*fE&1Z^#pLq@U1r#CB0Pi@yX{$#tI z-8`3`AoHYVk^=+t}2pK+u#%7+zHe&atEW`fS88 z`oH%Ep%e4$mnGgCj+)0p=$8uwAz?%%QA{ymG)Ts+2;!Eum zk9<$-#QfSMqN9D>;wwKq>RzcZ;5uFA`q$=o78x3!;@xOlYtDuo=`%mOybeG6Q0VC(` z$n%;$hb}8VAAoHP4fWs`y(q89%RYN!UvD=485EVz-<9( zUiIr|+2#?ctI&CfbsqpK(Y240jKtZ*HdOn}fL=Vhd4z3^1Y(A6Fut05&a*!KEZqzp zkKcC!1!RIJ0u3n37i{k6oiM+ml>@~W5hyoIsL0gk5G1e2Fcl=@*|jxr&5%o_)K!p- zW!>!-5njU7ugq4M8DVI&1dsI6x&`Z;!~4gobI!-n=%&v(=13H^oYP-Z%T&hf zOmsob`&qpLR&J42h*}0q9g``7*r&0*yN&1knBXmeQJoe>C3-m>7X9jGTL1X;GK=k> z4x7=7EEmZs{cUCQ{VbD2rGMEG#vF;WNlj=P?=|%?&@ytgEIUdhE#r8G=I>R&Y!AwJOVVrl* zc|TmYqnQVq!6xSb$D7kO+|)Z`LPfF*l->|EY?Dmr`3eFgFb+1%k9j)blrTUfqrzz^ z`}!|@HN=x4brtbE%esvR5El#Lags&@Eb+jaA|5x+bNy|b=M-~2sLeCaw0UxB2+t6Z z7CU$-zEf-Pc{%%xL=-e6W_78Z)uyx&&kG)I)oY82R_+fKi3;b|0lLEJ2@Ei4RfRKF zB109CXX{dm7&%=AXi*oOK)Cq3atbNyXWIeRCA_ zz&kM)o3FF2RBzt{-0et!4{9bl?|vH)sc~A=DX_qp-*;^3V}PNX?I0f9^P=$Sr{Bi~ zoP#GVwFtt1Q05p?4um)}8j6FSodtXev5ECfoO zFMKZ$@UR@ zeELAkLsv>&GuZ?*AF%Fa2E-2H9SJAsf|Gq3x@}H;uL`GesV1v$q~8E7e} z!S0Gf39MujXO6ki0~)eGQ33SCZrouvXvR<=kiL(hAW(WtMy^o$lHGk6?wSf{j?`5s zeagBs2qgiZ6HKKXoIEs~5(-4^213-d_Cl(hoEUEHefuWr8$WRC_J>D>GrZCJg1CsN zHrC+j*X-#AldXPFM^Mu1cleaFc5rP{(s%nqNuosi#oPM?dK8_1zN=y5pZ;;Lbo^)& zQqfYgI|We?Ej2YqBrPR0y;D~_`xvc5@3fRu60lMztq>($Aazup{K)ps@p3)4@G1<9 z>a;K_RXq)0(dVMxcgC-Jer5X&U^BYvagn6l8R4N;$#|LvABUp8PGJGM$-~>d-PZ&8 z1SOqM#ZD1moW@?(?urzA%Q))1>{4uF_^^yy&87d?ulw(`j59;(DvbVO-6sr2l5w11 zvV(&bT+0z^yam@kY-%zfGmL}b72`O^M%)=;oK}g5&R1k*Udhc>mcdY_RJ3WV!M zLbyaV$c7u5TB~S z{fHkYJP=e{E3K3!m|+L-;NeMk>2jzT7{G?&o$Dkr%NJI6N-+l{?S%08f%zZ z&{A*2{2euXs-iIubE!42sv#FtXY4&=KIw;Qs8w=dacPNVp~M2TnX{Mf>SsyF7vSY2 zd}OQ8+k4zNDtw5B>gzMZD|cn2Zj%_OiPn;x+kBU$p^v1l!mAnUesGswfH}!-2aMsN z(60uV*dGo(j7{w}m~;rCP&C(DtxBA48}5oQ5%vTDG(HvKH7tCZZ13#x9X%92t(7zi zBXE(H6SxFX`rTr-Du@neUk|<8a?x>8S8-7$>mKFpU5p8w^KM3(NF^t2Yo%Fr$EAf1 z^+v2k_6$$XJyK}8F;SBkVCY@Z&gRn4qO4gHyQSfGZ{it5{QA_dDQ=>vXw>|;yVMZN z5gbcr<3r54sN-FJUDR-PZPrCc?+-T#LLFuhZ!b!s`w)1Lnx2$!P)Rh)9EswlS@wdR zaYfmYg3^y;u%_Q_x#_ilrB|gT;-+e;qY~+OwpU?O<%ibiriEVhM;58#G^bl>#j$T5 zS$7I7`vmo~m$qWZ4Ke#5IXui1d-A#`w#N!;(%piaiu28_9aACIDa^wrteAdg*RTe= z@Hk>n)_=%WNl(5)k~w)&KkS%s=%Dy>uay03Fv!x=QBqgYQz7dfjt@ac-~V!wESycS zP?>Zx^y2l0irH3{m-aH|AHCJp!2B(rigwPW3=;fgBJ@T~z&#>H2XBv3mDDmRC^Fy> zFGWN?EZ4|T6(ya)?p-m+Qc^#ut6({Wb#Jq`L$J%v_r zNEk1c#5o?CGWVSSq?r>MGzaVO_k_Yk)IlfanuBX?Ixg>1a5BjkjvM zjO}#?l4jKgAIz#vTm75 z)QugXLYU2#I4I1nW51`vZ?lYBC3O{MSF!GLA2Si3lP=}m-Yb1)LI`_sZmX62K=o|OPm?Mr|=xvQ-?$!OH?u^)x_gap+ zC}8D$X@xlIda0w*<`%YxFa3RpUuxRl=lsB^P79+_|ELWtMhc{aq4&n`AN6MYZD2FH zf8-*`yf?y7_*!K_5q2*&>}2O#K5qP=L`ut<-^T+##Z~D4&UoyqbqFTpvctpmg&8~D zj2UnFXSiiFU1Fi8+a2udlzS~jEtk3qx4x{q*x)96N=~rQK}5yUdW0X3o%*w>g@Dnp z6NXpw(m6H>OYG~gUk~WXA>q$Bim}^A*q;8FwqbnIl#n#yC?p9e(2`Wp7=0?^Rv6vO z&hCY?hLZl2x(cJaSoc@LNU)I;{A81E&&nH8&^=H=yO9tyb(WAPe_a=D<;^}SD)^}A z!p}@->McnOV*`Ib4HQI_23do}*G>>gv?9|!AIoRfU-K%yp7eQ(ZR04eLL`I+9HlkRL5bD2Aqjec*C>JWP00;bwc z&dYZP3z9N`<#=WW)}{K%Y##8#rgu77j`F1fPeP0sDyEpwI`%#>eHB_BJA34PmZ46U zx{9GDup0B4bv12}qoF{TyG#422>^@x(t` zF?A^1?lpw)1c!i)5s~eQNB6diJwX872K#NMSzpv9RZZU?suJbX1Ov2eGmS&wL8f|M z!a+>6!W@ZWsulJ+sW#Ir25Z@UmZ{zfSgMkih^fAiIx2r=v%ODjhESWS${$(elG9vf zrPO9x1j`Y+N~k*|{xWYKkF&_0t@=zZss;C1s%n@UZk!c*fNW8Qg@IuEaXNB=OF?Wg;lwF6L{zndpKhYMmQ*H1e@)tJWn|iX;RkXB#b&H2+ zT5^&CoK0X*y>v13;x(6^Wm|ZLF{y%^OKr^Gvbp4(%N%0a=+kpiHJAwT_Qu389{@d8m@~DTGR28L6V5mF(TExSXayx?k!lRF<*saEpqlL7Zd= zz7d7ztFb?WiBIH{8z$3&Krh)ZFquldr3K!y(r{kPs7}2o1`rh0LhY#-?s@iffl0s^ z4W*~d1PC;g#*ubyE!NiT58DV{e0zv4jCR@_RE5!B5*MPI-_4OIy7}E+22~in%&7e` z#L`WRp<*_XrDo=cvqW@rg49uT^9tKL#tR)+!40KmLv=&RY5hVzQDL;t2F4Agjzi-! zO*s#-&uiZxYC^eKz8exD8Qf^g&Ckg<%Qf?2CT=X{%$nEN1IYv>p^cTzywlD?A3>i} z{^OJBskh3g)r{K0F7+5{d1koORS0ch-TN#;s&nL|_rQYBH4}kgytUaTws#L8Gix*W zpgKp+JM5L+xFW+dJd4m#){Z%*ojM^iV;6BR()_{8--Kw_FZ>1$R>Z6XYzR%UMSn}^z!8B${Q zL{vIoTo{aT@)f{m|LA{|R_s{iZXL$kxaFN%QjOW?4D;}034g5x{(>lgTCs+k7EMPeE_ zM9uOQ>((DmHC_zK!T1WNd0PzDRCI0}L}!{ksrkkyDrG)y;&o}3(AaBsy}QyT-bhe= z1BY!;1vNPO13QZBirwJJu~Rkj5^73jMJ>J+|I_{uiy*=qhwD1#1_X~OsOp#pBqUUQ zj5J3isf0#)X~mf8s*d@U0UI{l63hI6r6;8&B9_%sM`g-yY;Ohf!8|$iq(7?oF>+eN zNJ@3gU>J>XOK6ujrwD8DapiZP8MAHi7Y{SonpX`T7t|m)VK`OftpxJP3;qU`-WSdsXszZ zECIwptXszmosM4+Rn$0XA}mCTnow&m_bgyjb6+Qc4JUeYE{5{#>VhLf`z%e-Zdf=g#%ZCab~R0ru`8TX*u|4ZSOU6K z>MA}ym~}7qaS|vx=|xsb-JFwb;OgliH|BR13hL${OX{w{t*}=ohVkHrz2GXsT_Yn& zB7vb)xTglU4`H_lnc-q~aPA!LcW~O})+QGfo${

    `ov>X|KUDb@oS!d5y9UK?cDa;p_+pCENtPcuky4wsoGD z+tD>~P@Z*+T5~$*@?mIbxG0GLp;rS+Qh>FKa%0}A$4aypXCbG#5lW*fEj=|MGWov|EVuY0L zfn#Eav{t(*#yXbWe8uEmjONXYCier)n|Y*NTdS!P_J?Rh(euqnUG#iub5Ai%!%-sl ziD^>J5y>S) zd}ir}ZRq2zq6*n|GHgb#qFfXS7?mrWmUZv}n8N&AT1VBvE#d+^%|c&+M~Tx~3b6%6 z4n%KPXL#H0#T1Ki-tueaHc1^O!&Y%L=A5d`BTZ{gaSB^9ixC6yaz&?wub zK^F9T-?9tdK&B+{gQbu_E|C-ngp_!{m`KXabJzA%=NS z>X=I)IKC6x!>?99*Q@Ct7}aTERAQM6V9{rpr|yr>GMBLZ3t%&vWn3iZ-fvju;-u2t zNK3dhztCI$JlZrDzK+s3Pf5D2#v5R#&cY8`M37ien(uWzZc9e$8!}ckgRWs;*4=Mw zmUpDC!sQCq-Dz-=NopbJ#zKguQIm46!JZm5c>H-yI6r1g%TU$$0zatpYH;*s zb`)tPI7Q6Sv&rtC)q8|H0CW8F#dO(*dcOdQ{kvt*MAR?J;jzoy$x$WKT zB~jg(-i*|Q2P~DW3D|jF+94|0Ds@zf+{*SgA`wh?=6QcqK{!rp0!gVm^Eiw~*d+9| zmpiPc?o3}E=5cFYb!S{qkHLwV;ZDf~1x1CWUMRORqh6tTY`HKux75p>UBTQEQ+!4> zp1lFVWX3*w@1+ycQ|mn#e_jn@50f9XJkwh0DxMk0x`%mX4+VQPPMQG=gpeVdP@Y%* znC#KS{21$9Y&hdV%Q|pIv5s>y;lT*&WTJWlTqBOGY$D*=GY>DE8scF*l$hWG{lpOy zT$e})6b%hyPdmX=Q`q#7x(cqrtb3CWm&h$A?P{fT8wyrc+-^L?O;q%l$!VgZfrg3- zVq!o+8a|4R0R=gx2FFLR1V_#RsDwifY!pVAE3- zI3Gwjh?jPoBN1MzezI%AZscC{);k8iOHx~>0!2)`jA~h z{S_F|X<$SuZmMBFLPrTX55+HT9%I|puo+$4xG2I8S{f?K$tx-#8cMM=guSxxDmSg5 zsL1gZc;Z39%k8~0!#iyj9w+g|b=~=1cu-YFY9|@GnOI^vOk(#g@UkaXwD#8R+Hzg$ zO;TS$RmS=^JfzoBPI4{Ij_^>z-O!8Irsj4uV!m7_$jKs>yN#-Nb z%%e9GC|Yqj+$iT-NT_v#{77w5ndx1#6*m!l-$f2kXhb}|ScO(ugTFJ`Ukntx9NKOs zvu)yt-Njz8>b2FynX^9(Bub-$9@eGNKQ=QJ1s(pdAO@nKEOR7^g0ddg6f}=9YxS_D zpfdwj&X87!f-aXjDre@iy)F-13OXY&qSL^LL_y7AjpkXmceWRY9*)mI3)pmXn2cs1 z7exBQUih={*uFagsR>7g}_^483@Zu4Qa% z4!|>uE)1{A0O#0auwuyP+kddJp$-&0gL~va3Ew-TJ5@^>Rc6H0vRD#iGrxhkSeC2~ zLH3@+K|!{LeSaIin}TSc)K!?RV%={oW`d8LGZ&wLcom!1n5l(q{bt zY;W=-c6s)IKdShVa#}YUX@|Pk!=PUaz4!<*QOuj>8`%8y)~s5VxnQn&#IVuDNx6kZ zmV&T}R!N@wm>@_f-5Z`W@8E;;@Pvv}!G2QMm4iMi2r|m@&t<`78`4wXmVvA3w1YjX ze#9=vzLmNPq^+#`%%8{7KKB0?{-SKGf;bHsTV#;8n1Xq;OF zECUfpwBaEL2>oMUCeQ)zWLtFXyd~HSI@zPeoK)z%#a^}=ZONuc>MC?9SvL<+gP;Z3 zI7z$FmTX|nkc~(zH%{0hKo1^YW3B|PytaCKLzQ`P;sWiUzZ?kJM0TzAR*d*IdwY!; zG3Ju%N@OGGM!Y84fpqH~-Fwx4*u^XNUvJ-ScV-^n|0}npSN7t%kq7MX7f)mSWuoYW znX=mp7Z1Gj#CI1b@ORy7Jfq|81EihNqc!b31O$S#vsmInw6oA0akSIz&+Xkz>P9cU zK48F}9&H(CTfoQ`X@nT(L#d~rs(a?bnol?XAtmG8z51AK z&xOtC!pB81d$ggNj&+K2igODb*%TGz<04RV(t%dG=ZRh^Kt)CBhC`&(<(X{~mAK{$!!-qd)Z&tZX)*&r zQ)F|rw}SkBVQ-OfvCEnnNJa3BSYJJ4RcmW~_51$NOo~r)I}EacXO7>rd8jI!A0;wG zHQ$>fj%w(c>K#3YJt>ec8ey=C_lqL2{YS z&eIg3xB_mJYZ!*a@rIDzyVkCyns7_-}8T|KH)SOqwAWqF|q2JVjPWr!J)t$aXdj}Q!qvsHq98U z+%dMWxgucYGHHd_rkB)FsnVS7bsu93o67X|Y*)FN_OA7GC3hL$*<>r)l4Lfebceq+3sUiYAZjw`i=XJVF+t9>& zKL=}gyT&T^&vh#8o0T<5eOiXDe#MVu|K^Ud)y>ONSHaYVbzeX%(fu4JS><3^J{m*= zwRr8Ewrpw@pfl|p46lCgony0M#jwmP=TtV0j+5pWL$UYCjTd?soQqyg6ckd0(7L^_ zCKW>K2Z?|}>jZZD8@O$1p5(D2eHB{Aux@CqUR*iJzeqRJ$$>Q$yc-9>Qzr*G(x@-k z=Y}IITiZMcMAq^`od;5dB0H`IZ`-lA7)kJtn9)a#@mo2wKdVjd$vZ&qxoWKDp8p|m z%vM$C+$Z6n8s#2yL~>8)9xwZkVBJy3VBIy=^3U{ur6;5%;-4i_N2N*;+gmu+Ry$Al zql#Z8r*)T+cBnf528n_~YsVKQY#$rHm2(oCA7IU@R*nm%?^we_7bg|u;Hxl(fAHIt zpNE@T;U3|>-kJ`Tc$qUIL!E(%OVgFVw9OvMt7?kO!HOEi$ zim}P=v59ymOUMK^pqp%qjX6nRQz+wA*j&I)=00vo<^rj!GUpuDJqJNYcW|8K%*QRs zz?vZ$kxy=%Pb~oJjvSwoVlEjis!mV0uUlPrBxq&XT@&ioDYjSN4}`8hXeToeJ6-;M z+HEoPMeKH8Gjz;W&TV6LE9ZZtTYIgXiw}@?Wd*v$ym!g^o?Pgqxoa@=#=>W?VIdDP!&O7Ihg%xI*ti+=H5_h8pfz!(k7oA(FkJFnCeG4)B3?T9h zg5+Kqrh=pg`*j!mGF8muQddE86YF9%+%jBz)TB~+zx<$sdXHU!|8UZBzqF%M#$6wS zpP|3+p{~;Ii=|#KcHfMFJ>Pi;R8iI} ze_Xe6rdie6YUSLvKQtrOfgc-e1Ff7rHYZhuQ>RSK3!<7tbHq`NSzUz^z1+ibt<=q` zzKq*JWtMM_3|Kl`S|YwFkvfWR`mw!&GF#ys?vE0DVBpLPcF z5PxGXMbnN8=8th+|3O%3*`KqL!o2(&f~7zkz)Rm4ISrRUzjm0bkz_nwIoR9H=iOM@!|GP-q5Qm+awz7xD)_( z1kh2L^JH`K#kJm-c5#wVOITzw+bYJH@b3`&v!g=F$mGc;bb@q76I=2R_^psYJ zb%sbCl`CV|-aX@OmD4jYqSL^LROPgXHT&D%dq;5y+hfPOUscAY+rwlu+qfW3LlBN_ zlJT8myu(>hRoSdwfq87XC}!(ha)X} zud=Cts^S5B0vW`Ex9qQc#}>nu2;Ga75$VpI9%qMl0 zuz5W0Y%)!?cU&-|5X>O7cZv$|rQ>iF-k&f;R8VR@ywoKZ9UhcE>0Z`v)k$8~3zf;q zxv>=ce``qzd+j(gb)6Y6JZEc0>Om9ZPq5YO=-(488#R@>3bPfgn>JCik&`sQ*?tLh z4D{l$(JHppU?Qzy>k}?aY;(5Ha#2PAEu~0kft9cc zk29mtI$t87=x8l_eKx!{tF-H-u0rcY*1g)IC5j>^xniPi1HqbV1G#bju&B^u%t)42 zTPz(l*{>);O~K?baHxRq*FlI0u#SVko6qgTF`GieC+Mb7Z_=&3rqJsLNLJ5H)MT~P zrmZ5Yoe~!!t4edkkyW=x(G)8Ch(6z~;nrC=1ioL0Niz1B0M#8Kzd2fWXgFsO-F&2F~GS5r)H z`f91GAgf^A{~5^SYo$(bDNgoT>h?+TS*nsvT?zzE&4l4q&Ey=fK}FGLc+h=ajx)*cJae4jnWP_c`p z^%Hf|XsK1Lt)|hQ{h=YT$o$Pf9B3N-Y;#jl(P5JXLl6~Zm?Msg=$3rOWX(k%GiFUD zTP`{&V5L}E3C-HkGexSXr1^x+o#*xM9`2A(92n0jU_4@>Mlj~H&~20Bv(Oi8x)E$f zvyhA7kja9D3W|#gOQ>M7NrWAEqFKmSuoKWIL|6!$w8T7}NNBVKKuxfH?B#=#EeXw% zx(cjsS$CQNE6}!f(kTuhTD`46^zrJY@7dlIplFx~KB!6Qyc-28j*0LMLF~quwbHHI z2!{v}#gsZ8%1(5rMqx}KRms2=NWZhAJK(4(k-m_+3Z$P|7h7~YkOUVw>0T=(E`n7R zwi^#&8!k#c#EeJHqi?x+G!u>N_@NqB@}!kcV zd>9Ywx0ZGC3rh-4EQ!=ZSwT_m<)$j1iCU^CavHXGFDbBJa^E2%Hd9MXhz9J{Rxf+F zYgvCH^%X+(S$_|ri0&Ra$@>lw;-BB47mt5Z+1C3&&G64wk0xRa?>2c|hlZP(LMYQl zk01Ny4j9^B14U4FP()vFrvk_VV@?ymG@Bykq2ipT>|B#6mUB*!x(bvu);(s5?h-l4 zkyC7!sEOBqG^krGN!?hRJX`x*;!RppMWv6sqB33z3KYYMpklhT20t^{Pb8Y)7BO2d z_H@BhYE^5i;5jSjp!)@-j58DW}4<^HH5@txL8BkfRkDh&E8^D9y^UX!Q|o1bdUswR;O z#>3!-X_i)1wn{24!CiT@tnulH+`NJlbG&_;E-Rl`jy0zEqDLz2X z+3hQi3@SgXXZ#0=X_=^g1kq25(D-z2C3e0Wy(}Bp~yxZbHv#owrL@C zRI;4R<}#*w?cc(uoTgF*B`%Ot_}FGcqg^{v4z|(ot@x9t#wVN8+4_g}WJ5N>vPkpOjSj+>^} zMprOWN26U}?rwDoSh-MIDf=9q8mXdE<4QJn?KHbIx-c-H)4+hVG-?ZLe$g^~TKuKa zwQRdBY(_7QToBn9l?#@Z$)!1^XaJ{uZYmZu6x^FyV3O8CW*6Y}8WOl9GbwNqy`VKy zhO8z|cXn&)G)pEcq^^Re8|yAb2+?HXB#RszRIzM?UOY0niES+cWQI&IzM5;!GY?j{ zQo#p4fl7h7iG{CSnLZ1>nuSUwvkn0!MT8321aFE)PI6chET79z6)d;0dmqC+(~bFC z>MB@zvhME|7C|UZ@(Zr4c{u{sRFG~Q1W8?(Y%>mZVY+45hn8=D50CJ~4i4;sH$r0v z*JiqyPs-uj*?Km`X?lrN*Q(am5~=?IvP|dcnq@j7eoRbNuG}F}p;DutIU-pm z)Xytl7geqdWVrfFw1MKp+!k8l$>+#VL(Ga+y4f?0v<~-bqqdOM$)@lk2kE!AcX1=fR2O= zf&@{EHgV;I(eX3HTvZr7!oD6o!xB+@sjD!0fOStr?BHiXL{4(j3`<0?rb;(A&U+RN zS}`F(9y!0NwRidvRZVM(?}Shl_Gfa?*wmrGdT3`wl0VAM-eLxfS>)U_-7j+1tgFo; zXY2ve&!icee#RqmNk6MY^(sQ46p07X&nk07(oe!FT)gO8<7JH0b2BXeydAKzQ(7VZ z`AX`jG#StKK0`8?_a$})Msyk&k*b^}uohvTg!(h%S2>f}_7d2Pu5w%y&tg<&omR;O zIVJcJHyvR7oaYtW?_Ys%u#=^h44y|^BPIAX&nq?yir4UB=+QIdPoi1uRoj`CXik;7 z3Y}@JTRKw{jgu7NY(j&GrVI4qwPj|oEj*h2v1`k;wSOzNaUN#F8naDPFRO7?{UpMH zTB95-eGUthlkJNbJOdH9278?bP9li<%di#CJjJf|!NoNN&x2A|LG&c+jNw=go0aCgTv3T!^pkZ1?mzZ0@*OUbuBdhtMqDm~jed!glLW-gu;zcI6d zt^Z_CR$X8h$`8myM>mOuMfu*cK~>G`<(uc0@f=&Rw`VY(TQ-anOISYRO-nklgjs`7 z-t>{-t10y|JJ@TMWu1{yS3&gx>kb7*(Mu~Q8H}@i)|m{wcuT7n+16lyXO>nNU;WrS z&u;PNe2qR0N*f}ZddUE&q|_@LTh$~b0ugS@(e8qv9K0DCQ4koG-G>j;v}^;`jwvRf zo|nNZpk8N(pPS{iKdNGWRN5(=US-vd7AHYHPV&YqTjIc&T5GvsZkc79H%N_reH`b+ z^qj80BOZy42%e(bC!;ei3$|O&F8^TiG-jdm?M$D2vOld&_StlR?2|cLvro&}(S^>_ zp;PCDQaj*ibT{X8bHp(Rb#qRitqYy4jMOQ!ZJ~2xz{(BMN_I{~&lIVma^+1n*KfA1 zb8ZL>=rk}O)j1`w=GQqBXUDH|D%f@jY)02PE{H;m>WC+~IM;mrpnvzO49=X=;(V{X zWz|?A;TZ=BzR=e#6?eNIYgN@sD2P)-?QkRNIT^c}Qtz;TOJ-Z{*(h}tPCHrmb;J_Q zJx;RD;X)P9Zs^71o?UEf9k4UpgYnfYbe=s6E3(q5$B`QH5s@xG7Pq2^dMt*5n=DdY zJ{s4=Rz1FgIG>REOGdAd+QT0I29HhQ(`b%JU4_(pteZMVFR+}X-W41@W(g>A6Yow0K zm@nDhD&&Q^6F!dy6u%BmVT2LbUe6HNi?C4W9WT_dvW8yIw>-iSGN5}sE}nZa{>*TW zci5#^%A<;|hufS5Sa5-ou+wr*Ua8k;XSkoYErz&`5o7BN+H+=YJLIT;s*}-{EWb${ z)GYgzz5Hp8<)hRmDes$ja;ry!Oj0k5 zS@5JLq^E3tDnfcw;z5M8*&LCCl&~4sG`jnf+{`}yx8X_4NZ$mkd?~FEBmFCNRQA+i zdw(KFO!w!@z=%!*BT`lL8mvY5D53S-_*GGTw*4AxMps2HidQiz^AMhL%gM`Q1~T6s z4*#>EulMGqm_JI8xw0(X1M}dioNLe#QPTd9rk*la@QIpRjoGV`xt4pnNL__aL)Ps$ zS96b(T!6EE?&%J_c-@~gwsnCQKCY4<%E8mu=5NJ6&ci}jWB#$RCL&gE#OkWU?AMvo zUMTD6fq}BsaRLa;lR*F}A>s3Yj9KAx82dQ_SJrUPRH>`*NoU>379YVqPBLMxZT*b! zBNg-BjfJM4!GZYaRgIDds>F*)*7^$)*kClrql?cSi$A+91X{ zQ5qqxIaBJWY&o3GosNNepaB#Z&naL$qMCzY%%_^0=EbL)quBJpuo+D?E{3Fe5vpmO zoLf?eoxp6hlb2Uwzu*V1$qY#7gLRH<>IKBzj@y!+Izq;*W>XG3He{YuZ7TySLvL{wjKv)X61$P)o;J^>|U>b0d}`QkwYX?FA?BO8dse@ zc}P`qokF1FzUK#~$&$h(BeY-ib7T{BvXv7;TV&J9mZ6+ZkT($oRZ28sYzxSVwvN8mdT70o+Fxg;U&)(lS}zr%046iVsj0q zLF7Xc`%b7$t~uoZxh8+U=9(M?jtQ!`=6@0n;)zSmktnjcbiO8=(;2AF^KE5wSHQ|0 z(#rBdX!l4Jh5H$7?*93RyHS7z=W-Lxy3S#KOWNFMHX>ev@wj*Qn#U<(o3Rv4c?XMC*@OwJ{@ggA7&8ppNX$ zYx6C~?3TI;mh)M67hI3#7$>QAFc8Ol550ICb0OQR22_S)Fuv+?IL}^%6;sLd8H>(3 z!uE3Ct|EfLCn2z%@VX_NI(mPNHNWygMqm*rnM10w6SRb2Y50_wc?y=x*u9jeY$4ND z>MB?|vu@T?1dCu6Cu#MREo4%>ZkGg0Ha8XmrB^v|{g2&T)yf+-UIpw2^~CV1tk^+a zP=llYV@EMSY&tn-zHZ>;Sk>BU;9PZptTN~+%_?^y{vfMNlc*4@Ofg3!tAy|}$|X?^ zoNF1bNl#f)c`0Dz1!;szm~B!=<;ityZ!@yNG;m&^0YydY6!0E1(uDT;DucZUuY|t! z!dKMP!0E;#U=JvhXX-wdi)SpxkMK)DX))g8wAD;uX{oobszlDv_0cq!l8XL#2+&k$c%*gJ*2{@=sty zr-2cve0j@8!?()wo{3++3}xGI!De*%;-aW}+AANwxt;gpG&C2AunQh;ljA#UB{{rQ zdU|@`I4zVCX9SK@{oh$es%FkZ?9D~bSYqiebrmY3Shw3Vnpm9VdYtVO%RSJG*N=IC zZQ&yj13|Q1ORh+u^MRIjhFX0y4G1zl&xQ>@Kqbf<@AYyGczbZQ*p;)VH@P8cpkKBu0*;G93Q_Yy0 zYm;gw93a&sEYMW*pG`|eHAgJaB+wa%>5rpF;-yow*HwM;J8RNzoyTIQ5Zf3?IqM6M^GiG;H>sWzPY_m7}`Jkd}zEI35 zW;DgP zD6U&5DWdjGpU^2dTXIA zYrdDd3Z7S3_iKa@%`i^#g@c0_Ch^($4D%}6`T~#{hQau1?m5q@aB)pRV=2Z4=qRQX z4;}68Ro&5R@V22>Uubv)A_EKvrcJVz5H5#5E9RiWWfS|C`K)D_5~-_jd4qKe5HD~M z4C5rZ&)SkE)9XJ!*p+c(AyQf_ArVeGv^vwX+@f8lpe(a!5k+-<4W4dcPccGlX1RJH zF^l-F-dR?)w%Rh=4v=6TdsY+7BZxmpFiRyWL@RuemU2(+k8x~aFn zT|jtfV|rzdhl&Q9iRTu0;U(40Qu53*#)Sn%<_(3kocUDK;1jqp<^A6o-^B1voYR+Y zn%g8bb5Z;`_5r)uVv*&Z0;#J|dzW={7HRHrk`r(?!9(109`xc>H}A2n69A#%9*nQJ z$9dKaDZ$)xIAK)YtGa0vMth&yaiNC-CytmP0t00y=Msj2^9iJ$GH^vipR%(z!&y`6 z43WADq`j=rb2e(AY>w;C!h6(wzVXb6+84fZFi=7*RMwZuBO=L zYJWwNf6o5mA(8p9`!=(lB|Z}06UMi@p<8=lod?`IZs;4vA@=^lP$MOfRyMW{x;3L`FwS9hEWPvAs5nEg7YGWh=lKiUOS$ zMy0CfD;p8_aL!pAzv}ss?SF+xqN^Sk$>)n~)ib(Yb#^ko+E|M3K(w#Uu#>EyxVXsN z*FAGyAMf<~Q3~~lsf>b`_UYDiZ(3Y&mm%+_r`{|0tb6BT z%|lKy0B8F=GzNO{T04KRtpOHv+W)4j`CC5Q>72W6v8AF{zeG7>aVl?H-9*3;8u4yN zuk%;&#Dvm!f5#ION{eOW3Z;bR_K~gyxZH+_UX!{CrGGiHwH75oL{9P&63#Svu;fC# zf)m^@*I7`gzw^178MN&Bjh9_lp+1U@0)@Hk&`7Q*kSNSAYH&S?!$e-jE|ET2q)Vjj zR<*WDq=TCyz5c%^{lvC}>0bNIm4U5C8!w4fCY9o7^eYfW=7{4HdIh3riDsqxj9LB? z%Su-Tto%<}Ay&Fo>X`HqIgrBkdKk}n8|425Ms->kl~}1AEc*4)qf6qmQbV@i4mP7% z$whMf62VFZ`FYq-6s%+(I>tx$vd_i~=0rzYQa&HMvlA0($%qR!rl&5DF{|m-jD4C9 z4F5)_N2)4#ny~7N79LaHiBIx5>1qcD)kBpCHC{cG&h}OVGE)!11yvk4=bnUfrXC^^ zvLWuxuRbi%pt5`cHf1OJQ33*mh(`$slOJWE3X@EB>^nGSDCgj%B0Cl3v|!!DrFs$O zBnK_EwGXVR@Z2~E&(uCC#~YuBZ}2&+=d05_q8sHsg+)Z81QgZ@HMpA1t|G|<#fTYu zjGeKOFVakXwKjV^ZTE*?#MXq@EY%gyl?Wa)QB^!cB_vd<3^qrixMeV|UUbEC6oWNr zspXcL0V~s_72=ju+FYhy~-TnddzF99P#73wk#w>Xv6!n|Bx}`0`y< z9lduORAaveEuz;KKrV+TY6+oIEF)E@oWkDaFSG1&kB`kCU9e%oa4* zJ>$Dzi^q+HIB9i-Jh)7VptAjm~b*V~s;{X)BNZ4cKb zv9v!xVwt^66Uz()9we66B^*R7>&y{JETMJwvZ#g4Sq#=I%PhHk9I&)US|W1!Me3+D zIh*b6Lo%4&&K`eMQQkPMS4c{|oi#A(b4=6a@q0Vx^AKySY1P|t0X^?6{}jEQ?JZCT z7vuNIl`nbtp5>lpbNhNJ?W>!66`xks4T!UzpPTM|*fPe68Fd?3~7JBgtn9gjgJ#aHTgYgy5IM0q>Zh2-$UiD!z zd{f0F103vF7S5{f!=O-YV<00;{yjT*PNI<#F89e;6)sn?e}mwksbk8duEOPV)*WMU z5lbg08NJ-rF|ekhbmJgOVwvZcd1L#4WoDp}6Emdy&X3N5NWc`*YVD@T;cM8<=S>>M zd=+ZNGTpkFLAtfqy1D)U`R3E*nr}X`DX0pWy3dIzKzx&IjzsZIve)hJU?Zg)qn7ZT z<(s1emX45?h;L4kIx1OiWP3%=S-v^KA5~l{r`obh5^tz3%ZszrB zU)@@Y+k=np%C?y@AhJ${8bd6%5jnhakfu6bD$TmchiS$J!lc9 z-pxSsx9r_G=lbJvo9YIv(|?agrTKFw?Gig+dg$<%a2RaWL(gl)nsb(DLb4yLDz)Ejvg$QVv)G?VOF8?sLH`sX2otoZ(QJoe> zr4`kgu;^DivsT1spHXc8OxTQO9~a3PD+K!tZx8m#Da5jYmsN$h3!MGT1gdwk1ClO_ zCs3)=+*2pkDa489sUC9+>lGQlnq`l%e`{8Fp|it-Q>3bb>S0#hZlO|L8zBE>-9wQgh|O>c-)3uZ`?PD^#vnNVvjMJU>z}uPqmXc(!A+i zx2hIj1D~=#lp|JyeOKz5=QbdL$*F3d@e&`Zc^)@MqUh#vT*T<+%`^tyQ+td9ySyqSL^LL^Th?nol*KASL5{Pk1)lei$~Rsm4X|z)DFq z*HqU_%FV(1nWoN3!2iSP+xnYz6=qV@@!=WUnwbR^SSIQm)HsFt*rI}#^a-otPpAd# z*}p4ojgujD6+-h_xA7`n<2XqpobA^*$3ZV%jq^0yYUHIAgWMa<*p?Cs%tGhfU%14M zWa{Ku1ZY)dgQONt>ui*IJ_tq}D)0y&!!(SWIE$dUP=>3xW*NJ9?kdYQU8SyqW)bUN zYoQTy+DWcjWviTXZNTaYYd01mr7rOUCQ+%(nJ>zm*x?!8i4)#~HMsm7yNt{eWFw~U z$d!IGXXatGNi?etkZ4w}(nPb|CZZymT@nr=nrd@I5>2SuULV!Wd4a(Sud-zGTfoxK z(h`wPz30WWQ~9!n?Ik~N7gs;~qlya1X@yBji>qxI#^;=4o{!(md4-4AW=*SRjtgju zH{!&q9Pfjhkwf`KMO@tArRRbIEUoCt=JS?xu9dn9sn=Nd%I7udILYNWn;@CfJ3J}`wRly{8*J)wpk}HX46lCn zonvP_Zwcqa!D!2v`Yp-CXeyf)$rc%U__*JF@x=6q?v|i9F@n!H8MDG?8$0?K95w5! z`BGQmvzc}0SbPNYILS=pn0W*l)>OD|9E3|%&X!f))6b*IS&YU`AYuw>-8HCjB3Ss* zY}Fo$EZ)H$ZZU}%vz@bXm2T%OC*9g>=TsgbA)|4{@k9Z5T(SqYJ3vYFp`ma+-TT+>N-r)&BuWP&NIte+2Ui)=B z`+J=)#gP~aiKwx?^7GzF_rC8Q+k{z+VUy0Z_T!qQJ|;0y^Xy}G_~F%-hvrCKh2Mv) zJ7cxxAt#yYfTHEqD(J;4e)h60d@}`Ce)7<8iupr!cbsPr;Od*o2Sn7y;)JLC%)KiL z5bflS-if`VU@~$%O5h*@2gNv%kl87tRmgnB9)@wb4Fi28brmw7vF>LU8F9&-F|UpOp$JGmhoYYN1L!5NIIU+eJ;d;E) z9lhN8kwLrW1j1>Ke4^Xjpy9m85$VXX<<}aa$Nz7J{hfeA^wu< zH@1HTY(_7+TqKvh5KTn&=sUH0f5Vf?x%8xRE;fEaHDewSL=8mg=Ihjp=y+*w<1r4$ zMZQLqmF3r<+Y^>}s2O+AVfGQYZ7*0Z`b_F7?EdE1KC;-Uc8`;O=&&L_`V%O4CfsHiP zHvqs1s>9ZZ`KzEhn4wBvW67zV)K%n^$hya^(M=#HIeLvPk6=v&?Z!dSR30H=+U*w1 z6gRwd&(V{w5+laTYw)`s`;9Th>P*b|E_TL8T0tjusm&Ey>S36L|KD?hVl6ppjjor5 zBlsXUJtZL_ZklV3L~+wxT*_!}YRF*CUSqjwL%_=G(h70Y+fqj*O(V8fjnpu$pw|N< zIt`3Syfhuwd|vt;i5agI)P!wMhs|hSa#1|7#`4l{i*ZXUuOvUW6gRTgRcAQH!A3gt zl;ENzapm;OO9O6OU_7cCR@n~mm<1!>uOJhRMH1d!;V!LwIXXFCv;oIsitUrr$1 zAOlxC)RvvS2F{uyX`s|qAZ4*`KMRs5lANT^i z^J@yQ)oMQr6aW<9)Eb;VlAT6I3KA02dh!~-MRfa3wMjt793TO0dQlV5dYhE0IQm+` zK?L-LITA%cU*H->6VUMt)Tc;F^Xf#(OJZt~mAdALvqA*aO6sU=If3mpf5|S^>Uw*J z1(%3U3!@SV?X?l{jrUVuicdnhY=18z0SSrP*hTUIKJAOXkl~=@JbX|s-`jTvUN!Gm zRb29JnkDqGyy2kOVtQEq8i|3LT_>@RSG;5?sGrnTconhkZ7*pG za*|#++oz!Wp%-s)R>HP=Sc1ST?8(8==o{`Qm?Mra%&QTh6THyaAP1b!m>v7FWuDFfOC6;p zVxAkNj>?w{*xvOoTjuHLk1DdlX&q~&>$Vi691Np=1vK*I_-&$2Jj9XqWYs2e0UiEw zqzY>8W&MVG@3{qec%&JX5T5+W#oet^uRLj69}f%^P)LM=H@tdRh6e%)NZsk}=WlJ2 zI$MIFCfXJ3>GYQ^1+9|03b;#Iclpbjf}CWDLx`%N&CrWSL6@_wB^Du~Abgr|Y*dTL zIrjvvyjhZ=5IT&2N-{us{db!_k;N(PkT);%z(QK?!vrGILU%Hu^rehkp>#ca`zfxu zp`(ALu0rW**8S6>B^)B@OUGvxAg$3xn486-!Bz0+z;0OGHUeOC5C)da%8@ zUjMlmt?Sjv^+V(Rk;Ub5nte%1-RoOnI6_OIjo!YgRX4Qy^)Kvy#*x%@kCX8zw_3}J zm0V0cU$Lw-tg<@WJowSKygC!z*kaoL$~208SXbR9WRIf@TZ|^Od4Y6Xm9K6O(~se& zGHNxe2C_eUU$NZtr_@yl^<&*%4MH8nYZXrLlS6^1r@`9z)H8rh;TvMJt2%`CS~OJQ z<9z!7SJ+U`@Gq;|7&I2Ir`OmJHPt=acIm?e#?rs_VFKgCwPGGBFb1<%$F8*$bEec) z6mvK0o{lJ^U#D=AQ`TCFIo4agI9Tzxu|BY&Q%@R~{q(jVnoel{LUJPyHZWh*g%sXoOV~QeTZ<>^#gv;B}M5Q9s`+IPVUB)#nxtAMFcl;)U=h zy*j_62X;B!0%nd!!D1LjpW_iOcgR>3$xLD2`ocF;$2=@`6)qE5_kJH2kugp>!b-F1 zj!R2`RTZfl50O$^XR*mtT3d~wwN+C?H+U`0TFOa=;B239ra&*=T51v78e);AwbZTVZ@Dpq zbFQbCy}qiMciJwrFDy28;#q8#f4KWXLp#{}lyH+W!iIP!C?jlMknt*PR%`1%4Y2}t}ZVp)KCanHy1ImeQ61oLObQ&0unC2u{^9!5F*(`MxP#alyJ%Wkeeb7l>bHGrE^FH+A-NM?;wq65xro_Sc>WANX zwiuV$ET6{ZVf~O_?2Y}Zx>X$mjN5te!>pZ|PGAuuPzLAw`t~q^@sA8pflL4#vrTRnzA6 z_*KnkZ0caI{8wCWs%n0*IH_KZbMQx8dq+0O`4p?Y8I=!+DjvZ8I`3y;O`#=(k0G3Z zgrMml!&T6H&pw{^y5*cJq^`=SuUYp}f<`2e6LdBL4)in|w7OH}hWpXNKz$n|$Hje^ zb^-xVXoh(L5(;fd4est^cklDczK<-V#EibjOpHML<|fjvt;N*O2gpLt8iWHch(2Re zQc=-%i49TFR&ykZiniLTq*^$?F>;$;w^a09z|z;!5>e4XZ^WNdzq7r+ZGKR5_-lV; zkx5Q-6GZyx0hbFO?&*M(F5dW41ABo!AHqIW}GoWjyv zZ^RO+aw zGS1-^EhF$T0pG|od{7>efhtf^*|AY@%#=9OrLF>{F6&P5K@pkaq?4?aN*q{KVY=}U zCQ6(R^-bE+LMr6-e;%*KT-VkVwk8##g9GE>ZQ*DEUGdjyaJT_GjB+Ye9iv~o)=pmY zG@$4gKSSEJML20KkU{_7Gl7C6e=zU{x;Nk2OjLx^c)g$iBAiC%NEG2T^5&#f2i~J- z!pI%6-V#oJz*3I1M1*s;)G?_e>dvNYul;)4!O8JQ6)EJj4k0PkJ@sHTQuicuUmu@s zn)49#tZ7yFxPa=ck5Eo_VqSi(SGHtlv((%idUUy{z}z1-Nk{F5xz9plilCG_W+-B&))8is zSOg*^hN>~rgExrjXuNNcKg-=nJ&wIM!`^vg_eqJ~@RajgB_7>7@HkK6dVhuX?7`Kw z_$K>_`$JV?Em^ohw|(+}0A{nIsVgNe{ZDwOQ;IntSt{Z34Z7=-%Ya?7!7|h!X@t1$ zPHBZ0YP8f*>66Fy9^7ENK6eI2bQ&0ux;~v?&8Mb?8{&6;ir981*o^M_xF{~%U}`=A%E0dy+cdJ8z33JK$@(!qIFjw^1~WY_ir^;oPVIa#cz z>-=p^8iduWXYa%lJdLZ8Cf~g?DXuXBEp4Niy$ZB**!e>?TAn&m>Kf3*k6Z`VZR71d zic8BF(o8EgRaEE@FFOxE(Q1k6#snOuS(I|2xllw{CtJem)5k2*D3^lxQ1qvszY`Dn z>{s*`>4*fs{vU7G8CXTtw7IE-T!c^(S|EW0ut9pU0*Z=OBi5&%j*ZSH3JE%wz zkBts?1uQ6Hf!9Wd0IAe~h;$GEk@n4*Gw1H?>|H+i6aN@?X6MX2JLkD`W_QnCK@mX` zhi@uf@vB2wdm2|KWnFbDl*Ov6$2IJ{sq`qs?PaX-91SF!xAhTDS%J6BRTC?@ZiJQk z&Cu5O9!uYHOGsPGxsJ%DYslVWlP}m*`qmklWtP=cD8=GxEEoU1&F;!x49afyP7`R-E};%wOwZ%mRnbA|X~a^U0E?27?X#;I*(l{Yp~AalodL z>T;jwID&Em4^;5f9pv4$3k*-)&vgYTw~_8W2ntIiE4Wh&D8y@>5SgYOF2+c)xdcga z@9dK1O0$zUtVHGFB%y%ujXsIbcahJd)Z~J23%*zNEb(-h9!2fyTJYU_nv?`jK;**j zM2A*G>ayGQ-cJ(xKmXi;p$2(T)3@h5l>4K{QOcKACrzY&a#* zx6;v|q9-d(jY z#6hhLOi(dE&q*UR>#Sv66;x78V6iC*u5760b>>BcLD4xI0eXiAEdUxyPAYIxFY#t_ zT>;ROqzm7B&{?GcVwq&6@F_km#Re2u6(QU4AmqTXm7QQQ_{jo8N2yNaHo#c}O7fhe z1`mv=^dw$BLtd7sj#q{wp_OJri>}jms9jwo^!%xi5L?PcEs{&Qz@l)4Q5!hwzJs5p zkGKdZP0hLqem4XGy+o*`E;0mkxyRC_+!8WSZ?2ygOvmX`XH=FmRx1^y zSQI6L(NIwo@!v)M?DHxOk!(zhs>lY^WRanuHp88H5)JL#d|cw0>Ii=BbF$Q^IZFqs zwg0bL!tOPRs$hh_HTcwLP8MuqhRYVkF%om{4GLf^>}T}N!pDQ3a9x4t7}EVZgxbzMA#s%A&wx*?O8zK;6CAP}M6QBg457 zq^b#AMIYc-`Mo&*5!t>SY`R-dHj3NemZL6_ zfS*#Lb2BnC^Hu7+l4Mx073Q{sj{w7h?E$rZcu8|61imVS-GtiyibTXugPEjHQ}ZW6 z8+;Px(%l6?xcf|2vfTorxhD{6W@8L$x z!@asPi;Qju^mKIuj)+phx>y3&SvQ;}JpuHx_vTemYU8Ams3?SL&@UzM!kCG4F`RQA*A;VkHtE9t-h;dql9j?wgO*}* zDOF`Y0l&s#acake(D6wmNRsZm4Eey0E?x*&m_S3Yp{q_KPn3P7=Zq7-BhO)^@J*y! z7CYo~;`Zt!pC3nLc8<2VY->&mZZlBWk7p5mq0= zmrC_wt=MB}8MlN4w3+LOtoe!TZ7_L(tF>j$$gEznnjfPS>!tU>aEOZnk!t?qF!e^w zfAo^DFO2<0L%nazi<-#>Hf;&#q|7|{`i$nJsGPi9`q&qgNkBV7f_qayW#pCMrVXh} z{U_N9@+*0%p`$#mE8to}x>;)S)2?=r6|{$w5fWshD>WoN!=kZ_EVWlvFWFW~viVy~ zNb6sdrD3=zI#MHqbb|=t9v)B(0o@=%jsy`hL?k4L(0x2=K|^Ka>)lHY4GrPC0-;r; z`vfAy^2Z7u(*o)p-R%U-H0^Lrj1=$5P18AyEpABs+3>B?gQNA&l86Lj1Qu#3P{9bN zpTz45@_L$@H7wl1ZL*#op6=1hs9jwPx3#CqMXNN>p6<~Klc1s)I>@m>LfWs7xCm*# zxg3I!HV|@qAv-l8B`#w#4K3BzN310zq_$i~=MVca*hu!$mYKy{eU zLNeNE0y_kIA+F31Ec0Kx{Z1q7)aUZfkqu?rQbR#Uf7Ex=va++`gYUMP9g|ZCuYF{i z&oK}94C-;WJW9(|YED@rRcC%l3%}E6=|=_b<}ipUw~L&-eVHMpC%CSFY#Zr5x=hwc zR`L*>9b%=3*Fev2eYS&aJ!D|t_*OsIYEfSRK}y!Y+m;zpn)9>1BZpYv+Kgbr2L-PD z#U%?tl&JcC0lg*9NeIpi9oy}rGTNr+29nV>O-6Z62rRbsvu$#4KrpuL(qA^-LGpK-&Q513#%hc|%)Ay& zq!p-NeQ(hpJ{2}%ZKOua<+7~d@^Gcm`Eb%pEPvpOAO*|iy6h;Smb=`r(9Iqz zy|@)*p#fY+WX&tsvPFG@^SHi%Du(pGgK*p{G%J~7p~3FZYS8n05}+p8ngj6Z zh1vVd<-*K*Hw`YdUYG&zv@&7pS%wjI{Gzm*0?uK_87@FM@Tw~U6FLJi`J2ZmFi9Z4 z_G(O~2jf<-92IcXCe`Q_2nXXED~VWvd=s(P6Pz6eg2Sa3$h>#nh;AUqho>U6oE^Gnh&L--D5iTl%b! z+;S7d4>m-VGnAu(waHWZh~<`HRnYQ*%jSNgwK2i<_zFWUlRQSoyNnE^o+_b$jNtD zB`Pl~FG~#`Q8ri|UJ1DtPTDtNTB5psRY_V{Y3iu5#Nb{Yw)o9%L$2*yVG5e)Vljsp z1+^mGfJ*%VN)NqKWG~TM>2V7S(n{lEe_BZ=d&dDfO)KDo==WIfw!uZ#v=UiXl5XO} z8Hez6n7^c}dLxVgk@+i(06{6_feKLCkz={VrjY5zb#>k_P|hOVD;-e6NG~^1-B*tQ zt0GK09)yVm1KBVsue60~y2f5~C*1C1p@w}Vi~ys0NP5bME`vM;>){Dz&%dqR0N0`Aa|L<1!3U2Wj z*~E=t{c?!wh-AqpbNjX9ogy}w@z^!83O^Pbj+qO_9F9p^>CZ9elj*r&)6Fq9hHv2W z8!JmP)kSfoDR4Wr5I(J=Qrnj%#TDvDt@Cp7bJVADyU<`HG9@ zuSyK&u4Duv=GCR-W9CXjHdk_8!N(m)_p+7vgUyJ>N-lx35gR0$TS3pSe(6NEE&=>B z(ZKj(23pVBtu#b)qIPL3i&52p(gqBpzORq&sxCTOl13N_F=Dj)4Byicq^Eh{0;H?R z*~h_Iy^0#kbp=S5lkRHNM z#u=57pVf*&DRy&efKi-t3303P1FQVIIlX9v8pg8dD%*IDt>lzcn41Zk1py^Bi^)eBIoprrqXvp9Kld!SHrE1D=S7{DP zH@IjK!^Njh2q%wKjAkMHtiZllXZb`3VCsreSmU-<8fitVt`XlVt{+ zCd-_&TC&WUtHTvK*T7MCr{-#X#KkgKtB#w!EHj9}>ayCf%s`K&{@fC>%rLGal4LO1 zdup{|nf}hGEFY{^7cK2nvojcUDxS%!{VC>QGT+&l6%=EG=>#7_qpAlsHO@hPNs7mk zCo>1$E`x6q4*V5Kre#cCW=2?zj;r9##)(5EDO{tbwV{fyT9g$0kprP;77Oud@^r4s z++lk+tGT`a?s3vzv0Czul`OR=A@BSNdVaj~B-vVOP(t3BYyK9!W9#KNaQTURS|eim z=bs}sZvJ#+pH>zQsbDsB0~&J97iiTiVM!`@=y~!us>JY6GS?MI4I|ygC5RN`AuCBN zF$EA<(*+Q_Dt4T23>rv8kS*^HFhmr(*q-PDYfBTyHHRXa@!DsBFX6iKmg{kD1lz*xL^r1S|4HLR1|2CGB zN`Q?lF}(Dp$H**h1bOLKt|O9WB-#5Pq=s(w%<_zAHDE++^^5>(4k`TsiRsts8AG;5 zfKB%@%trAdNSc;j7pXtMtZNs#>cP zgHfgaGwB_2rbel$bsBSB4GPOjMY;`DW^9S4xnrgEzybn+ymM};|C;M9vRALvthvAk zu>i5&9fQlN`R2%_rD+sB%&5i&mx=wSbyXufhmjyI+rvo^m##ck!7x+Ew=UqDu5@na zx&oI8qs8&~p=lxUR6}AwB4?4y|%R;{nF9(BeVzCh{0ZG%+YgNnH#r0JC@ujuY#-63oG1>5hPP+_M z_0;kKNH9L~!A~u2fHWiI@Rdw>!l$SZUhe9`;}%ou8*;C6nW36nxvs$IOVYimOqMrR zawDAW(9C~8&#$#Jn{3@!W@rY+7n9F=)~U>)85854HKnm?V?PI@)O!|Og=FI+M~pP( z2sy)O43Ar2^dtE?5`5LP^FG%V7|kW!sRkpKKUOjcG7J`25nxS3Y{!9!v9q&8XE1hl zzBHX3;GLGL)$HN~<$(Z0)a>IQ;!^2$vVLiPTvm-h4gH@PX+HT6Ny(^)&FqC{W`|ll z{bNh2@x}R{PlbnAMRuf2);Ir{6crrQyqr-3a!^x!gmX}!sj6xLzp&zgo!sR-I`<-6 zYpQ%&>maMvlr}Vkq~X!~3-q6cgyfbQ@DLs#qi`~Wr;LXz;8{yO4e zXW5AB$=L)wV%Wvi8SrZ2+(lR8Cap6YS10LIohIpYsF0*{Aw&*yQ;^Ob91kR&zWRuZ zbo#0u=XgoycS5UAg(011J(h-YOGrB7xQ}UC1wB8)*-N&n3?@i8%gx`Szhk{z0v9{9-ZHV`8Utgknly&iTaLtq5U#i! z8AGU9C7YIlZw`}}jVcY_WO7}B&H>Urw^H_WtmLdpQ~H24UHY&qVaHiw5WvR*Z_rl) z%b(q$@+XxNKnLy$4;Nlx!@E(s%!WNeF5jSs4a+(`D`ZROLe#Ckmd^3hWS{3NCHp)B z2zc4&1C9%_&vbpnvQO%RtBL|}CEYEZK(cv)X-cIbo&_Ewzi=Z+Je6EWYqE3Fv? z;pZrvZ3Y|cA+H|^x5*J2BV*WH)XQ^b2%jPzvmly8^05#2s0*7%xURsb9_jwa!H1z| zr2~x=TRUJ?L~O@{h_ST;snBI1R5x{o>i)34>YmW%-CWvCfD#JrUFj~Xwi=PUFa%pt zu|>+8m9o3@j8Uzw?oQKWNTmPo0YSC~T%@7(ba#F;2`P%4T^t#tneF=nrT7inyxi8Q){gxHmk99jiH&%CYVEN zaK_Ypc&*r%Wm=Kx%@Bi|Wo!%^!Q`E#J!0}RaPfq_&xB4<3gXrKa`X%#Ic^CRG+ zT|hHlN#(p5(tQBnaMv?dazC8ykjx99=hx6Vi)`Hw zSm|eVV0>e^2QforkYwCvMxhkZ zd5=dd(8(q*r+}B5X6ABTflhnU{o0_zX0(-j3F)L;Ibco1YR7?CkzODN#;-B-($Wdn zIE^78x%h@ubrLso$xRr7(F>cc>&$Eob!?vOUY(1lf>YrZMuv6P$?_$*E?oJN1xMYt z%iHTCmJ;xt&-QBHz23#s`2^TG>r4%Et;fe)1y2crm{VZ9n zb5M#Mo3>!oDP^8p=f8mJKtr@Oro{rv29yra0ntR~XTeLuPR}L=rba$AC1!PBFhJ8y zTBJ*?lMr51KX(Z-ju6^&6Xs595S+q65EH8lc{pL6p`EX}t^lkv>3*?J(vFqPw8&s> zvl#UJmQk0Jt(gWHTt-dMfAhYLb?zOw;(7&z*eFCQ)T^-3TKZ{)NQJ}0e7vmu-ISiSn`#4)MaF%p-ly?j|*vEk^ z*|*D3QL2ca1!(!`qye^;UbCUEC9l)<&|#NWE!Q~>oq4xcCnsHhnw)gqddW#WAaaG7y1)s?1Hp8P*(^^r*lNToiw{k%AY-6F`O&)Jn zJ)W|So}*k}0C+p;|Fd2)l$9K?Xdy$@-Qdqqcap6G1}$W$&E{{>=&@dIgf!4J)%_P( zOKDi5HF7yBbvr!JY=h2LMf+e2``5lWsSaXy@vmMT0ba%i#y^6p22cR!Y%n!bXRa%N z>qojB0T8Gt8CO}!MH@`b1lDxT#4eH@XQKf}lU49OeUY#SbbGSu(I}$6`e9lrJUki( z4h(g`*OVp+?Lt`6x@W!Y2lYVR>gxyn=QPRdtqqdA-T(x=sk875HY0@K$?>rfIi!>rkkdubOVrEhyVc> z@l(ABJmEs%STYn)u%a~v+Dn|sC(UPmA;^oZ z-GKwL0@EsV&;s)<_Y1(DQ^CBs$$#DTC0V}!PsaDSSsL0{3O5-hdHE3hSj{Yl_G%V< z$U#>!&0=%&^0M0%(Eaq?Ti{klenChIRdpUb+p`^BA)N3Jl+o^Up*Nz>HQN!+<{0Qn z#X|g^y!>2^o>B5da4}aEaLpmr-!@5#v67!HI9SDO06o7(&|IZ7nYazce)ZP*Fbgo;n`Z1BoMKowf}_*u9M;RznK0O)7(^oRzi zxym?a*^9vjn_2b>l;)9sU05}`*Hl(gd$Z~P9C0FM7sQS?!$`3S1WD2{9~h|aZYKwH z5TVc#$9-SMQ@|79dD3Gx;;-a!p&l{pGAeJA)BCCTxH@}33r~}O?%gc;=PrmGCafr7 zUgmgU3G@o5IH-h~0J=YPbvXt!2frQW{%mF7Qy6N5*1^y25dk~}=L*;F@mfA^nMrKB7DT~d#g z#KGB4b(02qe$-P=w&GOBWk5Z;!xI5Mh$6sx_cvVY5b-#1rfe_OTbu$4nY~wbRY*JG zq=?b^$AGlLNfDzdKts~v*4MvPat>oI@4e@j^k&Awo9Sb7X zWl!*FeeJNB1KwjZ=ZxKOi!UFu#ED-=i0tDV;E9dV+S_Fv@y}DPt$Hp#h1DPjc zi~oGuPUepPt_H`hhF9cZH1>;N#qi{So+2G;u8xld`wsK8+~QyN>?Yg4nv-?EnVGhM z{G{rxEXh((_Oy(IcOP`48EB_4I}=_N#amxMJ82IQJ>g%pf0XvTV0xFtk0 zu=P$}F1C;1_g#lQ>fEKsFdhNo0p#KlARxnekOGk7X?8|V4o#72pH1O(oL3FHJY1e z-G0((7q*I-_q#(SMJuY4N+O#>zWjer?6A(!Ut1)V>@hhfsHEW^Y>Fe5)YC^el|3A^dE@Es9HUBV0%!ar!c*n0WD=#0HPB3u_@^vp}u)3(dOA-NJQclTO*hszI zz6{<1m1pRd%=0{0F>xA@N5lRwO!79@6~NRb-8aB{cT2`f##$h7z4RIA`7ud7vNaaa z(o6#5>#4@_-+K16>bR|>k-9Rw48Bi_;hB|!1_XODYqHDW1<;Tr1juW3T*nDQ4ahPc zqyVHTIkpHK(@e6N>k2@UNOyw)gfWSgtc4uXO&PEzn8c3r^dHD1kv0E_Qx`o@)?D?? z4_#j!XegXH`JwCU0Dv8txUFo~2p5ydMaZl0^+@y|vLmwxepEhOlw4gMnUvGyl6-h5 zZ~3AQ>=Rl!5I;;m!6i3wRFF$<)JHg%1a4Fb2V7-ID}w8~t%gb-_ZWGU8^OBd6|N)T zPa}ITZ8aU4M{z)wUchE2ESg*ajy9 zDJ3Q^BP$;scGF);Ru^dU@X7{PjA>wq#VeboH$7g&V;3_ilf3(NtD%++Tvy<9F6pk> zDyhXv$}K8LE&D;wZ#~qWY?T{S@Q(Md=5Mh=upa&dS6i=%CY=F{VIswb10jUl9wWX@{d=BL3Wd#vysmu&%5f8!`3lZZguLI zxC7N$$6R=t-1Fq0l6(FOk#p|(dh~g#0|D2SMDBT4BV@U!Y7;z(gI7ts&Dnvldh1U^ zKR0u%52ZzUM7WX8yY0(bdPS*YfQ9O8 z^Pgkg$hY`yhK16&u7K-G(oNYWS;$I~;cUbOS*QT?{8;E}vX!hxC&6??7K%523l_2- z)`acHLo8(QAr{j3;F}LXLg@wrCNbOQAP0HQQixA49<$(}>&egSV2g5H?+oC&0-qkF z+t1*`NXSa=-eySXIww+=Xm+fcMyg3Da?GD`YR?!`_t5p_vFS~7)ZBb~>9r_m5+Xk(?f*lQS&;y!NNVKYe0LtMPsEn@*E|=5Ley^Mgr9QTzPP z@j%|F(nl=+;N2*=O_)^5A5-l^K&{`V_H~1n%yu@Z&_+NXu{Mx<61k2@mRreOz3pmP z_tl*O+i}^(E{s)JZ?d6#4`|AmXy}8XdE5OIlDiUK#Fau-h$z25EMl+0^1X9=VuO_mgkkA#(jSzJ6R+pmY!E z-UaZu*Hl(=JDlxM&QqZ0x2Ebxwr&U9^qLCB7mE(-S=a4`YWCg;1&@gxCmrE}8(Or# zEUXN1+0e@+W4Mgxu?k%NL;k%5{%NZDoa+i)9w6P%3@(gntmNbEW@!c1M3i1(=DZ)ca9SXECLDF&^lq(>Sc<@B_FC_d?V864sa88ok<-OvC&=85J50OgGS7fk0|vx)O$)GwGir3LY59R2{_UC}WV!{Ibhm4449#|g z2&QFJW?o^2Dq3BZR5KqRFfPbbGiNUwq>y0>!$@!YdRdY}j&Y=M_S{TWboQde;9ER& zF`-@}|HkbwMDrQf6)-(Vx*tI-ZlbZ0_bn_~+x!po{D|fSvh_Y-r-=r}7tI^%*%&oC z3-<1q&>5OH6yub#2JxX7^=7TLmt3WgY#ap#K!gbB1|I1{bm44?&?X+WKg zDd!N^6$rgdy88`6jB>1GFQl06=72RpId+^eI}GJC)8ioJJm;bu-w=^>9I1>kc_*7` z!tc@KH{@dY7Ej|Hvc(f=RI97S^ZIG>&s94m|6Bp_!;}?e&I243EK%;)M>zik?pH+@ zxyl?xaNWDp(9cMZk(apgXNZPUq6;(fv+`Bn)$pQ&nP>SxOFdey8K{W}reQeo z%(Lm_X5~)9MEkj}0Bkbp?%64s$Vzrvc#w%=clocf zrjji%1=yNZ7QAn-{}!t(>tPvOcD>4i(x+7n2AdDBK!rF7u!1-6@gu~*NiGeBCcu@b zfR+5@h*z6kY|aY2J|Vwb?NXzkg3b?D6>xn(ss#Xp`}rFy$=ziZU9HsQ8z^v=es(C> z5lq8^i>{)bacalHvSf8L6hhHDAq)sIL|~k5O0@$vvEHozl-#^Vb@)^?sN*G z-WOG8K{V?$32D?WNl33k%)D17Ji;rfSizFI9UlLfK?lPpbN*L-IT%nIx zOGrvvxQTx*te4XSbv$E6Iej5hG1cfvYt};lBzxk4$B%s=k(;TA05D zJ6Q*t?RMD7ggR_(S)vOnd^@z_zOt5)8c8iS)e<0~9(WhN9RBKMWvR}&5~ltY>zsNZd9w1-VDG}2HXu||-O&f+>ETUL_2)_cq% zt>GTo4YC@4VLrU^=hgACCLC%8UAf1g4C_3_bp=3c zNcX=0jC*-zC6B<_A=Zf)4SIgdvvp+a5r9lD&tQD9T(O=N?J;z-bEJMi1t3v_Czmye z(TLb>1c$uFMFuQ{WQ|MUAToRCJo^+p)6216xvoHD6Y2iXAi@a7N`8c7(#tWh zCgQW>Kz!H%+MzQZmt$*aIdZFw&r%5YK_DWhw+8eIaxe$)Jdq3ytBbE`c_jBG}+56c|NagP}ywb;I<)hWz;<*u| zm4RGEr!tv>GrV_I|R#TByE>cx|tL^JhQV&IX(A=8p{`V=p6=+?))( z;V}|QeqNs17+5w?Z5#o#;YcF0^Yh-g9#&dNC+_1aa8r3w@KYYFm^??xp%3?};u))- zK%_p_-*Zfvs01$mkm?WMyPHj{WUj>lmsq8s=f@`hlC8Obm1YwdUe7j`{?@VgRMivE z?AbjMex7x3%8&`50iRfgvSm=DJs1K4NhGAJ4;vf~o&<-;7UsdYzrZ0)BJulJCJG=< zkn^$o^Sf3H6)UueL@oX$03n4Z%n`-?xQB8%#*koO(8)>g>T`U z3)kHJ>SdBqt*#bM%@#0gPUDHc+xAHsxdq|}8%}jHzeran92G1qhUg=lMgl|BtQTF? zNj$;z93mOu*4ZCI&M-&Mn75HbhVH5Z9aRW<| zf`9Rd1(!4?pLXvvrAh2x{&T1y=|=t~$;3)(z}biel1Wq0^COcavQ-1hJRp+*)UW`k z?A2KBcEI)3y&7GfL~Bg2O94A?8c^^ym99^i%%ajrt$hu+*EvZG5SH_Kr~;N0axWj; z)6~+P>x!glM!HuUSXg~xC0+h9)B@H7W7=`xhJ+3udomC2i&N*RCCl8F%nrSX3M+T>ia{XN)p*CsZKZ~xMClA+qqhh!>%{Q?TGHi?0~?sDxGqp$t}@7OK> z8Xj7A6!h+Jxn`fyJu@KPq$Kt0lEh&Ce#RDJ3gwY&+4~K%T+MX_L|LSJ#eT^wR?->H zc9^9v==m{A4%zAqu<0@d#uvZm*0YTLhE>LY0n9=1O(_FbL1^$fn~X1AA_mIFU&BZc zl%YIO0m_Bs+>_v(=9O_=SAbGTx}yy!j908=Q*$AJ*_x+n76zv9$8>E+GT zjNRf=L%=MmGrn;ybx49y%{_^y7n7%uYvHSwum6%&%VeWkT~$k`(`1-!`z6EtVG>X< zOz>|u0gz$h^byW5fjBk#bKrK-=A<$4AxVsuKm!;a@q>FZGs=8VPAOZI7<`gLA?8?5^7FC34e^ZT zx&pRqNcYvhCGl9v2#XJvG}A#3h$rkFx*lX}guw?N^m|PI&HHKAxrgDh>xu@rCmCUi zF)*pg1?3IZp0CTI2@p#|C)YBM{sAZXs6`>}2;DCn4guXw6vBK+15HnrTvtGM1L>9; z=omd&$tuW2Xv+lVBM2-F?J!V_%r5N|d18N@I+1V4sa2Ft2@eVi9{+2o>U=|K;Q@=q zSK|PilEUX($Y)5>@I-ZVzf%L<^htHrK)0PHL$x~~8R~2Z9A>g$s2&^+WT zZm=huy9Tv0fed6 zK{h!BOplVkF$WF#wBWh|rw2*5=|RMak&l%$I%sMmuqL9m<3QBd6TVbm4{Yc3Z(-hk zfFh|?v;%;X22dW!G;qh)`6NF7mwbk73{O5C4>;uW*$>r8K2M$|`8;?~lFuLr+)F-h za5#{B#_A(3@)--4&`mx=2&hp94f)LWSowlmLGoF^bwsiZC3`dIHi3NDkDQHSxSF-HG*bJ2STsHY2&NJSjd;KN*;l zlbZo8QT&2%ZhSf1Sqdq{g%nhev5OMb#fRbcOIYc3@JLR~A^&;xD!CYO$kankxvqwa zIX#?olhpi5x`Eb2f1Sg;$OZenPM%%`p6b%)POd9Z8b!K& z9h4Y`R@z5PJ4Jv&5waZ$LPi1_u5%X&XgCqjjrBvhAmh-vaBHBPazRRUlq00)j2+(~ z&xarM;h+}|%9Yw6qgq`nwYN@%irB95-)NLQ-+=haWT>cx)^KEyj>`2B7af&DHoNKQ zUBavcKEj}HfgkZ$`G;FUI;#B-n~#Ey#*@9ce+(V{;~CLvz=%jk#bDo|qjUf9r=!Va zyBKV`YatuOvO}g8LO#lYZ$ZFzq7ENr6y(DiZ1Ue@1}NksM}g)ND5#--EkHhkHv~iH zGjTD9gI93?#8mr;oV@%WLr8tOt^n&j(!J#$SrA!CZ#df_qlZAxuORw>Z1n~JH5tM9 zVrE*;F8wD&MrlywW#p*AC(0YL7zZ6(&{Y8!g_j~gnv24oi}<|GV;1<#B0oogpPGt3 zg<8A4%74#)^!XF*eARc16zI) zXTKn4AqQCn#3u7%Gnw@#BG~4lUm5l4VxZZl!a!_Ki(~)DV(4F!l7f9w4l_g8mY)Xu^z_%@&ZwD}IV*g1Lr`%{yGqc{#?p8ZBnzH->`&~&aVF#CygCm)tPWF-?U zI9L?T0X@G)(Jy3cf&pjatL@|UU%X9ZT^kNpTvtW!q?WfPg!E6o6Xb;c)4HjQmM*D8 zXrx>0oQw!n@Tdhs%gECbxYU}7c5_{U&?3^^ZV+NjWF=c6-*i8y1fylCW``L*E>PAf zvi{*X_1duV=4wtlR6!;!Se=t$FMNa6p}cTof?+lIm(4cqDjRPFxmsU4682tL-NVjO z?4twKxfEM6LI^$vi2z@q;C7yFwgTIE6;E% zSotDk+$9tBi z#bo5?7vyCj;oyXUUQb?z8oaf9u$psSc}p(G8KdPYu(vo#U6TQc7xwHx`(=s25+1*p zP`{Ip#s8{(9ZQ~w=c)p#jimYqgyU`nS;=M#4KmJg(DSQ&Hj%B(0H3aWV0cjrSjU#Z zh1P^~BD=hGB*dsztSe7s_{=(MSyy#S?{awi+)4#H-@1hCR0OB_5jHIaI6KJ8Ca`~~ zW}9rTE6~|Wy6un129TAUbHvm=U`@no$AMUN-P5v{z6!Yh+NdYr_}CgX&K&moQ?Iuj z7fIhFSL<#mKg&1b4t=1~3&9~H?tPLdc2N|Nn5-aTwZ--SIy`hdwyYZ8NZ)&!JoMrb z$wSXU;9eg3h{J(A^u9jg;-UB9qPo{$`w6INM+^@w@>uzeTR|RL%XLKh{7v@CAxU&g z=r_-ZRs%*v9-0K!93DCfDeBh}`iE>!0-NrZkd0!z3N$OrP@0CKGYa7|!)oJo<&8|@ zz&~@<(A$>`RD0UPEDI+cytpz+bjznBTd;uGAQ4@1)Srk>kiE7?4H1D4VscvV>K}E8$i%s?7cIeZ z5TlJf*BT}w2!$9xN>rMQ!iy25J9y-RjA{}}w}Gdcj2`2<0;MR@eaJzHVQ8g;wX{jhmAiHr~1AJ1yFJUthDeNhYL>A&PjrsART5ESuJvS{1G4CdHaZL13hO{ zt7{QfI|UNz|9i}ktsIwVa6N6Hg(fjYDYSJ_kpgv-)AO)pz9YH|}WH0%cp`hR~Iil5o5s`wnm}uxdh>pknDX1aY-U3m$OCcM@ zrlX-!2xdrue%1%tK+U2uvfzP3TLi)V`H&<=OW<9A9-H7Z=THHq#bi1{a~l4@-^N20 zbE-MHb@MU9JP&bQ0Z$Xs9R#qr%O5Kl0B1X_^AhO!l|RkM)&PJ^mp?GRn1a@`UdKYL zlWqfq#YJNipe=q{6E0ff!Ugz-%NQ&l@K6OT>Ezxta8Fas_gq)Nl1jRB3@mI;Tghz5 zC*AJ>Ya&QH4g{%rCVrF7daQezsEoz%A}jDsOCGf=HlQ1uDGnld$v2S$^ zcs%G_!mZtL!#3A>EcM`)s*A!iC$2vD2uCZQoz4lajYZE*C+&78Rv8$>{W4fw&_j7>@l;-`p z2ysMEcJV+3D4oc;ZE!U;-$a~XSt>xeh;)w|P#E7>$q`5?-PPHK;jwJ8!;Duwx{npANH^ScmC~rsgyD5^IqYOnp70kz6N94v; zWbgeGrh<9HGosai5wU_92-X}nS$x93g1Lrl4+NX;3dTm!|AfON(bxfD`fnq$GNjwq^XuwIFEFvc%w^+5pe)#*H zaHynPkLsk7J5Q5J-l?HR|5(X)M}89m_fp9Z91f(Cx%!BUO6Jy3^WSk@k$VWJZ{S*e zTy|q{y~oNLZUw1iFV_*-aWC212_t<{)-hs@XGE(3BL-HMb*%X%SaYbPZa@vYv+UNe z^QS-A{<4PZ@n{);M8`%kOZB)5`Z2mDftNJ%@?o0>y%x&Kf#=>brYt8WaU_u-Q7ba0 zCmAAf1m=_(3#KLp+XejR&BNr;SpijaPub(aOSrB^hW)$^Cf$ow(Ex7;#!4>$3y21? z$&CSIldw-IKS=g2fG_%jJzbeZfFEMUSr6L;pfIgSQs>?e-6kEU8Z;1on05SnbEbDQ zm5KW};(}#K=s1JrQ68$GlPAfw2f=+!C$Df_0n1~g`;r3-1IEv-D3Qn)3gmRznQsO5RGml=W75=aR>t(>ikJ5`kb?m=>!*rLbG7Q_CnaHOwG9 zX?0HPz(Di&(CAEljjegwl$I$3N0W?4g5Z3|0~X-C zMP7abk!Y4F=DGr$aiqHx!C^^i1&boEW(j=bgvn^g4%OdC=S2jX;VYi;2Q_P8=Vhen zyy!KNClm}43mKCErexFMV~~fWzLs?n7)fnJLrZ7< z25SrrRwTfoirQ2(WLVYdU4D)F@njl+SE6dVpghIb2ErAHV%aL-noVvWgU~ctC30N> z*XN{LFG{YktfWqqVJm3AL*Og{?J%F7EVDVmP(OODyb`9s?K%S+|%T!`=TUA-2;)sR2Bu&s~it3kVfbu zE{+IXvWMYx)}K>E~U=_76lIqFBQBl6})vNt!%aMVZ6sO%b9trt;>9Q7<1 zbvSB6ls`xPL_<8QPv$eu#xgW2L{BXP@af6jrS;XI8!F<=e9O*+CvbC z#pN-MN<7k+R%r)?m2MQz{C|}2%ecolB4XApA$JeMOw#MKdeLl#YV;T`3rP12l`zd! zKUqOMoQxQO(gbxg*A-ALC*2znDu$sIT&D%JCIy3f&BnCs zQ1BLyMr3bgNqitmHEmPTLOuN+{3wOe!h-<@2^5t^spV0?Fo&JQ^%8P@s2cWOxTV}v zQF1AF4{BCdB~^YZEXB&d87g&7S(fVl_ak-K_p?4RsVbOiCC3GsYPmkbnJQv=Gk4Y$Lb^Rc*IhwbNq0EgVW<0J{Ml(M+3FtS zuu}v$Av!D8z4K#2%#?1hm^`hb0S64<=K^MGLqmZ%M$`Q&d7`d zt!4sBv1Y0bh83h=3(28!zxV|5Cl?4%V3B|4XK27lfh7k5v~;+0s&WTa(M}arP*i;*A;NZ zk#3a(7fUHCU2mi*HAf``mSFfy$qqNvAf$H{i?5}J#PwW+nzf`NQJt|D-!XMz!lGRo z0W9W^2!>5~~BqQX5x{Xo@U#&5zZ|QuR_{68?XW7c!PA zgfEr3St<`=2OEN=ZsCX^OZC=AI7>zJt|{-PH6*NVsA(ALNspEPax2JCBe{;op8aek zlD!cylD?bvUo#@h5UX*+8!O8?)w~vLg-9vznHsjT?6$DC(wdOrYir`IG&ZCS;hLI^ zkLvD()(LJNkx`MXUntBpTmJwX!OI1DQwca8qmRQ&r>S3#ZlKx7k(e`Z)0!nbT0OZ~ zEUn0?1*)i|?1^9%R~5jtAk}p>Wj$mil@m)QKix+bpQ*h{B*Mzy*YaP3c%ke-HJ#oUDS z1jO$pq{$o=B%}%Y2q&b#1ar;A6Np)a**kD$b(?9v$I=hn5|Yv?t|M|No9r!*Gi|0H zoKe|iwp#C?6iX%rMnmir0eeO1JN;pA#pTlwN}tT@0UOKfaUpinZx$BlJN-~7#Xu#H z3Hxy17m$IRTBz;~D`J>JlvYrwIb~QcdBpboS^7)J3AOy^TnBQnb}dsjwdT4SFNVYg zq}x&z?Q%7ite^#)jJROMbY3n0rQ1bhszoifbORp*Ls{=?)e13Gb3`H%pi)I&!#u>o ziO|BYAp=Xbc8eKSP%)*P!~nu|6Nf-h)aB&&4G^0yn+9@S0oNs@3!ixcxEPLB0AF3& z1(=?T=VE>gPsR7i={bU&%V5#^q)(ma!=qEh;U&n6pMiPT4|6(prbTt|>nce2+Y-c(AF@PGG{PF4d(#J18}6Ae8WP!R9mR=SRC zufr#|~11GAq)gplZ^JB()-pU}Mj* zNx>U9@Cf$2L*WEd?k~`sShkk~{`_s?OWa~~?r`f)C1UMn4 zpmpz>ctbzUTS4#|6jmT1G=py(+f8*%sAv-vMu_m#NvnV-1HwoVqlr9jfzh4h>pKvS zrkpRiuE3}->CQA5v1-^#K7}B4-w3RUVC^^%EbgTWre$>1!RlO$^*a@sVYFB?C~KeSV7S`nY&hzE44|z( zV#xvDzG$l^*DLqDebJw=N)H;Exyobd3T_E$rVrN3H9=?GAY|}altI@$T0G3BY3Y_<}lYC-S4gJ*l{iJ)pIrYlgMU_Se~L24;XmDNdAJ9 z1LCps6e`x zZiW+B_tiFZGsRc;CCW(wC4;Ey1C6SU*hp?=jFnO!EUc^^uVa_$DhA<7B-PZc*U zzb)))Yb1?wx3Mf3$HsI=?GWR@`|1VoF&MMrDukWJfIIX~V^HP5m(seFiGgoVL>478B&0xHJ4YXB^ps zPu}SZjn5ga)qiu=u?|+$4zW(Fm~6PI2k4{)n{>}RLpFk}B>xPlwPw@Cz028s9|l&?St5Cg7?)I-}Iu{!`N4%c6F__rk)BZ zu_9>98L|j^4G{3M(pMZ8WTnsb5f>|cZmyMR0KG@3&44Sa*IFeWODnl0WTmZKN94}? zWN-5srU+W;jLNQ+)tZ4)WTcP5sKZFHswxZis2er^(M!V8(#JH+$Jzj&bvB+4&M=IW zd`X3Vry;~h1qJ&3cKv~!H=d|SkIwRlhJ6klkmL7Ov9hX& zhaXX3Q_i4-H_g`F1gk6`g~3lPZlER(@K-><9^fDdTAE8<-&e=b(z9Gw0QNQM4sifu zDP^Tk8mYc#76Dd8_;x%9AA8gv=v2lY^-R;FZue~H%6srAdL171yzOe6P#!r(`{79< z_?{y8Ky@q(Q52i*)6bBtpx02dy69=%sn8Rn)H02=rxmo?q^u~M{^htJMIF*dI7LMq zsv{dSKM`Vo!%_7x>{CI=fqZpspO$D#4)G z4cco0qHfUDb^W_R3&{LloP@j^WCPh%C&WvzvuZ{myc<8MUu9BUj($8lHzyMwft>y8 zK;)*d(#(gKB&xoey26U9=EB~<_i+HkgexWw@2+bYY6#aAU@axxCp1|6tr07D3{DP_ zQ^eT1{@tPFWa_cHjGe#-F+Ht!chqIy+EpPpg%u-A$V_3y2-6ol zbOBR2`8xw*(&f?ut}9?#O}alLOpKDOU_K>VFheJs2-%JVA!CmS66Av=P$(f0g>@cd z>vMG|1q3n}+ivMETSQipzc5nx9?^C^txb<;?#0!)W?OeE{KNRNS%NH&8YhG+k1mFz z?jF$v`iNx>{CepH36cgj5>AB)hI?-FShB^W4;;Gsqh6q{ihh@oYxiF*tXLX0>8 z_rN2M_GB+i|M1WSOb5u_zab<|KDFzy^cCc@k96VwZC|P)SwvO}Pc&*N7DZrHP>>z( z0~k-gCkv?(++ZolKSZP;N9>I;Tl&q?@(}qAV=)q9bGvZE!ZFREHzo)`NtO_d9 z;PTGVtq?a%TTuW#$I-yjWtcv~NhmN(jefw}IXXsIJzdWb(KL^x$=nhW(QK|Ga^^VM zgMDjsR^YRZlbw-S{#ebYQHtxd$H8!jlLDox=q{hmQAA7g^x)&hvgjPym>#X?&=Ncw z0=I!C_N#1Ub1AQ&U51(;wN$fG>qslLoRn9fQgh);2~Z9>Lf5Gsr!Q_0{F_4|rdm8X zxwoESq`3NGs4DgY6?olR^6oC8b4$LjXfWMmkxDk4d*#t~VgJA5{s1LyI#u%^%XU z#nV5!6}78tftJ(~((5#yXne1}ERd#}6cyaGkmG{f^s7GN;-+8C#S;CaCWP8ga7pz7 zZJWo^AKVgh(-E#ClBX%zJ5=BFkN$8*W!K7T{e)8Fr60kl;iXSY^VQ%dPu4wZL4*9L zPv_ku8_jq14J$o83vSeA7vvXa=V7%}Gg~jy;G<${j4JtV|3RHehTcW?WnHF}HzXrfytUfR;wOSAwp)RycdUVgId3KK4k6w{d)f(+Wtbf+%SiF*>hE;kVzVes zbxf>msE)s10WJNoA^z~KlNwI+7~=QRZ8mHsx&56gekMdhtSXuVyV<*U6Pb#d)kQ!# zr%6CN8b|{A(`2F`pfeh>nScZoua9s7iimG0S7`Z!R?UWneA;=eoXxEu`E=kqB54Z9 z-UTp{UZI`s8PRIMh`2(F0&9kKei)M%(YK-h3he^29o0~-&}rYlI}i?jR5aqYydpX!xZzVGr973LqjcNxvqeuBk8^dx^8N*l2t88YVz`hSqOKbOGgaT+q97ZU9DZ|SRXToE|?D7pJ%*Lo5pOp6se&aFn6*q$A$Re&Ia^*i{ z?pN)2r--l2c&#_Wiknf!c?@(mtgw;w&pV~n6Df4R4Itgs4d4Ixp1Zy@DlZ#pwZlNH$UQG7y>UKJ&&YlLA!8bB*WDYIEM`p< zitLq>xcd^h3mM6nh)wL5%*58)oZ(xh%|5Hn^5*4Jp&_<}`?irRZ@xAODaxC591^6U zN`1sdL6wcRR&j1_hXKEto+NZAP3cH%%-2nmDk8#d}FgD`qwj})qoL^gjRul zoL)T+mgWZ<`*YA(GQA3C7q6#n5GxvK4(g^-)>hPv1dcJc%BjN1$X5x)u&*M}5Imae z70w#+TcT#4u)?bD3loD~dEDYR{atddOJh^v+|G3cMsJett)S~(BU#DKaJEA^k2Lmg z48KjbZiZJsZDY8L`CGhhX+6BGafo$VBMwL^xrG_|K-Bp97SK(KgCWj5Emj&KV4Sw0 zv*4*rIE>i5!Q&O!OeG)3Kpc9}^fA{J*i0nd_YF3TYpi5iW7CHj<3!15&5m`MkzyZa zh0b8?!@OzwFu*=((YYBq3Ea^spdHxlS4c3x;*&T%ot%dJV~oS*@X|)kVruBT>SUV_ zPLpj;G?r|0)a0UIo0d%&2O!(D&__7i1X`%n3dl*(0sff4YSzRsPA8A0i@7Caoa?xb z$e2&aUiT(uO?9y|D$5J2)eNQB0d53Fo$BYICdfQto18Og2)MjDAaQHT2Gp>LVV|Mf zfPFGyVmM_Ge7U?p&n|e3Q1cIb*EG*6*cDcxns){4sSE_frFMCSr{nWtV>lFIqRk;c zM>a7e^gh=Wuzf|kQ$g2FLRK=#;)8Y1+$R1c^flRKn#RI;zNYUKp`Bp7*=A4P-8V=A(Rd-89egq;IoFuEby5}ewINjnuzvtU4hSc zq`TAL!-&XAwm|~xmnzCIQkH9Wn3oM4$UzPDP{=`Fg*d1+W(kijNfS_;&|z0#iA~vz z)6TLH|3}V3Gp8c_ixu@?iRf+wAJq)mEUxW+U!8zg7&4Emef=M9an9iF_I-xbPiuxA zf`PwiX2V}Pif%A*)~MqAhkCZF{4}D5xpRBcGrInAnoM+QQ^`af0Rb3SFws367i6M4 z^%2WN#YtsFfu^$TSwMglH8mvkqQ}T{+z67;TUAYJ&*+9CRhVe{Kc+ZieLdBCa&(vAl~>a|wdl6u5!Bg~SVA@Z8u`HhVf6)#_^YY&sRTVQa$S8d*=X z=LNvP%Q&BKWRP(_)JH7iV6*4LX0q9{g)n`-&U&sR66OywSE(KE z6tU2Z$F7l8cn`8qH+!alF^6!DH}fZ)?PPjNGf6l$hKbD#;lM&GCb}>`J3n7#J_S!D z(^4xJc4?ozj2OpXr|;Lx5)JG4>lB^6C^6V9SxhoEHTILUjm9NFU4ZSLOs+1tXAh~L zn=HArBu-AGSVoFAp}Qo~ebLtEVCWg zq4tui3<+s493_S+;)P`7tAcRd#pBnU#Nhgud@cgGrUxJAngXeVr1^+Jie;9SJP4uc zu1}FCWIGCkj9nkdm+zjdOjdK+!cUN|^B5nn5q#j*Ld2rS&?cS4;iKd*48}-_&GC25 z91rzpKE3p%&!boh*xGY)LKZ{Lfiuz|ChXmPZw?5)xqut4}0E%d3YPKD4?R4KK zp*fpk^Y2{IEnXk6Mv#qKaTSp)kz}q#bF&CLLlrlx@GSkT77U7%wABQ3NKL-DEI-iP zpOIq8{8pT4y!B(__&r%OQqSnzOxUwt?b}h=C}?V%jLh72nXsW>O68bHE24ffh}8Tm zMwz2`kV$g5p-PH1Wm1(e7 zO*lDX1^m+{DkRO}AoqKy{eyj8fByAhuaAqSZ=}Qb(oLRy#BmWACQ&T!LA<(7`jP7j z4C|BbT!SHFB`f)+xmlLI=b*v(&yIDIk>bOGkUNFSuoHZ0F$^#mI1m$*&u;L%xw7RX zzBeY{VLV1qY|2-`T|QW(VN<$pt%_=V`@LB!NW0T`P_TXrNltZJge#Tu;Hdjeifnzv z@(S*@k*#L6^m0WD0xP41A*dTXmU?na$WZrk9g#RGWbe)vhM{^oqq6j{S{W$CHqkj? z)Tx_ZYT@4|N~0mpF{VYE$Od#~3(ZuSYQm+J@XlyKeqNrgo#1hm+$?x{ZhZM5bwlS$ zc*jymW?ca{v9Ir33GbkWB$05A8rXYGQt&+b(9bp=XilJ3`_>!v6x z`O?CH<tWCV2i&12QV5q^tV3OC`Kh zieWnv1f%j-9q+%>Y{G-^?wRa zlVWYpb#E?ECOrjJ;PNiBl@Pl_ymE+D`jPBHBAj>pKG+z7JEr(8#* z$%SO^Ll{Z-f8O+rXf9m)3K6uBI;Q9O_mq7>MpCkHkqoKl$_ zlb4f|13P2r*C8}m=gDtJrSSk zKYK1C)uU$iupOSQ7+rb|7zWCjGHsih0o)j7i^ZCBFmtO6b3 z_fI_9W2K#p6k9%ERYYsYgJ^M~1(}fg9q~&PT;=fL0mo1_xMRog21=J1=k+9)^)SvC z#8?G$e~Rq;TyIpXtM7Besjv)N6OPyLdip+Z0|s8Ena7bqrukkUu}p(~pYKy;-={ZW z_N^LxaYe7-Mvswo+z2wwUtC9I%}rzu_LAvX(J5k`8IN5ftMDzPpziz324fD<)NAQa zG`EuJ*{PCfYz$wdhKQyWe1ahZ_M+HP*(^4vFb{6PWQC|kf7^j%(I``+<}5eWiz5l0 zg)d!Yv}7!zCl#A0_mE%bsL5SykEb)&7i4?~>34)(Qr$(2m0Sd8BPPf?y<7UT&Rt~d zqL!@3b52V+53P%5wlrmojvv=ojY45!g9j@aN668^QpOR5&O>RiyVI@e7Po(kPCe%#bj7Bw48DvF{ex)qxa zNHr1qh>L0>TFI*B5d!N3Ts+;>N%vT3$*myQxZO z=8)R=5_EK0`E$(^WcmosE8fwuLHyHF72g2sq+3VohD1KRIGk-3O7K}iv+IRwe_v(W zC?UWH;{W?vWoz#__)z@AJYMnZ{Tw+pxRqHcjo`Who1vup0_eI)#!8-rvmKI|(8`}= zo*`S$wqhg$PKY0S>)r#c)X;HjlGL1`u=p{+;35Kn!51F74XbSHksvakg_9sKKk#4$ zFfWsX-$D?&tXai%1u!p??s5YR;}|Ph0+DHs0c#>cI}SvM>ryT4 zRI>vZbgGzl)BL+IZ<6^A#;oYV*kCS9bJ!(1w=feZ1xlIbk@@-1wVpU_pyn3+U_U<| z_zm9C)YKwRnE%(5#Nf9)WHEmxlTWkL46!Wdx&of@q`Me&-Na%g3oI5`y=+eNZ^29? zTksVOePOW$Gh21+?`pwV=e|e_(Mp>r2psE|#!*=slF`2vcU8bDXG#HL0;J**ASRLN zEa?O$ACPY+!2hXb)8o0SfMgn}Hb|FE7%NFgH%*um7#vF@JIWUZfkAinjSr-$r}i6C zf&1R>I5C`p=iz5X2r!(Bq>pT%kI2Uh^*~`;Fz2Po77Scr(5=1}%%`WxE&bCaxAX%9 zU>b^QK&~BusiD70+MqR?aT+0(qTiBkT{U_H zH5^z+#!7301*dFj+uFZu`Ht+>Zq3RTa76s5TNnRH5AjR7#X;9C79@Q37&xX)IAOw3 z*k*C&u*$G!B1%{A$OTHjkf)bIG`fE2!*vBp^GUb2gA&8gN^dYyY|DUE5waZ*LdH4< z(qmur8mwc|!bOKE0JIaz4~`2)_pJ1o)m6Wd$1qCxYGz2f?8@{rs@2t%S#&DI!xnY3 zG`gOy%x5Mu1^KMz$RKYN>mx4mDQ+#hGD``wWhyWnx-x%zjO^n^I{r|0Z+sguv)C0_ zM%E(Qn1#|lGhP^tWsrfoE3*j9JLJ>4jX(LUB-@K{mhqL6jp4V}4*B4wH|?LQY#x)7 zm5~RZufY$HYU+Xaf?&5CEs6w@>OOW+60%O{j3|AE>TwZ;2lKbM<83{>uni|1y$ei+zUAGR zpurDn8NP934mMEK024V92G6TJWC716a&tI@qN!#I*A?)rC*27K9+oav@=hC5*9><8 zWn^T>y3k1V9j4%KI&ZNpQ`SoDTTr`!s)WT855x)4FizMI7o5cH-^p#rJH|I``u=RD zZ>T4;WJGnYpthb0*|4?V!8WqW*>93k5KZH@i~x{m67>-m(ImE&RnB$-t3GTYs#i~i z9xHj=3YIxnaUGE}JILPUFp}=cM51FphR+c$7h+td8 zG}n9q4{2q?HaB>uDJmzoAWseZtaPAy@>f_j2|-Z-yjZn9j9}P#@KV)q9;=v3|Byq^ zw>4BVf$Iuf{wCeGLDx++R-!BrxNQ0y(D8e1{2}S2*zP7 z!{%*VTc<};IKDa=CMpdk)M-2|bN-oKtUST3Aj6E}Is*8bWbYLiNi)n7o)N7EjEKd|bzse*n3-q#Q%sO-Uw5XY7#l^8 zGaZVF&dtur&QXE>Ym$OldMB-%yu$2udAVxvf;A7Qr+?Mc%__t*1@m1Rpd6TRRvs6U ztNG_wCI**r1oV_*zpMYp-h0PKReb;d+#7n9-lZg=h0Z3sNjCJ*5ds875kyD@B1rEw zAWdp08Bvkm1x1BLL=Y83L5d9|31k;V0R^H6Ht>69&fM(m%)J5LpZAYHevkM2@px;z zGxMA|XJ%ga%kqSVyMepg1XoDNzm#yAEg9^JfsB8Xdp|_ zR4`nXpbersm;|k*S40WY*3#|~4{_Dzep=mtq}_s@9EI_r$Y28WjhIIoD0MjQOaoHp z_Sv?qHeq%e$*Xac5nn=s4WN zkRH>fGs|e`V{SOJjL5AOhIn({+6+2MO*fO5H}ENs_R*tMo>mX3JVzSJ%JUJ9NGbUF zN%RL(o*(EHQF-(q8p^>>4EK~5dW|lxiZ&AF6{8fQR}4yek#mCs#Vpb=Y0GgH8)58I z2>$K==}#jERLEkV3up}g*h8~M*0E1V&c48=m$;E*7?If!Whdw^Ja9Ph!1+SD%So0@ z&wQ*X3tl4Nd4&OA9v?w&o;x3EB;j;}BzVa$m7QIsGi&;l6*91K*GDv8no&J?6Q68^ z$}>#NE4ivG&pQP2`YVr-k^-fD%9GZ}T6tnQE2R-C&xe(l2WpMvd1$mQt`Q2)buBZ5 znOYFOIOrsYS7ufajiusK>gM@c)>)XthUc4wxon;22FYbl@usf^^QZ{z74u3i>&5fF zjV===ypi%Iv0s4T24Io~8P$O8RD+6V(z(I5d5HZ7PkBvp%X_=6(;UOvM|^%2cGWSxnRzuKNFU-hf^)G=)9H00F~g zznJJb?yk_rC`_>m3POrrZ%Wt?aYzc0hr%!bQ?C=J`^y!(^;cHp+jpFpxI-pB6iM?=UVJVTlS_gzF zw4mL;6nnGEYSC(Gb`9n2TGbc@>1{EuKT7G^Zg6QxjQKFAS#6BK-7yjBOa2#%^S570F98*>dvkeb4Lb6K=k z^37=8MlaYwmFI6UujHHIJntR!jS&7ADYsypLinS3eO3yC%cv^@Q`xf&FdDXvfiS3a z;Y=J2l2xEL_3}J{)-szynh4X0wo|BQEN^Ept;aO*sovNZ_LW+`uEC>TNorj3|aa?V1Yw?$Lt96?}=l<1}? zFrj2*vGcgOBjhsb0#n%<3kF2>xhO8ifKbc=fiZfVrU_Q1*Jhcl@u91#J(m&1D);G0(D!$K8jD zmP>Q#W8S*KVJJOmVqVEhhj`wpkk?;&jFd@Gnn@3fa#n^}M>&T%Yf_l7p$v_X=AhBM z{XHg8Tnr1aDXm!+p_xLNEI16TbwZ(7kSd7|<4`hi+25^wj5eZJ)GY7UG;$=LrxzpBWBcsDj_LVE4vuydMyxr)EaaOn6AzNYo?j>;-rrJ@9c#;VQoSZntQ$ zG?j9An|6kyBh|k&N_s?U>i3(@o#D4 z#%SU8@I2M2TZkITe#WW-w&RNdL2l~#UuQl6nUOA|Q~nYSm7MY;Z`^G#fa*&rhcGrJ zr(EKB1L12g;1oe$jFh5q#+>fh-1eC#j3}e7?U+h;YyzFMZEVvxi-i5)DMzw<$VM>R zKxp8XD?eATR{}=J?G@^~!rKc^jo8h@8u-vx-rH@Su|LYN=I4jhmPCiFEd#-Fn2dR0 zjawUiPSXNKf3SdL7QG^Bi$2RCM;SM`r)EI^QE}OyDeHx=aMkq?(&xXO42%> zpKJ?sT2G}vdDbE@HvRR*NGS-VeIZQ{967Smm%llyAkm(HT?}^q|5xZp|BV}?aW~-O zzw}AX$7W@Q_?$!I8N)dtz2UWgZ_diB<)19Lr__t)iOfT-MYAQfDOd*&&@~5hsMgTVynu9!y}EG0PZPk4#U z{B!Vv5~xj>nMU#v94RB_1OyfVTAtu&)yeL@=c|#WhsU=wy@!|K{KE*4UW{TGbC8^V z3L*inJB12GI~*?D%7Mw_h#)zWPY>s^<4X#FBoedgL?u)mUjmj1o&YD3n@0#zBF(AC zc+)_|*d|U-F|XvNiac*O$m=gVMoJebohLh55_OCDS2iniR2LG`?|fSgcD(zkTc}3c zU{NWGj^P=uI*thVJxWv^G2Q1Lt~z3(;G!2rvn3aW@V3r~AiL9H<3`LXd8j(ix)MDk zsE(1c48G7nW1Ja2i-nP9ROQ4}_N&xECrP~oYpE7<+5Jc~z-Jv795GR_?vUJMp~_mk z$p`7!G~K;<-|3T_klv3{a_T;$yX>vvJhE9n@{aGpIl^o{adD9`Uzy260iwy^{Wz{xto7K_e z2+mr}9K??%LnEZP$7tTfNIwZGSeSVWHrESfmG^TOd*+jeKYqDnuW>!{%i~94uKP@M zhvd3e+=L@wCJl!!hlqhy(C3J!pY zEy+}G(Jf4-deJMQOliGHnMr=3QAh5t9`FWps#0SW$S4uQRBEo6NAiCs&YKm5J3XUV zg~AQQ$k2l(;7(6h;Q4fF3%nfM>hy9~PVdSJ%R4=WEuG&dgiSJ)+)GE%-W{KI7GIvfqKTAlUctgp~NZ1?9d{w+OBU^MU`SvLc| ziZ*?JCcI&kxr%C(VCrel(pa)~E9{e)Cin0zt(dXRDwX-Eq)V8tlArqV1{ZgsDAf}4 zN{)J(=M8c(M+u^2q*QaEC;^R%k}&FwdJdv9*ps52X{WF?T2FX9ojxhL_Mnv)N{!8| zoN*{`yhuJ`W_FRAE>z#2H@!2h-ZX0J00YH%^>MLDk1}c+_>gim9^Qs>=zN=Uzuh$i zbPQOo%F!#LKbRa5dPS5Yow($vDUo|>1#}_Rqx}lSEmD{soe=X#gC>ddjzLW{YH}+z z8abdw7Bwvenoo^>c3DSFgE@PtOOBchD;B|CYMv4~qNCwK3ZD|e>wUw>hgVMxCqwqa z4v;Uo2#c8D)yC;HzN}1+`zPYmWMyv-f^UHqkG7s&BY6W0M`N@UB<7VIHH_!23VHpb zB_pLWlxB`$GUSN1j+TaVR^@2w7#=M_Bcw>dXkI`xjh0#!Wd8AmNYq9+kdRhCE0#3L zfF1a}bUz0%^+D(Prlrq6Plz^4>NA12vj^BhL!!ZAUdcaWc-|!RkDxwAN<0`yLn5F_ zh8p#Np)@42EusUKDbFxbd3;9r8A$FO%o`qN7B0@G)suLuVIZ1^LodNDlc76P7d}ee znfj2rb0AvQo%e7+N@37N(H*;o!3Gh%;3qp-(X#B!;C}iJ`i{!ZzkZO08)I$%h!iF} zWts^ykB$~W@Y6W21Ua)6b}9z;EmU0pN2%4w1+_Bi`3CA>Gpx*>qfuHjYvq~E@!zls zCjK~L81iMbpga)~5%BUrP@ZaqBj8&#P3(BehslmFtsqS!A-}>$X_)5tQjAi&`@!<8 zhiJAmp%(LYb!~=%lO*PqT=WvpI}lw&ce#YO@ffN7f#4IJ3C*lUXCdeHZ-%1NrpeMk z@S!vnjTUxpMm48pAv6-E73@f(YqTTByJEoOOY^ygsf{neD8xMTvS_X3nU%bCE5HIO zH9N(;l4sI+-fce52t&(A-Aq&4>Hw5XG^zp<*#ZoPLbJwML8S2;5Wo1E?z0I6#+Tw} z)K_vt1?3~Wp-_Xlx}1vksmoulKT36Z=*lsToNn0*e6C z7vGF)ZoS%C&uf71dQy9&XGINrDm53BCMqn<4xgW4O5?QKo4}7I!;cQb07p$@=a!k) zn4~QOtyv-3FU_bOymd?A%m6)4xJ}F}`DzQ#y9x682RBB_dc!L$xcLBn<*{00ZR0HX zlmqn&TVpMye~Z637>!%hoXJc^;=8;Cp z`qb^Fty1M^GE~c9Oq?0O?0#7xKg8$18QU|rj0=J z$xMM()=Q==&feHk-mEdKSl1E*8PFJbhiP~?JW`E;OoYn;-;rStMu5oFEgbDjgl8Y% zRi`sj;CC&M8Iz>b6_!`D)o5isp?=`)dJGO>(lEv$=9T>8;dz@vUjH!0NNEJ6nLn7) zbZTY2T)MLGf$Gc@F|Xv7pLpI0=oUd|jFhop7u}ixnq;3*57@`HX4cW+$%F=8h|4yG zL1^llTLwA<@2q75#b-0KY<)hhz0O+;!_9or^mH-xmF_=)XIeB3R-lB#Qy_ZGp((4=1-2l!seBD(=!aY+$v9J>cVNk zFk@#XBFY6jGr7k;8%ARp(2_7E(X#@gXcQV>B4`l2p*(K<$%?i_(Qau*>2>iq+294yC3yjo8 zpJYKzee@ewA?7#c8qgXcNpQ>?qOp==it)y61p}zm92WCRjw!_Re&BPAFtm)+{WP_$ z4nWC3qbe|vsm*0N{+Zg`^QjFik?5dMj03rWMWK--826*xU_k)`d4pllnXApER=%av z=RZBlrBlheFnAu~gkXg>vdoliV;0M};Hv)<4-xc=ArS0!6%iy&%T%^#%5Z0ew?V1t zBa%io{;qqV2x3Z;DrS-HOJzAOr425gdiyFB291#m9&msrvBgspfcm1Em)ck_o+|Px z;Nf#>kF-T&*we5LD$b05A+m8e98vHCH(NYK*j?nq55F2tc9zYmN!I>Lp9qzbFRp-> z>Xa&Hm3-##R~2nrMJGtJD~PvnBYcm7#y1~`c_oKc<$2$Oy#Dcxk+RqD42y5hw6R`E zRp+d|=oz+>+DQKvw`q*Vt!qPq>u143***_&(E$eyT#+72PSnq;WuD9&)Tn_~GILO_ zXtd;@y1b#kfH72l3dab;S8`BIo>z~NS5!vIzc6&^rp+(RRAHDI)vQB*uwTF%(q=LF zsah9hdAra{#mOWYH}6jgk!xUkVskDNt^&P-#8h-iEYN(FhiNKBIa5V{u=r#Wy<*6Zr`o6SB&4z`K25l<#>b%etX4R$h#aOq zZ;E-OvC@?DcEq6iyyB}>=piH5c$Ui4XEZ>4>T@c_T74Y6iqVLcwr&iAMv(YYnedR& zzwkuysj^vx3%a7i!;L-Ss7T|xc_2acd`Ym05fzD_%>(ff5?}+Bm0_QS`$e=reaNaB z`bv#VE83tDd8ft|UM0 zcoW0H3@Sfe#k|sxYR&U@YAef+kHLstw5F}BMz4VfR5kiY z^b1p?L-dNFMr>o}P+NKR)0KPd0CXc=b9oiYMUld^=$4pA8aUlJ?8Rj-c6&2N zc-^66n!_J%$t)%4@uq}$gLU=mQ$fyD(02E z`7F=75WOj^r;L>O;10T@1T@JlMm^vbw#M5-=LJ)`-lEdcarmH4VB$v$Jh&(J=3`v~ zw+`lo`I_);c;_%23KDjpUc;=9Y6mL$A=U8vcCs3JaJ1*eX5?_?36(YeCX2iI$jLD7 zoWI(U+$x^x+GdhAdun~*7rZ+pr&VSLvUdK`q5-f)M_viftfTEAX^mzER~&iOI1?GN z6W%zpgT93(cnwKw3O_vGXp>bh)MdBZqw`muaCpNz{%StG2P`TeVk%VUfr`O|-cXU0 zY@1c@0rQ8rzo}?z(B4{r#&KWNg^v)@wOea3FP$>NO?DK|+nkJS!B?U}=wzh2fZ!9M zC)!(!&=}5hwdW$#_++5gUY=}53v0C}GoFBBUDR8(&AcTl5%n#cA zswGyD=GqifO&qC^n??rRQLje9SDc>CihMW^4SYPS-h;T4IcJyH8ftKDUyG-6gZJKO+waACnmlq@-Jdstty#K<;866%C;R$=C1qeuU^W=5jqvdHJ zB5=y898%_G_{r*5vA?8o{1!L%I+utd9R)d&#_=0GZ$L*`B8-#*P}(OERXbWs#4gS% zKyu>^iMTFHgweQbOd{gSg!@J#_Y!-`9Ab3#0DQG|A^>8{s? zj`FV8BAVAwiF)R%8NV2@`@@T8$xtZs5I_6MBZz0nsbWaO=Jl!NPJ_kd+tzZD~IJw2_2d+=*n zH;d`xJJF%moY)h_R5X1BWE1YHF`bM%Q~K0ZcEMF6JCQTfJk2Wgr#0dmT9dURJcjSx zi8<@h>H1%j!IbqqcDgVw`FLy>;?2JM~nqLHPRL8* zR=if5Y&exw$JSN692W6ftlq9O2|Jn9L@5wL7M{#%W9x5LAoNsLH>CitVYpd=TBoz- zDFs5vxzkxrTbfycL1(fY{snfgcv)Pd*XG{!_lem(!9Rx~M&LiTGuoh@cuz=saau#N zc)+^a`qs`=ntejHiMG=C?ScxKFdx@L8c=XPhLWpaW!=yZ^YTIWNZR-@U2F%%@?p6z zH`BLwmIwd(&ZtCo`htkCdn9-0*q}zfTVcM2nBETaEfMRKP4A&!m#n@fwpz0KCx5H2 zoz1$U7wLjtGpsJyMerK4`le#_Po3#DTQ%K&kHl3T_y48AE&UAUcQ3f>G%XxJJ^l+x zZ#6Dh*pCS#F?0BSjBwj(0yaT!``@-UkP(-TEL}eE!=j{BR#tT3$#nnqUGiL|>`E2a z=NenHokVw}?Rm8}mqww^_E_hKvzC;#`R-9ox-cK{MU)U8ne;Gjq5TKrq2oikXRN7v zM&;w46CV{N`{u2TE<7IH6P%MJx@W=t-80YBJ)<6ldwM*id)_m3&t7ZykSUk4VjL5h zYhcJsU6H!0HjE;AVKk33d_(Ef{e5-9)K_~Sg|GTNq_6Ip`sy!hUoGzmLuo>{_0fe# z<51GFkBCF5+~b1q2s2FxLP|eQ%KVenR+wdf!AssooUQH`2|nCh6T%3SnJI*X@%6~a zDHF?)rdP5?1e=Ef#vKao>$&&JHYVK)t?O>_U!b(yH^TfIPAFL#&31js?a(tZ6@j?LG9UU((D9NCES?BcB zuGZTci+FnmA>a=A;JIlnw*32VmZnec%Jw!)*ObfUV&k>!efk2{FXl_iSMo|Q7prko z5;ZJVSV?xzzcaeZo$(*6B$M#Pv+rrPLt=ZF6rMh*HL!guUS@g- z8A;5Z*40c(*gtL6$o8FFLO;}%G%A{1)1&}ZTiZ3cKme;EQmf)$LRx@r5{x%S^?xFp zJN#rbH#Dt>UbdURVwUP=t(Z1Q6BKh^VD=%sAun$zW<9YyQ_S++o-8{fhW;$<{hS$c(JFC*j1Wj7_S26io5Vqw78QA1Xwj>W*R%o)GH zaJT3Y^T2RdH#snT8GWQKzf4?|&+^M8w-6G3`jGCqsJJJ~+C9q;eo~kORmzTbOp@0Z z^n$v+`2GHV`c?5$)}!##=?C$XaIdaKat~+52%{)C)+Ee;1w0)^2Oi6AU3espoEN_E z8#&QXEH7>oMvhPwycysygf%&*UnWYpcGFhsrW#hO)dv_?!fMqdw;)Z|U;)|gi}EC?c6JByRPF46r2ogbM3dH1H~&jP z!EM?(cgVYSvY!bGi*!atMI1@O@^40VkLvkWNzS}8#ZH2oW)};x+ap~O4tOrz zl^6!KhP#sBW%wzMu=wPZ$i##s_wKVVf(g;^>Ogx~GAwe!9nNrgT2*4hxS6cM@$;MtS$r{u8!q!S|^) ziJUn)!5(ylN*N=}FdTcTa@$zkEik&eVLS7KCD zw9_5dYvS;NK@njQuK0vRI5`s)<&2L28xkXxFN;QDg2`@8M$^@L|PZ zQj83a$qu$V?M))0hKy-Cx_`~7QyT@>41;H1>`pK%EI!~>d5q{ES%NZTHr;&i#(XL`?GtxZqPzpETIp~fyf zpBWI_qkV^N1M(Z1t^`N8f9}M5-R5%C?B9r#e?GfX(0wc-F(+TFADj}O5aobL5E%|L zBP=R8IwCnbIzGV;-{DLQPjsZXJy&3a)<|+jMa0KPCq+j@Ig_K~a5>^#;JJjPaAzd-P_!e=kql3LCMHC|_eEly6U+0dcE7smRErHx z$-i!RlD$c`D<~Z1fGZ*;89FP{84;bFkQkMck`(DojEstR#5++df*j%Dj)*XLpwN*J z1%o*}AtgLIEHMQ-GAubc3SLpTF1x%tc+kWhT8-%Fgv2mM68JwN#p#F#ufPaSh5-Uy z?T8?U2QRLGlkI+0ll1o&huyd4(jR9p4GIG*oXKHH$&vA4Ab7CV0j5MoBqb(By6njg z_nCbe!wXiA2v2Z=B!)#sCpetZQStCU7=4M+5efEampd$B^I@$* z^%L1u8#;xV6`l|to)R9Jl8|Cgawa)l3Gjz2DI63cIvVDQd-u!YUQ`wx z;RKzJj!3dQ5~J;4LL^K?9ATvwk(adT`S(mjivM)E&v>-^=g!}6QBibqC7oDYG3Y*4 zk@Wc!8U&>zCA%Eq(Mj?4gmBOh=rb2=V?~64;YlzOQT>DL$;r_U7+q0O5sA)(^# zA~MOIoM?}RTb(NzXADlRPKro~ijRN?a}pB5!jn?K{4iHk zG<@VXtzAYH_u5k#TeKSa*GzINlCa?WR1DuL`gDSwOqiP8DkwP|;);0a2k2~=U!Z#~ zxF>@^L39!Ah<8I9>3u9b5@uAS13uLUxl-aGVt`wBLIm8qqmt+gc~eORw>=u}wl!Q3 zXe1`M!XgqttDK1u@d@y}Xmmt8=qlV9NzNfsW$%Fro3;DZ3?B+2VfU>#ZrkEIp5r^0{`O9aVSCjR~)7)AR2i zM}+^xxzEUq^3R>W#}cFSrrCWAqSGvtjJUBlf|MM;xddsoIQ#Mcg^m9U8~+zJ{x59& zU)cD+uumj}=XA3WqosHclirKFexcB()tJEm>HDq_4gitXJ-yaW^}3 zI)%GiRxZ^2IY)D`too5O#mGHYAVzhc*d-7V=~ z!-19BivGpUJ+-EPY1`pi8~PVJEgeJuVh5;-wxxe|gfl=RXICFUZmiw>iS0>x$v6WQ z*YZNF9@m|$3%<}(OW@tu>w?`DM{^m+Y;q58enxk!A!R!w}k7HCOW{|*vDddMEG0Y$;Xdea^xz1)Sawi+~tsds;T7a5N$j82@*SGcWW1&@R&mC5&RAv1*t-uIM-;|Kobgo;dQu^nymseO z6|!{w=Bl=jENOqghqUVo?OG4Ad%*?TJ$qM?|Hba{rX?iTzWjCo;;@9H#v< z`v5Z9D2$ez(Va6|S~5QW02xCRMha()=Zq9fMyW%{Sf((RaK>8BSYpX|@v+&QXQ)G3R_Oa6Y!=?E4NmHx$m#oO4&;{A|g&dmcHJpOpKn!jm`| z>pn@eqo6A^gK1Z_%|b+sf@sANJ)Xq*+{%(MHyatL3S$swOyG<`mW&e@kg;53lsR#s zyT%dgIAW#^Uqwd2 zr{qr2o8Q4l9N;v#Rx zNlV7rTx9&EFz#?h(WkLr?pQLa{f3NMPs@E9{51A$7-t029HxC6e+wDi6h;@$=*t;h zEE$`BN5)u%F^V&0amFZ1#MM7P-WR*2Twju2`C_*~n!&VJng=4HiGpaz z5iI~g_n8`6GG^G2@wCEtk~5My<4H3{?qpDo5{Q_gAf|G}Vvd+lt)Ia!g!oB`fEaQv~&ytuH zARU&71wn{7s36|wh!eaS?^`lX2P5N0h4DRS{LUHQn=#g{0qLlTh|>MVUTJ%=yVjp| zidKV+ESX)M%-DOOsjURfWY#enOwHFJ?uhoI&|fqnIi{0#qfyzIJ6DWY@FzYA%j|RwSsxTUHMoZ3UWXWjR2pN48MsLnY z;f&svjG2u|dT-DZ1u=~ymT<&0OT?#5uo>GG#um=l#~E8J88$mIzET*cIm5#lr!5(A z@OBj%iu|K6{^X3}1F&2Ev}9z2Bcsj$xoc|6BBCr2&%&FH=*UV`5Cb`4Bq9b{BGz?4#6krzpCevD#C%J{<&KEhqafbqh>sER zwk4t=m`V+~pdd0i;%7u;S|UbtK}3-RsYkSeBrX(YNQDHPWCdvk(;nILI3nyK0^YFF zw!+E=1+)V6f2pt0!y()0qlk?W+lpfwTVb`oh;|ty4;d$5z{RZFLp=74h69l5$|!tR!hWZJrMD=f;fW+FGrlQM3js}#9amP7a{@^ zv6KEXL&UuY0@4c!brYp-)@vo=?a9dzwP+60et!80Wb{xN-8iE^XLPem2bWN4#!{81ytY<8y`aDQBGHj882YZ}dUNZwlikGGOB= zwx-M$`ZiRcHp&PKoS?hz<&(Ek`_oh_;r9$*|C&D)NGY zc%CDsAmVvT#E1P6K@`Laj@X2V6_$uX0}%0{g7|RPBQ5Qb z%a({G@rWp!EcJ+1ifCOy4ug|%rj?=@Onc<(1Vl7f5b)_%is-@-E=vUTKI@Sr1p!Ys zQp6~Zh_^&M2ajpdPF}) z6cJ_4Twnh`Agw&JuAEUOGu<*m?!A1`%&@#2QOP?eT~> zt{{#f;yaEwW{DUw0TH(pL@pxq!PpP#!AlE%o!^!86Qm}ao>Yr zD2Rg`af%}jS|WZPANSEl`n+E%?9NwO*5GF ziJm?a5iJx%G)Fv+h-gd1x3dtDtRNCNVl*NWED=>_BVw_FSiljlA!30gV&EJ^xD~{^ z9B~8@?^+@@%|%3xg2?6w__PIeXSOBc>O4dgOO<*=D@@{-foxTRgCBJByD-gQ+9OS0 zLPWTNXo`q7sl@Xq>=9WK#w*e>d*|PU0QZIBH|Q8_vcYO2XIDrOUBbHkTFSNjOUDboH5>vk=_*K zVkIIrD2TNjv6~~-nju)c=E*?D35D?)XPoDZ&ny{rUq;673gcH~!1FEIHkfC>S|Xlb zMZ(JE919#O^@&!Ml-Uc%z#1W-Dor=-lDA;%h2EGuDTMY&=#7N-mW1D5MZyS$FboOP zkTA@W&}=mlRw;xGBy2%Kh9zP8>qz)WAsj-&X(Sx7Bz&?43D*?DPe}L^2|rm9imgLJ z`C(FD=w*iC;I26g=U5q?T%slk$N zbB2gRKyyn#PxwuS4vawxAc?nOEFzLD5i37I#8L&Zh$CJ{#3Dz^Z{zk+}hEwmNSb3|WDgyRGv<|v3+h*-f9vn&x4zCgsA3gQh!e83TJ zSRy_+iHLIw;u}Ol8!dOpJtUMGjU95&64B`lA{xjDJ#;h*pNlg> zX%4wl*S!LA@g*XjkPzK9PKf7(o@NB57H7Uf#1sh;t54*NmpEghC8Odu$k?PX)^o-? zoUz`L(eGPioKzUcVc(-YEJiruxFurkSw!4X5Vx=yS|Jh>bg`T5mL=kcbBG8YBXz4@ zeGKXzoTH(L>NJDgCCs4>&Lg6Wg6PN*@PimdbhJba&qTy11u>i>VAG2thFc=u&7z2d zHC6`jpM~ke`RqsGR~6{X914*tg}!VF{WBZe^@)Nw%n>jiDdMmtqSZx2{GuSPa>U<= zxN3#aW)bZggd7#eN?oLtBXNyDgldn)nOBZxFzupa9&AKw1et3A_gmn zWJHYPh-6DdukR6&t{@g8Vhu+uwnUI05V2oDxDj!TBit5<^4eu2Tv7-*NXX@c91B7@ zJ>(}u*v3g6q8A&7ItK5ZV7qn2Xb#gJNx6cI2!#>O8SOYD+>){5Dl(o^82!c(Z7?VZ zNA$Bq+`NW}xeDS%-i(!;@uDRo;umDRr7(7K#zD^5X~~#$9U0##jBh#PN6z@xl5yw; zGW79sxBQC?tu)DP3zPL~e;)Erl{~bj9p&))A zk1y(&fG_H>B&`1f2_X}tE`@W)T2GL^rW0_Y)u0(n`{Tzy5%IW!fRBMvL?4dmWQJg` z=>UPIVfkotp7xMqoHQ-F9Pb3V0InkaRMUVb7@kUC^t3e2(cG=ph}%+?UmMnSaXi0+7J zX^Hq;N5l{Xk-`x$L}@EhED@y&B4U|>Si%u&5wXM)@nj)Hyssekal~hc*k_4YRTvT9 zD+muq{E7&VCE`L6M3k5$^@vuS>>dr{yXqvIBE@M2(;lf+3=xqE!hwkP9O1A;3@(m{ z0Se+-L=5AIXRQ$0PLdOubIdkRAu%)7^5IYa>PtTjI=~FsfLKv3gQ)x*nx;wED@utBjTun z_?RQUM#RUKhaYI4;%n^4H@v|l3ZV)0WPnCKEo~(-}pnP?w;)^zDx@m{B4M9ST zLTH7A9#e6ywz5Rbt%-rHmDkJE!6qCK z0qnRDyornY;d737&l2%eT}1q#AiRk9jU&94h*v`qQF5Bp8+zb0_KFRn?ScswNRv%F zBc~n$q7;C08cwhdh;W)A*!wjaAYq_F=+6l+Afdk*feA%wLqyD15OX+!AYzUs;>|{g zcw0fd$q^qS;!R7$t;UGRR1oJl;tC?pSt6pFBBJ1QxjVG!cpoY|9mlptbC~wXG&?dH zD~tx5(VR0Hm@(MPHNp__l!ADIBa%4c2{Q!ilcEk}Ojj6FIAalKOtECdI+3weVQk`z zz0>j48kUG<5r{aWAWm|`Mc#~)mW;EJ$oNZP+~JI(Gq6|gSTd@)kWp)f+_S+muxGd# z(4}K>qD>iHyC{7rEqsh?7TGK(Ygyb%`6iI?V&w1U}T&SL;=Xmft+qGQ6Wn;AZsw$RORbyXO`4=e# zMFI$X3$qdl{xQBRX`bVG+}2yDg;pM0-B(9t+`I23X7POPt>E5wBB!xtOBAo?ev$L8 z?RoLa?vput0w52Gp`Um4%bb2GN37>DlX~dK(e;2BqP;Muc0K*B;eQhgzsZ@PnG{<)VY=P+ zrd2U=?QG6J{-q=z)JGqPEhg00q{NjeUG&dplBU-^U2Vt33bbdwkJUe&N#duUjUr2b z4k#{kT_Y9eK72msq;C5`M9>Z|=j-q$Sjq!$54@BUQ|W?`RTzOJt!2B%+`}&9G|+5! zg)AiQt|x@_xV)vktTAu)-~5p3?R(ZzoF?`h6A=`G2cDfSX?DJq zv?bg&K(s@eoiW(jXT>aR#MHc;bJjLYyi6UFQF2HiIejH3#5Pt;V$K;hi|qU{r2HX22ckdeGTa!Z0*B4gh4 zNL#>*(md0z%pz4vdPn%@mmJpzEl@@*cU;w#={foMt*=s=`mLfnvb1-QrZt4Z%ws}F zJ*Sj_PJrPK59>|X;?kPu)z{dppHlNL-8KKxFIbeu*;)TV@15gF?tzs}$o@Za`r8JH zPG>iVw_+~^))cM^V#y&FfG5m!SP$%{TJrqECeCu?NHd$@xmtUZ*`sMtnE1iO_}fl_J=MipU92I@4H; z?W=huxM38DbB(E@-6Dq*)-)h*zVccv?E|P1?)LXcnf~M3+4fVbctQ46?sC87-T&Q? z28`18$Vf6hbWeh3YJm1FE6qQ^UimAbG|d~Ix(h$MSNSYgjowxY9zY0XC1z?RjD*D54j z_PGfDV!`J-c|$D3H>xd)kkz>hs*;mMJlkzS0+a=SLa!ghUiXLORU_Qm{Bz`)#9Q`> z-0K-x3u@^tX4CiCSIg`6Xxb2qZjXdC?Dm*rV?)WbbHgoLzvKR* zr03n@`nuV^rBQV=@jQz?`1)*;Tg6jd+f34@uCj~Yy`N2}t18W8e*0?~d8c(_R`Qea`h!DEIEUBPK=>hes! z{x!zzY2N_L&tKn2{`yk(m!J@*&|jbsFjOiT&cEYc^Un0`0eUVBiKMg7)i&`}Y$FX@ za~%nH+$Y@As}>S!HaW%|pX_r@oITyO5%#UMh3SDvy zyF@>$jNViE_s0pjKiXn{6dD>oCV9dGbx3R--a0xRphr;No7`7VaH7X{rwd@;aBt{| z)w?n8`DS^SIlfUKi+e{%0|0hiD7n+f^P`^3%Nw&iK`hT^dG|T;EbllcUp0TgsV=Cw zc?tK@rk>ThZ6R%uF%4*pUOVr87yF#xP9x8M;@BjA$I=_;+Mhr}w@KdJEP96ui7+uX z;sRd3Dj(H%VNL+Z(rNbvcqfm z9G=D#MtD?V8b5bnPlB*23eq1})PTR}O+9ut^#Ih|x0UCDt)Y+=qd-=( zL%hstZa9}*Z|!O5Um#?ecdV_0S>Cwuuz@h+$f$yiQXjl!FcL~VA6fsOE5_|Wbh(Kk z(A{SjUH(KOnCPVUGCcFhV3_gltizq14T^T5yyj zrnV4NZ>LSMh_1Fk8dPlP?q8ify-99^oEo|zx*v;$nKZmPR~FqZbMqD5e2wtMSNHd< z*3~maxBVh|b~oL(b7#Z8-S6UM*0FToE&y_qP8X(=5@NC9ByQ7^VDfK^y)A4-=7Dz% z4X68REGPJ66HLN|&yg}(sT$rzbPO79`fflw;wO zp7yp-@iLpgLGwt%-X4d40a}?be)gGEW`1kQ*Y&Xn`A7?m{IKUV`Ng{xapPuvN@zZ(Ue`EXztLyyDK1B}CT3DX^dTsi-isr&W-shI6R?vkR2Pa#d{@2o`69!g;v-y(jaODY23kTeTo7XQSz16s2ApkEuUk*%5%omLIttm*-V9zV?%GcaZIn~J0 z!{ghTt`Yv?y;m0@u<3O%y(Kv`#B)SzMvI1#o_9CYG%Z>{#}!Fl(SK4sGqlH9sf_TM zA*KtAB6)=@78teW6HlwmZnjd?diHciiTOD9#D!ix-$KvCz4_dtO>)y)^zdPxb++-~ zgFKy;;;*v2-Tvhtew0_%p^R@4!eZr>Q)_7}sM~zIOzE^K7NWLT?C((W+z8JpxSz7( zhNNv5i?bn~F<+Ln#q%H45D%d?n{79cwbXPtB`%tNUTnLx-EbC7m$w`Gj`6%v48DHB z#w*=YHywHnco*KDZ?WC*+kD(^xJYY}w;Rryj6z|%;cMDz;~q`78)6=IyCJrgFvRk6 z7)j{{(T}ko+2AGXkrE1NKvH%ahNgMK1N1I0S?@MXH59M4rv@B5PV4#bNxCcg5E<=nCJJ%s}F)R(NcA(rNqvrvh4FX18(UTKqd zG^?DT7NIYxY9aJfZR#$upZrEJ#wYlJb4pEcq_%#G4O8D% zPcChXg~DEkw7hu}>OPp^3Dxux3o!09G`9Ex0l+l&wlWy6^TBARH#5FR*~oY6%GVNK zEFpxA`Id-1fkW%vRi1xrPTD+Upi2Yl%zw$(XZ?H~w|7ksJ&t?Hkf-jVm!xQ|E2R0{ zymz%{w5F#@ULGWtXI_3{fjs5A!dHsnKt_>A$@aZ?+{%jxq7RgtKIcBc*%S> zM~;vmSYpbO^pk7LyOZAV6x3~fz&%zPQ;D15U-`r9dG!D&lNT_<=>}$y-S)ra?#_Ph&J9iLp*LOR+tzw}M*Be83X4HqAJTmHP4~fr zo)As%%*z|2x`PN{z7AU?kLvo19+jRy;b-vu^?cMKSW9;3 zc%RKfz#X!v_xJK4_|}=^9Uq-D2hw#W1hwZZQs#hVi6{e%zv~CyW##KpEquw{lc@;YTXfZ(sQPg z#erp_ZG62=VfMS(ad%AL^_{db>_6=A8HetvVf14Tr$}0}*UsyAq2teZItJ*o;g&u; zt)@O2eq1`^3DTF(Bc;Cd^w#&kL{{&+9IF4mh%EWi(`?XPuy=kcWQTu_hW+^YsmozI zaDM832>Iuy{!UZJroILH>h!K%dNDYM?Z1|xf3agTW$9n+hn{luFSd_cp8mzwUKQwH z;0-czcJ=8+`GM_q#)HGOin9Vwk~Z0 z>r(m`2!-{5asRB?Z_%_kJF{cDPi$TU4~*}+;2CUtLa3fD^7w)Ap2B6QfJvLLD$@hw z`4=%gFg{GEg{?5F`|98a##6;C^v73sX^$sLvrQJS!-4S-GREt9$u>*83>!P`N%u>h z=K~-&9v$~9Mt=nnYUD@9{c5y0I&NaC9HR;I%_Mhf^kO$09j{c-wo_~|Gi2Bm&v4rw z@iH@{(N#}Redl8Lw5y)SHUDD1Q=gxU#n|sZI~S9MKYPCLFCbaY4~&cL6b_7kzZegU zUl!Tyz_@oY9vDA8v}<5Bn#u+uKQHb_gY)7|-3d25<8)hrCB6aAI=!5))A^zCe-`7Z z=|6=Ug;9uy#`pf}nWxz*i!`4fg2l_s50#e?{ddnc{{qwxLiPO2c=;vwub#}m4UhEK zt2w4JsddMbYilc3=xfL0;$_;70LX|#(XWKm5Po{R)qNVmPLC_z6CKYK1$TXf<7WOj z-2;HC%CQb~lqsEI_*g1(Me|vtk%@Z$E&-l)2FBOxRcOWy-rUg8vl0Eg|gqxKaZiAAi@Z06RXe6!10as9B-I|9T>n7KIS@c)&TiKmfIYJ*VPVjWp%j zS@_I7K=YQ+Y&S)!Z#exSUS`Ak<`QBL@V;PD;EQE3O>D)N3X{z!@MJ-6LlO|!zN~*K zZHc!w88NU(l&zXssmBX>>-iU;Ce`u{zYeNNxE^O`=ym5(-}%DOygMlfp`ja{)bjK} zyYlWDMZ8yaz5P=9BxN&pg5FoCt4SeIw1pG&exqJILEl$2*XQg6@iH5okP%PND<#+o z`Z00=z3);yLGPDea$7&Nz^`>Q4!{%i`ojCUt-o5{9a7pmMblsNc}(c0cr`!oCVGNi ze?zEGI79FA_^|xTAGlxnkrw5Zy=i}s7%D{q%X?SY&WWz}g)QF*mxUV!zcEb*uPU{e z7a@x)cvsnO2sq)W{2lQ!8yJugkIMU%kf!`gXt-D*9p4q)`zv|>)#x{a-Z2i#`@FqS zEo83gB33p1WiUN&TgG=-z6q_Q%;-B(gx(ba=AfWY1iJMvetn)i;b!7G<&d1DpZ zUM$a6vG#O%6Dcn8`h(x&q; zT!@3m3737oF#x;s29$7f&A*7-uOr}8tCr#42g^ktN}D!IAr1S09bIp_J?)hCrhgZ_ zAr@y{@UqecOVh1367p@k&-)K-?O|xG@>4Q3`l7$lSz@cH(ZZqi@6c%ZSL6n}(!MUH z{Y^RefRS)!-8X$c$LaG&y2X#kzo+Am$R1jW{3G&re5i`6eBsB*Z)u~AA#?vT>uf0| zEu=oi=25p>c#8b;KL7ccZZj?OjX`;S)`zsbvEkcsaZiiz-Y%whT_$h23H1HE)`6@W>1nQq zK}-FABd(7nidb|*UFsCE8}9QPu}MF~7U1^qj=-CQ@bgE$^CGsD-=QF;uIxnhX68ZP zkC+?s>AtmM_l3G=_VKRL^g|qA=<5Lyz$W)r#anB+w=8~M%hwX$41ZwTA6IRsM@IFZ zCEKrvO_yZtvcK&O`+MtadZFe1Kj7-ig|W|UzpmJRdD;I_*dEyIr~J&m{|;%>3|KtLwa6LOC@awdCQV-eo6}>qX&5# zk(8)}A@2VAR3=ew2je<$cwY0~`lp$VtlL^i75T!~_T`_wF{Q(h0eaLcaF?>F+nW7j9=LXv@m$#f7 zEzft$*<@bJJ5s{0h9{&K@tQrjdsY>W9?N zseY3Q^fOj}htGcFV8UDC?3d(Yr#O>B$&%sTi~0#kJw6l5GxgX5L*4&Avvc{QQjd9l z2H#&jZY%2Xn`pCew~ra^ElHOW>37s0%zYiVn0K6Q1?#RmWXjHUE!?HXdRu8)FfH4h zZP!&e8}Vpu!H+sZaqyv(*|My(*xQ@v077oZEt^1epx;Ej3#j-k?bYdkMd zd^gGBxJ^2Inzs#X7YkYNB^uj|rokUl(|XSUV-AUzS<|+yAU9`td)WL6NKJc#H*M2> zns)f3h4Hn`I|W+9PTuXHlSEmro0oC_Gt>K%X8T!eGuzH8KieB+yCq&`ru@8uY@Y3H z>R*7GQrqWcw^`TITlPb$+XsG=okfT2qX#l56w6bI)2fp=o2R^R+Oon*yoWrZ*zh>DTzTZ~IoeL~j#9(t^RKzj z`-yqjR&s}h-s`rZ;$?a>5{iCnRn&cGkvCGaO%lt(*yv}QDPEz&q5;hVO=b`31Ozt? z=J#{{-2p!W+sIz(b=g+PloBFk7ED4}0nKwpo#5prZh+CqeNUqqX%@LsWHiY=46=0}s6gwHaqU+Jx_+pdUZ z*-u~xi_Lt|mMdOnKY@MvvNu`3vXV4e<(=VQib-nbDsLZK;S6DTvB?ev7QX_|EBaL< zP4+7$P5e(nnH%b4r>Exi#<0sHzM!B1Z6)6fkSBX6qzRKfZnbx$rg!83V=3591h9an zX@(rogl0UdfaY&Mv+p0!jL49U9wr)X1T?lg;+ed-q?zxNe(Sxb_4#0`{{a%8guqdC z_8iI_1m1DKxxuUJ`YX(T=8J}6a*_I*>Gt{d4C?^CbY2l7o=KZMwZ0I*&&r_jOnb6+ z{?ej?0uRG3(e{wEMl*wj=VBgUCO+`uw8BFk$IMiE-%KZcKJebM%@^C1_j^q3 zIl^V1;K5%k!fQvzsnP`VGVT_Kyq^Ww)(Suts|x{JcVkWpdCWE3yb7aPPx?(C-!lmx zurci0&f8DxvCwcgr1>D6envUrI-iZXsLlTjM>=F`NBt-0cEv1oI ziduuB_E=lBMXRl%mLg+MY_*fLG$<8Xw5YXJ)E4h~3$eEL?RRE*@6DZiU$p&xf8YL5 zlX)|rIdjgLGiS~$m)EzO@H1k4YQpzn*@WlfLOr%ZJK~Jy2`m3XYb5nzhvnxTzLsZr zA+V8ce$oAI_eIcayZc7x*B2O<`Q_T%Iu+>qeF1tEsvWu3P+ftjtl-7;(-CGac!C`i zLro1}^+kC0G4Kzoi@!)?puY~_f6r~6a3~>jND@f&GG_iXm7WWJt$xpOkF%gsR|!FOb*Ek?Rcfo4O-I4iMcDt`wXNz3 zl2U)Bql3&5PCkF_shi=A#d2d=4?5N`6ce*)V{a_RZkMmMS67e}e!5O$|3%^F$dZTC z&+wHSyEjX=r3ig4^t}@N=G1pw`Ng{Cs5P%{SN9fTeIj%v9ycAJTDewQ?8=qZ7akBq zrWmIQ{KtyEh;&!pvm_T8(1${=$%1{XNVc?TIf`{#-n8^LU0YuaEr5@fqf7O1T;DPJ z(Xy3Xbn_Ow*tVR#m~C5rM4FMeEk`ZZIyu6&L2lLEgvO;7H0#h9d^5gfp7dxnYtbi(Pn zgif_y&L<60aKx1SP*)cg3+;&00M&LreCDdg!Z-P+E}45=Ud01??PQtM{ly~n(rlZd z?*5(f>pxe}4ypU!hyb+vD>U7QHPe**V7I|>FX0u@abd!ZSXUkSueLW<)#KNP5w0we z!w46}PTRu>uyAeaX&j}X$Iv%daf1Y|xepk^qukmC;{^p3U+Q|{+CZ-IMM+~<1(jV& zt%BZpl%y8+DpaMkM&bSvx(y;I-$kZ;E>^5M5|9IU|JeCYVwVN)`52!nhL%gEK`!{_ z9drgcJ1_o$pK-gPlU!9;qjl1$`d^%qZYoV7_93G=?BZU>`Hr_1aJxnMo~Z6@Sw)5b zdCV-Zx9b9oRS=p%#T@K7$@V$vgWaysaWQ(S?12wi`hV(y4^emd)+fm*ms4%uCEYGk zEt!KHN4Mt%8|R{vQip#PtI`hd(sVdy>Hn1zHiq<7?v0caoh?{*ds#r|I7&+Ck!Q5+)9zS zl?0?Z)LK%IHl!Om&yNJg8V7rzq03yG&OA=ZAcpWL*Q1s(swkR78}A_8y>`a@PD@pU zIB)Lp#>PN5+#_L{A@@{cV}u*}l8Q=v0@Vq0-2p@gqt>DhU{XRIpabgt{x-`B^^;o> zUWp?54}R7zwTze(^p6elBX;#Kt%Y%hV%RT|Ll>eUGe4WZ{pxx{TjM=fA;s*sjX4IlSuPK%*2`VZ5rxw4^ppQ_j}z2AX0Kxx@)X;=<+3L*+tF#&^Uk={yT%1* zBXrG`uUL-@Z5;!6gnM^0K1bhEcImGoo60rLbT^JeN0+-^KfdLt;li-3SuUTLnY~$iqX`Jfua(tq6ra7bUH(GV#9BB6G1f$En#v!C&RVn`6{I=j$7%%)vPSb=>8 z82jl|pcky#$raoH8Q_pS~D z1Oxq#hgomcFr%J!>#w5}2w@${citSyAT+wLE%V_wW?RUuh1>>1jlV0(H>|$hv}_aW zQ`53^g=|{pulT<*Ekjj(cCii>j;>$C`=hTl6#`o4#V$LSp*Rn%^2blpjGrkFNdGl2 zJv#lGQCxiY84@)y^c{pe9h2I<=x&?q{me~Nv|f8v*m#u@7rF*MHecS%qU#tUvJzhPcUwA z<&)f+U|bqNgQ48;ITaqRtdbWHsPK;R7ZB(lnimi}1_JrBD&V}8cca}#&*QHke1h?i zDaMK(FTmfLm4xG0-%UonGwBNmT}TCZ`v5M8d;#CGBmXC*z8Kt_C0h^jIXa)PY z&k4$H_NCEW#Bf9?g71;12HyF~xX5r?%%;ba8qPNkK}Rz2#`(sT>RQA$hd7D%VqT@# zHr~I$*bCjy#1RXPHSvk(5W1L?N!`)X&Uz(Ty}Oz0+~+NU0+Dv|O*LF2!&nU!&%%8& zjPVAqEGOG#&{7PvXx2XfO~b~TC_D?V#m3r(@`ZqUGtkg~0=j#Vu{o-pg=s3@L?x`7*G#Ujs(2*b9>55>QEwE}Q75^@e7#mlB4H?ZQh5?G%s$ z`Lf>K+-hFIL~2xr{TK-rnGH%u47s8^7;!Z_P7N6e-RKPbrW zor^ya)e}_6pS3xScYCT(R92zfm08B2iXlfR!p;HITLtRBOU$P2LqXQQs)p2l0Be8C zYucwT8#oo8Q!R2z@MVPSi0TrK;mjEx0tQDsk4nFbXA?U@W)wl(6&bZ=u?Q8nX{~XY z;gOgv)#PVJRW+$>E37mAfjn1|W8dGqx~9 zh&iNe2~q~SMbE6Z$8lfX_s3n=8SCSd8;m7&0BXtr2pXHQ(O6$y_S8n>mxdO4W$(dh zQ$e39GY%D7$*hOFP({`!JY};n5A~s4f6FjHC`nJGqkg>C{ls5ruRj!XD2JeI?pEV) zgSPApy|Sma8ROJt=|GCjHok3GrdL7gWfj)T-mI7Y`n}9e&oMr5GyI^z+s!++Tl|G~ z?4+1O#YxK8#aRK*`_@JJlh=5U5vS{BC1gbp_H4eKn!7T)u?J zgSI$xyRj`k_dRH{mItNx80Q)q$N+=~k^uReG~c~OO(kp3m0LB4>F}@mgK>$WhuAI| z{*g|D#UHW}Yf`!LM;!*Qat5D;w=kUb`AalnefAc{s61l^LLaSizJ=kel%Qj+Tpaw? zv6IeN0Q;6Ankx_~yaeHFuNiAkjRnf933IAT$W|HNpeJ8bx%1A3j}4n8p0ekt{5J^M zPP2mB95OC8>=u3#9%(orW|N`i1_jw84XPTFYu17FNo)}J`PtY5U7##)iBo1abQc8O zSzBIzW)cydU4RsI1$qG69ML;^N96Nv8zRx8Rq7Dl-=tIAN0p;l_uw}`VTUN9b6*@W zZc>ozlU4FM``#*7>+C}N;0)mj^Kqdy+71+Z{rY8gJ-jkiwal&! zy>WC|SZ0580`?!`>&4ZnS1S(3oi@IMpPn#Q)8u&J*(Z$#)NwV9^hG+~q;abFa3?z~@3uZyPkMD4tliUc6^G{D&v} zVT_LvI5M$bLPE_6J%+wFV$A4C;r&JoAKt&;nEvm@veL>0W7XVbqtOSxIZVt5U&gb= zbavTNo`PGL$rSPWYTRewA0HWBO68M$ojSXa6@5y05Rc<71o%|a{P>8EKVh2?q}??f zpE@_Wy0(kD(zf}US}Jfgy@jkC*?^hCgh_=s~&{ha;c z{JFN;6YsCn#jnUvF1Y~Q+iHAQ+apP6k+RTYV`KH?73Bs$V364;T*(GOi5hEOBe%_r z`q(u@Zq@PKzXE_m(ZUjG2Z> zGW!JYVJjm*4Fvr9m$sF>L*(!tT+E}w-6Xt5_8k^5F*y%l662~o!paX{C8F##bbi#; z_MNN)Th`dmNJt+b-MB{Hq*_3k9n2>imsX8@;2ghq-`KExwQ8}|+BT~`npmts!^7iZ z<3}$TjA8iqT)`xj`BoATA=u~)Se0)=PhVC9{tK# z*H=46@VqC+Xfh@u{sEi&$fODlpVqQ@VS7_~72g(4F)dJK;KCR=T5e6~|8K0d5uB0r zk!gluY9Zy%I?5A93YL`viTwI6>$3Cz&a$ptD_hnTKs;bLEi3(C{iEDicT;)|OS74+v?*E8Y+dkt{`Axs_H zK``p?y{%aLf3SFX`R~Nw1>YuDf3UdN*E(YGk=&B5@8RmDOaXl16_1ljnbw!DQzJIM zW{s-hwGv`$)QpF8o!A<2b*qNgjI9-0qfTsmjW`_aZR+jM%25wmaK^AwdSw9m{{ftH zD=Pp+eNFWzL1)#G3eSW@h83w+zhH0Yo7da|$Sy&$32^11={ zxsz2<`9EoRi)7GE z>=2XyR!}OBrR)DrYcZ}{`&4*`s>RnXhkKI0ohx`=rm!>>27Kt(@`3bXq-@B43Kj^5 zPSl3k9@B!^o^JVv{LA+Q#%c!qD7^viFAaiO2{c@Q@0Bz)C@TCBhYfe;8_;Yvx`bzt z9KKXi6zAMbKDzK#H~3BkDs5_q=R92*OH$34R%SA-)E%RhB^34gc2+coHFp#qb`jRx zJRN+==#929k^1W?dc1;XWL}GOgc$@`PS?nC)c=7j6aS?wuV`d>QI;iNofHW+T}F?Y zkc3yKoI+~I+56yY7t53T8jf5PIpT74Vvo7_=6)4w+MpPs)~Wr}=9t7ooa_ChcAS#% zbu1uKSE`UClx@k&)`GIIs4nO1kNuY#P#b2%N4Ym5OjQ+>w2s<6T^6+FU^UhWYh0j0 z9glF(7qTulJj%3EF$|Lk)b!|G4m^nVh=&S3mTHOJYR@Z7)^yAM%LLvnyfoT$8f5^H z=#qHq+sTMd9BYEuE1-n*D%4rbPGg8jR^dzcq?YXQyStT4nTDNWJ+l0Wa$20*kD_nYgehoGw){dpIx>s$+581?*wJ|Ygg}% z@qwSZhkM~?l}uh$5)vwOZ^-_uIB-mTvYfa7*Ao)8V{6n(3J<1yT10^Rh8e zRz0Nczf^$QWJt3`d6V@n7v)JqITq{=AA&bEvwlmcsFY^ubocm*Wt=K%r_g)7C!V)5 z!A}{6!+oaG z+O#B(REfPBgEW@&rN?^QbkCn_y`=J@I7afKBbhh^+iU-2_<9_F`FvBQhm)~_U9mR> zjQyt}!KA?syW(F<(975GU*IAxsAMYF;@?zdULX&7Efr~%Y?=Kb&;O|{`{-ZVvK{MX zTlNi53By3&mK|U3+Lonrkse*|!j}EKUUp=^A+ilsJuB^U!l&WLaj~X`zKL>FnqtCxQ?&J?H3 z@1V`9gEQkzB@D$k2r5j}LKqC6ajM)mu&`F@#<`UZ0fkhU?yNwj=Q%Z{aD77dL~PcYTj6VUGorZ%q^P*b^QLYwv%Q&nx!sPM5`8UamB zG}XgViKY~Z>yZC}HmeS99B(R#+txOfkbdl6+tkv~MW#v+&|J==j$AaqLpx~A5zXZIADPNB_3oK97nl-;&^8aC1K zP_MqJvcx{fcdhsHs zu74CDIbB29pMP$dY$rVolFhX<;gKEVIbNc=T)l%j0ep? zRF{zSH|Ym55aGPr^%afKFB{2%lihoW)eEis$nAm}k^(5TCN)Cm1%MbmfWtZfY-&B) zwQX_Sq>E{^!6vc;guuCaPt2xAU~L<5|E{L65@H3aRPPzwHVK+f^$7}-6OjT3kLu9E z=jQy23!0#SO-^p;cIH?xgEyxINd$2UQ>g=TeyaKRP8 zzm)tnjS0r|qaB?$5ue0qgF6yly0F11@Efzi^m{zZdYguz5xlMKQxn{E6E(rY z8y_jSy*C^Ib76ti>Sm{fn><|$TxgA?0=g2(J=@1rL@_K8RfXzR#wJ{=pXq=hL;Qsd zKVg2pry~SRkGC&>&$JQcZW4~S?-6lm3%fSqTm9hx@hry;myNXk~a`E{xi3#;Zq~PPjt< zNUuWpXj2GnW$Fi>ez?llY4yi^sf$b(@(&tr5y<6l&xLrp}7tH=zi-|8R0ME@A~8P z*fC+ccHV(!F8XPH_RQQ){F=!fGm zrYx~OokC}AkykO(wiLRG5n1dc22w6pF@@GhdWSufyX7m>b;A)+UFZam^>N2o!)Y;_ zT1+U&ET*Ogy$EBHE0iGRfI0MTR~Yu5ZwklB3n6Hus!uG0pc>u&m&BSXi?uSQpRMrP zs`ihHZFTZfj^??;Z%*Ojt6#4wlDid~A`pt=D0VL?LPQ}VR!ZRg!;Rv{E8MrzgC;0W z^9)^~qH;P&!j?>-HIjy@y8im}lNWe^<5{M_B6$4v^b)zJvrOSd z(7>%Ux~aR{JemvjJ%;-zcidXj55>@jl#Aj^0M6k5Jh{r|t)_%xX!=&yyK32vDlSg{ z^w}!!2esYGhMoA#mGI<<4xi-<1VZ3Ir}SWFhmMmWS3393PSXp;u!HD}eQi(1934S> z#aue%pd1@=nhNY2(I?~@XvbDOd5@`$x&_IhIHNPhi2ECxJ8Z9Mpu6F|2KDwVE= zWy5Xp7wY>J*(UUa&|HF)v5$K33ZSYkwKMbzpuY@&pfP#{P*s687Nb{|UIA2m_b|im|V65DPz}=PB`LMQ(HW17Al65cULW?29SDnj`u2STj9MT z?xQfL*qNaopg;k075?!MzKr`E&-BBU&X_(5(~tcDYv}$yY zpZam*vt>VSWOku`T%jFtPW6ID7Fr_-p4cn5-VaCQoAL~~q7cYdm@opK|1Yr`sUPu# zcS~{F9|xn*ZxX9diL8>&vL08lIyc^A+M=La60dKF0F>8fHM~Ba?aHGnlxa>j|6>g+ zsp|IYJ*t2l*`xBy5%kM>)iXE8YWf+WxE$BMlOKPnuo^>nl>6eQDb5Ww&7pgby6#r6 zTxIPY(^iDq=eYKrDmbdR@SQ5>$i9Gf&^Lo?Q zFd4YvaG4_=M zuu-qV_9rmc%PmA;r}^EZS1a?Wsg6#qThB}e?ETDC)o@&|7Jg=`q+hF!;i_JR^yd(I zQV}N^;u>7|Y9ai4LtIBSOvtxIl%hEPCs+#Gm(oSPaczPX_|0j8b05AmMUu~X()xB2 z93s}IW})~uvI&N_*Nf@vr~*K1T!`Vj`Oht`CbXr0T7)?9X}3`IO4oI9oY^RQ_}$jnd#8hsQW3@II3HtX`)hA z-G(&Uo^f`mJLni~m7Ndmt4m1wnxwenQ$^Rs;zyrdA7r>A(&F?o3xsUv$n(TOM-B($ zg3qr%HM|f?(5JNouc5d*yH2AaL_}$=Y^ng&^PrHug)=9o{MfYLwJfjhq7^OUkeZLbh`tL5eO(|EAo?{qD~7K-do4F0eydD?H@AQ^V>hA@S8B;L;t$IT0spsfPKK%6#?jgudrPn@FCk>4fsOo z*B$VM)<`PmA=)`I;7gCX;qgYLsS748h*^mE%||@%&5tX3xV`jvWAH6JuhF=0VWu2_ zbFOPWgnl9`1T(PU(e=mf_(sohC306kx^8pFGu_MvGzB=|$}E)hU>1EMLwuAQRK$GE z3(ci$)i(?E;KBD7K3Uy#G8bbp-x*-}3|ajSV~ zSmBfDGB)}RCo(6#CXQ>u_wr}OV$(MBID?5OrFQV=3)xP!w-1>i*k}G%e%PFC&Nti_ zO0tJ||IRVLYj`SV)5DF+zcIIPgVO9dQdKo+WDhIG#Hl92F|vg?qPm1UvPU!Cd2Kh( zdJRX0u#!i%o4*dwf3KK7Cry3Pqx?B(`iJH@X;kGqtn4&5L{B#0COgfw(93Q3gPrCm zba@9}zSA6y?thC9?KD>{dKzrxti%Dhafmsw*x<9kuvx*Q@#L*$FglUn;m*6v^`=z$ zj=U@V1kTrfG595HFnlriGL-vb@O|)#z8FjpzMwU~fEti?zCGOt{v1rh`He}69{+7Z zQgpkZDM?XvYDQAjp=(Z3bb@)4q^MdJYeAC0W%4w2Z+s`~>z@o=NS0k=rtUQ-p-$hC z0}?5y|99kYVOv8dQo`;4LDV7+hhOEFK@ilKEmpAdXZW9%f7QU{D2?Tm8dbEEMn!U2t^3E#F*xl}q$h5)@|Fkk;n~*?Lcv~Dec-pg77rB4 zvxi-V>=VN*QK$;f$-4$QuXsgx?9Vk`8+2r4|0|qHwU6Dp5t>Ja&8|s2cs=KC;JHG4Exy}fOgw+NSP-M zf_=E{IL!0S`yv0zFXkZh8_%hI%bt_Zb8ZtB^*mxOjc)UtdxQq-4yzw}#&gaPF|;{q z_C>{ZGBHfL1UdVTn#-UvJg2}6ITxE21fudhC-5TVP~_@7=TJW6tQa00!s%?l^S?a@ z`CETA`=PgX;{3b7&)MVs47^ZhUT8dF7G+I8p40096sxpx0^t}o>!%y7| zMq_x+l~a&IWiplLY&>tSjb`&d+LGb7{NBxIw3O#mxd}O0mw>qSJSXP{Cw2-?g;o|E(kcwckWWdh%yUu>Lr$@)VBc!7 zS3J87F=)4q<|ZhU=WMV*&hs4wP0;4u*e4$t^ytg+F!yeRTQh@q(L#Oj_g5#j=UIn# zD$lu3EWt4gO!>EX&UIpAhFZ-H&{Lk{PRe-M%s!~- z_l(tF65BAv24(zs&N(u$LT|v@A%f?)6SciFJ_ zN&QAr^GGV6q?VJ^ZIb$iq@Iz~M3O4D6H+Tkstif(fYg-1IrkyH*z<&xA7B=s$2 z+)U$?)NGQwUDGvkkoLJx=2!cNXkZ114!y2Nxe@}Zo47%1xZcuCdoA<8A4J^NvbkQO(Ln< zB(;mA-Xy8Qj;$Mp9pq)M%2*B&j7u z-hlpZCdsWNa~DYsC8>N$M6!?IWqDB$Y!_MZbsC0+RA0sUaj4 zK~nokDwd=ckyL$>`ii7llT?rCB>4_W_9v;nBsGnsMv&BMlA1_Ti%IGWlKOHQah6^?xmfHBz1M@(1?0ek4v85#*zV&7l`sI6aceS?R zFsVun?N8s6V|gL?ir6JWd0Ui`yMN0Y)ujTmOt3i6z%^W&#Pc*gde=TSqJ?L z5dAE*@LNw{Uh><+z>mBFaGyOgc*#B3r?`dI8Ts4{uTVaPl~>{(oL>}BYwp4Ka)2x0u@m@DHuaf&~lzr^N);`S``v9uG&tOkXRSDT{B(BN}u7^ncm(WoB>OO?Qy;>xRT zdZV5)PB&egcG&XL9Ea~uG}XXqTitxnmm=J;X;uT?_sX1tX2@`#yMPN;EcMY|PTOt~ zEUyKCy;3aQQLYTO-38b{H%o1FgM(Q_u+W15Hn@Zmio=sp44zfQ;)6^wY`zoL=N#}I zghHk2wTDTyMu}TgLiq(Z5^Xr}AdjkGd#l5mT zw+PNG4it^$n4?6@@Ub_&@Y98E;dn>Y0$(&jh8qfniOvjy?l^TO8F&18P$1szWig;t z95z#g-O~zShZ`)3Xqk+-SQoJ!&M9H3f=+O-V4{U@6@)95aQ=6u zc&6vLkLa_fe=NJeUh{kC@e{9YL+z_Pl|LeiTC~K zRtoPvb)%G0+ksz^)F2j_j#%&CLB)oLSsI~u897#q3=->w=Ng9;$Fsh>SxR}&0a^j| z5mD_#hmyjccv$XDAJj|6@2_cF5>hpf)Yj)Z)ai>&#$83mQ`3uKK#=l980@$5c_1#3FZmW*dc zTf&r=0yCa*WhV@$^cT7*r*X8P}LRCMt^a=tp$1V00e0lOHt zt!5dEKIIS}ixA=UExtIVhi3qu+pJhIM%fe@aiSJ+>Rh1g%3sBb;#Jix0q7f!y-mb^ zC(cq6ZI;0{Xu-fyXonZZ!_;?$<6IPRCX^{K;K?;CZ=v%t*jX1~KP)chi7(f*#393e zCXeF#1$n$OS`4_m+nrMQPLn9#ysa3X+qS-=Dp(3&qZj;_0&C;JaFn)k;QOoTcG`k4EsXrI2ZgN6?n!C&@cYr@ZXTc3z+fd^j~rOV)xwBRe<3zG4t9boI? zTaJ@0;(+Es(6*sB5I(VFQ7X4BGU`SxDolYNpsO74k_ebr)LI&+H1sZu=X%~Lj_-E# zFN)KWL2egh*gte&$&lI5*%F3I{KVwu`I8_wy2ME90`p+epCsWGfpU`Y`gFBSLG?IJ zZ4rmMfk7=Spw;ifQXxSGi`RltO*q#L=9qyT@jU@C!(=Iq=e}zxgJ+-e_QSJZf~oE! zqxRCGf}RdW3pn6B0g$ZFBJrO+E&gb>j5AXgrwcCH8;ICd)f~#a(;qZ&*=|1W_)2e} z?Ryz>rxTO9V_+Dm`&H%ubH~8q(!U?>XC`~uBNj(c9u_3x-c@~~*~XgTAT!=^zyP*X zEq+io-W~@XHWwlnDX5CGjxY9l4-_>Vf~Cf)J}asCd_4v04>=WZopul_JQwG#nm z^|!>LwiMI1x4b>XCmhcn1U7M=h%)GX zOI0*mgECW#lJ5`ed-v%+K@4TPh;n-n_?9^ul&ww_DkSI>6$)@gMcc%gK7rW#L4gM{ zim3O7z((g)4eBK)Zz(FshoZV2WTKw&Wr%E zg1sR`U>Sfyyz#uTmeQp^E2Xg0U2XZ7f+rqgBLjdbyL!OCTs5hJY#eQ=psbatix~s@ zu}VW-W+Bvd(V?yzr>?t(x^isJ*u$vMdOVh zfl*J?RH%8FDNx*DhlZa@fM&OZ`1<0lQ!O6w-l?ItzQc-oeV=^l~6x$ilq|D)YM<5TR#zpr9=A%h5BEmL;D9b_4n!4 zuZ3g2^$lT6unHh0KDJaw*EJy5T!8p}0zoaWpPAWC?r8PJ^FD!I6#H40o%_!kQBXa{ z)1Y{)2vF`*OLbI50}!JHxc8|g3AGpNF8a(8irQ)Fw$;|9_H)7KFkOrh0ZL5=(>YQD zFx&}1#{p;}9S7dd(>EU%AlISAnx84*vDX zfaT*3P1SF-RVnGiFqnovh59!z_?hQ4^?!HPr)mjWWmil3H<(-c_dRZ|V-`49%J87j z$m<~Ayoa`E=4%BXk>y+Vh+0ec{!luAo9jl7+A$a{10zshQ@hR)rX978s0WGLa*LnR zN2ot?IjnSgY3g@BBFwpD7h0Hedso!XxqU0*)DvE1MO`Tn);J67!wL;yOA8@vjt*f9IAIGlgat9ec5=c1*iIOgAMl_4?SF(h zKns$DEj!0CG36m6nfg;+DX{-WcX|HO(0vzjxEn;*BXRk#I{$TzB@hK3rOPFy49`Tgu_^3#GmA@^zLV zrGXRI%ej$Rm*m#L;om^aClRMSH&dsbE=CWn2ceAMO$?Qrpj$L^Hdq?qGf#*K1abvf zxGtdsOPP^c$?A?TZG_oq8OL5MV_zKt;s33hEG?A`{*xMgz7riK0%OSj959HA&;bAP znSust_gyU=fU~y10^oPv+-bSF<@+raGOm>-CzLIo$_Zza0{@RW`44OAj(Eg2m`7f5 z#OE?%T(;$H<%ttW;LJmkTPLIEIxh#eDO+d+XLgPy6zuucqLyZ;(lNH8rs}cv80-cG ze{TuFDR26D;tAitg0tc=X>A<|HDGP6{N+G~_0(%!{YX-{M+B?A} z?_m(TL@=1_A$p~?PO}_-M~~E12l_(cBVE&Mj7y`7SPViqImco zOEhe`-z#Nl1|LY+U(!+o$9Y0bflA8G)K-c&`6*fGD7-vX(gL@P=X?1epp>fZ7ss^h zB%$n~ANU#g43NxPdRuNO^-mZjbdWDE>0b=L{ZoOb@)m7V(A$>3I_w4=4#qr7h%%lb zj*}5VNX?be6ha_7jbw1LhyAK%Ftu#=4_E>f_!17`$7&hVZrIA+S4}2;Jx@2FY!P zUO2f$_qDqG0?~{_-bPKijqv(FcIXjHJta;Tw3-8yvIaUJv*y%62+Q3%3R^!Tcq2nK zjgZ}c2+cu|c0`%Lg-L$JaQ8!C^#(bc6qq#NxI=rC-z=T*&%Xkb7IW+j85{OKE8?qT zf#u#K%6JJ(n(qV`^lC22ZHB%)E~->AJXQoF{19*BN4X8UEgtl{C5SZSi+f~)Ale;) z4&>>!vDeWC&gV;ch6XS!NfB?0qF}|d#K{t zC^$5bQwcg+@q}Q|fmd&#$Pmhe4!Pi*e@H@C>KrmPT zcl~Zep%o{n$0`VKDORE_b&AB0fD=`_>bU@}^EhvItT?9|@76ZH?0A`ehy+SV&ObAK!ZWqOO zFTvDhk-2H&+{|}!vyTl%NU19jLM(TZ4fOz=Q^(Q@Qz}nhv2;}YaQnI{v+YAlaQi1f z**&`u)QUsBDL{EopdAjtA=fPaN>drLQ6ZS%2}GhX9CM_A2^*yCl;JYekiwx1cuU~l zUihsUw+v|INj&n2rI`Rp_eCimvlse%;jU&dl}qIo7P)L88Gm4b(R!Q{dsGLx8cwrX z0u)$9tGRkmA2i}S*l1d4gH_lw4*FOCeL3D5g0GJDj-y)@$^#knzCI{Dz_I_PrK%Ex z=QV&?sshe$Vi$TUy2({3`(1xue4+rxb$Rl84V)Ki2@w=D46kes<5<>#+qWzY6nM9j z0Cy08;mjJ*`2Y;K#qdeDfO2?5U)W`tvfJvZz^?y*1pDD9FK#BHT<7qj zW1{Kg!12Z4 zY6j!H+X3J~Yz!!lTRjEy()_e!teZd$Vyqhi1w2ATE#ZJ?FaeL_u%q>0!|?27<%{AT z&tbbQO@gOc7DNUV258nbP=dZTWjIV`%W6F+HXHL z&^uOfW#)nkEWarHxiUbwnq z^F_;Lv?Wl3Xdyo1&_b%>CA_S)6fmKLo?kiY6)$TlIwB(+b|O&m0ezHF!#LxhyY%mN zoN*T(lda36;qmzDV%Qr>%yVuQ;X8-TK`81sHYBGU;9E{g1ishX5-$zP(BIUjLnt#Y zo(>4-BeUgiY=&-5D)S{4K>Fg6%dM4hoR760Tu+Cel7)fZ@HYo<*+BQT)XqXHX zTH2bX45k=@nIA|p_4dLDo7-6wVm|tf7a!BYtNFlZxd1VCy&(`n#m*K~RL~rocr?+szQr&GrIT zI}r<{(h+-ySwm1;8L+hrz?tQ(LD;)`IRie~$yQ34EI>~Xp?gIFbZUe(6n!W|k97^5 z2q*lV{a!Btjznu^tW_?sE=F17lyd^s?;=)}%0OIrOK@jXOjaLsT1GvgMWx=-n04jC zaLTV%19Csh<}!3v5Y3Hf>mc+>279grqoRT6Tr8@=ajJ_rK;95k^{gb~N>D@+F%6Wg zsRB5?IZh7|XGB%&Q1q^h)7gnbjF8e0UmXnoR6VMZ#Bi`BpMzEOE*=zxPktTb zf#V*-4dswOh`8J!+>5uQTbi&iuM?1x8CV+zc8UO)!~tO(a#FWmvX)0}D3)MrTm3;r zFAzxa2G_OLS0)K~A91|gVBjAmaBe+o1@wW8H%1@tKz%S48wI>|9M8_m>Nrk;%P(tW zyp{TRhDO#zO4lY}u8W*w;|<0%)evg`?IQ5T+3rBrOBwK) zJ|K`4gs-d&Ho#dYTPYOJp<_8T5Z8|VJhxg*F?Ld`$~kE;#+=iY$lq^T<4`XS*qsCJ zjs&l9Sh^LS|0g<=QWJE>yGIm1yw_ERen$gMZBMOM)+%Twhn~)%>HJJllUqToKczKT zvrlEfk2Qc)dxpOSc4H?8+@Vh^=(jtbGdH3*E_Dms+;3#)Z5n85lD4!3=<6K%8i$_T z&pv8WV}s$S^|wIl6&diN15o+GQioZhA2Fnxp}e!yyHwV&KUbb*&gHdJ%qgM<>1l&t z`)VWZJTpsoPZvbtu8S;nh4EAwVwB`gncW_NYu+B;O$iR;{!oYW%pXd|^D>MI1~(y^K`f|mHrfXaZ?#ZyaiC7`Tas!uZF%#592JGYlux~05H-iCwE&@{GQu_dL(`2lvTC6@@Vb>|A zFZepS3~RfHHL0KVeUu}^Y}LZhs7-|-A>q`yQA`XgU&Q*pzjXk*EMxttgH;~J(g&je zYwla%DEYviKU}6%N@Abw5C@{71-er3+)*Lme!Xw?QM|}cnh;PilFQcyvN-1Y-t@pN zCkOlEAF9Bs8;y7y^@TR-4Ym$a>gXcZQX|uq7z|gk@`96hbi9#+`3S58&5LGv)crZy zh%IH|OhY2R`U|{X@Wr3R&J0#Qqo~Ax5{B<5IDe}>c1w>zY@8Vq!Hvv%TCoex9d3<< zV{xRnQtefwb|}61T9Mo)7nbCAc54p{yxOhck$$%K(Hn3b7Eb8-PKQGD{k66w*a96c z|L|6*WksuiapeANCj2X&`RP6{B$88UoguP4vq*Exvfw7;8-ub%b1L6%|u(liaF7B=d5T8t>rJp$ zP<~+$aMVT(5q1!!@VOO2E8@G0tiG`QK)?i5fZIz%7FC$Lzzdd+?CO9>7(yo3~T0PQ>>N1SD$wfjD7eeHjU6;+nulODCCl4 z?8{xk?FRyo{q%mdDciYlY>qdK(Spu_3+#Th)L7X!>2Op#|~6#L11{& zIcPrBeaGq?ff1njW1RWavK$=1ykR=o(5Ix%0w8%_p}`>gsq{1O4Hxwr3nwqD{b8!D zwuKP9dCWWVfOiB?;I4cX*xBBeVQr1>%jDm=>@X*k8-HS0wUocYe1I@KFCTmWiourn z6T+&{H96dcgP$}$Kv|N@>|%bc;608qO}=ItqE{8Lk|t+b{#ZI z<_=RBT!5bv?185|fhWl(0yy>49ni4QdXKp1Iz)ntt^*4$^yg>;ClZ`<2U4+WB(^aj zED+!QJFFZYHmhDy+;|3TtAmHGgAN|L4mvn&6VTZ!+&6b%Q>JEZ3X7x>Y~qdUAc8lp zgGkxnz8aY4hWFdRD!zf^3+%$O8_}?gHP!~i71x0USKJls-VJa8>h7*E9y5$%4O9~v zfN*(vd~#P-4`RVxr>LJhQ8A@E{Xkd(+a-ms1n7`FRTr1q%7>e*(crpM zTzE{_!SJ4?VTAqJ>rMrHa!QylZv0Usvlj|{zC@=5_#m7PQ{Ws)GA_T>8VL?PZ6RN1 zVNMZf;nr4bl5$xW@=skz>LRqx1{c8xM?3~OkoYwC_WPgNRYgU4fHQUgUOp7kh_e{p z{~VOfIk;(PaMU-jPt!{OVlwdxXgB_ zz~Irpf4xkD2pJv@uf7(2$WQr#G~No|3FLcI;NAnFbp$u;lYEDzqtU{|T!&dhf>+)B%zI`;3~sVFLWr3v&z-n}zxRYu{4ig1 z_1fVzdjY=sH9U2?wHa1Ct<(#RW`iYdLPU9-{ev|a&g#HVqW4&lWN`0MfTU~O3;Q6j z*5ewU*F**BFibdZTtqp1r}u5aFM}69q!v2rw?Kz@xdRZh`hxT1Gg6R~?c~Yqu%Ob! zb%B>ZB;a&?U}~0*|4gobt^;34{E107I_<)T9m*(Wvp}r_+p^%O*}j{$d8#hPx6yyC>JHU zTJceztN2my;Tm$}dIB=+diQ`AKJ@Ss^zm|TLhzvOui#`2=6C}IJZgUG4}+H`PJRpu zG2(m$FC4cGO#XYiZS>J^gBqbeC#)3_=4~tx+5np0#Hk-g2$4~E`9rS@v-RPr>7RWH z+~l7){C)x6?k0vYopw0j$`872e6MbUdW|sNsd)oa!q%beZ&-)kQ>=|~Yj@#_8+oM^ zP68s~osOjf-$W$L`9^30#uh{)&E?BvoG%~9qNv++o7t@23^nMNFTw`Gi0|a;$a=?)ZG;#~yn9>7H)qvW$QWa%z(D?$WlNU~FIae3?OARt5_o599+m9SM zPe6v~4TN5zA_H)0HCq`4-T=~J@NNw#Sj*AqF2{pUZ8)Un20~0!W5N3H(T|b1YK(1S6iVW-Cxlbgpv2*3f(pXFgr! z?u}!sTzWPw@2J^Nd7sb#?r3~LJ-7f(T99I?eX&vl&TZL)X6)6F+<7Q%N<7Ap3SoSfQkeGBLRZLOxj z=T``e;CqFHMFbueBrS1j-zd?^f=@x~Fbv*GbTDka*<|@<@4mE_ zL49Sw-daFvrT<|5ZlM1$Woqq#K6<)c}UHl4Ri6t`7EZ*lmR0z6pBmUwopAa2i_>moPN zN2X?{v6rm^8pn}G3&=2E!@-APx8b-xY=tXny2!)yk*QZUq=XG_J5%Il0xnS8OIfaq zwnQI|`W8z|*<#R1PAA+@aWEJHHNBN1x_F1xc+@^lH8VRnnT}YeeeBEgdpq-~eH>|I z_7QHAC*n&@3j$D(jYR=ZUbja918s5?u#C;QKT?6bKrHMxMJFK5gAkP=>fvV_6jKF$ z_9j9p4y$uQe^h~YtoX0X0Na$&H(8tn_W^i*Um2)ETn zi5#w`07pBUmj}GdM&ayaENrUlp;vQ_zBJkv;tT+ye!QJjp`ElCTNj-2xPl)G{`J&t zqML3L^t8g6J{2K&2*E!zm!p3vp!-*}eF*V8J+eR7#iS|#WY1WiUiXf_#aCe+u$y!o*Q$TGhq5{n$P$L<&z7~~EUB}{J>KZ9v4HvQC z_*-R6b?k1utt=WMqrUG%rRETZDm5YFok~o-q2)DgRbXe#$%l1fD{wj!tU#-1nCVAA zRA5g6oGe@;H?@*CB|uaAakgj4CXTaS#3>O5=jNK!jA%vu7h#p&whz&1 z8RvuxoX=8iwcxAIIqSffA)K>bWy}bL89SmIIKvs}l??pc1@Ps*wnQ+56u7z!oZZhh z0bYxM=0p<*w~f~eCXQNlu$(kxQI%Q*r>hS3ndX;p=2KVw)k)#T7WtwR91sB-xV@iz zhTqtNqd=rBf+s{uKe(e~^iK}7`74>MBg=%20G2OyUaf9&q*5T>`o7H<&IFNu39uP= z9M+$n1Xw%B77AyAC~FSMh;U#3O>z-g&6+%t!L9$^I}YnlHTB2Fl>_jRU6TxO9Ef86 zC1cX(A|?*CHH1Sz5-{9Q7J(_xfnLg6c&vo;h#kiQ_R#z>&V0)AL4P@pU)2&noYnL$ zTO`eWYCnM02>02n;d=eMI$Up*R@wgjt$uKFi3CYgN##};(BM@A{(=PDkT~Y&gKunt z4ga2a-nS~gcf0H0JB?38kFtfMFFD!_0S#`u1!s)5RaQQy5W=iGjS|dGU`>VYh)a(q z<7^(d;TRiy290Cp3YhlSBYZM$S1#kr*K>~|VLeAb!?9g%DW~w3LXd?wV$y2_XQ$sT zgR6W1CwucLGQBy`=Q}IAIe~O(PyP^S_q)fq>w{PR$cM?oaJcE3Ub&z+dEU1cgss>w z>Z8tHB)6FeO!vn}1y>2cy)VEwgPU^TMowTRJ9t0!pY|S9pN_V_Oh{yx)|FueaT znJS*&ipKWWKVU3=d>gi0J_UIOlix+#UY2BV112aVfOf(4ratt-D^ja?@H4W>ypgwE zHBth%OReIC=X?$=!Mic)mRhP?q81G-0kvFR=pb{>B4B!GejR5%ShNbl9ntfB*ii-u zjn~6rJDYlP8du-PKJUYO-sFN7c@PFVCru{Hp#=XH4&CHfKGRke9pqg*z`B+H;7?TR@4^EyTGidk?0b06&$9mH=Rx7K9_XxDv*0iwaRZC7u&$n!k64*1FtIDz5a z!cqzkKUg&k_Z|Z;1LV!MdE&>XAVMU)JOC$A&V!i{u;~Wpxp}q_xamQ$L4s=RufDR? zgp=beS8a8gJK(5XfyY#SOK3N!T0J=wP)hv;`=7c&2mts~CL1nW7I zLrxbUuYLqyb?BW1^VO#^+{e0bR1a6Jw1uFZ91gw*?qHqw<{M>k+>2@@aqwri;py^K zU~0aRfw$=clTg9jT`)GYSKIv1b&d|_cO2-cYiy0+5h#h17j@xix3kwmw|yT_5u;KM z*y@PNnD%?b*AQGaJdl=1#i1N5kp!tw`R1$xb!p788i-hSeF?&M?}Bn?wuVnw)Rj>a zHK;Htcf`9l*n-hejygz0o!t~(=t%q17KBS}t?rF?x4Gei2FR%WG^n)S$2LK~7jx7M z5!Ehlc-{K*+r{y=&2VFJzKl9ogGxE@>lWa^A&&Z^h)OvycPqq{^JJ{O`dFv70fm2Y zth*u>Sczy{-96UJ;B@=yz(&^ZRcpDy>5a)B~N|}U#m^xz-!q8lz0r;O0JCBzuQnV2CHq(xc#1CY{vQE&2M7K}2e?GWL4e$*3%OYr5)^F!y2c@| z2#|D;<+X}6;KhBcUb=|qbrC6pLw*K}Q0g(W)rQA{tp^59O`4EUR6-31482JcsUo0sL{vH`h=NE^32-F@`IHXd zZ{Ez^&h4K5^Y(Uc=QnR>-h1=rP0Rn(V5WWXiWf5-b{6&2=qXL(fhtoxj4ZxhPjAj5 zG#F#VtK%K7`gs_=A(E|uDj*rXobxbx?;5fCny|>&$6SQ5Una3WR zZa;wG9EtB#@xgEl&1QtTXM&;L?X{nxin1wJ5%DbfOw@1qGo@yN4#VH7c@2TXqR$MK z9E$f0mCRLr@=s9pHWI6)2NoQVWz%4s7N){D@f8hPGb3oc36vc7SwCZ<2ooxa^{RUh0@&rcwezzhH&6hZB>n~!-zA!jw6#Xm zRVGv#2s-pDhV-vUtcxlZ9jbLA5{*aD-rA*E#v+)~%*8eGvcM^*_;W`5?@jpB>$>q9 zdR?z2{tFfV_E3}spewPYL3Q%7Ob52Icxpub+l*S~UNZaQW$j2de44F*R`t0s{gqf$ zRhVJgO_j8?aaDLdb9cb&iP((tzPuLfU!G|T##&0esdkOa@CV*)b@e|G{k!89RnnF(0$hg9I)A3q`r<*f=WfoDa}|%|BHGJ9%=U@qJ;?_1sA2 zsq19po;n{yS{exC7!{dJ99Rxwzh$GtRL6){%Y;Xq=FfRh)`BURoYQwzJXZl1XAg5= zR{I+9dYSMLhDpK(w+~8NF#D3@WvF<%8^=3D%N{={#kRyg5M6x=Q4DSPK!hk%my?^f zYX3twAJZ;5ThvKih>=Mel3X{IiB1Yn%l+9?78Ohlq2^;(Q}7 zS#U2b`X7YnF%y$#VNX`cu5;;VnK@TU{J@U$QyJNRuL3c!1Gq-LgO$?>)T3d z7bQpMRG74d_5#adp^emy9$K(wFk872`trRF+PAHDP=>xrxb{M#K2=fm>Okq?Wl5*W-N2)TbR&PuZ%pl zqFRerViaTTO4szMw_X{idNqCJjvZ0pwqy1eU7|fxqWxLW z^5`ITDKFUX_sSqweUJ=trS(Mqa@c{^QDo<{RnV47?8PcJ_I?C*0!o~)11Ch6rapqU z(1< z8lufJ5aDxe#=!bM$qFp|euLbmDTW`g4ux&jiXY-H(+tBm^>fP^hQVTpYOOmTG5m)t zNM};@=M-#xcv}p);=G)h`oLVpIAJV9G;#9D)0M&xJ*ZxvWp z8CyN=vc$NcU@%PX8mOH$rvFaxf}J9-jDJ9}Xt?iP*u8P}3$lQ9PyATh^0q+jl>~gQ z0%DS~6pW0|>(^n=O3n|~o*41}XTqn6bSV{WwX`a^*xp$W;w=@~hW8L^AsN6*WC_}| zbNxzeL?v4U_K?K?rcg^HyOR1KL1mmDU9q~dt%mlt1n#T=>tdXIr+zd$F@Ff1iHS`m zy@9tkf>YuCP}LTz&C12@ggO!wXw1mddB$dXFY1?If#qP0rg_DlV#LO*$~0}SyuNlo&l&uyP zS9{Cn4&}o^$#lYgkS+SoZCpefeq@h(`bP}=;7V3Fmc?#JgK;0V*B)!Bz&3njvYcft zY|&bg3Za4|mNyzz-Ik|Hu(aX{YO_(t?G+hXzzXc)v4{i=`yzR0Tuv`*Y=M^k`HufxU(J&tiYJ|@|Lx{>4 z(zpD9{OnWuXQRrKSk1<^a_}svD4!{qIgM>en5<&>;>X^RsPB{*XN%M-V}cUb(+Vtd z0rYg_QM3v!FQPpA?T-dQY+ZGn&rz2DZ_?8U7R4Zz3XkOS)a;597#?+|qDe$hQ zARar|cmqu|fs*~7`WF1ZnG!Ee!K1T>Fcwk}r{UOYVs4T*(8(rHDuemWQ3iV?=uQPx zFM|_LQ3i8cAZEMWEAmzoGKoA%!L)r1{XEW*z9qA|p=1SVXpMQh-nhPM!X|h1U~9Om zez`@>@XyYvaGSZg6Hk}XDrEI#}%Ri7}Bx!Q|hxx@kIv0rQG&$8Ph2vbkO*Hz&4 zLV4&Dn~z;;2Tvi&m zgaJdaf#teq4ShX|dy&j)fsz$Xttjy$#HH!EhGEQ^YzxImwxOUf3hFg0-T@Enh~C*T ziF{Z`UUua{F@f2)c&tA=d)DcP)94Jq7!UOZOu>SZoo%Hxy9B+B%uXY9$Zdq^#eNU5fSZ1uMP62*1oby#5LE zd*c(%OZYPiJbgm@KDKzvw?@!Y-a*M#UDMZANqgqQuKZ?GikmN8uf=j&#rm+z36Q(Y z6Bx32Y{bQUKyS54=Hz5Qn3D>au*w^Pvh3s@mtdexsl`rgX%rwrei8gHRYXei2WAl= z&^!GB+DU?9Lt#%)V)yukM)}!-j<6)8?};Uf zVf?jwYyp3L)OfNnw+a7}8~40nT}o;@B|3H=cA<-TT4YQzhuEs~Su36;gb6ENOQ(A3!`#1G7fSigborje zSuJPd;`+u}+I|!E=Vol(a-5q8(Ret)7KoEms7&svx#$)!XHl#lJNzDkN57jgxNXjW zTFU=TLWiI*i~0t>cnAyr&ZX?Gj&34$+Q3s)&kOJeUi6$x@ziu%Ay(?`Ccdoc``|Z0 z0LLl7WS=tDLe8sBMVr;gh~B_EI<0zcJIz+ZGE!g;Q!ugcy%@{1m;9UZOl1{hzvW)v^z}k34ZfQcMMRgnI+Nx?(CGuni`TfEORq7Ra z`7-M8vw0B030~pHnc%5h&d#^RXxkXjfORr&v_F{#8Kn2m{U z{N}!ZQS<*iPBe+=22eiOT*u9^ZUB2RTM5i{G-T1mdlnRk`)IkXIQ)IW#BMrnOiXd7 zL4@KA~ zumpi@`d`u#=-$+Zb+#fH(hYv(QMdW|19RPy7EurF(t5O2aT2(Z4y-s*#Qd%ew!#?K zHNeOG2mIxY7-ktJk%tK6z;Em&*{V-$O);cvfO^+El&c@+#~yFO7|05Vw@l&GRey09 z*EN7N{u(UCoO9~$ZRgD*}Ud0TtX`4l57FD2SD9gXU3lr27l)!7b(`NzmOS`l}> zUywbniya-Y{jry<63tn02Y%FU^z>#*_%sFn)?kbn%>Tmm5pDNCx2AeUp6nf&W`K^~ z3t`zK;dd(VF00Z2!6R?%ZuJgI1KpGMf#+Ki^oAR>B%UTB6}%=tKLB; z@3$4v{0fMQ%!@G^n~cJy?SQDQziJC*-4EdNefVFh#kTMVQmd6ZL|3B|OFd{Sq1BV1 zbp>d|xAxj>=+|KK!L#@v_DQb=!DuZEpf$XMlBvMwhiUyKXo>(uytuab@==HI<-Lt~ z?|8=}5ngo|BD_fAEpX$>Wg@x=k3Rwto@+#&?H!poU3nA=cT6H5R*PUhUmD@}{}=pmj2dAA4tZpJj}}p7R1o#i1{lhe@3r`E6?NtkDympP0achy z55kKG;8$cgo3sGC6m2WcE}x3`VHsT$3bS=zBitDxUNW5Jj@BRugH?(gkS-rQg&uNq z37??AkNO6Y_&Bdnu>anmPM-$U7zs7f6AA}e{9yB8?K2Ycvf&5q!IoiOkzxOh$lMB0 zZLO2Ys}*Egg|Wgb6imNYC|)z?CDa)OD&;I>=v%K)r@TQWv5(GSIR9Be5!U&=u&ZA5 zxq5xiqxiMO)9hAR*!JCX{5qmc{7pRulLpGdRT%?AK7BHzfFV6&yhX zjIxvFaLEKX4qw0jRzBwV2@#g7rW~&5Igo#VCfwy8&^?CE_`M~9MsD=wSBtJF3xWfu zJ3_Vcfvm$dr&un>BFfo}$DEc9bUOzW6*|ATS-710&@xcifo3eFtgR)p-4x4z>sjJi zWH}GpkJZIxrAfhp(nl2#p~e6lsxOIc{uOdN4on0h9I4~fN`&PbdefGl-CEtO2+O#I z9?J+L>`3TAI4KoP^^IHkB4~fxRYu6=ULjqJ`YLJ{CFD5;a>18y z`lsEoMd3tZ!-t>t3P*B#&tjP;q_tTemv2R{98Bk*53u+}h; zQKh4*c%`$P3h4h1ENiQ#*L#sxO1<;rQZ@ALue3$I@A<$H%I-wjjN1s-Ws72M@<^6_ zo?B!Utm9*vzf!7>4;{%;u{8cP&0yJ4+sE^KmSlI9tnWwYT}S?G6K6m1CSEcl#*Nd{ zF{yFA@BMHtF|^tL&-bCxGlE!rL3<0!AvV3Jtt{rix>6}&$oIu3lpgF5iTOF*wQaWY z+9rH^ItJ*GMobI_Oota)CDW|SeRffSeRfy(9r~;tm(Hc zs zYc}nf{}aq?{7T{;P;rwhiUJ8^51*jtxz7Z-=U*TLo}qoul8}F>knonV@BO`pW!U3q za4R!Skhk2B5U>PnZ>`JO4Y%M36={FhR-bDJrg_D%wvAgAm-e}Q2|PIGF}tE6@MN!# z8oVhnoeHwVM^F9Pf;W(baUsIY>$sP1V=D0BYppR0aCxgr%R05n%holwfsfNI_Bbc!};^x@RobWBS+xd-1chPMTvJ#!8_r&FIlcNq*X8r zvOg@z{D#1Zgz@*n^J(vS&nnYvl_GEu=b4dzDpyTfF=%s7I?Jtk#%TCBzKRGT3(u13Idl z6cSFHQojV=*bm@cBzVVv1ux7p91n}IfXT9YwIovx?erW(TNWZ5m=g49dP6pEn6jgH zL_vFLZAl>^QsW693eC0KT0 zd$3m5gd1hXrQmSEqV`JKAc@;w#T^x4Z?MeL1_uibZ41rD6d*0d1l#-HVS`!nXRY(G zHevQaZHdfaks*V6{GA}yI2_;$OyG0P;H2JNibK6mO2}g>B>DL$iyADpUK>Bw=W{U7 zXDVjLA2xx1X$B`-G`%Ej5q4@JokP<>Eg#hw4J8oxs8((Av$>`0A=-Tt?p-sktDp<9 zW2Nndwc>>Zc(K9?I7+*NR=BWH96}14!~qR;2lhwzHeqb#46GPyCDEFzXz&8UmS(nz zVCT!&i)!f38*Dt1b&vlH(?Jht~* z;HOP7ZXMHS%sqLWUtEh zdfGJ;-VcS{jVIO4q$*H@JVmHtuw&PwG_*ie>2T;fX>UyFUrK(S0Y}yMwbkrpwb~M= zrh=3431%ljc#5-(rzkX+20Yad*j4Js6+-5=ut`mONo}aiaIlgg zMNMG@i?j77aNbDGT4?14=ou;owjcIxlv6dSEXqfrES5^h#R?>36!C)E_NtbJI*{W3 z&f`xd=ji~I1w)e5x(+1i>mn?&r9DA`gcx(Ae@t6^-RO#!me6umW2j1Cv_@ zTbmjh-l9Txjlw@L7FE_oLUvRkF)^*VmSh5IX9l8C;IWM`!FGlON>zbyY=A6=pybv* zZ1|{l6j07>L}QMBCfLhcf|z9i zf{z7@iJBms)W^2Mtgn`cEo8D$R!5Ju%S#*cXnw_vb&|K3s1pU73)Hga_HZ0APtcgP zMmC?IvD!*PH$L4igk?8JLsid&TGu-&%hM9DRslQ61bexqy}H)l1eT(MQH7v9_il0~ zVC!6}kB&AG4bV>&_>^ZLH{oeycb3z(6f@SzC&;CPlNP~H3tFXau~bw#@3CY7aF?k zbao}yJsDD6A|igYb(dgWB^dRYo7xkr3balpv}7}y@a{T6 zlRpe&mSY%DmtYtH_vgK${4DeH#7gYL&M3V!6XMi=LEPL0t=T@w-yR9+GUZsJe<-mE zd%x>EKW(Q8a{IqP?s^;Lmnk7{Nk|$$zckQJkR@31jQ0L)d1Dmi4HNElFSy<9!?c3o zqDuV2MU@~7DnGpMro`gQzC#qaTQWXAFLqP$G>kss?#dwvM~#!oK@pOOhYnOsPTEgd zAzHg|AvCuK!sN6LH;Q+QaJR@%*Y#d6dj)NT=+!u*+3giglD<@ z_Y(26inzKGB5MM%pS^_kwF&XK36Ul@JbxF6e@n!_R7Bd`@o0az&IqpU+b{qwf&0RuhYOWHBCb&d4h!rf-Ay7oBUwMUp z?iHSjsOuQGyR{^Ibrl}<8OHkh0BBwYN<;olQ98bPjzFPUjqn^N|NmLv-yRAbA9j$rE5OW|?58n_!8(SrftD zK?(bX2kdxzX?FQ6HsKsG3C47<32~Qq#QBqf_@_j?V?e}y8t1YLu?bUv_?rpwrU{W6 zx@GU9p$jg_Hq>?`@JV`n0x;<=t=;W8)m~HcFKMifd?k(5LAAVmnmt@=Qc?&}Llq1I zGSOOn6Hc^uoJDE8uOe{Jq-Dh24gsw4MttP}6JkH_h#50r?UqZ#r7EJZpLuc$ zv(o3Y^RVGF0lU})yU+wn6+CYis^heT{aS^E{DrYTzBz^1dmjMtxC!xy36Y`-OFu+Z z;V&RHGE@hqY)L^}b3VHyo4N*eB=rzRW3g)9V5D(6g+W!7J zlLd+UI0^f4aoDg@M%W^yjIgNmBzABP!h`KfvFTsf6D%q!MZXDk$|`8~`)iVL^frfX zVS;|k8+3bidLHCylH~Y36&vyt#xCZCL0vx|#XHu7ILd@bU4!Eb?B%sB67dri5sUUh zSC?>2h2!VV^Z& zlZ^ei7&4Ztw5YaMY6c`@+doF}KR1Cr@ecOu5`a}N&7$6hc$HQ}fUtqsVq6PXwV((S4#lX)`Nnz~IRq*n5nGin{h+4mJ5oCcE zNp9#{;ld5=zDBHHrA;dumFdKTC{ADPacSX;{QR?v?zUzx^-#N=+v;LIlw)#qxtR{bufPMP;bGF`Li*tupE@7RW=R{FWScWw$*vWH{cj z?!-}8Z9~LN<@W?fOHBk5A#I!F^6p3+__Eo^;KoR< z2Xf$s>b7L3&c)=w&DluO0?T(il?+}0hIRqQ-dOw4@%Tpm<+)AoNkXNN6k664mVBr) zCOMb5S3vupgnVR##7j9}lRo&CjBwBr0Fb@o9q{y;`V6=c%7d0)c9x0mp3jqtR4AmFQr zIfJc?$j!YY(~_B$hcKo!MIui$BGYWYQHRmp8gB$0;~kWg=*STmnr#wvvk^4ysJ)qG zqY-c2f8&L)*TuW!W%gsRiq|Ca4_=U~^7rzw8oN4UFe(Y_f-e~}!nA0$oJmn3D5R*z zs77VXoZ5_$C$Ui$3$V{+RFky#QS8_DX!d@fJz4wiFuNFNPavi2hWOLu)Aph)`5U_* zTU`RXb1w*TrHlB+-j2--wkIn}Sre<|(V<}xA@&Fr0gEU@lytS&o~zjZn9pBi2MdWz z^M~4p@+2L;vrlBNLtSsvHeqc>b*ab_$Dk0_e-B396c$N36cI_NnK^jIUYA7|b)^eh z3Zb7fu}cG*%E`(W^WgJD0)lrx5ddYAKTfE{o3EW{!ft`20ky05{2;47Q2dsSZNw4{BFByuW#8WaQ3J;7=`Sj?KI(RH{(z* zwaj&UWlN^OxuxPzpkdXI_Cl;_^R7kM>jho0T||C#q;Ht8ubZ){N*n%SucH+#FKig5 z^+(xTGWu4E)+IUZdD!|N5y?ny-?bu3zJb{rd0Bid4;$vgA4nUf6ajg5gKxsKi(cq41j(K(bs}0*htuOBuEE*izdB-~W;f0fXMYCQPR1j75&O_;d zW5PbiGgQ`WtW>hOC?GfQjO;Nv4yv?%4+>9vXisq++?V#f#cp4-Ib#cvwm2SMpF2@ z(#r3ei8GF9i_jbGd%{`9K&vH9{_lB&#Z>+@0S8bmYKCwK6r2>Q;ZrEozKTKt_85Uj z-N$UO?MHehutN|foJt`w_5|Kez}n=BqTawbeLof>^6yVeRp#cBbp9o)t9=@r|A#!W zT2naZ)in^e*CmveP&PdYykm-CC$6Ar_-67h+rP3m#5qBDYSKu5{#0m?B_I7J5hC9m zc@T>a1dGeBDzmN*-OMUw>BRGsCEVw}oOy-SR2R%+I~f_ClJ)gkvt*rFD<$hJ z{xnI}0z4FwRX}t(hPd+-o8cilVjXLLB`;!@WbMsLF|WUs6@p2D`ZqNF)O8Zpa(6n# zCtF&{ENeKLp33|XPtcM90nI;6(TL0`!h&w~D#kARI6`oID*iW>{uh*un3}tnMRpPr zhp^5li%sC-ENeF|Z8tN8wzD)<_ z8TD|njuA|Mb}0-7V$b5fSdDipy9mpl-w_O%!b>Lpu>hfmOL}zv$(*nK921gj`8guA zW-=el9ChbI13&nbTI|x|zVa)Yc+H}r_bjU8aG#_Cj#AoaiH^ylZgg5#X^+gQ!IGD{ z&@pY)%Lfehj?Q-@=ojFqq^%X`ENl%vp8Q3sVHf+T;Te6y#j>>JUNcy#XQ1t^Bvc=A zM8b(FF&@IXafBGIq!IbJx5ES2@n5riwOf^i-M&2zQyr)ae}g~`8g{+1TRO?5S`y-@ zpuLf$^OC1%$p8^Ty9A=>gIVUOzNK03Eh+hE))nS(dn=)T^bf$op*zEch*ImdH`GxB z;fMIausM}k@E{Zsb!&Mp43peCV=FK`Rr|4J`2%TgbTqQuzZG#*v~(9}U5#io7{0Tp z<1N@617xySNOFi@7jsmGgH8<2G(x&Wy*U~J1LRb%kfb?fiaV;oS0~6lMo3z;K}CBx zr*9$FJ`>8j6>mtr5>Cl34YT;*#*@Tw}0DSQ5m7p1UT3FR5ni)-S5&E?C`X{7QcR0m(N2 zLKqFvtc^~=je<)}LyH50>gu>Bz2YA8 z#3k8ddG$aiJ$gmF>mA1GOB7wo_zm+j+e

    pred_probs.npz 0%[ ] 0 –.-KB/s

    +
    +
    +
    +
    +
    +
    +
    +
    pred_probs.npz 44%[=======&gt; ] 7.25M 36.3MB/s
    +

    </pre>

    +
    +
    +
    pred_probs.npz 44%[=======> ] 7.25M 36.3MB/s
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    pred_probs.npz 44%[=======> ] 7.25M 36.3MB/s

    -

    pred_probs.npz 100%[===================&gt;] 16.26M 89.6MB/s in 0.2s

    +

    pred_probs.npz 100%[===================&gt;] 16.26M 60.7MB/s in 0.3s

    -

    2024-02-13 00:43:05 (89.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    +

    2024-02-13 01:08:51 (60.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    </pre>

    -

    pred_probs.npz 100%[===================>] 16.26M 89.6MB/s in 0.2s

    +

    pred_probs.npz 100%[===================>] 16.26M 60.7MB/s in 0.3s

    -

    2024-02-13 00:43:05 (89.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    +

    2024-02-13 01:08:51 (60.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    end{sphinxVerbatim}

    -

    pred_probs.npz 100%[===================>] 16.26M 89.6MB/s in 0.2s

    +

    pred_probs.npz 100%[===================>] 16.26M 60.7MB/s in 0.3s

    -

    2024-02-13 00:43:05 (89.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    +

    2024-02-13 01:08:51 (60.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    [3]:
    diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb
    index 9b2f4aa01..e96e1caaf 100644
    --- a/master/tutorials/token_classification.ipynb
    +++ b/master/tutorials/token_classification.ipynb
    @@ -75,10 +75,10 @@
        "id": "ae8a08e0",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:04.174708Z",
    -     "iopub.status.busy": "2024-02-13T00:43:04.174530Z",
    -     "iopub.status.idle": "2024-02-13T00:43:05.448184Z",
    -     "shell.execute_reply": "2024-02-13T00:43:05.447435Z"
    +     "iopub.execute_input": "2024-02-13T01:08:50.680983Z",
    +     "iopub.status.busy": "2024-02-13T01:08:50.680568Z",
    +     "iopub.status.idle": "2024-02-13T01:08:52.047522Z",
    +     "shell.execute_reply": "2024-02-13T01:08:52.046779Z"
         }
        },
        "outputs": [
    @@ -86,7 +86,7 @@
          "name": "stdout",
          "output_type": "stream",
          "text": [
    -      "--2024-02-13 00:43:04--  https://data.deepai.org/conll2003.zip\r\n",
    +      "--2024-02-13 01:08:50--  https://data.deepai.org/conll2003.zip\r\n",
           "Resolving data.deepai.org (data.deepai.org)... "
          ]
         },
    @@ -94,16 +94,9 @@
          "name": "stdout",
          "output_type": "stream",
          "text": [
    -      "169.150.236.97, 2400:52e0:1a00::1070:1\r\n",
    -      "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... connected.\r\n",
    -      "HTTP request sent, awaiting response... "
    -     ]
    -    },
    -    {
    -     "name": "stdout",
    -     "output_type": "stream",
    -     "text": [
    -      "200 OK\r\n",
    +      "185.93.1.246, 2400:52e0:1a00::1069:1\r\n",
    +      "Connecting to data.deepai.org (data.deepai.org)|185.93.1.246|:443... connected.\r\n",
    +      "HTTP request sent, awaiting response... 200 OK\r\n",
           "Length: 982975 (960K) [application/zip]\r\n",
           "Saving to: ‘conll2003.zip’\r\n",
           "\r\n",
    @@ -116,9 +109,9 @@
          "output_type": "stream",
          "text": [
           "\r",
    -      "conll2003.zip       100%[===================>] 959.94K  4.82MB/s    in 0.2s    \r\n",
    +      "conll2003.zip       100%[===================>] 959.94K  --.-KB/s    in 0.1s    \r\n",
           "\r\n",
    -      "2024-02-13 00:43:04 (4.82 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
    +      "2024-02-13 01:08:51 (7.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
           "\r\n",
           "mkdir: cannot create directory ‘data’: File exists\r\n"
          ]
    @@ -138,9 +131,15 @@
          "name": "stdout",
          "output_type": "stream",
          "text": [
    -      "--2024-02-13 00:43:05--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
    -      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.140.217, 52.217.108.172, 52.217.124.193, ...\r\n",
    -      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.140.217|:443... connected.\r\n",
    +      "--2024-02-13 01:08:51--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
    +      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.82.132, 54.231.138.209, 3.5.28.120, ...\r\n",
    +      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.82.132|:443... connected.\r\n"
    +     ]
    +    },
    +    {
    +     "name": "stdout",
    +     "output_type": "stream",
    +     "text": [
           "HTTP request sent, awaiting response... "
          ]
         },
    @@ -161,9 +160,17 @@
          "output_type": "stream",
          "text": [
           "\r",
    -      "pred_probs.npz      100%[===================>]  16.26M  89.6MB/s    in 0.2s    \r\n",
    +      "pred_probs.npz       44%[=======>            ]   7.25M  36.3MB/s               "
    +     ]
    +    },
    +    {
    +     "name": "stdout",
    +     "output_type": "stream",
    +     "text": [
    +      "\r",
    +      "pred_probs.npz      100%[===================>]  16.26M  60.7MB/s    in 0.3s    \r\n",
           "\r\n",
    -      "2024-02-13 00:43:05 (89.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
    +      "2024-02-13 01:08:51 (60.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
           "\r\n"
          ]
         }
    @@ -180,10 +187,10 @@
        "id": "439b0305",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:05.451079Z",
    -     "iopub.status.busy": "2024-02-13T00:43:05.450671Z",
    -     "iopub.status.idle": "2024-02-13T00:43:06.564340Z",
    -     "shell.execute_reply": "2024-02-13T00:43:06.563771Z"
    +     "iopub.execute_input": "2024-02-13T01:08:52.050051Z",
    +     "iopub.status.busy": "2024-02-13T01:08:52.049854Z",
    +     "iopub.status.idle": "2024-02-13T01:08:53.131521Z",
    +     "shell.execute_reply": "2024-02-13T01:08:53.130959Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -194,7 +201,7 @@
         "dependencies = [\"cleanlab\"]\n",
         "\n",
         "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
    -    "    %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n",
    +    "    %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n",
         "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
         "    %pip install $cmd\n",
         "else:\n",
    @@ -220,10 +227,10 @@
        "id": "a1349304",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:06.566928Z",
    -     "iopub.status.busy": "2024-02-13T00:43:06.566437Z",
    -     "iopub.status.idle": "2024-02-13T00:43:06.570020Z",
    -     "shell.execute_reply": "2024-02-13T00:43:06.569578Z"
    +     "iopub.execute_input": "2024-02-13T01:08:53.134166Z",
    +     "iopub.status.busy": "2024-02-13T01:08:53.133673Z",
    +     "iopub.status.idle": "2024-02-13T01:08:53.137466Z",
    +     "shell.execute_reply": "2024-02-13T01:08:53.137011Z"
         }
        },
        "outputs": [],
    @@ -273,10 +280,10 @@
        "id": "ab9d59a0",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:06.572045Z",
    -     "iopub.status.busy": "2024-02-13T00:43:06.571766Z",
    -     "iopub.status.idle": "2024-02-13T00:43:06.574735Z",
    -     "shell.execute_reply": "2024-02-13T00:43:06.574279Z"
    +     "iopub.execute_input": "2024-02-13T01:08:53.139517Z",
    +     "iopub.status.busy": "2024-02-13T01:08:53.139169Z",
    +     "iopub.status.idle": "2024-02-13T01:08:53.142016Z",
    +     "shell.execute_reply": "2024-02-13T01:08:53.141597Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -294,10 +301,10 @@
        "id": "519cb80c",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:06.576803Z",
    -     "iopub.status.busy": "2024-02-13T00:43:06.576540Z",
    -     "iopub.status.idle": "2024-02-13T00:43:15.738283Z",
    -     "shell.execute_reply": "2024-02-13T00:43:15.737645Z"
    +     "iopub.execute_input": "2024-02-13T01:08:53.143912Z",
    +     "iopub.status.busy": "2024-02-13T01:08:53.143722Z",
    +     "iopub.status.idle": "2024-02-13T01:09:02.179284Z",
    +     "shell.execute_reply": "2024-02-13T01:09:02.178768Z"
         }
        },
        "outputs": [],
    @@ -371,10 +378,10 @@
        "id": "202f1526",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:15.740962Z",
    -     "iopub.status.busy": "2024-02-13T00:43:15.740620Z",
    -     "iopub.status.idle": "2024-02-13T00:43:15.746062Z",
    -     "shell.execute_reply": "2024-02-13T00:43:15.745601Z"
    +     "iopub.execute_input": "2024-02-13T01:09:02.181744Z",
    +     "iopub.status.busy": "2024-02-13T01:09:02.181477Z",
    +     "iopub.status.idle": "2024-02-13T01:09:02.186852Z",
    +     "shell.execute_reply": "2024-02-13T01:09:02.186427Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -414,10 +421,10 @@
        "id": "a4381f03",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:15.748134Z",
    -     "iopub.status.busy": "2024-02-13T00:43:15.747800Z",
    -     "iopub.status.idle": "2024-02-13T00:43:16.104300Z",
    -     "shell.execute_reply": "2024-02-13T00:43:16.103644Z"
    +     "iopub.execute_input": "2024-02-13T01:09:02.188840Z",
    +     "iopub.status.busy": "2024-02-13T01:09:02.188513Z",
    +     "iopub.status.idle": "2024-02-13T01:09:02.542148Z",
    +     "shell.execute_reply": "2024-02-13T01:09:02.541571Z"
         }
        },
        "outputs": [],
    @@ -454,10 +461,10 @@
        "id": "7842e4a3",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:16.106794Z",
    -     "iopub.status.busy": "2024-02-13T00:43:16.106584Z",
    -     "iopub.status.idle": "2024-02-13T00:43:16.110882Z",
    -     "shell.execute_reply": "2024-02-13T00:43:16.110338Z"
    +     "iopub.execute_input": "2024-02-13T01:09:02.544756Z",
    +     "iopub.status.busy": "2024-02-13T01:09:02.544358Z",
    +     "iopub.status.idle": "2024-02-13T01:09:02.548740Z",
    +     "shell.execute_reply": "2024-02-13T01:09:02.548281Z"
         }
        },
        "outputs": [
    @@ -529,10 +536,10 @@
        "id": "2c2ad9ad",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:16.113016Z",
    -     "iopub.status.busy": "2024-02-13T00:43:16.112696Z",
    -     "iopub.status.idle": "2024-02-13T00:43:18.488955Z",
    -     "shell.execute_reply": "2024-02-13T00:43:18.488232Z"
    +     "iopub.execute_input": "2024-02-13T01:09:02.550853Z",
    +     "iopub.status.busy": "2024-02-13T01:09:02.550545Z",
    +     "iopub.status.idle": "2024-02-13T01:09:04.959158Z",
    +     "shell.execute_reply": "2024-02-13T01:09:04.958496Z"
         }
        },
        "outputs": [],
    @@ -554,10 +561,10 @@
        "id": "95dc7268",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:18.492127Z",
    -     "iopub.status.busy": "2024-02-13T00:43:18.491369Z",
    -     "iopub.status.idle": "2024-02-13T00:43:18.495211Z",
    -     "shell.execute_reply": "2024-02-13T00:43:18.494758Z"
    +     "iopub.execute_input": "2024-02-13T01:09:04.962283Z",
    +     "iopub.status.busy": "2024-02-13T01:09:04.961556Z",
    +     "iopub.status.idle": "2024-02-13T01:09:04.965363Z",
    +     "shell.execute_reply": "2024-02-13T01:09:04.964836Z"
         }
        },
        "outputs": [
    @@ -593,10 +600,10 @@
        "id": "e13de188",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:18.497244Z",
    -     "iopub.status.busy": "2024-02-13T00:43:18.496929Z",
    -     "iopub.status.idle": "2024-02-13T00:43:18.502291Z",
    -     "shell.execute_reply": "2024-02-13T00:43:18.501828Z"
    +     "iopub.execute_input": "2024-02-13T01:09:04.967363Z",
    +     "iopub.status.busy": "2024-02-13T01:09:04.967026Z",
    +     "iopub.status.idle": "2024-02-13T01:09:04.972235Z",
    +     "shell.execute_reply": "2024-02-13T01:09:04.971776Z"
         }
        },
        "outputs": [
    @@ -774,10 +781,10 @@
        "id": "e4a006bd",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:18.504313Z",
    -     "iopub.status.busy": "2024-02-13T00:43:18.503980Z",
    -     "iopub.status.idle": "2024-02-13T00:43:18.529855Z",
    -     "shell.execute_reply": "2024-02-13T00:43:18.529371Z"
    +     "iopub.execute_input": "2024-02-13T01:09:04.974307Z",
    +     "iopub.status.busy": "2024-02-13T01:09:04.973987Z",
    +     "iopub.status.idle": "2024-02-13T01:09:05.000776Z",
    +     "shell.execute_reply": "2024-02-13T01:09:05.000183Z"
         }
        },
        "outputs": [
    @@ -879,10 +886,10 @@
        "id": "c8f4e163",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:18.531957Z",
    -     "iopub.status.busy": "2024-02-13T00:43:18.531643Z",
    -     "iopub.status.idle": "2024-02-13T00:43:18.536502Z",
    -     "shell.execute_reply": "2024-02-13T00:43:18.535960Z"
    +     "iopub.execute_input": "2024-02-13T01:09:05.003014Z",
    +     "iopub.status.busy": "2024-02-13T01:09:05.002661Z",
    +     "iopub.status.idle": "2024-02-13T01:09:05.007683Z",
    +     "shell.execute_reply": "2024-02-13T01:09:05.007189Z"
         }
        },
        "outputs": [
    @@ -956,10 +963,10 @@
        "id": "db0b5179",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:18.538559Z",
    -     "iopub.status.busy": "2024-02-13T00:43:18.538225Z",
    -     "iopub.status.idle": "2024-02-13T00:43:19.973837Z",
    -     "shell.execute_reply": "2024-02-13T00:43:19.973279Z"
    +     "iopub.execute_input": "2024-02-13T01:09:05.009826Z",
    +     "iopub.status.busy": "2024-02-13T01:09:05.009504Z",
    +     "iopub.status.idle": "2024-02-13T01:09:06.463987Z",
    +     "shell.execute_reply": "2024-02-13T01:09:06.463485Z"
         }
        },
        "outputs": [
    @@ -1131,10 +1138,10 @@
        "id": "a18795eb",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:43:19.976037Z",
    -     "iopub.status.busy": "2024-02-13T00:43:19.975689Z",
    -     "iopub.status.idle": "2024-02-13T00:43:19.979882Z",
    -     "shell.execute_reply": "2024-02-13T00:43:19.979346Z"
    +     "iopub.execute_input": "2024-02-13T01:09:06.466176Z",
    +     "iopub.status.busy": "2024-02-13T01:09:06.465836Z",
    +     "iopub.status.idle": "2024-02-13T01:09:06.469775Z",
    +     "shell.execute_reply": "2024-02-13T01:09:06.469321Z"
         },
         "nbsphinx": "hidden"
        },
    diff --git a/versioning.js b/versioning.js
    index 41296d1df..3a012671c 100644
    --- a/versioning.js
    +++ b/versioning.js
    @@ -1,4 +1,4 @@
     var Version = {
       version_number: "v2.5.0",
    -  commit_hash: "5408abe9bf41d8c765c17e338a0745474e55460a",
    +  commit_hash: "1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8",
     };
    \ No newline at end of file
    
    +wjibKhq*u^m-ay;43xW5_YX6gXj}$z<;VTPBgr(2+ zif1?BA?nhL^=Hv@NbOvQqLMO$IR-WV|TdW<+fIG9~%g@xZW zdVuSfUcsN4!K>SnSdZ{~QI?t_2Q(x*RY_rF(n|MqG>4}y{_-sL3jC>uo}eUpv9w-j zbb1QR?nX?ML=`rwG>u3j-anJ~$Po?12!dNwz62eLy~u+3Y#K>yH)PQB>feH~3L zGrgjxnb5&;ZlBPr6_lh$nEGLJcGmuT4I#&^N=3rq&I|tf^Eh=BXx4H(weVB zXoJL_ZePnN;r2C)5;L^{Pc2>fDACewEh3y|cZ3zoJ9I|VieiobJQI)UI*%~+BD!kX zD|p-`c|_7+9O#P8MJ5k-)YCpQakfozwpnrpP~z-E$yud<`}+EEI=vx(W>y#mu-)uo zryjnBTyvTjv=M`Hczmj7Ydn0hxiucQShmLF7gK9or~zK`XpMbqi}C|9ad}U2+2emo zgqpnB`n83h@ZCQ$LajyDHdb=&+V0lUUCCOH+QOTEyEdEt59Wr@hF(X(NXR-ZSGV2Ciqw9WJQw&2KJjgORq+XbC3b}tvdq8ifklfP zH|t)><5KrZ9T%SP@5cy!a zhIGwqhh5J3Ovk$HQAsEsjS0<-&8Z`dYKyu??R%@P(7vVsQ?+kWT_M-+NuZ!>7zhPW zI6Lv)XeIcojWt1z(jiG+z$eK|WL=?xZ`DzP8+x4aOZw0jEI9?%md6>j{iaX;T>oTU z1#d`Juh(UxJ7P@@Ei-|zlw>)7j|{+pfQ}IDs)@@hlFN(whr9JKZ?yP$pJ;)2VzDDp zvqT%q?zI`hrER6Ox)LKwVo(7RS9@BI4rEQ*j?TvxbjC8Q8YbMT(V|Yk8WkYEnhJ2Y zEWjZX@ogu{L_28kAZiN#4x+VsoEo-e~Xzp>Fm|1M2-S+h~mM(G(YGC?0G zD%&nkAg3N;>fOv>Ik{=6juXOeEl0R}u?c5kv|9>Mel^*rD;yEI_v7%Y=@a}4<+1j$ z`Q~CdqpOx=7b|1Z;Snm8Ml5ZNGg#Xn&A+Rb2yBDb5VmI}LP4LK^4KkT#W{f4A^?mJ zZon#BA5%ecdROJN;c7=6?ROK(Z4(N43T@Xo+Ow?=-o4;w&JiDv*El*@^027C?Dgq* zvw2QAgvyU1lq^u<$0bnKr5yKt`N`+mE}Kml2i7?nzl_I*bP_0u^V(y1d@e z2;CtA%)kwfI2<@)fNA9whFptZnvZn_Sw|be{@I8w-3TMtP$QTWhw06o?a;3^Ff?G3 zqof7>T6~6LAQ!}NF(}QlHaQY24EJ939IU0LOa)+`{^7ag@To<z7Zc5m-o-mo60N@IQzI!j41?+Z2YN;wf`feD=_e}tk%m7#F!l*9T<0z(W zQ~;Lkb(GfDnbNN|r>9SE5|91F6LZD}v-Nu%zS?O8iH-dnKHt|SsN??v_3ZK3D7JPd zQ0}WJK3_N*Yj;g3zw0PeK`2_Ppt|)$D{TFrGC||ze)MxOW!TRV#ZJ7&z&nlem1Lvy zIgBIe;q~2BL?77mpd%W)BD#`RV)lcMhU~GggEnzfEMEgc6NAk#7I{&OF8R3H7`yT` zIWoytb};)Xa8tg*oZLQcP87hN{|=blWPF^&!l8EZt17YLhaGKkthno|6s**L$Evbr zd?L#@;_yY(M~BKe;^>a4!d{>@dWCv))G^3%P662OKz#3eZvdw~0D^T%V>?=-x!9G$rmB2ps7jyRlWMW#gJ`D9=xKvl#@A@b zuxwHSD5Zu~lXxg51cl-3T2=G5pTb~Fa}}rZH;(GqRo@Fv+<)M_$TRsZHtjm3ey|F5 z?X)8q`#^XB>*pPe)^CRvo9tS@Jy%7W`JJPtWwtl854@w1tMjIlGelb-&MuxsRQY(# z$@$ouB91tgxvXFwR%$97oLvoA_!&oSe!bJ#*@B@eg4yOXjwURps7XI?R+_iMbmwFl z$1a?8RM+k_;Ld41C7a(Gu(szM4K!T!Y;K)HunWMcK?L{-4?GEF-cRcnR6W8?(vX1Sh|Y z{AWr{DaK9I+&W)|GN5shxhbMppB@V962>-^hqmzH1`Cc}b!*OZgXW|RzbA(d$dVn- ze7}RtbY`s3orWXsmBaYFD?i2GnHuXhgB@l$M`#=M6v3>=RhZLt?qmv^IGP8%3yoO; z2vuVyTyrF7r&XMgpB$|*I_t__!8!gPIQ6eP+G+PyoLko&ov_EQ7o6Y!1E=6Gj#yOf zqpDz-Tw|05nz3K7NkYDc#+Ew|Cd%+Aj`%1!OPz`pZmkddrRcP3ENICLUzYQw)7MhN zh}!w4<1MYK3AIu~cPW$p{`UK{NNLyG8zIjB>Zqx;H9@qJj5P<8TH48tonDpjzN{|_{%g+?J^#U$e)jJ-p(}?kw0WYU$6tJ#P>$| zV1g3C$^66718SpJdvcn~VS8?3_lZ(L|2W>oyxWs8E^$G+5EgjGSr-#Muhem(f3JK+Hl%9=iK^oJ8+favKRBGH*z zlkKsg!N*y;o?jDWM`vY*5hqo}k)luS{WfEIYV)LbyLu;`N7jW|PMong`y!zg{06u<23 zoN-2@qiguc1qzpQkzBPYm!3GHw1X-}_owjkzA$3!{SOQXun&7RZAMq}Ikg)qTE*vZ zBCi|KuA0zP^E>PXqVBI$6w6CA+0QAFQWQ`0q97qG$)>k=X)+2gm<@e}85`K3q^(Dt z7v&EUw9qE*k}wEiQzOpcSQuVp=81#0(17Db2rcg#!Op{8TlyNodU*%4S|GI_8X+7O zXDy8J8Ti4;3I={C8uFQB zeNvehJnVi}Ba2hXDDG=a!M0HzN`>7+kxQ!qV-v%kwRT2n1>%I3B1tgYo!8kw%Ma(; zvy<%`Cz|Tqaqc>!vc56tLzmN4Q-$f2-`Pm3W`e0~hH<-+*vx*CpR<83&o@bSUyP^dEz?Q-zD9(o(b zA0%kT59n5CUMpD+2`b3kBF-*onGGN~0L>f7(W2O*Yk-KHifTJUy?M zakK8XL~*meym452C$R~ zUh1(+%z|EQPgy5Uzf~~`mvfH7(2xNm$~(sRRtxIN@93d|{9WG37gQTSI(rAn(|LhQ zv8JjZ8!I{+!ecgoOmKscszXbuwO;_Ako&1Wp)2PO8l^tSYNYL#m>EUoNC!WK3MHi2 z$=&g8Ri~cXRXs@vd*>>m>sO3yToi1aLrS%IKU-&Eed@nxPgIPC)t${O|1)AdGGV~O zh+(~IIIC;nm_o*9iGu48_Gb-v$VFKS!Z=C?FO(h#U&_cwqf-lG#U2igRiK5n5Mqd& zVhSwO`wys+KP^mRm&c6v)%vPXDYc#NSg=yxlcydgAn9nt-$bNzRUKzlZKjG6QP)`; zy=RW1)W_5WcYPqj+FtuaO)@FkS=zGRnDH7tW6Z<6GSwjmD7d4deXFJ?Px+KF%M%Ii z!Dfg+3_Dg2&25&NF1fxl4)bgbADk)j&Fpu;pIK%>%>YDgkIICnzoQj?OQ~COxI@^L zd8XJ~;9G8%r~zuy&{-ci=3C`G}FI47waC ztYuU2$%n@*bu(|hb>3)TaeEVIO>LH%woaTg#xmWVR^e@$!rK)03xc=aX5J{qezB>u zn6^*FZyFCV*yB#FNY754H`1r}N0(M)nN1P1{80s1nE<82E@SfJ6b7-$7#@nkJL`Ty zFt}4;P>)XMzP_{+OKOHJv}Q`(?rsLx^Nkxp$>ODw1yuxLQ8%c(ia_0Rc0-&TCcQnsv4+K^`KWR`2`;y}trDam)6 zx%E)@A7@jN9_+(5s9?lCJy}D~7p&o+i$#l+=>3Ye&KT`8O4yB6Zs%--R@RUZU0%#jd!KyM#sB+bK!WGX)eMrz#wZv}T&uEs zYyhSStTM8@yahKeuHz2)%n%wb$sNir3`9ruqA>^UTnijZ>>R?cdQk)qc1}h-%up1k z^`a1s=Md*C?Wrt}5?1FNoKaz@slP-S(7cO>;y0BCpm=#`UxVF~52Qb%OAL0yE;h_r zN2}7(AS_zNmTdJfXHS0B+3hggIZ`Xv(x~{6E!|Z|{9fI;Y7nb65e3<~rKrT%kX5)`OF6B*fOgnrNzkZ{gO>)m{DJI_JwvGs6DWlN^pF^CB88`Iz zqeH90^NV<}>+L+&w6J`+SX#N}rKH2Z%9!fX;Z-Hro-tr~ruxBwV=?xTX5xFQ#+bQ1Z%e`IMsE*2mcAY&=2|zbZUx-?wD1$DjOZwDHqtERzn)ha2>$o$CF`Q-q} zAf6>wW~2`;AVwSeV^YvmgivtRi{R!|XLqbcG%(X!d`fCF;bXuRpq%?sD<|9uYke_# z0k6Vubw!C4-^R+o87h6;67NU8I!CXBxXmE0vE${O%Y~ zaXS7qjb3!dLyysmowHCe|UX}xR1=)s+9s=OUA0%KUYUDNH{!nKk=0o^hb=1_~eduh;2Ap>^ zP<+Db#;9KD!{JU&WV;z#_W?72x++qWNG4>wk&B5RCAIC$Q)-kY!=MF zL1{(Cw)T|$Lvx)`Y}_S>oc%^$-)x?6pH4Y+(Wp6V0w-4a#sf$7qG267CX~QVBGLcg`Yb zq!!RdsY0K{G(-{gvqu%?WBdWjIO*^2nZ4h~&bnHZ3cx-_gaWG~JOQfe0N50U^wutA z@xCI95qZ?L2#%~4+7OBTFb@{*4kQ$%THbBrSuL%8Tq{Ejvt_z<`E4O=E<>o{10zo} z1W&we(^3JXTBoDioDH?lRE&C@R*bGwu-WL1LEzSO(-4y1?7v4 z&I;OO6`<}X&T85O6TmnffCLVuOg;2eaotI$N@~c8`(q>yojnZOuZ*-f_5+ zHeKONU`~fe(&rvYO|n+Dov35V`sH?K1I$hv{m8?Tm2BtfRQca>R$w(Ax-y+}%UPXm zf9PR^F#_`l1{~w|fD#P}P^c`$CrCcvUt>IFC!*M6R6f#oAxJdR$j7jDo~rx)ZfA3C zv6?P?4?Kj0lujw_d4idA7L}uPrr+A@EU)cXQ=i=HtcIv2XIV+Tn^J4(?Su$`3FR}$ zDI}|!yboceKUKKP`F9&BJldoFUm@=9?q<`7*Mc0g)?yC zrd4lPJFZli>wORwq&`ojd{#8>6A<-U^u`tALj-C7 z&dAo&C4Ys`#5;!Ex+QuFLxV%;6isud3S~bY0`3$;ZWAfD@%*U>0Ci&>d|dhK0icOT zoE@--hR#CSqt3T2+YMk_35;0Rowp9hoRxE5P86=IkM*0heC*^8AraDryUsCbacu!H zBmQzC^FQv4)^H^k4#gY7RvyQkfD4A)&dS`tujIXm;JpxkQCNX(pDE$;eA!u@FcBj- zH`I9D4h)7DVWWLLYOGLuca4$k6g`C)T77qlV7BR$GZw2LcrvBRYSRM|sjdkK+4@j) zZgsWSHjOAm2-D|jO5FmqI zSEO;i{%w4qANoWEffRCz3iQeIvvw%le5!vIl?=^Oxu!tS6qO&05SRV~;@Qouomoyj z%!PWY;0!pA*(-k=asK)boWuRLxh8xTPZBm09~H`OJ#sch%xgoiM_m=>4-z!v_iS6V zEnc(`O>~S9_Vf})4jURV>bo(hhETFpLvsX^)cho8>NT|N2L#66ldu);K=8&AqEb1d zaE^vD7|R4>hYAi24Ce%HTkw{ur&LP$v;<}Zdm57oGW^dnsF)Gd? zD|u8R4lJsKN>o5F{*t1_t0`aHbk?z8M=Q^in8;>GN#e{~POZP1oHw56H5!ulb|
    ^(Yg)yr_TjLlXcZVC z^0SpZsd-zFh32gmi-<h!W=C#!f*O*KGsBu6d2Q(GF#P6Ftg`>21^3vyL} z5``u1_Uq_FMcJ2Hs+9eXoUA(9+zvvxa@HV*PE-766P8i|A9V1nfbDt`X(_iF z`ProKvjNG~s-PKB7gUTMPq910StG`G|AFB=`a2df!c=NGDv(c(vp=TE7z)SsA3)qz z$^ypukTGZoQ4k^Q<|AlRP)B1IqF_hrLRdDi4lPj)SVzzjm0v5*J%5n}S-JvoilhDW zV`ob&)gt7n@vbG)tpsw>?+*Lr5@EOI9sP5S@8{ZO@=E!8IDArF&BsN88$qnib76(B z7e8WR#~>4z{RNj=N=MIv=T?vnXy|Okz)1-E^qR9Cb2N0S^IAXhNNTiz7=F_;=e<2` zrz!L8$W$@htm;R1Yp~(X?&VdIZhY>H)h?Klo|Tz@XW;v*7wF+WR?@%y(uwWtP3fKg zl78ANjLH>Z@d>D1`f}|xcD~=#Ye5h;FN()5mx>|<(F38+;DZzipF~E@Se|R&!1rmc z<1Ve8-4u%%42YPxgDjSPYWKHDyyg-wp(FRC8?&R9?4qfkAvV_5VqMKIzSaZ$5@`LD zUkX^K@Jp~YjbHLwckqkFn#wP^ty}n|i1h@&_*e(=OPF;TzXVu!^GhBp;}?r{G{5** zxA99Z>(~4eVEs^BjuBcx>lpFQB7P}oUBfSd*3ZQ|?~8|P#l!vlVzG`BcSHE4kaa7+ zU}7=96tvFZmt5A({F2AIkzeXr*YitW>j(T|u^#4^g4X^%skkOt5As`I>pt=4A%4-U zU-C;{>tue(XI;QAMXm4gOCIY;e$lL__$9A(6u(4R=Zd@W{9>{4;{$M+!!Lo>dE&o? z{F28yfnRc4v8`+>e`lh&{fJ*QE8h|n4{^#n#~#5ie%2%WlE*rbU-DV`PDpqqonL~i zoA^but`Zl%F9ZJjieGYDC-IAqb)EQcn)q+N`0oo`Qt>BWrPnsUbu7R5T33q8F7a>} zzvQ#>+1~)2&M$t}kHzIUzxY`9@=Ks~3BQC`hw@8ND-XFM!E%1_vo7YB{MOmxGJs!v zt+V*0bZ+Y>;&uhUUC-XR2$jM?(mU6P3lU1Coabj$#G6ja&n53)0}+A z$r(=0rE+?KlS`aj;p9h7u5ogmlV3Qw$;mBF{s9?4QpO@^*gQv`W@E>{f=vee#g~gVX7O3D~kRn*BJedtB!uhbx6PCO2qHD zPGyi1@jI?m8Kh169ak&;j_cRLC8@4gxq|UO_fbNwY5E;kIsK07o_@!bP`~5asNZq5 z)bF@{>UUf{ahFO8n?Z`o|J+I0b4BHMTyZl3^$KAhV%*J~MM;Pg9g>GV5p^7K1y`}8|*1ob;^4fVTo z9(UY4;=fc`J={?0uX2m2-*MBa-*FqN-*IEA-*Ky|-*NM*-*G#u-*FSm@2YZ7A%l!9 zzZG}f>gspg{LJX$!teKkC~>$*+-M@&3i6_g zSeLwq-%H=~Wg7yrBjo?_GxYygq~Z6EM&FU#qaS4 z7Y1gRw3N^3J-D|%!mp2)RGz+MD#~R$Jel^^zwxNO^`B1cN>Fy4$ftBys}KK& zpCQ%W`V3Fft_t6AUR>4u?nLp<17{;o3;t&-knGkVbK8JaY6}vV3^Kk0$n1_Fe|84B-W8-|H;_r)L3;N9 zY4Q$-OXa-~ju+nx&%W*p^7#M|%Mg$jR{jcaQc()C(HN#sH-*1GWjOxNJrbnESddv0 z`J3Cso4oVF-zhX1|NO*Bku;EBIk_?&b{1CUZ5ft;BQ61V{54kv>a za#-FAqC7M3sL3LbxMd)D7|3%@TCD&HUkS2s70A`qAZONqj9UkCXcNf1%^)FLINUJ_ zmyJ7X>fWuOemnUqoHX7Aa+8zddqDc`1quEfRpf;Ss=gM11aqUN$2D-$N=gga?E|%cvLwD2_sI))G;~$*WsYDo5B0O9Qu8DO4hb9Ak~_H?Bb+P z9LOt9Qjf-i;`lZA-EV=kXbv*34ah&7^lc0BGbgu`I5zJ|bI`t>@u+MUkdD1Uu5$80 zAO5T_zvbkE6p)thf>i4d^3MQ}Cxbwq4gt9`6lBIQ4fy!@2$JhE$VN`Sx&rd-2aw-?)X-@hbPYfI{RHB39pu{2AS-_X zS$YHH^It*k-U12A1ey5<$h1E}a%X{TwSg3OfXvAT$&&+e;}OW%|A8d@1M=e&kVnr! zp1lEa=0+!TXkejt-l3xduH;3Np7UognrLLj?CK~@(AsTBtDq!dWONRVn}LDI^B zXqCLopLK-P5tDfJG>@tzG8@FI|d zoXq|hBykBytEC_V7|8PFAg5M>#HZ6J1#RO@6re&%<8Ea#-66U51hH5=q_PP#n= zIm}7)|3H5J8)WhmkmXN7hCBng@Ej!T1<1CSAg%Jky9o;5p^1aCS~7~@k)s&M^^@-xDE)^VdiLJ_pI&fz2gonmWcg#E0g5lgdfLK9*A2i+>` zxBLS)B8X*;nGN#G9FSkIl~{vJT#LeB0*I5*bEh=y4QuLQY_Se-S`TK)!) zB=R?2LeZ=jH}FS1s>mPphV8OCVK1#ee+qJIC&&|YA+4uTqSlsQ@^`^3y;~mIX5IW9 z$eS}Dj&o>#tW7TA=dvF_La&0XxCXN7I>>=v`0cMC#czXr`#Z=7e}FXm6D0Rt5G@Pj z?tPG-Z6GZjAT69A6CZ+{cm%@!0vYibWcdF;w*3v#_6f+Kry!{_pMkD>0aE!TXLYV* zHRuf<`D=(yh5CR@$OF>L7o=J~kXQM6#A-afOTA|}Xt&U}PN7IDFP3)-;02rf>i-3(wLp20ZJb0`06A9)ZfV;7Lo-TAu<<-2e9#G|^sL592wGG-9SheP-q6XY9fhV%TtAAvuQw%kcPAI|G;#RD+~EcAIa1wmf+FirTkHbNVgw7{}hS{^K{Yc@c&O6 zK<;b<>Gv7PC;LJEJkFn;k0D70FZivK$=-WRt^KP z3!*T5r}A7jNxr7dLL|ca^9TGHRE>E3E*-BOox>lA;HS0kV$RH0 z^8ZZSSvxHO$ym)_g0@q-_8al&hfhGRqt|9V@Hzi;o&0mmK|C7wC4a;ND5&E6h?%5V zVFywvbvkaX)lPyuJj37mLM9x18IK%SK-S&>+4Lv>bGU#QD=sh;9FPa%aesac+zV5_MMr22(zDDnK>XLZ{2d9kfGhp=i6u!fuc!PIT(`jHSoyL`B)38!H zjVh(npi(+@PSdGxnoeEQbn2O=QhP?PFf{Xg|?$M7h(OP9AAGxt{4Xc9c#-N9p7krjrAdPOeQl z4I8DCJCaVVA6SPe2E-wvu*mp5nJ8~|W|RF-CmTPT%z8Q*>~yk)>15^7$;hRXbxS96 zlum{wos3C3S&nov8R=vo(#a;IlQBrQj!310+-Ho62o*F4oaudpxGpYvq=PJlLV%d0M5oh5PCVYtz7Ty< z8U~t8qd>Ds^wMbzXf_GnY#ITYO=35j#(&aD=w@5F%+02;pV?L}akEL_W{*d(2Z0|< z$VayrVphp2#I4f2!tV|nkTPOe3hPxiyFmmOHS1YKM69O^;0wkrnZCptl@GVuD5$iW z9VnaKF|X?;u$*!;xLkHG_dn;$We;}WG%TOpzk*D|@xLk!l2X=%{|LV%{sDHne0D>b z@BqtOAv?}}lUO19E%yzpklosSbFV^ny!)nR#q31)&CH6~?c6s%Rm^VTzA0Ntd2K?a z>}2;p7b_{R6|bD#*8R`$%E~{7Dk}g1RkDl8*FI&{t7J#JZ-!LKZsNY#RVBNQ`{sU? z>_+aJs#UY=x^D(n&F<>HIaM_~$$b-6ExUvJW^}deR_>b<)fBYc)w3JR0*AkYp2ZI! z)qZjn_{pE$1wMrhtezcHNL0=g{%(<9Kqlw2u;7~6m08-y0lxW{$l960?p1e}^b}UJ zMs|YCe+rwZ-khwF-Prw4o|?){>zdik-2W`8>8|T3?5COvbg5eIPn*Jq*K$k2l>f7J z-EmnQPhSvufQMeB7kfdPC@Ly~1sm1g5KvHg1S$58Mq@+8sEoZNQDbZvW130CRAa?7 z^GocS#8__6#KaVh@67By$C1y=AIo#|otd32w|BR<`#m@otvA(NaEj6EW-jE!C|!*O z>2HVA6f^8`j*|*f-O$5c&-hM^(lSDpnda{--?c#1x(+|H6&^}>BEf&Rw1Jv?_|?Ll z<%$P{HTG^CXh36VitjE??D5%B(Fr_U8aIQm@4d|ML3_pQX;A%xR1?GD`}RtLpFy5M z(}Lxi3pm=;JITwKee*z5xUZR=j13EK}oiE}&&T%9WiI9AiQaCS5;R%q6JM`)q|g-b%_Q<2 z0ikdCG^*b_o)bI+Y`Q2(#xAGQbn(Z%WzOWZ71`QDMzxPigs~aFLLJMbK3a&D$YeZ} zC7@|$iydyz?4l%U^~R#-eNiO>r;cU4b%N4E?lF)WuQ+H`!dee$N_x%!Zt|+W?!Iug zd1E)NZdhUE095cDSg&qS&#z$0gko#`uwpCJvAj7D+!L@HmMm%P?P&}!f#$mNprEVL zSL;x0G>vAzXTm8IYkh{r%V<9Qt06WJF&NwO##Hw<0Y+!HX{P)$oGF*>ty4yi<|C>?WDjMiR(ULLKraM3T5RA(A+|*H6ki7@U*+qs z_eWOhV?m`~;IAG^i*OkOPz=-Y)q!CMex(QxC5&?iSX)NIka^K-2}^@HFfU2T(VVjA z8&bKq7P2#x7>Hi#-@)730~z+A*A{2X;pPCPebxSeHdR;r&01$;{0G8o;95_m&?v55 zgyQ2cx|dR9%U5a9t zWsuTGnPij)FGKk|%i& z6X?axV_4fy8K(un+IIAo=NFK*lVJ|*=xy}=7onXt+dz|IB^p1x7}y*ty`$RystrUdf6^ z@Kd`tu#t~`on=R>_Mj3n+g;Q%tL+fv*xt|#9`wd*878uoM(@Kz34chf^pIe@Q-YAu z7)eH1P;_xGr<*6zV_$3rNedx&~k3{++);gFaRVy{&bYpf!Tc895t#*pI{ zkddxfM>p2!b{I9z946nxp!{->v$gz;eov@VHPnto`OE_{$Gwk-vfkHGy`P4bgO$NrJ}g;98oR%Ql3_{; z^ym`eqFrGa>`(6&pJO7gQ+S2JkE#t-f*|_e;6_~aT1i;j?Gw~~AF_uiV~yf-B%Tcy zhA7!a@rqAT{5d2Htsl?j&rrPibBOAJ9iwuH(xk5IaVGmeM?Ca2JRO1UQ~p6r~JS+<@!UA@hv3ZRvIHlIvQIyAFgl z(@#9M+d%lh+kE<0y?Qsip3~9v8o1RRx+V_SYKe_H-9dTbk5q**Rh6Nw>lw}a5y9Y} z$f!T;`Y6<;9vblzqNjg`&@4oI%xPw_4!7+1yPpwteP{!h@|9@x><>8+zu48QqmYNF zG7CboltEf2V9Vtsz6Fc2l)>8R!Qx*@oT6BpEKJ~`Y_d0~$=-nHS;{!=CX^+u=^gg8 z-!y}YBv`b+Ns@ji!YWG;wH$)lvC2rTQds;Az4Pw-l**0Q`Wa1HSj)}m@TZ9W`BV3BwU~Gmyj)?EX zL|#0;aKb~`O7p0d`a8jt@k*)|4~s&~sPbO0<}t&unJ+y5Ce(W6WtCsu$%_XC)gDS( zHfv(Ee}@(nY{ySDb2a32Y}VR{9`Z!=zL(Ma+EI#&QRN>mRLSwNg=ZtM9;@w|HHPYZ z#X6R70420aVRd83ov8GM#Ik1A#~22;H%2hhA7UmbBaD6%XhB1>0Ha^!a5Gn}tFvh= zEqAy8HWQUJqxc#vfY=2&6O|0DL$h`@Es1D}OCq>#D{$9BY_kL?J|E_&-RZMd94c52 zTD2_eLhw+wzz%AGW+9L;N$(LX!f*281W~LlT%nFsJE(aOts_=BN9!#TT4=dOE^($r`?g4US4(Oxr7 z?AD@Ly^KF1I4Bkl6e+{B;f;N^i$(d1n8*|7mkxL+n~kQ|EpwsW6eVBFhb05zP~-D~ zws4~-mNLh!WxUpf7!6NAbUTC=E0eVMqx{R>Vkc4q2)9k z`+#4WGQsGr53R773v0`id~IZ9^;H8<{39lEWIcJU#aQc@$oTJsr(>n$WMGI?j;dQN z9gQW;9*7$6qDI$b)F|oOswwO$Zt9&wdJqVTBcC(IhoXs^{=3|*N*xFd< zhv1=XEP4xKNu}eu+lR4`d#Ke|{mR2CO=(roVI(|KW@vLVEY2K@;*T+*@>TU|U1Ysr zGWr#v(_q02WvQLrE3yeO7Z8MeS+At!$ka!xdJCehQg`&$g zUZ12>RItR2hYw~cGqo0Ac`~h43dFTaY+dEuIu~~BYVBp6BVnCzge^bfQYNd;w0gz( z9TCe-;2VS&IsmQm~n)%rsWb zqCyl0O@WH}$|T4h+Qwc#k=d%<6oki31?Tz76k{l5Q&D~nR?SyRjoz-1IBpuaE>KFf zb63{MG?eecgv)FBdj=lL?y!%#!(@1UffBEki6v8Msg`TGwM^0A(X?%Ju(gY^iqm{l z>9@eDf^)Y`+qQ-6g}<2F8GVmH4NC*7Crg_}de*N~*8AbmLZyS&|5>ttG)Atog^Wa{ zY1PzU{H;yH=C?0}jK1-Cg?G4%Fy@v8{4_Tx5`!F6#_+^Ts7ah~1 z`L07s2xPn%;ia`7qtA{YS`HVN=o9EHuB=9}ZEJ8}s>EqAu)O(clwUaws5@w2LulJ0&hq_=+czH=4D&#zPGh=J!T^>b2BjTAWz~Ijibd?)*C_{`E&0%kwk8xYw&(TUy6ibx$@}U{P`2^um1o!Gts2dk;07 z9&mSsod;sOmBXA!PaZ`b-5$9mPWLP5pHLU-j_FBCf! z(Jvm^!UAgNIycp`BF**O{EwEHj(aQ{z;!{SQ~mx>_88%qKXBZ59sQKN8tDt|yxP0y z7buQ7=?_%;=!vWqb!ns%q(`)`d%eRtU((vu8(>+Z^f7jQl~%Lfg_<==f1~(MTHksF z0@f-6jlJaot$1Bxf`@ytb7C+N`qhZ@*g$JxYn&QtBWp4&y8255tT_}JP_M|fs9~Ap z0*iK|mm51`L+YWkTo9e=3QxDmJba<1QnAjGb2cxyk_KF{DMH;%p zHRTt5GJ-90Jy2zim&})?hfyUbthoeZ@;+IYum%LoOhK^Lr`guiMkW% zRKGd4(n?>P$|!wFi7}2RQT{0ZDWoARdJ*kh|N5o=*!4#U!cW5*!mbqvXZ#guUoTf@ zS}+{gtRc7)T(VxV&Wdu$!f7ROadX&t2n$aoYdouD`Uc~$zmS$0KZdjGl`h7h>}cWf z%2rxXm}?`b>Cv%~c2#5FTX0#jY$w+)7T5#M@OZcy524Z=Wq zJ5;=YeC5>6)pPNyz-}`;`dLqNR=F01D%T-&qmra`KNgE<6d#4sjY?0W!&5ORexW^8 zY#7{F*-=0H*=Rj2i+1eH^@sgxWk)B7>KdnCb6Ce8S54!7rPL~=iFRwYl!`Eh7EJ56 z;+BATJd`EGMV|BqYjc(UP|1>8w77a$cUiPutKxhhY)72+O)hIppq1Af@J;TkSa{ah z6@1UrdIQWVuO^_1Uk|Nb;pmLGzSb6Jyfs3WHJJ^ea1EaO=%blFq%*!F6Y-5;*`!a$ zvN)L5cOQoTZBmA4mB-=_X~lQeSm?1?8Lo8zmKTjh`JQa7wkjpIYD{M@5S#T24r?6G zMvVjDx7OB%{@CTFSom1t@=6=>!=gx>{S1ZFbTUcheFYi0T>n(t`IxOQ`KT zLG;}&b!R`DeL%1$erO2c`u8skH>H*GKP@A#ouKB=F8W1<(La_UdUH91ZNy^K%!v1c z%6|78tm7lAJfijWFRujUHFQwBL-8;c=#7;K_Fg5u3%hs+ePm+WA+#cYbcJ-Ec($uQ z6yNTu&&aaMTx*ErWmDmKVQ@c~KGiGvNHL5IGLj!Fm$PSFx-!HL)4Qmi}tfcmj zfUtkNI6*>KeBBcj>-blqj@>#q`8s+C9ez(Ar5W|6odJ8-N&lktfBe5i=*;!9`kxKz zre99kb{TCb=(d4sKfxGt3hgoIw2`c=Z--gGFKs&*0G#fT`u6LnG7lE*sej^C97M6t5!oE-y7;==PPS@s1mQan zvscM5*4^W36ify9^q~#ZIwGvNF_nq-gptd&NQNLSbowzSZ=PZwU&=GJ4PIBJ+V7SZO{pJ z-imjv4||_OIO2lr0AcI@(*e3)Ks56rojHAsQRiMnc>;d(f(E731B$b;%ca#K_~lo8 zPZPq!O57VUc3{69!Jq#*O`0maeidq3@lIr0OKXmG>5t9`vLd6KrtT)4_- ztN*mwCHdC74t9Kv_RloEuJv{r(LxM2Calu_I;!l$-8FoB0jEayY$?Z$T`jsg)ywK_ z+Je*l7DZ{jU0@HXv>|67ejQthH5U6*5`W`uN4N6${n5jUb)^^^b*H^M??cRC{qd8< z=SV#89t~gCXGE5dzK8Pf;rwBJ6(o!Ak+|T#R<$Mfl02d2R#N?rHk)<@{Rz28^mT`9 z>hJ)?%O3EZ7hc}KzULjBpI5K)fHWH8{vo|)+QKh?CAnK~q1a7J#PL>rKy`iZ4@f*x z;hR)^aKOO)3yX8}^2_SwP(WLf?!e7zrIR+n$UbM&hNNY$L;WR;3Yt z$x)~}v8O*AKB_O;Vh2Cc?j?9iogxA4nM8Y~-v67**I*uW09J7u7cyhhBN{{>FQaeYCf# zlgUn&@zl~@eY}luUqmd=UF=}d%h-A9f~*|h(*aWM_Hxwjkh!>SuBiOExAcX3y?yae z-qyTLw>4`U+rg2Ac!!+vrV^x$T@2j!L&cLY|4k*)f*^154J z`wn<0VOn8tSrIE?$bC-9xHAa)ggwEEoZ|tHwpvC!?4et$O_A&a#a72$m;=B5_ip3v~KyfYXdRH$xi*JlV@y}rMo|38+k;P9&qxdJt zeowCv7XL8@#pz=q=RKTitb8DRwQ6TDdn|%!+17G2%fUlg4%!D{*$d$(^e26mB#lRn zXRzpm{<@IGeQ<6XxBFOoPcmHE-oGPUztUfSR$;Xvs9_n58(iesR9)47u=QkQd^|#y zafRUWfsz2}v;K0@%Ew?C?f2UY&L1fKwT{c;w{Z83bvIkAHx*SZ4NGPAIUg!cT32Dvs}#Z6rBsh$8*dB<^DoSwlAUes z6|Ay?R75E?GESal4G64PIF~X+{boS)NhMAjCfTa>43xXhmeE1^y+JQ2CKELK|FI-fKO|r{ls@F1%#`;GyiK zSaZ116%l^iTW}5smmJ$v4{-l3#k!V@Res%sD#N$Xs1PVMYLyf}EhN^MxCJ#%!iOI# zU9?7L@x`que!Lw{evHF+_1P4s2y25gY=^H?EwA95fQ)PwZh_Gv!ybpkV^H{s(ocI~ z&XV(_(Fo_=rNQ_3OEdVG46^pXjZgFirYw4ZZ)hx^@283kgs=yx?Xa)la?bYK03l<`+TM}6fBIDZZY zz>7KeJ*<-$jQ;xtqCcF~oWrFbQt*S@Ei$YtU0CNn!j_1OR-ID6f!+}2pYBmVpYEt& zS^6b(`;6)fVTiC%eYFCzpN(IlM#Hb+;ujc6W$Sb={W*H0b+#*ZUpS$;*DezJB<9 z9wImq=AF~;vDs#(K=BbccTT?@V)4mGD1H&#&num^ag4=PzoIznx4I$(zy*`)Z0s;a zh+4)xra>SO+-DC8vW~gzpztxG05{Jo?TtqJen)Zq6B+sI>+gG6hetLV@C4Cee@Ybl zpdIXbXOQ)zWsM1cqDC21Ur?frO}6+i6t96t7xd>1*52_Civ6C_eGJ~Oe4FmCuasiA z^;3jL|EpECrQ$gr$`N!Gox5(&Vdq69Q460%PPEUvp&dNBsBh$8xfgByo`74wsnO^( zh_iMGhG!sRNx@CwR=5>D2M%`EdKasVp)KQq4pL(@$F3P;@Xz>%_V z2{*nT9H`X+gHLg*IbP-FUs3|Ku@wh6T&s(_%?#SxCGV;hSa`_~eq(Npr-a zBHE0851hZ$XL(rMgLbB$^#zwN@r6^)2SfC^Ax3{7bc7!q_)>|}#$uLFqOI%-Ze{20 zT+tC8Z5h%UPCg!@zs+Q|e`&M(g&6*@=Mq@Vu`U!!gC=^+GL-$JuIoA$(Cfh%7r zowa6S@!uqVs~ybwT8V>9HHx=D={HKEcH*%1>$Dj^5I5sUen+WmU*;KU$#aC zwMOrVMzAOWA7)m*Jv`bPG$Wa`nST*1`&LQSs+YyLiZ+nQT7}j3D&101} z5w&HqxRE2}`|j1ksdajZ3v*a6lJr5g5vU6++sT75FOn^*&KM#BFtD?PM}AInRS zNWk*%Xw9|dD`FCmrCCd*88)U7^q7RD8U3BoP4mY<>{wJBF&_4Rr;N}_!}3W)K#+?B z1TxeCuseBVIFvLS)kLd#)+!~2g6S~(e@ccH42zc{XMv?RQWdbV#h>U3WH2)+m~BOk z;M7A5#`$}tgXWHb&q)!dufJD@X)&_+Q)D`@L@a}MzgHqUNk7%(=QSifFq}_sFW0k~ zMQ}VFTOau#W8j$H);m^)^NAm!2Kf>6623nsMSJvMg<8ZcV~{dImZBT-CTOKtM(z*6 z;~(^H%aV1ZVcr4#uPDv6>Zl~mmv^At8psCAQDRw;#n?!2hnNXlN{4x3fzOiJq><|nQMdH9EG&P?3FR%^ zVb(1rM(g4%??@CF1AO4bEhScK29}RPRt(EvB*T!+aGPi`WX2OH<9EUTwtmH6i4AdP z9Dv;0`qoqypCA^E#u0G%w$fU=*0H=L5oG%w4?&uHvEdCaWJ1o)NAmB$OM7ustqSCBI4iCe5 zGMq>}WMNkj9NHc7e$-3LB7dUzcnSwmtTiZ$&k*THKP3H-4H^aOswcIE>#sd`)OrJJ zjUZN#B1rs6f1+aXeBudtc?=}o#Z3Ti7VBF%#@-IYPA^ozl`D^aRuYWj&BRWkLgHQh{9&IB zh_7VG6gYJUFB03{nbZ`rFE!MkwOJ*P*i4E*+|_R$SUjKjO>hpO$1nO@XO?>r<;mLl zpi;SSH+0f3`;6`+E|lgAxmMuD!$}_cb0)(bkR`>Uyr31)avW(=w5EHNnr=R1-cx#N z9h)VWkwV2X9+^|Pi7dTV>IV2gOHX|t-qUZIS@J$YcI*hun&$F>)5D~E~gd_KrE?VDX@mi#2vHZT<8qXQxW|4hwHfQrPct23OX$`}o zOT^sr8RS0DA7@zn?dvGs14kYxU9|GD_&Bn=Sp1RHMV2=NnO!vhJIQ}3cs6B`*C0qyk~BXoR**Et;)Yx? zGM+oc8Y9d5Ci$5N%N2cIjV1SqQf4)-HPQPai?^kK00nUdc{e7-O^TBt zGVR9M(ZuDtjnK^|Bl?I)GbH+!T?6=4C_W~6xF1|q{2YNim`j%TE*mYo55*`XT072*1^1qQNkY*Oq&?%P~K`MQJn6=DYO$t zlsAV-ls6*L=CC?j-iIX7H^}x4+@U1Vg~Xh~8(<_nkKq1JwgzL~oFP%1wW7@#MwIse zNOT&Zb2}JOUUV+e0zzrgd0kkz1{q1CB)pH{$+#%F4(4^j5`CS}{kVd-4&~LY62-|d zUfpUydDW>zc@YtTgId#UoJV&}dL8w{}NFB;=J|y}Mp&xcO zdgd1m66N{(`-3F9P@cp*e=p%RWV|=qXv`C*66M)TnmDb?m?tkKT1>Y8;Iw8P$}^P` z<=Mb2Y^*wTH<3naJ%A@1a5m5Y^L&Fe<_CDU=SFnPD807y=lD9;{1`87`LS~pKGxTv z{8)+TLL9dEK@FcP4KP2aNn?I;!sj#t$`4Kwr3ayn4H_U>5&qE=ltJycy7=_xqPht9 zvFPkV9ys~AhMtS+V1BHTdC12aeBh}=8={$3ZTh239m-EK(v}|@@JYsC%g+oFWzsmy zUVNOWGv=FU3G=P)OeBS?L-|fuqI}QzF5dapp=0X8((fGWP`+`LwtRCEiZ_xA>tMb) zk+8fu!JCyjlhijjs5pT7(wM zHdKs+n1AqvMytP+D3f-zhsv6te4y+vCB~5?s9QD$4*sQ-*ldH~zm>W8Z}Z>Ei})|> zA7vf>d*dHvHU3L{s-z*0`P!#SSGTvM;UbwyPsn_#1aGVrEgEjXTg#AV%1Bh4^$df0 z3%-4(jI%{)uYZ-%c)0UlWg`AFJy#~+zbVg^9Q=3jISDs*5*AEf79?tDBl7WIfejy> zu@Pj|-d1!&4)tPN(Z+GV3;`c7cH4@sD7|Vc((zwJL(v=ml{FNp_^+m+=!5_4?a+Qd zeyRq&?T3qYVjTW!-$;zae-({b^ZQ034UgK`iwxvvpJOjNy3LhYd>~7i0H-Ql1K@^9 zG{<7jh3EES1Zs{ji81)^xJhI=lYu4TXHKBTB>F)AbslEcE_Gn-Gx*Pi)f}Io8YZwS zUHF1(77=jw9}iboX5X_MCKMBhb{4%&lA2~NeDBD4b#fBpG0Uw^Vif-S!%0lWf8)$p zdvoEuSq#H}&7Jw*TxXHzP)aGpWi|OhQS4tC(zJ$r)#ebQfXpkE`e>{pO(Gl7gT8V7!~?E6r{~wVUv_f9Qg{ zjd5p)n~0Uh?>a%TtMD^fE;uvN+Fg{H4pML_Zm`>340fag4D0zAc;+rT+w;9%A$0W+ zT^;E+LUviO&_i@FG1Sr>PI`#J4t$X3ZUa{@cmzU6Pm$uVm)wfxHn8BbhcE2%6rCMO zgdW_o;HIa@k{Sm>ZJ>JA&n=MRaySR1=-BlBq|VceMF8_YY=1uYZv|O4^w?m%{@riLug~+A;JCxe(dQF znT^E|nMcmzjSJKEBpKU%^1vEyHSl$yW@L=09WUu6cO{gQK5Fm*%aSK(?PK zl;*48lAkD*K+C4k-(QqSU?rUN7p2mPg5PR*KHe(?h6PxQwy&8DWEXk0g`WdNn$$95 zR;A0l{9#z27-8mO7B{zPP!S3qC%i)8yFig4U0;XDATiXwhHC#iSP>*59qBh#``|37 z3BsPhP`8%wcaZ2N^$MX|u;?m(?|}KiVw}BvLVzEGMXV$JM*G|>Xc8huc{0S*Xq4ax zHyTP?ie69~A_ANlWHPir+Cq_8_(4uH(Gd=Z3TH?U74}krS*?|b?9)|f|Zz3Eay{RxujA_npM#3Q-JK0p2WTs4O zM#=w^X=pPMENh9m%_u>wzIrX$xoTx&jE6~nU(CT-m>$ADUE#~rwz7ba%&N3!kcL3C7at?B)ZW7 zcFU?PzRZq>bx)A#40Su;J7!j7wlYezHfl|1cTdKcql^;73Ut$WaBnM|qz03eQGyyd zx<;HYbCj_UW+$TrHS%PBM!vrGA{;L)u!(xUqN-)1dLw?I6g{RbDb}~xp)kIt9k)Zg< znqZ!??xP_jO5~f4P%|Pm*~%!<*@+IY8INa~p+~eB=Z4cJOlNChqOw!aJz7jMvjuaL z9fj&>G25914TzPjK>_Sc7C7uii*9hEk6(Z%V@yUy35FE0e)oc)^*3_t;987uv*#&_ z!|+>-=r^Miia4BN zWM$?qqXe_H)Kls0!U{}ch6z=7OPLkgcY?qUBGAkl%whHdBy|vj?RiE-g)JS#P&fLG z`F|<%uYlZmQGwaA3bU9|g4u2&WHp4x2^UWWnZt|{1VMsng~Hj)AQPDV07{(L`xmi(k*h2$K@4=G z-&og=WL+r;#uH_n#1%f7;Aik@Nxw}P3)%vp9C!h4ICq&p@kqXgY8Gq^jPiWhS>VS2K6UxjwP z(GxX;^u&Z@tE!U4da1_rV;*~{)@Rzw$vOz?D+W5!Z>($gu}H`uRyi}oWMkF)C_3aH zO%HN{#C~F|#F%i*@eox9(&MCxY*6M4lbP+9YHSq@>@T)UWo8!ZcDTNyOrQ#MVGAY~ z!vtcYqby(*;(W*Wo9-~yw~lzp2sVYV^%H^7E^oV7Ta z;GQZRJXwJm$0)&C#&0|i6ieYqs%RvmVBRsCcmHe6Rn68+JT@7!(!>T?4NN)q4LnT~ z{q4)BTQ7ov=~&hD8>>2EEbL4dLmU`#JYj=ej={m;mtht4M^V(e;80kfAx20Cv*A&O zc-ej(IXexTGsR#h`i;)Ijy2O2CK7IJ5B7jvLqsn;M_7+}%vQZm9V1Fdd&_}|6`0G6 z5-K$gmYpDHuo&#j7&Di-eL^SEMl(y8wCo&mnF){rrYl;l*5scqL(90N@M+w7z_W5 z6my(;j+)uYdVLLxMu`_)Si*#4n8-G$9wi1)_jHyZ(~@BVrG2r17^Gp`lP#H#j1r8b z0&b2GQvr6~4UnG}wlFJM+v}9mY(8CN08B=<;W|VQ!!~7y-}U|7TVl*bHu^S1WuwW$ zvBFj6!&GFHU_OgwKKcn{=17>2Y#u~ri{;XUDaa^6liAW_?GzkXSeqHhzC$JlQ7*Na zZ;X;UZ8|q3$gE?OAUH?5x{)g!CCJ=klpt6DHc!HEKpBTOn^EILC;K<3ufG9><3t}P z`i*Td8~b|9Fs#a5c_JQ4o`f~`WG$v7qXhj-XFpXFMISs57-crHCBMPWd@+xEznR6% zM)nPq#|f}&M`_*VUAUyFArT(foaDmF?ty2 zhG!&az^r3GIKaVK*qboARG_Q0D`U(!MhQeE;LJ?oCrukcp+z{^^ZS+>n1}4jPV^hw zWfQi`u4HT%)`~0=NqA$#ddxyb2?j8CqfN6&K(r^EoQyX|tiT*(lu!}s6zCjsW(DRU zd&dK6XJd?3|2?@?qz9%Vqr{j+y2O}+j1nq;op(Apq<3Z@EAfG}5-|g)kGpWD%sqw) zL}wdH)wAx(Bi%C<871}I)9@n|n23xLRG3zmKV7`doDox!U4zsTu~6pBWMr5?Mozt) zsbQo~CL*H*eNKkV8Td%Cqf~S@?V$4oX~?dYieyJRz=kuz<gTlm9{Iij)YIJHTK4sc?Q8016;*e2gvFWAuw@IeqSK1ufSH6-kw zE7IKPH){PbmLIF}4)O)@lG_IUn7oC#$uNP;&RFAUZ{ah^neCaHEIa`+=8HXMmM|;X zp{fPqpbH-}8yO}BbEQ2y<`io>6dtV0!LSgccg%s!IGidYOx=J zSK~AddtxrI@I2_gTDd@wOB&{nry%y;i&@ z9Wv8b?PNH&2205!7#lLv7bWQRHR+YEKhlPIzS>QJOY6j8>6RJ3%3$S7;;4*@xxFYs z`~A{htjD2@ohM^6SSUfT9b|6AC-UeG!ojqUP8;uX=&?b>Ine<&O^a+ZoZ5^{Ssvfk z1dba;1Wr-1BC~!?g&Q02v4I85@#Qoh25uDNJXykYUX)-)ts$mLGlG)t!DdJaXq#VBdRq+Gje z*;U~9;-Zp*LfmoA?wF8^5-c&-Tz}8;M1sR0({f<~O^%6R2-_{%`%cfx)j($Dq696| zA@>zAz`J<*INdRma$y3M--{qn(H35R1!p|jG1GBjqC1Z9%%724sCi~qu7;PPWT!~? z&7U=`EH}F>zXUg7vn`WyeGRK#6~kren2rng;gdSJ?-h35cdsixRyK zJqq+XWcIE3cVzZ^_6ZM}5z}tj{=`k@thnPpJc17!oDtJt9rlJtA7~iAlgQ7`D;RG* zdzlGqD->0WAu>;1{IcTgiDkKXtIjG+d4-7#!s(bb2BEA5OZ5$B0GzF0g_w&d<=(JVz_dVOWK&*>ROa+raFz{ zuRHo^8ccJA(~gDTU=7x3^jO@{2cI}OAEvybgv+}7P0<%hL`P)cV3aAZC_ywG7$wRp z%{`M{`FDoyZ=uCfD$rV(^%lM)q2E}bD|io*c?$b_?RF%vN_+>WD#Tm(hV}%h(xN)> z7}>=adcG|>vJ6dbW<&YgVzHT3m;~zdq`GUL@AP(Ki3?B#ky81$h?a-`o_q5o#XwhzSwXNH*DDseKn zo)pC{EMZzJOrYi%wv&5}=z$MUj4-1WCe#53LG&pci!y3(Xl0Ojt#&V_sImg4W#{GN zi^3`Vp-9b|xvh4>l^QWgS}>`V?-Iy3h40YW2lH5cu!K5imi0o<05e!MeG#tKh%Dc_ z3q51ZUxi6sR6gR;!0c6zmP6Dfkp(k9#!Co`nYZeVmD1<P0NmIq()Sb} z%b>~UB3~AjnW$1WNIijiQp`kDeK*RA$vZ7Pq&ag>%U>I-3( zddxQU5tMu(@}wTqOm*Brl`>9Bm{}@%r_ABN8Q~$j7*k4NVyIsI8qPT~q14Dd+?lG* z<0X9iS>Y&iWjd+zaP+L0BJ*G#sc!r0bl04-_DSZCdi!^;zf+t@Q#GDhuK|L@0qzyAjJ+7wGOz^VaB(WLOM=gcb7sPZKB@;)z0xlQD zY$;&Mr~|O>qL?dlVzMYoFsB)MPL8mk7BATBl*ytfL55!dKRlh`FJFsRPIHtSU!?aLowNUZ3$d&p`19j^w zh`21qdKYKs7nMxI_vft4BvAWd@;BCg%)C!0e~{;ad_BSDOz4CO z-RI!#-gly>Y#3&AItN$3vktRNw4QJ%IU}DB&_6y@GG?(tohF7V|c>d`O;h zWC5762@|~l@ep+dC&xKsW@@4YeGLKf@RGI5luncWlARt~FdlAP#WsHDI=*G%f-9#F+chQ<_6 zZmv*%Q^eZKtpo7xP0`Yke&dCFXAa!GDH1&yVqPaoFtcu;+!U?g>bBmE-T4#77N&Qi zWEre_X;Zwjlrp>1F*tuqBs;Sc=5>l`3!%5g80nTdoG3xJE!JNG+y#AGc$;{qLhD#K zaa%;W(E)~YIENZjMC3c9LykYm#em?N)T@m9*QjGj; z4z&A4%=cs^=6|9DbFjdv`#2`3oBH{A@mHrU%>P6QqQ!&`sd~L1GCHy;vp`XTV2Lz! zyDvheU*>|M1i>N+CKmJyz{fb5?P%PW@dVzxk2lvWU^b{f#=wdDVkEOcNjJ;`MG3kY z3^xP&w}w8gg$Ff@Ba{U9_p+D!Nx=J|=;KDev4GcP@4%I_q+j_^bn;{^=7^$%W3qxB zAx^;)kTsYtiW1Z)*3CP@+X}uVVGU-Aq69VYZL5|+M~D|9#F;giD{A~?Soci$gQ|#u zjkB|P_6KMGSb_PX%5ZU*RUv3XS#eSJ)M+?EvjQ_mQG$6`40)VTg`13miK8e%jRJ#4 zmq&OJWgko#HMOKJ6O01qAj@bDk`49XkQBM7c;!=7(}A zgHylanaY~X3`GfMKU~kg1zv=7o9%+#ZVpY4`hl z>=%@vU0wU(++KQ$Q}ERB#br2Iw9&!3ABKG}P1L6g^^(T3a*$Mx{7>C8Yt(L-^1CRJ z88TfIC79tnL!gu)^hJIsSvO1@_1#LUt-;`)(cj-o)(ta8QG({9>YKYdOBH61S`0Z) z#6szdX`_0rhx<>&NC&J$W{QH+14u2D^QVY#BN6suw_I(l=A$Q~H4Rz5;Qm31v*eIs zGiHyX1T)WtdTR8s9@b(0C`wQV--_t2YWv*x^^z*gB}K`9R5&-{mclWIeKD()-400k z8`sWb=OZGi&3}s+H~Nhc2g!(s@z}kyOR@<@PR9jfm8x)rh3Tm#h#a08f+GN%GUL>F z==P78V$ybQ!O?%jFh@E-XU%fK{i&F0W{kAKXVx|-@!PI4Ne};F#tifDTSD^Bl zD3$_dk@^Fi{uO1;7FJ;bsZU_tzhZ_b3z#{I5-fNZ$aGYL^fBKN!hTJ&H)(suVDxj* z)`<=pCa}g?_0zIBn&AQIw#XyIu9y^x5{xoQMp>(7xXXN)5$ZUcuvJrJKFk5N=?Y}n zU_Q+CbTuX2RVxw`LE#ts%I&Nm5kbjpm;#Ct%qCT4!{!+?@B28*SeXuL2`scz`go1siT@9O_{H$ z^;2@|57AMB%`neNjkHCcrh`suciWk{aNkMIHZe()6TZ4OtNA8oX7aLw56o(=iFuf2 zG@^qPW?*vWjhD>5G{zoQJFBBj%&`>iK-PVjV+qn-)JFEquJjZ}xu{X5=`{GnIzy$4 z8tq00cwR1-qfZkk|7~!9TQhvhr)_JNL!|l_{OO{$bEMy>xjGjjT-6??l>{OE(o|Qq zts5O6_LB6{6BfCu0kF_hZ3esC)JE8ftj)|!MIMmlruO&4*Lpa6BA+Q3WrC(2zJv}n zvxG^Ret-|$)O1f4FdGvk*rXZtGqH!p%l>wgcFe}~FU)mU2RpMJ^DkWsf_d(0|G=r! zi;8k-?KeYA!9)qV?5n$sz$*a5OvOYA!h>`;5=O5c>MUboIwnf~qtT^ssM%RMVQQv* zFxFEYBI99BrVcIPLr*nJdSN;yO3+JsT|R*&W%+W>oTFiOCQ9mS!P!5CI!ez>&=lSd z9(t+0OxoUA=;W<-bfW`oqGPg&hC)o~aHM$mQNyZE4-a;+ur9MSWyZiYZ*_v1B}~w? z4$^(p5uPkyIwndmgb})vI3{FrW(}rd8km8bpVT4J3G*-Qh6Rn)QPK$$FHwR{a$(WX zk;tO!tJ*<;uNrGwOC4+27#QNKCOOgpM*T@H?C@3RdNRiJOO&AXeBC+Q*P zHixJ#P!phbv1byd&*6E1y3C%Lmp+AxKsCdmn#%IOWsM*vY)mlN1gWu(B*GGXp9|fC z)bXZSq!GUy_64b39q9nE>o^hwsngAjG38P|Ob%AdJz2mMOO#;X?I0;cZQ{eUM#AoIa+<-(rmBnm6e`9;__C?m#f^SrDH@IAyTu%-C0eRTPj^l6_heNj zX`%%EOf+ch@_B$?K4ldqY@!5Ja&?tfNEefF3GuF(=)?&RQ;0y|;;rk1$K zqPaRn=FHShl%SC@Hl4r8nGKn_soh<;+5*onmM~`%C1_Y|$gTTLrM1*x`X)+HBTv`p zB^@$zQ`X;*&`RxS|2|dMOqktDZS6?EvATlB!RxKmL{Em8wTTk+)Dx;(;l16~%X!Xb z2AR6)B^cOR?c>Y>=4|Td4%=F*$x^~>O{083X{|=tPoT`+g=THkrjGO*Gix&r(%Ps= z&I~bAlT8S0ZKDn_vxG^SPJr4*?c&J-W@n-VPmP~5NczI+UCT8+agoo|aL1vaPC({`i z5TOotW&zVLjTi=pBJfhe5@ueSk0WuknhK*LRWDB#GwBi~SghfcOJBSV$4{X%$ka=e zAebXT$DI~r2xgR-mnf-2KmAz=l-V)iQZEafi&96*7@2EnGek$Lxl)B$mKqen_Glaz z*dvoF<$*ay9VG=!r!*f*V$^JD!#qm(JdJMC;6oeSI>LrbptN(oEL?~!P6e`3t~apvKwbvvmW@0yx+~?d(XuQMYUyJnW$M zx0mDv(5<5y#H3N`p4Q4;}GNhwYe2X)Sb(Q!`BX z+>cx=FT+c5Y6nL;Ku_i4;9?whLB^Ow=@P_rQnOrG!1PI&fNKYQ3QO;#wuOahQ{3>* zlwqb(Iu6e|sblSTlJio??W}fnqu=Ozm5dU{=gw*y*cPHX!L`n6lqah)qY@?98M;H# z$0ecbGe$ImUR~5chXv%T)k*wLnq7$>Ea;*}x{(N7z9d~{!lih%HIxM5WhAnFDeeV~ zDz&%A=Y8T_@{U(KxzTUb#|`b2!FbXi2({hE_`6tGjft4TPr=!EHQ&q<=3r8wYgaYL z{!Q|PLvmNOyBqyRPrIb2Y&g}sv=uz>hE<{dUQD0SU}Yv`q6BlxGw8S?^^uu1n44)k zTQg6onA10 zGQLhu{RYpLA*Wz#hUbm$iiT32K@>;~U`T1hrhkYw^X} zqoAqymG2&EHz|4_xq>h3de9ykC#u2Hqt_#dPgKL@LF8{xn5bsiPo;>@!^K2(xFh|> zP*0D8s3bMX#8B`Pn3<#wmwId9>m;?e{JjH0da8-?_f5#_sg8AEgHQjlhtgvYBH&3+ zHQfQHMv%bH zYvu2UU_U_JAb;M~x=%~Po1 z@Xj#R85S;5n@WqhtxZtcVr>*SrK%I8=xn$Nvdr^4Lv^ZJB1Ps16C9a5zb9DI)UhVc z$|)Kyrm5>B{vzhWa$W&W8k_a{0jfV%BYJaH_-Q5JIKy3wigVaPRn$iOs z`KJeAaBh$~TZ(oinqbYHhr{5N!D^Zm^++jUX&VifoGnSTtM>fp>?gP3_reBitOO7CG?m^&_yd_bqA#^M|W5 zq$qEs2@3yuFbpzBsDq^F&O{UJUcb0KTpgiCODA7|*GRRuiJkNuM`5SP1K$Z0@kn`) zI}toasj1TB3gnGa$2**)z-P|E4w&^~d$1X;ws0g723$BEqDHGJ_N?(4EE=uOH1Y2& z3p^jKu8}}7tRJK1n2wU0uIu6NF=|scIzR_=WQmc?bDWBcd$QEl_N=xXO0v{>4*dJK zc_xT{Z&fD4KTHOWy9jDHh z(M^X%i?6J-S+b^%~4vX`!J=o$5iZYu$%!cfIe1c=qz?V#r)8b(?T+3IJq$qYh z_T#~8+Ct_8b)drrs+<>|m|*@dKeeZEEy$5XSVjBC!#@+$0aD}pjoJx0Z=#xNVk5V0 zP&-jAGxNdU+pv3u!P*aQg+b9IECNemy9weyUK|tM z$!e@r8m5?_)@Nfdyfs;EFGXE{)z0^`BXRh4o`^$EZK2u-+7zmx(oO8IkY1>!%Yz>u z!=6GlRoY&CjAKd9hs`0R$eP2Sf0)4L^2Pv|TBNp=CR3llt|E1=!(^(}?}HuS@cd2v zp>T@Y%8^7^t2f8Pwkc|wi8Zz(AH@`PwmgVz2&Kj9DtX{&4-HGy-SS|V0~{z(cgTY@ z+_O`v?v)3J%PPb6 zJ$Gn5T|Fxgws^wd)769W;3ZEuG(%k@51Ir+&zb5MX3oUR7ct0(F8^@Cb%S3)CZ;Z7}Rxs1}({QB|)DfxvQnY@-9L@d62e99V|5(G{wm1YV+M9HPggKeR0>qV)b2l z5Q8l6i`7d~*%ajfNvYfWg8LG+zr+_u;No<3i#&K92{udBee&SNC^)iIEtZz~7)Z?j zb#>l>RTNzt_XdF^bZH4CB%y^~1q&jeQoLM>iXaLhkRU7}h2*M$dO?vIX$dU7h$0|L zdDVz0id`&-iil#tiqs2fB$Ry5bLP$wzx=Ut<~L_&XJ>b3cjx9j`}Ddfx94mOfwGw$ z9o;3fgLze!vZ3L(q2F$DJzt-}w;4WO-^5LxgV`(=p~1f7(9b+c^MY+$=LNjI9jL#) zYJ?-JPUspAWs@^q-QIKY_#$XT_i%S#)cQ{D_j7~847%<%G+^}l1b5Utyrqg)k6W?L zIs+ln^-~@9y?MbYl?8u#t9$Ew?7n1f@8MpWA6#oP>w38B7X-6Rg%^8-yS|UsH*&k> z;M&BmWB9Dz$Z&W43ukV0KhMEQPlU!h$?oNx;6uja^V`vZl{R#9mp_Y!$x3(i4Yjq| z!r(xII(tKH-LMe%Qt@gHlv#0OBlr46!FwtT`tV+N)S}=*Q$BP^xLbAP##`O?i-Wft z^!B~j)~+)R-NlPB{K+cK(7;2-Ha2#P7Y9d$r?Aa+W31T1$hI%$gmhhP%J)ey)YPZ7JSoq`c)+*OMDuVKTdBxEpeV zn@pzaEcfm_oW8TT&9CPzUlz=YppA{KPIez(791KbMVseh*TY|I?UpaY87An!Ja_Q& zU_#aJ=7nG92)R55>-*fVmSd#f#0m@7g+uQ8#kQ{34aU_VLcLqePV{gOEyw#3&YD;V zI*I$=IqthI?y-`|T#VC)PbuCN!L-VPPA_xcT@l=9%I{i%OX!O;o!!+dG4XE7*SS|# z2A74eOTH&s`ntS6NnCxY<3vI+$TH zjR(2AHsf(;)|%k0W{rj~hr8`R_%O!(a}7F1)@a*5(%pabOeZ&eZLm*OLA~yd#J!`h zoAl4I8287ucxez^7Y&kA<<@n$bwABEmOYFAs1J^dU1gBH(?G|z3@H(+)z;NZ80{Q1~=GxvDzQ&H}ad3g7W--sKg zRB++hNVnb6DWGrDjl8yTe zH_|+C)!7tGHK=S&q?_~hZ}+*!Heoxm%0sAB4$YY7gDK%}b2|yIL)zi|U$?oDF9h2} z5Meu)lHHy!1jiVU;;oV95}euk2Epsx=pIN4W1~-7ARB$g=A7}Zq zl7Q6;){GUfR>8r?1guw(JWaqxg01Y1E;9r?Z-I2jX66D?{^=Yk-(t(1@`VDnDflN( zz;*>gR|$AU!Rk!{b}IO5i-6q zrgPt@2#q@4u|W21zs))Ij!Nd0AYJD5z5|;HZKH9uI5%QNf8Y0Y51i zaJ_(E6wIz9;5fkyb{J$CS;rp&0wB_3e`)!ONGbnE!349yX$5&z#N(WT15j5)l@}C1 zqLH9T!EpnOKqFfb79k#i6{yR!YmeEkQEH^i60@1BtYkaEz#6iS2O>oRq~R5q<8C;q zHKn+c1yUStb509WTtxxo8?OtXmDNc$vj(U)ve~sPkQ!>+oCE1b7S~fyw~l~l1v~2s zXr$oA`U09LfQlpQhz|jbKOGthX|66%aHLCu0;o0;v{7(tjDYqEzBQne0*E(qm97dP z-AK?~LCZLTfOCtI1wx$L6tsw!b$Th7Z@?W2pykL~`znBvBf$U#&~YRfsDLVt0D}$S z_4kV*_mI5H!$28#xD2yE4#RMpb9%Ip;*knc4H%_hodIJA9%hY{en*YtERY&gkPDb{ z3Ol0wVO#D{(Gg&x0xCEHOj1ArM}Wx+DBK8;u7JXg0GSG?*$9xO;Er|yA$}#4XN1e6 z3aH5lFjWCH7y+g$pxh$B6AGxZ2oO*}eMNwo3aF_F@boC&|D=N`stEFox==_FV2%Qc zCj!h*;5Rh$9wh-ibb)ixrz-9#$DFoP}fO3QY+Z0fJ z5Ma9k>I?$BqJWBm06P^xKv3>~yOmHi5H7D0?BL$>vjYJ67RcW3u{n_pMDbn)lnexT zTLC2l0p3wSi9mq;1n%{`{$9by3qU?FBy>Och`CHQ;ijol{HX=fgwJfwq4pov{z3r- z{{RjupuQi#A%gct$<>D0B03Yd=DTST$%mWBi zP(pz`kctW@jR#O!0aft;A{0;w51@(yYTyA>Q$P_sfEon*xcB^E1;7m-Cpt2l* zPXU$X00t|dk{rNL1yqg$xK{y{;&}ZHQ$m$ExC|#)%bn#HN&rS$AUpez%{df@L-A+@ z)P@5XqkwvF0Am$U{tY16f`I70fsD7rq2e3B1O=3N18@{j+YKO90rlJf(iBk24Io1S zHQWHED4={BKp`Sfv8$umQ|eKm|5{ zrxgqjTo&?-5=ySYWsU-htpUtaK!r7c1q!IB2Jox`DyRW0Qb5HtfF%m3kOq(|*PrYg zmC-RY|f$P8H(2_pvD=%1_cy019(mWG|c4sdtM2Z z%iywE0p-d7wkV)b8NfCLR3ih}u7K)e0Iw*Zr_Lh%2|0xAB*=0wE{#m5y;xeMU;(R}`u8mQa_@~65`x(ncM1yt$+_(uUH zx&TfopgI@883mN(0yw9DT3i6<6)XtcEu=sRRk+|%q<|`103`}2yaiCIfWlh1<;J(MfPc(83I~bAbr}(<{V05!M}|HN@4-DQ$R5+fDQ!P zSYzT609=2aEs-j_+MGinEUeH?0oAVnZc;$?D}Y-RQ1A+%hXM*-0rXTr!7G4X76cqB zUV-$n#G$Yiz?}-HYX#6(0d=ha`YWK86~NsJC}RaMkl+RGZ0Dr{23sKeIy8~jpOjO+ z3M<@e%N$tr;13Mg3x@Bo2`rtte+01sIp+Zb(gqDzJ1F$yS0#rdDHN~lEz zkgR|rQ~=`@P=g9!f&!{f0XPb%J_V4ffT~jfX$mMc1&~1ykd{+r3S^49P*VyZTLCqt z03K055h;Mj6i_`1V44DoMFBjnfErN%Pbz>Ulw5x^lu!!_E>9_-{1d<|1(bgRn5}?< zPXKcjP~{0=z5=Q|0puv4z7xPgfPgu4lyd@EtS;1X0$8em3Qhod3aHxzuv`JfngCWP zpjH#WDg_j10$8Kq==p${CG9BY<}mQ1=MnJq6S`0{B1ywT%EiQb0K)fKL=q#|Yp+VgT2G=mhcW zdLUoWg+MOegEr?-%m~GY6i~Vd;2Q;0DgrpHfRaQ2M-)(n2;is!s1M2c|0BsW9HtgQ zQV1?TTOh6YmASnvrs5Eaf44x2|Fk)WYC|agTLIOE0RB-xT_J!|3Idc70y(3E%0U3< z6i_q>;JgBg1OXH%phyrvkphYY0hB19J`g~u0*V3wTnZ?m3J}N@f@JP2ze)&j9Rjfh z$j*k@oI@ob6ko4^LO=kO6j1*MAY1`8e*hvCtbaNnq^c5%{J^EU0&4sK)KoxiAAlPa zP|ydUjsgn!0Mt`J=^lV61=Q;SXfTHNAK6(7^nf%{7fSO0#3-O94?wH}s_+2BE1>KS zKr;o@+W}~yfJ!?62?_=V@`SWjLXjP~v{gWP9f0-*Isi9~3D~1e2_2AI)P=%106i2?I0vAo0?Oq8^in{P9DqIwsEh+}rvggi0Q6N5 zpcD>BeF__b8yo4ZwX0C}{(5f8by8nUE0* zC}9JakqRhY1MrXnYS#daRzSHLfH4ZFRs%3r0X1p>k}U{06sZ9jZ;3;78h{B3C`kk0 zD4+@rK&k?&&;X<h5{V{y8GsoIs2~IIR0!buqhbumEOnt&48Uv!l!yVCtAMgF0P_`42nHZW0fk=x z7Am0F3&3Ip6nNq9UrUux+669o3aH`&uv`I^TL4xlpjr#SDg_j10a&AeqAURG2t+ew zQ9S`04Z!@HjH{cpoSH0H;ROYhVF7qi0cBVKwkn_u3&2YXD8K^nGQs~imM3%(u+swB z=5FKy&YLWsXUbn=If0bt+nhs971Xzf;0^lo!?6HwSs?!VY|f#43X0!VK;aaC_Y_bp z1>gg@{-jDOq=0;+E>uSW_(Z|BK>`jCOk*qffm(QcVS%*bpv^f{L_zT(1r$L6_(s9| zBQXB}a##t~P5_Q5D0xu8Q3Vt^fya*usB8l86Tw0@iyy`X_|*bw)^9fFP`m`ie+ZEI z4~mt5{G~3`CIL91fO;eVClyeC1mLs+N{s-VRX}ACfS>}Zi2z(sK=ly5{}d{rdI&(V z0?LK}TvR~85P&iT)CU2$tblSL09O@I2?XFe#B`eeq1XpN7(qaKjEWv0*Q*P~JOC;w zpmqm9xB}{R07NRFLd}2fSMTqofP!N1qaXtAYc>|_(^4uZgjzEVy^$2Y|f!F28wS{Kv4{U z9ttRi0nk$c6)*sLDWKv7KpzEEyx{!Dol2;60hhiCsA>VwUjgMT0Pa>mISYV+3MgR# zFh~IXH41=-6i|c$V6+0t zPXLTjK=lcke^5f@3AiLHpx^|+cm-6M0GObF$`SyM0;)*>q$;3{1VEYsYDWNM5CnL% z9g0SPOi>q#MgU|hplAfZBLoY$3O}QUwL-hz0KcRpM5&!`ORFUBIH&Y1( zB;fM20*XigJfnc}5dd=t{A@*+ssiR)Ag#z@4p#*vBTVrk3#51na~Mu28&Of-|MD!6 z^5r(?P$&YMTcLp35CE$bP#OYYjRLAd0IX9$5eR?{3Mc{r@SFks{f)8@AkV7{g&qJl zE1<3ez!n9Rasb$-fKm{y#98RZeRH_HW`T4^zRfw5 zWkB&B1yp4K*sFko3;=H{pa=uNI|``50I=Tzj6cv{0C}He5nI9Ur~`atfwbZin{%kR zfZ_uRD6atUxdN&w0DP%{3JL&U5j@IG@Ehy^-z4$D5d~#lmNr4 zh$#>pvp_2NnYqVU%ffkFx(f74|SYpAtOz)1_FhSN6Z zP(T6xX9*V5{~P0f-U9J2U~Uh7y#(5AV6sWkeiiISpeWxf(hL9eLV#9v_P8Gi@A9$ZgQIx-(i6i-(_V7 z8UR?qA;IG%&bK83CR-pYq}!bH7IXmMpGklxYv=$h6_9O#_&>tj9v1&%ilSkD?W^94LR zmg6spRJlmY8R?G|mJmG26%gJ}kY|DTFJ}&~0r(GYQ@qjwDPC=J4#W4c_F4su-UnDO z+kcfcJp7fA=jcKpH9T)~4rBGP!e#}G&j;9|VACH0wh>Hbjfl^u$IBK-jXP}4=~f`c zf!#`yP6>HU0mAWF!y5|n&I;J801^50*rx#T_yqeE)IKlZ0|o8Pc0VS_!t*Cyi!O=F zfe^0=`zTu1vsT1;-8eUIC)@*{mN4@J=PM`UF3Z<@_Uw^vV>_ym6`Kr}wVKMD|wPjFhn>$L@(BY1@yt=>Yw1q-;%fKzC*4npu*Lx}ESqhlG!{@n!I>rkDk)eOFCfAIj(?R*yQ-4lwO&HmD5ZxYf}0Rr&p(t-f<5eQ;4 zpp^yEtTxQeWHCbU>EGT0Deh=<4&v`w+(iMR?`8b$rUb$Fbh%jpLhlKBD7fEj<8}pu z`ie&%1^N91+@;`muYmpv2AMj%1iAA5$MAb>W{?oE2*2lM(kzgMXV{$c z(L^cEQZUL9@Q8x+fT>|B$u3rTYp%FFZh=(!q|G^Vr%Uln1&G6E6J{y6IUrz;0z~4| zW4;2!;S)Sd5Ri=`44-7Nx*!OjAXfoG@ClYHKmb0$N(KIf0@f%%3_d;9D?kK3!E*`_ ze=qNUFDOCyJzcgCaF(C2#A#na zz$pb0l?0qsaDTXf^9lwTP^jQ#MBAg%5(Nyu2PjkUYz+Z{D@vX*`7vAt|Nm-<9GJGutzbDK^I2sF3#7P{%{d6mXK_~r z{aOgtUFk^u^K7%-4vDI3m6 zeRvGEKpH;O<{U)hv-my(P0PQd}=e{BrDc)UoDO{@_y_*`Y11yW;R zyUjX(=ScYu1qi(73cD4YhH5#$YYGs0Pw<9<(`Flc3088W2)?JsJ_}@{@7kO*F|bi; zcwfoF%>q7B(Ad=QsRG2_v&zpEAo8BzpaRC-1AMKZuBqcN!P9J3*|XyDeKMcFNu*sr zXnFZ8DgQ|ULhf1RuL=-wPw=|}hT8-Dr2s+p1pg4=XAk_N#d-m!E#Ni-&RLsvGL}gB zc?AfvXAOl45MobIq5uK*1Z4yg){gLcf-4rtewEvtgV=f&hoxBm;RvlKsi@?~*93$s zKyW=hswhBcJwbH^-M`3!{B(IwUKj08fHwi;>k=t$(K8_;C zU{oXwhD7qPNtT;rhe=$MWSV4)N!~LF!;G-rzEExW4UgF+CShO&a=T6PxJmdw=YX%7 zB-pJK5>9R*;T#SU&dea;gbNZ*tRUg+2$JLTImC=$NxA>qpv623$s$u$X|?~&uMOnmRWhSqm`oeoxs z7;r7h&Da^vE!}l3bO+`v3wPJS*~8}4uhTKHOZ$wphx6dr?>~;GS>eEIP<%xHYjXA6 z-e-b!M4D)EPJHg6-3@am?+$kZXHfGbcmJ7ST<)1&($0HAYYDy47EU&W_k{|Vy6w&e zZ;TkG*-2-E-D(UEWqBa56?f>lV8h%RZ^&+qv1RVebHRAGrf;L*#Q)&j#jgn+`~PUZ zP)vbJzs_Y9?IIqyHXD~){Y`29=>Jf+dN5cu0+Xr#t{9hF<8|>&`VV!#D%vRc!T;i& ztYF-KSZ{&6@7o3&Gl^mUf;^ z?k^XheS~RS@mT5hF2I)?IuxL3k6g=IMNGLii_fDLper)|!*Xx`K)T}b|4``sekgeQ ze{gQ%yAf`OLbO!2**N#J_rz=Jf4to3zaJBv^&gx&*f{%@9x4nb)Lzyr)^i>IoN3n< z#OCh%pc1bp%vOi?67I1#bhbU6{U7co#{4AikNp?#DGF8#Y@di*F&5{^a5W7dyCE!o_P`Eac(~E=F_lAQuC;*uceaT-?LODlYa;+LI$Hf9JzT)BoF5ck6;A?`_9yv6~pn0kFg>r#@#<)O%%R3o>e)_ z+2uAV4K}F60Y9g%JM-aSUAS@Fhk##ZS}@+T!VQ!Ln^)qfpVP|SKReh84jgmfa3}{3 zDel$MU=y6^F=fFxoNT?yf=w%NMpq) zjI$fvq`1m;IgQ=4k6&z3JJcTD61Bd}LVOFOJnpB+dqSn`FEoc8g@limPvrS?YNn0N z%9t=Q?Xkp1Cnn>|5m|Y1t3;`p)@CcDW6WeQH{tBcPrDLacUMJhE2nO5(x3I*j(41I zUgZvSrZ>&|HWYx}jYp=&;d6L`-t~?3fVFWwmBZRr0CV5DrYGxNXxER=!_Lh;un@~T$Xd=2 zYkdTbB~$wHaBIB^RVBl^Lp;fOea`6m7xG8fFZiGaYi`!EAc5(imIV!%IxP#DGhNcM zpmVJB;w>KENOo~`esXp)J|vy!q)$wPIx@U|53OA-!K~Fap`bI@o{&(`nCYB^g4>yX zl2C9{b*b&?3chaFqqeqgt+Q3yUN5!uY*o;SUYV^-Eh}0T#4*3ORY420)`E(@eHF15 zzU$bypc#IIG{?81?zQ03~$%r>aFS1sJW!9Pm^(9mK8f2G@b=_8LJp-X7!(QEE ztqo9CGOPu>&2RNpYx?l@7tB}t@(6n zQ)A_?Ru(j3E6%PgXc{9u@}9@{0llkQ?}=&S)5W*Ls)AVh4qa8ylIgTnX2Yvi6?9$rlf^7)bTrW zJq`TMR6O}Rv%v+S{Pyq6@%Zw)f@Z9=@Vf#TIHHf3E68`mT$hg?DUdzi70Um3q@cyX zj!@e%Iy5B^(J|JxcGimSXsvlSTk92w<ZO`-CjN^CGIrcF)JwtmAepuUjYI|9!!x zo@`8m`h~Kmed`zYXMS=0!h5Ppugv!5Vt?_m$7s}vQ9&P+vHz@2L zkbZy0<6D7#mka;K{@5SB>pL5VSnDLzXAJ8*%vz0yTWc(YW=!dK4_Ir#NNWv$Fl70i zg{V3^FQ>z})Rd$&Ue(D-`M)+OJSeT*)yMSFPkjozm@9X&_voBFw^Kq?BN@wYzN4^N zC+V~kz8bc*pQWI7PDwZoAT(pFL@3ON<#&3I&tG^)Vc{Ti3f}9T=DxkOu!-B?{=!Hz zROT-&l%ewE(n2{cn&q0l?weaEr_ZEZ(^t!L3)`^|Kg=zZ3*=I6VHf5*<`uSRb`vCM zj8@H!+1C0VqBFv9-$QY>8#li$9^(Ikj_s>?g-hk$(0_;7`1Boxce1kmI|@6SUEj>( zkDFhEMsD=Z!kCV-+yC>v8#+c+rlWFBwm84cvR1d*AvtCV zTbq;WMsIJNRL$MEXBtY65BRZA&dzy1n#~{lv9Po8+~qw8&u;F}V}%Xfgkyz`O{)%h ze?zM_>}}Y{oph|QCY$`kvBG;y>k57K>_N$bf{amlc@DBK#yY(^Wci(``Q^t7Kd5Fl z)z#Y#n`+_qezH+RcgB%MRpnTho;2Ot{#0S-xW6FDV#Hh8@37WmP*f4-cOKf3Kl4=K zvvL?~HZJPHW({gwB$r5L<0856);2C`X12GPQ0I5YZvrG3@d|hh_PP(GGzIkgtzmbjVW3!_x{%XisUXmsb7(dMN9e> z$p!jWzoL$8-PwLcH=5QQ@LoV`V%*HzV$I#8e^D1H@zpd#q1$^zY@HqxhI*UI$S7Cn zRLG7PeUf{Awbn*xgc!CA;vi!Aoxow9c)dHHZH&)b$JNchVL(yq!E8X!6-9CeJiMYv z9xqm}C~9R6@fPndIK-Loc1MpnTdkU$c*lK_IJ7yP+{_h4b==!e7Bw+X5mi0DSQa#K zlPbhZebtUA_u9l{$%8>4IekmYyw=D)kQs8f5> zRlU6rU~9h?o~Y*rH#RfpZS2V+xunLNED8Q5;Nn{%WLvoy5Z$=<5}LUiHYC)JbOi49 zek8EFj2Y906ieT~Iiz?X8yY^e_*SNO4K4PXbMY>ZZ#d7zo7|y8i{ssQhZaZC;fJBc za?(cMQ+#Xx5yQ|z&OAFK$6D)o2uB!}nQX0F$6IUG1Z%BzLYCk8#9ebwaqF2mV-4CI5wC#ZmR$hV6?YT>rzxjmI^Oy>m)>Mr=~r)L490cXC$j#I)G#2`RA? zv$FgtiJ=elfh1+ePDpwrB{nVH6lKLG$U1b3O-{*98JC@s%$0dv#ipgCBxl8Dr^`C- zu8iVnciY3oHDb*7{@Q2yQ>IK!h)?rRPL%Cr#rBNt7~d*?XKL|~>)9P)nZ@$X)H<`c zq3Qewz2oqr)w6Yd>E{WV#ZA+s|2KN~p*N%NktgVsDeV*aF+uhrt%p>FSbpd7V_|$}oY|pGTz-Qo#V=QHE>*Vic1D%e z?n}y=)c)TOA4^eJ?|rx|Ga9v#TWt8u;u!8!LMZJ&v$#?HSD|cSG%$XIK809*$NO~t z^qIv+Mwv4)#`_315akZ--Y(jlUB48!H1BT-p%Jb6gp{Pz>v4Uy7UbVl#Y2 z9$!^F?aMx9LR`YgOdN%(gt1i71!s^m7ObY*t|Z}B#fBBM`}F}JqclcCj$^2ne=s5)BI7v z;!84IkG!EoM!~=hC35@Octc5?JP~4MAPbwUm^~$FVp`}hKI;7*C_Lqnq*OoNT0``h zw>Y$ytJ+ow#nP8{uvR2u;7xq}F|}Ss7`$O!ZVFj`XGFUSd^Bu5F4dhq_bfhQJgY+8 ze5ZCv%LUxQ+;yg%Z>%ekC)jiAN@O%|w7x{{9lrG?@^tq2`Vx7HdwqS0+-Og%H~vjF zlyovfz_u{oD|`v7?atg#QrkQO`ZtucHP68Z!+fXY6)kaWQueqBiQ^`ujGJV3)OR+_ zchw%yKDVRcdpSsaJJeb;5GHR}+$d|UMqs>Qzb9HNdaSkDBwOp9@ijuG-&xk1J>f3N z>d_*9*v68cp`o$0_a-#Eqnq^3xd!f@?@OZ0c{;#55V(utn)PuFaxl?%1c^uC7&HFk!gmLM@!n0NBvOJC{<3u-@Ip0OLd-t*M6~7$_l+# zZ5eLr`ZZIQ`L6T$DsjlI%r(bPlv_S9Ui1bLS0UDqdt!?lekhU0u>C)j!~{l8La!vV zo0p|p>-1!6HG0}wmk@1i{9+N9Ypkc$`b#YrQM#tIO>xM=69hJbGp~lel!QJanJ^-M z^p7P?wz3}rvo6X#@TFN7-GgDO)v(ppPG7^)fOi99*SEYxlRq)kiSw*?BLolj>uPtFs8B((*B;os~^3)V6 z?@+4IMKzF<;9l=DQjz2D zign&ZJz37F{2}WuF1^{T($sq+R%z(YJb%)>&sF>WV(6LtUhh*VigS}5>K7j{_l#%c z))F}`eR75$Gh`W|-tz7@69iTMEqE-{C3QT$0rqjk-ve#nPrOdU+pV>rx3$*ZX|22Z zTkC^CA*+Jl`7;0b_ZNNg1m7{Lw5e(SBJTmTv60(*dw;o90#T*%OusFvw553Xs(XBK zXn@=CLjNeaWn7FZm1nA$=+dU6rN75`Wb#S+yVm{K;xxALi{aM#X@s@PMp~=ZL)NM} z%34!Lhb+I-0xM&<$c*x~$p0|9w9#m}{dn7Y+o8F&5{FMo%E;iYIdNQ4YN`$j9lRa? zUoob^Li1~G++(FOiaz*Qsf?~UkCir$l!Kh@U4k7PI$=O<_shphThter$Jg|n%30~- zvnQLIgXe6E0vd% zj?+rzVjDTl@Rid_<@xUDw9-3x@x@Fpl{dIsrf{`zYkf?1JC8httjm$&j!xk(uQ7XO)qXWr&`98^l>R! zSs2PDrPybKRGG%AJQ*k3#I%Ra73p1WrVJ;iOnDer@RaniGCa9o?Jbo@v(tM^WA0xTzx>ZyNx0C3`JMh)nHNLRkm&qJ-zt4R zlil06eOaR$We56rld%I;#-&coNaRzDKA}GBosWX5!V<@EpfpWQYhNbM6>Hm<$@#pm zeVIHb{o1}vPSJ=CWpWC(=ujquLf;N$aw<>kVEh(zC`&MdL%`#k%fX@d+@W>ltUnTR zDeX|!_-5&a=RLkJd1*vu`N#4;IwH~DA`W?chgniBRC3LH_u!6YGXLsyG+WH+SSEL> zH#(XYec!Q6j^dS$W%905zf+lvNw;+>lRN!Goy>YqhSCk4%pSensZ6Ft{^(Q|Z=Q|* z4)c}Ti)!D;=yLvJj1zUhS`|OH*6@SY+VQou+J9@U-G{C9>Je)lJZi1o$E?-$7i$H6 z{mq)|f4A1?Kdja0Pir;&%UV}YSnK>rYmGUr)){LpIcKe-=dHE#g00n+Ud@NBHbh;%mABZzP| z)?MM&suvlu{Lat{6?yrbA9-I?{^${9P1~E-zy974bKDK@-B;KB>b3i1(&6RVWim7$ znQfX|HoHuo$6L-ZXU!m_=8m!2yAfx7=KJ^6ahJ?7PW$GVi|R}$Z8W#6h1t*%@98=2 zzR!mxgx>GZdN0p$hyF1vzKVG$xQdZNKm)gC(Xa?!+z02DbqZ`koV1Ck-h_B)V|7Fz zw6P+ht(D)e$3u>4t0stFan$nd%Bgi>a`K8CeDu;2xgXIzti@H zIg93%E|RiG5yq~&5*YWVvm*nO)J(R9LeM#PczB_%X8!NAV=8}w1x1G5pGbWSITob=+ znmccPCEtNcIF;(Thq5l!GpAeYvzO#J-gov=2Qw6>RQ4^e96FaKA>P^qX1|0$Yh!(h z2y0`dAhg<8dl6G@toewg7R&F<>LTY-Y|O}Z`PZMj^lMM^7!~i$L>uDWLw}rVTFo5Q z?9h`{t(KP?nP&BBe_2ka$?Y$WA8C+szIV#6Q6VEVO{n2Ww{aU z{X4Y9&?=r2m*ueEa^kX_HseoRZX$CBzGWWY3uZ5!mk_fp|A&}`$+wLsF7J59{48>Z zH)nNRo+rxW7I|NGhgL6_yT;lrSENO6Z@D6y{dvn3c~ZH&<%+x?w%&S0&b|k>UXio( ziBP(6t66XV)+=(W|7q(L-WQi|yHc;4-0SZ1_yTAZUWg_nWhJIRk}@SVDI@eC|CGnK zm}TLKDgJSZ$rH`3c;GfuW$LyovWF|SU6Gmo@3vi$DeTCXOnK{5^F()AfLf_CLi!tFgLNqYFp&R3fmzLAs1?*8A#G?oFQQJ1UoKGLtt zRXGyIrr!5kA)SYP5My_$JJE2ENiCsfedH zk@qJNNN=nWh@dxCFNDq;Ydd1*jnx;y^2X|a(pt3&t@S9v;-wT9=Qr%FoSORDp6++6 zw@j&&Kkde=Z)BSLNxFCX95?gZWb?luqh2(-H{->tP0gwPm#?Ag+j2Fk`hTZ1+(R#3 zl^^*kZ@DUOBz?DBZDR(}o*v($JU3grJ72t7-(9}tYF(ZUFK@Zpw}+fC$2`7XcJFr} zDBncyZ?9sl!L_UvSubSyooZqE9kyO=kix3G)yrF%ab})(JGK<(9y**7-$qVH?+$a- z)EJM?YvWlUBQ%5i?}f7ljdN%InNrt`t-kdh-_Jy~#yu=oL;V`%a`S8#7$+)^I; z?eKM9AKbfV4ytITQ%`OwmvgP!)^Zs^dTcG15yjbBF88;Mq4fK$yz@j&CE+yW4#uLU0t`nC!sZuj`x7K z&|XRilQ#kNTM-{GmftzDOq#c(Z+h(BIrTkXbT@UycsH%?@R=vt-1#=+w?vK~1qd)p>^&hXf+ZkXrc&1Chhd7h@`E?MG>x7+WF z5P1_zA8{aL`JDyt$?nx!n;z?q`7xvN-ko`#M>(3WZuOamH>A~ff97d)i|ouz9^W`y fS*5R0#jAWmc;g3a?L&OLFh9QPz-s;evF-m4rEsS9 delta 2255912 zcmb?^2Yk~;`*0;Yi5=OFCE3p2JCMcR5Xv4Q>^%a65k>+bP$)FeG7<<7s=!fZLV;3d zC@pH)6v`^QKqnMBY0KJy1{XOe{eNRFFEtkA6;2(M zGkW~g^3wLH(fIy!q=c0tZG z>GKg0(ofM5Oc=;W6T+mP@p01em^xDBpj0LtWUufK)=wUt^PIGIcnlKCZwM`m7c53#t@sr1arIeUp z$VK|+of0Hna-`8~JmRgqGy-J2pBN!6PYRXN3iMJ$QW#?gciQx^Gv#2)E1_+qthgj8 zbD)ou6C;4K9^qlqo%a$XVNe}uU!4Y!lSpfqSSfOJ3R@bZFcR_NAa7lHsU7gK5A9OJ zSQ|L@Fu)%Q5F({Vr}_F#E1Z@$b$s^30?9Nuo^eQ15=3vzNfM}hzEKifng~{;KTL#; zSn&9cJr*{SK>CbI|G8H5wX#bb^y2?|G)vUwFZ$d2PQ}r@qv;wQjktW#Yx%GK~nv}Dbkja(SpTg zlu>zwlcymzj&JM`%a)gd?8nh*3i;+zVVziMUtCklE%FMdO&p&yRa&0VO!_-JNP00U zYG3!{ge0O+mq1QTQuydJDLE#Dwx`srP75$KADS>NIuJ7~J&ul&RwM-@^VrHuEiV0~ zPRn@?a_2H&v?Rs^L#rf$D&JtE#3V<9+s1VcH)Xk08vq`!dl(>;m#X$i%`O~0K2Q2H zJH%Ga)yqrcz?3fo;@q`|oZT@pfr*4h3<70C{e6(^icRZcn^M@vPs$#f^E4NSkwoIc zoh58zX>L@k6gw~xTy7rW1EQuEgh~}dA{dw9AydQ;V+W>TlfnoDx+w)VX?Sc?C2V@d z$4Xg4LKXi|d>^|;R8ojEFD^*BIy8_`98kIxZIXrz4Uj&K54N}msI)h(xhrs@!QKrI zqap1O5Lx#@fK-r(m=wUH*cYIu4^Bhzfn!h!eUcG;l&A{>J$QD_Wp` z=9$Gl|9EYCsR{3$yA4CZ<*#Gt4Gf)cU4@~yF?9Kzw=gsnLxY+h!_XECSzc72i5Swo ztU#ME^y=#hv>8Kx^*N5$y;y|7&t@s$6bxPd4jXy*+KZPgbc>E9gp5eApx!IcXYXdZ_Cnf3`D zE5XpcuWn*!p#qiN#!wlC-YNbPLt`+s)r2TXflQ-J$#6v0~m_`SAm|#P?Kqo@z^m8jmp%`M<#q3Lk(u@F|-Opt6ou{ zwHVs4#RreQ38A9JKGDbR7+j7A@0<+9&@2p%_)dWiVJM(e7#`b&q4}SMW9S5ierpb7D=yo?e zxE_O>3%g_JRSY$Y&BV}R3>CIipi&H3<9gt+Nf?^DuqTFgW9aTPy)ZN$LoWv^P!)#q zO}+7$5_d8Ci~3-&0uPRf>x-fJ7z)W%pqUt&Gxzfa$i3dh5Sab!LIfSb(3WkRF!TzB zK0c&CZ(-<~Pu)dm<{AtQ-1HNM_F(8j%%GxTG`JswE%Wsy2zm)a&;L>J3WD}wsOqzf zH3(XSp;g`x!;IwG(T zgFp1!y%9k&hCc0~+linF7)mHzgrPhP^$qR33yp2Z(C#ZEcQ=vVo!D9WaajO(Ka({} zX_G9>HmUWbAw=u#7TLPsj$tD%9j*>P` z884ljJkAZNba~SRxF{Yjm@3VA&0i{;$-~;iD7{?VR?1s$#qgg~?b5ud4Wxs!BEg7n zL?3D2)Hvx6(r?Mw&U zZ7qrqkcwVvA+;||lIB0xR+>3KL%K1qsdVbOmXffjIs89G+C9q*;Z#&6ne^plxv#%G ztC11y0|3&If>A<`YWNqoW`E9X$(8|m>>p!M8YdU?UTWsz1mV59 zsXO9^=}#o^mV93_LkeZmt?8|$c?;W14;S=AE114;Mmy=|0ugfF24Y2f6vDc$GF0lm zXt*2J_ckled69o;kSvRkP0_Xmr_*LTu{oZ|Wd*yUmU7_Hpou=x^(Ac~cDSz*o`*_9 zmt@ms?X!5aix{m;=-iMF+5r)rMC3cG&LtxA)qw&{mb$I%2;CtOB1d~4Vtx72M$(F6 zL=NqLs3&z<9kz5Bs9aFkMG9JGhxpK5sNhRq77EhNKk)U+pIPplvuBwd;$DU0qs=n2 z9B)Y{p z^86E0WqD62W@W7O)hr&T73<_q{w6qr_F{yyF2-5Wyt7SOu`*9`CJ+76Hd6G;I4O2j zAVhu`BR{<=)rhufv@8lQ!)_1`yo_kSM%{yuhTBV1fj_q7hy_+DYdgv`0AoOU%Uq4% zC6KXHI41+PcSz<}>N2CHX0IeNuc3KNgjBW82HG_3XJX2sA)l4Lo~8I5;$Dhb6$Dou ze0i2Xk_hKI;>$RF9bFd$(%KC2l}1R7pa-Cx9jPf>YJ}*)9<;lop55yjNXhG(NPAv0 zKocR=Vl_-$m5PU^ua3mDA;ZuHXxB#)rlX0{sf|I>@QOar?X1#>4MEbQ1zFO|>nB0B z)*-e=Y~ZCj8!gN<>_2D%lDuw3eTWDZ1)hlJ5^qH%0^)4moT1YC$`EPG@*v5-JWa~o znk%`5UfaC7FRzM)vY;{ot>{@m^rR8n%u@bqzVt?gd~q>UMm-}cQ4kN&QqOH6@UGrV+PcX` zmY9sFWI>}n6hAt;jl(9$+Li#Z@0KoXD>0(V1x-nntlMM2+4LbCLSBW`9=_cU;4z7p z^x5l)#B+-z!}cZ~zWAy8%dfMQf6G4dXkx_cCDi7?=T89M1f04B8oyF2`dvn0Xj7nZw{$`P6**{mZ$S+AN4$J|!y&*3^{$28W z2O(S`1s%LE6&-p`$~!z$G8~#A{RZ3L9)5`_lqMW`k&&ebM`lSUPdv}2H!1mg)&p6{8Q<$KtR_``1&Hc8qqBfQitnUCP4cBl*1d9 zYq{ej@6)ZA1^e2cE@1xe$9CY#M?sE#|DKt|KopbCE%niW;&>(t>!?ZGzV267Fw8cP zF^%mg#a(+-11iLg^zRw7RCI%vT3`QN0}9B^uzja){Hxcv7ECB$!=-}HDzvR1E-nAk zE?s`?*mv>fEpJf2Um!0X{_0xokcI8*^UWz%L00EG4X3jJYQ@P}*uJdqyDG@`?YwtY zr=VT_Xk9IM+;{o0nIL-b^O#y7f|?84=l|}no5?rMgdVtybK0^Vnei7)KEz})vy zFzmU`EHx_4?w>Q?kluFRGWE!^ML#fAq_@*g%xU885x+2x2|H1LF^5U-qraJdIE{(~ zmpP`6{JN11@pT5lCn8&+s};J20c;<_{F-pqLPUBen(acGwgmQHB1cRL`zmphj~cMI z$b{2P+0zTeh8^OP=13Rzss?FfxUqdmoZ$6d>;cl8){pfkEUp{GrV<%G8_wP& z&2u^IWinw$E}L%9rpIBZShxRa&ZJC{8A5W6~Mq*MDG_1%b8Rk#@P8 zw{DH1bMTu%H&-iT5UoYl`|1vBsr(URGQ`kd(U82&Pq$2?y%OazQMXqk6NvyWE(BJG z&Z12Z7{N68oyf?ke%v9f`V&R>fl%H`5I!6Mk)}dqJ=CE@-Q3M4IP2=z>Wk z{N717g!JZg*X<-eAJtbk+e=xtXOM0HK^8Df_b+k(gb}(Er1^KY?laQ-Zj|m@(!7(S z>q_vp%+-x07~Yzs`<_gw%F|sW&E->c$H;^cg}Ql!vma;ZN(c|7b6mY)b9Gmgx%=nq z)@U>%_S0~Xdy^doI?wbLo0qQD{4NO!<8iCTS#0u%5}l;z59n9umTI$czFhBR-F*@= zX)ASOwW4XVN;g_j6xj8OZiQAfpRdvFBHXNBubrDM8+3NU&HI%)pp_flt2$?%dvB|D zZZ5p0`@>)gEZ_lTHL#MQo6~ThJdQiEEZauW=K@1S}voSZ|VFfVVj$ zDaHlrPm<mEL*FCzk!y`X=GOc?Z%egWa{(PI5$Z-xAiD_nA)m-KN&7Tr31C}A~y zgZ>_Arc~-9NOSnB`WB?QbBq30BFnzl^zW12<=gc+iZNxc-Flw%##iaX2;qMF_00%p zl?U`j(mZ%XZzRjEAJ<ro!)A zKYB%z@i@Jg^G@=Sm)CVN^@fkvN+Q~9lh=zHYtKINOIEM>#CQP#UM)=u(_>=1281Zh zOKrTK5WU=d*6Vx; z#(4qrneip^^Tl3CUdsLQfu&x_wZ>?Wrz|4;=ZSi2+!@j}+x!_IphTP`q#TMW?woUGj?8xcR9B zEb_RkUZV)hpWW~(Az?H9W3N4=x6v)H3nZ7??t8W3ln@*ByH^PbyeE3^2c-9Jt9Nd& zwql|OsMw(A!OQupoX zt@G7}ED;>@nouG4>gByhqg!GO-Q{fqy!}|_4f*Xs-t&Fo-w7Gi4V6d@Ya*wUWMMxG%Em}KN J|7VbYA`_n zA;Xd>*AD43KBeg}PLH&}Y7P5oTGCS11CH2yLP5lt_9A%r#mZ7iXTR-phQxW_gFb5%x7vT)Cz3c=y;D9*YQv}+KI`Ov z&-*OrYaKpvv(J5;CE)%qT=7x$mCr*GA60+*v>@z1VGPdrIHWT;<0Hq*;Ea!WA47j) zljRmeeJu~GU^S;aDUy5n8-xJxK}Cm7U}vg9%UKD2WVIsA@Vl0C3jTs21^m<95H9=F zH^6(4+o>IS+0f8n)ho@!riMh)9M#frhBRBWHH^~o=+sF~%kdms+Zr5QYjEIG?0P*6 zYkV<_;O0O>kp>TO;tP|%A7lv7vLC7#%7z*$ScRL65r*PgannEBkgFwnRBn2VHB2Ym z+!$}rviYdE?&KO`wA39c25GY46~ax+DTal$(oN5)hM~2yREt8FZcfZFyihA{E{XU|@9$U(<^XBWuOim=eQck`6FA$lqg{UctRX=| z5|kmb7G%d9cEtc+lf=7g+y{m$ippfe4MP^0F#Zz*uLv(MxoK#l>Bd1?HkrsF zzG?E`jf_9|D4O}Zm2rYrJOJW}02j9!z2yh(j9Zl5T;ANnc-N}%yMBbxsk5AsMyRv= ziyZ~IQ;rcH=wg-3m|)z`Da}?hj9uZIdZ>C?Q)K)pK%4WVf=5wnE%INhjg5R20Xw{E z6f~F~MH@kOYO67paQ63Zmp~`0kU*H5&l^V(!`{4Z?CPT|YkJdoO3Qm2(6AlA?RG|k{K7rsR6j*{ufL5=v;>h8nFaX2 z=xdQLv%W_N{~Nu1lZlVsnXn3#DO|C_5G7LMX&b0pAc=e%=Cp%W3Xn0EZ<|K`DIVvU8Gsr+qaT5d-wHS zuR&}XioKSQyD-}K^?J4NK_iHG&fp_|1AOy{Bj#@M9d4{W#-=-cUm}{ku-Er7$s(7I z`nDiJ7joJ6An~QUAG&mQ_+#Jqh<2n;ec|m9)?}}nzCpxC=iKofs^!SU87I(_Bi1H> zLmNy6&~?KgQC|3+Zys?&-#>f@X}N8!j@tt4IxbR<`Nww?amWuD?xsnR<~<8%C5h!5 z8|QSrqyF4}4L4SDWMk8}th_XY+e(zxE{wZF9Jf(27we}Go!EkN`ta|qxKD}ueASV2 zdh0u#Ij82AcjcU#&+P7MntN~w#G)Pga7K-{WjI+G!JegtNHBCZX8=PUaiaY5aPBz= z&IRCHAt!?Ta3g$ZI-QHvlJiw_ASyDX5~$@pW)~Xy^I~o+iU0mfIOjf@x|GW&d9i90 zcbsVd#ns%OL`zFIa8{z{-CMZ}8a#^_SK93|ZkH;qFEMV_5$+8_soK-iT<74kI@~Pygxf@#ai6=a|JQAo^{;%vH6(cb?{a%<6>O_Azlj0EW^+C= zG;`lTCEK4eng-U&u1>6G`5iyg5R!xAf=$m7X=g>5ZfV&|VJJ-pRl7|ka&f$AKQU;J zMAHRg#pHUX6B?}ukFK%yk2W_sgL7{elaU1H`vXlug!f-Zn4CsyJz&c1A_>K(jL{0;9}YqXKSRKPQ@<8`q9HW@l`yZ)QG7*dCu@ zcHV7V?_hSuMp&lV85<{inVku3Mt`$2Ho6ToJ7Xhiu-W0Y>MAVhyNocKwRk>E3?1c5 zW6g)Wl?+xf+3c(3))?Ud5RXAlnqqE11k9UZcGjnjXPTY$Y2a+Lvp#J-*X%430$wsZ zk47IaGA|&T(xS!YS4oO$E|~>l`eCch#ae`g`yM%|9bI8AfL}E#3+)8LPn$PsC<@_` zahPm9W43A0*6}h+Tk!i;b2u=svRdU+=gdd7$m2w#X@nE zhr;YP2@;XN#sE9jUAg>Sh^*SUHku(Q<&S zBKoa|6k|%e~x4<9h{ojwDp#*ty-vY}F zq=gHGTHPW~Hq5Zx*XR~`^2(W(sfYo?Y^~9nCwH73fpaY@5d(W(v}oL_^5kD$ zvMkojK=>ldIK)74iDkW3GrqUja#6Dh>MynIMhtwh+@j&v?K1SEXEh7IS+cy2XlJgn z?9wXyT41rDVq^Oni;y5_B)^Zu)Si4bcHpr8&RaidLpa}WStCkZ;2V1skr+w=+ z%XTgIlu-DdvhOa-C5_(GQy#p>vO&xFHl*AYTs&s6f>-9nq=1trEq3|L5zAtYjC7SD zu6Hz6LS4bI_hE6Cf6Sf&Mi2eQ4lXRR7s}_)S{$0Wfe4LS4%4t&{3csC;PGDe&>;BFMQ)S z8CCB0fAC91{h>ely@23#zxlm};CBD`9Y^cDb=G-WjvugSml?rJHuzXCYc>nUFwkgS zrP(zg2DAJeZ@p0)9?W3YyTQR=vc=yAge-)|!kvzjoRwjX)3CXq`=YJ@;uJu|hwZ#&-*(n{aIcX|J6O9R=li&;^%!!_ zHQlWr`NF>i1FU;tK`O_Nuujz+UvnpZBY@}M4fd5&$6G60!ps`y6o#K#we#OvsSu9u&;25 z@Ur!YX3s&00YvNrj%G!8%h~1DOn2I#2xG6X#v{1p7VBALB%jx;r_kSv z+pL|?eE(h6`5Ny$x`Cl(mOyZ`ZD5e{i-UFhtnWK>;OsZ8;Tp}O;`Nc6$ktiN*Y>?* zZHoThKd6WyAGU@g_CGvsy@hPJ|2=DStzyWN-?w&$I#H7M<@44<$W}`)TQydK-2g-w zF28=ox&^V^zfj<{{iSo)Xt@9vSh50&n zt>s$tz6^05M~pprXg!Y@J@>QqZxjco|FTZfn8>?TG>5h1nP8=vKY))R6SfTEBT4haA$)Iwp?Nlc z-mJ_G$m192l;-ZK{7+=U8#DOd8Kw8&OujC`@cZ-pb`!AOvsmL3`ghK17SU(i_=1Rn zoKe%p=S_})&FqL7c~d7ujGr8lKQ(Xc)SLp4Z5M(&e`8{v$pzleJTtUBcMJSe`v1AQ zAfMJK-ds%+7h<;-ASFFu6X2zmyvA{eoXKgEWa0aM1;0gop6XR&b* zI1muaCcud!_?F=IWkWjr_X8f6@y)S1*m`EbpZ2d0+Pqre4~|XSP21^ zSNI7CB_tUnwfV6nW|WLV>i^E>!)5&%{v92gX$CzP^7+QC%2GI3F%5FwZv#Jt9flEP z8xOk1@WN}G`9d%G^k#mU7dz1m_Ga=O!20ccg5fZk2QF;qUxw0+*uj6uES8(>ZG{qQ2 z30_`;mzLzN=1@O?*OJ_eaBXq!1$ZsVMaW7pqLRYgDri511hb(>ykItP3$tN?ys(fD zc@Lk?V-`L@d>|Hbp=us|ERF>us`yg&O{lhgd0W**dyx#h?;1GD z-X(osyZWG=_wj|yMEto+u3QOiKb|JN_tMD1G=N~FK(6U{S=dOCiE&PG)9sU(}ihJ7#-9xL* zqy-0ea)ngT>i|E1$pkwN@Iy^mG(U{pzq_a+Fes$DSx_uyI66~Pi3W2WP^^hUu>8$I zz8+&5OU(e44~1yZ@h~6COaVEE`6yEXJ&Hxody43DEa3PfDEdoBcsnJ!QQ>DS*nWgh z@E``2z3M0*r(X$)fJ3jx$D2Ska?(@CRT52iKgQFVc9ENXjBn*m4r!WF6qz~dKPxJu zudNZ7J7`caWh0_uHycgK7VN9uRsD&m)7j6sNY!&VDJMZ!x_3Vchl!(Sq z3oJD(*!z~~0BcY4!yPO|in49CEM~9{i+rWOe|rWtK-tKEy9xKuVc;<7nX?C0V_rx>W7A3zQO z=3L=7abrCxA zjc>s%bLSw_u|(}aEo3UV1}yoO50TTa^K}_+ojOBRcbKYf;)!mEz?De_W0*~#`GKUGB%j+4mDY!m_~Ftg(jas7d-+Qcu}ha zG_3?rDZ#_k-j5e!9plB=rf6~QSwFPD7XqIH7CE}2XN!4rAS13j@p4**tOb&#ozKr%+u*1(B>zv2=LmI z4N2S!YCmGU9k{*9?8{6Cf86C8a?~P_p%i|ftl;=j zz8SENnaHyntRP+DTY>H0^WlOj5{b&`;M4Ej~t^C|2(EBN(3pT?c1Mlo||Xy$GZ<{}^Rv7$8VHKl6Nz^dsx@LGJXSNvh90Y{i9|{eUVwYAMbp=l{Z2Ficy(|HdbA z?IaTn}mxo2V--!9ZT|pR>R731O;<1jR%MF${HlOV|PI{e|xk z=zhajjdIx^d;}~J_x{00a|NE1^C-&998mTr-;eTHCr$ACpZt*OGO1p%l1E-qmje`j z)h#57h^~^a$t`Lkn*JkSzdBJ5uXu-e#X)z6+ZARh#Gv(7(IMA0 z3h%IN8v&QwRF?FwKA)K)!0!v2gf$G8MUh2Y3$-w``a+mqVYUwf01OX<+8E@CwI7Xj^nYP^P_&TZh8iz$)WuI{I5}2W=7!b7QHa7WD~{r*F(#;7Ie>&`|#-t z>(;o?F1Jb%rnB7F)WXMRF$QEM4Yq-Zp@LQa5DtN!q26)aV`>uipZlsg1jWv2jf7Cj zg;EuwUyEQ!Jz<#6DCJW`C$B+JQ9MvHykrq$Wa|J8pOOi(Kr_^Q1F} zrn3aIPo*4}h8VDVEKE7o_Ls>ofnU;+5NaHJhPpDGLkZCVHx zcY^LhopuRz)|2>qH1Q9fZj)bI3T@p;+$j~KKu#-R5%(R16GmH0kpE_)0UU0ys2<4M z3qOy2+xl8V7J6mRo$wUqcxz!N`-cr==LkWl6W3g{u2AxzLXb%A5rTGkUt8fh2IQXU zVM5IX49D9kuXe8h>eU#H4*5ho!OU>s)Iu!OllHm!_KxVf%XD5fHTl6Xg=3nZ?Rq3dC~6J zOszp%DYOt$=Us~~qHcuyEelN&Z9!~>UD@n6d6L{fliW#2qRpPVe{hln{yl{VcX8aq z;3UMZq^47zbl#=uT(*NLy@bIvk+{`MIN(MCd(3;ig)Q7S6izh^4)hVGz{kYUV;rDx zw9pZh^cCi^zY^b>YF7e)R)|Lc5a~RO=K$yX3D-IJmYeI=7~3wuq1Y~n8o;)5I4Il2 zI8@tFDXgtxJBSoyAMO|8h8>wn-vVL<8D&LrzMklt(dau7^d5F{q6hlH!df@v9wL*8 z)kIDjBJATvQ>5KDPi8VmA1Wkr`P2+7`$UR4W){frB@Cf#+fI>sG?+h3Sm=h{gDo=A zlP!7WaA6F?t)i*A=bsKW#-Br82#=*1ZZowId()Yb!h76Ky4RI|ZjKV>v6~%ADuwR! zJ$uNZWFgq;nT5JkCyTStqZ}dAzs4*CZ|EN9FKh@Fj}f|XpSp99>Hm@1K_?@?HJ=tF z4;w3(b=-IA6wf5oL*a%(0&eFDrR?7hFnNM7g8Ro~DODNtR+j$hP;RPzQ)jAtpqr}2 z@Sk4_o+K1-c7HW2(A^+~tB-<<_x}&L;r#rYBs!2d*n&r9!=m+Lg4Nkw~fptf#U^u6H`rs87~N-i~v@?0CzcC0OjH6 zMA{mlIt3F3rW6UiYhYczQG`;C8*2A@i||m*VukaBy*jQLP1Zfh4OP@nFT~kq?*d_1 z_*1eCsbjjMgZ>mSWTDU)+@Fna$MIcTmP$CcZu*LH;+P!9F|FQxjipO(;80LTi;@d35T zj#UUjluBgMxN&6e2~Z+)uP5?dH1dNAa*x1tA_slSU|`ayJ;WswJ;b%ky;caVb>YN5_k*@~xdLw9Qj zTx`7}6jo;|d5sXpGzZ<*2$5V%YALpRQ<|-ggspLF1$&Kbm92$ZsV4WswUEGYU|9zV zWP1`AN)wns2qdk43V~khg$Hf~uw%Uxs5sUFPvrAxD74xp z6ez=6 zcW;Kx3Q}rKs0`0qlc=ehUB2BV%+ztCDdZlf^OLIQU04>T0k1cNmzWu#9=ccMN)g1$$x62Rr2^kDmrcS^GDupUvK~<`ta@2^b=9-Q$QBC;5{Q}UN zx2q&!GR2Rh@lN%I+D|3Z?LpwsL18FIt@7NerdC%O-f1@#t+OpCNx)`zlR1Z+d%gdf{i*e zbKzG{BJAMK5y9^9{Ir^Am~cadaAQxx^(n#`m~hL)+!Q#gF!um@bH`+W7v%x5OOq~6 zK-zoo?!=9tdwL@?DZ}6@L{2#+3}d(<6f-!zVNS;=oQ|UgkqsF5Fup~yyp*u5~_IqlFDwcfbx-dz{ zJyFLz@2(dqY*4Ee$NBhUfnzu>L=7LjTiZkMZVh%`aXtKk_s%PBIzuWlM7^t|ZX-$* zDjZnw84OA{tnMdmO(8+$q^&tc8oOmg>JWmscsZJ^iC#v2yB--eJ))0 z;<72KSl|hYz}zHi0JAfmVrNFpQkN=HXM-c(2#wrO;~+d*Y&3(EZv`u}9JKxx>Scu| zjinTgwS>l?yMm3KNV^BCrH?5pSX0+kD(sg;iZ1tSmLmT? zyhEmq;7V8QUm@VZ35frRC;mSu{P5pnK&8@u%~vk9g+COgS0@ zV*ts+hJ>o66O#mvJrerXq^kJG!r7-_ZmVE!=ZU!ujXCqFm|y%!_`?lzWwcnri~-hP z;O)UU3Mqc+X*7kDof=BL^wj!Sp><81m;DOwpsE?ce~B2+E)E54mWYX5DMbYwz)T}f4nzuL^ z+WzSa*HmAKZGXWac6y5KlZ@gVZWe_S+kS@HQG@L_D7LTXD{f`DVs)yg?JE>^C}ha? z@CjP*R4;j~Ni2d-2B_8WiA5*2A`CRQhzZ;#Y5+!Gmd{EfekBRa3uf%>2HIjf;gMc1 zc$hTYPoy7xZBnSO0!#fw;6@1F@t+J+?)Xo+6B@<7OXI#wyusrv$%Xq2FHUg7?coe$ zqNfVv!-9B>&9lMML-@G>z0l!p+rSMMa@QPQkPu@6TrQtsSvmVO>CQL^+LYBAmdW`M!>^3WFn;^<+&fO zB<&&p>d1}-%bM{(35#Vhfv#iN^w1DJu}a8t1%H<((E zJ*R&J<(D}Tl;=EbCf1{>l=F&MY2Zq0G1#3F)Hb!5l8JRA(BV+M`M#i+^! z^SZ(}Ig(q5m)MdBkl#)0!7ZU!#ZEJ;rMQ792Z61`zT7Hmu;)-Qhkcorqas52rR<2- z;&4iY%L)Ta6cOC;yNf_3E>c9mzwQmW_@B71dQ0>N=i7+GYtA&FO$LmD3lz_IuRN!A zsG4xO8GLOBxmi|QahHMpw3?e;SNNfDARXRk?-TVsRFNybuxH3XFVJ_P7zf&1jtK!r z5Bhfi|F#qZ+212Td3SLD_b0Ui>-1Mzr}{`mr}!rbp(p(57u>&7czLKO){U~eV#&lG zXvKb8O%PQX%3Xi=EOB(Wd-Qr927RD}^OG#G7ndIC3LO+8nf4U5Lq#ng?kQf?v#ld> z{6?$q+B{JBabE=Ax~T(#`iuK?JtG-Vd5{eP-}e_o^#dU4Rq61>v_UEj{MIYmFOmwZ z(UD3DiykP__ou%rq;&Oig9f3vuX!r@9=Cf+K2r_v3ID;-rZS7 z;htKhXzu1X@dM_bqPYhuN+p_7a>Y&TZ;{|?uGo+JgBr!E`-N7WE{ckr_=#d4b>Hu9 zA;cdL)w$7us;gn@_e6J(zVh`AHC1O`6Z!?2||1@zVH6i0NU<>rX4shNmC7dyqRDkIY03;#uR z@LhQPE7Y|!#9XeNVjp>8#0s@TMT=T!L+lQVJ)GiKJSQGBvYV=@GLncxVUe%ADE88E z`&GP(60;VHpRvbaKra#txOb^hti>aqT0Bo{v7%U-fRk8@>e5jv!S{scfH>?a>TS7N zEa&!8vfw>nx7wlNl3Twbehq&CT1~&t5)P62CS00(Y>xSju!jGa;81FvJa-gAu&p%w~tZWk;da*S9Kpw z_{ab~--5dU#kwjvfW`gvrzo)besO;IQ_dsEUC(P^Z-XHsc)VX6WKTy}m7kPT_(#ZM zTeiKG{OTQ@WT0QY7cEDEmZD2nbbH(hUEV@JUwH#vve0|c-O)vdF3+G#2D-FDm+R zC0K=c)2s;G! zIP4Jk#RTjSImn~1L*QR^V2Ah<{e}cPL=)rz*dg$X*4QC_Lw(pG4kNF?4uM}Z#12t} zU%bE`(G$7FdSrb3fEhakel&|6;sP4L4uPK>V28j**w`WP`6YG;FPB5aqZW1uT$W;o zz{e%nA@CjTiO9Zi4!#G&9)XK<>=3w8!w!MVBJ2>cE{DJyBz6d#%CSS>s74NvJ2VD; z?O_DCbr#eCbN46ufy0Nz1a=?HPw=}=Y*h^W;;r~5dn^Wh->MlHaa`n4XGY_&bdY}} zF$ByyDw_4^)&VTr%g2F=R=faOpM*v8rwBdySOk0*r!%whFkeU+F^y(5I^fgOBZL5?7d8fn_14@bT=K4jj;$Czo5OLaE$27>r zO`llhqgef^9zwcwM6JHN69GOyE$-te#9;jy@j25hiV~*nKZELViajot0mGKTUyfTZ z@;A6*bq1JsPV8eUQ#)cor66=?i(^5>CBBJ?nhF)_{O%4%(Lg#cWM9YX9viw1VZw)J zgzb=Ns4<7BlE_QJAsYxrb0Dr@3Tr8;qAZ1(y4DW#0 zc@|whL+d_97ZU=F=+X*Zn!}5_*P#U^cybAzSb`@}-@?JjupJ8_k>e435?ct<$fx$E z&8BIOspmfyJJ)gd4j9&$UF><7UF;Bu-CRHL@MG}}1JVVY20yFObVw(VR&I;sW}{(j zv*{r6Q!z7hrrLp8DDRYx)6OXTB3?YGYWTna?tLnrsS*1k?buf&+cH7cP4P``jmkE- z)7zFA@(Sv}4o-?rN-%IG%;o^gZ;6TQ_Be0={^fR3>!BW$@9MDI;$Tf1o&kzJ7q$EY zVovtFf%&#*;AjpaZi}O9)CQ=XHspvq;&Fz(5(lO%bc{iN)7#ibf`^B?`vUn(@vPr( zNKo|?o#0NAO$=B-e|+-~N)^1$Hj4cPA`1-c%Ie|)e?Oug*zmPDUBh=yu{Lhs6T|90 zh7_P5;?Kc&CydUXmYwMS+e$RS>6PiT?U|w@-ou&?;y}jwzzp_>I56*9@g$doCJ;ZK zx8I%#tYrb3O@^3cjw;#sz5JTNu2rEt9|;#gxn z;uVbzjR%i^wbj$v;u-Mp^BjK=aZk*sjp~@L;NN><2-lUOh!vFQsh~~@`|vJp?zdtp znA^%$#=S(X`rjyNE>TkZc;K$2+}<60LG~l@2D?2TG<__la62jDSV`N6lJM=m3&O3-k?a$-i2x6 z26RRkZLoOl!d`??x75**Jr@V|+QYg!sK7_4a4mN>4*dJ8m;ql7&iD&idy z4dD#N)&zfnkbQEToF)YF?Dzy64~z|Lcp_$M3xr_+^5g(%0%L&ROkDGi z*nsO#5k__vo<|+D#rhyl+OjXMF_`3 zW&%kXR@Qcf-JbxCZnsBsZ&Q@9qTcjW)VnT4{i?I|sI{Wlss!+}-qwPvq9|icUGvn` zE=7Rt2`I0o0RII0MD8xN>VKoD+jX3pf`pK!*vtelw~wP2m|(D7g?>NW0(a;?zxc)k zMi^~A9G|F$2TmU5L?y!pC#o6t@#l4d!Nbh^p&+in&V%LC`_|5!*u{)smetmTGg1uT zRFaH3XczNN#QO!K10#4_0ozIeSzV&Le5Gb6-$*21A~%{s3Z-hvuGE7g#x@}!Ym1I& zM-UMwdy05zqdgReZF>jR+Ao+PigZILMzC~qJ*68+q=V<$NV*k7x_+v3I0M22fifWc zeh`c|_<^s_%yr<~5;zM)WUxFq);Gkr#&nnpBlEmH8~h^L2AZhM76F@$; zY_<~aLyFVe{cUZz{eSL}V*4Z z>5@SHB2zO*4K#CqN(6WE1B0!(7toUbSb4EYs+Xsqu#bKkzU<0?5Kt9h8_D@oD;^KF z^Y-n;K*?ISw8es~ZhbT-188*%+c}B+UTg~DfR?HQ#S*-+*vUOdb=0!V!Y*eq zQzT#&+H+W=z96DshBx>s!d9N?Hc0N+Dr&Xu4+poRZ5FWpSz8MDD#jKJW=GjNaO)|t zkauRjqIS3Qgh7p{d>V<@G9S8ZUjPUR7_zaEZ z`9YVviCXze3tZ`Bi*-y#>cNML*j9MmO1KUsyno_t%S^Nhal!*1B-r|JzpC^A*7%QV zhfCw@YH8~H1Q=%ryV`=-`-*CPaGakufy)WDAa5M+9QZuR7L#tOQ$v*NVW*qUAF50u zori;ni$TpDRIiiuTzwrd(W(PIPlSvGo9fysYxMc8 zniV0#TT>guHAciqdcx|iuXZ?jF4ay2Kq>{GM^D=rdku(l+k>n$TPT}c2m80n2&pNy z7{v(vkP#ffH{I4Xq&?z{cJwrrRiyO0+;FM``*^D7k|F90;^X-n?7j{PlT+y2_I0q6 z+oz)?*ibW23ma+%HdKv1o>~WeeY2y3%KI*qa9fOQV9T=4ccEP1Lb(8=S z#)0sLw!zhl18}^dZ3(vlttQ69g~3*;0~ZDx>L`W58g;<4z&>I+`v)0+6I0A&7!>wppKe1@CWKpjT<=oJA4KdVoTuuR3}n9_^&V( zpfe_YUA%*Hm_fXQmxERKyUDYsV_CX!8fjjDYNc9875k48jhb5tC8j%(6;=86# z(pW-JY;e_xU2kIpplAX7$7^6~GicV-hQ8;GLN=_9i&OGEf?DjX1M>I!c!4f$Z6MQa zkkkQ{we;&_--{+-?RuXBsZq9i;QeP|&6!0h2B*nxYKJSJ{&$4$M%!{7HIT?1Ru@+U zOb76|y{#{NRk>paTN0aB7k(QHrpb~Hwl*QdTnZ$Iz@1fAse0f!su${UaH=c=mpj?ws8oqfhL?4M%TPHmsk5!jL|an5 z|LNStmc_lUl2l59Eoz5L`Ro4|R=?fZ=8fwDroyS=B~i+-^2Y`cX)|TH25i zOLW@Ur1D5r1XQn+^IW;EQW0E2E3o!1qZZcQWvo4_BKV<>QW5xP+Fq^E`)haj)f-^% z-_y(H2QH;TWz6nj+r)iO$%4KA8@0nJM(O{Q@I*%qByxWz-hbO^oL0STX^au%^|Fl$ z`5o~@Ti{ETNu@jxlHm-J-LT7l;km?5ok5oe6eg#*h!RG6%iph|@r2P0qPz!<1;sdp-Wsyl}7VX1bP)E(h#|d?)=HlZ*vQm6pQYTWy$NR}j z@$qpo$Y8@8a%d8+J)mUp^dLoR@!>SJg*}l>ijN-gidA%%F(om)JdV^Y8s zYhbV`KpliRqlgqDyXy@o0rEmXS%8!7>U0xOCX zJ2t=;6_ub^Q3)z`N-U^Y0DVPK#NX`fbGP%{T|VFUP5k|nJhx?Lc6N4lX0{d0hIIk> zsl0CGXoNr9P8j^gq-a z>N<92o@bPXWA+UQ@Rh~0)T)yS>|!%dJ@uguY~hulLvEQ5Ce|i@2iYdpN=Z2}v38SG zoNr14>pd<@(D{ad^D%-`S$$0koHPR2!0F~q{)N-cn;?nKkPCJp%5iB2zm3(NWlZ%n zWcLk*2x7(+FkhS~@gxQe4`1B5#}W_RMn1%orBzE3MK2wd2|nV=>S}zUcpNYB8DF1Z zPbhh;?GiA)&e^P=vjmK<-vN7&+C0rkq6+3SNh2}7NUD!=@97R`d>QrAeSB@ezmTsD z(vh#k`l@X2x4wD^ZjN2%nHqA$)YTk9maO>Tq_o4jvgIF~wAkCjAxf6UiL~bhw8)ZW zg0F3Lw#XbL%+o`l@Mf?bS3>~DO2+^W^jOxFV3FmpMe{u-yLp5sh11-aRbJ_dNzC9R z(q3vTX%+_B5R!lcCLyp&o-APxn3S%)H4jMz94PomS%EQ?XW@96#=o#%r-^Qc|;+Jh1>F~vfl^FENyO|e9F$4XBN?P*dC&9EA3pcyv)de2qb z+oT5CU9YDLyX%#7mYJj*tg?|6#j5VLx@unr7Cq)DsW@0Ygdp|wEkW?TQ>@{Ks*(9uJJ5Zv{eKVDw&)81lkcNQjuDWcaw@}F=j`# z(lnlk3J1mqSd7hC_U&W)RlHH|Ia`~j>Um(bqW2x1ctv|Q2wk!osXhs(p&WC79hmHCkw>N|GNf0n`aZ})Tx==rIi%;~JY32WD1 z8;PzrB>-Er3LkDC#jd>5(_Q@~gFhq3SaGDKr`fdIy5W=dim60v{Lx_?}tGK1S)xy)(0(jiHYM zyJEI_(zN1`uqOt>_J)96w9V5lh;UdK&VU`w)!P8}je)Rv&nl&Xu-CH6?H*Vb=DlN& zZ5C6nNvAOASe9u_3&r`!;*RQrnXL2!cbfKaAR1&3yjhV<7B5L%^=F15|iqN_p6ws(CsF2qlg!cSj-e$sKWQ z1#_PFYRiW`Nlua9Gq&*%wQEOK?Y7b)0|9fMtDSAYxgG75e%hs+TI^Eg{ig968MJ&R zYR%kH5pB8BK>yL9G|+!^q*Om`rdE9UhzD-unMDZUN-|k0N&Cf5S`%)>{wsTx4BUG)na*{6cyJD>LSSAXlsjy>%er2SrVZTm^zUqx;8(~jI2 zfx+^dnLxN=QruNlnfR(%beSi#)de87SYM z{{z(muPOwW$>EvZu_+2nqpv~1-FLkoLkiktv=aq+LzGr*%3jZ4yB!t#_IgTTawp^j zG{h9WdIN9B;EG>g;zICX&BYB-{9Y{1UfSnruD;lbeZ3F% z2W`@x798YK1FuYnVzo`hHc=2|=I%~xM>ivpZQl=b)17v!u0G%y9M+_>!dApZ4`Wf4 z{xv*Jj$n%|s)RneGmsdM;L}DM$33rUAxW{DR4PdcyQUMID5>h5#ZsPx%jnC<5Fu@~ z700a=JKpdNQM9q0rFaJnSX(9CYL6crOqYiqOm@+wWH7~|7DVIL<+IRp-u4VqcY*r} zDocF~?5uN*JFp9Hd+yd&6EcJW2^O8Qik&?OahO#y(>AwCnAVW>d&kpM-PW1Se#g^N z+ab#cORHr4z>X~ERcZ{Wk9H0*ORRm@(~Rf^`)SQpuw{{(V8OU|&xd6d<2?}DS39%b z?}6C97Kpn%s(BFZL!od_Kjdj15;x9C4%|2=1*RD6%t<4PRd&|fXe3VrHcxCESdVj{ zyO0OLZ-~tw_Ux)<1iK>leNPuvyQGVh8QEDEL}y))%s}fqmHliO?O3s^O+z;Ph-YS) z)kWFVpiQclK%k)cT3$63X7Qtr9&6SmlpB`Xu+30-H3Z5giCO$YXEBRAkR!(&DSQ@Z zrGHJ2U}rw|9M<|13b^bi%E8%03_?;{91=SEQ&uZ&L_obHSuZW99$fhJMv|xE;-{XO zsxpVo_`)+>n;QUt49{i)z-59F#V1e3z@^vF&|ySO>@vk&@C;(bk)s~CNc+YBn52Aj z0Tap}elw{<#kopG@TwsAuHFf5@e}SGbt8CC5PgptD4nMk${p2j=@q?Bdf+0>uL3A1EzJ;= zAIFxqugLw*(?r$&A?5kRN6L2=<^Sr!a(00%otV@xrsA(to@t89-PJGSaGImUT%;y+ z<&Ir*Em7vkxPfA^v;TOK?kGN!jLR2li>~|v52uf@>1R(b!sbo_xtrzx>}jeIgnal? zYr!rUg(z6*kot{_BCJFVN2tw4QjiWpnngMl0}S3n9iI@_V?B zA-@&Bd0cGoV2HMD@1w(klwUoctLwUob1v{7&$+C76^_jf|IPD4_%qOIw*Da82wXwh z4{B_>@>GB%?C*+45}ZCy`tP1gYpH~pkJ4myS67yESG=X|A~c}ve83ZEVCgZtKR#;G zT-^yh7X#s*ubgRkK;^-%_5qb%e|jpz>vw}z?rEgA&>F&*Zx-jRR3o~fM+Y~oSO4Yd z91gV0Tiao}x5nec)eaBESj?T?0FvVtXYa zTJDP`slJYfo?yy5`f#Hirx6!y+Vd}5uxZ~ta3OABhFFNZpy@XhP(g$$JQ`caQ!kgY zlqmf*EsyXEMR_<$Ksm?*%5=|=vHmydz5QenU)%l-Vq#c%BRx->A)yPQ4uQ@)y}K>c zhXyNA?DQ19qqdyX!=7Kee5th!D>n3|#&JK~6MncS1l-^i z$V^jT7-9wTTT|bmo#)l*3Z&9QCZL3$7rj~Vn=I)gsccQ1%#qOI6-WUt10E3Fx+hHH^E)WEgK@I-xu)|1o#bIx8N?AiktB$bXV zBMBzf5u^|gngTvTf=WM|-ik}vcwlXQl^)oLkmYdcBgA#>Ji&#v$-b=WfD?~qPq#xPVbbS!qP6>rXlmw2)XJqJ&T@H*G zBneD0*nJs#dyOR95hb`*OBu-_W-=a{P>Xts7~Yml{Z{Q+LM3tr+xev3&L?HAEvCht z`?pZv?#VK@dQ!D_WHxEyo1}>!g%VX*;z^40%D#&fKJ}BLr4F28QAeU_!61bO&`4>~ z+;VojUT|Y8p6#N$6s>+QDXy}$VZB7JhRIxe=i~Nga+1}?y;$LW329oA%qFdcO?BOU z9on*2h=IB2{)A)?X>GJkF1@uNc4l=Nf|iPUdoK(RD7RN+Wb3V! z@aLedA}H_zX*C7~o+Vv-pce)N9AovmTzyn+x!@zKjrwFS5f6BhphutiBc4F#lU<^( zw{JFM)W>=WpZUjU^xL%WNmbOsTgUgPwHEeMrkr%*!&t-4UT}7~MTa8x^FX~)akE`{ zdRr~Fw;Wa&Xo&7DW~#*A$h9b<;d&@+``$Kb?8E?FV=E@=QOrG9ujMTW!OIQs6c;FyOlH%-M{rD z0gdBZp=r21PiFXy&8}s8?FB;bZi)dd&bvSp>@}*Ap|F!*`IW3M_SwiR%gB(o{v|(vA|u z7hF~bR&Gs7;0Cxu>-B52o+K3)YGggzSflkSZ`X4TLIvr4;d&NvaOirD;9ux^j>y6| ziY^Zs<0wLtZY4WAUjHHFu)6Et7*;8Hpt_1T>YdrXiC{;~Bdx`;wUi{FIL-rN`PiB* zGklFK`}Zh1Gg&XvZj~s+unK|GdrMYORON0`kISCI*vew?{&tddYzxccL#vsHs#K6% zjH>)s@(v(4JM@sGv7+&Mk~%HRC)G!%=}qf>40u4QPv5O4WqtzRK~fDZa!U0~LK#SP zx`>P%C#mQ~%m}Rag)BiLBRT=+>pAZ&oYX?&9It`W`8)qY>HJ+tCkc#5>70=zwq+9+ z(GL=gIM|lmT0};|`}hDy@Gk@$(FesoI5M(hmVRZ3$jH>o^vzl_uTCQ)El2`(YBGT3 z0-7K*d^DBaUi%@lXbBvN#dt_B378wuc042mI&aTDA|CRj7h-*bNi~dz)KCNCAq(!; zuhyoJ8W?7nz>4ST!_+Z-_||NlRXqTUMU@Zex!UD{C6_o#Zdw2Z&&-E{>jDd|_7}v! zLk%`L2}=dm!cMq$rJ3pmfHMc zi9T7|PqGRh(dVlN`-uC@-X$5(IrgPIZ}ky|+{b-{XM+S`$N`#C{ir^u7WOX)#AWLK zK6Z@Z`#|DfCWPQ@g09IgKmd15{zG!nHL1*QuPJ@R6`xtl^xBxcoFI*&MQ4O0_=mw0 zbs7fa*dsUVu4gaTvlKPHuUMso|F}xIYe$<%c3}^=awV(u7&bpYItjvwa6{iUSL&0( z`}XxYDLL@v>soYDve^1-pjP%>jUq)7q8OC*RH1o&6_TVH64DHn%bkU zFtd9QI?!90#1p6xcIAZSs-5~0N2P?+0!L-czd{p)OMIBnMak%^u*1#Li`ca*^tV;k zm+j7joi>{ZYGfSj)p9cKz7UL?zfzy@uMnxOw;8vd(1DD5CXjJ!MRQgo?v*Cgv^eSJZQ0%cq4 zJ`&(`Oo85sZLNf$`QBBq((2BZvW+&BMG|m|a%YPv$|W=WWAoplC_=aZ94L zbGhC;^D%%GG<&t<2&m#{NHEIT3w@ENNEZ4O4FW6gCMBdVvY(^|)U$mNS`U2@LWNJn zyzR1uFY*Zoht}Sw{0oh;PeC-DhgNaepfA!On~$aqT(w8Aq7C|lkV9%)9f#ERm3lO* zVt``!d*GJbwNbxC`;{~thtyvr0f*GD_K-R)GkonW`?n}6)Z968XmcCR41vzuC@07x zNh9@8uHjkf&ESz_kaS_Z<`9ph56MN3B|LO1MHlI_4~{`LU;cep37hrbT373(E$ zl6G^8T0LO*&ilDy^Q5D9{<%tT&-(m$GM-iD>aZd6>e{+$lGtRmGFNybm4p;-RL6bI z6KD^<1SR=f125zfcjR|ct@iE+CFnmA4f-M#xzZQu$hlmPtt zLZ=z+O7+G{GRu4(mQ_;v$zg*GPV6VdzfHdo3|_Dj80^Ck#fDd(tk1T-pvTqDeW8uA z`Ux&ugdXH_Z=OK8tV2o8<=B3l%hGolPHOT=F7D32{uw4}f_G9?0bXMTj2?a)Kgb{V zUDSI(4*6~Tn_-CZ+xSC_0q>o;exIcy8@o@RQV^n49UT{BODvmPsaI-@Gzx92Z6pCF zG1gDGD|g5Y|A?)dyJFMfJs4e}JuRV&Xm1E~-lzJ}MU>Y`6*TH!=_eeP4@m|#0WxqA zo%PFQS|yzNGuZxDbc<~}9327Mm=fR8TV!?u$UzexFxNQ_%1HwQT$rAeG`^g& zF0gVpQbM{ggGeg6FtVQQ!q9r?!VoHaVh3^{T$m{w99oFQ{0l9_;{JilDL8=8g;~e8 zzoY*aazxe5OF&6Rtr*SLOaxtc?R)xK?JCk*99!3u1Qg7xfLI=_UM@3yjjW^JLMeKo zN*}Hf^Yx;46H?8#|In~LEB`RMoe@63C$ka!ORR;!3#LxDTgvR>{=%&x=BFPx81;U) z#)$O;j`IVK6M!9l4NQ8eVXeH3rGKJli*+4g)%wBS)PV>IU@9@WW0`B1VeB)K^Kk+ZTo4h^0N*8ap-pIf3I^u!+W=XujbvysU z3rkP%FTB=r5WndTZw|bUUsQ#cl6}Iz@NTUY7QgQWZ(AzmUwFIB<$NPOZqv`=yCiXM z^%?$!doow>C1zakp2nBcaE(ysk$+q`smDEJ7yt7;|AYSe7Vcu88?%P%Q`GY%T-KKN z7Y|rocU0e}4duOHJ0c*TgW2x;w0iKo(w^2aJ=meqUG%2$W%ZUUT()@n%nja~;lP7E z5ai2}w|0bwBM-nsdi>ZKJKmzf25nX#(BhuD6KM1Q2hid!3M+i=c(Vq4AshN z=CR)ATX)uO_CqgaixwLFH%*O;EVw}?@-MET%NEu?d?X%t>-Tdbmhh$iQAp?;YY%-- z47^iu*H?PAcE2Q>U-{?2S-N$QCEA;*WZ0t#WjRW2K6-Gf)P)W*1Hg#pJUQzO`K3LH{ zCPW~i?lCc!tJMSG%DVVA+E*kONjzQ?i9Zd%1BL3r0jy}2Ih~LiE_MNaJb?Y@6a+*l z!T?h3k`7WAO$Ab|AN971tKmSONS6*^i@r-tWhFo98?+dijAFw|Cd0nKhHUcBuxppp zVFB3ew=5mlV%Ax`)V2dz^{mD^J9IcIMr$7k9XANJW_$kBGjW4p`RDU$vq2C=<%ctR zw97$2>WR4NA*J$xI!a}O;SE|>^!i0N6m`Tv;qk)%{TE@yI(pKjk*vjk^!LK97-);; zRkGC^i;U@T!#8g)F1-ay=Z$csH9Q-~yFTMqtB_4OSF0_P$dN&}Hb{npEc)*dZCEUc zz`l#!#1p9aFBD|qHoJ4Tqt=dV8c&kx4>O&Qi zlpRPKh0SV|h~0IPh|5@U32ZOM!=zXLt$(3LU0q!t$kkN59Do{yK+a7i%{s(+J^!`XsvIZRUA zEmtmL_Zzf}eBJ-|K;f15t!J##NC9@Zp7Dn30Z9WW*D;52xVMG($p;=m-9Sr8~Ts>vE&#tedO$}UhexM5E1lkI|w+(AFwtN(&={@eBU63=Ygr#hDfF_v<;xzTdAm$;PR*`=A?{_#1qgphklobS6porf>^Jao^mv)NKD;s;#ZtO{! zYd1C`(ReXj9SnN>YzFAgaQN~GBsTYw!8J%+^k9^@XotjI!V();9n}ki@RC98f<(tH z+-qP*?#szWJFQh9mS#0!=_s(cC>Hj86Juf+z-D+U8bt!k5tpLDZhd4hX|P~$K!V9S zry6}Un#vixDdNt0iexX|@o_ygir?|E2*v}y<72@fyyL?~Boypg{+`pCrp6|R;DU1R z&HCgdx!G0C40rf?&hGtHDQVgrgb`e0n(JhOUz5#;mJXkn(^$Q2FxOETkzUS?*+rm* z*qY`>s?wJ2f`6G0Lfs%m1eNVUYv1fvCNVq&ib&BOmkE5h<|lb&9s4ZOBczCL5VmF8 z>*co4_LD3=61A6k0*=J_Y)?;^+dKR|t_eHXCEgu&c(B4!&(Dg-k3~1A@#^8h>`*JC zjrJ*lf@1ekO#<Thaiv^0z%z!;1%n*0mnHRcep zceRw)!z%;eeS!ZNv)Pe$#{Iz}RN3BW8QuYEGsWX>tz~dH_UwW4Z9ADj2;mpPC8{ll z1PRaC4n`{wo`iJx2eJ9)h9^<-z`lpBwFD{Vt^3lA+q5AhHBe^kyWH|fkpP*QOtMgB zCh&yNGP7WaEi?Rs%Z##sz1Ipf<#Gaqi;S{_WwwEPMfujhVE?0ZNT~Udi%qO-a-8Ub z5)LRgIDH=5(+Tb_oiHS%%-EI3O0sO3p^T6+L-|?ajIW&}+ zr}-Dk%+oc=jMCM(Jy>R%%uk3$wWA({ii={>w09+mXr}3J$plFY+uqGcQV#@6&G~Ld z6Ofwt?(pwKpw!sc(7i4pa;eE=cXc-oY2T96K&i3sg8P~j36PqGirOOug~iQQ_O4M_l7@=)bjPGq*xP7AWWv5KE{emUvSOz< z7PNsUolP{kDTW}>(h@h=pYqM@i_ zTtvkT5{Dei({o#>V}`QKx2+c1IKm;c8!(13iZ>&N?Ta&N8NXQOoF36pZ7;0?UsKBd z4M%m;>}XHL>p8~sF!j2jB76b=alyWPB7`s8V{^mV->afcR<4;Ttn^2{0m~g|Y*z0d z%8m{+T4)bS9$-Y{-v3KTb`KS+&JH2Dm}g9?MTFY#!m3+`vI~=qmfBWHiim5x!V{?R zeYcRXj4-$-@y?+lu3-)V-F$*n<>RFPQJ%oZ$-lv6lfAcnxQA5@H8zHy1;DI2e#}1g z!ccMP@wFMo=LmJk z9UJH#$;y@5>J2-hvxS`i zmm~AA#6bC1{@2WC_Iqh`icl(5CGI%Zb7gcon|%N5NcL-KbTg7McdP8z!)pItp4WVAriCAhbkCr}w3D%u8q<>4ttI-7l&afNm>sa0p@ z-C#3sP`=GP9O4yk&M^in;g16*w$o*1X}cs&ihqtj+Czay&g` z^X(x?jo{lsoCAH8-=*tuSWgCHAZWM%H3V_*JPow!^lMCP?dA(7pRxFVt z3n$jVLT>@fydx$v8p9ppW*>;Vvi;d@+9_js9s5q0QT&@Pw8g|0a?rH#MVQC%>W{t! zWaZUxm$#$oka35UcxAocf>x|lLSd@e8$%0Kk#WmKRl$4>6#C{aWr(Lp@ z%44i(0qCdcrN&n66sZa03>L|j2U;iJ%Bt#P1>!P@jYGwTMXA|F{z?xaglGv9l|{&8m!T7@0ILkT42dERoR^ zpS(X`$0f3i+h8ieC9-Wd8C9@*qU2`dGIhXkv2J>LRdgilzsjfzn>!qKM0xwfu_pf* z9&NsC4vv92ydgCOFD@S*N|%6z)q|a0Wkj+mf1hl?9@)?!lC8V7wvqPB7&N4%I&-+# z+&WXzCnV-poK z0mHiFi>S76iWOPn7ZxK#?|HL^i}keLYmLppv5&-cu*UQ?A&N)I3QoubzyDc>dv$QM z0rMKNXUmQ4+Fuen!zHcXhqKJJDP1EA9Rh6MN(Y(vZj~9Bi}$%fF2B!B`Bku@^5wKt zBLwx{UxxFwu8nN)28hYnD_o=;@4+7!#fIvZ@7`WQ7Bx)=OrQ-$-*^Mo~Z%ZtA)ZdbhHXRLqH;yGblFbH{lv;GbI+T{swP~>Q;~A z$P`msQ6Zn&a^R*bOyiT7Hq==~#HtO_mps&5M%U$OHR_;2#$_chL^U)=@p5Nju zVq;EuxZlA44c~i@noYDVPGAz>RDK2XBZ0Yu4^3Hz#;LK|bIu}^51;NdTKz91bzWC6+D)z<46iGE2#+TskdemsHo-AVfA2pg~ehYAe*5E)OoO7p#UCKdX7Pe@QoA@U9lfNZiG)0 zc=#7;0?!Dsx0nW!ArEzZ97xtXuuW{?F5{lyY53CJ#uBYP2V{o{a2jqc6MXpVJW|U? zf$q4_&)tBzPo>5&_mjp=T7QX0Ovu?I#7mMRNCu8fd`S{=aYil<%*7cQa`A@M-cagK zqsR!+2yd?uVm7|z8CaXOXJb-M%*M?|NHLtZAo8Uq`iPu1$uJG5qeY>d`65U{WwbB*>GN#GN{wv#8I5cI03eBMY`wEd(AkYew* zcnLTMPaA44kzAa%@ea)+BgC}*G0ElAw)(+{8p1o(BZPslj@R%R2>dQh-TMGfLYCPt zYy(a<^`+5?!N^P3wrd`Co@aB<^e>5>TjlESH6f3<)OJlNb~xMCvww122<&*br2{!` z_MohQ1d~m9yF~=MqrlzHMY3=oYg6`ffxCs)^ipV4*OUG0h?^yaQBstR4^p$ zO(QRi5G&t1N1(+J_8_$V>^XQXe9NYRZL}c-KK5=NPY}J!pm)2nFN)kRYSTzD?BT+- z2^!n+sxd!v2G2VF*Cm(S;>~CP8>bu$@~K8SB~7@Lor#J`)+P{$$chyQj93>*wRiKr ze8A|e-9QQ>dgKBr%(r@&Z2oJ;5C>pC7a)8Pvme}!yh|k$rhcJK(;gv^(VTsVCy4fs zV9F`uOZBx&#nY8T}h<1Xt7tL7z4;a~ui_h_J0*qBDJS4Oi1}=A~(b_i|txo0?m%xxv4L0bIgK!fCH$ zWDN%JeMgK(gXg-99~rl3w~_|oTz8X9@Zm3evW|8#DCx*eOWh6G)vq*;Wa)F<8@25c zjhO1Tj1*Jd6C?u!%XU5?7pJ-x19NvD8QBjmNk-rEP9Y`S_tZl)1CIX`er~+%o99Rg zoagw%rC%5m4ZdMg?48V{&4^aPEtKwW2%*SbRQRN@Q23Ls zbx(C*@+*AR7$v5?h*3i0tDNJl^QK1<$f!g2@C4Dnn@$;DsfR`hb$^%?L|(mH6R$oG z#VdTT_^na6`BQt1z=G!3GxIApiF*i%sOKAu4wONjKxD9U#r&TQri3?vbg?rml~h4$ zlSbDdLv2T6&j!d)<|=o~M1_-y(b7%!n#EIn(CQ#6vohr8VpW37Dgndaf}#|n9jdYAx|G2q>w9M&z!D=j7B_FM=iVS4DaiGFo~bCW!;Sz!9Qieq}WK;V)xy;%c5k74vdJ6S^L_hWR#01#yNAq{{*; zzCnthUOh$Onxq8GVGJlVDod6FL?|grW(F6PjFCDc`9*9SdTHblh8|6z|cLsY!qgOSmqfp z#`Y0j;bcnn%$Kh^@jAljv(hCzp9CQT*^UeD0ZKbIHQdZq8;=n~=@aNY7)lmlsI$`4 z?$LSLG6|9!R1m9;FeCMlbt?XeF!w0h4bB?*O-LWwqu)`TW&fwKr=nK_Gf7d`18oH{ ziLC1PCS5`!VU-Qd!3L2YKg}SqIM5&F_;H}`}K99s}=nrw2kxlsF5A_FNg>u-GG66KOh zE@3MlY1UUc!n+@yDL4?(SUD`dF}5FqLT}X=F{Uqfo85h5nv@e``uQ<(Ow(w>Kb#62 z)AiZ(81vf1DxN@x^j=A)*xw7w>;2fmSo1!u(O4)eoy`K~eq(U0?W|okqoQ0c3D$N3 zCV9*|wPcx$PC$}3iKif~_MuNwlb;2-M(arGpcYBz2{?9vZKy>`4Rf28N6O)NNQo)Z zzzO6530FUvXr|O74uDL8wdauL*xa$gNUG0k*y9~`=}crL1%?~2 z@q-^~zp=s~B3Ok%6p&!D(+OrTjiyRvmOWNXu<2ukHPddat<3Hx#3Dm>@B{}#P?_!H z6?nvBzpQ`}kC$p{+(Dol7vpK`#A3Yqyl9*Dj0DEJa4k098czIA{v0hzS0LDk5TBkS!qg&u>XJ_Xq2R`_s%_S~9O~i#6(n z1exGNTJ}=i^@72+jr^%0+tke5taXtn#AKd1PMmXVKTe!;+jk;bXJ1^q*v;Upvz8xN zey}VrE?AZYd^CI8jT4&Ux0YrnpQa#f6PiLF7g|#+;Q&!nT+O~{WiCl<#}lZgFeOT^ zDd;NTtt1P@?q;5VVh2RwI7G3#f1E9L56TKCcK1T5kYj2$@CU{2YF@)JiK<(ny)dM- zyCg6nc6`sH%Ek$~yLp_LId2#zj&PJZOWOeg(m2Xb6uj?w4HUdn{0jx|R84}Ho^I|8 z7Q7}I=5j4;Jk+Lw_m3pShqP=@T?H@QjAc<>VM6-({TXp=`$2b+5dx1lX1oxV>W*eh zpRkZ}LRkK+L0DSxmY}d?uopX-6B1*10u`1EvT0&k!QCX?2?szy6!iSJS{vo+B0<}; zO0TZwlUklkwr7=rep2m~5mHl}F#Kmn`V?&fsfZ#ymM5S{1M8$nFCTA<^cAuKnuSZ* zj<%u9!t2M|5}m;-I3!vr;dSg-;5-RWN;RB5pW4fW(7^-aG-W&rHUt?UDOaP-@GDfE z^n*{tyfG}Mw^?B9F`=<-V@h&7=aAc)h*{{ejTH1gr)4SY8#f^ii#p@xa;0T2qflM}WND#Oecak3%x1=j#62F55-@L}6( z0SP91Y?#^6kqVr#11;B05Odu83BnHaPO$C3PY9jJl_NaC!4=$=^Xmk$E$25<9@}-c zrgr@!+NE}xz;=wZz{YvN-Aw%n==j=5)P5phYZD6%~Ht)mv*h z;MMTQfAtnmAy;qlJTG2Nu>@muf1;`L8P|}Yt=Y<_XRZhXCbGxd#H6z0y z!Uo3-;lRo7dt&A1wue_3Q{jNJ>t~91|9s%fnrUWx^^b|{#c5_M*Pk@|Y;$7IrrFljWD;RMV3+}K zlUFZ>un9iy!4asfC*g%sip~mWnKMEndSjMZ;zYD3J2pQlh$aUw4i~0)DsG=+?pN5K zKSsOx=jV!RFeL~%Qk(WkmxCs#LS?x>Un0HSV@T{ zW`@BmX}IuvC&_boBlzPX95;=Cbn?OJHg z3W4ixf$N?iT$=-NJ@nt>QWl%boVa*j1akm3`YkpGC($mk#~QW(RK~F`EN_W8~`WA=Xz2(s^ zKG`=!?}l!axIN|g75$rr)tjua$;-N?xf)C+^1mY%E)m8p@8K->_3!90!Di#+=ub#KXqNi%ja&@D0 z;}l-YK)R1>E!56a#4$<0!=)$e94L* z6Di-k$Tyfn_m-PWYjG6PPZdOZ|5$IPxW-a^oL6zz1oCQ>P5+1~V)$(BYF*(fr}h3F zKCO{>oP2um?dFjzY?C>I9oc9;8eRdY;T{BdL*aQ!1TyOx%B)wBSz$1-vMdd5uUmar zYBDR`VK!v$ju!07HotAmt}TZ%KYedAYqM4&nYl+Wa}T8lnR$e#P{Dg*3RC_{$yID# zeml(SxoK{6J$B^I=xwg=X?>g-Pb9a_P=B4mn%oT&=WjGynsH}Io7I1&u=Q)K)H~e2 z#e$Ud-eR_o`#4Zzd_RTlIqdG{M2GipW^4fw)Qic`UGze7z6upmJH;e8D`5MAV4w82 zkN2T^4)hwo3?K9aYRE5yhWsQzLmDAemiObyV%gB#Zr&MSa<4Udv2)wa9j?nLtwrH_ zYj~*0)w5taNruLt)i^TXb1+M4Z7v>LOSyUaufM3ZfQLvP}`)=^u4g)X;q zSO1^6n*(#X7~*k?&>}33Q%o)vq0YYBnzdrt!>qXcnY=e~ap5Trk^l5vwaCANPFKKS zaO%Tip5XJ^5BE3I8CYlMT+dPZaC%96+8pV6h9*}(2U~GZto^7Xzd|D*>uK{FR~0SH zjk~1Rc?xRddcweW!t=&AGoXXCgFdMrrQoyL;OTLedVDtBzS3wtlx8LmOGHGS*`lxZ! zh~<(W~G_OS>iB7_clRdgu8A}oi5^Rdo`pn*a~WY% z`^HTsWZRB3;0Yw#&gnbNPj=Cp=5t{;1I5Vd7H^rkuGJJVQhbX|@hvn5Dek+WLj-fb zZQc^T4f5D^dEa(mRWCQH@7h6&BK7xB>K`T4KVF?Mhw|1X1PPD^l5gkSD9J~zpMA$% z9d^*yhRyGSxKvT}*oJrQHoQx7gt)wCUZZ|Jjs5(dnc+G~vytvEDcxrX-HqqP6%(%8 zJGB8%AlY`#TLENuK5RawxLNgKv)H9i4;1g%=|W0kX^x<`;nWEB{rhIQ(wbfMf!V{= zmKNbOD=pc|BQ#P3VfaNKnq9&`TG)HnH}A@he`xk5v_}h;15QqR91(OoCz=DyRef^) z*%9*qEW82fiEQsjW}$05B?0+8#-@J^%|ZH~_}F|Xd;ui0@^vkHyGm#Qq<&r?^;aSF ze1P8eskwsCZC}y{xB}_6b1rq#{pM%p!^&N3(dXu5*EWh5N#0_UyoKf<$=O-0BG~0$ zm}}Ihrn8@C#CLN&L(3r5djhH6hg6FZI&4<_0xIKf!EnGBNVuJIr-Sf{X~)gZit8JS z6iKeONv@_jNOF&AbGdpR;8&X+Tz}DQr1tj!YSoAt7)wMEDUSowK6*#XCanC9IGv?@ zWyTVw+ZP-H>Ok7IH7L|4+}&8plS-s< zjA(cmCb*3A`c$@lUTot{-uk3ElrK=TTyRtf zzzYkSFQx)uUlcfEMi3M2oC3D~M_B3R3{Zx0sF|$v{F278at^W!=JA5Lq{((VH2J?` zAshRX`K9X-+LQnu+IJH^X!CII&t?HJXAlQ z!J>WvJ$;lGMh<>TIQXsLARqW$e>F=;8|~WzUkzrTowJXy@5PYpvkN{K$UZwATKoTG zU(P5`SL~H$vR7Io!Pqk9x&o@?TFXTo9A9aa(>bphh+ z*U%~;pRHKs`LMR?6;K9tk*iB*ij8M${x(OuHUyO|oiMQ-YzwMBWp#1g8)@h%?2QHZ$v5H)b64U zWe^}pRSRYYxD0MyQMe4p_}6Uqx?;6Tn#sRuprnu|I2;3v&wWjk(J`pyfg zS#{GKytF){o^>$19VFvD-mVU`0P2-CtlDMSA@uIEa0yC11|y6w;+G~^&D0jNa1r0t zf>uTS1urv3u&oWO8EWAy+!X5?LCYX`xOu`4exd{q@4QT7h0i6p)mdV3-3dNZPrZ~k zif@H*IU05LWur|{iotHstR!bLQiu=I+-wtfOAv8465?*3B_5%Hw)015l78X6fKpG1$piYn028j2tbQJsf<IALvc9}@R8ygN5L&hvhvl@Kn%Z>e!yj72M}ilKQ!h# zK#L+X_VW}6GkP_#yy2fiGJEs_#Ndw7DoE_7l-O@2u`i`q%}B@EZs`$P|6+=j?Q*2> zj#b~c>D@2rW%vDKc4Yjz8ka+3&P%iMUHWVyaWI3y0w^3~F=;_xi(nALOXyc7uzpRg z&s|MvMX4X!&la7MPP4I{ZD$i9?lIe;AY!G0uw9d;Y-|gwyAunKToaDiB`K*a`@uN9 zqH#-jJW3rkn-$$0GmBL42(!ac0bkTO)7l#1nn@|fu#+SzCAenA?l#s|Rb3Kx$p zuY!E=t3PUhCC!-%025@+&|1Qrxo38OITOPx3UlTU{#7xXC3LmACq2!7Pm44t(bL9k} zo1tb=OhaJ{HEhh}Sitt_srHy7)OinDZO>S^b#0EAhiB3ZR2NezyoCZ@7<3g*#9;tP z=x+x^v~-{WJYRJx+hx;T^nihZ~;ydXBS;R2OTlkqSz=h z=?0-gD8bN8IIp;XfZO3_Au5-?JQ!uDO%8K(s7>DIU#LyqpHq`IxqN{2LI`bg#XzgV z^#dhbYLjnCvW>jXI~9CuyB>BlH$IY;4g!1VPl87%mk^k}=Yh*REO;N&uUy<-pvpIB z{eGF^VmU*sVM+u3uNSL2k!Tt^B*0+0}-U}!C&V7`RQCHcjF{v{TRR}=~+i&MjY z;t~tnV|?3${WLH>Ch0scLY2+eJi$jduByO7^Kn-{+8jCd^Sxs152xAwu@3pof&^w$veU9V7JhiDGMJQxV`Qvov!#6c)AfF_if11uV$+bB40geqGEIJC@H zvpr+1T;&###4Woh${PTGq;o5Fx<^I~yJoDl(&d>;#H#uUPkx-_t=(OlLJwfFs!NJ6%DP$dL2yocwq{a$O`|Gwqyjy=m8vn_M2>?j9V zRy4Wmc(!$1ek_~vMV!0d25;;<@NH9XR!kQy$kxuYmPGA@2b8^EK&MRF(5m2$@;0dz z>GQ4nN=hfFsjC!?--sczdC(1*;wspTw#@jB9I9WKajS zJv27vNL*vqd%(c{#!H0HqyP?;!*lJS0yX$h=~%$=4uwDdp~6$hP~mxA#L3(1jhe@w z_@2$yF1A*yOXjhnr($y8WFe53$xfu**^m`~oM0*z+qJ~%q=K-1u{|xHWiGY4YU_D* zl;PD(nPn9etd$A;3q`o3P9of%?Yq{h&ngH198rzokSO24o!Q{SJ*Vt$Lw)IJPAhKCxIDv3xvHjf)B9a+ixm?+lwTx{RC5Xjh~ zV^*q0TE=!Ts~|S03o*4(Q2(V zmt}Zw%~Vt83oq})x~4I3E7jprtGq7lfXnRuS!vDF2rbCl#9WS;T4baV6(_E@6xEe4 zX|w6ag}J3SSS74HqG`M`hTU_M)lC~G%b~=HlP#lYL#DI!H(Q;Uh{v-vJB>VyKDooKUdfaAxptv5AB-mWS5wd5#7$Hx|Y{Hyf zl+2fqIbpyYR#G_9WW}lRT?nQ29-N2fi%~-GA*I13@0%~&Pd-c%?N}qF-quXsT;^V9 z^;WClN^$?w>|YUbL8Xa@wbkRCOHFc^yS%oRgcwyCA%pENw`PRYn02@g$~S(qSmisG ztK#T-YqO#@SRf8iz<)eIQ5oMfk`3KpeFe98rf;;`Xc-Iq1J$Q8)8XC?_mE-k`W7u-+tpJv>a&g#U!)0scNaa0#~w zNANWJX#wzUI4|VW0;C`L41hECB@4t};h9^k)h=3qRr9^V-R`mObUiFdnWyQasKie;dU-|1?ctXKou5$u5kHZon#!0RLazX7$%z zlW4g>*zb9VAjW%Ofq2jR;q6vu?SsH-*@Gi`8Z}gdFvnKydr~9jK5L}%jo|c&8)qfL z!=3P?x4|kKSy8O&UXTZ6p_EfB{dZt#omEvQYwXyUt%qvy0i{)ap}5?#CCNzr!5Yak z_Mb>LHhs{wiPnW=Vt?Q@&QJocajss#@H&+m+JvE&6PpLYJsMhy$qt>i8bx@IKpR=< zjZK?qq!w3QY3eo@S3J^E{*cu%pO+Ismg$@Z{?oUQm465AV?Dsj)4{NVCkS&4G&JAG z%HIrk&6X|lO~Yqew+mam(0(+0sm$k{JyR_KcEB-f#;0KQx`h}$h(en1_6Z<{o&Ib{ z3QK&XPTDYwp%C7A(27!LFSG-l<(wGWsF{+wd5oVqt?2itwN%xZOlL62;j*bG{w-=; z4xG5E^3@a8&Dw)blyKkr1Ac1l&Ag79)!x{27QNdVq&~lpjoobx)Aj~H@DK?0KA4Jy zxYg8nS{C(5|pBG7vIt}o`~8V6rJ31 zvHdygb}gS&Sm};0PzRTY%@%`Yh8S=gE5|fs$DX%Rm8qLvfVWep%K|v!;3N*T#hz>D zmxLH_8{cY^8Yf#~`;dSTm+c)0aoIjF#bEF3wFYP;nfH*ml0X@VoK*XjhOn>6iZ(KHv;CHz*{Br3D^+7aNxwmI-& z+X7Pzc7C5#ppj(KHs)+w+Vj zMPYm1wtG!!#HPM#b#ZFRjn%nHq|@wehJXwk=0JuG3rsQCfCJVjjU)&Ythn#Zb+q1QwS_yTMG)a0ATkx6H zOiLmpamL2w@C3@(gvEF;S1~KHKeyswSjrl<3PNvs%3|S7PnFqRy>=F%hDo%Ma~Jb~ zQzvI55C3K5#cm1g)lsbE7$`P^6NhzNP{9#`O4VE}p6lDYNF1pI0Y_hH2k$A{SGq@t zvGkQf3^MPQMfP>9)etA51%$8E;7jXKZNIavZ5a0^3SN?_{vo^TUl_97VYb-tUoHD7 zn1-K3Z`MAM$QXJGA1)SqI;s|n-LM(w!zOBHNGa}?s6Q?ij>bijfz=@cFVJ@_k)kS{ z49G<%!v}nLiN+a~q0{U!{j?hO7=*vmEgg!bLdfAWG6m1sjiXoT*A}T=RgzKj#nEKT`lq0!26s6JWKf56878~ zYedo^-iLI=z92i*_OehBeo1HtMOd4+qosH5lf`J)aS7ITfBJkIZK_dcNjgL)3c^y@ zl(W~g(9X+rF@K-=N{I}E(iP#SqBklUsfS}d=?t%c?Xx${I56@!AJflU+u7Drnwxpf zTjyQ+Qorz071d;^P*JHeo2aOyrBV+oZQ1(2tj?~_IBMIaWL!hVNn&h=L0>9@egvmb zQ9&hR;QmC|{4ZkTLxkx;n*ylNjz6;mgO{xB-_})O!n z7k=<}B4`J}n(EG>-PD~+#qNQf5{fMZ?&V77unz!B(bW;nv?DSf{Q&haMR0tn@Nt|7 z4u9CHOBetam#PsAyvyzPA)t|HJv$nS*0Up}`e`%unGTH}QM9mSerZKdGTAFT%ieYA zsEOOusv_h2Dq0MwibB!b72jWrC#fhDG3+x}{OaJ+3tf$}wYCAJ)tF@>;7);a8A_C7 z*+;MlS!}l+pR1OmQ01s=fR*POcVH8(Mv?65M)6OxHQInQw)Rviymn6TajAfVT2=0N zIH)Dl?fxq4m)DS`#l&||ysRiDzLPdj77<-Gdzl=w>hfjSWigH}yTse60gFj!6wlf| zJ}ZU{U)voRu}t)q13UJXBZc=CJDAYuS*@JVz=IjIx9kg%95pdGbAu=TIc;k|%_P## zmKcDfreNssWf*JmF|=Z)5#LgKDqcO^y~~H#t(Uo7yJDf33A$Uh|-`4`VrMVmIBD9RHK6hpcHgaQD(t5$yRU z@zd3Q%f$>bK$a1$%vnwZaX6HE15UzGK@6Ndl0=91SdLLeDhhTEp-zaxa}H5xU-5ie z{QIhQ6`=%m?DFM8$1ax{wk&jL5&vP>?aOT?yFum?X(*@d*a|;tkcP75LK?~>6q{Lv z%;=~-yIfqt`JBuae0rL~eLNU7x9}f0%3kaVV(>H z6W_k&FyX>YS1`$VOKOE|-FX{tHe%7buR%%aJe6{>3M60XEw|Dl$PMNQe|e z-{92X=o^$`M+%qXim^)?y`X3v2sMG)rilV^xPuci801;iiQ1v*Ph% z(G6<6I{9+(>cA|Dln1A#vqi1rdtnS8Hgha$8;|S24zBXI2I7dCY$cjp%#`l1$$-C+ z9xEp$I}>hB?H)fkic$&(NUk0*P+hVdm8r6ZRdNYSG;Gl_eCI4xkyjc!&JHDZ^ zi%=`goyT}8F?YH!yafJjXf(b(@D8a(q9*=!svli$UzJUD1IP@2LFEAFhkaFcB>@Ee zZihi%!gg;uHdKR~6Jh^fj&Y$EzZrqa9f=F z3b8G2HFsU{+~~}O;@oKOzVZ7Cs3UBHtINXz(x1o}`%^1+C_DZgtqrHe-m(Kcw4Le} zGS%-?*WpEj0K~^~<4d(1i9)#2Sy!;?-x6TK?$UZ~wBaNdU1-QfU%1B=;_yTW3ccO0 z2;uR$+0Fs5aS7c%Qi*q3nwoNjbo&hA_ATS+(e1mIts5A>FsVCFpk7~7Ng#TC_U_V! zpIf8Zw!HYYuA689+?E7^n`EAs!Tx!sNxZraTEe#st(OJG)PVP(uDL=^amw9r`*eI~ z*R{N)!#_&nDU__6t`Pna!OmM+kQh|*dV&@<5#<`RMF17Y9dHz7w~`k|+1<~-PVMcj7zW3P0g6kH8=Q&NrSycE0gEFD}jV%}d@(_@8Zj)f87|pW~iA zh6+-6xfWOW_r-N%j~2#HRsTQM-ZL<&stFkO-avqy3nV1FVQUIKv;+Yu3IS13Ab|4N zkP-yJl`8ls(yNpJq2-7m1nE5>5(T6qMWtA<3)ny`fc>$)Gjs0lox8hvzwb@-M_f*s zc4p?ZIdlI4g?llfo&G!gzq_lOE{4dWk=2`2L>eK<=s4MKluhb{`V8;y>% zja+d{LZ@mO*p-ydjN7a)FWw6u=4H6$#euGz$cEMB%6HuqYRm#WHRbpm7D4!n)GveR zX(ID4)u^at6l?dpAP+SZ;^4{`r_`TS5qp88SD>Uj%532*C#&{!H4`&K(59fMI~3$5 z#^p@63WF%}CYJuF5Qd?-%Gj`AuVtHq!xG@3%*6q&&r2ZyAZC~T`)IjkpsSwvok}zqCI$N( zF8w{Q$2ssZsJBPU?GAq@XB4pq-Wsir)E$Fe#{_F2M{IZBENcvLy(q>oYAz0OwHH%Z z!NI>=J@he8tGJ^ltqPBkk6zEGylt&=Fv40Gj)XD#S5_XC#-FLFe|2_K8S zFx)jnthIOOUqainBV3!sUe*>|K|M-i0pCOhIjb+I={uiRhxgedVO9Q4c=Izdwt@Dv zI>7%dypj@GoOxQE;$I7|rBETLrIm}q;*`Jt;BG5(Mz|_L#=Q_ddigO5L-H6)f2p?b zkAQxR%9L^KzpivqE4&3_fk*aPqg|attYltIyG^tSZ;8}ut>pZtT-l;?cqL}{fXW~k zI#-W61W&6~R^Bb{JIe*uKds4Mb`DDwtSNf`bp7$C)!Hh4kGoZmLCw{9Iy5&IR-+L= z{xcZUguf$Vnk2U8_Av?zO#9Bg2y3bR6>E+)##_vQsbjAB;CsjZ@RI1lSXX^9%W8s- zVSqk;j9Ou#Q_vTUQAZ_26)myWKMmWVUaiWe08_qURpSXe9PB6bVjuj*~SD+IL{jnBtj}UF*v0C&#GQ z=6ga6m=izmCDXPz+Jd6yZgFJ9G4MG1s;TG0F)C=b4D1*j7rW^P_Wt7hUV?dl7?WoyI7S4AymCNV3HpSE%3n$#~q}LVo$6A^hT2a** z%ap9ySasdZl}rws@0wW3$p|jGv!8RhL=A?S=At{WfNNUnSTz^<#;UofPp7&&#e=LH zj8bWCsAx*O&jJot^6iVe7q}kQ^hsmofmtba#T14mB$f$WEOV4t61iA_{u?X8*Dkw% z>FO=B{WTM0*CnMg0;CYMlH@dokwS7>5iX~vOje!<%IWyPO0w-zSFzZ^`j$ml+bj$y zED6H8Q)XX;q}#6Lu9}+u!B~0m*_4LjBZe;|w)eQ$zEonXY!jP&{b;RB8UK~5u^hg@ z>nW4e-d0k3n^8hi`!!r@XH1^nG^N(KPi7_AI5qu65jW1Vi84qHQnzG34`)b#ASATn zUF&KrZe)m1T=GD>ikT2eL~*O+;cpqIB53U5I#8*0CK_`+xz*uGFN?VJ z`mo)5&Q)F1XQZIKs&&NzZjF$q7P+Z4t~hIETAU{Ou^wfSQXhh=)sicBz!K7}bgMAk zA6MLKi>rZFZYJQ77v1iLVm8AV(ynK?xE3pMIc(xmMw!=7CcNnGE~^%~8kEv==~GN$ zO<{zPu-0J#7uG~2ta0OHZbH)ITCw7B9Py~T$Evs!aL^ccqTc|H8rQ{tLYNq=i<9|u z0dQ$k`NtS|%JplVZ2ihO$k-0im)|lPK>X%xb$J}lR*-7pdT7=&cd8s{NpsM5rC%Fg zf6cX<=Aiw%T$eRHemu=VT6}T*E3SM^Yc5yrc4deb<1Nbyj-b{Q_JXjerSIF2(zhQU zea3lErtWpsF2&#hafkHG@p9OQ)oX}MMgt9A4=mt=*HE@Q0GggLUQIi#_qmG1Al3`S zog@Ezvs9iPNr4HR%g751}lbWu!fpGZ@fHE!=EAMGn64=!MU_uSWA_#qRvAX zdw$nfX1XcU7J_7@2=uZ`&F;Ylo zu@l0y?Y!daV^iBQ{WTsGZfs=k7s@I)J$Zs!MgaztoK~lJ!fDrNtz0`mBIh?4lP+#$ z=z{Xn+fHEfP?rf&O!A>A-Yhi@{nPqVtju)Os8$w5(_2rFS6}kpBw90aP-cmJuz*`= z3zMa06J)~Sv;$%!>j4K8If)g+HFLPtLkU5qo&y^PKSiN`l~Fm&(7#GbQLNBE?mB@G z^2ZfH#out`%02J7F4(p!bWZWv`>s)94(xs;cAQTS$ot5 zNw=F|A1RxgU_?F`~994h;&kp(`}rzfWT=F=H-Z=sP1N~O|*0yzz@)?Ok|4Y zh5VP0rzi~ailhcH08!okGtjtazeT1FO7%FS2sdzI0v_7?G*Dg)lY>2d>k71&KW51D z@4M<(pv#gr6J_C>?i6`-zt^F)m01^EN!}AkKG(RN7C#bp@L!1A85?Ax%Rh5HC2nP< zX`j0uv=soc=8YSJ7SseJcEl-nH|IbELAMrz@E6@$44OzcZej|yrW-dnc-iY7B>Qgj zRFGG{aJ|QMu=wnku4GM2X0(w0jkgMdSo1zElm0D{Rj<1Y$PDD4BNkiGmHy3#pPY2X4*ByE z^$#E_{bQgl{Y#D_+(15bp%0dP^_{Deh?xX~XF7F~!#@+{^-C$uL;|ZI%Y_P(TneiQ z_Skn7&T;=?JcLZZ5tRhl?njqTe+p0qO+a7&wEXs(tEqO2OuO!Cn$-rdL>yrO>2?Dc z!%%9cz+5K2pOGN@9v@gyZ8dLWw4w|4Jsl3Az10E^c`?dy_;N>_g8>d|Wgs7^?(TdD zdypyg!e3+xy(W<66s3KFca-SfL`CL9Cyo3}Pc|ZyCheNz85TgnvXg z2!KrnG2H@U8pIoultVsc)hL5F$sxZFL`QeX08tqP1I-K~if{wdpbHtqfWKVb#cvET z$^q^V=6~;ME@CIcfSQIv_VAM_xFlAA9V-3=5a1$hjm-Va<&_V-SF^IfqG0EcX*i=3 zqrSy5WRhhY*7Wc*97c2-S-ZT}Wbt-)%d8s#b%c=sJ9Z-(&XALl#D58&dazCwS}_L5 zNQQ+&xXEh4jKs+R2Q?LhsV0o>*oCa*Zu~`7a`)tttz_6FWhL*%xUX<4ktfT!-q!Fw9eV3RgQgS%s?|wyKr2?B~$m1i~Y%1;f>% zLWgxxLm6+R_+q}CtjV)$M5?$H4*qiv{<;Dmc6xU9tE%;NkPL;cMUY<**SCpYX$mD; z6Jm;G9klqWFons+F(nH13Gwba$&2+Hv>Wh0+oC9%#AvP85Uw%t9cANiboDv9meJ5* z99|4CA-Bi(^$5m|)MD?ScfIbchk(2Y zqkbAkfG_<9upyz#n?5ts?v#Co`WK3a8GmTc-u~g8`?40eAat;Tpd|(R%Y6=aNAWak zOZOX5+fFXN{=PR^(`QVP+jA1U^31O(&79F&$`K!WJ31NtA&ej`T5PUBl;k@K@fZ1y z!YL*Dj{cLC@A!|){jJS+(6(oW+dW;p!nmMW_9d$zh(GW1GWw1cDegr1q}P3)c*BA& z$weHWqE=NOvI?3-pn_Iamsv%yM^C@oD~_`YYwCzXe&E;?rEEoji!ZCjrnp<{u~U_b zy`SRtWL20NMa7OGBCcXP7-pC^9(1yTpv({{jaf2)RAW{hf6uN&};XhmIjD{ot@;{%w%s01I;SYBv5tbB33 zdhR7!{v`X?yV|Pvcld0-0zM5*h(BX9XaoxM>?wikl8EamtHX?pA^o%k692Ir^cgDyjVTsVb@b z)~OJ&3mNu>cN*ZbPUB3GxUkeF5{mP^X&Ur$R812tSua|Pr2aJ^Q=7)PyLFlw=*!tt zfxddyG}--I=N+OUg95{$f_(LiX(}w)B`-F2tFUB!E2wcway#3wg0`p=2M1Hoplt`* z%K10JE&5nQL36-3{6+p`+_Vz>$($DMi;@21rIzjqqJWV~j(>qw5X71HX{jB5@%2{j z3{7mYfU-c84b#+%)-}_VKZt@luo^^a`h&5`6|h#y70j6y)fK#rILQ@!G)?*TQ@?nf zGN!G&wRbhvaaS;p5lG90!Xp1^@i{Bay5F5H3xAA{hm)&EW98|gHEz|fPm>q3-Ra^- z-VRU4u5yj}3)qC^W#x~sm1z%}oWH441N|GNFxuxzC9*HZ#K}GF-K7b^06}k&`@5ya z8W${TMi;{?%GsKcIvr3eV=#@HvYuy5r_9HqfmMz6Y(DL-JDsV0^XZ|a#|CFaw%g#T zo#a6PBu_IBE+CX?Cu^pZggM8=+$}2R&K&cD|L>T!H)__hW2Qth6R-Iih~W&Qa+ST| zl`7HuY*k;BUirOiG!m0b?6vL9nym$sFY07YVuV1v)7cx*sp>e84;09c+>!@a$GqfB zA%kX!wm>1$8;}^X{f+pGY=7hQ5^Vp=&hAT*wx5{e-Y5<;rYI)wbyh%&tiu4+k<=+? zzf}>WChttCoq~jLq2cn{pwy?t1q(3kS)EZZ1xnHp>VSdfd4^%Mq0neg`I2Z zSB~RU4?ZKWU-Q=yhgo~vP;2|c7^T#L09&=o8RV(L*_UATsh$|G{76q5dPU_jlKhybYN(!2MCAgWCLv`ycstKX)92 zuA*;}b93o8xuu~qlv@fgo&XJwb>7J`x}^*0eviEHp}&)uZ9!MQDGIv4EEoa&XhP$U zJx9e#)`J{W;kUOpfT&RV7R!XfNN+?8e3ArSk&X&`Y= zK&k1Qwx$kw>b$3q_&O@oFK4KD-(SOPY2OC5kbtn6C_fVfv|C&%Bzzj_ZY~;xR~1!CZJ^Dh9EbAE2zQET72e{)7Y%NO7B)2VzVJLH?g?*6 zVZ&V&qTKLGVy5d%6}=q)d!@Q!Sa=iS2%6YXb$!C!Ps|8!N~oqPR0ZLcgla0GYAsfW z*Af<}4Pv3_<`PtgCZz#0tVs#4d6quq&eV_2R5Q?)E1m@T*HiAM-dQ+&eDWE{#*-$W zGZktr5U1?)xjY6?L{}<1>>Gs zi;%zkcxLg4=TawYqBm=E z!)h&QN>iFkcrDI?i^HY4szhndXVL_0Bu$3Rl%}nOq}k>V&t2j$LmVbeGc5+|sHAz8 zccCb9tAI&Uf;7FwRc5=(Y2v)qLhU(8q#QCWEa36uRCjy*C-6~_*rK4jZ@0K%wxwpI z)g;tEO`-nD;G$3$_w}yRtIt*!4Q|$zG}I|aEOfV42O~9SM^R3C7GG_)dUapT>Tcfm z-8@?z%D1s<=*R`0PgsCEMgvT5;}I~vjkf`&R}1tuzAq%tUmu?)`q`nY=n<_qLos-^ zx`DA77Cnsz(CS8!;lNFhnKcE(M%ux|W@?A6gtX&YthbfOXS9TAhne4jbyV81oOeO( zU@gM61M(F5c8blchh=Z98?A^S4IEbvng6W&8S$pQt7&p4W-F6B!D`9mGOK3X7xN{^ zNZl0iYP7k}nT)TiVXVw$4E^AuNIQ?sOz#D#NTLjtDber}r#yeOc4NVc6h!rw&0PdDB}#9tb!! z(`)7_z8D^pukaG5>~peqmW?2Ck7;>9_o%Ye^iK4?BBn69Le>n?Ma0ttR!Ka;3C{!Y z2)gSkcMb78uSAZPaE{g~jttI`9I@KnP+x2^G{IzuAu$;WFM*|AvbU39#cD-9)?x@# zZR*!&sulW$nQ900$xL$x^erQmnCzC3ECdz?=i%$Flnr`?Im(+vNh#3 zoU5k1#&+;c3(9rL(l~~e@Q;X?1Df#wvYPQ23Y_uGpvEZU6*vTjg9lKX=GfQzUG}&e z={@JFwSLNl+Eub10=gouw-2F|_}YJqB{oTSkE|f5B#4ym9tR_?)XI6%RbJ-52MW2wg02*DF^o4VKDzCTz;u`eAZ_`N5n`jLgM&HPGHp1NV0;UU=clyVI{{Qg1P=`=z@kBo!dt*SPYr4e z;NXKg|G~$D-*hK=-H4tKTX{wg4x57&1ceuH%i*Wo-JMTiTN<^|_=`qu zG|<&Csg}VbBBgfD)5Xc29fttPr&%JC=^=2>gup$cz_HV{>FANtr2h;MKuFB%A0U9{ zTsfLPcc)1+*9H6=b6rfxN0@WqPbiTImas%7SQns2{+J{p@GSm$9G^xYpx6bMv=!4njvQ5P?T>3)9>TwFB|(EZ+SJXoib`~i5%p^i_` z=aF+AhssZ88iT~Z*vgAXdVMT*;=imjEVV3&*$&m(?y5=hw|Cs#^+WS80;iSidoVFU zKvhs2nDOAj7zvmC+FhR}I+3dgiD|OUv0it{5$D_^^iM%~Fd@rF@PACmvTC$S$bzzl z=*E$lCgcwJ`+M$8YY50|NSQi3`50#B zkf+a9PB47=LB4<#^_}v9%5l0YU%i(u%+*SBRy6-(_b9pbHg6R>4V0#XQx# zLlw?!8=0Vw%9jb>r8bevyLs!$3m>@Sk)?P(1Z1tI#O7K*`S)k;CPqJw7{5W7 z_zaeC7t#j;rk{7U(;v!LPu41b;htNNg5s}7FzvC@xp+7)+w&A4GcQ`pd#lbum;1^xj#zHtvWs)Tjv?}#J}8`HV{r{B7z zQIq!wedkzDov%*rz4O({eT(ni-He-~w{0<>4%v;nBC6@M7^*S*wsF6$`qs37){GAtGmHdpg7i;sKQPp=rpte9`L=Oaat)rauHD z`NjL796sD*)Cy({!LBM|#JK=|;Xi{JL*nPlzHyEuF9PB={4s}2-#wxvAs*~c(+3Qo zJxPdOYXPNAH0tm+^wr%OazvWPJk2Kel(j%DYls{=&5oassY2wuX(^@g(_m5sizj$u zbcUYs_;+eN0%C=&^W4G|>tXruQ8Znrq<8NE2J&>W>b zK+=KqCh;<5MoMWy>4NNs;l7aga1N&iB!VlXywcB75~hRV;*=-7O>}+o0+rYU{!fWL z`kqWN6MN+M_tca{cU=;g-NPsMe^o0^=9Tvhl-qvyRgYP}KqdPyHga*`6sD~W*OQ$K z)I(3MCz2j|25}_HQ}3q7$uka5Y4nC>w~2qWtfVcV!~@0)oF@9h?rT`W6={VcvT#Xq zg1&44&TtL&z(ca}-@btH0q;)Q)GeX(gk{3_M6`2uboAPI35YOjPs|;XzB=fy=#Q1d z_tj}6l~C^S#K~cXXSM#%0!klZXbYLqlA!+z7qnQYGCOcVYci)n&CC!`p>l|nMbgNS z{y$UH|KqYEQTvciF6v*9%*OISm3ym6qgqm&{-ct2Okn3&SSY0rGcq}A|BAr%h6~l| z1#sDgJ@&QEamDe89>1pDD;p?6e5$v5+mo`YE9rT&S3F$VCQ95zJ##Uruc7h14HDPpz`7W%c!@(AINmNN8__3vG?b&8;EfmD8nm=tm$wZfgZm&yQash>n#_l zxdHwUA8A@54>a;LkO!uFL_zr)jnss2s*Y!Z-e(bgyUEDq9FbP^TEqaH^0*-uWVdx*f6N1mH0iHcqox5rtQ8Nb$T%$FZtC7e%46KKNS-b9 z9x&$fE@)P*{teL*UHV*x3)3fblLwo5?v$N>gE`iH&;{S>Nc7YwSPBC1ulB~uzZ-du z>n|^&6duNIP8Uge7nkx8C1t^EPkx)}8CMERvkOz-u}Jo4;%Q;*-~^B?&xOl!o5|ni zMU=F|xWc>q%d)&=;iCO!w_=dxW160@m=bpwiHq6LqrC8obeSGlu;Uinx0sYNTwM3c z2?@T+^8CR|@W^CTd?nc@%Tt;)U6=^PV#?rQ2u>4E zeABp<_x*Qe3E#rDAyx8Jy1DJ42jb+(hl5Lr30FL^GXECOp>hGBhf;nRgE?g+=|N1= z|5cK%!W0vBFtX?!_!=uMc>rVudAhBqG+!DElXL&Yl=Z{t&nY4~&%hEc=Um2e@5Pk* z!&t_<;jBk5F_}?z|S%wTs&yd&dsOzTGAI7f?g$$vd&qcI@&W@M*%&fHIjKR*iYU_DL}MDnbtXIi)jUPrDe0lZufgyB4)ac z`;pT`k3w4(&~2R2It+S$?Is5Jwt~owDt=wFK@32oyE4NLI=kA zS{&M>SFS*tb4US_db`I=0WuIs>+Mk~K$;8!`XVk{en57(E`GxKqwPATCp3m}=4gR; zrmJV9F_;&_w~`?7`rLC(FeksgijM6$Xj5a55xTa?M?iD|Fdu)>1;G3QbpiJa9tBf& zkm~Y!ns<I#yy*lJ{0wb@v{a zDlub-v5!GlYP%Z-AFk$%H*7U{#zV)0P#sNeKQ`6&Q{Kx`+Ygy`T`oy&0W_)YZVrRg z_6DicR+k`w;6V%>vi!{e8?q#|1&B&*?Vy8dn;b>PfmfgpMKh%&IJKAc3VubI~pMA)aVbtZd;BZYdicXI*qm^JM=2=%|NNn(XFHbY= z5t-TB)3nJzfEHmjz=z#xR&()!)tDb3=o8FXX$<8=p*#1j3WxC+Z$f!Qiq-{$gF!Y` z6~w5FW*YV&qnVDs$Y`cZG8!i{8eGKFh1RM9<>>Fp^<1zy`r@|zJoPlAkW)a0vW%6O zP|9+JjZVJcVUJ3WV7$nHD?8a{4)8%+O=y6(L27$XC;hBc?)+`uDr6V>X=yF^wNGTi z{hp?g?i?_YU2Nkp=opf+BK#~VcEk9USEF(0KXT|0TJ)HwnSEPMu^UmrgW0LH2%1Yy z3V6~D&$A#?ZhCt1vyApy1l>ma%EvqnbpTG`8xgcqN`zaUrIZLp+X&#TIq*B9kPayk znj-W_$&km$eO7slha({O;gE+!flLz}&`a453>)E=g+@`fz*b2X3NMG}_woz^+Z;dK z(^{Vgl;FIE*$$fI133{Ex)leG&udHgNUC`)nC`%koFOvKXT!TM;!SK5os(AuE$vw; z_dDEo7+ZNawZSf*99KdYGXcWhXITP-5`a?z1kO?rG02PN)3*^ZxrTS}7rBOao+a1d zh~^remDl@v`pM1z^?YUX4C;%oA3W*FGrr@zkazf+m6!zNeN@J2bWXQRN%H7u&wAsA zB>*#M9klxU^I7HptJrGLJ)F4?9}$8Z{CIW)ST+cpo}S8rSKWpA3q$Iiwhw&LCXE-}zhrr|^9$R7C6 z*?20vhu-@++5OkF22na}`_9+Gm=)duo(*hW04vpS1a}(C!kZE`=lj<1+Z*FKg0B}g zCh?jd2exrelhm+X_w=F4`w@ zEn$RG^ssv=l#qMy;4g9yo~0$Yhhs}T??rJBUq0t4Fq&fbph=N?$YdoZ+PrtlHk;A$ z>4isYc;xrXJhP2X3)a?2Fv*k#Z$sJ<3veVHXcSS)KBVDIz)4=E*tuptd4gfMDz zWFyc=5}D{DBYTjKY!S5wCW5f{KtGlkA%wSN z)`1O>yXb>-kh|!MzsOzmT~>m-fTXjZ+T2C)T}7T+n(;JehFryeS&50VEU^&k?DHNt z&Av9Ic1?BmIftQ8o8y_wX!R?%Z1z}DPjr3+HPOzGHZ4>8jdf7W$FZ}((^DlK_j6Z1k}(8QnIZkc)*}T_3gXiI{sG<*IG13 zCrB-thl4bNu2h7UM|t(&(+HmWlyOsU_PlbY2P*qqO_~D*5o>7R&hA`CazfM^dSvZ4 zjaxYRv|)Wbyk{%kB$Sob$pM<03o=zp?;hBNjO9Q0i;U$z&zHPse7tzXK2KZCW-_7u zq6crU47vZ2)G5YLP7B3J{+E|n12+_~VKS8ft2U|3d%g5iF$Cv4M#)r+*$l8mQ+7r{ z6`1urWm7R$^43HpWh;2z%vSKc%BE5R1odzohCHYh;E#tK_1vT%G}VAIr+jo2=G0k; zhtH`4IbvET)3w`4UQCDZhRavVXeAPeN}FOF<8Wc!IL0{7OK8pbF_w_u1?kY55!0m@ zKkCo=1I&u#i6iVve7?@vqRKFbwZIm<1w z@RgvkhBqa$Uf^WWuuyiCy--ZqQH*`O3sJY5Q+GTHb-C|&YWUtq!Sj{LE)EE@qZsxQ zl;?{?czaFJt$*-5JrcC*7cKF*f-||&oc#|XA~$ry3iw5C=!O*~%-Mb3^PIIipb?M2 z2Nj=s-}ATO!tOy8TUpK5Uf2tQ*Do#rj$X&Xs!gKuj+W8ugmR@A%^7s%dZOS9G+SXM zOEEh0F4oyXM`$zH(MjtdSAODo*ytaa{Q ze#pWC03bz*@ujT=VmWHVg4t1wzio{WOVM++Lwp#8Hth(WsrFzZ^ErE^~Paxv|+; zLf#b&0NfbQhhl8t&1sHV12V!nW(}{QIfjy<94u6x`7p00-?zVz%`tBl(i|g(V>30! zD9^m7P|YxahGrNW8k%8jC7~oJ#&;Yct;?Rl5*h$A3yQ7h!6m8fj6ZlMu<~2w1-v8R z4THjYrcfnAF)FQuBFnXb@?z=^yF6%yd!bOh_g_({(xDg`yeA2>_DUtp+PuaRX8V;& zm>qaE3KJrA=Ksxu@wFUz{ePZj5%Sb-#)f8U2Eax#wP7Qf+DbyHP>i7*Zu3s=ca$ht_}U}z1YbD^g))<(7@K%s674!uwCi{cik32> z9A2p|8IST>lI+27$(|<38cb8?OS))$b)`y+@+yZx+p|j`XvkG=e9dbJ`j_F*e~bd1 z9*QG$%#C7$ZaowiFVI7Aqw)((8v%uitI;dHz>F;!{(*1BZ7k4RaR9Eifi^5zj-wvte06r(k#BurV%)F`%|q%3#xPL{IphGEJ=8B&b;Y0@&xVxP3olXWQ4Cu#vG+z8dzc@^XtavyH?pT?$Pr0i zuaUtk$Yo-36#e#9vfCb##*6Z!EGtxdi`j*=w}8}pXRCYr8cnMG4R0U$W{Q_i2I-8lCzFDS zE$@xe?`G(Xa{p)_%ZXw<&QPc`%Ap`z40M}ls|lX3X+!1q+TM<^5^W+qqh)=q_GEkauv%2ckhn6$Qu%8DQ8p$kv4S{%SSh zeHaG*#)3h8vNVq23-||4cQ)E-x&zQ^y0hU39Wpwij9Xxc9MQn*)9(fD*lE&l4ZMx@ z*fnaokC{=LR9F+`P;m$n%l82HbL!QhB3#U?uU7FoQ)^7@vhbTq738(ao`%k3K%T)c`?ihwsP?D5ecWPDS757W7d==bAW(|qvN(n6(8jcPNsd7oxIMJGLk?6 z7|&xr@ad$ zskXfE5v01U-2^o5FK3sr1S{B^qE#=v`%G5Ezo)!W!mVAg$*(tBWM;Ikff%z*jK9^#PA&C2i z0L3tVf$>cgVYLebUMQBPKHgx`4g7Gts-df-0eHqr*9Y-N#*4bM@(_exI=F^>z;QtT) z4Nqs8z9YxmNYg)BE62Q@+(LX}=Nm${##d~uf3Q}rOt02SzqB@#R%Kl&qMd?7 z`D5N)tI1iv!uJ>8M@R*-c6oCWf5!suG~NP@!E7q0*Q%#n8wPl%iYn`@ZlF0iiCeGbkWWSQwn|WW!0})@m3!Bz1N*zJS|pkj{CMdn6cXxz2fWXVkrrS?TUX{k z=)Kty1zq5AdGSH-Ffl2tL&1I8&CaOp*QxXU>pi{Wg=D?XI($9!g-{D8`}(|fDiWyc zqB{4BZQ-ppt)r7=@hYnz;m|=m)K2Q{Z7E(4ucfTpP)n!FfPqezOQ12BEu@J&(BE50 z7X9q46d#xZ5Uso+Ybj7rFaR=Ph&NsD0<{0)eMGj+^;YbHT~s8||L_<7Gng*~e@Coh z9>-Q(XS-s7a%?cObbxnyls)8cUL2M^q~dzY9wOq_hq|gkJTtl6Eqd&FWq?WR)iRCf zqQl=Q@}Gyj150a+pf?pMame56%)}wJ5kKeU4^A`%CXxj4e_}o45UXBGJjp7^cu4LeO}S4}ayOXV*A;x91lguq#8%aZtyc#hfCNu+Y)D3Q z@YN45NS4!HPrt`j3QCxx-wW6dCAHJcU00u3 zPuJDrEmmtWb;@MwW5rZu&J@IP;cfLvlOsSw9C0+nQCLB;TrmP13NIy&wkwXbdt}x~ zZwr~-QH#^Nt*28H{J8f>Z+rb_7yyW%ANGu8z^mzsJp>t5glkM)@sW6qr9EU zs`my{ICCQAC8m~@u3W}2bQlxo$q4JvH_A7A+$zKtd{r?W0sRM}%r zO)1ryGsv1>AF_dxaEKv{E}YG)&Bp@nO#(<`3z-=MiZF14Eqjbu&3c2jc9BCScuVb4 zVD01AR@$-QLLjC;2$7P=L|zN(8xL5*Z0eWLhbqQ^ka;evh8E zQD!E28i^VkZPsosKvOoV`LE$dm2`lMc+xEIRppsNS2bB?>mO;#ZzQ9K(MKi6so0Mra-&E3U z0g$qS`DGGIXKBP!J-y~8IqbvgHAGED32914EZ~-wwuvlFgYTdgdJl?+SO>DR2}Pxy z8cb3i2q8#Y1$O4yWX=kdtz%=l|0dme)It=q>{%Q<^KjDXMnPChv>-$D1g*jQG?}g(=4mO*vlv|Bz!?j+v*| zmQfqdZKCut;vA!jr1^WeG~YI*d1jN9Sw>XZY_qH`vaIT<2|0h4x4m}8k|?cNK0I0{ zuDHt%SlX0p1~@5ujJU~;U5Qe=5g`PVPU7;U-R8)-bM{W}Q)RJet+D+6C2tGSn2~^T zt9B0-aD#3@4C(bYQ=%9#kaa+hU+vHExuSol11>Ez4@v?)t_vqP;1J<=R>8Ec&pTWbzYx})PO|AmWi1UqC5fLBE z^%iFHd;`<1h+nK?WTuN8aS%lNBP)eH{e!jw*d?lOB0D)uKu5cKAf9djlD9w!-R@M! zU+U^^3*7)1kK)i!o|Qk=6?Z@Ey+z|&$>JqPyh)m9g59i>W;MKxtisUnmi}d}gyCHb zAJ_8>IsERr1I29?bZca_cJk~oZ*y@^cqI-jR1V+gts~m8N*veZD1-*Gx0p{#YMk(P z7Q!&;zkak7G-a04H~_p>3bg=ohbpS{hOQ$k}ip+(oNETKgSU@4&m z=OCyTARlsEk046Yr-As3^l9K$a$HgM2}q@>>W%BQ4f)AO-q)kdS64swP7o6rFQ{4a zLd&~v>0%WInJ>#*VA8C@5tj_v?Z@hn&F@NDB0lU-kRM)sEJ;or+`7Gx7DlCLbeO+z ztM$TPtYJ;mbph~y5fb9e+p1n7jkOvCsSeED8hQLW) zE4d%1Im1DS-s=dN=D4>>F^Bu+VhLBj(G0mdsmHhd;v=gV`RXFut|?U(Lz@UI8}D0S z;VLe-nnU6ve{sbsmcuW@AufH;{0CMFG{7{8A2f%y^v*xB6MfIT+%{m)GH%sLzXIZf zr~Z+B@TI?Smegn40#Cj0K6i<_(V7!o_~PHz9+!gNuaOUux%uFqNr4Xe3tnj4Tini| z(i#7)SU}Dhl!3zK=(&IHHuc+54NHI_t4bh4kIJjY9hLY{>e9r_-EfYt6#7hfzzhacdDinf^NbMW(-QTjZKW z!kT5E>~YomK@?jbb48ljwha@ELu+EIfyKc)e^Cp2nifJgCJ_7@4>=1Tjg_Z|*0@!_ zv521ei)O4H=@(rHWfdv?YFk7Xag}}8N~za6P0}m>hDD@cS}nQ#CvO(zwO{so>G!8J zDD=`l-J)o%`O?21D`GGG2N%(Mdok3iruB!+ubFtW9x!=$3M4nDdfLMHpQ{<157};m zr*={=>`S6FANd0=^~k>jr1>V&1yPaCHIXj+e@BXs`~^eGeB=&0F6HjvQ!Vo~UrJ;b z@{mWOb%{ad@S(r06S}X&2s!iyPH-`Kp=P}}dgt#*w?GDMG0-bG`W4iwlPe+!mK+;c z0lA8Aus^wqZ}Atoif@Zbauxf^`7YR91?0hN6S~BxDl>bf#>%Sq_#4RwVttcD>~?@@ zO$o|<=vHBnRLtv_|gcG}fSq5I-Aiuf`2DNsQhS_kV!8=ojt z29ma$8=wEg`R*3CvMykyCcw7a)yAiLcrER&p%$YjMW66m-1$^&3#AaJ1mSOSKA(Kx zy_%H;76m1UbUC8ZB@b5h`LsV}<}cnsBD4s}%aCdRy;NUz9a%e8AGclkDtb#l9uWn0 z<6DBO0{)On0C#o=_7Br7T%f={2;S0*X^bS`JID7ow&R{}vekm^ejFSg^iW8V^zP1O z*n`yYdHh9c`22QK!<5kGXR&TRgb2`43-$jSECLT$j>P-U+clF8Sgs`aHW|A(ITR(c z&ni($LWdi>03kkW-C@;+6toPF>0u!@SoW=--bhY7=)Y6EZ9yl;NRcm5PzK%t)$Hz` zEWTzPXfFH`ln8@fE^en)tRre?QVD&_cAC9lla!n6YoS-#p_G7L(tq)b*Q;_4^lDWv z$@dnb;iI_C!fS4i@J+p_wgcK(Hr+)Em#>spr6iW7qAG)U-Q^oA>aYS@kk!Nj8gCE^ zEy(aKy||gR15GsJ6I$$0@fIyutrefpV~2`QxR=#hbL`za)EwJ)hniz6VXM#_OYsRg zJ5H4?0XHaSnzl_{za0uozU}7r>6T-5dmKb{B4l{ zt_2>|3s!1@B92Y8F~YJGhpI#Eiz1A+NR1sO3Ng$T4-qU*woN zzF5-ycyB%5+mT*q-S7;bCQsJ(#p#c#Fg^KTt+0707ht0A>17El|aywD51;)W(tgP;pjX(Ar6^mFe^gZx49fwY4{x-XooLC1UDe_)a3-b7>sa?e8 z@aF5IH;2bpL)?{R)gkWY;z)R(1JV09=&il@IIOw;{);NO?+U8`Tc{_m$&L-Q7wM6` z_$|DWV*8*g9R~z?z^C>iVJD1paFLEISC+Xq`I?IqR!;EgyrJ?=>yf=^7~X`iKoc7l zd}=RlXH7}4?G=_DtlYxVey8=uUi1rZLRg@Q4GX@s7h_mc!t$iTGLw~CSe_&-t%VG) zB?M3#M1XrMM^xRB-ADR-`u(62uxEl<=lhAiS`xkyP+5O@rM-y_(OYf zowWuzniJ4>ASrlkFTP{7Gy&0D`${h<-z{FU^bGo%uCan#*~tf=xj?t*cuBd%ml2LR z36cNSVz8C@J{+*oJjAilJj4qq)I5HY`*zXHjyA`48llrLm=Eq*KM2-_2lwJu)`w0n zd6S@cPVZDt?L~Linv@G)+S`OdZu-hj6>)fJr+R2F9=G>1g*o&k5~keOo;;={$62Nv z^X%PBInH2mEGSWqQ<)qA5y~-$2t^qDP10-ghvzP_%Z`jo&wN@x)M{Z$?}$|*NqW4A zB|Y}2UcAM+SR!QoXr_Z}6i|aK+4rlj67);ph|G8O;zxV;4zlP{51}bRimR*=rAaUA z#V&eaC@Sv)f~>`z5~f~hms%Ai?~0<3^s2u6F7>Luywx8<+wb?>r8nM14-7??RYUU+ ztpxOjCgj%9Aa{rNg*rmU7xgyC)&s+PcBxOV|0f*$feZKDtamrT_t~W$7uqa|9v1>w zdR!f_Wq`g?cJpu)?QZIy_auv%=;jnvui}E_>k3voRxmg6z>;m z^eS`lLdUPF*4N+KrB=&;qTOJxCyv1(VRDpEkSxz1t=(AgQg9YsH9&;X$)=J+M38Ty z@D$s0)#N3)Sn-m~YKfN{i%njdu^Nk)tYY(Ytyr!6qwvzOSe>pV%awzC9>FmXFJT4A zvd_udS+-{6_>uqJOCFG3&Ce~SSMwsD)mjYYnG8Lr7&16R zk{->^F!_00@xzf2KVb#QGBw%TN$^tQXPCtgJ(&Mur`p)Oy;E&$&g?WdHs=|gG`D_? z1;M$MUd;bqth~jatf|G)Z;B-?R%#=B&FmbJv-nAIB(B-JoBNvYiWOlW7h8nUzUIc4 zElncAGO-{?80~B5z5HD-(|dW*nYFj5>-aKh5PYE!sS`}zvfT(@Z8p)GkL5d9VAe`} zEH7Az+RLa#=}KU}JTTe^k9phG8Z35O&=F-lNoQ%h zURGym$HQy!Fehf$%bHyAY3SxrYv84q)ur^&_Wjs9tge_ck(*uMhXU)>ALn;>_-Fi8~&mJ`mMwPS~A9WD#`$D z9qW5UB)kIs*&I&sM3t?=&;XVGDRD6@qjgQxw18UUqNU3D(_z2VB)pP_CG{1UZ#UJe zDd0zlN*b0Z6b4dWp<&S~%B<18L25tI1U|f%Hp!ROq&q-}7>^VL%f}U&g-u_&+%=1HqCG#+QlWH9+M__W(C zFHG}w7jrEXY; z_@^$0xKNbU2l$JEZ=S?EY>Ia%#_LSF9{m%~`{^EH3my^gz(4on-kpvFmZSS3A6pT* zA+xUdIQ|4BQtz=*oIt}|^&Wd@mE>fZpYKaEl6ONZ5@y0~neatwmz*S40(EGic~6$X zOz=haocX>a{nKW0)qLMc_ypF_1-?v?Vd0V27y8oW>kE808(CKAZcIOqX^e6g`lf|9 z?_t~;rR9o6zM2LDyc?hOcS)>;O-cXDtJuNX02?m#>V48ISYd9&qc9)9-g3m9)f&pZ zi+$aU{v0n#EIF5zm=eQIa=UkwTNV`f<{OW*77|l_`7M%!BFP3so*gps5p8a9`DcAE zYiV<_cRv1EfPWU@p91{zEdF^8FlF^^-XbF~2mYCB8vj|mXd>@wVXCY!P24Rno=v>N zVZ#_~ESEj!o03wJ7?cnzDQP^m)Yrq28n3dda51y!AcVf^3g0u1s9ecSD|`!$tDG_%RL8fh#A0J} zp>LQrS9(|ax@&QA=t^HFMoGG2;V+Yt=n(3@;G0(hC2zdod(4>-4exH{-D>St-Yo{T ztKIU-mnWp{0owfdX9MhizlbK03@b*;3YwZ%kUjXKs8e?|HW5NR{5butQ@h~_Yd3I>1|tmzv{by^RccB@iJq2(p~z401EHon(rXL&5mJZlX(=7#fohfF65qvAzBbvi zN4>h+xJNy?IJd*MQGCt%qAIDrGs63RW%b2p1o}FF@uj;RN`{g^%-N&f56s-7-Va0> zo4|}c>U!JQ<=bRasEhCUZq`mR5+0K`#bL%9^QLp%Bi5v^MgmKM~MgQF0+F=z2Q3kr~l^2J*ymG~E*d{z=HBh~> z?=0WS8HG~pMi)~>J(J4IF?)Q&#N(`Q)@S}6kc@1^PCO7jQr@En_Nt4i?4RA)Vis$e zw#nZ^pAIzq>~1EWWfcelE9ja7x>E>Q36xL>*{QGn9peMN0fd$1VUj%fX>&&$1DiY8 zpRU*4E3Xeu%9026``UHJ9x8(DDE`8K29rGC?}#OH7i`7VG6M@tXO{boKU0o7;AVf{-31UfCgmam>F%MoY<0-j zpmZiE^^;86~t?J?hAt-9QN%-2)6qxG&9>TNFboUhU{Pj;)AALp$Q zUdvz?pE>Rup^MfG>ZB{MB;9rz7OJ&S0Nnn)6Ase zk*7dNVq!RW3?|mb%9dw*UBy^d8I9;TMf6jQ=;HLVz6?z)Wj#YH;9b$r&Oy2w!_ zP6sF-tnbs;+VZR zO%zP63`HXE3~J>pcAxV-sEH3)XBz*N@A+DZi>#EmrpRn)D=+?8&TZ=yoYvS-R#6z= zjjoDjEvE-mv2pR8ANW3v5wZI$8zFioEUH^qRAHqddfC3HzGp-bEIzBfwf z(xikgyD#_xwk}b4Ht*&1eRS$x{U1w!p$Q2!SWa3srkTwDIoZvI*X+wBLc<&Q%onSP zdl^+Ek$p#;O+{~3YDwf?S^o>))W|NUF2fu+JX)6+0I$OBBk)k@{N!kz^n3Tg+A+ax zLlhE<<$C(vTEl zpsivltW!7fMzr=i;ArrTua*r*h#Sk+&0W_@HN^VzeX@I_G-t8%Ti;nt{16Rts zLoM+@Azfbo7X0h5?|oGSmIr56OUujcw@O3Y=-=;?4X=Vvj_5;DbC%S{a}6FoMD!u4 z)s5CC2HGmAg>~vCT9w!y0*W1SkK?E6vT@CNcDAAj(5uwpiX}i;`(%+dFh6OE`8jHJ zQ}{$?)`rkVX%$$Q|lsV_c{buHzmzV@X`=0IlOW619->;rb z^99(qfA~h0ZUIKSG_?oPx9nFrN479}f;thGcos|fT5}^b$HXJ+_S;kDe8IYtP0$MM zOnHAPS7@BXixy5w?y?$W*sgc`?lQ+)v#A_@yT6u7mD6CXGfp&Qi}^8m@XGL!LMIKR4*o{2bW%WQwm1bMZnR9}p;Z#?yK2b9puG5SJ6 zuT~dJxzORp^bgp`6fQ|l(EnC~w-V~KW-$I`$!jg_h(pr1(iRnFsUd)mROY4C#%x9L zGG)2zMid#93HjaSbeEocK&6U#m{A)Vkv=7i$PhImRcs@2gDiRn^4Jml;S0Q;e`!d1 znnTi)5ois`gzzD`pGoFF2kc2?7BCS1_K3{0;|-0-q!BH;7tgKYH#Gg_11f>hZbk-* zy5NhLOzd5^f*Cq5wN9EN(hiO&sT*ACGH<81i9EC9QWJS?mN)KSlKBo(<~tarmdwwE z%N(9_h0I{{0Wk*5m^Ru-145m)?8J%6mGdk?8R zKK?_NEe55lyAPGHpsIT)s-}`;uMJAAE6*Ri1TW1;#aAk`;>vEDdsLFc8~W3PlhGIw zZ(=Jf<(iv#NG-DB53$rfIjrx$C}cbc*E?AVZE`ODG}E7?m3snEs|-I+G9p4k9$Au* zCn+I^t*Fk#Lb9;nhy5zZ(``Kovdk(>Yz#XjufF8HNep9DT4G*^rCiK|O|Bn3q*4K` zW8Fx?bPI5Exbm;Iy3sV!^B_$l@P)qYoBW+Hu}YfX%m8E&T({2x{7vnvkM8$- zS|A4el(P8SVq4O|_O;RR_4E#hRjlCc3=tk|>+Kby$jPePVHLk@TjyZlU<_bTVZa;} z9NgdUj3V;DUx!q**jJ$K=AnMeigb)0fb>R%E&YB$@53Jl%JK|(alf}l)=2mraj^dv zGR773GUJpE_9?m1(~LvQ5!AiaA26P@s^IqLWhb2LVz^o1lW&MPt4e}R(oRQD?OmN>HVuBkK8s-S44?1q`IKlNl&WXOEjYdy>_X z&c0RxqIXKvSwNt4mSZBFjUw^Dq$5gaA3b8}EOW30m(tXu_Fs<3c0K*|vwj5vBUE=1 zQq5I&Fk^#MH~vfba8TnunU!SY)btm{->lwJ-N(Yg{9!fYs>`4UH3#`1)pZ;Vs;(1% zk?J~+maMvu9U;}#`p8MAy^zSbXM#%(x!Y4&c4-08&%<;54P=!*{$!h0XZC@Go5)1? zrhBn`a09C}NLya%)6ErwR*%xetrk$G%x#YSBg1Ej-^f!;niEqcJi__tl zUM~sL2MUv2cnR_DrX@2)i>>QN)%5jaIHs#5Vfrf?CR%I(D{^~$Upr6a3!><0pv_U` z3u+&=d;!j14-D})icNWq=CAATdh2GT!tV$t&<5${PM{uRK&`MsIp694fS~PI_Fp#~ zLQSg~TXGeY*W;YL3SiMRRQIS#0oTUrCRhIH&ncm?nF6jexY(QoFMXxBgqD(0z%hP; zri~&axAQQfq#3h6{vx;2|Fx3c4vb@=!x7by6VKGBumAFz zdg}NaLqwkPr;-rq$H-IKf_UO%Q<}yACu%n4ETIKDqKsrwy$vYcK>ZXguD}FR94uKRFDUEb|Z9!y+Qt^+I~!RjN{u2q4DwUXn~hFzD`!a@sT^)gN?}@?Zsa- ztb0ow*4Z=sdn1Q+?o5AA@h-z^Iia&wX%KbZ$uf>>=4}5waoGaQhV%<_NPn@{_Rygs zG^DY|)sR*^ZYd%SX}RMi3~9CFB@HRSr6G;NXW(;lNZ%-7NR#CDX+EbqmB<8IU|hGq z=}ytI}0J7Mo|#P zJ+T?$5UV8^P#c6nfvY9Z7z|v!Q#O3gUsIc;GMci+kXs7kRqqDH4f+O;RyYB)1t$UwrlfG2s;rb~pS>_O7LH^PEhvKDgo3Fm9+$7n&rXlj0XBsAgOPicZg98 zBFVjQBxDjAaYDUy?t4PLb?$XS!W;zhY>XSq9gc=e9@5;CHbP_ zb^fD~zUc6J{}}NJqtTjUKCnuIsLS$2UeevhL%*vc<9+pF<-UApl1%;J&PT;h79L5q zf9(YGANomP&D3VHeW)ed{}zOg*-^=VxLGTL;XKK5BiCiM1OsY=Fvx#IVKwj#3?SxC zg~0ba<*XzADstapS7q6F8+;kT^dzjC@+9w^usn&Ad6FC?fIP{)@~>_F`@G*E&)k2U zV?v;CxC(|2!xJHk%$#hilU+@ zAmv&q`q>L$iyg2c2!tk54WiNnLKhHt=bSscb7r&o-h0XC582#v@9Fp4erB^i#9|!Y zj7)UFofCT&)$t%^L9$DmXjK$6=6cpw;j{Ozr!hC|7HlCeyMxP8M%B^lW&VmG>+$}2 zVXNxDnHDx<>-r#zy)R@+RqaKq2+uigQeRsylc~PJ0N{)*#j=c;M(V3o$+K#`m0gv~ zB(tk7Mr5RC^JX`YrR=Je>HlQX-w=@gk5$p%@&8Ys60LIit*fNR7;%ag6^E|ZpbN+# z?boJ{cBQK7lw*}w_r=bbN-7cS<)$-*l1F(yY zZILF^8(&yu8DE-ju;L4!sR$%X@ntFef|*LecxQ%q>HGAY)PV@%k){P>ks=Lcx_pC` zT2qx8MgUM`vi=_nGY!oTYF}Cs#4 z`Uk~ol}afICNHJlM+5)*4RYZBYy%DaL7!}Zna5sjxR&!XP&dapQc6QC@G6BeVRrjj zF0gvAsu=8*E@I32K*wtRf0pYjE}2ZK))8CCq-t7whK@{+j4ExgMxN;N?AR!^;m;Pc zltgBxy-ATijWbIYq~w^-L$NrpFU76B$XXE3q6(g03&bmIy!Q+(Tt1S!7l!(SBN_WfK{d`sAwzM99k zQrKC{QN&Z*;p5nyWLOg^+h8`)Nk+8ufC(eoX(pEG0yW;VDc_ymLyOr6=)4O9?>&q7 z0OUN;8(Ch=Y}O288f<`_+MC`}H8!$rn1%k8+VV;)2d0SFMIsZX{=AZz^s>YclR9Ce zOnNzu0dS6|Ob~0z)34W_X64F(^l{jLW_Ml&Db?lctQJM)S4^}YF#w@`1<^v+E=hK1 z-!LHIhE_J*l;Cm?t3|kXnz)ZJ08L8)5ET*?Cn7J^t*>2RP(lt+8*<8P8M(=_8X?y= zNqwX<03ineAaAWTVgSMm054vg?#2Z)xhOf3{=IkPVKwB)a~xuica6+vwl^a!8hHkZ zOGndtq(-Aqe7renxwC-r<{NDUXAhqg(`EXpe^>vSU%~P8SiRUnYmPJbTO~BkX!l?N zh16)VCC!l~a?{j~r9}m4$%?kXUfCRM=7Q#Mu$gN?&B2E9TfVbNM&$P_upDgO+Em40 zQ@TlpB0%+xnxbOaI4PQM6b`(*_+H{m$91xpEb0Z zs*T(%RU2tRnQE0rqM{Ik!5>tDFp|Vbmwt(K3 z#2VT*1|>q9t0J^7kS!_e9a6$0Vn0gevC+BB^4RDCqXcWnk?I*qsq%e1IKHmsXl9d$ zPK^M+JT>BkV7D+^M26LBh)Sgds;E>LzkPE-(lQi~15vKb%rZac_j4fgDcO9BW7C0} zvWDb9yo#R#$%L7OtcB%2tQqs4XYBqXGiDBF2rLI0QYJg<5DQ8j_5PqKW#;MsR0~AC zRJmWQ)g1vYdOcPq=i1DJVD|wJ|CPJ3Nt#%>q1^mo{l7KDLMFYiz@S7Zh?mF!7O1smlC#Bt1g|r8%mKOXG zr6p$q`Xnx+&&1`W%cC7#HC|we3t3;exRhu!af_etQ9y{@BJCM#K}lTNT)Iuo-6At> z=38JXWsWF}3S`qZTLJ`LOu7jfq@aZla6bhl#RrkjUjFU=kzM64r!P zD=$~>0ElcJ~IcSCT@D|4R?b;4|gCcFKo#l7bzqiQroF`aK z;`C@0ocSQHW3{eg;0k%p3)Vp9tgzG9c8^abw@oXCC zTUWs{gVt3|wt_)uU6qT!XkC@NHNd)xvfHtQAU;fxFU87k*Vc!woey0*iB7XFPj!NyFMlmq2w)p;hk!_#{DkdLZv&h zciq(YA4 zjQ;e`qGDG}v3Pi2TtjiPxOq?QUKE*6^Jv3k@>a1bJF1ToB3{aNqy>C-79uufJJxIS z1GayL+TS2H-_ks;W$ih&C*OI`T_Z*<^k5zX^9Iz&X>bG9ytD0N!RH#3@W6OK>|yQQ zfCS!>47SC3bArd;F>%zw9^wDbnB^=xOl%p^X^r+{Kmy-!2_kDG!S4YH{3ay`0tpt6 zZk|$wj`uckG_Hg04-PY1MCCf})YWZXb^W_l<{-T0Bk(W&!XR1W9E4@}oTw`>b$ozS~vV@9vFE^87sbS_C9Inc+GA;`ux=^?Hyb7Bb-M}5T>8vCE!Z+#iTE5H&V9A zy|zCY)NAw7>ffUQRX;2W`Z?;zRAK!(IHu^ew*z7di_ppX2FJmj=EwC`@c}4%YHgRv z!tU(oD9~g5+Ks5H3Ejl#)5-CP-hekDS=U?)YN%#ymuC>J?YLnVFD{)wR=SuLLDJZ<=)0 z*}zEW%>Z;TyPAH$Ru$<)PUu2(AjO(~vJw<6pzO1-DK5C|3e$}$?4PGOU#jJa2Q;E0 z`VNQAt6@%6LoJ6uIm|h{|Jdu{0Tv8=SXb`ArS5=V_@_6)8vd?yOSl%+=Nj#H&V^sLAx`HU3WyOEq2It z0kK6}UGdu&k4zoh>VMF|!c}7jC0R@NbVDY%Jn5V(`uZ=0uRgpuufOA#>V;D3-{HEA z2)#wS^GL11`Y2AMFe$Z{J{(JEu>rjsPDbQ6b%YoI)n)#r8y<@3Z${RIvt#V=-x|4$&rpNMTGa{q{rRCdVCFrb9%G2KS#)YtJ1DwV{G zI|eyi_TuH)Mlbb&9dZxqUZ4%1V-W*xcYG0ikD*+*I4>ei-@|z%;dYwB?c@*;?*5?D zJLE=!ewKqsunH#FRVi2)_b9o0p#E)&1vE%38x0c6za(C?EOz`yw-u9E+x^6Pa~KRP z&3|FNfuza%MVcy)L&#J)SxMW2di??kphJr?_1+u~A~h9jdWGgHJ;d4}j@HysZu>=E zU1nm5yt^DXs9k=MUz+K{QBYUJM;>a)FSLQDPv&4$nsTRw{Gnee_d>C1bb2!rJ4EQW z@@nHBr(TY2r!M-1R=~QbgmZy~b9o?~v^|F$;}>iybG&kCY_9s*FSI|Wf8mGS)JdsD z;(MtRo#_N(b!|t}AV4kF_76?A)5wc6ZdSo0WPF=R$oT#x@#4vGFz>PzlVT5za|{eR z2_*6oYBkVLRpPVYWO%M}ocI*Zt)6J*7rcJbG@SDZvAg}6$?ejIpfgisG86Q1a*CMy zVP>YC19U$n2a%iG8{VGv`9#NFJ!7Z83p#g77j$xn<$`T?nl9Lm!+kEOw%Tb0>#pz{ z9vW#(4(Wr}@031xJ;!1BVDV1rgTpzPI_?mLef-X1vryaM+JLHbra2SW*k1SM&!q5a? zaQ7P+ae24;YI3%k^{W{6UR<_b|5xV3*2*qJOn=DH<9|0I(}IqV(Lj|Jvo&1MmG)Va zIb2nH{VEr8@GqsFq1;>##AP%W6`woYGC$gyV#h@HJ3htb3&>5=VJ+< zMtPtr=0Y3ut1TCr{vY1dn3md0IG?CKL(45Hl$&ED=!)`hMJ#9@D#~U%PN?gDrF3Wd z&zvx6Z=KYh$o*wpv?8_VH#ayL2H7~kCW*rN!J%leG(4qd`uon*-*=oB(%)f!{jD`6 z`&#PHm(onX%-hyjf&W-!>JnOKJ z0IQ#M+*7?y`I4HlOS)PLCrYYnk0spI5}_)%ni40XUUKA!A+wEr`c1r9jkVNUQc&Y| zQF5#xbhD_Uetk>#35TjE4~X*T969=foF?h#KBk{pq#ys0Ugp$651T&787Wo^cpUZ2 z(HeHs$)@fmbB0KF!e4ijOx;aD-8E5kQTUQ$qW(5-SYz$IVQOyz(;jtFM_FR1$X@E` zDW)zkQiNlv<4&~rI8N=R`?iC;S!mqp7g( zq_gGz}Po;>EC69UYXBr6=EX zG*^P}M$zzso_;UKO`_dpi8ft|7I0!Q|L)`67k7ifiPA|uGs{uUec6}PiKdtnIV&XQ zv;Ja^vqVzInqt0UmBDr=im8tLRp!8hahh`Ab%*g9a^R_*f2Ge5Bm|ftcy5HyP;sGN zfx2TirNPs8a(1jK%QhmnVEXQ;wATKypW~Hj@OTNBjOHTM&q^TrhC8R>yg(BL87U1) zl@A=bs(N|1oRz@8G%JDhR%Svx8Uf3~otO}>jz}8RHC((iA-t}5_+!Tls;_2=^ z{?6?X#;@Q^m^Ggks*U$l_HdY?OsYn&wFKz%Mryi}A|C(Lk*}w47Rd7Lv4lH#qU4FP zg~siX+tWkBoW=UhyzQ`c)!N_j;|e+s%I~E`<7@ODbAl4NHYv1J`_hrFC{sj(uN-;$ zRL%i)q5J(5_?T3n{}_TPKNq)mHWZO#Zi|Aif>vuf<;VNo;`P;zEd6fI6KV80e~p$f zDJPm5eQS+lrv5H(`@hlXTXtG@jY2-b0y$ZW(B08u*|&~W>b5$Bg{IKMq0s&qmVhS<3k|6y8?Cp4HU zPw&jRph^C*-yCD~j=b2HCJ%GA*gJ>^{1dqtW#M zigxM3SmzuoGJbb_X*cfQzdNqzGdVM4(uY}zNpVgMKFmZWg~h!la{qLU*B3GDf=oK! zH0i50h|i<|CX>$RV4q3j0&we@C-M$ChU%+%3p&{(ANgXRICaR;T;FH|qjLcSbD!yZ zY!ELeL0{}s#Ho5&4jq2j#t+lG0{n%Fc?-zXaGSx!61; z!CmY@PIF7A1oN9YL)VR|OS$fJWj|vILr2;ae;iji4lBrlq-&Y%6@75ejMQQnxGE*;bU#Z^{?0A zM0DYHaz zk-S(yRTR=bLBiy3rTB~dt@OY68!${+q8_~H*lmw)bm!!yOOC~Q85f59>t|MCaxiC0 z4gG7yB}a;w@M~UO@m|-=NHO6F*UkDtMn?v_-%Kw%WrO%a%x~aj_@QteegyKe0E~O~ zn_l*#&&$HEIohZZzlpy4;RWP~YYumQ+2K2ERSAsI?guw1RE6Yq^QsipK&SOgi+TSFM4NRiKx`NnhlzZ@Hcy$AK!a^_li@k5Kk5*oC+iUWC0 z`PfWETz^m#Z`Z#|6HSz)5b>1L*+aY*>1-gL)^2o(HILnvuQ%bS=&C`(a(T|%kVD{{ z*ID{ylykHa)TP`!=aJ*CfKk<|rdm{jgljO?0~TkNxP3R90CeRtMmJWsCPNGemd6%H>7iIn;X*g3jdOLG1dVg%vMa78|tG{;iSQ5BzpK(hbOwS0?FGYa_Q~xNid@U1Z#5kj}Ay@|HKcgdGX)_#`zk_c>r%m z?C9;4S@(H6oP|D<=*-Y}`_UPx{$i0({;148IeTUHdno^k-pSxlS1TdB#1PgIeH;2Y z6nQytD!rVu%)LDQcjl+$<=BM0oHr3(14%De^M4n58uYzpyg9|BTv3=U10F22D=~#$ zu7Z?f)18g&Y9u!Y_aisAxgWW?e@VP}tO=m771L#jUI*y11h{ygTxSQk@=0D#FMXoQ zWiEwq==zxWL4TZcPb0^pSYnMFZw0;byG&1||A*J5{ibC;N!9m%H?vVOZ{My^HY(*M ztR`P#>CbT_C25JhltlK`>zx|{Ox3<>;e1+G4nlL=RP735+az0)l!tQP;EO{sqPYLS5crS*5KZJn zX>B(B>-j+d5mm_|(>!Helu zYcZCPi$)xj8CwPxIPX&*K1k`P^y$0-h0Uo@4YIG$G18NuP)xYe8EcsrgUu9F_k%Vd z;fj7YM}R)6mcVPXDe;AB@j>aIgAdC4MmCnoKe^5rmojA<;wAt54u6q zWmXPnH|OoT{s(a4?M39!#m(zA5`AyQF&IA_4z(#GL;&VJ$Iz#jh@2iUJ01TlI5w{& z9eX?2+dfUtM~dXwt^SaXz3F^vycjv&86zS(JHy1v-*{)jM$3 z=}x0x>a#w7NME~&SET4)Bn9*xTi*VM^tV=6)8=nVcdRPoqS8UE?Cq@19W)9hbjk## z3e(#&hGeoceHts0qgZ)*cCI@64@!BaKgGcyg1p+NJnkpQqCc!uXIvJU>TC)kA)T73 z&VVSTI;)EMdnWZ2fvLaaNBy(^f9ja%%uc=JaH>K1DD};pYRTv6y@H6}=iuhJOs@#M?0FcEEn3 zBr8*gAC~HT9K{9XNX#GUOjD9X`7q~5&9}cW#}I3GXBuMCaA%16!k;p9%^U7a%6}1X zSK3Dfx$FTfm2)8XwkBt7)L-Gnw1t}D-*PFh;@dTk;|NXLd-9O?zVV-73-ZO!@fZ2x z=h7DgZknh3DK{|}j&gn9%58Ox^UCocR_0C09=E z{xVlipK#_#`VXXwtXwy32n}7^N^d_DMN3CWkn6uk%KAgOo!5k+-Jl z=yxVlA2OyeHJ%=N2w3nsBrz3&C0?ei+;|2Q%d2;8-h^f_@X&dRxqfXdR^1DWYR=mJ zDNc7y1717a4XLivrN|yl}|MmZz`cO?&}Kc~5GdCf#oxvJ&U% zKLxJ;eWm&=hn{{Qa3eSjM)TT;Z2B!_sD3eEef8WSc@PnD7*yx=S>l;q#{zh5d3tj_ z&IZPl0)S9LIjRtE_I*hUC*@9EFkssW+JVZ%@SZGn8q|;TnQs3OzRP`RPjJz$fa-K6=-EmkBL+>3;i4^L5XXCUN(4u@Sx{sTf z#-g&2%xCreoDCX_PE2xFXQ#mG8I)~r564Sm(HUNXflsTz5(<1Tlo|`2k0^Th5$0$# z422$%!%!%P&@e;^_Og!1@LivSX&lNpVvR%jN94J~4kTzEYEb-k9+9IEP@z%CMukQp zTM1>Oh@6q!S-*+Xqj}rkh?^8{rqr{w#FTn^F>eIjsH4cOld8qBQm;P#J}mR<=@S`H zF6J?@o^HcUgJ8%J`TQ#Qh)k-d&*d#il}|}kic5>-%-quA8>SZD;%!KauQ4rtSd|u+ zn_2_{s6`(ERG{w<(jBJE)3w>&Yf5fNiF5Z6Ctts8ro=4?l$080P%-tns(dP}g-5LlpJ$6LQcphNG zOgrUt<}m4~Jaf3q550NjFp+UT6@KH#=4{;4n_Iw5+3@T{Xtx{`Mo!^X7&(Ra4{{1j zgQqX!s%U%(kd(cGHOCKw@(=eKp>bAe7`=!kau^jbjAn^~hi{4!Wl5=%)r7xg>`3~X8JXmZ``a>@ z`|kiziDF08-()X6jJK!tP3Yf}y^F^z_Go?6hgT*3dSMCYZ&_OEEOpG^l%P((gV!h4 zMlseV2V#w~(plrJnU!uBM>Nlo+E%xfkdlX(T=)80u5FGVmTMc^Y=sU9_;ks~{vo;7 z_cl_Zb(8TagBzseZ+Y%B?crH82h{6@`@P8dxk~mu88>Uu2fJ zzw@9IWSHbML56_G!RMOtN#nuAzM<-F>`{m@wDn(F+-NvX27E z(YHFU*L&LlKJ&Ca4x{Zm*%>6M$P!8?XbKC-b=1Jg{&`705&g9mh;C4YlM@ zR%HG}KwN20vkg+?hN{QO`x%PEOpPHAWT=O+9rd4S_=^lRt+Js?^L}xr2kJkIcfxb7 z=QwdP(n3~ZlAN=;hDOTW>4a~2m%Eci`K+|Q`a6t-wA35YQlHrXK1;pfwG{jaWT^lw zdtNs!HP>gUFZVbbs5?#jtlpR$mH#WCt7MyyZ&QwSUB4bfq>AZ`;u=$A9oZ zpKb_j$I~V{Qcc2bWIC%@kH2WI`W{@)(+)xE7Z@)oBxj)G3aGlWw zl;tra0?JwabYrDJ>PIA)T0w#yuZ%NbOhh^NkMp4XaEZ{*w09j1i zvG9a^EBE?I=bPF#*36h{^osS|<=?K%YDW*h=0p2GlM7LJdOCgI3Hfw-@(Fr69nW=d zdK4fP*UrZjs&!6UxjePdlNQTl{@N$e`~~TrvHm=8oK@R%clG^t##!S|;ke|4kBUKJ z&eD)`PRNdtb5fcY{w4FS8IciM`ulljgrfF4DNbxk$klFPGLUg^Iw_4?e3D*A27d*j zh?Ma$LtD@JAFx-T6p7+XubF6Pi+%p1vJ-yl3y0B zw@T3mC>+(`^R;Bw702P@oEsHmsj&m|Z-Z7_3eDH7G*wnpPjr+upmNcbnLyS#| z){b!w4l$q_!N{iLkZAeRxwVD&guq>3?PjY4N1r0S4;Iks5HxP(KaA6jHDY(L5eoUv zaFi01n%+}EyKkC@VOcZL6PSs45m(|HrAFYsm@>#G7oJuM! zMM;FwR-F#Tu=A!(XN~6fGF%FVDjn|b&(>zu3G@#yM;^$ z;@W_eDD{&H+A9kJ%ZM2V2DBtHunkw4jPF*ix~YQhplfCRw21wmP4;*D*jLhx)+YPr z)p?MGuFg+NH=3!ZE5z&RMy7VwA6*}1K)zyPyXwOR%7_;`97eq$&;+F}v+)XUXnxxQ zjDR~)HX|H}Gt7^jannF)KYO*gMmJI3EvS|{rb2Gtj08PlZb&7;Sf|}^3VeZ0O{CGA zpOQvz&Y+gj`<_xnNv&R)p$tj}Dqc7!UpXaBKKPW)U}0i@&BrVmSTbuG82<1XSounKoj%TM<;Vb!hf-SD)u z^$n-V*3|RL!|F9v>z$@eEX~cDL69>Y(Fx6vsfg1SQ}hkH(X2W}suBK7iAnX02bG7! z-}Q|8+B8<3m?}6Po3EHW&6Yet$f=WUG)(P@J(41_nPKlf*0^`J(OKgKU>K9vyG>q4 zNM6-m(B1K9-WFzyen@nd9&BKgsOp;2;+DonPwg9qUXJ$`2N5z-e|=io>WkB*eRGVF zsI`iL={Z=N-lpfB5PiQ* z9V6V=8*c@ep~SQ>_UjF>y$nh)h7E`<)bgzoF>JQ0AAHB8Z+oMIDE}-xv?$90dYPK@ zd5vbIGsMt7hM6&Z`wcLE>0*%(;A(Qt6d!=Fr}G(^F#N;Q@Z_*vCOjx}lqA&_S2iUW zT7QOxW9pPXz#dlx`^l3_D?rgCrK9)SjwDE0dCIpR!6s{38?X4-7zP0RU*h>mU=kww*x< z_eUIeoVZ+QjMt8{N`(7}iTg4G5N-ev?#UeumsaKR1C!>qzVwDJY z`dO)tTm~TA0PtOR(AqI5;#L7lmk_+V{<5<%T^qn^5%QZ&xWCcFdA$O$j=Jvreu z&R7%Pe%=Z10JH>6cz;Cd_@_6OIsUG+Bi0$~^O>(33(N@y%zSeNW-`})W}?6};3@SN zka22K1MOD^kOPef%U90Iapw24^3;S_p-Tk=&S3g-(fjMp)!DXy2{iTeaP{Z2X6o{@ zNT2inlf@A1IShlSO6$4HRkV8WY2?fCg#^HP-BX z<=E6^T0?tfa|&PYoSeb|ZsYLww;msrugM0;nDnn3uJz9ig^8 zCl48c5=~<`C2O8qsdUx`*Ug%(6vy4-w+d@3=j7OEoWr?l<43Ip~rROCuDA?wKp#1alTw80#AU<^|xnh{dNLx@`kuH~Z?aq_;`B{a&QP&8o zc2$8A>4#Gyi3+yDCpsAsD*S1bF;=rx^@^#)5@|8Ldq}1#y)Q@1Yuln$sXE4pSG0RL zD&Hcx#FVpyK}pW1y>iZF5Rx-;d;NSrDW9)e%EzUYK!>E{bV#7`&xci(GHskus@bZd zlxy0wu5HPv7@}l6Y=fkOgTkB~o+-nhEk$H_txz=-A_L}+wnZkG>l&qRO)#ERwLh6m zILD3g)I|rQ=ouwvdk1`!QUra>zI>7q63-EOgIV2k!gw#Poq8FR09mQED-1dAQ9=S8 z^a)Y^ZN1F@aj>Or>Hs{|m#w{74YIozXydXHFFCM(KnxEn(^LM`2S?J%52xR%`z-;-tW{rUKP}WL`q1Kw&&?+*iG= zP1B?mrmiX&Rnk@LKYspo+>`?@-_0~+%4)41Rx)RwHC2?7AqwXi9pKtu06k%9Z;@Un z{RVWFjcU<9;=pr`##$dnA9bblL>w}Is~p+}N~OgyrQwVjKM*jduP~l=brA(=DXF5y zPS^Dx*-^VPmQaz=6Ya;ns22eIlYqXW6yjDwB) zikt<;ZuPZ)C|$Mo1|vwydzC5gw~Hy!koWM^`Ph7WkDahh_Sh6r)G8yc=6YLd>TN0G zhV=HWzuw?QKlq3G{68|sGkjDH-Q{@_QN7`UsCd(HllbYc%v|&lhgfs0Ubed;!o=N^9*RqeODU*lc&2po^7zTKO8Ir>zKtl z<$}y&9bh)$Nrsq8S*+i_NLj44cNrTr#d#CSv=sC?>PY{gfTNTrvAhKINk?|S)M(#p zW+_ZWvQ)L~qMWV3zc^bdz3DB(0RzBA%1W*M!}uoao%Oe#dg;GULQb4N6tj3~DjeLr zQ{Cyu%*Edr*+CT-A&*Jlj9d+V_&kbC8hgplOOHz%9=#~GEK6OZ)knDLg7e?6?!1Gz zfSe+IzsITRFOEzV@q>>99Rkj11f>+plU5n^h4VkD!HZWJtJL0?D1)-rm+?S~>_v#I zbLUP_s)ceS2q;+GAkoG3{Yp=5YJA+KeF~VqfMH7-A{8L{TI#AjQi^r_0vSb zhemZ$c39WPSntHKCNr+HTgerb^st(NJIVS0d&{ zr>x0~4<2&DiZ-RA9D6X4G8OgtFf~O{;EFPwUj|*aItQuunxA^ZE(aWdCe*+e)ytQ} z$&XW8XqTBvNSO}ghOZ?4u>^&UB2p&4tkRk?wqb?>cWT!82lm{{@^Z#GsUP*wMfo`b zh;;M`)QuP=%uLEZ$*^W+QVtMsfr7koG581L8~aL`Zd{E1(U_n;$oRs2|DyY>0^fgP2xUdU@9Lgz4lt4gx#v&mU0lWTBLcVCYfULd50C<#w08AgCJ;?x|_qH;DasXC6 zvoFh=t#^SJm{%m4YP3^~c>(97i>P~#JLMhM&o7IWr(xMyu{t$2?+c(%X~%drlI7OD zoAE(A#+X@I`-YVo8;w$ZwN*eD9U%U~on_3atT7O7ZFdrrmc)g|GrV4Zh~v?CR~!#+tYQ&M@aTv1+Z+TR6AC8hd)z^k7ku@m zwb-Q_Fh!TF0xvsrzOSJVcnO<65cMy}Vvcd-17ZJ4A8;@L`2YaO2f`S@=L2y8ScOHw z+U>?Ltu<>vm|FZxnIp7r3_!F2K>jy?0q7{Ng?RrL!>zSoFfQzMz^1*eZgfFwQ_7LL*14+8) zJhtE{rdU-@;9hkLG5xRlTAYR0YgCU8y4{rACvG9OARk+VzsScHiKxv+R=jmQN?t{~ z`{ysqz>>Jf_}Ly=Q0LBI|qFY*1&wq8vO9NrDf>=yn4PeE&Uoel{e6UrLUF4U7Hi8rLXNs zP0l+BC@V#luaFM6*_({8j4a;7%G!Abk`{l%zx5fbieJEq=OCa-_Iu-BO02AfU18GV zjxoKW4BW!ZtDJI$0(tF=I-`)5k95i1n&K~Vx29Jpqy_Xh;Ft0$I}RCZ z?fymsS-r!C(0VdiXdvrq6?hq#Q?r3=5hm+>R~um=7IfA*^ol&bEnxsU9R&cLW=~@P zI$Q++9j*?#B2US4F9zMNJ;!Ph-i0RK*BOBD0)X&-!~ldB0Cv15jT^O%tQIx@3GjN8 z@@jh+l&AvKi-WEy2GFBt;1#$nAAh@mYl?;9$5Tc_vHL=DoW`okbK8zrtj-bV8-+c} zRj@jp+}0H{D7RzxwdyuRa%y#+7TYIG)y0 z>*-fpbzT)Ko=wU2uijl7;#ZUS_^sHTZmSBBt0>KZRY|8o^1#C;FrDIJx;||xLrJH& z4`2bs2{1EdAX#%Xb#jmZiHF5S7~1o!0nNY{i5dU$Be7SnnyDr0Vomcf9H#FD4H_x) zv2IuGX@&!0n!M4ZJV}T|pJhEW)d#N94J_qeSvK#9j7*J5z$Q=3SG*k^9h5To?L|5i zY4+hSiZuJKRyBF*f6e%|a(r1d)b*rxo-s_}<+N4crCO7WM!0ShW%nHq7m;b%wPgao z-l}Vk7IqEzHhrG@XWeTu+N3Z5c59`s*b?Mwqh+&l3JTDGu42>@TY_DKwGIqU2-}$m z`!E0@Y$p*8VdaDn8c>9&b&b*i#s^S^Cm5Dxz6gH zgD0CegO^{E$5kt?(aEm%G$N8-EDCj3j`}jlhS`c1UBjChh1LC{smyXM1UI+3u)6# z1PDYa5ny2ILDyZU3g?Rn4K(#S)#sQN`Ku;*9X5eTghu=Jd8=TB7R#?OrA! z#iF~c0xu&qJRqJakff-Xkae#%+rloV(X*}-#%xz}F({UL4y~=A?7#!{W5t^78PVD- z*20=a2jJ54=yhWHl=`V+RI01H_91IVNLPRpP0DJntz`gOumJ!$&^9xGw?&(DSAA^- z1N>h(So^3eRULnwShdwnZz`I?JigfBY8rGLe0|kvxXZrziUUQZCC{wGIkm) zzL~KbWV>>M9#BkUL-s!S)Ot3IG#!u-w=|qIc-19G8qDCQ&19uu=_2t}16Or!E_iif zCh(hPp`}ILgPO2PQ_4NsyY_nKji)!^lG!uv6b;@e`h=i? z5mWdDeTU-Tn(T(tbRX0j6Tg9H6)Rn>8>s+ z(2APkO19CW+dyUggJLU}VlF>>DP9Mf^pC4HZ2Qjm!Cj~U@y3U4s!? zUDaZhX0Eldz^0C}^R?bnGgPts&8&JFoF4g!HaIz7tjz_y)>EBam4wr|aAMhzAn+Gep+xH34gMP;0B=)UYOn#AQ;$LE2zenYbKSiOYFg(?_az!{-;jb7yMzvid#) zz-OBL_?#Yy&)=pvU1{^sEPOr$QI&6<>-(X#o5be^H?NRIO?N3~ufEDnN{?)5i6WzJ;?-SMGONB^0C7 zEvguHe}f)H8!dpBp_+Uxjyj|-zn^x(!Y(6K0CJw=s*F@k_NIKV1qWFkN0I8fAQ`Ft zRfW>k1^0uv4Y@F zYoD+Rg!Kc7^*dHhSU(7YH%?h?wXF<57y;nLc)-~>Ui5(!e4H#{JtVPSWQ_^yp&&7A zSypQ;B-k<#VFiE}>#*fnedDVzF^wYYAY!snxQ<)j`*x8bA6 zdge#8UZE4BJjM!*B9T9KtM({DPD`oxaxApwDAL&~k)udQETFIn&I_YRrpQfGJC+s| zq$MlbFnet|mMDWo-p#I5Z7>7UP(o?=9tf84_CW@rtRw42+|mNO`km^8n0J}_occqb4AO1cFUl+Ws?RHlIW`hva%DGofF zY;dI!g@Ogic{U20Yl*cT+)Z^`H^X#&Aj9IV?qnMQa9Z5PQ|**@e<8nh40! z_e3abNVMqvc%#~KLfnW!p|?GtcC9V)iW(SNcLuOrqjPO$xPI^l&V{*J;r+m05e?N2 z0D`%&(nxHX|~Yu1cuVPsT0WE6o~S%yfPqS;$TZOy{Su5^GdY zSDD-|liVwCSrRqxT#>BtIRV5s^X3Jci+NWJIEAMr%oQX`OPH(pi0_>2wS+pBSJIAMj8)(zTa)Z$w3S@+gzGM?frXeh>y#|voDK8;maLq1%ChQ+ zCHrwv%mAPk^J+~1{ydp=P%WuycpclcclVR7`a!qUF{izl*-sr%NA8qmB5pqOjby~+ zPMI&49|L(cf)sJnD{c%nBSVbEUu1}}B6p4}E5KgrPjg(K2C&1rr(t3?gV85DJY*Gk zsn#SRJlO#*I){kz<=Nx3g%);cjCs-+uds45#=JU<-^tF@=CN|i76Ewl%r$Lszugum z=fe_Yjn@{KyiZ+g+F~x^=C+u^h}mqR#aR%qQjj2-Vhh5^6kG8ZnPO{Irucn<>+=An zSakSMs<^h$b)$C7q9kvH9I^_$q-(N(CwqK7D{ZoN)j}*yaY>p&uM1L`Q(H2{C25LF ztiEN60PJ}#nx^>OZi?{dT@8a8)HS;W=IK)#)|K7jBI4$z_=6F%nIbfvfxHSqinJHp z8hIyMw839wi#Bxw#3xG4$6h=8Fu^ljD>Yv?AG+>7bloL7&DvUqugbjWax1;X$1l1% z$=e#{{;_wu*5L%@lbmI^0OZoj2NdUWZG3+B*nG+fq1#@1HPCpj zex8^#KPpTtZ5!1i=1pu*eWjMX#qbt*q~0jm#zE8@uA=BlH5ZGLH(V|2?Q0H(A`IpM zX8>J#-mELi-f+EAjXT19H@Q4w?mLiQkmD6I9;`P=w0o^rv>3WKCQ2;ZGgWApD10#fe*~h`O3c1KU56cmYpvuR=O5c!*0Of^DqG~`T$M~J2K+r zOJlKsN9Y3Nq=VWvRGg{<*JfY(&h@r7m9^T^%3Tzl;@|24Y6baw^F9VK`do{RQd(gV zJYtSZ4^`Y)-UF@%L6Lc{I~9M!F-M^qCD!y$4NVAO77x%72l}TLi`k#JmTRnrC|u=k zBmO*hC`vr^Zd$mQSL&Lie`m1?-m^EmQ2W^`5vv|@_fx);3_8a;Q;ODDKy*QhG#^zz z(tyi7BAn0EixK-ibKS2Uu&|5yP26U(ngBFC<)Mr6GE&9)&t2`bllE34;{!L48}BOz z#nuuJevx*kRtxSZcztT^Om{z3(d6#?l~B3+PB~4|SS8r@NF?XTKUeWVSjO zEc15b!n9e)2bX4`#h5w%P~V$l72^<9ou}DIS7Ydf(#Y))laAE7U0cquN6mH@=}WMH z7UJch@|=}&nta0Q^?k-&q<)~$j*|X?1*j|5#x^hn<}(S}1nS;$Z&Zd>X2Aui`{%0E zy<4g~jH?^Yj!wkhAk&+y12`VI0%hE%vs2DHk^#ptaN-)Em=c^YK1JRSAixT6Za8jL zmuPbJ|04YRZ~ekBrYD@z;&`?CYH~JyB5b3pftIXWKIa>)lz4IKCs*Er>ANGvlJ8yB z9I$5VoVK8`ikFy%smaH4ajcTL5Q5t4a+p%v>*7GKjNu|;LGw^iyv=n&86|pe2T{i` zQGEl|2$ZyS~!+VU4_amrE7M% z+A2X`f^yeB30p&7Gm1VPeqMzR*9Fkw;#L`XV&z#^iYSOU3^T>>lu)taa<#cuKQZ
    x$Nwr98vKkyn(HOP9a@O?jNos zEsSx6Dvim*0`8ijVIps*t56LID?OE!5vpjNSd*ISQ7x3%VQ;kXgsX#ci&SCpkUF6v zX-U!z(u<}qNvbEF={F%lq%TQo<}1_1@x!j9pmCt#f~84~vVT9~j4hu=*Hop^O#w6tQx6IS2_o{8 zE4{k9{Zi`oOU4fAw%lL0pPA13NtjrB+I5#&VY=5RHuqY+uwkeOJL}pV92*YHoV8_6 zmlhAdyz?>?RZM@Od9D&(MfY@y$jh##e#8Fz%N)6=Uf4Z5UN5>Py;BVjmm^0wi1?oOVrCJNW)ouEL54R{g75WZWcrUv%wPM~BNROk){R64mJmsan*# zNK|`2>3!LCM>TD!7Mr3KGcHK9NBu<`Y|1iFinh@Ar&qKsr!ot1DqwgrxKJW+u=RT#&g57nMpqL04wM(Pm0bzvQfpIHGiCR<$ zmuB($T;tZr=O_!^iXX|vd|`^S`T>oM!8>u0VcJMJ4*{=Y@wN>^RR$>a47JI z>Gt6CEksn*aj(^GWNj!Kw(g%?t+fmC(ZPpa4T%smPzRSz(%b_Sb$o>An^V7mHj&Zu zhB?LaUsQL0Al01+b5|$H2q|l{Xd2p*Q|{K@v9OE0 z*I;++jY#<@;xh(-?Y;g=q?ljm?jH0LXnJk8luT^{t3bmurWsX!til0yM9Pape5J6s zqq}9$8-Op$lai#t51-}oZiMa8$di$2>Tz%!y!>>ML4n#R{JLd8PrDcyU}q_>ySouc zMmLl=9qeM(jHA?QFy^aiW zKby}uwsz1c)q^|A5|uja{D$sPnv<2nF490-0dQ*GHDGwX{(zj)SzaeZL1%e4;x9VO zyD>_h<;}p_l%af}Cd!`48Y9*P-L(3>jCbKH?) z(oOZ_q!-?0k&s?EF-m&jbOyjpW)%SBhV!CKH++`Wu-xz&k=Ha(9C|6L3OAex_{a_6 zM*uhcC`!8FCk#q%_(2tf)!8%M+Sg_ubcj50B?)tE!_@nF9ZBvIiQZvKg!n;df(t~s3u3tjxZ@ZD^^X3mK|XN zqU9aoRz?Rpf#!SZGb-phgGAlSanyxM_ z>I64nZR!NA@E3K0R?*Z65_l&77)50uC!_MBHtz5I_9%^x@LUddGU|!rjkB7HD{b9V zw0;&hc=|B1sE<|PWu_*HPN;*dZ0|m*jj<5RZZRTS+Vma^m&Eu9znCB&0g_1 ztKjPu>LbxrtP|&pH67gc-FOPlBLE-u3i#pc6|m>;67T_%{Ghi0Ot)X(VPNbQ>Kl?$ z<=Onl0I0O_pZ9rIv!H;qU?AwBZUp1uMas?oR5nyaWmh07eS0@(q=E+NBCNkai$ja^ zgHC}wGqyz<+8KXJC##}#MN;yc7%qP}rD>G{$&pQgXB*wzE-fL((k!ViCWeeuS#<^g zDyt4gHlnmDvN%QKQdwO(fPZ?1N7LA*bQe)Q+#@tPBBIvvqi%Tr?!}bF20CBnkseG!?BA(9{V{Z9HE`rhUR_5*M&Z>B=H^qM}ZU5qUit^$lD{!Qz@#1Kq25+nY4 zEaeI9Q;UwEGsus?p*q6|@dE?k*`*2qde^d@0YKB)VqRyp148L>%Sv#F?M()1$5|~p z`aBY&3ggL?cG_hIA&N(=rt~f*fasnTF`}<|;yG3^k2qO9dBpi#42?u_KEL%Cv0xf{ z>z^%V40I1pU4g{8pT5AjvHX-$g5+Ui>$Xgh*tDrvHCOVM?!)vP3$1zVh{-|p0$!Y# z(9Dq8LAqMSbY(|O8lr@%1+ikw%8c{?jp&{Fz(9?HfP(0ID79gLR+K7ae4tiHYW@cq z*#R0&TUfuo_Hdv^a5r{evD>LJnb1N-sqL{gsozW-!jwUWq>Eo^GDLfc;iNOt=dpl> zW$*)fi%MxjN8}b=zfCC$CAAKxJMpe0g^ldEO2Flm7v8DH@c}+os#>y&eWOzE%pd3e!P}Wx4cVE);;1vnTb=o4Bt@Nh zP@EisC~-&o3GV#V421E19l`jr`ZZ?n&_`GxIzfj!F=OwjEjCYdcT`K_grT`y+GMMa zJVn1Vu8INpApqbjjX~JL^dy)7z0;$SIu1a1fIb3t7lvjPiW8HnyCXSOcy%A97h9~= zEzKL2^^~G5vx)>w#4wph(A#llI*oT3nC5+y&Ew6gB>E(d@@x1>wCrkXX3UF-iPUUf zcv}`Hoa-~3RdBG$%RyN{4t}nRgWdmM94!7hBTHv0fLnaN@L9nK)3kuXCvZ*SvvMN} zpK3fvX$5}h#~5>=k&=C?)M#I5s&G66-;WQuu|dB0XsY`) zy_2OK^U_yOtAs9nsh#5Go9O}z;1%wF!%e#dSsk@u7Is>4#RnkgDUO#{w+bp+d$jvl z3!0Qnj)$(gIK7oNi$Q2oGC5w(XYP!b^O=`f1#0>{G^P2>I}AcipSPOQe5NY4%=t`# z81tyx?Tv%1vW$bR;{D^`79>bh&ss#1F8F_=1QC#`ZplXt77Ij*yoIIgFQvftu|Xh8|Uo!PN)VArn0 z0_qQKMD7B2mY6r&{gIZ=s^Q%y1yVjf<4)C*c{#2(=WV*NUQm7l7(xj*v}O!Ui>BO! zDq?m!0N|o&7s}xs{qyFy9Wj<5b!6X7PLP+M7;T6zc=>5%bYh%lku*zp%yBoiF-muz z5)$Znof?}U3WvLL#HOd+_iJ}rjRlE0PKr5>m!p`@AN6|5BO+?9+pW!FKoW9BRYJ~{ zLWXf6VFK7DKAlNveim|^DJ3Iq%0pMYDi`mZ=WeL6VtK`DtR-gDqplY8Dou?_koUf> zOOW@zu0RBX6dPjNJV*#KLy#YAK&dQ0cw0RJ4B-y%F@JFnRVD7ZfHuV~-h%*vVL1Lb z3zs(%_7#T@u8~;>UtT@&4>!@$wH5;o_-bf7KNeUv!6P4_Un6 zyr`L=sl=43#C$xFrV>#$G4V4WV(o3Qafm!ZM6An>VjgKe`o1rbj;<>MCMV*Zffk}{ zVnk@_15!hQrJVG#yPftLW7ygk2-u)Bb%`4$Qy;Pxe!7JxBQA8$zrDp;k#UT(q&18>P0aic)6)1l%`M&nD7VJSSxBng!6d=S-s9 zif{h5yNfoOaX=~=4kF=J{M`&dTk!y(t@xP?K-;#%MV)uy^1*Oc{(ohFcH;LW`gY>8 z-*e}x%aY_WY2I*WlDa%e?$n(@1@alfex^~FAvi?jpKz?#WN2<((ZuQcPn?o^wfZCQ5n6^kmD8Y0_9H zSuUG{>0dL?SQTi<*kwsRV;}g$-B@juER9Vm#@dv^n)n=Y#Vx&+v+29OPkF|gGkzdU zRy+NzS0^&hn3m7bTGPPptd#b5x?lkfs-Pq**Vs^2kM6(^N|txv2U!5~4m{-sauosR5ddHqXoM}iGePI4nK^0+KydL6H0k!cjiz<`-M_fA#!BSa zd~32Co4X{-vAI*Se3SnroKsm;Cg4CE}Y!|Cfvx^;7Np(<46~?84hbKdl zJE~ixSlUL0jJCGQy9L!!*PE<<##qH^P-F^l#wPB17#7%A#YAIDJu&Y)2wmB%I&qqr zQicAT0s!Yhc23KuIF0m<$RXcrFf6Pv4{|){%+pvA=~_t_(|>SxP{UGus>W%M%@3`e zIo2P%@c?@%jo2O}Mp0@U{-P)~E~Toq_Xq3T@A`+PHsZCP+_z|tT3pM6!Rc0km+G9) zYPdvivdvvvOfSq#5;t#v`zyjCAqVUQDRQiNjR9zM0ssuyaq{Hu;}rAcu9Q_H`+ZoI z{nkqR*>70V$=w1#Mk6--@cE84V(&_kBlaE!B~m-9BK2oLQaHf}A?WyyQ=)A!%42f{ z7=b)CPVJhVR5L+yk;_%ltD9PRE+W=`mDN;PAg*nJWQUxbH9!Y2ujknmbgES4L9ueH zdqjx2rMc+9;bgITqqDZ!5Z>nD-4V=i06ATTZF9$_K8xJ)==~65AI9l{ajd}WNSX0fhC81h2sBKfO|Y!|$hi-1XE|WWp@v18KdH$OgAwZ^jo|FP;^6HHpY+ ziu4Uurr`4}{v!K*Tc!P8-{=0Ivi+9scMsL}a;kVN@T*ner8?)!8U~+&TJY4UeYyK_ z?WBcWn(mlsx+@GorUL+)Zt=Q!2-a!RbP;Kmvr#C}(yACWk^q3CMgZFZVzONTK|M!P zMbv=$Y2Ye&bIaQe#Y_9$>9uJ;t%WGZ?KH}$&@xTVmyaUr+>$$(EM!Sm;MFOTB1?8f znaGme@E2LKTUvmgXngJNDA$qfk);nEJPqvom%C^DEk1MueCP&9beeVO{3z}m8Y1|R zyRDp2%O32*wg`sLsC7{VLGYt={;O%76lIYpKkPm-tr)QmhX48UC}0W8qku3EJqyMM z=bi)jzc27rD7`nGi?`e8(p-PMtwZ;gy5qS%T{d_Qk6P)_HVk*=>BOfM?!eKW=N?#9 zH1g2;sto6;H1~ZFV;)7+UZ{2IklXMVm{*+I6*ERWbJzc&?Yjf3Dze7+-cWNVkPs3| zdh*JB5Fnv<5_$^+L{Jb29Ud(dQBe@As6j!>h=rzW!2+mj#0swHT4(@!>uuRQvFUOg=?DN~ojmrj2OVTqk)jj;iKjz(k0arGLHT7(Td)X^~$}12CCpO_t zZ%Km!Ea4w^9ipz@Gpv~@50`s8$c;be-6(qVw!_BwOB#HM-Nf4#JKN%+VENrrPbYO7 z|F~TKWu7_~d^AHH3;rsD9Se@q2SFgAroB)8n)js3aE8^^JIgJ<A+O zzvo?|!^>op!FC0MgnIhr3+`zNJ$;jWd3lpM>JEO(Kk}A}#~29-T^f+(w~EfGQ78u= z&4f$%WulU|$hjnMQjE%K?%Z1Q+$Q$%COg|SyF`0SX}{p-JG^q4ANK0@W?HxK7c{wC zeC@8UAI_vRF5-I*nfLeBmmmZWxd<(b+2-mM&4LJ_11^9X54eb?yau+7OU+U{Lc-)A zVlY)MtKk`pY|)NTbbY83E_K>9E?iS|YaMxQZBKmMF8EklZJ3rVcoPYOMUH+WAS?Gw z4qxbps@As9rAQzD3|;8o1w2D~`HV-g3OC!ExdOJ-_O_zS{9-g0p!mwX9JzUH%bIdy zoyL>nCWDlCuU|~%l~!kYC+iclXuOv6?UutIII|{ZXl4yu&}IJ9`k)IrMia8Pdiv-r zb))|VR+zZ5+1e9e;_uKEYEhK13urytp2BFKDR#!gN#I&q?Co zqMZ3XS<0C&P4HZxGpFyao|8V^UgsQvZfM}TaA%I6_`165YFjUS$l~+KO)A$Uc~)RodAPBsC(@uxB>&1%caswJhVgP=n&-#3?%A-6 z4!7Dx5vNN-Wmh@Oj}U7P`AG=JJ-+R@y8gqCs-~ex8o9{EN7FJ)}5%F_$i{E2}%O4DN|6O-{>@ z8()IkUU$~Z?92ey*UwCgTL%ip3+_U49!bG#n1Z)NSMcsR;4sO+ffO8Gp9{(P=x%#; zjPx!`-*<72NZ-%6^8RhG9uC;OVIycB(0S$FMT75Yi6B^~q7!{6#-boK)3I?r9$SkcZ{ahn(Q}kmbr} z(+kkda%K75>1oySfIV`Q>UwZCNOhCks_ROE>78G0&cAAn)-t#7;q@GP!3SLPq_!oku}Nj2p^x_Rc;I0Z=Q{=PWF36hv6n3%sr5mUl7 z$wI`MxBiqLt^!qKRD>5U>2o^DnINe}uIqF9T8a6EB{eMW6vOxhe=@0u%eNoMDI~YJ z{^paliWM#QGe6ppdu4bjrf3kstsBIul}Wbe$mA=$^dW$&PbZJVold`|e!knD7!AHpHL z(67IerKWi=K&TqJ{h1miIt%W~QWyER0A9GrFCOHagkwf+6O!vFcQ>dTpRpaomzZI1 z%sBAh7e3X?xyy629QS^c9J4PTM1YCZ-z_$P=dGl#c3`B_3d%i zx96#E9UrZP_-?@ke6=CI0{W3$SvAa4D2{N_)R9J>OIu&5o;#e2W5RBch47FeqDSj| z5fl}GHO4)c!?yuc$UZ)U?!|lO@E(1UEO^0V%FKt-Yso(@^*pWj&7+(AqCe+^)Yco3 zST6|Cq-uCxv;ktz-SA-m(ts>@CMQYG8Gk_`X;_(XdO!biPcu=(`5|3ScI&d6lCpE2 z8ej1`zqpz=yLbw{GEB;$(5wxRZ72A4R(lnQm5%oax$^OJzic_u69E|dPF9+}334OC zRdun2^GWJ{z^(4bW2>9OKA`5Wj@ia-$Wu4e1^lqBkaYdBTi5HA0@mcg_hYUQhj@#N zr{?`(DqPK#yC-4D_cPF>TnXYAPMwtZqg#13JW(ccG;ERXUb(tyZMf$T*QTp$uW{dj z7SH@Gy}f`RE-j{dTwnibCEtlWnNzoA8(GvXW2I<@l|n9n*7sg@dw;(?I}tu-Xckfn zx%)SBRsNRO(WhAXTXy4bo@X0MmK;cXa>+tM_$O}jcDBPQC_ z`2>H_uFfaGF&yVJHsR7R-KZZWi+6dZ%l8&~UU&5{T_A?9V6Qmm;0b&9EGx0-R_8H9 z^6F;_J+;=qnLba{@dC<_rBmP5@T$H|bwIFh0b=)U4Gy;ZHVU)BI9P+lcQ+FkdwPr3 zyxkT=+tN$t;Y5)Gf@TH~JP;>_I3Umlp3tqj){`e%a=`z{1nsyVCj--A=}}waX{pVU z1@NCf+p7#J4iR#LI>nSPC+um_QjY(}w7PU7T`c6((Mx2U#M-?1JYI#aq;rH;Z=!<8 zitfPLWJMMDi>#=^OIFl~SrJBibkYXMDW6fY%yZDO_*WTN?n%?c!<;<1i><80LQ}E7 zn(hMDIvU6aCS*2|`31g7VizN!+{NFletgpb!M+E`&@!`w_#21V9T|n&;Im*ZxZi%i z7gxKdU{4m^;%TdWjXl{^(k0|?tnPdk(enP-#OWyi5W0XYPI4G^=SFw)Z+Vrl!)U~d zLwy5n=^nDE;e(>k7pCHOcHTl~{x;E<7<14Xo~ z&OWlN@F4WrN>6@mIu5WJbcln{rE5It`rSU|GlnAtZe-m!Nis58X4=4u$-cU}TdwC- zaJ!;%-&)Uens|hlyP8_}Ya*N0lb&)-{LS4o-KJ_?*<(#09Q93mT-1h9i@< zc=kr?kGWet_lQ!i1?rE%ti+;QQQd&EXsE}K%kE06gLw#^5Yre5iQA?6B){69y^=#{ ze-kg$!6CHeyN{Y`PvUEw;#wn~$s0+vWUAw-<6P|Xm^M+|Df@@yw z`1S)nVGK;Q!sWmGC0Nr0MC7XyOl4Q^i0l;E;z>{2jB!Yg8`S_tUxK45SidEGwMan} zA;YI&`MMLC7qTx(pIWGE>xl*&FYU!rngb6n4&T!i`Mh}E&ioS1BM3*+7h{E8_rYl+3Uq7s_QMhwG+(X%AA z3W<>KIgG!^_Z$XWbori2m&FsndFkiRT;;Tv1ssyL|*neb#fp|HuPPmo91MoGz_SJ8H_I3w*Wo z51_wrx^&>hv?lt8%~WVR6De??Gm?{}C6@42L-8qx(ZuIcck_SqDzwDH5n6qW3ZuyQ zd#p`n^#lGQv-&}qRn%DvkW;gk=RWc5i#A%l{i)|6kit`1$+ zWe|(I>cr1*B5MZSITXzpVwyUoMj;gpG`BAuiXz^Gg4C|^&@qSs%3iOTrgc=m@zJ4_ zsHo)5!=4Pi1_%a0s1XiAE3)O5v7T&M_JyamUe;XM0Np~o=L;Bg0!Wk_KrPM%4LW!O zQOw}Q)rmtxDpFSv#Z-FT>xw;m2H3$eP7{nRgl$3B1OB_m|D~LuuUC|H; z`2Y@CK8aLUCY^F@Q8vm~Lq8Wu-K&Aev!Sk%NoX7s1*fYf4XdTtJjvLE+lQhzuS;we zV~K-Jynd*U$ybL9#_|Tl=H+fSr$uFxE*@TmI^bjcr3{_Acqn)gI`0x~I8x}T7w3mn zj5iNm<`>#sNZ}trSQPreuJcd3}UfX@%IalyydI^C%;Wgl$XN1CF29M5kAW7CFu-_aL5AL|a!64|Q%&^e)oGaN-BJxRy*Y%2 znPoqx-L97b7;c4&i5yH5v2iWgGQlkP17~9Ov08X0MpwZ{0|;kgK!}DH2O%0>F!@gc zFSg!iOI+Txuc+XJDOmGi33WmZH5=ef<-7;rp7EJ=P4mUQyk&Tgq!F(j(iEVS!|K4P z$K9iHAFjLZyU5s%sY^Cmo16raw7a8`fLrG9q}|SJZzKhuTy`+8dE7RT0dJX$CpZaM zwrfMz%(X{dboA$1sq5tqS@3!}$bt!IoT5O8Van{PA^9-Mko`C`Y1NFo4Qo|U%L=uD6sgxi zDy&`+S^W84Un^%ZMT3d*Y%?WT()`?~#C*;g$u!53X%2_jGTm;;RKdX{(+VXMt+K@w z=_V!;P$H2Wlx&eAi^sq1D-@1m5@}{wBuZg7E;)Ud*vHu;x!$tmdW%CquElX*7l12& zuxXAs!a*d{m#m-8Dxq8h*3Rpv=WCxcselei<)C9r64;Q}iHjLELTP+&!tdbM*sdsI$lU=E`;4$54SQhYWRs7pYO=o3QdqwdHlxoON)hHAvu~CeT~0pUi5Wg)Opc#S=HV9e6)Gd=RLfai~lml)&BD@ zti+;Q@!EyYerUyTXx`D9GV!X6*&?Ym;0z7pbp9%#wOS|4azJPWskPkr83cF<90E3L z9jlANXi&hdC_K_|u8<;UJSCZ{1cqC61}|aMs573&+SD1l@E3K)u2`LsUgCWvT4!wa!L{^1*5>vR?{VU^ zgub7ZSj4OIjtO=N+~24xi>mUP$f}z&hKa8k1=THwt#0|=0l{uLth(he2iV;bh1Xz} z)h%zix@D8^Xf~w#fb2U-ZPaX%(tb2(qrQXtnG zMctAIbYNRl@FQ918m+t^{4RC~-J_W*??*uxU11nqVFbFZw2zQo!wl}ukiU-b_EBrx zmcI$%d{C_?2O45I-^$kDXw>BLV&|vH{uO-y8J!^Pg~Mq;^X*>j-K9+C-mspU}ror zL&v=SgTLr>PCq>GK*uP~;zlQJpI(Cd0JO(a1DE+|p?f>770^mV`Z@H3YAREMBPhlh=**wl?OVR!Ga!Wztx0Z+UQFUokjbhER+TDsH&& zafDKcteWdJvNF3#Mv|WcrqjqBWZ@uO&N|d5yTeD9VyHW&@1%Yz>zH&2O* zbNvMGlt$BIP$OFhq?WB;*M@A}`~a&Tf`7ucjwNARCr}Wm$zijuzrGG4hh7iLq=Kxu z#_!mcI{YW8^{B?@=w*&`vmN_Q9t;!r@WVUtkB#XXVWN2+w zs)2;*-U~@Ja9Ey#Oq8Gc`pdVcd+Q0#gGwI5OF}ZgbKzEQ(>pfTn<_VVPia_L9Q4-G z;(CFYm~TMqRk>rP_hGHZ3=miDSn2Ix%ybHF%7UeJy6Dr|Qly<6tN|Zh-T70dPM$k^ z!i+g=q-mdzydyil(kil9gme& z<=z*K`|SqGY2e+yJ8%C>;|- z+;Vw(T$A>oa}O`^-fs-G+bL5hIvf`-?_27< zkk#psff8r>V4EIYT&mZO?jcrASO!x^@WBr)_jWX{cG9<0w=kCKZm?AM?hW20)mB}( z>~NE}K$P1oSgKp=R^4n%l%S=$-Zy*K8;{!U*jIGgZM1*2+lJIY_qV{3=(_F?);Dy9 zeM70-(xDq^_&VKImgeS8l+#vt_q%*Dooc@BHt#p$jLlRV+HEs_wo8!BfZTDgR=(Cw zZMdDVf#HGUql@tU$f6NhR&u6Z-}_b>3GH29$g0ulT~nh_4~q7Xn<-tcS?L{Nq`6wH zAEm`=r1tDq-09tI6gpc4mwFweFyjQ5kLRO3M2myrD)ny`V!3@82B&u=HjSbF?d# zAvZtZomL%phM!wK&6I~;^mbf7YN?TqEOGg~Hjiy&C_7b!G0HAx-oG>{tyE8*OMCNsHKz zU6!>rZWHv*p+!j^V~Y)Ez4Jh<-g#X0P6F#4Fly~o!%p(x;O>bUfN|dvsM8X#gE}n% zmtUQgV%RhxAj1b+W{kyvA=fTuHmTYE)PK=UCF#>PQRZ@JN=lj9pukG8ogqZc^$g13jW zm^Afv$B-8Q|J_qx+(B(t%pi9z6YIfik5fC)C5Z&?RINQ$%KJC0lgj&NT;gVhW>iBv zsk!*jq_pbH#V1Gc>`6DZm|Vhq1ZaYmA1>A`tg>{sccLD5H3&#a|E}&t6ENB1_0E*_ zubo`=fwzUc{@+=K+;|scXD;ey#>@2Ay({#Moha*{vDv8;YmRY$rx-43TPI2$;jo>z z_Ihuw&H#;5HT|AWD&x;RHb2&c<0UNNIv$CP?Q=>iQOR%DB7@}lWigQOpy!N(00m3k{d zy|Az_xU!m^Z zMNIxIXMgNn755Nmx@c3AeB)s!bC#yJ{+XtC{D~b;Mmrv(^5b0;JKkvNeWT5%rT5p| zdcRL8RS*?Y|c$$ee`SKeJ{0Bh3$cwYXnF$(TLQ_}$5arR4K} zrsUdPBK_`wFTG2vZOG>=g`Tr{vJ~2+i_0;5r{p``nKG^EfiB7o!{1Ea%2&VfHqdI6 zKx4|GXADI&w%f40;-D@u2AIpE2zvHt_16ORe!wnfr|f6*V|l=tZb5rnk`;GRl3r{7 z%_NnjN5{siqz3t_u^SNmIlZH z>1%l>l~eC8T`8xYp?7tdMsJmd`M+H-9xKk6>K^wwN;snuJ+%71`U`YZRKQf^No!WQ z^PKm9rupRZpS;s_SVV!0dJ`)L|LpApqf=LvR?isX6eB!3X@A5Xow`PT&Jae8mj~-* z3wf~YXzlfz(&Oc-BwuwF8!SOeA4$*D`pR~{dE1D-Hm}xa9>fwJUiFf|IE+_a)k^rd zgzPe7sojiu&C}wdv3G5lC|a1_4J-uG@>L%E!`n{N{|ZT!Tbj*`N1R+(ihdBA#tH*= zMp5)Db$#RI_L05>Non~mo|5%VUF8#Tz8ta1X4KO1-`!fiUkSXy(lTb~Gd{AL{r}PO z2VtTPEl;lPYpd!1h0L;$f6w?!H^*0LY5BK5({g;bNOJ})-%<^y#cVh3XZX?%J(Zp% z;74dIvGkgb%yR2Jr$qb?3<$FE83j&ZU}BA1I2X@w^%ii33nwE$(4o^k^?V(*8l!+b zCFV0OcQRrPgO_%TF$_+MqEQ$I$II-VN9)Nm&t5d=0A4Ps$-2K-=l30|9M;WB-v>XO zYEQlrOSsyHSZWy5&CcIv+-A2^_Dox;neI>F7Q1aog|rC-?iR-vm>s|eZYA-9^sV@@ zXBX>9a`&a_@s0SP06ft$DNs zbRFH8W|LrDKdHOw`YYW~>Ux0MT|ddL!n-~S>%ocL)!pLu88syGOM}pR&d5r;iwN{I^-P^mi;hD^%I1%Y_TP)!WI5Ptp@7pkCkd&r*up7leyILDbSJydGphr#x^hpNzE!HLjJdVG} z0FNsJOkoCytA5mOaAi`yZ-nMF!+9-W#5HR6fJ$s?L>@@93&Uo3wEAW^Mb_`0$MORj zjcq#278~|Zo$hl($zT9Vc>){SP~PiNSPv%mP#)-4*6Xz`4%L!!+GzQz;ux|bxTW}Nu>}t#hHR8pgK7+QDHPD!3w^698 zFlk`)CRWnGc|BCp!044!(m*avh$bkC>}v&*B>TDzf02FN1~|dNMYXTrCD_+Qd9I`H zNVK6Yud{E9vDGPt@^>5U!my!Tl%X!Wt8cfl%f_zEi?-VT))RyZy)c55s_~#BJo9_UHjt;NFoBz z5E0BQX5_hR(O!O5k$O?eD0G8SN)4XP>F-n78+727F4RWRc5nyq*~|BdX6@heDr*0J zLl4_kriO>@;3%X@xrD|Ssqvb!i#6-x>zc6xh2~~|pRENr^n$sBp6=s&L`<_exAv5> zf3JUO+?601X1Ox1vfvKS+C|o6WCPJrlC>>Rcl57 zljA00vdvhV%AEsz|J00!?IQY0;n-)*#^iiAA%wJHor&FAB)4?TZzXdF`)<*970GRb zeeK1Ic6->8#+|DkZ6+5Oui3@w<1ZfvPnf+}B=0HlO?Eb-1GqLZ>ws)!5$#>+&q6Ov z%xx%N9pam(e^De`4~2_dU)k6#qN|4b+8f91Vn+0e4zx{ft0uxv@*rCB`*29aOb-{_4tN zb^dA|{ck-oABCl0c`)1~><~BAVZE_or6r?8jo2jm-Gj1}S0afWQy2 zgwcDd#AJ^+q@l!QN3e)gY&nG!#VRpbB=x2}E$Zn#p^ZH>nG&gMjpfeiFsk5{>&Wdc z-~WjN%2VcGAe^Vn=;|b{_Um=vnsSvzHo{zG#*kQzC|{YQ5xI~EtsE`3@|Dd~9^whR z147?p@CbYzn6Hc*DJY7(1bi6iB~q_MM#xJn!e8Vi7WIrVJ)9WyopHwH<7WB_G-H)h z8s#A>?7|R76&GP2f2u56;7gP{&NZna4?dly@|GD7+QgKbpc&bwo)nzR?bCem8r^UR zNQ%n=5S}B-Pp10f^`CfL9)G4@fTSeye5gUdZTD_K_I6V zrmkD$I~^@rfBGul6QYRofN9K({&tBn2hwp-FLh42s|^iX=6ls2yE;-nGh?icom?TE zGmb(scttNerJ1q7*~%K{=JrzK+)Vnv^SaGNjZ^H3A?6ViSwe?i4om2`#Men*Lza*$ zht7h0y4#lcx@BB}7`Pd9VklL_i;2vP`|V;B#99hISo4CC>V{79laj2AW*ck*G{ICE z&5WIPv7$?dI-kN)GA58VoYl;D!(EvUg1y#D9Rz#LhVp}8pY^g1f>qgY>MJz{f7&a? z82l{&@Vwy~Y-XKlqk~}o0ss!dK$i}JIq2F4!Q91tg`+uVG-JLnoBvtb1?u4t_WkdFd{6`Zf5c7x}&SdPj`1m9PjqNQ>gERVegJgO@1AzX4Q?o{egG6# zKeSYtc&~4kai6h~;FHX`VyP-%1OtfsXud9*c1`-u$ zYALI1i*I-=bD@Fki{AD?7GC^3^@T4RxASUSFA((Xt705Vp7!EaUx$p^C>C z22@ft-jIB~zOb)ab(+_=a#*q#cDsIaHUt~N!{t9)O8?o0GNtPc`>8=UwI8srvUHF6){G)2I}y6Ka;`a$ zh7;TwL)@)N_q=k1?kVM(afP#?rF-5`>Hb_;_mpwXSmJC4lj*ys7#gS+?yJboJJs-q z7jr1z+PZ$$y%FhbWQnDdUx=G@uY276G56DS3Nj`TI#hWDBCx1rtSUlzLhNH*Cbm>Nrta=zQZ^%@zr*GujLb^R zc8$$FWI_mKQ8d!rt;xuEWtWj1FapjdmU;0eDvVo%n(3*}gOOrlu1d>h40N`&zV5#L zl}qhwL#?lyQnO9$PpR3A$u`*Tb-k>A44*m&0N_)dJ&w8B^eX^@E*0p~SM8u1cBvw= znDVqaifP)=tAEIeNlesc{ME^*CFK@N$}KjOOZl=T<*PQBN%>+dDc_1IWu+x0&?PAy zbZsdkiz#)RqnM=JXiG^Qin-g2zYK6$AGzz_EKz^6Wg$@)$2A_H^0ygHoeixO*wg_r zI@1Gy$N>@)y6Fu7guMwwNlph*Th7R0O6KM$COOaBa@yJ4=0N=PMqaT#wy&CBjqalSByOY9qBiM>jR?X+R?T1%DG#$qQzH6_%q8lc#n zI>2TZr-LuMYZJRKxY)IlynO(Dg-PCwe>z)POurY4=_w6s_VzT` z2FDv?rN_LrW$ASpjiU9{*)M$4jQecX$fwfT6=@fSJM6RSci2>!{a*Gw<0%_E>$PoG zuf61k(i-Wufs`(8n+@c>7KPv7V^*)-?d-MwM<4_2$5yXVqPS12UV992^IluaiBYfd zl2ES!9qP5?Sett71pcC4I}xkbN{;!eqIJo_Z+$_d<{)U#LUnbV$Sw?b$>-JYk}0y_ zqwG4eM^#=^N)~4{w&}3WX*kF_PUMDC=QJEdozu_;vd&4-SaC>c$+GyAFGK&$**6DH z!ENH+gVYyA+2Z=ZANWNjBM#m-|8@6G3NNwA3~S|Ywmv`ApL!``pzaxozo>gg4kGU+ z_!2+5Rh2LI0T9=y{xO}=~9_d&E|CP%*WoiLUl z0@m9SvxW@0#x4za_rI#&-2>KT`#rMru#{vu@SJa?QDKt_fBmUZXb0~Yq!!GIfAmRX ztFx801ha9FS~0s9`mAYwsyx%q-`RMq!U2<|K?4WPyFmFGTw7nr!}Pg zc6~a`^R2rU9p?FFkad{nXE&G*^L!(VfAw`)-&{-5?!}+OW6DXHIqn1`5t%u-X3$V_ z^o4`MV}i=e(HI-5-Fe87@|Pg~Ntrq1mVrm}5b7 z9?ow^8-!{>NY1%Fy*d|3u=|?{(?-pgfr{*6v;`|(>xQK?Jb?*>mx1I)&A-YR<8DC_ z?x?|P$}-A^TETqP;+k``1+pm4?=!Bnp=5b#i(}s47(wp!0DvGj4sj4Lu_SDEs>iYa z;DTk2@TUu514H7yl{qHPEV1^e;Gv$7&DsLO4XZ;*a5p#l;fA&))QOr`ewN^Gr{!W@ zxXZq5c)nJmCMXV~wwO_h>-isbvWQ}8brEGxJ=BZ66a90InNCJkFUCy+InE{|WeE5Y zlEcblG9<|#a26Bp$%I=QCbzWoca%l_;SAZ3!FXw;eabpLbnoKo1b8)+j;?o8^(eDJ zXQ+p}Wm|1pO5rre*o39*6Kf}FyX@r>wQ~2Wvyruk^x~f>`Yoks`dV@dFCPHwKcs5R z$6-9<#MgWM#&HIMJIb=rkcDAWiJBK7&p0po(N$d*Z5wJBE|%NMdX4?Fs&T{zJyW_I z*u+1gx=1SLH1!|TY9tK_U0h9uUycD54>W1@<=GT}#+tG-nUPD*8AC#LIxoX-Ht2+( zGP!GORnm};XZRNi!$z!bF=a;7tj((EviQx6hH_h`zewvMk7xS(7~O2JvWM*DhmE8# zxdzITIuWZfyTjXFM!^C)DI9*dZc7=+_J3=PbEDqT1kM}T3??hwqe0YW{%*!BSM~L; z%#JrkV<8!4Cz+k=zr$GKswJKLHdHtlD}I*^teqxzq|}Sofyg1hznCe~qCSe%Onkjz zympB^ljk3xmCBu_Kee*d<8PoDPq~S@BuPOcf$*C$ho`;e5GP^V!d4G6uBJU)5a2e!E@6p{~N1oVM zo-8Zd_)Cp7HbELl>0nM2E`oOtRWbOZZNYXQbGEW#@V^dKG5D6DEC$~bwd%`uRSLpS zw)b~8{vA;@J3n8uYf|`q)?JCh?~_BV@cR!p_}~f?anM#SFh#U5!Y}+&1>9AGAp`kcUHnNIcViVEa4*3EE8wQ1MU^MI_&u7@ z8Zp?DF)QkR;FoGg-FDa46Rm6_JpS%y7puWw^Cn>!SV%4ydfyJexAcJUd!oAmh2P^! zRro#5hKAxd2*35krLs8A?=`No!DMx6Kk#aKwpYyX?Uqs%gM*qW2G}1sn!*^M7?y{j=&JQd(|7nAn zobUaaoKEnRa82}#;XjEqS8TF$}G={N@qa) z3(uk%Go6jBh3{#@V$9#J1OU$8&~`8))h9s#%-@XhPCU@L+5Zu0g?`X56^SCB7>RCm zS5?uoi_f<5zS3%kqSoj7!LVw_qY6{yx#9lbv>Go1uPU3$t4>)g^}QHNeQz=KZE7{g zmt2HqO&(3C5xsJld?LfYKvdd@t)Mib>NBhg3rh7P!{mufe{bWM4OjL+*S&2t^%TXg zhvDR>gDkDHDn2s;>Lg;vrSZeVMy!x0KGDi(5SFIC!d+{)3QHTiYGdFdYGEN+W>Klk z$@SlE1YFhVP;djACo69ENo^V!f9WHy8}OVc1wM8ii*lT*ll{~`4IMtbReh3R`)n9` zqlT43J^p0P80{wJlpsk-Fw&A>x~n!xFw!MKOBIh^46Z}&&W1E|pQw%FYf7lY^c~@-`&#OdufW63F5N(t}{!To4-!V)%l}*a2 zXvO3R*VokJUE^^m2uCc%P~M!PX!q31#x zw`I?T44LJx&T^r8mf(74o^E)h;Rq%YrYyz(zzhPEuwWow)1~|Czv3^tLc9U5EYfYr z%kdfrU2wVuPwLY}h7NcFmJXnQfyd$Kn5K!#`m_gkH~yl1ouW1e^me;@u4G0~I7FRFw?>DZDN^-tMviy}mMnZB$tp#(hoIh#G+F+-_ z^6bcV$zqz_s*MCZo#pAWc7u&ocCm7a#Q#dhe*zkKMU7cA=1f^TsGcmI>(8m2x6psT zR*&5M*XXc+gMXq5WPcpiP=OzZTcGEn^6(57sJ<-__+1nz;ZeI4Y*DvpRi}VX;1txp zf3SS^YJY$6&v1oivkY4h5pOpgVsP>9mFMNtcZ?_~~?}vwUA2?N0e$yBpe)BB$ zUr5%P)d^;WOke7+CpeFC`L+HBYkUh_%bZ)ZMhP5doi`dfAl(=Dml5i%5TTCKUzT2fyl}k&sVC*iX-%w0B3`-PpPK`HJ zJ(W8_Zb~!bD>pCqUk1tIKy10{E`L`slq&!p>6{2#KJ!+DW)^$gZ-!hxLcJN{zsbM% z0@nXRjAq951McX#5cpyF1n2?0s@7l@mhd?soXuYW14=<0+!KIXXSeuY70Y-le8sat zmb=vwyOmx%LS@YBj%7V{&7yVJQP+vY?fx%a)|DZ|4H#R!!DtB1G4;9(K$5= z(co7j=%s@>clpPO?|CzP`z%HaT;=#&)V-ATAijqU&)ctB?H{bedY;Yt^YFl?p^+P9Sn$` z;~s7yp3IvQVt~M5{1iEQ`#_JF&%uNpA{saL^WQb?A@1NciNviIi47b=BmhDr&Maz@ zD<0usB5`XZiJ$NB&lS6QO(OAfBn~0$XCtxW8w{cuuZcL~d?VTW3!)>31N9NwNOhWDLxf%A!K(B| zvCJ%~LEwqR;5o2Ld$DPcJXT`(##yB27tY+`UnMs1Vtf|Dsdz0~%kJC! z-JC6Ph{<>a>yk?1)FjZsaA>;bn_Uyd1j3>!r` z51pUOM$Mcqv-_Hm!?W;cZMpx$+<4hz&jn4U!odk-vpMvFzlrF<`J>Qe5|;2!sVg$v zQ|~lNr98euw)$^IP%PpN;Y%7>olptRVT5R4vOahZX!TzIfJ(?Q-Cm2kAGD0A(8Weh zl5~0RpXu_^Xu5oHw|`}|I9;#wwx07sdV9gGw>3(pRZ4H6jOSt>Z&_`{y&Wc^6jup~ zlUm&OptHh;X)VM#PK|VS_RnzeR)N?LVIX91tQgO6pgJ16RPt{<; zFz|rCohacHQJeaJ%VG?Cqb`f`B`-ec-%uUv)B6CEm~XldX9TsCJj1Q6o|Zg4E>kIY zKb~hkEUx42s;#nXY!V^s`_TW6rayR@9QTpGi})+2M(WxUOI_QQx}qB1b!d1?WYd59 zn^sGC4_qd-zMduq=ZbW<$E~}2Ey1LvyJh=j4SDBMbCvjjH?Fn<57~5>-;e=NWON|!J4vEIe{aN%jQL!ZNdx_LvRBpnEGMXvgFN_^#QU;7(salU-&k|JLfLPlJ<8AH%>qn6p9tuH3D?0Zg#Ims8ew zZJD#o`s}ph{<&I>hX4U>=!l0oa*}at3>kMslM!CDxUE_;Zd5XELT{u#D_SG3*FFWsVcwss_K+*G~ zzxeNui(4|R|OdgbH zZth)28!bDx_x=iM&wP zTvH9k^&dyeQHI$;{K(lLO*S3l`b55GGM*t#wv;o4d5h?XHA6m>pKa zB&bxYF#s^iq-`}D%irsncgBqv13O;@P5ojdr-X|eusb`ifoUBhju<4$#za}*IQ+2L zM}y;X4NR2~1{a(gnBCS?{a&*{U$@L~;kkinop%MH&Q566RqkG#8l`4yRWo~gQv-jQ z`nqJ96#uVuSv4T8rq*0RaS2%m-EsS55n3&ajCBH6PF_p-d}DK)sN!v_ z`_;)a|AGT@)H$S7pyW_0Y&J~OwA!+EhFK`;Ucn3$b*k6ABF5Ap`3m~T{zRYh%v)x% zd@9q-sD?rz(Z~l`reA2BGt#FQOZXK3zf8(sEq(UbZypkzcw1V*>UO{^6~(+5SFp5B za#=1|mZLtrGX0{LuIZLGf@>u#`s`Q^6Ws)oB ztvhtf~;x~pm$IbWl?;! z2EBy6z!hu{{}p#-;Z1?MfyT03q1ixSd3Zb^q%MY+FN z%6-+T+#_wx{+i~I1?|n|!Z((2OS;V+8^bvij3ws~)i^=7bL8iHVCf}sVPf6t=vEe- zE~_KYb~JNDCg+Vb*%M2+Cey~!Hwei>cXu*x6C-(xi=x9z6al?4{ErcE$U<-FY7W+F zECG7--if%LQzkuL8%vM3DLpz@Qek265lBi-8nO`FjOLE4F+f4 zg%{gzlsJn+r@T@)ZcE1&>vHq)y0GGULt2Z}@raU+dzIlYI__0APNhaTh=*C|#@94? z)*F~EUms%r;+VWuzCF}zu8GACzOa86u@Z}R#o220?^CjDxOtUW$q-BG-`l8v+Zzr5 zb}s%K3UIzp%4Ir4ELA>vPSZ$_{ zgox%D4heIS5|s;OWaZ$f^UwbaD-N;23HW9%%Bp-1BeVN34f76C50A2DRmGNWD zTAI_k(yuUkX`(se34PM!J^ZZ1!c*~6HLVMFBG}s_qB|o&b_Vx)4qa-t7lR!D=v)8{ zDKk5Y&KwZ#+tet$20Ovyx%lQ$&Uk0%W?Xi(y_|E4rxqkmuNr0g01W?9mT)K%ht1D0`e~ov5hGT zpTUpDD|hw7Y_mwzDg*XI-wL@ay-c~Qh7Jh2D}a!@%5^}{qM@_rnpr~Ufd7#RvglWp zMeA@b<9NB*PcJG{qu}UyX0~2jrVRNb6pkD6Yg}6LRJ6a;pVKEB-s5iBhgYG8kvJ}^ zD^W#cO5?G%8tm|w8tlqq`z9c#OljysGuvfK*IsE}1tTA)kES$i5i7CiUsgl=%U`N% zO;?+@iMuN$}*?FE&SuO5Q>Zc$Nk2bwFsq zvn=R+2L#9mo`I6kOiORkdhN|?m#P310>efcW-2u*Q$QO%WqBESO0=t$OUxnq zS<9~CmYRP3JIk(CAYN`)3pgRND|_$lJcp?f(B1q;UWJT{BeXg-eB=%1Cj!yBh2OtiA<$su?$P6r6x zoD5;^w!$1Q?&Q_*(4BU>!hAmm5a!!0%-cAGFason8Siz9zw;V&*6!5_>Q1LP#6fh( z?^U}oUg%7TqVQlxxuwGVM%yDN9H`k)@ER(4O3nnb*VORbAovr~p_#!S6O>P+7m@C| z(=5*Dh%j!rd7LR2*$dWhNnb5$Ph_@$vx3gmm@+}XzbR^PjC8PV`(0@jB9#}1-`x>T>0c|G+_e>u_pO&23E`lbg= zQr~phgXZXrUr-zTbN-sCN5VLiDXTsz?j=iaoz~89@QW5V0!zr^fUQFhnMdO0PqKEC z7V^rpn^ca%#oB6FI!Wy&4Zvn0qoduVS=dbNCW+}BDH$GZ08LSt>3x9_lgRoYK@3sb zJg<3@7{Z&;OrU&YN_;98mB~RCScy%@0-wiUWP#65if)0GzdmNx)uNf;pvTSo#34?d zOmH77u?Sb3ubv6gM%1Jy&DG*4Lr$Zj_7$pPuvUftS!c1Ma1i`_lCrF^@0z)U?%VCA z5i&8}K;8TQhupE%T$o~y8uccFEM#G+a?cL)j*QQd6K-2?bJl1QNPAbA*f8|X&2m;T?An-;s1&)2mY>W7} zJW-hDln6!?m6clb<|J(I0C!BE0>4Avp{S?`BEr0EE&iDX%9f zal)&gnXQGRnD#_$p{?f$yIVp4Srj6}u3+)=3-5-Vzqc+<;Ti@8=rhZg-S?UUQn^bA zf#3@yAG{p7B_DhP{vscI!;~04_?|an_~4^&nh%Kkm|D~_iex1g;p+Hc2vK*)1N+QG zslRP*5KlAgYHIS-6cq++qyIav|7>#O6jmuD`(snWPPj+N_i|R%@P0S+0W9aUko{kX zi=1!O6g9lxwa=WK@fa3!7rd6yREzku-F=i7+uPk|criuMN2kc;xn?WjXaI&XSk66Y z#$Ujuy{)+5A+w(Nno}fSU4JTw5E>oGR|_m5BLZzPU)^k~^40mg1^P1GoEl@(u{{9r zmQEFtbvSF!ROPHa9GUH`hfKAcb*Td$a@P7_MKLnA9xW&Q({vF;XRQN4%JT0f$lSFy zUk>{S4vH+~G)chnSOP9p0w!<)EpM$PRNfk?AAZ7{5*`|A$J^Ps#X^PrAm z@}Ln69G|L&0bqoNfrtwK1lxmQpt5e2SyK}^(}1zi2jCLPP~JRaniA>J!{&FHty%pT zB6XgoL=s;*MB*)#NVC2)X9{OAKIltlVTLj~lFq`kmQQ^JJ4cTCE)~QphFeWjDgef5 z5V2KYN%T+FFOmik-r<&5!8)?|8yG~mQwxE>HP9e(19C}&$c^}m29X;pZK^EGil7nlP1dsvA@xZ>yP1@f}|J2Of8j|07D7ERKeM1xQyrNp;0o5wu{!tK1QX|8xYg4QFkX#Fh;t?cK$ zEkUaF@8vZW4pR1TFp5*Khl3H*)o{>jx(eirS;A3FuGJREnw0!^x^k@`7>zD=1xw;%U`;s5Xf?i|j$9BISS1E9u`xeL zNwVF@^2dEP<7SE+{|~dKTvjj8RD2cDw90Nu`4-034=fbFMO6FQRqd6; zKvVftVql197zDk9JTPs6B+A0Xz+mkO?D#^t`<2|B)F^5UJ`RF42t1U$PP39WSJa$8 zW$KK{Yb#pF!|8#Rveov?_|QpwOl*}A4nuBSP1g?W8f|QhKJ7O7qa!^e!dSbKC zB+fN*RsI$f^-o=W=@Igf#y-oiEsTuxomtMvO39iL*n zA5^c>N3Z}#)046S`66y6vfp`D>#)>>Sx`WRRS$oWVbz;Oh86V~AW&0BZ9Zrnh>JR1%xoLjDg1~m z^o>)ds8)^=>~{Ywl_@HZK`ibnKB`uraTUEcFM2b?wD6f4g;cQDES1x`EG1*A7|ol| z7UsxVDi|3~|94jDd}82%Pc>c7oJGCQjvKd-!`7T^B@1R{*VGr!QWh{|R(7gv)foop zUPzL6e>UfV=6m?)ytt7U(|oTqDeVGB4^oiz*8DP#7v_8Ft$A?|FUCoqu?|bfWA&27 z-2#t`CwZ0P5_pc|u~{nf^J5%>v4pI`mpk^(vZhdPayU)b{yr3W>Ao#Q(5T$&`4x)BGWOs32;V6MGx*Hj7bT# zvBXlsp`L*+b?|esS>zU)|2vC*sQ-u#^%3P?jMoFNSCOZ!ZP|`JeP5$kE)*tAz-kYs_)_yLaGKh*p)%026N94t6hFv+X zDD;A-W-G_l>eIBn0`jUeONHZDx;95SuHR>?^|Hj9vP(opM71WaYWQ@#j31(8CJ$KX zs(~-Yi;@UL1Lml#cVjq&&VK=fa<0wb5IX+_5IX+_JVHXfnc@asgNQG+u&&||!U_<; zs@{he8#$Oz12}{lW_K$^C9grKpRrKy{@Tfv2Ob@-c;&|;*r5`V*rNrJ?LJk$|8I}^gvLHk6RXL<6 zqp2n)^6E6gjGJq{Ex;i(!r%k%`eFb>Zg_DW2h#v^_1qW(%q;+b0VW}UO~PxB^t$^( z0O1G&MAg#*9BX)lNf^h9tz@kDy1RIol}n1%im-$_#CqACH?<#r7SHmQuqf3_(#y}h zc1UZ0l0EG%UgIqx42HDsKV`KOyd`;Geazf&hW-VCR`T?ZX{W@OyfLZ!bER&1=M?1- zY)$`aY5I5GhBSRXmZoc$$JF#WOVdCPH65lGRx*{u!KQ_JTpM3-7yfckLTGe$>DS7f z{5j_?{IIrY$6JzqOD8usQd#8)_0sF@q8D#ytJgt>B8pGBdXI_8yd7z_tXvs#8Ha?I zU9Ky)mR*)|FpbfR<-9q8C}(e0DD4Vv$C6fD7QyM6sfFoc5yxe(xNHV6uDERFU?R0K z2B{~alETFnAVrHUZc^4_%j+N(Ew;SDY1xY{uf-sEuw1RPIAo)BmPO^X&f=g49bmoH z4oapE*P-OFO(pPR%dqg(cJTw}&ShBEi|xEA`*8Jn%p~m(m)CY#)&Y^o+t@b6+o*sE zZoSTd1-G(qzDd&HVGaCjSKZU}R#C_ika4w`r;MuwhtRi6Z?+GZM{l-^K^#oqZohdk zyyT?-z%bm=1GH_@3n1tufhOtNK{Kpt5m`*{wL6L_ENmus+#2W!0?xZJuw7Je7D=`h zmTW6H#Fp(LOSXqOm}J`;OST;`W!q@U1~f@F2TfbH$YOe>-BC=k-5ipQIuGAy7e_ds zB;c2pfM0S52)H=zk9q2ScA?E@W=6vO9!of5el({`Z?m7bqyvH^or9n)U1Tx6&F&~B z>8e7~&080+o+rF?E={c9(HAPCrwEJZs>xL;7lLAe5-ee{z+?K%`N}uV=5<*@{ujy7gz69cMH8w&=Es;&Wyrv(C=)6<{GPy6(Rcy04-M3`_}Gw@ zSad6nS8M+Clsqj1HD%&e8M8%mhFvW_`e9~^SAIJ=AhZg#KyLgDB1S)lfH_<1j!_s5 z`WE1fGhMI0fTD1`?DXpWfp+?+1!`@FUShv&fm+@3AzmJXCvigbrZ+FKlz}wpD%^Ce zO`R|Ue^DpQSP;<(l@m4wMn_$a(>KG`=?$DFb-+?qV$rNPSV*_3r`Yj}Q3erX#-k z`fFBCtU?OBC$8lrsV8`er4^(`J@Fpark;2oe^F1oAK4RXePQ{-fghrM4*!p~?~d!L zdLQrJHz;r~2qHMyD847d4GwVSL>yU~12iqs+`KqVdi9xq_u} zd_lxG^`1bO7sMT{AOgoDBX^x-^X1YVUJ!Rg6ult4h?x7ARuEt76(M<#wW(|$&np5w zpzavYE5culu4w*mMMh+PF-0>2<3Z+c&g3QYw_smn{ubk@BB&S^xGzBH&04`Wuxe-z zC5+woplOI-)USNg3%Y+7*Co7@hgxS3wa%reebAFpi-sHftONOMxS1TrBlL34H$B}i z=X}$Xy_|Ca-aLRS0bPec)t} zZ@kI973Y4yH)9BFJ!B1&{~XH6O!7u1M4AZi9Ykh7;~qoIEj5R32d#D0Mfc5|@;E20 z4CAEXez|ewuJDjGT#nW<@4R2;S!|!igh4~b<+iQ-zymYZ=CPy$JSc5HckufPqIZ6TH}dilbbZ* z{}!7)p=p^a%yp@2n8LoOk@}i_VJ-1_Aoo$+qWrRTsC;}p9N3VY1SPAxhR8?9v(ZPG zjKHl&tkLpAL*V97Yn%o5ki+HdwqZfI?(`6osWbai35s5}J}!SMQus)tPzlS9QFs8a z`#=hkA1r&>T1$C=sqqKfJJ^XM{~{t^*N{7D$Za`t0^5D)e%B{J^T5YuJ-}AM+A@Nv z>`zVHaexZp!`xd>SX;~f6G#=QCKMjA#z>)XtX76w2)C&;GbHO7%FU zIE|8vQ>sst;_gGKJ|hx24BsQX5ZVi7ZVjvi`L9@)s$C{vy1RzyW4ewLAiryaFj#iX z`Y7J*h|=S8OcO5FRy(r%yh*@Ho*SPG_+(Oj8EY?lRw%>U8!1@FwFXR{FeoQ?EV^}n zJSu&Zx$Q^n&vo|4pAkm2&|axf|AciiR!=h8I8>EhgL)w(O1^y3NVqxHhxJr;c=sQ2Saj1@eSgsdQWH^7>60HjAPM}wLN{hXH0!Y6nr5C(q^$Yi6 zcO(wycE&oP^IO(o$wLP|k=uC6*rthtn+{HD)G(!KgN8$!BsXi)FlR_ola$AXG{_m+ zY-rO4NjVJ~3~o52QRBuC@}4zY5$HnJ+tx)seiQM!EB3TgrT}8*U_P3+to%id>>h!q z&RE}8B9H~IA}b&x!`6{qOc_y!C5pYW$R6mZF+D8hoX8)RQW6C!=$@If9sT=PM>-^K zR?Bk+f|)}#Fr|ka#1yv`o~e)(dKAw-Ywa#sdZ8xtd{nQA{Q0P${HOrfao+l|G! zmFvyrGG-#b5^>~2erw>nA6XA7dv!ckc@v=3Z&tfpJQ2S9*jisXEI?6@hH&|uU$Xq7 zpojb_{=jJ+3E<8rR!3+TGuOQnq5mJ&7*$}T30NxYE?q#nvurs1ZUVt!kpVK=nq6Eb zcgL3_mn1wWcb&)l82jrHp+pkpIIjd8gfAQ%5o~~{M`DpQgf2- z(uH4OQxhX39Qf91h3pq9*|DF>_}Q8U(V@X1nPGYkPxV?`F~?%%=?`81u;Rnom#pKI z#ySf?yW9BNR9+b8Hkw3lQ}z7P>QdU8v4TGdO7o7y*ZpEITfbNO3RtLcFS++5ZNI`K zzU+5-Ta6$%x2;BFWvn^tNIfgAzD2{OudJPwrRH1u=R?F;Nuh}=UHDe+tDB;|xLcQ5&<#^+rlz>2j`wiEOlN1F1v8M=xw zIa->@8|SM`P<}J!?j_&Qn8=fL$00uj#&=Zxjk8pNEG44g)GddLx^^Pj353I24`IBU%+PSqKy(2Ty_n z@5kYV`yFlZaQV8`F9I`bdrsFgIoMD4`%~>v{OF|6I*nKsv2&>^lt)GiesftbOr28J4VM7AZ|pYdJU*22s<7Je*=Q1NhvEmrCz^Bk_O`)Z6x%w3L=yoFf<7+#t zs8e;H_joae-XWE3bre4Vh)x^}KZl1qAX~NhL${Br4Z$0M|EX+?Q|bxXxJ&o1m4c&A zz5XZR53@%{`Qy&INCYsC_M6H*TI8sEbg5KpfNi`%I%;2UJXu|ZS4RJChc8FjYT|o^ zB;6w>=?dm$>%y(^oJo zw5xb#psk9eEE5FLO}&VldXWGmQ`3s(c03%AX^T;w6`*>fu~jtjelI4@>SlAwn=}(I z(o8IJ(oI|{b#;iXL={rG6V;xNlCWuleHg#78`X;N|2khf?*U`p_fOWm%T*j1YKxJS z?*zehoxkEbeEP)OG$_)Hz@pxmBRhKVnx;i-3P>T7RW! zE%MT}Hl@C%3JDY7X8*b|P}C;bp|}KDNR8~bECGs;8Hi@qoBqK@666kF>h6HM0GmL1 z2Pr_VHia+CS*Gx1xd-q+9)b=OJ7BrE+Z#2GNa_j`RV$8+v879v zVzeBE(8bgE6NpjgY6QUBgX3eNsJ$&1evYU0k;3ZUOZ7rGGJ z0ZKN-1OQlVANn*#o-n7Kt)9|U;7-;oc`eEzP1mg{wTA9?o3TG$X}9&Mh=fuSMAfs^ zSCe$+n%#P_6wz)@u8V}RuhVu+c|ynVOg)9}HyeA12T8KpTFaSl5K;OB0(gypbgSH`le>?(No>@ z@-|ew_5?#@Q=1l|k(VhKJkh)JQE?)rB{5Oe*k8)3fi z&tXeNswJ5yNc~HvjUB1`G=frfhF;q!;;6zBDB?h?&uiMfI}=n3HQDe1A49>69T+bPIYeH1 zKUymFZgX2tRY>Kd2PvAk@@@WAW>Ck6i!VtnZI3DQMKM|MHHRe_Ou?=`v}~CnLrz$g z7-g%7;GWKuHktI=Jp-ht>Zcg=I+1R3N$W{3Wt~6;+q+C@wIJdgE~2cW^7CUeOr_}A zZ6f%TyLK_BrrjprF#5E<`z`yT_1$l=Wbi1nx`O4VtD81VhI1?GJr1YZ*j9S&>b6w8 zvIam2>%^3HwvEa?L2GIyF8@$Jt*f5sRwM7f;=5A`pNYz9!8NrHRcG?{A&CBK?ZchY zGUNu%EUSG80JWnniZ>D>CT}EupP@GrVR|FcoC!jWL|gc*qpfqDK$al35r67J0Jagw zl`ewpo+XA`ESHGZQO_mT@oYVr&non13FO$f&=J_3o>a#t2>J9nK4vDb<6{J+uJx-fdYha9e`@|`aDQJlX$qOBz3Iwh>5@Y#L;XkuS^=c2#^#euRtqY*jsIB3o5Y@nZ_$g8E1}(5xShpR3fUtKMQVkWM#e zv1>lsK*<|hl&(T5lY*_aK2iQ2ge|K>^xmHX;K2zsYQnY0Y|DN8W}|!Uf7P0+;D<*7 z+I>$e?V+=2rCkj(fPcW~H~Q>2Ts48Mf7@`{{nMP%2|m~Ys!wI2SjMdzm+yYuJ3HV!u|0Rw#Um6Fi3COGU1hBwjfm`4s)g@ zJPKXE2#tf_5w=P`?NMA>@eUMoY1{B=&AH!fzUHhB5H;hw>e*waxSxY*lYYe#0JFXf zEzjt)3{hzb+8~zZ92?8;9LTCCWER=NDUybMPul*r%tH-XAT7-+J~`6XM3SGM4fiTz zS?(4!#`6(_q@B7W$S=-@oDZxiu=(52+GI>{jInhpUrCWnk@EK0P;0EMy}DgwOiuJB zOA)*8LT+|?9dXla9v8P5XB(k@A>y)Q6IG{~aW5EgS)409&C_U|c;0OOz}0M)raf>q zoqdZBTzM&&T;#-qzD5&mPntZ6){B3bXnR|YpCi;kI+pG*q_Ay}@sK^))+IAq03Z@I z4S5wT{g$gR2z>rWITTvf3aicLhkar36kBsOLtqA2+_+Y_NKFm*B13Na99lB|BFr8H z{(iO^YBv#=?ItY)jV~HIrrBOphlnWbz@n4`8PjcDr2ddG7ajDO>9(%wj8d7VK=&Cq zVZKZR;GxD|(j0!KalHtjGmTT`(0Znu?&yvFX|QanEkMRbm>q|d_8IuznPtmT-xjHm zaBpzFpNarFO!5)O%tEqIrkY44f-C1kt>s(X1^(h$cdGn&EJG zzO9qmP|QU~Ka=M2W3a772=*T>eV58iR~eEvzUvhKdn*UBSMJ!(_HK$B7g`Z3L`A{M~mV63uU?; zo3a>{XG^hkpMw!;o59hl=+`_1sXd2>AeSGq$JTwKF+J0ki}|$xiwt+Fa#rcCj%ClCRC>%gbT&OnUrJ6o!_Usfn$_^0|jGbX@n? z&1&WB_<8~pK`qUx^=jJ_s$JwnXW(oe8MSvA44BbtY;)z7^B^PHQ5#OIv9(m&h!pf* zI~^WgYs*m6MJP?W>-2qju-|+htqz4X6SAWE6l&OD4%q6z#C5iZvz2)3I8LEu0Q(t|* zG<7tj{N6mie(}o9YUNqKpixk1zoP+{7s2!XivbrsKcBwEwq3H^LhWef;?_LAaIXk= zw}qCsRlosaBtC_)^%+}DwYn$|IcpkA5u3Ye^ZA-V$b3EyJMt@z;W9-$Y9x|gww1e) zU=qolbw0E<5j3B#O{D!*EdY-0w7ujr0hvPJEn7WxlE|LSI8HR<9B*cXn7^yVLg9?9@_7$$erwWMzr6B``d5bXuASM`)#!<@C%QM7;mTfOm901`A$)r7K2%2W{`;w!0pOu$NC*V5-GZ9Nau)OXIzG@&a#_ zcv=`aU*n3{OpaOr$=}4*P@_Zvn9-`XVJV`~>cGt+TWj2xnqF)JwYP}ypIA%6V+_bZ zu8AVCrl(50C@4R?Uc_9$V6j#$vxoi?P4Wmc=0^kOK-PP< zcy*4*nTq*YmLe7vE*`L=nzoSFky=6a&FWzhjp|6&|C*I^44?`060yP7;lOLiZ8DZ8 z+no@#1y4_Wao+Zp&t+r@C);$YuYM&mCu?02to0MOmMU0l4&1zh_btv|e@%tp_i+#~ za4n9b0zWM8IEqVb`3%c-*0GM!Dt_o;6B+RzmLeMQ6K=#0(TMfp6Jf^jj-RVl7YS$; zHezu7M1MH>3AXzm8cn$BQ`@_^d_3TS&8DV_EXj0D;N(Sj@6`@B!QF{XF%Cf?=@yQi z$ae33iaQQR6rklr3sLD(H5spGC*0sgQtl-n$B6om!kzIfi9P9){0aqdH5o}5z!zR8x@9_ zb;A4Tv7nev)cU!dy~+${09?I{lg`I4+os7cErPTwIAVLblq!b=RZj6jGjyTYI=Eo? zQ&)p4Tu_#xMKVa<jn`VRG^h&1&uCYVAU`;$4Z*tY4?W>Qxb~!cKnK?&3}^GbU{8 z;kMo8?`(&qD)7knXt0pQf~e%>fgt_Q-JI55OkN%&ls(SsK+e688j!yBY8X6s)fQb5 zN3i%W)@+6!CYw1~is;^zm}ISG3%;Q47w3Xqz3rpb3=xg`&pzh%q$QzA7Rdh*Yy4zZ z@8p7Ub!$ljSfis&bNA&FRQk4Rqgv$D&4Gvn}%$#^<$y ze1Cf~k4C%wY}=?V6=kK{1{Mk_s4VrN71-p2edr)SR+S+529C})3DkjIEFiC6%rD~I zZGfX{hwDWE?h(~)pP@ z&$gQUYKTu3L(^YzYx$>(`3&MyjDuL-^F)?(`z{65Uy8{zA2!#F`GuH;-XRugX_jVk z(uD?pu-vrjdy9S1s_(7EwCY>^CR>!F4KL&bG~bBY1N${8V4&gljSE9Yov{ued~ z(IP-EXD=G$Mj;ng&Xt$w<%}<0X5PWBWdMx2V~dgpF5zVx#i)v98z8cwvZZ)`sF+M; z>u<&!EM}py6=`YKWwKG(&S1HzY-h4BD%+V$$}U@E$IJH4T`y&uiZOjKELs%i0?R#H zKlLe57AonrLW(9!UIj}Ud5%zb3v_uI@6^ipumQr#7$H=~rwtHR{}D1ww%1j6iV(e! zy$GMXLo4JJ#zLNIu}90_E`f~}d!+oGR?0gVS+SJ!MLtx@G%0aSOr}y^WybuUn1xDN zq@`Jw2}h;uvlLUPlzrJ3m9p>BvP&7+!TC3O<|A7~>OlGWUH{5Jk8E9`6k;W24x2quvM@vr>i7ghB$?d9} zF&BtgJeywCjbbugJhq;tP;XEj{fzC1YZGjrqaF}5(j9Vpm+}h$_lgj@B=7R@h==93 zmhx-W&WK=I@;bd#nDPDyf6R?_)>&uK-YHp8s>{`k!CQYvKjXfMBMThCe|&z?B>MSJE>BhK-;r^R^2PcQW>87IkR?g?^t_vNv@Jd z>u6I@ef1vh(a=5PcP=bL*Gm4lqtmFkAGFW!~ZV?t3^QV*Hn7C^6q zK`d-OU}#X+p6|6Q*h*D#?VzobnL&GLEdxA6u2HNcPe!|Ky@PzDafr%cV8G_}rd4Br-x5Nn4rUEK=I8y(AL%RGTobNN^*`{+j#~uP)(Uv*f|~rxH7a zi}rW(#FET;&tZeeq4v7rmgSgCqb(oyMODOSdD&G2jl!$Q^al3jUaQEw@>h`q9qs9` zqD`k@*xAtjni|O@a(78oMd}$+SQUv}&Z|f*0ir3I_a8{|sG24arrHtag;j1UoNr=Z zq;?lG(@3i8az2vkNdL8wlvfJNc>q>zxjs#0=##`OY&T5t-86foq%IcIO{m)bRs(8&3wuVmD2rAAxv8X6 z*YGWjAURnf`ywYRypNNiq}<8AZ)soV)yd{o%*hJU?dQ}ZqMGDhrwl2~y^d(^^^yS5 zw9Biw3{{{*FMAkFYi)0+ej;$-e&&T|?#Il}@S&16_Ce}35rdrV2hG{O6`jp18O_;> zjLw$Y&K@HLLcezQb`c*l>Y}q96xmVyr_V`;ufWXino1{xaZWlIu2%~3g`%FFLe)qy z1HBIxzJkvh8&KI)c*F~4&Y>bQ#gC#aT5;rl%$+T)70XS|md?J&+0r4SgT0>DJ|DU9 z@bSwIWrUBj%I#~#*q~LC)V`wpoyo0WEvq#8TD-7+EUnaH~>mVT$W4DQnh3GOpMV{m`P5X6vOx-Ld zQ~T1xjJZL~!iqdhq@@`KrA3i4!(L>Wsl;DmUsU2RQHh6noAT=cv$E{pdTmx_mb<8# zrPHBsV5eqa?_po2o)ZJ?9y z-z#X)fA*+NfvCP1*tHkcAg{^0I$ikN2>-H#m`$;@`;R9EBTSR<@g`3*{C5Zrc3UQ z1-=n^cw&KY??`Yn$zBKY95azf_;c`4oN56ZR!)JQK*>P*C-87*bgEiC@L5PqYBh^sHd@ zIizL?GWP_e-Soj zU2^NLjBh z-jO`@B?ThK;f(l~W9|Lrb7%%ubIL%Wnj@BtTLvs^z2joxq6?PgSPja zIL+Fatb_@tEIbV6@B^p6duadRq5TJ^t?IS%w^?kqJsJ*9u(#l&U9Gmb$>G^We&7^8 zv;(JjERh{Jopq1V{Tu&y4xF+S;lL?_<KD%G3 zr}Chl0&`~B+XA~<$%6S{>)DVdMg)vbx}@ceF8^o%PqIcrw{sy0YIB`!KEF$Q`MHpR zayIFdS}-g`g~D@zF%bh-3l!nF69VZ*4%N+q(>8% zESsahc3wm$ozHeDCd10_}3dosOIA6|ay!JF+V#d{Xo$H?mY zg52yK@EB;-+nENA-=tv67w9@C*Yyj9<1g3~luLR}rgnWun(3D&e@5PllR-6uLgcIY zY)=-xYroW<9eSSS7dwRa^P#~qdzu%PEi#;qA#g+WU>PqBdFztBv0_>6_HMGV#_XQR zEO0e#0F!U$!;LTPovL}^hf^3eG>X#} z=*W;2GM3tt@sxcq%)U3cJcnIaLBPgQ&LGtw03CJ_Q`{c4zCvX_l+L;AS!F*iTY50n zUT8lQ4SuC-{2(Z)85e+ir|dT^lM$kq`c$Llyddz#del6P7yA6wv>D5C8@=Vqyph#m zX>VsesIm-qBwXKRFQ-*T%41iR4TXe7cXlY5_|T9cvVo0~D^W9wLueO}ns) z`#)vRl$2dMGV|H4aN@jgc_qRF)~vWaY-sP=u+@B%>+}uw@8$EF^L}9Ds@d$UV6%(d zW}5GItdOD3XofnYbJYxW-E62g1r1*3hJpoK?7I}p8bfufn4KPgQ^r09obmSVoi7#x2{gTp8N2|E^^zkqdt-|kad+#~>t3LCP8*B}9+LQ%GzM6S( zA>Cu1mAZL~cG)|Y(>#_LYw!}4l5P!D{Llsy`!oY>WhtV8@cv9zs*^MW9ZztMR9@84 zn1M2@b~1b13mz=D)^tdq$7+6xzZ-K%ZF^&9?wtDeMlTIuE;4}RAG-~Lo%`+c0}VO& z)oo*o?7u2^jdIn8RekF;&%CXtdb;Q(6>3nk;Gg7XelYa~`*1~F>oFm9j|C4)&BML0 z%vIL%JuC|k+P_g^jaXJFxs5LgM6TsGswbJDqrbB{q_vPy)6qP@3@fVXXoIk=)swqG z@+24__Tcj|%?F zzrM1zR1PaT9%sXRhn@5<%kSC#swI~m!;9s=4)TEwHb9tuy}Ln0KGMQpkL5b8bPM1-sO@6-0q zvht=;k*=`i?eY#+s38baU)L$(NSLic_Bmr$CFK)6o!ZHWk68lAsGVdlg$Xy_u^&;s zEgMn0MA?A2wW%Z5^5;5?i}RIQuu2;5Qtlcl@SsrsYaN^~ijP$P(xDVY#z6F|6B;X3 z3Q#kk=ky+KFO#qLx{#Zxn^22`>$RkCXrTG{=C}$!b6{%BpZ#ody4w ztP?G{DCYSYehy`XS7uKXuoLeYp?ayRoc3e)r;RfvO<>e(dG>Iz6a_=Q{gHih;4+;j zj#d(KNj%#@YFhr4~5dH#SMV`=+Dnrg4cBnMuUE} ze`&;F#YpZ*uBTBStE016b%(zTmdky6$nOGV+_Be&zvaG-mG|{byjtD(8m|IBi(0O* z^lhW!hr76OGQ!aK)#W;z0e)run@Dv~Y&BT_hy9fNi^gJrZ{McMEuDtI;x}Y5r;%SR z6+d(qr2K<_;|f>dpZI6SpZ4~O|5Kg}9G^|}$-e_6w2~ z((l+GQ(R`+q`v(rO*Z@}E!$`%T~Fo`rGJE{Ktk@?*Qo{!CQgW_w@BdPBtXU=7+Glc zDjxQaeVim^GjZy`?Rz*GG{j7uWE$j_2|r9S&G2>jt^3UJgfdA7>6VfP6>pRr%_Y@< zXcVnJ7j1w+G}vHqe1TPsBzr!nZ+m5cDx8fYfrCHJjKsZRZ>1QQzx0uxn;r+lT5AvwA6QcvM!T+?kTt#;FzqI zMk-Jo>B^sFAyK<(Kr(7#p)n){I>LmZkyf9?TFdXxpA_ggq|{mO(Sr$` zDIhvHbpztoAV-EgN^2$u=*{GTcO9)2q2FQy&o)4pW{TrRkN1Q8*QiQXdC&q5sc!q!RJ2Kw9~M!mGyHAheN z#IExz6uUNn;LG-!kd^4D3^z{o2!)k*_}mPoPzj-Q587NvujS~j{ASKXByOzdn;=mNsY7fS z^s4RXuc%LBiR)tkd{nMcf&)V8I2tRp%pjuT_cVXxtG*dZf*{nbDe<7-Im4Wlg>88G zIC1G_1`?MRPjh?rH$#aFLfu@hL_5P_`UOXhGSQrsxQyjo=9_`UWvs?!wHZoW5bEX< zQpY(+*=^2640dt`hs{7@uv24j+6*NI2z4_cV^I`+*_@TQe8IW=Yz7jSFElQHo1w%7 zp>8f{tO-ik22+U_26uJfj%jkfI5UtKglynto@|B^1BAL6Py}68{qhn)Pee!M5wwWJ zBj|qXO%Zf3%grO`flQEz@UY#{G-4b}rLmI4o2~)6_viDV`7^r%WMzm^`mRv;cvd-Q z)b$o9P#vU`<&iVYOmq|}y`j7>z;#&jPfIY!{M9O=mzB;^?iXbU$> zz%Rv-r7qEdeAY8mC$ELq3pViRaITOQC7`}w+y;tdiyJp^G?tVX^c=hcWrJtSz75*I z2|wITL_U9brb;8n4&^mHnPbtzGYpGXt_)ag>g1{EzxScPo?RG zt43)u1w<`cHXzb;!yS}WpKf?yqeo4y4-HN4Zr~yOU7fx--B7hGBnsgTNG2Nua%a7* z+29X>zNwV>d_&4calWC6SH2B5a$y_lP;tJYqn<2ih)5)?0m&q+7I!CYQm5G;sbIc7~p))qjIuz*Xx|>TY z;8KR8nJOaDTAkoPAzVU{F`pva*4pue6u3{Pi~PnU%#4OvqkQHnFX`!wUkez02wzdX zmK-?Pf+&#lSk-C;@d3|T-oPI>qbxP$eH(dHFA_A%66!@3ngO|F(mAAJzzFreo7t&Wh(x&+H zM;$-P$|N%iy&O4i6Q8jdr$e=gq@pJ!r)AkD+!2#1B`C{vIMb5P!bo@uKii?LZNnzo z6DAFW=P2i6 z!7drjpKTW}H1i%#ARVq>J5XeVSCnL0vXt{i;%$Kid@>q=4%&(cpdYj~Cx;c^9_$E} zjEbCpISD7#C-t-|Kbm>4cHNknXn!@tQQMeI6BxFkj?v29e@P?kamT}6XsmzS(Oapq z*-M=m8n14y)^I?w0rAa``T*qdm!M~(I&)6AE&9(+gqjCP) z(OP;Ex=(f_7B?8-2$q#c%p}Q`du`^f+)Iawt~_G1=E@^=xbDhw?q*>^aWekE{f(M0 z3m(>r`!cd34-;8w9=5_rUGp$RAP*A}1P?2nJo{PS7}bzW4wjfW)UG^dWTN9k*kGl;jR{Rn zh)^Fq>0c4ScO2$8R(he)Z?0pevgBXVpeDp1AC+m)7OhNK8{#TXn(s)FlznEJRIt0W zg59MqE6mW@H!0+(_#%84VB1fXojCAJ3i`=NR z4BV(qW=|@srIP~|JB}HXsk9tx`}Bp+<~joK2>|Sz`CPv-A5kUy7^sqcc8c~%EPi&W zV~V7N6nb%dIJy8Wfcsu(sVS>LP(5h0&=CUZnYOA*f)Rrc5#arWj^?!a4Wbq~8k4Ul zhddf5j1RK7F#-#<@d1A5;U6)Yy~0t~(viX06KtJzI5&LojP}i?LZM^t_CSfasPwXm!B$d)R2|SW_nZ)zrc4<*h1PDI#le-e?woOVd)<_T&RS< zh|ci9R1i=0h&CXe)P_MLJY;nJrs2m)WYr1((@`Ucz3dpylx02A2`q z?Sb57kQH^yA}h^jP8z9e-7+FjLoXr-O-bowavDRj?lhm9S!6@BqUecQQ?ln^z){se zf?OtejN}8OdieKJuIVV;y}i?E+0(zekq(Kn@5KPSa_`@fu=n!sZzMsYTzV;>pAxdo zRLQ(ck@t{)gpmXrh!*_d*HVcyQ@EV$>%|@`d;8ZjQsA9f=K;z(r9B?5fBSbEtdQH+ z^l5?wA^C7tGo_i4bbUzQ+Pt~kXq)aUQX7aaa_})+NM66{aNW{AF-mV_`no;Fqb06M z!B2++vW&9OusZz_e}~e?$P?#PysDFZ+P_*U651Ge_`f4T_0ZrUR1fEGrFtkoiBU0| zm|zcwOSvoz(=Isavx)DV=)H+Qw7A*Kj&@FLV5!1nL?fVW9f!B^Z5>CANZPiJV!^cX z>-fVxKBj#g2Qh)|>)3C^?Fg5L4XT9qyU@Ol4cm0-*b|Gt7&B}8IlCmrqNF5CG|jpts)$ZO3>hePSEXXm=H{!Ge*nx`dQpA}J?z6rEnsF-*n7 zOwY1&NtIGzYjEYzK$fO0TcW9PE-4yFq7U?Roq~L9J9K{A(ODI-Xku09ONMcg4s(&@ z2hlG)3;ViHXr>oSnlD0}I)iIIw~XAyMTp^?yaACG_8-{J>&bP!p0K;UjLS;c5b%}# zFmZ9qQ=uXIJx5k}y=O3i7WNa^7cJ~3JX6-f{(!TN+1}Rl>z;G`q@*(f`l_(DlHXiU z^{nJCtl&!ip0l{2GO%&=%5XdUk!sN7eO$iort@Ki$XD&XFwf0=hOgQWJkzc+Bz@qx zpbRmh@}+wz2hM+t3)od4ZCZG zq_-Pg)AIhS_90O9(`jq#?6mM(OHXEvMP@`zmO#R4XKoFMwD9ZPAujx;7%6DmuoHLi zwbVo%DlYuC)suNg!$L(V5lU`4B2@zpEi>stX=~s19n^V;)z|5`+tl2eQ22|Z4qx_t z%q=QyGashs*15_ z2VeBnt)Q*Ruji!0y;@-hJD1OQnO7If5Q~?_u}BRL)EQq3zWmKGFR(=CY*_VuQ%~pG z(+IL;2j6QhV)3O`T}Ew%US!QTn_n(Pk}b80`8*;P7vFMxW|4p1K})S=s*$)cqBh@O z{=iN{4dS~#1ssM)+akczMoS&Ci(DA8hFdTSQ3E= z4W)Jr7Ev%D))8RD?FiAI)T+dw_-4gU9!%JF@=fCNjal15$*@d?@VRKkB^GBNNm*~s zMzbmF^i=mm;%zBJH6$PKb#}Dub!)X>$6&ssX|-F>>M+;Jf~_ZHE$doWFm)YnY6JO) zD?2|iGGrki9&9FU=jhtfkkD94?jd2g*cc0iLYqBrFo|hQc$0n6nD8bV5AR;}vf1&e`nCI4bjt>e~e%`ba6cpi3>=i-Iuarb1z7?_@k2|F2c$eS845V>|{W(6a z=xl~!pWFuKggU#(37CcL=zPqag?jvKjr>?Ml*l9W&S#CbSZN`MD4Q&&gu80~eRUF`2bg!iWZX(dB@m59! zaD4k;HFbe%bDg#}zD=|`Co7qHGHdrTBfGK$lGS|~jh@3j?bOBQ?2J+GQ#NOoGFS%_ zfl!@*c7k)@E*gu5_tSH_oATVQyZD*MH|)-C_|i|f!`Vxjs^>FP)V8)x{J$v{cW^o# zl9FFGEp7O|{Qk6PmuM-KN*j}ch217@5jvtaE;k@juyA~r7%aSMq|g@9rK^gxi^mEj zI#7%iKGKt!y*xOy?b3il18`j?ZIt|qW`V;xol@mPXHtK6i%P-5UwU@VmW3$tElt*2 zI#di6)ZOS^dMB?1Lx@De8jwuFY6nMu{Xd1BXi3_wg$pTOxGBXrYgu&TU4~LigP~S`e{#w4lqVZDSQ#^JrmA zDUvK&5c7FNEMAo6+-H$z?dBUZz2<>Ut(+e!`K5@mW2nn_^Dtq#4i&?M?Rqj-j=}^) zqA`kschxpeIo%}dFW{ImCx?xQ>w>z^Jw8HYRHxz z!uFVan-)f@vQ$CFhQ(_i#0dh$WzJ2mVB5o&9&9?4wi?->sE;L5ZoP+V)>a2IQ)`-~ z?-4Z1#2V|1YAGxfV+_p?w>7JO#R9?0M2%n-VgXfE=Td-$3}F63u9m&@Ds zKy-I!XJx0E3eA>0!#O{r1GN?6bG|NLi0|R-B_G`bQ+qg5lw*1xZckeIJ1pAsG@8E1 z(EuNt+}zXIN)RoEi}p+@nKeM6D04V$?B$$p`QB}~Mh`iAD?b^zYlnA#;Nt(F12x0p zHDoiDfAnO*a6gn1B9=?{tx<^A9(Ink)Y_|+Ue8CIU6iQ3Chw)@yv|-Yo9T3@b#$m$ z<&*VfT?(lV#PoHx7EGjVu&%L}N>9#3yE+p(3%#ROyrQ20Enmc;+*1=nKzm%S5G6bsYPmP<7m13RMHebBXerD{qArx9{(KBT$}#0&hr8f|kRb z83~gZ8dc;|tb3#(k~W1U-nPS5QLFjX&pn$D$A>%HRVUiK$Mf{6NPsSAES@{Zo+M|~ z&&_AFSFk_l*go}l@y~?Z4wWBxV8&VwTta}w6LO1inTjP+X5xDmiJgoNvB}7B>k(@d zYzgyLB#N$S^v+(365f5lS7fxgI`ujCya@0=BQQ^1t@nU2RN zI9IE;g>+`0=IqWdUnqaXW4a|!OmTZv1#Sr>R`1TjYmRY0eicy-=??D=b6gUi)CozStbV zM{bLKrlOK?VwE#aoi3`I!QSbe%rvDb%7D-kAM|tou|tMFHtNZoVI$Y(F5Cw>A6Qf1 ziRguCPW}=*7NZSMnlzG? zb5j`o6|O!E=jp*=k$4mKL}v;;!`huCYWI|NW#7pV?RkdPOA+LD*(Vp=3QdPMW;jD& ze@aw!xP~tS%UXK?NqaXaj7&ykZfmo!B02t~xtQWE0r2$tW;oWr=nRDJi=1nHtoyOdOQvQ-sdoJGG;yrV#X*T@(#XZH3W`)YQx^LbBT_@+2>zSDu*ybUL|T#2CvO6ft<6x)l^YDK5g|hk{y-UtL77pb5E<- zlQ1+sX%$$6Ux)TX>vhh05eHbZ=pP#e{xBvwsZY3=B1l97t~!hs4Y(rM7Y(=~iul^V z3D(ciMG&X<@{1sD7C4{uR?yFa^N`w@5pWM1=t}sOh7`OK9-k~r-t24*mk$R8WTpsE z#H0bm@(OuCFZgY}bBfwiAPgRl3-iJ+w+GyO+L@u|h#2g_*>JC!i@3Xdu)%p$og|`= zyNoNMiD-3!2pRKgN>3RfILRLl1A}s-)HNbFf3YnWpM^)Gbdg6D@mc$|o1G7eIy5<69V3G23jZh3E?&ExX$ZiX zfj|<8uJcE^AmsbBCa@)-QF*Q`z<#qAtl#4dl7_&lT{tdW&ZH5Q8YGHGH=0xDvQ|t! zc_yJNTw3E>p18#$fokAH&m*iFTrEX?UgX4{M^JXK6pH71K>l9m2kL8L7J87g1dYqi zC6pK-?A|qY7)Ji|03>JHV${z>Fxmd&vTXkix4kOb9=dn4MO4e(#;B0Zw6QdDr)}g0 z?)r%oLo#jUJ$8V{*GCSp`?XxK@c?!{AukB-L|O&Dz_kiAKs;L2#hYoFRtX}QX@w(+ zllz@%rN=SJFOWmsUn%X{2xLx58JO!z8IozSI)E|7Eot9<7b3eAOL@^bOdTM~M~d~; z6zeNOXo-F73w+}M{B?kjHAx>lZ0c2?ncnn?ez|UxSV-FBIr1cZ3_Nvx49TR=!(Q~c z@UpYFx?7Z*^x3KDvr~l7xx*8vPxtM$Vqn9Ifj*; z(Cvit$tdqI%tbXY7|w_I^kjpo6v!@d){wNZl!(P!{IG*;2{0)lm(}Pex>FO+M^zb& zJH2|H4gM#cX%V`ugZbE}x*#9mOIcIZEHQ;<6m+Dj9I30Ag*}p0T_mHciIYO?CEctm zty97uXE-zzdxCw@Q0$3=G!zThhhk)MY7n;_fa|vsGUSm5;pDy8dg^GACx3c{tp|)a z$W~I);au~u3iTRBm!ROCWYIc7O{cs~6&k_i(iQ))Z#ee^Th^h^P~5)mAiv{3?XPM9 z;QOhwF?{w3?lU^-_Nil{;uOpsK3GPtdio#*bBfTi!{2{7UEHU4U2xVeUnnPv4B^RA7&7 z#tS+Gt^8azHAobQ=0Z|fifBBAN!VKUJH&0bb5vTU+FnGfsO|9dkeh?sbSE#wc7PLW z@olko-#D8?&^OLJ%adrtD!(>MP)CW($%w=6XT&L9j5w!08u6!ZopsCUe3r*in2g_> z)l>09FHth!GP406>t2z3;_%{Va(tSb6knAO!v7EayzjSW5|7aM_(^byWN?S@0W{BD&x) zuHO-~V7>SxSon9d`Rbn{8l9wTau>_vffog8SKhOCwO~d#e79K#FBq`LUAxc61ox@VZ(n)1v@n=q?CXj#4nFw$H z?%beG5K*y&;$illv_y4=n9NE@ngEfvP+>#<3Y&YZL8>t~v3_8iObyGd*!}^q%`Y_y z(r-IA$opP|i?=b-E)oSJgYPNB;77a|96PnFa@tyc?nStH2QBcNC;=J!9hM>*`&mJ) zZQR&V$J0itmqpYHHz*ekTnxrTe^ns;p7RBt$}gd-uDX~OulnPcv0L+nF@Je;)zFv9 zaMiQ-ut)18xym~nut+cAiL`5>wN(7jg&`x>WhtT&{}I%?!;Luma@s<*nTT3pBQ|C> z(CWnTP0ULb&$xO9B@DxW*p(gj5MnHa`QDmm|fXbtDLSV z^@WyxF1y-S6org9(`>|t1@(GCw7+YQx?04-8^5#UjW0pBFA|;VW)Xs_HGu3kzDd&4 zW$5?ZOKev`%$nfetD3?ysdj1tUe8{xRa~4687r@TiEq3y$VwU>F>8n~qk0Ok7o7KT z=}pMYK-cr~#h1VuaHEu&RFZST$c{ zOlDkuKQnINW(*PHG&bSdzz_CsZdwbXYbI5J9kpH2<#o~}Xh&+E@xx@ty(~qv<3g_G zJk5^BoT=;8lOh`3y^tQ1WLMu3li6TGK3NP=w{Vf!fPnS8VuQEi9+3=&uW|)nP&gFr z+AjZ941Ho;vFhKVKxFnm?`QT(FPGuHubf5i-5={J_xSoZ&EPPjmW$Srsg0}gvdPvr zxne&TLvp-pwd!DScYs<^ca^O#^SGN)zl`y>djJ;wY)}CBCAgZyrFyPeQcoC=;IgU@ ziM*NVsem!?E13io%o^a&ny-?#%!@pno51~KVc%gSNyzlj5r8o~bdt~xM#U{W)+qo@rw zwB6M1VhXjf9S;LuR#=l^S&ax4Ee5H*M>s<%4D6X21ZTRW#_>|P@X6IGu%QbUN@0IA z+LLLnfzn)fH_hcz=Zn%(Y0SP~X{_*48UqV(b_iKihnY>&D>QtNro+t^XxTkjv}`XA zwZVnv0-3^fo~RYb|6019Ru744RJ1{n4tO|dRxJ+6a79U$&(UMf_e`~^7e#htwF~#N z+V@_pwsjg>?Z*pOaanwGQiZH$`ABnQ6+etkN!8nC%K=Atw}&#hofysC8=M_oE#YM(uXn zBV}}ZJ&u%aI>_v^4kiV`Tm4c)DiRt=>CnBcD;D~<)}1xC{+JibQyDJVFtZoVAp9s2A`^dogoeYOycM?YWnB=1b=fp#vtg;U`!5J=54&dj z)H#a5$iTmnqSQ$I@(e4fd8q{%-CbT5&Fdd6?cx+6-}~~aQqZUTqj5^i(rN+zPkKojq*a&BPcbt_SSu?`jVN`@44eOh9&U zZ(aktI!RL^i)truLGAuK_(+z77HFwJsp za$K9#og&uB>J9L4zKcd^l|^5*Ywp!m`d*M6U05Cg8wY7wXYW>RgC zbfXNd{_#?5e4Vs^vLC$ic)4fvEI*-Y6nW!^$?=0Q8ith&c^S<3-f-8CQfD|a!sSrAiVVr?J2IrQrh*=RrF7eY-D5+j zF(<>|MlT)B*UTO-wv%N(J z_SH(AA(EY8bHT105ullIQ!^^R67JM zb`6yGAA?bgUG>!iq5x#ky=7VSXlaMcUsA5wvIEUr<0P~PTdjOv6o5?luGxe;G!t&u zOt^HJYrJ|z#H+C7E@_tAZnWH}u=oJDxZHJJ@`HC*xEiSe$Ato?I$R0HtaPQ7_P=Tn zQ{ZY~T6a3vHZ2lHuXWXc$e5Hs$lg_MAC%?eu=QnElq!o7k^Sni6tVrgr`hjs&3;Kc zQb($(B3?!9hb#7I1#Ok`Z;uV7Gp*95Sh?1B$dPLwe>5_O{V;BWMH*PwDbnrYv)Ket06tS8HoZuZ`eXmo4iRvv8ufoRqO=nTc_W*s*zqr+lu5if`S%No!pTW>3xcFhB?xLgvxGk5tIE^sUp#USG@ zD$BU*ycicd;3m-Oge#_;7Pid8Ql_o1_+fI+oh(JP@oY_(8Jdm#PrBNxM@2lG4~m1C zCtWuA^%B^H|JBnX81>^@h2&SuQu2I>XRnZ9q;c+)E3uq9%12Rd)lthRD!I|uW))x7 zRWwu%_W;x%mcQ<51DUV8HuzLJiH(bNv6V~p!!J(&#tISNqsafL%$bdUk+XKzjlq2Ps(ubVrpIW0Z}Bx2dPqd=U+2?c<^7J6u3sFDBEhef~*$Tg8Y#yI!(=((USQ zGlG;4U!KQi&%l6Mu9BhY4b@}j{1(gzUtY!0O=*ndR~j@{&zdoi!`2U6k;eSG3Rlee zWmJKxkbyx(8%KOMmfQoaYN%}4AG^M{R6Qlb%4?~1wc06D<&uL>l`+>43CW+DrfNog zTJE_mNrl`CIA5fS0#H>-Vku%(@;}9UpGv2=f1JIMTBNoW@hVc4^7C*kqjPZEicX|V zyok#Sul$-?m#>}U&w-ZVXu9+Ndm{Az(e~YeQ5D<6-n%3~G6|^*ge;`cOSXk#%5DNk z5rRQ!f=UrlBi)7wQUohig^{9yilTymEuvB)QlthI0j1gjL5f&F;5&0>Huv1!yT0Ee z@8h2=GpEnYnKNg~<*w@4wb?K#2F@^dhqK>;uWF55|Ezz)7Oob~pFT5rW4Sy%Za(`bFu26^jl6O{n%c3hOu`C)^y z8w9s!VZXn;M($X4nW9zNco&uN)|-rXBfoMXYrEEfZ@-w;h&B3*G%$u+nS8hIv`Ct| z`KUjFTmjrv?0%I4#8&S!op(yk&0_Gw+{F^wi4tn6R3VbeVAkgAFK7M6dQ+^*T1tbn z{{aSi?a$0zO`c!ZoGWaPfXGLmZJEI)Qs!v1abb-1RH)J57-qMtG#b33)vby%gN>p5 zMej;j7;LipiAJO00-(r`7DYG*u$2_I(uP}ZW@8$oGdC1P@o80^%c|@Jp4?TXWg6R0 zxufOwgt6TBp_YT=I7L@!IeqtMynB>0lkKJgpy|$w6588#5}mdw)1_tRj$zd|lAell z&eP7qrjW@@XU;|}*;E@ie(rF_Ofw}DqC$q;WmCB9){ZVB` z;1Dn)2I13^om;9b2Ufgm@4^Ob1!am;(p%xI2S;zgdcm6nZ$EdfIuxE(>sUN*_Bw3) zSLT+~>l^v-TF%Dobt)M4lx?Df_LNtZii@QY`3LUYk?b(V!{^ba2VcrRVBiHzv-?bg zLLD9-z?adUc^6+s(`URZ9tA7p>wBg~S-yWEDDz3Fw%UB%<&-A2q)l*7{Jzx2%)W{A z2YjAkVv~8%T&wMD!&lxjI~tzIFl$0zSC9|s(Gmd07qgaB>b->?ynHX*bo?#Dsa{N6 z+bZ{nEeB-Amltw2$(I)vzFRGdKb7We%h$Kbt-~j#Iq#@40QBL719O|OK~yvJleh6n z=}wE|bVE0VrdRRA=!*8vSl%had6gFh4K?cOeK&FU4;i&sUn&(k&qqWF?JK>7_1o$_ zHpwRyXW)Nfex02HrQM-a-22Dtxk!&qXig(YyQ+W!M*96#mHjpqaYNWRMVAE-H&DRV5NqMGPo$PN~EL1LA1U)B)nrpq?=%2>CMP z2`Fbx00&YpIBUk=}JjNAfR;cG*&TX@pV$3=5bg$|>e|~P7UbqFHz~kFmJMr!bzQE?+62?;$K?S^i z7ac1o%Gd9B`6JGZBtsVUl@Z_xr;~FRnVDnn4}tY=;o5muLESD7$v}(h0etXPrTSa= z?EGehcG?bsI%xZ{DH%n{V}w-rQqx1?7rxZ=5MR~K*)YcRP!mrt$h(twY43c}Y7Er5 z&N-MpLrsQbU>`c>- zY>{s)E)o=}r+%8Uz?V#EiL#BLu6>nRoP1h9W22lAzpzoxV52bFDDolG$GSKtbTj!S z6;4&c(yJ!Biuo*3Cf@A4o*fPW`_=%%hO>~cWUXqr z*DD(Cr@qd5`jyXl)qc(b$67&@w%i+(3(i*fo>aB102k=?@wYgy=CE-<;{-lyl{b<_ zP?9)X&3`EOMOKp*V;`}L5;|L%FyXDyajY3d63>jX#-arMKUe_2QM3Md>b{+A+mqdd|8}h_o_{>Zd6qp%DZ=WqDABNk z`l{8`t$g=q?s}zd20J@xZ1KM!s8>K=*viv08fEd6AA8+GeUi^6L@F}@7*%!eahzjZx9vrC7aTn@B6*G0E<79)n zowj?Rb?wkP0~^%g1xuQ=u+z>P0FVQq$bL}>gRbHq@e5tWKU;&}#U8XuPA9GJaXw@@ zoy@4@h(G*9?zQ~!q0VAv-v(j?h7@|31X7~JpH^9Z6P|*^ehWfadYC5Lq=#vMe^qpB z!M~*bHgx>3^E_*WvsY?G^EA1$3*}({kXG<85Tms#_0U)8wdgwe7U=$zJ8m0j&{X1`5f&s z_zTa`)}&@IaKMbCd>K4$!)FQnzUOmiv4-2BGB8Nc3mOJh{wHI*bZRfo%e|YmrtrZF zmhJM*?sgPLu3EN-TeUz%u=Q}&5+VgK=A{dAyO<@wRZ9qL_IAFiAH4Glk_)Go7y?jl zJC9%COy=e9XZL3hQE`Jzpk711Uz%V}am!ZhDGDy!Iw7yXA6NVVP4G`O_$z>V1`Y9{ z8^|AgmJ}7X$=-e`_j>lGfwEkFl*gc|KJ-VMoX;-uCY9P=$-Q4M{qyDA>ALdUu>j|xFj9$!9qAb;*D=OY$T zA;0-)XK!|lYKZ>&M^d6>m{y4|USNDQ<2guf?3m^pY`36Z^5=FLh9B7;2*W>~4q7lD2L>wm^h@IJHia9e5epZs+vF{4oPdqM?T|pux6AL`lFj@35wNhhxA7# zSoBAyTMlTh?citnH!S2ezVCB2>DE9q*jX%P?0zA;kAB|{UQpHDkv%|baFC4>C1`t< z#u&W=Qxp8s9A`BWd%b$04w$rW?kXZJFfawDE4u z;+gAnKh{U>EU^e%Q%oH;(BfPnju%Nm_ zc%uy#%+vz!ChmSoB+~oF#ly*cEElW1n$)TWJ`Ht_EOq|E4iGltV{k=@M*Ao~uy3dE z19f@Y%dRG+3peL>(Ae+)8S6A+W$|&J=YGK=c7X_i4vOx>;G#awtnWhi0Z$2_J}c*c z5uacHDN#;J1##7P92(>4h{BHAJ_93E_&v~~E1VNqODaK-o+|!u?~);1*B!Y%SO*Fp zB(Z{TCneSa4+9!QS_QDju#yqb#F!d}U)-5n%!ULrBZEYRF%(OLG0CN0@5+5t)9(Wz zL;zzjR{;z`AOQ>=rGZ`{2YQkHX(0tV*lFSyI@oEu!Ur(GQl_>3dfz$2DuCJXfwP1y zp}L`iTue%o43&KDzXxAb_Dej!`9tUJ>_bAGFBVDY_n=)x5_*%V29nT`??K7^gLwDr zwc1SluIQphBHBXOl6QCUiDMh5!eB4bYc&@P!1KW(ZJ;y?|GbJ|1}GbAnZmIKB=-+Kz%iz!_kVXh%vE<4T9L-O8Nz z*)0f{^emV2ny)-yuCAX#G&_Wsd9tQ=j}8 zN(tj^IE9wrY&c1j;A{xW1ZKm%`b*_T)%H?c0M4-{x za9+8b4d+pMI2#s=uTgC%mn++iv>Mr!{TsVol3fg8C%;J5L7!KSGop!K#f-@2P(I+2 zRkrgP!K@7*&^IDVpHze#>SoOwBH5l zWY;aSw->VDV7yNJ!ohgm?r?)~$*%uTq44^0=ZmaAwF{2sexyW6Ug-cBSV7c%I(Gtl zfKZqFQ=@mQ{i!Lm3ip^s@0K5a8_o;9a`s~jDFE(IJrB6JKlLW9Lfq#iu0DJ>$9)b9 zwMvHVmcFFtZuBMfj6`L$NL1cFV%W&Lhu)!5m0Nf7@4j~CIED#U)W!6nydiYXo?AQT zI{xta+?MQ1T7_?qAKWe99zRTLAdBebt{T~H(YY)ROdW%s3@?wvf$QuxMER)he9T$zb-K~8QW|80Gi~p;Z>HtE-7g9@;tU+2T z&`>RJKI9zAI#UTz^qZvUJ!u7sE}n+hyN8p#|G&zfNLolao6h|4Bd|Yb5Cs8Iq$cc_iz5**@?YK zO@f|cJ}FT$Oq*88_4(UBI7iqm2$wATLXOorU*K4+V~o|RI95mAug2*b0Q}MEaV!(k z(Luq9xH1&*|Kz;DHql}uP4(3mDoyn@trzp7{zbT6a0Dtunre+eA!#aoCsc^M`A$j; z^HhJ(63kNpEauHkusDrQ9GTf1Mi1tx)|^SY>O2+LI9i1(8z_6sR@MAcW~*v{2|5HE z0Ir~tLlBAg|WGk%pa|AOw zE+<3zc(fL(=YBXRLrn>u4O8CqaS2C}sx##inT6vkJYwNX)(!@_UJ4eAP zT!Ne9KyGPAaw{A0Yf;1iOgiK0ZI0Wq? zPdn~xY6h(ctMzkW_%~Y=I?f78XjV1lnRLaW-R>(nw6CKqaBvyOYKy(_D;(PV;1x(j zQ%b-D$Msnp*Km+Q?79uDo41Jdr&Mu-8&uT?EBk##Qc>&b?Z{tj=xjl7mmMEK+<~r zZLQ^c!fO1@tL+-ds(uXwOykc+N)+R1^RIsV;b*yh&EZ~4?K-a8Sqh;p6S4NMW#+Rn zt%)DkxJLvO1oE(US_%D69SF9NwIuoL;5=-5ii~;Kg0E#B_C`~U$iqSn=3xhzY9J2_ zN9@kjh3CBsXvKe&M5JJ~%jj3&Wb&nYu5`#k)k|}wX%l!snk&hXEXdJ5e+{LN30PX9 z8bm0G=aOd%XzU5I#4qd#v$(sKtD(j2=b?0$Wh}Wc!_|eoLHVL1UP4L~-%7`lSZFJTzU1cpEa26rp1*G z^FZPRwv&<+*^JUl@rAEw>7^J@zkOhw<2d zKm~a0m@NXOA{kRRxiCHPuqZ<1RUCE%dcf+&b<85*xw7@?-Kz4ZI_G8DV)yENW#_zx zEN(Ag2Sz!{!1jibAq6TzW%$irn3-fDgU(~RdWnko*cX zRQ`?K@?K+inIwcB0HJ=twc2QY#^q|w?laX^9O@e>35Mt}N^x^R9s>li z-VY?fP2*mK=>;@NN=)0U`t>GYq*aL8;lH$Zml*{GxiygL2C*wB7+12Tt(m6d{Qfy zI>ijAxEWvoDVp^pkk|~UNhJ%k03gUOyW>G)>IDN3(vx;e76ReyFi`x$*X$1&fj=_Q^?N)V{zZ zkzDAir_JLn3tfedCxlRRj<}adsj_q88)h%l;>z410Eug{mnb!y9*Wz!x@v3{Ef*ca zu~L*!H*P}3vA2;T;n@3Bl;GF{s{>zCdKJS)gRG6{wc_f4{^>rsnYK=r;oSkV5^FQtaXc4EZBI0S zIljo=U_X>#*K8<$Vb^T9KU~*bcfIQ&s}OcV7gsmt7X$*68+OfHQlc1F`tbTUU0tK> z7KBTR_R9|0YJYI53Xi1^89HL%eJWRV8$Vs-YV9Zz;?YjphR7>dkL!o!MQZF$T8`(^ z@hfp7Xfft;?&QsjT`kP;#^Uku{mMx{NfFUWPu(9T40skQ#NzQbfkGCK`Xs0jPI?lh zg--enT7pg*U@_-xf~|1U`knjb>ap8_JFa^52+b0svT%bbe_SnY-7i;*+i8s$hl!g- z2{wUREpCBtfQh8@5S4VM#8ek5*$nE41>;YY98L=cITbB@2cUrk z7y%6zj3M+6!_a_JlJ+oS;fj&=qJYS(^$a+bu*W>GX{p znC@?IV5S>+omi3Ax$}>B3EW3SL+lyAW|Jbu1wf*ApIdEW{aH-AmUF`%3;V9{b#WDe3K7EWqkQgUKai!K)> zIH`5w+7Q>Lwo~7zW0a>UEKX{_%9gf1sB+;OxnLP3&?**9;w+{1i@ZTQHdn$a*3o*C#YgcI9XwCKU@(IzAa3v>CdyIuR4`&-}?7y)AZCm0q`2lL?b z$U|NAM0x{Vny}y+n z=DKgChcN(@#BINo>1#g_^$*GKsJD=ip}N82k0V|4*+ME$kQG$4`@B%d$%|&^J;;_* zaM{IZ33kWj-^!-~4dE1_HVQc2PfCbN-`pC0#YG<;ZH z%mt|-)QGM!gP+!{AgHU};_harZmVLbp-U{X=L?x}I`D~KI34&7gqsf9KJ1!q6@A&q zxrVadRDF!TZXzX$@wDf!K7j}>?@nIyLf&Az1>urA4oD~8?EpIYXv4`T!U3I=$&vUV z#shryBd#uvJA`D^wHFgnOVcN~7HMn(DdL!rfJaoT@dsbZi{srAvTMWB8t;P0y@l!BQO}xHp9lkO-HcAHqm>Mu36=f%Z6c^#_RNR1F zUq8TKx}|9+JMG?4I#=mAEFU+4iw9Sr9I%4WGNUm1bRE)o3nyRIs8$F+^% zFU^J>&8Mik=nozvB}$BGb1UT!dhpn1T{GBXLRf}}FG%ya{(8CrpV&x?g0uiy77FUh zS9dIgDR~~6>)Iv`?O?DAiRY^ppG>TZE~M-r?>xuV!STFcN=M40R0<3a%iqtN#kSI7 zobSG%B{<)01;!#gG{ItcSe|N(6C6)tYG2%yyTnE@BN(iGP!wPCFk1y3;c8$~6y#EY3hXZImK5<{uc>d-zNSnV&af}vx zhZc)gu>qir5ltAPSrQC^RE+q#)Dk_=oI}zB89++vXC#ntKDL=a9Am}t5;`#idh8*2 zdl=m3boMKiF32V-(ECLy8uz0X&)06rdxBk}II`y*4(@rE4q@0x6jIbK5QTn`B03Ba z70_790Yk@_w_Lke6Us&iOO#VlTZ6;G&8sU=Gncsq&Mag)h6u zTYv7Zywhs7j#mwFUAw1433&k&-Sr&p2)=B3&@BaJDawmJA8UrVkRis35 zuk?g6VNc!+ww(}`hupS+-NoxSpW$D1FVcd4$%ex+4qXO-@?PYGQddUxUxDH@8>Acf z?!9@n`G!(gL&pZeh0Y*vQ?@vRz?a=)#OKBzW#?%f_Ww(?1Utuh=uu)CF~L@P8Uc$0 zrjfIhB~BwT-@+7UKLUyb<^Xg;%_8%&SzTHz1k~(&aha=*86HxG^||A_ymaOYhPMG> zo^}v+wM-mvE=d-^bS^Q;hF9SBAI$q$(>omzSKy$<4(By>7+C6Fp$Q8$YJMc|1Yfh- zh4051$_xk=jz6^8#rU!^S6l_Op~`4$=<37A$6G*8v4$@BKCe*)G)l7e`@H6Ct~K-x zKjgVXpsVtNpYj^8rIsjgz`pyyfr%AJ(5ve6r;g<{V;@<Iz;ino&&Gqj{h|%vto=anO z|1(w!VrB6L|KxqhoD^QHKNAfu4JDW6-(e7;rEu*igt?0xa3RnDQlixS4g(1-iJv*> z>a4**h48Rfj>@p_>&tmhvHnzmAT^sx0s1L{FI<5sZzP4s-Z_Sr;EXa-aBoY5RD^~p zP5K$q5$CUfuF%%Qh%aBy-_90NEKD}jQ?tUA1?ljK5l&`?epWVE_}z2ayrJSufCwB zq7B8fGRM(&pKz_WThJ_N^}USb>U|%G=2scVRo{z!+s<}MMD>o6m7syxuiZt-;J`M>sQub)02$_=YfD#-;QQ{X4qNpFj4Wbc$yDTr* zHM`)tiDe1`fhZkEQaw_l7+3a!-JFx|X#P;`mQS!8LR_w)TKym|3U#72cu@#y@S;#J zT7wsbpaw4rd43=lg)HPQasMDkYYG6$b=T?3u3FlIy!sWF*Wng~>1a)*oZwQ>ZT!}> z{F~TBT8u|VD{&DHY!T1KQ;Ha@!IhvtH8zu$8>9S%AJiy+iPqyNUjXK_9OZ97g&5@z z3KTlZIaG*I&M7S%I^b;(e&(#LW4BjH zwUVNe+lj@zZ#{QSexSG@k#|dS&t>Zf3+b~y{!!+AN`Hg|ctblM-mc3HY;OqImp@9^ z_9Lx9*CuMjQ(Na~jc{#nm=1c6d+yV{Q?(!ElghSQZny~b6DSwxulUqJwVx#M6k3DC zq2|mB4f9!JT7!NQYJ}g^N|6a)`S*<($wUHWzmgArlwR{CP*Zx%#&z8F;Y3YQ9d{SU z2Lgk7&BcU-h;g#`h@X=qO4sD&x6{~-R0ueL-h>Zuxa-?)`AL1i?>1U5uj{vVyY#-G zouym5>nHg&sLldUxwZ9QdK>VU1|(hOo(ML$L%WfWspoEQ7I;-ei%hV zNg(yfg8WSOsI}A+!bv?{N*zO_hIbTV+vcYwjTNM*Il*Fl{Ze15SrSYuEMk$3*ejH` z@X|Jc5#KJqnHj?{c4@%at0}5s?DxZoy}{bp4HH6z<|*~vH<<;%?eY2b-TAg}L4fqW z`Ayit5CQOOll#L7@bgddYm>xo{7M6ND{HH*92b*e7C|Ho>W2t>1Cc^pA}Tr5vb3yY zzFlKge}=}W7-kiX&pPL)Rf&f>ex^-+21}$+h8b)89H!4Ye#Sl<)cVEOn_6F`9zg=x z`X*6~*7s80qV=_^d`we!7qjSS`qNF_?kXLH)K?z$He;PBCQ7}&*z4B934N0kI+~gu zzU|s9(J*I)$nxBPNn&C7P*B^?;)^$}8y{?`$xdICq^5auo5)nnSm=JeVDD}HWPd{G zi!I!L>1-TTLQIFGE2>1;m{QH{c53Xoe*smGt6*(6vr6EhoEENCr^*i zdZYIp2-lFuEgBL$WFEXVDDn6RJm%?xx7?R&BM;Xsb}5=|78T zE2(tYt@$l=)`@b!c+2Pks)M!vMFfT|N^=L~pVrvT6ah0fE8Dr7vw^f2y)*#wBZKnq zG-DXL-5ZRd-OTH?a}PGd8yuzv!|ONyB6m6siB-tgOEiqSR|3+DsFUU(edo+91kGa-W&< zs1}V{aaT<9$VL$8cKDPp^;^PolCDx$iVjlXbxV`fauObs@751OwfM&R z;SeFvZ+`o4LL565>O93fOx$;c5IUbeHoswzEyNIt>g#UJu2Aj)4WNq!7(cirBi9>6cF%Dr!BwMI{K8eE_jtHf!8`xi_3fUSC7j#CSRinn7w-Wc$koRB~*y) z)lh+=mU;Nv@{7mi`;sqGS~$}1eaS7y<%Zr?T8*qWg=6)VWEDeL1>Tl?@i@LMY2sCp z{j$#|JgDB{V-ozh-0OSnxZLY|6#l|qUoy2~1r9H}+r5O+Zs}$ z#Hr-DsS2K}**-#C=Fq-6A@f&1(HhKOK~34E`pNtecXkH*omOKK3#u{sUw%U7#|m`M zO)TbD5IHb-Fh5rPS4qDPtwH*tMkL>w&>AESH73$&kGO}kwiFCW`xNP7T7#rTjUas+ ztwGXI6CjN*gIZX-WEUtdUbrYd5y-m@nB>l=J^_fyQ(`+`&acgDm%(Prib?J|j$Ohw z)X#rJjfF?WCT4c2&g)HfpI}c=kii&fO6mGuS~>y|`bo zz9`D2?+?fDXSgH=7Xe}jLvZr0C||ZNStj$iH{6lpKS!4}@ab1T4snHAJ4yN#>U1d_ zi|CW66QeBf4z(bP(P5}k;tK&7>Ndkno6F8 z_x>Tp#EYxViVCeAbCTnEz7fy4|6q%QsU;ZHl)z(n`5c%>h1?MK5_+os_LFiR9Y5Fo zBwI)61sOn1ARnKUYn(;gJ&To7c%eU`ui$r_lv~MwhjF(dpaQtvpkd66VVg{gtO<8W z=D|!p|5-PlWeoBJY7dAuIes~S*ZIfYnos{EzyI6??iKoF5KDYPzz|36))Pcyg0xe= z6zD$IXHGp8#*sY>6=EK^L7>nuf6^&A4@{!8jCtTKV1@I*a#MZ9Jn%+1 zhNWOlF%J-ifq6i(RPzA*2j_uZAcvR-c2hp6(~fW~zLh#L%0kWqKosYJP^EC~a_*E| zyPOZ9eVJdR=??*W;pYql<@X5!@pE+W z1xzHzZ;^eLkOKYOZ1D^I+-wjYw#4mLD*+f=v+j4_#mBwxo^0vn{uk>3p1Tin9S1*v zefGDgmC((-PD+$E|C0rQU>d_`d zOvh{~cYmnEi?oxzbay3^B+9HiftQl3e7z((S#%gRx&wm9(NkoCgK6nV2 z2Yj$)tSJ;Y+B0A3pj}}B3eXw>GtP$|!NcobYT!YpiWlDRR>-1n@{&)e4@>Ffpw$;!MG@Lj0r|>PeCv$ z??+28D(@poFe)DdJsNWFrIC@o3{8LFtjx}gp%@s!-gh=kR6ZFhL{#n*C^RY`c~(Z{ zBPlH-DxZH=Mdb@k^%YV1^Whl2c2-8^gkc~mmn>CO4*$WZd@aZ!qVn~W59;(uI2K!_ zPK>gUQ8^IBs614ui7B;X_-$+QTG_q>&G26N4%bC|G$xi6 z!MS}XVL}^KBx&wGi_y8(ho>Kez(IV%QSW(HM(DJg7M^Uq253mR*34r&9#2IoAZ z$EnPCgL5)bla=6$(pU~f5M4CMKv02w>vJkmv+j)h2Do(=jFD(ysF=IcIb$LZt!;fy zoc+lv{pXxG%X23sXD#vVfB60&SfLSboGtO0{fokyF6yI33lu8gJv6{|bRT4uks4BnZZ%81mrbt0z zE2IyU*nlh~sZ$}gs?RV;7_&2@J%jr%!hzEL2AtX*F&aos$0j7aI}1sm>oomm5J4=8 z3%y45uQRvBSDwWT?v#C&RtJE zopm33fEMGl6(5XwF9pH0>y=LnB6;T~z7jTt)&-%fO9Uo#ob{fkNI2`w5hXb5#s4mM zoc+yw`}B8zmy_Q66agoQRbW2LoccPb5R=|8fkG#}<-f~GZ#kuflb$g@?EPKM5Bn() zGTal6;rEhZ3}Fb99?lQTf5&}i6GxmL3N|)uZq=khc`-Y@23?9o>n@akQYdzAv~+xU90Cn$W7xC(wM5f^YVcOOEura{N> z)iI{F;v;f=#cZhosGPMyOZk0@B{Nvp=lbSo`UmHwvo;WvcP9wMS<}HD=qS=(6xnwO zDbQK(6u;0}?>rygSp!SytRG1AEU=xenLqOH`cp?}EV_-d$y93|(^OW%3ue86``rhA%Iulq+}i*|N9*c7`Z z-Q#qe7mTPQJwiF7BXzx&Gn_R7+=@ZhJ;T%M>fU=R<^dg(_>pSfNLHWHMen=wI^U11 z6)i?LcBF%^o2}pvh}}E-a#&kay@=iMj2av%Yz9WMem<$|A9zMBMwmhQPH<&+ck*4A z&{7nk6_i(R#rrq(++r3(WFs6QkR}Dt{|~3Kq5r=}l%W5ImcbK8&b^*>wkJWGGkZPF z+0zt5_+#zye^X@6A94~PitvGdd-8aBo5&iFRRSBRr=TWK!r%kchh@hJkhc0gf1v-> z?h^lPGdDtyGB*dl95Y zJ3h9x=SlVuH75GZ`$>rsztY#>z@NOvW)Z?NG@S3 z!-5|kf0wU*lA(d}!yqX?GNpAgpP89h)hvf`$KXaPfRg(}2hU7{@H z56alzCA2705%RD6ONRU}{Ut;Gh45E|{8R-4M=yo#+7z8#^EZ?Qx;RcdhV^R7p!^?b z5{&fS?xv+H?(@ZHtk%C^sjxEXZ<&T!bCc&T)`Y?fOD7s!)Pa$Pe@kZ%co?Z00E%Gz z-7& zI6b#m=qX09m7d*i^VBg5fcsG)7P(V(4rrdB&Y{{Z&^a8FMVj(=DzbH_KCK!$c8tFo zcMbI1Xp6p}6ppz-hJ>MT^$TGdwkE6_f*Ur-WvP)A0WVF8hm|8Jhaim=sD42X2aq#J zV+8;jue#(Z)M9zTU|8V7Ahm}3`!7siGU^6+^E*7<`HTS`riRzDG{WMfP#R2pCL_7r!u=8V?2vm+}LSauxaU zU7mSXtH=d+dp=@wscA7HdWMuJ8K%8h$yMZ$`924qa1TVe%L#QE7QJynhDA#*@WPbl z#cU&mz_6ywfY3T+B=Z3~dsdnIJuL4JQc&E++7F$sLqg4Q4rsKLwqf72R_ji3f& zBM{(dS_?ZL`KhNrOSlNS2mCyej=d;Jr_mZD4K+wQi`F1%s4-m5s$j${119ZCVPsK#h9c10^jp&AuX1x?i0Qyw%0D|eAg@R zUhz^>y_i+-z4%wbqL$gpcP`?4@%+fzUWrixS7j{ICVMiI7Kj46<_7M3_zOOlSqu!C zLSRh_U}W3mMc;cG+eszF2(kH6UmNx{Ef({V4FKg0_D~GC8QUV-5@Ez*-#Zp87M%g1 zFIZxH^RjQD8N)DZ>_5t^asQC+k3LHrh3O_o@lN~)paJ9CoIgO=-FKd~r}`L;(3KWrBLJXm z1QUjF+4wd~jG1phUcrQcFJ@kP!`Fed2lskss^F#@T-{2mM%ugvOj+vj;6a&*E?;EY27}Dw+{*jp<+U!Q=XO%!z znV;p9FlK(rKWh^y0MrxU^Zt>^pShx}t=S_$;wPu{%~ig8ZR`T2gVBo73)IVtfBb{H zu>8aKeLt}1OQbIwEtyD*vF!nn-%#pn6oS!(HLwJ3@*#L26M4~$#Eq!fqZ$x~!}y7% zyFT=}Y^;zH!_J7qwKFY7fdG(CYT<2U#*oAHE^m(QR;YK}?agNWDJt%s^t%+s0p1N2 zV!MX6*9|3JZ-QY&710#(-xheX&Ah>UUDyQ5twPXMH~DkSz=mqGEipi~M815zFUgE% z=(i-G-|G|~^?N0peyjcq{dT|PX<_DVh`gDytWa{~2(QzOfztl4!RNDm3(_|D%$Lg! zQq&6PsqYUb^3RuyIf)tG6EYCDZS=Jw-6_y8z-Z}4Umvp|C^|l&aEbC4qU(j1WXdq4 zjq@*&vjicv)j%-ujtHJze0sB3D%8DfIhY#KVzd?j@=l-o>V{x+VQnmdYi|W-X(C^- z?j(IPLq^*veD-pWlONjZdyL&g$r)DYM~l%4H(d_4f}&P@SuP$@F5{vglwHkI_nV#q z_=*jsX}FTdX|Z4xBLLxjoF$RhTr(|#FOI947=qh{%?n1e0UF=9%jYozTiHQ5x`%}w zzGd%GN`?tOp~Yx|_d-n2KpJ$FGQq>r1c^ppP@HN40IZ*E!k49e>FcNqA1ki*gg~DA zN1o}J)y=n;ouwiOXHAUTRI-Nq8OuHORF*#O3b;IxrBAp*IvNi7*ehXNS}IfoyEK@B z^2x|itfGKAX6WIE5#C$bS0P05viCg)SuO=f`(kds9W6%t=3WWzVv10kE3%74UJ16E z0!6h3Rbw0!#l1s~3YdoK@_X%OSs$2yPA(HLOugF#94hn%w ztIrJx^Q!Vk3X1EqqtL;`s`4DIK_XCt>oe^do6(hV6Qtn{|FZR- zR;)3tK+1NwjXk#j&hK5Q-k7zb)kq$yXK!kS`r-1=!n7sJuE^!z9MIIf{DWKWAA1~$ z>hNW6ppN%spPN>juiEHI;eT%Q0zW3(8xIeHDB{)g{3GeVGT>iVRK7s__|E6*xT<16=gx)RZn<;-CM$K_74 zM#dp7cM?Pi`aT#A70VsnrSUWMye*iABH%QWrG@D#c^co{&zo)PDitdoy{X1$Z}4_x z4JkofRz9Xnz~Fk`^QJr5Z0Q_CrdY)>MS|`e$I1EN@G;iB@A9d>XC|$}QSJ ztX_z;sj_bX?=wGnyk_2Lgr6w8fSfCD^5>di4aNSlLfHKacpGcQAWbsx7&!GN|?I|5&4O0+Kfo?kb(HP=KVg2%9oIl61XU<7Ptw>_N)o%nbXtN; zrt19dB)``Ti$UVZF|R}?2nUA~gBpjE^f{}tv-rcw{xNJRC1xnHk`_xvAUSVVLC?9a%a}r*| zC0#Pet*G$wJIGaR&+GWXpB}gbQN_k5e(m$KNE^Y!uB_XzD~F~5<9Pbto|eI0GM_Y= zVgzfQReyU@*kvk{g_#vNY&Uhk$#;M`sVHb-jKy2iVqs#<$w&PIsim}8uaY)X#G2cr zm4RrGl@$PNo(L=Ja1^gjn!l3{RuO=yM*mWPLk;I3qwxW|`bRS|3BnVz>HZ=+4W3l& zs{*tl`xqfRM&l2OUl@%)1QH(fSw-WwUhyokh_~l-_P)ZNp;o|{dj=^9#N4k|KIV?% zx2(%a;ES&FRTUdMiEtjzr;&xIM>M_E_w@oG6- zvw7v=#!yGl2_8L!aOtwJpxO^OV~0lo4I!fBRPCw47bmr;TfrG8C)j9ip$*{a@!qCv zkTv(){*C+4Q10WqdmAN$axa~j;H{z|_XNC9E~3S5Xx2H^ui^2mTM9qY#@}3@qKxsF zwK$XiO`KVw;)FHE_%{Al6~@43SgJU`Y0deyf8+e#f5G{l9RJg1&f68|oz|SU{u}3g z{{?6005#Q#bq`EBM~kA9ICcTJx+}WCS!@3AFhuwc_)jQ*(FH6!;7Ff8qe63$*~4cu z6C%hk7n4d12v?EVtIN;0{q^{8zdxn|71uQ(eT)t>`HivFy}ftptSP0BpRE|#*fSSC zoqD>SH;d)aTAXxSMTChT+egUwkq$OvZQ_Z*wTaf0uS)l}t#62@?jKR{0`GeFxz2yT z#)eQ4@F0?btd<3XfVkh=x{2{L^%Qkd&P-M=!T_C5`gm50(oG%x?R7SZ(#LqjpsymA z@e!r4%z`cY0^&uZ(P!tc%vbH zr|bf9;*!P$YbX{O8Pu_LsaTTSk1=6YXa^rMi_7x1VyP4vm8%sQre8LU4DFX;mBV$7 ziM1hc9_1O(5Z5&(1eEn`Z|GXZk-SYGe_M7VMKl&N-NH$H3#5D@A(Tu;(n^S%ywxC+ zpTP_7^wyoT(i_1CyqOi3RASXc%SU-{F!!gR{-;{=9q50sVj&Zfs+cK8sl2hHjhDaW zr{jbRqzjL+5wNoH{K{rf6@vzmic+77BtiYMNEy_>P4TcD-wbD!4=vhJq}YisRh(V} z5+bU9jS{cOu!q9G3_HLgtlvxFjj;YOEyi}=8!1;#hV2#SuOekk4-_$`4*_^7QpWTP zBV|kvM!}dq1aPb|oMcQdKFeG)oI8tu$&tbfmNaQ$r@>+%#+LzSkv**{v>wLz>Eaj0 z_~}){#rVzJdY4H?0P>rc>;IS&g+ud%V zaY-j2F2Z`a5G=xaa?&Z2r?>NF@Edmwv9+X#V}QR#l+Xa5Vu|Z&bM@_D7Lm9$KqKXJK|xDr zck|w(v2Q4YiZEOM0a`KN--P{Ss;)Sq`yFtw%vzlWtH*i0(XRa4~#unI((y!=C7mC|}o_%m(nETsomUHY*Lv;;YvttP`v z6Kq8wrpH#7VP;%)GG1^7XVt@u)s*To5~E`kBQZl{but-vW0+~;jh1jxb^$pt%rwEG zPHnAVF==jsHFWBwbm~J9QKuf^bQ<*E=!DUwi8snQhO!Ijgn^|A7UkSN!rMuoR-Mm$ z*5856pom6b`BXSzpRX==8fgRc8Rc!8Xw?81M4AK;-HVJ2)mHGtAdCzicl*}(P&%UT zE%CONcfVKTe+mhd>iHj3lTqYWs!z}$QMu_&)kzcyI|Y~;K2Gtly?zR3g5NFL3!_NG z1d7vlKte>3-%;X56d3}4sJe_I6Qjt0Frvshv=|#X5w1N#{+(D(+At)5ey_plafH9_^nC?l5i8UI%gBT zbJ=u4U51WNM#<1|Y7{SJfs!&?+ibG8HCqnE)PV(9lI_UJ|M%MyxPNGf5ZO`J4B0dBz`SQP_qa*U40XUdro!U@(*RdQE)MVMiX#; zaU!fG%V%ti*S~=-FLsnjtt7TL3cIwOiWBI1Uq_W5UFKh+u^Q1JLf}Hg(WhXIThmk` zjv3a7=6NgpgUqlv3b(EBw`WbP5K2};df7xA5!S8rw_>?g2*s;lYtDp#*G2JTM@3c$ zBDZWtKo0n^qyE7NHlRFr`1lkvg27=_FoICJ+I#+bW&{!1!FOBkXv7}1LMZ#JrNfMX zBKfn1HfD3I5MFy94%eELHgtGB7(wX3m-QQ1FPhdEBCV#y*xNw|5XsJqzv>u?*pnWN zO5!NaHY;G~hyH8L;*82~-YvDFm#Vj|Xor%|hhMp|O9cPxL;oE1J*A6l9iv~Ww?Itj zc#fvlNB*}pc7~$j#5^-L+iklDT6gK=&SIBL^?@@$@Hk`P6Ja+is`7#JV6#GamcU8| zKiX#qrQQoU6U}F?f#x;|fsJu_Jsg5?Fgi@cpa6v7YyH=o5sVJy3`Vd4Wj=6CuT(RJ z(cXo@7=lIr_5RTo2q@D{RtU4p`~%Gh<|b6?n%V$e6dvmwO-Tm1D0S$4I3vNrEO@gI z_L2GU1u}Jkal#B1CRSa@WUNYC1LFjvH58MlfP{z>o}%&?aY6|EV{n5-WSc&w@Mv1x zMBYG)#mLY;=4G#e1I5qeg;4vDVa7>&OaQedj#WwbD3b}NiHyJ0FT0aAJPh1D5-x@s zTj$B!VB45ZVF8~kXT>6Wl^E!27!E{;Ul1dsRJ$&wax? zhSe2R0xlk7f)r8`hzTnD8UxOO_w4b<@(YhgB=R47JMUpF2_K9OG>B=JdAsT@Vq{(^ z@n+}stSAJka|M*h3?*BLThg5GUhZ}1$zT_AVknWXT9cI+cz|*kzvpdl7e{l!f`$+^ zDNoD{RWHlxz#gE*utk^2A1TXfYMU5i<8PH^HDQx!y|FlWBqmIcpB5t*2g3xO%A}Nk zn$?gm8jy6=38#Rilk^8-xTa^Pn8n6)!i$0-Rrp>iIi9IoK}+yV-7-;vXX={A@a`S1 zl{fhHtuZ`)gfD|_rwE|@Abm?Xy}yp(h0$$2(Nu4|!T(u|JWjWs(t>G1J{O~}0aoHT z-7@GO;yB$KG4eQ_S$gsE3Vvvawqjru$&SGnov2=wpMEEzsl7%lXobTmPW-~*6c-zA zIDJv-eb#CuE&I?rku?znOe3iQDG7|E1(l4h3l8}?DEsV_JT ztJOXsU_A^lOsiT*SkgLH#@}gR2J`5#bN}Y7npI1-uxqX<8N;7mzZfgKyh(QPK2oW3qj#;w^cp}u&}+Um08Dr?HfO!BV+gdktKB;6oM7OyFSJgbE&NH@|TWIY+`l_pe}%G-OcJ5^IR` zLvrcGQ~uXA*4ac)Jmzg6D50;D?DNj}e`U8(aGbCE@_{?OU0GjRfgvJ3MKPLdyS$m~ zK2vQ)o_l1CFb(zyKe`KoL)u{CB?=;&ddIwP4SwJ6{$^(OBJjr31kX{n7>QJzA)vi$@ZBu0E%tx}qgFL&q9}(~sbG)I7FWZ@k0g0I>d-ZD zu^Iw>5e5ky%uAx(UOCim{K(zT4tDBw0?uAKvLbtpI2Z!b$BSRm$HR$5>yvgLf9sFp z%lCR;uzZ$kNhRGkPS16go=oQcOMVY;v){{EQz2Dg&|(PIkdy=_j{hC!{44&4Ss`H| zrx18n9Z&6D8z*x!7DAM?iBod}m`~*ji$voR!ZXd?8jTd^Cz?huUQYMQqYV|p~dJ5O8B%R-ZV2jhWhJ= z6lAlx!SFgTD2pg)Vu7&sD4cp&8jPTo@NVCE>zd&W4L-7fcYN<1WQIq9kp6ZH_`Dyy zjm_{Fv}FiTYTP?1?y8#`7uu=01A{=eSdsmtfW|>^O8mk>a7qpW%P*>A#PP**^PypX z@;+@9^5{Q%A7)kKft0D|+DJ*D=T`P>PyZwo*!iMgysxslgu3jsDe-cHxjC)D4Q8l; z4Q4{Pqq-eB$+Qh0n3QXva^%@RrhO(_##S;%3#l>Ocr=lgb8Ck{ANLbjmxO-AjviA97~$e!qEJ z!10nNe}lUO6KJh5M?4%KX0`GpSX%7+_7iw2f?0Li+azJMC_u%l$kgJ!{MXZPW7@vy z5GKT_&j((BOX>XS|GSO$LCtHkW5*6qK`3lnREmMzg4w&xR#n=Bc#i6>pZt zo(x7Hy;LDgowG9gB{rV|q90$xA{()nX)#VL^XKZ>b*KOJn56{=*^|9MB^169K+EE@JDEXIu`8_#-1@3Ses@B)lf6svaH_(GiB^QsY>m_` zhG+)Y()zb4sNJmMHT9B@;Jkkcg9Dz@mp(68&^8#!cPD1|HcKXy;FpuK@u~#+_K}G) z$7X67^z9)8hfyUkseVsR!5DUy7URe^Fx8o^Q;E3t9-mtCE~D8FaQ*z6RI0m%a5-`#SIK?fxrug6?U-G9vY~XoxI4NBLu?n zo-2Ogc+Uma*2}GNDcO%(jrZ&8WZ%wuP~C8p7n72}D4$cwHQ7h0*<z*b}B| zF>J*X;`)>%oV1fd-d=hp33iGur+T9A6^Lr!-kg^0zuK43Q#ur+XydTYI9?SrsZI}3 z=`bQ$MN2Rud0UiVL;?oGBpF5|+d)u_NOn>Tj7YXh{@A+|@Q4AdpljRC; zI;}yl)DIuKzc+98Zr|=*^!E+&$8wo@^ZLAf zQ#X)YB8bwCoJYC9(P+sJnNN7KD0Lie<+@w8Cm@we4d2a*r!y(yp{dU9v=o!(&iom_ zue}o--;OpBYcie^;W_0Q34FkJ6KeA8vVsa;@6v+U(4VJ0<&=zIxq*$%nqMBnm2N&b zP<1Lgx@8w@R7xoXd#q>(H#U8$RX&{W`%Ur8r>Jqc{=+Ul!?TnYqhRxSMOPmL2U>x% zIwvkIFg>@?Vhl<1y>cGQ(ZHU^+8L<rC^DZC82Ag9c%9OO4Lr4 zeRiwx|4T(XrWU|w=s%>CZIMsXVifs9FVF4n>*8$SV#r#;c^4TX+kAWdJwtMv?*r2c z=Bb`qiKP2r{$zVYsvNPaiDboNOK;yTaHHAZv}z<$h12XFXXI9EJY0pU?Cd zv>5#&i_hxsD|Et#`bTd!xSEwH(?p`&lF0EKc_+|jYrd_i5*izqe&$SdD1?+!SL5AmMT8vh`*5cUFz{Rn(O?9!w zF%S}?OyY+Y2Z@!y@r{b-5lRITBsjRSpdeFyCXpXqP|(8jEUm`$;c1XH;@N~(5;1*< z$q?QsQzOXyPaeu^*|5S^nB^9aB=Qbd7c_N}x3`gm!9Oe=;{IX2Z#`d9p6qFZv$PoX z^<^Soyr`hNvjHj?FS}405$_E)z!eq;1($-8rH7uf6#TGMF!32n!bAYb?Gk|0X6q=J zX@Gu!GYw&q{pH1(27b%Zg4Lcp%96`f!%4E?TS*lWcu84oN$}E_aPS=@U*r9~ z`veo1H9jMLVb=HzXaa^!5hv(#VWLG$(7!j)cSXdds#`8{ShQ%0uMRJ`r67|hPxcM= zyhoLUW3jhLNidWA7l_{IIYSW3B=YMQ-EwIcKJIv08wyxz(4Gd`fUi6R;zcbxgpH*3Vnu=|g$J1nf;%0btw!`eA$r&W2u@=q=v63c$5p=GX#t=- zwY1_N9L6@gwcUF*Wq5X4_6RR6A=UsQ&H0IXz1w?x2v#wM^c24^hV*R0<8Jb`WO&QP z17g;zC+vy!T^`8`Zr=tYnK4ve;RUH9NQq51=-+ktnqT@it1oGl8 zm}yPqC=YFMiyI6+G`8bPpYFMXR-ln@gd4^~S0dg^tA#04sK)LO=&|QUW|hY+u7(|~ z!NgEX6zxDuY<&nKmK{D6P0$Yi5x>w5|M@@Ip~<}kqdey*UF?nDkrG1p*Lw>#d1^HU zLcxJPy0_X?YW`2E`IIoQCQYpsR9b_ohZLR3yM6C(`r=hdQ`2lh96kr z8|bZq=#fVX{_nBHI-YqoC5b*wONeAZMEZ2Xm!b(O^egcT75Wt_G=_wh#&APelX|I@ z`yVUlp?bcfWN_*;yAtO0FEr&3tbuv`pB>eqsn4I9Rx$OdCdsMK7!gtJ{C@S51#RN( z@M*2@ebd>6;Uhiue)dX;@Zj{!{lavIwf*mKc4z4ufvo}UsHpxhm z%ix3s{^mMgdPD~HJzcP#OUseVE%OcSK`F3BkhzjU%hp)erK6*jfb1=TUA&IYkuAr^wrpWZKuY&&C2=xEh z=xZI3{`mt14>{?Jp;U61v(Su4ZYh|#+1JnWFlEh^Vp)S&N6VZozTr{Nf?)%-b9#6V zxLY@{=~_d$XM~V=$QdWA_~Na;I*Ame-4(6F&985Tk(}p06g3XgY}Bpg2;{vad)9-$ zvcq@U^8;;!`$4k*Hv-P+|5=cs{+`6yUB0%SKPikDY{Lg%BX@*4aG$W4s;3=c)rSr{ zSa+NJki;*$+gISEZx6I>&Mo-wlW@4$Yo~9Zr&TiPoj6>y!L75bEt0Kett2^Iv;i!9 z-zLf3rqkXih*CV=DMs|hqm`G|<=@`xYpD$2arc1|N+}4=IP_1hV#Z-q1TFaQ_q8J4 zXx%s8J(;&ZQqadqKav(K_&_phA@*p&EYAYUkV^~JnD{ExLZOoER)U2tsD$GW`id0K z?G&NQe_BZYStsf5-{srrxu1f&=vxEidn_xg3uC~-7i3`OZl722yi765n6S>M%lGZ^ zbx@Bb^KbU}ay)NS7&OC?s?6|71T!>##Fs_PV0DX^lliDee3?!LBALO0KP1)g@dpKu zd48u1xzu2d`+u?2a41X-7Cumen3GYzO5(|n`+BL+O>t7j_F4<@ZRxfA=;OX|p7trE z8@TM%PTH$=iroLvnS#2Qv_NxHWRHO+IB#OpwgBF?qX60eLE{o1@uY8%XN;Q`iL4zY zTaHF>cS*y_v!51ZMyu0O|~{|wByJxUPE>5kngGIf72 zMGl${tcMklZQmE_zMmsn#O)DB1#p(XiAi z-U*XZ<(n~0G_e-w#Ui#ch_87I_AU*gsBjH?AuYja;6bT!4ch?=VanQ8H-I*PPHvr$ z>X(X(*h(Hh_&V%ON*fs)r<$p9Av=RKsf4X{<6z>Q6mg6yhA2T(StmIjP9<4H!#@hX z@VrJFxw43NQe_tL9)&?=y;YU6PDD@^rV%zP*6x(oQu)5W3JRPI*pWL7{-sp$0$sm8 zFxc}K&Uq5vNt6IwB}m` zLNLI~u+raqyI=`dU-h2EG8>;2sL0$nx~}8wR#5!c-;3udU0)jbMO4-YQJ>8yLWyoPjMIv zeX3$%ctjS?dIQZPvf$~PpXyWsj$FgIb?6V@Z3`$*_-?yOl;FD!9K?RNtxvb!ZJf41 zMc!7G6g#98j3|=h2CY@;a)Z_?iVI(Em9zw3ZUBoLv>dSZ%k380z<#;ilrCRxSMj|U ze1+;9ASgCyITV0f#&;(Np7nfBkzlm5RcD2;Z_;rYvob9;P+#%XYDPTVUec{ci;??U z&EVrcf!59jq4!XOFf!`;bS;bDl^*ErX+x3OtH3$57-_U=#Mv~)JGnd%m)0WKRm zC1C-$Qaq* zTPe7}m&%jk7rs=UY*y7vrE8RSRiu~7A5q#M&oL?xzElpAlHg0_){A_pjH#)u@q9%P z<4Z+31-n6m`_NCw-?$Gw0t*$#o5}aXDOd?o9AVCk{#8dv$u_#R}rpTHJ6jDbwoQW zgT6Xi>rmY-uAn+k9XY&=YtFaj1e!ZJ#+wok+?Ka4s;IdY6MImWF(wvP#cfG*neS6> zG2idPm&CxGKV2v)42hFz33m7{&1Fb*z+y-|r3$fQKlXoxzS9j65Fk3nP!GMOBe!V4`+qq{vgR5k#Jr0zq)`0wYg4DG5fN6&D$Kj;3gg z&u^^VJ1RG&YGW188d_<`nr$ttShIuHW31WIqKe4)U<(;*=8Gm| zZb7}Hh0MS1ptvyD9Hb>8*eG}K6V0`@9tUVB{ZiL};Y6@mE!v?fAkCN_WVJSVjs7WT8Y3fEo2J!Txxy| z#govI^oGa{;#%UY`k3_mUY-mJ?qb@)-@K(9ki+rB4q9P+82x%J zRbg-!;HV{Bc!A^ap_HtPOY4((16#__HHCt@IJA~ICt4g1L=KZ|$`+~%wi4~o<#g8$ znOd=z_LrbJWGC$JT`kzafVD>a!hp2~=tdrYugKDtMhaM6UoWi5M`S|+_y83Pqt-p7 zBp9{UUS!lt^J{VZ;~Z_X=ODo@N8fd=umJXR+CGH9tt z%W$$LEFKQ}LWT^Zk4S~$=yQY2g1OB>=T5C|NpS3W5T2C)s*4`K)F zXAb6jva;&(KYBwNJBVQCJ2ti%1gq5t`#|bd?x^^q`5<*bD_(keAlWm3*1!uspQlYt zYwC@_XGL)<8Ltdb2E?mWJKyqzW)3gCY>Jh1E#^!5X-VpmR&Z|+Od%8tI<$xTDPi1R zL`#B30h((j=aqO@3uyUz5x?Z?C6ZBak_9(XX9+*GlpjPla1Ss2qIo~>))2aFA#~fq z&^^D41G=;ttt(FK;@=l*y%TX4lMCnDyWmTHuf!EZ!H>!{cO@4o>f5{c$*-D!m3f~) zz7rl-z=tTr$fQD)EWe^+5A3lN;}lU>@%%1e?*w2um=@Po1yVbnZj;KldFwREU4Bun zQNsH#=umGl;tw$mXPGwc27=qfql3^kJ{pK zuXsEp9-i0X(Lg*-yaA8X;_=a8c$^fE%}3y|Lp&CDISS8i;xXhHJVuGf`nTY*Q9KsC z4Ug-@BkEmv)De$A#UtuHcx)Gso#HY319;385B)=U-M)cGZ}F)779RV>BjbB`v=@&ZXW?lrj11#Fq5wyt*!IKw2nkjiRR}=X}SE!Q21ix z;V~LhpZb=cAF9P$jTd-YM{d_rv@2EbI?MkW2|;Q7Imu(U$j}7{9X0Q~FAGz&Zq?EepH}#SgHKt#B*`#%S8(%5!9hkTnwqfI5 z>^l5F8O#o&Ue<--IoGueK7$g{%C<7l%BJ5W2iS6O;MMd>v zbIx3UbAI6U@9XiomuhcB#C{QnWJ)j9n(+hQY1#bvK)qJwR~1?dHD&~rfX{BVD2<<3 z;J=KO+vP&s&b(k_{hEAxi|Cr(2~cHe?tjgL&NzbCzf8L;61wA;X;aypi0JkVtzXL< z5nCHMk1$*`quBvfIFI{APvFgGY4@^Qo#=~r_UG*wZ!udN?OASDwc$&ny7o`Dky>+^ zVMsT8k=8ou-Zrow`Sr3^?0y>qTAm*mki&#enY`d+R5Z`t>Z#6Zro$ZdVki?ZGxB)j z@e%ER5nosc63pQT7HIW(y=yh^hN<-$R(?E3+pVf^w&BWJ|KzAQLF_eq6UzD3FZGM& z7v^c*_}%lghhu&cTHxT|W7bvd`FKNpUZuIBynG3Xq)fhX5i;|*#--d5lsO5UTw;7QJZxG+s8~q$0Dsn zsZk8{_=00vCsslz3-zh};NzR(plX=vMxyFEM#Z&-4~i5vO5~n<^cbF2p+)n|V_IW= z|H^6&$0Mjz>BT!-t99`7vU!sljh`+`Xus^sV=o18I?>=sA>H|2FN2 zGMpd3O>4nM67m=m&!nXVZD~`8EErj#ml*F6%Me) zQs9F&8?>eDX1mqD=#g-i&sJc+c3}#P=EZktud938@unNK4E88t0@b*?3N`MRYE+T;o0@o zb}H10#ZC6IyLNRCwNTXJ0w>6XTc)eh$`NxkKk=pJt8W0B6}2$6ny{{7EiXS(v!RE! z;wL}V)79kmVsb8ruYOQ#A1m6(oB01Lei{6Y2eqtZpZHB9XR0WW*-#r^dLl22_k2hj z$bPenMb|Ip)x3>A+(|s1pKaW2c-(tkdqE~&(kZ$_h!H`th|ij@M0;XHDY`tk$*~{w zDg66~wOOnk0p8nKFNUdwgO6%StQ9E_bkLjeqw9v(<>L-&8A?~4vqx*k0t90Ai`pc$ zbB8K&u)ZB|MMV8?dtSO%>(HRCXo;$`4q&(9tM_V69W+bR^mgt7i04nh3QF=LT73`U z593HLUUq+=mePU8-3WJzrFY=UlYvbB^CQ|!b~RxXMVu!^oJY!CBCeJqt|bsC;>xN- z++3xI)*SvkDI%qbBDxAt#5NvMYDsqjCJ@vsUE(Q~+7;|DVG_lARf_j2DM#`4%uqV0 zCp++*sYYw|IjKd_j#nkx87W#6I6t5L;_$Y_eAcFoSEX!}Aj;+{NaXQPYnq3YTC$x> z9u#J|hWoTnSW2et$wD->NhVjC=uKG@QXyp9@JOIF|9WZvIR4!5CJmX7R14vhY+n8x zbmz#Ut1g-7o+x0+E&W@@*A==!|FkyA0ogTswI&X-C?Vwo3KIF!XSEwVq?A}sNfb;J zhI~`&sGndn38yIGG)uy1q{8W(>UEhs?=h_{TSh=o%B6oNescBhq#ZVJz7Ea@uZTQ}L z`BV5uhqa9nr+n_J{)D3aip@F(Ii%+djLplBXwR}`#2%OcF0~6n3E;m)coAD?W4AND zga|Y%ZsR#`!Gzueqygr7_hiYO>Pb>z=TuM&IaLBb^|scUz2pYL#0o$#vAQ!$B#RT- zaRP-DKC&pBAr&?Ss6`5a_h9(;n;T@$zM9<>2Lbp<$NTW6ZkP>bwkDL2N^G{2qZz5N zsfb!}dE~wiv~-s320=LhBq#?ah!K^T1&$j`5H|p`VF@B_B@@Jj;FzHVQM8c>;#k4N z20rW~%}BmYl+pxok*$X|{QS#>*2K?5C*%E-E3R?3EGHl^q$%`LR6qqg(`{gpP-j{w zT3~0oTKvM!bagg%CNJ$w!N%8Q$zf37Q*B+uZngd2=vL=m|K7`29M`^O8;C^Mqt@C5 zp&s?`(cE%U8^?CqB~LbV2@Pr&-UzFcf&884ZD1y#fvtDEGh?VMEk^FHV^31RS6Js z>3e}zm`l@E(xq2`djws&k!T}bI$O{ef8MaJ;x!Mi-|XwA{K8jST=Lxlg!=a?Q4kye zh5Va$KBYw~I6(}qz0%#N6BSRmHpK$?(6zxHwrlqnEzq@##V>U2;+(2odu6tC?We!h zHbivo9T(@?m9R*pD{Lwe1U-79T@do{ikWy?S|$^y+0f+#b#EbVKcML6xm5slh9M&|>-458>lJWp~0YvhZgX z+wX4ql-&|D-Jr*8P;~ByvgD9>Js&WHIX7)3oqH@eNYJ@sMH}hd zYDf4rpO3i!CotxUQtHp;Hgi_I7L%d;we!TE%iN7>3XH+-D*TyZfhzRpxjDq2Q$-8( z=QQyP{W+~;)&5+TBmKGb7j15Y8LN7~YCkZTOb&5@&ZyZ1A!odZBlUKs6#F~)VJ{oI z?T6k7G%I>`lv7l{{H}e;#*${}h$B0qBPv6AdM&tNuuq&`pKm-R;(_68*Zt%;U z;Jg0P`mmL5pqrgQCsaL}FKVnuuYXf7WcRqC?{q@nnykn2r;GYD;H#4L*6dj~_|r~s zKt7bc=LUMq33Rl*uO6SasctNXUm5IsH~2RW@C`NfIjmME+nlH@vL z#Tf6YPB=dS_l`eSU+)}$m1u}+vu4kL9?nisdSZy@Aq8YGr>+H)!z7uqil2|wm$EMi zBgp?}7XP1-3go|}Q@xC+UpqzdV>?+I`<+yy06$kHKrNq~U;*RvoVZcVi3ry07?4B} zC`k~(TYLQwJdXsQl~xlyq?XEaoXV5M?`f!SWu1JWBr6OHp_Hr*P4py|MT$|RH}}I` zIOh`de6^>K??}-LSZ@M?vnt(rPJKPXV$&cg6`1ASRK1AEWX+0Y`J_ygCXT#a1&MrX zn(p_IQX-rJ+Xk&m&F?=gN2R}hER&bD8*q??6S~l z%R*lg5ESL}DnvOS62)a9>qN(4OB6~IE#xY&EJRAFfUh|O1Pl53u5^7mYo@te5U!6& z0Ut~u&?25mG=iZG3oqX=g+YuDxPX6QcUIv(8$qT4b8fpRSU zJ2}9yr5r|UJ)gLobtC&UOAbmF?L-Ssw${gZNC7p`REKEMZS~LC0m2}P_KXzm8B&g- z;jH;Pnw&L%kJO@AZ~dKECs3>?5%$EyIT6gd((W0JAACVeW-g)w)t@!Kz5^_P{OYE6 z;qU0x;KzLE4v%H(SyfT<@{)IY)`kID!2_KWd3I8(+Pq_yo>n7ChkYQ6?g=zwDex;8 zJ5k6cJSS7n3wOWPL3-1(_0|#TVNj>iq1jvoiM(-+Ug9C8)OJrfY=@KPBM5`ScIpsa zzHx_;3N&75(Mp}6%SrQ@1O$bfR)ui$Q8;x%CtR~4(peV@0!^GQchQv7<#3_sK}~PZ zZgW#xRRy&zK~`FTx||vRi;%-T48I|{@U0+q4V)N< z*qEKKXG9iHEa^~k=$x(sYhIj`Qs*2fsE6Lp_;UMiXZ=%_YuH@~JybWOhw7vPJ+v&P ze_g(~tKLj0=6805QBDbg5Du#LGpfi7M;gJraDRbLql4xFaqfQwq+DX|e<7r%V(x!lCpq`;$foVNf122XVuCreJ*Tr% z2#sUld&Dms1K(p*HTNIWUB5cQ$oFV>eLH)Os1HZJ`|N_y$amev&G?9Em>j;Or(Vk5 zw6T+sZv>hZhYdOMy}Xycik%|Oa6oqgv@9;~{upd3HfP{i_IEeb&n_s}@U)?6d!4|l z#PagqdOv{_CsV3oD>Sw{3IxN(cC?io+dTo636AaJL>oD_3kdQ@4Zftm-YWU9D5itE zCv9P1pmj8m!qeVtlINwx&;nfpRAswHiNK1kQ7V3+Ym}N1Tmv?4q(!x^7|OpZ*89mx zZfi0!h_^TF^%+5q-e-i4p0taCnSQ?iL_$AaYp||+Rth0dB{#vBtp3!y;imjsNGa3{1FV=-{r-WQ z@^>Bnp7A4-8`V`m)p*hn{ne;#W)z>bHaU~+u*vcCq55dgeRctI)nDCV@(+gU*SkTR z@wBczI(nXV!$$#1zGGc-GY`RS;^y@Rn*}f(D{m1!0pNehb2fZbU zM~Zl)@vJhvZ@kU2HGqooi-V*|u+|aZE|HKC!eUQ`7JTc*5`(Z0%;0yDt-dzv5s8D^Ocu3GI&zA8O??A zI;eyF;s(@geqe3?IJML-PFwlK*_Onpzkt8JS2W6r0@nDVz0>>g_{n+?cDcZfJ!Lu% zEYRiYm6>*-_=O#1&P8^VB~#%{hB-z5yf_l}ZPmvDQ?n z{e0Eerp`8#ii11MNeZY5_R#axj2Ut2J$@dSZ*=5mrs*>ptP+qkn6Kv3r|Ta%Q0MG7 zi<80tiC8@L8{J#^)(m~J!VVGAv(M?xDksg<>nQAXQoQsmB=(2=c(R4ywGN?#;mw<^ zH&NJefs$T#4tS zuhd(xgj|P16~orr)eH0hU($3yb-n;Btjoc=wfM|adYu?T+Aj~oBsz+$&e%E^UR?`{ z_N)F}d3ePS1t)K7lq}xFIk=4$T;SL|y|1e0%8o6z(W)JD`N0il-zstDUQ^U9>N3EE z=YM9oMV&50EldIGP9JixD39=x>ZlKhOdJLFZ zy0u*^20udaMtE2J2X1BU&6Q_j9?q3VM(SLrzsbHM&9G-*$dx_&XHo$@dm{f~m7a22 z*|`+ix79q+w>w2ug14+WRJVX1U8Yyt4N;tKN0*KN<*MF20m3ATYza8y-80ZC)i*HTq*T`Rb94lntuVVwG4 zt~~ZqF{np0e{;G1jxvhhbu+B!j3IQ;;v@2i#izjazT#kpP?XXF&bh33Hz$T41+U>< zNBN^StkA1-m51#G=O)15@8}8;YY5>3#hULHYha%AfB|{Z1MVN;-^^|$&BTj}A81fF zI(~)Qdv2C(;U0tZRWQZ(AZq5eCI6`{JN-J@>DSOsf2-{D-UwZ?Vnr@5_2o6?19~TA zsLumGtMv@_f|HeE^*|n912L}J9sfwRJANf-_=KWUI9j*zc7(eAexH7OO)@ z3!67+FAAtD*A%>1C-2mJY4@w|(9f{~(iH8UR%0ZKbGuAuXLCF>@fTR7t958X`AYah z&W0;mHc?Mwc@iF+P)~y2L&T40{1bU{`T6I~`ZJ7p2S53op3i^VqCd=TqTJo9Pb|LP zE)XwROr4&qws|?2_XhsmHoa+$8vrq%p7phlcipbnX56O3OSkJ26C)6=*pLrVcR}l> zyyR)UH@lBE*{u&&@6P9IcEG#f2~u%vhpb4i+YM66fze*}0;vT9bmmJ~T1`G{cTtIW zJ*4f`QxVZi@Qy$6RK4hgh>Y-qck9XO;(T}snB(}LcjO* zIDohV1o(G)$x=}uvsFmif+On$S_}Y~k8cnp`+0v5EpSZzqxgkm>L2svn0mUf5N@@c z3HhMdYPoNxetWp3H{PRfW}eOf988pjrR&%QAxrPNC`(V_nfK`R_|*IKCTetNp0m$L zZ)uYM4=3S0IL;u=lBEnKm?fkp)>FD10+k#d`MF1vx0+hnPS1u1SMkd)$m zq?}TGf|T17Tkx_ydIEcaRN7=g+LrvwJ-XqR_5%V=X@5b=Dea#~IiEF1wF~j4 zP^UuLdmh#OLE38T&SF!i>{;H(Ru>aUNorJQ(zT)m=~v)0k`>Ja9r0(dYk^;3*8*>G zcCDH=yQFJ*X)(0GuGIv5Q*6Kdb7xUAZ?>R-9V|!u!VZ?xrK%2g?-MX_85T-cRzhhX zsuIz`de{Y_4z~9qJ6K93Y!49~4301_eoD_~BWxnFYek@1F}zE#Yl%2oL7Rv;I=PFC zqw`3Gu(+tOEb*6t<> z!UCz676SlUdw3UO?Z-qrwD#lT7h3!ADy`k(IsFl8?MirYZdTZvHgO&hmVV7H2wD26 z>RUQzxUocz84oFEmlku=#m#6MU)3rc{y{g~1< zq&L3fRWLDB;GwbrkDreh+P$OQ`$FVC36ml@z;@~<`fz6=;Iaos~ zYz}5SImo?nxQ8Eo0|-1oz>&Z`7J(;81rmS?B=8ccunFAbB#?JRAH$9lNW}e-h5HPt zK-^FPxD)u7cPg#fZ=@Cph^_e{^srfTJZo5B8y7Lh7Fc`oNd;ntiZ!5mQbZ>)bD zy1Ts?vB{UHH|QB21*FWZr%^5}8>l)_BH zEly<=2IN#m5vdSU87kbOZO>8`2jol!kdreRE0=q#Gm~KlM=_zMn0($TnDnDe*)tiF z2uC=RVZw)~#Y{#RIL>5Tgp)bk*GMr=wmu(*(poDaD0!O4^j6+-Mqi?^PYD9RTgJX11&Hy}06%tCUmp(n za|Fot=k);&NHNqV@>!QAQ)bFX`BV7OKFsr6oPSYz+bEiAlTv%1e%=)Bd4Q7q8egB6pZua z2V{r+qQ9uHYe;LHIiJ?ppU;+&QlWa~8h-pYeQh}O*5CC-jE6(d{X;jyp+EXVuVDAP zpw(+&JDcij;sAFU%Q}zSfi%Tch3xA5{!vX8p4!o5{#)#DY88u{eY4{R<21m%<#q^ zdLe4Y|3l;9j&|q**avUuM*AQyS$=KJ$~zhv#~|?_7(-MOlOAg{ zW5uKr{h&{g-4o&NA|=kyLT=E&4j0ykHGF(&5_EP-0=?ief)?XAFoXNJD5UKMVWsE> zwA4;rZX&4B4Ja6*d@aRT;9$vayzw6!r==O)9gXotvNp|_#U3J!(duE8(dv#;;WB9T zXaAw`a0gM_>N!Qk>REhibK}44bArpZ_i@YK$4M>P8;?BvugE&`@C&I%i~pBe9M*_B zSQZzj9Eio+%iw!lTAUI=i#P6WcL}sOu!9z-khaCcO3$@27BX6jM%!L@hL3e3sL|pS z3{m!MV>EX(w)OY1Lw}VU^37&SG({N7b_Vmk?ZB4@lgg0#AX80m58dT5QYn_+`N`f0B=U^Vlgtr$3v=vB8m4LaB%7m)>X!i`A z-A8bu>S!}WwqnnW%N-;_s#8jZY=v-{4!rZT_-4ag#ST+^A*_5kP3A^-n6693Y-MQ?#)+pG#c;|Bcd9x9t2j1%+op< z`RFHnMkhnZz*_!_hf1nTN!#~8FWI0OVw8k3PA15NfAEKWMuwmn%!w^v{JSLA$h7`O zC*FR~6|H#oV?&FguI&LkDAte8W!DpYVpOUu;pv@>Jn61klNHod&qaxqoh{oFzR*S^4N%|bat53 zpx3-=bE&@H12e@)dd!n-0s$P?QUa*WGXyWjD*-7sQ&UK(%B-}6XabFetk7uT07WhD zd17!){?Pz)xLUU-PruCcG1fDrCXPe@+CA;}tD4XghyF@OezKcE2drk0d%Ja)B6zD& z<^luFiL4#Lj~$#sNcKfiNlWbxzDKAsN1n@)y}WW!4|KKK|3*}r!-SPLe1{s z6MI@cd@`vPwo=DaVQ2NUjpgdzU8T7FdP-waGH9$D2x2srfE31}kSMJf8-|z0^fkIT zN-;vt>uVIS?F2O{FbrjF#?}A#ww2Jfv+{p$#|6#G^pS?Y+KppI8)h{dFXjIm zW2~(n*GqZcIOCP-wtc+J*jUZBmCATyY)v+T_yM>LoMY-GW5p0sfx&TgaotRwJ=JK# zW|As&&}qF$P@FFv6oa}ra@Noubri}t0jPOwzftLo(!ef#&1HtpRuS}~OAD3)g`Jbb z!JnvrTjX}Qz?C7~oMvP?pl44r`mskTAcz_z_=wxnU3Y?tl>g|PN?Z0KffwTiWyppZ zFe;=>mv=IY+52H|{M#8Y+fM;)>Aoh=L^`jvg;VgfL#yAAV}Sb21q`yiIMc-g$kvRn zezbcwi|K6#4q;0aFzK=GvmLD9fCvRlCGbK(gfDo!`)~(5M7&~>%2_rn?Ip)G#r)WV zhL>ke@zmviU2Zf}yY}XRV}U04|G7XDxT$gE6)-2zlhDFE07flyXy&b!_Qt>lFVidM z7;VYOrKj{7m~)?F6o!{~7Ud>Sdqjzb^GnFhfFr%?@+nsuw=1(Z%r&M!Qa^RB(UUE3 z^Dx)V!}TE^?z+n8L!|B{dAOpte8XKqFk$DwBUGjHjApQRe9kIC4{d)oP<58$*zy z;zkhWr-YbayvFE66c=Q^FD?RxOVwB)ar)crwZ_gGHv%<&zITVlywh#Q&1?lBj(N@U zzA~>_PAX*RUI(#cdtZM0I`Eb|NiFicmGJyfi0A$54UO>JPbwTp2)AUE1io!YZGiOS zd4d|#iRE13MtTZ?uF^j5khbW=Te)E{+liO+6WqvEzwFDCZZ}fd*907;I8CJZF(gIS z9R^(*u%*DU8Q}{Tn}{ha$YtTC=(f?=0+-C5+-MXjDLi8njIz`EIel17>PNE0w*7)m z+-0-Tis-bz)M?{>d`Ckwg*7Hvc5F5-gOOJ37NZv{BIQC_CrR@!ze+AZ0S|z0DZFrn+fNq%?<;p2gV`oGbxx`83{j80+ZaY{R4nzkj?cdvM!M?=5}5$rZ477o zNU3m1bzMLH<4U7_3IVUuCl8ax!Y9|yYC}T?pu)IHP|1*yd>odbPxa&H?}2yH7X%5K z?=vdgxsY&6PB@mJgTnR0AVE}XRjhWZHuip_L>xrE-)O4F_U8eSm&Wot?uTC4sK3)Y z;iFdP9|}g;X8nWC`QZb`0HWLhQn?KTtT@RT7hYEn>*VANTDTXuEOJmNIjC1CNC&^q zQ;RRzWi)htpr?@so){SwJrQ6%21I`}La@J)F0@`(={52$ncJ5wxW zA)mI}$Ya;I8JSNQxiQ3u$gqelN+lz6`*S;wol7v;Db}|BGR4|KYB6qYA#@%L(Q&0% zHXU@hFcO$z9qLa~tQXyM4iY*?LUcrmRh2wRQ9wuLSg@y}F8^?m;o%(~H(ID)_UD5h z2iN}EP2@Bo@?(g|!Y3S_Z42Yd8?1`U1rn#}F0VAEtMSEXIu4gfb%$m8z>`LRB^5h; zTWwTKB5wwG<)}_R7;p7{&L|=dG*H?tfxq#T(Jm#yMp9)c$hToc`Y@8DR|&;33=lM! zUMYik_CCl1hmfWi07@y3<3c=&^ePgMYo0L*iH$7YUH@T@_ zPpPjBQFm!*kkrspzU?_9Gi9lbq)H9lXTt~$W$^w742`I1sih`@D`JB6Tro+o4icoO zyZw~=*F)Tk42$S4#Jx**R{1qf-K8HghN|Bd%R#;PAA+a&d+#Bml>O-D;2h=Pj}QkJ zUND9bD-D+VI|D+)>8$XIubnJJzhul)lLtr#-}aKx3wGFk^^#G1IpniYQh^Q$eRNICZk*4P&vgVZ&i#s=8$WhZ{qBvTbh8Hn};wKcwZIZyJ4x zmWN6$-#&nEe-4H-w-ZdZmY*Y~sO8(GmI-u~T0TbFqLw!vb!ZtVqn1xuTKH^?!kNqS-h-fnF?{l;#b}mb@3Ic|VR53vzFMbkDL6cyTWKeL;klJ|rB$6$DmZ1_ zLC>wo1D|Q9jc;R$M04xl4D3E`(X4>=vx_($`zb0Fd)wuqt>OZ^HptqFhpT_KW$CTv zm3-?^vkpJ$uHX5l>hH5n8%z+nuwF5-pEbl6;5w`Z5&|B zNDJJ3zqC{yD!Haq9&4HRElkgR`wM)NX8yNE7TZGLaU1^~F8FER!MercZm7Mb^0dVv zQi0^4!afmkjMT!6OPdYn)NZf`1rHNg{NRC$ZwMSR@r8x{XHtRap~6OAYhcK};yx7X z91nm{0`3DBsicvh1=DNUXJCn`11U#RO$W*|5qYG-rUJDNDtO>xFabr}B@*{|QjWMw zEZnn5g^e3(gShdm%W?vRXqQQ}oRlNlWzbL@b=gTOY_y_Q9CZQB<0*?Od12MmgK`um2Bv|2R|I;Up4_KH`ojb9D z{kWd`0oV;DZjvq;LjDM~ox*SdMU9*CD`Ipg)Jhu zaM=})z}!Gek(Wh0znzgKfz|~w?#9PI}Bqn7|5<7II&YlT}R^!Ze5ugQYZ-zsE6K5`PK)Y0Bome2Ml4o7c zHh@=o?e+EK_11eQ)NaJSA=q(s`intw{`Ct|fm+3*Lcf#JAo#)r^HxT|QBuuo4rTQQ z+dV|6RR!!gXX65I$#W86M_*b5@Rt)!Ukm|voHXi48bBzdCyjhi6?W1H$crAHV!OF@ zjDn~N2<)hx)Q}$-(KeIyBm@pNHj5J-fY#6pu<bHmXks3Zh9&#-mgc~Oh>-lI zmgcqWQi2ut;!G9=au^3M@*m(kiSK2YTiEpk4#X?sM`zDs%3!&!v4m90Y+T%we*0i+ z+wewGjbU^H?3WGQv~~Aj45Ny43M*CGn*A9q1=p0@ z3)O1|V;Zk600Ev1bf|3H&dgNVyM#}aQJiE_k6A(XHnWb#TKQ_kWG*pAO@4V^oolLp8c`d;havfzQ-_gNLVk=3d z?K$@hu{`HKQjMN-_Yl%O9vOn&<8M938aS;SB0Y!FL(h4IP(aTSkiv5)r0qFjrMSnL zmfG65WeDv_nU#85BVFO`OcPIN2Df?h>rGSaaSjCs{$JCC??LTk4Hz40yETemd#Eiw zf6os$^^sn~U7?|e3=QX{=zK;V5=N=p5yV1j-Zam2Ydr<}g`Fo%*nJdsR0uPiA(d!`n!_wJ)E?&Y&!}Oxf2wiAA`JpucCc0k&scV#w9pQ% z2nn=a4*(q&XvTc+TvCDMRFfprCz~6i#p*m;fLxVII>A>TS#}_-ek$KdL z_b+N<=k5(t>ou%QA8zigp}sIo-stuM$R=-bTv{iZ_Ze$m#=T?BeNo>)`T60!JccMI>ObHKC*=SK$@+x z|6H@X!n^{E_9Xj7oi@UHQ8yznXs(nI#1Gq#2=7h@d&8X>v&zhBhSG;r?+DqQD0?VY z7q?jPBV>01u^cw5w9iRrqFhp7Bi?I9y0^a#&O!5;B!<%Nd4{w?h; zsz*e18yUq9Y@ew!_z}_qDsPG?pvgdiB~|B$0^OTKH{UV$`7-1izGd#iW`;5T$G=ht!b zbw&W>^56Q~&8_SZ;Yuu?6+dSe_<=Pso3`TRi^>95^2K%hP5E;hA+LLQqdA`a$0osX zCF{MBa-r-iQh{qVP+{MSb%E4^0^9H~7iu+G>_1;3Cb-;mXXwmlmdf#weNo`AIFNf3>%m9my7)ZlmN2tEGUGOEetwzg5dp ztC|0;{s(BSbfISG0YR&;YiKChm z0D(BFSqAjZi=&!P6L93M(#4y`-&`Mah#ettfVP;uP72O{Y_@h3$Xs!T(n0-vl>D&V zX#$RNouqP|m2xp67eANh&md~HzKcM~u6fAp=pYNTjxBlDJ7U_fnxk#6!ud|x4o9ba zm+5sh#;M06HS4!viT~Jm{==}kLs5cHSToPBSemYsnpVq3$sG*TKL8qbFl@sp)HCjfl<)i{57gX4hi<4T6TzHozfZ$T|6{BU`iokls z<)dZXnqLXyNh@vGSe$pJ9e7Pv0oqCMTlMGyyFhB~x zU8Z)qobt4%Vm<&1iNpQ>As`sJ=04$wT&G6M$n}zdvmzIajPm$dwQn^emu-aFeEa)F zwbVC9%jiYf#prcG5T$~?PPi2pj`6+w&F`5q2Eb@+w#8&)q?j=T1k=>IV@SM8gyUuK zAqM6WGPhxc&4KlCB4rHU_6w}bQJOAZElA3%E7JN2H}c@QD8NVyP6Clu<7f8`oD(&8 zjJ0w#lr+GwG?21iHb$;oQTAba8oumR*d!Jh#H+^wVl11>GVfQxteJP{P_Ndk|eJw`=)KC)=3Nw#6ES0E+R z`BifoqXl3gEADNw1io1ctachB;~upZKwEK-b}V8cjC;Qb#xd^wDt=+y`xV^nlP)bi z_T}xtxaWJrd@elhy5F z+0y_6$6C_>g9(i2wn_<~{h^s`e?n#KSlM$61fUh3a3+AgTiuy}1!A5gN$oXO1|`ZS zcJx_-6cw^NVbaynmy#;%MTf`VwVWBf#vb|qR*o0Af!Zi7bs1ZyB!r0Z{C9ROjw_HqWeAP$hpX?g~ zhh6;(Qh;5Z7TCGfpJQcib;&r8-STr3@OPJh(c@$sBLd3w%2v7csdY-|lTXccj24K_ zzMM zcMKp1!L6=W%H(Y1C{m7T-mo&_SCh&j`c-~>g>6vl8sY(b>n~=$gN}@I?kuxn|J?)>lc4RC?}y7|;3xedIGo;GCbPTS34&1MSJ#8U zBD=dD5Qyw}bFWS!JBql;7XmQ?QM}zL)rg!M;~{Rl$CGP5-g*V1Ior|1MTer8!;o*BhkV97?47)DD` zKyjc6QnHYUa3erzs=rW)kwqnIr^czjgGa*4L;XdBfX)F%UD}SPv>Ov&#(3(P03{et zW5h3vr!f<%il;B7`wxc4(>I&>_pl7noQ{;6*#)6^`us)4Q&?h3*wE2mi@(vrzms*g zDPT+$UuJFT@26@LNJt&x27(>SHc$e`uiwldKw?@^xzq{Nx3zyZTSkCzIc4btIVpJ? zslZ7|sIU(P?I5+_jBWVQ$J=#NCdfHSU=`zf1Z7qDCdjz{SUZ1aFs>6g8P}5m$QjpP z5%e&wADzHAxA#v?@`(}}`BH6`D$_dn>!|DlyTm=<|7?Oa;6FuRaKL{;D2bkC{(gdt z?MDSEqdZGX$ zJE$5X`{_>pds%w|htVT8wH;F?%2?i-REC0wS};+@@-Rs) zSNQzSeY>Z9{?NYNJ+NTIM{9l`Y~)>|`FF_6h`Z?!HvdLyD__4wO3g1bkwQpdN5Q6i z|D<3+h*SQu>F=gmY*xO}+22iJCy3L~9i_NmKAT`gbBAN= z<{#*27gD17p>6KamP$1h3dK039yqTUr!Y_vUKu-qkiv0FnJAFmiI?>7zZkV>k~M@{ zLO@ZQS5G3{;%2GM7^+QcMRMLGIfR-+5TGq_MRN8e$yym82(ota&uOEg2{dx{n3FS| zukPc2m%Ty20BJFMg%scjiWbI+$zV9l z0a}P(m;yBmKgy!Cy5YCPvoE^h(20x#AXQ_W} z__^tY1O4~0zM^?BwHDv}>uDDRC0TKQ_45k&Q0^4*rRq5T;hp0f^67(N8_YhZBPPp}&iO<96>Ju1fw{qS*t-8vr@rdc$?~N0ilP2^e)Uj)0lUc!dc6%Qa)E@1 z#Q4!+{!R5qL));EumoP_1cks^@N2oTqKQlg9v8nxbKeMmo8%GVH%$qOM1fSZwZ8&C zp1sd57N?rw!%bo<($Z~sYRh`J5BxvCUeGNNG3h>>0SQKC|0X^fYTg6-B_C<$s`cxH~8cMCKG&2=Upew86|@&BXk zy#u2xo`7MW=cri%q!1tkQb;I)BzFnzY6{Xx2t`E%DI$iWBO-#7Pz3^nx=Qa&r3wL2 zAa+y~Y*;|Rf`X!8Ljm=jo!z@&*&+vT@k7M$}X0ge9-y_y1*(@Q7$C-%XjPuC!N5nC&TKe~$`T7EDT*a@T z5iF<%v}{nlb5W&7M?E(7p@)~b;l&!>J^oxoB-DbF7C>%%yt5a)W=LqP4@zT=qye`f z*A-af;WeA?Zfi=icm+q@`W!qJ&OzaepLGEr5XcjcB;v!D-}n+Z5BtcD+~|nD6K?Es{q~@ zg2AN?;_+keBuqWP2f_>zj{xEOOc#9# zBD=WNfv+mOD9+m9sl5lpnGQS$6C(ECaNoIy*z>@Rsoo+phMC6tV!?%L(;VURU`FCS z##x6ZP8a>VM*Q!P_}_=(e?N);RTYvXivMNu^W&_E_^G`ywlQ6KkH@TS*hsIS1-$eR zE8HaR+@9qch2oc(9EwJidEzgzjJHmNZ#ih6=ro%vQ?>hq;vm?Hw?&cR(gobD(Vw|;+5kQTvdzU2w5bEJOCtItB z5(a=O-iz`nQvJK3oLzBpinX7nUnr1wqAma_yc6Z_*}giTQfO_@I~Q7)YL)nxg;q1G zG88%peMJG^(8bkasrkn=y#l;*Chnof<&6o`!-t9!&=!7sx^+ew64od_uoT73;aU~# zF1}-)HG$nl$PQ$-yznGZKnKd-QuAgLc;cG{c-Wa|ZnF+%R?-y4M4qjj`r?wgmYu3X z1}u9?%WUnY97UtQGKJ_jKrK^RcI0^fWyBmSTumClM?Gb=vO$Cop*en`Z(B2)NR{U;Wb6di>NXYXyF4uGLb0W%iNE>_a#a%8Z!eugv?TWO}cmQjy!| zTPLt3q?s_*h);zH&^}nC6aqK97g*bHp%CqcRE{_^u3ZqnEh`>Piq_7F?yAp6pABuM zeI|ZecwDv~#*g0<6A~3+x=#VjAgh0$;_g8nF|ECG>&92=&*8;+upG z-t*_r2k)H?YJa&5>VDBY_NG_8LJ+CsQ>Dcq%~u@v@- zBKU%()+Vf$JBVq8xs3s$#qu%BtQj~y)}HBFn;%_f%`DrfKqk{np>A~-3VwLa8i#~M z6wtm6am&G8nHR3GKEv9P2EwZN{10===NomLj)Xxdy%~n~xfk9(8%>CRphIZjj(WcyLq@n(p7+GK=ujCdeYN zVa7=9e%;<=0AbT2*l0fI)w1+SoWoXmRMq1pS8?Rgdq{<7l5maxu`Kw#4=9u3^G41X1L<;S9yID>=F2X6ANX=b!%4{O2 zw<|}i)tH^2)n2krVm(QLWtJnaTD~a2yZ~tK;!BXOFCZZ3Cvop}@GzOLA53d^TJ!ZM zhw%rFTH#?OQUPZ6us(5^^hWDvj}6y`;X+?)!_CiGQzE+xSX7D%p8zW_Y*{6mQS@5e z-AViiz_Ya!_r0(z5%9Pya1YOd*5b#Pv=8BvORe?vt9W7q(x4Es^>E1lOr zY_-LtiQm+&qX|#Ku1hu@wq|PV2~v!PeLi+rnGM^}+vOwHP&S_6M(bWk3WRmD`Jw== zJB?p>39`SN2!vtW>xN6?UPo(%ahD92#(kJnpm84j<#X2Nk#htz z>PBt90bXg|lz?I0pHb|>yaha(H-$IM`v*UG9r*V(Z|xTEzRMcV{-%(^y8ohlR~{j~ z(xZIWE7rt_AZ$zHrd*(L(*nb|SHmC_#yua@A&mPe7_uS}NxR7~ZZclzAUBLVX9Q>w zjk~S*g~r`>#GQ=$)z__sfyO=m4eOJkeMNI=*J1%IUP>Ko6!D8sx9z3(9U=D5)k~?p zjamH+piQv!B#)&7q_Xtw;+Oc-^T_4g5#o`{$a19Z&EMIU(wjX`N=tWI6L|jily-W_2;P6CJ&_$IwbGbIP-BvVk|7JY=RcR%_|9(S z(@vYpvgZ%+=xF_UV81pzZTYc3|2qjUm@?V30^+8#q!gXjKZi|abXucX01135<|_0G zJ{9w`FD;oH(SLyPDBg?t`*4|s4kd&=DG{F{6{S8~_K~e+*(TsqF*iT7?yaduj+AS+ z$dPL8c5GR*5MJ@qlvuw0TkG@i8h73$Ya`|uX^a`MAmRC+!Qy@-83XM{%C|@87#R7T zwNDw=Z@}U-tp%U>JtRh25W?Vy@*;YR0y>;6BjvsJ)RA&6KjmKg6gHeRgVAtb8M)Ah z8py?>O>0)N_y=o>2Co(z`_bB%Ehl7zS} z*NRawd;JwNZzLaBV9SAC63^uDZKLdY>~+$rJbHP>i(9INgIYSlYQJR&H~(TitN%EX zSN|2({67(TUIksD3i>mMg3P~J`;}2a`lXRP>v!myON27&CuEf0!1-GB?S+v%%x+8L zN4`rL!x{)EP>6!GAao^csci$wE@c{bWukS`RmA`#ITN%gXs9xl-cZY(hMS; z1m5~@a1m2!DMUo@5Le0H*3N;@ssBKBe{mr6@qet%eV~D*Tz=shTUn+M;Y0Ls2KTfR zia$*bS^k;r%?hso6MX$2DT(Yg%8tj7kJBD_FR%x|j@$6bnym`gO}4V+T?CV+mqw`^ z75wlHJ?xDOqJX-(!%CimqxgnvHZyk20Fa>9E4g=5sDsXpw0Bx)RG{Y!tr?Rti3AlqNRrM0mE!%34m}=PJ?d4N2K6~ z&!7z7EDEUBCQHdCDy>bsV4uwnkyho=+5v&v5w<)QpMUmjjsq#GM4WZ5McO_wod>R) zS4vG}7YTi@4$t}P@P{Begpj2TkF8zi(PsJ#c)$r7e)wwcZ-32wA~pA+(%h-aNflSr zwM}4QV~m!kBeD{C+}X4gQ@t@Jo_{v2Ijc{qOQ*Wvw&*KWn`?FXhB#_VT4R1Z+SbBn z%E-QDZ^AE3Y*}W98a75Azoi_aEm;LmbW~Iq?BwVmn@?9wPGNj*XexY0_Nu)uA79@# z)zlZ{O0J$7#~vhdc{{C-pICaq7<3V#B+i7eym~@f1BtUstgU_-J%#CBU^oF)l(*fYL|NZIl ztb~vgN?Y+=W3#`?N~OwthQh!kTbYC6-D7yna9cyRo6yEl@S(q!o|9tiFtjwCeMefA zRY78b@QoKYRS^VOCn{7QE1YQ)M*^z}zdYfbcT82|T2pE&di2=9Y3Fb=+x=x7M^(nE zaRfiSgHywBP|s(I)KR;ox%f^a>Y#W z7M6!0s#e_5i?P^BOiuvSKJlsXY!c;1g-j6h`KfkR5Y=8!FZ0+lJ*rg8k0skev;vV7 z$qVQHS{*HgfM=I+>C-d-sb4)%h29+fKtP6VJD^HDymzZaiz5WmL5rgQ)gYds|u8+;DCG zd8*5BNc?{1$8cVqjTt$cV6wgsK$vr|+6q0YBJoudbs z>j?O!9?){D^L3@pc|PjIV?pn9wRPody4sd%8n@)yQkiL-FuxT}rv^?7AqCEoH3T=?NTaAO5)bm0D}H2u5M^c7d?N|r$cD367k$H`+7 zzxyaHwgBFjzS_ffQR~Cs?+F&smyq-7tM@o!-a~@uYmCjV^mTmVWq4V2t+{Hs!qr~m z_=OHOxbRB25fetl1b>}%mtyI8OR%i7EwmOsvnb@=C^tpF5qi_ zCBLLZI&3I8l#lw<(ah@ys&nTGb0|-KCnbVE+uvNB-JpUA-|#Oj5M2Neqzfo~xx3&u zgJ0SO5DS%Rkh&NIA#nO*hBbP}dFo?ioI4&1^a~Jt!%Y9;)r!2{U|Vznlvp~|{zeBc1YiRs!HTXI>)-cK+-%mY$eG5Fy-_QJ>e z>FEchr|+en+73)z!x{-7&laRTGZ{{=SrT>gcs|YTYQoYY`ye(M;| zEj2TIQ{maOTuJ4bD6~fW%kj1>AGSoNhv)eV(@=0?;p?BN9j1Tp+d27@x`ptA52xbB zSsgxQq79x;oM4+(VGJPQSEo7~vPX$vp3c%n5#c5W=_|}g0k*Q{KTX5ND?b50yjn-` z7Ws=;K*W1^yqpRlp%=|h4TV6h`V412+eDC*V~A_(eM$K^g33)@|d4Tn|l1?#;m2K@zV=!84*57Hu=2|t{rn`@+osKSLVlRmN{TB)qh+KO8DXB z1s!d+D4>ou`f)jV)h;*!IXqtP66)Jd3Y zG(T2q3E}@N2FIB)C3Pv=MUa$7ZO8<p?J5eW zfhI}m;M4EgR)~b=%}*W229Q?e(Of^Jxdix^7^%2^!jFA!tIB`cV7qCW1I)g^Fg1hC zC1ky7n?=>ORH`kgYs-H5Y6m`GXZiNd^uh_;@}4c06%t->@NMx|+!Up_NkVaJ*kRJ3 zJUTn5bT-LXXIU3*5&Xik)CPRoYqofPt+%TZU$87Si?9E;RtWF3EVVJIsJA?|o_=8h zU$_H;%&!PzUafvfwfbX_!H7X-{$@Dvkh<)0C?9sJcDYvbrq7|1`|(tG6PvJuiv7o5 zv1gQGKawMIbY}X!Ec^*$9G6GCHJ*^R{E?4#OKR;FSzzlECcbl3YC5wMYF?GKeuCI< zyC=|o{T4Cr?~(nJz`vaDs>Y+&ly5L<8GPD4TL#M@?4Zi-69v?W%~C9Qx@F*g+bTAU zG$@a@3Y4}|;9p|Dr~XX};qwmK2J_s5wiiuHKy6tYVL7pkkoBsqn5u29RGZIaYdd5c zUe=kSi1$8hOJ+rcFe+$|zk=o}1Y|X9`#=LsGO!asph#sSl*+!O8 zkNUSyaPym>$ZrW{RAkkOek1KGrO5MAk>;(ok*vM|D*v%7Et;2}fbF#NzIq(Bwo^#S znpbTtwF-9wA^!7_Ogn2&NP1MH<%st5L`wd|z*&~PVH;aUHEAxM_NJ{Fa}nY~OW}h= z0kucFlmuQ2mRnezGsd&=q*XbF8*HkD} zAnK`l()L(c)x){@JzE^(ggC0_h`)N4Nf8z+^~BA{Xv;4gPVLR!CrxpO=E{tWEOv&L ziUb#caqS3%HxwR7m2dO(T`yNev3%{^yF+-B4{iCp)61zTa=L{-hw4=(iTSlIf9^wD zBnz2jn1E0?AFVYq^MRlE49Cbxfx{8!*$W@oYVbe4O$jg0u^(NZgoh`2jd#6i-0((% zFFG>+l|tS|)u&W+zkFQ3i^uQIXv}Ox1kIkA$fuO1CY#z$GVy0i;mB$`Qf(Yu$@Z7A z8^{<9a~4^A@~NNN(#kldbQ^?M;ya9#I~-I4{UvKHSjo{rGTMEfSo2nenb3f1=Q2~- zY$A%+I;Q(eQY?EbXsmhdOhz3z*pu0e+wUoJUIN~W|NES+F`GizLD4q)i#AD$Her%< zCv{Gw_GJf2tMa&${a)NeZ6y$HCTXT~(E0t|O|`P~gqT-jU-)b6a**-8>TBDmviAL% zNir5cL#U&IZuu+dBPqmbrJ%##+TLU}o-|AnlI2N!&m~ZHZBiXugEj$De(`i_1Aq7getbw)3ugC&*K0h4{mt;WjW0xT2TlJ&uI_wuOxC+aPC6pPpYX#pzhqiPE zUJdfEw5A6&BFIIV`Hw%@nwD{VnC3xe4F3##6a4T7ARvFYF!49_dUH@FIEcCan(aJ$ zg@BjGbdE_)&3uw*swW@*tL=N!Wnk^}m4XOvuG*q5`+*Sjn$LIsy82z}%ExuW^f0Kb z>iHUYxP3k~mcb9Ip1knNll}B_K}vG&Nj~s~?F_3Y>Qz8@`bcI^Q_^G;@6y|n${Ldz z?<}AnQE@Z3>ETYn|gnJm|apanYe|Gf?SwG;TozajFQNJ!u`KP|tqS)t9>rvi9UyP(L1gfgj$E5uPw&g})G^q!8NhovQL9iX-1Nb35;i01lUB9-YFFfj0+m~_AOZnGa#Ta+tg**O`n ziA9|D7h{|1i{bDut~^UNRIqo_^lOvlF4HfBXOBhcKM|Jo+d(=4Gi<39?eHzm%J#CJ z`PZ*Z<_)UY9qbC>0Xw7m6hE{2PIbmN&>5+`+b^jlEJ48h57tVt{9-M8j{c2DKXOMF z?|KyrrS`d&)X)+fGr(so{rL zYN4v|M??Yj&{-%C9AMl~!@h$}BJkz$&|tQpC4n^z{!wSH20RGoT_)a2jpL)M!S2|Y zaQjx%M&R_lTd7HGGokEN)OvqK?FynOJiwp-LsnIuP`P1rdCWpv&D+iSxb*H_kiR#1|<`s4Auj;p^@C!>@He`PjYF>5y<*%;F zQv=5po(7DrXD{<vk%B`3-fTakS^4p=FJXP** z0dAtF)L8r56?y>)Zm!TWj@?U$d9k0O4Y&L0t6UY3t>|}@luQjwcW=m)#?DXpksYI)% z;#R-kj4>soWkPvOL!UiWPUn;}5T#qVza%rHBzi~qm*g(-%*rP<((1`wn`@2j75Uu8 z_F4Mrsk~+rdp!G)NagLT_o-y(WMBD7hL;#{C+MN3_6BA2nEE?Y<>~x)2p8B>Kl{t~ zmg=e3MNg%zxI23~Gfn%SjA?k*Y;iiwEw59}_2ipU>}R!PJ}uSWgf%CWJWA4?jK8$c~pn zHJB#X&<8E{(X20NB_2HrujYRZ_kM3HF^KeLa2t+bk>tUnP`D8b z4<6MDa`D?;jpw(pw=*rCX5ux*#WZ0{33+hU>Xp7lf~0)*uYvB*j}Kb;NSIHNx?*0w zN5Tg2b)2C7a7X%Ry7CHUP)pe6RvcV5u+1B~XHbKeun38R` zlI<~H*;em|K<`!u`z!i~h5T4Ydn5KSLG2aoG!^Z95YaHQ`)PD`RUX&bUX~M|MhBks z2nj!Yg}m-BxuUGO!G6QmSoi9BBRm)ewyZ{26F z#@--k@gbHbz3s!5qb+%h|=B=&xLvCgiLhJ~A4iQF91xH5OH zw8!bcO_$Hm{6Rp#_#W1OnNFPMT{G})BvvY*)H5`NtLzC81_$axSy!g>2m9GK_>jaH zDFE^k^wz+vtomIh1@P_}wC*#avn@-feO_697=d(x7Y2GAo=M7$YBmFS!xxg8i(mLc zQu7)9FC^`R*LB3#*y|0juMM!N6$9;V)=somix0G>Y@@(Kv^<|gK!3BRjlDWw+dgeD z>uq3{k1zF_!NYdL2fp*yR*hvtNNr)Ww!Pqm^Xm`UTd{GZTs+xi>NUf}i#w(@V(`Pu zJ}BPF;|k*HMFo+;-E)ReT#W7jC4o6;bNTv*?M<{L{KUid#_$fy^@r_|F+Bx3Y6mWY zKYob4Pc2g5QIESPFCJp=9<@opVwY?dzpzU--?2*;Jz`&)7sL-1tt*uFB%0N=KmMuIQ!T@%+bM}p215OWZBu*qyk^7g9>gBMzwb;J^=F1rf{ruIla=yxsltNP9!ADUTRs z?-cW{AV~YUgm3`;9LsBd3*Sh?r*6^-dEtk6#Ub`EmPSh9Ro+Jd zv|={VKrH9J@iXPzH+H7{97)9eX`R^;f2f596n=>$2!C$4Pd?gSU+)8|kS5vbaeI=! zZzdo8xV>x47=e;@QeQ#?C#4s^OBu_KkWx7*6_@GxP&6KpIGh*n&8Wl<5wtidt$YG} z=-Z?eC#4gjfKE!Z-QrHJ$?Qwg1fL!KLKI*>kC`byM{@j1%%l2Wps-P{1a^zSV^ANL z*2@h0MMh9xaTd>JIq9MM1f-mw;OTICE!-qdcx@1pWjnmW%ukzFtlOP6tWmUJ1P&XRAG2BGXeGfPg;$3Q*O8`K=(h~z7a z?A0I*w5`bAHs*}LOFhCXgb;d!RtxMGS=HIbu*IW0_^wnKErsoNz3Oa!=x=MMKyZ9m zs-Yh^eCOljBKxC0(0DdwRIxo-Yt2`}Kg>!Sb#bNfY3KU1(pvI?+$S5=cJ_+staN^0 zvAscLslQCXJ->LnLbMMh5md$mfL0>p(APXn3eeXK5(VgMN@q!5bE;1Eo2F?%qkD8* zBAZSch(H()g81=TG#i8A(7Obr*V)8hPHUx4oXrbETgI@76v-kdWMY1A5zjW#QlW1E zzu2&4Qy*}UOMc*}&UgddGZ@`MV7}pY&316o4A{!i2LUtSz2GbI@MoJ974?uPq65;7 zm)3xE$fHlgQt~qcF)sus7GbDSxsi`&FW=iDm9KrqK9pUd(0+@D*=q4XKu~AD_~{IW zYxXL8OGZ@2as3cL`O0j5aFxBQ4^`3C;Q^4}p~U>!lS`QfdKB(30OkWYQu=#3L`?@; z^k>cI7)IbHHj_(`CUdwYvgKgrB#`Kc4a5r4Hb**QXdx(*fv5mJAS%Hxh17g4@{V2e z{5pFV*3XY9!5J#qBOS}H-*D9`F>SIxrkC8P%! z59w-hqoxZc&^yl%ztB6+09nC12aU_XhA>5O_cr^|z__fzc6&dzn#hGt_GzQQL%(Qw zIo7TP^AEti7tnUL(cmSMi0ocWJ3O5(!{DH6LD@q43$y+Yg$) zff{r>muMTY{{9O3)B8x_H8h`4!LXml`Eri*IA7BCUXN4hDQKX=6>*?S2XOQ_6x{1^ z^w;L_(`H9D-!rCSS>89pcoBLcij@*>AP;fBsqs_r8JfzL_N*!42u&+d6rieA1|jJw z%nQVJc}I?4g3B{p+|URN+dQAOCFszm4Rp$tWj-Zsx)*`;BdnsE?oUaZh8BBQ+jGLb zj44cxr!cmP3eFHe7V792MaGGjSvmT0qb3W4Xj@anFSM;GKr8?&DGW| z*~_E?7rRhleBt>WQY(^yI@ID~ciU4kbPB?-dn=$87QYbmD=mKL%k~8Q$EWy$mm#~i zRp6xdy_gWeunC_i{GF7FF%whl-|iOzf$>JwxrRD1-l!xBFy1JBO2!*kW;#Q7!{hcN zro_1>e!XgX5^F?SVfHOyu3`PUd9KX9{V0g3>|0(Hm(|n&+T(W@;fJ>qaVxlZh&e;= zIG3NAn3c#nlUl^yo?`D61pDYYj#h{rzrRSad!0p{Xaj43A)*RT^xAWAbp;=Pvb+vq zifJw`uA+#(NF$6*R=i=q%oZ6)d3=GhTYwSHpUbn~b#y3M{ieOW#SU(rNfWBrfpI0%vqc-1w4HNx?qe^)U z7=-WI3)%OCu&+=mSolVA+4ZEo7yF9<`*EqD|4>|hV^FT=rL16{B3QiP2P4|&f4yh# z!RpR4#*N zX%Des26p&fA-tde$UMGyL#vkT2~vR%>qABNvDx+6BcuW>N+xM*1>w>?gfBh=LDX{6 z05L6|N3z75NG&n|waCC;QX!gES_}n`4dT}|Q#2F5J)Zx+m4gh`>jkYIi~aQ^lmf(+waX;BLTcRtl-auT8I)5_Lhe!a;FS z{K7$TQ4R|7852()fAZNo1fGolFz7PlBhJ}7u$zPt91njO1s+Dq8G^nQ6$Gcd%6xwP zC3}6%tGGAML&~)-|KU8OT&v9Y)7P&CR~Te+eDO6wfT;-@vw3BY&IYS*V#gAcIBT^g z1vqQ95Cu4Efe844V3@Ven0m}t6IL(M0H>7v`DDU+aK4Ix`2VReP}IAOsLLn!Yz z5ysD#>&XeE7O{_`*rx}<4&OxRXcE|Q!lKx{6Bg@8uwn+V-F%q=Yyk*G2GBBJW&nwL zd@_Kx%l3!a%LEHXoMusg!(M&9=Kp*(S+6(g5JiTLXF!X=hZ|!z1P^FXe~MpdP=5l|;BjZ`tN%~p&U<+5 zHG4IF@>E)?NY^vI`zQN@EWF4V256YojRKDxq zLozacJVvHQU~W`v!6Q10HsTjLi#7}H9Fm0;VMw-oh+}SGMAk}!uTFI*QlpLM8U-Hm zMa5-b)Mo3BSEGX9boXB%*MJ>?eF$6PyvIF?LcKYk)Q3htwoIP<7|r*Z9GNlw1$T77 zcQ)9SvvTI8w43Y+Qi_?JInc|P$(c)PaPpc(J9y~=nLHjXpnQ|Zg$raVr;sA>rgC=B zQjy95a7^V;aPMTNKLK<^D(8#4v&)jo0j2g=!NPb#7;`yqgQS?td6(4SLqufOuh6c6=F`)a{0w@hl7nE<(PDV1|sRA zb>bHz96h3faO&;|I7QCI0&1w-vcA5&F7IEVW-Z=-r#%&>w9-gNEZjl780pB4=_t@s zBg-K4F#iIN{!M3`lw#;x#t&nA6v5PxUPkcl-3*@wkJT*C@Kbdh4NH#3whYn4PYc^h zpwPr$Sg1_=AgK{1uI&?Ap{J{lFO+7!P(b>c`L2c1%y&^FUNirMmI^Zma5QrYj%J=8 zUAwu^r}&cB7SRgzspcmtAsX!;z&jf4pM-$0op7VA+6(>-g~3Bt*S-k};js-IRcaH2 zo}uZ6mb~ytaVj6)z_Ff%FCwE^>?#?Et4r&zzDVY7j>S4EXe{|Z;TtW&K)PSNqa(8u zXf*i%>}?iFlW(+0ntT92LpZz*d*fOhzmnkSqysnT8Uo+Gg2J1$3H8xDPfcx^8%3QKwNx=_wB8LnHH)$xmuzRgCk56?pVpWTc0ge-U#bOexC#mYN$CCuO`?jQ>2l-?19fhnC= z&j7DL5P61#8(PTud5^(FUOEUyR0GD=0_& zVoOJ-C^9^}%)$u6HS&7F0b0!l@e8eH1JDd^HTKqy)qz&Cz8@UO-sOS;{a_nMCGKnk zZtF!N85+?+qrk&N(e|<%5oRK%wY7)xI`zzh*+~Pt%tW35wTMjQ7o-C7hfsl;$P=Uj z2ARx6)(*m@`z`3#!ii1l@t<$#)%ix2Khtp{U>t$#`Qg^pkWCD_xGpnuWjOax~J@7t5?9u#V;HeZ5Ib07X|#OEXTaSadCgPqdV(MWX6He+bHl*EoZFP zi=S#_uC^l4Jh)a6@9SzCz8+=38l*y-8zBNwL_~T7LY#s{G{+Fa@kx4A0LylGr)|fi8K~ zV&al_ES71=NdihGHDYRIH;h;!3TU{rbTMB%r&T>4ig=Xiczj-EKChFbpqyt8nxI9O;L`Dn~DFScAu#uLEh+*Oq88J|B=pcEHjEyJYnD>5k ziOhQs0tQ6hyFXBaPg92yfl1zb6#I-Iz=_-#qiWah<0Wz;zd|5!A~zsaxcuD`IgvvP zoX8CTh3bPPGTrUNjM6dy!!mMoG|$@7G^G~tP96`coE%^OL)FUs+P;d(Q4vd_i_n2b zieKo!BbNqu;E(WE`Z|IfFNcZ!A(kSVduB6nPNJz%;2~e`~7sF?PWeb>WQ+E>-r*ZX3()A*JZTYnJ1LI51s@ z^&lA0h3B_5ch%TnQY;2U%tNApx?b84t!x5mf>!pJC_pO%*~MPeim>XT{M4}ekC>J& z1t*qXD~>HEjfACXi+R`sJ}dHdOQp4S6_DQee8Z0DX4(P)Tc6hqt=NpsC5VKvz|lge zY{LiisTiU^1~|lFOZc`El!?QZK5~P}!MiqVYlTD+t$W6X>bTsfPXz@Wk)MfQI3hm_ zHX`8w^lyRD#B**(FZK)J5~GQqi~8V1tIUgr7Z0mkP@6dGqx}y`IzySYgLw8 z7m2*y6mb5xgaFj?E*TO@=MSF-o5xZJCt!H_tR*cFHU|*m%RkvZpfJ?o3D2J*%JPX* znR-yVsLs<09hF!zp^DpsCkL9}VR@t!y~6t=%no)hEfpLB81MIxd5S-LJ}dA8)$^9i z=#^pyS@L3X1thAgf=uO6j&LfPO>p5c1@Kt|88jIxrs`@Z56D*z&Yu z$4u6Z@Z+Zh6@zwJfqCWJ#g50>00NE1P(TZW+aIt3bL@nDg{GfmzYEmE6@dB%`>Ot& zprwM-tcVcs<1bR`<*602lWr|@L~CsGf5NX{!3$S7_OJs4Qn+ZsvckMi zvJ4Fb%YpT4L_HjQgu4p*$`$gxDmj_Tof`QANQuKeat$nNp`m=;)FbIRr$5t zsB3~_^yt^cFZAfwSKP^?zq8V@A<&uQI|#cUzZ}j_t#aJMLbx$V(XCf93Ow|SR+l~F zX1Frj8pq>NL9n~)a2X$I+!LZ_u5~2COrwkqhoqC!m?V2FWTg2!}?P`#Zx*1A_p)Yzu8gGM@V$aeFQAkPMXoU1orCk zboRJW0vQZgQy6Vj07Tkwbma3%6LjQHi2`)w&{^on^QZKfVcN>!rrDC{IJTWM5UO2K zF{Zh`nP}FuPk?T(neL}rZ9`>{T2EcrM-{cNaWaxTqOO5{AsD@92iqWs-s{8+O3TQk)NiRX6^| zb6r8$aCdoHdV&@pw_L2l6AO_%=71wo8^f)ww;}{_EBw>}M=_gBN^zc= zMGHho1Q0T4qo5eH?J04TFK7crgsFAOL_*ex+SZa%BWl}9O9hJnCZje#_y zhx#bq-%rb+ZJYp7LEDj|j`rFQ0!Sqdz9SegY48m{y~~p{_z*CNq`@gH6G?+m!m=lR zdvU$_ENk%$5b+Fcal70QR#~N)UwqXOTN1a?+)ra&{}a5U0N=~{5kRAR9;T%t(&_gM z|9OFzXb=)_7G?^hC{SKh_VOh!NCZ^m_qZs;(V24D8>*?0i+OA*WPw~ z%g&MlKh{(r^eJ`@4{QaK8#zJW+$fQ-| zi{E$T5RnvleWmP-YXP010IsUexblpQ=spdQT>(47aTwEE1x;UF=MY3JXaM60oW=OzzgK%J!uti73>IQ-Q^%@KTKga~$olZxMWGb z`Wj^R=D)BOZAhSTifTp+z((O6Q%e=6d?uF=RjA_DV7#JL7eG1n4JlOpK0_BOZ|2mU z@3L-$h#!xslE*GO%`j08W z9zwy0;HrMW8VrhAKY_(>+l6PU9-|EHo;%%d2SoiUW;Az$v3OixsE zj*bd~*nN48Tv2}jtjll;bu#_t8vb;sGb`q@SHEfl>?4CinPEG4)m%|yrnSbX zhuNSJpVBL}5o4rOyqRGFFu4Qi1210hXb3fU=Oc->5nGV)Ye^C=ZLQpbyeZi5CgE@k zvi@4R1zDdW@NPl2qorc*1904eq~PFrCH~`Kf7GsH8UoVej${D=#B9?;q5ucDO2`ccF~yGLb=4sRwP(nSgf@ZR%y98O)|0;TP*VgWQp_A9phTQnWLVePVDS4eJA=z(cw`7o|kz zdihlg<4@FW`4qcqAeU>M%b-^A8pkbCf!7?N0$$^=v#RSrMim9)oe-$Nhd91nD|ax1 z@az5tu!>6|CqXS>ufZ>24fS5aO6HqlotZJ;2p;Hy>3zbK=YB{U?-%Fn$ubCAc$TG% zSDuu5!kC#L#2^iBhuqLu4k^a-2l?xi_4gn(xb2s>j#z)+b<+Bi1(dJ#cU~v0zcWSP zwf?cRR9HWNqxDm8ul2(RHZ6@|63G^=P<84m2o(oU5-b6}(QcO!0%$-+TXh7k7#I|X zy}xYYtWujG@(f2ew2)Uo{_dK+o9!Y9(RK}l)#VhubDf-`gzeY$z01L;~$<)+K>-Y}|j*i;S{~PeOb;ezg%Il5s?5ZjHxm=;(*yD<2r&$Ar%0R2jmj2mpnJ*@ zztBD90O8>7sb{(~$nKgw!^znLL>`>-?=uQKRLi}m)+g3do1e|kir{&XmKAKQK|=bc zk?S!Rqq%v0E9Ve4&%b^)C|~%mr%46+FQ_nH6WU5@@oDkdq6gGILn;O2h_JD>NPgVZ*+x` zTG-$ktcPwOKC9ja{5}l3E%2*FRrV}b5xy)M$(82W~iP=5NdAAR9czk&mZ&8K6 zo#l+vTJRsToJp*eKZEI%!K@$*R?BfFgr|sRR7DlxMSf=kAA-2@Utg_KV|Fhgf*+i$ z$ZNE9ruaY`x^pYt4JWOH?s)aK&Px2i%9gEoT;7;4eS8q+KzofM1DV@k;xUOZ*l1^= zK2|1LoN&8uZ#!o*R_sepeFLtD=)<%U5aBoANRPo`Vy%&-MKG1bb#Ny7&=kw}!~phm zgD{vm1SyI};8KtoojT&zBU$suoxC*a96~ErbnZVwlKw^x&LRi*M1<_JoXP+)q zsk|3u7gCx=7hWPnFkA;PJ~7$S$%jYSKu_fFbaAHXH#hLbqu~>ow@EuRfIlg7l{N+% z0DLF0S%je@4|5yjMiu2wXfqJ_mv)%++Oj=~z zs9hh(lJs@v=xsO3XxiXFVawWxlV!=jy_{1tHlE<~<5*4CVSoO^zfa=IiO?MzY1i3rtE{U0ezsT$UcZH8PU(# zQfIdaUcWw2qvnR_gOn2c0OvK0Roi3?GE9Q(X=`cDB5A2ef>h&Q4ss6lfi~>1ksq`P zkn;GpmO(!72KF|7@OrgP{-UdxsVY1j1X11SBOfy@Kzt<*h#zlrWy41WokN_Rbg&6r z_!&c0!8K7swN85rY}bt>JP0)rwW~y?yQHwd`Krd|5lEacX7jafXB?YN%S8rv&)!TM zTTM$v1V4Kd-w@fRK_GbXzRWDP%MaWHSoy*(7GLz)t1^Qy2p`iZaK`fd{gKJsKEiol zh4%m%&pzEVhJV)8(wcopaN}K=3oAlHOs9ar@LWqf20y%OJK?>E2BM{pdRJ;cZXbNM z^#pX$*w(dp-YDm7_7`btVE!F2pX_Go$l%AFFe}|&_r(lv<6HQt>ph|ad3ZxY;v?nL zfd_Gh&FET%ZmIyvF+B+km}`mzsCd%cEurfNKsPZgL?s&!_pn@HnVSu+{R}5o>chSn zU8l1bK<5)^VF@elOK;478jUG393}aD?|5gX51iM@>BBe6kZdHuf-{nPGYQEiYz~}} zgoh*ZOasYT{$_cZjdF$aU)|o8G*j_r^|jz7zT{L?v5?R-tp->TRrth#Vj3h`_Ymdt zCpw$>NQgFmVWQK<_7PI(-hf5iF`+E_O_~aC?q-?7v2Vuijxjn=^#kcZk|QNEs@$_C zk+NsSqN45GsBZ;(xK6qxe&IUl63`7;C&9z4fBrvtlXcQm=W=$}7Bc3<4WrwJ+B`g$ z^D(Sm94LkI)I#Tws36$g)wjs?#~&cQTz@1?hg^CrZ#Ui9A*Q-ukjB=384Swv`9@-*zhhhbkTF8i}Q?>3qevY#~>rPr@7?8g`r5)Ud-8%=CAd^WYqJDy+ zo)ZK$K0^mMpV}hr?&uadg9ZQ`*}}80I$vYg z2`coI2Bb06->JiF+NAO;Je1tPG}d3Le0l@B0#1p}o@?Eb5`1Jq&? zAmd8WJVLng=1=MbS0bqX;@-4QtOa4mZ?vian6#GWS#- zPdit#aYQkg{uyl)c*H2rDI7)eFq?1Sl{ud|TV+n?8B&2M7f~@iJBm-Wz;_k4ky=c- z%;AeyJG<&Lw#sx)mY&{|9VbAT&Us1UevecjZm2NwMQ2GZ;(o~&cia@qNcKAcLfqFC zZqqhn$Rlp3FmQ*FTEq>J5b&+R$DCF>?fle*nA%Z6RPCM)*hQAe4WmPPX*^Y0{1s#& zrg3K#bt@>HAK&Qg88cllM}6)H!Y$^~r#0+SmB&uE{J`vlBQ$~G{*BuZ2z1!pNWtk! zIo+7}8~ye0t^E4y&d&VVnUSIU1F0LaCY6=Rz#8%>5$Ho$L zegZ2mKXN;dujgvXuN{K@y%_{t$V-@2;L`wHoV36L40>7er%xCu*0)*ycPsB>-5$!t~G&+?0zh5viZ`7HaI zCrXgR^y4uDmW754lW{*9{;2z1-AqyXdW7*T+J`-|-*;J5G9 zOtu}$XFCWmx~Migh|g}nL;7r8KvAFF0@~wi&+x;`pW(D0glcr!18B9!Y4;^0Ol|;0 zr%h>~(-t&@)7D$;;8{DJF4J@4;PLM{V;IG4IBm0m(=#UBqAR7-PT3)yb`0Paht}%yY41Z! zNxGIa596!N(O=yyexbj*d*_|~)fd}E++D!`{=~T=sJ|+E@LdA_s=3A>duNA=HM??#6%R6c2NIBJD^$=2>34(HX^G`pW5u87`1hZ+#!3hCw!XYfOzq^JAr! zPg&BlzJtEOz5W;y3AW$+DG;G9<>p@VUi z0jR8a^0VlWYP@Y3&Xy2pKOq$KqGzQ;nk?zY1fa_xD6+0PUuSzrfgcCzEu!b1m6?lD z0=YqCE>6$_$Xu8JfZZduIiSHcszQ3J8sKp`k(`r@rqmP5L(Jty6$0Usd~$rK*lC>hiqKcp-qH>%Ea z9yeN7{6aTc_qjW}QQ#fF$)`Y84H`32`q4)BOO6!7wF(!LT5K!EnRpWiUJj z3NRRclpsZxM;Qq9$&%$zf^P(7Fq-Lr2xH*@o~K3E4doBM>}aJe=WD9DnlSE9VJV@o zA&64MEn1V{7_%6ZfDsVK8c01h>K1(|KYqCv5H89Ib)EFWv+50JoF7gD2Ja@p!L%Ee4mv2Kdu3-%xYv#p;K$GNy(P{> zZjW|NWDgL!ehjLq?LHn?&vlFqCxCtoD!`$N!TXTG7=uAo|1r_5oFf}KST)0_A!5q9 zWyxnnev}9%H7SxoBG(p>6KSXED|g9B(V(m*MGB9TBJo4sQ6`;RZq!~u9@iH8#4nr_ z_kn14%7rw0PELx^@h%>8QY`QH>wnkM)uf0Y;aQ#F8qD4$I>MRpEu+9AQMn(&0>W$A z*9KxaGoIfiXU6NK0_PW~Fy@zkNv)V)wDV$As56^i?2?DigD~y>9MFq7<`q!6Z^k8( zZ&+jVJf9WEpKa{Qjrm-Vp)<_ugf7l7^X8|HV@-D(W{8u^YyRyT5eU3``tK`Qm3XJ7 zE;nmUs{9(O|qyZ*A2Ja@>nz6g( z{1hjk==?MQ+T;8LKYZsWudmnV?Uqj_6cG?4@f0PoA_xie_JRa{po@|)ynSB-t7qJ~ zg>q&3OfozcD)*U#*+4xO#=55ntTKHG|m+pdX70u+1JhA2j0KTf1^%0ua4T zg!C>+7|}c*VRQ9h5BL!xh?L)^P4FsrXS-{;rVrgCy{$o5d1nfb-j>*;x3{I4=SEEv zXi9?D33&u{6dwCO6&~5jSlg>cCK&PWm1Z9@P+oSJpI=_ z+}y!sXTQ^02!r|h#E9nlbr>j~uVS12-J^~toffdlmp#(a)gj`0QGhZluX-8u*U|NW z4^6Q=j|qUJyrTb&-wU`r*PdWyP_2O|K>rJx$LD0y&ZHmH9eerp*o+kBBJdb$+xVCq zn60u_)(Da3!#nPkE|{`i_(rCKpK4R7hSo}et9#4o1Q*_0PLsGWBh65jRsOQ<2ri40 zbb%tk_wv1erAIUP%$8T5c$P7Mm8Cqtr|TShivZ$TvaDO_S?m-o6=y2n+AGhC2B3Le z@_K6F>tXs*01~GK1AvMp(D5qHFt$LT#!(Z3_i}a6N$^$^NGqap9(tdvTNJS`kBd+? znj00i4@jVk3Kzf7MTPG}7Zv2=rXza0HUtd=%lm%ap8H)Nu;zjTnh|MY6nGdf_pKiA z1Y22K1F>{#nfs($v+t9sjoW=)o!JBaQ1|&kRejLamp$qaHEN%XAqz0T z9VVq1^CkMXJ4hh##^IGguDLpUlN6%?tbf>LWAD>ak$VI%zNT&Z8$R%Oy!7e2(-Tc! zL-nz{(;KsINkcqedJ#nTI8*&+khNw;2HPW`lrNoB0Ov~$Zj~>6b00rHvvm|-)G(s5 z4^87xcg6k2&=Lnek;kj;)7SaHdyl}vR@PLvt0}8Tnjwd^_Y)42_6Kr^Ct!ndh{sE* z0@2$CKvK=)%yhX^`a+gX`0(p7weF?uaF)1-G{GpnhbX{VB5|LbC5~T-c@$oys5#2j zkc}na;8ryZ7Vsf^~)%NIdrH781&M`Jw$X zUhc79#>?II%XpcvPFl(R!nD^j!b&D}OaD$|`wiqWYBqFNTc(G11BadqCndYbxk5Ge z&Yc^nfbPxx7&^b)GrfSFCD0g`8YI-ggU|NM(D_Z!%xZfM`b;!9h3&QdC8dwMwrlJr zLFGAt&GZ+1N1=XmKd(2@mFx=*$LYx!S1)1x0R$(yuCw|CMf|qxME>_LnTe*xFPM1$ z`_toDQ&NosHt7X2U^89_GGKqpjEgknROEmR-_s{O*@vE2j!uLMT9W`@@IZQ#P{N+b zc>G#1j!&8b$+!nd3-6hHtv>&IimR0m4X+96qh64w(8tiG;?mX#D$=B2B8gMzK}3>A zya|i=osB@q=oe%s3!VFPvQo}#`{lKw`qM=sZX4kbBN>CT8kd`1z#&$BLS_|i9+=)k zKdMAKPMTtGy+lQO`@cm~1P;9*MLR_B3HL%oQ;-LgXq$kLk7%kML=)FlOr`rFl06cs zE-Qdx1%-YN>>jq%Lwzimr#zgV&q59uL*36~)s@yt8p*RiRfeShs@FLn7hZ-E)h!AN zjteg`w|U)$oF8+e(gbykYRuvnMm6RGcV2jbN5q9!^PCKLA8WpAW8mtmW0C7P>qMl& z)mJ;Cz{5n*#&WK{F06!Td+M`+G539dT7*?uFhpcn_59N=v(}n_`LyeynEM1LG^)xWtYK7je0=(FmPIJzdbPpG zE@fV?!Wd}CoCG7r0*R|!PqS{Mv~ZKFi+=w>{@x~dHuM2f0p6qyzwk=c=K6gH$prB5 zLHRZ3)&f+;RM$7V8iwbI0+dn3RNeUSHLi3YVi>Rl08%C~RBXD|^@7F<2{RamHQ(-P z!{*Xbu~sTP$g^|c+Cu<1Ui4e#2d)+J5gS}D_&{rMcPH^_Q`1w}^MTNxZgj2nfkuUu zDuumD8W;*YMiqAQzZIs=EEMuaTU`DCZ9j<1qp&xjt z0Q0>0HIMO_pegWGO|6+GiD{>IoA zOxehQxJzUPWHf-|g8S9bY1oAFYM*lua1PkHG>`B|iobG?@J8Co0u`UspgQ zk{_L9874mn-!l1OE!nx(^{9zGPcUK3V062BU2R7RZuap*2VCEv0FmLGUm_Gu8vCWpXfP)H0I3_esqaHK?RBGxK7b;y-wV!shYhT+{NrO3!{CA>60 zvxyJ5OsExP*z}r*cvxyiOBQ~J3_tNkRrN!}RmB{_ZV4sb0?Uo=?hH$W!K4Z$fZp{> z=@~xsKu=v+Iwc_t0wDMF%(VMJ8iL#%1RMm3Mf$Wcr0K1s=|kHJY3`-c4F3No zP2tFl=05Zc9w$;dN~BSvGR!{UrQhcy@=LF}9Pna8!`EC+R!mwMuC9o(xbjfo+|c)R zSDT>f-uAldejkd)QhN^}LVsSS~G29+Dd>0mR-uB-a*oPP&relM4i~A+_!Q(DvPdQ5DbQymyd5mV_jb zqXm-CYeGn&1@7Lv2nYlMf=VX}3Za9&K(H&Qpu#Gm!pB|#6(b^$2uLpx6{!IWBE5?U z@|&IAyPYe+?*~4=f8a7RJ2N{wJ3BjX-#!8ry^a)Q-auS|FNhAW8rZT2>k-h%Xw6q` z?Ue3M=-+=8ijtRN|BF6u{Smv9a`E+lJcWw>-x<{ZhSHY9RsWNLKs->={a3=E|6&7T zLflE%-l?kzaWFLDJB7kfN7>s%c0ed?CS@*IN(#xVmdZl%8q!QG31;z95`4BU4Y?+C zB>F1m%b}SlA}=TWL=icda_Lg><(fV0IHAN@gH`176e>)3JjjGf;t^#+;1^&SMexN^ z+?AQ1E#U_RhRtF8Ej z8?ClHac`$aA*#nq_jXzmys=ucuhUXKekV+Fb$w%w;3UhyUU@U#xz0V+%;l}WW+OFY z+)lxJRY|+OkL`zjB`d!Z=2hyz3J9gxV;B#Gp!DsoUMAGIRe9+vxx0FYAaJV!2;WwP zk1NGK<1PgdxJ&VBkvpOFFt(XAN51P7-`xa(d;#I(%l;r(WDZy_bKC-jFmV1*U@f*l zUB3!EnNXh_%iCAu;}*6L=dD2HuyvKomCKLd8xM6F9Y0jaqI;umL^$q^hJMxlE>?A! zZ%DauxYI4y`mt~r#w1?a9iHGt6ONb`$FGArX*~kPRKLYCxi?BC2)+I_TSn%5+hub7 zix8w_Z&Wo&0O;PR-ZDOLL+gfq(lE~rqNG~l=7?=<{foi+5^Z$$K8Qj^2Y+bmtq%||x zOH=`|7T^|d9)&_LjFC%>0t6@EOx%Y9`jeN`EPH8;x_Oz-z@d;OF-=9gW z4Pk*9uZsXMBWm+C@7=?d>_;i=AFG9_3suq!_d8s<4mOao5aXK5Ty5Fy6e_%P;MX$A zr{p>q6H9xOe63!*9CVO}Nj{Z_U4Dg%P?}+qPbqPl zVMjg;L0)pGHPomHLU&}P>PRucqRT9&9ohKbbp-Q!Do?9-fXY$5!Tg?*qk5TDT()`c zYrb`3`$VWTFxPFdqO7A5$~1(H;Cr+ zoP(tSUa2$QyZ($ff)85RK9-vW5rV+<6A(K6oJp{legYQLPY@u|&$tl1&A*9H9PX-PW`Q|n0luiIE7M%O zf?sIr8W(?)U`eygPDF-2G4>UKVg)|Ad)hTu;33u2_KReNgg53uy<51>7;HTO<72LM z0zi{R+7NTCt;w!e%pG70k!xvk^~xF{FDyxM4Kw+a#xAinf(N5L%@Zql?+#E{J4M7o zcpq*Y6Jtmx_TMm8;`GE~L8-FYMQN@^Rkg$jxvu`U03$NXN(s{fB|J6)nVP= zR=~?OIjkDTF?mys$=iXV7En1~K9eUNVvZ>6WR?6i37{Owu^#|#j`R7Wx zViAYqIywJsB_`+Q-j%pqH_#fXwlS2TQ_1wU7 zd$>~k2!;L0j8m7@*+p2r|02f~?qH)R8LfWZQ@Ib zjmLTK-mXmcBy9w#JzNt6_Mt&&R*_8a$yj;Qd)@s+8HPp`$@HFz#NNM4#Yo*2-sH;i z(+$%L-JPYuO`tn*vW!m!=sstL29pk&h>)_3|?`?i_PFvks|Ye{^`m*ZA1D>%ix zQKuGnzumND9Lc7<>8DJ{dOEj@o?y=Vz4(PW@At)J<-B7@xQc^w-n;K`E#V1yn8o0s znLo67yz*vz^uI`VKeE%D{P^0|;d6FFsRXm#^55v0f;H4~-^i1`m%uB&&xq4!Wa0xU zYkb3JEwM8r2)ty8-Ou=jB)e@15|drg2u{eDz#eO@A^MvCcd@Ls{tAYKY?s`-(^S-2 zlX$_zv`Xsoo&G##tn1$RzlF(Y27FN4P+q<>v|HLe>^7nfX27KhqpvRm_L?-34JEuW z1D-nG6=$%C1dJK*1OcEKFl~q#aKc2_G-E1XFwxZ`UQ>t3b%0Wfk|{6vykYsm4|=A- zi%`!JSvpVUFrp$)eT8C0o;v#*ou`^_!Z$b|A&%@XsANK{64h9(gG$1mW7 zG9_+#ptz+}+}i(2+#B~obs%)_N|m?+f#UX3aYxD&S2ehI-(bq;C(oDn8LRYs!Cd26 zKK=nH|54>I*9&4BIBRhk!Dw*pwC0NY$8m=N^mbOYpZZc*h*GpO@bG@3Y zFt|3<8mYQ9(a4+Y8N6U{+C={F;IyAvKO$RrF0quVGxr7w{uktbsxm%*)-vM*`7-0X zb!b{&lT9G(#d=2EEJ?chn8KNlyWlDBG(w3f&(j1T2Em-RN)~Y`C1!lO&*~_|6fg#y z*WhqoqkLh)Q?B|B_BQ1v^1kuY;VSTtDOAXKdzGx`QgUB@WEQWI_1smonW*Qkqyx5D z4p_h>!$TWdQ+1#dJ5p)2>$QN6(gkCLN$o5rVgHC+6;7hPSLMOtBkms@{g zOM`0IeYGs#5)FCDOOSJHL=s2lpQ4;4)Y!|uC4@SM+d`pY+`e6nVJ2AMs@3vL$1ETaXBxEil$_^Q;{$oe z^wm%qd2YBmRDHiBCo7;LA4MEmr*UOPoW&b^c5#wyz?)I2EF;HRWeqqwrf|{X7p8F0 zYsyODHqCdf4Nl>9EpRR5Q|9RuuAyKR@Qi-pb*6CeW>zI$xgc#0b8GJM+;i3%nY6WC zBi}j=AwIv&8ktokLf;^(3YYh{ROaI@!;_KY3tTlTsta6(@$&Du9*%D#gwT|#9+8Sg z#l%O`USp#O6usl{qiJq7kwU>cV8fjHo~xlBHO#Rb{`%<}*Zh4VuR)UdKZiSoMc$!h z!gEA%4+nqueb+8FOT*=hF;5Es_N;==o-WRL#T1p3!;7l3@GjceRhrX z=OBV-)}TMf`6;9xw?19C|0CBs2K$DHne~Y)mu(;bT+_Z;!?PB;Zu6r=18-dD%4T~) zkmoOg(kEq%%HVe}g1F;%Fk%D99Y7{Nw_OJJ z1_9(IbhYB=t^_}Fk#X_pK_eQo%n;1yZ4+W4`3ui9dG&?D8|G{ki{ z9^bgqr+Wo{;Y-(SHit094TbhUbvXcSjHfDUeC7JYU~iFz@Og=w9G`rvzAUkbV0`5g z^P_Lcg8$XGaycC)G*$I-{JxTwu5Ju?>s$W(au`f14oByoBFK}s5mD$_Kt67Tt6MNR zI^xd(LszU zH`vVV*=YxBNH}7ZM%zc77*1MCsx+RpxVZC#mAH1`x^Au2b~k!)>swa_qh`ltJ&0{b zXeE~Qjzj^h%>+@lTPtfb;|L`V5I%prhd_J(p4E%bS`P)7qS#6iRf9Nks^sYuy8FY0e9V15NRX4)p#(Fwz`POZ@j^#KDg`&7_e<^<9y8R_6 z6!a00#Zg&za(FX4f>eDn{lD1PzD3RU@U zx1@|_hqN5ImjAj|uI2mJ$^uN){wdv9xpmr6u}pJGQW^V&NmDs~pfH5W`K4>+s=p2_ zBcB|?8_{+6gzfFayz6};&;HJJOMIzNgs%4+h-SFnS1L~K%$gES-~m+wKBYLhnImnT zgMV0@+>~Vyv<@Yy>$FRou5~h$Bnna$N~ZqQz7a2dzu7exV=xy0(^fN^u9GkOQAKe_ z-do6{9c)B&#bZ*p5da>O8Y%#IObYCX$E3tN!REv3c+B`t_1IKG4^uatZ#z4zl|lRZ z^g8)cFzGAolklbBd)LWxQj-Z2JSQ~)xc6;qnM2pfb5euW;W;Tr)rAga^9irVML5YQ zjU>v#VZ|KhH-a@zkyYXsPLWmX%9rO}+vJK!1|e^|(+&hZ0L1iin;`s6_@oe0JP;!1?768;z)mdmebm3b_6XC+FuK=J6ALgfibiHp*S}&dVE^!kxX7u3G8pm1Pg3}5`at1BBx_~2VVBP0*J@}%#2`PNTw3B$L3 zh|co7Uz0+3jeUi|mJm+3cIxh`m%SE)HoiC5zd7PcFxcj@8>wpL`t_LI;~VVz2(_?i ztQMi3C-0V;;w2>O*UJoF6DgM8t`}SRxWd1WyWTa}CBihc-WQ|_S*Kh_SDVEk4xlLS!h_a?iP1MiSLv#PnP1{RutHhHSoQSu8U)@PDRss?EEech&L}qhDPg zyFtFXKAyH0eHu;sbbqKmiC5S4aCrN)L56&yr+jrih%#b>+`C-}8d>FGFtYf9_p0^k zYAY5S~T%Wq209WOxPzLuW9n z|8^}4dAH2_*BN(l>8$p^x_i;z+OTHyktx|Hxq#N>K<=xF$n-JvB?oUhbWhyf29P0 z=l=i!=l`JDLtzcsF@nWMqJYImqU$$GUk{;m{yJbSe0?z(M_%m#s(B7P0D^v{z&D^3PJoH774%hj>H?rP(H)P%c-F8%e2+S(Iq1HVfV3+)b-C z6aegVd0E73w22=(nU?G)9bGhtGEnP6x6|FkV7C(OFx%1%RaGXiA@6?%%z6iDhYu>Y z)o`~nCv4&q&%#8VM6i%%rSO8i12WBVq~q}N)RmgFTnKZ!4#d^{!bH^t6h=`0FY<-gcNXazUY~s@*Gve7A%Ha8qQ13gJ zp2Ut(s0eL9exQCvQ$KR(ll(j*D<ve1;l$MAAq#29j!>xVVQTf=gIZl z+gO9mdRk!mrUyc0=ZTxKWK&rEN?NkPvi_C6?Pkb0UuQXl5JNG3!oDAY;wqA}S!OSk zTnrg;aivGM%`$swyIJO?L5gNh_ zbDZl16I?bnh+nvDYyioj6Q|iN+zSF%jL+CFL=jvpN;SYM@Olb9i<8~IvWuFhTq4eI zmU+$T%`(=95So7qtSw^wF6fbeUQ?4VIMd$uoTe7fNp;^6e@e)p!G8}CDuRFE$y9e6 zgVo=n-5krmEw`xhZwkTqYBsPjE@|UdcjUL*B1<;41f{P2HseJLn_bJ}8!*mjwUw$5 ztfSL!s7%zuC|92+wsW^;xl}i?#Sl@>sL!9tbaxHxQZwEuHoYmlwVK+--HP2oTY9g1 zF>WKhnh>H_gWI~B$95M@sY&bexozFIl%XTvn&B2F&~*@oKH+tCq))gXsT;&NQ7Z{C z37=VwZtuR2y{+N$nU!v-&H*jhg1g#>JGduS{z6kz+pW-GqTCl-wRR%a*iLLXLoc8>FyXo>UpxcG(h z_xP5w=I;$I_p5>PH;XrRyGOC`tJhA{Inlm7N35vGX&%OxUF)c z{sXGZr0iYW-PmZvx7zOB@o_>G>O|$VZt_T)>u~aoEQLTZdsuQfIm>LfmCrXiv}YYC z)_19Ho2@!+a@?>L90$Jn9ob0G`bsp-k0z({lOHs{mIM#GUAwcprkS!8ohAMj!JBrb z1yKyMhv5W(*+ZTHVD;cFzd!Xbxd$^mBWA-pS+{TNag^!TcA_#nZ0SK|@G0OAQey}mx)5krOwGJdo-X`}`Zh{bOjbxtM*PX?B z5;*Rppn>K(oZU(ADD`&5@NR-YhPMlbPCg|yy&ij%AdxGy(p;VVwOiZ+*gQgntY22F zKOhKX{jy|@_r-llkjNTZ;nuJGHc_|kgCRrO&pR;r4qz;@fg|8KGRSNl;BIK{+{Vuj zaQBFJ2$pnW9@m2_qfGAUWGb;l=2;J-G?G<>dVeWh$HOd|B`|~$etwcK$mTEOGl{!T8 zf;@M(I)tUqYJyh2yz)s_`rig?L6~8gqsnl1dzMb2B3860;iFyY?qKr$qugy-=Md!h zv7G?!s{V6p2y#3`5kOv#WBn&TfZS-od)^6E4N8sM0&NFXiEL6Lvi>$Hdov6?x@Zc@L=D)zy)wLO&So zzRzS!iCo-_=-wvCeg2XX@(kd$8`G!5Vsv#R~F2QW+?+NY`>}NuazOb)HdRumw zLPdvvF5we%(k(x7-we1Ef*Mmk$~?e4>iK_ZiQL3(E|GgP-9e@6hLXZ*z0z%iHTX`? zfB;*lH?9)D6JIh;;X`_-Kg}`-Irb~(UUwtbkwQhkGQN|^DJ2ikR2_G04cy_Nlaa`i zrn&8^T2Uo^LkVsozqsE$(O@Hp9L!^8W@J|4U{ry|gkFdE!y55Zchd}X( z$6P*Tio3HPHQEwi;Qu^;+MKIwNtp-OvW|2>u56hXXiL>6uqEE>w6+9~N|@l~xN{Hc z)2GtteEKx^Om>_o6yPECrQE~cVd;WzdBpuN3)^0%Ln(4|J6i0cA?c6tI#Y35gByLV zh9a!CUHXQ}d(VVT!=kz0#SjNkL|49(<%mn)@r94OyBdeF^JGy_bf1#hq>BQ6!HbW{ zOV4FDk`4qcW9o1yX(VsWEqKzs)x2f9e4SW#qp>s(B?rm2lPsUU#Y8T_InHrHIwo}E z#V<_g#)BQo`drDet@75~D$lr|4Ef~d`D@>ql$>?n%nR;J5999X?x)z(#4woSJ+1-X ze$4nEh z2nJ5R?WVA1?0bSlF5hS_;#VJMh>qp+?J`H23WFhYq|{mNI_BB!Ja?8mE1nCcG}n2A zNWt>>wkjPSV3!FLooiZPyNiSZ%iVilfGPz0Ue7Agu8wZ!kX}aGjpVsQGW&A(8}1lJ zz}#x-&f;BOa*tun2|F>Aag8;=JCym;c$?Yo&zPlAvcA;udzmu#A_z2cN4|d!jM88N z#|#u2U~=1z@8|B@**yf0dF>>{@G*iwhLa@27YG~~LIX@`+kG#OFZG%WY(FGa$o5^u zb}2z1+jj+9r@UTyEkPo0XyxUNHzkC&Ow4QUZWYhMP>t-J|1|gW1U)k9?-WSY{s-wBJqSYB+yn$( zPqFB?x=kYp5^WAhv^ns`qcx$`%FLw%fo2AT zz6InM!J?f3i*^R)!p=29DhBSrPd(HTt{VEt-S}V4txiYGBcg=4YY>3$vyb)s>El~E z6Mpm>JW>2YgD3v@-x>VkQ|Y&{OwpWF=$x%JfC%RYo=)G$dT5-qc-J4L%MKt23=>`X z;twE93|;KbW+Mp_O$n{gl-WOGkv%S?NWSIM|3jEiZ_1?*5f~;2K=(qhRAFMSXn+p; zs`!QWdsW&ma-?YSK^R;T2nzsTTq`P}aQWx%&L(?P=;yw4H?OKgpL&?|#*ci{myqgGsYy@3y|@c! zr#EzL21YY$B-UeF{lyM9H~vVn_MI?5;;m644j%Gtdnr93q`+lgxu=vN@RV2JnLvRj zsKCqroxr9%{Z>DLxHb8Nr#CU;_{`<7E2+K%45b_tpGjBULHd`pL!PT5{o{*Qxa)=N zUCUR}a{`4m;P1bZ-U3cYKfe-=gmefL)`kkZK?(~n=9RhWjY5h$RpkE2Pn_6!#0QNt z%`z})89y(*2g@Ux1SC6ZcSqYnrKZ1Q;tu#&ad>KHHaVaz(N67l#_!wIWpRZex{u_Inw1I;L4S1_R`@etJWqmAcaT!VcbItGk<@xPaa&%CoY! z(c9b;SW6;5ptowH*X$?R+p|HvRqVXIE&VV(+hE-ZL*Wy#+ByxSPjul2wz^aJ@{iN! zvO$D8K)l)<_Lt&~F5K7z1&ttXUg_f(raKMx0O5yWW7tb=D)D8D(p#F3{lpJ1N>61^ z5E8WbBh=zELt4D{r|B(;Xyx1w{KN--nx5<@R9KvJSyA32yS(Qo_vdUOksr`ywZZ*J zb@`saE-P-(Wvn~Ax`WqQ0w)Gwl40FJ+eQ&SA^nhVTarGMl@hrD1Jhg%%x=_jc5X%{ zJ4uKGlvKpWl#;tqNfN>o{t4pszWRXQ_9NZ>7#O4H2y|7c}a&Hj?=EZ>UosQ$pk7CgY^Eg0Y9tSGm)+0pc^9KW0 z@pz;&7+P-qhfcQQ_^#9LD0BNxe)zPzYy4m#k?#My5*2X&f8w9yBDRM>@p#;#i50Hp z=_!3KOe2UOFbWr+68!(m|$#)*hQjwja@RDZx>vA z4}J0ZXxJ|Kd^C(Q@I4<*rchB226B8pO35LUP^YU*LXOWzufSl7w^NRTUx??UM|R57 zRiwis9fdJJqz{3bFlmfy`eC6hj)XdGpSO#w>D4Z~53+|zn}9X_$z5_yf0~e>Wge%N zc~M%15zBC~rpIdG>MX;<{HrT&%TFRMazTXm?-EP;?Acad_9>B#!AujYV-yQ_$u;hN zu&a38T@xs=_w14@di0+3RD*3J3`5&!laQXmH#@9**#SZwAYNH?pAx?*NW3Bd@gm|I zlljvXtQ$=jfdDlX-4LlJ9ubS#t$i^-Nwvw0+%1oY)gzPv3aY173A?3zpoI_|ukE8) z4IzE>Mf+-g{^dPlZ>?$4*-2)zHzumEkmKww)WMkCL;S*++yfK{Iw>}BRMtqI9AV7} zj>H{`Ix=3FS$)_D(m4#rc^cpqJ>!Mz3djBUgvy}ALz=PN3Ev0yJ=P|JJwp%}Jptj1 zp6q3U#SjWu454@JmgmhvD4ahTSc?!k2<#$5X!O{uYEgGh${RIKT?w#sH$Pj&vg0QU z{xp&fAp$Xy=2S=-#=ap?jHDg!j=RQ4iuS0iwyY}&UwlS=ImUVu9{&-rNYrK*-BO7! z?~;{d?%vJ!cgbqV_7Vz=7&~{9So-^JjHR`f3My|bmDj+{cF22@PaaRNQ+1obWA9a6 zw*;*FWM*wY1@N87qNJYT{FxiG>YG<~^MyBNHD<;hXiKB{WvT(&BljUh1AfeDH4G`T za`!CwfD7pn?)!q2qsGD&s3lPWSD zzSrI(S0I}*@U1}k6e?CAAjcJmlIs1yrq{H6xy$kDD zE7$_U0E3q{l?q9(?ZJm+g^3AP6@x7$^!iC*F@fTlhozu(qSeHo95Qw?W{UliJ-8!$ zGs(JV@w(Aq8@m|6C zFM!cSWPcF4CL?=swXABqw57$&WqbM2mX#Jr|NfT#I{kac#&_@UJ@yGff}MnxJ*!a<13#Mkx`FdZe?Bb!T@Gr73Dr{^(RV@39Xo#`w9M#aVPiE8p8e%qmYOjoCrzitoEUUQ>y5tS(V&Vch z#xhFoi)AM0DL(ZTe^fA|MlUAZvDnsbpDMO>AQHrciPddYKG}xnb+FplF1z+CdVPF7F$6VVML$M+iG6+L6- zwMPzoS#4Y0494%Tneh}mp}EWOab%xNC@&KPCX|4Hgt7x;rP{SImjr~!C5_*O)zy^~ zA(YNP2%JUK*$TFiQRillRTqx4-R-el@dt%G>iQ)_0g*z^$+jM08ALc{kh`<5DNuN= z5W`v%j(Bfof|2@4;j0N5uush$kCOE4HVa!W~I8&WF6MhijZ3v4267(Mvn z8?8F52W{_*8h25sh#EagWz?YLI%;GCRzwYtXh!o-+9!+}FM-}zqMt(~;4-V*s@K0> zD8&*zU(^F424Up&y?kgPBgW+()Wn$p8GjPnWyJ73sTuRw zU7EX$KNG;PVnh1~L16p=gx=83Bv=eWfW-~%nEi4?8$#>+(ZE^+puS)i2tefi;HtcL za)+vw)UI~%e%^eL)h&Ls5JE%J&01>VtU*>KgMFnT9MhkRnHg=()%&?I#7bk|5-diE zZ}yWYv28y_iI~NL${Qub_L95XWYpr1x6O!Y|35Hvb@QwJJYtyD+)r7t3yA+&NTwYu zBnso+@C*Uq-teRV;NB3diF-r5`6lXsygVfO0HD2jkN5JB%6!`GR-G4zovh0fdrpio zYaNhxhxm1zxCn&2);buijCEMP$}*M{6N0d z*iRiXw!wt=N)r}z3$M*v?Q6x10~n78p|Z+tgfMz_wFqM<&lv+1L9mtxV8IQ#1vFq} zM0ne=u;(HZ#~VY`Y|L@)6js8>wM+cM$hGT0S&{4Ian?)0k!xU+EXJpdw{qDTVsi{% zCp5q-dd6GV9=@#a+TF&FO|ZtYu%ET7PiyY!YnngvSqm~VST%w;@Uo{bJciAkWYuLR zfx{4WAqB6{Abv0lxt=jm7PUiKg!ooZL)mtJXEmG^kRTLd4!pxq$$l$OK6 zxtj3_PgZVUJ%sf9Cx3=SF~V7!N4?sz0h{CBZn!ga6F%+djCfw~pml|PL|WjpwD-Uz z#IpDmLEy3|5Rbt7GBX~wlGr+e#bpt&xGcT}|BI8hPff9Uumgk&neSE1PY?t$2gI!D z!2G~eD}h}mSY$4+;?90xj-LeBRbUNc&R=|kCl~bCU!>*@2tqJ7VtK1athTH*fg@XJ z;K$Z})XHYv2^H$xMX~Kq5U4XCFi&{#F{qQ>NwCNquzt*6c--p83J4W4e@HQZjv$aZ zAb@!sKl6mufXyRVWDZzA=BJ*7CqqjJ6*6C}n6DxTWDW>qj_-t(5G*nWtRM67*-2r% z|1*}w4ii$8a8OCOKoBSa5HOw@EbLc3NXT3u=upm|VU1=9gbMlA{#6cTOM(!5joRFJ z&dOpP2pri$13$LapSNyieF+t^%~fn~BM4-hE7&^u{WGl=Yyv?dZ)oM^-8-`*eD7eE z)r&n%sF3&LiZ>?+*ejvKw@v>&GSnsfKL8b!!^*l@WDZr>4ywvviT$Kxo7n;MhO@Bu8`fL?%3$IhCn)KT zo%X``y4{0p7~zG9_h13Q#QRAIx2H4jRy6{ zyW_e#o`)Wkyv-8XEP_E-dG?m)4B2Y!0rx|78n^z&&o1ThEY5X2BHcA)7&H3ZEG27A!> zAQ^&;ga0-J>gE&>ggu~wum=>Ndk}TdZwT)F*y_%1Bbw+T7@~SGgks?_>YPulCXRcc z7mIJLRgb$qu*4-7*nzuf2ObIT0AIAwN+M3=lvR2Vggx*RB%Fu>bPop79?W11sd~N{ z@S#%vLyGk(ze*|3)(|ZApqTbx>%aFveLV!EVGsPIi5^gZ?!kMs2Pyp3&*6#DC8CNR zgA1w~7YG&(W8dhA{v8s`H)|#F!Hc#1qkbn26#sjW1M&S|Sc$~`>N~|C1huC^(1R#I zYk$sP`;;$X-M#VmP;=mh-{l;*fnaeC3y^dOVEr#FbWUMrjue^>i`!Lzl$O!#|TYU{Acf)!aw*I{G^nUl`2- zPL1(Uw;+m%*iMC^Q7Hh8+A6m+(5M%Sp_W+lP$;j6J0!g#j$rX!+Q?Pbt*kkPiZvR@ zacn6$szCv$#>t)g!uYJ^@C;(u!Gkg0MP|=x>kZbIa79~A=+TxLN|9WGL`CX;3p(Q-VT$lgG&MQ*gmLct8g)z($zkU}1sdbH-o}FxwpPo4j3w z#h9;dylFm?v%XeHi$EeC{!r>-XXqrqgCif4qEh#)k}B_8GYYEjb1F+6^@Sz z>vmVKz!A|Sy{SjsZ{jt@oB4#r;T8B>o8dqbp_1<^<~(Fokv=cVWn0S{s}MYz04PEwGxuVUo#w@o;_ch5pi4IUAK=M zI(gIsBVKw^rP1dP$&!ffTr1hRJz5km-eEn(9Dit+#JsAU0AOAPorAopHXnM$YHU>H z?h>oES@jQYowRB>s{Ww@R&CNA16GYcNX%{cM^MZS2w3S-ued+>tOqhJ5{nfg<`3xy z<#^0)I9R1Sr0|zXhu|8`wsR_&5$qxXO7Dgnz~e~YwVC<2@2%d>TSYIh_|sqf!s1W= zKLTrRKfvw*@5ukbdMtRL*$)}f{DB6}=<*YQ2cPneRgX;~*2#0)BkJnEwF)9}!`wHM z&nj>KRI`K%pQHDa1fY17eKm>laD2mr_W zc>xF>>;K5H{*M~#|9Hpx1JWMH`dvEKpa1Jvw^tJ^Xsi`tz8dT21IJq7XAt?mv3{BW z^;na>YeVydJuue4iv~E>hr}-&>qDW&`oO~-NAiTd*7Lz*UFieZhO>PzsjvLO>+G|d zG2<}sQX4rjspBqdy@&=I_gQs}3jqUMztl=HxBtpJms$yCwZnl^H%prBqGl+EGl_`A z;jAkF!NZx#PyGZ_H}$Zbx~YfN)NM!Fi{UiD{|;E{COgmJkTaKrOSe=jO*Be{a2XSf zOFO7?&S~Ln?7T-b z$1%QF{K7H57j9MXfBNU0&u4zM9ts}gFMhM)%RdLr`B&d%)MYb?MmWGTG(aoE?>lJK zF`ooceldI7L92RAGKI}ClYGj)DZ^)+PFzY899+@p}8?JSl1Ce*Mi+zK-69|sM)BKm;n;hW6w z5}ZEth=N$=}^MRw^ zL+aL>FFs}2#48j$N5I?if?qZ<<4E9qS2XR23OL`3s%~Qu1n3+11Y!bhY2SSBs^|Ml zqB+j@+2R+D{p>QwzTa8viQuuX`IHqS$NnSW!Am}eb8?>$wQ$mZpaEJVe*7Ga{o8Wv zZ86#+Q4^SBJjeHU z2nC0O(83{x4X6-dZVd7WMYN9S;0pz72+-#dal{71{?UKKx?caN*9RJiU+4o3j+Qn5 zt6Z`Qf_-46Q8`NbKnLK#i`zO9Sx3Q*&i{5AKy;XQ8GIlevtmQ$dK+{xk6lhy1fLhx~JgJtug`x6ZI?;{L4s2H?T>&wzs=o3sMrx#sY= zbsC^G;$th=b<9BY1AOoo-$_%8h&4)aJQqQH>mqV`{W39D^3hYjL!VV`Q|e9Q(J?9wJry2S!`G zx$zIt2#YZd34ffP`%`aV2H0YyRm+cBlw;tv{=5jgKI=dlfl{&>(}pN!+`!$;PPo$9(JE24$zKxpXeAm;{Dzp@NKGl3D0KKNTacQum3gq!8@cSD{3+F z<%RXt?YXQefr`VMWV1F>wrfNv;JMt5e14b>cPA1k4u5+A@EiU*-&%=0KFJXc6~9w4 zc5V2tS}nU3>qDC2#e%)~f>@iTmibb0cL7(KMEm1`%1-)U{)HN_X4IyVteF z(>Y;V{uTUYc*&6D$d@;;$MKE{0Z?~C`$IG#k4nVG;6wFzheSIq*mQ{}i0K|~WVa`# zn;?6Cp7b6~S5&1#40klPA7m+_wF(9Srkf-iw;&Y4bez=-(6(C>u-dqK|6;Y~XKfFE zwyE8-Y|{-fhVWj^>=tYok%>MzNCU`lU1~Y?o3R1m$XKItqAeLn_JqS^C^vye}EP5k?o!*?SvH*2qWDiqC3=; zviZwR$~J26^bWQ8%oMwkW6=pXp;xzAL-r{VA`_%JkrC!6C&bd`<}-JXxt8xi_>Or* z`UMtlEvb21Pd|_hzcUtH`^ip__3)gLQPm2^w6XDyD);~#fT zj^d@6_FBhf0KLxpHfC2ypMCk=-zP}oS?MG%p4+aqUxJtDvRm^-H`x*V}z@74Rn6o@h7NL{7T(JnD==9fF# zP1&tPsMmBxU(uL;W%9Pr=DX$Ejx0TH5;rLMOu0TWO$Zm8yDeYAE%;=Hq zDbnh??ew@$fS;X){g@oVpY_-q9ScvYHF7Z#>$B9yftFe(EfpzNH~BJwIF|O$#g=us z+hxb{f*<~1e9+j+mH14!s!j#%!V(7rY=*a6*szMK8LQIRKfhtw_Nly-JuO+LYB)QTr{ zp>AhX<3^8wU74$g-S=9(&g9*4z~xOM8jaRS0O<6*BKven87;S`J&v^}t*+Z>ZA4FP z69o7fZG2pV2)-!S{=<=X%E7m+b0o9diCCZ44GlEZSTq#Y0(?$aj=Okf9qDyjH-PJ< zOgs|KtK4K)y+->v27*!(cGalI;D;|#p#`T30JY$)*g>NoPwHu>@Z%+LjN(Po2%qk^ z92nM(y-K0tf%%K4c=UF=o*y~L$l*l?2Vd)aF=l$zDZUZR?hS@B2i+9Gqi?m3I5wSf z%-QBhWm~8=!Yj9pZ5ZU0KLvYb(*btgwOaLCu&QyaYAwE@w>LNG8GAU;psQpLiljkj z9<=XZ{}5%b+av$>^7pe4hQTN1J8JOPswPMBf}MXP@X~^QVSLXJd$!r|G|z2jH)oAc zYj^Pas9FCsS$pFBoDs;q!;vRe0N@BV(^8-7qHcusiJzY!cB3dpjqv zx8qg!#++7*=tz4E`+zjV+30@I(=>ttVKO>^ikIw%Vl*Yc-q~ors}=IIcXTn>`|xOc z2>)=j{e}6rxrdjI#L11Op0Lc5#p;M=-a@Icb=(qH3Ofo?a zYUVl3V37eUSLSa`wmS<`XYhsZCoq0ww9N!;X!)L?8-MP!CxzuwExoqyafVFo0cV0U z>sEK$!>-ZJ2HYGx&Thfyj`0PBW>3$8M|0)M;dRSaF^>Nv;#{qFoyv9alF(>_Zm3n%T|#9(Gc$w0J&YPh@j*+X-Gg zr)_s z@g*o`6?l@^SEQX-8t44#Xk}2{R-ct8Ua4;Le}ogSA$1ccUa2rV;TZs^&R0HTPxd2& zX|3LIxbv(m+TRQ&f!CBBH-Vz3&Km>RpF~j{p|b+uH$uxhj-JLUp98Sok7vV|4+V-LC%b=EcHg||EH8Gnv;4dksMUA!$ei(p8Zlwvozk4R z+lBI2h#oF}VIg`r6lHAshN?W%G?Ksig8fX;qlej3TUX$HJ`IoMD_TRQ_wi*KaO04fpWLMWU+{TvB$+qpN$5mFiC?mCA-&gna?k-tue!yvcq z9H0NP?T()=AT+SuLo~v`hUJi-2=qDwn>JWw_5)#yclj-!Yu|3L-w7Dsd^?dG-qCRi z96co^ydgV7(8AIAjyX_dbI+|3A+H>`EM1*#6Ljj`w?(hn8PyI70Cra0-3Nkr>9TO! zPa>vIJ--g`!>XPKdYV27`coH15B8%Mi+p?#YuYs(xKjy73=7EufMEef6$AG_^X-YO zGojOg+deM?w@t7*5DYl40>L1H#z1iEc@hZjI4=VMv5pD^RdpxSl}#WJkK`7UClv%;TXA&ik>;uprq zus{D#59@04tsmO)A*<-u@nu}7NDmgp#`1jbNA@z7D6~@31*2`e26#JjJs;xL;wFD$ zuVZaAcbQwJ{V6ZQOZij2qW;f9`!?1qfXe93Q$Mpa*M%0pZ7X@8|YSY$>5awo4@2wFHiAmmu3X zp7jMh#rlC@kvCwyyz#x}5Cf5){HJdf=_a#eLM0avCpZ^eNfDqkwZ3qAte-?MUbVg6G4w8<)8&<=u6uWAIgu0$xr(<>)o=XD{WInIarf*9vR z1Mv&zLxT%AA3{D>t?{SaEWu;dj(o(5GUmf;*R}Z>%onaZ7S7XF+OM%rq%$}l+G~Kf zGc*1t;xa!NRhvI|-oBUh(<0=g=zT$MxNav1^dLZ>zfU9xbRIyU^W`; z6{pO+Af2-R1}HO-Exvrg%C*s+7a8>zFp_cAdqs*GG+3|>@W^nBJ_Gsa^E&JdFFoBbv4HfePtDTePlF}fNr7}LRK7HNx)((x~u2;(>Z zdJ!!87hus_+5weFgv*cwHjg(d@RDuz0OMueqQq_#F&(#$)kix&om zB^s=hvJ^KXqoCg@R218Qj2{~scEXR|_g&t<0?5tMzvS0$DR-e(U9Fbd`4Y9j#0$dX ztMQNb+O1j4Mc)(@c7|p?VUa)F}R0-#dz_7v&j3t-iW88TdnJjdLsl`$Uci zYtZRKFhyQ|D>44WAC8&uH>TP_9Q?Y($Bzi>;v_T08%@L<$7pw}&>W*(fAI^WUH^+^ zrKGKX4i)3JR!pzJYyV>3!zK|sh&Kvz^xs~|GrqX~IF`e&RQ~UwnaJKm*HY%~75{#OG*p2^1WtC-3$9 zH5~%+h6?OMJ;n)Jym+PVD0fBP@sNE#d!L|+581;UpIvnDr0Us?*%E?*eNYN7*gGK8 zTnxT5H={jnp&cuMc2>R7eXG4EXz9cSwtPa3>?}Y2ILCuXsd9Lpa#2FhmJvia?)&x$ z06HVs9e2PRCWOsn=LwyhaiTDGnnHd1K0m0~_a#gUYi&gEZ71wxzVNVoC?d+375~WJg2%Q&=RxuP(H3XzA;CFI$yqq=H=URObKfU5 zz$k^C=2BmsD>9XA={uLpg2BpV{LXi3na1wxbID`Ti)YAkzbb@s83!NbSQV1u&7sgNg zW6ut9g2Ihg?0yEz5$$P3;6@Gbikn5;g2o|q<1T0?n_%cDHhG+NVR+#5@ z_5p!Htm?=MSRy=gdnK$(jCevnqvC}7+uuGWZ}Q}q;EIFjH$BzNcND)Bq$OT;2nbLk zgKZ)R)WF+f7eRPiBvtZcvO@%+l~}YftlPgSaf!6_vP2~!E|cLCw_bXcs6i0k7NA6Z zp1UT-1OSoP1vBVi~oYUO-};FIp-xGL=b}9xFqIc z96u4|Y0L5{5*{d`5OI$=x`UIitTg6P_9!7jpO|`?_{1!N#SsB4`otRqA&g;6<hZJ1y+rm(0>O#1nQZOQT zZ)QJ&Kp*iA)$Ih~ZK0iHBEe$R7R{uSEUxW&mOVr8=pRq~L;T}qf<;RJ7X9NLfSHQY3*O{S;|Q5JVB> z932Q&YjYLnfZiWy?WrS|6tC6$5iTeL5a=7X69oE(x5Y$)@V3ytF_mD2Z@{pF&>rTX zOZc(M>LJpd{DGI?UdgyIjrj63&n@hA!a?^7hPxq8h|0d9j0Mw}%TJ|ydN@P#m%G<& z$k-rFgsRxa3{L}d1$;CBs=X2VVVhX@$8dn10#0Cti>K|AwMIlkaCPl6vg zZr0}48Ix|7H+Y@6?A9#I(C&)gRNwzir52`X@R-3KwH=N&%JbBnDXrNGAwoS;?!Cm5 zT`){*}!4s=zH(||)JiYyHMCGM}JhA<*8iG9^Un9GtA9vh+ z2T@YfCDqJ+faMaoSm@SGRP~ECiLRC1s_=QYr>DVR@8H2(AB9Or82nW2Y&RQ0m}&ob zkV1uj02$vGAKu@OUg%4DroKgzXYi7)H(1Ugnuj-K$^RX$D=6~RE*zHai8a^)O~LV< z+Sd$Tw8Arty+#qDdMKQhA9iW=fiksx=URT00qRs%mC~!KQwZvGH`q=pP?+Zj;9o!c ze)a=F1n`fN{7bINUv_uJDo>`tt`J_>-Mdrk*7@;8E*5lUQ>K6$1`r+&UjV&5vFvN94px3s5=pnq_~^x)Wwl zGib&WFTlCyE<82IlgekNk4dWT(GCUO^M^~3C zEa?N`kd4u-`Xs_!XU9)H$^#82vOhgT6Bx2qLWyNbe9*G@BAS9fT)Odw08vn>u3Wn$vcDN z`g=;*8bSvPOg1lY!-ptMcvGuOZB|T>d8MANd}u#U48PJkE|%>kC}9HrXFpFC76*Cu z&7RCi5(%Md7Ly)Vhjd-t)LCrulBphlG2%R*dD-Od0#7}5#a{^CnP5N_LJYXJbtU)) z(e&)Z7o*R``q>-L^=T^-q3?FC4PBgerB@s;n&xTbNOFKzPIc5{^&P~E)lp+3f%hKh z!K=YyjWR^F`qh&ZvVT^)?7Dtt6jwqxZUA|CaaEF7mr(LNK6x=_?=l36TRO?&;_Dl% zLpOyF@sntEftoHINj#ww0I1H3x@0%-BZFD2E|i>1wS-yhM+V%g^F{B4*YShunE&|I z8iQ^%c=T=IRs0%*`^)1o#tJdkwzeW3~U4sgu&||46^jPq5^w?khB}tEkkK-r@ ziZS7B_y3Et5_#`-u4RH;pSK!eJSN}MfK@CX?5k$^@;WVnk1CwX_oVsFi2z5{V$e}( zx6o0W0Y7xq7NLYSp~5nQg#|dNPndF2Dh-{K0?mv%XC* z!dcA)#LVWx@@07|Suh&P6?8g$Z^aYGC;U=AoKbn`v1`jqk6rICPTotihKMw_2al`> zt!2ooZ9*5dvmTModMuO_I2h*3p^ZO-r35&uw^tCWMO39dLT9Z~K{;zog%C3XE|}56 zYV*{)17=2mv-*T7XQk56St$UWH2|QTl|s?qx;)@XXC0}A!dWSqc2)}2&f4p0jkUAV z#=eMZJ_Q>xNTb133n8R7FxXv$n|9L)6{MR^AXs$Mr@+YQrq2)zy6F?dz~)O8{ts^2 zM7rq&zHO=}o>5Wgp&wO{9{P#Dq;&3HRIe2r>d?daW$>% z(Nie^Jv9KJJe5Mx*`~}s(4N%`({sr<=js(f)Ygs~)E3JD=~rp1{gk%VemWLLO8P0! zJJZE7V2DNXi?9_m_if=D}^?bm}hif0j>Rh>Se&DO@?&c*}oL}-hz~Tu3R_1Gj!!8s? zrx`(rYNJtu7te;eY+C}yvK}-@P3#`W_t){{ux(m!nu8u= z2mEIh}kXn<6=}CmGpRf8)$EcAz1W=go<8o zFygxOc7}*e`G3RC>LVzewIXeGU;eG=Znmf-qK?fMe(b4K7XOK@yTqHnf}DZfI`D1d zI@E>wd*@F)$q~6AQ=LkkIL40Wb3gI4kN;Z)PwLLcjr;4 zsJ#K1EXGrMST6oo#rT_vKvIl+qCbC|y-+pvu2zDq&(4cT#iqF7EmF^P(b8e4%T( zr;)+Z0)!YTeB}yH9!sHcpGr4SDENb!5+O_RlsrHqRf=yOaTSdUL8Bf98y(30PGB!8 z@plqL0DD!5zx`_LWrt-UeimURtO`&2dam(IWzQ0LfCyEGfBLE-p8wXkO%>yBuB3|b|7cda7;jc&Jg=Vzu5n_-n?=C{zKrDC8=BRati;oB zfR%VHPSw}{iIA0eDlK5V6y-%6uQu`|wVMI#_ws3;8!Oxf#ESV6hy3#}-wN=g)2NhN=<#pDo@>eD|$Ti6P%5iCEv<86c4tZF+EH$0RXgfKFjzb4S((h(L6v3g=&FvZipd}g z9hb^N$GxkvbliLVMM=kp7=KqA(xzM>M>l_4>}aeWe%<5H36xDJidms-|#UN~Rr`Lbc;wx>{rHxU{i$+zjv#<+!4dWOjpj{0jWvj>#HICj2dmNGXwe zYGH_OApqVGZKZX~;8;Y;CUofYSVVGDsIQ1bq5efA<5pgL)YFg+AnkA_+#E?}!tlu8 zwF`?#I^Hypc_EdAMI;K)#^@L+JKqAX;1(4$=sXsX$l4_ik!R2Ov=xifdkx=u28-3S zD4ifs6K@NfAVdoziW`?baJY73SXGuwkXn(e6bno*+u@|8pCXe8 z!cUO`g3yX&vgZg~>u{B70rcSHWlvY1t=}UIP!+H>Rtvr$2&@HqM`txbcw6Xl!FL3U z<%0c@ST2y>po&LF2oV;Ke&_D

    J}9z_I(ktC0(@65tVl&>m5fV6_phQaCc>sz{G$ zNm`;=K#-`7x7CdVAzC@&s;K(WEd--AxtdFOd5$J6gEYCHApJCXk|2DV zU>RvP!Dvmc<`{8&L8a`jrq|>P2?N1eAkZ&(5^p1_i#wZq~)c1;NYD+NFyi%66dmW=;Z5veW_NQy`{ z0b^o-MWk*N3R#6|N6QnPl-yTEf=k`wez zWA}^?BBXZ1TG9ukgIG(_O;jz3G%18y(i3oOFivU-rsV&RwJ(p$s^}i~-UnP5Ko$i> zb_EqtKmidIL7(S74~lH=f(qsq?wT!@TbpKPYRY8pZ*N&zsV!1!soCOdY1(d9YW0?> zxqRzwRr{SebD!s)dmqrx5Bq0$ICGYnGiT{Ww_+tF9$1<8Yranbe&NNO1v@*L-HLGm2uZ=^yr zh_7ksX}1bUc!ZN8Sz4m!jefpvOY|e0U4o4nfk~Ydp4u8t%cc;xg}t6P>JWV6j>^Q* zFv3g7PzMFe6P$xcg++*-IV!on5In)@H3Vefxsf`WLxkZJ!_?6O6bfy#0h&x5QGC%j zVv~C6h|0m#(Nlz(kviHGEG8XI9j!C)h;3L?N0G)kPNR!@>L|KqQ?fllW$zfANapBh zu*@8NNNO?qK7vh=r@GZIgJtwhr$1(n3~72k=$&AhIik`mAnn3fZ@rwR-_UWN2w`x{Tyco zsS+yS2UG0&InL&AEH!|1-km)%y02%CT7}3>I2D7N@F8&Xx;V!<%q%3G@4G7_6&hz` z>23)z&N>j09J5EY3KW}g5NvG1?+(#7;d89gjvni8mbS1CX<`#j)?jz{cy2d)45Pin zJ@^I?hQar%fAXJ)Z15%3# zqZXlh!YG2&;6x1zCC1YxR3?mw;dtAsp5Fjjm@uNU&{liESH6X<=9opvgi$sT2e$(+ z&$f4AM4Hu1i7a8JAk#3@3g{E&ibh)m@l)k}QsGVV@Muuulp_ z`+VzqbcTIWI>SD%O8Zoshu|qAH3a6VNDjf;g!z$c!7@4Y8xex5@Gk=3UWJY1kbg6a zeaq`wDb$l3YD}Q!jL`f9-^`^JwyS9I((bS z?*9_%={}~1h=aoP5T6F$ln*0Y2#?zWpM(jbTSUV#K{Q7E!UWNnX0;@UN@nNuk?h8Z zkH)&MvC@^h@EZ=tmD=-)u;#79rh9nK@bH`=dCE^&;hCk0qJ?p`c2y7YZl(58`9&rR z+k5!NQhRUpo(VO}i!vRG?H;&3BX51c=jBV3w3Q=PR*7qqDrZ*N8#QP!XJwU!f7(^u zEu`KliUM&Z2wb8ASMRt;b&qQ%}z4%uYr5m9bB8p%C4aF5vR6PyFG*KLX28xrS7`O$B;i72&926;{ zc=H7)4vJ#=b||Vv5&t3-?L?9L3KR}exOUkZ%&Y1TWmS(ipvV)&cl)9EQ53OnLy;hg zgYQCdSQH-}gyM5id~^tk}U9m7p>nWuGz)gh{MGFj(DwPy0{DvukrJRX;md}a}&St1~W0$ zs$#^XyHyl;Dbu~;$`ZW%#4g@Y#aCUw6Deyv+4G!8Z;0f{tg4|nLj$Xpz|8f`ZMfPe zyo0Y`S;X|CT)a(b-2P~FmurcRwq3T9~H4jsvVx;o5tDSWZzm5Pa*e0et1L%3!em5 z>Lo&umchRBnw9h~DZ@5+i>YH}^mZ!FOn_k05ig?C4y44q{vEHAO#fi?YDq{-8E7`l@)Eg6tJNJx>~ri76F1%2zbCs zc`pi3<972il^KyrI^Q_Xet>PXqOFqx{3qC1c--z<1f=hg0(M&|UzGw5zQK2m$%s^Y z?~{0+TJb)Tc+=kGe~$&cxd#MZC*E&d#y9M;75Rc_PByRjEFzG9Fg_!s#Y3{NS_jine(=E0pE@qB*v$TqAifkN+!`2S|WLvAnJ4}6=p zVfj|vgEQ@0ym2?&W*^PUthi;f>`!~)R^OUj!6sW#&)jZzdZF_2JM81wJS%SGo%Spf zZpjb!!pKenjpka(c<~*d*~9qBJMFD)tHXTw$XS{3Y>k;MY~A51Glla7ciH>Z;|nH2 z>m0P+kiQ-z*IjR=>W7k_8;8(sY`I9c}Rx~Y*oc1)89Uc6^g zAAZyqzR9=dK6{ZZHyqyNx@}Y^);k`w4>4}bXe(Ia-RIbbgt>8PVAB-FptQLfe z{6-pY@_@apeq%bEr-mqvZP_4p-^Qt#41RdT3bP9tB>>dyx{5|*@l+dpIwKwAuYx5i zV4?keHj|KwMTO^{w)yd|AM>rxw@5&BvT4dRv%J&Q`FUzuIKSMy$i>$`WWNBnQarNQ z-j%H-;)TM*UKEbOS~T`FYOJ#|g1`K*eZbA=Oj*g-EU~Atl|(LT>{YAAmXjVV)iu`t zUB^!LJ|V^BEA^mbIQy7DL63#%`{6wAQOKB6bdc1aAMMe+KDS*My8Vy2WhUM3yQPg^ zO~G<|k^(P9-Lb-6$QrdUY{RW#6+WPbsRdz=3hZkivv=_s0X^WAy+XtIk;m*MH=|_R z-(Z->`VNj_@WX7Ftwn37VO}Af`6Ijr3^QM0T}hi!#b>WLG}eniQN>+b@Q1HD?EFh^ zFEY`H5e*FyvZ<)_7JSEEEl>RernGL4!HpgI=aeGCJxf}+Xp+99g^J%dTGB#*Vz^ex zYo4%AVPr++(_XT7=M&f1C$r_G?Jx>SeA+_)?7~M3s95IEdC#f$%EiG%?ELszdn=zu zfiYiq`NwuVcAdQu+i1uU%Tf~0&G*d?uSI&*h8FO`=InN@_`!Ada<+refyUeO*uxDw zsL!{MPoDQ$Yb#!C*unNZaHvcS%3z1h)%u$;@F2Mz4;t9KG2fdM6bCbU`X+m@4e>#*03&w~7)& zDKBj7FPMsdA6!{=NPLItQ5c9F_RvTeG_$2IChA$X!#+HW0NjQKLoKAW=hvRH$A^^( z-k75)7r!t^Q{EDDG>i!n%%{NP^B3(C_>rgWw|m?9;?4HyY!>ObVdv8gs9XG!1vh2q zUHG|Y?5WC39{DWXmvO(rpV)UTQmgK3N$q>E-W_p4(fRDdP*Q{AopH=n3Yf%8y;>n|FTZgw{3kV8IsYEGo2T|(V_SNhOQf=_B*7-kUtwsJ&iyGQV zYLRudxdT^U7(R!6K#&Xp@96@*veu#isJ;A9Nm%tqnKA4f!9XGJnT5>XF?=HPiL{I) z8d8HuISe7zS`-4c*o#`8)TNZFuE z*@oI5| zvBHM{n!dvSBqR!|b)QX2i5f59G%_zWW;pEWTlY(md()puJE5cc-t?Xi1M0IkbuY7l z?2^H@22wDs6sATQmWTU|qeqk^=0~6)z7Vd7nseMfz#DsepR{BaX~DJuQ-1!7NpU>( z*D1by>lfg1s2s6JiBtp;YC`|Y9BG?K4>hkTJ7GVsuyn#aFCJ26(dV<;@a<3g1o`AZ z6<_{>BZD>rJ!+|#1Ig3{GHd(Y1#{Yge#FzVhWB-jUCQU)j zbo$nw=(AEN<T7s??9TWf5dGuf9^YYLy$_dG*w6RYU=j? zLXv+EX$2bChVS7v$+rkp7?`>zN}gAv=oT^hfify)pO1DA`^L-*u6?*m@$)|^p!jGS z<}Vx&8qZ^zxqNFH|7ibAVOOmrL69y`qVW6$pZhHwql5Q*QneyT5NtnZZ_h%bjahPe zu4Amyl<(i4S0KS1#fOQPJ|VZb_6D}m9rjA%H0tOUlf zu2vactTOTp84C*fC)6qislKaBHhlzbEB=P2OX&ICl*McLjV2(4IZ68C7z=2wA;(u z@gp;mgS@FP1#8(X)fa)!z5V zK5RnArFLW2aW30~P#rXHL`SxW(7{TppKZQB#&AHk6@YuJ+-E3RU-ff!<$Q1>hr=Yo z(oY?c_A{ulqqp*sFt#in`yynv-PZh8W5<6~{&QY&OTLXc;EqDlG}HnfHG4fq+V$(C z7Hwmrzhe*kh(LvHsDO?(O40Mu9L4OvW=y$s*Z_^^J>%Dsnec`0p1(9X!S)AK<7uqF z2(@rfJT_%uD%@+~$90t0QaPLJ;-5G zSxl^DQY?#al*HN+sOUJfWqPQiw>LHhN!`4$$24;|y|IyZKQnfp=Bpav7X~1i71G%K z1U-hAH+Q^k;vj4x+UT)XOj0Mra;4bOiWh}DTx_ygWT8^UFNZrK zSrvifsAsouEMfBq6gywVV_Q0U6ED+VYI|I)TtIIDSw(Q|%;A=fTh%qX;I;k6+1W-b zt94TFIs%u1TR9f97YP&vud@o)uZUW05&T}HW1M zB=%ndMZrg{f;-3_zwZ$YJ1e+k_kZCLB!1P^LWYEk>8b95StDM#lvA@4f8^}&KUj-6 z!|*_+?q{0C$@$of)WSNGuO`Rw)8CfHvreQ!I2tu6j!cuRI1D~;ic}u-Z$ri`P4)l; z;0&e$(90B3#vU&N=s2M$x|mSR0tn}^36AL|s9YYOp4pafy*S)%tBUi1TZ_uG*(4$e zCi@t50`0-=aeRA!M;Git@RD+kSbQgU4?K#4seJm1PlQRV;opOytA^S;);!tH(W4>T zK*Sq*U!&`N4XG9OQS<7yvK)o&AYfr2D&V6UDLyWQ2h5oILI`MbA*A@ge+v7=jE|gA z;}jE@FanTESZvLZE{+xoJ7;EL=lepM_z}Hzk$N-J!%ESyCN#s*Us12ciKQZjZ_9NIVTJu@9pZyWz7i`wJSnMr2&u3a*Q^S zps(GU1&_4a5)u&?*nl(tDa|+18-H1%)|jvF=15}QEJPq8KHKqxi9{@zWCCPJHC)lH z;t%MxShVJMcdS;1@ybj`Bwv>YYy3#U8ppaUo`2ofk-^GH1@<_jCn#(hfntyMU6{o9 zXFVMQOazw3WXi@2iI*noZp?)o$4X_HY|MsUj!tZqnR}tKg160e3}Gt>9PMZ`0f<%u zVo9DO#)=p(`}mp#TU`+^cU_dPrO91olb2eW+@g=;oN`xxuv0b?)WX1DNPOu$YYl8*$x&c4pba2*yz%8u1 z>1JSI-9F#(lhV4n7_6X6UkGU05e~>Xfq&K4k;xJW9E_k1Z(9Pxlue*$1ZegN{7^r~ z1QQ7^iraS%^yMdtvWBXKt@)->h&PJ~J+6rbt&LS(8P2!$cckNzxMNF)aDHllqa88q zY}uoP)^Z4G3q{{aps8cV@uMzqOVa4BDRZIM6WD#E3E1KJvcvNU-01Ks0yR23pKmL1 zjAN9<(&1?Sw!`)?v=j$D&;w&B3G4FAAxHhk?uM1>(lwSLBi~IO{ zkmHidE|G>~$1#jP58V=1Zl5Q$qUY5w=C!l=w1I8d(1>`}unnnZ9IvC zqKEq@k^y$g{(=znIVK@#juJo0*6q1%fF)fHMaPh5U3;~?g{Dvi=IC}PHo6@Ga7WH< zMmRR8tdNLBzL!Qh%GqE7MKdboPggj`ny_*0hqb&jn?SH}Pguy`ssv9#c>{Iwh7^l@WhW!P>(R|`wsTQ=U2!#*b1y7t;lfF~>zTbMWrI&<8{Vb~U)sSCOlBI@&I zelj#5#F{rTZYY106UM!lJW%D>qq2YmLxf@aO%kN(HzBo<8R@_)@_gFB7ki7RINGz; zq!Odnm;_?^9TPm3KLuh-V)=t*`#=U7CzXN5NdWGcsQolYAB8!IKveJQ>5eh{iCY~a zp@*7v@*y)EYfOkjvr)zlE8i{L)9o<$UTB|YHTTSPFdLg_6)|?UV=$XZpeSb|A9IJJ zqc`>&cQ`881K!wo-sx!VjeYP=$3Vutv2VZ2@uoL6w&Yn0wmLCEItbcu(Pg6VV%g>K z2_h`%%1^av@5jHo+tG*-Me~byJ6tM!aES!hoocq+<0w|x7iO9Irsh*=BHZr|R6n|e z;x2)SwhIZ63wesgvP+astc>TWef(+I$K|*Bn)dx=vcVuhER7xsA|(-&=ovRWDva4o z+ovE>q$J#^XdKZoliRR(Gk&28Ooi3CF@?dA-{HK~y^asu0MMhJRs6`Ln2vn)^M0|s zaFZ|OSSKnGHJ$o38Kv-P55TY$nFZ>~>X#_zQ$JEGGL7mjiG0U7I1W6PRN!2yOeAw@ zYNBT@i8Lc|{-dR;`tjiTu=S_x!L66_!UgWRA@?jwKc4oGqm>C!sK5#c=kuTPjWa=| zH|P`q_d{=2+OiF_!4R67aDinwf9@r}-6m+|!;aZ(#|`On1~dsb(YYo2@NKX7C9wlH z4+SBu+9KSI&brYS&q+%bkx02&ph?&h1h z7Mjp-Si7!^SaCz*$|oRCONk+)kibtq0h8|EW@7!(48=w953F(AV&Z^p z#|LdY%^b{vkT`ZgRGrr89c;vC$*E1?>_%02ME~o`k25 z;v%pwqxj{Y3U1-+*Sq=aPZPVggIVEznt1Gd@muPkc06xIK>`~hYTSo#gby3gj;za- z?L6!9jtj*-)S`Ag?Geq%`cWzoylXz2G%x8VrXJ6Awf-yZ7*X@iZ0qp zV$Iv6xm327vF5bb9Knns{Iu$e%%oXEp7F}n!>Co_7CR|OQk7}yG4nltJ>$1e7%6&YRnhe^_5d`N21VVq5p z4&ywjK!S1tg+UYv(vlsyE)@=#1*2mMe?PzNA$ z8>jHD{v8Y%a3=TIVMm6#G>PMRnA&7um_cP=m|+2g^U0gXb)!vLwMl!BWf9>R3RAL@ z&m5_gLYS7m7yKYe#!c^owTtid{rf}52W$jkh9iPX9@arBc^Ih`O6E039PlRLIeSZf z;)skzp!dAr2aX?;x2ue0A5S6iqutf@=uOVBYv-21M|Kc-89~CSB;>_LknnROitT~WUd1B3yWNed?%awER zQ~;WUp(eK?AFcX?G1?+=%}dS6PVnte_M8l0${_7P1JmN>l=+Y|WfKlQv zH{=j_77~G!7>!}t@9_;4UDqo;y2faRuG$#QP#;5V0Hc|<9RY&TOgr%lqnUOcy`vd? zP3iy6JD%|lX-@s*IL7h>wZ5VnAx%#M>IrF9-&9C5fyZXw63TzP=(vX!8{A0@Q;W>1 zqK-0#`8#}QBOY+s@ozSc(83&%?|8sz+~EIn6sRLRl0ar|t(ddTm>9=YTQQ3d_=3?< zj>S{hF!q8K4}+L39c2)+$6AZ;iF6c)=EL~Ldm1LNLj(h3m@OSKhH*C=U%~j6AbC2d zp45e0w$@^#1hx1I#^0nC1)TH!Y40)LdIn8XSSk^M$IN^E?HB@iCIgJie!1~K7t6jfkS|cQr4&ziuXtW8 zb9YXewwnfIGHo}5Fu=6klupK4t=z*m*|c;UXp_Tn7n!vS86Ze#j5Ls^`e?08GNJ#4 zkzRSd`Ke=zTkr=!TI4vTDo|M zB*L)qjWsa4H5CAGJrKc;N@0*bv$WMJV)wg?Q47!RejK^ zhsF8U+#0U+RoJ_PCt5pN@qrX+#Ro{OC*ZW5NP$@L$%r`i6{$vBKAvJsRP~1xv}K&B z7Q8%s$m1LddN3g znx>M5MWuR<#ws0oOq7-wT3gd_o>5si&n$p&KBei{Fh-$hj+l_@PMRXj(S(NP@?x~s z(*#B0QN6*1w~o>Ju>LpXa5_fYXySn5ek$MQtL_8!isO88)I0J1aoR36!^}}WLsO>k z%6Ki3O(B)IL|3HS6O{+~v3M<>Eh3dT+V>Ns!s)3Ut+fm>p_f&av>^(OmSa67RgSeu zgc$2*C|iB3{cM0H2b6(19>I5EA5 zd$u(z2z}l6HzdQSHk6q$J`+JD`uJc<{kcwZud}9;-0M8vN$z!8rWqEEb2N41a>fKu zI;4&qw>s%*a;uX`(P7P1I`jR>TGV3|m!fe4tmdY9oQ&A*z={s_E|x^;+?ySEUL=Tl z@y3D#H7w23Fx>G>wo+iKq>8qTY$vx!5ex2pXt+p>0{1>wMJsUcb4~ohz0b8Y@4e6IOs%yo86G3_ODOLhj+Zyc zAk)34sfvNh;Df=rN=(hBu9~LU1Yr5-7C&@q)EPMYKrvIl%(6;A9-8U7#ZuH&;T0!B z!v5IcBou|$Sl;CAV8%UFx#SKNXf&LkTqG{Ez$-H*i7No`j)7wF(kQ-wdPHO;F~ON7 z!tI_N`Scmqardo^R!F$K6rgv7J)*&n1xF!>%Zm0>(g@j zX-)Xa9$GW?>kR(C9@-(LfbZ+6C9*<87{A<88^{I`Kyi*%2*;^55#(4 zdt*P>OB>@)usid-fsX#6`2v&1(0x0L^{H#yuQC+9!bi@bTKZp=539@%Ma}r7RJZ}8 zQJyyZ|Nkza$AX^-c{^UB^@gr)k?NiAl; zS3pnSHZz=8{a;aFO>7@6PD$K~{Sw7CQS1=KOQLv16g8rFtux$6T#=bibfCxE>pP3U zA(9{cIJ84^Q)~3qH=oBiw94=d!A3U}_=O8IC=_Rm4Sv*=+&$c(r~naDrt?98{x%ez zDI*|c%80rul($&?dZ4qg&Ix?!j22z_ahF!0{?wV5tm_XAD=1A+&w_E5*}I7=0>f>~ zK*)}nEz%l`Hi0Sc;U%YoU3^=o(Z2lqzkh7X?{K;T_^7_%(peYajji_Or-x{EwC=_R zQ2avco_h1v{cB-uj91m0@nd;Uw&xeiwJ!YY0&Nd#Z?sx;r7*Ic0MK1E5zm*8*TSm5 zk8Nk`)&7=K5Q;=JdHxrH! zVEr1eVd6Kr#;Z9UL49Ua4c$3h^HI!$JN+elHt$=e?PW?j;OP?#bg4fDy=t^r{K6Ub z+)a=BHWp-+CT{Est3_H>({!0E>@`wb!4e4>OdUN>2=6zHf^{Z3UFHd=u4(JbSC7(e zWjVE>tJ&!?wO3%R#jG3D;)NK)t+mTEwKvdWZVyCZ>aC6jW9lt65H9Y&^pnOOyObQt ze;TbdwuPko@Pd#rvHp}!m`|Mgdl#9B%e9C5@w?am7R5K*qWJ{@g`SgJBz}eP*KW}= zqne7})Ykqa!z3@5s2HN%&X$_{(4T)DGqD~yHTM!x%J+`d8nTB8SFt+Pd_PvpRMP{dL+hd;nEgB5~iJqB);ixt(bjCSYyM)V^15P@dX);Bm4=z zKGyhB_V-YaFJ+%0sHJ){f(tl8(qRjg9T!oXiIi6Ga5Z@|^kF z`vIwjNPsVRw@ECIt%z&KvJAMG#gHc-2`?_D^4AtHPFpSoA;>raK?8q>y5 zi2k7}(r8$hA+9|nyU3RvA0AXQ@qVpTVO2y1y4%>_8~N~GAJEd9k29*=KDTNu z@AaT|Ux2Af^l%`XV_+MdV+2v^ZT&*6%%4CpYU#n3rB8~B8EvpI1d4SET}&9?G$|s5 zZ(pRPMEcfJAF7)wU+@rwJK~6=vI^%CT(ttA-f(~eW>yxj81Cz*G?7?Afxdof!wi`; z+G~jCu)G!e?-2m^`i2RkFEVAq=u3i%M)f&0s_&&ysjxQTv+<8J<+JglgbK!AKfrM~ zQ|7St0G2q13C+P&QD|4gaIrZ-0^n{Ae*dKKQ3#mY5j?aiOcJ#rP*{Z8`4fP3*;RV* zYs<7QEQiowud=(6sp9JDz2XwD5h2xY5`$~634-hWz7<-6Qo+App~bP$R+%HI%t=xv zOwYd_)7lW<<}HnPU#Z<}}0`0=FGc|f= zo|c_~3sROpq4oABK>|4Y=SurGr=gsuM?7zhmf-U#$O3<_wha@%WUkDX1-~#?X3N4{ znLo}^yw0>SPV!jzK1?G2YmGKC9IIp?;hD%SVX4GqS<9LoYelk50N?{LXL|Vy)=fll zSS$vIpfJ7xBPt)l3i1sYM8>U0A~3=1nfQ@*U`Ag3H(t1FmK)P}^R@<7*55@xFq#(4 zt9mOPQ)4#hC|`bMKml*H2`;k96@9>NXY&P{_1r;E11Nq8%UM!Y@0|^IXT}(>*slff zq4roTa35Perr>^&}$E|ywG2wfj*8=@bEfC)ysMQ2^-LwhJ zsGbnmtR{Y&w#24h%#yhi@fR-g=X(YX^W(dBYfWk%c}Z)mD9w5G%kbnbyqhrxj%B&z zv&PVF=x0Ko_W|Q?GGpwxF;gd3-a2JvRa`fjGMPF%gYoqjv=;okSG4i$7P`t$93A!umAPuFN$n2X?}k-z$?b{i`uP&9H^H-7ArmSsW* z_WgO#eyx5RUcK24Y>nEan@q(t(;)@04ntCDfY2bHbg~JozMd=|O&Fj0aW~%Z9jz1l zn8-&p{ccs$F{!2_Qcc%#od0J2*~ZKf-s2z9mD(g*UevhY&2UaI z#G``u2mn>^D!nf&bOm>M$vJ>G{Zz~0oj$<%j0!&glCzL~PM8S=2OI@}+qX94`yb3~ zW+K{Nwb6(F_hn};J8Pj-k7i>O;YJ779nVK~R$5e#QexQ^f-QWw4dn3C$2vuu&@T>V zE*99`m`nmyFczsh59U9xXsd?}717~7G7-LKbK!*cg-z>B*0M zrzgFv`N@N$Or+THjpVA z*jw!aO%Zbp6gz@XIRz##=eS`4$4_ac>@LC!O<+0zEG9sSVgp=**~1nhb$WL>`Z}h0 z^w$w=9DNYM;~sAsNo)S>1QqMp%vIZE*Q+gPN z3Wni+9Ab1pv=TQBTW&g>E9Vf=9Z!IxO_U|Exf8}5BYTDgpX4VZ$oL>ZC%=ad)HG>?ML+G8fjqZBQ$27TQKCPA9`oZu?}Vqxxx;r#oqC4)@R z%HOmJ>@sNzs9S$i-NG%L+rc}Sh;gT9>uHRjSSL&vC^YpCYg5FwcF`YN57wLzi-Gng z#?x!GDf<;r@pC=o!L?_5;9FWXbK{(Lg=G_NI1-sX~{&M zdv4&7y9gg=Ge!NpCr|Ztwq{=tD&df;CyYu1hb(T3_4dWzK}ADn7h&*~r%Sr4ANJ(S za|$BahlB|X<6!j)s9U_pe~nb&2>w|Y>&7|q0mVdqxrwu<;EWGqtenMTqec)m#^)Hu zjf|sn>S%MaH)HYLbP!PaW=Xzcm;5vm`7K?Aw+Ve6JA9l#RUo(Bc^c3?+{ z0&oW7l?3ngl$q9DJu%ZN?iUPj_GVji& zY00HIn3fF477i2BlHiW{v89RQ_}_uff7RlDe`xA_mTfjGK=;2-8c>h_-F(yj*U2|r zz0i#B`%!DjKMi&cWIGKp97a=qPb{n!;Z?8XNdNm@i1SwVJ|RQ@doV}(-?w0l#7An- z|9)r1I%QyqLj^Il%kgQj%7J$Y^SDs8oS*t315X#kHGLKMdHG|)L;B^4(pNUJ+pGkT)9b&5{mTWDi)lAR;cjqTI}6K7c+iCx+yWvVk=!dKNsWd!JfS#F}hsZ6m%20y`;1#{O{OvrpYhT6$&^;&cx#foUCZAC!CsYVu3zm+)c3iIXwc`jI^tH=!rLSEY`Di!xl-$exzar*@_lLG9?9Bd zxW_QMToV1uBkqE|JmM~X$s_K$b^6CCU7Txc@sGvn&KFsD9x%|CU(l}ZA43hO$3Oo2 zrv0PFm*qNJ$o;7!6C(FSLk#hcwFs|D$dmpty{mH;>p{rSKW61g|CpXf{Nq3?R&CkPQf6z`m z_E$$w;n?4@rtN@%mpdi|(j5opS=@1upp)+Si1^ix&(3jXMJ0&e)Efs0fE;(-8)K6C zV*@O`B0ki*I(W)Wcw-#)X#ZmdYuyF^Xh5W}qpwe8OaO7UfiXu9toC+pWj?(pq-D>#DZsEe@i!=FjzUHf0e6MXVr77*~cuhC+O5+Iut5rng*0j^v4x zX&Is4hz6nR^rL?u8J86=$+-?^BJ5$0{@XdNN&x%(NL1=9U8%E3h2cye=`F*WM@cQ}^Wp3DZMD%i z{HTqgPd^!(fl%xl6^ebc0Cb0Hg1Q}Q4QUcaHWUjTDg_u0^*`66GaM=<7W!0Xh#tc! zr8DQ4qO0_kB4?JuE)a&O(zCis&yos5rD`9kQlCDCd83nS(5DXn8Q8~To)&fLXC^@) zs*?&tby@&=q-cVII{729a4TjqX%FhtgeD@z`2(FpmCK4QnA57zbvCVIJ(#w9ICu5s$!F7l{!hM80`eb}{Z@z%Kmm54I zw!V*yJ2n!09Fnzl4apW`NHFerypKFDwvuo_iMUB#-bc1?K48IlF+Qt@voqf~y+d#S zT_Jt=hBLnSKk_(9BGg?mvfeoip+WMFzQc;MloDzY6l30D?#EHhATn# zI>VL3an2WN30ESMDNIm?d5SOfd^S75?4;%L7dKRQLjciWN-#-Y%aCQ*_Mf zpPK2cZ%!YqWU~Lah9o_(32=BCN^%Q+0*Xrw*a${8muETOVC@L9@EA%PzHzQIlC>dl z!(sGrNQaR_YH@YScGTf8Tn_0lPQfUPj}0~ylr)}c{n z1FNu_UlurfDU5tQylie5fzyx55R2+e73~E=3gQGL6XCZoVU73 zq|c{~6i;)!NYus7BtnwFgVN!+Mam!+#ztR{`1E4ueQr8oEquv+&OY#PQd#2ct+sNY z6NZ-z;NL8c4;&gfWT3E$aD`sz4;)qqsC)Keps-z&fx?RfU+7bLf$x~-?C!m@*rR!7 zBHlu7%YU>|;O2=o5>hqkHHViw z%N2HwAd54L>`wx~fx$ZnDAZ#rYKT)VInA7gJ>ilQA9q%o zh%pxZjf~d!aR0wBpBG@G*`+QS{EZLL^R_YCx7ilXZxs=0!)LA z5NPIOQQnls@woq4$kh`rnOdUK%%`Lp23B(Z$J@ zqmjev8wHEm)aouc!vpU=^i$;O^SRMAI35p&=xgqK)fuj^&ZI%8N7Tl9ufbu#Y*HnZ z38x{)?sD!nkwCy+7?mavQJ8)^he;T|>N?cSOZVY}1QdNZSQAFzU+;0g%VrW}%-KxM zm$}8Mq{8rr3-hHve2CPd-+zFgezVTB;$!*JCw}6>Fg(QQg#KJab~FA+SK2j{7!0eZt5wF<=)yO&US^{@%QaV{JN;pxMgdaT;a#|O6s8vF&QXHvEXufLSkS4rb zDUMU&LrU|M;sj>vXP6ug+uu@@_g*5PpJzE)troYdRTid!sS0rhSOEGAFhSijpaW?R z&H##qGk^lzGr*U_OI`z5&+8E@om>-5CWT(E>2Wv$RYd48b~niospsv-oepo}=TcmW ztnvoLE%;kszzGKvOR;+5r+a1+Vz2Jv#C`Sz_$f-fDHYB+KS1beYq9N%goW0L!0oOr=5xFH~sk6r=3acJA#5ndkVfER_i&t3x?5N{l?j`nX%YJ%BTUP z;l%^YOKh>Y?_ue;&M0`}^|^210bAn&^HfpbP0e$4df$)&&vZHP9Xw#GMKb^MJ77x% zqe18Y7Y;zSBf^Ab2=(9s<%J&my)%<#*M=^Z7D4t5obdne_s(vtz=CBHy)SvW6`UXw zs~rEq8L5=>mw#}^v5^E7edF-!b#{W$*+XZXbfxpCSwF%;Mh@2oQ+LEv8=A>dymgW? z&_9~y1C5-(*8D+3XhxPFa6+@ zA3R|DNxjevcbvgw*1cySnWaYuWVBoJc@_!{TcvE*Ly0*hGwR#lMBE^j2==72@jx z<3yApZ&6SO<;$E>X}-*S<(ehvQFBiLbw|yZ`6}x#GhZVJKAPn)zT>w#=ivDMo;ir= zuR#JiN}eYzA)KIZ@)K8Z%^zU&R(tmMG!s)_E3L@*ByTxwCLUAj_=j^pdzK($>gy>2 zz(pNXUli)GGxhcUGMw5=Xt1NZuh-H47#+p*m$BHimgYx69v26kql)3fomLW`Z5(1cLT##1QT*}vpyEjLCBFYhFqGjhC%ZnKGb zVMZxaGypS7UBxfVD0MBYGoy4xaot->M(HipRl|x&Utr*p__7ZQyZ1MM?)=UY{tqOS zR{FR~*eHWJc~V$lK;0s%Mi$DH(u2OP4Q!TyAX7@yp~D{*7VyiBAg6-|ejl--JY=9O zW=~mbH_2L~{XdOU?xLxlt#L9p5oKMWDwDoJIcdza^LAMTqa2{hx&px{S`5VwDsp?pkf^hH0{0s_%zQ-SES zO#t-H!SJff<3utpohCG~ioH@+*_@f6f;jeG-&D5chQvh?uBj$su$DGFcUE#N+e3(P zJ3wVjZ{;ehgYL-n=+IO3%yBI;5##pb)b;3Kqt%jMiE@>i=r9l)QX~VhfkpI8m~Sze z8e%7)6w85DNQE)bEsNzqw<5LZA;bCUF0Q)H*d-L#HQ4$CA`ps$O@-oMTLAi*FcVbY zz4CccF8yADLPimA<4OVUjq6Z0i1Y%D#)Kw}CMm%+%f!vRu#6`RaO}Mp;I529aV)Nx z#-byyP#XHyOla%+R$)shOEDme^Z{8!DvSZys1L}$NG%S?`s)qIb9D}gep3?&#Q~v0 zaX>5peLzf5cRJw^X%cGJgeA25XELn8Ca9Q_?u%mvurII20doqJ7>5RP3Ks|+4hu!Y zsf9TO3PobfDKsb{GXhfX<_3yp_fK`@o1i!^LvBE)rv<1`ObfKR0iB)}pmf++ObcY* zkQfb+5@YZNx$7>j-YTpGc!;i~NFGwlEs~*kPx!xc-!gV9VUKtlt@CD<5y&n5s=JI3A=Y8dj061lRhBsAzkmX*}uLe`g&-o2DsuBpEJ;Betd~5hn*$85B{HiiP!h=od3iA{nTGd<(*we2f3d3 z|9=Hj^nZi;O)2j&#FgOxjUlKMFF6fuG{7=YCrjl8Mqh&1ef?8-ub~iFw-Q*ybmdE- zm)>qu&k@<6wBVCN9Rb7e9+k?K|peDbnnkgGcn zI@do~EgXP%wy3@X_~C;5M80g8D~hL#a3$1JPw=ux!bn#~{~m^5siu$$tD4|?CuqNt zSv|^in%!pL%Q=8=>D-KZrc3o?4lt>Qr*@6;tNE$Y)l^Z|@T;R;-Pt-KTIh&RJ8DZM zD%vbnWb+*WUwA(d9?o064BFe)@@%8({6IgxaeiEVhfrNLfG2%i6z9LnXo9Y-*R0xF zA-nS^G)7!()9#a^GyaDu8D1?KbfPqeePV!xE(>jd#~)riEw&bd4}6=pVLw<1)We{( z39c??e7KCgfEVBCsz){er;u{U(*<}P+&16p+9R49qZ8QX$GY;(W>D{g_?0wP#kG>A-`ubGr%LnFn12}}M#qjN;A>cUDB)>VIcaJNgo*Go& z8ptQkab@_wWeC?T?2J```}O|3ps%A-(-!$f0_xPHN-FC*12A#FOuJ zZBbhD&+c`lvxGsOf#+_eDRF$q-EQBJG6-iPQCv_&eh1zoGbD&t46gq=5yiVa;7az7 zGUV%vVxEA|nHeEk12;FU4i8qtp*3P}m8ugVRmd*kyD2?5YB#+S&hr+4 zI|VoDxkC%$5BE1k)V%=r+@ZA_e6HsXty)5$s$CFy4A&}o--ld#7(u8BUhL`zAA}&y z1Jx!~j}PeH-++l`Vi;Th`%uM-yMWJobZ}$dZSweLeCHBZC40^gAx2ccykoTibqlWA zI!Gq+Uwy>&D|^#G;Az}7PP`;R_d-n9M5P5#SJfGUsy2JPY1~}nrBGGu@$a? zq5@yg`IS_FuWHZdHwuQg)fT|0y4mCL)8orsLs-+nhDBmS7+aqZOb~4S`@KNe6EBI#&>|A`N%(KB_zS@1QYq^O8%t;j{I{e{|ZuT@Xs~#-(T$- z%kCnW$bXjPzmUL@|E$3rwX=#;7_4U@Yh{;Ilem;Dtd22+Mb ze~Ku=*En@044^nyx@>a`xC8K{t6lI5VoVPD!!6$jgnS@9^@J-gYO4U#*;8$dU8#Qk z$xzoc_8)VjZ|YW1j~NHDcL>|!pIvj<*8~8{(I4%e5Kv6qfDPj_(|u9-J=LgGF!3n?; zcjbRR7&lzve7rwtaw%S69!6D0+KIV>oFM?gTtP4K3v&g%hRA1xZ`T)Wm}rr{d%=}s+Cu;A!a)Yqy>cx1 zr=*W#6AbQhwW>G~-MzU1bc?JSKSVB8<2Ji?u(<{TE>`O7A#w>?LMm{QK?P2-CrAZO zviYq#_ECo5@^JeQxje*dh3~Ghg+phtmk73)!|FDj|9(<|{GkH*e?TgXNxaQ00N1xO z1QU6Gr}O@mR3LAtFcvtUp~m2#fZ|x%0en_k%TNiu84ErmvdnF^%bZ7vl|_burYADQ zMO$H%GYG}$4!yx?R3u1n8WoFQIE{*j;xq~~O(UJIWQcUtufOElPF*zzSKWiZ{IY8+ zyVYogv_!Q2u?Ey_ic4O;skt|bj~WBp@8kOdBl!JW2S@XxJ6&1qPD2jy+O$$ykkKNJ%0se0o0%6_v5ua5V z7?95XG{7<_6;B%2Zvu)IdaU{VJl+VbWj44U;zy z?FRc6xBN97#>Fjv{!I-kh*aT&R@Dc?dfU1UgTr_WBNAD6qgpT>t9I4-Ifmim1{(|= zk4qbtFBpn*2emM?cT7@84CAN2EsbZRto+J!ezy{Sl?VM>^P^b}o7$jt(EQdd&0LS| zEgZlY;RHh~4^63!he;p%+feCae;Fzt-8^B%Mul<#l?tr^h4!|odxr5tKbCf4ZxDR! z_b$Di2W2}|(Bn^MOVdJs7Gr`Is$Y<@a~O|2?CRma)8GJEeDN`tiWMUp@`n$@LEW#7 zI%$?b1+-FyHjPD?{|9>|$xV5Th^p*Vo`W?_;hC{{{vRy(Rx$F+a5_=Ri#<|and@uzAW?%6 z@Z4)aJxl&8H@W2RYjrl7|M+HU1mAevHI%I~M3B|K7Qt03hs)J|^%t%~Y%3wdt;J?( z5x9wZa=6%|&1MIzNPEplahpoR__8|&x8#TN)FA%o9fNb&2`kNKW*Uqx>S&(fLHKa# zK`5g1AakH?rtL=%7ZTBfG%kZ*oF|@g^^966pwwy1Ga9Bl4Vjk<6hvN$_P}rI^OQ?$ zKSpseLM=?P8Igf|k=6tt*R8_08Dil=1Vd$PMRLmYtw=5*5^MWospnJF9%XWA?^|YU zML-X7E0R?vw<76;(pVJK#LZYRc2_X++ukM0-0 za30-XR_8o=@Qmv@?|F3BkFK}aI?_@xk1*3=z&x|)#haW(L9<+~c=iamE`RAcI2rVu zA%e`J)dtipxN2*eoJ9-HyIx{%8VGXp@J5+@zjarc+z0Gi+HZ)T73ot031>qcVvO1F zLYcl9H#lL23pV3rme~;eg22Jq(5M`K3DQfhZc$qWm`;ak%B!SxzZ8;%-FX?38v%mc zYhD})w%7CN#VC$Ce|4-D!2AeroDcB?fCh?(Dq;i_4Gpv&*Q#Wjt!KIZLC9W&09|wU zaybw3%VkIcz2~O_+ICU9mWw&yq9TnckXkOMKnx&>DG*t1OaVgS-i;HTk(S{UxK}g? zr@(#U7fylu%Ilm04gYZc%WDeMT>Qi351-03_f3BX{BZ;7HpV6Ozu`x&R6((4!+6Il zuF-6(!JSNiT4YvjDaQ%0IrXYbVfzUgZWUfHms^F``01Zqlh|=<{U@|OY?Xh0HM?xZ z`KcUt;QX&Y;q=;gjvH8jmHZBY&I?NZ7#1)BG;ElreoN0!AA$_v7@zzY)|=FVt?2yYN8lF!H83=|Tex|xy5W@T+UaD zBE8pR<<|N7yy!j7*J(m3kg`Vk=}}t*n9kQ#hL-f?86^Gh=S>^uzt3(rw^z@gZLC!4 zKUH$8MFNTwb_-AY#kJk`^ay>vK11+vzWy6NPAi_Zzc@n9 zSLnT*uNy~5pS6}y7!!8&2svRF0hXAs55Tv(#d(FJS92IMDD(+SmF8(#xs3hJ32dCO z=fy9au;)kAIbnA-&G(+L{K=sF7ntuzpx4b&_$-dweZ_$OWAim7C_juJo?Q^Z*M;P} zSTjQenY6VCt_mF~z1D-F`3qPQA;VdbI8u78_>t0U9cq?uXT7ahITEW$JXFjYJ$4m* zT)S~f6rVpfFoqvJ6&W5@hhW2xg^iT+f+EU!ab<*MUIc{+@i;H0ieF)TZg_r1RH*n( zr^Pio=E9BD{2iX3uCQ4G(O4q>fhpnEeIxxo?HPsy$X0z-GRMyV7~6IKg#wCG0>%Je z9eQe{e069u!N)1_->7IXd}5ek2H|%-Jr2>Vr->&B!SO3ibN_AlbID_GmojOIbzFzTacB)^JAR$m{^B# zVZS0w4+d%akpA-<3pD`0NBHSB`3qUQQBZ|SiRUGq`pR=>2?kL75;n19a{a?t_h&Mj z@QvN`LwIgt{wIaCiCA8L5eo+A59LRb@*DC8BW=z2CvEe8VVcnkp7&Va!YGFT&?!k9 zf#=S6QGR5iZSW|_PIQh*U_%K9p&Tv_o+$%)T$lVTdCIBjw?peQ&hF+0GSUQIe6{bG zS{1YDCKXfBIX?`~o<$|+m#FHTQS$7W_={hUgkviF)0BJ{Uy_o))#pj*HJ>*lKbbv6 z`VTp?Ta-=k#q<2`{AlX5V0GIlv5iaPSMKcw-#<;uzoQ;LIp$Jzx$GZKxNU&M<`0+Ja16HEI#cU zo1eOJ6rM%n`_{$z@sP~?BR*F_Hs5ltZzB7fv;x)j7g1M}3ZbqpD%jTP`=*5RUgiBV z`Qfzu`Xprywf#1VU&+evzoAWl0NzWIklf%4y?c<7T8){S9Ob_S&z4Eo2F*JBr z<;Lh{1uDM zzFXS()hz9s-%RmoQVE@!Ke2BnWAMvuh-d?iDv1p=uf(aNj1mVqC)98B7eXTWLjU{} zW+S3-;M)oS9l-{b@=)AWIr99^LfHCsCuCx(@Wa9OdQRPiYL+1Z4=epyAs3b8d%_rh zpd|mW&u9?G10R~!nvEfXQ8g7*HB&sQS^kk0$5S)Gzixb{Z)5({fc*L#?}EWw2=^G= zIWRwil@rORsrdpxH8o7{$6#oMSc?}Af-Ub#LUz-dT5d=%X$p_S-F0e2Yrb)4eg;o1 zoZO9{x;WXFUtAdO%jXQupRVq%_6iY>Iy`RG;fs0?w@Dq=Jbp*NNQM1G=x$nxXAKc1C3cGG z?#Bm?%0H+y<53mh@54r0reVncqwT%pqb#1sai8Zx%U&RbT!0i3Iw6Dv=^%v8mFEZu zC`bt%j+W3np-2soP_lFqnsh=lDu{sC6~Trb(Dxe@m127fqI_p(pSx%7a{2sTuY}(} z$#b*2Gqba^GqdyT?lXi;!`LAn50*B5EF5ea+8yo`5*l}v-GSZ0{Tu;&*5Hz>T}AF3 zVvS}M2@@!?#sWaqjt!9$v^+2*)DFHCSb^6b?9h0n!H#s+g&-)k>^e$XN_ieK7NQRK zOl@1aULX%%U@ucxZiKa^qKxD1N5V390wImMHiimth7=&!v6-Vv8ZIp{jT{2$ht1_< z89aE5CJJhWub_tMf*Py~YM;yc3foSafq0x@U-^2zEqb3}p6Gox_6>fY2C1ba{PyNG z^wavcH@^n+?%6j;T#UzqeU&CRBitEhU2UcnIDUWg!g%YIpqmD35GG~Rs*%F(7$6=} z(N>?Q9V^>FxhXgUpE)Wv()qnn!%Zw}N2vnl(R}VwYk3~|sAd>$clpUPGe6v);xNpdrRW7}ntZ}_nM9lSu8S;j!yOzcGW`ju`#5_R9Jb@G-W+=c-R&z)JVjX~3)!3o( zu887PtCnp|fUEM*0ABG*dMqQgI2el>>bFCtybT37i3dua#TI`E1_sa^tXq} zh#rp)#f-O?N(zkdAXfkc;4z_(V+HW?O6y;W8Zlh10K|W>0%&)kRbb(gY%3i4c#3D` zSQA;h;V>NfI#jq#r8Upr4fb7p^G7ZNt;0p^(KyUYDV}gW3F^V~KeKk_rnMyxJeu>% zn_vyyoNyuhY3OqTK((ZaWD7UtCj&8e(@F8 z-%?!RL|noG3T4Ym<(H4cg5%o;x1#t{`6bu6AEgL?B+Q@)gGTs>@P^SZ^?O}}gWevQ z#$)Ezs=)tMY&L%J^?E@pPBb)fIo(5j$0BBg%*uT45snenMGSXGb+8nGsi&tVg2l5V z!jE}yRT>@uXAtV9nEH%>NG&EFlBI+J!*cZ+AuU%yM>C7`Wr-jz-VmKHWh|GLV+}6s zzSsJds?LV{)Xq3Y;D5Iz$~|cP)3gIRaqj1qwb?Gx385Tn-U#BF4v#=9pM#)}I1;0d;<^qpcq6L-;@u_8du6GtG|( zou{oMN-sj8kZ?)YoL8+in3M2;BAh4yR0-{RkGcUrLJ4P|v3|`KlV*=w2^Sg!y+l}P zZPP&B|D5%|rb8nGc-j~7_1F=@21@V%mEg-#f__7cM|N9BJ}&o%a{Q&&tznNxrluEw zujOCG$1r&CXc$WMJzuHr(mR>2OVzo;QjTYR9p5|Xs?ipf%=6!>5X&om1KZ>8l&x5X z7d&kXV>gW&_=bN=<_^;L|zZRk$KhpeG@Z%bkFVZTgqhJH~FJaaA*z>q97Q+$ROt43l zypmwAgK7q*gpRl9ZyUyJqz{i-$Kf(RK~FLBj8A~9+sszK1jpLierUZ63-{nl);eqw zVFATB!B>oP{D?8>vUTud(&#a|^cXyNX>{mnUlERyA{-73oz;^0p*{`9v7Mw9h|n22 z+1JJ8NkI(v2*LV3Yb<;Vu}PD?uCwP@(7uj>i(Ivzgfo%Pao#ilZbVt7TQQC1v2E?4yzCd&g-ji7h!1lC|Bm9xvG#C&DWORn7EDS- z3PJf-h(kYB`d}14_qVklt4As!idv%uigv6SDG;sITB9*Z@jxOGXD%cB^v-o3#&-V9 zdXfC!udM@EFMBc9h!6qr|41zU45P@s^pJ+uG~!lxx;9>Z;NFXcwD>54dKn zs;&m=BB23&@t)BCF@{r5Xoyu^F5v^G^vBn&gV|aF&HEK1w%*^tOZ68<^B$krtC?OH z4dL)YwWHVb}0jX2n&araR&B1aJ6Ls5NYtfT8Iz$?a|X zMjP+;ik9xyOD~PD6d2t~wjlhvRn@f%xZTmUy@mAKQ+9upkZJwg1WR4ZH9;OX+FTb; zxY6c12=Q2_+Ceo$3p}_9vq~P^Ty?{G!p{_1degd^JrD@=Fbb#8p9a89yEKQ);I+$W z-tH_+q3%CgpJyR1gBZBAWL6A#K0=0rm&YtF^99ut$t=qBAqyQT}>1imo zT1NQkl⁣pE=fFtb^E4f&ozLGiQ)X&YaY36{@og-zqqDpbAc%dA_A$>XaP>&?!Us zwW%XoGV$yYwP*hLXHCwZd!Umrf0#ahV4YioH#%#t!B^k4mQ%O7LI^`m>=xvv07O}0Orkq85aMk3B44jP)DiYgk86) zx{d?KVhWLNd&S3Kbqx(hNaW(xiBr}b?=Q^@p}^$@Et1`yCGRK@_f zX=j}&<#IVTA6Ear-M21cu?BX0KcGg9AyX)kl;TW?8iRhM3P1ZdyaDM#ig5;Yz{c%Z zFH(T*I$%4s${4v>*-xKb5&Xk{tc%%1($ttbu!qOXj> zX~I)mC5Huy+WItEUdHxp=y?I4)8sADyak?KE?Nlp*ZpDb5bcojgK+BBL)UrW6Xr)a z>9MCQLI{xO{ZyeGzq=r^q2*se8|TO)@q}~a5s0vuIr6ZaE#K)Ul*>9$O5G1`bSsb# ztYACNs*VLd=u`_g0Pb!)9&&A0+N<&Bm~B2wGDvWo842*krdPl#)f?+Mq661*`_}4Y z)WXOwja0yy*MF>x{Kk_4#NU4`Iz2#-hkN{V(N%XWzgNq)TO_!`c-1TE;f&OhFOn*a z#d%=y_zu@PK?pZQZy75mMVk;?N>p6|rjsF*Focrv9e27%N3)! zTccb+@7^|BSM`&za;x;~P*-e~J_~%nR%vndhJ|#3w!0qTh~#(IS4&{gByBYf& z&f;1G|K^A++*Z}r*rYVzm!oVwBmAQd;M+DuSK}$W>o>HJA@dLi9hraIu30(=x;TqF ziYJ`K9mnA;ws-}LhH&vFq1+hT3;(}N=Xo`3m3aSh4HEg`+0kWr^H|%4paF((+*=HW z8z8yG;4H6^pp1jL(Vky>xniKRuTjC>=~B;q;H@W{X&~mfO~4N&*Nky;o4~gEwqU-g z6U@WR+_6FY75%9$%O+TGUT2Myc4O%{e(t4iJ;MEB<#%h@UY1jul*=jo^f=!s{i2|O zQ~Jy}Ii)Aofhj#hfa#R(LwLa{{cj!H1@cLFC@Vhy*BMGTumW%H;0XvZ=uf!Jnlsq&)-+Afue}2-2^4PWSdfIf7;f7`2ZsL z2MM;OUeLHVfzuzx$vJ*yoSfsIz&QWn7|I-kHSD=n0BFyzCE9KVj0C9Mr9GN75Ozoz z?$eh^vM&|A`U2ZYldTTCwm^Z6KG37^0R|$sp1a_?FUhuU3LIqy@$l3O;~U!1ZV2B{OpCF% zol%9)x3R5PRBeLz0&$NB|1|@6_j@Cya|kDs-$Q){zt+}PJ0KG1^1&U-*0zWz=_Q7V zC-f4-CKT@_dXJOoxohogNBnw;rKJk`n)18t8U*uI9l^LRSrVSe)7sm11kE+X+W19`^(pUH)=h`$u`ik4l8@Sj}(n9zJ_-Z_=thhKq z*(aazinU@eVPw@K@5DH)PT!~&S2Cdd zBE5M1n>s=2-$A?WkYD{OgjbfTn!QIuY z$G}l_xc{p`IG@#_K@-;8Ac2|}ZZQCEnyzL%Db+TQvV&_F1->TR*@oYvRyvEvo)*8Y z(=iVPS7=@DVe1D=>NY)X4PjGlK^HKC^LyI5L^TsMsltUBOo((-48Jy@LI^irj7>Gl zi+M3N*Qh~Wj7?3KFUClF5fnM2LVY=yMB0Z8uywEymJGS1OSRiBDx=!vi6=CBdH;vn zg{Dij3+Pi!aJ;DWY8TAgK4beR=oOOvOkLWIACGZ5qLXIJiGA^UJWI88$__sr8Q;WfiIdJu2& zAl`(CnSr=Azuwe7ieDIM+vE52>A_NIR^MFB8p#tz+kRmu1P}V63o?}Y?E?h{)ZK}! z$3fCI#x|C{ZXlQ1aVYNw_*zXNx^V4k(K|f@U!@~O( z*t)Q`q!MCorDJxG0>s=(U~b0x5jbLP<-v-#1gHE_Erm@Ym9Q~<=6(`1o=@O{ngX$u z&Jt!0ixVntL4O0Z6}O<1S~AVBKLfX*M?noexo}tz5{ljop__Uwm|j9 zMBaL?E!wNP2uQ*VI)QQ_`Q60A3v+E{6t(;$v1E&aY(_YLIL{WStmNe~ZOPGPCxHZU zVQ#cFyW7fb@2*VSWL8bo(ALjRK2W`0?YU#nF=FnX^fK?LnKC9Z=R;-1P`YzRRr z7W(Ev0-y^+d`58;Pg`so%D>G7dDY;UOqwxCCX;56wvbG!!LQ9MGhSUkN#=n$DaAbS z+DRl2oDX9Gd0_SMM0rQX>PeXXRRK4qk0@?TANc?x_>aqA_aB8~`e^DTkrHmNPMRb> z2-uJ(-8xZ*AFG=dS@>|d&84u4wt9CG&kS_dVZV}6u+jRh zoVRI@9>R~ZU7r*^>e1HGR=ourz}1}W7HNt{KZ4(lX<({6S-)4uGTBfn%=?7$&v@YEZa;kz*qD+3;Sq0Q6 zSBe_7(gzU1ue|}8=u^3{wWif3TM(n=n5LS^^EZK&1NFpj)TK|7+0H?r{^E^B|4B02 zd5dt0)AFVOxThuFLQ`gnoM+{xcq@=e{YO!ZXb+iLdQ~m}U{I%I(t3#Bb zrc{RRr1{((wiHGIIOQEvqzqe6@$iXRzhcZDWc{pcHNlE6gZx)6JiN>Hj-qY_CLz~n z@n4Bw+hglyAzs%bO^Bc%yzXu}A*f*>dr~}MAbWC(Z*m1sf4aqpuYlU^wPpG_6k28< zq>nC=9vD&My9U(FMb^gB1*-Dk{H6U6UVUR=mtmtHa;~qZ$VErt0o!!;8)<<7*_|me zZ2SpCx~^k5$FPx2HB?vxSZcYco?7^=iF=1^16WN`3vpG4J0jL}Ys!*I0XByMylbxC z5zxPOq!bSdR-X!sG`k8M7=h!nq!QxprQ;q!3J^CGcuqD>CWVN)mj|^GJ+35`5W}*m za=*y-ZFS=UNg>i*=D~m=WN`w<5c292J%l8+WC;1j6bvClpoShozAXq{ox*RNgh}?b z0Mn51Eiz0PGUAm57YTFV8#Mmf-MA5=x;p{>H;ykqZ|lvDQ?^7;j_5r(LJH6czXv@*C;R~^ z!JfQBdUC}x66k~9ARPhB*b#~uJK_UCAKZ*lD0bwacSq3u-kU02$2FLe!u@^&lUuxO zjGAs}3u3!Xrl`P7nX0e8(VSb|BslNAL&En|YV~K~ zhAD7+5Mk2MkL?%O(T^PvPw2-EOh-RfG;z}HL)$_>&MV}SZB@_(gH3mC^?d_G5^5Kw z8ws_uMh!P-SzAi!+cHybG2ZAmTRHxqIh@tTYYna&bhyW}TKrIVU4!ABXpQ1yKDISx zcStkbwNOlpdoOm1;%z^%O<`qb7+QwLUzs7@-apgje%okL0bNJc8FJ5315$u3tIj~5 z1`W||6h|7}#=Ysf+aR^1+c*Wy#o>3Tp}UP|1tIa%efa$z47b?AcTH5GF633xeQ+TY z*Z{&Ku6r)st)E~TIRk9eouHa*G$|JIMjbwbgsqci;KVT_ecWdNgl~Uoi!a%cjK17G z&_U{e8S=3E^MV1|gMJ1_`u-`r4J^w5%fs&3zuHRd1wCvqLQQVEn($+p0W6;o!+E|< z0MPJ&vVkicSvc#e&7!i?q#~|#0 z;t!aKqwIrU>?RTT#dj!}5B_INQ8NR0_Vix0SA8c;~5vco}+KWHhwy{*gAq-|Gp5|)K z0*OQbC+y+91yu(o8#x5se3`8#F7>u=uT^ioD?O+=TLR7rs!piV+MRJZy-p zWLSy-P`g@nmORaC0hZQxf|T4}H9D)Q1`rQHhRqUc(VUAL0YL`f&E#!L_i;YULuODHa7nBbM??+L&YdAwT6 z$OGibcG3q-{F5#AL-X|_!D_%P5bXm znQdr|NIQn*`!@U6Xod=MmMX};Ssn%1gT2;IHSPeBc}_L@88uh_EV+N6b9wt7Gp!)6 z+e)rrpTew!H$0Nn*#LNkzZ4hu!;!4MV#4di5iKWTavkcGG+t1@`- zOlQNNZ-Zj==Xsg4q*}C}#=!i?Gb~@6C(l zKKJb&jCT#S*Hv%K=INpKIQD~IGXEiDenm2Ixt+>{dRxy`VfJKIbmWCD)x`h7=X+Sy zK)AhhjiWX*&oShNf+^3HFt^|>bNocJ%1L`Ol>52ffz`a^4)dr9e=hLrP<}9`Mr4E^ z^>aM~V#8ynO)U29tQjE=>jeGqTw`EO96QCsbDeyvpn^daJOR|xw-iqRHRgk=*ypmw zq!3us&z<_`N~{y3)D#dQoSRc2X8*9Ny@8U>|Av2R22c}g2VmaY;C3K`BDWN*`m8a> z5C4%O_uPZd3o`O3=6t~%E=d=NCtQ*)06N}hWMHPtqnK|*+SmJ;_jytF32Za%r#Q{b z4S<_=*6z}q{Yah?V_(XS8QA5Xu){)Q^z+L5=g1Y{yQC7X0NzRQb4(t#du3pWmrYhFt0C2GsD*(7yg05mxWJewQ zeAa^0!;rNJWJTt7jbu$ofsryyohzqwPg06g+R1b3+sS75{&VHDE-Na!7pY=eD>hNH zn+kMr9YN{fI>HAK!L@jMb1!xueuSLV*q#s-B@m+`>igaw5Yp2d+q*LgK!N^`@O=aMR-(nf7UBqz zmx6(zgRoodnkDM(wgO@%;jY<^f_t<+ox~GbpHB18`k0NKMEz#SZvm4Oi3by`>V+-C zeMy!c9&|lD=z2g0^w*Jo%#N6;goK6bkS~QKh!_f$VKkif?oF3IW;GT~JB9s_NR# zzJ*;Ul@RwgI_^890C7VB;=Yq&-^2bPrHK0*Z`}AA%#!IDIWbJV)X+?s4|H=duA@Db zC6ZdmL42m{T^mw>&7lCU%7nGW?6S3)jg%q>@tN-4p~EOnte7&~Fi%ezl3LPX44EfW zhEPLy6VnAD@zb3$+yELZ-2M_#g*uL5L@1atoI`jtQie-1^_1ZtR`g|r?@vhC3 zh63rMH3q_vGK?$f{g`egF34p4cV>Q7RR z!vB>D|B3l1{EAfg(9(03O1+&a_xAufbcvLlaEU<#;Li0t>S^D^V&_9Yj5xv>{fb}& z<*y%hpe^MFm0G>*ds(7S!ziO+S-G`HKFyT5sgGbr!RDdDKYH6YE37*~gd(%g zmm;&1f{$%m@q{OqBQHReb>N*L2h}`OQ(H&h~_1x;<`7*aUm|(%_aHOBT zcfbmO$`5O-B;`0H%X9)sL(@YQ|09yWtA7_f-KGK+T$1@vdB$`EdVx!_qXfUvi$k;* zr(`e8v=>}tSmE&8;DPo?MzMoWmHU(wJDgsCLMlL10s?R=LBB!vpV?KyiAWa^B`7b) zlD3pea5>HXG5duy#JuX|!S*KX4+4eB0*Tpo;2S2t%$G+TXd7Ue64Q4S7A00@sC^p? zTHvj!MC0`Bgrp(Iy9*MB*;}j83*_Ae(F^ojKHx$B0z_?sQY3lA7Q7L#NHDH|ZM491 z$wvqs1z_dL@_g_ZTXi0(S%bq|hWb~OBC9S?={Fe^DU1|_HZx&(5WhRCb62$+sEtSp z%Q=$B=a00nVrhg;oFe@f$SKmF6rfef`z^SyX*zVY$IfbTY$hqj=x?fT_ZER{V4tAR zG&wqNRDv>5)YV_p13fe=lpaRf6rhX&FHZp&6ZVy2h&=|ISD{mwl>RVNCZ*4S)e=eR zQ)n1uQhKIg2;DlG-Kawy(?v0Q;>OQQq*JI}DdqbzNu)Fv75^V@0MpW5eCZ+Fsgkc& zft-s6&$q|mM@#CZ+qo?>rOf_$W#wK_^TUp&>`l!X)eV#bEG6aea@Ll?>%bS2;g?xxc}C!vvc zxJC^cRl6i>R1ZU{&7gx>OY=hg?oaV~m!mW7CPkUdPtLN}V^axjl-WcovrH+oFe)>g z(Qw;B$m{m@Ja&$~Bp)*IaH@>w59ioZ*m%MQif)as=*H+>8YM-?tIo4OV0%cj$0NC& z1{p8OiBC!t!Y3tKD(VLdxqYF%4f~J~N721UMfZgi9V4RS^B38tmqyXlw-)lC!Y*~# zTZA-<>nC4vUC{e+ZXwTEY=4P8A}xgL3j0Nv2dbM7jTY{n8~6A9u>hiUd=;YnD(zkR z*Fg=G+v1sg9m(Qn_Pc&rAd}s2F-$TqXl93(z{~AvPCr#kb8mxNrONXZW-H6vtgwH? zx-Bvc0;bSA8Gu1hgzL*vTub9cGm<~M(!QGwGDygKVxC(hS5MC@BKO2h^Q|?>r`Fv+ z?33AQ-&!jc$u-tiQh;kLC=j0`;1#p%Vt+iYtX3?-m6e-r-!-smyWrdK>>{}fu=-k< zg&&bpT+^NPpuokMAMv^REE3tgb-es~do7vGBemq>tnDJ1&BMhRX7m0MgfN@;1pjuu z{h6pf0zkE~y}?Rhk6e2bm6dzfjJ^&b}X? zm+$$1Bn8R4?HP;$5FOmjPQ^2RkNt0ES!^f~Mu?${WrP??3Z#7EC$@mAEk{42CN7qT zFOon)b+sd@xY+lF)~2};Eo~-589`)1%wqb*|MNb0KnDyY(+QZgbL??o6r6JFM1yHAS zgJ;2IYnTxD5)Xy91U;6H#^v(KL}IQkRfm zGRuj2=`mLu;7&aw5o0aR^fa^b-#5y8W_df{~j4u zc<+q8lB({PP5h(fqt4l_7UGFK?19t6#QQnH9wy$;iziIHpI_p8q5>lwxBT%$#hd5t zJIyozlJEVGybhD$E7D~QTCNxXHv^^F=z~E^_AGk^KIRSkHTJ84UB)Z7m&kbK))M*d zFL0@$$QWysT`J%GRUri!EtFj<0uJSt7~N!!mzVhA-Sy)V`TlS7J8%s!-daa$$%x@2 z&_H-|YcV2*wt^T&3|*G;tLtH_%JO&Z9in~|+|#(>6Ve@g3yA9kCt(!~jK;sMKBmMg zER~sh5>^+?Np$FUVzd-FF*ipFYxk5_V?L&LJmW&{sMsF z){~y3rOYG+e`0T^eguq&>y|%Ss^5YM09-PCNf6?a=?dllKTG8enCY9!g`w8TKJeE* zwYOph>9YLD7xs2sY?=xqQ0bN~EtMO%GT#agtlVFbK*FV-KAMKr+QTY1<%<0z3ttBP z(zClb93jhOlo3J-FcQoD+}?#zD25sp`QWcXB$FUp$q8OCtwQN&S#27LwvplA;hp0^r2 zi<1LEWd4EPj;m26mY?k#pUCbJtaz->tD-LK{!6(z0q)T{{=L0>fcgkn2H#Q3e@(a6 zSAkEnf7`Th#t-%=m4z%flm?T!=Wp5ju&M+Ka+FD3C4^7>30^Z7Y4YJu@NTg|F->~^ zY)|%WlFFVcrgrOJz?V}3m>4i5t{;aDT8-ZxDZIhD0^eU|v|y1Yl3m{qqA5_TM& z;4r}uI>F)M37z2Z<-U7gz}v~aFSGC1Kk&QwKUb3jCeY#tF2y3kn$ zz|DSE$;lOh3w=^yxdu|{IoB*l&k0MebHCfivctaR`)Rp_;}ZW(-%96~%O(CNqyXJ6 z6yO&Jzas^>&Og5#*ZHfK%PX4w^wqVJpZm-Hp>(#STsqq+%YB_~g%vQ4=xjq)NN3yk zfqiV$NksU&u&SaVc}o^G&9{k#)IgWnkN||;VetZh=5QLn`_TS~bt5&< zICp}DqS!ani4=HzC43QFd1SA{hLA#Zl>=80S2=ctG@c=%7IBsRR!CO~B+yk-61bH0 z0q9F}3dKmb{R;VdqU{Q@Hs48E5^LG*dPlaC0;40RWJg{lh1ijoX-D2FrXwfyjsOYl z2ql3X@d4;-atg(cZ1L$x{c?^|>|e@~=*R=TBM(S{&nnuIC0Ef^vJ4gRtfJM*S!8f( zzz=vQ$;jZy6?AZxTtNpD9JqpRl_giuZAbyiss+W{C9BAw%hfaBldETn*jPP7?@)%c zcPK+2Km<<;a&%!7iZcA4Awztv(|U!B4B}yoL}XBRg^UbV6YkLkX9<9u3ShN=PQ9S+ z&ytbBK~fbvx|eqJ#iAV*t4nnkTw5eAH_kI!yUn3%+H!fh@zyNKTo%;TnZx+td!r5B zBWk`znZx+thcL%m>VqtPw6dcGdr0adhksEH%dW(ss78i(UceLURlLXaU3zJ9iST!HB|9m6W*TYyxh2pg_ubX&6Ufg^Xw~#qVw!0p3r&rTZzt- z+%9FTAVC!Jb}6!J#e)>KSl}+MOT)u!g?kW>@*o~15&Lf98pUI)J9hZl$yGkqQCng2 zMSI<-!;IB0hMHqQ-So5em)wKnZuHn^tyTD=i!B&@SucGc%Qi^JbN+s4x>m20=lqA) zblhcoNDHwfRd#SC#G!9y-3EgtHc*{i1!3A5-V-*l z9Rcuhc;Bi&7Og6Le=L90vUiAlx-+C#S?;XwsKd&vGK7tbYKSKAf-5)okj9VVF?sbu zI6h^@JL<7$-$qr9MwqxSPH?!ZYRyW0R~4y+k%0n7{Sq95L!p8m4%h@CQU8~b{hLLt z7H}F5%p_gM#rKA3_EdhOq2qm)N?61dctfpENmk%qdQzTe#tkgXG=dvris1x+hIEJk zpdkfy!CgpIk{xqcCaH&!#q3pb**BXM;Ic2NvEwO5p=e}gtdd@S>MH5wTR!Pn%l47B zh;+A(bT=u0Jpfhss3zboC=`+I@IgAWspCub5owD^FRqd?&_z;!9vAjYHRp-V9gEdl zt9a(qjzsn|se+dHhgHPc{<#V*u?dEjE44BrxVfFR4bMK991NO=X#*gI?vIi}_vZtM z;P+cPmM{v%4!!5oAxCS+ORV8)7!kVSuD@D#s6Hw12_ZVKmLWt}QpE@%I<6+Y>H$9> zgn%8;scjwYly*G3ts|PXBMmWb7`EP?~G*IpI%z6>m!>vX)Ws+)jAh$X`P*E!t7aY8Yj%+?cXC$r_; zeuYpF2{omV^!Y-z%%`1I`-kyuy&R20jc)6ATphhu$pa?H&3WxW0 zs0zDE=;50hqd|3C&nc0cEK|YYNXY02OS~+fS{+lrD6^YDMnJ2#1lqRm2xnW@(p-K^I?4*EBs!k zxxJJj%vE+LkmvPtyv^zhE{cRrwGF7d2U(AcW(7Xur*7eVPk#u%TNrd??Bs{At9cI3 zP@azBDPKPQ4AV#pj6AG4GVgCDA}6oUcY{;vsewaU?h2vSR?7pmvr*6d)Yp+^xj z#ZxPulICa_)m%K&7@`JY17nEbm%3EowFf&iUTH8y`kAC0bJB6X80L@~7!Ir>05l{y z0)U1jE=L~F2^{J;%l46a(sSoXpR}74c-H6YS!gTH+?^+-=seEk5Kr`ejx>WabEFx3 zB}aPI-OyUR{HM6lNB96D_}vkXMPAj=obSj%tEm93QDBNz@d##7E_OU_K7M*Psy@^R5X->pRY5gZpmaB_m< zYeoSmzL7eseI%<8>ttj&I#`JA(B9#@$o&KUZ3~v}vcZaeb8{PM3I##gz1_f!{{E&40wT2(H^o->XXE{c)N^3!U`m{jf z#@5PQZ8;u1$C1YB`j*#}T1Bzg^(y7WJ0^Q=|Jm z5hxnneJ<-OeEeL8*i432_B-Du+YQzW;o98$rl1oB1fn4P*!7v*t~JGjVMF7y=ez&GDW2GZRVbw_;^ed6;WaJ)63NUhyUhSC1 zC=?^lDm*#M0h^J;Zk2GJobC9BbtNqkWyf{WRdpl<9#^Fd;wft&xiFX%VuU_m!hCmQix>m9S$4$6~Q z)@;*-vyBv>a9+uEG-4ErFWu5lb!@|4B6VRDI`QB?e`MhX&}-PZqplYkWN&j(_D*bY z>|oy*NaU@^D*u*%JpnETk^w@25?$H;$BX>Lx4K#eN?ih0O%?y)5z`D%MhR=sfr5GjwkPOFW|KG z-pbHgl<9kuni~x%@3=RqiKwSvAXjs}hc}D_W*Y5eBruKghLOOLe8){CU_HQjkLa>> z7$;4TN4OE!!(+bW(FEp=&wqb-e2g)pE6W+Z8k)mf+uhaLTMz~zsz~z{qz0I|a2~S9u}XbyJ=h{7hI8(Mg2=$^pD!@7Tz~d;1*r0QCV#4}z59 z@Qyxb?`9#c!NV)KRt!%=8#lnd0_Y z&@}_^5%P9OiU}SHbGkR}tf&CV8B*nDVx%Bb1^!HObu0J86LZ$N1Z3GHR{;#~oOSiE z%!LFyLYs53A@L^hFyB(XMXQ`rE$yD=m*TAz=OJzn!(uzY5Mb$h@#niy@CUzxes459 z{VD!DF$VtNS86Mbg(v(x=hNfh3BT$$c>+A)_nm^%;mIQY6o^0gy_7l`@RT6_>=%FV zg8ngYOo2zdX!Vr1=??GCOA+^0;6)f~#2pBDo5GNJ@Px-?+lrlUxF`D~u{R3$T1^oz zRPaUcbdj>f#BX&GMC0o1n(*~EV2q#9GRuqe9*3Md0BzxS1+ zQ|{ofK&Qh1iYH-ivc{HN;+H?KX5nq^u=G1y=}u+7=S9aQza&y z&fuMA+;ljj#|i)qkZAAlTwm^u*m|Zpxo|D&duesqJc2+-gySt>vvOrHfyb@p-KbcS zTfl(HVP-GtJ^rx`^(%^kl8fSKkoF88^uD7Gp0etA+Ob7dcjd}cR^tCe`w%`MyjCD@ ze%8^IKYY!xS$#K`Z#)ax<@ZU~+h2FY^VD0Wmg?KNxReZgH2~D0!o=YthD{hZc=Y&n zuFrBsPAZw7Jm<(P!BH4DqlxN;T>i^>M?AYg>4$1H_}QO(CWQUyJAmhM<;klvKp#$C z@i%Wc^4LG5EsVRy&)yhNl9v(&R}Ty_c!=gyE*`upoc*SQDM~HA^esnIR)-t&$0ITb zv_rmi;I$q_rIy6;?3#KL#^OSkI9~9kqb|>St$QdR->ySR)XKxL62sqq$C1QhC{J!N zhISB8Iu9a|Nq+6K>b2D>z?2Z>r|*I&`;hjJMU=|Z1}UWqzx+N#I=VFZozrj+-N+9d zuPbwSgNu&(Y#yO*NEEK*DpsP)42f>N;%LmPSJ4>1)BjdE-s)UjVCls=jX!+}azoQ7 zV;-??_7&@7qpxa)F4o?c9Xo@L812E<Ql#C z0S|yDJ}^d5x%Z1PI)Y=ZfaYmQIYM$&T_{9(@Z20-)`BZ!!r0aCBy)OiWlvY1}PGw%T~3T!S_t1vnsiQ)7VP5(SCD1%sK;7cN4Eq|rYwJjTqifm4b#0qZ*Ro{SEK3bE?g`-n$z#g>d7ahC z2CKMKq(e#AgQcSW9r}v~QaQ5M%0vW)`)yWO={LtJMg1Ds6De)Kbv6X>y#DcBEmZg1 zbYUXla`87o5|@j=izi$z{=QLWv%zlaA6!Orqyba3xLIOBMyR=n%~ zK=Xn&L1W$4q6w*B0NfJG+EYr4b?t3O1Rt=sXE}cNe9ti6`aY;nltG6W6F<~lk(;D3 zsq?@wn>8lQ(1awF9i56UUE@1jqGzj@f)`3S*;m;c*Wg&DgWPg-Mmv25Og0 z9QO&2@GZ^mqIQ5%+$;=4Fuz<3t7xWT0D+g8O4h;y2~y#c)Bxbt%SuIwX3|Qn6Hnr& z`+IR!_|elKMBB;Ku;@rpNUc^`0r0X~7+7vHz`|;2+S(ghesE5Bwnl~G^aBn|CB`0S-HwEKWlxPBS0!6PFiO>=7VY6%vqC1hmK zzC0&7f%c`pctZQqe>2*bATRqO4MO=#+b-*s?e~jMZ3*N zL$@9$@bq~l%HY6Kd$jw*h;G6zi2d=qhcR0`{Ut^xQb5t@z?kE9#T8Yx^Q@(BWel*I zZovS{+|(%5ZAkXT&UH=NmH-~7RE%TYjdEj(t9H0K*{`YUyG73NtDE_JhgLf*LNv#r z(%-QI-Rw?1qZy&gv!gT{Ecm{P(rU3ue(6mpj@}%DUU#Qf$1lBDB{fO~y7M1(59ety zS_5T0&x+CNGVYhw+Tv*C8?^RT*XsMFg~250n;uLiIn3eApr%9n#A+kF1cB={j3pay zk$d?XZIOFKm&R!W*hdBiIqa7#J(!{oP)n=L2w2)@?CyKAyGkRTTwCj)Cct39AxOBP z34XTVc$mJ*78y+^ZS|-74F%M#`xs5zw@NRlk@`k7ZQY6r99ksP_zcget~FIbf6)nc z-YT~rwkKH75yf7qR#w?6{ZK=w1bzteO~`I`%Ni`un6tzUQ9DKWMK_c!D4-k45l`rb za<&%hhF)x-E%M`mG843oY(HTZ1KT|Y;4yiiXZVL#9E=Zarj_IE61C3kWrGB9NPY;r zUfL>ST1O)-g12d;O<*6AwjQ^nzPD9Iwr_2fYvW>YVbFOBFck4Gq=ED=`7r2SQD=x~ zC;iJq@pNh{uiRLxAN`W}K^@Fa0U!>h5f{0eAa$Do)?G`W0V1wN-NxH~6NT zO)D)itchrjBcxx4>DY#T#q32HW8$-G;B`<&Yb{Dy%2&14;@EP(q!$-QdYwUfR~xNn zWk00BS8k{jT^#Mir?e>b;5P1fN{eNO{Sx0_9PyV7;)C02HU0J*eU4YZ4J%v}T%nzI zlMyhn!q#olp0(H}@N6V7eh^Ti7)|-b_S)yBvfJUs>Bqrwto(M*I(vIq?S zzbX6ax`-9khuite7s;!mh+1HP(Jl`l7+|D`Ck!xB@-V<)WSuLp#lcn!7mt5hdo}_~bkFC; zH~`*O;8qKGD9qUz-APdf@VMUEkBL@+xeNU9?6eRNveQD8xiDAf0wlQ8LOh6_7CfHg?)Ks!$RK4VI>(vWH{U}fFQxN~%->E9hPSZjZ^{+g>bFkK$J@D>w6Q2EANRpB# z{THa0_ZEeKe7QxT;=dyq-#1DN=H33R8N@GsHz1H7QQ_XCYeOJbt~gX{S%TM&!1Ht- zTc=h9Apc;f){y;5c+20QS$XPaYuV6zpE13YC$}&BoG0J8kC~|bhcytjh=QX&gud&m z5B2!bk&qS2+ZYj|LVMho@S{G`!Qwk-ALV)85`Kt6(ccoj2bDc<3H^+n>)ky0mT>YY zZG&I6-&`uSAHq+M)~>P1-rdyCAEz5o(P5m(r6qT2j5diaG!Tnf7SHhop&xRt1^IIQ z^Wj)+6Wi$BtR7GMizPsQ0%YHTXV!&R^f~!5BbT?kX=`@WZ}mfds>e^zhOl@1R)530 zI_B>DGRpJPwdIwb2PDSYYJ+_5Na}OYzZ$A5U#_htgpCeF^{=^ZRF6^3TzGM(Kp~e| ze~KsZ6O;QqZpf`#yy8SHBzl1;p!R5-07x|jS1MjdqV_&Cz{Hx3^=*CMs0KPayh}L$ za+0=>1@7=5<*O!ZHWo?%!rF_;5XBqKg)cJ(^2SrN`o2x#;ofHm<7@q2?E8G_Q6Z{-Zqn>o?bX5ye&HWM9mg z8{V&D&Ja+YZ+WBHy_s4$g{}6jjq=9~<%%70ExE#|0+!`r7pJ;&2S55#r+RF+Q6h9< zxSGGC7~^~d#0eL%tAFP6xTT#Ngc-sMlH&lxa2e%A%(IMQ1k5w%YMspl03npvkMZkV ztseWpo1=O>yZMef;k2?x41DQ4E!PV%NZF|_-60cy&+m|lzgwBwqks<^nx5bjrfbpc zS6>1idGQ{zwYusw6j2<<++UfU`Z}iEPDAZcP^O*52r6W!M^GZ|XLcEq3gyvrwFE%{ z<#Kigye3GQt5xto)-BQ&@pf~yK+`mc8t^2?rL6QCtdTeMdOS5hrcU^6qbF`l>>A5I zeO_CLI28C4JII4i%hWomQWy;jYcA2cs;rkUK9oT^9A8v+N|i}9YUJ^pC{X(Ghuc@@ zA1}~C_-oHrtIS+R1)(|lFuisz)Vc`$=)OX$6KeFjs??8E9=Aw~GPQ3@#p~Ua&(3_Zd56a6f*BTyP&J4RLnj94Zh{_Z-3;=f#~e z$9c)S{&4mE;>Pz&V|+2c`SwnEKJS8o!59s2RB&skdTyuWvHeIPSdyPf;R>naSOVNlbMiHS6tAkVhW6iWs&i8?b@vneFv6NI+6lQGKx+o?Az)kxH1f9L`$Fr0a5VDjMWiF&BDBx03Jm9AN(k`6D zN~DT+>{UGy4YBjpbF7j|kr%~u6S*ugJgc<*-Vh+EvhCQv9B;>ns? z@(9;hI|g5LM)EIrX*ZqzNbD>*iR2+p7k~7Zvn-#tM=LP@Lps27KDKMo4+Vq zX*F=8`%C+^pH;QVZn=OI|HVdk_{#NvlzzPT5v_r_Kke`3FS`#>o)!JokIWUADu<{e zcFX1Boq`&SU;J0A#kUq{gG;b91Ti3Q@k%fL#!=YI+lvx!->b70IzvF{aP<(}bWokZ zgV>6F>#Fvmc_nQ&|Dx8XRJ<(rP{4(weYgCQ$mw@$2l81bwFl~n-F(`MT0`@Tlq`zs zn6IeLqNo}NOoOVtQSUC*dD4sE(ytY2k)`2LJ-nO0{*sn#K1^9afqf((RA2{WclPQ6 zTk=TTX1+n2m0DomdnkAbtYS{}Kz{$UX6L6*Lzoi82fnH$m@Dle^GOIzWqZ)~an!A< zdvKex2?WOTZlp!pSFX}xxt_$m@9OoMIJ=(6+!n$pc@DkR= zF^PeE+9mDhfGRJ5Z909)8E>uzPo5wE4Vr~#d_Zl#Qj5=jPkRzpIP*W!MwDtIhVsK7 zgGz-`nrOkA2?(8tl>`$VRPzf`qyG8SdE0EG&4gnQP4G2*U9p*B=GQ-j)-b`0QvywP zyYqiavM^rJ96#>UP@3=9_G$<}+dC@I;>Q=e5_ZcJAnws^@;PkJ^iwOV6i3r=)-^n$ znR)gX+Lz|Fw5J(&JJ;vwOU$jDs|gt7g`wHwB3hOgrbLAEm%q}QnRgI69LNu~_@V5| ze?cY&v%l6xm|vnzlE1V*t(=f*ly;#^q*5TC@v{74P|g3POMgDFZ_O}%_ZN5p4#8qI zzCGI+XxjAxM9X`_W6iW72d#-ym%Sj9c*J%0n@A^*vPgLBrrgf_Wq57R8(^ zAZ{`D$m!XPU#c24$#lZqzZYo>l-e=czq8)`QxETzX@&iy86kjag%>1)YA)0jX$4?T zq!rA+kTx8dyG5D9l)~X(w7E(EZ+Kg)Yc9Kwr~25C_-_)xV>ib~7XJ61 zHcn9;`{bdC;;Q1I2|DrIq``*ZdVQ!MjqCMc;tAL5!}j5N-SUN4z3qo(s0)p*d(`33 z#1J0&hnDZx79TI=>S^m=S~#D5(V56!`cr$=JeP{bFvv3rSnpESW1u|3ypkZ67T6Cd zSJpmhfp^{4mY8?aCc*-%+xN*GX`5km#3t$65467KQ$?y3?!&v-&F|2XxJ#X$R-r^3 zvM^uqDw)vL1toaE0x;tNi(;57)~2uCr`vSeP}=m#Fd4+AH(}F*p`LEj%j}1z)!h6@ zYZRR&pwy&Kqx_*s#}y9~ZQMo|P5M;dmgQ*`H0jkT1gCS9fS}e*-6!`cf3G;Fm|M|` zXwsYQmnOX#DIq4k=YHL!_af!eq^IsD7GU6hnf@!YU)prXereMkUd=o>4*furPWwSjdQtGga?V(@7Z}aZllw7!tR(T2 z^3FHRuTuU{U@z+edzq9-f$_Z+oS&(m?#HW8%~wdd5ZIIatQMH0eoVV}9e#*ICm^*R zZ5?gZ4|S=1NZaBLp_Ctogz>g!XARSRkb(I4viWaX$sq7QN}$XEO2EPo-L%ycR89ps zqs?Aa;LwTgZ=(eOR!=`yTh$05+a%84~G@Rx%%6J>JwF z(27s`nmZOj+m52uBw8Vpvpc#!X%cwP^$x7&jTgrph62Z&4h0$WqTu?W&IV>LFpl|) zo-w}{>V&WM?U!CXio;L%su+@SXSK!ax*<{wxBx3| z$b zgYK8Z6x1NVB{irBu66{MX5c~v5*(red2uKdDEtM|RnIW;qcP5I>MoFt*b}z)fQ+1~ zf>MacX)dKLG=R+#5UBx$DY4GMifIEdntw{I#?v{gz~72<)>OA2zeavb1_n| zzugeS0gr6U)pRxpH7virlW!C6RMXkgyon;grD&0wxdN;H*`u`wxzfFJcwzfm&Us3} z6==-cC5?|Ye?ie8FP{=#zW4C*c^zk+FoS}AG~qJbBv9AcH0UzH0%QGFg;+kRuCuNA zK7nJRUfzZP&CKtk?3rE;MGxZ@X7qry`I&g z4Ssdmt)~2lqij5H65QIBCEMeNmu4Nrv4-ypiiwY*C-t?SVTKSzgq|IXu!;wD{Wd9N z3C?N(YL7!0bB6n^!&fFbtri*=xG6%+gc0W`K@lU)(c%ds&e4a8k2t~i<1yV|lAYW9 zMw~}W8F6C1bIpv2P5ARqI!~JyQi&K5=R5+|yOi}K*V3%R1A9}8wLo)1i zHFM53@1;#J?A&!ohMjpZKqBni*WB69e6~on(}!f(d6AZ2*a;;){^}ggE46esF@Nn< zEMm{ohcNa8^cZ^`5ES*mK4q5_>{DJ@yPd3{UI$XRVzLqjLn5#-6h& ze;9inIjg0cgGC#!*mIU|%OF|>W6xR?f-W&mK+qu0IwWJyIc=TKo7>Tf7)rH1EMw2s zqy$5$X{Kim>p@6gQYPch-iJvLGW4+YMuGgC)%m2_1I|o}@96<%j0`Ad5*ZW)n>si< zn7zOl8MHVoHxo2HEO&~8baWP&H&K?bBe{A!?`l`%?{{(zG#!I} zq02r&s>*&9(0-kf{Za!DONV$67-;K=G9RSPFt|#3F{82i*sf z_#rOf59A@;oNZLVjKKi>cLxLUs$2RGeeexa|DveM9`TYspup42UQ8N+Wy}$MOkIfOrcrUCbz$X2-7g`JeLGC$Q?U9Uf>Df?ZrlTPTKi}bu38G-#Vg2lICYgIu zt~{P6+^f1dRU~UvTqDV-Tu{BH}>t_b9 zVn;_6YK@HkL44Ex7OTpeJnL-9*|W|naAQxcXPte_i3LRO#M(N{;70#^QG9`z@Xh(P zTJ-~Cy2}hsF;sYdxv0wcRYP-oirABcviNT(zETuf7}C#~q^R8sFditbX8wS#QT)y4 zoCD1RC`T%ZRGw4n?b))p86LkQH<1BP-(;puPzUpmrRC;ET@(}*FLa)=QF zzAp_Djl3d;^}a0wX%&nZ;wS`-UyOjD@mpUYBZjsvkYgKKQ8-%ox<|+uXH-xNQXu^- zynkrQ3x1wZmJgcf)J(mO>Tb3VsVUuT&!fcEq#Z>Erj|P@-K_JdbhA#cX5v1M>3~t3 zS2NG_DiRs1sTAWP10!C*0hnaU$_piWuNFsTkV1Pyf|R1*?`svazp}gHmfaVmrj*^Mw5Q)2J;gQqWnFfcy_yNx{q2_B zKVC&bcK0d9a>!5GK-mE%DLXHeD7#a->}YSK>{8zB9nL5n3AqhmyiJ)S?ptGY)&@t)i^JTGG+Qw+hQw{LV*y40AX(xpa1Kg6q`ffPR~{Br{0 zR(N!&^=CQ{m}VT))pizbA$%&l$ZkK$oh^CZkP}LN(lM#Ele}69$!`UOsI}X@iUh*V z1mQjdAqpN4Nx^$z6oR)*Ac#mGL`b2G6)5%Z@I1$rd5}v35nxpDC21z3iYo%*C4yF& z&Kc^xWBg<$L>0f$1}K3$gyDZA!>~!_v-uEI7)D1ADt@A^Yb|g#H+w|u$Ekt=^v6BK6Z+#G@U@_0oof4i?F1$j{c){j&P{&(@sUy`0mkxe z6K*lSaJlna^B5`{WBospfc4&FJr<(tvz$)zOoClHXg~B^Gmc9Ky=bL#oH?5|!59Bo zyvHi1LtP4k+qy#wIgr6 z&iRKq@B|dOCj%~p%bt*H`m&@%x|zZT$DK|^t#JbP)0=CN3evm8o*0{L+?E_DIu@XqzM9w0V&cHM2gY` zAt11VfE2OQLb=&b`xxIHYo+cx49!G*9|agieCJ!1CI_joBOX<1Btz=lHr z9l;@>9U(*D2|oQ}@&~~b4E+-?05GdsO}W*Fz);;a1Vxr7$9uyxWO;HOw*CKvX+?5P zZp$Ha9m?ZV?p71v4a zsz_U*XMKI0=2<(_BBy7qOmOyI=jK)cDY{hyQlnc{N3G-O^T5B1cEjFFf$PCt>`vC% zMZXG|alI1$m$!-BuNKTl6^%3VH|8hDsEgO}kLH6{TIzumZjo>yU9KZVKkEf)b#*6* zQ#jh)9;mhxR2dSL%g@67TG_wC+jT?FbuW9>fJ}JVihRRwAO%Bx-OD~(C%x%^UAXuFeb) z6ld%>e}De{4j?v&*0zC63)0#yE+LKK{pP$@D%eoUm3HRheC|#N@E=n=y2mn9cXc^_ zSMqQpR~R&!r^z{B^)#3Ka7sZFEuACzB5}C~U3`(~wMp8HJ<01-byJ#rk?6G!U%4M% zB+{hNNfEMOoI@ND6mbr5R6OAv;wXHe)YlxM=NdVO$oG5lBCm6ZpK~>b=*thCyB*5k zKbU-p-KN6O=MdKkSnJKy|Agr0hv6OKbAnyYA-vE_d6p*U5ECSpmXi!>jfU^i6G=0t@UZ!cY2-;B2A})coId`Om zK|O62(LwO=GL3(746N>%0Mlv26)FXsM&K6qu9R_{MqGAp*@;%cX~ZB3!8MQm0)qbH zavD!OnS6~+rFAfsnzUY~QjL^45FaUZa{ zaJ_sd2)Hr3p}0wQ;|VT*7GC8Vz-Zy)*UP9qZoOP?D}OF|7Q0HB!meD>x^jt>XkGco z*%f62h{UNw=p|p!u9!Etb>)fH6~K*Mp}0v`Ji%KslZyvau$HKWWWkHCij)hN+lw+( z*GF!7R&q;5%VaK-sY?ad!bY!`ey~5VEM715T`%*PHz_gHi#G(ssTca2uTdMc@g7ZE zppZsxAmcsRT}Z<>$bHd+NjpLTUw#eTAh~-3>T29!lv_vI$YrWElsjCht9vbZgZldh z{_q+s9Uh_$kh%Soxl@ukr2{W`Be_b9Za3OG)o$8+_1vVQ!4yIV=`O9Q50are5#!C| zu8fw+`xDOGgv?dhNR4!h6YIuqG5Oz6sN%8ZKYh8A#xpu(b5-Z9@2)N!Orii2?#l=JwQ~z&E`N$9@Q2PcI|%dgQ1^BLp&^$N*AI37u~9qJeVk$thq~1x8%6Y~DNl88{V^yf<0@F> zz+yl|YwbI#1~%|?H-$I_pNp@d1Id2kVE5W}mWjdq==iAl>a&gVaJTqh9PVC`&+?ZN z#}|iMYOoTUh%(>-zhZp#OPHH9nwKvqoV(u(mas`4^fukM6yoQ@EIBz>4IB=EJ*lVj zTM}4dN**^@HWCmzaPYx|m#{gwk_o(HB#;+JNdFACe8k$)w&__d+VI2uEIAydA>gqL zWW>ox__%0TqNPZl*`c_zm{;zWw<2HO0!~S;jk46`A4OTFzyvy|fTbcEMR`Fne(-N% zoQPtqqBP*;3R>(rI5dee911%%EoIqIN*iT3*IkD1kWR~fY*$0y?Ww^DV#h;)3;6@0KEoRBd z0dOHg_24Fcx|pR3J4ks!8UE!i!~LXhdw`d%Z7T8`v6cZW;8$WoxfY>`_b6^@tO5lp zy-Fo4XOslaN?PJsMM@9l7BAZPGTGX{%JcILHo^J%7vTkXqf(aYIaRqbyl`ntJywRY zfZ}Q`Ak=J2%6`NFbz!l$dRr^;?y6-VpZb=yfqbg-wl##kK~d#edR<&psq`9U)d}Kt zN?2IhsPdrn$^iS>#~XHR`8Hc4c(HNtfykKpIrh0qAAY>Pr6lV^c@cvWK2<=d59zIS@J--F zIFS<#EI;w-wdAPe)>o(tbnH@mX%OvODC+Ltc<08J+H5an5QVkVm#~gXVVQ)FjceGg z0AJ9=(lm!2LQVgTPikr@&(bM<6wqaN0d3a0un9h(*UWN*J)uo-*neEyZ;3F443Ix^i=dVt<5ye}z z%DGlWb5m;&S~TSah1Nhos8$u&EN^j%;FaxQ>J19KmUnh{TND27*5-M6*Cb05W~WGU zEk=u^r$%fxm}#-Ez)Z&`TXy(;0Oa_<;#B#*WnX7Y1plg?C774n**rgQn3ChUgL+^yztRER>jBCQ z3hthOP{Hlh1h-2nU(45RNz88xv7g*ZPf>W~-jG1s^KfeHkSBug`;Z@_d zVV1g{$y(#Bo`xC17c8)a^U*UQT{~Ylmyw|oZ#D>`YbDAN3b3t!Pyr^$?v)3Qgs~>Q zXZeNoq0MrweZ5^2r~tbkhjp2(A(kV4(}5aKUT%wLGbmjY;AcJr_$3iw*wiis_<${z z5FYxYEtCfix8&reG@LL^=6i=*sAUpN3Cbl#0TNbi(+AP;%+w7u1 z#bzC8`BlBPm4|!?D@ivfL6p}OAM$!Yo-p z?k1)SvJ+=DF~yFyOk&ZZl5Q3K?7Xk1duQ%1Wur+kFBfRhQC6QN1A`RHJHPN8m+I_D7KAb{cOP z#sm}o87xEi8<%c}^VrlJ`z-Y~@R$mj#%; zKGrolZgZO9$~l&9IaDpR`8MA05-f2wr-X%&!c*LZ)I{q;BOojy;_@$GqW%$Wms{;p zM@kY(BcA=WrLlZ%(UQk53kl-ye`(pMF5AYd&9_uw-%_e5rlr2bwAv*mctcT!PhWJS zAYXZ*ZLa2*>Q|c7zM_1f)V8}zZN4V8xti3Peq|ZMvS>T8rJ?D00l{~bxp`%_$daM{ zwT<`q(K6WdVw-mN$v>1BZa8@6OIU&1ar+3k_AN^+)znAZt@#6k!tc8G z@E-I`d=~V)7_?g4T0hE5r863eG4pzw742EvrlJ0!4f$Ndki(jSnNM0~`5pE_wExCZ zjlI5|m?OHBc06Ogw-mDHc0Gk0XoaO2xW+k`?bfUmbp1z5RVQ-IZ!m{0&^xewWGGK|0S zy{Hz$t9^sz>B6Ju=ySbfiKIBV-P=-_cUYg} z$*a0VyZ_&$dy1&2bDmZ!r$K!84xYT# zQjM2SlW!DIsy78gRH{2<7t%pK>6Vu~WYd51`T?#oMP&!PbfPgJvSbhs-C;Scl;$^g zz!F{Aoo+U)mfYzhwW+dGw_iOWT)xpB&JX@{BhQ?KoZE0LU;R5U6HA#9;tFpnAXHp2 z@IkIE%@fsVU`A+R#2(8o){(Z$t^KO)bP^t-+q4fvH=57c58RHWR59HdE0lU5KjaqRN(GOY(6dq#Vimi2LeScB;T zA7(r}5!U$6ov~ETp;wHz00XdNaGBTu=vTJaTjgerpEY*Ys99y@mQPXan&9Dp4HghO zU`ev8N=rWG9BB1K+9KCl{fP^C+$k~FNmDW{F^alk7mv+?jXbL;F%;iVzQnf?#pis% z&AVT@9nC+wnDdGAce`YQ`yFKgC3L`DLd!H|Sh7nv$pk*&YNUT!y+19pl;BL#+K&$^ z^HD5+aoKW&T_bR@YqK67_)EFGyx3LCA~kbYTKZKBgO7dg;yqHDM*~0xbBatHS7;M{ z-+f=?IZd8RxR9rsA1<%R3%efiqnOV&!d+^W<_slXXw1Pm20wV$4=O``32i5{H`!}Z#h zB=$PNE{~shp_kHew>*9leb@2@8$g@j5%#`3Jqwa(ad*A?_HKCuWwgIFhHtV(hjMso z$|ia=`qUW9X8rFAzx>}pns^6X^$&V4maboE3^bo@g=J-cjKqj*eiQzAH}@wxsbh= z*Cs)GFfqVJ+mjrMOyr4_{T(TAGz~C#%Np z@sX%i(CH3%VJR2xjV>PQbnj#w-#QaMfAIW;rHIm;7kUW+w1o%RroPD9b+Q%zv6S#m z_FHft&}}&J*;q~4!{dru%d&oy2A;?FMPisvqCp93yjK#jinWMFB69ZD4uQOjVvSR# z@sAXcVk#wtt1eT0(VC~znyXsNdZmSjcMMY0Z>{qLH#b?28pj&%FS(?d?v*QHYUXZv z7U{B|^*q~8nMLi~y+>;2ZdxKw<5mqRZMv{WyCo)zmSZ>1`Re9Py_;~XyhKEbt}Xdw zNCu+VPXkfCpPt}0d98z(0gUIZcI=Vot)P#1O8T7aH{RHKV7ENKvlm<=oRa37^ICCl z99nOgy~KL)TaL~4$^+7`i4vE;5my#8+3Uk7Yolzkg&oxr}PEb5_b5dmw|r%uXMC~GLTJ%{l+`K=w<8iHMfvR;t{ zppi@Yd9RFQ)@}Y#yk154j(6y-=3UrcQdQoYwsWsMQklM&r>}2ei}J#|K!%}dEwuIs zO|$`qCb;)#aiq0vK~Y=#T(Wo)f6C7#zZ`a>K+U1Ene*E2jl%ukHNy`Ef}cfg8oL$< zfJ>LeHOnu-XBCIa!1m}-1rX|sRYXVKQt3adt|qsytZPr95+v;+fU zi+wU6wxT8IY?|-$VT5h>Nh5r?S4Kp=15DZjP{WAmPK`uFxSeWcQ7e2ltDtldNHN71 z#rJiJ7z@2o#8~J_(G?5T)O|eqC9E;d^yuj{Uv%f|bTJrur7MCV^caKTFZ*OLT<1aK zXJ0h7>NGGKdZU5SP}0z&p?Y#3AFWtRvC|&Jj{73^r%nvRp*La}CJchq!-OYzNh#}7 zW&mTDNC1Hd_giG2bial6$pfba_7n9-O^y%{rzT@usIp(ig=(~}P!RYG#GsN^FF9I+ z{Vt6ZVF7L!g?ceOG}u3$m8DojXn;*+P^w+55V7CIABG2m)uxN^Ks^fK6vM-Cfg8ia z`{D`1!~6SvhKE`S*8X0?!>t4>XEP|9dU*JZfHmqL?(SM!+1i{Pbg!!J+b^%~ zK1)mR>TW2(tGj<~^GVDcuH<1i3{}MS-TU_A_1!=s{aMQ>9#GBNf|(A0c$|(OF97&Q zBN0YRkOY(;ni02B-+ zc76EF`qp7=J*|jg?3V*FjQv7OFpTX#Aj8=2v;>37-UB|u*ogytY>1<}azIA0Iie*B zDnLdtAcn5cKumXq2JnnV);7!lK`*%afJ~NGfUbzUKz~StL@@8~K**`7*e$=`Ww-oj ziR&ZorXs(?`O}Wk#aU5Wjt()J&uHS!A(s8!**EcV_i(*$+DUhyhrn)K?ZXz%PM&CH{gk~mFXmgt>)*V)Mdv>ZFx*GDHm@YP8z4FQVS zNdrZ_lb+!07S<$Y0AnZZUOE}r$~uw#Kv~63exr5r8(N}wad_7+~=#4 z+Pn@Z#>Ko=*h~@XeKhca;Mg|cnhap<<5Ink3f!9B!3tlhZUI{eegq>C8xZD6SZIiU zkjf9p>D|jDGQA5pNNgCxc*%n@jF%QAPJPF|7U$Wmy=iTwgHEl*C|*=l)1r7ZMS@Yh zfGE|Xc)&p!#ep-tIHD`9jV`7WWp9SV`Wt(X))9xfS$_(VGJK+h8NujmCLEN`W)f|H zJ^RE*&t|%M7B{I`e2i|7`K7Nhkp8m0wY`xl4pCpy;ZCx{+)>L~1unmh4|DUgB5|RP zo{SA9E_(&%n7Hf{PnfvuJLofU8U4C-pqIp@dME2w>=G4%p152fV2%3JPja5P%;;>L z&;BAfWs>5BN=o)YnWP--Vja!$9s=S{<-@q`cSufRUpXWbl!5aD>#|r{4ReGddbPO4 z_9&k34Qn@6i&m3az#%OQpe2Z)+98f#zH4hJk!e6iPc02_GSRSaaCi1Dt%=y*(XfxC zC5RnL(jB%ae(#Z5hD|mU3li^eCkf>h@o10oAt_8W9)MhFqLGnRB+^V}4Q~bF)YAuX z6*)}QmWf81p!?t;AKKd*ACoP>G|@OqF^EJX4bJy=QP^*kTbz97PA?q1LLX}Y+ep#k ze7jvA>m+u7f^ojRUqI-5+t3o{+nKZx`j2x0f+-59mq<~*{W8U>uxGR)Mu10$WGsI~ zOK@>7^!GzJw4`lf~yR)rWv^t z4o!VvS1W7)WfVo)_plUcUs{49Jv^&pAP*a2Ev-y!@w83Aiqdin zvC&)^<1Kk8n}KTprnE!QbiY!Ph_{FwQJ^UniGuwIPPlzF*<@u62uQp*ZKFbEnIY2> zeJm&rdDqwI9Z~t20gSRdd{8ORI#MKJ$APgTpp8tsJkHutapP_A1O;+2Ca-eQ9Fs2c;~{@6L!^EP19XnP+_z$B;uS0`C(7@5H2 zMG>PWCkjfoh)9)r=H2UN-e^c*fO-c!n@BRx$%5EUp<(LjLvq0=of1Y@yjeh;t{5}T zvoKaOlS;Akv@R;kX&=gRO)87Wd||E2$82kxUp(2Pd`JPatR!eov#cJ6{394`AYay30iNMy zeGySzrdfZ9C-En~5`i5zCAc#EVR8Op{Hx(HEkz+syQ&F*Qz>wLXG;Z3JKp|FYdiLs zmg)C{ymFK_0r#XnJ|gZ18D?w%Szr?1lHs3|t3e=tmrCUJ-v4jP5oT?13$1VP0bEWk zbspo~d4%smcKym)%~e(GT!|?tYN0gzq|Z0tx7}~?A!|qxp+l)BAm~s)VbP&Mli^(=e<;r+Hs3BfV);=mCW=*k) zn;E#p)n_`IgiD;neI;T?ozW|{RPuh*+h$+>TU1B?y%;c9S5{^>W? zJ8UEEt?rQ45wO;Yss9Pl>)Y(nyxRBHNdC?MM=%dbx*i~JmDx)uO8?}Ahm<`>rGI+# zz4dE$fi^+6aOSA=PbZF&nc^c_4SmFYy;|7W7EwGju2W~0?+@sx(+Uxr`48!2VrU5> zfD)W3#v4k6e=+kOE38Q>Frd#to6=f{xsit1PD>ColpyBrv}AE&>%K0$xWbKY@dH{1 z@ebASPNXG>7fN)uINMMx*dFRak89jMM2}8!KZw)ADbfbgDXsz;gHsF>)umJ1E~xH5 z%H!8stHkUPVCn?d&{0AsxS@t6mF=ahVsaEKZtTgRVBF}w_Ya<@7Tj85XrSNQbIDr+ zac_^Y0lK80-Fe$Z8>7n`z25pJdq%;?TgV1$7iKy}6bX5I_6P6wm9?s|fg354^nM0X zwk5A6Mp3~4V)S}o2Ix;p3R37#N{J`*C#8;|KZ!DIcF@}Wd{l1W+qKC$#!HGa^;cNz zZa~@BJwhD<*4UUjHRo<9`;67fi*2^{Vr>XwY4~19r6e7bhTmt4H9sG@y>KYUC)}C` zPZd~CiUy70jbqXobUr5cKKMY3N^ODG9!gCcNTse0D8;rsQC%u^s(7;SE9us1F-hW? z>U2#3aJm#+PkC#bb)&-OP&mH1`7JvlCvR??QZ)0Bov@(tImL^5T79SWtKek>tnEFm zw#!E01y8yUoMZWykR2(J^0(y4XQ&--Cf5uEXr1 z=rC6A6cE%}7(=`OxXB(^<~v6#;so>5F*(6JMN8zOLE1Zky#HQnDO2__Z87FPt%Py@ z?lB*4ja~rWKdjZ@NY>Z`)-vIGC$ukM16^E<@ub`6Tswm|NF^TpkMDRULL6PxOars#tmEdA>SiVTO{06}#t_Fh0B z?|aNzPQ9cJ`(@e+S;+Fm!rlKH3lEN4TQLI*IH>D1;Vp9s5BEA4?M+Nusf!`Qi_xL< z34ma9C?lRQI+Qu#Guu3H$~w(UP*`-@I*T0s=x}K1czz0H%1U6{w5eaAm z83}3vN)ZV}br}g}iYFVdooTHblPsQTB&aO_n*7pcWLhl>`+|UAM<(2JJ9_Sb90q|m zwU<(}4LHTC`{fjZ=Jtbtpc?=gqPac4Wc`(GqZQE~Z$2UY@n%|r24ZdUS|FeB7i>pq zvfmo39zVfR5Bh3_O<9;+x+WHRd zrzhkN?dKk3A4{^H7wQC@l->*I;;uArba7XjCtZD4TG5koS6b{zeN5$d6pEbm5ev%e zba7XjH@X-M40QEi;0eBZ!q#$UpsUO^Eq- z1|I$m;l#iIs>K#f{ws9(V>~hX3lUGKqjD+82|3$H6ij10X)K;Fo-{t?GoBoLY#rhy zo=kcIlZ?)^|015u>G^KmHUy~Ao;o4t(F9jIiafFA(ou${s>9kiur{u2de$d(@-p~dz z-q-=9h&Q6Tj5j;QQ$K$GA8Un}cf>P|H*E#L8Lx3Rt=)&2%J$PDe3|=S$k@1(dXIsI zh(nnaf|h!&>)b?0 z(r*OW$|@mzxt}e8g`TE;7n@KSUv0K|*@PN>T84w2r}!a%TgC8G0y&-E09E;()`RL{ zF(ui@Y^BsHr+GGmd!wp(kgeo{Yy+Kaz7X51UdhVWwUn$L4Gb~>Z~@*qugzf;4VwLf zQ`)P&Q*txgh(Oy8Hh}Vpvh90X%C;{pag*)GQnur172!ISu|7IEUGJojZGK(0d1Z+2 z%R>WfMVTj2U9{h7qW#{3>M|cx*XUH;MC+t_T6KaD(8zA+~l#CWUC>wqsB! zZ5v&-Cf*zQY!>z>MJ&V{mvt+si2dbWsi3RUE3cH3$8zV0a}$2N z@E0{>*(+y=O5>PiYGWqaxeOh~ES9Hk2?*jL`GJ)v+Dg0uWDx>_2Vla^h*YIAU$rg3 z%qu!Vi}H~N141gK6cjZsJbUGpNhy``0t4t}s=!n7&=fq$!2}dh01K$41{QQt8o(&C zb6#YY5&?|1qKsnqnxEm~Yd);Gp+sy!XmZA=(=Q`!_0-uapKfjz%N{j27HS?=5~6>dq;dNS!++6RFduWPZ1kBE)C|^*-uL6v$Ydgoco`r?c(q$6(5An9Q*fH8l>_E%!(E#2u$JlD| zRgocPi%WZm2rc>XYYF?1~Y)sDaOFA6Y*W? z=yNiyNv>wQ$A(g**uOzq{|3<#y?>Ks|EADV?B7IR{hRHxf7)&^pokICKoNVAxv@v2 zXSc7^w6zPSm2qzqT)*F?cXPIeG6vzO4Wl*X4yJOoZEj!`P=8%O7&Quxobd6ypGoAqZvRs@YllpF?)2O49S zbjEO9pbjO5jMWqnCu6v3mDv!ISqrU*>jJGQL@Jk97chV^w{@=a2JwN3wqi<8o|*{B zLvPw#bW`cUmHOT$4+HdGu4xSJP}lYdnIBP-bDG$?8+pKtsD;3-?TD`lH`$B834?=y z(`f6s)=L}&kp`~yek1tCx%s!^3B%>L=Y59DJI!n#d6}F4+}w7KZKWd6!{x68tWnSP zmVnqYUk1p_`WLnUQ$IvV$faK|L{kpJ)r#Us+rpN%o$NAgfhZ@vJ1amFlsQw}9~)a=tFTS->PPz-O%p&_1R1I)M#FsY5L9e>fnhNtH7 zwPOXi%y?#t>a3BWDV#D>p#(8sPX^4%hGK!a!UY57s}@^l_BO4B=zD7Dhtd*c97+&< zvdz|*eQYQe=zAK`r`SOw=hIq<{tFHL541#}SH9p|9gxzjHxvlOUlhA@&R8iqmxH9gjQg70**m0<=jhO$0T*4)MqZVp z+oG0g0Zr_tfu`O~Pw?i!psWTkb`wI8vzy9maP$LaczC9=X(lGnN>u@CtX4vumK#6~ zjv6_ivYni%`ToWO|xJ0nWp6*Zu`*d2GCD)`C0^GPJX`mdh-DOZmO+1 z@AE!*)qa8_XH?VkzCHx3b!X~-MZPd^Ji->i8}5a*`vP6yrjL?3QWG#)BU^WFMn3n7`l!&xs*+tCL z0JBI-BE2%mLr23h%P45;k(JQ;GAnuWqFiPX)n!(4Up$TCNn;=>86lo&Qqo%hoZ~cO zb-W zOHyZt(GpD2d+~ddZ8g{@v>>amqpxxaH5Txq#(HIq+opiV)`O-V8cXX-jg13N#oI_x zU25#l;;A10Y^tqJOl|Q@HMXPxI0pwcHgrdiF#dIKOJBC$P$o3CgnRR~w2Dh(qbOFu zj~WXSMn8KLl?oM`t_Dk2< zD+H|d>%VZgI{B{b2_YfX)eF&-$C|n}_#E79zCVE%=NO`!HS@}|Y)NXKKZ&-Maj&J8 z_)}_Yby|WR7D~{=HZhb44_o3-)K|ca`s$T8sjttVBOdxn>q~vjl=>Pbs!M$xB#1t{ z#3z1Xs~q!KfT_Y>qVkandszwP_}Q@GlwCZYe9^u65L!i7Sc(-0qQZiVQDLWvCaAE} z#S<#*^gq$ZdR5qqn!+~w()OX3g`7O|ZS&Z7lnq_Kz9wLeja=&&e3NVdOCyL;t0KLS zN?FI_KDWj2(E{o~9%#01}VrEQ*M%Y9H_)OqN1DGbB&;X`g_L&){|6m*D zMej%b2zvi5WmDJtr39=|pE@y@`3QbWuEcU%d$x{XmoC){y_B_=Wd;zv!Zw^8piM9X z*mGHC06So0MkT$${`9Dksn@`~Hl#?Ca6WZ4e9#V_DzWDt4IaBSn7`T!1#bV`dzOb;A0mB!b_`;QPeHEA5Mqdce@lqQOSK)QGVAhm&9&M=$g`h3HE+A-2Fl^$T zLt3je+iF!EeuY=^f2{=jfVKdOs>-*v391BVsX&UpJ{R}#71&YqT2(di3h$9+tE&#W z!e=x{D#8X)T=0_0X8Q7qAJ3W@9m^KbBApC;BFHzHZzUNMh?|ei>QGD2!Hun+bhbF@ zq-SqE)VbN1M(m@WZ<#1ronXP3Pb$oe+|cMbB2;@$VcmMiFt zQYg8wMuguB9aP?w=c;yGAn+=Tnp3UO&-q{V;pf7yNj6J>a3k zlxk}HRp~<$JaCuug}bK2tt9f*2W<7-u?E&nX=Jhh%Sm-pN-&!T+BUw>c6OnizSGvy zh_<6?FkrMzj4sWFdSD#n3*%^s5mhCw^6M>4pd!3-)SHEkIw@9ga5y>8z~P+hMnkH< zI@=earBI-&{=W?6Cg)K8=0>5Hy1^In-T&L6yr2zbmIv;0zHr}k$=v5qnyzU>>3_|r zeZ7@yK9n!tHM#zp$i0nZ89<05S{gCuEW!pe8Cx8`Is*Rlm_OHDN7ib@f)rAMH{ED#pt}?Lwio5vo8H1 z=WJmtAH|E&xeSGf=xi=2AQ+v$NE>wCc2ZFrUzc&YDXr@Ym};ZzJ}faA3cxYJHsS7B zu$i#lbs3WDQ8XBm-@2}a99|i?>7g>8&A!_{MBoEjE>qkdD?1(Ud7Sq@%5n);EC9{ma&uEurnu+b+C; z-WD#tTz%ixiEZ?#uufJ`=iR{hO_UEpxS?PgwDxeLw1IS^Lja|4qoTTWqgTb#G~W54 zEg@!#c&2W2m;gBaCAv}kfb(q%MmM_ZT+ZDn3ON3;jj_jQGD`Y@4lP$1I0tDufq;BYWwFK|=()B+S4z7#}%lnBJo zA2p%nXo?Lb9nU-V+VHHGw(5e6p1T7XbgQ0Z&@=VEDLvEM9#nezq5|_6jS6mM69k06 zE5HZ+V{31k41A+kn&N?RqA!fIT^NN^G6AbxIZ~n!Gw_TKB%C5e2NHTyI*@;ENC)!# zhVDQNgN+V^Y8x43%+HPp+~`1#iYIg+M{oLcAXWYB-tIxa>SzCu-J)#jzT+AJYt(ad z4?1QD-2?2evu6ac^cY@9r98bUJw~TI_O2}K7I5ISJ9HMow`6J-cuTHcW8ziLqgp9h zO$p@Lq4vsr>*nHdQ9h`l+js%IdAJSQK)Q`fH|4sBs4m?`dqMieO`gweFCX(%fT`cO zOuLMJ13zZoh4PDjBZoJDJB6EHTWNfqB1XqCh(geD^cN6x93X1j4EuW1)LUA5G>ul) zUB;)ke7KA+pg<&G?RiE%dmVMcExFt{j-o;RAAL){hwm?jqp{lemahH=mQnqw&zeZqd#XD6`%7@|g{1oN?RU?sTqGVr!E ztT)md2g?OYcq+-tc{D0zYy|r?qvjN{cVmejHR~H|;?lnl2Bk3q^Pa{?dL)hUBG|ZC zqBxLPx3{=6E3bx+%2+|D%-s z5{teAJi62rPQl3|AbKn9g8isFu)vY4=68dFp^j^Cv;!lVS-k^! zYFYbAR+}~v3J~r=qsAR{SmM}7kP^iYSFktE?@=k7CziKgWF06vaU9K^Z%u>_C*Ox! z!Y-PY%K{3r-tJA2d8p{leAid)f3jh;wj19Xjlmk}7r;($!BL8vH+3j2<-x44qM9a}{qs0!cR z;kL^5%Er2=JH_hxRbtz`HK);B|+9M{=1{f2R2tK2py=|zdt%U^f zRDu6p&t5MkUOdx?5G4RkQHh9giH_+3?cD%_LRt~GYRwW z*a;7+M}1Mva#5|=++I1{lj>bLE%YRdmxJtRZhuvMa+m+r++K-2^C0`k7g_&%&dx@) zuvha+7I&o@$m+XN4PdeTRONT&^lrjkIlcS%t~{qz?HFU`eyS)M# zA1&f9xF^+O0Y!=Gk7^O^0JYeCkGF7uTI{8DknB!hWRJSY_G@cU3!Utmw)U~Xlq@7H zaBny7(av6jU8kfl@DJ>!1YvdO2fR!0#QFXaJk(|nEi|5f#+%|4o~%t#-550Ta|wD_ z;@KS&!8f$G4^d3KLI-;Z=ATV;4MXUn#h?4}aUJYc7^7t(@GAa1q@%s3v5_E4gsmMX z5O;{fS|_*WO%00CnbJxrQzDN@ROe{gHeS~@JQinkfZ|vj^}fU^aGuv%aEyU5Njza- zOv?5-&s*Ku?(G!$fG+lttT*kv9uIpEutq)Cr^u%-f>Y#=x`OK+La@uV4lndl250j@ zieoUFOlxCk9G@*iC!N0?GYMj136vl0w~3jr>HJt<2vy)48CP;uM{&_ zJk!|NO#qy+5x3H1o=9xMGusANW7}vMdX6muf_@G9gvUG~s~v7SmkmqxOQYl11=<45 z@JzN3zji%auKusf=3AFos;VclrDHovQJ`ZxoGl&O7N{W{+pkhp@qXtGhT0+v7rUjS zXs-yzsB^{t0to6{3GswFSK=?9I=B37`#3K-*w8-qF|3|I;1r&&bF~OqqdxVsoabP8 z3T;Huy9IcI+V(=cS&F>?KOOmcFn{YCOG(z65R)qCg?vh@zoZIwr?rI&DqVPbUwe}B zy7;dyKb%>lK$H&zsD*6+frl2-22u;F{w1|gRF_)#nRsf$SHEko9@9!ZQ!T7608T-= zY2jR2hFUmBKu`;zTe=qh@|UKC>u3w1h04#OcfR)gZ2e2-37_%wf%a^vRwBZ;@N@o>)9%kD4Bx`18d|vYk@k=9j{5jSG(mlQDxOdupZeCv1B30} zUd4Yj1YBeIeL&z8qppwn2w0<@n^*Cuj|;xOVdgJ}+LKsuf?X=07kVji_jzS2+!}Rr z7%UOjqD{~dR=Y1>4prjW!|gU^^{9{}E2x$3%a=nwXrPXkgw`H9N*hQW4FZ(HQ;OX}Smccp&s0a5062wXU&q`sgKw1?RO zg7yGX#xtwX`yrg0=~0^?e^+c?%T4Qm+XlA>V{Ahj9~^1AI>rp5-p|vwz~nBX9rMK9}Wx00^9e zq+37;0c+H!PRqGRR#NR?60x6J*xH8tKo{Q57y9dNYtrvpJ}WQd?)dH7klUALmM#IJsCHU5nsJH zN+H4w&4&d9%`lc*XV^EG?mW<}@E)zJTj8w-KCJL56bLH>!AdK<_CQ+UpA->VVb%j_ zg@>Vru)^OT=vHW8T3DfBFm+}t&$e5ms{RcCG{S1)35~GY-#(47;vBoT4c<5B*f+8^ z0)eLywj^MUc&;~i!M*h4ach%)%0JSS9)mI#jFty1hF5O{*2K%fkM=oCfV*d%)-A*qeN5I_2zZcs-3 z4t~goj+YGBP5+hwTU3{xr?Vj1jaOJ^uNc!=K&j_xPAGEpJl`*~A5mBj$|(ly-0WF5 zXkakwMv-H@9!4P;uLlbVItmZ~#OoTcc4!~0%;3ro_TubwS|8_7(;xcq6AK>7IaKF| z;`-Yv>Xe7lO-!UH&`o^uP`Zi1P(!$hfe+<$zx%SoW;3mg!J0~ru!_O@xTuYO;)HlY zKXKxrPd^d20=6J5-3T>Z4q;8xI{eZK`z&^k64rzDEdti4=lY%M@{RCa8}JSheA_B; z5%_VNXFDu$>>ol*`Ux-OQ(l6A#ho@+w%bRs$Va3%XdGdWWb6)pBt9!Mge7>?DECO3 zPhDDq1`j1@@GT7`!hWD6Ber#t@6U#v61 z$F%&Bc5A^(+5(N|$46*9o*R@l@T?zTL3Q{eX*=IOlD4yyVnEwj^hnyybf_V0XDW<~ zb6cQ+XS5wEG{P&|&R+sI+RlCPgtl}4kx$$CWUE)(X`T+Y!yW?ymr215&3xcQRwp?x z0c+HAZ9C}Uw)}J>AK$uB#@KeOFrg#O#tY??Xt*-MWj2**6EvHI$I@)dJ(gzE(xXPR z$I@&%&=NEoC_%I7Z730D)9f*Z9YBitt`EM@Y+|6XhuP2u(riq?r;>e6gJ7f&&~ z=w2|JXz@(V#$N!OLnF+Fhi=aApSEbPeZI=((!&45b_~N4%;r!6Xhkb11g+>t0YNK* z5kf1n9kdTt_de#k4%*|`e%b(yX!m0u5$G7S-}PEG<#T@KkiDw9{joHnEffP9(XWrC z5&Z}?gb{uBST`aA%V&j&u#``UoOL+@z=srSX6NWB-;rQVMaPqlf*Nqa&} z4e?C%K289f(nP%f`A(}%14V>pR8iV}o7JzL7P@eLG=)4z2Bf<{#%t?~tX zsG|PyL>_oJPV2g+e+qoq@UYKC$;>A>1yo0XW{ZP}2cO6tx(6vPd>OWAVyo)P6S;Ht zDJ>P2t31?+c!ogO8~-PSK%jxUXMqN8&-I`&r)ffYr3lZw1TUb9KBc29&M8Mf^$}sq zB6<@j4ezmsmB90RCO|GX)EcPZhT46Ud*L;d-GckZ>bfV=X{>o7UunKhc|hT}7Z53Y z4#Ka_V}F_IpEl;I{jp*i{M3&x-lRtJG5cFoRYvf=*XvJW@b$9Hlbm zfF{ipN&(+UE*h)^sc%1(;iLUimnPurMx%9#*NxN*xpd-*+=o;C89*>}#ET~k9r4e6 zhK^AW>=V3RlQTWXONVK&m6s{3nIP|Um3rVwBw&sAsX3>`fmRou)~G-vpYjM6>e~|R zGUj-pm*RLPW6r9_cE)e4$rH-)Y0+bN!JI-dU<&uvGnvA@`AojR^nnqhPJ3wW5p`$- z8FlIcO31c~i0U%xaPcJmbbhY45MSNkSpnYcnLQ%LAqr_2Y9Ihk+2XsTP;oiP%5#<- zY=NOn+-6hXz4<&^1r-qAC{nC|A6*TI3Nw;lL=#l2wc-iYYOPc&uiLxoKa<mhE=>A59S%$4C6t(C@oBS;VQWU24@za)khU%!yLwoKEi}5I=+{(Mp zM^L74-Z5N2&~!kF@Wt($%+ZxirxkJM+mz>W=i3xo0@+Toy5zaM4E1YTf|<@D$({Fo z)+;~=Fi%m7J(m}v>g;R52`J*HWZWsnaroXz1$7rN6zwR-_IQxp@o!|0NU};XzPYd? zA>12P+=6DHs&7Fvfbj;zNs=1Ae;)o^#=;@ba<^57{>y$UX7%cKadnHkn zR(9p2YV->q6TPxfAYMs;`N>xjQ7`0FFF!?uQ@wmIWUPLv^9LKzIz`P^UQu2V|5Dn~ zHpr=6K%AVSX55T&++``WBHkbV7KKPjiTlG1V4*0=M?AeC4A>Z2AM?BqeRc8E7X}?6 zDz1G?%s>RS#Q?!<9JOW13#lz%dk|mbi}(sjT+@{Qfp*>^j^V~GV~X}u5l20?!$1=@ zff*~J$a=;&Y8%10zptqTsc;`1x`#{45ebllH^UXX5AdLHM~K zeySXSpPJ%l)lvAt4|rEU22c3aD@V&nDNZ;IO_ z@k+}$aSIw=6__cW@DjGK#4TBP+15gFvkzVnG*((eH& zQiMxx#l*x47a{73ppA*)PVt0UL49y#d~AHN^1Ndy$2wM048Ak2qt}UhDLhxC2`ci% zeQFm|YVyUU9SIGD&(*$-)N8c!+elQS0TDVL-8rieCTj}Unedzs>d>YgUlH8C0l(Y5 zdJ=2xLAS+AUiq!2R%KioFYD-`1mYG?1*E~pwm+A^4=)dnEsv^=MD(4NWVZ{^$^GEPQE@dmA%2lCL8cSCsZ%Efwc>o5KC^F>PlwzZ`rh+j)^H1JCH zgiP`-{wjtL+11eiAejQiX+yf zUU|v0HYdG>|G(GzO}@ylL=az8!*K_0c9>q%QN?qHzH%zsaAU>lK zq;?|>%Fty-6eC!mM!LO|47@mV&;~<3(l>q)nZAVpe0HK)C%8{HuUI6GgnFRG( zypjo40bT*Zvzu1nwT3wcv4(onmt4fZIoWMXnqSkQLc^1lhCHL5Ba#oi3 zl6=u{N4)uUuWbse4gcX8-!+fqvD=5%F!yzCcNbaO8NzYl!YPR)K&)V%BS2gZTM2j(bXX zA+c)aH@yn0o4c_3`4Sdff4;<#kJqp|qH`!Vr4xT?byP5SBAlS)K5~~_2id2#ukb{B z+X_6;?ikNz>aB=(nWsZhE!CN?@WtD^74@vn5BK|~r1>W=^%JYNk2VwZxzgh4$hy*& z4{8Ua;`A2Qk(MAnuM0%lk?kGTdGq#;kNwU8D?Gh^Kse8A?N z_zbkREx-@HYy*M)6nNBP9UZYb92(OJ&}i$MEeo6B!DUl8IL`!ts`Vdoa5A*Px%#?e zpE;kRxB73?n(_3`j>bxcQI4ryz~R;aVm#%Pqq?~kCF=^0)kISo9vdsV191A<2yX4_ zD8$F4-^j}o21f?v#_O6Y!MPrk9y}PO*H!?i^b)XNYI%i+o$g+de{jyR-Q0(?a^^?* z&%5VGy71s(6@_|v?KvL~dB8ykMop@LIPQhBa2qi+1z zTaGu(TXe)C=jj#Yg;L69g~z?wxd=b@wqv#V7-=!1kE1PU4Qc@1tMI$RXAE*g&iSdG znQ!$^sbs$GUi-RdZC>e#sf*cP)kjm{RTY(w{i$7bzOgqta7bs$@k;sBcu~;fJ4an} z9BE-2?C2{B;v(C%Ry8ho!@j}Y&2>mE#9Kq+HMbxIF62rLo;uJG#Y3M4mNmC0HIM)_ zbrQ(<#4*!6fK))-eKp*pNP&*KufSc;JcSe@T4?1&3(^~F{+d)kw2L&fKa&C-?IObR zR#F3TLsKX2#kbqpe2s69murfeK9;m$X zmiC32p}L+hg_v~Z0l_4zvOXL_e4hoFpb;NCJSak@vaw$3UV9(%e}Y?dF`0*^7R+I$ z(2bi%I6}1Xx;Pm7d?3I+^@=kH~y+<}Rdx9;iC< z#19=w>RTq^YGXeS{X4&UN9CzA991C}LXo^d!)&FEZ^CS#jVRQ<=vU9gGY&ZtmD&;} z&hHrb1qlFq;y4){Ij1WFMh6Y=V2S!lkig}xMdAsUyB3-F*ca_e1y2#K3O~jS&X8wJ zEBzM#eY9ha7tiHg+^?D*7tp0p6Qsla!pg-p@?9S4~TzwpqllKK~j1bms<&(ENznnQ!q83Vzg7|Ou*VW^-j{>1lHyyE&BvHXWAj0=!%y~IdAUaOg-El>N*QQk}%NpoJcra}(QSy!1nJad{O!2CX;jE2300AK(# z!~RM@(Xc^>gkh_{!G8UbjuJtny34H9O>ly*V%s`$nPD&7J);>nT-rT-hNGIA2BZCz z<2Cad+8XRyT?OmJw;YM;S72sf)9QTu8!x&yu&UcMmA2ESfk$D}k*Ys%jW%r(PiWI7 zuFP_j_GZ%aW;v#LG3oxZ9aGIkM0>iTg2_xl9qKaaxw$fFJGZuQz(<<6qo+Au$1Y9U z3%Qi?{=%dS^Sj;b9nFnM3$&_w{yhB~M{Bh<{$EEP3-y7+UCqmhIr z2(oA-?~11cesG?ndQ5roOzk34=T5T=F|9QZ*1@>UC+D_XGyHR?;!=c#W*KM?Bt%fn zClP?I=Hmqv)g0uC@oTBS7QdE}2D+jz2HCh2eI3m{$#MW0Js z3q_yfFBN^fzf|;b__tJa%B-&FRD4cF2QE?3uL<<1=-0&)DmvUp>qF7oFY&7A<(E2^ znbiPj@1f`~b@u-=ML++wV~{z_NUm3u7fLCi0WxgeTjm&OE<;*i*eb!degi2)u>hWU zyloWU^00Apb3?aEYTW=CUfPfXJ-pQA-M@o$wlgWj@B*zwc!8IB-M@GAZ$^ zR6J8td`8Ao9;x|jxuXGm$6aTbHsEkfKfPJxA;!$0$mYnxe|7nk|g}v0jvkKDH zdtT~~Tn*9E13xYet9f)41(7GKz|OlrJ6<(b$CP^S&#){U;ibN1jiZ^dzH8;Vw3q6Q zesMJLQN5O1brUenv!44!n+f+aZ0E+Ofwe^OM(ZGArxR(RE9+q7K#SOI1r%Kwm=C(L z_ws12YzS$fyRw0Kh%5Ujk1J-Yn**dT>z7CRvOcuA@MXR8NMF`AkMw0W{JSO}IKgBN zBHZe}jOw4$mjRoYh^Gnk=*!lNC-i0OfwYfA{OKmgI4@BFAB2gDvIZYC#Y}U=BN;JL4c{R*r&6ng>78BD=Qi~1BGiz zdi2}@ISkt@eHiD>o{t z2C2z;;X5H63Y(Kj>5M&&;v6r=I$)aIOUA1Rk-ALfODA~Im z)s^DB%pOPO@EW243eI276@iwR>ATaiDwFxeJ+K~T*)G@fg-#;!i4^&44f&jXu;IuX z?u^)W(Tw!tCD%6`d4hl5=NN3@1dI{3z_&E{tF7}&^R1Itns3d#eDQnTdYbnT3FzY9 zDWC>%Z?#ybn=a*rOlYKkN%LjW3gxzHR^56E?HSy*1!7Z+=jA=RcdVzL%PZZ=DcVrD zmE#&;J9WN#yxFOfMShY4_O#*doP;G&H#zmOhK)}@EI?`{CJG`xE ze0;)@YF^^reVqO*)S)gPn!6PZZ~|g^z1k^9U-N1myL6;p$fc|bB#v|!X@QP(TcC8L zTkwC)k@`U6(~+)$K^Bgbw3Ci>ZlGKvSR=@yBfT%4#Gi7FVDwg4BPe_h)(BRK0_s%1 z6aeWxHK+RiIdED}bg-NYrJi?$P1I& z6G)S9IP+G?@I0ak^{hY*y&s|GwB>fD2<8bMbji`uOu%9QrT2s5Frl}=%*=pNEI8y1 zlFn}^VN;jMdje{Z$-%@nCzVv$wV9-i-nD78YxA*d>V3F-W6>LR)K7zWqP1%g^QWYx z5Zj!f?p2guB-VALOvm~&#k$o4YnZ)jVdYc4`nsc`dNPQIg?28;Q>%sqnooPhcAR4S zQy2fBJnvQ(Opa~WwXlInkY70-8tfl$orbVlv=RK^cQ6luFSfin zHao$NGAmzG=JQUMc2}g?0o0ajXCQzgLwo^*`I-(jJ73dr@6FdRyf9za2xT!}-ynWr zzP=#@^K}S0ffliw9GYJB806d)!BZvwDl?$jTpSG0VgF5{~ALg0u;)WE_I z%L@V|ypaB(z&`+gd|nU`pBJ#H3bf@VGnXuBD!7YULq2bJhhhBac_@!QFBo9oez*E| zjzGM9D{pw;n%t3B8N?4H8hgT z@c;&?3TFIZt{KgzYsS@V2$fsY&Rv*jGq;{Dpgj1Acg*P8D&4qKXU5-pNeSX zm<1?LUKyLyRA>UjVKR@%ZZnKOA8Mqr&jk-04xa#t80v=!1ln+@{}aQ3SO44Dm~UzK zQxMY$65ej~3 z8Pt&lg_0iR53880K|w;C(T8Wh+ABg23+3}>7+v}KC}T=JqNkFXBlL5OA8lcDs-r|Q zFYYrsi1&#$Dzy&$-e@D6b*iIGnouS|Uk~M7&GHg>#Yes4^;}e{o0i1)#2BNaQUnoQ z^Mb&(EscSyKui;Cj?t5iq(VfR5E{0R1#kMBDVeu95F5mo#2PcSa{hg+k;^J6F`8>U zG1m;KnVuBN^E1p?zW++2PeA<^w(>U!>USW|X|ftB!mHnn@y5zfsvjK4r!7w6{S%CF z><&t?r`qVt=RVV+DL60h!-$X+^1^c=LRdQE5^jB zMC)LrvjJ4BpBqBubfi#5xLlq2{tm`kZ49sMXiNz;2m{L*zjQR*Y#f0TXKd_b4AqV1 z(i#8WdqoW2ea*Q@{&OaaxiL@RMt zrSQ3##*0wF+9?ah-b#WYvRE=-nPsHImrb6_g3)v*Z9Oq|Lf1R8f9R~O&{p!cImQ4L->;t*=Ue}; zekSm|F2+jzP;>r%7f42*QCTuO3=hp)u6Fgf1@9x zd~qxgMWbZ&xlz%WfI}gaAB-Fi?<8y1C{ex&!H!*PBq<{ubHwQ33GE$sg~6h>OPh9V zBkh28^VmX-3wb>`KB96Uv|gXG5L0|8l??aU&&Ev*xDIMS{pE?NMiD+vUNHfVRZbQejBgukWb@L&#wPviFup0;=*+&Qz4zsZ{|E~} zEs|JQ{2V6oLl?*mkwc9!^;qtBm29ma595wukg|?bp<<*&HVXG!tsId)z~@yy3&V=? z+UViNNR7n`RPW*vS8XZb)~YR4X%efpB)(>dH_>HAq5@%{k9*ZX+ku%eI#Z!$t=}{4)JRzSSf1!DBQ5eAi2DoForTzy9 z;CYjGY84&DN0u2QST^C#A=c!3?^*^BTGcrM_JX046L^pDFs1jeLzp)_sCP_YLRmM` za)R+OGbr7>C9YDvI0A16v{8Id1xyl$%8fWa;{CZ1{BSueHD=bqpXSA{1^g}=yRi;N zwHHHj4DaoX-q71Qh}}~M^G=DWkBX3mAeT@dE+uXZs>%a$exhAL8%EK1#5c}lJvf3N z?BpEboYuW+FN4Qo1+Kh|cw77u|FvGQfxoRMXnzU;R6KSC^(nw>p9n*jpvBTh+4piMhtj`q)U^r^0`4oM&9FO2(M* z?aTGqk#bI%OSz&s;R#|anG{q%UEn(% z;cZk6{LE(IDrT$c>Q3ZyP6mx<_fWl(6DJmi+$A7#Ow_KPZ*1_G@8Qevjf{&)+6J*FTNK5fM!yNd#qA7#k~^@-?AF zaV<#4t<4I^$BQpTe#9nM$50A^bFo&{7ewFwu!8lXi%acuDux6qIUoFu>518QDgvN9Ic*zB!*W%(>aI)we@L2$_0jU zzP=O80^3gg@kpM0-pu0vSz;VyS$-@F^^Q@}5glm@hG5cOmIgP7)ip+2Hb`j|V>vI1 z1YZ%ayuoiQZ@s}tin9A^t^Yw9KC_`nTl1Q8G@DE%RDSA0&5|cM6PSXF!}73+0+oRN0$lW$f{SLUn&f)#voH5w!;)Ka?V}_ zr(YfXIR~O&W%O0SXz<;(!Qs-n2hSS@57lpv6c-=)`dyGC#7*`F{6AI{hteb{vjbn< zxuCtHvIWcltvj}3lc+Md2QB9{w|n=X^?a|on4=|MDlQMEZ3iC!SCg8X19}? zz_rT%&Jm!FS(fB(rT)GHxE;6%ac4KPbI{yV3hv z$mg41xf@Prk5k$cqs&6ydiKbAt*1aE?T9KyY!e-u!Gbxv93}k4tDNu(hHFz@zCG`xT_IX3=EqcrB_2MUxa9#cS>~y82tR3;*d| zBZM!$+8M#Ko-*p&9bJp&L$7hRWg1lk4ctyZsDb|?J^!y|;Nty873)Q58){&^do(|D z8%%E?f*N-yKeio?NM77CxjFxF0fguA`=S3g-)}5-RDd-r?wyvzCMt@+K`K99HZU8y zXs@Pb*0pBxgGONUE=3{hELyL% zOn9JwK_nV5;F>I#=ez~`^h z-^4qu{y%P+_}v?wPqFVQU4u>htt~<|F(l7meqo34h9fct9yl5aUzl$Z6KHUU$B=M@ z&yCmm4eqSxjV?TU^SP!x@hPJ|Z-h7@(iG#zpMsSPqbi`$vIT?=>t-=>yfu!IaoO~= z^F}s^(lyv<`L+n#Xl;9!@KMhhdm7CES^UJ2__l18BGnsw)2YF(31~2*p5xas1$;I4 zv)B{{KkPj{8tPU7p@y1h^`hJ|RK|EL_f++sPI!J>%4;W$mv$X}meD=#meo+9* z6>A%`aPaU?*E_rM+g>rQVqeqV;*pd%St|O1fWc^Z4%SeiAqyKXV;2Zxjwe#*;2o&& z5G)I6N&HoLpR-hl7V%&$i=!=Dr;n==E%->$Z!zLD%c^k=pmWu)F&vJQZsJQ`gEV%E z7eq6PB~Oz+j}fOyBU|Drk~~im0~6FSJc=p<@7k9Bf%l$Zhk^I86?m_{2Z6U* zfN9_@Bx1Q8c(`^uLfbI#7Wk8YMp1l$7frePI>U3`G>T$=6%-hAzlmQMbHDvf%q@Vf ziI^LG5e|^OS*?`OTqY0eM;tV!v*xkD(|i1CC!t^hw)9!Cyg`|7G(Wxxo*I1p1LFqP zj&PTmC^=SE&L_s=Yf$*HN1gesUmdhwu`*$eq%9ah&{7GnHenvxf(Z*+MDS>dJns`I zlDUE+An9yi+5!$bs%Z-FH?ewdTcl%Rsnn+_d;1J?9|emu zO!k(5V5S2zteI6djlcG}afp3Q5%E0ci&%Mn_62Rh^B8#Ur5P_i>P*$o#qy+Io$2hq z3XV9HIU6fidDTODN5XR|;<1+yup7MX6i@c~#RO;jsMiGmdtp5f1u{#{LQ+}%>VPIp z5$rob-O$vTq9?}joNwW%tW6v+@D2q$K#h;HSC@JRDVPz#5q#bWXWL6jPS8Pv6IJEW z{J=VQXDy#=U%;MVU>zv~sFcD0-Ru0lkseS8o(m~G!*d}80_Q^MYVY?fDNp4UIgOIp z45|yB;rWxs@Mr&HT&L3GkUTbJeEfca%a{4`IRwMW2-4cbo`1qo_w|}A%r%l z=D*)E|AQ0-&A*izX2<_ve(R_hWZI5jp|BOzLgUmph7?VzrA70Jn@HL zKk)?cB$a?CfS_J}&G=TVu4dJz%@Drw2cxxqA&x)(0~DrRq||7X|5E*$wW>Q9-aloe zkZ7^>!)Q^2Vzej_j20E*isEFdk*!anqrFN|5pqb3ecTP)Ty(s;f?6HL^ zA|7BaKMnhMm90_du% zQ|S9P+KF>efcZVez^U{bu!PuZoTDvB3oW?SXc7;d@}^&$xuFH8Ul0zjS{TccC<{)BHX0a(=&uw)oBOPshvo z{aFP^V~l-n}bc zrr2fiGR5A6|CcFNi9bxSbl8xPvr}x9&;(QL4Dkz7?2Lp^62I?T(#Y zs|nZ=-jHu7!MWjRaq!rTZ;Es-U>gZ{nOS*)%&d1L$mI4k#lYmY19~R*C3|QKCO2ro z)q0sm$+7d zX|7vDwZk0>o_U_7VBDcB`MP<%cPL&%Hnu8xf2G{*+{F?>Id7z6?rJ6=n7hCpn7fiG zj>uiGF|3S-3-m_2hGv;L34?aiuujMb26N+#1;ZTGuuTPLH0=>-c(dlo$;ja zFM&bI>%XMHXcpp)~Gv>dbYvPH3yazjE#?Wd? zFZa%n55xg>MND+tn45jvZ}D-zMRF&*l*8~8qu8Zr+0G>a%6#``JO2#bBIvCsvdVn7 z5fF#mYL)qJL3dhZzV{FuOT&hIi7tPsvy_kP>YTz}CX7jiZvc5!FSUjzn}cKGdC*X2 zEWfUsvkTi-hZ@U#15?W~-%+{FZ`cV+hrxRUgLb5TxHUh~-8qe&tAp{Ije(o0ew9!s znptVQ$s*d=HkHeS&^B_J0Nl1tG-k67buiiy4Dp`gOQ^2IPbB}m*b1emnxeH#6QJoJ_rr<;0uXj8I-NpxSw^16L<{z-S zjRnn5wZR7i82ZBMIDc}6k;fa_Z~eA5vL;wjPTblizAkjSq#3X#_}4+s?mGLBDvvwZ z_uKHBhB^nc_h}1SXo2B`55iKgu#gS}%Z54osRX!3{&|?QFFQ*Kyb^95?)0bxwhx*m zk?8YE*gfLXD#ZsPcx|L}UH}Q$hs;0(o97rELusdJ$@2h80r`H27Rx>-D`3(febE@h2Rj}a$XpIcO7)m|LWqQY@;TqPj5IDVod z4fIx=Il|M~SXsQ|s{X;etINsR16-1;* z_bFg>-|wpXtRmyGv2q`VUR#?ihs9bd1-&MU!g<;_xbR+GV?^=7arW+wzdX*_7wy4= z%beXqX+nopN#7Vc8muQeK@hr25rpn~mx>nd($?~%NzO#3prS#ry!a@^$E*mv(bNh7 znp%ONsjwbg0V8KDFaE=yv#Nrm7v;qYy)ddWt%@aj=e^4S2Z>WAC%6Hh@6$ziGvn)QOeSwFG+tAA*j6_3m#Qvb;T z-JF-Kfw|&C+oCmJW|r{xS337K>Isr$k#KKCrq_Jk1+DcE%AnK$gBZ+LpSOsKLG0*~ zYE=ot5Bq!oZDk4w9mbup6M9A}&KW^fo1u=ApU-d(WL1<{9Kc16_RpPDeZ*KPJUc~J z3cFIUQdl=qzxm? zr)aP6WVYgmygr2l3I-B8wg!s(n!QbU%9ExyQsoW(r?dqRYM}*h=)a;ZctZ~@;-FUB zBLimlD=En_PY^6i+p68E@|^be2jIL77asS#1`nKIRWQYuhqc>M@vt@qPoS_Wn6(2= zcv#z_9j|=QnaIy=bPiA4Ekx0Hd6dW|#hF+YoFI63kE0-BiW2;(<0yuGVoRBl4%sKR zT?HMU*me`Y@Wi%TJO2|~3>w^RZ-@Sg3eBJXDu7oTZgQ^vhXZQ;lctjo*bK`%sQrDE z713_l$NeJ+*y>gTqRN)(SL{25h>_?1m0%iQvG0|%8P89l84v%*wjD?6Hzp5oAVY%Gm@SH$u--n(ve3#`~D7<*U*@=avftubZ#&fQaG}65|cv~fuC@bCL z+20#!0sDuiFG|<&^hJTd=}9_MA-;?99#k1T<5CetStb_oDquY0dKAndjwrXar$xMF zlp(s_ohDuHrY))i=A=mn%%do1npxB|3j>)3i>Pe}SQV=v)ONih8G{b1c<+$@SYJoz z8Y*;iAfbN#u!Z7Dn<5WS+McB{@L&`a#5!ID7j?5wM&C}8C!_l)HJW8F)$rp$8sgDt zAhTe^C{i(E6bMF)3h_nEFH{+f7!}c1$g61ot03Z09~SbeV4wV!l>QR( zv5;4x$B1=;p&(+lZ6cB9z^i~xhVZeUU<g3OxA5E`4Hw+b7O#6_<{h>rTw)RU^5BW zQeeg14VZ?PIt{U zwY+c87Nmt1+$nrWTX3fUEx4)!;W%mkKrxW^Ti`0n-TtI4C=Xh^v{>#Iz;IQI)8%6D z&rh7$vY?k@$;IH*bpOR*QU@?R&fDo7#J(bdfB&hoIB~I1fll1hsZL_zwhDT)1-*A7 zunT&7Qm_~x@CKs=pE)No1s}G&qxjC+zV)f+g`KqR?B?)tB4=ZkNu}CTzKeo!$~OcA z;~lJqMR7AJ4yOERV2}852_dw>Z?a#~K~DBH3XYiU7j+=B;qnf0HcS_2bh0lN0JO4I z&kHi`j6aQXRp*-fJIJ}_L5hM&bt@ITBY7tT%@>!1M8y$Z;*)0ZMxO<$># zlT2JA>hx@gB?U{0j6h;AaRm~CiA(7fCN2eHCoUE2OI%k_jWF>jh<4&qz;@!g@$c#F z#HG+<;`+LyNL&RP30bR)51h1B^2HJ1S^TDp&N=J@Y7#r$?I&QX2MtJfAoB=2Nm$C0ysx0gB6*#qEttHZ z1($3mI*~)X06JA2@8nBivHZBhjFfqdqRKq>Rww^FmY4w@!#vh5L*}uk8<~R=j|*jJ z9@|H?vybzzjyF^A@D6@F&U?q7ydy=iPlYL0%fO;Dz7UBXB$}~eDUWB@n@KL zU-4k^XOZ}`0RGIkzVnn`CD`4Htd=30WyoR~k}pHjWk|MczWf-}$aU#bI=*KZr9a@4 z{)PC3($js?XNq4aeSlYb)m7pbbbn8X*~xJhdWIj8nqU8kU%cpi34QZ1ehem9yh{_` zmRl*_e>qP4`CPno1mAgbt$1+*zJwx3Jfw~<2-ql|5yXcM7mBAv@R6MJqJ|uc*SV;j z#S&dpR5lfhKikB81>Tlq4-yB7c-nnX{K6y3sbY_Uo1UQ}d*MppEfLHxmc+Mh4E{u@ z`7T>7{OOJOCwrC`>dP|37|qctd3czaszV?i4L1{_=?f!(1Si~fd}^5aI(w)NkNYJL z-GoA&Fte?fNen%g_A+_B4G)hnGn$HE6kpyFpUfJ@S45b-*qc7ayEEi>bY3G6i@}P@ z`g;#QnYAzDr${~}r%fgQEz_4Of_-fO{F9n1q zD5`*bA8Ky2`6v6CQsUZW_jI!#|0O6sSwEivFCTOFXMa%~$o}}X3;jSZEY)HRg4Nr;E4yt#iDqS;9M)dEY@tUY9MZCiS8DuqC0+8 zq)(jr1Q>bu6g30Bh4fNHO<^E+@j_#zcH2=)Jb)GH7VdvIrTP@pCSewJbuml?t(5iK+yq_;OjV_GV=xwu?%~ zpkBny(T+DVLB(agqIgCpGnMV7NZzQ{UK6Iu;dyt51OQ~P?q@!`-aN0&2h`vC9(WuXY*Qpmt~V{v(5ebS!oI6<{dFE zp8x1M7k@JcMhunWZy8IYy6!6PVx9~Q%d&@xrQiInW)*8m;KW^>yO~9LSeDOSt$5gD z=Ysk3-OL$!T9$lmb{NmgHRBoO?5|UFU2oMw2tBT`0aPxojBMMstV_k`?W^dgkIv#d z_f@2`5=x9En1xwl`E8Y8F26>v&-E5$)}l~qKImxyIjdUyl7a* z+P%HaC5;?cXTj1z)L>p+yJLVkU(@e_u8Iu2iFVZ+tNPtpBm-~D!V(%i4ua>NidY^N zYv%D|mz(uD_yZeQ%IzFswsvd)wfeb+r84+oXIhb}qh1scI?dbxYKU6G)mgHZE350o zX52H%?8|o!GIz24lmqPR&3cqKs@m!Mq(t~$?VcfKfny~oyT&zq5%%SY8BHTNV{X(n=-=o`FY<7i#{?u@DX2W&+DT^Nf3$mZ6WHekWYD zG+gbzk!G;Q(gd1!Zu>{7jZVE)lTcPm~t+U(9FMw@p# ziaOJ*S*$4Jt>qdec=o}B312p{ObEHM^q+}9eOPCHwZ}|i!>Dv&$Hk zy>^@6HZN~@=xw!3ww207lfB_@vQ4BH8!eM#`yI9ri z68a}tz&i)Gm;VEH z)l0KwW-O(updGLAw_~yFR$;cBQHHkil<;q+nUAsMl-9dU;0?IrXPfI8#S-;cy=!~UF>ln^S-+0U&kz;; zLckEJVz1qht6&@`)h|G$YxV7B6aGS8%P9WaJaYnToI{2N*u4YCrTJFhXXWs@lu z3aiMGH_lhk7D2C7@REff{_wSCZ&poP@zxpW@D9aN^3-+aY<3sLLhkD=?hn%z*}9`xONv+Yc?BD}q=G`-L_mZ)g_0^%gn!qMqo0 z1C8%lZZ2!o6rzA95AWE9Q6zcx{bM%Yx~CNK|Ki5M{FR=bFg_~T9ULx5d)>wB6 z$E{_qfS}ISv64cH51Q{-W1e=fL4QMP9VjWJD7E7Tv%SW~P*VHkp{y%iLrhG@O)@yNVAymqyz9TgM+`c-dX%Tveu+j}q%(D(b?u=R&@Gl^LwVd6~HE z47o)pglDfowaFXJ5(j&bs)(1JTf553&aJcsdnk(J^cT9y>%d(~v#8UkrTu!ND_(T! z(5Ivg?#w7#Q|l`?AjZDmtSbwuKrUdrw!?;8!AEyiKi4~m=cUYR z%+GE&uXmJmgNGO=4(r8ADGP|&9{l*fnq_FC`H9We)=wYbji1@(>Ix6TZGFs~LIT$M zWoBK>%*n=eZJ0;iQclmamrIEom&s#YL)Rb2gGP%=}%=$4(s-C67% zss>(FD~L$%8R1^3(qn({d-gM*c30|0yYZSg-QC%7%FK4q=cHrbNe7AH7rvrwC`lBt z-j0#*#$#ATA#usA-6R;ogIiyJ9ieaRDvNqgK4+FUVo|w-8vPNLEBz5hTTp*|=RjJn z_0E9~O1nrK?Q%&v?3#-Xfxt>WY_=laB|JQ3~U-mdto`(%Xcc&A>!TNH;Y*AB?#c5^=nyU z2T<{?xnc0X1LhDm)E`-khfj%^Z`9Ff7W4R{>QWJZz6(Au%h(KmWZ;|qp_yEVZ!%x} zp_#!J1;B6gk-0?0_e<+3b>k4zIk7uoS+# zzmejo-b^A#~TvX4^6SeXyF_>DaUSB{Rahc@EZd}elG zrzsT<5unP~UGX8b0f#qbW4&>r=HKQ=tZ@$-Z}1E%iP8>UtqBT_?ms^_Z-PVY>LU>)>Kiyk;i`SfGvG_Akjo4|iOW_Du(DGy|x$FDzb zj$?VW!H;>SWZu_i?l<}@>C_|`EnC5TB58P|<-RY>mo>J4io$5Qx`&LGt7!{H%Yhja z()Av2Kzo0yWVTvq7QwQj2MLzDK|grH1}2^Sug&%(g>{kogA@!FMG6MXPRbaA1#s~( z4h2_ew0^g%qyBmi{>nFIJN71}!z#glQH2gjg&fJS{@s0BXj(v(aQ0Bd;JQSC;JV_b zlW;1nfU&l`;*P=H*pE~ZeE32^6!f+CeP@PhDg&&6yHdKVR+g*6d!_J-O07VLhdL!YBiD z&u|Js_W&-sN5MsH;3=C9`uLu_zV%x(7ZloY&P*rHu@#b2 zJLQ7TQN*Hi=Kc)fpn$q3gZ8qu0+Hwnpd;MGAUDf!N+qz&KQ%_|xpql6sNQMsFyH=nVye z-gwaKjat~w%+mNfXNf2Bd&#kpPg&cZSpSFD6TAK(p6GPW>xpa61@c5+=?P$to=}*h zCl*q1=n23@Pbj!T5zJb*_mWv_4W&aztn6iv3Vow=M4+r?tAwsl#Goq_i0ujmjIIcB zxO%b|s3PbJ1ra#HwRp#IkxT(2{W*s#kL~+=dX)c6BiAUE9;f`wAeYIGP`Kaihl?8;KfF`W8?jqTkr|E7uSP1d3}2}~T};k{*Ch0_*a zTshKV-;eWRN2OiNi|u<8hj#1j9a(-xIVSp)8Fu)WDI_N;C%U}u^9lZa%JDV+|YM_G^M5Mp&g1c1! z`ke!FGT7b!13f+xqp(E}he8+8!?jz&T@H=CN?D#7p_;2BkbBanP=2MKH3&MFF_H=dW?5DQWJQ!jVIS%~=5%Pk1Z*Kh2~w_Y(}5;Lf- zc-~qfAo9GG!+C4_4WGM?X><72R<5>e9>vB`pM{;W3N07*!NDig&!1V|Tc6&C=NFGp zVAB;c@dcvO*M)a*+|kF{7_C>@h1=IqwwonedBBp&5A$2Xtxka{K+lN<% zRV1?)C}(iRB>h>+`L#Yg!Z}`?3FftNp}r-bl($m#g#z+)9v&LhiA|x*uyA-H&cS@+5$!#$altt1(TI$p;Tg2U!HT$Rmx^id`KDtH@q?{n2i!p zv|BEmp8x7fFq=40I-U#j={ib` zo5MAHL3c>6YiNVt=5U1Mx)K<@JGMaUD>t5Nd$``vpRt%<)f1S%KzX25p6koQdb#dp z&(Ri4-iLd+3fMjh76cAJlt)Dhg`Yknr9Mxo`h4ER9m*39n8AEzAJ=C6drPzQzOG^H zw7($zRA0WYuWJ)KMO*yjjFNIrDspNw`@7&mKc*jvUNmGR56N@QV3D-JJ{3!+V6;tS zKUq|(5C{!O#9G19obSnZ73jA?WW$*l@wep}@HghXozcyMb%?Bk*Nn|?VMnvYWjNTj zrf*J*+OUDHAe~jz(WtDSjNvlc5-5hpNW-}M$r!$d;`?IQEubWZGiwhGaZT6QGK!5W zz1hQDZnm0&#Y$0I#*>D-1_i)hFv8V>KRDdgh20l`C})H#Au!Pp_Dlf$RwG?-89*CQ zDHL-3ND%TSZL>6MI?6R)CBmr2i=9IhA46jq&nSd7sv^YC)5X%HHwjPoutTHzsy^|yC4Wm$`5T?%GbGFSF%#t zU=O!x6pX{Iw7(o~3W48%_ecds_m^i{qx#EC_vl#H<@z#9ovd-L5p1PD`_S6};w?(+ z#?z7b^d@u%5jUD^<6Xsk z)dW{46Yxuk8z;p*s*0;EFL$-j*da=Y2K%T#-(TSx&px6pem$__=YY-9FF{!r?a-ej zD2O({xVG5%;`%=mUAr|FK7jNERbm5VTr=7dD6T7ISDOwH2`YMhSY{aSH#RMfrBOm( zfHxIT65yG&V=i~OG}e=1V{Bj0-9uO&1&i3$dk)}_&U59e1okF$3?&d9(R%V*r@M}* z_BiRRmaPPg+ z^_Pn4XWPlLtM^OWLXU-Q$+T*jVz@P}o^JL|NTgUNV5Q11-}s7XTQ*eJVXY+=!)N4T z7~b%@`)XL)DCHes?!stVj^i~Tyb<#nS8+^Y9sux>(bnP@J~G-m51%S#yTt=F_<8Zy z;OQ>$ahBQFx*n@jXxOK=@;Z16IO`!8_-cAYrQh6JSnr~)1Plnmdn@j5;G+^dPo2u( z#p_&+`H_WCs5XR%@V#@ccT51uRfF?njiI*4HBw_`lu%T2>FzwNG1TEJ7x|ON&0ts6 z!I*1f*x#pILD8^GYnepT3?5$Nx`91F5m3?=u(Eii%~P}mNudQ^X=7ET?WWCG;RVeH zpPM*J1FWv&WB8AY%^TQZiiPYyw%C6|TaZ1p;2U#(qbq$hjkJLC(-(ao##=Yz%*CnQIywNU@Of0E=@8Z9&e^VwRB z-nA47xnE^*znQimcW6Pq*U=Va3@wDQtkip)Vj<^8EY7=V3vz}Q)EkTS-lomS9-6&o z5#Q0dM8Lu;C(C%nad)Ri!@y;-VvnNAioLA7Koxtjf<#vAofYE6fAO0-{KxOV%jSj4 z-4Tg{1qv&cl&H+SxtOW(*0*~3*<(l^$Ha>JK>bQTbtWFT4K>j`H+ zH={BCz4f0F{NAx$pLdE6HTD-L=z|w>;e{hDPUY`Y`o9ijYSS5!7Y{=OhH8Y=N@!Dq=Jzii^Wp^ z2l}K3p%6@A>vw?KbD%sx?M<242dLc#+L5RY;-|NPy}&S7EM~`s^&Uf2POjNXm5k1N z&+EKea9&f5&7yMAWzz@BQ8S&kpw{9h*ikdkx|LX}w2NW0gea@89OxT15pTNMMcLX~ z6_X%G9%oWMcr9^1h2WVr;NrDJ9i8yvt9GEg_q0hf{`(2rz?XgV0&<#po-w&QV{LIrGU{tmxGeN!PS{R`IPH4|Lk!W)&`?{^g+@+ z`XCa$KKJm4o^Z*Fdj8%Mk_yLGza8GOb=wX(w)~u8y+IbZqf->_=#;)x9y$eZ(J2Zp zYJ!*a#e?Ks(HKgIUMYeW-z9w+KT+$-6+yl8oS7DB`^2jeFL~Y-&lDl(5(Q$rL;>3_ zSwOWwmnev~OB67=~jZ{KQ)@bQCG*9R*^0M*-X3d5r3T-cb;des}kt5g`;0os$D9l4O?ohdZ3_`1*2q zW~GTMgg^0v*_7w)a!uzKd-TlUuf9pL+Xy7(LX?d6SqQu zrc)r;^^`+!Tcv<))4fPJqv;ex+jI(8m`|=Wr1nJd{Kwrh~>q?Q{T-WbQd4=TW?e z)`!Y_XkDT5-9u*#g->KfbV?3Un!!hUN6NIPkLj9cCw0+ue&!hXy)I9@fG!>?FQCUz zo_GOWM0o0DL-7Jy%=r0jT)lMA6mOsvu5f5(-9Z0E%_MH1wf{;>7q6Wbp??RC7jO0h zqv9>}N-7(TdYgcFjhZ}ZY;JAve_SUTv4NWvTFEY5y#{mD)dxV(Tq38ohp&?jk& zea>rhPL)c0HB?^SH5x`@3WhdbK!Rm0uhsdND88@r_X?R;TM0j_5jGTYr1rHCkuda1yWB^$W7=7pNkEx}Gh& zeh#}Hy2?(OUm zifSADNeUJQZ!QqM=4hG4wXa+;eAS4w9$UWV&q04=xXe`wfu8}p%Dy~g84z#h zuN#g-wQi5UkV!1*^OovyS`)q_+&zGWjUZzIrdjzGKsLf&6X@B-7(F?m8;yyeOlzwnkTf5fG3xq7v5uc~{?#hXXF_pz~l{kAT-OaiuqH{jj3 z9G_~RTkVc_tXtodzZ^axnX{JeF>E>!LoT`kNUxeU0x!Dw#g^`)Yzd{qD~pBDdvW`; zlD6QL1+-LdEA7KJ(iU-Bp)KTl+PM4h<4es*ZG`-wL-sjG8GD9eBKMsZ_kYnA}PL_$!;S_%$Zx66Uh6S!Mut zdCfvm@tQ>|;aalW87@%dwMthZa0b6T+1)#Fnt;-qlv1iE-lWL4PxYc&;!R3D-)QcO z6y7lva&dRcSKOrVtoAjHYs*vJF&Z028}ZT5p#nnhM-+PTAo+9c-4h!z^KU4FzP5*F6q`xGVm{I*kK|ilo6tG{0X|>4*q%Vz9L6gIezKYeFeF}4?WgRpxOJa^;LJ6xwxXN+Mh81dabSik)V~@jHxysd7Ti$a z{nLe!^8V?f(kwO<{~bw^c(YOR*r4l3dH-aa#yaK!G4}maU0HbllswA1e`-4l^!5%; z+(ot-MTBMA!tnAXkT5(oQRLWL^MRB-Zp}eE+?p!{xHVTGxV6si=dNT57{fJNywPDi z&r@C)YR`<4q4o@I!B9i@zw34Xex+T++B?+!hc4;< zL^(7-4!U2FW4r%H${yVh1n7Q+0Nt-Z(ENB=r-1Ftwx)$7ZqfV-BGTiV85A&DzSA2nTdZBzQ0Y)8Ow%G&0dgX*7r)i=4R;EBub98)vD(n)P zHy`VcQ|Zz1Pl7w({1hB7-|8@JwEK6BO`;6Z`{jkw`{lI7=Y8!Oc*Pl9kYA^?g73BY zq{B-KeQCyTh6>p@4!%Av-pFv03cG~n=z4`7j}yyy z%~*GV@VtGJ_&J1us5aY&zqRN>h%UE?%mM?8a4cCEl*-1_CYV>I zXq4g9A`C9AE3c?<_Y?dul5iixItK|s8w#Ph?~C%XqXW}j0`JU={CBuC*P+Tt69j?>UJECKmh zX%{*8N7}XXvTHgR-)|tclQ|gVT(}xuR-?)h=M2@sp7tzqG>HZgbUF~k%yzF+32=Pj zLNGND!QwgamK#L^Zj0?SXesj%Xe(0G!6Ke~-fU63f390^#70n-Xq+LVrE!MP7N2pn z34H5(NKq9^t1wO3Xge;oD!yl?JJ)NONL!h7X_+DX{MGKxOqJm?Of_XL45JOH{rnoS zh*St*$>ENGkS8>F)y3~4UcyTDmRbiEa!XB7W#!_xqXShg zh6@t8#ePTp(s}%H_rS!9!vA!O{T&GieAi&Dd|UAWsx)q~cRrm}?_xy=kqo|LrMoeE zkMOPCv(i04W5)=HAa5=vwOOrR~80P&-?-8QUucVgX@Mv?!zl-T)C z&nuB@w0DZ-R?t@2`mh8DvA2SCCE;GcU1H5cW9tYrsj$hmFr0@13B&cBA_v!Z3Ix|@ zSc<5CZ71D8^}wB(f{667cf*9IfN}o9Rn|I6kE<*N5$RJmy7L3j;{yGmzo##Gds0j8 zzQ;XSrN;$&9N0+AelaC-fj<3S_h6mvqYTmcdoAbhr7gbM&vDG_k`qe1@c$9&lJ76+ z604>Tz zg@ zr2)T@X_aMx7+7B?gitQ_PVF%Y#+@4AW7sHaVb~}TJ8TrNFKpPGlrvgTK?M5f+OK!I zhiOcK+re|_|6~v&gGZtF3!WdW;Q5gP?^&V1-Hg*itg3Oe>XJJs3W?)q_t&;QI?qN`_m#YT$@ly&Gr~9w9EK99NY3qO-EX z-B$;WxY?`A@c}Q#hw5;=k8<2umm}`>6pr?8Zw%#zyS>rSNny?YrE<3i*2LZ335to< zJSrg6nzdK#aX+9n`Y*uwncpbh+Sq7Z{z;vLa7|t7br`6WVbM^ksU)Rh4HjV zUipelW|8oyl6b?J4$kl!*w#@mNO|H7C|$2BCG1W2TzImu`b~Ea)|<+(1HZdZP=r3n z@MTTyeRoNeoi%Mq_^u5_5^iNwh)MAGQu*r0AKr5Rpt0Fh2{ciaAx%_8ThK(+ zyQXI8UJKo*Gz$w=6UA4lCW^GRiIXF?ia-8_JD1fJf);v6T4)=UVO!_{BIv10TF5KN zkax$5Bw?YtI$bXKTD4(dCEO6&idz={nMRIxLl~l2p?lO0UEB{Ui&MBQE_3_}2E>bE z@k3k`BgFo`)_K1^<9)Gqj&!-P6R(T;fv|2-S}~vTp}P<1i&dofJND&{>dzwTw*BmF zYr?Ddh6nSakK9dTsHWb*b+lOKI=nWf+XpWKtfupiRTf7(0f771Eb$BXv02W#`&jvG zA!}m)%ls#_@57+?O+xa3`0=0fbgL zopM7v@v!?%Hj~of2638GJ`_3GNj9f9)F*EaVoIqRK65e`mlgsvwbD zREG(_+&uq;yGNo^KT70Z5MT)vHU6@6~&cVh1M2VWg1bUTCr~QGpmm_FgE%l&kl6 z1m^3prrZl%<|a{sS@eRC>&>FL7ur3#_;yFU+uFG#QVQI;#JNdQOmq9(fjgIIxA-2^ zP!>VSa6{4DEmgVz_7>&mpb~B<42p>=l?aGeCA>a5(a00-V6!MDE{~_XWn4|CEp}$8 zfllD{(Nd*dWQHZQ6D#dbh-BNsjwx$P3;g-kqb!@Lf_&E`_f!62@M+UGgm_#kI-Z!; zVLgSC;zuyP2=S!oY!`)Nl;NKFH3}Az^j+@Se>L|MYW#;eeVVCceiE(kQc#KbO6rN0 zXG+{Y&)|AlnS}BFgf0n)kMREFywD8SofpI}Tz6i8Xt>~P7vP;7p;4Z-0oI*gM|rlg z7!T0<78kyCXCwhz!dGl);JR~UqNg4IYy6lf{!+BZWbKFuviJ-jxhmBo7oQce?ik)V z%@f4;$9Qs^txvSx+Q?75F*1%PwDgp)K9no2410Lw(zGl7+nXOap3pKnpcGyc>si(a z*jtM{iX<0#p`L(?JV7ECdDFzNH2!Lwr*C4a_)QmiVFKW_H7@et+jJM$Yznp~iK{6X z?*?Xj}ufVdmQ4Ep6I!X-A=(+54cJ|uv3lXLQJ8oY3;d5 zzt1Dzjn$@;rz3lqa=2xH~w!GYClf# zq-Z>(wa0fR9r`1Y=;FsxJg!#jZdzBfZqYjH{#77cO0@OfhVTAfwEYF{Ij^ti6ixl$ zvk^bv&a;#yj3u%#>&FQQnh}N;PDJnL&27Sy(mY?W9Ey!Aip;Sx^Jmf)dr3cdtX$F$ zRhq?uVjw@5=^=@>+YYy0odA+>eV|Cf^??Gx34VJ=&oHKd#ha0N z`!=35HixQ$3p520>30up6rs{%=Eo4K`FncM$a*uh!WQZGwe@7MJN}*?ml7R?aSHS} z=(3oiW8gcuqFClRN{Y^UT0j(M9r!)yamT^2uxhxaReSa!rNAS*_xN-xwQ!b^#)lkkjvKksNPOgTmU`n)u$+~P(r2gLB<5UHrx3Iv(Nd;lFD5R+H zfS#V#D*e3j%2a;)*(;mzchB52h)w+;m^gcRTB%HMO&>c>uGX52^MwMg3Fwd(^G{(6 zok584aZPZyPyp8i8^teN6Kot8U`+s=k{YE~oyg!X_VJXq#CLdEvyzwRM;Spp;;o20 z2mGjAbARF>P5k2dn?k=`@_^vJRs4B86aH)$f3z(4^OyLQBYtJUpZQh8np}37$ajL^ zRzzNgh|3UZ+5D=V@S-n)fXuMQ1DQP__#m@C#4o|DDqZ|JkpX}B>mg>k1Ag+Fn5Oyl z`|fekNLo>XbHk6>z#Bhum?d6qgfCAj5vBQ9-~X+sAi%PO{^FnpPk%y128SgAuX$$5 zlBU9nFvaZRYkp`uj3@04ZNyvWLnb;T429PH0D?E)Q&{vdfk2xWKr61Q|I+Ht5kFYs>B;j>ID+|snWO7-#^u$uc_}E=a6*Dh)OsS`vq)OUS zpBVfI^&rqteA>G<%;_1ZHF_Kb^5@_4^k+L1(O#oH>Tk3c&}dz>x%@_#=h_At>tV04 z;D?{F_6Z0z)&sH^TPG#HhyFQReBPX^r_eBh9w$uk#PP7Hp7;it&f_&5{7_97 zwMamy=}g%#$Rr1*d7fo!Cd4=UqZOUv^0%rdUcGDm2z3@w4h z;M~tcJ8A93?;M_#uSf9R&V=9?C5Kvzy>?~tyW$ZuJv$ji5T6w9!<)|X{K*bez3khp zj|mt$hEw134a&c_@HrXdqqt{|r-*$^xRV2g079$287~hMhRuZy&tH@dj|~1CFOLj< zA1`mSPS5j9VKEbkcMvUdf{Hfxo@ODuZ~IX>EUOM~M;kX{V`Uc4zREM24X%ThZ==C$ zFuU;b`Ear|z7Cp)po!N)UZRh9bG7qxPk+aE5M#65y^+E}1NV0i7Sl{d z1Rz_-8Mg_^-;L*;ul4ju{6>IjFn&M{hvykMNvx*o;&A?PyH?LhVkKKix#5F#uP*Qy z8rw|axb)a0AgG`9y=H|JFSeehM7X)yDImCs`DT1Ayvp%@jqRsMxB-4=g4_VVLtAoO zliKp|_A{FB<8#V7H2MPC_@3y(PV7Gv3->L@C&+yZPU}BTko%U~Ch#q9j?Ip;)wcHi zAPqOciZt8=D-hh4yjbJ8k11f>N6l?k8N^rJ;90FT=WUk4u~>LHbkn;Gg#l@OjF<76 zYEK``aC)n9S#kk-wOLeFmT2o`oyI6)Ru7l}pQEKc#jVU<=$yD_dVPYtX8LP>S%Ss} zQt4>X0p-%7189qVnCvRI4wF4fyEs#TdtRT)lgiPQ@TB_jWu6RTN$WTPq@X1gDQHOr zf|kTPBL$2bM0}HC4b=iShzcUozr11GWTt@qJh5JSf>U0$C+;BK+ImS(ST9mk#Goe> z2p%uMcOj}Fm*ZD=!5i>kURLept320h>>a8BdgD#Y8*kDURDX4D_h!8L%^7Kqqu`RB zH)nKY#}y>ulFy0m-$|D^ZkrIq-M3_95~o<_`ydQ&{uE*MrO{;-BvSFx2nf)N3ITdi zfuI-0-vQ%60izfHA8qd)7*(-7j(cwsO70CLgoKtr5;`OhdhdiH5Q?;HP3Qyy2}MPu zDP2maBOnlp2sT2IRZ#>xs1&2u~xx#!HC zo4!8BVOOV;u@^N$$f%^ovOIwaZ<}p~jgO{8 z^}!M<9Qy#Q!amR#un#l{Isr$L2F5-}Du`}r@1T;g4>UsLU-Z6nnr@jslFTP^S<1aR zgKQra78pwAA?k<|xi^~CWQ9i4zaYw4Pgjkz+O6PCIjgC%-w7C0{Lo%0OxHYt_ZYk* z#1nYGQLAu``I$rH8Y8l;n81sNIT{mq33(*salweoBYjybFR);wG|RcwjL8#aKbYgy zoQ`F`GI_$JpP{#;NtnCqPbtx)z8vB=3Cn&n_T-$2w8v6PEc@lnksfBshg;ZVtGGjru*7Fp0ha8 z-b)Y+29x}}krE(3=|e#50t0!_))`Q=I1DQu>Eh!%7w;U1c<*RQH_=S)VM0EvZ;4Po5KSO zb&!%IQE|DTDM?`YzMMPEa-*;b>@QzVM>}Q|5yI6O(QN&bIpghUionNy)dcwlbr}}t zgU5c+f&}*5Q#q^63@Lol(>Xou=2Qj>Z_3Ia&6#62rHCNm^5VS40pa*EUf*YOCK~1t zDgDf|Ic@C`R0v8R>dQNpGs>`sQcRF|`Qj_Qi$rYqEjga^Z^NEL`B364cJle0RC^Xh z;N*uEtfpW|zwd>dhjscO17u{)L<5YcShH7Q?VbPo^crOSlQD7x2dTVNY&WMAmx>We zDQ$f zq_ehZ#-uad=95_ilg>YJ#h7&dng7D1^UtG1()mrE3dD~?yaTCE{&9%3Q#mh&J~H|; zUdt(C*cCe(W@ZVo)+*P;v)~LCJvOlFi1W86FP3LHDai>{_GcBQ~WJ zkJwQl*zfL+KNCS?UUW!p6+vRBA0gVaLAG_a>jP z)o7?-Po{G5S$oR)91}j=L*Y2R%;6CFtR2G2u6>sCAA7}r;gpY+p`7=8k&|n0qnvyv z60vy<93bD-qM8jq)J(xA;$&rxe1;AY`p{<=a}4_k<;0^F6~D^aYagRvJZf=dj5unc zF$AfS4`Z4t$TIY0=ZD6$v_GOUanJPuhv1$IrVT8*<2LYDXcle*f2SO{4g7fw*#<_8 z72CjxV;F7&uR>7s(_fb;8*T%?86&oVAHZofz72dAf}DQ>GjlBQ8=92CA%2r^8+hqb z&bD%PUrLGFz^t)i8<<5gY8&VtE4G1N4b2}8ovi3Pt*kMTv;($+l~mu!LxowsXMf9q zTVym<-1jv@NV^erax2*7TF#Dk6uwlc!e(>_TNLBbQo zg8EVz;Ts|ykDA{J^O+~g(bm371)=@lk7ZY*99!-0DJDoo6`|srFe-+Wb?i0b*m={D z#9Y@J_puYlk%+>*QapRAoMWvWPZ3-}ymFA-##bCC_R8QK+zeKTcCfk155;}H>{#EUv5uvNy_hnh#CzDPN{&11dnf`QhBsR2UG4iRm_H1g_ly(M zj>ZsVf{fg`$^>{{r!_0BTp@vsB^iaAMK9u|kPz$q{#HUHMJk0n7 zm=Cs@w;DA!+#(O#1&%PCrsfB&3i4rsj!(YnG~lC!-@#@x15A-K6K*=SITSaYbmb#+ z6mB~I(r9v)rJpl;YPEFQla1iDR>^mpx^=_cqK)kU|>;#2iton0dBf> zju%@@sTntI$0!wQep+gNonlb)(?auy6oHz71@~+%$BRAN4IHWVYz@ZCJsYJId$tN7 zL*KIjvD~wjn*hHWupJE?U6Si^DBZKgQnO&s*2LGip<_{mU4b(NVvWDX)9Ia?`ZN}l z^T+doErwH!ZBe;+bn^{|<7YdSf^i8?p1_h_jtO=$#i&hC3kt?f5HR37mKp<}jgpf% zEjC&nlhlk*o1no|Cf{*b*&Kp9j=F4cb4RH;c>*)ib8FjEC@JoK@+Xkp&z%!+_Y(oG zXXj(;w=l;|5Zj+oln=K*-U(v+lRZI9GW{lq?azah5{=oZ8`Ii1rM086VLwd?x$EpB z6oN_0v-|*?2IiZgjR(6mFi&HP>S!*(2E9%j^dV``p!){YB|ep}$Y|2vYv=e>*N2(O zL$a+qRa4Csbdj&W=ik z-IxmqM0wymd3^$w+E+aFH)m9=zI%r`%CY$;YR0pNx;h5g?TH>TqlQtR-)^FqQSa~O zc*`C{`EdH_5AEmAj2?=?>8C%->j5+BWQxG)2Uu|8>%;PTI;Po+C;`e`AZ4zj7?im{ z$lO5@C=*ze%tVF{?N3uGoKcTV6f-JnPGqrNM|mfP;gr* zcqGN3V89T;__k;fB|^CcLhd|@K)D6^;$_j56oYaB!{wTNCW^J?1|g-^mW~tU+CnMC z+L8t`^tAS%(+ERyh5at7}PsmwppP<(Ad_enuYHU@ok5SpU zyfkf?ai@Kjf^qYAhC|R;S$@|z<3@~V%KA6T=oj&MeiYl>C?ngx7%U=QiI7(YUx4m_ ze0t(1gcP*k`f(;7UjXpc9qEAV@P7yeo|1M0Or$2jjNcH3pTeRk=b+-B> zFvvgQ@x{VOWJxZ^L_3ip)H0h+!MMyOP7=$k#(>MLvO%UbG#k`1dn=WR5B9w|1lj8~*GE_iPwb9Bu4M6oFxL?IBmaz$v|2Z1_OH5o6bE zIXWJL1t-9Yfe8UWsPL#9BwNHFF?&uDr50^8<0g&H?_>buCha_LB5u+y@L#w|yD&M- zCJiK|L^a6&(HX^_o0QSB3f5ud4CNR4B_Q#DKm3pf{5fdNsH$IOe8a_m1%IZ?BmDUs zvTSUh4d^xWQM2KqIfbK zlj{}uBNjfgrSSz37FclzpSKi>s&}xW;|=?;*A7f>Xw@tL0&IL$miM`%=f=GF=ewU-;MGk_&zv-ZyI4G|BbsR<5oGw_;T-YJZV}TmCe`?cDz#g=%fxDN_PmP zX)Lv@D{PEKW&V+9_&-@Mdu!ibm-YVg=S|AEKuyIyD?&HmUrHHi(}cdaEG^vq;9 z>^r?*T~=~Efg-v-6H(3FRKQARc$->Vh=WoeakgBS`CU_!L8jwZXFv170&yOH@Jh$( zn>p~i%CSCT9hkTD_I@oa_z{T9X0JQ?@<}@W$>82B29^96^GfKV4|AKcr&c>&uwEyu zJfua(-E1-etTIn3HF#QjIatXL;j`jX?W28j*1|(^om%T0ay00ViFRPP&dx zYHl7W;HS%H+^nB2fdv(Oz3N){3I@r zj+nG5!pFeN8*eTz5C^2E7vKSDvk)E@w%?Y7C#22E1^hv)n>ZaECZzKx6^PT(H7`^x z!?tX8Y_=&CKO)`UH+zd?gJBgA^9FzHXv7Ma*zL0?DkwJ;r>6ZkKQ+O)yqz8Uwrx3n zPWm?MZY7;@of|7;bVyJzzsCI8Q+!a@o@Q8U6_On&bu?the~)Nvu9_kqHx%RlUJT6sE=Fr2@Ez$H(mNG{pUB||pg5l05O zisG_g5vE^%vvrE~6-9F4ujs;gR=~QYkaU_q1daa)(<@Nq-Ogdk@Fa@ivj0P6kF#3o z_=YUy_j>8@+7M6rSUo6`TiuLZIOynT4W@7|v{|9nl`FF*47KugA{m3@r06>-mWv+8 zMMKW!kMa$y#T3cq0~Za!KlV>`TibOaDSwNU{}{z``CEwmqZG;I0~cmBmQTT~MnahB zCx138I_lVL%w_g7jx>uUYr zo5Sg>J5CK$U&^zNZH9H3*cR8$nZ~?V@2+S4N}#ydUHKdes+SAdE=TLmgo(&TTzg@ZI^N#7J)r?TD z`PPwbWH93;N0OC6;Dg&h6Zg-{X%PWHd~v|)P0%~uaE>*56p5Y3;3Dxn{&k^vWuPJ_ zL~qJ72pL6qJXceYSJPRAogEfYITSkV6~_S$8uzLr+nP$$UuDj0jRK{8_$o{#v=Q9~ zLL&-)+ER{{o0uNY9z5yjWGx_Kz*S+yxKB9-gc0Kz-O^h3KbaT5<|xsaq2II3M&KcS z@Uni9IO+bw>yC@2^(2vo{cu?H!(jr)eh?p_DH3O^tj-7_}1JQ>bw{^UNQL*e~xmdfkA$W*G7>-*tSXk^A?hHC01p3Po>9+;g$fs%8vCK7&A2}1@M)~#Ja-doB;kV1%2;#gG#m~Qqozf% zbFRpdm6Tnw+})lPe&Wc|IeCp_Hk+!hd+O9t40TD|^{UhfczZw=JW?&Gl zW6jROU|vVy*whj`>ltewf%2xB>!#uB4jMU3Z-cC(I%QABXEp=g1Np*HL!(B|%)c_+ zVk^HJTGKo;jXn0=&^p#R!jDn{NkP3hKgwBO zQ-nji7@8x8Hh*z~t^CIEyOlXzg*)#QGkrSd4y|;806QDA(wvBzkd_?$oujtZiy+Zu z-KUEQcF^>I%P?oC%#@!x2J!r*6;1qtkDNoSaYQ6847ff4IeM5{qdXh}O{tqzq=^=T zVbApX?2*fkp2j`w%4OJnEF`+n%k!oAtCW}d9phxY%5&F5BTPLP{u5bUQ-^+T2tJ@w zX#Nk5lZNFZI?>UGq@xcJ1P_1Tllz^W4eKNUWBda>dXCa#{Qpa*6!C8YIscNqMagk= z&1s$0-@2spWOH(KG$ltz4{Dl{5KXE1YFP4{W3MJzMRNHWB9g5cDzLbZ;cKQw8K=C% zCgqYN&PP%FltJ}{IG2NaZxW!my9x?;# z=GIVx|{JJuzLO)Vf%8wz?Tce%pEDBYAY&cVl zlg2ZZ6L2o7KT}Mlt!Cb6cr+I7qjJ%G6oBsgOn2W`F;1^xd5A)EpJS#N9S(xH(9T(h zb^X$)V@zYQvCe9&xJ8BX)(k?yJ!lq6TjvVL@%YP(bJih#YbI<39XK$k4jdTkiAXgt zfE)(~CHI?DmMyL1Og8t9Z(Q z_2t{LFW)7$U|+r|Z8@*^WnHx_Hud{QM!|+ic{(t^D#K2t8gb4W0qvs8OZ}?OPfe@* z?JA70SEFthy&6RjXfbZllW&(>^jZXsgQ5m2N^}N{r-XM> zoVSHa7?$dsV$J!V%$?JmH8f^?u2`JrY+$V>%=l19n~1hItPR^B3PtAUmX=SmcKlD~ ztUAs~AxeMfr;`NJs zS3h)CG_2-C7>>&(cZhM>gdlL-^dtZ^Zh#!e4JB9OCInjYv9rjcP&G;A-XRv8QA7`R zorf9qq3b5!5$L+0CyWka#8a_2HBkV1pfQ&e@BpsaY}?kX^cg{bFZ)LPaR66Dor9BGRnpgb#XD z6x*8IDYg+E@5FCCtc(4*5?`LXbkMek$|Q_3sw2<`RtWT)4$edks(QmgY{A|LVg7bO zL{E)5wUcwdF@>G$V*5y4v)7W`@`QhH{v;{yBS-AFPmGB5yj~HuFof076 zMQy@2jo#04Mn_uJgQ>A3oj6O(Hi-nQb^%Rh$z4DuL1RPGXNl-(KPwQ-d>cS=KfQ(9 z6Iq4+&e|50pE|@j%^E}`@<}uTC|K(LtWGh66ej4|ERJ2w`r(@-a!S$W~S&+;A8m!S~`I=Mcl% zM!~$*dkBEH+T1paeLuvR9YZLg(S?Vy23b!M+CY1e(EmC+d|_Z%o2snyU}tAG?{HQH zO`r0?DP0gMO&I3vrIEt~lg5?~bJnvy(#d7I01PcZ+&NO?@%w`;;Qd6e6MsN+AZ=Nh zO&#H!#ylgOyRF}d0#I9r8NRG^>z2EMq8al$zs+J#j)V;t<-z!=M99&TK*`V0Ym|Ni z$s9Xa82HmHmij5YqLUY5uSiW+g!u02?QVz>2WQFn{ID^~jJ8P0f|q4_GW>K6sj`sT zt~m5Pn45~{iH7iBc%Ep;U3i|zs>-SH)$JO-b1r8+BTN;$lgGK+uqKfPt19+*1@-G) zaqMqZvGdvKweYt4-HV;&SmQj{E!?G4U@4pNZ?PtXQJg=^momyZ-LQ%YhpJ_-xJ%Ts zm$IvqowAm_H!S6Dof2!=$HP)S18(GH#M2ZDwKx+HSj+y1B6uAR5LoAvR$wjrXPu}a zyE3ywx*ptd&1^qGung z7sYY~fK>{LEU%82vYk?P0mX9JfI!(;(4I}PTsB~p>_mnI?e#iQLpI;(N;jnZofOIC z7ta=cFQo`B8W2=8RtY(P-iSj_%QCu+z_H$&A~ zini|#>eD}@+0`k6iv|Q0om)^a$ZDYzNwb^YExNNC#d5O&fuT5%BDicoP}x}0o}d#+ z*<+;a+bNdI1_X8|*0dK=ELQ+nssL-+TXiC-V3Snv2*q**fKUpaqFAl~uv~$;^e%B! zKkTFcBk`}HE_V8;qmy~}T`cAqN2)~#MQwW&NbuLTWAEnU5o_CDagBGgbMu^ClV))! zt!$4W!xk#rO?|HU&PJwniCDSj9_Q26&jf%=#ihI1o_n1`HA-Cnun=B$jtUN3cX1&C zp1lj5&uBb+c@c&1XBRnd>NMsmhnj9H*xx8aWi`BBur0X7tIeUf?VJU35wC`Svc$R1 zu(}ay{*YpHVi%SUZIbwI0H%IL5zPekK!)tLu zS`P07U$Wr^E~-I27lc6hC3+ey_Rl<`p7)PNfzqn1a`x7sxVb6FEnAMQTjgwStsxSi z%fd+Ly4u+yR6@yW$e!=|pUho~oq7|+-fF44j`hUq8<9JMdl6f$tKy+MRztNAAwA5H$ARce4NfQ2mEVI@N#j27q^E|4{|1|AL@x zEeb#%@cKD>xY+-Yo~==!Abwk)2E{IKG*^u=>~bm@`8NIJs-y9t+ul-c!+Z7yZ*rbC ztbs%tx~(5uunywBAAzH}SUAojP#!F1zq#Uho08-6_H><6?u3CHpSLMFc8aPTFPSSU z$IFNS-Z91^c3>N%Qr684j4Lc0tA42@HiMu8#}(C~`XvN@c}tK1n%2p82Pi zVm^ricsLk+xFnfRk|T+=9X`H4t9aRw!m2*(ticAPW=*&3c`Dp6dsA+ncp!?G21-cK5*vfKwr2~k^3=S2KIlS&fVqk4C%CWdZkQb)Z zseDzFub=F!Sspp2xvB^fBiN!&*nwg0BY}^Vo%N9ZAsy%*UdvVn0a0I2c#YgRO*4 zj$_fM6Usvzt6AznXR@`LAaS5$4f`a4a@ode;b%&XelGpqkwEQ3;KD=BZJJ;e*%!e^ zei-8`q5wVox$y8+<>8>nmRDv_3ox=N0R6i{_b(}4SDzmg%Zc-43Wp%LtysKnGG7$0 zGYJxxh;;atE1njg#&02+nyz33*V=yNY5!fYz2p|y5CXnOwNXex+ShF_A z%-`@mWQ4{MZnS8Ww5U*6#N!id)!_`n$&qSM<0S-&wQ33tbfi(t4jgv2vDOk(FsZmo zn)1N>z)%V5NO|oB6^k870c);7^h0ClIzQlq^H#%pi73SR=!ERU69j=~VukvH`LaU& zFM>v&y(bO5NO}Y`tORI4r%?^)w3O0r3DHC@0$ac2e9)q#0iT&s3qWUQ7g_N%shoij_&cC|xPkBzEF7tQAy+iv191%QMbmjaKzzsqDvt#1ibs$Au-& z+^`?(ie-W-!+xXyoWxpiN&52aJN>4!k6~RTO0h35h`zi);Akoqqkmr@H@epd8olRk;bcm!oE!vgYf%8MK3I!xrAyA%$WR); zepiFy*0?v}!>utDk9^;pE1#tCp|d|x&NkZku6*c>HLS@*R$L7@*?JGltKm$FCSWYH z9evlogO_{U3HONEVgjK=-Gv9rCs1|-Vo{Nj2BOT^%t}6i8TJ7p2ZQW>w%{F@EcV=U zqsc;^r=e0Y$S45YJ(f$-gA8km))}Ic#~91`$X{4=@e(3`p{wLxm&GzZCN;%{t^_vd zytBN&$cQz?f#=ab*tu9!yhdb$pls_k3JBB`B_Fqw?LF`80q2z#T;z48K5(?Y-z(PlVfV7QVQ$>*6<&h0YwpRxb>a2nykDG&8%M^JwR#X{?6%n3jg}DwAR8-K zQwbVZoJmsdta}4P4l7ta?iEvIh`h`rMa?7DfV^f=z0<69L|(ww)l%kG&DIXW%p?;; zU&!}1WVvs})-<2EmlaL)rdd8B2n{?da#-Ah>ug_n90X*gl_KuPdq<3lVTAOty(T2;7|d8|=hs_e0n>#BbkOU5I1ExSI|Gpd)lQzt_7le3^*fQ3fM` z-=1jgAsUeyhruom^$!EAYfk^eIj)TLTrf4(HIFV7o8qGci{U;0wLaxpNm+Lz^DQ7T zTurQZ2nqV=oM_;ufd*bK=WZ6SR^nD-{R0(MBV4O2s^UO|>vrpBB9KoGCQ#lJ=^Ca{ zs=1`>BGu!5@?}x3E@8-d#;IBu@)>1ZZ8dUmy{J@%SnVUmL8bCxs~M4p3s5@(z;tP| zMWV7sDg6p+Dh2Y~7f}FDk9cYL-tw*nk=95e7fX1#1i%#;BiTb0Txl91x(O2*(+D+p z6Hwn((Uq@J{Qs!;@EL zv3J^KB7leOXjQQ?+p>RLXKQa5S}a6T(crG0th8FiXc9)9MHmfTL@usq5bru}zPd=< zFdkLe)!ll7h{wUev(Yi90P3#-uVeG0UF%ra1Xl%%!~IKvzl(^fZ;Zv^|3!Nz zq5WH>9Uf~dvrk%#E93jEnyZV!9{6l>Y~cT^4Xf&6B{0xqp!!!jT@D4P-Ei1qrZdk4W7fWBJnAF*FteCO$zRBuue{j8Kh25YBv6Qbv_g^ z@ZOD+yzy8kKgEAxo&40|kUBY+mKxC@za8sa*VVHMR?x-nCm=DMA3ES))r24N(hUyc zmu{rL#buv`KY>d(ID}lf!EyQcE_plFt$`~&q8+gEJ2%?@&HE+PwGFlDtLiwC$MCl_ z@r}<>ys8EDF}!Fa0$Rs%D-`x;S&blo%Ps*Nw$)%onJ#h1Mx+ArUwnyNG41A$0I1Jg zo}D>8iakE)av4_QtXrPVZ|r*AN>s|Y1=&dn9DtD_KT}Q2@tsI_ISi}Ljd|pSQG|y9 zPoi&66W4J#8yUoytdz-Xnh4_(me*-046aPq!kf7Z;jWxI>|`@nUt1Hopv+Jwo7LQv z5t#+Hu++syl^9A8#a2(QI*pBwFRZ|_Te#N8jN>Lx;D7R$z?L_+b>Dbpv`p^jED`q{ zoP9gKaTQIP+~5EQ>-KS64fbM7*SIQ%@&f;bTOdw>0S-T8fO8NJ@D{T;)$Q;n5a1j_ z0-WRWQ7>;)epg_;`a%47wrX0{HtgQEF1NXD3EN>0?PhLS!tbhT#)=Qd)r#l`bO)wa zZB~vO1dGp8>_9tLf%OcRfiZbR#pF{8$bVr>7X1@3dA`NvXm-85>;3F-DmMKM742OO z+4eUItFf;4z$aeM_I8zF$J-S}GVibz}96uLzGj-&1;f=Rrh&|AI_-R%RB)jHseC8oYb?GoyGCTjF zyOHlmch^NDB5tX?E{6ZW>tc?Nt`p5>op;w}k8iqGogqV$?1B!g@asxZ?8>QHQ7pEX zYo^&|DO>RJ$ktZ7rCNM7V3~8vbue2k6}PCBmYWi1_JG4Y{QIqs^meViiLoE935B1J ztr^h_Y~H$}XHy$~_+xwt!&{<HK3mz`}&&{*7eP{W!RMi*DUteNmq=uPB%^-}C8l+brfL@X2nzlX+#A3?s}&mq*;OJ%DU319n`4R%5C z`~}5`qcgsIFyC>-$GrvDhLqgq>Tbp@75C3nfQSp+KNG!_+&>d$%;c9}D(;`@FwFIE z*vaVNKQkC;6f`j1{-f$^v#CG!i(+TH6nd;0 zN*S84afHz^F^mQI)t8BTUxztdzgo?7E_v=KV;Psn$x9!!O59+qmJ3C0du*p0VIovS((Op&{IWDlV5E5TMb9PQd= zeI87Snm%2|E-V?@IyxAM?ExfedVh>-xph651lt27epUDdmK$^?9^?9EoU22{WDv8W z%(SuN#!MZ(9yS7bXQC?GluO*cYA$0%Z@b3Ca&mE=D`PqQN@m}VcePEf&Y^TzM=9f$ zFuZdWC(#z1M{O{&lOlr|GYJK39}|49OoRo*>PEnPubQkF<;AIl5%y#)MkceVUq`vE zVLBrm@r64`tRWnVyRS%Jae)htdBt0uuE9bH%u1-PMp13tf<6* zK6_7OC-a`=WO*xI&YC?wvK4%M6F+0BS|P8m28Fz|rz^xy25KhYZQA%5Qw@yQeg-~c zYL+g?PySg4gYD|Nqhm+&acb8y%Q1Nmcdpc&<8l-4mKP8Dni~9grUt=lwI?nYPpspX zi*r!;8B^<`t{g622|DJ?cKcOR-+0Tq^JE1Xbu# zO%=LSgQ%}CYGC~E1YRvt`#vpp;nLQV5z$pCaUiB3sM-FF@Igk370pw<)8;{vB6f*@*l$mT@1Ox72l1=fO*b zRaD8_P^msvy3DmV;=}tOW{;ZH86MxsJUqOoc>(&3AK&?0S0=moQ`*Is0$p5jg{x1z z(kCxz`RG2Dzrxkc{z!?E+t(1%_wN%=A!nylj82x-Z)&azQ~vIhIrct%*fw0{>SS1H zD}tguvt5K`tPs;-O@)-BHujWJA3j6Vtk_lCYOAnh%(h%X0=oMO|Cq(s=2R2p1t&ED z&x1)*guygY7cS2Z)ntR$x`N30Y_j3_h(_k*73|no!|Pg8bk+t8r{{cX*PX&H6Q-Zz z%VX-3Zcv7;sXU^Fr9{CaAH<(-Db6J;*1I@7QXyVE{ADd)J>OZan+mh)X@d->hB{GSk?osBi4^WJR6S{MB5iQP^`zx zcnUqkw{oj%sA)&83`C)vfhv@^np?I4%fSniLj(}BKlA6Lh2i?P1QN0}!*Q9BE7{;* zhb6M&=em>)!}-k)NTFwj<1`}KojYBfbsn(-pRQuF%R60#{ATZ6uAWveonJ(r(Vd-m z&?PTP!Drt=D_PN`p)Dg|XT>huJEaQi;_BBrK41A$o>Yotf9!U-bj5s@suV(La24H6 z=m1O%E4=KPPgaPjf+vO(!gjcC{~lK@!=9^JAZJmyVEc%*Sb;@H6nfw~rn$`8=W3+$ z1kIxI{18>iH*MlGaMtb+vHaq=9USTp5-gs-cQAXW5%C=KI~KT4=xox>&j!2swUz$K z2g|`vtz_K>xs&Xt6t{mX!i%||uN1}HiwZ4<>GAU;I`Y#cdLLe1DeAfz%Nf>nK|0Q4 znsnGfHeqMtQtL*PT@}TOtEQw`W zP*YD}nLoCSVRLGxTFm=Eb~1d6^7sL$pJap;+>i=xBLuU59dvaLC$&|?KrnM~^^`i+ z;IPsLP-#vf4Ys()cX&H-dFLX$LGC><&s&GZ{@gOvD$)h^WSP6mS|;@9(Py($!}Lk{ zW7!?y=ykIr(6l8wubj~DrN*q0P3!M-Wko& zf-2?gxudQ$o1(}j`CI6e9qohhGDo!Z*oe1*s!;keZ5}&$?O!DLv?| z3#G}NdREM8El$Pe?*_(iKIZydmxC+O*;Q;u_fg%ARRJgRukTc)bAfUk?4+R~tjQ-_qf9evHBWpev9rI{YE|n-!o@>tQ+8tOfG&yjq1A5zBtEd9<>LCW zpylSju%P8$jRmd5BfP`##ZOEw`MdmFRro&l#+O{j!lsm-`NvX9{%oGjich*CS)Zut zO<2w=uAi+tbf3ut({u&(2il7NpNyGpEmq1fG%>*x#)AAsaQvHp6!_6ouE(qgbS{}- zx_`AuFs)xL5=@7~Qk5zym0@~4nDojo5$SM-9ImDAXM(&qk87IsMKBR2WX?k;^Vd>; z2*zSY2Cyo_bW1VBfy!>cx0rjU^#CnAA!Dp(C1+hrt!lwEpd=j*FQbn7!AR7RP)zbm zt%6A~>jNa1^?{~f*5?KuR#~5=(3+5}59PwFk5Rx1-*%0S<Ylua zLut~dP`L<`K23bn-f^uq?TN}}xp`>vzH6sdq`*8jVAkZDhl#Aw2d)=x#B*;r9&;l2 zFUna@XTlxF)Lf~hm_hUX$U zeE#}~8upV48ImSC3pkM`dQ(x6>H2grS?WK6F8}PdmgeYUktb5kkayQUSu7reHI4Wn zqCr%iNCV?8^@XopGtB>h0)B`8U%@uvL&zW0rgCe<`A)E@)*P2BS=l5DxS9&gLTC`2 z`=5Y@@iX)XAz=Bvlv}@WU9+040bi?eBa;vrYlKrX6xP2lD=;!5vewAeueZVzclKCA z+&Oqnz@3;QQl`sy=RggG-h^Fec$kmY&2cn9le(joRQ9*77SOh>zG1h>YiBhT*ex0ayQL90NOlV*hfaUzdeg9;)V0fgIV}6-u)@;p z&?yBL!wC~Nz=YdijR_y=4jnc1WXF*`e=)nfywy7d0mAMGb2lDa2b4qceIJoj$p{vVxzL7dMW8oSSejMo#@74_ zS(P3NOTxSh+(zGYXnTgwj|0{Q!W`2oD$L~*S+t#5ye`rIWAIro^lZ^gcevB`0jk z9%wUrBicP#mxGV7-i2;>(ow`Y*yT#@E>)03Y#;&=cM1;4 z;IS(BA&*sY5Pq!7Tn|dFgQmc-Dh?sXsyHqmALc*>|5z7S6`Sbp{`U`j_)jC*we^z- za0<)h#ZWB07VvE=Y{&UwuC{>#yBAg`_btcU3baef=ek<+=3w(P*?}atI7-+;0r@XJ zZdc_0jb~2yTo-%e<=i-y(h81kot^Kn*yXD3H8=NxJdD|#)rlR0(0I2Kl<^U7mk1?xqY6_15wZnJOZSQvL&3{@8$xuYww!ljOezK9fevSDmwsj2Sq5gXS-T6$g8T-N19|5w6d7kV4>uY|?1 zZIdU*Fh`nuwfPJ@>GDU4W5gFH4!gxog-@@?Sv-DeB!pvmJatfzH*w1P{8!hDb6->M zYGtV?V0W){#IQ^KJw4g%I_{e}ZUuf*4N7F0m5g%ck@c*7U3XjS2(i%E;LeW!S8z`s z0;~8*u+sG`wVwMU>oVcsu@S#2nBzOaVU)6F4cyJxpzD?6%*SN^$0pQ_24@1IpSf;5 zIiR$9JvpEhrbqKvtrrKBmNj&*(uWRw8><8JG;;sjYO_Jj0)rd7$7Huq0B$AD0Dt4y zv+|_+G*&OAf`QIPc%N8e7{&Qn8$^C*bcXvm%SG70jWWM8a)Zdn4BfzXj2a3T&)@2e zXSw%|>S@ggOJAtyRiESUlRsZB^nD zL@KEEM)(E)#cvfQXK^^4Br}!$FnFGIH1Q2->;BoW8*(dhUwqR396_)YzwVJF|2lsJ{NaA)6VDqnJ{Jkjx0=t4;Pg$~_T{ty7fz6*X zG16D7llvWmJ=fA5ZDg{dp6)a@zrCl9HAGRftMlF2#;t677dQ}03C~1TtYeJ{B`oOb zZlx1;b$hJag9syT-3U)jdpjo)(rjyK5EbYh**!=c8n`)>ux$@_4iT2d@IBZ^LkYY0 zbk`w-+19a8nrd0@6hf26&hSQ@4JEAE3wCU`Ze)X=ba$~n3&p?N%e~Prh|k7JeK`$= zlzg>-^bEVu+kLln3k$@O2pT-x^(W`U=aekpi9YV9Bdr?2boks|h2e9zRfS-U+o5A? zX1hmYZsouT;G^P^+8nIjl} zPuj{+7>1IE-9YkaC7FL&8V+g24sj=$86bz({jSW4Z5T0|!Dg{}LW(sfSn8}BNL`|& zu6bf~b1n{(1De73WQ{MiZfBwnxSt^uxR56BBwjex<)wS*1NOKGmL%gbaxC@(97k1+KRbf z#VWUmlQ(;7cuFXFuG?G3suhO3zQ^7FM%FYV^nPoSz3%#<;+KCgDw@sqx*J(N2#+*r zW3Ib%D9hI6(5zuW)G^#I{>iyE>oO8%z05p!g;4g~e~oHsjSphy?f)asT_cqIla6_< ztyy8nr*_Jls*&?)B3Vrn@-!Tc7o5O-Z;Wr5Di z&YzE}q1hDVfp}4d)I4ym)$jyg@+5bR5%ZN22_vbf{@fHcVzPUiby>mrJlcsB9&T8U zbtuS-Vc+-8n`wS^KYt-Bfqhcoe!;wcKRb~;v^odkyRk$lUxw+tEzhnIbHuLr_}T$+ z@bcuEscty24>Ls1kxhINh3+{~R-;X7lz=5N!*n5pX#EX>qL%q;_?06=*=p)r0pLr zgm31B*j}1n($h)`qUN?g;>@cRN{&r!5=0J;DP0UN4F?IY%l_rcYiM;1qK*JEcIBBq zDZ%t3oHPe!!V|d%A2T>2hC?PBiy1vU56&#=RJ0Qu@bu(PX5HiC} z-GWh5B?w}_eEtt81=v};1GMiEQ4z;w?)^|4Ih#dN>uzbRR_C9s}A$*m4M z+qO(a_|SCGc9;^0CNl3s%W>YPE$8#T6$Gflyd~}l8WbV}4oLQmh=Oya&~UYOuG`_h z)38nx%hlR>N_g5nrLeNy#lMeiVEUW=g+hyFpZ{;o{$6W#U9yPC3&lVyjs#6BRvIH8 z2t=%U&^LjeU$+*#(bjx?4f#FL=n^ zAgq1Z3&cK#y$}Sb!kX-Le``^w>V;PVy$~q-85Q`hrY*~LL`9o_ZWI-mKQ@Ze-)Lez zb`UeUZ6mF-!5m%7?3ONGbKGe5ggoW6* zdx}+NtBO2a5`et3&wXnsIVMi3h9QUcRF@=2VaU^; zhOz^-IcN!xt$S7Z3DUuQS3mHmyP07RRU)N-yR2^##eUwLo5bcHaKpWc)7o0>xy$ZE z@!#_gji_OGSchlb1FT%d%YEOH<@SimG+kS7kfqPxiskZ1p8I2|zf4PHNfkUzS;>^i zv6b^xcchE%7`jzFArJ$D*Aq!enx@th^CcOdhgE#?N~T5gK;SBf&ut0Oi8SFD7*QKU zeeogQOsp^N<-f4LxEFF3P+zn%d2$?2Z?@pprLsNE3%XT7s7zD(rS*g*7E6loLzWad zsN1%ff6qI>TND~>W=hP&fF-^%N?nXGu`$2F`sIXzB2J-OSPv%+Hy8#ID8fyGaQS@~n;!5`rp zZcea2SjSh~51H3dWH<9a7&Y>Si9!6?h2Jp29SK>22UxcmW^Z=wRd;7Qd7EEWm2GTr zx10gl)d@tJv|{4TSF!Nk6D(G`TVJ*USDwVO#;4pH?R27yEvP$kKyqUa!AzsP_=MUM zxQnD3`#!&F94md(9m^KI=I(ZLrOz7c8gI8)^6Tzawx$JZpxfXj4))sX?n;qez$9@; z38fNul)%J#=Ns$Yv8&V(0~Xrg4#0|z@%xv&O1f7(5? zN);{*yBU9BY;Xz;d-x&4o`dj$lIfhj5dH)z=^R2T=^U4jdU=cT+XJKjf)WRJWixmU zD(_|3#POVfxdGxKa7jrP&|(O2Qy_%k%dc=riG762K@&@5^c*4(z;UBjO!z0FC-z%+ z6#JvSYYZFkQ9Kr>6WE-0++DN7XBJ?c|q2(27 zfv7=$u?=g`_Lr2|SnL>JezuL&pXYrVe>3%GzljxMsAgG&)5plucX~B+nE0@U@d?lX^*p=ONxw2%CaX@NYSms2AE^Ev+NX4rcMhg`m^I--c%`E8J~wH8FiU)+1))Njr+K$ z?O^8kxBI)utzZaC{-U6Xy`7rG-MTLGyQapLV88A|zc!D^1~Iu)CRbthPnR09l#0`0 zS+S9LGX*(iC}Xp~b+@n?wFJFIVDxqC47zS>i(f;R9Go zq~|6BUv~NH!fR`k*ZB1;tR$_b?b~$O9cx7X!hN@<>^F%leXj?;xwO|4WB*2N4|wsX zU@w{_JUW|4f){ULO^5YLWS6hHv;R(rnpd{74u+?(eT7^u#6v4+mWz1yf3{Q6x`0&c4G(HO3GCY-J@!!ohPOn=X zzF-0~X)-JPD5f#I;*5)EN;fFe93Pexofu}N&yUzH4kw+8@!W4y0)~f^_Eqp)vS(B4 zU>1aTqn6n1v+p2aFcx=iC4Xz=3VpK?~NjaNlny zQ)+ByHRwK1Yr8Q;pn_^U`C+FHb~}mz1^Fgm@O?8b6s~dF_+!y+_7F;ig0qF-T#7)! z*;4Qnib27E@e9TSPGLI?+ReX0H+4lLJm6F-as~K?O?B3*Wm9@_anUsBIXujiSvi_z zF7>3uacXgd=>e{P#SZq}cvqX`WgJY0%M9vqyu%3hZab;bxOaP)LI$_b%Qkk3t(!&) zgSkI@F8*eBL^JK}R1M~T9!m9;Gwl~B9G_>O=MZd)yc|hmjT5>r+r0p5mwgBKkV&k<74gindj?_@<8Lu;`2>v~3;mv*vF^*rP4 z%Y+agWQa_eNBj2wAoHI3o^R|jyFitHKf;?yWXW5K%w7N0zH^n_)!CKuk;$z1=PK2c zLz<^~2_1Z}p(n|(Q-U=UR(Wre#)=M}-q>@i(SjXo>=|gc3Kl?2mxmUbNzp>2G%_^yg_;?xv08849lsSAd= zYuK99z`X_B#k`mia4~;xD)1kCWoqS1qpK+hf8OjuE#S|a_Pw;B$W^O@r+$D7-4~2iD^F+~xt+K*8P~OkIz$+&+gU({Mc?0;KwK%o=N%lZcz`i zzo96U_$8J2lah#4AdtvUqS%^56+h4n9zV9$41D=cg9IW;C&VQ%=|K|E7*3(A15$Hi zbykcietN=g@_*pZePwizjd^LgUc2l6h4t0ZopjYICWladj7iOO9+Nt&3e0g2iol#e zMX10W^B@`1(;ob`_5lsgr{Bkj-NsS2Bg@l@&%XFhsaiDU-BX|jXFN>}uk_mIsNlT!Mhq~4 z7OT7(Et-T?-ix3Ys=W4Blo6x*b86AmfJLRh53f&_Qe_c_v!(^ZS%Y9WPpLRI(bm8i zlchbHrP~$v1jn>Si2PlT6g1QMv5VF}80aEA-1f~d&yWbaB^8K$l(~oZQIbUwIDcf8 zsalr35|`3~r8M_6W9bz~HDO)99@Wb14;*kH!p^2FxPsieheX@RJ%JUZXsf%k*=vuO zQ+iQ0Tr>;!h(&W6#h}xtP=R;v2~1MBXo5goG~r*hXs+KQ7tM_!!q!q@B}y2snji#Y zNVD$3{@niNlY8)+hxXGU0*_FEFA9MXu%Tz?W9qjsda-VKo+Mins3tscJ4Q$*mC7R| zhC;+yV_*AGp3#x^zbR?ZCR^SOM|nkkw!wJM7{mVMzp%=CxF{=L%9jBRl4BeLsA}8X zI}E$ZLnIuI;apHAT%%z(^$|U zz3e~1VZn|LKZ7w5HdXLWv@wpAO!JJfAEnmf7I+_r__x67mF-u!%V$T`u}@MCY~M?? zeQ&Au;TnD7Av~#JKTFvTwDk@!pMFSKwC^EtOk>aH0jS^lYG1H@RTtk zs{kcSJ?hG|t5F^_Dq$~)gW7vB4r1`ZxOur-ZpqGXQI73+dVDpk@z=^%(|064!?2uJxqb?Fc2qErLdf{ZwzZhw1#-PZjnG5B#Y-zz+iGPsA|12PD#G zcG5lglJR7203HG;;J@$?K*3%-1Yno)q8S#t4?$6J&dBks-(1g%Fxjk{^E?Oa#k46f z`O0k8Jp?S3uh{&zvRMP!V{<+6?DFRYE_(x!u2NcwVU*^t-z#3W`*wln3HuSshbg6p z_KFwnc0q6ZFX6Udpk$b(c}|h#?Yk|J4O(A+g#9l{hSJ^x7s3Te?94pzfQP&Q#P{SJ z`){pd|4Ml<%>!sm^MD1I=D9&5g3>$;;tp4}LM0yVTP> zc|C{HEYCb@9MAHI+L7IuGx^gEn1?Q$SK%fLNU9slviYf=GIj$h98YuBxX<&w-JXJR zk!i;vG?Sxo;=_41W#ZF-)sI7PW`ehEw|nZb%w)5N@0FFF28KP6QsWXbcAr>6#!`%U zh`B3jim`wh#h!Zhy%ftQ4)_+du^zT2{P3kH#H`#W7LmI9@a&l}n-e7C)p{l~h&L%lIO1eYr}_Opu@$*O(ddcqf<5tv@I*x2eR4bUZ{iA2gRaojper;8 zwr9ruo_)3k#`c^Ew8y_}MH?;-lLrs`feOBM^|?m#Xrm7o96Egj+__hrI=jR*;ezu$|Ah*Q$Ac08ayIaojQ-OZeM!G+C3=+t|VO_5v7hH6ob5g z!BR&q#o$T;m~)$k^*0`2aa-~d*`?0)JZ$z}xe`sw843u#I@wDoC(4{DWp1DtlnEFq z6Fy{-$Ug1w?QcI$snFVorQ~NQ1|Y|YyEs8+FfRKXoE_rv@pHl*q`ROD0^#_d; zMFIjHaGkQCOu$H)u$EV0+kfy*wyQp>LV}^-%8v>+)T0=b3>cK$l44LYV5DSRqi@jV zL2GnXFi@<~lwPdSe?1($MssShMvvm^tFj4CdO9U1a421)Z=tQmO3c+KJ-^r!sL8lQ zcYXS1&v*=E81peXUfUk4$;CIo57&+KRXggLZ`yZIB(Bl7a|oI%PY-JRxVn2?-nZ>V zloPKGy8MDC)m}-#d|fjaJ<2|Hd)tIz$j$Sn+S`K};6B{N$6>4nE6B1B1e1d74Lfqv zby8ktPFAgu#h%bsIG*=xu}@Nw*a|f290g-5PCm+Zyx^%Bh5?)Xc{qkiFM96M8G>w+ z*B@%O;V#H{3_8KTUBic=zqkTi-e6+F62&KDyvc^0L@9CMulktS0ac|KT==(*^IkJs z0-C2>T2nMnxfspaiRNCq1?u{kNV|-Bl<~BS(S&t7?ZJ;T+f67pWL{c{Zy=9+Oyr0i z6pg!z;laYkJSNs$5RRW7M&U_jlgD@lrnh-F{QJ>}G<$A{q`QJ8Eme~6g>p@je4)JL zF`3KR86t06u)If=Jj~~SNti9r+Kd?he3ksg$3zw6WhxmR`h2kDv&y0P{&*91;G8E} zcc#kgKu6-%O6y46T4@m6TJe&It%G@8RdFQxaT13&;OE5= zonK|6lPEuCqc#1Qjn*LORxFcbJ}$D+&8Y}*t0A*_L)vv?`zvpRbLL8|Q zi5mX03aBZ;Otc2UeP{yjuC^@YAbd)o(qp1ll75G`g<+4SHsB!3dt3~%Jc_|VcDh>b z33CphVUV%tcLMvH(eMO;CiCN)@Cl`E=Y-Li(7fYukztB>`5cgeH9O5f6{_G43{}k?7^)gX zg{ltbq53|1Ye(=AyBxC~r#nG0HVU zjB*X4qP)j`5#?D_go^TR?7*iG<#^(E;C@kZxj~@EiiD4*2LoM$V4!<=N5fH|FTafA zfsQHJ$Lr?~H0(R685rm@_KQHDK`|KUB@J_n&0;|F)nqM2VAqwU%^#I0blLZ zeN~LUO13DEnn|B76*K8G6pj9RQi(KQ7XIRE3g4TUAQNWNB)A3*CsOz{MXQKUN?{^} zk4V_(LqvT9Ys2BUVBQ}gac#8VIP9ecI* z%j;989N-_}X~JH!y?3*z<-B-sN44cXDu%a(m5=t?>{^UBEkNDvptm18CRw?E*!HqO z)34R=*Z>VTK3*x8WwiMRc*3ZS_@p^lf?uvtRMNyrl8S%1#u(3<#CrQ0W7vgMZz5Y2 z>z&NHI&#bUn(p_ShW$P@H(aZ0$kT29R+oC$+h0>A)%2?r%$sg}&920FGjw|1cst@? zP-vQ8AHeq^b=n{&Bnex-q)vD{#0k>kbHoYO8{9N}3{7Hr5mUPO-Eqd9`%C!^k$58X zmRs0`nVHpCaTQ2ubfyM|^Nal4Q2T=-8nztquCNDECgqnA6pZ0L@F2Sy<4xBYaNu5P z5);XqJn3y@Po!Kphz7#DXx(`g$Vr*iZB_}d94NCW(kTCX?hz;gi+FhU8)g? z65oI%_-*f|7KHPGEYOxnA7s|_&bObSOv(q(QZV}93F!lk0fM70`{-HN0-T`?*!(9% z^ELXQ=F1xx4$795CRB(v!MdRKOS89<_M4jyvS*+3_A$ozV3-sccJv_Wp?`nIC?HZIvHN7?kW7BIK65X#csP5nU0(5^X%EjAn0vEqiNLLf&fHW~e zsveU4|Imw;aVWU`()0*Pl=AqyJV;i)gv~!t-wVa`LaIGn^JSfRvS@y6QSK^x0p(H6 zUq->$`~`kgcG_VQz?k!?#UcKj57y-K z-}D|eIx(XabVe6S&$lpUhr^_%(f6?aG}z{_*h99VY5hWF~Ci<@ti11T2-W*zxx( zJ>}T`ExDCgah5mV9zj%)a!(k|`NN+O<(@6QyieH$ln?6)6JafbuPYg2nbF5P&R#?b zuq3enT*E6f>nH|U0fQxp9TbBl3Bd4k143vb`>u06FZ&})>`zhX5h?Ul%8Eh(gF@e> z7!(Q^Dl~V$XMlZ~QlaE;rQ|;;1|Guc2hXNXe-Kz1!_NlmLaM91%WfPBC04 zZ1z*Ly&dhY6oE2s_GoXNOBp9j@@ za=;y;-b3j{y{8LE(#~WgacWWT*~Rtq|1Msif69gz_G_@b+5f4|$`AL(ClBXjv;fqN z1N;L54{1yo?%iwH`)Dh81*rW$Iv(U{jXjzcs0aDl=Xf{6r-dmTOF=#kp`{>=Rh5EX zrktu2bee*3L-g_yQ3?uWz&Z1LIEE$1J%x5KLzewR7+S0aX{3CQlB}8`Ye9P`FE#^f zLD4?aEvgn&iGr~i(LPZN3T41rP@QlLSPRk^f^3tuAk8+c1$C$5aCPj$A-FoitVL=; zZb}Jzr2%G+Pb64!C;FXET1wN6z+jRuXK;~4R*hx&K zT!9pev56H6ZR}q2;p(qxb z4Mjvy$ofI0SP%gfR18fZG?9*=bO=Ry@15W5?7erhuc$xx`bT)qPTSepGBbC3M&aj# z538eu)kTvP)_i~!)_kNsnl+!`rK0AOe<^VpZaCGll$^n$mU=9QZ@vK6MUmD7UE=CF zG4avDe2z3)n0S*Qxc6hhM+WmO`ZH7^JhsRnNOxQv>AP3CDnbi=@VG`S-Morrlpk3 zGn>@oOGU!+ByGkcZyw>QTw$x%^aKBzrJs;x#yP*hGUBz!D`*+<+Cs}b za}&?`zyxbQl7^<&f?3dOC9|N{N)Xd)Wia>J`cxtQ%Be3zab8*=;b@8%7>SERzCFd zEz5+LZ=nqFors&uLj`mWzXbW13mwS}G!czNbD_ZJL(lPaf zm!)EzQ9+pH z7)T)~+6HgP<d6wk4#P&}hjxcnetx1% z!L^Lak9h(xa&kYwsCX(rpU?HK{A{IcurupdV4jz`ak1`m!64-JVcWiT*L~bLm1|->+A&tR=l-eJVdiRuZrC*K4DW61&pq zHLv_sq(tU8)}UbQdc~C@#VrwF>8ClxMJEAVOl(WIUUo1_Kjl^uJAh_hb}&>fWME-J zID*R~r5`Xz&eWeXhAR44s);`f7=@D83=3e5X9^`UE$|5iqXniI7LW+cBtO=8=2I%P z1yG?aBq}dk7)72Bs4YN8FIyPOk0Q2EN33L*ikUuP)Or4=(%omZfN#yP4TgSq4p8C1^%4Mk$9QM zJt=Y$)@1Zi^mbGSe+DorCar!IQvs_zeJPP?04D{b0s8(brh-IZIs#UEUZPZJ1)xGJ zNK{@{FsePhekGFvbo6orL;2++eQugt5P1JpYR}nAs*EOR? zqpT7mjD?>#O2kuGh0GP#z>j8Aw?pv-$h>qk+8+@e)qB5U&4;TtH6^1R$s`%;H{GD{ zP1mL35X29SX2GYE2r@f;G$2ZCf(@x^L&zcVs*i)JjM*J4hq$vlo~n;JW|cU|jH3kn z?4i8QyF{Pcow!Oq%#2zk4wIuODVBb|SY?ESU(qJyI@_D;_a;{!7Am7yr@x@MEiuJ2 z3V-NIqx^XB2f};M(s-lC3fAYPFE9cYfR0jZG{PYck&G~VU&bNz)+#n;e?}$!4kbW! zZ+NS#uJ#yV=7Ef=WbBM8&=tx9t3VP2&qsw<6EEbmT$gcpI_2=ejMiS@u^FWqrUEPe z2l}grpb8|hH78|5O3x>yjEKi^tO7~&nAx~U?0v|zH&%kABqNMjhd7#&CYHxa&=9T! zR)U7|Uswqmx;juLXii>6wr?dUXUwsTLW=$#?GK#ojZ)Ct1Z+s3H0%GO6cl+ZBa(&A z>j$^VoPb*0Cq#~@2dybvvOz3?y8F&ni*nG4lNtN;?+F6KBFX&K;_aWgtHs+t8z}~s zEY^a7cs*zjZ9!US!2-*1+JZF;Xu+BVa5Z25DSDC=gl-#LL)ULcZC8?>yRoe6!c^mvtNHzt9%s3!kzh`kF5o?Vy;* ze2ZXym^L8uEr!zPX$vynA~DBzjQqHDCODQ?&1nYsfv7oAd{J{6x7xer#IZ%qsYovT z;{WTeIThj8XU4Mv-7{hm8Aqcvr#Cpj?J-z$s(U-*oT8WDT-uBc-9iRBcV0i1O z0K-YA_sR&@6C~!m)YRr)Mw+TurEn}YRpAg?YLZCJQd2`pX_lIrQ!rnrm4-5XzRn9H!z&pK3r+7*Fdiw# z<%&X+F9Gf@GyD-?p-Cd}(#GR) z;cE%kVr#`o0Jvgq2e@Kx2mXcJPAj$MT2XAO?ZYO8vT0(n!D^Gt#(2-D$6BM@)XRri zH_FUmGQ)ZkFvEJ2)KgEr30@ts7POYsM^mO~zE=oSWdchLwboLhpIB`Io>*;?c;X4o zdLgBEn5XT3pz7f1NXGFLnQdn%t{SWk5Y?A2B)6s59 zkEbIE5!3Gy#7w`RUMte?XDJJ?s8MbD+b}C$inmr|-?>>mcd(gL-6%FmaxnWYLEuQ% zUY~9;9$U@an#+>M^lb)XfbSBBw~P|j5jVzJRd}74RfTB_&MK@p)q-X|tLo5Zbc-76 zi2pZTC(o*?>%^?8O3BPw)pMPgRlR95&Z_Q|t8<+^tAH!cD)`q^a)Qt#xwy5gKE{XD ztCZEdCMzsB0ShcRNeY_jPp}H6KP9W6=SmRMb7e61+(lF&^jsN-doEU-Brtj|R-D%U z2YM_yN%UB9+VfvXdCf^8HJ$zxrAMci5Yg!+i0SnA)(NM7Kv|ehe}|4q$ohZudZXqf z2|}-zAXpcOUFY_7QgW)c-rLtJtrxytiME(!lvZ&4ueF@shPHB7S6Z;#GFIbBg)Zx5 zPfuMhJUvySf+~tKD7!MetT33uF^n8YxV^j{J=_8ZEm3m&euqzaf2D?DG-SajWutS4M?9gC~`n9X981|AnfcBCgXfJ%vNCKn1;1ULE zFLJq9?G41iI$!CTrfd-Yl|mbEZr}xiZ8ktA1iqN3x0BlWW3{a|kj1py26PIg2+L|< zEgNm_1IBfIDI3H_E{Vab#RgHvc(oYd;?-gjE~=zqodSz{jVU)g)B^z)_ap+G6l-3Is|;?6gC*IK z4^}vZ_}2FNQ8}2q>Q5mkx!*=n+mmq3on;gy;5!R^R&7WpYZ=`aA4_`^{ova=Tc45f zy`m4JJVrZ1D|?G5PjD=wvS<3VQC3?|27Kd{a1T! z64gA3z;pww<_)J*Xa%6cYMw;pwICQ@hwZ+JEC`^Z*MeXupK4(7d0=U@2|g}8+1bjy z5aft@-uF}ue}*uMRPzl(U_Ea&B{B{18wH~wR&NsZJc+=oOXb8HGAn79K$=&V3^l$X zT~fc?1fRFFw)XT$l=0NxiF^6$kx`6!Wb_Ejc+r#y%XsFZW8g=!&ZA&a!S@A$)=NJF z>AqXPvJJH`ZVp_6D|nV*tm&Dojg^~jO<2=g;y(PCB|UW`GXi9)5>Q{KzXgP1f@AC0wbwwRD*$-+~)+j$L=e;Nfz&dY=ru^=)0ao)4QDn5i zeh!gr@cVe{Hud`N?2|XF74(~w0JXj9t?gr>EgZX-ylJgMGOflZS1(c)Sj>|kcp!@1 zOni|~a$UlK$T^G_P55s@B?d6HTf=bSUF z&A-FE-!wNC^Q1&B3|NOan(HTq7uUveCB(I{{Fk^kc5|R&-op2+{$A_)V4@YSjiudz zqrCgtSOPYLKlN)}@MWr^Oi!>CWn(5;JL%Jj2=ZFj8wBj`_O#8SjyL23>lA$fK@bqh)n~PdhK0G@53T+5gA|QdjnuthM}Bu~+-zJMOE8H3UgaVNSjM%n1mCze7C1?-C`EE?JMg!d0N-KDDOl zef?|MlW5srXbE4GT=SW=cT5*fL9GP>*s)zzi~BK8!|Y)iyFbHPoL9jLvcB2Y`t1DY z)*{Ln7Ch71ULWUQ`s+mcL?PV*He&8?+BJ#xql7r1NWJB|d7=+$c`6iZXECcmcel^SKEn+h~O{s7*jM{2!hS6K86Z0o#ASC%o z+F}#8dbr|d2wZV9l(=Gy9vL27iT4D9bg3tpQIR0HqGRnu2J;Mb3#t@uMluf1Ko^;B zb?Fk=+)R2CHj1`*a*XOU zXy#d+Y}$-T#*e%$JbSCi?7+C;3jve2igBAPk@5%Jmu|%e+}XDIViiRf_{E#wdNE=+ zOZYbuRA7ihCNcC389c3&JI@MFD^YPcViE++mieRga~ToM2GQJ45a)u$%qP1bmv zPj=;OVdGDAYo=@wC&BP-#OrXPgmH*_qL^3gm)~aiX+=uGd##q;MiNi8w#hzPa+|oM zxHu)l_w0*p6Nl3>B@tr?G3m(C1EN z;FJ_pK6BShcDYb`lX$$~-`JPkJlD@OK5Py@a;AQn*j%x25dW}wmHV9g9r)wec^0_!4+TJNh9_{QUW_IUo?fZ#a4${K6~nAI*nf zc+qYX{)RNZf<2Buw}KDGjOJ$)IODPLKfA_SzyfUcy~)Y!XzwDGSVn5e%38JUfPhA+ zz!t~ZnrGXhwGJkX|KhW6(x4}QvTWDBqH%27M(eUC_>}RnJJzmD+hmQiuB z*tkvB%0bTpc)C)uus@wYcygV&+?;{GTR&2?o~B@Kp|pe^96*mYL^U>ai?y*bfc>z= zT0zT{DVwvr?C>zP|8|l2XnM>N#*Ta({3M4sk6FTr?Cr*<*d>rLd`q6n6mMh?h=|E? zY`4w|v3v+(#!t4m@CSa5eRfc(Ft+bc>wR?z?2=RLwY415@#HPGTG^+|Rads-vK&1v z2)rqDn5(~Y$Y9&R7pGw5PF%meqXD-T zTk~LS2&zThJA|v$OttJ_DYjmR(YeYNHG84DvJ;oI zLOx4cS$6EAwWctltx0qon{m_H`3W6RiDBQ|0(->}4czvMuE&AY{i1e?l`Uc?`X3u$ zwST6yC!|knFtv>-L0aC}%FSiM*xq}vU;po(bwSW@5Xvf!x7XB0Qt^fts#$?-Hx_ND z!V=eMku8O-X?VFXJA2An^hwP(n7#kdT1^{Fl<=5uDhE>YWg4A(UYIZE&b#*FiuN_3 zeQNuCVTzFLXWd*Pj4f1bht#b**+kV=PTNl9g5lWC!DRwF-9C@uzOdN3J)ybOjXT-T zLAFNPMk3o|uXEn^T4!`-jbX3t!L~R>dqilT+Ftif5gvQx<__qVbF_f1tP)ga7r0rU z`i^E=Irv4VDBn)iQo912I#PCdw$g^0ZP=5VtHdt0vu*d{S_vZDW3Fd8kh)g_2<7LF zBD=)yu&BA?lA`q>v`=lWuBHf&x%i64W`12HET?Oft)LP46_k9ocn2PP59kIzd_$f|xwdmZnzN&9dg%iicM)8z3}TTr{FYPGXAfn5s1~ z8`$Cvj+R<00+{Nur3G;eHfDFfY7(xJYAeb3)AU*|zXap=^s6rs%vtVet_>o%QLot3 z)F!*x;XdgNB}`=9vTyowZ8SmWx^VQA-QANU^r+spGWgb`_Msp2a{bcVOX#S_9D?cA zBQYbroP>#bOx$k|W3OeTSJZwYG=?(S*7U}{B%e=&4sGzlR+_Lm4Q$W&Vp|W|YiWDE zuz5%C+0u*oq918!tD~LuLI>tAHnI(su-zL#qUmEH!pEpDuw(q~sBMn)PZdqsV|p3% zy&UV~vQ^ST2^71n>|w`T5PN%}Kc^M*gPHok{}*7jMjHiM{uGdO#Xn8Dd*gL?)acr|^dn$xk1ElJT9n$0Y=CD?d&-TtlB zU-qzqW7Df@OGzu_Nvg4NhkMsif8K*9yBMF~Ywez3wySSY&uCM92Cq}OV zJvR5UHIy)6$!Mu15lpwn2j5DU`-U1X%ADO?tKkQIK_6QQiLu$i=6=u@zms0d7yZh@ zdO_?^Ut4*tyBCcG29;e|**Zxg!u5{7O{fj1KK%b1gKRt(PzFj<@W!!~9?;*=++QZ1?mb zQ`zu8It#?w)#!utSXJ9Z*g`*ywQDDV;t+58Q>jptbF9XK7 zb`f-A?F#wJ%OL^PHZ6U+q_Uq58_)Gi9mX1Z&q229T5-Y^madX))C;!ZT3G^>)~_CF z@xR2EZ4U;&!)gjB5@%%JV2bZsp_lV2NO6?YJl-(O* zYprNDq6aQw>3?B8S4$@iSy}eywBZEMITQ{AfXPeT5@u9MM z`VO}>)jl9x`S3_+Nc>^<(6SN~*UZcjwrT2|zp_W#T4`Sr9?Dd^Q=Ro!fH?TOzwqG_ z3miXL$E$ySIM(Rk92T4DK1wic2i*o&q;Ln~|Rhz35r0GkwH z1uOO`3R4Es=2GW0oCet)aHsi;r+<1a_2Ya(0 z7>NDLzU=u!0+RM%?h5!>XRQd~+xdngO^t)jH|X7rCBI>7rh>6~8C{!4u+Z3FbAa2} z$&TK&b9%pNdqvTHC5W&JG-pG@KGebp5Ql%~T_s9eMxZzY77bQH+4Q$Ab^5T`>3#3mDiOao9?PcE7AM;ie8gw}m>SBK@3oasZ|-FW_u5Knx2g1O zM}N4iuXDAo^?mcj3Y+tet+oo|IsaW-*?*RO;ayw0BwOtA>)x-Z#qT2?4H1WghIT79 z(e|nYHHjKw z1EwdS0n-yXq=Ba=RA}JOLMk7#$WLKU;U7NMb`m6HyVYQOgft*qXh60XNCUEk27JWw z<9+7yom%jI)3=aZ*)N^~6C>=)usUVb2_tZ13vjp@C6-0r3oWmG zNm`LNr{Xu}gB9@hk^sYQriUhgwSCeaVSj> z4Ix8_>7fi;ulz=#b}vyGv&%~%>lSeytOZ9ywg5F(P9q($er|pERhn$hR%aXCW^pety>@gY}4&C z)G7zW(+SlGCO;f0mDtqzwg$fC_Gb==*SUA?=e4Nb31%;hWCWFY?4GTfB$Ka>N(5&u z9vg)BxUS~dsMBU3n*9 zS3<=|QW4k{3c#-P@##uVykgfB?FXU+9+(##5C`T3q=6rp*@f?HVM+ytXJtUbvob}( zvoZys2?qUa8>vw!HvudAgDn+!@m{m7KiC>7(^%*tTMN~9u#7|s<$yh;0PNvB+QS?e zthW`m4?9v z4c}MFS`8ip%ENJ_0PIoCT-$pZ zh4LP$eL(=fFijY&HG`j4~!q# zbCTBE#wnJ=2aPlPQPNR7vmXr9(X$7|nH@TcXZF1Z#hHCC;edAR#Nuke&DvSNfgLS} z%wa@3J`Th_{E)|vco7b;$JeRhUwoY!zlvSv5Pl&+D@WL()};;w7@m|v9<5VL^ms-E zb{GnHYmJdcn?oYfXh+zi)~y1u?`CR^kp{4@9tUS%Z}tq0GFTX8h&TH|f!M!dvJY&O zsfJNLCT!6t9|mIkxnHBiu*gw*2)7Uzyn^`j`Vzw;IfOS_fNEQLV zuE2J_99lVy_zuQKI}frs&Fsw-m^1tZIB;obPzhQL5 zpD5HU1d1~a!y^g>$F0PQCE3d>#n}BnAqAR9NU+024hM)$$}!s^h)rNxB<{6UBYU8c zE5Rg)C{Rx9moNWViFk#<<8_d;Y6zW-ZkEdx2^<*$fypqA4gD;%fi|2VVT>~52*zTtD}mHFW`z%eY3~yx6g|NZ{Xf!xq9+K^ z-w-&81_D!bJX@1kxu3R%AR*V42G{MR0lBUeTn`aAas>j6n3N+TVhS)QX2f(8hS4Wt zB2*$`I(Qf(rYMdrBBrpT@ayJbcJ>NX)UR(bDScwkui*6D*>o;v7JuB|=D|rJ95eca7>CfV;-E!$!1}MsV)hNysDIeAnZ*H4lL9$-vw59mgy1UPuarZ{-SrU2|ehDsEQ zq0;C_W~fx^F@{Rk$F>%#?>HHu66JusqX6vPF}Zi_<^1*sTDv?ld3eC|nre3kOjn6~G@)(7+$V3i#Iy zE5eV7u%h5Gb9}hk5J)CR+WjOxiX20&l`xhPW3R6QGYl$xl#bk7ypoc_j>XtZYc&aT zuCr1t0P{x2P-P3O&*FwSV2?qC4|^U|sNIeUoAmJJ-v#-X_o@He0C7@&cmQj}D??q= zJWu*DTiKxU+~ot?=@r9HuMtsbrU%lB?dn*D`61ChU(qfTL^IGh zPoOyGFwme-PoSY%jm@5U3dwdx~4Ria55vc|$2ty4Dz*&SR zZc9mfl2VS9E@>~LRq&QxCXn=+LOS?-qf++r2~Qy06KkmLj9hCE5qGlNIfs z`w2KURkAPCwh}vFz_G~$xJ6Hz_v8UbN)`Jd?V!n1gc*K>WF9y!!i?{$+DBU*NKVTcgbtU!z8ru{-+|-CY57%xgQv5XPKeX;OQZo7 zz6BZu;2HBH7#IHP<1~VaXUr)l0xWkkPl(fUofG1;Z1%%AEmIkI3Zno%_0-`f@U*N9 z%}H)#PgJzuh;Y<@ouU6a(try$9+W8*J8{(L#4&=7oj4q*6XyeV!Z;{X8Q2L5z)q|Y zolu9K;A@9S0IP#fhz+bS0#nsqC&UI;@+1tJ5uf2Gmf!$m6d7({3C-=36|F8oG&iuC z1Zr+z6bjo&7o{C*+tyx1>p-w^>uPf{z*zP;iCdRahYf0HubyBIrE#F95^(3D0KRi& zx3`y9hn!>;+rw*nS>AF72a@}mM{a5dd%6FAxm}=kj9s1XEplogk+VD^pQfuhMpu`4 z%Uu#k?mCa$fA1G$99^l*{gJG#?oEpCAGkjj{~O#L_s0_a7w(TG{tmD|o_fwc&(GHQXBYc!tsW;g zCK7IqwM>9p>ZAovzBR%d>fPA5dsdCDx(V;5?CWM9rnNFfh@H}p%*>X5i=Fa(cX)F# zolxNR*XwVw{dN1>d#4=fjhbbm!u?Ytv=6)y-UGYw2QEG(4VX@Y27Hp>Thf5JD`>#n z6-Wn`32a{?E@99 z6G6cZvi&Ks!M7(3xWQ8Z?u`RZi48uJVDi0D>CeW$4(H#dGYW?JKG`*bEgoR6rRt}| z9&dKS*yE`f+#V@_uN_Jo&c2?w0k!2Rk`?=$D1v?YpV629kp^?Kr%>$B5~D*o1RXo{ z(?4|xzDeT0L&knj#bAdh06UZ|cL=W^pEktaSJBQ9O|VC&PO&*D{Sv|m9E~eY44$E z4G3G_A*C*hdKt>6bqSnzNb5iV_;f_w)1p@t6MIDgs929t_SO{+XZMuh3Zg3hfWl zIo$oWn*g`aNl)=oCN6aF>Ut6Jh+wz-P?JjhymWq+GTvTUJ7x+K`=B4`nR%zhKKN+7 zeWG@oP~aYO{j}HzFQ4|_2MeAtT^UieGagjj2g`XQlsbd^Alo)pQgj=X`u&HL&*J&Ur^3+yAc zj|mpC{m@`LhcqDD4+YyF2pri0ftxMb>+A3AU9?RE3)!wW*#1QtknMWT7Sf`xhm_Gy zl1AhWRBqn5zda-f$o8(mRy!|`k8)RNTZF)oBM`VbqP9bR1Z`^&EM!~tycoBpq=9Rz zLIdudX{3SkRjRT%KiJ!=?s41xGrUjnJV8RX4ukDT(tvEC0olGu8j!8S!xnes0FG?# z$bW-3`|QYsO6hBzY8!Aj?yk@ujul5t#X@ZB#_=)pk89zZ9 z#&3lek(-1x&d&h#U6)dGLh;JlnWr!3^ zN+w?jAf?&`QBMOY__;(7fMr}C0g*2$wJfbb0KW!bYvV1TMIZrPOaXWSun=I>KjD9{ z0$u%jt=g7BoO#it(%N8e<^uyUf7xV?p9}(i{F6Z%)gE`pcQ(S2`UAq3?~dG>;lII4 z_7ojgD(SjOl|@#abU5{uS{2*H)2$0e~+^dJp<1Ik{XIYS)|jeNBjNg8pr$hs6@=^uN^ zv%%nMG5C^LEd~<~xLV-S&n_8D|NlrcE*H}S3Hb7oXSu+o9|Yh#!c>4~`YAnF@1^nA<<-2z-$ zr$MvJ_~Pf)?h(YsTm_=*UPM7$6}Bs-UU7-ayv!o_vX?i4Qh1pK?E_xi5$^}{;B|W= zi81!J#SKX8Rq%s8X0JWT7agZ|13&0nZ`!;2qQi9-wX_a?(2v}L>n^F~hfL~|wh zl3?RX0DN&vBIw3au*454-hM$)`C%ECKC%=tQXHzH zhXl0ZS4@w_rJ(4Q0Q}2e!KJ_g;emLb4+P*^Km~Z#0u{Q4TQTh(9=#|4k6v^0JD$}j z6bCV`fTM=iiD-wJZHk7(>k2s9NW`E)n!5k8JOukf9Vv=7l5iWp%+`_Rs*VILi$D$g zDCI2gU4gX{K6$FWPnyv{69O4%x-bwws^BYh=EN{wW68QAOhP51Nhkn&l^yOlEh&b* zdJzOr$7)m1p)1-(qTu3H?q01WQ1q%hk&el1_9(cx;m8%?T6qKoUF%Swo}Ke@t$kO7 zYwaT(%tNVqRUAr#u6nsvKKODK+>7A*0&c`r&n|<9Qs9q=Qux<=y0z?8adIqA*rM8{ z1F@}f)iWdT>Xx)**7U5swz>lF`1gFhgTQ}1vf-sepR!teul$Q4>4<7-g78{=k%Tg@@#{n2t*0ELX zbWNE3Ins(|PrDXiZuPz9nFMI|w%3H&+Y%0F_UgZ6)v%1XCLVof>7~%@$a`2I-s4Q( z_|!Y_#(4|>ikv{@&R->IDRapcWHe6yP}wM$L4 z-gW%oj#i6s!bj9ou8R^x(se9BDDatO-iO&)m7=8V9(2@rZkS{kw-b%A1o0+kk0pq= z_%AF$yal4+n=rnY#}ugRSngYgV4?LKd$rGro>+$Xp9yeFo%HjQmmyMGIo@PR^&O+N zg(hQBf$$?KbHQ~{1#aBH!L+r60&~Tyu8RW0^6TDJ-~-;Me@Up2a-7yFh%Ia6=&W7y zM!f`fl92ziT4tj_ZGeJN_OWhDGYm){{YD0sl zGm{2n2@P(RnAHwo95bu^J#@n-t4*jxR(l$B0q)(6;@C!=nM?luI^=g9EfN-RFwJUb z6XRf3TU^=wGEo<^+Osy4e3Gm-c*A@82$R`%5f>e7<#?cK@0f6`C?~$n0a8WT#4t+H z_I8ea+B6gFO=x6gd_`_(?^vU1Uj(KM6G4qciPw=vc5<{;v_)Q&38u2fGq8k`JeIwl z(BW#7%K^9=f$#H_eNOuKj!KGllpx}XGfmcCuReM8)JaF?{=#&YvU zfYr-#Qyez4ZirjeuHFzE;#I=IJj@omDGsxVH$h$Z!w3A z5Ua}AUhtsX*`Vp zcC6eTPCRdCG$8Y%pqN=yJU)^@0l3}oyCKerf5O@b&sO9-Smj7nw4htW1Np-h`EH4c zk&iUs#K12`CfpJeqc~~BiBa?xI<9Y~y*!J0-cefxFTfiw;%n`VwQ}?2~^d-sET`5u=OFCv@ndR5#QZU6ex6MOWPtF1m)$ql>N- zW8fQUZ@%@9E^55MP6eThQUJQ>Ls*P>C}X%NTb1RQrd=m$;L?5B@X*Vo0X?*O!HPXp z?KTMv!fzAr=Id+d?Evd*{B02!WZi&IAo0K;_%60NTg&~^T+)N_~U*A|C-5_?{AAuV-aDCYA+1LcDboG zZW_Q2_amw{?ni$ZtoL}c-WiDX5ntB0A5qrkN&$m{!%hbUhn)g&5@A+_Ld~p7$Q{%D zaLu4-=pwDajE2XX&sY5cdpm#sHW&6pe$mgW8zT0qP1*5pA=Kai_h|<&unOJl=%=Wi z?ug-hju7B*rrinP{(bLwjxRWzZSNTIJmJ9IC3{n62+_ul=cMQ0t((hSni>O}9d= z)w=f=eii~|lZ=PiX@vJ3yqN(|3fPs^3s+Xy89wp_a zRSqK-z`*@k7+>z&HSTzP8{aK=5&3wMw{w8x+dqEncuCR55JbVB?`*9xPypW?Yv|2(bt>{I0N`{jSG)_$nBUjzEp(Y)b7UE!K=a z-MI&z5x|VcSuPqg9_RQk%y^swEBVcM-1^k14WO`PPwH{ z`u52)9^xVDXn0+!$pS}yR=;y>G`l&|(N!x%1mm5#egtPm-6IK*@`M8O3Z?If1W3|7 z?*vFwZ`6hoDoud&^hWJ^53?2QyU#J#iH{(5Wl?isg?s!*og{4pA;2f_pz#|=gX~I5 zlnR<)3giQVgQ~tKm};Mr2ITx6=iE^HmcWrIzzwEK694&JTmbu+Igl9O;gbU)R3Zm* z?=I#*B009mf$ZhKV%X++js^)){5MU3JTToM2T~wK740xbamT#;lBAivpZs;OHHK$| z>jzA>VvgkuUf`&qXctVlm}KWYDjK)R5=xR<$amjV6Bne1oDLTx@G6p8C`J(Rd>VgW ztVQvp!AvdGye}fC+N2fNqLljq7V#$c#ooO4o(Q3;+!uRu6~e(h%JsM}_WoX^75R4y z#NT1^$Gso;<53R&HB$?(-8VL$(cXMt3B-4T$rsBfzz@%IRBt@X&AKm+iE{{RJWhNb zi1h+ck)LkCBzQ~&)_9hqtoa_4ot02oxi3y~bU5%NM*$e~Q2@q#yNN=0exn#>W`RP@ z%);OQN{pEWN{nIKZ9<1(8^tigHVVbCO?x21w(tk03r&eGI5!$T5Obp;X)v=3Js*g<(VMh# z-&MN*Qx}{Mp;iFuxZ5~IVO zB6R4m6vK2_3Pp##XE^KwLXQp$XW_sO8}jfU9oBe5hYCZ7r2y`*$}?O@Gq=BrR716g z=G5Wt3U_;7-3CY7N(63Z8d^OxLlt&mlUY!1@i4$j-sK^Bss(mTkz`1HD3T179twY< zg3wy?62YE(D0Z<6gaCK3Gl6V- zOV}2-gcmaEt0y0dRp2Dyz*hl`U?UzG5p3imbHs7W(H{jEyP}UgTaFpQf)Ly);a{^f zT>~&ZA#5!o06S1UkbuUIyqp7=;(qDf1BTIHcjyAfusyvcbPXiIE+lXh;f4$XFo^XL zfI;l5kHiqX?#+KxApY-|{P7^+Z5`Bmrd#jX-h4j`#CN{Q*R3}g#&}b}ZF+uFn!5Ip zh-TM&^Ij8(_jY1+9?f#U!J`B<3NGwd7N%4VBhG~3>|t;K9?ous3CvS9;OH36J|+s_ z>G1&vxE&pDnsJ>~hi*VKlIntC%!`ZGT*!!d%Es7L`5X0H<$HICK9-;LVh<^Bz zfmM8ZDhE}JDn1D(+|eZu@P{81%L1xugGvH=gJvo*5!W&?}I=1iI0QL z4#Q8pyLKI3w8j5a<5zCrwH?3n7n$+Z=q>zZDtskt8czXW8T%fO!yeyddF#^;Ym0do zj1Y{wvE}>6!Ax0RFoykd18Oy^AG0}n*XnG_$iu~SXfhnP5q{q|g$-R*p?oE<3G{e5 zbSu+27XFCO>+tUQ*poH-ExjF!zUAnv9z@Qm>OOST6gK6@s1lYo{ORrCg;NUf;TUPp zT+F6kC^cNa>rwJLV5j!#kamke45cRZe)819u6;$}O5{6^9KVbQJvrm4$DB2CzPam2 zQ}poyMCXSZd+ULt zoL+@su-tK78;Wms-hbd|0dIe%K6HF+X_PO7T`gfL0{?&Yp`(~inKC7*7gfiIhJDrP z*e0Q@r3Y}DQ=>!~y%&|Lywkgb(v6J|b*6kg?m#3P_t+8k1m6+n24fc=J0ilVbeMEY zirD=Q&IeC5IL((laJEn^W1vgpCtFk96~+mQ=!!C|HVgHKH(#O!BT}i8|VB>-%E+P8y0%W zn|O~&tbUS@rDP0FRi?W~Hb0AuEgq(h$;XmMIjd(6FH=-`jkhK8kDS9twL+ck_kksic-r*sjU_ zQ(4}!h_JL`1joG?jD9+|fY{C1M{h_NGZ^p+Z0H2NeyksPnGM+GaA&&S)`y~Lo8Ukc zJ0qMQ=~haSHMU0=wJ-E-zq7XfB5kpK(G6QVzxZMU{dL+hXJDU9q?z2mozjzK1vyjL znpGu}xlwg*0Dnr|^nxfC9&QQlFfyCth}3R@ifdpuT&>;soI_dh$2e#X#IvyZKb zbw;Q^z-L-Y4sQ5y-oxO;z1}@qNOi-Hlj1}>Lczz{ckjSvFL6G}vt6(xHZL`8dQd(k zAOBCXrjP8L5`~>{s(z6Q$Ia$~M{Q$u_aS9#iaO8f_bDX~#NJ}g`a!`etb$38`&ZKQ z!!OSOdR9RT%l!!)k6&KpJ0?*oOI_ot5kbZTq_EDXT(x5|O~s51(|v`#ljv+LYl1tJ z531CM@iluUvLR=K)AgEE#pFbL2faFn7!JvD3%P3LbSU907OuCZn6SKbP@Ajl>W}@4 z>CI^i+5ziFeO0!2*3gn{elcg53Lc!weX+OM`9eNhzyOvP1GAa-ouxJ%R3h5!O>J>z z0@33S5AqT{bzQfP`WUK=ZEueb7Eq5RUG3|IJm=Fs$?VdbUCZiIC`DG=ZXMtP^W^GI zFZ`&PJt~INp2G2~Xhc%Ztm@8DiawX}7{9A~GHYJL*-ZbQf~QvR-9eqJvST%zDSil= z)O1$Y*LV|HfHSlG+C9M!h4teWwe&x{DY%F)YdKr^A&9N*tfQawM=x@R>p1V{*DV&}>SzG$k4C|00E>mCjdxa+32-oWwh6DSCsG1F7%C9p zQ2R<4^@g*uUX2pCB|Lt^Syz?-%k#5r=lmvGlxK1$3s-u~a_2aUv&cIgE9U%|>KvY5 z?@3vLr+X6`S7Ue0nbOATu;>FRI`$-~1B`tZ1*2OHWGg#3$IJL=s?0PPmp3Us?}##x z-Ai+3%J|5CYDZ^(eLBTA_;>E)oaqNYp|i8R{*52}nVp?Y{ovzBEc1gu^*LunKlo>! z1J~W+jUU7f!*=uvP4Gjqsta`aur~>GIjyU+iXZ%WU7dUM%ij1x1b<0XCdtaMm1gC- zJ3Ht~5b;aHO53|Tz3|bhMS3`!>(So$7U+eTfWG6b_H=gF%Xm{jCw}bdtQ1c1jaVeC zmvf?Cml9wE0$V{an_W6ASbZjlWfdM24J?#bFgl1TWX{0|;jsN#r{2zHN>@Z-i)Q>0 zMb<~dH#=KcR*17Mi(DTQrgUHx`#9UEZ7nRNUH_Pz_xd=i2kAq+v=B}n?U@}$#ePsw z2ut~_Zw#w%1y>pEO_aTAaF`A_#*T48VN=^UtLB8;K%PFCVxyziAK)yhXHzgb`egRl z;cO`5dP@>hesy>>GDY@oA=jBoOfq4);> zw=%(Y0r;1t_}rx2K)44;1Q;-x{ueL&?|r7c;B2N23gTf+D)CRlWd`u}dgyu8z#Cpai&zjAK_uI;}E33fMVmXi0q`#peRp z-Iu^SBz3rP$;3?*#vKiHw%*QEC7mUWayBFFhBbP_O5&c_T6Zo6BZfp~v%J^@9x8%m zqdgfC<2CSBxMZl0RUEPyb4U%Y58#k7zF|sCj{d6ioe=#RRUdnWM~!dL};m31oxqc8MiTi2gX#HhMCw?a#oRguR3fnKdam=h$RtJ&V4JD&aA< zIh`vBaoeCTxS`DW$XP=_>P>{x8E`z)IVa^~XNsy{p@?YQraeO|>vt#^je8}8#brC2 zgi``z_Z>SVC_4K$HJBZ-J*>;}HmWuCu>8bBaW5YFbA4~We!9rm@Q zXnv6r=eTyL!<7P?VPMTyou1Lfa5VLpCpNFcH^i*IalX6Yb*K)N@C9V*D08rR~f;MeF+Pq zgpYG0xMlz5`ecfab7KU{`^x#gjPK=#RfV~-^0U-KFH~b8bDhtr3-Yt^?fMsEBjI^cfP1g1YVXf zM)Q!DLQxBy_mx=I`CDfKtMDBh<%<>|Leb3eY{7RYXHGS~0JAL{SX8G>yj{DNFj;f~kI8mT9oo*!sUdAT^@UFwEhgXgzw55dxb;RUSE_v^h2JZ*B)rkXeG)Aq+JKU3w zi7M5%m6FP{5zW-)&CV>$pZ#7WwVwzpD>-@98+jsvN4@6sUxQG(_G96d9pN?xY-$(Js=_`$Cl%) zpjy^K&oHsie@tB*Ys;=!I*eJDJ5Q)*3a}O{oaOX$w9oE*mU;^OX1lAtZ!YUb0XBZ+ zfEuwhp95B{37N)8mD$zbot4>VE1kujEZvCu7gvuLVBLRprs~J3YB;SzLfsCf2$wku zejegXwH$)}VUoXSp7W$$l%u(mtjCtyyFZmW@u4U~JyZZ|0qXt&?5fhgHB0J}rL&c} z&PuFbuJa4IOxah(`c+TU?J;aiEBVrLHlKR z+pnJJo27QBVZRC+V67ca37^`2Lk;`Y4wdbf*`;L|d+|5t`k)ygk1bwTELs0dlI*tL zCxNUt*N^o&|L*MYRMwlu8g7P+WTvFnDTroThlEeEY8oOl(`%h175qz+UXptQv^}Fs=Leim0mB5PB~sH;+3DY zS_JH_O-*>J+EjOT=?~}EdPl;TVRfio81F_qr4?(s2YmQ>ihzYBN0=xqjifC|3N2Vz zdXu(bVTsf5!V)rtI^x$$N3rHOqka0DqA~cF|+Lmj?pO|!@63vFi}@)nBt0!Z_l^p-*hPNwBaH* z@n4;_5SC|g#Hy{O7qcN%*%`U&e!ef92?8@{F=aojmy z(FahtIn{?!Fiv$q6jR-o0;l>L-W19J*7|SA^h@}BrYAnnQPBcM3Cl-0R``_ju0DgZ zG622K%Y^3-G|F6zM3eXoHW9WU} z`05OeT}|y@R3;D#%?hfcpQ8kZLKDtAYs&bjP^S%{ur+5rEY7SSx|-_`C?!{oi^7mk z(#^}t`Na`KvN9CeUek-}Fc1s)13$cm%j;|L9D?;V@cmsEUmTG0?j>h$MXyaUJ74Ju z&%ucDS_*Bz^4g-oN)@$@&T=abF0Z$fnxV#~w$cL}AiC+I;0v=QU#7d@`@XAewCOHJ z!YD--c^XMJ)YqWad@;DXK8VWXMK%=(FnEv%c+E_gAh{>H#<7``TxDf24qWx-uB!Um zlrtYV84>Bb-f)hS!KUXjO3#N+Mnw8C`CT<-us=um_CIi{-tze(GN)s|^z5Kk)kSzz zNoT2x`&Z35aNAi=VeelPbx=q%bWk@NgS(kZF$ed!F}NqCW>3ddF!A;aA>P1 zgjKP;79PT^31Q{*(Na4f+gHK^Oxy|Kz7zL~MVh#=Vg&->IJS~-bK-tZW#Zrh0S>N2 zfP*VRaByA>cD2_faO#g4W!Si|US;(h${7b&LPYvWA+F*wJq`|L@_wiEIJmy_IJgqn z-{2nn51eptB~CcF)^KU!vW1~8rss4<_c=t2)1*e ztF+#p5~7~11L@ga=ovwF5IBvoq@_Jd_*E5MOA?Q+B|(I16?DbPdWv=9*_6uq2&x~t zmM?wNUk0bh^f;h*%>lKY8v-wG>umA(fvIXdENPJOQDbzLJmGnV{tXquw`uJw4q3=I z?v`v#A=d_VZ3Ii%Ik=3zo}!|))&#QFc44h>$y#jJp7OQTl|W-3)=FPWxh<}j(Lr4j zAyoVdFboy5TD{OmzfUny#XGW!b+Y4KkMd71gAYHk2l1{HJ+dHiU7n=UbqYbt^Y4kv zU~?NPT~M4c%2F!qbIF1MJh^&7Ur$bgGX^=5786UAq)Nf|eM-t&;MB&TxFwa2OM^s; zy%<%@Rl*Pb`eLq@de8qr|8{~a*$+LQyEFd-y>(TmAL_KtH{>tDYbEpO*~5 z!)Z~LRKk^}PyP>_aA}hagfk(upm3`@rdxG>JTO&`S|Hf!5J!V0BMyf!ZMu@#AugB8 z$Cm}x@?ZF}z}kZB>TCVWgkR^+na}4F2Eu*_{L1!clS{gW`$+<{F6H`2KS;ZR4~$|G zU@rl?lK|tNDhbe<9WCwpPQOMNizL7$@Ki_wsOJi@)IIQ|ZCE6kEErLTM2ajxVcLR` zFSKApU6!_B(93Cf&?~sciZnnIiiWHk7_2+c7Gw=A$hr@0LDrmxvc^2X2#SWRhZ?Nk zpe@K6T9EY=+JdY(4PlLmfNv=la{k)joI_iXGqjkQfDN=6*>ggJJ!S&@jB@5#@FU}S z+tO@qbyu=G9YB#qI^YlRW&W70S32MVmy79u8<9pjV04PBUgB9k^xuJJwlgxpd#Ep9 zIsj9d52)Ul4(QiB^a;}e=ye5Hr<$%1{VwH;Prbfe)74woqKLnlt6ek&^VQA*h$1iG zOM&ZC8E*d|C(Hl{orgAMPm@B6=Vt>|kRhIEZ z9L^tt>p}7P)~z;*V!xho7G;0ea}|=QPzrWvAf@6`!nr!|lFQdHh?7dOMQ5R0f4Qz- z2AD5+&6@!ii$@`;UqVlwFZh5Ga6O@4*$p5}l<-l*TMbt1GdhWlIvo*sjKP%JY^u!0ec2jyjJ!M2xzgnZ#CE1!`l_OZ*?jgb1J%S3# zNG7+x{|mRyu6Z&&_Y-)@1jezM>UNVapL2bq>S57jHsI6^i562ggtnlcV9KC)w2?AM zlG^#)O^6OKcPmEwItiu>%(-h^mjuFb?n=T6_e?4Tq?H+iem#4!iwuJP$oFkzD#!ZhTuQ~n=AhqN*_Rp zMh{y>%k8=Sf81|JS&*tZA7H6*uU~ned9mVqx@!8mskIh{tc_^1%2OtpdV<1gs-pt7xCc! z+<%~V*x`gB(W4V!-sl0P4>0}?hwCkw9`(1D>HmTr5kn@Uul=z9{3{MJJ#GS)XwN3V z)4U>ERFm?<$z3f*Ozvv51t&LVi(18qY*8Djna}MOF#+awml)r_gW?HK4PqmQL@miGhNcmQJBB`65M$_5TtSSXPxD_GL!SoI2Z*6J4spHgCx(7& zsB5&IFP8W&#?YO@Dm3UoEZ`2I-+ZbNx&=!b>Iz{yM!VpZ)?u!RdOQ`30bq2j2&N0h zieS1L#lYaPQmhE38_^a{3-`rDz3ghJx1$X_Y~&52T;h&5!Pf|%BY>|bD7`z%RmvTdQe+X7-j4Ablzzh{V^I1- ztPzy{@rtWqVg!fNp!6;gFW&Y{+v5C1&!L**vWGdb)fCK^JqsX;DAAV!gQ{KL6lzYa zcu+(lfS9E{+kPwj2_IoIT_s%qnM%Zh_`}hz?uven!g1!}bI;c(n9p4GTrA5!4uUX= z0E4Qt9GAwilB{E!yT|5i80UIM(Zk}%6fwf5o?5rTpM`(we|0@ZNUS(p!5ISwMR>bl=!ynas-qMp!9X0Bg_vDL;%T z9UOuYB{()jl+Wi}nBam(-N#c*+_Xl=iA`%XZ80O4>2V@*VNx^Sv_6gtuxZVS6Pp%H z138#9$I|#}0m#NpOOkCKNOP!6+_``N_YR2w_YMhyYd;2)5*SAfgUMZ#GwvM{BGS+J z0L~H;*z~FslpfC_5+c%XV{n#|z)0`)6vEB_zzGw*5+~fnUX2r{l9%H|@i}O!D^byl z#*=w~BODhmMmUbPm?K;j&hGs2g6dK;AK}XJ0Yt9P0L68V$K5o-nUpb(uY`#7le1k8SrCp7t^%)9dK_P0 zdK_N~>~DN0{|8Puz7i)K-{^SH_+m+GM4U+M!%eAJFS5pol2$GifwO-Vhqz}yyxF~8 zJrpl$T1O}@9_kJR8ssx#ki*F|=IMT3)A|c&cungM$_;B;JD}y8q0RU>@{$&)h$XGq z!o(?2#X=lHRIJ7Fy5|MwjGyJwEqYaoj*nbdEG&GuB5g5!xLIN0!_B2;@L{DXQ)ULt zucQ_JS3iyxeq53L`jzV^T@vrLIvbc}sS20_zW=rBu%1c5=0Y-zf^mDwWFLM5(WWmx zR=D2sga76{*IXIjOS3r92Vc#8{??VFe@0oFQ{XEKM$JAGnt9_JwXa|N;3qAFv#W&f zrJ3;}A=Pa9V)*VxDL!h=)IxKQ16~g2975)p4-&eqm z;P|c65*ACTIOth6bY^T=9KDCb&8>j~+$u0@Tx_YhhaQ%XJS-piu)GD=cAf5)6kI+t z25y;o(6vnSc$8;69Oh=69~${hT5A4$Ia6bYwou>)iyAxpY_I%9K;Iz#rxm}3raAvp zn!h!X41dgfv^d&(i1IErlY6v~7%!AT;>MfUB#=O;DTGcE0-?76x%LD|0I|@mC{0jd6_jE}1woXkC`Cnz z3dCL!EQq2Mv5Wf7&OUcL&)wzY?+xF7;4(WqGdnvwvpZX!jrTMN{!SNIKuL$DY@4j6kPLh_U>a zJ@z*KJO;gN?;UgpVDnii&Q5GuAU3yCHuoZ%&Ou8=o!p1#WC!AP6(at^g&Vd;1*>5kjFw**g;<_HNm$GAo1DHjjHkMyJU@x;^U%F&3 zjPuhKu^pb2?})BC`KrB>&dv~m$VMcI*m(jKZ1git*S%pMV8O=TtgJUBn6J8dY$9KB z*xrO!9{M{Qa?DvxZF(%+0=#8xI{|OXmwc8L&VpiOHs}VPxNt(csGJg|nqq!g>`YTUplXrEr_m;+Z=<k7DD=A00E8F%=Q&K~0&Dn47qAlTz-?Dcg{b|nbA!fd1 zU+K?fb2rC8$d~Vb+n&nCSy`m=C7+M$3hxTHPo~R!MfI71`Vnu>2*Y=taQM}3aM`Onl zrZpq=VjTti;+OW?q$-3o`ahC|{#vZOZL~jD-qzZ8rWNSt)WnAT)Jc1NUU|~qh4&aU zD4hR(_qYTeIl4hGAAHh2JE$!P!?h)j-YkWP<@MaHn-R~Q(afX2AHT4VtF8W$n}zU* zs{XAQ{IKe;zW`AEB{W0*X>ok#Y5TWq9IbG*iW@Cy>v7GjimTjS5XxO&+YbcY1nlq; zEOrZF>{ZQTs+yHjHR$FxkLcK#7sQvfS{Ll7ZNI`Rd#%2;XR!H%GuqfD0iZg%!PL=Q zp`%pZ^{o9Hwu{t4_jk0ev;IBHe~k=!1xk2zU1tK@M{vAt+C$rPq#3^B1;b_D_x4V; z>~4KmGv4Q%y`{fQcb&7R1br#wNuM_gF5uL6Hez1~66zEc>bzH|4}Y+yMSUtNP;~&i z*dOilE$mQnewaH<1DIj&HkU@6O@~Q_+HkIRZf2+LRanWY4q3#DPy-U($)c{*!$cE1}h{a*$}n z$U%>ZvyPErXW_Zb;9u;2fthN*+H=`L!c-`TpQtWKBl=k?^@GDB{mv$hdGB)#;gWK# zhlg!0v>BZU{P1=SYUzGoEzOo%s(>0h?;TXlw$U0_tDq;Pf-0;Es#^V*JzUe@i{qQF z*z?#2grnDd-XZEaCDj8Xt@>~K#9EFt+cA$$;D=QwKl$q9O{tT^Py^#q%B4Z0cj*alk?)Ie2DKI|;z%@?(-$N$j= z59Y^SYa7lcQ!25J!iHOXX95$XCX(X414&&{-3rq(&n4BzV&x^(hhpU=)z#%=S+ttD zi(i;p+5&StaYr?E-SA-kLp{eVMkZjq!9C7i{E<*c6?>dWR@}~6R`{?2c!;f7bXD`T ze*E8KS&W~^uAIbnE9$&D%uyB-fSvJtJg<&`cOafVI$;}oi`JOwEYS|j-Y^hMLK0gg0rvDyz+s1J=qn439FoTJgvUoUi&=&`uRx5MAoRe>i%lru17Y< z9X^&!3cPeg>6C$$BUu_LJz#T|V>NL&6a+?D=0!PXvq1z4iT5*!k0u3*IFvT{eg=G` z?az8`nVp~@2T|ALfX7d3P%Q5B4V&dmvb_KXdq{nA>{y z2yQQc?2D&&i+f&x=?K_Nbh^K*Gfm85yVP5&nJ<*`4ow^d?0zEfCGZ_2L5`dhUT>?*P*Wk&I)(+}MqY^MDtl!g| zr{_D{M=7DrPYDALu}5LyvGWy2W1e%qBs!EZM&Oxl#Um}Kr}scgLmUWV=|q+-xsE~$ z8di3LOUI&)Ey zpiQlepH6hdu`&WjWiBw4xrh{?GUxd!^Nt#oXWG@NZDw1skXz(loE zX|SCqM%o&M6DX{;;l0*`syQ7UD>U{Tp@Z5J7Zlmc1S--zK?0562`3W$D~NN7?3hml z8&u$@N`i)3@OM5AeJjo-vQrd)ucHw0_x+n+Py_x?0r1yW_1kGd7c)09e9cRqr0HgU ztBd0%jYT99ONYFMEi@4hcG&t=GWg*g11PcB@?wbux&Bw34_A6P2{Gsd(Zk zSDPY?El)QMxoT$*$AKVLLBv6iP@X6~LOCfwJ2-LEgdOZA0u^?k13KCxMaL1F)7RFC z-9ypAD7A8aG1t+IQEVi>|FepG_9(?RiK7WqbY;Q>Dor?%XY(0j*d9X0$AOzq36h$^ z0^VmwNEMK0600Tv(M}s+@TB|d$NQotbMd?v`^pDDTu}5J%OA*-wm6&c9C)LJzuDi> z!$Jd7YrgCAb=J}}6!h_xdC?BqsC>X9&IlgVs57|jV5Z&7DQI0%zhCtD+ zolN2*Mmuh|prcfcCpcQN-zmBnvw(iv7#I{zTZC*>ff3)A@NQkX7GBk-h`9E0@v$$0LSEu;l7_tI}nR#8G!%F9WPK*2FmJIep%Pnq+LAcWF)Sbt&zD2|3twx2$F2E^ne{{COJ(CNYBsI;aWHuC z@FX7GAd7ELz6KH~cyQyyOucpV03kM>1sN!Q;aQM@{Nj8^YnCZ0;BDqCp0vPm(KkiZ zvugB0#}tiCAuY!o(L@FC@LX{fub9C;RkqlLisbd4m=w!TE{0i0rD7oyMFDsk6)iDQ zRQ1IY$6$@!POFGa(aoZFhU$x;PelF)9xG!!@fJq}f9lc9NbjHNY@=_*_121*IND8+ zz%81Iqi3y{m@_&?Ffpxj6vTut_^{7NftQ31rI<7No|IxnM^qCT9gqB&GqSZ(R*1y^ zHHkMM1&TP7s+>^*K|v0pF69ut%yBo%B3Q^Fqm>lDKPgZgpcFamTJGq~N(hSJpuuoo zMY>?$3Wtl$AV|o-Z8Dfo3KRn<6&JeMoum|LyREdl+~s(lJw%X@_C}NT4pN|KLn#XX z^J>SfY%f7U1{*C5#C>u0A;CfV@0#?#Aq9#)lzOj>v&#ep>A&lxj~TlfEL>&mX16pm zb_5eMc5tMidaYwfBp{dxyQJ3eYc}t&&XF5eA)qv0H;z~u=Ic(Kw!gsIh$?1&2*O(d zU%k{;%iT$HG~bvsDV((=WN}7adaW}{V_gXtXVjSjKy!1x6?y)8n6Bj4T+htN`PQpi zzQHk6W5Y>BoQDQI=qO?12o&eY!&}R9CKMefy-GeagXhaf*N|^%jnkpVOBANZ2^)aSt2=-XJ+c|r!W$I^7qSpq z=4Uq6OIpzZY4OsB9K(tHCVz|kn7Q0b_~2A$j{xArOL%BFg3p)bI$vNP6FkgNyx&@8 zDBdRpIJx<;wVd2sAO$$NIoFy@9R6r6^OZ@hWxi6Ws-aXh(8t*@r7x#ckT_$0&>4?A zx?7=-J65yCZPd6BCSt`9*-vqZ*#gCh(>qeP`tjEC`t+8qjtY$*d&Ci{!SOy=HSji% zI@-W*n9Gdh8y|Hv;J-cPNMOSWKhb8M^_Zg<&Xo9Vk2$((Nj!9$qciDC^OF@>ZLqO? z$m7Vt+fEDMz&6JWFW_;FEw6$*gCjMzlhzf<>TPXg$8RGAxPZgd)N2F^z7)|hHAT@?YU+K8F0w6xI$ZK& z6dkE!Zt7c#Zc;}pq3B-iS%@HX#%@Qt6)LPmYwKere$<|;0_&nsw2~*=$i)p<3Er=K z@dd}XtTiPj)|Zere-_q%$pnt;%N}jz`mz@-5bK$&wq%_2Z!6cA5EO8INo=RN94N_c zB%zz+1?;y;RzMyr44MH7ME3M;IYdC>=@}sxD0aLYK2pOMXlPEiu)|BbQJ%=0v zw7T4O7=l%3J7u(@enaI!&3sr0A9mD{r`fo6#Bqa`z~>!tl(VFotC^|2cv3BfZ$0Yx zUF%x)(3=jM#yy;U%CIrcL8tSYwj@MYz_C6*W-Cp{EXi|WoxMO=6ic@KU2*vH& zEA!O5x34i2r%R6w4A4R;17)E_ggRQNkVjZ3MMqDNlUJveZCZOceZ8b_60?(fUQaNE zN>=5rS1D!EX(l#y}+eo*mzfkh~cfa3K6wvxyqjM{>RB*ohW7AVH{hV8wv z9rM6%wU(LJJuu4`nb#Lu%RKOYLLZkSuLyu=If8lMPut5p@aF^-&Fy2Vl5b^a>9D@Q zMDY7iC=$Wdq!xrtGZB2Oy%gsaz%s?bL~x@H%7jpy1_D6DF%!Y<2p%SaTM>ZNv`7R~ zD6W-ycaUqPY=SP@0$;tjbkSknvKZ9C5`f~Amp8w5L&;(ym;!KQBnxuseAwNt26}@I z-Zo+~n63%UWbik?JGyH(@`OJe&1^SzfDg*tqBq4KcohF8tFV}@)fN$fmv``(pf+4FqO(n|8mrcv508uKNBp*n@A;D5$}4sqNO*H8uP3W z8560y#4k*w?t)Lez@<9hOsb1lUvZTArc-RAJz1XLUh0LY~;Awo)K_0vN@y1d0_%HuDR zHj9Xe`6W0~-pqO8p)lr^y_d|!%?y-CrY%Q|o zK6T)sw9cW<5B)i)Di8Wsd5bwW1guhzKN#lh!k+Q3k`nGLuvCG>R{=jB?yO}R&@{vQ zKFp6`GYLD92IR;3^$FoCKa8xyKMnb3CchZr9M29DB-Ej5;R#ZNiagwr*N=3rvedy{ z-9rL%o9HkzAxK!8NA1oNV(6033Bc1(2M2*jSWRo_{Fc@01mLFxSY~YW;7%C*!-7=- zY!o+lC-GDBf@kVUon%;Pp^7<%m4r@Y4$!fa^u^_1!(xB285BZT5yUaV65?D%SU+fG zjI%kTP&k6oieFrywc)E8I5Ej2f-A*9YNd^xvn){I-J^66dG6FH#&&4!TAO@c`KFWo zy6gXTl!=K4n>eSl>qx_J#y;Cr$ZS<$DkQCb%4mI6C%&fsj3l;N6-$MzpbA;96f)~_ zMQ8mEQz1Yc6+(zhg%u&g3v^}_)Gvic7Zd8Kg}+_LQt`be)YU`Gk z&Mt9kjF=}o^GW4*S~{;|6o5L+O_frn0aa5<5&A6y8^&M0+?6Cw(i78QXsKYjQt-oI zx=Q@QV7e-`hG6itPOqaHG?qiP=x#jV71@JIlal=&x)3g+41>3C%ni<$%2+S} zi*xOIWSW(uEzMcVIuKNpt8JRx;OjvO6b&fF{mFr(6t}M+tC-=GFIRb5bZ2L$gH0ib zNPnV9zk(Df`cR62zBCvf-ka0Lo{cWheE_F!vs*gASxx0MLO5Llt4}WT*a9 z_!p1&3*ig0os7rMHk$DzInK`f!PNfs_`*LUBKhBXP&hB$3?I3^(B9dRT_8j;1e{Bg zE8=sc02d~+EWKDh*D&=ff$}ZFBlZMJdxUquOifm`maN z@{t1OMTT{WsK;Ag+dtm+Z+ZyNzqWrO(>nVY=-*1W4YkfPVf zgGm84wlpKZwQXu=IB(ZEI+2x;V$^2-5RW$33^BF2#weyuG+*`s2AGth3?L~roZU)D zVm=Bm(a445w zE6p0^{FA*;i3u%Nn_8|W1(5n{&v%TqHP^rE%y(|8OlIe3smT9*3mWmBb^C=_)0D$u zEr~Um+ql35RZY2|s#zChrKoDaL{(EvrD{Lu=SRZ2F$+|vtQDmyRBgc!1N)2dFuAlq zy&HSo{9H@g&*J#zU03RVemL@0X24RNL%qak#Xoi#X z+q%g0*HVHi3|+g0uNmW%sW5E~oYjT7Im8>W`qCDQqIez|9^9VIC-uDZbL|F!VJ5zu zUF7T+gu*%cUQz>v+T$ZsCZ99S`44-S;9+v_I048`6UjXaMfd-07a2ppBk0(oZ%B(S zds~EuJe3wWcy-A^>H?_Bje)dTH!1J=$ zvzuqNZ(y0ws1*X4PLWxhd~j+>Mw@6M3@#9Qi(j}v=$+xeK$v1UfAU`&tS@&iXQN1a zaBVPL0X!^M+;LTFgLM8(?uA7D&jx1*zj&`RivRQ3p!Pg%E&RD~hBKYn6-T*f2q1z{ zmLV4nMKhh(v-z}!xNv%XhMdCB$&goF@9{;rOCjL&xCRz#dhEuiQScnu$$JMq!rmZIF)i--f2QLw_8Os04wJo4z+!S7 z_nrXI$+2%m-r_nKm0#6d&&(b9)~kB@dgmt^yW~?bUNJOht)!wk8xPI|napW0x(ZzY z(0>UF@Sc)NBzQQ%j?0wMJ&qKhbI8b)&Y>$Q5Y9pGoJm4XPNtk-@6V7EY$d9B2n^_B z9HI189PxwV+|U9QabyyaK}=_u1;aZ*q)-e6O*3WajmfMk-tN>j{?~jt$rSU#k_9*~ z6piI?E^ubRlnCc7_Jy8#%d-oeU3If%Otq{5Ph8~e0O;6`%KOGdhZ6Y^C?;fVF@-`i z_{_zUyJ&%>(AxqE6)oW7m%#ii26QOCy%q&5#kbdV_*-O2{>_lV>u16UJO7dZcsd`0 zSN*Oscs1y%>;!u=yesL=W?j9#iOIuyP$>4Kf=MlJ=+gDBQk+Xl91L3n2{ww;PXLHG z=AP6MlwqW2={ntn?{U}}Bl%fDMpHXH5 z`vF~3-} zgdHO-#-MXl0X#fcEW65}bNr`4iTuh2XI&9=Ze*V;7Bb2N;Awo;l|-4#w1$W>7oaP| zcf!tr9>s$SteY}Ik;BpI@YCyHGY85s$kf0=1(`3pnn8wO${=$Px=g$-02pSF$r8-I z=*mC7-`O|rGXbVi<`9t;qYS)7vV-*@0*WZZD>u|O`I62(`ix*b30V?g3J4ej%uoTK z0mi3dbk&a!Iv46}JgJCTg%fv7Y{{k(sK`dZCv>8>IEyXVv$i;wvAO<;BOijPjUU)4Kb`x~c>Fz)pPQTrb}6fRnQYq`?^MZcu=x zW{rr13l;KKb~i&F!IU9y4s;xZyhy+>L*5zjYb8H;$XOV-O#G%1Z!Qr9BOW{{ z^*Z~3Kr!OYKT`XM=TT||`;L$$5$`Vo#)$W)0MLl%SJC#CvxUy;^#DB6J7UOC70p;f zDw-i9p47ns8Y=+kFGMGLLq-s5RK$zxhzz(ivS4`KErsH6Pwyd@MxAVpyOeVnn>BB8H{V+XM>5i1F8Z z5HUJ|62;o6eGlorV&QM$o*Va&(ITv;vKZ|BdII3-eT)`uddg_gj-X<9w(3c`vrA8J zcjDS82?|BDh$ppFw218~#i<8arZ^ZaN(nZKGtoyJ&&6$mhtXmd0jOv}p=g?S_LQc% zoS3t_usQW z5VYSF|9mB06F3F`s8`=b;hk7O-g`%6T!smj_{zKZAzpd!ah1;)Pa>;3kX<~~E?zpr z_tJ!9#wX&RG2%8Q-pG8d1N_4CWgEp_@x$Vu0+A`gMB70Tka0CMN4U}(y2~fvg?@nY zJv{eXeE?rDu2p9i+6&52WkI~!>5}ij*HJ+6OAL<{(`p}D@g4ZRW2ZBIVeXt@UjOd% zA$;@rR`vMBADmCKrivNYwDQ8ZCIW!oKS(aki8#E$dFQfPyh*vG&=q~p>WA4q1@AQG zrCF{}9)7_Y5l$%gg8NF7x{l*FUvM_pI`AzQoUuN|cTI0HTf2w%yyzTWr$ES9)QfNF zGh=W=C9vtrbNI!J&VkVu>ZX@z!V4}r?Tv#}qs1?DKtM)XYLi~lQne<$__Fi6E|Ubx zc=%_IF|f`x*DSo(5Rg0P7(1Y27T((y%M9e!L7=t)LYF>{a`IKPn{?ys7kF*^mR@|; zuhVk%CB690zB7jDoqO@z?lU^uKn_0Txdua_)Y*q^5w+16HYj7*sDR?v|D7>J=3l7C zm;C13%Log;bFwR$m;dg3i|tj6`RONIg?#h#WwrT`0`z@8kNDFWVc}C+-xX8U`%hLubpGT-rh|AxH& zKh7!5-xBzA@*>E49(8(yuWtX(8@%TNJtB;-1&Zs+lK8*P!Z))&3BOqlUH$llxbU0d z>2R=oc#mZACJ%i;Z>~99 zo!C%SMHpG3KFE)Wd3(9v{|l2oA+Dux)a;EAS3aBJOWN&6+8m*FNjfI5{O~<{xCWaR z-XS{9ujNFQ9Bt^Hx~_2=TR~VSmAI1ET`FnG?j=CcRBZ*nFVt1$hs;k*f2<{Y%pd!4 z=9=S&jig`jLAHSae8wt0(GOh`KN<)>akbu&FRtfm$;0iH5&kt3BU}U7XFfHd5wAwL z+F7uL)e%*h$$p}$Do|Cn9`>`MWt#k^`}8&JiUM;m`91p2z4@hGYMLSPQ;r z9vRo>tcWxZEPhL!xEwanN-m$D3T_;lVnI}c#PkxebElezV6VBRDzAy_5nUhEM|kTv ze&V-;%$UHntBRVrG(D_LF*FsrFy2+jrYo>eXg}VpIjFy^kJRe-+x0oN1*TTv`AIFo zl@)-}7tiRU*eYL2VTrDOUP=*Zwmv*zr{3GP(bGx5WX*kLv5ZK@eayqWA4wWkwK~bQ zOAFhrn3=7qY~k9<_A0P!&0o*yx9hvHHDB3|nVfA5t_I~&rM2+D^gW_7-eg}qIIw!PZe-Z)3B#NI}7apqr+6TXI z!8bi$7FxS0iws-gL|QO3{KAC=WCrC8wV$Cuh#bxzNP~uL?i1ap>b3T+ZkjD2+x*Uj z_;LE4CZ!y|<8ZvA>r-1l0Hrq$PGJMG)u?N*y?mP9H=9Jq;%s~@JM?D}96Hy%=9)sD zzN=L>Us7GG=RQ1QHrKNGo-|i4mQA<|Ba50Q05reRD_ef`qB{tTPiEg3YCFTOC-uaf zGpey~y=!GXy?eHNB)cpA-Hk^^HxJblvehHmaoO^b>?YYF$CJzVkBkcqIA$AzV#F)i z{WD#2Ei;kLn$e5vU0q+XeMGE_T_GSJB7h`kd5OL+Tiiv-<)>bZ2rb;BNoq~@zwqHJgg?(8u~q( zTpP+Hs7NC{M`qdA2KM+*paMtATCn-P&hY7P}tP*>=JMW`c!mHv!<{Vta1Y(Gu5k&4MaIMf^5_O4n(GM=$YAdOWZAE_fn) zkC5Ei(kKk8767w1MZ(y{8;)_M)-J-sa|2Pf!)0z&;vzLFk0*WP?&4z;2euCBrfYe8 z*7=G!rV%2_;@am)i|a^Ag~e&`#)Oqcw>->;`mg}A>$1*~9x1r&of&K4vStYQacChX zy=e<~wsAM+xV=cARgf2e&+d*_f~YlfV;))R8qE`%+d8vp3PH{l#p+ofpC@O&w@!8K zvdzhp>j@hWCz0iir;LP>WDp8oHFVExYL*OX}TrTf0De61&=Wgqy`cqbqY^JBtrp3)Qx-!1kNo9IGLhBMu+cf)>BJj|ZSG+am7-wG`I zqo~~Vfc}fwANq9H1zUJubA1O;Tsja^zTIIiy@&{q*b+~xoP{uO)RC)ylPh1q8Zp!L z1Z*YtRYLNEA*>w^JLT(1N+ zaxaGvQf8gu16?=A^*5tHZvtTn!4&pn!9s#Zu7!L8t*f1Z*fhuGf^+<)D*l-3nyj%$ z2`N;?7E={lNP$wtE2b*;ky2E}9;%8XHLIe^R0Xg>RZuoc6+Y0IstNO4aT=pw(I94tCf}!fub6GRLZrqvZN3~iR&SCopUsFR)zF*8@GUpG;_oTF*qo!k zY?+Te99Ay;t{Fr5j>WEy@HRSN4%C4UHj465jq-!8U*d8x3dO9&iDOy{8%Siq9;RqW z^1Yj&hba^l@`qI+{GZvj2;T4(SS`;W6tSb-`O@ayq(CXq#Pgg-2X!+1? zDeRE7GMvVnq=i~=XMI!N#sUxu)g0JdzGQHnR$}Df18G%vx;|t-5Q3=Bv!*`Jk^PCXxMW49)-K%h3D};e(+$CpsZT zZwnQ>l_#?lLLLWbYf3(&Uk#S53+f^yQ|cllYiDIQ($=YN^n+I4<(k1L6ivH)wJU>7 zAd+D>QZytPyT;YZQW<;V8*5MCe(smKas#y*<_ls2^%zV=L*QBB)xQm7p=5T1y9cXN z^IF^Pg?omxny0j4>#Sm!$(g%BeJ)oHPu&<+%j8UHIGr$>c^M1H%*$-5{gS-;J=b*n z^62|(T^|J7_CTBP%cJ6l`10twl$N3Vr2}OVJn=!u;_iCD^`w5fAD{f7D~WwY+Kri+ zFQ{Ss*bg%^Ru?yaqpPSE^H`AbTK&_0eAXscfA%S1iz%6Z1%R#;J_1bfA=3Au5tx#> zceCpS7S&%36R@E|){Fpz`Dju6-z}~?EQqim8(mw0Bm1Km`uqK4hUcAr@?)iw9&vqS z8`>Xoi9_<>u`MD6YH@IXGJ41K51_>{kGV$FQYfuIFMb^6k^Ko*RH7jOREd41^tK!j z^pZ2L6QB5m>qfSS)Pprwt#vbBQio3uCp`%>RF7(m5&c8?%tK|7eEM(jwSw_mZ8`iz zaHmjy)(d-gt1ThuQ4oXge63j$dz=V_>U)@~Z)YI&ZGPHSTub%ooBH$nwz<;SCc+l= z_nH7u{XJmn?|z{_@ip8>x4U+;4@o@;DJ}Wp@UTSo1%ZMk=5u&&pFvl>eZt+*w@N;{ zR0B3nZ7GARG2Zvg4!YmkK^q@!8p{8Cup(~VNF#xtn&yt;!(N^q#M|w1J))Q5dhjP zO$SKd5HrB+me224T$gW(F?O*MQW^RtpG_bD>=qH}wGzJg1=m;$_SGo5SPG=a46u5M zXI^rB6SNW};M?1WbPOe;ph}lhmEIpfrTboXO{k@nYfJfoS6p#yDPfA*d`bYQHg7ex zd6P$*FYR?*$M%tWIB!b45Zs3yB2ce3^?d{Qulrm*Ep@I&oiCf}yvawM`=_-Gt!ntH zD@F_Y9R%TNPa2u*Pa+a(^;f0UhT6aYu6M%gE_*Gts{b^AyAFcy{fTfzwZ;teQR@X$ ztv`6wI_C}7b9}=-SE#l@oK&c-+l6g-?G13ZKlmso`}H27RdtWJm=;tFvhWKZfO19% zsm#QoP>xn4D$}gb#2Pe|$YAQtfKgwM43`-$3io95%m*@udfBjdWipJ92! z#IGSX+n^AB>@a+zEqIWU7{{hINCgqS{-6MZ6QW2uPdIFAz&p)4SC?lWwT1F*qo_7H zVG&epe}ncaKWUQ8;D=RvNkTZPy+5&;w%?#egE0d;@e9>?MJ$sv0aq;@$A=7Ny$KZj zV37_jZt!kik_G*0Twv!xa^CrykJ+xCFd~#kj>${lcm3&X&Nr_M3g$bSmq+qvK6l-3 zn>i?C-3ePdt0dx~-ltQ&&y#v@L=zXFiY~AXu!5(50Q+Mn{{0cYPFoF~a5buTfl|LBaz-!`yQ1plIIUIV^z zmn(rs=KL7S|N6?c(sl?W*vL!Tup>lh)Zsy@!*>JOE)4onwH@ULM9c3lNo4TDs;qB( zm9^JY)*h&mv^=I0PwY}Yh5bS5UBzJ6e>F9>$46tOAHWp;+;^_8;4|{azlRW*JXi^e zo)JC*^o^^hOpbLJ9AIq!e$F+%mip0R`5!;HTC!Ne6n$VH0idSTSV)o1H{aj5fvwSC zj41cB;iTHE^RRO`jsRc)7uo=WSD&&aT2QZI1Vg0t%Aq$JY_-0Buk>Ji&$S~P@s5{V zFW8m??|*yewP7oXRH)KBiAs4Om5MmC?kn(-6SDIfUe##54TKnY{m5kg_xCvJP`g`w zwR^K_m2I)mu2>Z{zg+I(d(L0&VAWny#P!8KDoeP(ZYUr2o9ox0uR$jMZ^-nH?2NCv zz9j0p7)V_rx`4WZ*5&>f!9VW-kvZpwT1RI63xY#&Lr zZD271%bc8DYB{}-H75XJl<>g#mMgAg3!YAaM|-=wH`D%f_lWh_W`y{U)m<(n3x#g^S}Gh0_((d)(x% ztIBPS;**-W>+(~VZBaZ-cOPd<6$_5%3T_!9&uAu>N+_+qUoFz>Z2 z*v^865_1seTCN!?88jpX$N&nEK_V&eGQeu$q=bj~jiK(_S$Bep(r22)2ap0J4h2Yj zBq>nDMKwyCg}bM+nFJMy8z%7uqyULS0TN$E3KVfsjS|1HzWZACFhND)n@r+6NdXdv z0wlhV6e!}N8W4x)bx{BN_a-OB1Ta=((GU&?J?`Y6H+08q=J5`KCy#eH0qIkts4<@G zI1~owC(a0_hsCe+Lqm9@sGxpvi$wp^(BvitvF08lttzvTdymF`CGuiY^B)2ben9_q zD1RizeTM}T!&qd2vKbHNXN}!GESNyEW4*N+KB0QeHC(fuPT~m-++rQ-sdKc6`+#p9 z*hdUNJv-Lj)q)8zvXC!66H&_J%aSz(xY-g0{iyc!NWd5HUdv)qKYc}cOI~?hSZ94}fxHs-6e-2Mmd7de=L_V%Fr^MNkN4Uld3C9ZISxwTUHz2(u!|>FQ^@B^&j=%`p%(xjeIL7^P*p; z*5N%egF3Qq|4HHLcJ7uI3b>`}EWkZxI1pVt)7^=0NO7NL69_G|z%hl=0>_X7vH4e( z(7_$1>2nID9nK}iXos^3i5)I3tjP{%6iPdsLF(h4-^IvTDLOCYxvgdOdXMkWyDxz6TEH!Ut2?E56iUq|^^d>fw~SY2`p3KNtf4<0m)j z^)zzyFADjPo<>V{+L!9*lG2VUUt@!?q zLETsr0u^=xUmyQ-fV;m18~s7#=mx=j{WSM%y~8jbQRdEIooLlj?kv8!WmE?}WtbWg zwya^Wtb4XqXKMpt+!WN6-A$m_Ez5Z9Fo=47*h_j$YRMk)#||rY5A(;y z6F|HDvBQVE2l`^0XJZcgVC&1w22)W)gX2|$%?D{ngUv&8Ba4W)=~Oke#2u}%%Y*}Z zn+wCFx4A$HgtuAuy0Kno#qtnpc(F2P^fC2{mEq})i{&X7YtX<0sKLe3$pjMu${VB> zOK*@)O3~GHq~v=R*EsVMM%+Pa~qC ztEXsK`OWd}n=O^m)&DSzDxWu*=>CA+L1>}wZ!MO(zm*iAr^mBKi7xkOeY4pE4-pjX zfsIr}PuJW7>&+fmPY4Jfvo615ivD`Bd}{U$QivV!Dy4oxc7WBdxuJVL`7E4cfg~$q;Fg@Y#L||LU@R~d!88_x*IfP>` z>0AheV_)7>Z0XCj4)+e0I$Vti?92AUWnZ=@1=haQ2JocGuo@UdFt9884JU(X#PAvi zQ|@p%m~sgLZ&#KNmt8r76k=DpDfR1z2beZtSDwfUsjmwTVmwg}*q6{c>`U4@)t3}H zYr1<3qW~C7=H!195e>%@MMG*2&Tu!jR7U-`9d7EsN=)5#_Bx@1y5Dc=em^Pj(fwyq z_a_Mk>i!d|owGIT{sU9@9}ogw-Cr|8>RunAi~@E452YS9;(zL1a1gqu98mYrI@CRF zozlG@^wqiUVn(5=12Tww*Z~v`Nq&2sJH3X={r|Ia`0=2^8Y++Z&&m-uy1Q5^!Ww2})@7GKzkmntT!QXJ+5k5+KX`#D}9U$Z}bFx*gkW$HuAzT;ez)~I#qqT+e7#YqZ6#|CkJoykUP(UE$oRXHdWfw)RBD6 zpt6o!f7m^jaY6=fUn?s}GtF-#FCJHxt3x%>K!19ZM~YoBxQ-1igcnU;e#AXUG)-Js zA``fF0S1$}Eu^&&`pMH9mdMlO1(5j@-wC7mAVm!iRTad1EgFGu zRDC0U;Tu)ojKnvp!Z!%yCq+IR_TOM{qP2r3w#bX-Cs!G5dEyhWxFh>=9PfWW^Mt#S z{X-N39?jf$`%^(ZLaeyws`lMR@YE;W%UJX%Wx}}s(qNR_Z3`bI?@cGJ%*kOL36|K5 zfxCbEx4C2Zi4Ga9Sx-`kB-)LV8$Cb*uRQPgqjf$TL9mcSksy)76Sku3z=}nxBHq*u z&}t)Wl-$7C_>4Qrvw=hKF77NT#c9LW zqm*0Ie}b+(P?5<5lIL<%(sFyNMpXiWN;O|!1TK8aE2HB4*`26zchW-nzg6xO7B(8H zJtaoV2JyUrU9UTuaElp@+_1yE*O`ZP2x=7-fSsHMTN>xROzH=H_eJ+8i)1(xdux=O zdF_EFi<>4djFK-04kA*b#`_C^()dBWY_!Z(I0z=TXDV$^WuW%pCeb876Vt76q&`l! zMvq33;KX_LYv8p&B78jXL4t=8t+z_ll{eV$Uc;UxXke{!qQ$lo=z+84Z7l$05pRr^ z7IB!Oi#~dtw&@+&CO?aaQ(a_!s(`Zn=~W0F6oC4F%53auT0Z)$O#JSVZCC_RXXI-r(D52 z{IL5@)am)lyI_6kFvO4B%f*(5O=f{Nb zf>ptT;?f0(I_5YfQx!Po;Tn5ILAbi4agadK%*Aa0{gpBDmWEHAeD+}=bQ_@Y9(M=# z=F5+}Tk;Ke2S-@AVF>u(?qGPO;Z5%*J60-g7TLmritfMuS7U1J{yhd!*Ng!#DS^!x zPP6s~0?8Vy z95Q&J#E;w=VbEjB{o{5~##otr${^KMCU??U=^aZ+DSF2Vgt%^um6=>hUG6Sw8GP0! zuxmuAgP$tXZyqbR&~No6yo3^7B?()_#@#?6w#ceb!kAS7HDOkTs!3&4{Gg*hcMo9{ zita3KEM}(kreo!m(wQgS+t?8zD)z`hvquh+0+F7QyUN-r*)Ly`QtX$Lq=niKHTBCU zX1{zws-uU;J>{Tra!)yAoU$hD7k!-SbUkvMTuIY@!98W|6WJ}4xa#z_<7B6&_!4hT ziDyXS;gq=9=}6t&%!78QZRMfk^~*TR^nI?$M)htZg54=ZExgBst1F;OVE9y3S!2oX)pJ}qc?x0%*MBYf4z z2<<<(KW0Y=9chH)q+2*h3WO1^6Z<@;$H{%3uSg-<;1^UeKaP{BX=_j7KF_D)q<8p~ z5Kx8^JRS{&N1Q{yDhv>I`M3OGN#`^eUz2mt1$Ci!N?qz5#1nh7v{6LwL>PoV^b@4t zDK5Hv+|utpUJVebci+mr{~iz(pz@$Gb@)q<1;cfj|D-VC@!-K03bOmg$?P_~VEzlN z{C9l#1JlOJDPgbx<>~rZIZ0haIABPaF94p9Ao7E2>vx=IyMH`<%5qF>GTT7#QRm!O z=Z^-|dD085I>J-9&_Cwa?Cv6j#GDl#iG;#Deg1ekiv|I4&iW3)LjjNb3drOCazDzx zC3tGm`W1oVq}2krYz(&j?OATl`cHX*RJ(Q79j&s>)GRN^uD2?=cjl!5d6F?4} z$!3dRIFrquP}59y?G@vGI+3jsnFWoF5mo&ru_X%H3(AF!ta$LMCb1*=iG<+#eDAre zx;*mxq$u7b$oPa+C_ZvJTMl}Mk0EGI_?m)2rn5_Z5pS^|$^*Td2og?RH&~H&)-fit zDuRT$gCf0AD_< zV#X*|ccSV8#X!{cGPsE)5hSD?KT*n^N(uyRcnoa|gDZTKB8)`Vn-nV2qN zUa}fRFp>UnlYSW~K>EWaeSEZSHYrr}MO8u{4+}3Rm`H!AN&kLQfb^Fl{dIraTC>MV znIbQ00(spD8WM|+0M=?aU?7M^N9OV1_MSxt!IO)QB0z#gM~phodrUCIMaKsd`FGLA z)HsLeI=bd4CVh#?Aax7*BoP;HA)g@t^i-Se^_e!2FL}W=rjfv2tDDDjJ!24;20M0j zs^!u^4YLULDPfL}5zlLCyrQvx30SV>cb5cncQa#*t==Sa_k>MS7KyIE4li~XboV5B zl5mi43?R5+_y>ZbH~o^ft5t5Je*_4%W_}bLxbnBZhEJRNvG;BoXdQWj=0*lfCCt6a zbFICP1h(!VEN&c7_FQZn1m=#nd?xcUwO*|$_uY*^ouf-6m?{37&6!`jD8lbxEJJyNW{gJpZPA`N+J`6(q#gG zu^vVSo}!-J%1GDP69f?_dXG$!6TL@Bfmr|P`zFcLs|QGdnB-}%__S1ibCNtXXz3VS z1->{*&huU*G}Jurt4VS}@C_+N>pShs;R0G;hL7c8q6}EzF;>a~mx6UB%cWqw$yVFe zgC~=^^Ld7f+PgD0KlHnwhVj)F5 zO--Rtw~!V5XT1e!MiTR>XRa6~|7T@9QteZj9;u%7pA_&&HKibCuG$vSt66gAY2zfh z0)8OHeTuCk1kon%o-A$hZc?CD!1}hy(lVbR#kl-f3>X#{XtyE4&sa48Funy$$2sHff zT>xuM`QV;LE7q*kYU)~Jo||QuS2bHnnqibC$5YilB*oHK?_DZKPqr_~o`mF}KqPVS z07)D?R0(46Xm|6S9gSv;_N*E^eo#DAO`&Q9Hj4;`gNLFaNjy|dp~XX{7ip7a3I+^N zyL(0_zT=n0K~+0*ja?dBM<_}&EH%xL6bLiqb@GkZwC((KCLCqoK?>15K1~$#QfW;# z_(Z9+!6!&{WhL*FN-KGfl%i)mL5QEM(MYr>_|9GiTCg^5R2@6TJX9SwMcE+UZEeDL4))k!>nZX~wZ#VUO!bMj z1(9I&Xf#w}^tgAIN{@Rtk(F4DFLdls<4Hzw(Q5ECZXuCQT8(ez;|0c3mde6vgi7Ep zpZI{H$8+^BGJa!o2st#FiYd}$Do6pE48A$Ie2RRgZ6zs%Zgmh1aj9|ZD8<(XZxdK@ zg{=b{3_+BQQivb)?ep-$1%;wQ?jK>~usuW+R0u^wk{@3PF0oWbBl6DT^y5?T=m)E& zl)UFZ-d1h1eF`=bcm@}z<~cEPLPW(lH_Ax0NPyvFx}a?Bl&UkMjR6`9nyO3?d*zy` zvRAGl1=uSm#u{VwxT(_NHz%d&@MEWvi9*|{0VWFQ@M8c?yz>cMuu~`()hT|^t`m%2 zj6$(f@H4GLi6q!56b(uCnFv-&p{SC-ttt@?uIl+o20ZvVi%>+B%rI3lgA|}j@a@w( zr^>famy=Rd$x^D4wNfR%voi7a=`E&CfDP(|vXMIZB{DjcP)A_XX)p(-s7fU-5?oXX zMZ?M|WyS$ZWlWbDQ@#EkzaF|lPC`n@1;gKS{6vz`G>A>}EF!|;muC&A77_LM zO*2eiX=^+!&}b3shel-mkRXT41?VvGp$*F0X8~bi`Ys>_@lz$?8LT^z2Nw`s1;Dd_ zz{7+mehuEHmrRrMf>8t?Bhzptx?Vahz*rIU0uAn*%`lx98%#)Gns9(9Oy}aut{Qx> zcLiMd>M~8H3Re3)vmOhtCTRnZzhVJfRvK5|Y6_BYaRu+@1s> zSKnX^_pej`Mq?m5AE=H^FsiB((%Di8Tb8g1uI4nJXBa_x85rI6_8}cu5d88rx{f?) zzQ^Pu$^w}jp3PGZ+S^2FakPa#D{K>UBas{)gKx}VT3~#`Qiv?#+*iEfU>Oz!0`?3k z#f;VK1fWb2&_nKoB_u`n5y(7T_>@(kb9Wje^smc!&N5>x`_7lPXsdpvjQ_mM$Yp0p zsSoW=aumTcAExf`D4(BhEe3)|`8E&_vJ5?l)0}20 zCfifRFHE+l+G|R-^Zly~PP6Uu9N)&fj2qcNQQt4)p0A)D)+-*Uea8LthsJ1LnHkbZ zCfhf^8Ce_?fQ2y%njq4od3PHro-`@JlWEdyK(e0Am?5OaH0fMBtV276OpY5RKr~O9 zt6EeAuO2+3v4sjE&SoTYd|U7~0`*#)wvY#}gBVP!sH4l=TBQ)M>vH1}3pP5v%I_Km z^OM||7xWZV;khLnda`Y_vS(hZZ?&trovjKQg%eX~oj0?|;Z*PlzW5o`_ zp`x{ z;A2wcGHIy}FI(fsA8142K`Qa_hYNPOBE3KefKto!rVbhMn>m27GGx2n*r9Z&wc^E( z8ku2~FvnDYpeyodl&)CSv2%nG9&I~om#6JM1c}9IyZ4~xfa&AeD8d+n{|EuFsNjW% zj6S~)WdqkqgUyuQg_0B)m={+x3kNNy4(=F;E<<| z&pCYF_+d^ZGwvtVae6TiY%{K9EqoCYV5?4iFDjiBhz%zl3UH$@n-q9=o3sR8eMGD) zUk`4kgA};q6hH~a_n_oYj0ZS0CehzHTB<|w-8cILC?3L;(39Rh&k4H}JS z$>!~b#nxj44;PgWIn8M{DZoYLsd>RO^;euSskM)k;-YeoQ~4472y|wMW zC&k;HUHFPujcT@t5Ja8KGj%eL6bPNH6UU0yxnu~tj}&4`^f@u}}tHiwZhOaMG16($F->nUz&XB`MCj=HvP zGU~dzYaDeg0Z*JnPb35|T*td*^a=w65xqbt4A;{LA_`UNBUC1T=(zDJyMf@TaD6R- zVz{ON4A*!&VTD_sMPEhHMYLW^wH~@hk7WR=iV_!G77*^ zKg(=yscf%yo9vJifA?Xb#F5}#A>zY5Q4<0N2JGWPVhq?P#4ilkC)_m#?6vO)3fQ-O zU~FRFS=*knZeMKA0tNFhzRGZYmR)0joTg{P(0c{c3a57T-{C7S;!}ptd~7t}8$UMs zuqM8!jSMd;M$&Km;MC6N^ur(39b3hA1u`#ian$##c%kc+q>7 zAw6m-NG3e$L_@lHJE4yrb*cb(tjc?mb4j_mr*|{KM>|l5zV_#zA(B;3;2!lt9tfTL9t+=a-%)eN9n?pFc&L zbiSr0HIFwY2rEL@V1B-jGAaMXn8+vq`{j_?+TE(PxGp2(U9QWBm+^R8@Mh@dTTKVH z=;m9CU+CsrPY>kglX7}F`N-dmWrbv2<{`IYUG3Le@G$xa@i_gXEJuj&l=oJhxwPx0 zp#PWbB6-vPA&%$()WwHV|1!3F96iB6M-NH=omY%uoMsKzLqjvc!~ z)WD8iDSlzcu9O`cZMo}fj?k>CQoUT${1@GD%eTIK0>5YlyzD&r&AbKdF(nSik3MfF z0Q~6lW7EZ9Nb{r552;d*m@Br{-eBO9+U?;*-SW-sHAPr{r zBsJilTqtkEmrU=O$37+maMAt#bber)JDYt=3UD$31$cP0ns50T*4_AEYhXs8{y6PH zv=JLDsQJQ?A)Rb>W`ywVBSWUdy($P(!`MVP;la)G)p^5Mbn{R87~4}&KG%2ZQ{p-FY@}aw@3x($exYY+RU@S6Ys?j zP0yX}z8C88Sxw5L^dmFGC+TvdR1?gPx&jAy1tA)~cyqBydFwuXf$9_^O>{pohaYwE zw=f64`j$rV3VX+ijYI;R5nd+%Xp2o|%KeI?l_3wXRRmAX z2$vBk&Il<0+nX>uq_gcIkoA=x^E&WeN#$ZE6(_lyNh|g3Gv)jrI+HAhmdpuh*IYHn ze3^jo0I!gCAuo{;5I^0f{94-^CP#LdN+>3xuT!?~1Z4Zq#k_(4#rChcAw4Z@aVENS zrkr<6(CFbcFN7Bd(V(L|Z8gLwkieEU6Ln{J}W1Nk)o}brP zK2Wmx$MSaKvnh<<4>12p%<3CM;AXs_={LPhP*9IJEAG6?VGSQhugf>@suRV>Wt2DM zar;Y_upWw!c}KoNCjJMK0-S?%tq_U-7`}NyNGmpql&b81SDv0;K2+~qA<`B-_=!_- zjbj2d#7M6|=Mf7!^f-^ni$dCH*Yic4%SXng3*yvu#1U>d8A<3;K9wyY&^4E9?>a1M zX%e z2RaNqO(5jUb;MfbJ6Jxz_HzY%g>^~aB=#$*hp+tpL}b&h;cI%7cd?45JyRZ7G|Zh4 z(YQ(%_(AtA%bR173di%q6*!*Z7&Mq!I!_!I*+9RmLgr1oRDv?hQG}i|O#m!?^h)pY zo7g~tr#xpqfuiT60PL~ELt$<736=8g!ATSy+?WP8zk7j1-uKcp7uT}NGp(9|rympI zRHvDv0ixL&d_uWbd7hTWOLO7ByJX`x&uZU*5mS{;j0_Zy*N}s)AZC-0 z8J*Z>@e7^U=E^`$3@0N+eaqMSI;@^mDf#7aG~q>S^UaCK^9t(Wz2b?h_gMMxf?nUc zytMB0hE)jz;Ol(sgkr>nXVTu1+Q&`D!ZI?cCi&N>DForEGUqSncl`6wCd#g}-b3|rC zEhx+MCE7MZ!6he*I8m$sM!gmy?{qNS;gl9xsU*G=mR;06so5}l+SsuxGrnmllKR0? zv}Bg#S(A|xPbdIY8fr~g0cqi-XvYeW!d5a1)+rl;8*05-38@kPUXhf))L;~&vS=`Y z6<9Qw!wP&F+|=46YRg%P*ASf^rU9(FW5k{6O=~NLjdwB*qz&2_6V69i0nIz!RyoHC zycG0V=y%22G|?`zQksyuSFF~)$V&dw z8NBRVj0o9z#ZO~!E`A|{`^1wctYsx$6Fk@x%8bGNSB%L2)mBUOT6P~}K@E$RMOQe* z3dj|_6c<>5m%?;~>#USqVQD+HHA=Ji!goV6muo*URP+Vqdu)biIX(o9HCvpF@x5%j zk_=ALzaJxqhsvzLYm2{dhl=9H2x#^uj1pPG^Km!RK#!$Yf-7k4SRv_Q5cOtoB(hZ; zYxu-dtmLnK!eBRn5f#v34lCq3EN5_^4&)d)ti)@K2Ra7SciHI74q$%j9Y+`~a#hj7 z=n>~w0S)~I!DR;b5||G087n1+xEL1HMgf-iU9@*>IBU9JWx>#*>`~j9n$8Gd}-V(yC30B93O0#$?(nP>tK=inP?=hi~spFXr8503Yf{ zF-7`YP*LLuQ*wyR68vWZ9a4zAWb*KC2QvnE(pF{GRkTu1n*xb{*wb*1`b3){8vL-T zQk4M^RSkPu<|{ZRYEshF#5k0si?sEbtph6}K#>?vx0-f%8?TF>2wMlxCaq(ei5mRy zY2zoOxU6mRU&=UfrcEP78^btJjh!H)`>SoHY4GDgGQy+`IL`p}hze*>@VDnj^oTL* zZnOexf8ma|f2OTwVyL?nKi6iAwuwPeEoHU1lau+31sf|~-V|V*-eCeD#tqDV<=wjkT8C^_d1!RPwiOE&P)UBD};?Me# zCAAb*j#dz*wq-V_YyIKvfy_psyzXG##K>6ItBnsIK^EQ1V3CE9Lia=?QaFZ5p-7=~ zA{&6GPL$uSb6J8yg=Q0*qUeqW5J`75$ z3amYSVxW_^EfTBoDuo}1Djk9<(GzD!{DmFl!p;V&5`2#T09gsWiVU{Mf>TYUMc(5@ zN?4#~P?YOM(ERqvl`Xh&zrbT>ySHX{({3?Mu^(H|X60ulS^zZ0|MD;rI&sAnp!jRT zM0x(KF4TPQh`PdgF!LuZc9QA8o%U4Bok2FT?)8nCD}1S9=WDP9=hg}Ac}(6eVHh_RiPIXl{V?GJ=2s#o(U37&zv+# zdgc^=Ax|?Q&q^T=cTArY!!db<$T2rUg~%~C`^$nPp3inK1*(vrUouhTmt2(TmmF&P zWdSJpC5OVdXQ|p-OhK6ylTBAfmsCqlWGi9VlH28-O+Gb?LD{bi(b85tzw;V$VDVz?x)54q%Q zs1Ld19Di9exva$j>f`5EsyC* zZpqQeEjfVP^7O+<$SpYux#jN#-BL_E52NM(F<#`FpH7ye<)^H`bj{zru6dsolWYFU z%&Qie@;6+wx*RS+Ai1VRAi8FSDTZstO)P&~{*$z@>`dPHExmkON8Fr1TH4Oli>938yDAQki zTA)ln9ambvoE=x{?4R>*F50|O#HF=GP6ZArC7DpK693vErOjHZ$zA68`-!D@GFxdG z3{FX!ej@8@Tm<4r$GxYqvqu5+%jh+Y0;|ozAl|?#oIQfiuv&eq2h(Z!1!CIwa0;mx zis1p)7EG=Tu>O!aN?XC8|Hdh#D#j7#rHn6yO^>f@4Tm3|XJB$!ig@gtW<)%8vtk;J zcT8h*_aQJ2MmrWDmJtJ`Xh$vrcmx#0h>wpJX>E}Q`^|CMc_snJ0`>W6;?6Iba9a;6 zz_>_k0j8`<#>uL07!7shFA+dpxz{v#vg(hV)>)b|9l(bB(cE+&nh#G_-RBJO4O=>= z6FFU;(}`weWQ~aF%o=gi3tB_qA)N?Qb0eGv;^_F2MV#+FB!B4Y7h6}hXhy@^Z`0)I zr7zK2TdTLG$CY3Jl&b zY(lN!1Kh`=v=G*2^t~tRSl(eocGIp=`KUFGWvB2Ljb*2%2O7)h)KXSqyXD??d6P_! zVEc#KRcrm}(9+{wO`uouzk6nBgLc;xL8F-ZEtpz???1nsE>9{^uCdq*)4^#>D=cP( z+Kqz<(X0?tY)WB~Tf*K*tHR)v(keVdW*Qr_0&jxt;h9Fb>4#W$W|YVh;Gjn%tv`d4 z3I_g221k5bgBeDeaXc#_9UgW_$t!+7BjVx(gLCm)7~ChGa*X>}iPr=V&M`KaVdfaU z)_sR@K;9}^7gLNMvI5FG8_n@0gL?_g4CBwN6cnl<=u`^w#8U|143uHKYkq8ei&h@=P|%%$rH6N71TAlL#Hrt+~e` z2;ws@N~PQ*mr64|eXNiJ#q_bl^Gr0%ZAJoe6BoU6rc6KvltBqdE(7Q6m;$K&CX@-t zb4)lTAWgcWGR(l}nv0}s_IjSLZx!jOXg3)pS@}9th_aCI!#Bs1yZpcaK2*v=a#U11 z!W3^z*#DhLdx_}FCJ$eK0%UQi_TaLfvtJd7QnWI&Ot~Z`a+Z;dgdbLoYB2z!s*$r~ zGLmEZDP+u<;j{jRLNXuO!%vE>D=0+yNciDX$WM%skL>t&#K@H7(~KEbMj0zk)wR#i z#xl5{5F;V!l0u>a8&_r|3$zGx2$_*w&*YdH$rl)uOuT-UxSNwXTjS`cR(Vr`k&4ngUaj>d9HyKNG~oU7^LromxdoMjtitEN=3^#H11&k~LF<|5ZSrlc@VzMZd>EN=a%$5-& zE=z{l1Bs%D5r{M+Mk{8^h|wy4Da*K&%~FbAjVLJ@Kn%q)%ZG4|n3MECjVNYxn3wF% z9Ht)Nvd#pm5e1C`ilU$qx1Jd^;!rbaQ~*jrBMvo#MxQfHu_tRBje zu{D`*Nc&^gcnSq~lr;W`>E>ft_w3Qj{=zrBSo=35p@lUBI;7>UIiE06V zBJj^#{PPU{*^Ym<;GZk_=Y9MW-3I=Y!att@?~D%cXM9En#&|w5brqUN9On_YdBkZR zahXRP<`MP0@fmsW&Fi$4)ulF@uwJB%hANRZp(vEJnTEeeo6SCLF5s_YV1!c@!)w~` z$E>KLO`1*nM_RUOR~GdKCXmZVi9N;UBU@aWu!s&hW>MfByF* z{Gs>3%l3m`^dN1wRQN@&M76}bDCr{9_we>Ty2tMZULi!65jC>IFS@N__(uFm*Aw8E z*VL3`?hFt9Q^Aiz>09Hn_|+MGIGBfr8tHswbBr1!;h#&>;ScU;#%J`CUa$`u-sc+P z(!l6ig^?q?2GGAsoS2>)8Z2DB?QdxR0X%OQiEd`O1btH(nP7w3!yV&AE7_n&icOCd zt>uaCW8a|^ABYB7h=2YEf5fal*X!V_p<;FOh|;bkDBXqMIcu^He+>XItu(WMjar20 z+s|I1D3SntqevR3wimDVvp3iO^y%{}be1z?yQbV@5a5dgR`yem-t?EQl#LQ6`r9uA zWIW~38N)Z%k)AsP?DG{pb`B^?wS`I~l}+y&8-oxsiSg+-uN8jcAL$7iWY1IdTAcLm znans*YGPWn&=(X93u*{uV((8?tLcq7*4~##J*767BgfaU0Tsg4q&YZ?Cy2PA_O>NW z(Z+|_wZz1s_Ur(XavG25pbnTLPQ5d{uAa(8q+N%zE%fPkKPJaEVh(H@QiJ+M6qGSX zl)W%K*(xL}&dx1isAI9jvN*8B3&ZTXqR-|EkR`6A+uOj~j}?d8+v$sWDOq3v(@b4M z7N{T66VY&cnIaPQRcXbHVSFG8bL9y80IM)RJq=8Yp0h^UpHL5i#Fkmr^+Q~jyK`J! z)%|nuwuM$=%DbVDa@#Muk^om~AX1W2i-vN^u!=iS=Ba?b`{F)4Xp+c(GA1O-(tO5>>wRz? zH8V}@9Ba=G*qAH-Sz`)l%yy!}-Oh<3a=iUzeLAlw^yV7E{hZz`WikUpy=iRyS0w*= zzKJF-wsa5H7cminB-7PD0VHQ+!wrad_0K0y+ZXCDaJsmi8NHOv(vv8swffTW7as54xnsqI`mvSKhYNsjoUi#M@6%|nb5A=g*r~WH1K_*y2Va=DO z+H31Y<}z=*yKqDX5n@Oaw8oHTWWdU=o^GEXv;^}+ruB23|h<#D~_7j4hynr4o2PSzl!lcVJ{! zeK|r5o#d^IT~D||JYUbXms9jSj-Ga4bXRrfTnY<_X|wDhDl8GQYC3Adr|dzMZD+wW zLt{d!>91Lcu8&ApPtRpD{KdJngR()B3zw^HO;%xJ%>^rnLDG7Tt}NzXan#UnbIE&O9o{u^CxiIvDfTS1@9~ktwy3N6lC-h9buPVy=Bc^J zK1k6co&y^1VhF1*hRm~9Gpd~;F3+=<6nV{*(s~UGB2-zp=i8eLoHWGo`SwO?!?_|M zd1NikY@*_#)&hHN zFSmc;qokDwt&E00Cs#%zIS1d$NP(AS=Gz}9b!}PC$%PT~rcmk6B{(rYvEvhjCKR4* zdmFSL9VXtt%Kn4CjuW8y;Ddyli|sM`YD)puuamHM(RXq%)=ypi9L0n}If1+bLqEZh zp%1r_&xfoQr`FiZ1&~l|tvz19$celX(ATU4*dkU4HB0b1`vNN%D-Q2{gY}G4t5APB z?efB0xv^gk|Hh5|lDTw!rLN6m9+iasuP8#i{g19Gt~!ry_0+3#TxhIxwemdHkLu5( zeuS=d$?j^dR)j*hu(EUvBQsgU*qnPWtgTvRo>Z(TU>l0z?UnivMg{9MP%PC?v4);M za_rek&}4v%xTC4@`czIs3Qpt-&Xo#=(%4Q5*^CB7MedQ2WkinC9##qmL1UmVB|U81 zJW>0KqmDk#!r0fnH*hevo-$5+_@ezuD?TlO3$S)`TAB%tZn1CG_j9n{Okl)z^gX-$f^*RT4CYC|`xMFu4D?A~rasH$Jg6InkEixC%puFxw?0G#AW|gwG z>KSFl7d!2Jq6x_u2)zPAVL3{nozOWlw4;X35#ck&{$IU}VkjjT{){yuF9exC))!5| zvJ8?}7Pw$+L@6sO68x0WM_uH!l^#EN(+*~C(p#IN1y8a-wyC?pD9d3*sVOoaFCGtxa z3yB?$P`+H_Dhk?dPMA--O>Lq-1ALW49XDU@IM4s|NIT8|W}$s1SHs(m|KPO_5YtHv zJpnVmd)|N=o;`;lT4LKc-`H{D5ATjMM1&r*f1{q6FZND!)ze*~P{TACc~Iq>Xm2%(yUL+-#RsU*t9E6(SrT*h`6Niw5YTj_PbBhWr%y zD0^~?>Tom4f~LjbnXQvKuEyGNrd+t<=(ys>{lXES__yeh`LqL7J@Y*k^X(lK?I%Xo zqpqWi_6Gw%PfD=?hM4i+9*y?O#eqYLFK8pI%jmIvm}# zpoONlkbpu9rGS#Gz!U(bB%q>yDG5MYQ^4vUvU+Jv86xp-Xz*{(3QYb`YF?%Hq(2G? zK?bG}ydb!(=JdxTTV^bjcLPslrKAHC(AlCHU=Y}dM+I!}1^9YEs>r)+k1sJ6>`9lY zrn`o%%y>bhT_{{iV^jkAQzfOpNcg}$APkY^PW&YlJXWm#z@8B6MkpWJ2byg(U(ilG zCEwmll(>?dBEHMFPuBJ@wP|4RFaVe=#ReESF!ZpXnj^s*e)#I1g>od|oN*)&-S0#e zf3#WD>`LozlCDYHG7iwB`W~MlWDSxxQS4*NRV8zeh!Tf@83j!VxoJy zeFh-Y(G+q1y1j+^$3jv3BYSHN8pX2c@Mmm95AOXP#&ti2c{x&~eQa;6MgIj~BbpGA z{WlbzaKk=btNRxWjkmpON`_H^EntQxVhY%f+rIKAFrRi2yFamy(o&dU@QmKtlMH}P zq^4xclR6yJH$9kgipe(Wlud^vs&zm%)Oe+30aJiAnmjl$$tp8hxF;zg`UHgT#0ZWX z`r)_EQJ#CB+ij`_*A`nFwN-gFL|vLK&rmF7rD>6lN`fAN+L{%9cueoDQa~p@FmLS@O)dkryrq$;s z`x!->>#qZO>g+`#;qvI15LW1ORArM0|I%Jn%VCA&rx#}jJ)v$`^Z-ZQvB>JEYXA`) z6-1Gv&Svb$Q7__?Wd)%0Mi+;Y@fZCL$C%GE4%n~-iCf&WH?crx-Gk#KH~xaIk%ffh zy?EbVS^NGk=%PiNKkV5Bi7yl`QCSOGZ2D$kW!L{{uWKPD#~He!ZK4)sC6+o%FQ&)VSJiZcD6}Q7 zF38EoKZy4;i+xU(^@FQEvBoFK7;9YTz`f0(g=?u$J#sx>J=66HK$jJDe4=qEHAqe| zN22z!sk+<>(=#_5m-u!IfxQujQi~)m_O%EGOFbhsM@_g0)t@D`$lFGXyv<6@7Wu+x zk*`>(*&??dWVIjtTjUd?MLse4$QDs_v9yGvl2&|)#e1uZFlUbzA}h-Ac)=ZP=_S@S zLFU*dj5%u)s35foub|l`9J)8$FF%}Ng zCU02VM7+7z@tii?pCdI%+7j7G(pV`p$rN?k5_tvm3|2s`fj+EEd4Rd*OLI~8IQ4wD z`fzVH*fmyqEXX43a9O5x3P7DDhDT`}N`n_|v3FUODl0B)9izpNMWIzK1jM}6K}UiG ziY9`42tY3*&h4F3-Y(;qp=j?~dBas!uy4MbKQ;jZLpt-NJY;vh@$|L3x0n0*5L8^i2l zv*q(uoeF4*tIGBW-D#{UDF-losazY5wBj4X;jpDN)Rrs|JjxOYRUHjg@7iz(;Ncrq z1Fc+=Mb20_63}m{)UiEa89LHKR-62>Y2~}#PsfIyGu0h%;C`P!HoY{whe4&k{;Gs) z9O|y==%&8DR6bq!21EDt81>Z$Rr5VxH8H8in&>gvmRwGi+K&363;^rjRzDPm10g>+ zYieIwsTbaJSQF`}Jnq)0fF?M}%WE^dx)&if{W( zPc`!kJy9RZFZ9A+lwatzjPeUwW87KoK;LeL9OJ~+`i`V%g1(GU`bECq8JdO?3Z3U0 z35Cw{DWT9JBNf^9hd;iA0zz0q0n0KdPKSZ;j4t@6KL#rx;300F9du2bi5OC%oUy47 zOj`y|Ee(qlbzU3PKwZ2{TxvP4nHYL1B3z$__=a8-KomDBttloh^l1p^o8B+0)dqFF zPY$KefQraEqTm4aYVrD@PNG*6M_+ZvGR)~DsoR!`y=@%b;SG{jO&tx2q8T7ru|S?D zJl)jMNI&P(_%zrO&lA4NAcl6?!yi4ih^Yy&YG4(3r>a(Jn7GxJ?V6+~R; z_|iJlE?6wFmmZ@m5an7pCTrSq&@vSNln^;B9GxRfwT*4*A7I2gBilz=#28I{d6~#B z<&F_gw{&!gKFx*r5DeeEyv*=TAi-o;Vn%rsS`PmBd=nweH?b^(q+&fXK3@j&;(sGX zip66}Hx@DA18SS)<2nA%bm#Kp?%v={`Ee;MaXxqO*F zTC!Z`kCyqC|m-6)J z>^P#>4lXxxNcdyf-pDj@?9D16V$zL4kBPkBoFzqx&W_S}U~!l28ergAMeQSIh?`3s zi7Vp2si$5AD?v(0uK=A=YP2k zohcE&`#0Qs;Kq1R@gk~;2NgFpDy@s@Jz7k%Beb> zy#R^oMR-I6PdC1^T-;SgbP$VsJH85P1mZ;OXD~@OVS;_;N?gIr)p`Y;>{NeUE|v{& zRuTDq9Q7a3V(_#_ZeK?|EuIM_d-X;Dcl0_^dt1#F(q5ij{Tvk(Z4@I+NQG!&w@}Fa z-HGoUW*dW;=m6swj;}^;UZd$N=yNFBuh1BKS9gmRscDW{#=(o-{w+6Zg;?Ln-PK?8 zMmVr@A=Qzrt+9$rS66aT&#%CbVjH0GZam}c77>U&o)@yPCzBMw94<|w)D-bU9IdfE zA$Mma@($8JO54brd@^TKxXpyFa;xC%JcSE1RJYMlM$5Ng5W0}YMJk4=S z`^8$hn(}<Nu@SE2&Q%m`j7PnK?Z$yHj+2pv&O zRCvnqgt+l@@3LZP(_)>pSjOtqEk|#)%u1QvixfjgIP6+O|MCP`u12nu2T>`r*Og)Q zZ~~W(Cf2E48BwC;e>w$=m7^Rf+Hi(S0@FZ6%i2CXvNk=PbmWuzim0kMSwGfP;Jl@f0xGkDW8;(5PTP1c$+EaK5{l}rw{ zX9Xk`3cTc$9DINyQF8FzuN`%5#a6;On5BIyY7A3Am#n0Iw?f<<=ja;_7)C~L97-z& z&N9Q^I5rr;d=R_K`iV>l`i=UNnX)~6qyDZ5jz_tT97cWWMn%QUxWU2t(NrCIcgxwhkHSWY=l%|3O8A%lyqyfS_W2{n8hOPqGPz4xSB5q;Gim8t)z~FeuYW4cqqi&1u&;@ z9Ahrh7CCBZegL?%a*kt|1sc8@X7cXOI_hg9m}uw_DHb%~7A@{S>&UV|X&Er{TIs?f zXRhNZb@FO?v}h{h1hYuGI+0gm?rJ$LLnUxpjxig+*b#B1m(7DE3kSep&{5pzXe+En zuO=r~N{JrZ9d*UR`HuVA9wu3KYRq@OY}o!~vy|KZb;I^=n8nieuX45D^RxXa!}h?O zY|ofW+xr2c1*MEQlx$Baqo0{*vOPy5+aF&&FkRzNKig|U+CEg6zKXV2iiw15$K!JK z9W5SYdLxa;1(4}Ez%>1KZu)wjddnS)6|EJMY}&rLkWuO8td#0Kbfsgc){{Z8-YTHe z*Y+GeX%!rI6O`f1r# z2J)N*8!RGZV1<*@4J4xZ8pnEdvk?DX)EP>~dm8K?{?4cTO#;iT@~4PHmDzDDNuV2vPidr@mBx2Huh${sH`I;*YLP-;(W z%?fbfRa!81UDo)bQq$ghn1PP_ z+xun1-Y+vsviJMa-s0P>kV_p%~+l3>iTmgo7Y?`eY~bwYS=vI zhp_%?yR|Z1*TF27W=a;hFMA!l=UVbe8#*{;=UQQ*k(~npWECbrTE!0#EhsU^p)@p8 zVr~Kxk3+M@(P&DdbR370K`wri0+#{4Y%xbYQL$8qAWxFV@u8xvw=#xs3(V0ru@*uI zkd}j2jD4-)$vN!EuxUq4h+LcIl_?QY${a+E?1~3CBy316B^DlcRMp<_BU*jJ5uyW% zv1FUKN-XP`Ue}X+!tsWpU1i8*foA!@;u8j?$?57^neF4~Y3N3j?fcP+Ze;s_hO&K} z2JDo=Mp;Au52V#DE`Bv!^?(mdOiwC^v|l3S7kwh!mIoEid$!dRqT(x%Hrut9=8bK! zXB~=GZ=KJG0Zmp_&O5c%87ABGD(v+`^QlYXXhYV5Qj4|fhykxTMr$dIHyP{BYmVw# z9|k33rL6PKC~Ueh1b1F1dJKR7S*>+c&w>cmfjSr?EN4rFD3wLdIY&pVAxu4uLzfS( ztu10u^jBrL(EsaLWx@9Arv}?JRKi%S4PGx7Ys0TP=Bm5ai?neg%883B`-O;-A3CZ8 z?FS)Z@h#{c2bnmk$}6lY`LZhT*;wCej=HQO#?{+{Eh13!iAUNBf5V3foX3Lt3OR6D~8h$T`OEGfwMfV!GNzIGdoARoh| zAfHlO^!UcnFB}kz7~fs|)oz1$=L2^_Y#aOskMY$tRaq`$e2}T=A?AJSIIsO|mI;`n zcW8ey0CW*!dj5HX$h`^~296HH@kTXbqqvyrXro1LwD?fE8orSY?-e%64fWj(7|Tcz z6?Q(-mrxKsG<~QD#Sm4{jFJ;vGwi{!38)b_!;faojA&!c9~?o7)|{zM%anmXLYOC+ zL49_B?eYKp2>WqPg2Kw1!i+3C7Y4cKlVK5_OaF7Ux54;X=2yo;Z6sq)gH-5e?s(0~ zpdd6w87T(-2E!u9rdcrWH^VgMj&wHMrlVb3ab`T0CU(zdH!)IY{xr~DCJpq-_c1?U)d;b{Q;eCKhwsv=1~Uq zSySB)9KLXuSyj$i*+NI2b;0ngON^AN_YSY#hZfK3#sg`5p@rtGq|Nzz z96r>Xoh=*^bmstV_1`1DAMK2>5YtGv{qGTXKUXZwLJZzxgjOHhBzr=|O>}L7r)~*n zJwPr-T}0b#dLu2Ai)>~t61myxBFGYh2_G|_P-`P@12rMXVKtGC;|GWq&woF< zn#Q4i%dsbzRyf>QaB1&+D$1E^fkLxa7G0ttW75q^3=`FV`)b?@#DJQfs{lIsewO`pvS`H(o=GwrUYlmzu8q#lsR%@WHfl~T51O5-UVQ8~CIp#O~0MWu; z-nrBY#STdm-+4xCcIg5fE?004vv4rG#f;59gV1I&c9Y!k=-@cG@GS-|{M^W4nv!EW zr8z|Yf%3gWByA=)R&ridV{$~R4@N(xm1jgS9e87!xz(IT@V(U|=% zJxBJt5v-IrKE*h?eH>|EMinVq%4mGOPAkcvWGp-Ysgyu=#=hbYXnn)Hw4u!Pr=Y$1 zCWJEcCVKYPbiQi~ItFlY>SD!8+6hKSIv-&=pY!Rwsh+bMn8Z0iJS88f^tVAh6h$h17IUX-aKtVY**Wy_z zB%pZl;Oe4fEob{OE1z9CYb9O_N_!+OlUfiLS87zQsPVfaNh{4*(ek5IE*m*3<g-`5@l!8W8q1;{g^%_y7u=NNb3xkLvgHxm+VcH~>5R0s%}*LqEfO`Po$Ye` zMLXN&x$-zN+u0(+xWd&lrhVUt5Plf0;)&VeFKbx=ZoKF5Gcb=o;~u>ckFb&cxi8EQE}_F zp~Zzep+X-qy0vq7KsnDox}3P~uJYo}5?7*dy)m?uXLcKBD@Fg7)kPj;{stj@KgX*p z51QVGu8G%T{>h2yTFl>b?yN#5 zO~X4l3#+!u&&!jhN@dTCPR>q>(n-A8*;z;L@;q|{y7{t$xH}kT1$tTAU4Lx2+UI$B zob*-~=h#O$7im$cj*={bQk;o;GM9_jHkBNW5Z**dQjwgs(c!ihpnk%RGIhm;vCa?m zX`Fc3XU?wTejn$f94YeC4PNlXs-r|02a|d@TdR*hPp3*(*Q^{Ou6D^PFD|Zkgo>~< zaO{+ivm(UOE?Ff+?Viq!K`(+*;>Nqqdiqwb9@!L_SZ$j3ygYL{@_8}DX)i6N+HThn zc_~@pqI=hWp(g64=f#h`oelL(Too{LN;m?zmDihfwygmx)8XCuKWBxCs~!JL6nV*! z#l;ohKbQViqPTvUGyNCM|DLIevc_V5F|(iZZqR*@D?&TDYUzJ+4ama3`&+o!3-Z3! zk#IGOv)@1VTlMGX#ma%s$Mv7NXmZ?gFZh}CN3$NbyIzy-Om$Ax>mjOl*u^WyO2!~N z-X68Z-oDP(%3Z3z@;Lqv9@~N&TOmUOzZ3AnRwWK4#0vMd&{|3?{_YYLU?9ned0w7? z-9N-RTjvP!1njh-&dd7KTqU~bl&)AE%fO%^O$YzridELp>Nrb?(7{T{V0cExG{ z$r;bSAj7yV)N4h=sA0}M`UXyn*PMdKfZ-rz0B;9ER_dS11fVH@4$=ce#qo4BKLn|I>QCp%cj6q_$z39JYLyqiwr*iUkpF! zH8~+(#u>^X#_6%Qr#g>?j$xQ=m#9x>aDfXr8(`87QRgIrE?31ZqMpqu@N&r@M5H}p z0g|rzCVy;o%og#-|D2tzxO5k#*$&33VO|+|YT5miD@xH1a;9{7>y7W=v-12clp)bi z^I|Y(12MEs;du3gw5j^`7MUUeqtaIxrdT69eQ=AY{hKp3fSBw#&PnQL(5SyTTkE$1 zi}}P5bH^0p{ZgiSsf<9vFsot}=4TE=FN-;FN2pfYBI7@mx5%4IZa(Kcpy(C0GG`?} zEVotqVL4ucen=tF##<>QsyF4OWVigTA@OR%t>lYpo2@e31KnN5Lld@Aq(@KSbkrPl zbYS3C>D_~PF?n}?gX74pG8*c2Z)6B@87o7$7rU1V6(EPVRDf=uwLs|h+3y!SGjt1> zoEMK2>r1#U=)6`$qHna+*})3V>OMS-!eSp z7BBI6h`LRBNYFO!S=h7CLzF_|(mDtV(gvvbHa{=9XL!jy&e`;ms@tTORQF?@4of(b zYyE9jPeG>WDHf*WDNqse6iY>DXygzY8Y_tW6&Zy+OEx%XDS96+|I$0-E5n-z_6GW3 z4yLPg`-pcoIonzB?@k&1r0%w$f^R^|{QPF;i+-s1-iPT6bGAuen9GTMz5t0w(*{eS z5tu(jnEqhA1lMPqATO{~1&5L<1yC)vz<5W;>|n7d+;vdoz340=zK$&(Cf0_#cHlod z=y_Z@>I_x3IG@rFaqwQKu$s3`{BhS_Jpe)Dt*}ISGZ4Y~tcBfM{87t$}k#{gV_Cw>xuH{dcYajf_8UlOyBLyo6@xk6(5kP$RZW$B*0| z$nn+i?Q&?Wu-(t;L$}MJF_hEYt>)^bHU^TbBP!`lc?pe*4Gm^(w)=ejRK%EOD)36W z<0^;$r$^ZCObV-E8@L^IpYVpdK>2L5EDf!rNybk}VXo3xt5vQIEDXUwwqFw`L zpk8A!1N9mXk-f$<_!Z~lHhm!%?6;08C!2-S$_vi69CVHoj)q~O0)EZX*FJ=Y@iv%+ z2VFt1*W;Y1Z}X#UE@sv#-H45ml>?|iQPdyFkHpYhx58DJH|ZAkiHBjA^d@IX&hgrI z=^U@|5^@f@=IIl|IX>gX)OTs#ykWG%ZGY#uW;n++PDj@|1;0dRzxARoS=}vN4SGp> zTFIAu&Oryikrxhx7GBt-%4_20US~PoqC3r)76{FFgHJj~SrKXOIJ4b1caW8q=R4og zyINGkyXrfNSx1~PdPiR1?LmV?-Z!pbvFCnPtZ4P+Qw`POFUbxyl4F}T8)j59>m_T4 zQih1|v#=x^!pW#V%?AqXPYZbo^{3|yUaL%#VSfTvH(zzes6znU5gz!BuU)K$y2~*9 zo&sE6Hn>}n*UYISX=ClV0uGQufQoN4pdHDdd)j;*VrLH zgQnHpvR?I-Xe^ZHxAh243Vpo;eek4&A&QX``x7dSIk8Y!lENMD*4-CWtc{=>QuuDr zRM$Lg_Y_K^l*BOnMJb74JLF-zH!#=?&_Wpyo`LOs)e++61!s1EV9oxE&X4t}TxswK z<2{^-3~XqSz4o8S)a#0+w%c$;@YhY?wT{|@B1GONS;_iBCX9t`0_c#jV22Fb1nS!jY+8DuDHl6^j^B4CqUaN)d+7 zt*G>wbAD{?!MXxlVxJRInBqRvf?_qi1evH%B4ahYM8;}>2G8qxt99%utOy!$G_pW_ z5qHDcNKfVk#JT>^4}DEQ5C$({7gvR(=XNuSpual{`!V&hWbu$?prM~5<0AfnL~klFXj zHFnbX%6ct^Dc>hDnHu4YYJZ0*-BjF4)cMNUSa1Cho<-zH*y8W-#LtxV{tsbheDnOI zWEK^;*6b5yvucLDEX_m_vq=_l5HZsxAO!v^l(E2b@mma3tmHVf;##^>uDF)+5?V~i zn}B!9&EjreOq2bNopOD2Xs5A0f^I~&{_d0!Ghj>$Tnl4b;Bp9$m|bBqc*N`mgUg5+ zV9JOYCt(q@?>PlU%n(sV%=}5Z>OtVdKJP?q^~z2eF|**x5RuPsjTfPKWq8CahBGxI zW>t5|h*@=BOsg@9m{r~-jaq+~vGaVHB4#Dc<}V?=FhBu6hba_BE=crmvZcz*Gkz3Rvd$@OcgPp1kj$uJ+Mh)L%Y*Ar3K*xjs1l{37 zI{i;B2=}N;4RN=u>oL8SAH#IDn&hQ46tiMokmh+=P{ao~QN#!S?~C{-T}5t;tCHTW z0F%xJlm5iS_7&(u;U3UK?ocfX(GC@CLfye)6B>pr5E@3VmUnf~EnsqvZWUb3^;ujQ zbPg*b(Fa#_C0W5{IDN(6pf4BaDp!F1F_H7x;EMW|htoriqQ#Z|#UcvO$B7S<$28JC z52q*nC$t^&oRywNv|Fb8QE;SfW!EMB8s|secLkiOuRBKL1zzVX5FGi@@VuWmHjNP! zQ2O5Ryh3??o_BkX^t{`gj-n%_^JH|SY@XGZ)72;_K{u|P=NmD}_kb7ro^o5HfxC$? zy+W+oJWqzDS`^^Y%;3_&lJx1RVrq$bfKDi$%Sa-!B79y(tG8s3!JGA7S2=$ z3xw)`AO7nWFsydE>M2|*Ep#k6M2esNTS=++f5T@vydiQleT$Q>ZS88PTOhRL{Jphnv0nTY<~Y<67DQ@^pk&txD?PQur+cO4 z-!&^LV}!V3f&U6+z`lW*b#U#{2l7gR;cBcN=6Jj-0~+$P|G~>-=5el%Y`05_4>u&27Qc6NJ)vhXIV?EX zmw~<2AN`694*s{3YrQ^`AqWaKO%*r0xVk74MO+uxP<>5-a=4<F%;;1YV$0~%|L~Vx6z<`w z7dsk%!yctjXXE1A-Uu-K#?zyRD_7BfXCOhxiSn`v|Fh#n*jlBz*k8B|3UY+)GZmr7 zV6{+$(9khjxb7G~`+s(~xU{P;b4|&(%b?fT_1u-Y2JxxP7!&6W!}H4H8e> zb~g5e4RD1k`do`rID^dIC%?7g1ymUd+H8W-i;gOK4lkz4Y%nUb!>kMiZPpl-0lrk3 z*_;w96UrfG&<1Y(|Ez5h(PFl1gjm#ZpeAlyu@@Ete{e>JzR6hdXwJI~PSG6o&3z(& zh^w*ADOfP)GfqJJKSY$l9DkCo`cMAY$exZrS#T+SQ4Dd(-;8)6uOtuV6yMLh&J5<1 z-Yuuzq^Y_c%28_u;EsUwRSs>KgD4b&fo8g?3Tr$nA7DS@Q zyAG{2@QX0Kw_ipW-sjBB_P=D*H%MO=8@3$VJ1}w&mbDR(vn zHn*@On_D1cGrZtXw}8z+PIs;n+1!Fi^mxaimELM|C0*oAbj9lZ*dZ=<8P)muWp)exF=bg~GovF&rXp&Tz$x8@)pl^=(`s zT+?bVBE+1S8j6|g2QO7m%NEeja(rrrd_(v1e$8-9HiLeMQ_zaGdv`4ubfnviUIZ+k zPO19u7GzZC7gHS%%#(1yA?hFuqe`i;2odv)D@rd7|MbrB(lJUMl#Ws9pwBT<_m8Pt z(sW?sb@VVXa*nH7Xc*(bhx{fCPD4KAv0FY1Qz0i{BYr22Pa{4e$`Rk61YU#p#|G|Y zo^w5A#r zuX07P{4s5#smxf`dHG(4Oh0{AcsWl>QQyS1>@jng?AVP%CNU)J0JaM!lf%^qr{#P?nqH__JAT{bGPpb<&8{jwUh8Tm;Q8}Xo--?4wG}p7 z3&`+?1OL385=HlC`Ww%)k6rI7tJo%jp=K?%4W}RUJbSB~%|gU)8(p16_ha@p;?72w zQ{Ci|3yd6Y2s%i#0SzHPgN)ei|4{o5kNhNZ`exUhM>rMWwUDWGl!z~>6oqe?PUOI- zy@qRpZCdg;Lb#)?LiJkPmZLl1a~tpFx_0Q7I2}4@Nw+`Ud7@L`GR+sDcHRFh6|TTD zbJ*ncjoCzmcUHzD$oRf23x6kwig2%=$bT{>Bq~4?X1Kwj;H`yK_u#dFu-EJnqGEIC zqf2KE2o_zpxOxWco?HHnX3x(bP}(zOt1C{?%N}Cg6DEA)a8win0|Jde|CZ>o^eDSt zgNa~Kj{uT0svnY34|vkywBC}_Vbnu?{1Cn0pf)}v=!{d}0vNqa4D)=Gi=)wzoJ>Eo zq+PBR`g0tOW@lllw1gpTtd4W4ZR9qHKA?|WRS`Z111tPdHi z-{d948cOJCh_K&^RoAcZV&ad427ljs2>M-)MqIu{@uOSnfASKN3?*I$6w!G=J5WUD z=zdp|619MZ`CK|AlHj>?om0uUPS_zC*O_p@6(5c?GOknmF#M`@NNo7P9v@pB!MvkJ zaP{ca5p~u2NaURFlt&M_?&&FwP`?$b+5LIHhADq80eM!?d?kgeU8Dm!|4X zI1_4)#3Qmf5_yT)9Nmw|=IF_bsX0=PJirrEk64`1t(^NI7;7p8q+Y?v4<Kunqt@4kE zk4L)`thl7$j0x!#^{ashj%2vw0uWF>`}uS2S473bkM{}`KoPAc8c_Oa`j{sO0@ z`6vF(u7$_+ifO6n2aF z+||?yCIjT(Dw<|1bSzjb{jy0zT|LIg%v%5Ppjzw4thHuid0BbJ$f8L4|3S>g0-=fK zqjXzI@!w00%IcN4eC!mF92;~qX4*wx!1)(m1c4A3!G;cNTVGH7n>;pt38&sHJSZY~ z(`V_SU%6VVD-X*s&NDEfVuE|-VVU3_$)(UrARQr6KM$+~YANdMWAdQL9FB|ghcZ*_ z{nqt(!G+A?V=@d^`!F3^g0b2Smm}&^IRiL@QdQjO*SWYTQMi2t+g4~hyrx{=&XK6? z=sVIEA0XoOjRLD%k$W$!E$l79 z_{JAD>BoG{O2-6h9cLYYnzcGY%mrRU&oBRTty6>A0hlhF(>rhyYTaZp>$^a$+w-`u zb@BSSlI9R$yzbpf-1^n!)LU6N;^<8Cd8^QRStn2z&&Q9hO4mK++T2;!Lt)4$F+9~di`bCc8 z8{m|;AJAe~kJI=D-aJcn_hDnY@tVWgluMwuwg=$N zd?iKBa#tyMaC-%4B;w{O(SC^Z;`V4UD#E>7-;Y`!#6O2lh};&AP7!83jFjs(uq8aX z9chtf4COP#$x`k~(V57=Fg*Ms9|b;?98qR?mPWeUDe8<9lpCp^@j7Ckg+IRB2trtH z1j{l=99AJ?vA7%Uz7w%3gbqWaL(2Z}4RyjK^~)3V2)nxW1iiRj6tw{#fy<$qraH8c zlfZ&>3liZy-SWllA|?=jkzd&VxnD$z8x6h-5q~yI9U>;xPoYP;zZM|U@_$Kpi-VCG48sGR^6;5);uM)8UlDoi|Z3G$n_99jz#jGUhk?)^22ir?=It0fa1jZU&eN6JYf(E(6QbZCsJ$a>bIml5`|=tX&s zQ6L`fbks7el9L5J9zNovyw`F1t>TYzuVX$Z(oN|5EEU5O>37|sr)ngVaE|J^V-9^i? z%1)GbWH}zBz?6JiU8-R6Wizt+Midm9FGn6$aT<9FVz!W0Q*HS^pD^DpUjoC-#B}*~ zdG<;9cKJN$L-=+%CDa0p5E;)w@59H-?>z3#2{-|4|JR0)?%#h~R$P3)NsxHsEq7hd ztS8*1742QCEsbY=&YMtdA({aHeMN%BjS2QN?WQRVUCDUmCx8kWH=repr^kp3t=yk! zKQpr23+~?P5BV~u_8m9^+#8^kIAwN9LeNh65PT^$ts28R)xlju#FtQOsgL=gE=qQH z*IF`EV)*ze%BpEyS%Jv|O6lF8f!5MY70EF11&Wd$U$%44(#A0?V(vDW&t?Ta=89Vk z?cnaCEwvVAsz}9oFYV}_uD!&ti1!wQw}%z@c&kuKdAqWm-PN^MttgpTYLO7r#XUv) zh+&b0tA>PcSb-@4N=d@d!g?j`H!Dh}inK-@D6jVbSGb$vUS8r;@B%ZX2Opk5N>5`1 zVsAHhCG}js%;+utz+E>SNn}Q^`f2#}DYOEf9G z#+2AM{V8ji7%=AGm;cLpx(8^@O)#yvVoX9~Wy1(PLwmVfD_SQ%8Yaw0v@seOuD@|k z(FR*-;L!_wRc0VUY3=seW2Mim(t6F%}kv66D4aO_~EO^PgBOsf=TO6vvrI+1}utFvmP1beo_05 zaioQ`Nod@DXd$FP^O)1}K&0!m{HQqRb=NgT3p-=M{o2mhrm~6{ zT@o{8+8V~ttVs@ol9)B(qtW1Ne%O@-CbG0w3SuA5a98rjPS(!)A*yT62+WZAV;X!f z2SCUCm<8Rhw#DV%w_t5CJ*M4e9L?JP#GqJP^){IQvMbYq?k6WafE;q{VrP7gP3PLX zxZMpEE$*zJW5=GAjvdPiz_ItLP0xx;x$wf~S$@RJU_705@DD^({+i*aBtKWF-oUdO~8jr6teT)wB#w7O{?Ihz!3OTA~HPK#YP;!}*XGNDO@bn)?_mg8hZElf6 z0ot-??$)YzC_FROJyF%ZXA)>Aye&OOzik#6qsd1z-0ifWS4|Hy2NEEnyecP>c~vdS zpCEp6kfwkTOsjHy9I`5lb+gH&ms%)Ch%F@1@!Ez(wGi1I$8kJqCCyX&0q7)$#jEF*NyHGiuMUpk(&4;*~HpMtbi7q@GX6qs5okL zu(;rStd08HYhv$a=->Ak9<4ink<}|%U}lE-ILF=4hP6vOr#~hxHVH1F{s`E(_yn=k zd`zq{MKTCB-x00q>t?T@$!Om5FbLIUQ0gmHMeP^dEiBl6bJ73v_8jn06y3XRC`ekwkG_ZXpxfd*G{vw5j+ zC5Ios8*^kpMRs{@{x@MSe5HL({UrjbPoUs?bZ>>6K)v~uK7qpTt1tgbOrVzQxHQMd zThhP$3g3ZKzSgV71PVr7AC*97_!gak&!6ypM4*937XoSEB<+{4#3b#knZ~J-Xk7Kv zz|Zh;Irton(9q{-)t=T-`;uLGyjO{13`;qkj`HlU{FcG*<~90ScSW?!h1%5=g%=XT z*u8(Q%kL5v-UG_v!xS)L^&((6*X+hFzLDQLF!?_CYn*1n8ZZ0Zd>e@eO+<+5^fha~ z@BS8+PC7!2$MxB~efKv}#_Pp;JeE4Kx$i;Jh`?YBArk}*dwb^G1be5Wy!mUDM~tX4 z2rt@K&)dWI{-$K7u=ouS!rOd}Uvc+tdq4k_6uugO*^)hwM|zQxoZAM{;YUIRA%WB54oXL_*^eCC(q6$=!?mfsq_ziVMqPJRuA zfb+>oUDo}R{JWL!2{iWc=h(qdAai4C-B~#q*zm~4{6>a`rtw*0pK;Ybs@x<9kbeEm z`OTHmTXnDE^yQmhv)4A~_qUMd+OXSX3rrKLllK0J2nWKQGy;TnCYEa@bjeJX(?3|R z4=b8Wr0NVqcpf{pjkrfQiCa-ST~YsQe;>iq6*M!YcMNa{e!4;#Y~~#gR|JRge)M_% zl`tubt^YcIKuqv9toqjc?lClJ=c8G)SwBnh0H=y)DIVm%@GQlHTg6$5aNhm#ECpuj zeH|I|^H0=^Da~ellmA4}B>fBjQj)$GPt9LZmJ-!qMjSuYv_voU#i<4V7U36^mvrnT z3m=4L-iupB7XIg*`R^zn5-?2szPD8***9zz$!&fwuktNvrDuV6nws9T2WIKNkfw<6 z1dxMQSJ=kw`Q@Z=rh`KT=GRMo17_3mu~0i+<`6u8ELezP{R$i1qr{O`h_~i9B6;6} zROrZ|7BbXnN^4{7c&R3f`XRsdvSv~g$B+5x5K6-Q^vfVlKz^D4i2U^9TSc`?mTFVr=q<)>i}FGW%&5tcEu!1mqK%4AZCp=}ad1rf$VT5DrF z-)fT||Ay63T)mVh2$(*Ro%cmb7=#+hv zvqLZ(y{#AX0G|=718OI041kUbW23!|kHG9x*+L*uFZdl(b`<& zJ|v}RunpVTN5AE_F*mQz(v^wv%Jv}5S6|BSY-ny$wDt}K;Y#aZ`IqxwP>vCd$X5F+ zu$VeaN;zBMyczo&KC~VPfbr&U6M%edo9Ouzzlkv|t88El*Gprzi4|=2HgWlF=I?wX zuE}=Yx6#rKwhK!)AQhNZ?yy~Cl{=9N^lH4Eu>JNBUfpNASP(%R78&K%+r@&YwT?#% zn)rqA99S|y255|4i|ZjdD-;3ecE2m(LWSe!3l)N2U#Q3+9y%BiPjfI*A{^|*-*7}` zDd7Vxx&9_tas?^nmXww*?cwZhZroXU%hXO@x?SXwDO!^OwOle`NAs++l5?f<6~T!7 zU@mzVDMioX&4gzK0H9|Tn*ijmwlk^D*qY@?xrr|=_iW$`9joqkgJZGpBb?(Jdt zPI0CiFo52B;KD$T*nygbYi8D4oE>GyHq3BH{rI2o5_G6FT zFMXY#Y=-!bS&kKTC+?Tu*}>9(99K_yj{xaic|$0bZ{DGIWyozrL#Dca1NqGzqCdZ> zBP0D;-nT;}ANK3jqC@`>ip()#S)BiDgBLS^0A@D=319~0PjD=_zDfDpOyGJb0%dmk zBL)sWTml|32mui>Hm|&|c~u>)Zg!ZFVP->qWrr}yGWf;{SO~0vnT@oay7%kWNam%) z8g}n9G0x$#yi{f#q*8HSOLb?Q6g~)A;p-a85P}6e!vMIEAZYG$v@Q|8uAxr|w2PH9 z*o>Oa$1NE;Mr}Uke_cZ<(CbLLBZF zM!d7U0i4sVr7KK(J%rF@);i9^mTz_3ntRXmzp`;~r#MPO@;VzmQX z4{q!nW@v3Po%R}ufhim*y6qGx+GNlOzaFX&2C`)la=B`B#;W%c=n0tT$RJE$f8u$L z=%6s(8%>=SSst-Ve|;o)LpG^}Q&sYem@{hYp3qWQ!9azjU#?k&-QUvbm8aaA!h%-L zL&~Ej3dGkE11NY8Tb+Z$@my_ARA47Sx91IWr zy%%0N4=c!fFW4A!MZ9rdU;g04@x2%RgTME}TBbSw;q^ME`v zwvMji9o^R1Te6hiO=QPcnM?7KH$Y z2PXXEquT~vn?_RV+Uo>{BF#GQ{B!G=G!)m%*RSwJ31@KVeNKnZxiqz_%^}E zgNKz{*2Q^M&fd+o^_tk+l1uf#Z%&dkcjJg&X@>d5fqYif)%o5(ePuvb4KUe58p-;1 zceb&Nq~!Ulf0Z9Gn{fDUaio1H$bc^k zX0`c0!{N2TyTy9~cn#J5-p+pf8me&Cve(42Y-MlfOW_-VBUbe7#8#HglsDAr$3mx- z19bY$ZhUVbY!(RDf1RT$n~~w{_3x-yet$Q6w68PK@;+q;b$pPQ&~EasrsEAh9mA)! zp0`|}fd96R&uKc|5JboE1D%({tL_1PM)rjFW2}Rml`YlbPk*4pE54#x{{c?z)L4LG z>+KOQWX#&lU&v^|AV!s8N5XzB$11*lCX&q@?5zCns9B0)8AF^lOBCggYq?SqFQHm4 z&l&C*rtHxixz*w}rCHWJ&L=EAC@_y?m6FXS>WaX!vIk#LkOp(Lb(Grie{9Rt1~uf? zyT!W+DZ9zL2|>b5UNSf%e>dTwd!0`Pjo2^!oAIcb_p9N~+LGl-Dk8i)tX=Q5kQ9Tu zaJ2e&>9fd@&cT+|gbummD+u|#ReQun2z>UiEVGPquD5t8Fu$Wpg6k-`@8P!(-`XR# zL}re5_O$E@XbL&5fTs9W!;`crzY|M38l-7_g%{;2KEQs0tXayqX5E^25MFVzb z#yI;~#?fYoI0q3YStipOz&wcKjbX2kb=I}ap>>FyLuttM&pbX)n<4UNHRP|;8f5!f z!S;u=0x@$Cs*lPOoLww?X*0yUOT%1DYY_7;!Fcxl!1#Gui|9F=h938mLipPHE6$}A zUIYW{`$;pz6=oDbTwykMkJwP^H_K&<;xJ-EDRwXXdT|f4^x4L2d^;0 z5wso$^35D^_B7uN8Bd$w$@t%#&g~W(EjB@FZ#)9~7_KH(#BWR6&)6|r`n9s31K&$y(5^}*_k(~$_9%k>we2WyzY=us{ z?1FYYQ3r%DQD-28*Xhs_?WU=j5w1m+mkc!hr{M9niPvcz-Zt^lUUqG&v#k+Izincp z0f65&0RVX0gnFi~x_8oCqophD&LRh)(cRtdVhv5yuV5Ir3rBPx&b`xc3TpE;xnS)__MUHt0cpqH# z&OUs^`GuvwfkS@Nd!O%w@AjcJ=(`u9Tuzq0w_-ba+;`%toAI;_I`EiKqItd(3B%aE z;sae---(oG7Da&{TzW!7zKGT!^2b9Vexgk&-_Clk$QgTcNILTIe(#Zkz}d$J@sbpE7iUizEX|W zpsy4)buE(Z-{W?dC7D)ZH^94!64;XGLe7WNzZZ#eu6g`6T+8o;!?dKxu(#s@y`kTW zn0ha*=3XNWDTz$>_lCI2i9j0LVj#k;D^+8~h0dB5gQOT}X^9B5-cd`PaDDS!$_bhm zuUK46i@ABjprQVzSOA!2(HG2M(p;AEv~#?vy)hPO*Yi;pnWOL67}oL`=N!w26eTj4 zKD2Ce%cry$@9FvQdp71-r^^IjB&A)$Zy?3Pjs!0qJ_l)ih&t#>VauJvWXm~91BcAh znk${AHM%QB{2*MZ^bgbreP0xm!q~;t&enm;)uGL?&Bm z6oNw14+aO~__+fa@S_8r77k>P4;_e>Xe0FtFFHT445K{Y?THRrf|eQfgSZpY(AM~F zn?*H1@oWA7ioe%pq@WMda|{6Bq0%t6UG0|m#MATLpz zDEJLpf`VTHbHICU7DHRpsII+{6G-LUo6d!n%0H4`0e9mKw$!90oQhPLC9iW%Ha0a8 z(caB45Wzlt!q|s@T<;tpS-MgZ*oQm*D29WMvIE{dR^-JyQJ8D{*n}>wB_;qP zDQ#!iKnj;qwf6Zv7?)CS?sU$uH2ul!zzu&A4&0E|z+|H-v)U}Na=V{IBuS^$=m~9p z3gNpwfAYH+M3Q<{^7JL5wqp!5@m)7cQ@g@!|C}n>46W#~}ITh!RkW={- z+CfgG+D3vwrvmVtyUNyP`@CU3xgk&0h>)cLh#9EB4J<^A|lg5+S%(~v;M1pKUkR@02F zF!%lpZN+oB@={|fOuMhAt&rjyzz|QnZ=y8_4>g!}-$83I56od84=lKJSx(Rfi1cR- z>1A4jNTCLi$_KzczFaLLKCT7!stbHp+1LP7PqmI<^Lv2!?qeaQvq7|R^m01?m95I;q0 z5b-R57K>TK$6eZT9LDDxn2m2^hAd5+;NZUDcjvE`YP8q{spatvkeJ7BZUEv#NE2Ryv91m1 zhv)I{yWvcgEZt~JoPl;aCqx92B#V|Cq36 z%WFa*ep?73hXePQCM9sZxSlae!Phg}G~_!1kZ%oz{6{15FhDBix(4hx*9G(7M8seo zoa@pOy8Cg%z=v`7BkU0IOPuK3I4E{M3{aSnz`M4i4FIqVk^umBKLPq^4v9Yh60N~LukU|sJ|sH+r?d@r{EeYx+kVK<@jpBy zI{t?g1FkubX}C|&8pQo`DBKqUaAP+I8v44k%wcWaS?(}#bHrQfa0q9pau|6I;{hb< zY8hJ?a4Y(vfo<%Ipf>D_2DRa$z)+&^ei({zrN(zZBHIx5O0l*PRjRS>Wp^gB{1LK3 zI~)n&(-%00Sj_0OHD(4u$N0i8hBhQfHm-3sHzL7>%IZUYr@{2KqoylQvZxd*juev) z3$K|(YtULZSXh7?%feeCLPb=9y~)ZZs{(hNd;hhGCYLXkj+0uIqQp5y~Ih7Bd7V zX)&(Cj~r&7)N|Di0uXzTYrf@=U;r2aj1-IkQ`_~R%!v%alMP&}EKx^@|LeR}r^TE% zI45bLiFCTM-09*K?VuYgJ_BHAnzlsT;(LoI?4y8wBM&C=soL>upTz>9z$C+DSFR0!2r;Ei~vTP zYA^p$#)S9OPIP@``I+L>z2_HN%y|oghOExh6=IDLD9E4Y#*rMW?;VR7EIrXRljSe! z9BG6#jdR+*gMm-s3U(PD*3W)~;Af8byM`Tvm}7LUU*h_cvH}2FE<9h>oCuxkFo5EjbNJ`3Gz+ zOs&`??6D$kkee5PbxsJZPYJC07zeD1G0wm47=3>0yeV<^E{ z&dWVr9V~`oKBIt*WI)%^Cz|)|UanG-WuAdWJ`J6t$u@`9plrC8wz^n!pBHI0%C@p3 z+1?Pc!F&RjpU)MGG2uCi#kBnVqF7sgenlJUf#9=}=30$Nyx7l4J89kT!tE@;mgp-pM@t>_?fsWYD-}khr42*8hxR5pd(cO+29CafLBBY z0|AT-U@i0ugSF5v3?=9n&kS~rvlxmUW5(2DwjnS9?LZmieJPqY1m;EBf^8cD+bXn* z>BHVYGmfgXp&!S72$h!m;*40(LmxJHD3gb|Ubal3NU`&|e-@q3O>59W;hwf(^5UOa zos{u)El<*FR5^SoC8Wxi3zcIu-tt1<1Zh5R++7A@s9ysy)UTlg_4~#M*D#Br7KIpc`7rP&ZCwp3Ur8x&a>oT`u@`d3V@Ex%(h)3rI~w8NOHC5b`g4 z6XOykiklc0c!@6qg_{_=uSUEfmp{s)PK|41sdyBseHk*;nT0KJ1RHH@97PvJebuoI z>mill4KY|XuS&4!ogsO9;bu@2qUsvas+> zC}-2g!yGJ|!XVG1L-0IN@C-4i#W+{}O8UyZt{4(Vu&i;eMwSs2AzBbe!r8Q#TQCe7 zikX%H0%uyw%#EcHtm=4IVi4r$9&3ZNzcL>Br2#dbugRDIYl#mH?fK_cN3ibqyEYoz znc*?q4QDkW@$t2${nlGjH>PgV0PTtDtC;ys=l!m6v&&dy4r-v)sE>KTUCQLgwRyy zpzo_>G>hz`KVZMUztxI!fcslk{tNfFtj9v{Z$Zu%_qRGvaTNyL-}>)9)*i=SJJjC) zgBQnQ{qOLUVoyzV9k%qO3WI*4ZEbZW#hR20{@)mR?m^cO%P>Mw>}nOcdbExvr9N#B zJtj7_o_xqP*)oYVV7N&!{+PIFYs@k6T1otO6MI@73uyL;sTpp5tqf@PoMOCIop?;s2Z;DD_Q3Lv&F(xG|87zlOn4njo^BepKK^IyZ+l3A`+u|xT9x^>Zs z7x*GDZe8f_K7C8;a2KMZ8GILQg1ZnWXbFbYqr3z|YDds7>_V{nX1gA+NXH3f9BBUn zXWo!o)AAQZfdg&P_}F{GsvpK6Xp|-i^=Uoio!IxeHxU9pHqF7HUc`@-paC2#9lfs zCbnFIcvcLk;lvjH)hD(e9~bk^jVA2b@`s@if2~V_dnH(*k46UWy}UEPd0{2MEB?-Sy+k_?Iq zJqCAHdY-^O7x*^vP_~D;?A$x~#!9RnGqn93Dvj7;F_a(!`W8$639-fE3eLsEP+UCZ z=YsFB+=2_t7Z|v}9zOWEp@)kXN!Az`;VanHCq&#@O>3}+>l-PboDki76K#Xt{39Vj z;Hqrv39%~kb#w0t(apUS1*VvaHRMNW4I)1h3i-J}qbHs2C zJ?e#E^Yo~b#(*0J+=`xOU>kcL=nZ?GL2uae3?D2Mo?`u1LPqi_ioi4~ zd;$i>QDGBp1XRSR03W>%Zsn~fje`Qvs>M%el+|q!XyJfXSgkRk> zzUAZs&bzjpeDI{-xVW6`NZCQ-w&x|(xZd~;t{PJKFeryFOH{1PYCSS3#xk4&V#mEF zlpHyJIYzwWYDwanwiz^#qI%^Wa8^T!X}o%nw#M;_w)XQb#w%JSdJc|PPZ)6U@rpLo zao~7Gt4Qx#d7C&EcwyW$%v)k)$69;?Wl^Fy_!w=vyc+Wr9XqT%Mz3^~GgSAn(qPT<^*9jZ^yKGCF8Oc6OtyM+}|d z`v?y`rmre1orY3eRaWM|a8+6Pbm&zj%;EX1KVgmY!daQkuC7(_Xr;D-@DaGSOS|*u z+Ai(RpKH7DYs0PbYH=#n;o<+`gBQky zRmV~|*Bm)Yhk>f}OA+zxldoMbD0B33w&##b`$#X~f{aL;r;7fHs5O$ez-3`+kvJhT zd8>ZoS|BScDUz`&e4K8(YoPK9DMdEb9jdV>`>qMfb-h?<7Qc`3+iAR>f0?6l zx#;tH3mrA*;muQ?~!g0k0Xj;Pe^^s1K>Sc5n*8)unwh0-B?` zx*c}CD<24sxrHCIPhC|taavPx1{=fyMV19cYEF;`OZ2<)48jR_h$?cW$CT%gukseO zTkzynJbSFjH8d_nN7Q0d1?KEgsRe6R?8;P1pV1}eQ8+qWFVH)h_eQbnh#VPB>zI@g z7SBo_cTHDf^>WdD`D-HZ9`BLkE?Y35wkKQ}N~;h+$4|KaPzWW~|FWwtTeq}K!|+Z3 z!urRSYN&J}z|L^h&MNM0YL(95oRuwpEGbIr%PO96wP)7kO0kvnK9VHV7R~0Ic6AJ- za{08YW%w9Q$)n*i_VBXzPYeMe5}rYir}9BVT`Q8T<2W{(Lv45{yOjaUU`*>f_8pIFCcbK zzvwCzro6A$aqX`P{}c*Xhe6M^Rz4?Hp!jTgGf_v_&NHQ$qis|>*5azGCy6zk1l#YQ zVe_HFLhuKuMQcjf<7$cVj=JV*CCk4MwGdr)5%?+45*dIRUw6GDh23=)R%cZsnkw>H z-PyUn`gY5ykSCL`AZ5g9oJ&IeH5^*Uzwle?fG;PLu(9s>2p< zDpi4HG#I3?dVjmBD0K&WZ6(>+mhx(&lJNJC)aN+<6Ox*2A@~EVpb1J8>IH?qB*_n* zW$UL*YNbpkETA7ea8~bpVRJ#_em@|+BSYw~fNhFUKerU=fRg(K zbQ|xx71hcTe7tFEl$vg7dd}ZpPP08bJohLzy+og=!SrNTCAC!~ZLZCm|2nv`jnc^s zRJ1Iz8~|;ptWHq~kcjlTRn#`&_W%fMyLM%~GK>OOQFG+M=ZK?aoh!xmj0hh}`shF* zRMT^8Nw~A7qJsFC8P}wTt&Of*x1fWYAKepGbb6xF8R50LBbH}MuRna ztb9$iuR_W0;VX*yHPyk&dO`?S6s>Bh>CzlFtF{`$&i7Fj_F$|U#a^hTjttuZ+~Epn z&N+OuGZ1A?tU5{AYereWwmL$fd^PN-h6DcY9;YT4P~Zr@YI#^(*fnSsUn4wT`Ger% zdcdLe3Nfu5_A84z<7&tLvrUc(BKs?rI;vzLvIls#rX>%o-MmUHLk!-&6d=++I zGj)N~o&C}b{D(FZmb$NH1RLL6&4$mF?ryH8C=U=GFxVITO8VgJU$tOA;yX(@mS3() zIGZ{5*;v-9r5aURpSt7<^>S*yQwY&)ePcDcdf}YHS%uRI8|w{xb8uwm&6cWLTF&aV zQrjxen>l%waf)S?|O zP~QFq-qzn;IiEzhu|lP%e#I}CSP1q2wzQ^{Ej}G(V^h>$hx9X2Whlp8|`o4tH;(E{AKJj<-=C zP=*qCP^mUonAkzBu8g8pqHmRMrzQlBvlIvPq_5*f~b;-(B!W#}ebGxc5ls%*r2Odv1b-ujyJd?VsyTgjl zYeNkb_|j%XgHr?(UkD~*f@_c`PWzMDzovHL2BJsB_EbMpqzk&Mq50Eij<3i@{^#*1 zr7W!yx}DWaZ4qdGiUW09t+%=e4#chPttJ`>pccyXQM)Ov2yWEE%06nEEL~vET53Fd zFn4w&E1jVZ3TuBs=pzhhu;Ownt6K;$(MgHJKN!T}F~<L|Uy;F}kd7S&|$_ftPt^7R(j?})-@3N{E1uJA9F=@f*|M2-zmpHvm zzV;oYdc&4!3gD$usY$IY1WADW4+jv|0?whqYM&7Dw;!U8Q9d9%p#1OY1qS)g)GV&y zwcevXD@T4sn}{^V9D}Qx?O}|&291N=NaJ8{g913d9aCMMEXfbr6 zh9lJHluHB#ooL6nSyfr%`_u`X9A>azyHDL57Isl{B0$4lAMU7a;-a{Dxw`Dfk-&TO zMZGs*3L7u<0AwRasSQm~nD`#vapB!cBQumHvA64JwSr_J%m)lBj|qzrb$h>Ys9|!; zet=W;B( zg-CawV@YD;B72%u-isx1^k zi5qg3@;qsc+@?>Q)z#1K&2j1@VQ*^O@={++B)#p40M&@_R(ZTSU-^`vN5}bQyn3JV z4Jk#UlP9R1gvDAs`s3tdnfJ3w19&WADv=~gYISr>KeI$m1keSDJY3hQ0vH*kZh{858HV)-MUKkD&EL;h&O zAInD+67!m&b)NjLM{1@5~7gA`$Y;H(y!#teTPURL>`D4R){(PN3PVvXj z{DDS|<*m`E>HHTO6=!H@RL0BDsMuT3sNvjxXw-517uxhK{)^i*?*JbleyTi(y%{;A z9XmH$eMq^%o#Hhf>3j0wvd6NzPnVK@LiaV3-(J#vQ@Ly z*sv#H&L8!8i51gb9pRlhHe)Gx#PEu;}# z8+-Fn^^khd`Rb!e zAHA3}(3a)D)1(Yr@VGiw?s7@YPLu`et6}$D($+vw%1=xx1RryrQ8VH?b4+gluf4QS z0~^H<`*%-1p^i|d7-^!=(H^~!|KdW!U^QZ)x<`3buVPz1S2ODCq_l%iMqtqKvoNWv zS5QrU{xti1k@_FyIf8=gnc-}ZfrR{0IHuQL5YD zAa;~SEmQ54b){=Bj|)PTwJTHLuPw{ex0SM&L2T@A=+PN6RQQ!v=ax!i&7W4=lfxcH z%lb9TMn5yP27CEw^#e;iouFpC1<$BGm1cS|8c(Xntk0_5gEar;x8|{|=IJu^l(vB| z?VnRK6hZ=hy_T*E?IWy&O(ri_vs(`4s7!tkEu4k41rr&a_08q#Tgq4?8^T%P+n%!u z)tZ)Uy;2kR<_dMQ@_=3}d^P*Bu6Bd3I`o#@LrgqYCBC{)ZyCZ@OU6}A;A*={J)o>I zW8Z#h4{{8R`UflNqJANChof7GI7_rrnFAu3zHErT9TG8)&fUDj%OY)$s?8ug;( zf=*HscGb)3c=`He7WoR~a{tt;iLk#@VM|>heG_(j%dviI)t01#YG+?ATxLtwssj{4 z5#6_*t{|O!P2mc zUM$=g+WYNcaO38B%OGwXN8EUr-ZF$6my9c3;7WW${X`jW#)Tnwj3(3=y;d{ry7vY} zumgQlhe|Wpg*U;MXX#CZc`x)DYLl)ISALvY_x#`%yPZcRCPCs;K^bpOjnY2OuHu58#CX6jSQL*f8NZWj- z7Ynsx+UBDx?6J3Ddxij+eNwyQ)kv{qpKNezpWOY9`iyec%oCdLlxDtDdadS@%6s6* zf9u7XD>$RFs zTEFQN!3sZ6bEH&u{R6eNa<|@u`(%!se3kfP=c_?Bc8NPS5xN)je6s=g3xn)iAE~32 zdkKDYN~rZK(BPCM3*7{r@-`+1`Hd^p^mhD2?JHT_I&DpSeS>@YRc(WNrrt;>;32Aj z`N0%G1{v*?otrJ%tln!Rh$rr2wx}JIRfGiBK_q7kjJSqR?iaA)Pt+$^uTRxTg)odA zBUTUA8X?*-xE`yppFdUAXybI-*F*C@Qy)}5GZM!Mcid*ZFo?6ZV*RVhm0AAhYFA~C z-V*2Ege99WKE)+=vxa}6_Lh%bWwUza)?_2kg9c6$Ea(L%K*?XKah4N$g=V6~xz-4_ z{adwV_+L=RqRuN-Sb^pV#@lT1ry>B7E{CGwHIap}K6XAJzVH#ovWb&;L zchO}l=@pu$9&Q|#7S`nVQfy=6umq)EVHa0tYL z=t-+A|GRK%MWu@GHCr~*b(B$m%qFRpaKBP7wuH9M)3!DTI zR;wI%Yhk}V4Ch*()r8%Aak+(!I-+(~RuTr$*OzM&FV`z{i95@0qloR4clBzMVC$)1 zo2X#V|Jt=0J5y}vxNU@VKsAVTTIJKXmabL5=PfMpsM?HKj;d>wiZZG}icGKff8 zy_ob!&80~%#*|4F*6O4>JjA%Z@}xRmvHxM{pCXZF(+f$Dm~u+}O6tbaPpkc46j^dw zZKd?n8yeLh^=5m{sN&`@kqx?6Q^iNWsP)LqM?3f2gI)MVEl_$8d^{r<*su%7+cCPM z-jHyJ<7(%#>UDYgAI#x~X+vwJtSxNLAEnqNrEF8>F&)ap?jvS)muT!hZ7Ca1xace_ zHMjADNb^PN{bF*w{SUQQh)&e}x~eLjjSPxT)Il#KE*g15T^2qZs)YGA-T?F6r?(XH z4ZF_2Sl@w!_+G;A24BY^tJ(k^LdOli*sK>HOk#_#RINc`g9c0a5n_$_OC1;&bk5I_ zV&1uj$hqJ6OU+jv(}{96g_N`PLY))#)8FbQWvO0ep7Zw?;!t3m^Dk}d9xt!Gj`N45 zU%2ZlZx9?9reD1-rVp>`6cca;l3<({L?jA zip9M&+RCjcb`yv_i!JVsa_39h>&2Zf@z;w_&$yqnk;flnc-w6L_=GRvKID&a*NTj#^ z&4rO+-uBhpt)o*if`KJ{MS6h06zZY(0>xMjBr}I-BAJ6VD82*p<4%zx@%d0YL z4R>{AF-M1%Sj-01a4&7~GB3d0FH+^BnYV`j!YCwx98=i(uI_<#Cchz<48pdssYz^8 zP4~mf7DDf09XAH7n2mZNq2ygx%l)%t*+nYF4(F!Y?m5bjdNJG5$lZk%#<|DHyKb<* z;@n>=1c>$j+>;TjGp-2fC{6K}YQH+}9$}YnlwuVgp3zgeO7H`t8S-y8Z~!2fv|UOA zrVa-uwDj(%>n@Zn760_B7P>s&nqAnyy-2C17YoMkZ|I%?@6+yY=8K}zAk?-8 zGj12*kIme}Bqfg^T+-8BciF0`R>egM9iMqJq&#-A1vm$7%&kVKR~A;w)v3n>7YEnU z^#b%jjf8zr_-?%JyT%qG(YEFWt88^oQC=bpbG6jc@oP6CuGU*Dv$@YI8}z>!mz%}L zjBBoZNJ_cj@`gXzsswkJz~=Fvd6JdwL7Kmq=$>R~&J{)EtuGWs_yJo(UoB+)2fpxv zeC$s>mNfLo64I|52Eel|`R-`%#w7PDNxu9iIeo7yp=kgRbQXAJJiKwOWV2s`MX6FbW=nDpXc3ITv|w2L!RXco#n)usN^?(88vf<)pv)JG z>ebT=X(!R5UbkR`f`hPft=-QkZFO|Q4`80sSm{DaxgUf%*`ituTNPeZm$-yBV`HfURtgBqybBQg zIl>}FXuqOb=v~a%!iV2CqKpTS3Jl+vf2pJU9%(6;s1~c%$=%cPB&Uvh+R!D7pYfzC zi+Kt9(-YngI=Ro6!;P)c=Y=eS&jFt~rnPoli8Bl!y* zmJRCawl&vZYA=yv?yo|JO>S4l>1@4yL}ixV&HZqQQIGBG=5{M5IAhwd?03zhdSMXP zobBg^^nu_Y-qta zJy4RnXz(BZ#X4+%pogU+g-4fY2_+@CM8m()CCWC=+rbsJ^Dnq&a(WzbjuIu(o#WQ# zDA(Wpv7}7k3~DytGr)bX;wA++Oio~P2D+CS8sgZ}eUQ7O@@Qb|V}smp8Csicw^no@ zqa1f`yEm!rY!5B!Bfnv?-K(6p5Vm^->U_3q-jBKk>%-o+!`J!QGVP2K}) zvc-=UbgCC@DAW!gTW*RG-g}<|=ACjpf?3&xsF`(xg6$Dz_k)eic3+ods|Hr|WKo@3 z!Km%mz}TK#h{$@3EPE5~6^96WrDT(w6Wxie7~_tVwa(O7$6|CsbQXP95D;a9v?gvLEhuS7J-=cRQ4|L>s7{b)*0X zfwf>?eis#K35z6rCFj>|Q#-Ra$GOW%i}?&HLt4w7qZZpNOAW~c;d&r1+MM*__NnRe z4@8!rbJ9Np;Jq;OIZ{SGaZ{g;*7r|G``jf30Qe@sb&{v0%U21(mO+%)r)DSw0aK>n zj_4izpu3BtRJg0O-}Nw1fBO)OvQMEi=_9pctEakS{iAGa&RmE{oeFinNZr_5d!~DuB;6yxeS_>E3eKZ~ zoPHPEGR;%jqEEF_?_zr{dj5;peB0ut8pPE?EZhLqs_ZHl(HBJI+@H^E+oP*LHFJMy z63}Kr&i0%kOi%YoZV1!NIomy3dX8(L76$41!F;K`X1k{ajzTtdj{B_iI)}1hj1CIb z#SC@mQFos7v4G+sx^^&Hz5P(EfAxY`sS~sPG`TJjZ7G~i*!VziVvXs-8qxq(+~;sgiCD8*ONP1WC=VU7ZgB*Yp?VG9tpLP zDq0_@PIDjE=4p_5YR^`6a!0gT5I)v@{{*-)4Hp*3v1k)GRqr!Uq|25cZt z#cvv!9?|q@6bd|1Xp}?xjZ0JVE--TH5l_*2d6<=@&@4Z7jWhG?<=SXv7o>Qr< zPhnOD(W{uhoxjJkRmmfeII}oD)YDRNky4yl`X8Sc| ztELv!lb>%Kei7UlnhWaY zyKSd^JJ_%WzN^Xpvq|X2_9QN*6epf4l%s_ z4%#?5_3o<2H~}#@=_B1i&D}$cbU$&1NtjK?Fnb3B-MhrQz_R`^pC|bs&*N8>l)$1! zd-PdotFX{ry*bpOml#Gm@3`?EISkIg0G<*iW9K!7dI=K7LkA&>_$wi>XDgunu_rHFn!v$=FB%5=A$;9+OOu67 z$fBVOeAIg51D)CC4b#ey#Z;^Cz-cR4QUx)GImbnk#X(v_j?0_3%(Gfjp5=Z)rVb=o zFj`~Y2oFlX!=9aMF!qucXZDr6!Z~3^wk3OYXNCHv$+g$}?93-*Z1}UDx1`;E&n_Oj zx~Bn{JGS%z+dR!vg=lkq`2WhU^9`cj+OMw%`1LiPyv9-K&yybZz)N1Odw>(Fb37{gM&-+$W^~dRjWHsemR=mdzEBu}u zQwagXhVNTc%lpN8&&OfPBRX0<2tlUiTQpr#EX+{>?(mPFTr1og^`2*l9Jxe?hh!<< zdi3h!4>wny(aUkqnXT%wT!C+&*cLpz&;*1TR=l!D@dNJFw#j{8L4BjdG)H6yU?Zpxk4=5Co=3Tn>!NypMJ zJ+s5)cn#h+_{LIr9DK{d=PQiaOsQ0fE5;IK(3cz}><5SNZrkR$E-BqOM_Sm&bsw6c zFDb=!UpMyfPET53Ys>ZpT@^=Q>$$r;&PakATo!MpYPj2Tx1y5vyxTFnnW`K6aJOfz zfrQD>NB<>5pEeu18C(3$gZ1TSP1a_d&k(8WLa6guyRmn}Ue6gxe%oa2brc@0y*$9$ zg>YIb_*5&n*-BblmI%@3szK^o4@rkgnWtL&eKH${B$mI=vss2$BtxbI|J3YuNx&Df zv%MFzfsZVB&O$!O_7hCd`kkAX5_E|qhlyp5A9T%}J_yF^i&LO|UhTm_Hyl<&Y;-34MeuxlVT`6Pk>Q{v719z!{=+WHCZ(HlVZb$2iz7dqkW}fqOAg4J-38lSZ z*yt)`yDxcOk{>KV>HRf@Owp9?{r$4XBFPI%(E3ml2z%(NXRf@w1g($uLxj+}CqV0? z%9I#jZ$tNF4G^TYeq^K180NGtuEMJP;aQ_>1vMBZIioi}+)~*?N^!2awG5kd-BZWV z+!TK%XfhjV`=jq|dxp#485h0J_LYAxW1MSV;p~NoKfejPisNal=uc0Q6vdX5E~pij z=Zin(%Mx&mKiA7({899c^WWI+i;x-$Jkw+p&&NecbB_`s`aEb5_txR3by;)xNd<8* z;u^w__tZ_#+R|_nD#$)6=mcVxX0ZMOzR+8xOhMf;QVwb>^t@xG8SKr91q(|{9zU3v zcm!Pke$@+tER8eDVlX0hNX3?hge;kM1W~OyB9YmCkk&lO)2c>6nxwqIoq{BJ z$oj50h-Zuaq02Q3{!-QvNL(lEZtzI5@;)iWF0`&Jb2NOUMPT!7^@cT9z6sKNaqWWU zhUTUocQgoJ|765JZE!(MD{pR9P+z*J^&8)?|10M)M7KKwb^5Sh)Z~#Ra8SSrhXDN9 z)zak%H1@hnWzD1hnX><@QU4N`*}O-hi+;D@-6wep<=wQnwL=}?GVLaLx7ROtsSI33 z4>}kSv@iUrS#KaKYJq*hbXKBYIkso^($+B?y?HOmUM_I3Ag3m5oL#a{amRZ}SBPho zsHgcxJv~-}o@NU@nFeg{K5Ie4FzIEEr-W>D7wtmC7X^|+R_pNej;vq%N8;J*ocy}ih)RfrD)+-=8WGRSb7miF%4B4g*Bv^rF390OUCYs(SQwuC%(pMa;P3Y~X z5q_``WB)2JEZ=@wP|ocBvr9JXER$L9eEX@L#v6}>U{{f>yJduYuU$cSm~w+qH*KI# zAZRteyCDMP;tmBLD`gek9XTY)pHB<|`AIEFIx7LncY`zs2C>=^*9$HqE|fB z0Rrtz`|{2Ok+R%ggZIrE+E93mUyT*B0ppebRs5Q16j+>SE@5|QoMN6f^poVLl+eqTCrlu0UGIXO@{3C7Wy?}OM2JrGkYZl8 z?9bgyHzE2$6eSDUcL;H;ymZS4w)DgOxC%#+bp% zs|96BNuP1B5=PV(ey|Y10Iur65p}M`9FS+0Y?x^#!`%6Z`iIdnw>hG+DGwH$SFRE2 zrg5>mCbDtK0;U%PZhNVp!Dc;JP=&dt6+EhxkJP>J@brQPu)-~$f;&X<=L9) z1uf03yDE)M4dwEYY<1SO8itmp70SSp#klR9z_17q-9NlTMC%J5dX;98n9!SZ7h-hp z0d)Ycjqays6(ma1SOM-E+;b>6M#KJ*W?$+N`M(<6vkc&=+2%wnl`LRexWoucK>H&i38Rj zygU3i1J-nnFKwZ5n|dN__uy$s1G@E)3tnwHs}O=QXAa) z*z|n9l21jMe!2q`e3n%l=8ts_LgV8e=A5cG&hX_uMsXZd0?N;Ka}0}7_i&y zG&mfbDsLVRipu}5hJ%j`lHWSUG^t=74jNVn+Hd^BK}R`1oFTN zp%;H&n-Ta2067a@ErJ(Wf=0GoJ}_42&tR$IHWkdN;)c9sEjcgX?JDCW3f;q;CBAJh z{O+HH{bd0rc}nQh9QF_WT`+J|rBe?WZzX!G0?%axKb3w^Q`GAfLabc=QvqMPQuL$f zPoYi?Np-SXSqz-fz;nmh!yhz`?kxC|6Q4x^+By{6fidv^5!!jrXq;U2IWK?X3KG*D zMoumv=3g{JVa%_=p~NaBXyE@ng7qIY*%$bUG?xNA^-ziW-*3|Yod^EoMgxezf7>qp zw;|kMpe;RSa(&oJ0tM)+@ctD;huRFNGlkmn!y(j889R9wyFY8Po`%SySTNEKsc4S0 z85RFmk+w`J;M%{=2oY(?n9f*K&g6huN}*4B<1ED=ZP#%{mM~MPP)e+>-w=3$hFodO zEu1*ojKm*yr9HYQ2R$BC%MVJY+(hhGx!80nQz$I-|2yNZ!;N$2Gs$qaS_}qb>3Wddh`+1Z(;C>wSzY4g64YGy^xMVDi zfaR?5x&XOS$y3|ftp5*_gCBqxp_!?sKoLC7wqjd;oIEh-0g6mBydGlPvn}ycN=Rvr z^Mg{)C4yF~WX@{HmCz{vzcF^=9mH6|tt-GRlY~yqL3ZbX$-i}$9_QK#-lYpP#mub~ zVm3RclKBdONtH?rtrLI~+MVxsI-9StbZ4QJXy@Yq?R*g2X>mIHeQ1ZBqjB=B&tY*o zdm^-lK5hoUhzcK;@i}MEne3Br@Vd^FAT!xr0Z#cr$+~~fr29J$r8A7mzr*zR)2vRf zg;l)$n@ssZQkquQ9l?}tUqPs7zCv>p?e#lff~+OU$+{PL_bCL>CbJ5s!DY6~;3Alz zCtqjlcP{H0n_$aMaO7lL6Lai|$tjuHj)W9Pnk^?QIX5%Y%A({sRlGA_o;@PGwj(LW zk(QX1VzXx3Q>->ecA_ICJJp_)keixjPh!%f*;TylZBrhX;<7XCxmh{6NvWx6$@a8_ zl+4V`+yq;4T25-JJ=vD#Eq;6USt&jtxkS>*?Dyg+edAJZLDn&Op|xp()oyEPoi?p` zeBIQ{eRMcZ8@ol*$!(;DiF`Lr8yF_L73#6 zWJikC;jJUD$q$dWITCWythu?VImwB3M^+jFyRHgEqOQ#MNRNm*7$ zQgT)n7$wJ^mXey9m7AJiOR;9>T2r$U9ait^Q?oyj;!7rJ%VtsCrdZ={L6fb&wlsx3 zdwEKu7D-n7_>QgA`|6@)K#@5~iMHfy(5@Xk!I74f395JG+S42;Wp(ds&W=5{uxeb%QaRZADs!6D&djx^=A>k%CgnOZ?T*Bpw8SJk^tBvNNMfp$ z)oIP5h3K`Dk`j^}R$EF=c2252*PZ~5n38Kx0$bWsax+=+xT(>im(@7wwLu*8?`&%>;J0NZKzB|`b7W>GCM4&kBqk;%XT#@y>qFQBUxct{ zO@_#rlbB%7$+bH&Qyht4@Kh_ncYlQQjT z*39IzthAg&yEQ8%(c3TcV19U%>F)zmsvS!+|veJ^kF%uHgY>s3e$)exe zzHGiUqhy<88GA~}erUBBTi-%cxzMlT+408~M&Cjv_EwcS&EnG1GL!8|wv@E2Oc;Yw z6CJs!j)bJtWC-I~_OwLS;UkDCMc*6*JKAB~%1+91q~t&#aoE$6ld}?G5X(vg$8_X+ z>wGk2r4*M4eJ9ffT`7U%bJ$Z;>^TWZxmh*{W!bhAR(x=27160~K{=IOmWG7_V?OFEBtc2{W)Wp=J1n3W$+060m6fHW&W!bXq*{Lub zKp258V@tDVLS#(H%ucmIL``D-GY?kr#xGm=niS_q1%b1&Q()YN(3zW*nU!NrN=S5M z!a$Onlg#y_4PJ32(}&wRAoj=Kf^;@pFRih$N3ByELR?IOVJkJ&kp}%cAtyUCDJ3U0 z#g?0z>_`Fu{ap+OVlZB6LXtf#&EbF%J105KYR$?{gWjB&m6ec{=!M?1Ns7;bkZ8+H zN#*ksd$Kh3Z$ZnkEl6jw4?t$W>qBHQ!I!3J#Ro+*{sb7@l> zwMeyE$v|dJOmgJf?9l&HtuUlzrX^%0SyQu995x8%FlVwoG}SkdWm?nhAaiaOn8%)w zVokFprDWSOvmxr_!koma4P>`4Q>v*8mF%Qx#@4q|n>LWe#NA4);_#^r*oBNK5%E?> zVs2Iv%&5{}Xo3EenwZOHNXbdLxe3->ht2CunKLQ8b~e{?s>5bY$hO1eBn^Bs(V7VT zD;tKsRN(+(!e~oPPRvcVCV}~3HjtI+aKKOovjUiBWu_!Lgh%ggJLf0x=#ojZ{2nlt z<=%p{W5EXVTx;IdtQCW*X`^Hz*bUj zN`eEt4IIyrlbn#915?k$)ZD}*m>kJ-s(CNuOnF6$vnE)xv#ePOsg4xr1Q49<$*IbCsqt~SiF|a;O3BVjONH>3=}5IY z?7#@`BG%+=ue5vir0}@hq$KcDTT%{;7!XBZlm&qjveS}Mp-q}D#agL$5=7M8L>Tb0 zQh4lomTY%7{38V^OC#hT3~6!)50EI9Ujxru<+?9)H5nGwJ1Fm2ljZOMSv7f(Rl^w`Kg(isp%={ z8Ej?7LKKWDIF?K+&ch3_{6g$ESog_zJy4W@=aK^EJ%caq+$cn0%t}s7AV8Xe!xZeD zMVZ9~m@F?puP8Z9o;P*%H$pTH3M_j*dwtoYm~`t-@q{&Ubzii3VOelAULY1>voAMJ0GW#C^W?&m%)}(Ta4gC%OvB5x^puRm zLOJ(O5;G>`r>5e0B%?4914{~C!z84q;uUKK2_X}UGnr+^G|(-UAeqq`=rIXT(W@s# z7vLBv1Fxzw(h|tjj6DG_Ns94Qotc`PUX&(#z9+twL4teifd#nhl!Tef}%{U;3BpT%KCEkJy;Xg-J-mob|gkw z_loAN+MI;0eqePV+UYEdi%-mmPX!*9h9jor)TH#J1RSPkWZ?KCJwH7OuQo9*V&jo< zEP)4xm+`3unaRb4Y59dIcuvc}(;1$m)ADc>nOVRhN7ccsb(5xdnLKNQOxM?LKyrD$ zsjPufp$9{6?1sL(XLDLaN)UUcU4rnQ$h9@}*4}@%M*i6v`DbecY}oy?HDa|V^Uv1E zKU*W}cGW*yBY3~@pREytU73HjM*i6v`Dbh7pREyXL*}2Y5#L_YKU*XJY>kkOody>8 z|7?wDdv*W6w?wA=B+QADc~RIsj9Niq&fJw%*Ld=(!vEx`k?x^aU&@+&$Sop zenagm9oY) zrj-1mcP_0Yzi6J@Rpb{q`pWFk=PuF!cQJIdc0|dL1RX_Xhi#8)U8D2I%IS^J zogdZ;$uD}YRO_MzW{{n_0$muA$a8Kks}yXfwdT;WRQn{`o1lPnisn5Z5G0;%gKoaH z>~{a^pPN-bw~MQum|`Cvsc{<0PR#?}P{@P$eMH3VW$i>;K&VgZbm)wWKii-Ud&=^q zKebNVpv3l$STy&%y{j#ZCnD)s#XsA~x9%<5B-j8I;+P3HWF{Ovd}rBGp)ZQtSGLTS zsBe9|*e4VTvo>aT)W+1-ubDRJ)v>qsMUK15lCYmWcvo4vZLGeXVJM+@H(P5mB5EY< zSsNp9*5`}%?66^4ZBm7)8!fxLED}AtzihNH54Ac_HXfbbQx+stF;VH;>%iKZ(@=XI z(SUo!gyCp0E^U2o=tN*Uii|kh z2}kqpExX5d59pCv^h2OPv*>$5(bM;p^^`#MHfY&n8)8wr`^)leC-g)E(b7kHG)FJq zUp73LP+&K^3-63?Y>$rJTh;+(94ZUebxiE5vt}64Y?y#ytW2M)f*UpUHF)ptf=Tw^ z3zj~LKzjy-v_>%#??|$Jt>={4QwN_t#j~!z&}zxp&pHdXU$hdGJG8tLiXj(k3tkyTZrum9c)V<}Z4oEwoq277I+tjL8f^G%BG;%# zYm#f|#i8id7LJE(>$S!;a2D2}%}1U)%^lWUctejKB4-_Fm`m_pSy%a5En#^@KzR!ha&VB4Vj!JA_dxm(t@SSuzn7%vuwqvKtx(`h)N$zqRR z(^yP&VB~^X!K-m*h^cq@lM}ZKm5-h-I~*o#BjgK!v+eh+W15m!{({FmczKw;mzlGxpXe@gv-&l9P7JXJw~__ZYG2 ztZxHi=B&?P;p?6C$#6?&wdCK>Sq&-V;4jN2iZ&ra?}O9`I;#$m6QSH=rEj9~V(m!8 zs$A3DHiCZSZm7miX8kEwGS$)Trz z+t3@tDU2_$uGdVnw*f74g>^$5?c0cj5oqr(H6zfTCUu?SG_nK(GT;&73JWnVG^6$V zL{YC;-WyivydgKgK1bY6yY<~5X{#mzGtxgw>K+4Al|1?tNw5|pl1HC1Iu6U z51S&)zEZSgUUP-Zc7BI$xD9`$_*Mk}mE!Ac$okLWvQR`&`KLlI`aP&TB7E?9yvM=r z#MK7h2IXz7jq|@l=u0dO{YAR3NBDmQ2htxJh(wDr{nqyewM%x%2c`1$f-R!0B{FQV zHZc$@7!P)%MZl3hr+HpcENFsFqJ6rQ|7uI;iHYS1$;i{S{1IC+ zcu2QTMuP&)pp)CNbb_!t=RPkQGZA)R*nEd*%LC2QeincNt)IMh=(iF_X9-kSwrR#) z?^tE4&=V=!G;J0-W&~gg6kFS>qXFsT3mxlh)rO?iiyVtY-07c-93A|5yh~5RHb;d# z6y3M{J6&x~6sJu@A&*rYr^F92w4DWs#qe&s2)bWo19KzHZkQnW$?seW$g z=Y}+BUH|e2ZL_uJ*dE{s7#4A$a675q#n2#R27gb#&CAR+`j)e_;6tU2V>A zzgO%D@JOdXR2My^sr=BO^7{naX3#dB2j}cKkYU>iN;UpA%N?`JyBW~XDea&!4HAZy z59hm?Vtc}*_Mbz`V|2ASANkRLOeQ`8Ms1+YUwI!v4YM$fzQIuH@-q|4KM52MSctu|B9eWI*yUc+%jYx~AG47A zP@Y7{D?b$|p0W^pp^wBw@O%9Pzo7%09pDA+U5%|YS@MgD-ZD}uzWIzy!ww2&*$#c7fH)xc!Jr!gc>#E&#c zoU**U2z~n-&S8vyEfbe0?WkeILeLHa$LWzgI8KcGyTI{Q-RK+Mc(^%|2gjZ2;C0|A z*RCuNj}RYC4b;d?} z^u9v>|4IA-J*-VprByHIINNL!lJlp^JLpI_ zoVZOf0R0esLI4w*z6P(Veg1b?&GWe9aHeKqKUib937f_+;lPhHn3(-y`Ln_{c%-Q~Gs+yR5Ah^@;wqw=iX}|$AS1Ij zz$a7^v@EQGT;6xQ$L1a&&Dqc>0@cINv4wbtD{0y`T(T-+$v#>Wt1tw%+NUAfAlU z2QnuJi^d3boT*oNjreWfibZ0bLajp72Y{M|FV9EO@C7IYzqbslz}I2=-)*TM9tW{k zfKl)2hTE`91V!^M5g2Xg67k6u^P|Mh(dI7kp`x)E)tj z(eItMiqWVUYFvuu7d<~jn?*L3%p0PHB}GoxE6YJTIEDw00eDz=m#paF(*nw9Nd(B%BH-KNHn;_EtqVROywhjcvv0RGKh3zcy#a zD<&{CMonj$`0lDs03asC@X7fHpuM+ObW~y$kRm#hC`sEj9++K{LXO}!nZIJu!W!j9 zvTAZp-gmT|x1;XB9QV@xUj>dPUpL+$2?Hq`*!&`)+N5bqk2xX{SxE&vI;hQGP zY2#B)nbO88zKwzidxcPqK8&zWv26owP!Y{*Ymc|x3`#WxZ9`wQwfFWXp%#9x5sA31 zGc!Qg4JXrbh0V`vOM=X24+de@|iPHxiiG&m5pd%hX!t^xg z=q7*A+5Sh6n4^%ZQO6iS&Z3UAI6mr#k7Ii(CZDlb4nbR>HZ;4SjS2QQY%73ZH50Le zQq8JXpx7jPwm*pmCY#OZlI=ZpbQIn97}X9Y9APQaz%vNtcI??!M@eiF*v-HEHP2?O zhf?g1*d7Bt&@PXG0y;3dQxb=w((F5QwMjSNAgJu$%@rBgzjX$7UcP05_&H}_pAZ&} z4XmDtMu}M{Bn$~6e(@EWM8;)vwcHyJiZe0|g z(nqyR2G}z?h(o)WFY`_-8p~o0)ZlX&_PP$@lrHA$yk5;&i0UJ$Tw#yuAQpBpUz6XY zlAw@kj8j7qw;~_dgjcU*xTkSKVlW|J-B%HB487FPW zNqsYMo_T!pLvmVLdQwp_&dHm2ax+fXnV*SN-xAI zJXylkKSz;-u=sujoX9x20H?IZc}?^4@$DW(_>O|&B%Em?DPP7}$MH=a4fL9i_WavE zA=9WLB;Z`fIBzU&x~M2Iqc9C;3(v$C z65uS(I8|{2-O_BTF%9&ZM~0Dr5>DEOMQ0`_72&%Y(o)m$FwzR}I1ksV8-#i90(_bR&z%u;`IE5#rdf? z`#V-2xh(@Hx5XE(;JY#s@dY0UUpSy%CC~r^DI~*fVzhPFnPfm|DD{4Omu4A>3Go@3 z==i>!Z98Tb=H=sb>j^kpH@-0hU*S@iSX`KnlUWzyRPN|-uN%XZYhkQ6Bgx3r+{+DU zDOsQFwbDxI@j2>L&dE$49Ye9F!5Vuj)rq934lV;t?$^knC$)xe%F2|!Z7s=&bC1^ z3^k*R;rViQdCzn5vT2_`}+&64Fc+rY3(A@$u)XlBW2CN>#}wycJ(nG6?SmRF&)}^-D`0#0S5~ z)m_K&KTGIGIZu;c^uzXN$S?ZY+6nTDe$DeN`9;42c#iy{2g*+3Uu{e1i_%l1kZ!y^ zPkv#MvIIp~Qs|Wtk+A_dL6L0#(EfV!){iS0vK=)ns``Mb2;?SO`ajA|)E4#m(%!Po zdxRtUwut<~v5!?EB7J2RZ=WR%aEXY(u{C27bPScHq1|8EACv;SY7C&Qv96rXO+X2L zMx%PI7cCbN=*5@>&AquSQl9yZJzkWeK%*$TTY0Y36_y+xioZpPk_Vr&w-pTPX86}d zEzjHI^i_R1gQPLA{?_w$+&22~y!}Ic{bg;pJ; z8awS+19sB-knl24Q&S2$zSh+NZNF&WAnZWVKVg9&P>;#^c35&e-Z>uq`jg$RuSg^T zx>hprY;Uk@dCD*LmV$H)cEJrp$yD?dZ7aff7%UYK5S}u2o$!b%!WrcNO4sCO(esP2BKEJ=#=uZ~)X4zIpG(I$|Hk}C*uMkT^>?}#bg$YMMfe73I% zQ%TzcNkQ@*aacF)>-b2GD#cF}bopqIcgH{n+RBmT-4SOp{y^d#t*2~%Cj-iE7@!XC zbfuxl=8hH8N+?+hgUdmQ=5hEJ1=|VOKK#xI8r?CGk68k4jn|9VN}1L{saCGEg0`6(u1Lqyhp3-lMO-rPp^W=tZV4tJaoqzup=OQ(0Ft)r`y1&hhlC}wm=+4thhx%~;&wZjCH zc!B_25#{}RTBIMvXsM8|Oj_St;ApR}%OTVTX65?f_y!EDPG3W{A5}(MF^Q7L3pR7VKE67#Jjq)_X{Li0DgD7f5Qq! zlY~CvaSNW5TtHAXzGOao!qCQ4M|1I2tOPZU3Fvj7X|E)&k63RZ#6L_(876}5KFF7! zS?4sS~fY+q&}`) zRR&hae30Y>k>*2Ey1Xbvsrimaq(bfun=IDw()}!>Ead^!zs-uD0ro zfTo(++fzRc+)ns2nFemf&orZNQH+y)JfV=QMlVBhYV>#ZvA%GT#-5KjNm~i%Wfqdgsmoa^TeSC z9ggABgRq!(cCZ&qZKWqrlX6Q>Ljt;rzyu_%mA(hxMhEJ*(h(%Shj&xS$`{wwr?b*i zaSDFYU`*8C{bp7;YJasntpgdF{pJ#iEpl}9ElPhTqcXvm3;3B2W8}{&9f^V%+M8jN z3Nj(R0X+qo-+S>ObD@{n%xcNK;mm4Dk@K={ybaH+gV6ac{xfTTJSIAB{aJ>u);WF^ z#A|xBw>wmI&X4iigJ=X44whd_yDMfew) zU2@JFLW(hsd~my?mmr-24KheM152nQp6ZP@>~O3xsQZyo-IF`<)}*do4t{=9v;i4o z@N*nFT%z>aLAxB9jl+#Ba+>9YyngGv8{LBYD==q0g+n~C% z@(^@Pa(72BCthfQsvoXxf)4G)sR2jrb(D$4O5-Xj6~M*`DhU(NvO65`llhT-%s|O< ze1@Q8Ns-e^ClM1+0-rlo_u+R3H>vW_0TMdgXLmT-@Mvwdcy}LjPzqPlW9(;*)X2N# z+D?M_L?3fd>d29xrB80(D8A6g9Fw~EC{#@14p`mUhyNmV6H|cy*YO6@({Ztwe<-0TnjB|*OOqDO%z-M$yeJLKr z9d|6yQ*qNvg)&-wuNdV0B3gY7b&60O+M}~2Ut%T!-(|EPhP8xAliB40Q?_zCx9+#n zR57$K7uEI!w-Cf%4Do6{@X9Rk%b!7

    1ZP3)A&Q@qKt}iA8q3q$#h@cqtzXar&Se`CtwQ?Sn(ET4dnxmKB za0HA0N4)P@FJTg?DDqihSxH?q1=XK$7=A3C+m}C@jxPYhb^0~J*#K{_DvUXXi4t;rt+(C&h4V~m97DD zxmMrFt_{-nu$XQuF6{0s5x?q--s$d)Gob3x!+Dz&hz}t8WJRgMdpg~OsQlYtG>7| zU43qjf5D(H<0T}NwZCng(d8JUb393^CKe>$u?#jur~9G=e!9Ol!ECy>9E{<5(UKzPT{3(=ONJ(e`#34w4VmX&jqPVr z(7z+9k@HiX_7>tP+7L`2qQTNfiYlK?P!ouR?5auti`1vFIPkhU;t=Vfyp$DOeL=(?er5lnB;>miBamEA) znLe^;y4(XPMl|(|Q)yA&c&EYVOsx~CcEmsY%=n_UYJT8VlTB4)mT$yJH$4^Jh>>G) zu=xHmF#e^tp6wu?n&8|aNQPgOt`ug-p?50W1 zcxfH1PmjbdLSd7g`TF{7!+v*@Cg|W~XOeU?B+@z=ZDZ?l!rF3lculiVv}KaBw{$P8 zPWlKYHSoCUcacL;>||#c`eLH9FIs=LC|KV!2i0?c;C!Q}r*U6t|9*2+Jk2=>-6r81 zUS~{mPM4m69dk!2<{7jElmT{6tdXc#mq?A|jT7pqc?OiIhuS_MY?xs1drT6_LQ9z8 zoFV+8kgLdh5t38n{V0(lFUXDa9x-ym#Br9~UjgziA>-wdm!`|>k))q`x+a+qyEA@< z+u=dCYPPesi8!1#lxyhKs};2kL0j{vR};(y`}%`PdF0L?>!Txjkv@3X?VMx@yD^04 zzXZF>fL)nMs*ID=N()IXXOiL&7tL9>B^>Q8bUq>ONHX8oRI^WRV~y0v9~3zU2;%-E z^L@>G6#i8bwDmgYqvE4U=KGot`6%Ef4baIJpH9SzBtB+XZmp1|yh0iew!8EiVPFe_ zdrJ?=c^u`v;_Pu$G4N_Bd8=TDBNP6<$6<3}%LN_|Uj`>1Lzm z(QSUIGc;7ZgEnLwQof~VZFjOsNVyA3f`pXoNe?`>xsxri%|ST+OW5`bFe(FVqjGwS zlhf-KayrB0#9^EK$wueJVDbB8b6lIHq{KYO8mN)y-0Hl#l@Nf=Z*X=*XS&@Hg|aS| zwl$0?y*%w__c-4V#;++<+GrFL;|Vu>g>a9L7D62e`M+WM5#RB%;WO6CIn67l@i;d{ zVNMrRUN+9XN-~nRk+Yt3&Jd-MDZo@Hc2Ovr0E=m`I15wJr4=!1c3<_oOH(O2{^oe*MPAr!TS%JVsZPv(V#18lCKWu2`BF1I}&r2 zFlmDMU*Tsy%$MJL-q}YGTcqk=9yCh@^c3~KPvKGjtCYVB^}i*9=3`pl*u_kRc{QF- zgUoZ#pNya3#(3yYd)fI$b8#wd$Qb&6QWQ8T)dcz{q%!F5PkP{?KRMMB`V$Dpe+l}( z1NLPptSU}eYb}IT$%Mt>KYAx&Wu(0MJ!epWco)t_@XN|MhCrUBB<{O|wNfKT{?}O> zAU>LE9^8)QNqT?elmf)(Qq7}VHDTr*Ov3(YQFb%Eh#OLQ1Fp1IiknwT;~`(o)p})+ zpO0e4ZVpBA=gy1LuaFsTseGLxHGQCrt)P*i^dhvi!-{zH#+S}XQfL~mNOICCIs}wx z;DCS8-K^!5SNWl@oLPd@2~;I#m|{`%H+WOHCoHB=+bNBGWuznEkh4@7oxXqH=)gvR zzJ>~aDu)%itd}(3R&JU;QXWqjG(pX=_!;h0iIn5dIbUp1f{T{t=k4&IispSg29&59 z0@uN2D0ogz<85zjni+Unj>2$5z>*^8MlxeZ|S?a|=0r!sNt3 zrW`G}er_T*OE*W$4;4lN(y5)*$hS6gIh%?R>E>v8jwjhFx>k?3QkhmRBj6sshqs zfDHBmu0ozaoc+ab{0#OJYfaSinrJ*&zN1%#A9z`t`PJzB`+Gy>Z`-&gi_$DCM4w&Y zFfR@*-B8~YtqgZ1Nd@p34Mb-lF~aq6ckQ0 zPtu1e!iJ24w{nx(y9z|98a7X{@=TY?=IE#GxZ)jl}RiSTEVeD)oN*2TCMMC+#%6&qDZU5<{wU75VI$&R7YY1lWNFJ1s8 z8my|M`2IPfu8>Zyi-PnYP!-`9cnhSDVF{fo{*#X0j&mh)b;-&0V;}G7DP4dBG%Cjg zPjqqJq9>pN?rPgHMheUTCZhJxwVSJpoSch;r2qZ$3OGW1i}K*FHO6xI(v)26U{db&OrXDH>r76% znM;4C)wcs&T}AZxc6YG+{Qy_IC|wdtN&q&GVNT_aFT~qnz@vf1gvKF8SWG??4!{-JcWwR@ z!zQ`1q;))nun7Hkk}FQ%1054RuyV7mKKXo(99Y3brBm?ypz8#~eXeu})~B=RB6RIk zJhSVnQlOuE-riL@2J6$Er$y+^X|6JTeFE{|tGNfvL?*v`jccobZqIem52@%d&!}@FvNkq+9}vxx(XznP8)eRMCB<0B1|5|8x6g4^M;qtWz!uBSQL*z`d2?OQMHnZ( zQqrK&!vks>H2M$xs$ZW5O^8QwzH5Tmp*zchc0K<7Yhz!U1+6WbTHtCc-rJidLTh;s zez(7|N9ppSK81NJ@=$D>Z^F@_D5n%y(zPFc(hK!3KG#P)nU2B>T`^)*KeXp0YVRs7 z8HKwfP!x}ARh4wWsSK)0NH0|-_u|iFs!B+^RkV$&l9M zBBnA{dBL%`A2}TyiO#&yrdOE3FiIAoz6)G8M9d(B%9!ylwJ{WODkLiaw<>SFv*R!U zLr2#2t}naRklI`EpXG{@OGru8awV}HeN-|VO<3si1mKoY!ptr#3EfW%T_>80PxK?9 zSne?2jJC1puM4v|axXX+jGQZ7E!)Vx(U4zw&bLZBr?1S0{sL)$%F*zL+(_x>gGY6vtdRS`RazKx5smvw8x$BGR~463Rh7$*PSdloR@*V6SVOln9$9(;Onl;2YG`ghN0iN@h466M>pYNXTw5GhD<%p_2v`40X?(a z3WpCw*18 zLCF>esf>L@Uqh9aI{x`sz`l2iH1FF6s-j5W`^5ERP;~lyflj?Jcg>CX8E$~?jCYge z+g)OSxKE*1_Z9X+db%aPX#l?^e&YbPVm8U+VL1eCcLA7)F$KE*PFHofiTU76ZyTkz z2(#)$ll|@X@tr_{CI?k|HyWAe>xLv~<6W-jq_f}|#cH6@YG(g>a$g4k_4GAV-Kae6 zgc_wEFpqt0cV{tZpnkU~aG*9E{(Gw?_?fEK?kFat?gO#2Lau5x29i^)N&|VVHW_HP zU1T`|O`(@P<~^8Oez!;)`ebeBAzV)Y%sgmuQkw^3XlS=xgL9-RdHnh-U`!FFSk` zIW3fL`+X$tXI#|*V%@Z(G$;$41Ldz-Z~ZsC=|PXC)7F*nl2 zPdaU|=?%Qgv~-S~7+sDKl7CNVk3vqmI{E-RVvxCKhvH|NXTS1->qFH18CR63x^)7i zrEVQLh0IZEEolFz$ zTXKX|dYP_(a^Wyz8IWl=Ir%kL7Xh`{S0|C5i2}a(i)u%e@Fv(2m2jD#gqQtKBz)N> zHG&KurcQPRdS^;c@Pd!h1V2F$ybSBmg;MfcuDhgDu$TnOJI_yvlg_|W5*-DTdbn$P zge(%}z2%BT<0tHI=}(WUg%$DAM|=a~sX=JTJNQ+cu0s-D0bX;Bcr^)O^@c=eRxN~O zMg_KL4QgvRmop0`ZgqsBfcIPrBaB0iK(y?))~V>p_wXCY(80jWX?mFuP@*|B{zW&= z@(h>p#x(Mx_g&WuQZLXT%VMc1bfF?7eFH|Gq_4pRA2|lO5JwHx2Oh%-8z%AO5c~{x zs+_dwTIX6I<|*W=|IC5p)PKed<`HVhU`vFu9D*T28B@sFA7KWi^-!*KFZu0H@Sa6A zET((O>rv6CuABAs>F)XO@9!QU-2v;9Z3SUHI{uk!wZ1-Q+#UnHvG>dgVf&iO&wuW^ zK0tZ`woKQpXYSjVZiA)N9Z5aa9dAX6SGTgGjbFN=QSCRbmIjS{F|%%%^akHb0B!}X zpHO%tQLz=o|DUGq70 zsKt)cf^Zf25AB{)_n;V>#Y|YW!H_J_8nwaS{cP~U|HK9X+E~i~>x-aG0`fLN;Xkt zaU?OFc#C2q>Pb{Y7&NiC8vM)$bMg~^xLOI~!<>yh2W1^jY|iHQGd8GW)+Zo4R(xQkcp#fU$e>M7XBEBeWArtszWeSk#K*GD zm#RPT6xls@&lXQ*o3B)V^-)k?_Ft*)&E`{&ZD6AJPd#QJM?QSLY^nd*NU8tqC-n=4 zQkVCKxxW*H5F~VT`=uV!MBh|N!_smHHP;%seOq^}D0CuZIFXqC3nGmygeU9S!TpvX zBoVSn;JYD>BFaZ$B7fTuUj7%d8SI)QlKx+6p{Fi)68-Ms%+roIp@v_ajV3d`hT#tCUc@Ow{q?gi!5KPPRJ;P0V&js--wNR0p$c zP+jE?6W!B-QH-=QSok~p%nue`BNAc|Vkn{A))I1ACV=8abcJR!7K>(~yQT1VbvCBl z9V~oA1Y-=6&6I>CM~0YyTH^gT-j{Y9*d*PXCT#zbTFGttruR1cs5GB}L8}>(oKD+|YMG-nmWLZEWcLi=4!@ z?%SJ-kI;tT(O(T9H!1o%Jk;b(&Y_|7O-}eNqzC>@&Nd<{KDQY-`@4m(tgby8%pGL# z@*rm|urI7z{;d}c5oo%pFF0v^Y9XzUn6&tpIqBQnEdzumsQyl?Q0*;+BVm{lsy)BM z?G6ya2pKr;3qBOoq+QR`9>3ZBqbPLo(fXb4)o9Q9XiY%r52h*cD?f|=r~x&7$g9cv ze6Nw7UeW8xZ}ZsN6Mkm+l(HM+vNQt=)@L+y3uN&gcZQS)i|ML$#?HO&1^Vg)oxpC( z?|>^`lXT;L@tn#e)P6lj@wj#maqp-!L0t z!UWc;@iQN+$|3%SO#3+Us|_X9tn|v5K>$g4{fsuS6=RC$U}K=4N>sx$Ha_$dmpN z^`sXb)!rTEzu*C&_7>s#FM(Q^!X6R40jN&v5k8bM6%e1dC3(v!o}C2%4XA_tFz^ zI9LnD;S&ix>UZ>%dyF8x23zGY@D>AFYH*E|#vb%))GeXtyUms3q7A}f@G9{JOTsh22;BY@tisPT7(X;Kg@rt^o0M!(|Ts;|$5w+EHM z>wCuD<~IT8Yp7VR@^(l!0pO@*f|xi$AKAte{!FHTUig_d1@wH)Jya0KDD-M*I}*~< zIUsoi?=Zd4);f%bCH}FkCHsbRfF(uF6Gn3Y9d|i5?p2U)ZW36*#?4OxyWVoY*Ie95 z8!`@SpHcL-eS}F^TRnn>wRX}2KLM;DVu~`um1Trsh%1%}F^z(yr+`%%;6D}93!Iov zT8QZc6B8fL{`VvIj{)LmBg}VvB_)@}$E<-GdD`dhc}>KhMwoB;M(`x@-?&c%wApd? zD)tIdy_i05B;5oyMEuTb8&uBzd%$%}IpRxx27JO&Gsk(&G#>GrDy$Lf_PIHDWn^vj z_$maFy2$grd#fn*9|`P)1Jz{EjcQAvL-4JVb%&Wv*|$p37u^#ZK-K*ych}x{bnflS zQPQ=LH43dWL5YS#_!ouN!E9VxesUibrRzaeuz#=|7E^q^9@#Fr@6*@k@HJbJgT8y8 z;KBC2zJ>~vDuW}9lLd*l;Li#Mmqz*yiy^|K3CPyqXFiZcfq%IF6dzW|Rg8TQl2eS` zHIm2J8WeKg7-KDmV2H7n6gj!p$$~!S#$E@R=YaMDHg+A*>OYA+-psSQ396g5GFX1L znaABk{F63s48JoKwf;8J1b%-R$>8@>(k~Cc9}o$e!tZ-z7=Hc%=Ja3BjXaQU|Mup1(VQ>NfKM2TAUmA2=ia zjxcBffoGY7l$U3VdU{5S(rD%bDg?F|4ag}3UhuP+v)Go-W7PEzGcCEl0to!h5CX}t z2Pk~22UId4-yHg-;b+(|bm)fyMA=O&FtiDO*-!$}7` z%%zRC^s8jTF!ZZNhne34qcXxdBBqU;n5rzqw3dm94>Omid-e$8!O`Xr*GI{Ba~Er% zMn;*QmZJFhXmf~51pHLIMywZ`|C%lhjz#PgOEItJJw*WWZS zD%DoO_%1tqo2|=OMiZYTj?vG(@q`T%*y@F!;X!J!6^!N#_Y4rnC~c_NH4?VLmdImx zQ|LA3@4~JkqjY6-?B(3pS3$lx>{`Lb&STf}qdc9Oi92aS#@Mx3(cShjCfHStB|*O7 zv6CKn@LDm(610{PFjl67%r@1KpG{zjf?%_$!PxH71F>tIocs=YRF#)eSrVa5WKZ`wKt%~EkDjE-7 zw<^qC8F)R3LQqAh{M}5?I=mSKT})!G33fMvTL z5LFz(tkC7{b1bFfZ*x6OMd>=o3Ws+uT6YLu;Tv~|-d*D9h;U+&IWg8-po5#DWusg7 zL5~-B5~M1~5nZjX1tl6Rs>69(&MWj(Hjxmh#V%i}%UiQh+6{~GWLkH1(q~nyvITc=gqx z#I)N(kziHsqZrUmE1>}p)q~Dd*jK1|ybF1@gRiu5EXmW-LHu?s z$~uMGy8ghTuPPxOR*{bIU)&4+`yu^{JHWq5>s7S9s**}pLjGzQTSCU+;nL4{T9aS& zyW%$F7ybArl>DLx^TWt5df+;o{KCfE{i>1(@{_(yY)gL8ovU`_7j=gAvt;lti zo;w4iC7@B}_|KoKTVh+K6{ExJJUfIX^2qg`=L8$5kA!XB@sSz_N{SHBCt9}I8-^yt zt{5ZMj6*HGuCcbApkXpHRJSuYNZ5u#?(-(nL?K#xN}>?Z-Z(@Pg@kYP6bZHmK}()n zz2jSJluDkE`)I3Z-e;eMgx{^zCchNnvD_XrHhZcB+bOLE;@VSkg`Bv|_KsD1ZWU~G zpuLa--buDEV8K@J_+U~48yDSV*ogLQ^=v|JM_90qlE@g0OvxPbzQ##}@yL|SA$~G} z(ggD#_?}!}LzR?j&qkR;Y;AM!W9BbZbigQ-#35mz1~CeG%1%$HVCxEtw^epQS!-J* z+u}iK2o{vk6?Ligl;~<>iFTs5qT90kYmd5_t4*ZXS(Am5D+DmbG{JI(2-DH4w|FLX z(>~GGD3w$pkdkGjn0u?|fFR5#l!?gQr)@ae)11bIeLaDg z%9>;v%A35a+ICoL7g6<+%ptbNVJS8S@o)}J9HOgE^b2G?i%9_X%Cz*_9iA{zc$L!< zu#9W{DUH1Zw(T#31y~5W+#&cX0<16Jv2@#6GAbrHbojc;?AF!4tC#3~g&$#Zx~)nH7L4Ym#+P2{awRbS6e+pU*ZGh>=sm zB>YHK0#2GYIkqXfuV?)W!ZN)g7K0Y3B4&=~6)|bN*(QM{_nHnad%RmQ!~EKp4tuYD z*tY|wxnbYRhRyE~y#J8rjTXYcX*1+>4?Ibw;m$40cb*t;vPmFgNsvu~J4q+}Cc&-a z{Wl51wDYvJglENKLSnsxEc1NO@QQ<_?Tk4hb2BlW*Nf>}(xtJBe$86pHwfPAUw^TM z5R48#g%>c@YgY~hSw1u|z0EiYnm{?JkvF~IaRv!dgo>TLH>CQKqZ*T2k5v*+s0Prh zf56*wt*_ryD!5Ys5}V_dM4hL<_=BI-er>IeFF18rXZkSG#~GbI{9avH`bJJm-4|Fi zE5&>w2@PM1uyjq7m(K*xb^ztjk39|n+1~W{GJV*bfR;G5P=c~Q^}uY;`4j%4PlMe~ z>ydWQjnw3mAE3~Ci9(Z5%uOp=fhpynI%M4oM^yN^XE^$Fetk!j@RcVJZCp?vj{fx} zF3TyYk3x?5_|Jj`^_|hJ^Xq$~U%&LULo>egM4*qq@Qk|xvhB%x!h{o=bAVINK7-AP zRlfN<&N!|?vDep^pa558yH?$L$8;;0pSSqBqS6H6W-Ju)R6P;Jm=NlVt-D& zp|WjDjdRL)pL3o}H0(Q1I0`t2|7<_!>40urQXhwk&v`>(tW;Y0wP_lNE)nXN}azt1fw}1z{H<^ZSBTBb&*SxqkOZf^Z)p zgCA#U6!|_1XwzU|H%{cgU|llNKMwid+Vc*F_a@uB#2mniIZ9)Cv4J@wPtv-+=zhUl z9PrIVJZW#WwZ{nsyeYQxpdGSQ7QdZ{j*8ytwr{}$vN{UYI#{Z7@YO^Vd(oa9{<&5a z1m1LO1YHd9er1cu)tII0@iwSmQ*W-V4JhaOSf=#R3cnu2eMA`dK{qMV(2^4yd&TL! zS8+4K58ZZON-VaK{=ACN@X4EOBLUL{NVH{Rj$2`R7^p&bunL=d&)KGeQbGt+=Jh8W zN6p9}7pTEF8;ytug1q0@Zs7O<1KFzZ1NtIcap7{b0M)6uN9L$ zzY%D7D{rCTM)$PxdTfA(EzYN3jjil9Kte6Uje( zYMT?ey7$1g_B)0n5>=(W||@e#_C|$qM-Df=6_JH}7LY541PVYY{vCM`5WeYokW~vb#4@5c&}^ zi`cQABSVg!-dbS{p<>%7hRXQDM+N-^jIT2pUk+Ff1y44?sUXZR#Hq%+iJB^jOzMrF zF3&c?O~3%x7%I@igm367=?MvGDe0+ciD{|nDMdxe8Hs60>B&i%Nf~)5`5CF{Yz}Ft z67`g(Jrz$e+S|&xpeW}S!Xo={lT0Ikc|@KJKy~6BfnX}}n5oFgsi@KJa!%n$(NN>v z<+P!+UtrSar<1nH*j+wrz+J9VQg(dI+NeR;T?U})6mOmIQv)v3j3@mf6}t?6C!gju zUTp>Y2u!@Cjtmca%L`_zILWD^@!s-_UKfp=R9cfvJC~_H5VvGc;iIiVQ_Q2S;{2lG zg#3b{l+29c6znq@8JYP-h4~rjNtx*hDXA%JQfaUjaTQ@EQ45|{=9j`d;I$dQy`r0I zrkI3WQ>M_6%cg}~gHYm7Z%6-#t3MtRM6yP^NvOh0iz>sd6LIW<4T4bGx_}6gaZ@g=$dA+V|B1yk8*Z9LvXP20~4JVPpyoCJB%z~8S zB#N_0pqT`T?v&ipR$}D0y#Sd0g6FSwzF+!&Dj&aFE zGe2{hX|!Xg8K|zNuR*}|3j&x^^caPv9M8>nmHNN_A)&QAh>$WOf~=FRMTkZn4{OsWlqi@8f=1ux&CVrVVa?X+&R_zve*$H zOwr%usZFR$6n5G(dc0QuU=Q_>7U=Xf-ic`5u+m_JuJLXYt-@HKv>gP8{%rx^P zrImm2kLi{1VFh9t+rtfDa?;zjnv5F zOT3~e%qC>ULGvR##i@l}yMWXFU<$l(^HZtue%O;fGF5NKdu;9j!h_-0knms_I`)vG zIRL!A*FeB)+#9^hKAmx_kxIDDPYJgeD`D<3@3sKp(FT-oQjyKWsuD^|z0H~kC(V`c zGEec~|NCsw>Qfc3`@zW;-;vF$2(qEn|oLFkuq+5*S^iS%VzEiRR8(MZP9wK zcV)E6=}6^s0T26@XH2E{XSUn{fm!=gONa0&zkPJz{u?j;P`O+Hi3jwx?T6^^9 zHh7Epi!ypZ&fX&CR(X4h(j1L)9J`S8;0ABJtyn82pDv6S=AeX)-Yxp-zPmkatM%2{ z_W;49Z9EcsGJY;vc9VA=`gW5y*arHfUmpN&FZpvT<9D7(qOBTqvCMbKycU$wH|N#U z(cx!Gcj&5f_VBxZA13cEfy@ll6rjssN-s$`ihBpyM{G|K_Ke?MKF)-r9AFz(gEwi! zcNB8<-Q}BroW8p}KAnGe`S^6^oF*rPEk~f8P6fxwO(@W}AK*)g@%0<;gc;gC>R9W2 z$QCq1^I4y<2Wo`|QVb(f^fPut8u`f0c(c?NtF^})dyJC45sOi?+UikbcXN z4hsmF^hJkm^FFMr$Qe&3{~kAp?C!kru&WNRpC#_~Y9}CP5e|(FXgYp`MaK*X zJ+Q~?!IyebV%2;DRnd_H-krLdoW9ckNBSD5(-+M`OB2<9sMpu~ zK;+!1?04}aO<()&@%|$Gtk>5CKuq;j&+F^m88jX;$g^Q6cw%>CUe#0uf+9(b{UEKRSNcDmopns4jywR3qaT>74{&93iuK zNjQ}wLrb6Bz7fZ?n96wX>RKOx8W(W~8B%BRdsopjP2y4mq4MW~E?Wf!ja0!#KNVCN zsz84CsoDSmP5iev8qNE$wE520Hc6<}k=hHsqEO+k26VGPk=Y%pZk{|^i*LRsZOSo^ zZ)ck$TPXz z;xZK25Zs}~N4?M5e!!CPE&2)C%{zwUs!OnRt9Jr^<+J41(pX(>4#9RRW7Kozn=~)m zoObEVi6R)uqm8c|IsOEgaiV9L&Nz|yk%nOOrVZ@Fgc#2_o*mvXL4cOVD{-@EyaHZ` zM55T(O2dSd`tfl`2d@CZ?$V97VFW9h#Uoh0I$m(X!S9}pq*f?fsF{MMt^NLLH1Wdr zFtla-56#h;AfhT9zO@ab8j7xgT?C%GQP_6h-B?o-U@m$X8I1<2B*x zD4^@=4`!jfu9basHR3HGZVL|3XI?RN`9Zr$o=vVn@fcW}s^LLD66(OBr4b;dj2UiYh zB7QR4{DtB)p5)Zf%3T5CkF(9+DCYY}Od{daOclc8ys;j(R>L7q4UKsQhwHWw~G*Y~G*4 zx<3$~TMx8SpUD$vjK_=C`pimgGiU~3!gw=i8h)h0RyP^tR=y?*rHopIts4L}4bJCW z%Wo!5yY}zGt!=u&HXNMqzLpQpcc~)=!8yJJW6-sDd!Z=gBOHs*s$7PaPOof^{&P*` z-NIu;8Wu;AYZW#Ai?v&Wg68fXfL>{>wzP9*WjH$z@YUSiee@4H3D2Y4p_Rt3%=T~% z%L%h8@yWDz35CTgv%7s{CJz13wfwHcu50}P6}&SuFh7gn!=N?@J`PjoK=@LfHMVAR z^u7qT^B?v14Z0sIJLXny6>Om#CHTPTF@H*veO7BmkLV1Iu6jwPXCV=JZUC+oPdG7l ztzP(%>RR39IR)63@R4&$t-97oKuujMc@FPdz2^K~uJr;LF+bU9125MPd=+4w3kz1T zf%9QO+Wg8fLHIT!ECJ*FwAU5YZJ%Qj6;xwc&^(i*13oHPF~{GCK~%7e@cUPyf|r0{ zSqka}y`WB-3+eQ+&1?3(5j_!j+tOAG1bk#G(tFP0d7ixtD%epx%_vVD^$_UZs(5kX!-Ho7tF6$g~(U@1< z)w-IT2<9mw(D&=p5{Pf~HTZQ|aWhQgJL|F+=c2|RePe6wsNU6JyPI%l48r^IBTTNm z>}s;J@@?T+Myz7+(}0*_@S(Xp2JfG1hQXGc8!pQ%DRP#QvHD>!8S(}FkiQ39bMSkP z4Vj1Epj#@xX(oouGygENOi@@%d^Ff_Rc4#V@b@Ru1CPJw=33(KH-zE8g1|FlS$-DCW(htFpdEyOED7Y|LTwa5qwpIat|KpczNx zxPz5Rf_TF`^R?P>t|9s5yDL8vM10oad}(Q};jYqYl>~*{VYI6>i|I!kIgj5xA51CC zR?Gv4n1F5?kHZh>mBVoOvOWAAorlwe%};TfeB4}|WU&t$d*J2Q=;ON-d$! zYk-tG_z^$xJW9l4_;SJ0U9Z5wKQ?l3I^w2z`n@JG&(wDRWFzK1y!PSBdzy=}v>oGp zmv0m`Mdg`zc!xad;o*U}b3YIN)6$53BVqWPiVMwT@EIC&yT>h(phZPX_=` z^)>j2sVorFXc5x}XD@WD@5(r_OTG_cgjZJ$3(7Y|m}vY6x1oeh!#=FMBo0!D)wroY zpr)|eEuW8@qVvt-CQJSeVbzi%r;?1AM+~}lr2}8A4V+vjYr7us&P7l2*~ocpUHoxn zaSQP#+Kw@{Zd8=FF5d)O*I;Ro)$3By10Oxj&$o=8iU`BNs~ZijHv-eL6x9(M3epBJ~ZPtDb!uMS5 zLEm*)(?qWRrE;jqBCJb4SAHUjU+0^n^5=Xz`0}eca@L=feMR|`KPr(ZUdlJ$82{Br zZL;irgXvQ|=4bbhSu68joH82^(J$+@=?Br)&LW{#OSgr}zXq%sE7 zZN6p#{=6Wz#Tsp$xPUNWyiP2}k2Jt*5wvEca3dpD@y-i~Dc&tE;PI}w;P1k_PGqb+ z-q9idOF!g?0M{JSJ-~*{Bb_UF%@<8^l4K$|n(fu_!`WVn(q1kwLAw{REC|}kq!%9T z9w@LxyZZ>!e+BL0fJvDMN^Dx_n+)lkAQqY$$Dd469MH+Hgs=I3?0pA#6~*?ry9sp@ zAdo^$p?7XC)C56P2oO*oDD74u^b!b23x>3Nb8iA611OLnO+f{px^_W9d5Q?nf(51c z!)F(Kc2xdncK6<$ox6KO@agyczmNBQ4{vtQnK^U%%+8!CV%ZG0wkMk?(UA&m107ZT z`)vwa$FK&sw$t*^C^I?~&SKf2Zf#GsAdEtKD&oXhJETu69Kbem(+Ybfx*UF^Z=SDlFUBFS|grd z#9!wLefm()r<7N55435&=#FaI&tZc9jA@rDHH!9uVNNA^l;+*iqiNpF;g#U~l{3XF z{R&@WSiMKvykC%L=_@u+#b+A|2ZF77w9We!8ig?z?q}F>9_^Xpn;{gGVJ!^pB_gEJ z3px6Lb*FgfiDGjBL2IHIhZ#ahqW;FsD@9SyEaViX1S!_dG#(czXGa{7}W&eJ1kb?2y8rSnhQh6rW-1f~F5E?8Ci9KE+2KUiYBj zjfD?tfL~Anzc{S$9R)Zw1^q(eo|0CujtJMSgrKLOmlUoWR_4aAabBfGHt}j&WJ7o* zSfsF|mvnRCTDFUX9ZJVK64-*%Zsw(hv=zM)u{%(T<}=JBFZ_^3i`x z!In*$5;4Lg@mV>xupSUoP9+4b2Ltf6TUBV#^umd0R-Ik%_UQCBlT8oxB}_Jx$*c34 z&2|^mm~g^c!9&Xv`LPr7?}|T%eeCa=|Ev+8VCm%#xw zbi7WBna{j+>Acu9tI-MMxedTyli3I_954#61&Ztdiq*=We7gEYCe;bzFj?(3r^jjn z8Q673lhdv@I`mGL(F|)*cbt|6QCF`phC+S1r;c8cV?@3M?Y+0KYcIphq5T$4?zmz_ z@AQrqJro-?d%Q-Q+hlUPK--{9mf7lZ+Z|9m&cZV%3g^Y9Mz7S1wJeEm;aFPAtg1sc z&W_OMEn_E6%^ovs_^7Gg=t}8OLVKdK%-eBtZ}fk~f#kG028B-UKHW3Th6}D*t!A6i zX*9V!E~njSH(7K#z1d+hyIlOGn$z=QJ9yk)i&qcjCOr<5L8pgWVg{YjW;J_FI+K;x z?+?^4saCzs0mY529=BO<^0-|#tIcKB>vd2j#%%NQ^C}C!X432E&Wl#8FC3d1wL2qn zbOXa`S5?TRySy%&$79nu+zyM$W;EHIUKLj{!!(pNwA%g3}p{W_aMVcwkH( zhu5VyL8%(A%jB>-oO(Xzjr+~kD1TYd0=C00S@W4c=c6@%4=u{Z zWd~c;^R=H9KF_2_@7v)K#*$t~zjka;Hq>@kVV6E8qmD2so86_?nOqhF)YbyuXL6XW z;L)6Rht&cqVL^_~`62gRN1AA6K5YTKU@TV5L(O`00z;D14xaUju~T?VVm&I3asbk)(T8-4vm;po)p zy`o?tGQiQ`!X{}(x5H!cnq6iv3=^1xLvL_8+-8Tv0unWO`E#c?z#v>kuMPY^L^wM* z4~qjd(&Vu^Y&y5Y1_MSg)I>hLIuzytJ!Vzn9V#y))$#H1DKTw%8c3_9ygR1)j1tH zm%{`mY_xgZb~_P&>+TssYZ?^!jn*r2ED7jQi%0VtqLQP9o%`tRgt0ln+#R3?cAE(j z4UfkGk;`h=yI{y(lU@(OHhwM0sg5$iJkx&Z7G_l)BC;v121XrCEe%TOI+*6fHkMdg zozfxdfY71NJG-Kbqw^c2dUQr`(MB^kJg_pC+u_oionUSdQoU{ynzlLYLE)hVG9#PL z1tw&1!acuU9fW(2UT^V$cN87c5PiN6loXiy;c`^U4v5xZ5iDrr_l>ZiUDOj zo1ggP+5GpI^yuBY3~1teh2zuf=-Pnh&k5+zZ|@a0OM@^5`62WRc4KneEKal4VT3dl z9zlRMOI}0o^g6L?)!AG&lM4^tZiNKKWwAjZH<}Tov68{1dTo#};426$P%#?EZUauR zfNsDs>QL62)5-inZs~&%5TbYO77ebBu3;YtHn{(uE9{tNGu!oW&4I`2a=A?wyVdFP z8l6_F+XbU>JI&bE6ZwOl08V>7HmA|$g_OYnS+O4CAoxO;Md!7F-?8vHSFpuFWVeIo z(%ZrPm>f1M7_Q9&@x-pvL%SxFQv)&ZL~jJXBYMv^VJNAVsJ)`8II_ilS=ha|-JC7w zir@pCCO3puFL*EqI7PG7tp^V4z=eb4h`^Q_z1T21v^kIjUtsggm{rlGq|+;{s1E(4 zqF^0tGl%0^9V3(C8jR5n-o|c#0{$ku*#q2%+LtWyr8>YtJPySL0pFv3~oAr*@X@Q zh!tB)#b1{oF+4vkHO>Ax%4)V%K?NMq!0(fg4uxAIDv^S7`oR438LF=ba6Kz3#ON}+tT-)(VCeN&Z7^Mf6%i}Ud>}L$L~9clLh2yE zA;bj;|IzyvRzl8nUE4Ly=y5`LgQ*)#bWASDC-fGt!K>GsToB9LdNF&K24nyUfu8|O zf)owbLrjp~8?7)p2#z*4IUvY1y^x+bU=HelvBNqKG-x)$T+eQCdrUmchrsOW=-VWX zrH*c4ELQY=zqQ?ZnJq*@X*Am%E}dC#b($fywSWikS}ZOY9juPn;KNu}b;v7%GDfSP zj9Czxyt$$ain6*o)Ram?>)@FI2RYBgwaKY|6POwJ1(P8zNU@igCz=9{~kW1;Uc83tTc+u`GFiQY`?1Ggu zh#v;4UFY=LL342`s&hE`X}9AETpiu&(a|AmbL#9C#HvHnGuOtaL87O(85~gX-3VH0 zhXn?s7ffCU3#m?s;fiHc3*?)izy=6aFp+VV}CAgg@}UE?6xxLAorU@|a5vGqLj|W#>(P{3*0xQ<&Kl;p z21wgM8?jr%355|n8)W&gNF_|AQ(>JERzo0rw0dBE3A1hZ({3?>8*w_UIw(62QvqQT znrhd1oDf9JK)b=DH(H!lH)aql{Wz^&gP50Pex480)#x3&g@x0!sQtp6RzGg-lwM>C z2@@1pvW6M7-VSjLG9M>+Vpwo9nRQl+$0;p0MlYU>=a)(R+21xm_83(p9-}fo)uDz~ zC3JLFnN318OTsg@s6)bwjor}2hXNM#)5Nt?uP^Syl<@lE{`JLu)AhxD#kYj(i~H9X z_cgx2TwmP3zPPXau5f*E|N7#-^m(+7753|k`_~uu6`vHYFYZ&HEv_%_Utiq6zPKOx z>FN67e)R7O*BAHk22|K}d3|v|>Q|WSi~H9X_la)_*BAGrUZ42?>Egb*`n~0G?A>?c zb4fYf)v7&ZsT>r*hl&!>^0@^g(xRWOFo>rxUK>?Zsd4wwyzHX=DZTKq3h}%OdB6gl zub;osa@h&grk1ICZ`k1et^G{X&P{toEux@{d| zs&b7eE~ltlqgc2a#y`f5h9rD7hRrQRzMLXM?-@|p#UD2dzT?g6Gh^YxJkP?a-1AVb z#NTXg-lADEJPX24c@I=_LG2g@H5gZv&Mv?$-@M%YP#+)H}(FptP%oYne(E9!qR5t(HMAT+-QL|Q0P-dI^ZGCoKZg_)ud`k%|9x*wF8^Aa4jAX*6Qqq?^%tl2)2hmb1@=qyR8uuwd z0IJMbm7Vel@dVlysvtlw=s^2LZBcM)(UWoC6A&n8TG86L-^eEiZd{hlet$R8JBkcS z*!iu4*&SqxIdNEIhv?+U`}(2A&Y}vY4cg=^+7Q=ny38STvSdwmE4hJqv4NE7DC5WF zS;>h6s7yJ!@aLvoAG#H}D7XLVbafzn^jv&5|>A7i02E6|5Ci`FUOvCN4PrbqT9 zjIavjjNiVU-7;NpvE9P9mMb%-VbN{Eo$(8YO0_s5+f`H4-j z(`n*~tkCdFF!;=H2gK!i8Yt-8E8E(k;B!l#iTjagR4@U8Wh2FLkc|i|=1(sydWT_R zQNfBLJ*vq2C>gDOyk7%Cu45uG)isxFJ911DVNBtAR5_lF*-QrRGhCS^E_H^CL>KIC z2k!u1s^M^HNzn$TzlbfJ1&*_l*urVlPBZAk!0l#;r%^TTJB&)dd?J`QAsQ89B%J;= zO=^W~GdC{RbiJ2PZ8f9z_Y}>Fn}r7;#S6h*cbY*wky!)31Ra?b))B&aL`PWwC{<{6 z@&QVmL^+{_~sHmkx{D zOFpjMu{4`~00b90uu16Qs>s$Q|8nWr(oE(>ZMq5~F|qC^@~c)CCGKS2#F%=tx=(8h z(cRieB&j>cOTjE{_C2S8Cpvl}fGZgsb{IL`inpezJCm^J#q+uYx);~RHOeK_2D6We zL6#oH!{TDd7vQRItah|&nhaS~Sj*s-lmej7dla9HOC#Qi!M_{%M2G`vXlJits}huo z{l`QGkUfd9zo2*VBxV@;xOcH5?k2KjD)t{28yK1^#{MA$C_yrg)~G|@;)`*U2>?3s zzbUpgQEV$ky)7|V6V6hiKrsYCk;m(bzmL0z>`&mz5>%@%&W&3_zM!~rQiUr8hT@Ny zjcBT|cw*dU1@2S640OR*ToPAHKCaDPH4Hs(DxMPq&?uuP+lE4efK232Z;4%2OMF~U zG)42Vi>3ITxK{`OnvZXbZM`J%QN1mJj}|odu)kLt$ve3>_$4^6w@^-NwiTaaD{juj zohAF7kB44vFTN}8GxG5zSK)AE?_Zq7p3Oze`xoa>Sjtr7-AHDuhpgySo(8W+CR^VP zD84PO`Air@$WLR#7g<>d5SW5N&qe7KNwxq%jIa`WIRaKygr0x=MFC6ga_c)i$x@Rh?f5bWP za6&GKx&d?wyn_aWh~JGLJ+!!gEW1L&55@dtB)$;yy))^UKV_y?0g$NF%i*3V1P~P? zI~GsV!ULA-cw9;@>({X6cgRM|P{z=_bfRj;?wNF!vm-QSWf73OZYf^C9-K)R0STwi z*&HKE_<0c@67E}zKVVPJ6pDZl6|7~9Rul$IM0*re;Td@~`0C=e=;+Aee(brKbWsqw zh4$eVG>U>eGn2kzWQQmUW*j<~y)2z51ERuLTI;S_3Z3dHg@jqO6q?PFG*2M~o*Pr_ zjb(ez(iTHci6z~{2CDcU#up!rWe3cni?PUD96+I<^yJcXKKHKTpWr^!H_PJriFXxu zVA+wgv;~nJZbCy4ooCU4Xf{i*iN975ld&M^(p+_0#mWeI+#|A+E@HNQT5<0r7R?f7 zl|+3)nYmtxGgY%R>JwJZf*saNhQ_fB_@Rejr6u=5Ce9p<;LH(qP5nH-cugF8E{dl9A<^=2NK?OETRb|R{Vs~8 zrb-vzhf$tbUpzgIWoHYTnXEE(&K|;|GmDEm#dOcT5mC1ye;A>YN3=Nq63zK66Nt;- zV3uQ%C%;OnJy(G}Y_09>Fy?D@y*&0(v6o|;%+c1%BG0ike?uW&rIJV~;?Z|dV7=?^%MAgF>lyR`Qef9U}Qc+F% znpVV3(O+wb;R{*}^>-%CB&sAi)YF;dUCqVP#1I|A5b-yIE-eKoCxodfBHyWEw5V_4 zhc~gyqR4HzMEep+Zm71j;t|#-icK|!t_fpk$Y7CD266kaCzgo(8?p>vJ^A^pDnFl6 z1u>P%zV1cr6Xj=xvCMe*X82vG3?;E+MeiN5^DyC4OBtdh2q3mcFbIDPjre# z`6#BOD2AOnSKAYP8b%=nK#a&Xm(H;}&ixx0|6k1b`iIDM5&RE|?4v_uuxZJ@mh9fS z+9C2ci8FiVYJ|w0bLkvAsNf6{BmF?cpNo+{NYq?&j65B|nfKK-^N#cqe^d5{D4JO+ z-5~s3NHe{?N?LMELv-oZl8C$c!o|vcMPTrVDyAxi)9m1VF4ut$Ucfv^2)X$v|*;_2q z7nK-LdfB4pME1taSJP9pWoxO6|N2zPe_Nt4M@k#>XYVVS-iqmf4#bpB?W{JxJ|bO~ z)mCh;ia+*f$*68jUyRWnjs3dRs*2W4x;P|^R&lCiUsq;u7%dHD{*;%ZDxb12E~&l5 zh*R*02cog%1Uw;o7{;mx^nWH1wSqU!JN&7pO{l^Ew-pb;mgE}-MYEekY! z&`m(!pNkU{Bx>pxCkUohM=))@$TVt(&yO^gZf^>P4vdMC%X}r#vrlZKil0BYv^&Qf ztV4-ImEpr^3AdJ(G-Xc6O01fHc4>mL^rfo#=YtFATxPwN6e?&b)ISnjP>P|RD>Iq6 zj(0si-!)oDD|+lgwYbiU%e?6ewI{J7q#ec`#0I2gUj0JtIqX;pLt5s|TBtpTy)%qL z`WiwB+b*Pq6}yl$nZL;CJ2BtuKZjiu!T$Lo_h>&e-cj1GKU=;~dk#BO;!N2>4QEok zkai~X6`UawnmItkpK~T|iJEJ6CND&A=2>;cgoN{zuI#BOirHP-$NRRVmdFIf}-99d1QKV^2nC?6X>Od5V@x z{oPB3M9#G(nxo^c!o3iQWy)zd414n;Z5MNUoVX}E zTxi2&0g)BgQur9ZD<9 zCgupe7yS*+W>r02|CqqusP z-4x5d6@~2&hEX)wzK>>m_20qvr!m{>@8cWh(IGY_Pc@f($5_@ikxk3f_VF)CjA@^z z;p5xn(LO#Vk5ov)$KL=%{5c>0tVGQ<`}naDoXHkBLnn;MBg?+y*co}+p5adEsD)Q- z0FK7|qwIw^c3GabKUhYiyyPx>k7LX71b?8KB;FT~;%+HZO%h#sbl#Dz#ra!l&ez|I zkC$k_HZT56{8e~yBBweOA*UDAGFA4HMUA&Kx)lAOf70AEHC(`yullq6mj#iY8v z^L7}8^dH24-i{E~3kqTVMM>gm%=h{`kiLs)2hwY?ssp)gMcMq8?1;tM4&;KwnPH1H z97xt;+JW?1tl>bq0}+4DfqX1cbIlGUKY}xPB4=m^a&}$WS54W<#o7*JzI3`OAU06N zkKI~!jAOSi795D`_QOgFh1h<`GyBUXHbC6D;&{Hn{xU}c_OZpI>Xe|LW{LKe@9yrkCzs^2cV*pYdkWRY`;`WKJk5{uqlqT%=7 zT0;B%=M^j>631tNnm_0F2TRn{&+ik{uBIsAZN;>*QNF6S*8WkM3Uly5@IetR|v8nU|$s9tN&(q3W?@j4nNEFr2pAho_ z!%{l@^;@dyP(E<^TE?>@mufqd6$zq4xmj$Wik~;%_jWuxX{okD*+Qc{x5~%Fv$K|J zPeflxKqnkN)rsivr9!YHyhuNEvRuuJ^ac|Dq!(E%k$!Dn7G083hY5W{yTCwSEkj^mk>9DW5I-E48N$;91U8Ehr17K^zEzTwC-ynWN?$O zB1NOlhgj!D_`Dga^CJAAi>ULGf*!r!XO8jCXoSv`E$zYm4yUL6UA&$}uIXr`YgI?4 zIU2mhH*!SEGF)>7z~EmDQ<~cxKanf1^n^cig=5CO@Gs#cdvE+pIF{T8{{jw(#Z#mL zCQpWnr!3y;+t--QS|)fpqIk;0KUqBG#BN_otHHQy;V1|G1!^9xZi*6E6jBauKsaTJ zPauh30f}SR>L|EwiUo~)(ASxpDHDLsJybqAWxD(T{}MC-IuXmJ{PLjhD7RFGKnZdF zj_8|*d=t3>;%N@=8;(}Ix?lvvhckP9{S+vbjs2tB%VbO68HjGtffnV-{HA@r84Pzn z(W=l_zejv4xE;h(p|6McY>PvUAN9G|`2@z(6 z#P3$(x%7SeeRH_i34$;eI~|oD;9nswN~mqZy`{;eP*hR)#*g_n#B%55=0uji_M~q) z_XY73*ig%!UxvQtee)y1*FEK1$X!u_4@b8@?VAzS1 zPE{1X{qw#ZEPC^4q3Ht$eI3!)FZu>^*>d|R<39iBnBn&{Li0a*JdFUI!%d~2nBi#Y zAzwNH(-BoLi~4f&BLPRhnCoba-*mjZDA%f6o61`04lU~4q`u&<%; zSHY5|iD>3w-!yJF1q^g{IYPB6(D`&EV1rkDKZm-{I`5mny&ehk%&R_22!^uefug1m z%tt5V{mJ}2M}4Om?mt9Z`bz&WbhbLaDf`Ji=&{#)e(n?Etst72ulr_kzYtHcXfU|p zm~TWR_^xBVTRCodSW^T^V(^h~_$n0O6wyN>i56Ut_qdN^xNby?VWMH#=k+&z+qq7} zOUh`nB3cE74{It>#)M#&ib;$Bl<-Ckp_0sKbn>JxTuFu-iAfOc2p#xmIr$a!W_ShY z(y{WV{_VSyW$qTSrBmgco50q8U{ANoeH`6CJ<-U2Z|lUI zS8Bu=Or^R;oQ78+jp&XFKlWW=E-Mw{X98JJi2sXFh|^IOBI*cK6(TAIOrmi043u-u zcY*7;Lbh(fJM|#G2yM6vRJBZ@*&6hgs=oE11lY|qyGjtV}{yOA4> zX;T-&NO%<%13&wMFN0xoCG?PG-c6tjf*8MoF845Ug|L#TWtvg>Dodg+i$Fs@^KIfP z2~L9>BonHt{|!eslN{AA4`#EEP#oP$u!M4Tdq|F=&R_aAv9D4LJxpK=4Ba2W&^><- zL+5<$yUcx~&Cmz`Hw=B0WN3~PYLaj(l`7hJrKXBDfLCD^MNeGxJtO|3KY2Wx zolddULokNYQ>TKheSh?AU<)X=t|YJpw&q5#)%m|*D-n`4*eXp|j-$#qbglTxpMBF< zZV$mqv_q|@>PIf>wZzT(Scxv%ASf?^SK*mI&{5!hnZ z`!nlb$8whmL?N&3+yBDNT+FKQh{Z(p@=A1PL;ny3xWM378v2X4Bm!K>JnnDgzl#N& zUmE$#6*!o|1Z|&a(3a4|KbMKq$<4yV8Exu}_BZu+<81O{JXSGLhuWih&i@Wa;Na9~ zHFqlkEeQYTIDcP&?iTMiE1)UTqyka|+jy8P%wjnY(IB>AVmMNHCjv)UE91fHu0qUR{w!i4;PVL9kQq9mdqi)tTHs&8!ppa!?p3z(@6gCt zZ%qWY)e=+*8S7U0fl8}CgpGiR&#EYVe6qi94EL1W91_%QdK>?(+(F{0FnxMz6^d`` zcPPLimFj}Fw)Gpif2)A^Zs(t&02f++^fvzl?*CN4^V<6-MS=_S%^y|3v-ZNLERuF1 zuWP)TvJN17TB^TN0V&Xtn&$7zwN(M%o#xMv1b=g(WiZ!U1^hy~U#|ei%Gx=+YLtD0 zR8~bPg0PT?l1)koDuvH(q$t@0Iea!deswr1C;V&Wu%?(g^}I0~UO|`AgwEB;zn~#I zOTrFC>IzMjIZ+2ddro6qS7v>j8{F{48>^cK2TG=n*PGF zJ~U(rnVGqy4O4~o^!D#(A6-p zR<2N9DR%mz*|Q?6D+!C|q9KNyefB_!8qEJ|;_;{m9^WGJnBI%F$?9*+u$}^K6%Q3d zbBYaAA^oIH15u0q{ya2oSYAB(cG9Lk_|F1%ae=nhkC#RiZl%cp|7UDb0liH@mdKqU z49waB3D6VhQncYbcJg+61XDHFs-&Pz-$<*H;HCaRZqlRmw0H}-xTY4P63ym4(uZ8uWOT+x+ zzCW2c3nX&V#5Sr>hhB%*plvt#dx++uJG8zJ+CSVs7oGSZFOD(dmLm28%FX4|&5au2 zKMlqZ!V-6)5#M`d)Kwu=bScZP`n|XP8rp=Qltz|6w8w{VX)!RGKWRZTm2#@51r^pa z#4n2w>JoLK&U-H}8ND#l{}5E+))Z=)M0c!;O%n*v#0s*j^TC^bcWXe*xGyf=5GHyhN~rB3sW|pcpxZ2?Y(G_*Kb!q7I^($?q3vS zJZ=lf+X>|>{p-;fr@yN8+A6U^uTWf#?2DR~9Z*ptp|N^;v8NPXtk$=(7n)YEx-)z6 z-tgQ^Sk(U-)2==_`$8OrG&viT>z~w$ZBi(rhbCtY3uSa+a`xT5^yKV|d!sJuM-}rm z%+Nkn47~Dz)nizTM0DswhLIqeTF%tLE0CNt=7(1M-)7k{)R;#R=)#z7h4h$ph5w5& z*QMB~-&+5_>sTKAL0lfpF7nUg3NYc)Yyq#>bY3YxAe>3a#C}mVF;yIXUomis+bFju zF4;U>=GSpG#8YfYP&D7_^Y>Ih!@65%RN?cF=N==V1#i_Zb$T;$3q00CK6c<){4P~m75^+LkKo}%trtF z3^!bc5GDS|(|!||O*|D`=kT>iSQjI~g+;ngHp3#_R0NauolwO_e<#$mYr|%d=%=?p;;?~2XJI6@t`%(+;1m}* ziHlivaIx9)cKp0;{;@F}PxK;?KKF-R1GyK8rvexGwS3_N{uo99PjwzIb^gyfI>)zV zd3VAJ5_gX1M&{e+#8aX3b8FFr-Tn*(IMsJ^sqc@jqVEZN{2nHbD+=rRGNf<2q7(Y+ zL4Q}SmHZf8dI&rQhh{zGPm2K0Ku> zkozr>uV3BgcX9;5h#Gx@H2OwGbsJCPNBjdAZYI%*!1;NP`WJBviKhbRXBLSnM}kv* zx03q4TkJbU-EfKQDvfYiglUIde-o6^dP^dD?0|nOhX{HoHOo zLGAf zN^5mTv_53*{`?5U>0QKlgtX`Z`2iukkZp8P?OGLwfA3X)YnFRnZcns@4zIzNtRuuz z!4?1vVFizbkAK~NCwGd1?}?iYMY7nw=~?Mjib+O9uW`rxH*ud+t;Cb9OhTKE`X{x~ zZU^SxUC_8UKs7E??Xb@mS0DFRC}_tzKzwo1NjjipRalP1Hy9-Z{l&?mDCsXuZ7LqW zr!(8JL^-udE0J}8O7q*pE9h8C^Us{{PjA8wkkDajQ?OyptxXARAa zMIC_Zq$Vmx_MM6$*ZtYaQ$jB^IzuB?E;P3N$iIhOS)#orKTQ(aJtBS;f78eQ77QCK z(O!VRn?gay&-erEwi4~nPIJQ;8lRo=p|0Tz%SI6eXPhPC3`^s*hzdLD1t?;6r2?Is zgGQhC|EB%{oS*uMzdysB!YV?}r{0zys5p-0s*XbyhcCI{Z^Uxn$nA-aLvRE?5>K(? zV81Cr^FM?6T?BZu&mn#^E|sYafj|AZ{|f~;Wva!JK$OI(nW_?kHq~;4-qv1RKZfmB z8n)7$!)J#z#nh>i3?Cd!}5p%vvWhkR#+;}{N_K%vc6JnQ+-YnT8Y>|6+irnzhw-2f2p>q zzCxqC$(9$f?7mWMTRj;@A#Ify)ml6%vNqJ*(x|4Y!qX_Gssf#x!;ffGZegOYgk&#A z38#X6(QA#%OSu2TYC~G?Ir)K#<(^ZuTvZ%Ct7-Y;ut!R6PuyK|10%8v5uZ`-o2|$`6nz_Omrd)`pNdtMUZ$ZbX|-l zbSUqpfEE^(_H`&f%heLlf*en$mhXbP;rFJMmnl#vYJZTZy;r0*NtI9hiS+U}S?(30 z4}s2Ooyv!D$BCx`ov(;=lF%}pX9?&qo$(kJ{Hm}zy|}tl`4TiQI4oY#Aw~C365TI} zbf>7&4d<@#t=WXqhSY*kT5)sR%KcL?uk&%i{eho4k{e>mNeE+}tsHYMK{b^Z-z|=r+8)FAGnOx%$&?DspcCD;n^iZqw3qI0DDs6i zwj|tNsw1}J+zY(;&(i)Wb8#=Z&)_TD`RL+$oD$bH?1OnyB2JQ5#AIL98qk+}%AeCn+Mj!{ye-4o{jwqnvwe&F zfCyFqBz$LlAK$DX_DyV{jgE5$IgYJPtjuH41;X5uCgudp+Z z$FR_y;F&L?^rsWLp-&$vKc#2`yJo`2hHkzfC=z|_E&I!#=H?MS2th>dJfCL%L*=L0_T}1}=`unXn5!zA>3;CjJAuv!kc~8E@+usSGCfd%hM9c-!{xtn zx0K6{zTMe)r`g+#?Xk5&y~~bQoG6{(-@+PiHa0xZ6>Oi zs6Z2&qGvS_4{H4TRQb>9ArGB-uly+2E+8vDj(BOUpSgwZ* zDnzg9nx#5UPdpStM-TMGneq$;Fcmr$Nt{%6t!80L2-?E#QD_|w9o6o|otX)!;NRGV zhjw_}jww{PvT^WAwz4kg%e!`f3vNX8kfF^X&;>)gGe8^KxPT~UjZ@@NM z0$o*b8U@C22i3qE2gWPFDWQKBNt{N$pgMT0n?erujY8-LRxcjI{D%_w|6%gf1%3`* z$pX*j0=G3}ZwQKBIVAAk33Nf=pGOG%TtLgSMkQXBH4#OkVr0iR1aiaaQQcWW&miqt zy9K2oD?RI?#K33ljX`bCnke1Ilqup@@n@3)lNk24pmu`Lo<56TeG~8ZDmWO%-dJq}xZb6pA(80%6G$y{@R0g9)$^WHTZ&8R9 zoJTLTsuv8JtxzUrSAfA99^|)>Tmic~Y&Zzq!?5in^pFQ>T|uBfTRxDfpd-d_q7thd zQd1eO9OkdVf!wATa@`JOcm?f1hQeqBpQ&^pALs(-*(nv;4&+WrAMO(Is}R#|_dtHR z0qf=53T-dqpz&B!;3&JQLfebX2xEjak2*y)p@Q}zLo5EQ($y8N(Q}r-;q>V^aEVJ* zYUx!2aYyDG*1+2wkF|#U4)M7BKm~U(7Hq^qh$;?WVGnGL;f~AgiQgg4ItpiT?-Ebp zfb&N7cmCL!rt7M1UTd$Qkf&bDH#&Trg3iNe%AtDn;Ebvz=f4+ zfuiP>G9yA1UCs&^72pCzcMT2n=Q1D3J6^$y{K6CVypkU=K4a=TgHPR#fGVhyUc>2`w*_Ry2p;2f{9I zB`TH4%4SU{l_~~5`Q|`lMkB#rc1z$9ZXPi(VM%MY{6IyEDpj>e6$hn^3>3q{@3xVF zewzr;GCMgH8Vz#j~^lW0K}TWuxZe@vhVw%`-5sb#LM zk!_00T%&RV2f617L?O+!j|&Xtju20U4EOm;^zOKTUja^~tTmDS00-5qju@THW0Z4S z;2{lBwYWX7gS$k~B+SLWksrv-;9o-KyALIxdlLD~I|3yPcSQyjZTW|P1WLI^>txGe z?hK4Uo9+n2qYD!Pe;;!2W#Da-|Jg&VGaWe+ra%UhTvY#*S3{2wm1UOjeO=#m? zfuR^j*bYl}L5c1WiKWCy1<~z$5^&Yp`U@++2@E?=O>$1BYUcJ#{a5#)MryJGsr<3?AH&^?a zG_P6bbvj%Yr_Ez>x;##c(QL4qy>5fSWOrM2{G|hdub8yxotn{a{|scOMeo#%PVPS4 z1zmivFb<756=0mq#i__r5hfhr&r_t^*@F!!?yx4S$%VxJ2T^5_& z>M`k@R-4@j12LK`dZ*4|^;-FyH}YR#QuR)YUFX!h%uct}WN^714v)@kF}Pg@qf2k& zPdv2zMJ7FZhju$k7?H25vqx0h_q4A|#}zAjr+0MQ><+8RYlBWaCWFBZ+;e&jdcE5T z&-4~_@}cF4{OVnWlVVfNMx9G%ba|~FtI1;bIQ2Gz+v0Isfzxo_me09T{UQj%>hjtR zAOxMqX)-vhPM29{vUx1>RBs(xNkK>Fnz!TR-YBuOIwdvwfKbBmK+jaS zU2n159Cou&?=-obZkx?&wdtHjgWG6#T2RJKD2X3CA^)z}bhpWA@S5G2BPNsG;{oQl z%w7Q1>#at;3rxo!*vh0i95$oD;n91XR;S6P_u5QGqs!qng5|nBE;rB2E&Pf}kKV1( zDp**ZU84DO0=6`x!(jI69d?Jut2eo928Z5a)0^CGz1w5(8cnF6^V&pl45?;^)#$d{ ztyY8AYXaJwpmrXs9#qn7u$WK=yEBPTuMX^G(mXD+!{F6fbso?LtI1|J>%A6G1+M{~ z>GWaM+zlg++PzCOv*5OihRcCZ!MmmAR zHr`PZ0C!|20qdTR_FvbW^$QyHgE}6{y@W>FEXhH6LIE$D++0-X&8o6Ta@_qCCRX7)Pt z4vW=e))_q}7^B1Bw&`pJuM-@$)xv`i=EbJfaZDdo_Nz{M@>q2lvnslvyh_`tLpz;H zXkB#1*}&4$(S_nbQd;ye>CyhgwcXIghXU2t>104zEY&bW_{z^+M#F5Ece}N$9CdfdY-?hSA>zCZwoem(WPOu|n7f7P_%Q z_(MnESP}Oj%v$|1UdQ~Z-0mprhd^JbT{7>7fSrARCEEK#;FgB>LER|71zpbjws(A= zMV^I=`nVm7996mZAmfjLo7kFSbkC20UhK&dwCBgbME2uS6!TLc4~o$&{V6b@VG?|I z^E*)5vTu8!PksvYXAe}Mw4VcmnOrpG=fE`f%Sv?c=YYQHTbPV4F2|fc=)mBwGEn

    l_^VeF-fJl_rU4v(%c$2rc|1H5>8B%=6(zt|4MU> zumh$v7k6BmdjM7{OLKE!U8OYlOW|MK5pmDPH}Ge!u%7!Z{&f`3voGRbQ1g4$4Y`-_ zPodW6clei3R`I|1mr&H;d;Ci{lJ*1sB^)yO5&shQu>XXA347Rn#=nG5{lDN}!qZ-W)YvMxi;+LpVo{qI{_O98 zss?O}^@3Ir*L>XdC$ITvzv^2!BO4oR)+&BI&?78f<6l6;?#t+0@|xc0;*Ez>P-dI^ zZGCnDJ>p`h5?EXeO~(!3b*_%)p_8U&Ye{bd5s{P9(zQ>^j>{7d*A z44vS+KHBj+8U`n^+|4owx-_6-bbFZy>E;fi5#-oWm5jz_EV_lAupTvAvuY%FrxIVP zBzgzRSQpfaDyQ7wpOrh)^OYIJ%|WqjbOAJb@ZC?bA;al4r~9;a?I<#3TH##|L>> zb(JAdZHHh-l>Ty_g?o^Adaic;Xts7e%4`ud(%`po&#FN7NeDun6ygO%sB}Njma8BX z@7y2OGPsZBJ|fza3B5o(#e~KHn0Snmg1?RXi2`LmT91m7gSRPKW_GL}$2F-6t2Pow z50L9pf^R7xsWG(@75#mAOeyNj7x&3`iVz#AD1tqSUwVjQ`bvn9FhfR!Z(*r{^0wzw zP|e_kmMDGfb^~W8MndU(N0DF)331>0WS(so+|O_$h{rOw#}H33W0(3vg~oOX+Sr#xviisgflQWF>`U1Uj40yUpb|pT7__Wwa4&a;U?ldQoleUS zu%U#!r{toChnpw%K}Sa!i5%naui$=^+Z7$mi2;kcbAJ#|1rz(R3VmB!FhK#11xc`Y ztT=3*O{SY955ZnaI6L80NI2cmV0&;Ab66>xLj^wE{NcX(XdK=1JQMjSSE(nlzSn+EIl4!hT2bnA=;lMXM7I!#um z-C}du;d_q*oq_6}>2&~E5iak^G=)NeL80g*R3L;ZpG5gc*_&+?RiROJ=-d#sl_R#A zzNGgXk>ApWFyffdmsnPkcIrP~KX^#AdbmP@Nx8XovRYmfr~6maoVHd=3Z~pk(=#jh z3Ns$FXKE)k7yp1r$XF2@cG8RvdeEq0!6Y=-xMM7ObZGE4v96~(%wnr*L(=6N;f4~2 z1$RL%Nyz1=JaxJ350Rj;#U{I&-eO~|CO7I4axuX$NV$l2oobcERTIqp3c*Bp@2GY* z@`-Db+qo55U6CWp=IG8A(|e=l;FI#-9lS_Y#J#suTg zl_|lFZ?W>ZGnV+X{t7GRHQQ=iFqFn#?+HxGmx+&O%>y~5(9zN*l=fa zSUsW-zsR2Koe-9W#WY2<#eATfZJ6vC;e#e8s07Bdsk-fz0day5%dw>!;F zo6`15DKo>4JFi(?lmTw&72omQGhfe%t}N@nCVEv zlX+l3q$jJl&74+VfxSw;7av{iK3 zC^#Zjt8iN31_GgT@>!Da@p#kR_zQ^+>a_Ii(mx`ye)*Ma{FaJ1dIshNolfg^kM1_UAF3 zV&+Xxmd~gQZO_c$7c8?$TWGx`!vBzj#wX7X+8DOwCT&@nC=~R{oZx=8<0frc!G{T9 zYwsT$HDq-eBm*T5*#Cg#tjKFc9CZc# zh!^}i%bGTdkga5^HOeh>={v&)z&GqXHXbW5aL_Zt$SlpUB8W@((}TY8Y+Dhn2lBX@dz>O+a#d; z36;KTIV@JlLAXq_<7TDGrES(!x%TiXq;lPO?~364EIU9#hZQ)X+#i80XkF*cg4Pjr z0@|aKt6{+}vP^)gHR81}{B28KEANJzt!mOiC8c!GUxvksLa;ClAM&DxQyhH3^)D}zY(Xf84;Los9ib9b1w~-Yf!lkTvr3ix2os^Mk{`gUkVUMAylv^s7e4s2JIeaZ$G_w7T+>!Av?juroNWubO8K6~b3GCZG;k z2dFv$mDp}2YecA$JAo?h1j*bLTppKsf7s8gN9TqFGSD}#FCE6+EI-DwmJUf~-cKCz zk$VUgPA7U0Gw~{P>Dbat^xy5lRH4wCDt)11;{>+&9rU?9!8UD}S$Jf6w7O4g3!!lB zq?&pJQmD%e%Zf~9xi%|9)nFq~MO`Hb26W&+USjn#XB+TEM}mhK?hzTB*wFGM@f3e=j>ll24nnc5OmyH# zFcXbE8f+Fvpi3Kbd`E*@xuXO=$XD8!v-DrVrR*d3qwoI}Jg(>%f4L^Ok0kCZhXUP4 zn7a~!X5kh^MMI%<)`^!^bY{N8(vv?%e~XD#xB0KcVM`yQ6W$0egF?ew#8f&Ih#GH^ z(FLRb9@JPlo&D4P$XVA4z4vu+6Z_5gu4Kc~g~sZz|lYxf>zxVUXZ2t8Ucnrng| zNXf&wP8ANe$u@L=ugGd8=dYtAE;U5yY{dkwH{C=JqKQLKRZQmw6A*afN3@kKwbdV; zY*wL1W7kbjV0(x?CdxgApc-z&33XOu78(S{R<(gyZ(*lw6a0+o0#uIFJPS>}yDp1p zGBk)QTltJPDtj{Aa)QWnmlQ0vFhXz3 zB=X_nhIMP$o!bOwrb_<=slBpos9;cK7Ms5fWj#_sjw3`{-Zqr*Lq!tmJGk;K?g&94 zH5P}|;vqbiRFuAIeKGd|0Zt8QvIPFFJRm}Pp|@{|Z%+h{B(R4fNDOreBpw*NE{nSY ziYR99ccA&YibQlQtJ2HeP$O$1CW4TaOCsXRRt>ZKP1P(v6~PrN)V<~F(^cZEyfAPL znUMEt43wyj)whPugn9uBgyc^QwxWgR5PX@BEp#+~Kw9YN8o@#dhRu)|HnIjzWLNxy zn@_hfhiF4E(R&F9iu<`zW2>N>n2IcRPDFPh2q!_A0;3tMJSdUJ1mM?2*3Xn zyCf7M1XY0!cC8rN*bnW6&HJ-jZS(d?t^1)xrFn-2Q3`{2qq1Lef!@|-`T6RS^VMbP z(*KsHTan|risTquUmd!{zBfDBR0q&}?r372Kqn`?mdG{Su4zS863y&((NDA^Kq)^_ zA%UiBr~O3eO(Gy;P6>X3>4&nqRS4Umt*XI(oz!09cF|V=3E1WcL4=6Ag7obwl9|aU zqx@(RV?~z^Rnc){_3Gjdk5v$NT|mMR%e3j^0jQ4}rkrqZ zp{|CBZ>PO}m}`nvN?7TCSez@Yey5^uNK$1Ft<#H=dQ+RIXC$IP-h_n{7W4XcI=6U2 z1pT{A{P}vC`0pSIrHTJ4Dv;8|(|5?mCzyB#{D3fVrUNRt9gL`jDY+{ltAi55+U^j| zJdID}U_g*;FeRwwKX0~!*Jv;NKzogPjB@#gf+~P{^n;OQu%F{#b1 zA_ESxOnbCHsaaD7?hwHuPMux}`XWnch0E=vSpBO8}mUkq&-q|5Kk8cQ2iY+H4&@W`R5ZV!X`ycTwo|7=|$YUcQ zLtU1NZ}+dx?8>x4hsIZ=GT%hm*Kdwi}AZQxc7>aND8lO^9Tn1*T41 z1txaR{EFQfy`||dT!{GKYWxX7^-xqf4ivHCl@%?Bv|$La0c=m{Q#=H31fSx>4@jTl zL^)$1CXF4GOva>-B*snMDf*PPbUSN^b_Ab-2nb3FA4`p`$8_7!v^yI#W!A{u61otA zoGQMZcHuDB2-*$16ds)$EoBj^W_4cb=`M6&QpHfhM~22T0mg$}iXUZ;dn*;Z$;ti| zDGd0J?iF*HA=E=hAIRD1hq{65lDT(?!BQ6Vr9{HXouXs;f&iuX@*fHGQ_Pp4#Ii-` z#V69(MW6Bq9=v*<@wwE}Czx+TnUf;>s5~P?+3}s&i6k@dA;?kD8ePnOt06Gr+@SS| zz=+K0M@Fl^!Q6-$WHFMMDrIAY= zp|`!ow}M+~i!vNiRz;{%sLSIbFU~eO#i1=8Z~|~xPZYg0VnNFELt#J@wW<7GqH+Q{ z4zCN-^eX#09s7z=R05@({rp!L97Z4@kGNTNDcA zR(_S(wquv*R$f!KGo~rgjNnyH69AN=T$b8;PgDiG6vDhJ_e!Wj2oll>P?YKhY}3Xy z&~DhP{Duxpi{@3XNIk*gELOC!jVnl385+};T`0!_E1&b4o`SmoC!dOivPlJ_z`Iz` z)b>Z_!WtRqq)RJ%aK(KM8r>W&f?f}=@B%o2s44N=uN8d2>x z>ypr=^dqB~EOfE;DL7*eTnfLK*Y&j|cyX>F{UW2wktEJV43Bay%_W+q?iQU(J^@N` zf|EcOiJTyK6nZm%w>aUMDvXR!qEIib@W^c_y-g*@>_VHDRCHi6W%(&bqxM1=%~py; zqMrnbM5wmosAwPF>Pv+G%~;{H3Aa)xfHvu#OJ2(M7v?L8iW>nnHYpGjwqqa|<^1Pg zqP~T46?_v}Yex7w$Xvk67iFQKy~LmMyF**lsY^`G?8ehW@e&h)N&muf>mYsEPto|Q zgc9B{^+!`zR1A(W!mPs4{>W?;zp`R5m~x9n?p<=_$eXS7#A&P zG!@eomV&yJuCN4{6vkJid-9oDx)5qP_2^yt9bi8<#yr+gtzy>2B-l#Z!vROHWPPMR zlE6ILM_cfP70Gix{~+c$LQ%|;4`8=;be;chQOw;pqevkL8c^mm#ePk>g{pddZDV$p zzTrY`J@#T+sZZO7B6*v#^*X(6p?1a6gHjVzdvo>}eb+mpI>WO#3!}x)aA?m{m<@IVG(^AetnjNl`aeOM^ zAnD;w0RnrtFpl~evaOh1R;co697zrZB*~ifOhCxJr>asAs~QCvW#Y+9x974BJei@fO{AbbUg@H zLbq}%I?8(0SGF3^jd@v94KuXKJ;%sRU#Q`I(^S201O+dt>Dt7b@k1f2S`B(u4kZz4 z06eRrj(A+q3z@1N!4CvS)E%L!l%{G^n9>d{qR#lIjORB24{^pSAI9ula>nNwG6Smi zE^|h>^PCtTCM)zWhde~zo|xCiP!^Wy;?CyawKF+!w zerNWDeY3~t?}GbbqM0j5AqkwzXy$xK{rW=zR1!FcfxaITSm;{*7S^z_5s_zwaltpqn%9P>^R2h#BaF%G1o zr4fZ8z0EXOXE6-{on#d41r#I%JRm?wF@G*Y)_XD8KZbQxi5dq0YGf#`3Ani1>qjlt zu3DMTFxLdk%AuGGkOBh0sxSI@O;$^^vHrHFQPu36W_pVYooKu*6=gLHHcPU&TEc?p z@y*GG96<=l7Zx*8Gl3oK{O=2(lDr=<(D{qy@tVJx#{?vcF8Vc#wI_Cq7_NDXX`u;_ zmr61?W78L-!ca~-DvkRO*gt+OoYOQa>0J0jko2g)z9i{#M)DAl#HA!x1W-xRj~VDi zDycA<^EcmtYKtcG+GK#4J3gXwZ1qiHrAz-g%xWbs_PWq{om|z4Pz`ca}b$`GW z_3KqjwEcPm!`vTGD*c-C-xpBkJ|oi9*auXfrU*Q{`M@BkGgfKkF?!-8^d>Y33Y2=L2?hyT)~o9 zX$Z*V?zyiAE(~df*NL&Lq%?%dn(A0Gmb{Z5)n;cOV+T51 zaB#t4{zV-I@3#mm7ab{hNqPB~H{<0({_)C3at8krs36Y67YlkJ9=;Gi5IkJB5cfgc z9`0eLwD&%u!}l&3&kg|(ar3VQ2+1J6V#tnsM2GJkF_MCTaj5smTe8#g4&aQs`(Gas zcUPU19%mGw+>i*POy9XMb3quXCZx0p++SDqi>Jh@5ZKDBS|gY$J<3iCrW)#etaK2; zxW8pQ)clwR1CszMDdZFbZSk=@zVkPCKw~U94Fp|3)}D`_VYu!OOQCw+ z|K>+>Ht-UGExEk^S}`NV9_S9`T>lGdT*_SFs-P7TDK6m$Vx+i4H7?EduQQch_?SkD zYD;4tLhw|^4;UU2DQ*)WB)j;TAxmFMBSmFY?J^5aLN9Ts3xpvODb7)m=tp9mmug3f z-x!5+Oc-UP;KG~%Vd6_YEU4PWtx~B6Y=po~h|TvTD~mnI<7(O4lMQY`TFGHb-$Fk| z?GOCo^kIwuDkU?ohC*W!F|Hol`hsq$cEHdvsza%6$pT(~`WqL02zuuH z^+i>$lfCG;nh)5ePRZ_}ZyR3@64i@p*+)!0iv*b^^;BStzPFUdll20qq@FSibPZLH z5Ks7$eP-aEO;u&mss!Iwd zKbAww7X-HCLQ9ofz=DeUf?P;KYUInIrE0!P5@LskiuHU8ejtPvy(M2>&#%tZWz45x z9@Fx*CmLxCb#p+eoM>P9q zDh?%U1W-vCbr@(QUk)Yw%_mHFntbfd*PeycW4Jy6L%?6W0eNW_!Wo;JPjV0aU?(a} z$*zMse0UJbH_T{Ct?U%oa~-%c=RSRVm3Qdcm@iXGw|5#*{Zj|ic?-0x!_E}LWkE$!7Q&3BDg`a68B6nG28)N6$-&}55FeaOnTI?l z=!E1CWAOtqSd3jJ2a8rrS)-THU@=F=@w$M61dAmCgk%p!hHN2_!NKD7IC2~U$dO<% z9FRqW#qMR=!NST=4+oUWV8JDL8YIBM0&a{yeWW2c#_;UyRK3lGhBn8^L1t!ou@pFvd$lAgcl&)O>mN zkVxNZZ;HVxh$TgbE{ql9avB}(5kRpu2)gRPK)a%=Y1!gt1Aoy8zi^_-f3`8`mdg@x zLLd>24@pmhwotoT*|l|@NLO;%s1(vOBE?XNH6gXRi?IeaqaGrjTqcKz2PtStg@}7@ zCPWA;F>vTkT6Wyh>(DNVR=&5A&7DJ2IBKgnprvI*sc zSo+3tv3lYrO1{kS&DF`dn_0=18Rn%~tmMm#dc$wSX`v$}bL`7F{RX7LgZHljsAP^0 zG0>kd>tfkAe{q#6i&bM*M1`%g`=}NnJj^g%1s}lf2*jnqjk9%ZIm(<6%!H3cjL2Ou zpOt(u5lP7x6S4Uxu|Oh;=w{TKd_q00qW~(!-~J4=?I-eh%-^*BgpS9646`hhd~q_z z1P$Vnui7e=SoEBw9uJ`@&y7h&?QrcElZn)UF_|8h7!~Tkyo^yLZm`s1)`10X#!G~e ze+uYOIia5jOo|@D>cIG^S_5@&U^}3Nk*Wn@PccytMI@f0)xU1`Y~6>%j#QhDlAFRI zT77kEaDzKh2e@!Z)%wOqTWQ3u&?j>2n)r$6l1*Y8n@atYRN>z~L+kls_Qi#`zBsSm z7o;XH=~EJ}RQ32O(}?aGH72DRc?|E$B{va!$(KSab#Zn$Ho?K-=-f%`$4tm-jfl+A!J<$FXa3&%vp8d zOmY6$iGlu6?%Ks(*SXRtlU8>rvOVoRnA3|0g4K`-q zrZ-y9#^2y{R5*pq6!(N3L$)J9N3UXf+{!x|jv?!b5!FPyT4q;d_@^nKkfX?sBtbvj}IE$=XlzVax+4l*$dpk#{+1;P3b~o%f{@1&E&&_nV5O8i?ArDPyD-=T$ ztt)E_4;2eSt?>hKj@NpHJjW|!YI3ZgbG-gCj=lm8GRGS#Ku9^pK8EZ`AcN<4edEY+ z2p~u1coskwo#V|~p*_bt$WU7VrE-qPB`~gtz#I=wAzLCaDCJAvFf0p!5>5#>380cJ zM;Yk474muxf3t@1PUmO`S7^`Cjx$_qpdWEk2;`-tkTdq)3c9OIjv)J4;7$_cTZZu( zV8jbChDfaIB|%Ox(6SLZ@#AljA~f*>WD;AP46sEOVvOjo`?KrO!^TY7B+oOFM$nz= zSwt;X$Z1F#1udy5)P-Vt;DCtif&D;yAvvTT_`IMKvdS_EKM*}|Qbex&xWtqN=SM%B z{jlL38O2-y1#!Sn1PH0GFEd zcF(dal~ye*ApFWeOQVi`VVwYf04OY@@VBJ^0hW%sXzi8SF8Uk8S8647QD8yx1V6Y!eqAjVAlRh3oXmZp?cJsyCZZuE$8M2!?YD;~IKd z-KR%HWS{OwK}*V~%awtyE^3=aNR8jcYKvPI$)hI2Q)BAa+XTH3zut@=ht}!~>esbaY5R3mhWRr< zsq||uz-kZx7Ef`hX0s%#36?8{H-+bi0`3%qQ8HE_-aBMv$m(=8cq03dSi_?7Y!H}fI)C)!8;)SVegR2xAG`> zNx5{Rn{jC&QT`6puUy0VmKuuEohz=6St)Vn^7w)1&gECj!*mm-urlc6b1+Odmr*no zP!Ml!CqPKv+?3&JjfPJEZ*EG736{VC%B-f|tOs0CZ+>jGwl}w6nDu~C>CK$~zgN)$ zO(#@nG&h2u-{S9BS0!=46@eS;Bj2HNqtliG2j0H}xD`yL!lBi||`WhBBZk*9RI{#R@c;tfWAb$+|@lK$5jB zBe)R=V$VJzfJ(Bu80f*6tiou`-|nYxae;^)kV@Qha=<*#|K_|q$d*TP8 zd-q%;kJeq8vhG_$N9*A-j;942#J^tbO8zQUZ;3Omk~|=`H13(F1Wr&w_~fa7!!&C3L!z?C3e+KfB+i=EKuc3RK;%QvQ zmax+a-(4uGF{$`+H73(Qg|#uKk~Gklu~KF&4F~B0sHB017-;Ra^2D3JskxR6^tv)A zKM#VVbT|+v1v24KVCaICO{%tgq5AjDOopHqJ&TKXr}7c$&aT=V_G27^$*4z&j%(xy z(TswYRD>8%%m^_Ox<#1)38{SCDRa7iyi7eMTs@`%S9qR#~j02xR;0h`@ZBcxROy7Nx0`-?pdhAx!6Z^~X2B=f;K#HN4AR7)J zf-0V2{M?6CvB2OHASEq~WRL@?7KG%Gzv&Nh<7vWuR3;TFf78Clb(e-$upyG@F@#2s zHqmY*hX7%rp#G9~EqO+yc~#<3pfir~_zI?@T73D^S`t8n?>UDN*pe&09AC@`vJxys z89_d!)~3ucjtW{K5#%s_AVd)T;m_n8V-i!>m!Hw-@w<%UR{;l!9+lR`oC@2Ap!>-T zS$UMb6wlM}tslR}k>pT7lH?hMKp`4FTCCH~Go~{1g@96-XK*R@fMKd0t_8l6l{2Vn zSYJw43ja4a7e0-h5r5Ve8g4z3rg8=sa-Th%X1GrfT^fU5W4v_({&5yEPym&*^a=y* zN3~Q{d6@`*`v@S2#gkF%wByNihVPMeG@bwpQYONg>#|PexGkt#tO4IlR}1I#kPqC# zuc$_(1GmTvqLPpxr=*e)<0}jJ!n2fx0;r^tEC#wDrV_!d_**z>9GexnxB!q!LUM8- zBuP#7V8bQBUP2xpUG*;rxdiL(v;aZ6J&(N zl|Qj|UwQg&134Rv0mf&t*Yy>dgAI8ep@G2eiT`Z)i%j)YzgP& zx1LX`vD)h4Ca{9i1*9B{{E=U-Al1-$eJo;0HoA!M*?v9B(+8icAV5lE-+K)5f%S3* zz~5v-T}aK>#evMuMyTO zPJ$+tL-W_bB+ym!nBNk3%sM8(FIpb+li)Ez?(#L(J}(6+(qY=6d9Aa`qjIgY9w#T( z;Xl*Jd3E?#1vIZyRwcvj8#Mi88{_h}4Rn}mBY;W<^f?1{Zjc>@zp+8%n8WnmpgqKG zVYqA?=nx0wrRdKY%K&On!H6cd%j!uEti!*`qrRQ8DkEILNdKG*e;S4fyi0zvhtV4X z^zhL2q5vw1xs!oTp<)Vt!rx2;!EjCt$S~7_k8m;>0{S9+s*LS1#k#>JYTX5au0yiOmTHwYy=haPJGf*N`F0K>0s|3F7+=^i@8W_jEbbMbgLQ zi}&+X8tS24J|_`fbzaegQ8-WSLpp(+3v+f;^zOwwU^NjRiGgokY=+*k?@qz@E;d8D zR=ZOS9zhhz=1q*yW55hv?RZ82m85RLKu2P!#m`vyi($|<=EKuJ*Ukc4F;v4or&%CS zm$E?4*Q1}~dZ>0FU0&~k`|zcUO{sKn6pl5|c+=Y61qv%d`js3e`0fx>b* zNGEhQe*r}ixU4!CKt31#?OZ7y0fF3#e9 zS6%ZwwTXg3I`Q&-!p$aAPuJK&*Wz_sEBf>Z0Qo8io^Je{jC$ZKh>V1FLLjWl%&qQU-Nu&;As{ z6@g<(wg(xNi&!>xGx9B4Vpbywn90C(TZn+d7|q}O1tQ`3+{HL{IVoTlyR+^N?iaJU#byr{~o@%+uw%HP^RQ_Kml>y zzERK$@%DB2f#~g7P2#=%S*EZxTdB97l(Bp*U?JZAqW~e<#B&VU<*n4)zotDeRXlJg zChsyXH>u>^kxcD?(W=RfFn+9MJo$ zAfcp;S&XYO+i1*~C4frGn9e|_Q)LMG0Dm(L#K&{?F)^_O@8+cLpl?ac_yn6Hi5XK# z%n+)kqH>AP1ff2aI29;mGfv@?`6lXdB!8T&t#&Vm0g~So303q4Q>kOH7JB=f^q2aBuw=2)B z=TN1{TM|e9paPNEz3yS8Yn?;C-d9Z@-egq%pw=YC5-!jUxZq4#L1nTBYeGF9{s>B_ zmBLSvx5a@J=@~$h3%17y;z}O0fH5*+I}In(1yD&dc?|UB?Q%HbZ>B

    9k!g)d+Y zsHYe68KS9Jd7X4{aV*xb6h=5>L$@nyr|@=vX)8Y00^g+`tDd5z3@r|%#aB;7n-FEJ z7bKLFv6wNoW;+ch2Lw<_86Pmv0;&ulobWfhx6^R4CMKTXLI-iEuJkRrS-B%1jV2{;?a)q2RxuJCX=CYXWiCy-9qRQ|rES=e z;93loQYkp@?gUKI)Zc6jLNWImL2}8HHZis$z&g%S3ItF|N$VKsF5nT8d12nd-|S$@ zpeqq)c4%iQ8yGG?h5MG=vpn#QLbyE&|0&(F%z6A|hk7+t3OccEbKK>H;CCtLB-$Ex zc_DeRDG1+ZChd&bjHH(xjKNYnX@sdIfMUG}X0e5VrXbV9aGC-xFH?D2oxUZvYm`En z0a$eG@X+o?0wgC1XY*hs;0u=x?QnOHNCV|pu-PErX&4hSzNRV#5h2@abN&V6yd9>< zuVEJU;O^WZ$D2k3vZR(g_S{Ug5h|*l!a9zts2U6k02k#646CR@^&N*Cx}Dk%dypyT z1&ox2W9f{m$@qIW4*k0w+^K@8JbZ3vwPFfylUBP@p;hCz{gk1 zg`Shl^Bcz8#~=W9+wB6VWS&PED6C&`^Auc{zuicc#Hy)}?bLSN;|w2cQDGyVd~ey> zbd~|?UjMp@43;+^!QD^p9@iGg}*dbuHyI+YZPaH;O5oi zKdlkDa5MfQ_;=QUbpB-9BfIraRa1gav+mIG}Uqbg!eT#v0(?=f;F)`0}w zQH5!wkaq{Ur}8Y-zp4&XqAj=%rK+AiM2B%DrYlQAk@bqH$kbi3>DSn$YWi>-Rui6gjltJv-9~>cy*{gozBlYJg8i#bW6c~3s`i}v+@k3&d8~&U zm7mMug^vHFVk}27yKQn@w@py*Hh$ifwY1e1JL{^C;xBg2)$9Zv*^cQgmv!$ywgB8OY8PSB@4I7-bv4aW89 zgc9h}KE>?Q@8kOPoU%{p#&f0JvB9296f58d!jhA|!ftuv`5~sFvb)jnC$k^kCu$x2+)xi2F!(19rDz}|E z|D|@bIr!%?tc9Zy|%Dji+n!cOv zDFb<_=7KXeX17q^wN>Cw668sSaT8#~)gVU&P)U%-8R#J@h>&*jHwS=qymt)9B(^vi zV2kV>mqM?-4tvMDI%Wq9x;-&llSn?rNR|SUs+q)}aZY!RIB3Z&(hMu61Gd^DkA=-a zejyE{4tT$y6ykur@B_gCks}np<~x$7jog>y%9{^HVHCF<~@ZGS_jNvKRqOXO5#pnp!@g8e#+kzF!89LUf84Ur;`}2 z0_bd9`vK%7hv1B@*@J7j+LXq7TzKskS99IYg@k%8{F?}A*cNbqAK$bf z-p8|;y0Z6DACJgbJ`u1GAKxKBNcND;kZsvZ*J3}xy)IURaDZ%L4rEK`H9!~j^6&N% zFIUZj!wmUr)Rd&{94^PJAO~#cq)st88;w7eJMC2Ns~POS@fi-}UJIXy_Zoh9SgJJv zfa%%8X^8;fc0@DU*n3a1p=^PsAHB`^EnPr^MI8ZD(%Tyhv}S=EEclxgXpFT)gN3m` zJ6OEQaHSN`U;*T%V8IzHRe%e{Qc?Zawx>Xq%+(E9HHcui3>41%79Jz45O_39f+Q;F zEyyK>k_C*H?!ZfC*8OF}N#v7aRG69dfWa@clk}0t+PSGdgfW7@c?>jwa|6IENylk| zbfioa4C041IdxM_>ivzSCgLRmi1qh$iD_XC_x06WEeVFBTOu z^sIu8Q-+=u)DZcKEKM(t30fhc=PUd`2tE3*pf{AG{Sv0Gg9SA3{2}AGA>bf^r*dJ; z*Ra6|y8nnFtAMJlfnla#`27Z597PTU6iI%u4+umfPs>8>{9+lyz7J3;^9wG-UO<@# zwPt3hEZLQYrgX=JCN>y^@!bcdU2vg~^t`anj%2mx!*yGd4c!GnC68LeSh*Y6#TkfO z0F`tSVW4n{8P*Aom%`#Pf7=%j!~)CcLhZn^is9>9NCOM7Ah{lAu4^HgEtK|v+||m@ zPt%($DDx-SQpOs=S0$8osJ+2DNrE?}h_c|4muMTJm9QYHq?JvKwQOJwPdgR~ppsVB zF;KYhjB7=(BmQ^4LMU$=UM(9Bz9&{6j#jtfM`-VqU1{QFtSEott~5ioAeZDO zhZ*75fH@pI-V;D26&zro?@$#;!Gph@%S5JG$?ARD!Q&vqH+LTm9>9X+S)937_sJz~ z$#BJr6P?_)S#bgw5nox*mP|EpL=a2Tz&DJIgTMw36qf~1Ndre2=!KXDgh0XHp2u%H z=>eZ44yOd-kR^&_^uafDK>9Cbf6V?dOF~>Y$yfsW5aNR1X4Nn^ac6%1 zUP!=8DmI+Cnb;ugWOd#z=NKJ81>i}_xDXKZLgIoKKM>ye*68Z39 zA8NO*GL2~6xylriejw&~l4AZ~9M(QS@j}HZ%km&INejr2-{RanRXHF_lH=Y+9pt0i%8OL@32Zg-$ldYv4ODbs8D`wEx4V|J48at`IDN~Lsf=)=#_yIo< zgT@b_c4Y=opDFA6FKN)IdNAfN1V<(OfZ-rPqk#Y+Sw;hftlmMoo>~cQEElA8@`9Cc zC?H7!$G21#`U!legW7?kF+=|?NTCcIT#C~m1r8jFdsmZePPp8il*daquhQE>f>>WXp;hU;mnR%0`p zf&P-pjY3q7iI>!n(9I@3H~Mm(&Nu<7R2NdCNZ4UBlvA6!)a{YBz82Tu_JczYD}V< zXw&HGwEbZf+?v-j}u?Y(PJkCEve{nXECEk^+R&>sB%b=a)<~2H9Ms3 zf1R0XnjF$N_^;6+tQuOCB^*ak1y#E>$g6vbu2n5yaz&+yS?!=!v*Whi>=ITJ znzw#;s^MYapBLau=GdL__yEX(UGpgcR5HiA8R(!xvTO1;0jei9s!utj?V9&8TmdX9 z`xNd0`de~N&R`}`#n-W7VaY)jaOhtfDr_3M0%!igZz61-Ab})oA4c^p=wUo)uMj{b zVS6#qWmH(f_xPKSK|JhxZ^hUaic~qNOo2oZMXGlbucTM9vQA`0szk110w&C?P^9`G zWA;BSQhm6Xp7L{?r~C*^3duRYxRR7SRyj;uMYVu*Ad{ftVHVs;$z#T0?YuA$ZNcM? zRPtE-5i2 zMXIWPywrrAV>bP;cE#=s(H30w(m7^6qWbP)#qQw}sMwuWOtr6xQ~OG#+Uf4s*YJ=> zPmwMlHeGHD8d2}v*}ofl3Oq`|bv8qEFA&2c ziB|xX#0fLd0bj`@34hZM8po2nXTH*o1Bl`3_Z6KV0(of;#To1N6-n<9xw{bw+)0AW zV;F;g5swm!1yD(lHyP*$R1jg5;BOWH>v(Dh$RxHn8DNV{?Fz9ykn}7}2Le*=wojY* zJB)bYVGTFj6X%92DQHP$UJGux@Bh>PX_@Hamxn<2;BXGhb&~sGBMvUZ+oS;Ax2aMt}cDM zVR$=3S-=|g&(TMSf2vMmmM|K%7-rb!6)Pr;G0jK9cZ z!qU~AwMVq`!cQ2gJSr_YB4HN&E#-xrzZplO*F83fijFs-@wJb)MMY1;cR#W}iRi}! zc_h(4V@w=ALIc260aOxw6$AZ&h%R&tfAKvv4I&7P1lS_6AOa+(HUq!yq)SB^y@KTa z#|8rPa0Mj$lQ5rlG-mx0N9!3!Q1{a|7%Ni|ysQRhDQ*|(PY7X9G+R=kVN)?fLs#U! zCq6WE0zC-nCLOPz5R^kggC9Q-LWACaR31LJFs*rx(y%a1#_^(ngM@`Q1PG}MwlZY7 zm}j=X{9+tQ4h1C1i2WEKj7EgjN3}=noeceBfKs`v!=-o>q=01|awDYPYRYY$HI!Zl z`A+Ms=s9ThR~<|>92TUIykI{ga{ySu0pJG#R1$bE1N{yQECvAn;#(#g4FI}h+QWGv zL-p-ZI-CP_Y24&|6&|JMp!Krsz+MfJJEw zS$9Qe;Wrhr*+}?BL<|UgORoJ3Bjy2OID3Ci0F^}ik%2x#L==W({$dnStyKhHKc@)V+bcfKSjMpa`jylyrf*c zRt4zyVw7kkevA`i<;&b(q3T-%vOImyF{90S9sOK>~zi z2Xz@TKae4(6UUL`5I~N&c?&=m9ll@rM%&HnGt?~rrP9s01b2W0*v)%oXFK&a7ux%9 za5(xcJKK)`$i9-Ditf(Ib|%?ea2e|G`nyvq2y#fKe+MHr9~i=JzE%L0L~hJLSAHYA zIe+sh6OoSM1>b19c@u`~Q|NA7#RcRgXW@*^`-Zyt`Ea(KN`#9$(NnpCv}@oG`p&%+ zO5(2wGDzZ@7~P9N7km0GCt`LaiQ9sK>P`@G1yAR1{sIB9rvoyHc}@nH$DUsC4$Ki* zj%!>2W!BW!KnG@L+i-7Xx`Q>*!P(gsf&XUOOj#IHU;%>D3pH7{e@R->RLXzeNSahn1$B z)OPo-4A*ba+1TBIyyP*Qv9l+ryB~f(`%aJz7fT@b2jn-Ab2Oi?dy{i)y0V z7H2!*H(`C4Hb1=?KhWpuE1LsaNPggYT51J>A*ERQw?W? zzLU((#~3^TLSXm0A%IF|H;{o|r)DR(7k_h&Dv8aBE1lAIFAu|Y4HS*t3&=}`${9Nj z)FuS`ApI@-yW^9&+EMZF1#Vot7N=q%K@#stMyKg1>Q$WtP)WSU8ECsxvRCmpcY;9J zs{k2hRw#GiWR45k!{rWjlqCry`uC*nHjoXga41(hRK5KEWCYa??T}~9&Sb+A5|=`) z!&8h)C1SA5VqR`Ite770JSb4<5tD#P(IeP_T=uEKC-iepVV7uv)|T&34=sJ@`TDJb zzn9^IUyw(fXP7LnQ%oTMX*wk|A=G4WE}Hpb@L_r)QO=9Of%?VNmQ;7}CrD_};Fp3u z^=nUQ@8D03w$KPz;Zt(JnsiEZ$p2E|#4E+@l#6kl@|}98kOGujPLnvLs>3X%5&dbF z0gwWe)YIA?oEvSybtn~}{7rNicjnf2;9l}ZOYzis$1_XxrRb7{(hFE}6}7K<6;SqW zV~t3^*Me{93|&ApJ^{^Mcj3XwykO7L0DUIgS2) zYC;`D?0FEKY(KL;I+PV$WEd8Ej3Cr>K__x6RlseIWe3}8ka%8bgIU7h`JaytE5L_W znSx5 z#(4MqiQJxv>CG#D&xt5Sl)AfTROFjBkQEhBzO`Qs)bjPX~sh_CT#Ejr5V*-UvRdGw9Dm$zZeSDU2fPSWgP*B3I`G zhv^Mfg+{t}gZCS13J-{(R6T=g%?-ARhrB}tveLZZlkt#kR3MFc!OjXu@SFx{US7~{ z=&1s3dM7wE9(?yZL91b)3V6Ty!8a7(M79wskRQDp^eG@EC)g0LI_Qb0MF@BP3d&XK zt8EG=$eTW~mwxscr4!_0_SBsq2(MyJu>AdC7xdoy!T$PX3Vo zS8GyzMH|UP5B^^=(POfSHbYsTJl9a~KdZD;59U$bP6xoNn4RW)8oU$r|KVsQ1i!lJ zCo()dY(FR9A=di%S=m|#oF&PTe)pfK{>9N^#7<~-F+;s+|2(S@zVO=Unz|}@F4n5d zJUnE)it2Y7ogr)te}Jx@Rg6;$xah1c%UbhW%uPkpSG=C3-*{F#OS;Iqa2-Vwip-6? z-ax0{cb23{s)^N)QWG?6O>l<(6kN}zbs+5T(H1f{{W=4fO;Ky(0;|>0)lMNXO{nrMvpl8xtF8~8(ZPMJSAz7y3sqH? zGtg9{3B?gYb(?K&g9a{rz8spo@%8(W@qu^Yz5{%Ssc~cQ1Nf#C(A7l+x4%;lb@+L7 zO;wy#WSqS>1$XMYN1LXjjEpI%s+DPJyeZQ445?NcHNw)pY)|-rNe~TC01Xt%Sl`ga6Wni|Dq7Oiwwi+aklZ!F8Ov_o6yZ&^^th zwy5!r;JdmN(WVKy$HJRxcF!!;?iq*S|I6LuDrWb5D|gRn_3rt4SMZqb?;`r615?Z& z+>K78%q|Z2~ecEp?-a@li zZm9Ok=@RIb2XCfVgpG^d=j0`k9_Q4eTjc!yAbf-{=$!Vz(vPVnKoNu@Pk$L4uhT!9 zK=&T03Gy5Yp4Y!hb+5WnJt*2j99RT_yyxUqj~?eVRz3c24k}M$y=NnFM2P++5A6cC zpT((vHPv2eR5+051vPbW!gZTj6En3pYvK!Hf z+n%3RFEJF_-C@S9`h(|io~3@6`xvI;{pa{{uk>k1!8x>X`!k&?>UEHuk%{wag^E*R zlidhN!`CZJUkBTDutJ*|Nl%P=YDj4G;MI82O{U+PQ`TXO8QfR@mWIommkqr1c{Kw^ zC%*~4txrF%ZQoNED|Kl55Q6V=+MxC)gIo1RxRw%1D;ldU5WXxm`@IZWIy);Jy?rY9 zh`s|{ZLO6<&5SnGF!fsJWm7MGUNm)~A4&nwVn1{w{cy_=_bC6^o9l>Yl^qecQmf)j zgEOKl55Z!FrDx)LZIo)SMV|RK*iWa=O3-by8RM_9Zj1cud~mBypGUh)HKEFrn}olI zs&0LLg3ekLZKBaxuf}!OsPhC=v3*p$R7zMQO05261~mMh>MfA&5-ehz6l?*n{G@*! zd!VwKuo6}4urnDox*Yr$TGVb%CH%{0xEyOkR)B=n{nbnrO0?j-aW z;O%JN^#D89CUc$`fzZ8!MoWT^Ud-e#q;PL61K% zivI!svL-`)z5(u$!~EV+14g(<4H}9zg#JjWMBwnNk%OM~lSj2!Q_qmmBSwr9@t`Ta zpKTPW^mEW`(Eo1{wUGh6c6X?v?g?z&bmD1K8-@y)SNf@)$d<9S63V{t`nb}dPIR)v z!|*j3AHN6EMv&fXZoR&)=)#)Ix;&>t`#$kc4sEk#)h$H{cCAx zW9W}$6YoQ9!|2B>qn}_Jl}R%&jea*}8`U0pwlV6b4^@a%trKc*Kp7RsRMP)16Z<}c zZXC9gJIP{#s+}~iNK-luJMqH8#E{87(1R~stM>nM1gT@F8XAlsX7&$}Mb(G@_Xv(o zbPrWReO?UJ!|P6TbwYJ6_Da-LG;$u#cXEQ-osOvS3w$cWV}b=f6=)&ZJW~-y{-PH6 zgu!%G++ezb21(^4tOLsbB0LTK)j8Cu%sqJKl8I*BA5Kecf0b|T?Tw`rLFCSUy&)Ve zBh8(5L6V`IJFO@QmHbdlmHZi}lHXMF3tcEuqg&`D9enVZ{~jBBR1@l-n5ESCo@8aA zNZorvmvp+@aWfi=RGa-JH+$i}&|n=@%s{g?+KZayE71^E17+uhRPJ4@`n_zHzm-HE zRIgM#vwZw}Imh!+^{JZWwBBHrcT=;RvP)r>6QCJSt~Jc^+3$&28e&s=A5osxM8cSEU>Weo)GY@Hct{*QIV{f!mh4H-sq+K3wuaxp7cBBPJI{cS9m4NlbXJetxvl^ z_u%+MDfvRIHJK=tx=pwK!)p>M;SAa(8N1@0|147R7dN0AFzBJa3b=g2Tak#~px)9#0z4?k!7)ttI zK!xYVwNASSQ=scxF_-FiA%4OytkJZ?3^RlNx7NxWfWzGjh5Lz)Tw7s-`^9AiS_#CN4q{FCCo6`CN7qnN$-i|iWNIsU( zuF%h>)++2WW+(24nNmL#f30jX=Z!iSUH1?cYZ9CILKdlh9~YXZGnBg+vkDS#o}M?^ zX{ahZCGn=*MfB+S(C&Ef2PcG_w}$7COFbZGAYhXSJA_C&7PF`xNk_x0SR`%QwoEm2X=>;ZR4_I40xaMYG(4nc z3us74op4bOsiRTH<0TVPH>icwmqp+z? zCU&rnJbqClv>v%gLTl<)Ohpc@aDDgjP(4MqB1G0TnCJf_vThQrOeL~Lm8DOHLqx=4 z!)iZh+Dm14MeIdbumd}Jy6yY*B7tzId1<}z2kjVJy)t#>78FYewdweN7t~>0xGb7e zdCaY7*rVesMFz|XJ+31Q9g#oY2p!bvJN}>@gX_u|hjo3wCg$W>UF6u?p|^GV%pbJF zanopPjc|O&52X9_sXxf8td)OAI4l~l3Wd%qemFKT-f-9jjmIrRCl1Hf%Frf+CTE{+ zr+<-jZ)Qui1vZyJh4D)xQ3$oqfwp1V_I9!IkM=$K6XqqYQrviXv66zr`K^XM9!!zsTo9 z!z$Cy1nUSA>FkKWoj0 zGLO)j3}rnp$qs(kC9Q3gg#4?{4idKLF-0M9(c37qF3D5u8B}8B7{*q9%B~J|vUDX= zY*_M{5E}eZL&&J`gOO}NiY)~#h^a+uDd-(glyWI(#-;d3DC`KT$ev)*tpY7fx?e>b z*M^c&&9$Ld(-X(PVHk2?5i@g`U3dH}^tjNz*rl;AFPTF*b;k{(UL3a#N_h5?*q_7I>wM2#W!?F2zGt8d4$2EahF^~IvYiI#ZAS)sGm9OhY(Qw!6BA_9z zXS^)CUX#mOu9r{-Ro6?{qQ?R(wLCE=!at)Few4tqlt2!r!YiFG6q&y>)TFE~NYH2} zkRP$`%et(QK)wdLz;p9)n2MZ04!<1ldO`;IG-g^zLW*6-^1fhPT8i4HRMci|MQx;t zlBedDFGDr;y3-g=eo6c|?HB!yIP2Y*xKq|iol^YF@C+9Rq6qX#T&9uOWPuys;sCui*m~@GlJE(+Y5D zX)~n49NF<{T`AmBXV@U1#2-5f5h6FfC5;eqUM>i(qQ^HCHb13)xR?I;Rpl)02G^gpxa+{1qqnv-1d8!%(#cdLi4YPonq=2cxhVT&FMvAA-sNThCj zO)2$l*EFThfLDM<>E)rw%9QZC<@KEi9`#L}WvtWMU(-kw+gzh7jZH8GIZ@0&y63{0 zD~)wAzyC>|_@Q7?T1pxtDQTp(l7>+w$%*3T2H|IK(dS$v>x-(#8vM@qm_-qYWyMNWY5K;1C;_}7BW^b-a^TlqCu*dMdzzoh88=i|jP>B%Es$dOq zQ6+JkcDM~o`E);Or+l56zLnTWTe5OljkZ-y`MSlor754ab@)id`aee9K}`9Y#vThP zU;Q6dQ@;D+DS&O&n}E9>@oj0!SGjHY=?eNDKguazW_$xqjHG=16R2^FR@-8B z+eF-L%9L-`J>iD>@q~6PvkR!Av1Hwd5zj8nr z^P|>)ptKa8FabMw6;*XWNZ6vs%L|BfaQE2_6&Ej+$XQw;Ro^S zc3;NSqP1?f4-}DyEJ~|0L_E)K4lSCe=}}>c{0# z@B1My?oRXK^f`(WqFT_Dce6%bocfcjmQt{!aCLN@|E^kQ7gH_W;?&YbTP^4e-b*J+=FXJE0C;LboV%)LB(WXN%U+sW=_&`YGX*QzeqfaYrae zQGpiX&L>sro>=n%;Xf-@y)F#sT5T+}p~E%YV%!d62s zL00nlRQK3}U@S_q!LY}c$Wk8+-iH1$D0yDGM=8(P`~)Pa>}<5GpU}|ya%tMX-(wKr^79D`Yo(E&ucab%}HMK(RDemdGESb zUXxG))x0KQiylX?%<@DxCi-gjD!MYi2}OP#5q?sKCXa&Uo(@ysBd!4c zHRSrlmT1$ca0!6-8Y8e zmUYiFX{vQar(5Fr z>GZRvm$Zjh#7mTgMSs_rn>vYoY2|Z|cyho<@6ZwcjEq4e2arDpjT|}JU%_H^TAdgQ zn~B9`HnSG^p9e+&fX!%j81Y}+j__~x9|5qqEOzoY0GKRB7s18={zV`h77P6wLpbbC z3Qivp0H@Jq$6=(tl!x1ViY>5I(e( z`q=Y7Ywu<|qP<84hWN$FN9k~)@Ak8tcC`OF;aJiJM|5Ef{O9R&{mqU-516>ZBd5cqRNn#VdkL^vqLIT={G4FVsT={4`0h%1M z{pgCnkY!g@=K9CCrHhk~%?J-GtFQBmyg2EOZ@`I>#mVNBnCiCvM6I@QS-euue9;GN zlT=8)gnLc7IC(M*^PBq!?bzbv-M?t&CtcwcAYqG>mvY0i^gh;_C-H8fHA&)o{33f( z*I%@f_=EzeCh-Yd^q8d(x#-2onZL*jZ_}y7%H*9bybWDi9*%1ayDVME0+X<$f*-^$ zP`(>ejn)EX9wKso)F_|PNlP^-uI%i%q)v( z($?u)i4F3m>CH!l8&NW9H8(seJ#m1$n?fF(8@{)Q`TiERQS;P1*ipVA$Ux@%KgS-Z zgu;bX{?2*fi#kKuUzPF;-_v}^rVW-7;7y2rT2zejhgNR#bZh%Nn zsWH0-{`&s=X*DrunFV9{(8<#%LFH?i z>NLSGcY_4K5c=b@@LjnZfcul{!*xqQH=Ud2!QIes@C;hKKI|xA$_;dNuzpPF3Y?JH zM(s1CYLb40yDacHaSx0WWV(kkKL?$akUeF59;db|U9Qebwc~x>1#B z%m;6|LE?=5YTU^4UE(0~trTR6KOg*C8D++z{JTc=5$0!!hpQ&lAu@@X{vD{zws0d| z0Ba=nErS<)Nn?Z_NZpJj`uA=Rhjo)^V>Ujc7H3ceT?QgU^Ak7Zp?M&v4)%{#PUKF= z`M)tVn-sDZo#HRNA*cB7QCXEkGD-1wTDr-ZJ$?|M*{_djQY*7x3p!F}_V3+@AE|`Q zUPVy}GJ6$hA+v9drp(-vjPBhN{>1P-=2bnhZ_hkJi41Is+MlrRsDzMbnq8~Ydo2tF z;iA4iTF90zR(Yow4HbWjv4->YdgWseR5DSN|7g$T$jHL*kfe&Y3Xt^J{S)q~LktaK zkA>aM-Gip|(ck(Ty6Tzws8&lyqLz_0Pfqzjr))Z<%giaL|0VE>N&=}4PfxiElTurO z=)u&jlrpMr!QGV*vbrC@E)YV4j)fnoXLnfqPOHuC^;_Ilv(@Z2+5B#+%i?jHJyus_ z%FJWKk}@1_uf^uE8m%4x3YeTuugMnhI;=LY&u2B-Op&WIX1=XUw|adxlLOj09agK) z8gQGfR-51Ca65fYuiX>T4V`*XmywvF&xeK`%I%Y01WA z*pzySg+h6k!i~|Do?~yR=Qn#Dc9YTM^O?L>uL*1|;J1LcnOsJ<(T7eB8kfR))e8>j z0GkJk1fPL!HM&eTlh0}j*j-+uBT|3O*txoNug&T3TYP4h4IIqxwR-G6yU7bSVzIc* zb}Kr0ES$XJ#Mr~SjKq{J9<;7(?)~XSP(_*Bry9|Ka=De${T`Pi;Ix{3ej|2jn+NzZ zTCHZ2GvGFY`w%CqXYpE%b}&h^&*!k3Z8q>VhzM@G&*8P2Ea>F%nYAMGa?l65dLXXJ zXmdGiRyzbApWAA5gIiji#(>3Y2~bbFvI4!YtCyHCb+p8EEm#ibXhy%uYciSLe!t6M zHTm2w951{!o4ogRpw zUT`r8F>a5;XYttsP6(!6pBOSSiXiPn)w+!}rY9zCp)sTC$79Q&CvVNYy`|ID(k8f@ z&+YI*~lnPb;iA=n`BPhQIf+IVV^Fg!xf=B>~QGJ%QI6mijc~T@{?a|nqhal zJPt2-hs_OLYqo$aV5l%U*}XQa+wX|veKq#!q;#v_7y!S)cILA>j7FyeHm;2UlgI1v zm|RvgrQwUok@hACHtBw=*J!l5JOMmJdi(*W%?_G!xtunm#|$?MSJS`9+^s0usN)^E z-HRmco-x*lj@^-4F5O{+;RnX6fZq%r;t#mpZmZV;VbkjNnmu;H>acoU5HFm5I}Bb{huLX!`;ck;xa7!* zoyYnm)iZ)C`D{LT9+g* zUYp(N^P5dBJ36_1YI3B*cVidnGKwJWr?LS4L}ZC94pg@lN^fO!wzQiEjfxI#0dK%= z^;^w;6L^u+4^ah%ZI8|Aar!~kPHIZ?%H@J=c8|{l(amMDIINC<(e1Li+yRph#Przg zHacj-2=}UPQW2dcd0Y`DYFBz(5z2FOk4rB~GO*M}WQfZ!1z=!sI3e@%!T|5~yNx95 z*c^73%j1EF%Dm17wHIDI=P*HWjMZU*{L2D4ufquP+VN-?DO{DiURTfTHM!vhm^gTv z9VasZ@MiElj~7PK$duLql%AL>aW+%E#Po0?Y(kUoMy7P9(PD(**=dJj9tdtOx5eRs zLCFatoe^qtqDdr}qX|Z6qupc20Uu8Q0uV1e(8vK}vey^sxCUG;!w)L(SiIQ9Y+&YI zx8LNq*&Qy2-Qx;aJxiMamTho zmxtz7s%OFT4vW?0hos8vgo&8L<#d39dCjhX$xcR7mJRzMq#9uk1fw(zfA)aKVe$uz zHalRjfv-jC?-~!@WAj1E=Jgp(9vBUv&mmFv_#v;f!F0`Tb46fyUIzn4QDkR~HP=f_ z4^26CjQChJ)ci@5o^FG@38I421*}_LR-eaabV8D4F+1#b4-lp^PGG_bR z(c?9FoK8s1U?jF!eUZ$0I8OMS=77r&X(*%>5Evn)H~QV4fZq-yh{X~yjvu!{S1&O= zmIEgyhjU;DYCQ@Z3=dY2H@ZyJ!Q9}}Mw877dW6XrLU>hu`mU!w3NL6c=Qj77L`ZIH?$xR0n3! zc8k;HwODYT06C_^1(Qxl1N~OTB+ZH!b?k6|5)6qjLG^$%URNLxFgu-or^z3IfdK+V z5k!#=CXwkrZz7`N^bE$b6!c9ls!;|4aZ96-I-3vZn(YCH$zw8F11^gTavD3VcDQg* zfY}F(yks=%pH#(Gtt$q=T8q2Vu?&LpUVERyTw_SZ1{NJs@TP91AP}Pfuy6@w)<^ zfD5k(K%bfIMmMC|R!CXjMbI~sgfYD+(uMCIYlJ4ZM``KcRc?rU4lATuR?HgYi(X5>2s0DVvxUY4wruD3 z`Ars>yTPz;g>H2l9pG-T4hM+}BuA0Vzi~ncYY{$3*Zl4Ptc-YIF%p#J^qOrR2t6=F zh_jm_Xp`BExo$$DXkfRoCRA}l0Gaz(0tO=>cvd0v3>$cn)Mu!cSMJ&Qh%?OPpF*}M)Ttg+G%U*w%@Y)zzyPI4<<$eY+YeM;yeG#8zr)k`c9>b-qxW3>K}7oF&h zJ-Gw^S>^v{l|S(Y!#}J1WKZOuRsMfg`Ttqvm$zf2HOGHe`89SJ{#oV!XO;h-RsMfg z`TtqvSKn8N&C~u_>|L;})N%y_fSwG}A?ZXH9#(y?|bUkuX(DP*mVp(4kBQe)&YC;|r&{>8g=GjAh|0(ZMG8|KK4= zcj&|sefDo?;TB}oJ&V5Hf?DZ6o`b4vMV7K}yjix?jJiJ5zS_k)=+@%`l7^-C5BSwV=ABP(tW>g&F z_V|aiAjjv73=RJB60&bYrkX?G?CcqphmIaKWRQPE^sVnInzRk2>+iXa=50f@^&PLH z&$gi^xBdv9htDwJ^H5q0`ai^d349bq_P^Z;Nk}?@kdQzKBq0$31PJ$i1dw}xa4YvI z1Vum&LGDWe$RUB6%uHq`DBytzingL6C?W_dD9WPTf(W7<3Ze-9>*$_-Rny(z?*8|; zpU=jjy1uX8d-aa0>guY;hdnw96Z(l1rA|e4d}~v~^TO~)A4@|OsePi4u^`{jG`JD=7eyysJP^D%?uH(@V7ZzTQO2_OBDpO-`b z5=QcA+xfK3{JeRD!j!zN`17M#1(|s-;D6@P{+qLb{5)QO|7;|`W?@G1Hj!ViV`lPR zB)^I$gd06tKq+|lb`ep{x`@kddk3d@{4{Z^d|X*zhFVvj>Qc@C-3kh!A zN(a?_@-^0IsWL{RW6A_odwVOZ);Zp&_I!L$wL9Bb%eC$ZsyUeuRJY9=jO4Cz2Fdc} z^=jQ>979Vi4}0>7DU(KwD#+7}wCQ$+xt(NSdRNdf0j-CsjE$E78#xt&?4#4$tlF2L z8ncfSk)*T&&AUnLBh6^IL}js-{M8PWmTvS-PDW6Ta__M=9d`u{&8!kschLJx+QFGd zqiSYQwe>q0NuNmadUd@n*5=l*AZ@xnV8DGMux3pF{45wadlzG@RBeN?F|~C}pc^KC z$f|X&V^n*-PEfUXK4NUN{aaAU$$CL`@9trB9~0`zWB*1umrxI!>*~~Zc8wZKo@)nT zz$n*tFT<}D@y}`a=NbMv3;dE#7=EXSe^*Icpxibaxymhhbx8=RV01}9i8YTf0<}c~SsH;B z8i6be0+YUG1p12v`e+13YXtgO5KzBi1m=kZW@`jiY6NEU1h7^0EE!}~uN`I7UKXis z(x|Y2_eFgr;ty%~GaCMoIbOc>Eo0y>k-#4sfk>J4$R8F2Y9D6= z9+ZVHtt_)Ht)~&FOe&ak>EsiPKsS*<7mdI`jX)O*0`Ht;1g41uCTj#1X#^%)5V(7a z5%7xyiZlXSGy+8y1lpcq1on#r_G$!hbZZj1WAZLB3|~ z(?T-y3RLe}Uvh}Lv$?a4gs$#C6|I(Z`J!n-H%b0YM%Na2a@z$C-B>=l_T!fI(Wa|uu*su{z&`<_UI;f-!*w)!ffnYQ&&F83S z$PvYag&d$^@$QOf?r$~9pfT;7%R+i%Iyc)nS15hC#%`^5#2Iw7TfcjTAZdgvC$T%I z3MD$6H8=?kZ}03CG7eLHyS=lo@;Io9ig~Kqor7cVhw9}H&Tb*|G1V3wow>?F8>-sP zG;{BVYK!xyB9Uw4;#~CT$i?O4!Vq+(lXIHlwjr;bQ;hC|yxOpfbGf9vZbMBwm}JX6 zsIA`Hwg>1|tvk4GjlHs|tQyhHnHv&)5HuLU%xQ71bAoaNlml~W-_zMwJ{W?$J)O^+ zVaNA!&Q>m(W1IKJ4dV8YG&>|o0O$D2q@YzFgq1?)dpoNscY`R*xjRWg!}~byy0OAQ=XB*!P!78B+(2iphE0fItz$}k20522GtCio24mHCLld_< zE23Rh%RZQHIDENa_Gw6EN0)%02yGCCf?-3PZpA0GOXFd>2b2Pc7J4(xLazk`T^{QE zT6qi5qag-(N^K?w#FJ!S77caHNkBtKIKM-?c218*gWc?(7ol#>|4toL_;sO zjs!}n7fcK&rKXW7U~|C|w!jhwjuXlq<#b4AXq&SC4w`pyN?YY55r_^zLPJpTlkV1K zR^8F_)_3?B#?zyOs;Y}eJI~3|pA4>@C8Ycg;S-m5n#$jYqTSCF#)136zC+hOc2)}i zjL`l34jMLmc1l*vCA|?_{*6N-GH*f5%s|Tti^;;tS;4F;XcjtYLwIA@9iPg?H zq@ASUiUE&#m#EOfW8TKkFkU+zv;A^sTS+>~;JU{gfpF?EyGn>2^ET}hlOwozJJGq& zOx19f`xf>T6!zXHa7kfeh`7rH7Ej=MWR>$6cMDIh>ET<6VL+AF-Ym`tKG{1y3|(7Y z*d|Jr@KVgnm`dJVqMYQCnRz|`HUbJbeal2g;^|u;n3&Wi?x~)6&bdNT+7JfyfHAL< zCk=TDoRyW%u$YX!(beyzNV!cID!u`qW+7dGS&%w4$ z{JbnWvd+0LdNLraCGY*n`M5F@l!N5G*y-#-F}U-|QMAk3p;+W>S3x_1FO#*!6QvPk zP@%J>vKkVlLzKy3=w_j_h5`|E*aLj~O0WRbQ-X55MSq}Jx6_wmF#ymbH9JcEFSqkq zWp@yl?}wpt9%nn{efR{cnT->6fKtOIHOK058*7Sj3QkD2g*YUXGpk*^THotTl9jW7 zIvq7+1VXqYOk%3x$psn&M~U$@1m|}sWF8p^TyQXBf{? zJ=!{bN(t4!-Z>xyzofa=5!2A4SJ`ktgGMhYoJKEjYxN&tD7H#rMXQ8wD~1unfR9=r z)GeEw;gZsdu%!Fw#J|01=(X`PnkyY(G4@f1+$x+6&p7~bv`R*Aq?_~xqSKv}mz^j? z83L)2#@6|#XDg4wQrgy#a5R34b4O79e#&&QZV0A{x>T5vfugqJi4)fX;SSi!gC^Vo zH@a_I$>MA!cQ{URe%81!@NY?;@`d@G^ zy@?&*4S!eQs;5~e1YZ_u(g$J^y>I>Z{D=B?M2PzD9HChpr+@X>d(OeKJURmHj`9vR zRbqclB_kMt0`=VwoRJ~&G#kB-5+N-`B-h;&?qJ`j!Xu_XU zQWXv%1gJ%tCV2k;c`{qZnN05Y+a2=v5$H@y953_;b((N!5ur}7?$*x0J^j~|2J&AT zTu)?wKsXIi=dm5(i7W7q6A}Nb5LLj*YZ0QNj7f796uYW02Taw|O9p#L8F+s<9_RH} zV^EG%&>Qt#e7!X4abrzcw6fc;5$I5x+2QEw=guXD6b$3ucr= zS4$R_M7`VM2jlC`jY3a!o}C!0T|b1cBa37|(JwKxljQ73l=IN+M6C=z$wu>f%y>|p z@P)HcG)nn;ezg35%fi)5P6geXT{yIXS;Tc|#@n3fQq-PO3a$RhIXwi+h0e5|TLrD^ z_G`GA^1?Koq@9~pfvK-Y&fH`x&9%g}h~_^3;Mv3|h9rNpQS8Grs;HfAJBLKm!^`FW ztMDJ^9%nH&rI($?JYQlad%i+7Pe#2#XB1>jWdUg%FD=L*q87IIe9%{` zTF2@(bX8-JXwgbj0|iYzY@?~ZOjFz)9}3J4YHXXrixPTg&D?0UY@5PslKfPp^_aAM z2#c9h7})}KX}iMFp>lqt^;{rVgpBD__^%N3dtqTEbg1h36qK4eF9FAvvXK*#K zI8yl}4vq zx{S9>(TdTW=uDCLnI1nf)q&#*(tQE!^T~cTn2pDe#r7 ztpKLs!xrJ#Lqrw_EQaI{^OE<4tP5|XdojtyLCfYR3O7c`QxrOAG0lUYY4(XXf#kT{ z6}3?daPcP;MAVcpfV3bES$YvoiLac%n573{S@+6+Ys|7&_+yK3bmN4!7`}ip@hmiPh^r1-wRcu&u*5cl ziOt8J)@Y)$c>bE>+mcYnuf0vedXP8NxoG0*!o-AD_*z-!K5L*hzkQ#j#t-e=K z7$PYLA(p<5d*a5%=E@OROcs=*Nkwc%bZ}CB-P*$PXw$mF7!&-VPSIJ)4&lF z!YoQhXEuUub@>n#R#$F81WolA(ZN~RiEly}$P6|SkMbEbPk;(AoJDuek(|w~etvFu zIVFbovECZ_oE_?h8jr(K1TgbK#GDh1{T4Ir30SXzweVCB)ar~fAoHl7G8CU`3I z7(wPykZmEk4`(v-4pyL+_7(aXm0Uah0ruuXeeIjV;zsD;^XVHrPE8|Z9hGwO`w*~FJX`{W@nf8QiukMd^eJRUF zux(i7_{w1{NF8Pb3e=Rcu391T`55aQUrU61T+Zc`N4AS9E=oVm}0Ei4IqC9l6JZ<#o2M zaXrQ5QCgP*hDM`U^HS(ys;igM96r$}EU8UEsS#fAFFIs!grPI9m8*%)rnw%K2bDry zD!axhLjZ*CPKh_xkGgAm8Gy$OWH)|)P#2I#bT|Imbk`(#aw$|Y!}XLh71R`|_Ry$K zx(}-A&<9-)OUko0`xfG9 zw%A)reA~IRl+|*QE&Hb9FG(2wJRM9dMOqP)LwM=nQ5l#Gh7zv-quekCSeBKl z2JxzT#70&9n5x9o@Kq~U$1rI+p<}akTB=%JWN^|&~PQx`sS2!rrR&h zh}iQESFJF~6~Nl8T;B{}Ef(dTWL+c=DJ@!ZKl}daE%whpPZxXn4hl*a_V$lolUH~y z9zECBbxHXgG9wJNONFz{45_gI717@{NjYuMGSW>S31Bag6N4F18o@ti5%rXY>q%U$23Gw z>{(vp9+@}}@5Sm=rX~s>>Dr}Cf(`4l|I{ZysSyY9FPh4e@GiAe@io+Oqwq^OH z(OK8l8$Jakk9K9DUq-uHD=T3IGXIjEF;#T3Cg%bsXSulm2bsWE-8|g@t-6tz1Tvxy z<~hd^ENJq?*U(d&E?ebrjDZ=k23ocK=?uIRKj&?b9^NIqS!Bhx@iR}&$T%M z@5HBYJt-c6aGDf%#fnp?x2cjs@`4vhZ6z>Gina(xOHO8sMGCMECY2HAjCXaBxpyq; z?J2HgNlq$bJp*`1>+{4iRA&XMdzx#BB;&6(Eq5n&4T4N}$&%a*L#*Di^bSBQ0(yKI z`j!QJIdqq5U(V}^&NybIg7+&XsuUMK!0^kYHdy$0Xd4IwCK$ z(fd$MBl9%9qY0m^X^u|JaScYLN3U#3e&xw)ZF*s}NZ^CHt{w6Qn@)Hjm0IOY;pi$Noa;iW7JVtR0DUbLw1bNq(`;6;p|whtfj6a_s9-7 zxNoaJFb>sQ=Gu9W$)W?Tt}wY4YPsCyS5o7E%1CMpNsfy^sZ%cJ#%bF<@xKkF>XXKd z@}M-B@5RJHf`&NunB}Y|eJfo1Bqaxsr&B>N30tix7m{Oxi>TGEF;aA2fYk;U{^wjn zl)<1JeB07}jjN;FH;#2G#L^E^z(`?@)^5)@I-n@m9nga+FwJv17%~kk0)!sEhMuf& z12l&ha-paA>YDCyL0n+wH|+4-c2R^aixjs4KQmI?&UG$Xkzdu|dX9S;;%Sas7bgyv zSHxLO{A{^5&2hE}#|}>3d*`^Labk`;qRY(XICNsDyS%!2gX^#?U&ZoSEp_eEI{jxx zr9hQlay=3vOYt<()i&Ghv|oVWLmjHkD$;u*!U21!!0V z-AmYD`TgNX;%tMiiJHay2f~s`ZIJ(tYq92yZLYnkwqIB|7Hfmny|24AD~@<lu@86qMzMWe9P5bc^np#VKV#d zZd5$l{+8=O9wo%^b6OYhOa$T@@L0Zv?t40$mpBW)rn<1l#`7Lan6&a({7m=QOtsoO zE=iVO)!+e-g?Q$%@j)INZ{@MJ+?#r=EyD3TC$ELag4b9_(KXo}^y=)0E;r}3>Yev- zgqN>k@vI#7j_x^(K!JMk1J{?5ES0q$nTAHNdF0PJq~3?F&e%UO#L7RF00jCckm?eX zsz**iG8h;giMRDp6UEy2s7Y<$qd1Gx+2W>;@w`8$EVeM+@$}hZN=r~`SfFmVdQ)i;7{gEAcGaGmAwO0&;3xFtfw6=a3r87^pXrWL zRsC|mD=Ac7q~Uc(nGf;QQO1`Q9c6S`D@U=F!PHS~5spTj)E15crf;v66;s=0U1r`% zJ~-ssBg^}+XjV?rLhHDX8G!;d{D`Z1NZi_J?Ty*20_G9NY`ms}NMqYk*UPee(Z*|f z1|ZODfQTQK6|>srvbG*$qG214F{uqaW*|QEh>W1e9d|8BwRf)aTGc8iTqp050P!JI z)DLq{x(bw<3D|&jKcoq;S^{c)%GE}x2A}8&FtrLOHB4W3o8kBaCGu(}^E95qbxuI% zPP=w0T>(UVi84~tf5!y&YUUwO7m%l~X4H9SU2Uc45wHq-RetSzS1n~6D5s}F$RiTa zjB~E)3PgxQ=usL2LlRKzdDj|wNdnq<-Ze&93aOEa8yI#!s$mv0rb8AaM4+66lJV%P zA6#E6#Wu(>8nTEXN;#<%x|XoCc9@@>?6MT4wZUHp8k>O2CyEg+AyE^X zi*RWF6>RZ!6RiW>0S5nO~FqbCBFN(RyHzFH(8_ zy2~&3!U(Hz!KwhlBEn@QiV-d$(Kf=FXxJvgnbZamZk;wJc>IRzbLAPV8ZH)vEJ%z% z{byeuuFw4Ozl|DtOiGyxN)3C(zv%qbgAPx@FDjP*j$cIkKuxm3+)vpAOXzBfFA-f! zF0Lfh9lEEx@{U>E9e=pm@pWU5ZO=fp{&Y1{4wwPxQVqul8Rmo41h3X(P%PsRI(6Y~ zSA-;APDCsIa@ALU32Nd}B03!H&H?etuMzwqku6I2?zqBbC88YAC5dpx@pX>%8X^=G zkHaJ3p+Ec(i}&u(-@?lZy(XqjUsik%_=!OHWksr*F1edXa;M&K#KMd83AC4|v8W7ZLsip7olTwgu1V@o@KLc|tif zAi|xaOyXK4ERQ#1`9+O^JdNe)CEX(=WjP1tS$iD_H0{IKHwCFJ#T z_;cS`5n0N1u35tKRx_SAYaDE5JfmJQ?$zjp_uH03Lnl8Psg^3`t|cj-bF_F7wrB)C z1tNT6DuP}UH)SqDiuz8hTg69SmP3=`+^v+GT(d-k>t-Ts)j0U2oQmJ)oe5D&mj{MT zC*Dt#b5~Z%!D3_LUAjEFT+Ut71l7JgMpZXO)gW!)@8r)@}_SA^=iK`bt%xXj8Opy8@iWsVS}Epv$ul#J>?Nj5ZsBW#s-<~8cPrw z@c>fmbEDHt409J?4EbKa;J!>qg>f*OK!5v}+M**kW8V zA3xK_B~{gVsqTYeapG=%{24}|KrNH)K3PJ(QQmq4a!Z7aY3S}z zLMnj{7rL8Uf5TU%B%8mTDQ__hIayvDhU{Zi!!3@NFwvlQu=!l{MlCQ%CqZzemToR{2|XBzS%>a1X<$f(M&^840t4w4cY#Ho&l z+-XuOA87>Q4pp1X7Poiby~m8xqYWT0cW{5AY=k{WC$sC5P)sNHAZ0y#5*Rr8K&hc^ zO+-frY82>qg5L>hvaJd8I=e?IdtosdJ%-?lDDC-r<#~iK!t1125p3TW;jQcHentL1 z3BB6Y-8T9>XhC~*RMFucrCbK(;MLKW4tE#%d=g6OhQ}=sOPJ2Ur#-mqDN+S2p+4oO zLtYG^qf!naq^&Nx11GVW`boe5&>h=Enb^ZUTu!Tip6=lut)z49@xzC%8r2k(wpSZy zCfZWomFu3QG_|4V&?q*%4~oKGN?k;*TWAKI(aSwW=?z<@?_-mDyN4 zZ+BB3K-38WNp}+ypiUi>Fd;WU(c0{$j~Ga5pgA>GWXKCD@ELP1;nE_U%)-y~a8gwr z+Rr^YO!jDaJ)RUoJc%dLA~f-!8y+5j4+^nJn6@Gqp#;3Zuthi~SO~pe5PC0UTG*)n zkuEf!Gx1BfOR{{vf_2WEruE!eMxa3LGSZFD`QEhOO}}GjI|)r+!_5P-|bW>fGo&ZIWTrt3b|MNw&2_6NyDj z1Y-`9+Q1UG(=i9yH`V=XioMNxSk0fOxi8*h#L+>s?)2&Imy}CH0eUW_IiXh5^BtAz zu$bnAOUcMH1J5Ue0bAZ#USA2V2>4(57WmlsTV*qhFRlZ)QfhM zWScA7%*3HZN#|O?Sr|-7-_wFhN=3GhBpK9&bWQh>=wO~1GY95t=w7I^`ypq`^U~IK zm%COB_%40h)`{?C;k@nfGu?TssvG9Iw?xUKG`#M-!y%qJZ?}q~^R};O<-E4+n>w#8 z!f}TPEPg>i|Dq4SA78c27WLqj)d_M3>MfUjs zA}xrY53H;h?8M;nf#rl_-7o&FPs{$+Y?A2EN>AqnJ)O1D(Z=R`S zo$vc-db-O96sW)W-J3(?GL@|7$U{X)nGNo8A#!C5v0A2oEC7Ld9mLVwtT*HfK^A+; zzAKK4UGdMq6zHZgr}YKP%wRZRZ|Bprn>=57+5N*kVk-_=S&?Y< zXW4OThu7TeWMw6&EABm*qiKn!XBG(g8hS+2TU->0F>r0521Bk5{else@Y2pByRw7SuPFD+Nbju%+2V-Qq9` zc(6%rFpSz0$p-Y#ed6At48ckXgm&y?Y(PH{lp1EKoAjrocY_A>_LxJ#7O}F^+6;MS z3hxHfNy`>)FqL(n_F3VoPu+DSd98-m-QYQhr-Opo*fe-Qn3`hc2evYp`hhLNag3AN zVnh#YMu**dQthqwQ_X5Se(828QK=?Yn;HR14J*>E_D6gi8rjXVj?T|l0#k)?g@-Xb?hMTft3&sQ3OnrwY>?lz{aRdHjd*+2#a?=X^hpo560Bm|8lpHm7%a{BgKw^#gwC= zsci9(0|@P3*4iIkVHKS>M!oBq#MuYpDY`IcX zPP#`*_ZY3#_A3#M9V%B2|p7U*pTSZEjky6~qXzU`fCh;i!&cTYnm-cD?4_Bq*4=h@38_*d0-ahqy_&3sq1Q%xv*hPWqD{Bm z&E!*2=-h30Tlr`ds`i(=QR#;Gd;aAQO?zU}xY3V2F|B4jw0p^wB((G|ce-4w6ngD1 zcV9Un4u#)wca~$~P_H{~huk(EttbCYPe9l1xckW!5>V&6?%MLpsp#pu?k2J)3B7gK zJtVvUznoY;WeV!?kb81yLEgD!RPeWZP}Ffems~z**rUV7jz@>4x;vw{^RL9<=L0IO z?e7^VuTNe3mZwn0*G%O~p02Vh75OAjTX{elIwyI0&KZHbG(QiEhySYhs*(J>=kVdI z`FW@CacB8?N9kW8Q+{48`Zoc8ppl;!L;tqL8@coI((zun{JaYE@5|UV^7A~H(fmBZ zZa(Ic{3Sf*V~)t*^|Ve2`qwpw{$~JTVoKgtyc$Qo-|srDT5i+&3>m;5RpHwXWnM}E?c zsPoA$x_fm2`9*hmEhN9_o4rNk7kz=anEawkZ_kilbh&N``9&E^pZOD_fSs_N#2}BFSb?O zq@EtV>O8igTTEVraVIOjDlYfo4RPuA8`Q?(ck{#0;eL+P2;v{u8J|HpljRO*X1FI? zIT+w%ZyI?EN5{h5_JdN5gXItZhqt!oMR=x4&!}f2Ja0=Ke*ipfdg=lRu%A(V0k3hq!M^F`4Uj(N6REE{!bNCZj_~ z;%X$C2$P2qsLt3qN$8CzPy58Z1W&tz{-O#eHDdS0whqBR)YZ>dY$uUlX!Y=N7c%2W zSge5>gX%b%CcRxFmPvf28gvaSaKNR3`EZw{LefE?=2hTqi<+DwW)dz@|Rn zHXsWKyBfD!l4qwf0&oy8t@NRw6gNP1Z8Sv|6oZ12WQGB|mjsg+vYpO}WQize8Urj z&`s!ol|-hyf8C1}a$E3+)ja3qkaYB7bx&4wiF9D5j1Q@Xr=y~Pa>@s-iLHZe9< z75jEUf7bAfRUieCE$vQIDg7QA!fdHIH9do*=vts%tzQq+@=Q`1f^w#pTItAH+cQIf z2(kV0OfA*#(LR|p07KOJl`};862C{<8M3LtjDJyIl7zHu(XPd%w$cDiJ&THX{37>*7p?1&!(fK1|Fxf64az~O<*&X z7|~_-Lv&R`&ztfK>1f`U8?u#+kSHDVzR<`sS9ui{(=qSHbTp?i?mP}4I8h4YV*Pz^ zp?=ZC(_U7-;MyU(K@3HuGHM6zK~3mzO}%`Flgph4wD9bdm7igQbhdRd9ZhcSxfXp9 zJkhN6xf~o+{s!gDS}&%nHQIP)N(zKfa|PB?nQ_naLGCxK+s?B`Nz5=@l?AZ$hdi~E z6j*Eou*3|s`5{jS9`*M_o^47U2%zHNx^(vr*8=IMbVIWb2J@z+)otx3_X1aKLhgZa zYPqZi4k3P2XZ6`c0R=hZ@YP1+>!K1WD$=vcEMdePKgJrtdHP z)K!!IFxJirP>%;!HkRHMxCJ-M8r-&LZSwR2CXd5M*~$4VPeDf*nQT= zpIjV+#=GW(BbR(SQQg|d^OA%wv6=TRUUA2F`X(TM=;_M9gN6kY0v-hP2b(gqfrkCM zAsJ2S@7btSeGo(f;xC|;Cv95+ernzdCQQei)3MG2Z;9US3qRSGt6qh~3 zvoyiNf)5SB7QB*EzBXe^Uk*wQ&FI=(VP?VR5OwS@PiINl23Ng*>kC=)vldF?3ADoMG- z5#=Mi+YCyw@76~>H)Q1&gwhEAWuB+8@<0`=Ty1_uCK(R-)`Mu&I8Rd^AVlq=;I@Dd z0`Gu=1o!9jxIeY4&C}4CKRxV>MboJHqD6}Zh+b`8$AFurh|R%pqSs~7IY54G=s~YG z?*z)(&?Bb`dG*u??J83;5(J8^!IZTGcJ1Kw*4SYKa+xyrdN7>bZSI=jSyD!NoWZki zEyH^naqa>QzZHzs8m1SV&oUaWWgJBkNJ9=uyPuBlp@4&dEuef2Jz8l#=_tuvHb}2H z_t2&TcPkbWRa(Tjb@-VP<8l^z-j$>`863yB!%}hQD2S#Z&RazcaqI96hBhnLwgMO- z4x|oqgt{f)GY?N7p=r?15)7>-|Ch8{nbRu0fB6qyt2d!ugsn)wLam}%&wBdc^W6@Y zEHZ9hE>#uu3DxTDAg%sN4c_d#8*}w&7GWs#zHO)mkyhM*MTKs|*w(M+X zVKV%y)&lkKRi2Z{_%jTs%#HdJJO1{2djD2;McBT4^|Vx zwH{;dxd)4`Nb&1Qj+(%%tW@hM?Ycv-G3!OvMRGw^ zF+MD}@1K0Jf9yAAnRU-#r5gDu2lHk`j^$%tMGLRWzY_kHaPqw1{p&Dc%he~^?_(Zh^FzRa;De| zNtsrAH*9(TH{wZyU};D5(vE=q3V~#(E-klvN$vWL$0LqzNkf=C zCa7nIW(LPEu!G5@dyJ`X&@#74?L5pS8nA~mt9U)zyM@2gFJd}xc zp7y-09D+|)lUt-Wp7GRBet^Yv(2gsv8$TIG%;GZrZXpe{v%2)jwd|guVl3Rgw}EmScj~z zs!M650C5-mBddfH2h z2U0bR;RRSs&C^p2jl1qyzypNFrkXZpzM^E}D56{4JA+(&!dDRu{mpW+{nianlB9ei z2*b7teg#U6;E#XN{kDsVJq9H*bBr4KyJsR^;ROWQrd-2VS8JN#2?Uw|V@1A(o|AO8 z5FgvgW$uyH`OPxn)eULHMU_ze3^&RaRnY$1o(*!k2G?_0DumNqrc@VmSt#DUVl(5g z6~RbopnJ^`YU*9js8FRd;V2L)c}L!8qE~i!ZEQ%z|R7GqIQZXdPb607@d;)_UX=15KjAKT2P-n@n7i^u(`)x z=$-7EYhP5+pH>T9uPH^}DZ981(6{Nn4@wPd)fKwO)c4FW>Wr8od?w7oQbo?_qmU|l z4cV!5QE%lGC}*n~N2{Y-rHe)>5JBIgfXMlUW*)FzwiWtYI||vK7HFq5Bs40o$um<o%kJOKNwK zR?MPAE%gA9HKnOV1}O{hE}OZ?u&P*zWko5vXe{E1t`qAx?`d0FE3E(TphabO2(ovE%nJj{4)__CT?|@ZcPaWaNgi9%I%w$^kdLlu z5wu3sWI?MtX+c~L?oiX#N!k&Pp_8<(FNHs_Jao+D#~&-uh^-=rU}|-YzQw<20`&1d zVj8rlvWg64<-D`KU6hTk5Yv?yvl`_U{Z&qS2knaT4l!M=>Z|QleT(7oCwdEtUPzKZ zt!W*yo)sZqd5g}LlfT6ftC00^0Adlc-l&O&CG2S?1sN`~?~DSmGyZwR>aOvorI4U0 zv$>C}i93q?vQoYlFa{E$qRZkEY_xQP;CVD`N74Bt{!BYkLAMP$WCvp{sRSG8#nxi6 zD+bhsb`%(EB{k3c4M&JBA)4X&mg`q%nX|2%pi~0$_z%NbIKc$M8M)C_>WXq}dyPft zPJ~^H(N}w>7j5QVe|OOcX%s{2acnq5(>T_xmKev{*ZN<@vC>3Z(KV^iYk8rcgKP^C zY$X#~j9`2B6kU#%wh=nbQR^{N62QHLMxHOP8N-%Z7E$b#S}cko(ux?xR@SnOV#^8F z|4|exqp_#?jj5{6^Qt;)qpDL(Rbl{3`lhH{Xvwu7Ys>a(-EWI3hssiI>p|Eejjy|m zV1fFtlSKz3X8>Xm(QdQOkuL<<@G1MAIWG3hKM!fM z`L4OokcPb1i&Uj=ZD1I5=IWoF6^fpIuc)~)7(Sx|vc9!Z#ozFgVARci{n{xL%m5GG zD9Ygh!Yb@3z<$6+>B9K+8$~Zl$`Xz$UQYvSVrNXSG$7xv5|-X7ax3e(7W73QA1E~f z9sWhL`p-s41&dJjm|xMnr>DlFx_=hEqPzpBv%O9$6TQuq-LRPI{GHmU_;yh?4-l3N zZfR=Zn>UO3d<{K%>q6b-Vm=w5ww7W&BEM+se9`)}+ zIF0(3uyga%mb0~4Ec=WMt3JPjh7F&cl4Tq&ZYzQ@?*{86=7=|!dKbw`W;T{bkBq{y zShRN4Cy)Q$a*oxP*6%EDsixI{@OTayw*; z%59Zxl~Q>rbv`uHF!T!6Gi(u#R8DG(Z}P#8fF;@DY-o`#Ge0vgjPzEK#S@NDA(3@o?5f*}-WVyt_3~ zsLe|zliK**t(qI_{Yp}<5L>XY>l}N#zVCRZ-F;ps-a8|~d;p4e$9sQPV(UO&^!OSB zN)5Z$?9JgI))N%P%`wQE;N7ES0(u~#X2W6{Q8VkXh{^$kh}vIM5#L~dCEx^n4Z&?3 zgE=Rl*Sz(^+aKZA;=Kuj7G9r=pXpwoi8dyARe6F2*CXoV5Kf)`;X0zz=hm@}sJ0>) zo)03bIYKQ}(fgXDAWq}_3$Vvc^opcceFKf_WI4;eB=MTPo{8vLND_A zQ0S8npi+fV{(JbD-X~R6ce;0csQjJLDQABEu5%QG(>~b~)FCA< z9@k@7Gw~8}BaW{TU}#`1?{88og0k6L;|`!K;&QpVVqBK%+Qwy*9uea*2%09f$(|Z* z;J6;eqNn54p>@3f3Q-=z`ml=9n@n7VcEkNf#mt7@iz()DS!c$9>NNDmqjrtFJ5tQ| z|LZmPpxC2$lG&xPceb*Q<64jBYd|SRX%S7wzhN5B%`xgbO}xV-iQw~qS zEEe!JM7H*DzCjml$&F>wr^LpLrH)SsD;6<&4}NCEgRw2Vdu8c+2G?WsX$YtB;9y-b zM(@!~&|=hUD~1siK#Vp=pffq%ZC098uASao(P>eRveuu=n*ldl(=qY2ybuA}Q6ydC89dZ<}PZxs`)x}u|ZmZY>c z2M_4%{eyt%#v<6T_dOO#P?{F6onrb3?dEX^iDjmd% z(w(uCZd`9XQ;1#<=(Bd$_4AHaUIxXWN8ak^?Lr~gtm(>T2I|oVpM&1G?Ti=&l0p;7 z1wS7MR2=g9dgx|;*(2s+?ugYcWBQykCKs-kxVCoZxdN;|X z>(dXW!NBGx6QUr}gVX|>HTc%O@EVKerG|Uw-Xoe{U^PD+?md!Vey9RFz=ozR{Qw*K zkKhArTGvNaM|=B*cr zlxUdr(;tL}HN%iB$U(kM9`C{rFUR z2<~PS^X=($d>BZ^U+4qvJo4(Jn7OiD>^+Z%kZqfOGN-hY`Dj zK={fm&2A?I$U<8e(}O@PAnYKJW>0xnD4zok=y@FLhQ&oD9ss4d0h-ZqQ)pZAE8Vz%5hMIeR1A-mbVtFea;&x7uTnx*l8KZ>!Yt`d25;gYR>ldR&GK%G;>`2UW$}4 z>iBH$aTC<}Io=E>FEiEe&8BZ_pc2Ig)RxxP3wGh)9Zdy_LGQB*n zCz2M@4b#vL{^C0otBDPe!H11}jX<|+7FGsB;8t$>dH!OKC7c8*8trNaTr7Z9$mjX% zPB#oy8$aXyPErcsGnyqmu!OEd6f{8l^SyJ0y5xGjEoODYmwA8U>k8`7PIQ25QLABJ z=gWKX0cY6X!H128MB0HA5XwGm^gipwSI~abfE*3glzotIpwijvOAcl6LB2^37&9pL zLB4#MF$lgWHJYl+n&Qa>x*8l2#McOPHM%xoaRc<`b9nX=(NJ(P8W~D}QWzPM`@|-p z?#?;0l>|@&d|+P*7Sn!BXvjXW=K!RyfC;r>^1xQvDF~mh^g1+Aq@9w$ ztBFF%SK0Cp3~Cx5rUf&~M!lJvyw2#GKn?J-?7N_xY-H{xH6&|ZjnLK|%cClj{75tW z)4{~GxJ5q7mdiAMY(b#Q#YCyjM5q;A7jgPS%aoJyk!9mT9e_m ztoxGMbidaTqI7A5Wv639lI6)O%|N7cl+Zp-t1VPqh!2sjG51is7?i6C95m?Of+NUN@fLMN@!9$&#_ZjbtN*{>8 zOliwCzn}FkBdsm`-rLcHvpfMsIa_+pyDq418giV+Bxafb)T`&cB_$p~S4)gOuck$i z-$3uNrLIL6yt%Sc0LfCFd0+_}n>I!Tm%NjsVO^Luw+IML12k4Zdnh1{RzV?>uc5~}-GJ+HA%h%YAphK$50RG$s}>>h z0)A$M$m-X;yTatKCJe8K$dD!gPebID#^ONeLSx&3kgW_xpad(w<_OjEhj)Uk)FB)J zPj|>Qo1jPk^0rlK!Y6bIlzL!WSZsJ8M)kgfS8O3lOa7bgc&jUYAdGrd%_eHrU2hYK zZ-^S;qp&hDKuQ)Xmo7gpL^)3nD!;aaZ#oYZ?7oMk-FKCI>m+4?*oZu*32G7IYo^SB zPmH^d*TUj}FH;qe)AUA!`#w+(L!wmi$6yKd{KHMyNlAQNvd;UHS>5d=eUpRermgc&&sOf3 z)ju8SOXBMbBJ?p6VPcf;ic+>Iv|N7F)XxOpg`@F;A<_*zNX?{9Ro5` zghZA1y(P)7VFRNr`>E^%m(t=*dHdA_ih1Z8W!hVEm!=*66k=HhS3@pN+7a6Gxt_s`WM z{8@NrHh!jiW~Talx^JR{?~bN$-6gw1ICaU!%|w^XZf50@w#=Klq%Fen1}E;lU2=Le z(IuzqB6BW@c8%UNReFwy9<*V@@RuE0r>$f(3ecHM-;elI6O0PluVJ8eiKv|FzJbyk z1l1F4dN%-{1OOIpxxAU^mQz^|NIlUR$Bb04dCo+gqCU`9o8_`duwwj3h@lw+@NN1PB_I?OQ5W#0aa1cqV|bQ2osy)t_!= z8xc)ZDs})Eq?**m9iX19>)S0WotuM5vzi<#^F;$+4W%b6ropOnbJVAyZz~U=Be=Sa zd@Yrc0zf!G`t?TiXol`u4kKzfooCo|5f06fctp+-hu1$=3?MFpv%k!F7=z1z9o`;0gHym z65y(6Bbcd($iJeP2pSgBHM>=oI7Sj=si93s_9OsX+_WqLc4g9w7KdhAt@> zIGB&LdC$=e9J4|{ps3E73HA%^tcZ~9&Sf$*AayRpKo8%^dcEl?<+U(!Imng_{AnO5 zcvAaTtQ9V2tB>zPjhHW6?jX&wWlL}c^$RWjzgsN&si$w2@)O}u9N4D(2ucl`(Cw)W z+O};5Zv|V6O8rRa`RSa~c z@iW7Idpzu`K=#B^xNg2#5RT2anbcCW-qJ0ttk+fm(=n+n!qJBl*}{6kH1Xk$P3NPn!Q7}EQ;v~>^@<%$C&u&{4Z8;npVvIC7KjPwmmu@AIu*v{SZqkMkl0I?>~ zu@d%yQo~r)%+WrltQ-Rm>1%JgwsQuS(%f;ZC3W93&fz_qoTnwkJg z)tKEC&DrPEH{3X6O#JV4n=*pyQf3lc@lw(HA3o;m6AhWsmakuRZknl76A;?+b?NcG zex$9j<9)06wuB@&U9$~dbAcEFhPiwVJ%%8B65Ln!=(lOC-%3vOtylUB{IZ#TA5aSV zEoqYPfUJxL55*9;L}Q;P5MUonllU4s`?xWh!&h+ez&P?^K`TCo&n3KA9AEWl2+%D3 zlm5%MqA#|tDS>`^dSH%nQ^0CAKVzP6M|Fb6oj_OH<*Z2l2!mkK>g@Tx5J`z@jd=&r zM5B0kf$u{Z^A&j2Ur~S6?7I|apj_PZ(X2Ilc@>P+_I&g=2h%+t7(8{k&#OSN`0{F#rUIVxfbW3> zz}L|IM>m&OSprB~;TvhCH}?u(q19X8&MSSp6U?_!vaP=~5$aoi=|6(D{)Vl_x>(*A z9X@!zEQ;`6d9cJa{K|1TD&BIX68fV5_a)Z(u0+dc@H*-mUoAPmHOg7zt15ro66LM& zC589IHn+U-NEH1hzLWcBb0@UO~wG>*Sa3Rz$vzo->&Ccki3p?TX!%?ZI8MX!D}C@my2uR!&# z_3e$2cA;Uv;A1}zRbAfz?6n>JAMLeGM9nr_Nnm?z-zN-EFC@RPA=&M<_svx<0S=74wiiGtZh(e=+!Wnwi&nl$16nm5X`U}3Ba&%Y@5S=;r*PDDxlo(JB9Q@T6eKX{+98~Qk-&YF6QXd7) zMze_$-z<5H_RPz^J<-(wb?uGkQ?K|ADRn?OJGZe~4hw?h779SVbTD}pe*@V`ihc-? z(4zRXEx!4R1C#@SI=$xWFF%xno`22vf&#IkKxKkkWc#;ff3_h3{kYZFK+elSDcgJw za3ajZ7h&MySR{3(Xe=TMKt%f8f8%L*L@$!3v*EUH}Go0Vn~rL zKYaBD9$!5Ri)k)f4AfP|Faqsry7`n1H1vlbViV^8EVQk|^fI_NeY544a!}}7Se#ct zO_oS!zvWx3ybgWNr`A1o||DF z_zlm7gq4{?Kq%WdxMde!9F)7Xp&JL+jg8F$YN=uZve@s;>z@WcW2&d^cOJ(01N#gO z{AgOuvJ5-}8=cp{V%o{e z+MvvRzJ5G_^bycmN2W8_9^2>~x!-qGl3xiZT0zwg_|ib{b`D0;-en02Y<7mU4O#Fn zn$!AXt?`?kKW)R$PCg-mY3WH^uh@g1VFKD_=jNZ`#U=TB4X;m6PD4DMo*Zl=PEYpW zS-8#g#8w1jdUD@FkAy zH`fds=8so4lcQVcDYlVq{~Lk>gEvVU9(2S0siB^A>9j6XChWB$QV?k9G1Si50>K|jeASe-kO19cgpJQf@<{RA;}pMaO^e&5!;aJkbPScER_$65WnB6>XOL?2o?ZWQDE%*Va=7w5UaPAb;&nEfvwTe8i;)JgGDfpe6SCL?R5zZ0(1j-r*^#mwUWoYizIothS&Xn2*lIK*QK2p`P#O#4FI+x7?BSI0CNPwR|r->D}SF`Lalq% z_ehA64^>b0*n^~`UEBvLv7^!xfAc+t4={mHWAx^O#l*owa7A?ZbVw?X5JoB5Re!Lt zf2TK#VQ2>KHaLc z*lBbmNMW{!E}Nme_kPt-@*y#Ghdo3^7T=UTvdTFh`ErV5*R0$gfjWNeZBlQr_}+{Z z1iv>+!31@=5O{9}UU(!wL_YCt1Kyd1J;cl(o{0@Mt(fS*7$>rk&OJ^4&6fUK_@WoW zou1L?7l%Dz2~9|yF?-3ym4v#1gf!9&@M(y@M>Hg^#l{Yy{*lU50ingl+oAsMGHWa` zf(0}DuW=>(vy^4#h{j?5-UP8C%)f_cPYCZjf@34gUMIr+zskzX0(pnL@gY*Dp%`#4y}KS^mSAT;|}5$7L3B_o%(nt{tr_P?ZbHwR~x z^%qd^nZH8u4X{vSf~~w~W-DYFXH0^Bnvw^}8wN267E^`hwMXtm+&LUT2=X5UH}&rX z`Hx}Hqq~m_+w&=V9bwNRWv{`{0zn?tNb={(uWN9eu_aGo=O~D#A>Q3yOxSDM|F1&) z=Rwk*5~Mv2`4v*yFtW0KDVb-*zOvHCph zzmYQ3A;bM^LKQ~`F?e+9fEs04FG`fkP!^a0s^s|xnE zI*#|pm=K_nov8qGY^?U>{rt2`*cU~V9tL34u%1)3Y0nuAGhAd+sH;;(5UY4@AM>nq&_ zsDl7jP4)LQ0nm;dW(HU>&EL`l@W(WNmhz+-VD3}+2^5DdtsQ&H-(Oi|2B07NZ~&5X zDj6Z>DeYnb7!cU1e%%@VnMx5PYPj$QSWI2Gs3Xg79DuZyVYD^Vq%Dx(z>WdPjghMG zFS=u3K6gn5*~Bj&?8s-h{e(e_47V3QGcsJ*Z2tiHyaw0jq-Pzud!lKi+2q}j_sbR(V7xndzi8ABRl}F~4P{Y^y=Sa#~P@k>wU4kW4rDrvj z@^u3${mTrHa0&d@49dn ztpbUX)g=&@_nSeDccb69{o~{&ol#ql{|VIUygyQYzcqdD9dC5#0gXhX&h%!G#QLB) zplC$jcZPcXozZti{&I4U&ge#wf3(sQR2NAf)JS)`2kG74K3PF+=JSW+wQd`7pK0Vq z-Gdx?O$l_Q3&^RLoS~#HE%rYmMK1tN!p>X<%Go>i1)WjB^ZrW;M2PXKHLl zyD#Ak5`3nHE%(M69LQd_2*(*t-g_^?-RLYX!d=%z<}=vt!+6O`j_D$P7HW9Fk6M>S zb)h;dP+J`FkCx?>F4nWOUqncSqyCeUTpL5IW@$G95R0r7(S`2u11Vl{P95 z7ZIc1_79hRHX4r!AS^Wg6xKL-lQ7v%^nA?c4D0eG+rD)qkqDIUP)vaJUVR(=prc&yt6J-*ZbJ`WHwPkBv4 zkVUol13x}ELGB6|qp9p}7t~<4zlL%bHf3-S4*@j2VnF*3{Z&l>wVIyqs8lfnwD`zh zzypNYK?M_*L43WZ-qG$o{zXb>p=~zC=m1I$lgGd47^5m0c5rSyx_UZ3RQ={-|9(m7 z59+gXWDb7fucZuy#ep7-Cbjh`c{Zxk$5$D3NFN-7R_(*{@?cU2_Td4=BvVpy|E{Rp zet#1lCG>4IO;J!N_U0+>Q~y3mS;~aD7NIh6(bwaVgfgKUXhgX}r z@)70*!iz;FD`slbZhEQqx&LE%mj>4p+4~Sq6WL2$#gTn+SF3rLtq7)>%ogEj#tD7z zOm?ZOn8_~aBAaEh5QlXpYoqns0}d{e#XGDsSw|7VGFb+OSYO=^=4LAU*@DxkS*qDrXoXUS}AH&Hp4=JvyqK#-JoJJ3Vt{D1NQnq+9s z_)b7M2!L+>C;MJO1bb3b5YHfvMnNY*@HKS1&~0iuXH$VM@8r9JP2DDpSwyf~_?a;l z@9?Al6-iF)#%xj#Ve#Dno`$dox`{n^i;9|TG8ng&;ok^h3oN8=r*Vx>!6DnZ zn}72cS}msxxPf17?k1h2yB={gat3Y6PEcx4!@uZI=OsGSQCHpcFOZZkKvlMo-1?Tk zv2qj^lkr|OsffFrzH?}buH5uDMdkj$W1CJISh*+?kiY1Le)z-R$pkR)Pk**@ z+YE5wPyE82Ye5(=zM}OsFR@u9;A`mKtm|Z3uuqVybfwBj>RfEBv8Hr4)G6lmWc*AI z1Xa}qcl@AvG?8aQB>Xg%!Cri1PFwL76?Up$tIgdGodH~2?-sksX(Zq_l|T(NXVtj zZg#<#^$TW0spotX{G`+oD+&(G)O-ON4b+;c(BGi+1s|x!Hz&J(vlQ5f(`8$P^K08$ zDJ{6;bc?W2itBD|8@x4>S0Q_Z+>YdThTXy4BCaiUY#&HUH{PtUhIUGLSmO_Y?0oG3k4 zUT5H?iQfsWmzZcA-(AceDQVGhb z;%fFgIwShktO2|tg>iguAk9%&a~~&Tc&a!VLnw|$e2!xo>a{2~a8(3`<8}jS4w&}z)5dubHixnUkCi8NZV4F4CRS_BcOr<> zOav?e`%5kyPNe2Lo@whDzyl^MgG%Te(1&^`4J1U{CP=QD(Ke?fl~O~%1vkdq`e+Q1 z>hDmhxCkssEiX3ct?|2THuzH)fWN8EYuR8;ysefb*B)TL2JFwKuI2#B1g=J%Z3`v2 z`2h1Z;9x-o)#_^dUABUT*%EN1Tf-#r0|$tS{~HDW|2FZ{e8fF-fSCAc6gI=eKbUCi zjvCAMN*z+Uw>OP4Eb``qoidnU&H#}K(gu_p6XZ}PINrl{L~-J=nlQoC{}B_+(##Cm z49a_PL38;HDE#@)>>lND6A0loIydYoKd1{L{p63BKBfWuNmpK-(7*}E740tGYXi!Q z23BdDE}I4_4HUys9>_`|4GkbD3fdPX*}j1d908wr`amxHfK!?pOXWS$6#}5Vaj+dtR#`TsVAmuaMRqJt zXi|fG{JiTREh~4z12kE!#X_5VwdPuzWsCEZhcJC$ai+ zh5DU2uY)&Ssd?2%D%H4KHYqP1B$DzX)nhFwUt4Tzj}}h0^+z=)*$U!yU%D(u3(V3C%1@9 zg`STMa1~b~_Z)QJ_&5vS>Sp09ik$%;7Zz-O$sZk^0eqY;@-aT3=i>^4x%f6-x7{5i zZpnQ`05#i^y9cm1IyR7oWt;1%S+*IH(iV@7r(=#%fBPSiz+KIJ+;Q#bFZUj-C4pW% zNJ44W9ojr3FlnA`k1VG#eRa2HG_OxspwD2D1-hdquNiO98zaOx>^^9qs^*j8Wz)d= z!6FT;QGM3XfD34#CcOL^TrcUR3->_@-8D{^O$kLqL`o=7eb!I{B9%d2zHJB^yTsNO z!LM}rIdIgBARb|}_zX2i%LBM4#FmM!Pqq!fzoyB@hM3buf6)M;3+Oi)ZJugtfk%*x z`mL}9%B5h%Y?o(<+lt9r?#UtITCRXj*8gqoFydb3iF-SD1yu5pEfR&Vn^~h)p8J(I zcPY3A#Bnj|QIRz80X=Di3^gVVuJ78o?=I-NY_Gz-Zs6_^uS+?Dz!n*{%-R9{zQeY} zY^}6$r_E`0=R@yZw$;iY?3tTm)OA!Uchuv#tJ`i{l&qw4jpS(tZqYc2MG|j-u8ZzI zZcCPwX`(Jy;Y=~mHD2cM);+_6Uu2mxQyVq@EBnhEhq~Ep**CL#DC_VrOqMyTp-rW; zR<51Jwkoo`kLjy)R?O=YI@>%{tZ-JtK9#Lem9sbw&)tPjj4b9qx9QadLrU|ik+f3d zH0JT5OrY`i1;xCz55q|P_g5%%t`o!^zI>*mq#|`hj@an>SIK4&V zblE%}GEC(0+QZmnYk55X6%-SM>`_}cDHT0_R1=0hLCYu%xtjd!8Tz4*piCD*nMy$sZ~q3)?1)C6u+>Hf-mpC?uODtsm)BUltf7_&T@Jyzt>_nl zx*WDWjQ_OCyM~+BzMqR$AWmCjwOXjxN!!EnGoWi$@qX*p{z~K7|U0Nd#!v8&LZMDhg&ln zNOR|$-^rTU)#F{;ZAl4x6q3(f&}tvqxyxohh>qVOo);o6~3~-RtP@qt2?K z@z>P~1q0d;-WA^iS+2}!%6XKBZrpHmLVLrP*XEu*oloSew#qSi zo1DQsh(XRR?+m2z*6`OK+kTO%ZmqyxHR`(diS1WOxryV$B+MUV?r07A9_GC?(+*+Y z7AKCGj%JxC1|KGM!`P~ub^s-Y_J5$Bp5+(d) zYlcGn?Jel9G5+>I`6IAmR)5&tR`~jZ^Yg_K;___|ofG|zo57TbEOXDxxBWg&N5DvN zI{ZhPmCOYNo8ayVynKrqDi$C3fWG)>0=Cq|G+5sg8*_)y2f7znwuX8o*wc%5XwuyEx4=Y_^5mkE>;Rr^#NkR5_y6*d@@ACGj zW))jq1jl+wEwQ<>UV`HhddRE8PT^nV^9-l)FY>0fckwUslbwf>@VGPrxyQBtC>Z3g)aDSU3G=Mt_?PRGBU6Idex%}GN z6*;gWFG4?ub=GPhtu*J3bDwTl5N%JA8;(Zt9qd0Sye@e(F3jTx`wAC70&Ut3xPWmIaBP*S{hUER<+s65MG(w!052pA5up1hsh0$ zL%`;k9kGafQ_C~P8g$*RG3C!iNEV z6P)WpoPDDdc$ycXVX(dvgu#2$LRmVGoy-zM8&aqmZ*$ zk2?79Jy^sq(&G|}g@-2Y$)~zr>SdpyWbu6h3`3R4{1Gw%S!2+b580!%ve;v;mj-lv znqEBFb>w0D6H?#?&N9m`5_W~$aWU*Rj6nr`?5h-BmxLXMO&INa4Z)@;K0Y9XGpI{} zU;Eno$jTv3gxoT~*=tPgy;P<>@?|y8tg~_O7?9A>eUC~j;bv-fQg{HOP4_XjPsQNe&z9`L3ErHO4@d|E^l-C7J?fgS~;$6vqD%Hj_@BpJ!pA7NjumBmTHf%OO-wq{6} zOBh&LUcl`AyalkDC6 zyr)L&@^%Tyarl!$legHRG4g^d-cJyt;>a%SB<`Qyaua{3UloX8+#AL zX*3W=PPeBkW3eZ!*2kwN8i=E~qaLJO?Pu5*%Yjq)Mp|55o@Jk+%;t`BXSt%;_QCR$ zH1z#!s3Cb>8pSDd><5(ff@%^dxQ5TQ50MNsKAvYEuk1F^K;(V#nl1#sdWr^^);*YP z-3d%9A!c$3A7JFOVkd+EJC29P7AWGbz!7Nk1X#sI_TQ_?*MtDO%IlK=drKE!M{s}{ zU5oTOcu!<;`Q%lj?*-o7vac6ZNf$k?n9e-bUN5L=-xz{!uCxCxho_T`SMFOS9^$@C z=PZocD0Ge404G!Q$r1Y?L-9|v;%L$)`_FP>x_BkhWB&_P!DRQTemdEG@`DdLqIE~@ z59qH37@#L!4Y+5lzx564TpiX^v{>)AJ$*t_3gMtT%kSJck)-6~BWi%&X;wT|&QC|F z^-m^ptDWyDGMm!j!#O90Dlh7cl<-FKzx`l*055{y5W`vffm(Yb9p&FVktmnwx?=*+ zon^s^ME`YQ3&1GcDiy@YU(x{K9>4HR;E&YsIv8e?w++U>8hZ3A?&zw!&0bSdDrRs{ zSSFn0hxiw@R3QUd+7!=M>hYq2H@{KQIvGehVo$8+84YWw1-f|jDEI3v%jNbNTWs;x@oV2X6&+mjSio)SCemyLfC--cjrkmYIGhh zh=ngHSgoXc8T~)B&(U=B+$6Dv5gF+CiW7-w&jovrV9q@I2oMbA&iloQ0ju$JlT+?* zD7CI!8#UW&pQ)@7JLW7@WENmfaCs}ytNz?YxRo^9xC^6GsHo;ikapF-Rm)+6QN z)7?lX)nKO2!%!g&xlUCl&Sa204B2dXU}3oXzlGtJC~K584&}aTuUFj?*$)40iI22I zcZfxIIu%b2>25Bs@bakCuQcS|rAz!vLzG8&uy8VQXk|9U^Fi)02|C?AI&6u zP~U@#+AE(+x&Z==B?v#W0v0i#0$^KC}1X zoNd4m*$eT9Y3cCi_8uP6N@~oSyHmhwo(QfMa0cfExpOQSB`)e29P*%X6k&w49*`)y zXKCW^S>9hEGMcc#LG&9l-l+`n>edTXw7eLvxsQzZSEk5#zth;(GG3!Bj)w^2HNZzS zjMpGbWW1IPuDV&2@w(}(bmpxP#!KO41o&Gqd;PK~<8{{cs7gSOgzQh^GF+@>nor^1^EW&(-=a497Y8Olru7#j`Tnlkbpbl&`v_LTwGC2x(%n;i8T8KJd zObY3Kufl*Q2m|HagJpu{B_1Dv@VcOpKdFTG=}#WQO_ zvMx*!;2;HA5FQ6%JquyII*DdsB*23s=pJQ>!?m)xt@Q_@?(+aT1rls7_1Z!0f@XMj5)_G0$(@v!62*hec>la`WB4TMJF zhPa|iay9?qVAD-~FJ%+zGg`AGJ;FMG2M$0NrTFJn<1DN03_*E*#S!(l#Nb5Qz_Fht zA}SI}ya?3fDSN#DE3jW|Oms|Cw6&;H-qiZNyvtYf$fFy_J`D9mKK#&!q00L_asu%U zV2+*7ro{I(FDsy&%w%t3l)H1hr#9SRaMCs4-`VCRUkWpIgW`Ft?U(@iYj0SMY8)M? z!#k5r=&$~i7(#yr*dohrdu_DzPkTikUu0XcC8>Uod(hIM+#`nYq1Uc>B@8ucU#Zw= znK~ThS1M-9RLeMXCK=3NX+MsfS~wuomNw%kF9!J+^A+K6rg(;;h$}*QNH+T6qCKo$ zceC*FK*sxlL(Eql5@th1$G8j`!Nv#AssC#?y!(A1Wt^16!iF4Ab|v!V$CIP)g(tby z`>JtbX}BCv&~fAwJT!#gocIV&lCpE0SQ@4=(CiQmcrpBr&dN#N3Sr5syo_+3N@w;y z97jvTle!*N3FwiOhI_!8n;-v#(1RPD4GWoUW_r&!e5XcJd22ixQ?X`4LX=z-s~+uy z5kQ?-e@i@O%5^+bT4SxzF%gU@quPaABP+t%85Zi6>lXfUYO;19*f}wp{?O^i_+%+#{Zl<-PZXu}1Sl4cT%w`Xp3k z%h_Hap3Wed?tz%29JO^SZtadn*DvOG_GU9(01FqAGDKvxuQ6Gg1(*qD*n6LqNTBT! zJ>&9ZE*l+;%DAH3HcnhaFQ=mAwT51BFGR@|l&A45=nBfWY4~dk%I|q#2w8rMk7&s9 zTgU?K&f#JP*;nH!Sq4tv@|akuhL5OL2w67fWdyQZ!t6DeK*_S&1hGd|0(vB5`8jol z?%zK+!JI5tFw>vIP_^r5)rsrl2|tEywZJCMXGLp1E847bBy1nXTca%2NGmBO191XJ zTBGBv@i84N$kzJQOTBzjYl@MQbu77$yL>a}yhpCdwz75RB;V7a_@d9N! zFDf9thKWv@Ag-s?mWiP4VadlPn6u6XX2BbSrV!tO z-7*bWdB?9LHG0TLC5*5iD4`2|-mdNMoKzDw#JJ8c@D1l-` zx&6e=s7Bjjem`+D(|Zx360fSCXs01V)hu8_R@K*WzL8b+8nUVm>*Y0~bbgSC@=*tT z4-Md57oub_^uC(R;x?WW&=#@}o zE3oLUBUk2_Q{!G{z7-5tOO2`{59APPL?h4IL#jlHij;HS zL@pFv4nY}SMWnyag(!9&4Iv+&WW(J9e&TII7cVOy=VY=kVC4AKv)XWwfrMPztK!+6gT{awyON65*01PQF9(X&jtxS8&g$Nn)L!zDO9|?sOlvjscI0)@2;n+ zRKNi;TU)`+;lUxb*GzmwLsc^;id6LqgDrO=r7EPeQpj5&RP`h;BP84*X3vQS&Zw$T z*Q+W8y%MUL3>Mu~b!wtHRlUy4Pln-YsY-PuXCk30X)C&r`A)EZWL$iN1vdUXbz5{) zTts9>fhLbk;Od1iOey93u(Xon_;1H;J-WFJ2a7r+BV}pOVnI{>6`Q z%y5cncbi1(u=bqd1sBa#K*-%cZfszhtFfq(ut9T zVq)mv!gH9ibVAkex|Ir{V_n`4RoYE9PrA?9s9Q~@gq6t43IKk}WV=olSCeW>C(y=# z5weotHOCpn0}U_w++e0Uq5O>E?ouoKe{o2-LZOcBfytPzLZt|l_QpH4D^uLitpoPD z8a$TCZzuUZ1XqH*N$I(4Ro*FFv*LoKJoLvz@bZe|(!SyY3BX=^TtaT!K9A$ke zq0Z?V%KDONub50J>-`MPg$LF60~8!`;Q>M@&_ZYnPrE4;Bs6-F(BNf6x0Hk8c)4`> zj*Skw^SG21Vf06N!3$MRX zpXgrMz$v84GR(o>nDyV7FHnDQ)35sS^JGd|2&Ila72+Qi8*hz{f@L7N+)9|nVu_56 zibl6O6;GA=lqGecM{$Uu6lFka3#zsY*G>d0xjZ&PwNOE(_nl6jLW%1!URJ>IZ|3Rp zDI#&HElWV#Oy1ivwv3QF%%dS7SA`+>@)Sy1=XqI-9Jk%&hhCeh+3xaV%I`p6;q9)$ zvo&RwY8!kfWfnxw~aBxU5?FXD)~jHt>6_%n`b&*e~#x9&_9ZyEWB z$d=!wP(_AV^WnbWW>ZDt3ZH6FW<3N4wcA)d@DY`6$Tn7wsbZN`g8`N>m6BGr&PoPv zg^<=TVW3q39d)m9-)Rq$rDRgH)>|;$eXQ>9v)Cm9|vlMhM zu#`Hm=b(kM)N^%Dhk6i8%PJ1x!1$!|#s0uiUS$Yiy^&PUiyaIYy1U9#O>tz?9Hl*` zUYrb`#>KLLQ#f<3<}`v6chXW@0;f@Sy0J#XPR*Gj_)ORdqUFM1!cN*i5PT18lfU?uKcq&l$}T_`G!@I#StDD}+gV1HPgMMgx$QCbQlj1zB-kBE!xU`2Q2 z%ai^37)l0kk|=dXLCC$x<@S3kMEQ$HMqsE;Z1}%{-I6Mh`qPKW ze!UIFbkJ1d|4xXdb9&D_OVHymd zvRVL-0Kc%eA9rCei;9*PZ$0EAZ#|nU^43!{Xtlgm%7a39>nuLP^OkfL2QS=#q+JF+ z!XP^hS%SIiw$9S`yd}b2@^tg8>%;8*lS{Zu`rgwk7m%vdY0^rTf^R`LI2p-fk4>kW zF9nlX4{tHc+NGfC&zsOc6jy#I3NE)l^losK=*Z~k__$bfd{uFMLSwNp@zJr-R#?B` z9W1{-MuH^6m>`mBpA5MNu^Ttv3sDkyhy)TF${gr2os!sKURF323}mvY(?t?fTarQB zO=9wd>E?CTU}h_MI;pdyE~w^#V*c4Gbzt$+)iP_z(sx7M$OWw{4%Gk>k#GvH1-%Pl z)GGFlvQ*GcgU%R+4YhsR!(SXJjYgZFR*S7YUeJ1!dANh3#W920f*`Q)Qn1DW4U3It zir_gZwjg@W&xebJ8#cXL9ew=JyH(9WAW`wK7(9mVDJR6Sb15;F4dG23)`n}rW4Yp5 z@F^l&erv%DAKB|ic%lD{oeA8d1Gi|jYT2vK4319-d)2~6c=nQO%@C`uYzA138I-xA zbygyID}=co=4FIb8^`SRm_e(qNL`Pr1oTL%t^ly+rmS%@%&V@6%ya+@Rl62co$!ZF z@mg>@ifDPJu77k~RAg)f+|hv7f;i`*BcdZ>;w>>KKljvBsh@!q<}_8RLlnyY(;jRn zr?HlJ>}rUziU&pDs+nx$%fMw^aP8n_1pucp*&^^#yChUw3K(GY`rv^X=3F(M*(!iZ zz-vP2UnsfMku8Q6ye6E5E<~TH=Rr=bGE_{^oj0#0!4g?7WrSQG6x7_SHH;iO`??`r zEkKqdDqVf<1+Y2H$xkU@99^j`A45=Kx+*!Qp{oT<5qu|f1<^BNBdiS{5#j=4VC0>V zoIWn9&g9ZknCnGs1kkf_rB!K$SZUpYvkDYtB1o&4nduwJ=u9~CkQI&um30I|nHBu&A zm|YMn%{1q#HOzDh3{}fjsuM}jDdnmQQ}XNj$5SybDfOAuo3doqh&tR%5LyExG2T6B< zsN9pFvqfO5J&Q|a0k&;y{559LE%sKttN>dflWjhWz{W9_+R|heVJxWz%70%|T&mpw z2xOs{glC5=6gQHEB9NChOmvqO ziPSX@{MS*}<2)#Yx_03sJatLC@U-a`iF+Aj+hN-ABJrrs(rdgWLSGkn86k{p%--2q zguYPp_2Ne8Si+cabZmY|C9Wt|1-Fx7k#*u$u$xzKjd6GNf$nFNT&SlY-!;`5Lp$ zGx7i%dBAK+WX*Y50m`SCZ1`-E$kdiF&?d}}-^e4yAY5IP74FomS(WzJ7fSB?CA~1o(wi1UXnO#^;4- zO=<)Qh{Jeb1X_EEIWlNArM1bttN>yOlbt|8E=yc&_*-zK8!jC;&k~o8^N4KuEgcX0$Z5xC zi=1|Z#<8{>yUD{sIPC^L!gHE@143E*kkIQ4uuovVF`reO!zClJBH<&d6~bpByo?Y( zN0_}@b7(mx%@KQ4C7?%Aj$NhB(A}<>Ip*cq8_e`o7^=1$Q=Papo9=Y&1l9_&ovZ5~ z8x7BtM?}E>JzhNGkh8|ZwZ(`Sa@&Jna@lflfjd+-6szVjhw_IMhbn`3ScDXOmyJDT z4&|{4ysQA>+e|iVj>uzbOFC$~c}!k3$Gjpt#cZX+G~kL1`WKQ`9a$2zU=EuD&Nf+p zuAT=wce<+B;Ts?P`jst5ZVu>&Qs0uX9H00gjC_i8wKNKy7S-M#Otivk@m*kM0oIi1Uwy}0oKa|7bp zxGwu(wpf=Pp`ztgmtFFa!z#}eIm~aaL0#4w4r*_OXn~KY>_cvaXfao0l&cJ`W^*Zr zJ)*Pn5O0NW*a%)mh@y{}y`gg{hdre0QI&um35PWXYwk*H!CZ3=`;?h(3`5m&nCe7B z=oD9BJJHf1=j&IFvqZ$eg7Vm^;s$~Alo=Zl850E$HePUEm@Fmhq*!S{q|k-ZQz2!^ z6Atd0}Y|LB1S-hA$z{?8I-DI*)fq&Y?q}sBdK}9#d-k597U0*U=`vHE; zUC_Ufvg*jTKnq??&Ovzz=NqV))m&FxSHLW2=sSI(auua?m{sg&h0Bb~lF!%WjcLRP zY@hK^2(aB^!~bM1<*na%Spl~HFxj6dY#eW?Ew>@4FmHi10R*)l00CEB0S$3Kgt%_f z)ns2yj9^qWj*u8BLxwmTHjhhA!GSx>0f=5>#;P}0WGp`_T3(FxvyY6`cb>>ty}^G- za&6T$g$ISyOB3-C4P#B5CoC}VBXSy|6pA&j+`ml5Fqo!Q$3wJd(K>Uv#| zss!{%7%LO3xf$!&JafkSo0-mpp=udRbs`NqrHpkaptOFKxS05um`HYY5mQ!lRFnml zjvXRUZfm$dJ{jr6$jOn4p)}=OsF6%ys`$ePFhF5CqO_KCyvr=S%2Rd8M=Q3MBP+^`ln@?%1 z3ok1m=+9*1<`V=t8dF=M=hHp0W+*kr5rz_moPB_kQu_i-2$iMb*&L_+ILMazrOg8U$VeYhJnZ@x%q8^M1ap}oL^ zLI~|3KEe~4bdb)Tdz*@z!eEBmvk(G!J^8-QTq$pkFxwZrj1W?Fn7teG3A0J1Lf72d zUlo0pisY?n{(%3JVA@S{l@^$9k=0}UJV}+qV^8yesd}{!MuDkrH`;r=w4r}|WK2wK zd<3^e77g`U6uj2p_>%moQc77;cV=Golc5#77Z12$!)>dl2^RN(N`vo82iB0|mB3ZjXW?_K+2(ym) ztnNZC4~dmJ_=swS@L3yPMu?(FX0OFU%4c;@?hrT;8d0e#3SEN4>G4S7g7>j#LEhk z(3#23TPTvC+AC~?$brY$6lD9?*V zL6ttJgA)1`RB3ApXBS}-089Lgx14;x+IS}XlB45LP@65mzIRS$ql8CTn2m=RD$g#Y z#QGL5E6hfBCi@1R4USmVmZK2tK&;ZU9!NP(Q~OHeW}r0l!+>fyy$Q*7R!J5ItxqVE zh)p8F?vow?=sPb?_hwE*CK}h5UoQ~r%lD{gdDWMFeWc;~i$od@U1U&Sc7=o5Exu0p zh)SSji?7onk%p5QT(OHN4Uf`Ud6c(8Xm~0wBg9;PW^dvmx?p}(*P|){Jreef0&DI{ za`Pf{_8rJfN5N3F?5jEv0iEJ1at~TI;Jt<&EfH3DiNn(^u+G6x-ap;?@fn zL!}tJ1P?*CYrj|72USD>|CI+(06c>^{^KIbuK|m>tiphEPq2^iLl5RU;!w?u(?J}$ zj$tM$E~Zs0m=ds4I|1xS)f#~ZL))k#i=CIRmL>OsDM^ ziF6uDMazp$$NNa9V-|~aIuiT`2GUlw%Xv^pJ-P%R(a`CV#Uh|RVQXarr_&^=mf1m}pR9*-l zs@Pdv7nQbuzjAAH_&khCKqt?8$*G(!5QrJ{f^HLdY*2k1V0Y3f2T5)qVg-LaeiJI1plmn^Rz)Q%b>s<%?_h zxiR0h2q3e)IJulT2`OewtJ4>Yv^tWCmKUwA@{v{@OGH|=(G1bj>f1ahgjP@BBN|#g z0g0mBELg+fIu0>`Hw(VfS-HtuA+-7jFC)a*T4wK;C6rcg>UvZqphuw9?wBjwtXdDg z_h81V8=2+TVWe7CRed-NeG*nhV{c-1w7{J-agni+rnDMCF7?F4Mq8p$ZmYbh(m^&zMjgA< zoKXvztzJthqeA}z5vU`JfEHYxE<`meebBg#Ib?(nd88A@pG<y!XEg$|Uuq0l z{)eKP*D-&aPO#7?!cZ$qc?<;_-Oc=7xRlc9R$f*J@$F1DpW@BUn%c4n!g$4r?(p>z z0X(%E0FSWfVVp^XMYk{(B?0JzXC(SkeAOa&yz0fr$C;0iQpPOmS|YNjjf$2Ri`so; z(QlTDEczwQ3N4E&%eX`%ELs&G(XeRMWg?3@8C;c@Q5J2dv(lQk0xUW{fEN)WY#%e% zX&EKa*18T=3Fwg2rZQM_v*_q$<}CUYGcChNwJfUo@b6NUMT2&J04y2_ZxD!sC)&KS zXr#pw0UNRC#+UFOkniRf*GDyf&8y_2@}2*j2tmmUm~uy-dhQU9g7V)9Ru=NG3Q7I~ z^L;LWhRf7^URIcb=a}q9z)8F0S6kLG$mx>bxy+nYOPH;7FpYT05B&?gppI-7w2(42 z7Flk5SdW0%&Kw6f%`x}^gk|0G`pT)CdYgM!M|c8&nQuJ#0i8eJx+eIaSfzn6+k`y~}EFQz@}Bhz+RE;4Of@E_Po%e1LHD1>Q~@evKv zCNCG6_6-JC-{qKThXv@2OyP}?a&-kSBcT5#Gq+?pW!fpa4pj;0kTC7TU`=IOsTdtU zU|30H~y_@zMD0Qc>(vv+(vy ztP5o8gD&~(?EPtykB1)TK^5}6lzII+fN49iKr=@I{%4rzdjOD@X4RJS3~xfS(zh6J zFAu<+WA@HN*O+Qy2m(2%gF6f@m}(ct;vInoD15-hN|4%S5UNzmVUIsaD-Yz}F6z)`K*Qg;QR zTB$O+^96)^_^7TeI4QL+K$OsJPaGPAZqHD<9YEsK7yt0rY~hRbIIMk9Be3-H;_4OV zDrB88*(NR*$+j&OEibbD*hjLRu|g!7g|I@35{|2zC zGOzqKgrwQCgEv_h8>n(hztctzt%U(l=DqPTX5J`EbbL%?T%5N$*BTF>?SY*?xalXY z;mOIspZBGk+v0Ta{pwnF7Y8eqSDL5(_sn~FC9QHB@Up^We8XfzSBmtjwgiJV2Ax*9 z9aoxHx&L9df>%=Nh5iNVRY&&k3ODs8w!7Q_9lMFC*A#yb^}4~&Z2(m+Q1AV!1O7n1 zaKkSqU*EeYbI_m1RiNLW85Vt4Qu@v0WraDo&1A>YIpBy@Z5g$aR=QvfBg&~P$Z};)Q|_Iq zkF6jK%-zfd?z?e6T~46KU~ z8<>3m(pmYPw?fD_a23Z5Lag0o_NuO;v9I?MfBt zo$D81wAyM{_2b-1m2-2QA7ajht6q`trN}Zk*Af?Ljl$0%M;Bnu#ky^M&_zoJoUD64 zdgnk->C59OTc6}*1>ggjtdj!IajV*5hfFvPTeUg_)ouVm zQq`WriAHF(GLj$eaT_qCgpENnNgc|-BM{|Tw!|)Lep@uys5^6mLSN+E*p(g08bk$h702{Tuh!9`( znYrZ0D4%xKb*M@}hh+O81gxoqDo=mRe51AzGaUjW)sm^|Lv8337qE_^L6@4gvsf)L zab@k(TH~#8@H9EPF!}T}X(-lf?~9%ll`cCILKS`Mu>XwHp-LW)q`;&tnY$YRC%iZ7 zP+Rselxfv^=rQxE^#NvU4@|{n;DN_PCRGQv7FzK2uBB*c`lV)G zy!UV@!P*KhQo8Z>iN0|D!HR9n@fH;c*nWfKV7lsGh6j&EU8>mnp0yD{{0fhvfOrSy z`NhX5kN&{R3W&F1vfom~IUZG8z5@L4ZY)?6PDN@z03adK+PEJ=q|GRi4#IKhD=rez z@)eKZ)f{OEK1MJfA+3y=wB}3jdFY`T9l7W+I_Xiqz{7sz&=_g&Ei1;CQS~& z2Q);QzFH*G7>3rE)kyjr_F)AZNy>8G2q{bvFC%~-%ghz5#zfj(()FhbK!1csM}RSv zMxDp7gxjw4=oePq5>UQhF~;<09cDv{7)?<;LSD zCQC!_PxnH@Q^8CZ$k>N|k!^8ah;orfRY>uk%bch*DddgTa4aG~-j}&ue+^~TC|*{8{9z{BaSef-V^y`K-5ScOU`+r|?FYak ztU3%&En(FJ#;PP5eM6IgGKeVp49ajXjwUfjAr*@^q)6S5kEq;gsc|VyS|d{HK!%nB!U8Y)PwR}l%^M-y`Y|sfgxMfw@A4X2 zq`s}|QI&um3AyeCYbv?Qe?ttK-IFzpncfRS)e@`f#BS)65^KtsxVg(a~`c_!X3lSno@h5$k>F=1M1nmHKPV^E{1t9}R0;GMJe&f>j%N^zS&Q=jIpGZ8MFr$DndnT4 zJjbwVOYU0AuwYEUQSAnBBn-P7rx;<_Q7XgY(DKbW#<0FC0xEU9d78sKg?uxn*d1#` zid{)X%Zp+s`$(~8)`}E+ie`zndcDO@KcU#~@DY__$-`OSL9%E!R;MwzzJX3EpBxsj zj>~jnM8QW?BZOj`@G>~gxJ~U`W-bf`joSyGR^2i_NLJQ~ovKpMDWTafs6X`S*u-__ zG&_r#{{q5TOS7sUpFu8Qn%##=hFob5G#e8e84n-N^G>tyO7bY6*;xAJ;^9QMy-&KR zWcK?Z(tT+zEqFgf8N-7r&$6(A+t9bCJ|S!Fb07h)X@!t7QDl{JRaStd#MphkSbJv#^RG;aEot+ShqmVHTD#*+ZUL;F3gbeVMkF zZaNtxgH-`nwLid>(C%kAn+fg0>pAeg>ktyAa4ItkaS>n|qrR&VXg(L+<<23inY)mD z#+>`4QPJ|^+;u*3ZqRy>bE~g6C~K{7Q2Riv1s_rAl5nnNy-0r>8C)IK)4FyL zZ{j2N)x9w=Ja-TiZL#3n3CO$F zhok#d4{8mM;M~7D`39}wBTxYIXX5Y?}2va@T=^=VUKU*f*ly&6$$D? z(Z3N_ee99o{XLJNfVZ7F{>^&Iy7C4t;{?3-Fxh`7-W)-xEq_69a;PXd87p_*|%;#+zC_k0(vO>PR$Yh`0 zAo7#i@)QNX5G^}@9&Sgu7L~T*Rs)9BQ-Trn9H4~&0LIkldcoYQ0j=vpbYOd07FmSDEau z6furr)Rvz%P=*0(*!xC5k5YL=?Pn`*A9GCuO<2+DA(?W|iE_PHmPxzSeoi>UY9}A=8GhUiFr=C=Z zI;{NYA$j0NQk^s}_zQB9m04=fXP5^mRKF0}*5)0MGvT`&a8?a5(s-{TN)FohfSwqV zHX0H`>_(m#TA2_7KZD7>1Nf1T0B+R*xWyR2s~;6VB_Hqt;AafLrx}1Q|7*pyB>5;s zu%i)zUkfTQEv=UoE-Gx5Q-nVG1U|uW@sr{t`8-(oac`<&Wpm4I!Q>qF1epu|W0zaX zV;X+;aT@;BO~c>D(-8Anah_avlX)Ef#Sp2piIwGjJ}>@VZoP@bv0>y(m1rUF);N5# zc(xo58fK{byERNuueC|69R4m3)B`I)!uW8H%!ExMdt_78-1P!ukDgx_+vVk6P_NAp zS)!u;QHRI7pncyIzb6-Xfxf<|cKh4nHFB{R=$pDVOrT$=gFbr`5!DoJzOhf6d!_Hz zl~C>@wb~>5_r;5q_W=v{^46BQt4C2rDD$ExO0~_LtGWN~X@Vx+ zDUMTW@rMC{B)QsVbf=-Mk%7V^KNdfvG#3^8z%ojFqFTK`z6*bp@KdF5^uxRJdMYuz z%JKZYqz@=SW6`l%RjYBQ=JEaBd571| zU9+o`{NiSGeD(I)+|uQl&7?w+&)!8%zMIv!ou@?cI(EY{#j8frYK^xSewwv@Zi3g^~Zzibwn`bX-qAG$DBRjw-~pbIq|8w!@b=8t+`+!G%)t}^UW zrQWGrVNqeuf#&cVADA&K=P*A0ARMP>zJNRq**h=Un(ObU_lHMl^0#+aWT^^M`f;;Y zS~c*WmgOF_?m2MtXyDGT;&>H3+kYRqH=4w3H$3pCu`@SDAwn=QdFUs9$3(XnA*1zG z9abg9NVa}8M;o`S5ZPP*N0Gf#GuNq~znCP?$wN1~?P%x@?V0=p2%((|ZJyBHqBthY zc}!i6?Tx%TiS2oLVr=K;l~-&#H2#(y+lTYS*mhBu4Pv{H#C7HIB(70OB}Zt8CyYyZ z7>vXCtS*dQdH-z~bJc-C(C2s-iO*I-CDxI((d=4|!f@?MQROuVXR>Y9k%@M#?U)-9 zFxnI4T%x{P+i_K?p6_YH89<7R#sS<>j|TiA#$UkcRNEC%$5A3H4LMOnvgNt)pI1V) z>pI#i&G|NxUJdin&bp44fxMPK%5Awg9Nntx=&r;F8ePz|7hC(I_|A3(ZLH^LB{$4> zx#~IQO4@#f%zK4pp4JUW0$pXKl@L)ps)@v)==n+V*nDl~jlu&qIjKAfZEEJVbS(^X zJmn|PWBO|9&F1w<>ZRw4srP6;4Y9MB+RxoZY3YmkbBk9WJZ#CGNxf<$y(fCz2JM}9 zy_vjEaJ`rxxaikV5AYHq?_VZ6TGq;i~>Ni+_2Gy7ekN-S%(3csBlq0?l?^Lp+tsmw1-c zQ{;uj-CYx`a0=g0as155lL}cSkcR`4$#~L1rHgO5Y`iawqqm3{M{Z%6#ZOludfMW6 zOHSV6WpU4j(wFKNA}M)u7j!hrF$j(AIV%v=?6J8${&TE6W{Z~ve`Q+sxUC?oW1l<~ zG+@DR_^NAvRRg8v?K61Vus6JS>4m-hxTg&xv1CIzhwg%N^U)E8u40Ywd?b?js5B{U zX4c$$n~T7H=UDx6r6(zaU%gogmRM7Cwj^*-oFEiIf)i9a4L%NwO*32BYQDDGWVnut;9Nogl zNvK&MrchvkVG13aayTiLh-5wYT`6Xp=JeQ3I!5Lvu&Gum@0O z+7lvHnFC0;6O%cT0{Jfd(XKD2! z10CU#99w9fcH;#VbZU^JP<|LR%(kkhx;01*s$bZL!`;Gg>f&}msuh}Cr!j#3z6o%q zkFd|t!9J71rmfS+2FUt?&97EPYdYBCqq50Dk=p>l2lN{t8^M+uO2~NSxUNtvxn>r6 zT{+$ZTK7y)@FMuWn}S`+2**ZAc?Azvt>_3ry*1L2pd8~56M}lB5T%WB6lxU&@>u>q zB9Aqi`6T2qcG=SA@>hjg^0>((EhN$nXj93fm8;iSN17y6KtX5rg~=*++~w5?cYFgG zrrpK6LF3n87tdfyJZFLX;EpXCr_1J!Hd{sRXt|ZRY!t-EFU!%rat__;c($fyry~K> z%81vlTg7;7xwYKlbtgTc29I-O%F0AMSWUc=6Y329Fp1ZRTT#y($7@;zAzq9BNAdck zX6o{bm-d%-&`?vin-Pz(5UGXG=84pl$&M!_cmt6pQV;U#BvN;66(hB9Yk94XU(&c+ zcBEd@Me0@RvSFkSneKQPUii3Yx+X|};t?<=)!Vuty;^=jdW4edxS5VxlG3P13{tXb z+=4%hgESBe!qhtCId9 z##~pkJx(W(C(CyEqYBFeD+UFP<$all8 ziH+UwIHdF!)R;39o^b5Ix|N;;)4VRd3P)<>OhGlt4+POcznYD;8bao`HUNaneC~p! z*A-Dx$13!KWt*oRhr^ApLc%=JYl`g7C(ARA=}I0yYyftaqZ|YPZFG-zzM~Pix02rYv>*f>Jmpv;zXRTx?TwCO!F!S#DRjMd+TkzBSGJq) zjZPL+P?s}~mGU>BVRlJkrm8_ANxwDv#&+?N#4|MJ2K?)}kk4HpGMEE#f0SG58Ay9J zqmt&M#0Kzv+R}55x0R3`kWK0dm9SJJ{s>{IkR51nsbh{#wh1C9k_b`34~)_iiN?CX zAxr*89I{FiO{9c8)^T=ocv{ZZ8^T%Lav6k2X;ML^LYqn(tz7;eI07YU8dX9X{ok2Txh#7=bm$e!6^(Dviu-gR4(U+(iUR>D9 zX6_)hQRr%P#nD2NPGB|q;(J52oq`&A?W$v&^a0iyV0dNRt}0+$4X%toyF<(&L?q2F z>lw_#edo{gm_(ObB8#3 z>$+pV9LvDL9_Sk6buAj@CH7 z_oXkx7Am814y9ZGykLbd>>C$A)0l|F}!h9T1-}Uc1%`m8ob{l zJ|Z#>K5`cq8xalP`N@d3M7VBzyme~DMp>B|nK4oDp^&tQEUPs-JuWjgE;}+ZA~QBC zDm@lOESy)z^`K?$dZ}@|B|S4eIw~qIGb+}aksg~KXNirrX2!%vMO$N{<6SpiSoxh4 zUPiC+XlMiH;6`3M%|JIQ&a2gWm!1yh*Va8Xj$>X$VT3Ji;F=Q_J8~UT6$rwf_`f5 zY}z<3J3cEWJ37;9$;z-sre(%iW22+2>Dig-G3l9+F)pce<MV&c-{v#nY1 z%@#{MxB@U|rAJ1^S)$U>vgWJmx^8F9-7huDN=wU*kBpAZg!!^&#KxybfZrBNc4lUF zW=1+ny|^&Mbu3`sli-c_u9382Ze*h}I!@a#Hx^aw;B3(@#+uZ<qT5exibl6rejJF3YB~G- z{~Y`OIrjf^tlyabeU24fUZ}{WJINiih7W69F*sx5swfz>k8wU-#$Hx5+x7~Gbsh-0 zfgeFvPwbx3tx4YFiIvH%{o`GUD?WQz3L<|*RH;xQImZJ3=1fA;rR!Ja?{}g;ot%mC zqiJYkCud99KOeo^$@zd>As=1qo#QYl-;USvdz`=NLaVTwxcCmF&|=_}784@Q;jt zk%tZZ@GtU&LPa8nFAG${zo6zucdpbPgFZQhPAH-Hkh_VyC zoqd&HETPu0H(FmCF8@3Vr4D!2mPceD+X&~|N`lTtS7sxb+30F&V{az4F+pb|o7tGd zY-AhRXyW&2u#`njY|)w6%uMWMCN>+HAg;6-M{T^Sv+)YEaf;b^#ni^s@zlmmosApJ z#*fU#4O1I0PM|gdcZ<_fZ8x2k2D|CBRKpU6)AC0SwGpGU5yfouWHzDUQxWr6+%}iV}Ga(PirNi*sBhE{OJ#=1z_Rx8$fF%s)1x-h(ZLYl& zpfk~$ndrn!v^F*I@eDeQ!8#iQn2ii(V}PlRCbOuG#X1`cn2in0#sX6t*|VvQ{W=>C zX5%Gh!(nRU={eL!sm{h(X5$lPfw3wv8*kJk=T>R>6unSqZGlA$E(>~v#x`g3-=nc9J` zX%Ra)Iy>W-ow=Nyai(_Q%Q3`GfzD1Ivt#4zFJ{AP zY6IR`M#eE#XJZtzF@@O}CD=%+k#wZuhRQRh&YGT)RR~-2w8Vi|6oJ8x==Drzin3N` z^)X_#j%!htvx+1mX8SSTwq=qtx%x|$bf&|-UyOaZ5^C}dYEL_UUf1z+v|}`Uyz@Wu zG1l*Mx_*0B_O;($mAQUD;`_}VeJxpH-PW7vJSu;~y1lIHcCXLf+W2lO+Qle>FWo{E z)j`ircD^asveQtKu$UT31m<%-_j{i2x4o|4Hmu)X)11G_omszabp1B1;w#L}s-V=9 zpEmQy>kZhYJBp5OzxOKMoIky0%@5AM0)21GsU^-Fc2}#l z&T+DGoo^DX)-|>-5pHLYH>$709nL@K+Gq&n&&wWOP$zFQ3LV&DI!2ie;1*dEtLOB z#d$k|HiCup^k zx3)yNRXa5zw*dJ;Uqw?E)z@l!`W!82d;09Z&3V*7tMhhe7iF56mg~Lk&WVzNTFy?V zRatJPhW^;;T&>j-Vx}RTcphCEi2=Kv1N{PbaF*e%JbP<}qxE~8&16S0I=I*QfU=Kk z$MfD2MJ)F3EZd9m?P-x{Z!_6H_-IAot*X-Qo2MK}UXe(rD% zG%}gtbY4}yHa59&pR+{XQS3_C?+ljwe&?)Bf5O>Q;lUw{!zC2+MT;wbc~at&&Lc`q z2cIt5R17zm5jgJ!yVgGCY*krq)#^HaQ*pwarQv*+ng8zxa4H5XC>-f)W z_#YYn`7ivMmD8IuwI-FwH65TaKZ;fXMjr2|!j`U7`k=}RVA&}k) zPm|use3ITT;UVDObN;|_ai#V+v}tPxlMCHjMo*PxyZyxK$JFJnpPsdm+Y) za5Vk}eeeGZ-3VFU4&Cl?A`~Um+ZES-AAUwJ7ndY7u8TBRh-w0&qAH@iNhb&SiYo>a-BCp&fp(A$UUrKo>9~@FqIa( zGYl>Lxos`<&pGE$^6w7x(|PA_%AdSBeCn?4G1GvW`PG4>j2(%gKXIZQn&?8i(e=?g z7o0A+h7&D&&l#ZvIX&?}Z$SOzJ!hs;mp@EyGzxN}-S0b>YZdT$gc}7rj|4jJVH9^i zaITi)oanKO&h<(sO?O(?!l-L8_h8g@>qF;0NlE3c;ro7z_Rfn?hVw^>OQ}wjbj8^t zke6q#n0x(-bF4Cv*C6u;8swrquR%zk1A&o#QW@jTf2&7IGu;I8(MZyhCRlqqWitY?*uDod^|NW=VSiL+dowTpHa?wbk^g2{WCL{XFNa5HG zXIBFS(!(D{3QvCKv}hG@gmcr>Q4bfHrb3iD&~BH5_K{0dE#1tW<3ZY@S0zhX*Xom4UpbqHKK{2#)|$XTCH1R^yC#0+jF6PrePW7F{bgSl z1nZww9Xv{ax3+zdUUS7I}i^1$Xec`fa)z0nK}@vgevi|V5$sx*DW%SvDL$sK2*@{#~B zS%5Zso;%8MIXelDcb^%#PK;Gh+E32y${EfaCH&IPGg~Pi@P|n>oY{wLgLVzmDv*VP zCp>3RxB32POmF-JuKLK|(HTOe(Th58Q#4DjWz2QFUA^nez;*ZINvT=elH`E>+MDkD z_j|O&n=C6q8yKK(j&$Aq!+AxLn=^g&uDd3@KDqfUaKCuhU8VhA@4EYcynP3F6-D`D!aAkrctil|^i6zMQxqk1nLB7uO?0yl+D=-mYA zy(vY?|4h4kc6K)sf8Rgf^W=MQ&zUplymRK=GqbyM^9@0NyA-{AmT!x;*=`@f9QUZSpxI*(OZWX6Pn0gs}qIyCSvR?toL<`TN!JfClqAMqF@KbDv1 z9ITANAdI2%{$GEP>0{vUa1C@g$0%bk8njrnd$BT)> z##q>^m9SS~x0SG0@UV?vh)qtL>F4^sg!6!#-9jo`5!6yXarTm{l{}Sw>hx_z0)HGG zjy|E>MJ10{=)0Eoz)$8{G;&hZfuX}O`UtB$l&g7LeI3uzW=%?s_W|ND7g~3P>ke${9bjkD&+YvZ9Tfq_j6amfYFzA zaSQ&kuI^g9{9QxeUD>$CSvc`Ix~}HOdOPxHqCJNWht|7$*{-|Egr4f{xXPNMm!$Nj zoh_R3k1+#Ud^EhIW1gO6_{8nv=sJhRF^}@DIB{FI-`&DKo6B&N4xG5{tTIo1flF_j zWYLxvecd8l_5Ga<=CLxFl@us1dRa6RUDBhroy~ZcmPmeX*OuqhLl4{-I&gYH0w-BJ zyUa5dB(G8k1#7B&_Y%k$-_fJ2)8;?!deY$>BHGJ> z^8G~G0;7DsL$T1-SA2;xNy101gVMSuxITAixzt(7-RwIQJ?UNlqYPYV7!Y>i^gTTT zuipElbpVD;DNAnh!4MU3#FMVlPG|6Zp1?8z%gsj#%o6Z{DFJT^gl)b<$rrQ#kcGb) zf@X*Pwh~^;@5@?Xua&5qflQxv9ox9xayYvvQNN1Yv#6h(uTHyW^YdK?{I8?Vq*3FY zo==K?`kMA7brdIARXxdeh$Q#(14_^Q2Yk2V=!W}9Yo(daJq%lA9|aMgL!b1kX1$sMJo(y) zKPZ0ddDjXpSBa6W(`y_>SM^CE+9&4G@iLWL)@{;Czv$ZPAeR$8C7i?O@I^Y^vLQdW zKf`*REFt-7$)pC-!tF& znk(0#HCcetj}?e)r>Pab%#x_d0`hKG*9R62LQnnCT6@u|!K!YqxfTt^c86lJx7xr5 zTp>woUaD--Vn`2HJM9Ctg%fMFMJO&FL9B>ue+u@SBd75tykdYjJIYjP`Iz3WQO*a3$lC17$XqvGDG{%%)%`%mZ)X&2oyJK{;ii zaW+k)UfRs2aUk=~rm3g%S~(Ys)^ai}z^z$Mk%j7H8n@7HBMOgz?gjjd-d+B~JgP=x zR(GQG(2pshAI8or)9C;Y-B^TAPV4=?E2y~h4jg>|KP-igtJf=vI%528E|kaB)9om9 zK+%nbY@Z_}m-e7;M;(BaqMs|-9?MeZU(c_%*y>0OL+O<-SPd5$^Q7J)eT38% zOC6B0JTdM{P58`RIqkvcu19^GZ5FA=Tj+=-3zweeRwk3-pG^BX?b4U7PzQ+`<0?-= zwf9PrE+eOn(=UcOJ1@?ln|$SM!UjN`e}Q%pTa&ym zJdgYI4TngKN37Oal<%0;q`=`Z%m0jft3m5)95jAkeQ1(}lesJW6qGh-qHCfB)$WO(I`q&S&C$RdRl#9DBCi*J*+4ABW?(XfN~q58R&R`xc(> z=*0Yu9Ogor=$DL1cinMK2XMG5;w?6(s3b3AOd!n(W6)vtu}-6i%FRuLawzb7xTsjvnt z;T6_vvwg)Q-yUK%_lpY<|;V-k`GR^I8Ms1(5As7zp1`X52S(d z*f5*P{-t;!>0yY-t#uIU-IA z!stjWanNOIXG8DuS9@PUS9My0f6--I;&dM`(#QkrHfi$@yWmG0-a!WW zsg-&b&lf>r1N^z%(=Q*dLUNC~)@dWu_6Vef7VQy8=(!H=!5r4FG%VwKnx5L`{AsC| z=@V9^who}K*c7$|WMD)TwwH5VdmYXdqPb-HWw?D(u&0S*DI0H^lt!#a!-EwU|39LpH7qlahu8lSL<8Bb>J(JUar*6hrqnH!_)|oO0cF zmPoPZudQl}+GkwDot2=4@z_H>y>`nM6jY1160R>*OSq#<)2@WG05qQx&O#fNa0fa6 zEIa2))t*j)yps1NeHXa{zRZ~C=@e4$f-BnCKw+L^7IT8lsk93hT#*j#ZIjjBDddAo zu0OTjSfW_XwX{l49zJu~bW1rg3w^dVpKjH_|8LiDV*_R5?zlzx|AlDI7$+T^ zn@8SQ>ZzhH8c$O9Y$)b9$aIR?b<6dK!wEkf&3<23Qp|nao)welQdEvPPV%5ni}hl@ z8T%h7=5J%P*1!FXwqfd#tE)ZuEdDybiinL2^Z7m3ENAOq?aAe?7_J1~Ui{Wuj|Z+6 z{MQr51td@*;H zmTKr-Rvsznsy+$eU##*7^YwawHplXBQ=5mpu7o?!p>09t^(TzlZhV=M?3Q228ztR8 z*)=$6)gYskyHQEpgZR!jthD>Cc2j8~zTE3y#y!^worMIt>zg}cUvOy4@Gt>=QvH7d z-93%^3Rl+`1Bk)lRaNzJ?i%Fr3-wD9_*aBh!(bljPxOGgp_LK+JDoe_+?{-4mlY#{ z69Ouc@s4*JYE2E+sI&3Q$kibCQ(8QhP-lbmdvv(yCwdwGgeDT{qAXw^@}va^yFCuA zCsLtr`X)NNEhEtt+{?6XSfX?kAv${PUpk_nsh|>5`iH@^W`3iFBypL)u{3`TB_=&Q z)G>vGZNQs`6KMoC{67w4I{)8z#Qm1Tu~@X1{J#LVXZ%l=sr)~VBxHFi7q0_Frhd9} zef=j<@(slDHjrwtX^z_NHV)@AsrEOzUP=?Pv5tGK^A%`eS6L5`El8(h-pU$<6v0F4m@v6ATHHLs zwC$>Ei(yc2c4$Fop^d8R_Y6Y-DOZntQg3Vx=QpX|1>MNALt1HH0Z4Y!?F%^oZ0oMd zVD~2H9MN3Pwwbs&OS^AjWQ;%X`2`Kyaz&SK2>&7PM$(|wtvfyTJxc63*m-5nZRfG8 z`*&Nz-H#V{UP)#9cb2>6UyH=JNE1MRW8asu3%PsP6GvKn`fiEfebm0Xd$--39_Ur@ zE!17PNcvBkcb^I0DDL?pRb#m^OTw1hXGv9%F;X^^sA&V5x!d?STP(Mqr@MtW&A5Td zX-yN{t9_iEmfO$MV``H@PrAc>oJr8cZla!(O-T9`??go#c#kjVFXq<*PmOt7m9;QT zRx}!qP)P7-6ny_~t8q9?`*-5}g%w7c=tLc~ zsomOxjL`(}aqYD0-Q9P5oc%?6c{k~c+q1jLODoh_*`8dzStvzJO+&mkMGPVmvO?V+ zoGe2&Fe6$2ru#kTQV7g$XRy8)u|>Q+{H$)B>1UkjE9`kOQf-k?cX}6R4z#eN#dz6* zTy6g)aM{hI2rgakjq=Fxk!aJ{&^+Fo3Yqag=B- zC;R8PdCueRCJq=H;~lsU#i%eAEWK#RmW3mWJWY>0{f(Ke1F+{x-I&4ySL;T2vu>P& ztRFREC<$HRDo19F9#KE-=tu4rPLkXCy^?9Shr32t$=f-dyVLB8%>g2rcG8s5i%pbF z+jugunsXKPO|3aoSRTS!*yg3Y#WYx4=kN~@efzxIzu#nGZ9H8@3mrWt;9qRxs<&{G z5=Fi+7hP#gFyEEBF_l{#AY-=^1GlEZOL-0-4aYiI)OVEKOK zc5f5Bfr{=jRaWwHwK#-md{NJ_(!7(3>ec(|I2OEKU1}W2hpo;W6Wo6|wfE^@$~>ag z87s3!;H#`?dVeMPZnArtS)Z^PXrfhvt5e*MTQn$L@8fpb9IFNorn+mG8!(SnDEh%g zr_}3G1pY@ly;CCI3GN*x?q5pca76XH=sWjtEn8_Ws^2mLroYVEK+dw?lO9R}C%NAz z7Y0l(X>>%{$~=ZJ_rk~O_DkQpXF0XgxIcDa&7UjD`JdcrX=0n^=e z%=(0t&jG8@xXA_=r@J>=G+=db6{`mC&U7C%H(-D_veNgPtwx|!wRsk}Fh+RDtR!9M zxHsni0Z?KX$*KB%5PAL=_vgXv#Z?o<5%${vY%f>-HURq%^KS!mT}ArLbvN|y2w%#N zfd~5&r&sZv-1pFYvSzNkn)Ah_LdrgFN~Zr}$4k6J|HVF}8chGi-kErp z{);{37()LA1WiV!_WGn44Hgm=?#FO2DV$Mu<-L)WebRO=a?kQ}j$XxXN9d%op8v;_ z%0g4!q2<1$4lsP_zo7H{4k>|uP52>YbC$b5*OnmmnnMq*fs9_omh$x6@&HY&1X* zoC-aV+Ec5bTJZrz^5AN}+Qt@v2UELibya2O{Z-^ykNXv)F3{l1T2m|C?iudZiY^VM zy_GII7r@{(B`1WKIKRw@7(FcRex`fA_NKumV2#GO8Xsfak|8IKPI~t@Hu=zDQ~EH4 znVa&1d0yP)4sbd@|4lz^N^extq7go93VnoWkyZLSZ!%#=Eq%}ZLq{#?T{X@(ebFY5 zMMr(7ts)<8bFb7^7_bu$POB|LSJ5OD37AGP}Qde&eSg85$@f z+=>T-J7!>$?K|C1J5MmIpCTht8~LHZecIfJ4X$YdW3%RX5@9BJ_hI1U=ei_u=ke-J z$M44K`92Ly@ReFU{{u3xB9><_?sgw_RuawS@+{GdP-b%yqw^9iT3YiotuouC^Cl)e{*0#Y%&rWWu)aa%s);+k{D-^ta=Gpj1P^e$3lwXyp|C+Idg<=(I8(z{4mE8XnV?iUnYYPW`!?x8d8?@D5S z#gb$CS@#AlMrk4HjFfY3H}&bY^X{P*{j^nDG5^P1a5ppR&J6U_Aa^ggYinJt8hm`w z-Nx8}Z@lL^e97&L@LI<}wUrNqLGteURx&nI`1J!$m3TDMpysIQ)J9>0tg|iEU#+i= z!{?yCD$hp`3i2T}5Hb3cqFT8vtE-3@lmYc6VxNhx6)cT5j-LAgYYUTC`$kk9L`t z8t>2^U{~}*)r+n%&NXqU`h(S^`GVANV=GqTRa6=zIzhL=!qj?3UA>2TN&~$I=c3e_ zC9z-Pd?fe1pX+MPa5J|0hJFq%N`1%J4@=Yc7pF#P9dH9SF3^D0lei0hsJLD_O|n9b zzIwWFN$Qi1lD&~p;a$~~)VkV0be)~v+nPHzyaq%SQ|!m+16aYb@!C ztkoGqE$QxogWmEct;BDs6&=pXqP?u?D&qF+F7LNit?BNqvHQ>}U+;D1dgyplaJ>Ki zeC?^VYRIi192T-+519P5CUtNq3>Y8!=mtE}fX%M%t83ZQHuPR>tF`9c zT=cxhVl4EyO-lDY<4eNOGbrFsTZA3h}LqF zH^I%>B(Dv>Fl2mIP;FgdP4e?NTAN9Z9#{1t5rZ>KZvys`Q5z@vliO3@bdH4J>?ZnE zK4Ks9=95Xo9jV)$6W6hcZpjQcl?H=%rnYm=f(CXITb!-=@j5)QQ9K{=c<8fSG`V|m zb-RbT7SpxBlRGVCS89$!+d-2-&TjTfke8Gai;I(uaCd~g;9Ta`V}WV4_olXS_#9t{ z-*7%{Fh^fJKCzC3>`y(Soxl=4)9EJOZG4$>i4Q39O*}&jwuu+89y=?nZ#kIS*l3+j z%W`@c0V0fC3UwR_{nb$-2`_*C7#oJ_<^U zI0w;d0qJmAasr#GGsbnUp_RjzS&|2&6URlUeGLuRn(3vBsr9v*N`qEp#wQ;IIMT_{ zi*S24G-AC(UrMc^#VU>91ow23dI^eqLjxrb<>|^eO8!B|{L86ZwGIZOu%li>Ps92m z4RKSJ5iLetzmf`n%i(VY{H4L)O88p^f4{-s@9?)8{?@?XTKHQBf9v5d9sV|?UB9w% zYDnuMMI7|eaFNM<@xs3^xMN=U8y%483akLn)+&-y#XLu}emD-sJn!NwY*6~8llMz_ z>MOc*rS+w%Tawy?+-DD*Um#_U52-^Ei+k#m(t|vuOa{V8!^clPqkX4ZaYB!*EHikg z3{Zpx%KX%^Crf(1a%xMl)d}#eBiRu>y`HubU#8)eq>9qzP!dtf6G|4B0dEZkluB~5 zYQ+b%$v0mQ3Ne)Ij7o~(lj&cz*kr1<(S9-w6i`&&Xfv5ALSy4O-aZ={ZHZTq(QGOL z@%-Or(_6-YDL7+wFoE2TgRIV`pC0qvb@th4KYfM?S9>A~5iHWd z7YDp*T&`A);_T=t9%Jb^k@{k@4ju6mYe#I=T?ZRRrCYCAwi{$}1f+{?o@){QO5xR*WS$eGrjmj21`%3$A4WPRX~ zkl^O@XQE5{hjCiEgkYhSxqna_Hum8pUGGRtIjl3Ra-Y9?FUv_~&J<7rsKN#|LzX<71yniZXqLW2mKa zUQWZRiZa~;{G-{ZIBm4r!r3*0%uDnuo&ZnA?AN)jO&)u;tG%2f-xqN zk6-XKZ#-C?67+(3N)*pT$f7BMN-O_NwZy%`!TSG89~U16C*)>qrn-QLg4iH4EHKLP zAI9JzRZ1BMHSyokXk$VnDias{sBE#A=qfEdG@1TgKr}uyq4B;g8WYKb5?B1m=FXn@ z#_y_WLob-qX2QP%HP!^w`-&3@gp zQL*cFq^ebew!NTRgK=eh)K{FEilI#leA9Ezp~YZ>Y-4k5*5N4a34ED37L!HN`gkT; zG#L7pr;gUqs==MNJn()XmMD(-TR6ry)}MLXb6o3#n<~$Didi&etiX%gf4?nP>hJj? z)Otw)gTe}(MGpQOJQw0xE#@yg$PT#v9{vdGFZ-l#p)OPd>Y zI>_`Jb?3pbEu1Tw%i8`ZZqDx1o3hxQ8l6s)PSTHAer}s@1eT?JzAX}K8e+D&QKK7B ziEQ--R5V*e%p1FBE`VdP8o)&_D_zZlbLQ&OD-yJ;)o1r`*3BlJDrF=D>BY4CNsHRq z#POr&Wi8QUr46>?_{P&)>yCBkyg>FI6N%9|n@l+2Ng&a8Gpdj>QNgt=bfC|O4?PLR zs)Ickz{yh_lVY5oWV6j7%Pr^z!gzIXHZ033j8N#-XLh5sUx#~2IJBRzqY-aqU`Jzw zt!dyy-PyymU$L$dRHV>d4E?U1l~75CPf8Yu5J>WwiJv+%v)OKyWeicm)&dxcMY9r| z(0}0K**F&I*;J66m{p!=BY}%fVfU0!nhBG~v*D0}S#z|1u&xqHywJVLLqVe=B{yII zKJz3v!J6Wj><1jXx_fql6TtrQbI-S0*d~;DN`K8of1pdhtP#JxfwH?wwz|Pql&c!v z52>#oPnPfG`VZ5w<-<%zwDRphavYhamvq_z28@L8lzayR!=~gwdPPpj7-;`8WsbQ2dd#r-Zc`)a#a{Y^hAsbd)OnHu34$2h4e= zqi2)-bZjGR_t~UQM;Sw}O>8=nOW%6RI%3Gk+n$O65%ohOqGMvBVjIShyy>0+WYSnq zpp`JE@}?kibgXsDWJgAjb{q#zCj|=pdEwkK5^*b|D!Ec_QdjLJ)>nY)AoQW1H03Bpo~q5<1P_pXezEFofRo1Q+*W zM7r;sok(u!A_II3p@d1^b_O9ssNQBYH5J-;O}JQlGpCIfSXV*kC867tjP%cJiC~t3 zcq)h^OUsuk;RJ&UbI7hBR>mBV7jaWPjYPNxw^>X-O=Y7_u`mc(OmC`wA`%!hio)tY_^D9A4RWnnM)PsImC9nu=da0-Q7JKUHEjm~P z4jU^08Or?4oO(ZQ>8Cs)BAeo38aIq3SDgp?llC*PT+BR>ldC6Y1(RuZ z()GEsg0}S^?;bHYHyuN6PbtzmZYx@b^xGidZAtlk!ngYY?i;i0u@t_m<^onGF zuoX?NmV*g7zWKfY{;wHTN|!)=O8-K)aQeBj+!N^6m;rV5o+k(ak=$c*A{n&8PRww+ zH^)k0EEEcyaX8V@6~p`wHdK zGM=Ck0rP1Zv*lJlk}%a%o@`&`DQyh|i}cmGGGDABU67CW9|-RuGp)JF&8NA-O%u3! zVR6&&hv6nvza8A7u1@yxT$PW0`Re2@28Qv{ZF&XslH)cVmX>H#KM{!i4dYE0CzZFN z`NoV?q*tU7MoSH`j*>qkguS|3+2X`ek&LWI@Ab`sOQ0-~T7R=Fnd;{(QS2HI38vr4 ztXL9QFS9Zk|K)qFEGOXSqLXVp$!H;A5z^%?UV19y8xS|oEp$KHs*;nG41?BQ za)Kj`0iWkBq4`Fb8b)z%>FC4ZSBOda)@!Smn9BN4fKrZn${PTh*>PuEN=&*~!3S6= zkb_Ix>OzLkavZaQ&t&0f%2rNFo3XBf&v>Dm$?-vBEhQVba#Bjs<3;Hv`|8D|l$4y1 z9ZOev8hXRlU1#GC93;lwBCac{uc)u7!q>|*H!WWXy0ArkA!r}dRgTE||F|BTRzL!( z3Wt0R{-FgvI(eH#VUz$DjoTwn&?}NVXkp}df+R;92{Lb*$M_FqYNbqx`rK+ z;BO*o4nID1T&Vot@X(mZc+Nun-X9ws6-|0<-ZwD#342wZn4n4mPi+s$PZJrPuzO#y zmV#kYrr&%K$)atXo-(nn0;x;rZh#>&?#)QaIsqWBoepiYubt)!TkAN2bTQ*t#Q&|3 zl=N`^Hbzn*y(79VctB-M-!pR z!j4u$L9Q$lp+r$vEa@&{n@V?&Fx|qVyA=hbyVtj?bk_qA0D>^qTVG;WSgG_Gy&~x@ z%s)HH0S9gyH-lFRyhgy#(|XHgGBO(*VRW|=>nN%8o3NL(XrtTqsZ0AXZI%^ zPkYMx#ab%_J_f%M_ftL!IY&J~+TR!iW$tAOKd(W6bfY<7hyC1>KUi9Hhe~Er;tQ=Q zJeywnmnCEeZHmRzxyGnkqj zvTe^$YK|jUP}(lMZL)(i)C*WwNvq95wfx_5(4~ov45h=*Y3< zAG~=8Kc!5nT=ph|2?ZAA4@YG-ndB_WVflEzQ+N)UiI#w9HTB+hbvL{RS1qjN-|hm^ z(cB#>9sR;HRMJseN^rKrVMuyLN7)o6Nk?p3DjO2j$VdAGTp2LXl#kA1XqlBW*b3vL zdss(Foc+Sy?H!ztVtSkTNa{eJjE~a6o|liR?6l{j!@_tvIBVo18OB=ZR`5|--}tDQ zD6;;PN38kcVCRKzh%-Ja=VK}6o1>>aHe$9t+GHo<7iE^65I)B4ndR73f*=) zRW6c}XQ4IcqH5WnIdL`PCG5z>b4N{!H? zMpcUJD~e0m0&wk)sh2(BED31n=HP&ZL=KtcEVy;~IDAn!4EboyLci}&S?Cw8T39S} zrGPAS5srX1t^v>S+>|WDH=)YppsB(5qa?k8S;$e6nJ&ML)d#Fhc5&h=)I!MkXj{}l&uE+!KkDoM^BRUPJUZaw?r@g!n$!QO2*`q zLlWXM!^zNFaOaB%kBW|GTjj;W>4Q3$Q1N7a?7o4d%56_MBo6S3VXLasPD@j;u7cb>5z_=13FCTCO2!I^Sc&AAM=`SAj(Q+W zjivCkbPVSxDV!vI`yhwpl*)KaAi(y1Wq|PPtLeT(G6sq!BsKt)_t*IHIh>B*ZA+T!G+>l;vab)glx>px(EeDJ zbdOa@Q!Z!7Twq0z7YWD(2sMa2?l34Qq5AGZ^N_lax-TKzhqo&sw|(mLZAFyt42$Hb zYqoQgIq5H&;qN^DKWmVyH5aCQL-mcnEPxOBc?#wcu3D)eHX*)nsDaNly0O;@wfhrNlHonGi<8vO<{4#uBV!uF)4Q>r3L>vy zqiVooI|h;Ml{3m&2}2`ygpex@ErnAX?Fi8_Fe1v_t1A3U-^I!45Y|=Dt0Z*y!C)B4 zNlJDLSor$w(k}a=34Sw-eT=c2c=;h|nvTkDO$;x@c=4 z0Gqs754D$Bj{h5 ziPAG45=b&b80&}_QFTNS%K3VGA|oAZF++&bjG3PMi^ z-8VQwhJs$$osGAG&q)EzMe16u}dha433a)PSOg=ZJy;3z0IAwU~uC zHXpZJ3%4N~tygSc?^aiA?{d|`TCqJ{KnhyDN2Q=uJT+xWl$O+u?i*oH7zG`nR}2(% z1TxgPZ`4M>br43G?i)QYS-Fd?Fb)dbi{>EB8gvh6E9{jd4maF$#s}34aF{xkO3*1I zp}o+BmxLnr+LKTRVSO)nYa}5V$F4m(3He6H!L#tB=Q67JM#aTNk}?$!ar#jOBbpyz z#1rIWY!KdmTd>vvN2|=ISA;)p_j1O01M4ctydZRYP-I%77bc~kD>P<=6V@B{i1yl- zJ1+@KUCD%5fN}UP*dvNqXef21W6$jM);T=5oR=~xaWs;43##F0=mLfYkW6`ohJKx) z@g0s(L8H6yYw}*sE{m|Pf<|YdJCC7(5=aVMJb|vfoy~(oDzcwvc>HYHwToscW0)6o zhOvwcxJ8A6MYdb@7BOCu@D{SmnpAe|QAuSLS1l}3d82@&;@GE>%6*=Gl2rIMP>p?P zsxwjvqgM>161GnzmEHobs{1&pv^H5uz*ZQkyo7a>TTvfj@40?4Dx`PZ9;8ji04OtSh;VcKKF%}qu&x4Dve5knLNYF_q-2&r zhgUXh_Ssi9gN3bG062X$8~Ru7^wP6$_j!q?oDbkYl9yyWBI9FkAJL_hNy4C^1&v9< zFgc3jR4^GXd^-ql-Ox`tu3=pTllO)0C5{Q2*-~;Il7z0Jz?u@F><1!bFJwbP)O#i) z+~jcJ_KD@m`j`xO#YzdEg;HTZnn{X#9}D-uv^Bj1?NirH_bK-k;y%vE0`kjK`&E8v z1pvUDH1f+^7!}4ZZ_+E6UmS0eFpuHp_PK!T_5GY)Mw^U$iH!t)0sA;uMM3`yVUFzQ zkGh`PB_4I5TaMIuo%+IeZMuU=FUS18-+tF-w6NcuwN-a*WH4R!bDn88BqPv2A}&5Q zHd-ed|CqSAIC$ojR5@b+srE)jSwBU=mnx8*FCGdeE#Av0Ycjy)BTnW7YX>nD%AA@g zT;02$^UNiztH3r^=$?a7F!GF)oE8Xio^c+quV}^#Tc9oV}9f%Z!QvvKyjhGbRIH0Z=Wlyl{1qnxbjEB9O{p7)` z8P&<=k1{lq>ny0!AA5&h394&8j{YDV?Lxb<+_rgjze+!?m~P>1+x+}6^n<=#`G#U^ z`V8bNK*2;oi!n4;>Bpc8=oL&s&IJe55@)6WZSDbh6&|*3Oh&d~Bdo&7#X3r|%o65~ z@SI>@fjoM`{K#GELAPw>GzV;YNvOy{`$EShI+$}nEp%igGa(ZCYzqjetZ#U9Y$RPd zRp50_Y)otv$vfp4NUBouiL?@5J?~-UQ%-5@Pa8LkCxH{PgS4s#?I+g~;bNtOoO~K% zU4?uW2;D{pRq~ON`p}vp!^!9AgZ4$vB4MlkL0;rQ|4IoUJqrOVKs$k$b~qNWN-9rU zWMufsXxZ*DuunMwmRG@-VadP(4hrI6d8M*B1FJU%Kw+X4!s*u!awZy%brrCF6}s

    MQE1)%xAgs706dyy|7kZzdsB$p(k8B52}^XHlC`+%IG=2^-JLukG+D`n^vX@&7pO{}Bv(mG);j3i&8w;}jC%~6Ip&Kc@4sRW%e zQaa1y;UB3#dB~oWHVW%!!CT|%OU7~PAR?v6h-d>T#ln|rGsjPqq+}&dD!EmVl9e=h z8SE&(j>A`G*;e6T_d}eL-p9HMRM|rJT?!T6-;si3Xv`QXXEE&W9I~&5HVaG16lngT zsG~cXdEEfIbgc^*GI0_M7EMQrRN$0}tR4bJvJx|-7$aFp8Bz;z^a@hDh0k*jaXw1N zx(ZS|gzg%K6e^jd;5VLa9S4R7u&|Me?57LIhVA{Fq7#F05_}*}cb7RQS;fJkgfa=9 zebQu7AYxITRy{|2xmS1&X^9vKP3}Jrs{26OxN2ds(SZW8QTf9v89KNRTXJ+sMp07c zX9*8mr$}Ie$-Q)tcCnB$T(06+6QHJxhpglo4A#6vv*U<8(cBZJ2ZN_ZqLDESI^rc7 zKeBCpMk$}hu%DPREh9vWjOXte#>F;l%)faBvI+9aOXzZVDR_J^8NUW@bkVXo7B78o zLa=rbL!eA2e_#Ge%~=SLev08dYCoNvLiawOPUz8=l>8&$;WQI`)ShO1g{^-8a!NDM zzcK-(XQz%(nyE}`FBxBw2O0KrMi35i{Ga0!Dc_W52&qzr5b#Zqbz_E5433&2gesAe z!qZ67DKM)l3H@Z!D6K8lSCXo@(0}@&VozM$Jx@tS?I}{fBFOZM*ex3s}>gjl=X%AR+>289$L}iJ%#;h z@Yjv}XWWCsdA}xMEr*1n%53^km4AMO_)Yw?0fUlvB)fe8yfUE67QKU18JdC&PE=7b_-`88+pQ{ zJ;7S!F+?fKno5|6Z)-=sg;hDw1CzWBThk`kJ(dDn6TC2 z7^k3y$JF^Ky{mUjr=S`PsYX%p@v(6cv7w#A!ygZiXbS%?NEu**H-2Ra6!hr7s}qJI zWvGWyW{`e}AyOc%E5aH|A^k-gk5v^kYYEjc98FXoNy%tPGFl%EHDM#W0c_ZY(Q=yT zY;jhNIKtuG_wpGTWgjLW7Coh~hf!wHugE8)`XVIAaBD*Q^{7f{KXTQ=BD6*YB(xL9 zR6@(+DQ+yNivEFS86zWKdd0wKzJI8U7AfFz{J{&V+9oSCuoXsW@mNR6sK&xx^dI~g zo4Z+->2Niv1AQ`9yT`-f+eokeVP8|l3gh=6U5z!B4CBr*&TE6V!@4UD<|yo{0Huk7 zDmJchdP%t^!6!2H`I!Gs@L`2>UQD4A1o#BL&Z=MPRG{ z;7h-~SXaTbmC()Mcp_?(lI;*Yr8cmpz$5zscvAk!ZdroT4P&;ZoY~f#$q0OC0E(W? zC|eK!{>dk(XGKtu=GNqP6K+(-YAuhe78bd+Dm|29|Hk1F;o*^nf-NdOoIksh+*ZohQina00%{A=#d5_7Cgc;m z)ffn6B6bzNu7n^dvE^W01+-U%?ly?aNNiHFSwO@qwv)N`%+^`h+6+TYnGO0^rmpmC zIUs!^qi%HyfGw{9@zZeGBRt7$rNaKT31I*Nv6X))^NiN~@=yXRXuct$a^!JZtAuqG zGD4DJA9dIIV#-1smB9V8d3IkWX9oWi+bJQz>7RXviU?*x8J74;6B<|E}@@ z`9$%ihypyY=CP)^Dv#CTs)fa4ZxxWo2IQ$c_BO;16W>^*O~9bAB5f?aV&Ji{c`A?f z6L5V4gHCt7QcPABV=IiuHewwmiTVqB>+<-v*J4wTQUiKqEH(JV~wtUyuNg!6%g#(xe8k z>7`w_k%l*&7_2#t+fTS*!pVCO9i^{etgB%4p3p6OT%|85DGjYzUB=G2u6x{`zTOwM zN+0L+1^p{iRC;y?AU*-_J$-}Tduq&)aJ0-USE4cdx-^O+)uK;Ed(!Zx7YkL+u=?O8 zydGuUo}twSBS7g1?SG9FUOz<~ugd+e?pR+z>?5JynIncOFDZHDIH#zmj;ry@z94=^ zQIIUt&tz187#vufhws?pz~cNOAHP2nenX$uq%<;5C8f8yYGIMmmjxuHWye)gTFP_P zNJ{%KD2$YL(<=s2+6^gd+=?G9;MxhpOiAf)la=e(3L~Xrf1*jLq|MjDp6{QWl&+h4 zlp4?@Bc-ii-%Cn${@F_cwU$ zdth*8IaRQ8B)oHw>zfH5jv5+t91M^4p2DFjGl~d*T9TxJa?`6b)>ojJB=leYQ{^Bj zc>!884oa%O=`+Wl_7pTln0nz)PC+gIRHvYHuKAz*Mep$X-pGMkD#5Gm5%f@&EKgf< ztWsu>0ELPeS`3u?_00l?$~YXQg38arwQndYzi4x?sshOOLUjfQ1W}BX`~>Mh7kA&7 z;*;G#d~Dxp6U|b#x|>8-ceO18>Je@Lfkny!+MJJB^zO>QQ2zZC-8yv5)j7SwOje=NcRWk$Y zD%dO)x<7*Z#zmQwOcO}(MOo?zdrJ9L*qR0-N*86&zf#pm&ptnaD22xjyit+G{h-H$ zX!59UKv{C9SY{1@m{-bBVXUGz(^1)jBUMoOU3j-Hj!}K$JPW0S7*ih)hKo>bXnqk!wRlblUPn5=w+tuQv3h;$xC3*%O<~`v}coSVf-a<)>xp(FrGi@El|qA@y)OwOWDLX zHa0wdYH;SKe(>8N;+j9b26yPN`rCszk?1m}PtvPq25UQUtje6p5$=C+kPcb+Ug-A*5Q=CG;ni8Ds2ZCdj z$@3I;R++##zTug5bjJ-b0h^dGU@^UrkDrHxpO9D9Y|`Pfw|A z@(ILmVv}DmD2z>J(JKZvnRQBKlUxDUbQo5;*vT+i*?_GuHrbDLlr+f`_I97*i=7Ro z9;F8K$hhPOu;%5Gn~+0xJ1{4O=^wyVBbUe^zB@&^q?K*F;SHmSV*z}1 zw!Uj7>@LT7h47kNG+46_h0Ji6f^DW4!b{t}M8M)43Y6b;7u3Mf~F{y+{2;uI$+0bu#~5~zhAP7rF`j+@Ez-GICNzy z1qlCMB7tdgCuJbkSD-2?^xr|e0Ij3Uy2J`eE@D+t-N$bWI_#J%2N@>PM&XA&PVWrzY6*)-fZ`+EY(8VZ0_dYusUxVLVD^Zh#$@ zLGh44Q4x_bv24>eq!{NP*h>lfa{C}kKlEfjArw+v6iy)r>5iJl~q9< z;olDs7+oZ#VqFEO8bWs|#9~||Ny#Ds3omQ3&)U;YEn#aB3@@b}=wDe!NYB1I>!lqL zBb{G5JUhSM4o{AH!itE&gC?IB9$*}6DTC(>4q1Vxk#O_GS-xnxhjkTr>IvQ393DhC zQt~$>3MCw{rUWbdfnXWoJbISQcs{d{ObDx>fN>BWC?i-<)z6`+r8pWP9EDD-`KH=g zm2Zl3)xzSNr~>j$r*kUbw1@a%f*K2*cQGieL`kMs41AM(PUV|e0oQ^G#D>ye~LwEOlfUy`kF?nbCn? zqldClk#W(nq+`3x3IUvUVq#7#!8JR~)t_grR^OQVq&pfS!t!psQlzE_kWim?7j-KPp zGh(nrU;;dVE)nU4h~zfen@F7R(uqg`GKncd?QO*jq6X*DL{%VaCtQ8(JZGPlSXY7Q z8KL{cc?J<;A1P^ap0f{FQv#O#K)`IvrZ*i5wq=t*It|UNolkU2huUGoqU)27$L)p3 zkdW3i^u{@rhT3!0!lI#01*D;==T#b-1o4|_XcY#9(a;Kd#Xv(V&Z{)^f`Dro3@}}9 z9W+_lhpjLgI*)afgn3ceJAIz7xAvKOlp4?@BcUZ=%}YW77wk#sRbhGwxN0OJ8N@>9 zbVOz=pQxxP;>e@lit$Mm4Ldk+h3?=qodj!pkXtECxHBt=jGhFk=T(r?5-dy|HYr$p z?1D0{(AGsy;a^RXbOyF^p1`UKO5KF&;}=xsk&;+wO;O>@^V|h{=IJ49#a`gdQ}cp4 z5v5~~Uhp!HKWRuZOY%6APr^@Q8<1iTu;&vXAO?h4;VM1pqrkm=CG&SLjRMC zDj7-1aA>WQ5xHnjMjr`V!vShq2KBwDl9BYT_eCQamEu64RTu!VzS!*c1c<1-m5`wX zbx=`CLYB=LRB1SL1*$KFyUQq4zi3;rs)Ev|LN%MCgy=^~G9X_l{VX%ZEW3f28T~+R zR2~f*KRh>#A+x9?@7PCmEgx6E60Slw*0gi!f=W9FxN2e1&Nl_5ozP1v?NqsBQ3ADs zi^iRw7W9fF4ECF?El7G$w&_Ipu>!JYmpJvjjxB{{Z)zWa4Kd~!f>o4c87IsoU*e0g z^+DPEOD}Z)lRC|~Lp{zvS*ut)*!0#yQ!X+7vHXU0lIQ?_dWS~SvEAlcC?jPwF_*~I ztjriPa871vpT^*_wuV|R0)~8I$ek$x^FzO|rLy%YS6y0*NEfqa{ zOxxlw=w&D$!taF(-YMx955IvCE0`xHJVGAY0n8JGWWI4A;|F#C^I(Y&NQh(Lgb?i( zj#`;jtAtNCE_323c}1C3DE8$-w>XKYlN~|IyuLXQ9oHeH{$N2bdcv;Q7d>ghp8pkA z^f+#C#Fb-PrH5A`p(y9P`8!NK3Jqls9zHv(0~jYnxy}x<0JbSF0HZB*SQ2ok3M}h| zYt623vUv&X(!@cqtQNY@>9ANxJ8bK2E%3^^!U^W0$;vrwg%QjHtfS<~CSmU%o(UZ%_6a24#fbt3 z5u4P5e%az`BiNMu;;2TF8f163d^csAu)h)fHLk5>B&Vb<*0;n-yfLn@@aoZ#?dRqp}mpE7jn4`kGPhrN>YUT&5 zs{nIQ=n@7DVht&nOa=U`M<*Cm!jxS>m~20JJsZFy%N(le}lmORAFsI_(;#ok)|VM%WUgoz_@~W)B*Q zQ^H=0YkW=hc^mVZO6q9bBete01~w(_IN!KtU)G!x9Tek@l{J+N$L|{Do>qR5QQ^@M zf_&hC`HWSYbn+>Qq`q-+F)?I)UpNa$(hnBZ`&0%a3_iUPbv znfwU+o}lESQoamB&Ng0@Bo|4PI8#ZKw&2JWl$}=fB z2&n?wIgTtnR76>_uMfGDuB-z5Xn%~5E_(?n2!Vi7K~fTeK+gpK>uAm?9C}yy?MM5y zSYA1=sarc2fJh7RLx%?s!$s&wvZ(9o`YHm#hY4%sp_efxjE7#JR}4J#0!i*-<{_s) zUuJf?&Ut94$zs!Mbusgh)ak@MVmy=xHoZJF@47t?6%`#M z^2Q1e$#B|Sr#uuv4xNYRRq^rgtIK?I2cFn8glERT!7)A~F2McJD}q;c;i=b>z3_GT z4uil41Z3wUu&bPf!&W9&8R6B&>zsm)U|j_wP3Rr~$c+>vC3^)JoPw@gx2K>|!q#4n z2BV;zZ)67W|5OM_I=LQ_YAgK4;Giq8ht3e-B*eij2AY-%Iw8VK4c2~?dTL@_1)Xw2H|&PGsUsy-Z*c0-$jsNF9#VdAS@yM_L%=q5 zARD?J&#XpXy&286FzTh7OOQ}@yE!#P4-;uyyqhCK z83#Enn5L{>baZ?~G?_UGUS*EuuQE4|B1vy#52S1pWGx=~R(1ul=sskoRpXs+We028 zU-omWfpD;DS7=b{v->mDG|$lAY%3;3v%P}8?d({(!wIBPyDmWTZYVH8n60^ zk~&8CIgTc#hS=}%JTt<)(IfSs zU$)V+pNGVrqB|Osz#%ppJqg18e(=}0(IX?-^B0-mGrJL)Ryr%hHzGD3PL~Jf5%VfK zHVzJ`Vvn&Vm%(x|aX?P4Y}y@6Y^8bIcL!^oFapZ7Y9l;M{F_tHn^;#t>nWkzlcI&U zeWai}H1;x&V;IFHpKYIKgt_j2bM^rjl({IKYXg$faGri_P*$)2NuP%lgzlxYJCHSY zQU+0p@>vxu+cJp0$6+fFbrOC~{hKq-60EC0lqhr;Fo;m5Nx@v6Y4pjR6AUT=%dQ|` zwgI$l8wsJC$mlk5`dQ&51sQb^4Q49A5E^)cdCDpB2#>dIEv8!^@-_A;J>@V z^@lkm+UKUqQAKWA)JV19qVZvSb$SJJl%qPCFu}YcdsV<0dXw|iQzlETuqDP*uV5YJ zhW47U_rguSB8!@6UXe+iQ0@_1kyQqp-V*8koAxDAH_<_5-dI_Y$#5z{_mr%3EVLO7!2s`P7p*w=LsTc-jCiWIyPQ1y6D>NyYBf#Nx(z=`WE3{t1)*OzGzDYEZUr^R)(#>%WF3Ce0m=G6jbO;cjm`UnA0a&kFoTR=nS^5fFVkGqw)={!&sIWKf7AL9DIcAcQI=#3@ zjHHslrkAAFz-u0M>$nd^2T8oKLQ*oEZqU6TsbIhG#?g)8y%xQsY8)O7o3u&MlloJZ zD(@eoYlv9|8vJ{A;3+#f`zHD@#zL8Op9@#_-{MSl1?wufjS#vQU>uB0B_(GCLY%35 zZ`(7~r@|I|K}JVhXDaw5ReC{TD(U8)TVAFL_T`Z2bCUwXzJvdyO;(6R)F@_O!vjm% zh#6cpZlk%Y!1axAJM=ausd%ibz%@$fM&DL9m!u@}HYcf2(rJNtb4m8KhaT8JJ zL{v*LB#fvQ(JKa`TEs_8*>RdA0GkgZPFH<9O_sJ{ON^+FV;v=fCJTGVZu1?dZF;Y0 zn55QxCS^NLE->n4D(4-0rut6w;G%8uj*|>!HgqjWD#SNF8fF;csMrX490%ek_-ziM zAvg*&Fh^O+SssSov7dA^g_D)B3gS zJAB;-{VU5L=~+dP&~+aaQ04tZkosh#AV^-SAV4%qB`sM?89;C0pcPh{D;({0hqKbh zSXTjPj?f*(0YasdlnjM@p)XH^H6>ix4}{CMoFF;=Xp+^~I${2PKwmT6!rOFOR6q*abw{P39XuV4wbEZ07DhqW=oL&s&TEjB#!aWC z0neDp3*B`L50pYuu$re3+f4$4N_4U-h>r0J z4EvVEtZHQOXIVjdlqj51@5u4>hR??Ltm-48w=Cf!7`NUzI(bLkIoiQh3#*>lTtG4j zxvP>%&|Qmq=5e@a+#QOgS0oLvPcdRi!a?)GYny;9>Mkdg*G!gP#+DeN^us#Jy=S|y z*XJ%@c%3+CUU*5JDDDwkc!h&aZ#gsOu6;SPOLP#<8!HPh8BPP}p4K$LD)0y>0?tkj zdn&5}Y5r}NAAE4YP9wjnca8o*IWmMt(6=dea+?K7nC)ZbaVDyopbzX!0->kQs1)yU>*Y}>f%90YtJ-*6< zSM6wyD_cRbui0G6R#^?GZ)}wXt5LcYv_3g2*g8PUL?#Ifu%YTSqQw)!=?1h@izlE&I@~s?r|pCdEU%KQs)Ei5o4kuVAIP)IgnU(TR@jZ2Sa#cg^6T1 z??CsGiTvQ~pSZ}WDOr{2%!(r^JGTvF6^<_O0Rh=L^*{(KaFpvgKO6|rF5{S$S#?Xe zbp9Tv9pC%*v+9P>EplI_9Vxjdkl?ga;l4fX{4H$V<51|dbDm#NXh*tv=AM^!V8

    7h>VBrl`T}F)KD9T^Gdxv&u!8il& zsf_a~(=05;@hu9|ssL{f&AhKN&d(6NiE%s_62>^`^ooIT()k!EdpSh~U~6HFDdU_l zS<1tf7~}knb(EYbChT3i&-ZfRhi7PJ&|c9nNv*X^%Jy=81EXHb34UNtIhyFMp3r$kBf2mlID2l8f4~vdmvk*QX zii%`MzDGSkY@*Dq^1`$52b_7H#kvYkfkOAm2P*SONlR!=0pZNk^@05cPB~$#NFg`SX082{XlqZVFej5?lV|eeLp2D$Re7GWc{kFV&uvc zIsOO)daVCS)lHPSRfU^rH2W-fYf|s46!SCFExg^DumY0IsRt^_{K<3ASk@FTQe0VJ z`O_MuBU%|fhrq1mL>ZZ=0T(z(Ynuaj6$9tAb*P+^AmDn&!8vDu$;#W<3ges+SVy@xwG{S- zJ4nuZTN9jbn|hQQv`3#!3B_82HE%UD!$HzZZRuwDt>sg~bZZAm2s2D58AJkfR&FyZ zXBgvXei2cz(Q%Y;obb9z;E}z_lx~9c%W#r7eB{l3$Q#%O38;R0-rfq@S{$r0hdKz4 zesgfD*^PA-VA=}Z9S#!l_~r!kO}mtA6+rMR<}|=lX_NH<@rlCLRtKjT=wF#_(z7&& zkzxY;VksmfeLz-u(tToe4XLeQ(Rfy1$RHOMC+k0^;>O|>BaY797lJM7u z%&fBM7p*c@RjB4Up<00iR@&4O*^q+rRKPz&b@-6H+VF4XTYlLa#7>zeAc2kwTSv7e zj&krS_m^(?*h0Ypg$l$2uWA}l@ho?gN12N8_s%`?d zZ=IZhmYFOq#g-TYWndj8gSrcQ={!-wCp;EFW;KR8cA2PP{Kl8m`<8muve;-a>7}8Q zPDVqP2W-49?2i`F6dR8}F_F=H>Eu+jW)FQX5gr}G9#r|p#>3}aBhPFZNSfb~+rmEyhxk+8M3Rqv^r9MJG$VcTRDG7wu-txy; z-^ZSp`U+ctK8%+f4=m@W^zg2eb5s8;c&m;mC)G58oj z4G-Z)99M=-I~=RR*Mo(B&-n0~Ckg8+xC|7!T{$jjo=eGVJ|wI-R5DeS4M~Y^k@2ox9WQTVR#6=!Mz-A9L5UhSDuqb4myCLVH~uVUcnsX-0P!OKpzUw zc0pp(Ro5+(mA|kR#y=%|(F9ZyXSlHE@5?G6GUdrl{CF{xLQ;qJNo%0((1VwJ>iXK( zKqG|l?LKM^B*WMO0n!=>h$qB1rg2Op>G)PwNbwl@Jy>jPd}IErpkDUzi?Y&TzlG`L zAZs1=E0WJ(Ae7lQTKL-9msdw!v91Ez7ee<{UzLTVlQnXa-bn$*mzK$3%^T1FNdR*_+u} zNXh60(N+e=_R68@q!-qyuWjFA|7x&RGL^>8WT@6 zB)I!l1}ojHIi`GasIN3ZT-ICKAQl=Ubudwcx!c&>2$M6Sd{As}JD$iFr;r|RDX1A3 z3scbi_+SdUi!C>c*A(PJNQS|ff*P4se?aT7FgG_hkBG=luHx*x{GPd{G;8x*EQHd8 zf}J_2U^Y&GZHj?~q}X$Q&RzF5CukpmH)u|~@>!#1*8S}2HSv~#?x_K=dsz2w1PqE) zDC@);%}MWIl&WqXVK#j0X1T)|wpN$89bW+&c z6{YmN4_H-LxbXlBT(i|nj&Epse7vQz>9@~=ht3XQD3={RxF9=HLn#SjDk?I4j2(x3 z75pTsrN-zpG)|#f5{tIqfni~NS63YMzglus{{+oZeEpT zrkk-Rl*{`@PcmXt6Kt(?sn5tI(g?BCEmB8afv4EsvIMG?VlL4GIt3gM3#G|mEX-0* zBm}e6b8LBXf@Ucf!-NFOQr9-x3U`x>b93pLAD$+KIk;Ci@l)GYTj3+4VFk`WP%t|t z>`F7!dO@{*Q{vW8#D-8=@&)Vz_NGKYO|;k8&us~oqP~*43ayt}_p=0DBss~a43DL! zzX7x$dfLRcK25On1mmkI={&1Uu=I2=cWa_))ov@akO+*iqqj5{k+$6f`+%*3J7yLK zB_*i-4w4c|nf1j?RVY=kx9RmQ9c4>hh0+_W+oL|AB!2Roq-%XDkz&%#&iVfKksAx* zruNYUydt!4dl?sQ-GbvA(iMBs@4?^ZLcK_ zU0z?)&{BxsM?()tP>6=^!y_IVy3bxG)i-*RAzM@5a?uu_rPrk;;-U|vj>?<2*xoyk zW6-%aYZmjmP5hWSoi*supayq=IbisvHyp|9S6~Ip>n$!*5t5g;@w& zKG|kK6X@q=ciIY%X z38{@eqfkRJy~s*KJmRbn_q3KeDqr@qy_O9v_pH6aa!=b1D-!uT0nV6vCd{3JE?{M} z*G5P8?PL2j46clR;j#8M(3O#kYB$7->o=&3nkN)zmz2Ou6lGak;VHzt+-%sieZGO3 z2;Tj2$KhsmZZ?!lv~jzuhZ22f+U?t?N*L77{J-qlwKHg&`U&(Ee@;mw!-tzfP;Zu z+^G;sa{!>o0}(KgM`+KZozK_Gh!r|<4eSGZYamImPxPGBRp=bXx=&ej1OYk8;|*;Q zw1xr|WZ;IGV9~(lb-mpU8k#?wZp{e{3Al$7A_4>j^l1%FCa{x`Z_$gMkANJ#MGt%l zw=UOS4I4lL{a?=@iUnhm8Mxek!z{5;l)@(m4tj6b_rxQPG8P^SO`=A+Nfctlx|@w< z&?Fk?voTuQAljKJbudfBrEbjTrlZ?~Vn^HYM6x)A?u{(TbOB>HrB=i&FO0pcQ83A* zu;ng|G|9LSI>KN`GNT8;@+-HXq>zgpc%Zo_e5S4|d?InjEGdEybQWc=eC5qFbId?_ z9KK#kr=*l^O%1J)(W?2=l6|_Xk!6>sq^?3HjdlNr$oRTJPWl+bVV7GK08-F$D}(Jl z*2pfmzz0?6IPY$6WclUWAuyu|mw`>THm4eg5HJUxe{+;sa8z_D;q$Uz=mF_l8Mp$e z9XtAEBTF*>NnHg}E7tux0+L8BC;h`psqq6=RoHGk2%D;%jyN7wJ85R)6j*IVfq;Vi z?+lj&VSGG6c1jfUOR-}Ib{uk05RaJ0?a*gm<0sLo*VT%v^P!NBsL_s1)D_QIzyPMJ zx8gZh0z_6vhz#KjEZ;X6ZQBc zYaW2TJ&}BTlCrnnO$&V~!&TF&h<)0dXu0QasjHyLW8L2qb!Fouzc3V*cbbHPd8dGF z{gP;T2gX+u(0R5yQSc68Vh$|Z+A@wHX}A4drW_?8M2K#bfB@+g5>rqC(vKbM9N#BqyX1bd_Py0JMZY&6qn#-pqLIqX0wYB+h*jCs@(Hkp;MC76b z6w+xmxH*8`gzOTmA|~i;0N-2AjJ2wD#VCVo$tbtNH*UT6-B&>TK1O+7f3}^CWsSsKG`s zhqPkWTmU_s#=$+D5o~)SN8;__xJcHA1hv5T{or|CTsqY&$<8%RTI^b2nI$5C36@)E zmh^w0nMF&o=T@hMx;Iu6N&L(n$8L2oYhHHUn*mZ^K{S^2`@qc&@4CrJO5kilgt|A! zH4bK%@ocN4v1OMo0H3#gq8CAi^I0&#wmX(5aJXi zpg7sUK9tr8r%nH)2yUxsvTC&Q=jWw(6vKi;CQw~cKNl&cuF9Ic5 zCHCLOx=xwNfc*t&i;U9NXQdS$aaM>?a;1(+k6CQ5XOd-RskktHh5*BrN>N@B+@(S~fp$Vc`1`83Op1@lpqo&@-&UnsMN8;| znhRve>Zf@jdv!*VtyQj&x(c4Tth+Qxvx$>j3};8!XHq3msb+K8q9e%`@B<+HN zcDttu<6Jv6DMBY4I`sZ zu#1pi(QB3cKz80*WtUa0t6JrvLtz!MWNUB6eduq!v}qEhUO5U5dRs4p@QCAtvOA#l z(nPmjmM~)d&882a^>VVZF*;G2AX-@@RWL=wbzaKW&O)yT#hzq`6Pe-^`ZuwhawHhT zX|w`6FQ!Q_r(D67k8Gkj#YIpIgCVCJyb3a>xTG+<5IH5iVF7(IJ|Dj0yy=p%`R0Xl zv85M9df?o5(oEw;0n&{FD$+tv%FxwJx{)2+*u>IHh169rUCX*}AWXhCjFY~`*x2RJ zCxBQ`8|Hep_gWKMuz(M$U~%59hkcXqe$)C3wr11=6imB=TbhT$5cSOCub(EZ+6wPY zB8sFTKqQ#v-vBU0lM+k^W#|f~73}I?O)TLwOBPA12&as7nAa#gafYwlvmE>E^~&BHz`4@fIS zKrcugl`?m;y=Rhb|K$PSh)x4X#HwZqSPL`IN6EnqbPt^M)f`a55`z|LE^2i(T{LC|Ze!3?;^p}iZO|M7T$={MK3pGgzo?Z{I zZeofqa-5_AoE<50I-~?M&_isiL5gJ{7++0D=h@H6VFpTzCy>mVySFw^bTJn6gk5~^ z-g;6T;zuG!J^&xV1LPymROk$r5i4~5$6oeNvE(yZ>Z(jy&$`E1bi{9%lZ;ET0@qysyxhQ%tVi)(Q733e2+Pq2=dz!$)^@YX!DtZH2` z&eOGIoOLOhaUQaX=w+Pk5)@*bDm>z0oT?PfIL|R$<&e#|lG^99^1ZY|j1$u|cosd+ z_Wp&O!Z$;|_l@W@a71LB&0wEq)t*o}>e zX4UJgKenmn948qCXGb{al%~N8t2fxzD0ARHsG{&rOw5t?Z}sY=^Rl>UgnJwu+0C}X zr{JkZG)up#9&6eHy+jidR>(b4sIj_Q#;&m1&i-DGSgj4+B~=wnm8^Q3g-HPJBr8qZ zh82TiE|0`3l-x+gR!YmQS5q3Axy#^QH>ZJ&n?gedl0qHYYc=@0ll_H!jLtzX14nu} z=pn0GR~+=;j(9TGa{j=Pmz4Y#v9SO^a6pf z>_Vw;#x|?SHtV;;Pcw8UcCF|gs;%BzQGyc(3N@wm!H!r>vU|`{W zuo?U15(G87zFn1RhJ7Kd(=stT_?th%C^CLt%enbEOJuSelJ!O|-#JfE?xn=L#8 zI>IeH1X;hm?cBSlnWdl;UxgJE!r)nf6%_P@51-Ng6JNdxkG+KzB1jTUZQhY*M}&k@ zwG3UM^gX*+L>1&DA2zc+pYll9B0t=C7g;GXQDS`@ zkCtM4@LqVD8S@6*uL=tFu_ribqG?dP4N}D%ME}M3KeGSzar~%_<~YcGU?%Yh;E%|f zSq%?AZTx=;hn=?VUsHP0#cg^d!A3XsL8TgZ#TgBg>O8Y?=-I~}@-`F)YDrCnshXPd z009`+OHId1ScsY?;t@wpdp?79P^zwueqp?hO|{f?zR$?H(g;!0by7#=&#!Fns#M!& zezRAF@2yd%gJWWSGzRR2sp*l_;QHuKHa;d**GDdlkq{u(N5D%k+j8=A%o_M+6MS|M z=H1w7@Wh{^q{a~`d>IuU`-55d#LcOej|$Y8DYM^53zf^Lah8d>5!=va%H~wN3j0Lr zDufPl5W7+}89B*&jE5zop8%zxKG0!2?t7_r6$az0m5KB0)zke2b6zAu@YP z;ZeUGZ*R@8prF753b2n5*>eb!rp?7nRG2hm-;$c!wO1FZt1yXY-44wO6M?Lgv~6x# zC&_Fq@RO|@3!M>FN%=QnCt4VYF^-ZmH%a zpONRK5u%zMQb#3CQ?^$H35GYx-yO(QBYqB?&aIR-R0!PyCc|vAzj<&Wl*aaNu_=dd zQi{ZM(Udh0GY-7LSCXBRPn1)y7(a;c;oGtZib&%?nrCP~PAY&R5<0Klp10FONom1z zs|~x>D9!Rs2dRrN2?#P-w~fi}T_L~d?gUwIG6G`hrYJ3#Zd$RatTanEFubB0=UDwT zK{qx!%PJ7J+ou!=C!G|VbrmMdcc^9&qdC}&cw~+Zv!b0rwDISsR68mYIu4H;LU>`#Q zW1pv9x|ly?%)w zAEfCz#s%>%goky^?R)UvR(^4jEo2gk3v%;eW15)c%DE={7mp0GE;ru{+yWmQT(LKb zWcADN1kSNCU^RjIuvcT!EvcL$brm?ptUD`R7cov!3TH=H<-+t}R_V>QO4BW?!1!v; zInPF>TUIIj5}3oH!mL85tQoswgn7X$6R0G9~iEh>UnoaEtj%PU|_#puR?7>QTjO>1acy$|2+?))u~VI)`)(DZ-8mzfC^5`Y4F zuLdWNVkaTRq8BZ10q1#(mKUvRT@@|EYDp{c8JbpNGdxAh)0;A?Vqy~Ep!arpCp_W^ zfr^$+rfia@Xc@t1wa>7uGR$Y>C~1UPWs1~MDKe7nP0X;Zo1Zd!xA zaK&;#MsUS4mW{WjbE$PBa?pj6nPItQetJ1<7MEQFNrQ`|gyP(sLi}yUjrm$7lxM{G zL}h>7lWOLBL~(f5$_tjKg>IEm<0KM69nX&4V#ZB_Ud^LYRRJ`CRUgXG%;F^XGaR;F z*#s9Rs8=(IZQXD2*nc|oY7kZ3t8wm?Wgx$#o8+u=*td|vxBOy}*|X*K5oSeJc}5f& zLGy)I7QtqZ3|L_^gPr^svEdHQZ&F_YG?n##vH*z->?Hd#>{{vLNU-8sxbe!YlsYt- zI3BH+CYaKJx2CRa8%_-g00lY5D~kk~)k4fKbXp905<8uVgGQ}pG9a(L)l4ku)?GDo zaxH0RcneKCM*{*dQN7j7TnP)+A*bOHNjtHpwa~T2DGb=07RWo36MaUml}3nmR!JR| zG^et;J6hPa(%wb>wv5xkA+em93HHLY^Ky&ea%L_YpV>l}GcJl55FeH^L^(Nyh48F} zrJRC-Liha~pq%vhhzx$`U|D@Lg!B?P5l%!Va3Q*h zNIbZ7ZYd_C!sR0NuYF5f(i|yu6)xwqZc$6!nQ@Z*mbRn;Ybr`N4n#>^nHh*bvCNqf zmWlW;A|sB8NIa31*5K_W>@DP5^x9?`TncY(bF@{htJ>z$T9V97Ej7tp5Apj*=6@0t zBALhVh=*hzYpF@*3WjSPBr`6V-t<}7F0E|pUv)~NR8hHdC7b&c@(LR=UtZ%U8K;9o zBFQ`m_QE6+ml;el*Rt^kTWXSVQLKgdkYpwu33QQ{TaZ)8&ENdOLi;vUQa7k-!UEVV zuF$l*@`H3U!*d*VV}lduHJSFA!Lw*NJJdSUvP+TFRmj}Lx_OzJU7REv&PE)NT`p+0 zB9`Blzvvd*SRRoXT;-Iparn^lMOfP`fp^gCU#*(Rj+JvbGZRVY2!_b6957;fJL;kV zP~KSZP!hqY+A9zsoh}1cRC7D~HYd|k%@V1rKw8PV7g~@+VdEs{XWGJMP9#22W4N&( zi4X@YY+@lN_BAeVW4;|+-aKkpMMJ{L5JwS$Dp1Izt))mjJ zswL07ovC?dr_D%jG4s0wg?Q!{JR*4}<`=|YHh%A6v<^TLBh92|iCINPQt^m0Ld8s1 zsiP9*UbfdM%XVf`vxwM4DmaY;lnT`L{lSJ~n={8`1uvo=VCz5FG*WF}7t6Pqf^70( zf6hX4;E}EA4f5&15@^>Ph}pTo0O7zFIm6P1PMTvjd|8%;yb~baH1@r;&>V?@nphjy z%b8i0eJ+%`3a@pndtR1iA165n&UWl`Y3#DB;M!(A+d3!9);2J{`qg)y&B!8}iNo;C ze{geKL_htXs!;~1CaRRMLB5G9C1^Ita1}I9vy1B>J+Nc5S?Vfi9%tQ678=1hPV!Qg zEpNb@3e=4Qfl_(%EzSfgZ`M(HW4<0-o*p#>3J{qms+0o!PCG5K`&oASTg=d?i>a@G z1HFr>oupfLi>ViC$v-VxY5qxT<*9R?PASD64jlCMa7yrqqYmofl$bTEJpA)A<5k$o z^3PPCk>jNi;-7g^MGYfZYZINi%r5N6*%EJ!veDjx(^6UetN%?$Pni)B|yrnx+ z$Tpl?mKItkgU8t=VykBV9yFzEp_Q{qsw$kyS@p$Mns=P!IYz~6V%G7WLwWM zEc3JBr78edw{o0&YXP9t%5?M7xbhYl=IZyirin0@eYR|rIe&b4W)vC0QyE=G@cb%c zR`9&dejY%0xSP|cwMbfp(GJ#6Xsy>*PExP6EqV?_;uV*}jknfHshiUa{UahOXCj(l zueAb!0xg*sRYrkkYsbaF@3P~)aNwvU)C02IOG0q_2XyO>gg&Sx37yzllh6r(08CqN z5wujoLiNkVctny=?8UA1V(TLYY;kKd@Eqvq_>9~wjSvYvE_GDme9Yz^YmFo{$o%|r zMHX!hA%4T04h%_)twmrjOhRw94qj~SVdIOySML@zE{d}uJ|v*yFDp+=$S%&#Ey$w+ z$o7+ckgXndKP);+XO`(#+Ty`T^-ZKH|EN&aJGED^PA6I=j&&9?q)Z3`e6U)2T9vu^<+q@aUWL6t`knT=WH&6%d* z+oL^8OzA&WBg{p!$}{T$2qYE&5<=SpgalA;8MFfE06SXP#+E^2q^?S)A6R#U1xTcj zlMHKP%OJ3(!gb?7xL5|oLS|GBhL?-?pO1}l%#5gU^*yD$Wwf9vu5)Ve^=I}K#)-c6 zS_oIfyY@Q4s@B!o>$h6c&b@6k?W~6QeYEq21chklH9X>>o!8oE+WC{=dIfSC7hhlc ztb8V|q+AU>9;u=-Pk^ei%aR=qyg5>G^d7iRE+)`3OK(vf#s#7Cr_(-+2UP7M{d z6?CFzR{ch{DU;jQQqKsftMIDFx<|Lw)Z-*W;A}+4QqT0Z!8K4k+ZtkaZidQ--haro zf2;Q&oQJ*IMkpvDo8n#h+SXK0xTQPpB?@Y3@j$r(3n)kkJtq@Zm&o`PR!Qvh;2$VqN!Yips!k*GyU;>PM_rPKg|gsGeW4WJ+A011Zy@C2A)`kew) z6&Csfe69wkli6t)C^{WI1&ryXqt#ZmuIQ*)BS^1WJOlW3TTMq_*cA0vL5c0e3?Vvd zfJZ!Z)S#WFqcnyqzMZ9`?mjDrODj|c^_4m*XVTeTNjuvMI@~v+)4&mtjbgxBn2n~j z3udECHXQ?BQS%l-E{KCLy_k)lubd5ALo8faj@u3w*SFK$<0RKG7M6SN1B8N}G;Ytfu4!k> z9vENM0nW3t;R%L=Q5j5i@Z??0=4p>t`x^W;#Ds~_Pw$CXq2nYshobWY{#7V*YryUeL zb_6?k5P2->(&}&c5%n&uz98MYTUuq;l2ndpuSum_dryt?bm>Fb-+_bP{>~^oB1t7? zl-c-|r@xcOcnxoFIc0&*$XscJIOS5QqY@;a?Ooj7_IKvefZ_rcgrny8d^@?+gP0WO<1t$49AQmOqFrf z1od_Lv#o6m$KUXX4uY!tI?lak0T^VLMlZonwvFG?iw%?L<%V@ouS8@78ey~BEAU{` zu!G1v#V*6x$@mUt;geNs6Q!!cW(cdc>_FHEa&eOM4whWN7?O*)1a6pTEdtcb8I0F~ zdO3Z~r`N$IUk4uxX9NZw32xMe@P(I%(1jnOJr<)5XO9Qts8QKw0Hm{*ZMuj_2Lxb#dP|rU5*8|9ZpI^$ZDMckpi7vs4A@N_OxcUj$nhEZpEN>jvqkEt zj2Xw~Uh802RIv>zeQ!)T9T<{onCrk^m~Fm-L<-t#cmf;0u7j>&TohMBe2!`2^5LaC zv+&IFR`668Y#h9=_r3FpX|!PH;Ctcj)q}8tcPHRn%7!PCcYgeOYAC*A@LW2PJ&NgQ z3z(KtS3xs{b<;X(qH&UDa5e&AiKb`A-~whU+iKR)7BDcr`fYcf9Rx%i#n`|PoC{ql zLZmdKVvM0eZ;{ANK$ni@Qu!ybb5=*yuiAX~l5 zq4`#|u9icm)sjn|?x?xs37d3YF4-kPAuf3jk9fG`y^fko<}zGwL*`<4<}aU>-=&q( z9nhWWBqo>2k9lmaK_|N!`rS96)4&07HM9fFJ0^+gVO~k9oE~-4@-x};j*gm0TnN=L zmLrn*f|3Hb2X0qGdAYf;sltKY_s+FdOGJhn2ITUsa4cK2gzkh6m+`8(vzWaa+R2j1 zbg8SbS;V?0bkbzvB$MIn2$`JKDVR*oXIqmySu%m~)o;1;Y_J)dTA5+X6&s#i2w>oJ z7o3U}EukC4RIO+UL9$$isUW$OUAqZV09Qf}N?irX#jJaug+$PaldS1v=>)7PI&tF+ zhH?eh*xsnl zwm50lgNqYUKsuckid zXG<~nNnM53Ev&n`v!)m)xr>3Z^~y7Fm4X&VE7{gv78z>xUT6PS&0go>)qoP#ElE3| zJVAWgy^UoH;A7TYcJnB6*DvKs0w9z|0NUpl3V`01K`Ve(v7>K8iXh?qAaxZ$cd+g^ z79c@5PV!}EBAl4FBcX~^b7NhN(m}D17rP&W5+>;nPhNN?eC``3Nkq8|VNQ`HgB(;E+9 z8%Cl+1XPMgBmu>icG1Pm1B};+T`c)r?z6H~S|RdTDRoq~JjnKL?qbO&y`O(&7ol77sezA5DOY$os77g+=2qGXL9nh;Wa6$XMl5{!B^rF zE?ry=``~^8olT#J7D#W)sMUOWk{#R8#S+dpQdc3gk#)c5q6x=I_A(xpaQ+39f;zm9 zv#q^dY)u2>tDk)5Sv3H|L=!Tt_m(%dQQEG9MThQd1K~g~*PIB zLA{ubwig4ulNJ~t@J={4MD!~*RyX(gEQs(W_8GEI6g`QNuhAT5Ug=voO6=p?&uZ3H z&9muHC`b5vC1RXomc4ONvY?&I;IawYd0@>Wug8QQlGl=G=YBlmp`H5=*R=CGBX;lM zW>0+eWDmGxlHsL5X)(fyFTI{0*rT)R8G? z^Q#WmyyN1y69!}6NlVDhE`ooSd9V!(_m$|;zSh7zabXec|$`}9dIC?Op5`E1UNuCT0r2OBm-7_^8q_}Vpm(=ERwnk zoOf9FtOz)Qb)0koN(aS)K^3VR3L+)Kxf9cr2xnWEaQLdLz<_M{s)q#>*j?IL!89MT zvygAmndUY-bJf?2FSF`(MK_<+l5Q#yTp!(RwfX3(97{JpN^poNzQZFPy7>;0?u7Dz z0=7L2+t-lP*s@9LCMFhHNyH=03h_-_se?Hq?CoWHS>0^UCb63y(P`j_SmS(dgR!qN z4CofjHD9vn&%0`_aY5{X@FHB3n_CQTWqHs8nqK?Z$0^+`_nakl6;$7`?)+}L+;NgK;B4ZZjjgLMi|H0jJ3p|gGrC#Y zf#KC;bdF7e>mjQhpdAYY%(T?RFi!4aKHwg>`9w&ef&h|`0tN~Y6H*Vz=oM1GvCH>D zqToX71*xl$`iXU)u}Fz@bCM^!+0G7FQ-Qm2AaLsJK#qL(1>EBnVe6=Xe%$p}K~q$F zYw+|B_7p~m&O)Eq39VRYt5vTn7W(^8SV(+FE4jN~XEp8~rQpefgWlWS*?7cp2ffaa zZBowkH+l{-Y)5prEOe~T(pYJUSmI2YV>pkli{-G zitfRUo_dM)nK`I1C>n30$3@e*JJQjxxV+-Rd~EMz@cb$)EP;DVWzWH8nr&k%T14cW zh#-eOr8lRUYlx&t75yu96}kk(T&{iWv$9KCA!^zubyNnGu)XhWZcuw@ zmv2<3g`*-lJq{Mb0S04oY7DPVl@y!DrdDKOlOxY=c;#p* z6kik;*8{QHIq#ixWF&m!%5xfRbaX_|;3+ngz3ST2lF=ZktH@{&>-OuZ$;e5LgtHM0 zOGXoW29wbcwsmArvu8r}pcnwo+oE-jb?zDFq82u~J!e+5sE?rF7FQdGSB@}`Wx&(} zB67H(Mi>{zK@2I%ETn|ZxiVfwKcm>kGkaS4xlZaTY>r{wt1LERW;@B{J?*j#tf^4l zI1noF&4wdZW?8z48c>*Nq*R2ou?9ECu$z!-f@Z|5ebmlcwI(xGy{@Qc{Gm{d;KtoO zbp`a1O+;@66x&P81EQJ#5GoJN{0Hgg?Fvm`$o_$BMw)3atqk1y{^&$J;EWK<tzY%Dygfmna;YG_0k06Bun6IBAA#t&;{xhyzVMxQ%fwowC!7kA`1)iqcXA0AR{m!e`W9no-fhVS^$MHp!)4VH^Ty(Rp4*tk5})-FzCd0hd}k zq^?3|HtSYdbOgmXNqH~3)Owl%6=jbb=5&h&J%9Ww=03Hcr<)Ym64CUURRMP;Y*zT< zyLeV4F(SCo)&H#qpU+^QA?XC)h^hM%u%WlC`N*o)71zu^6s{2j3C|2Z;4f?1Wk)G% zj)sHY9?%dx;-~_9K(RxzHQ$`ckPXbXd^5*qWtOx;gmb>s!L$+A{w%h44mw_Ju&gmN zU+}NGoF0ygl+zb%h6|h9;1g6q_q`VJ0DZGH<+xCKXCvhtQxEsC-}GcftAwJ0oFdp9 zj_!B$2g(Uc;PIcFBD1CtK6MOi1K+F4cIS{}WiR;B@zXL`HJ_HSFONfSt+f1tP?gkG zz+A|>TP-l^ewUMOW*BTq^C^H6besKRwznCg%`6`n3qGhHdgt8+xahdPa(t7RKyl_9 zJMAnubiWHYCo>Kpup)sD@QoG_IEUqkoKxUj#SZ?HZONv&)Kz428SAFx5ETouagwAQ zThD+s6{Z^p!lZfzE`Ngo6>X4U;Bkv6!2r3mR00a-$Qm5Hh8+asf?32wg*3v6sw$aw zR=uv+<@!Tm7eR-o!q>pPPw~tK3}701E1ByhFjUE0gGW5fa!rnAmYW!|E8!bfSjnvO zS$RlWA!d0=>Zlx9#`d1evAvu{+x)EJbZ|^$l}o{1m{mRjItXHwTiE!eIhs{m7?D z;BCdc67%Wq?P;NZWZY^V-Nml`0fQjPq~wY@r!cyWbsNKrTD>ak)HrG}(18vBvW$wm; zP>ENn|tKh9-W?R*|;+cnP$usNW zBUE0VdBmonmuGfLP>5%?;StF*G285=8QV8aev)z>Lskj-j9hcTXX!_2iMXa-Uhq76 zlrHnykz-X zX`z7<1vR;zV;}qGS>~B2b=Bm0igm~5Y36Z~F>rQ-c}@db3@UA&VOwMJY-t1IE7ozI z_0F@b)Bo~{mh}*#o!u%@JrGe{v+co(mW%-^Xo%WA6eK2yu9aach&HjSS3;8-`Dc~X zRS><%x_4NJ1phe6t?*8NLwE-Qtf_$AI1nbhYEd`@}wo=pVIDdq zKbVKM@dzQd3_K((yLcL!l&>qZ&FXvcE>w0d?5{1j2wrG(?`4g;&!f=5auIyP>#;A( z(vgZX>$#J862i%b-bK1n!k}i^d+g+;`Id<8kh%)8w^-M}jel@b<*L6~pW0!A`-*K{Q1Qv$Ns1 zf5#tN<{Mxjcz4<_-2d+uu7wH`EFsO$z;%%T|60#sI8MAYg0TRk0 zkd%->0uG8QB#2TA#SB#t{mpJB7g`4DDs>eD{m#0bV5@jwX~95F(jGn}j|`M-cBWNj znYPpVb{1N0EC`tDAxMjit1Akl$4p@X_1MHvF;iG$YH;;mb`^#Y%P}#HN7!ksT0iib zPhE1)VIi1cwRnu@BKW4TcS&{uVBq7O)e;!uoxAXe=jDRPm@=uUdTSEcRPI0 z97~~Be3o96mWX@alsYP7;@I9c$S(X~;Epur9q}9CbZ)mE&G_!9&J9+A%`o@;R2W^T2orAX z57!h$eS^OV+iP89*$8}4Y~;LaSY+8~Ock(^g(^Jx3QCFrh;|q38fA8U0ync52qh<= zdh8CA6Hv#?;1wrju(K12EGNyAx(cXN);-MvCD_JE<`miW8CX*xyKx|7;v-0ttlMFI zHezoi38KYz``$C zt!hb0uR;%foadd=mmzu|C4C_wAxhedM1(qHY9s%y$IGmK^^H%Jiv!Vx)gGu zybnR*I~SIUN{aKcb0rlOl@#N<1X-Ksn&XLTA{tCJpkW4N?{HKURi6C!=CsfR351$q zJ=xE3#isQ0>cxptRbkeRRc9k+atC22mn|WPlF_FbV$q6URL{a60)7>(7#7QJf0egJA+0n6TZRl~S zs&L9-)yD`YVZ#a5*`%Wd>FtrYg{B*Aw3X5)Od(&|t_yQg)F>!Q%Sln?6y*onb-|QH z>^h7kiX}lx?*Mgr7ilkB)w*J(-iN|UqPnYZ*7UB*HEpjwyNP)1G_E8HGj)T5-aGJJ z@QC9Sx&z;(gqTTOs=f?aN3$O`=nD;(Miw5Z9-Sy{5HC%YDk^vSv9-zQHr$WA`IHp% zM{hqbIlYc0mY3Rs&2X7?VM#DA4dMaXmS|pbfwY1UnU`SamE2-mAaN%E_TqcF-IfJN zNiCxZcX!^Bj-`(`((gO90e78^QjqG^M#!i$jk|RfW~jton$>DtTr_ zinwFuqz^JOcAfSb;1#q^JBIB&2(*j00l%9~ELm(mHctWLj z-=R3lv^b$W0wUoAd?bXPlL@EKWbg{7@$Bqw#ECbU_(SR|utu}~FA=ar5<4kuE`e#c z7o>C?yAFvd zNJ-3b*c-2Rm3$RG&T7^bCrvsOP7)+KvbV03j)CxfmC}5P3Dr1f;1LfWozYuYN>doE zQ+wM==_a3*>!lT9q%~4Up??C~yQ?=X++wfyjp#IRM68ic25Vt1+SEIki>9;blY46} zazUKb+bsPKZ=hx8!NwAwCRb)9l$5|ThPk#dnwMPJ*u3;T+|iFH#G!)SFm&Vhc>Bb6 zDt!ubw+va;M5nM{ANID(vtOjHf@c=%?(eOaXHN11!(j=i!I8lPG@EVx(AyFajIRjD zdGcx{7p8XWbH0HX3LJ8CsBzlfov8C`HnNuQ9F}UM2hUZa9dTR%Vb9hwp$YXhue5 zqIvNxyyCJ`~0g3<;Y& zkFFXh3ZNSyd>`RFAu%Ds*@#CZ;lymj3*`IW*dj)3J!Cg7&))V~+9@p&>3k`5RN|b+ z_V(J;z%nRiXJllNL{4)(N$KXewTLEMn7B37Jb4g)`}`;FoLZ3@>ewfE zrd`4Qwe4eRs6^^28d}P_1${IPIY};@ji}fz(I|wahAz=%Y%jNur6TY_QIYemRUf3H zUK~A833RRz8k6!oJO&LU)KZATs1YzgK}lvz^DwS>a#(}lnJYt9M07p7cxoR@M3+ik z1<%#2d$EN_%ylPO+{gBYz?urwjRS!a13^Oc*lQUGc5S5V>T!JO-mPh7^)IlZeJr68 z9uCKh@hDJa4{C2kPT$DhK498S4|j&dY`za?MXuSOeSN0r4&6xFb;Uqshr&RDGT-f^ zYo51kLV9nM{V8D~3i=I?ND7Mm4KmK#9lC`9`?-&$pB8<^tRgFEc*I#D`sprpRJyES zdtLh4W_A8T{|e0M;FwtT?6cw6&d`Xy!Bx*~YY5GPwk<@qX{nBvZr_%HMAIU^Fnj{c!@QyblRXz6gFaP8t0vMt?9j=5Ezevmbrmvq zv+f0bHP1N7A~-wDGqE@K4Q>LhW?PHQxY_WNlKlznNTieDU%fOQf@-X4y_@!}JCL#Hs3{ye!5WBV>5&-YUZ;`qRlC`Y+nuSDgi<7+4 z*WL?T9|=#)b~n~ZR!Y4d$bjr$;MqiAkWd_6(MZ4)8I(6IqXzXu4URs-j)L*%Wz9Fh zecrO>Evs5rq_X}{NJS7KY$SZCzqymqFG_9G4-R^pJ4fOXM+wy2IkKN7mW>QqaX(8e zC;F_MAgvIwERZ^wE8<%JkL{gda^|_V^RUbOk{?Aitj` z7Z*wn1lg=2+iW|kGGrDfLw*$%!**D^lPfb4bKv2`!tDHP{Jhx0uJDzOizh=FeM$Su z#`T;|!?2Fov^JhTjywVM7n<$9ba9^GQSrMc{X^~rl_gmR}NL4{p zV&21hj+c5GJ{eZ?|C6VR7Cjn!n7!?N)s_Zfx@d6NidgzSz+qv&03jh#c_@S>s-PMD zbrm!XaDbWZt%5F-;86Xt1dn*gYDs@hR@)f1i~3u#y4PoAwX{NH^`z8MNwl5qZR~G5 zKdXHsIt?5VY3h8i7N)6p`Ulh0TWtFL{+gy-5a+^R9-4|T$%k$Juo6mVo`T{A9$ch5 zWR9moLaTvgs=OkzeZsEvFi}Yrp2%1wE%^eTAo^LNp-O^}*yVlwZI#qufSP`S*WPE{ zIJ0LZ_dP^s+DT);LZnj48W3D5?P7Z|=D^MHvw=5`V!;o^TF%4o`-fQzK1qV03DUw? z+wOsfh#YGP6@^%Yvn=$=3L(}e_@XkbQV>o8rp3y)!_NF7~C6`dQ4wD*EkzhLiSNI_U)-k${*%UfAZ zv#S4}jMX!Uu^d-8qWbz!h)OW*T0~kljP9|?>gB1e5)Czv)G+!YGP1}er}-*LsbTaI75QdLJ4RpP=QcdDkE1Y9oE?X-d{A(a@0zxt5Eufqq^Cm zB<8=9+%(V@RbWlU>&Ah2si=A$bD2trU&BR}%N9gIhuPe`G6Onm5tuv*6y^)sb&>S3 z9Om<8;RDe+O3&c5@pY8$A?>=NsQAW^V6}Jz^4o#Bmio#jsh6V~4-#{PII0mI@o-cl zvu3@&soj7Q-J~VrsQyw%TZ)xn~`GYJg-7Iw#UQJo|#zC5uoa8!& z#;*D9hwBvdz)>pOy3XQCkKUYb|5n{5=i#}7keSlWk|klV!V}Yhl`?7T2vdJ4@Q(#6 z%wJ)!(#@2mVJwxHz}m9YCH<%H!eI6!sF+c!>)U(-=G=i79r>V7kmF^oHywvN)0}LCi zmwGOgqaa9J>JcsF=h9pCZk1P1l3$z;v_#z~qNRue(-J7GeC17MrHGV%Al>OHWm{82 zuSyuyRLf&8Um9$A={>2dAnV1tZy{u|73Bmw7#mAV-vMGlt*9I}wPUa?lwf#OI5@|i z2aPZt*(k+a1Psi9=ieM<$taqbAUYnYDkAkmlsH7pRfI^))!yuDeG~JV>p``Z`ihYX zSwCxt?m;<8iy^jLsy{?W?Z$$rX)OmSGHSGAqDTNL1Bi$sQh#_uYjC#@y9+~!HJq5* zgK%ogr;K`7&AO_O`X34v3GO_5h^~(oLij!!G7=M_pFnt)so*TP^- zK=5>NK}ohOi}H(0+~Y>TKd_OOlZTV9#6E2VRgsW}lMm0PCr;`grRJ9SjULNB);r45 zPnOhG^fQumGfd8Ie{;!6n}Y>}$8u2iQNg9rXtvkf4E&IrOELBEZ&^Y*2M;?cOhXJ6 zvXCcOdiV&6qD%{whou-Q;2|OPoJ~-TmEkLHw8i7g>nvA&T)j?YBsWPjKV#$_Ygtbx1fa>|C;`Pc5sX-l1D1VB~hRyK# zqSl+e1{`@6<=Zb9jg(lZ88??*9X8aGQ>oNdxSh(n(}wCbo0Cj|v%|y`a}FX@LnrBU zwl`&{Es($mRUkR1=kj3{nPHYY$6Z1=9l7z2CwlroNNhJJi-jU`++=#({vbHVSRW#HLo#sg2FJ zLfCO`!*h{bh!W%v4_0OhgmjEMwBI7(&t<>2n@#(|>oqaWt8kk8`bbZac3n}^`G-PH zf=dq$)pgR}HbuSM)b41(7Q{`h@rZ|;TAKsE`TIy0GH97cTW%WYv(!&oB5pcX>Zs(o zi0zFz+V+v&j;Xe<@QVxObl?dI@Q9cx9ZWiAiaqP-;6Bn)wx5pY$|Ar8l6tgcrIPG? z_%dwD>dLIRl6<(?wCR$v`DXQM$gzl|9!TtWr!5ghB=#Kox^kI}Sxv5M*{2(hwj6Z7 z)K&Og$-4KzTM6Dzh&ahAhQby{&%t#G>Kk3nwpQ6IyDT1_I;Lx^x<<~wYXO=t3)v`l zK2_PGJ|cr(pg!pOu$>mRGJl-gS548f%#FoG-15Mvrh%D1Gp)evyC@Cy} zX=Zi~*xuZ6;F(qt zkwB%*F=93dys^+H{z@UoL4Fz#h>j!e+ z)RnN>f}#eVqQ?~Qg#-)}P6HH*pr&X?MdEH?M_~l9$`Vs{qMfqp%OC@+dR>(>kJplC zu10iyJaYx$;NzJ`Bsjz~58@FI&pddH=9#A$wzbDto~iU%*($9N&wMO(RK7gT_F!R$ zX+fWyj_>T}8K;NiBG0S=n_-^$7xE~m0rWf%u;v)eGcJ_7AxOtFak;s$XetX;wTdgr zEy*?0vo=#X(-NMn_Dbe=hVP(5J(HUG5~I}U|i#A2y>xLzz(*v#`*F#9Di#4JDH5f8Kc0GG%68pm4<*|(6s*u+U5A*K*n zX^cml6=Ih5Qb#e%+ib73S<}6GP;BE7dO)Xu10tn-X=AbPa10s|OeycPQdc4KG3zcwWPH0fJLx>I5FwRo;6qtK<;!liH*bU`74QLn*2TVGK`wu9^25*1pEihEO?Don8Fb~OK6)<13b8AP~;^if& ztAP2Ob)Sm>BZ6?!r>&Hp!vw3Uf^p*=592|DCKghm?77M|E9+Ik+sJgqeS!5o5YC1O z9JF7?=h|68blhms=Dy(W<(aR6Dq?e{6HN7+$8KrP3fP>zbIdbuc zBL;ezBX^{p?fV(7UL!5NOz>G5FRc*0%#k|k7w7=nn>o_nvl{Ok(P`j_$S>W&TDWAn zYGg3K{K}@g!~KYMmGb*~E{MZnFy@!cxPturd@NZq8fMeyrE?46Gl$>94n4>+5ouyr z+7rGqifbffngBW7GG8mhSJUbs`?zML<(ucEu7c_>)_rQEE?}JGafZegFxvpIAg=j` zZ9P8Hat(~HCZO}|ZomkaN<=n@5&gEOHgGVQCC$r58zP*D)B{q4bpjL!r5|PF3Z?iY z`+(uMkR;fjsW(cbu0kn>b^o&{iJ9&s|BSR`Et-^h`nbSmlu9($>%iB+vDDr%GjGp`np7fu?bspvR}A8dFloeLx= zRHH1yBa(_@7Maqq_$%xE=zU{`?CepNj&Ao^GSU*!(K@N4vL}h{Jvhp?g$GXcw}qX~ z+33-r1`EI({lM>RzP%_0-U$!-+kkVLJze;v{af{korj+RRAFkuV4-RC6x>LcSnb*J z`UuNT5d{qvRYVc7=ls$Qn^Qx1qXpk6xZ1PZy+&JZ8YXoSE>ZflX5AsC>^M(X#|Z|a zfV(;x#RS3T&$Fy1e?fAD`J)x#-@x3u9SN508ftA zm68kPe-I>AO1EcMC7YyrRf+MitxXYilG8ci@^TB!#vO1M{g|8@b#|_NKh3PFStsTn zc$c%+7&Ys}Oe$uNyPJWhx#rIhsjrACpY;cf(M07Wec^1PaU!b8V}fg^LblZxY#p(E zPz(U;ee=~hcla2~Pi<1FS~6b9PXezQ?^KU6I|`~&Oq+)HHmsjhXi-&KgjjM%&=SZi z9YX9pi2(AHK&(G|eKsPtHgtnjRbU;-s@GVsL1ammAS5~RQ%9eXcG3v(Q=!yR{4|X1!7Ev3 zL5rxJZ$PJj10pf~Wka#VG;wS&F^y!)e~r<^7`(S$f&g6_RHV`2Cn0dWpkH~wd*)=L6MPjZZ2FEES7+bnwXacRVBjK&QM&A z>rmC)0~QrbKuK8v@}=|O?e%|Cfa1MI6kab%3>02d+39D;+LGx_sjKjs%(~kmcnMN- z(n>3(UJ_VU5V-LG0^%gdnLV*p#7Rl!v7A6CAT3f2FjKNpQlb8#-4}#;BD)Vm3UU(j z{1;$Q?~?8lt6EpYR9Z`7>O4*pQ-^U;DyL)Mptrj;6pw_733p;0I*ypB<89BnH*9Ay zT!XF2S&a`nY(+eMHo$D^R6aIzs?X|dX_c62vD8t&Y$vn*MdNI@X}0x1Trj6Gc$}rG z{?-#qRdMF4j*%?vkyj#H4(_ zj4G$-(hcX9rG=iA!K-O^CVTkgI7?I8q^<&L9_v<&)Af>*Y++z*uW2v971V25z_zxG zvm6EEs|o5n`yU|W<)|FMi8xBYuSK!piq%?9UhTf6my-~c&op? zw3H#cdc3Wa*840yA}taBydrf}#$3wwUKnrNOJ(=@+e=R8YV>GOgUi93Ed@@5_R{#^ z_R^JX`*M!N+g@^!EFEu2X#Jq7%(%RKc$#k9d*SvHJbDH%TI^Z%`dl+@aG-o=R(Yz~ zcfP9t!baQ_g;zi3$H2||gAxce&2D06{~B+(sM)b%N+M|DNB%n2ZDRJ^SuLLsa)J`8rXK+mw zq(zX;I0II2STqSOjoHx>2Zh;6c7E`&mYSwYU4_}rtUH-76JR>Q1Qc+m2@E1T2`x9& z?-n2IG=-Mp<)mi#bxHOS>ABPJW?Xb!DB_o<0S`wMbg-A!5WuY*z*6)eYUAl*mN_jm?leoMePr={&C0YipfdF!Pya-I^(!tntGURje}My ze)^+7;OK2JIq&)$7pABt=D+)I4r8?Rj4F7V5io+PlHRaydvR43qkuAtAK;T_fR|du z5wH;f!E?O~SHbf*yLdIivo^Fwsw!k2W7WGXG9tg6^WqjsF=ize$CEk)mnPgs@GN3^vt2qkXUm5 zdYrDBezKYArJ#%nf*6Q`n&S~iK}#=z*3txGATev6XT+MCjn7q24i)=s6i6FHK*Obu z`WbtH%?&jJUx3b1fgMj|kW*+n!Lm;h7-RM+j6H2aF#Wv3mXjuE`f(v7!eEMi3JY;3 z4@*DL7&7y_ZuiiSmbc5@o`#iDChW=QJu{{k?0A2*j9mTLm$QGDPp}2jT~b$}w3&5p zLzH|yB`00U(3k^PLQe_s3RmmI6dvAX)Z_FTz00fyb*_!oyh5 ze1pBa@lk3hkl?vvCxS(YLFPcN5E1If09JNBC0Uw_{0=jXrh=|iY(t`e_@d5l+yrR zg-vY+-jWqs_iqA!YVjvv&^ml?NmC~3 zs^@)%Y|=zq^<3n$a)Go$q;r$hQJ3HYws##ox(>T6#$MnX(P`j_So0hU*21jw*u-Gg z`It=~J5jTa3t}t`hOBe&T9_EQ*r5fwfe+~9RK>^T<`kEh=>^N@n@6t;kZ$a|Jk509 z06%$2*Hwk08d%dC+S%1Iel@+mWGBlfTI$&=brn{7S@)BPy6SO~4;dTVC;AN#3*w#6 z+17^>E$_hiY9>0*-T;u0cV1ot3y`8>fXVDH0LnptV1FcPVNZPmR$EvR2?dKFVYC6o zh*3RvwiOaOX_LeRRp|V{UN)U%$)~&2Rp@-fx?Lve29c9=oJ5sROjDDx2dG;uMBP{r zFEI}!$LML$xPEbMRYvr%lJ19EH-d3OQRk<`jsKObCM;USEZ#rA8j3-C=C(kye(B! zru@d{c0g9)&aN>(_!~n`=T3BJP=i~+9FmSXa6dGLCIvT!{$ks=av1Dnr@t=Eu2lL&~5x9CkN9_43FD(vZWgsU(t>8EOBy#ZW3UlM8t+x z5fndcX+OrC_ylx-?D|W~2_Hu{4xh;BgwF{wW<@xS*w0CmE#WMXx(c5J);+`GBMN0F zId!sKYJoKsts4iTrKQ#iOjlZJ{l`l!q#b|!OG>ITO!EEFL=@Xf?XRf6LhSDfOwFiW zo|_@DyuSe^u?qs^YA4z3ei|y4{G38~gmFSuYxpP(e3pYgObykJmd4@^(r3R* z#FG^{2@mg_|881nl8jkRsJ86ZvBz7&IYa6ye6m>gl;btwILXOyc7$-293MC%y#@;~Wdi8_<&{Sm^UWP~o)V&_NJJ1gJ(GCPY@t zC>0`I*t0t!3-G4blTue9(t&k1T0{iJILZ3sEyaK}6`&gj0wjvrg&9v2lhwqwl!0QB zWFpAGptkX(0m~@54{PwaD|-yd7QMQ854g}<-E6X|byeN;I24KzZKsB2Q`|ORBROG8 zlnSQ@9Q59Y?}|qpL8NSjF3uF)#p%U}bv8NmwoML=^w~H@+8~lSQR-mI2$s)gb5qdm zL1ui)Hv6d!kvmSM^AyW5?ZF(*DtdJBVmLAAz0`cR-F}MZ7#Bnv2oE`C^jml{B0IYn z76^A$wSuS3@Le&wMC?f zSocvx$Jf1a(uWxkvvfOjZvdsBRn(De?%^r6tN|C)EOgGT0AP@2ntY45w^X6)eQ%s(gF%{;o9Y}fNK0B-nr6&(FH&8$8eg6m?^NfCy2SEXmKbz3nK`U z5py;R{q*&160CY%5zR4&LNsFCH~Iu!%ZvaFU}Ab}nS~MA?*F!ZUlVWhbSky zysYT$G~}I3*cdO``Ad$42YvQPB-A9E!k&J7f@PoIq^?43BJ2Kif-Z2JWS;|wR#c6q z67@uVgJUw=+Gi2kv3Gl-{Y$kqoPWCjt1toCSPv9bH48^NI9X^ZK{~L3awK1y7N>^N&Tg+LTei99ywJvbeyDksx5xN8q%)FJvYuS&ONxN z9t+uW_gcqC(fz0Rh?JtsDZZ1n&tlw}?DH%fH|iRz6tdpC#u`Dob+^WvT}xhCK2`J5 zGC;t`OHWByh?gG6Ba)Y5AD^n%Sf?^z8z9wjjrFe2%3IP35!2UFMSrFCUN==&KQ4%eV6brYQuQvPJA^`)QVwj+D9zu(MdVXqx6E zC&`Di2_WL6G1G#}p>x<){xn+-!T72ia-OxB7G|T&I08zN5d-xP+|0WDTUdq#C@ftJ zpAP&1*eFPWfSNCZS9EkSJAC>yOGlSWT?Nzyth>YlCF*G>xoDcDBe15zcH=W}|SuIKF z{b`z%-mz)wEtdY4pb#njfk!-~^atdkxAAi&!}TlVI+9Z6iDIsil?*)MtPm+3A$3&h zT*dafo=Bt=lVQe{c*--UfCC~Y9k8+371^j0gE{FswtQfk<|G%xj}RSl(gT^*Efb21 zii)5p5~Ng|1Dn$q+OO45%&JL+UcY}dtGY$76?*CVbP0r-Z?~|!b569xv_$GE(3Y|8 zh48gw??(}x~zSs$6m&&N|T&)PSUFxW_}N35Ig0 z;qCU_Z6lEQRq#dimH$G)6l8-idqU!%FuQ|&-vG&j{i1TIt1vUHyV+tUILb+0J&`yn zWPgZ08Hr3{F|Cq!!zLl8Wi!q8lt$1qkz8V1 z?3kSBGcrvYA+kDC>ZlyLkIl`SZVoivG01#&{I)EUoS)WNWRuf@A&IXF!5+>;>LA@b zJ(#Z^WaEX?HD9?X@*qCPSMkLqd4+lKG5V@>u8@jzOY+StUEZH>kgNja2fp5%X4VDE z7wmxtrZ-3kaLS2ku#vr7X9kYjwm7s|sw%V|Wz|j7HA^|kON@=ZC;tH;7Sv68jBULH z7ZRUDTn9jUo7T>;hX5p8%mF*WgXM+rfR9+I5k}dw%14=x+g4{L5QcsQ1c`_VA@++2 zqd#Tf3ZrM(*Dd z)G~Vblmfs)S<%H5U49MTKF8j|NYN=M8=Uk~P)n;?R}}POEh*@v8JdEoL;Nsly#>=1 z5)>+RF2y5~f?_T;o2Glpmsc3AOW-SbSTC*h8M#Lq8P{>gDTz`=rOGBY_xKFkTuL~@ z-&}G!m!L29bJ2^zWSE5Bn-Sbx+RXMB)44`9ms~LC%?J}wW?XhjVXoOYzPeRhF+A{L zre9sXz)S*$(SidPL%SBJ$9KlqMX;y+uQF)$Grx_UIxxeQMvY2?=TZghCcrik-qOfP z>cQEO(x`Q5FzHmWt$L+IIxz<&xlICY4>kcGc&(wb%Moa&HXnM z^JK+G6(d5xJDCAz6HfhP>S0-BUOp zoXiu|OEq}<3wsLb7roed4(QQa?A&Kn>#ErKy_Ssg{Yjc}zOf1D80YCdN9~A-Nt`M2 zpBN{EM?n2*AJ_o6+1IbLRs~4@(aw;FW{MI zOFwzJ#n3FW8`uwkXUIHac#}HU#9RTNQU>0Ehe!HXhoUI7%UYHmxVthVe0q?z}Hh1YPy9PV+ z9{+PhP6vjhF3@nW7iOjVX9ZV6S!{gxEL{n?D2|5sxDv{YFDS|@DUelAVL@@v0{iOx z#RDL}0u<=AXyT%MQ=pcLZe?K%d~@)1iG-SGo!Hq|W?4S^K!cqf=^CR0T;Cj zkP}LcPZqNkQ4+JY2YcJl?7YpjgW5}dh1B7!-}+=iN-&a>WS(ppsi7J7AoT1N2fOhg zcC3&RkH)J)6;eAhwy?URiCpsN!2&U5)fDWo8l3OR&O??)FPMhFwem7kPpev21yfEf znd#haiprb< zHn-(u%SG5C-l^`83+DQh1wj?%<&}tK zT3ksslmZLyg(r`Qo|L#Ah|R#B??&pR#CWA*EiCO)nHFj|TTMDKRR*!E@v|*8wU)XH zwtlSJa<-->CrO915g|)WxwC_*X#m?wpKYlL##hwjJd2$jrlv%gZF%rL-Nn@{>mxut z;ft0Bo~j&afRRM-kc^jMDz-j`T^l{yEIb$5LsC^Caulo1w1@~?on*#r zyFdeDDn2(1#77-zNQa{ftB=5L4dk)67jzcs z)?F`XbS;VI`PrIip0R1?ErC9fun^IFh({#R#C{05<*k9nF<|dQ?qV#xH{p#u_H7R9(Q<-l5on>#CMKLmPIeejG zw1h&KsN1fAkwiQ0iGoWHZ9_JQeCi3nZ#YAOWK^^WrLK4&68)jJ8%Hpo|P&0X3T) zUJf~f%d&M+R{?br>pp0K5)9-dYv))70&6O4Hx7hN3RjsQE==53=(_yD*V*1x6sUxPRH{OUXqf-Q3 z5HYpIBa)b6+M0zGo(gClqt)sZ%S(fOMg~YD#7h&Tj>?<)Y;W8twq-Pc1{A*>PNCKR zFtEif`2?;GxsR5)06$=9C#Y(^~RqPe46zK>G(m{#{gm&l<5K)jSiu8{36u|bX z5V2RVcfXl4bMBp;y~_uG;t!2GvvX#io%7r|v%6^yf&^3*b6b!(;b8BpWbY| z2A!+w9~VkO#}GR~i#a7V!^2BS8L88*oY>tQ8jTHTCoRYGF$rD@sZv^1-I8C zTCu2oD3MU84QKD)gXBSiIwf@#YJ*w#J3>tml#_hjkydH%h2s}_=*AjH(h6fzX$MJ|{r|8E!>9Xks#_N$zCTbzHj(kQ&N+Xt?W=b8E zG~?LZv`!}XC3t|S)HnVIh@1`#Y3rtkz+Q-*)^`f7nOFC;- zdWGRy3<-~mxr06{`#e_OfVPoTQAzVEoBLm9Y8y59$KTL)IyfY*<`#mz5G(x$xfJwb z>@qgKu(M_*7sY&t4_WE{&A>XTnaL^kwwn7{!)4vkh^)+q^l<- z#MkbkCYhKTZ?cOux)3L&NL_{1YSwKGukLvla8A+?&PHU2lWy!1Tr90&TMbR|N%!b= z4fcR)se&&rq6ajc@+6{i_;S_cE#PB*xyIG zn4B%pK$5Borgf~^k6;pDJ4v4|R2@AM4p{J>8!CaM_G#<+n8KEiR$D%591w?%^X|8y zNIFfNd8cuH3p)>q8JUgdK)!p~XcVcI6dP?nOE${yqS@#GWvRDD`cZ;n+2{v6BH1YF z2fQM(hrNr@`WA8%$*9s(Vy0Om=i?D)#MVd`NgYfbap`xny?Q1uKA%4!-R}H+dR0Gy z-nTYIY$N+i3W}b!zW%A;h1@A(2B)x(=nyqQRgF z*9`^X+Ex;z#L|gyXTLPiOUQX08E{YSkkA*|=cn=ZL-zJF%*%+&vroEM>JgtgJ79H7 zuC0CSEV-vjSIs>YyGE#lGU1^21&=g5;%LLZ;E~oHLSL})MqPC&Fnh6l*X|4S*=}NO})Z{uqTld#h}O(+zHFFXCerOd{&qczgWhr zrqW4vX<=6)n~hReVe>8PzSUKiK2GumBSEE40pJsK2mgDv^#**<58vm2@zu<8p3U!S zhL(fZe(N8_C(JSKRm~2;w$T`Oz2d@_X4%n$b+y0(QtBPQzyfko2B`q~jUD?I5&&C3 zvE4*kDnNc>UEEUwYC(}APVz5Y&vNk9Xt1WjbK^jGmRR7*Z&?6)US0IQyS(8rZ8XnD z5ZGuMp2ovJ*h9=KXyHUPH_7k!t1n(|y#yTdRx%YywWKPUzt56Q?(L@8qX3x3o*O%RhPNKR8&z^Fu z`wz_?QMWkBpCLHDoHQ)DYWH9|iDO%Tb|X50@zs2Do_*Gh=%n)>*hIClpIQa)_A)MZ zL$hE0I9NN9tiir2=C(g0$}BSJGFpX974|T>JMqe`QWq0PR3#Ny_eN9PFuz#@L30%F zySm9{Xfph*7L0B<2p8!kt~*{dyLKvPPTg=Q!F2lvZg@tBA7lLf{7_yoR3jI&JwW7%Re9+8w2 zwVAG!+QPLK!?pnu92ZcKJ$kxou?gO%D9 z)LJl%3}oL{t=uDc1(nF7tYyov@(`9?NNY^uRrx6fNC+ldQWo5jxAja`W=67mN)bp1 zCYw)24=Da}ux=@RmVMqXxrZPYHPtR>*BbR861q|9DvoZzy3Km%n#M`4gR_Z~k%aE+ z5lljtvaRdj!`fKW!1#)UoM)H!2$4`78z27G!`=ZFl@0|9Z!<#U%NVQaUcMT?Dc*!It@hY0cxKq7YHqEm7CAVzKI1}m-mD!0N zy3jdJndmKaO7|2K!O~7CJR)f)x>QeH>0~o#=kz4XY2dSRp|oO4oh+%Na^_05m)4V( zO(*X5FPoeWj)}{rzbPD|ntOT%7dzLo@xOcMV#kH?2P7men}BC(m&(Y7z3Oq*l$DW| z4R3_mofUy)>V_mSC^4)09){Pzeu1C!X@ zbJiWzQ!|W{jDWK(!$egp93BPe1TC6wU{fP{62ZXmYW_LLy7vqbOf3$NCKW+q?_B}K z)DbcP3Q&w+VnNv=16823V(&IU4&ch^h}2b}+{(HI1d8AoCpp-YI0me#7~MD!qve=C zkQ^+>G!Jo1&B%cP$50j^7~)$0c^X&Su&bD35sR8%fd#!q&2dsKsiLOcnJ|ms!%I!_ zo&KWc;$9Jon%m%@w<&Wo9`Uft&Al|c+{KXH(2Llmi_c0&X~nY3K&gY-A}IcDw)ZSL z&K==0o&5~s^l)5cm>jSfDrV;N3TBx5d4QZ=nqgch*Y-k&X%U;6k`9lfAicl_$k2f} zz8?15_^2WLbcH3QKw|QT!kc0DUh5aE8g!sq{014Vnn#bZGi!ShxfDoUg-mB5ek)0@bphSXK$@+9k4?XBA~PEx5ikqcN;;kj`j zJlmFm>)!Ai==W|(gm$cpG91c%Hy*03LbRb=cN+J)vU`|PVL}n}^D3I3>dQJ8lX^*! zN{=%k6;ZBq?XAm|&VT{TK5w})Q37Mjl^5}dhfrRG2erKqFZX81#`Y#cS?RN~Oj@yo zvR&$^4C%x6HbXXHXJ(miM5loxB9%N3)e>xiv78B5e+V= z+2@@5qj!j02nT3GRQ13FH<)fSmS8N5KKZJnurDAG4J;o4WuG`X>S)zC8M&gH(d_OG zeTZ%zlDZ0|5v+TkMM?Z@IlzdA_T2d7B;+as8;LX*Dv#(jRf^yVLLq{brmWGP( zh@_#YBDz$nSu>Gg%ZFsgX3Z}?OFv3WmWs+eE#{-5qFlCD>S;?wQ9p)96{+O3@~zZ% zYWBl0Ax667>EKSyR32eJTlVf3?c&+f2U)3QskD>~6EzF&b2BNWn`4iB(8HEEF&R!+ z&IvP2-VoR%8tR-np)-ZB_{6&j@i)lmah}x--=Ut%zU6=p1T!noJY1<4G$)7ddm{cm zd7eUTCZBiL(|S?mB<;u|KZVon>EN1YHrs0VG}SygfTee9G3VvAPlsr!RxE;%g>8%~ zj+oLj8YhP;pSm$2xd6nXh4qg(U5G7S<7M26mlmO_p&2DVo_D-wJ$JG%#yG-4NL7tL$2!)N=z>wUC>uBgyo}ZctrA1bhW;^ELz5(Rq0DybfwQq zrnF+YsD;!~8MB=2-Q1VDIKAil*H}&m$Hc;@0@w@D&{KVb3!~L+yh2}H7`ZUc?Mq#p z&Aks*G%M>IDj%DblnifAz-p@+Pm*+a>MghD-tMMrpF@?k4$ni-fvu!-|6EYT3~U4I zuZTu+w!(ADVwAUS<0brocrS@%XOmCkFJ&BU(YO`&Qzhue=3}8-s zDe7SfjHRdt@Q8<^9_XhjY9B*(Z$F}_!9FX`Nh_A3a-|Ml0`WVspY6Sfj%Q67DV zTvRXkAanOVhddf?R>HPrQ917?AUjnyO`kjz7ZWlfREqb)8}9iM3N_u{V^{b0BZm4^ z>MGcdu+;4Z%j~FHD6a5a@1<}+yZ11CfL{s2{nxxLVJ^ey7Rnx&G=N*92 z=4aTC6)389fZT%B=Gj2GMXLHUV%{pGjGIZ1-HunpcBYR|XBrp^zA}v&qad&$0yD{cP%1XccBk>Ym_5e?4YQM&?5%0C ztG-e;sh1Q(eR?JgB?_pa&*%bb5MbbArp3&^|1w%IX8DgiMJ}cX# z70XWVNF9|tU$VU-NHpv#ZS#%jG;l;DrkP+ZL`=UzMg{eizGc%hpV7qRf-sPmcoPiD zC%FBQoSg>EB&eL2m$H(RVRd4kAcWcp?svu-zw zmH16`f-WfFKGVJ7$c3gG?p%~Mi-wH(@&+oL@SD|v0a{`b86lVnv&Kd_U3)G{x_{Yo z%+N41iAg>M65m@l4IU`kbzo zYBj}FqUQ%sK-Occsa$_C>8z#Fc*I$<>{L_gD0Yfvd)4|AJC*Kl`B3DC(>P)Mv2CVf z6cgR0zp8(5o2eXIKgO|m+e|K&51%!wMjmPz13N{hnI`$E3P3kI`&STxq{q<_jNuGqW!=yBH%N&1dw_$Et%k*0 zfb%xG^YY+Vi_*du*hkt~k<&HV*$*)$HeXOU-~C>WOyJQgFLyd%Mlj zPQ4kh5cA0`>v%;mS#YW;tO+lb&Xpmn3DtzXnmK?d=XI&8;AzOZD+XxFagx^<43qZ? zG>`zHpp{u8Huc&7TA9J{Y6d#T%m6_-;SgzZ5ju`>>M(LBqwrT8g;#DZ;dsv!;Cvwi zR^Vi?mnR?}kZt~!x(b{W*8QEp5p3fmzYHL@0c$E&Hx9&V*#;6Jsk397NS@ocfNJ2u z1x%H2!1j9Ae@;v$OEh7db5f1DKZH zBB!?m#+D{M@Q8vP01lYLeuN-LIS7D*kv1cK_XV|#h%I6o(J$zOh^ zae6o|GEFD28Dg4U&jmA0a~`16bDC*fC{H|xOw-I1tT+@`Dmy*JG@b!ZhyY{oricG* zg#S%<0=PMyLfajlI|J7K5l*uE9G;LdtC`e-T{`w0(ai5sSK)Ir>;6pmsHcUT^c15( zORo5V!CZ4I+dK6faSiyO=AZNK!{JQS}%p#j~{wGYQF!h7;GF5k&6L)Hn-5mOj;;l?Sf zT0SjFy`*^Oo-^ScQQ1r#s4JUEfPs&5-jcvr&UpimNY06RgRYeNMA!Wc+iJ*dTv)y5 zvvgEivb^)P)KQu90NeW(~`)_V&PV|4H6p3ruJYlpNiirY!!zGoDs`4O{9v-m1o&p zLz7$={BAR;V?{H%F7u73jh!A2i#5(q6cP1tTEnNof>u)ld4Qh==^DpHauOuKGqCG0 zJPM8VP3h$1%v9L*;Z*c{T}`K-=+_KBFyrK~Pgtfo)oyn+%QLYlUO|r*yQ{@_l_9IC z^gMgiX)v+OFsZBH8OFMU2%ZX$?yD$nbUEn&un?x2X@i5QW(34|StLElpkNB)SEUj3^=_7S8WyB?z#`by)p|zaiwt;16M@5Ri#*V@ef@Q>nO#$z`y_;I3T2c(N;!GGulr`}6 znAC!tN)!JneGc73>Hy)xob*;Sqa-G_q8WilB*8?DFsGWsVplDpRx@HlhZ4yw_E~yK zTCyawPU@&sd7bUSf(!i>zh8MgtQX0cI8gSzbsBz$4L`YN$M5bv{fhC;E`ow5> zgz@~pc2$f2O~$W&!?&_)KMkcCCw`ckRw7$BvToU7nsuBc7S0aUH@N3^7KZ!Xn9Mqp z|AK_z>syvr37gqo>@Z6`Q9ltps=eVnJUKK(KeZSGOFhtAH^+Y6WvQo%#K6u&kTOI- zKXvqZ7M`XuWChRL?BdnKsKmKb>MBy+!Mbe;9s!(_v>HbJVz7psBe>s~d-&E~hRzO>96up35Hs#s)Y*J1qv@%TB|+#O9%8m6*@)I9h5!iaD7yuBKR8 zb+Fnc#X$$ogo6ZWzB)`-IWJRQdP(SjgvFB3UOXa6D0=TOUFGC6V7rGA0e$PU@|Cn= z3Fu#`qq3%e?fnTEhCQ5%?((mxoDPnObD#ha=sj#n`|tl~_oMdlj`bT^i@tVMxM~AjAVG--l94h@1<9xE+R)*| zGc%>Gg5)^sP9sPJ&p65C;nXi4YJ(HA-3^mY2;lCfaa%AsEzP`-?PA!Ppl&D?!qM3a z{=>QXumv3Eh%dOUr*Zgmb{KOl;$t`)fe*b^&da1)QVjFeSu)J`!!^TvLs{r$n2ICB zB(Mx~9v<;9%y}a;!+gtd#X$vxjhkejmB!MFWtiqt2lGW-^zYc-btbB#>)hPa(a$nY z564B8DFZe`Ec57yV3s+>1C$w|S;mDDGa}3~&>_87o zG+|*mCrmQiChj4!i6ott487u^GJG|){$%e4jv%&~CUq55zq0Nmf=YF9oOA*MLk;64 z09VlB>UXv`VFWF%zz4P1aNhMFfpn8f5jK6{P}Ok!(>ml5<%ES{Dr}-EQ<1)V1kuhhsjIO0hhzC)7#opfPWm26Z3hRes%YJK5UpKWL0(+(6)dfg zav}vlmmX*b?p*64ZEA|eO-x8mGY93yZheUbPDH8Q|8lnsUQMiO?BVv2L^}VIx(cYuto!arUE(;& z5e9|`=Ldi*h;XX1ts^6eaA15j1)XPGMq0v&#o*ytfEVE9tq?l2zp1TqB8n|Ib80~m z6j5x^IsbVvFA*I<7IoOmI8)ry^>Z$g`igokVEuY#Xg^Os#|dhqfS*8)Guy_&s#C2Z z-H;HrWgbY7Hh(emM2^A+iPRHWY=gX2J1vT_dh9f&VwilyY`zh$jkoGaBGrFqoX;rrNUmc+!e&vZN@*(Yi`T_e@oX~2k0eV!O-gU`}i(voGMgHlJO z%_VGaFJ*`A?Q9+A@9j9fspOUI?c{>p5Ep&-d~k24ArF#EC#&9$3u*lG#7DCp&cC2^ zYF0*4c7~bX3LXp1%FKk1Y8CV_x3`P;} z%8VicswZ_70VT0+tx=kQoTLVvjc8Z`ib^v%L#eNm+-PdL{lNV>=X73Q8vYfj&6C3B zYm6dJ0+$pgIcH#j}mTf-5Ba&^RKN_WLo#qVK2cw8-&KWIclC|=Wv|^d2lGITtay{ES zZ!|S=exB=JUO62c6RVwfC>**mo-#VP+PRsHzcWf#J1&gFqeAQg+nqvtIL(p^>{Xtc zY`^&j~iiJ9&O zxrO3y`dCpMuufiG;uLrB!(Q8K44e|W#$k~S=*VfDypNs4?21^x6ae3O3z+q!T2h?y z;F)lW;K689xDt4<-q=3pi#t^RQTBOx<>E1#5$fX+53kf8qj{x0LsoYT@yZQ8E6t=8 z%PV(F9n2GPxjV4EcIY@ibaUw{KesqN92dEzCfE#BFa5>@bIapAK+Q3lTU;pB$Aq{A zwjP9iF)X!|hUY0#+>wA*V#Rqk9=x;cLh%v1z(TX& zr*|B?ge3wLU>Epo1OiEO5z(@cd@RFMkUY(9eK3Z|DdnW!lGHY8 zz^V$;jR!$u;SygR$Foi1&XrB#TP>=X)*WGOtirGto!CZ)ZX>KQR!k~IiT&7X%(pPx zh{;|X9hA@ zkBuds8SAq$N?NfzGh6B?@CUKI>0_x^Gs-uj)4&mtVcLVW5W{R78_Y1n*mV1`nqgcJ z4~`{<+0qm5JEUgA3!1nzf^Bl)*|mzV?dfj1^@8$6OOjVXSNJ@W509|-%rEZ~+s|En zAY)cj>IHV}ow39+KS*7L&nVXYW~?q@oa9T!gBYgN3&9LChHZU0mKX-cSCh|qb{JA< zX8vU|KBNrTU)nzPXkU`5J0`!1Rv_doKAV;Wi7h@Cz91$f;vb0(}KNOGJh-sx%4 zjDhfdq_aX|VoB#UJR(Ua>NUDXszo!C5qlL99Pdr#`z#%hmMrlUOC6Oov)JB8lpD51 zGx4auMdS2dC9iCYW)awR6ciO@D()+IIO1*Jc|67hN?LX% z+;TuFf*F^d>Ao8QWCYJzL{_jL6aY@D9pPmAL4msC)Pxh+_zL@3a~u&;n$%T<^b+eP zjnjnWB#q!~M2A{7HzPc!c@*bmw%2GJkrMczNXdCueH@ZfDhJ4XWYMwTj{rWZ8)Jc! zB8v-f5xmdolUZCk%2*XquVCLE8%MRzK&h*6S<1T45-tK=C+Rzmp1}cYDnd67L}>X3 zGUD93h<|EE@Y}|8{=Cq&mhsw{7HU5QxvpYA7hq0C=-AA|dF<=hjIr7!#XW1zgnI;8 z7D8sU-QQHKtPW8QdMlovB`lVFPT>(rKGCPf>56A91NQwmBAzNQiiu>cRKz3BiY1-~ zQb#4qTWqiXi`22%`GtQ~<#cdNta-ksaHwN*BkTkg^eV$fHvaWEUGumwzJM&m$8MnJ zVYUH=$x5Ggd49FHbi6B`os^OVUq!c1{e>APq*N}XWD=Vc+B&FqY$R!qOW;F%k4YfZ z?Apb?wttaW=UJ(%K-4*a%I<^YW{BP_mol0Q11^rih|d&GU)99jdgSs6w!Hm^(_lU6x-OoJdMAH*k4S@ zh$Yacz?0q*=n$!v6b%)g2@Q!7D8c0Y;cxO(9v`6&%7%m9_Z%|th$9jEoCe4y!rti;$nM8qf{{&qi-2>sn z6!sQKgCr)lv>AX$JghWef@Y;tjMg&~h?VC0tjv;DEGw;)Ix2U5WP7hopaLm9zL4H6 z7g^+Va7<*RK434zNCgvu8R=Ix-e-blBo{_cNK9s=TCuQZNRhQsc1kMLMzDp>*szE* z3q&R_Zx?(=l=%o=hjeEPm3lLGCB%O(!&lSnKlbqJ2}DSxCI(NlzgYJ_nr7m?Pbc}C zfgv)gHZhot{$X2xParaa@zun1o_ztMF&S};vM?fuY>UV-lGGAVShO4`1?X6~G9?5E zm-r1UU4KW)V$9)8+7QS;Mz4A~|~e(W5b@L4%7tyq5g zMe3*wI-l*Gq8w?n{$O16ao?y;3r9tUS_c+G3{@4L*$JwdDzo`@6E#D*K;E1fVyH^y zWOM;+Tbi1kVJjy)yE2lJ($h@dOS`+9f7iqBV4%vX{`lGBW6(&5WFWU+enNa|u3#U< zRJGXCCb`5^H%nawT6NaF-V|0W%+lL2J82GBK#+*79>@)5s|(m(PA;((_@LOzd3QxF zvQ=sfhG@&Ccr2SNMvbwM+LHf}MJTKwK(q(}Mb(KYwFo^YqgDuA$X-5^OC?jT)Kv)8 zWnEb6IfMi;IVp6gQM$6~dF7+Qs*2f-2Qk}55@gDpxx`FRKRW=t@l`YPzrgA`g4D*h zR{Jd2=wkL6GcwFZVsgJulUu#3K8MsxijgioOGf$(G4?UiCzPAsimB`*F+D6J#o`eU zBgIbAjMR`}i=IS`bg9qE#nOspq${NkrjED_SFpW|NputKV&8~P14l$Q`j>*ChSGhL zg4rmEP5+y#*~kU)S1z&9$I%6~VpEfn(volq$2pdgk!`jO&h2i-mnwi8X%VES`W{U% zp9e`-HQkpG|BMV>&9H3tug@gnpckdCf+?MK$4t^qBqwH}Sd_w9a#XL8h3G;~J?efWbop#CO2z5|P zIOy#j-HJyf>qOmZ3N!GB_L_w9;zHicu-!D7n5V1HQfFz&GS6VCqf+J;wl`ohtl7;A;*xY^Cr;}dP03{MJel7ZvA5<%U?&aE>;uYhI8$;y)-j4zV< z3aHyz|IlR3Jx;QpaiQAhbGSgjJrRMqgKh06V6Ya5T1S7YeczpzZ^EdKgJLjPQ&^Z^ zl{p%4GRNND+0xW3TL9m(iXgQ>0S85vTC7S>5h9R71zX#^Cn?|@0i9n#cN`lN4Hm@$A^HDY6VA$loU~Fqs-Bsi_sru z&zs`t;a!)-?7jw)9hPR|rLRk@ZprPq{K#4IQTHjDkDdYqVD@^eph*%ITLn$PBa)Az zCrr^*(Bll)xGBU%t9@2hNGq0$c1j(UI!~~@t&nE;K6~t){=SjZ!7;H88V&YBWb`Ry zRM4udGaDa0Mb|+tjFFh#MM);EYC+wYl%%XwfnP3j^vA~(CUZe^3xvQX|s=mZtu7^c0{Rao?8-3Kfd0wgE67X`e;0)r|#Hxxu?D;>D(<&MIJ zyZdVw)Qb>J{W{{Xh~|0iq4<%0jy(j^qP7u4G7OOQ_IREm)sm`f2A>I!h-Kg!gw(g9 zT183c<&t+LFqTV>;1S0q$@LC*h?=UYWEdk>2#Jd=p5J^%ewIcom6V$%=9bEl;cPF~ z@T^=0iMk*|cCD8O4?lPSrf(V%Uc{3_Nn(B?a)7V^$LMD2PZh zvv3bE=skBe_qHgg13Nr~gz(%;7TgVc4)#zOd}TphaT-asU41wq{w5i)nm`lTt>)8+ zOdgQB3Y>AQdk=!+YvnlUonRr%C_SbHGs<|jcjq)>6!1aKIpi+-1=69>7r-z7H3?nUu=h5u&3A;8AuO_i?bpry3*vkj zG{iO8X-VnX#5EbIX=#nqOb1*$5!d*I_H(1aHuYjc=f&W8)A~Thv)@VU&@blnlEI7A`96ZtiaZjli%h24yDa4|q!y2&RrajYL~dO-zU{ zlyT!^62Gu>Sa5)5>OwEeozjFLP3zRBN$&@z zjGQub%G7iC9r=M%E~VS#7t9dzRWVQ@JDxCu7^sQVRe&92-G(!CpTrFH2Y~2`$7Ul7ylc&d}w}`wZCp8AL$4eO7izE0%!X zlR7F-K45!CAg8b?b99csDdTi-Oe}C_gS}9J^E;$ZP*dh(Ha>fXE^u5JGcc85F?D_q zNUM}|xJzyeoKjgy>88iKlX{pJAA$lVbi6biPlE@1ihr31?->q<*%dy=$vQ+&suG_t zGk6+(!CqCGN%c)bsf+N4{5-+BmzavvJdGJAxCl~Y=oFSxIQbo>BXTmRH-M0s!^(~=xQ6hQ^oo^&CmSeue zBaUNoIzh8$rly!*8L`hGnXy?DH%rVVYosh5aYih~)RsCbSAJuAHB8Ti(5xvtOAqK2 za6sgjVhV+BeqS>ym|y;4%f&M_zqlAa##|_^2SUh3O?3 zx`HW=U7bIR$Y-6@RWOxd-8aH82?lb~)g-lT9I&bacjH0e$UyNQO|7eD*&dx4UFDY88P!*Ew|9ehQ zti8^it;?SBvm=x}NpR46Z@dv6acp9{I*n#)im1$xT|S#Qsg2J{OKHV&(j!s_Q%GEb zDs1ne+0@l(=^N2$;D|^{4ZvEc=ovOUn3Srs=?1ekDY+mngh4|^PkL4oyvzNHG{AF1o4`aWh06{yt#qAgB+W z+>20kTM9*#T7bTiK`VeRWlulDYX#k&f2FPh=pxqrlK>KF<|Mz(rnMGWQ}McSAYRKu z7veaUhiVHRiWq~<0W6CmN^OJ}%@LDLd3`y14cRDINKEK@;Hb<`zD zW_t_g(BiA-5r6l`>2ybrnw9MW=IoFEsfp12nG@XoNoU(#I1+F7$3@Z+Mn)<+_Etev zbMnE0aG9mhv$sVR+9O>z}z13kRBpo-SwDF<5SShd5|OuYksOG4*VxuS&l z&m<-|@x;&fwd{AXN!;u@Lw`zrh2fQ~|LYvhPEPWZgUl|`&YK(D8M>Nn{Y04cmzHJ&Txv0|zl*y+pX5>qvox(ciu*1c}7?g}}{)pLodz#1}@xG-*k3Yca0nh4AkHdg{2aK|9u#3G?X?*BCic1`jvTQ`^f+7yZ5vyTntQMq)T)J3pF zw%*OUSDE6EJuM?A$byqCgKpFcVcZTVF0HUkY%L zbOa#5S~sr^(UH;-Kw79)7GU2Rp^|KbI9sH8%jgvwJ;E+`pGRyoTIwpK9%9`Q7AXOt z6AVQ`mf3peuDB>)=x!tk-S&_mO9nkbTvR6%y^ahx2tH#W@evv}xaHbmQO-Ta4#QB9 zOQt2jn%$yiXbGEt~$6z*s8!8;>|DYP%YG zN%J%lb!No=fGkHQsykmyGHaw39&tu26D3O>l`>t}UL%w9E%cIV&DR4u1so7*=obow zdP!~P2h&h@w*1RHO+zk*A2FqghM?rm&P*{w7vlqj_!TZ7q~gISFV~pixw5fk;(_&ve#3Z-HKZIZ50C zT7H2w6|Nfx!nMqki9T88$ra4wuD*=kM(3y}Li9GotkbwXm)(X06x1VTaT<8*Eqm&a zYDv*f-dWPl6ALu$JPPr{JoT15V%-^|s+$eba9>&pp)g2?^+nA|3Gsi( z=y86D-{sZp;xFb@=^}oS>%4`*b8I>5mtUwk$Vtk;+2Q)9{=#4qTFJJ`EF=>81)%g6 zK+d}#L4qXoUoo^}EkHB_Aw&SkZnm-YXZR+CzyK9O0JSIsCo7=VU#(_}ndJ8h+f;q6>y5@K2{V3N%apjlyUU&>z z#5M3VzHVS&VVuaU^DJQQWt~S!wWL^Q^I5Xa(uJCJUZGU~!b zo8GxlvyKa58|E^x4m=N%3Vc%-RS27kXTY9fdF%FeH^4UaN_mfO?Yut$i3ZkYUO{g6 z{R#2c%23q|%4dJBe2Ge&c2ZZ(p#7}d`Xx;-PSOI-4%5q%FIjqt_<-g?w$;K!B^JTW zhHEFq(O=kZ78L0GgV--Cs%HKz2Bw|(0~9h4CoDX%&_QHi8`_>TpuaQz6X?Ku<%FC? z2$-f`EFwf_lEgwZN`|cOfa#-6>F|=HyG7W4@z& z^m0t)MPlY#j;Vl09LIF{3z|8LG{t<(Xq~%=C??fsBuN^v6mx^rQHgSl?d2?@_0;Md z|9Z;l;Fw4<<-lHuWFB7>Ofo0fc)3NIWLy}fVOS=adZjXxshty(m6?`lR@H*N<$+_c z3+j~=Cc@tGz%q&IjGVFWB*YJw!KxYbE&DTg5s}PvsjGnbl69vn(j?;~xeNonjQ$#c z6SR=}nr-DSq8bLqS3m5|v*$pK#EGmT~-)U)}jH%}nASggA^`kxd z7Lx-qPKC)&?Aso^60mkEmbwa)A6WMz!bGr&lYFpW~IZtfC{F1xm3G@GwkJLw*3SYGq(z5my#9#4)dvfHk8iuYZS&| z`YDB^KlUWV?~y2|nN^Ox-1#!G%|}vKAr{NJ@4u|s#!22`aENVA!G#KXx1tQ&dWX=l zTVL#?ztuf-=ixTM`triG(iWsFn4bkz;zB4vNz?wVNw=99*TC`!u>jU39f71pYg5C* zy3&S_Td*oF786#1Re_y8cQMgW1F5UPif7&Wi!E5<(mP4r#Z=s!YkIbXs!r8%Zmewt z3KlnUx8cRHbQC)+r||OA2ihfv(;^ZSHq;i{eUbT<*!|mZ_=vaCZ-(pPC8rdtTXN)7 zH325#Sv+{yf3YT~et>|FoaRVaEIG}@BOY>^N!Lt0_EVifGmD9#Hu)^AmzHeZlP`5t z4%J|L`yt0qN>fKOlIre2Y_5m z6EWwBsOpwV#@)cG6jtX6n3|Fe%?o>D3y7*tEPT@`l0wvy!&ObAO9}(dxA$<)eIa%X0S2R~SNliE#F(R(YcqOb3RR|wD2@cKDl8)b# zM>fJ-?Y2nxChYb^OxTFr^x|U8P5rEH$#GN4S#r~sS2Q1^Df-wedOeoTfPDx_jxC?)SH&c=R{oP#EH71&Ix256*j|NKspa#ZZ$zhoBjRf8 zJqm{IuBW{kyc)ZbO~3bwUX8gRjzYpQ5mhxSuPH2FDl;S1M6D}uY?KUJJHt;AZm$7s zlyDlI4!0IrLOPwDoF^t$iN9Tfq2^n2_PEun#7a*}T?O2Ato!Jznw6ZSJ)9k8r2(%7 zS5P@@tGy}i1m%ORpjy%2s)BMJ-Uhf|UU)?qkhU}6NolU3ENHg>3=9Q}R>0IJUeyPl zLfqU?V(Qbec+HX+D7&7 z5#&#u--)QIoCbBSB%qeCIT-w_w*{xX6pUBA`@n$7my|mQ=^6^;uF> z%o0seQA;9}PnWUM@JafwO3;mAF4J|ovlBbK4=l{zYM+OfGi zmvF~utiNOAbYMu!QMJLIE1II8T@uVuceC-@OEgEhC@z3uk)uv_gK8)>H9ZY(Z!IpU zMnCge(1SHwFM-?e-5!KqWJK|)FJb@rzq<#CdlbXVWJboXCRuxSaq;vs-!cK`TILBqc3Y;g|$q(@=9eAngFG9EMIsB@<89F#lKGX3i zpLB{)5>(_Q-!GwB3CyaP-GC6Yt(71>?uRzC8T2?T`Xk0*L!8&HuwFy}Y=kwJig~6k zX(x6T28v8R)xbwD`9zUwNs-S}XGuP{EY;+5Bg7BW)zwFf^Oo+6ihoLiVk?_Yctny< zR40==(bHJ!&S*Wcl**%VJ|knKk>q=zu_RR#_&wO%%%#LVzs~kImYmKL=nFNL9s!df z`q{iRxUtlS?LT7A)r}<=%)>Bxh=S6x)06E(Kukf|$;t4HFYYT36jU!JlGJXPZW$=z z$#zHa4_XXTKzV#}ZtQb#4ri)`=MYqU^1EJPG`vxdYc%>aArwI|86J5I z%FU`f57-*0UgVRL=PaxepSVoTEHNKuvWK;o5d&pNT?N!M)=gQa8OTYRz}W~4G0?5c zf@`4ZY^%vKs)1m9RS!7NE?9=llMw^KXPF+$3*q)W0b_5^=eLI95rH9@00rm<_VjQ9 zcajC9vkX#EavnSO1pH?9hR%>wRd~!{)d7TuK-Ec}Sw<`a##D4}7>Ew5ow%1UL2cK1 z8g#7_sOpIr7Zf~jBQDZUI@K~Z@ckQF?e+0CVp5ZL0`DRmV*>sfaz!6TT)Nj5E~77tYC z7__=i=Ei!Mq_(Dkr1-5V)HJP@V=p>FWC^DG?9g>rfqi`%XScGmFhFFY`5f5LOEd+f zT2e%_<1C4$`U*`nRaZnPXRd;S-lk3#9&r?5->b-4p^0WU!MDQ=Sa;(JO*Kxkj^Usx<_Lfk)X6DgTkBR(6$9g|-+AZROCVv2sapzAG25mW zUO;hoXjRn8%msQ;$4|C`#}hAKij;(ah%+o6Kg$>u9{*#%PU6)7ZYj4?WTwL7UDl0V zsn<$Q61|eD7_g?IbK^jCwr2xZzaf+-mQ#FQ+v^LIqT{sDG&zljAF+pEJu;y*1joFD zQk7IoicpT9C80dHQWMI35I;;oSGiE5W{3pE)*J)zh$NJ#fhO;LPaScB(dxgF3YYml zBXgvYoIGgMNEMYHpR&2-E2&Xa`g4Dy#_9A&U#L;j7fgmIrD$bvqvlJt-`Ae28#OMN z-Y`1T3Vxgp`ZOJ0#$Vmkv=n#|`&9IMT@8>*-LNPIMdsw*!B(m?G}*C(;qT(%TCTNaw|DHfV+87@L2Iu^gPi|MBAN3I*w zO6sc=`kD1_C3r;j;v_e%B8Ev{Wf>;ISYHtYwsL`Fc=&N*8Tg7eCPUbH8x@d@yW(Mq z4XclKQw;SdyV)Cuir9$h0Z4lrG51;Bl552LbCyK2V3j7Cd4PbAXm&|hEYWPoBa&#M zx3AKb%Q@BP;k_-8&bUPS%xC2jX~mWXWM zOtsa)bxSN;-mps7EiQ()U`!;Kt!sfrva++XxoSy)r*^n%IqwHpmp5HnSS~gtq!5z@ z3bt~Yw%;!;1yZy1_M&R>>8k~MD5g1&ol9O#OmnN$RS=bD-5XbHrg4(ya5iE>O!Ls{ z;Nm5oZ8cv_#S4tDe%_sDjX`50v|w!5xDv2|wQp6_+H@=Sh8>dr(5k4qd1w>Ri}x%G z#~>M^f}<+C)qgeBE|aCMf}<`=<( zgW^)#)lcYBo9jLc2-*g>?lcZpV}~K#B9}6600VkUnR%pIQl-oV)gXJ$;(5U@R%?d& zlrqp;%9MXyOaRL;W$=h(n5Z%)>TgdeQ=8F>d7TL6a-We)q!CLnS4$n0E_K*m*6UQu znDU3|m2>ec;B;cp8LDN@0h1w`dEoWnTBbhRKgXV{YZ({KKbY7=HC0WUe0Vk|4PMD= zeF;1%n1T;9XJ%)lLsQ1?5mw;`cu_0O$;*Z0X4~=w2|zip1yrPSE9UO065n4Up(a^F z_O$Qo#5ohBu0rh+)_vi1%{fjongJrtSqN7v=!xdb*w$!5$W}Lf>2FotI1hWjj@)yF z1u7c$QcH$SnFS6x%?`CRU5gP2zYsw(4{n0a4#Mot_MmK$+99J?NTsmHTV6M9^PwLs zRTWT;S@j43CD_PG3h@iU`*NbTghLjo=Z5M{Qml32{y{RataJ&oQkn}wKwzT;N`g(( z{1CJ*I#TU)KBuwIkd%=L=}#a|FCl$OswG88nP*8zSFF*5blI8+B~NQO=xx@tz$227 zqFb!dCC`-%*DY(z(08F(<1_M|#k(O%E5;SGGJ4xHkTAu z6d<*GKy8r#sM&QhySV`X=&-kc{1K_Ez`CAw3)W~Ja*~6L4)M^JfLT!E=0>)4a1GTy zFup1eoM&%=2J??YX#V4cRhUEoA-54&_hP&gWidhp0ioRm%+ZiEB6KWLW#14vsgP>T z9>=^vWl?RZi%1C~xs7#en8XVX)6UlsqzNc(77Yef=x!(o-F9^#Q~sI->#aJ!!IL<_ z5h4Xe7Te&OYlj6twq=K5q{u9E9b6wT3tdL4CB;H_oCynw{eyZUxW28xx&a0-eZ8g8 z6bXzijdJmbhlz6E&`fkULpJ^ms*Tq8tgMn&a=(T)k5o}9a}S%_PASv=zS#27t9*kx zEgTf@QH=$QAv*dT5-I506%Vlav2R#964~hD7-c$KbU10+#YG9G!q0`}V=~f`VILmg zA~(~rlNx8x&G5mMeM)X7Wha@uY7-O8xeZRIQVc5bF>eM>w#V7sbKWFcsv&h1avfN= zs%d-4VfnRDC#VD`BS^$bjou7qrAOIRr8kL{V0bk(on!yJVUlBu(ql6%Op=f+OmJ(w zg}Lc+4+fHy987aBhZb`fZlz*jYAHikob(j?d&`@|NsmZf1ye`XeaONj62J-WM*)B1 z0t~9a-B1v?<)l$>m?q0%N89l=;pz0i2y8A?Z+to&Y>=b1bdy@N+Q{PYgkyMM3T%&rf^b{O&|m)A$n@KHkh8CW#jp8>T1b_ zaR5`i=muO!l#9tuNlEi8*wQlK`+@LnuWn{YWynXb5_3~_T87y+8s1y7+!UzNqaD1A zdW!@?O}b(1>kVs(n;w$73baA2d*51JGC9fJaCVrSdaVs!x(#7lcblB+c%DYxK!2;H zoAa<4j0z-0a1}Q!tSXQ=|8D3@--z@RMnb7ruq;Cbs#vflNdOdBW7z5OkTrNCY_Zf; zV2xzmg#?z!D<_%1mX>eh!(j^|b7M6_X|wnPnBI2fHmI68wWJYj*^FEj7>fITB}!dzf;zFd8*D^f;}ux)x;wn zo~rql=BZqUtomETQ`h>eTqUhoo@yg?R2EHQdoA7~o?6__&r?nZ$3&j00`@{Y)#I&T zo|?wStGuOo%7sx8hP|k$RV;i+IV(e~<=}s_&BL{JbvIBwK~FYC0so8H)(FDV* z+QB(C3I>ZUy22c9emc}>}?f?2RtOyew`+vxhJgOCy%bhDa-xgr-Uz1^)`Rm%EPc zqz&SYWo{t3L>EOY^!)35fF^8CZhA~0E`w3CC_(Pg`!_ov#3T0nKrO$ThS^M zy_8vGO1B15B4nh@B2#OLFZDf)k_4kgP^m3Foiw1)# zR5uiaYS(Fy4EsNYb=u{(M-179HRSe)A=|L-)~*T$+{LcK7?DY)9b5@-*XSBjEvZUp z&zW$HSW1pWSbeLqVSs^;XI_!OSc+JLM?6HcXuT$y{S4WH^+Ys#d{%ZzE0$;*~|rtA+q@saww>6RKVuvuGeiN7sxErv+Lm`)A5#~x}{QK zlk~y|ir^{c?YSj`~Gcn>FzE~pk?eM9gpdY_%CvVr)ekP7<=QFw3ux+Wp;_+x(y52C4$U`HCwwX*yR&;6~++kA|~r}nyhLqHH_3t zieWxGONQBp`1%;;ZOTS(CG(vG$1=>(lq;<}B&{PGMD4CWZiBXbs^&%X1xWn@^+v;N4j&>cMd+Bf0;c*_` z1*5uxCI;g)ZA%xylZOaSafjV4E#HI%A#B>f_Sa=v7s2MT-g7K8FUxQhH2<)R3m_YC z>9j%WDro*--L(Xb$SEgTvyu8aum$+&!zouxjpFaecV1umoO3!i&4Yh&o|ff>lNIW4tnp=H^C#0JM0S;O*Ux;imgtMC0?@CbY_I($VxYCN{S4%Ea7<*NOTk{K!WpqCn1RZ(@k=*p26ACsyveNU3Jf&& zen_9pWO$}G`3HDKbmgr@v6w@dX6TpuyPLKT6eUKKCVd4PIWG&6=1e}45WheMuO?h& z_HXVc;-a-uR{?cC>%P88bCHv*WLQkzL(tR#tb*2571`9vO;q&2@TwGWj?Dr|OZXzt z{q13GgzzL8TpN`^Xc{9SRXg0meCrhwZWfvAI~3Iyr;)^>@{NpCp>hGc_XVT`($G1Z zMWQNH5?J?dLPgM!ll-xXIyhiW1?k3tAZ@(^xzM8~Jb&Nmv7$tu*EXK*kt8;r2B-0{ z7W)YH1t@X_ zE{M*Xkzd-zWTwFPF{x1l-z>#@?YA86Zt6~k^;A+;NEic8yg&~p<6we$c5+cYpJ-Z> zg9-6p$XM0XNn(diY$ihaTk0xYu3+8YH)}$1l3y4HT1Hja63i%#+14+ciBVvDHQAhJ z$3cROGOt$=Z1I(nYF5@Px&XdIW$?H%MIsM68lhSvSYzyykDtIO(-0Z59m%RfKLRh!E){t}|k9%a$YfCxsD-w6S5drP9OTLyf3X-R{37)sAOr%_P(ZMvAvo1eWN-p z92J>mHCPNW%XwRandN#mzj}-A&A32Tn4xbTPBEP)LE(~=lAUIf8Wh!r^nuS#4Egng z?xyx+s9BUCYVU5#EIvVEA*`CN*cv>KTCzWvZY5&Lk-7?+TUhrR({r7tJ>vvd!pVpN z@yeZBgL&mPHg)Az;uRQP%{u4U#UNo`sarZ3<4&`s3Q!AtZX(;**UW)h5~YyfvZw&N z)Q=6HMiL9l(=t>=FL$tiJ+~6QjFq|ymNu;WyoE*ZjuQ+=0e5G>pbFFt1%X<6S%JxE z>E#xrmvo==HY}hQAk7dOBCM6#RlzTJv8yY#NPZF16?R;~>8jR6(@4FfIOg87us%sY)#?M=^c4=KYIXMgd!Rn=2 zT(W(KA`?2m8K&oD`CXA_>cgAXk>tty;L)%FP{#zw?b`u8W&CP(b!Hd4ZX?opUg|2W zo?zW!+jKSKB!l7XFzd|R7Tl`o$hHQX4u!5&)0O^Kts3WHX8=0PK7F zk4z#G7`-4aH&$nqHj9RQiN77zPwBHt z`X8y66f^Zb6J`<%zzetQ^;Es>5h|Y>;h?u;(;SaDKCvB}=G!$ZJ+szgg5K zHZ?5^N}Vt%Wu<1~4RE{L&R2WkS1+tk&axINn3bRB!rtbKg2da}yqggJrVL(9uTkvZ z>g_~H`=zb|YB=k@yq`tIyNKO)Xwcx2f^^FJaCS!00}bDiVeWK z2mv;Ys|o}j{`){nbL~c$qLHK)pAQcONG&}7$&eL1Sx)pX< zcm(@6$+Ch(KHW9vygG3WLFD#svd?+FQFBz|z zMlZ2bzwIEFsjyQ`Bk?0VpLOF++h4eAA@)yp(sE!ST>M*)4F*-HZYT)V@(kp{#J`O1<$25Z0}#n7HsO6d&(d2eL3Cf;kd{)yJ3_N+tl9`%rEq*9*(tp@nCfmmh*%IxoO*bGI35sY0nnW<7q0RSMzEcJ9qUi zVx2psu9{byShuYi8hu2*m*oVl;N&pjblMe6I9u3Mt6fAmFuaYuG`EPP68;jy(%B&mgGj0{=9vxog0xr=CLuGCfV>}1`U79PPkPGC^L zy&f>A0(L_|z_!=31GCundf>j$ELc_BIww*THbz_LM3UMVcWS={2km3OAqxcui75>| z51i6!d9{SpONxgMo+S_cXrjs=Nip@t_Bp@O#D7YkLwB%$pbYi$P}SXn9V`!3!Xq9Y zsul4CI0+3xobwbh9~ryr?Yfz>^LSn|xPP8#blMG>Ok2>R}pv2=o&=4u54rE2uRv z&qI|D*HCAXwBC03MIR~SRa5I@c53KuVxE~&S7Gx3>rUIPS5;0jnX#bu@^U~ZXj%0k z+nT)F6dyaN8R~I2B{Zw>;1*Tx^p;o3T^GJ=@1s!3tsMRF_n~?U$C1ngy0#mo{9zUytU2`yR2$Sam?3e z$uTfF>Kw@t^pXbQ!;JLO%Y70POD}ih5lJsmcbnqIM|``Ae#eO2@itLRf1jm((vqc^ zaZ(4bfcPQ$p6!iBzk$#vb*yNPH|A0&g5DkERr_ylXi&Bd*tNgyg?%SO)p6mGha-N~ z??)b@4V~Ji#l8k2A6-B#-$uHDE^{_CXp+pz%){_dUse))PSbur3)rTHDQI-Kj8rHE z3MQ&De4qw6r=Cwz{3+~cx=#kLX4GHo+3vTAZ;nY_1=Me>`#%Dz!lU~tiuIL~zULsx zIdyb6LQ>1L`EE>RL|p!0i|-LGTce|DO>0yXNB>vv!D}Q+&eI)lhX@Fo!vs|_P)Kxo zmTA&-uO%PoD~APPi0Ty=UEo0w&$D8SQ{_Eknkt;4YtT>S`Fn_YE|t0pr++!Bi%em| zBh5qxIYA-{vP{9&_v1{5OW`loO?HFrARtx_Y1$wflH-A8L_u{TM+fxd%@1#Mtxn@{ z3`f@z2dop-+$6u>ufC{tZpAAO+gv7%t0}&J3_pjUT~ahurUp#3|L@s9;q!9{vhP0n zvw(t+i{?paEEmnjBOWfAO;<{NWVAd3H)9WR(H5Vjjnb0kqC%;oQYVh>9i$Ag%dU%Z z{9NSpW>~N6XGW)jS)`(=QIj*GPMK4ez{Csu%;@<%&Qwz|MCezvTi4WMu6rdPwb__ z2dt?;-8c}aEqovi=0hVH3!l0oU=fsKoq(VwYexkgCbFZG%+RKhSZ4ywU|eAd)_K-y zmlW$jMgj?yP6*3tnPf!2^7- zS1++#DDUp2r;cmh0+lrsH)Uf}U{h3L9B6DLCDX=Whi-u-gA$hlv6+~8q=vcTR{zOX zI`rxz)#C4v2&j3L&JMQON0ie^>MFF7S@&^5OO-!P`UqGE)6T$smUbc*KdEdFz8TSm z8z50_@NZc%I0svrp)HS8Gp#QJVkLx#cmN^V80 z92v5L=W2Fw#y+B*)lyf%lf}C56%I@$gh$MECxs7?p|oK9u8L7Jbg*u?mW0TVn(xGw z$7x~vJ;^2+idoaX5in60fpC=9-R?~hZNwHAQ zS+Y>+{hEbJ?T=9RTm}cdchMW*5yv0)E_#FgnuV@sxGvmJEOd*{%8k;BWug0}j{3d2 zf$iPBpISUO`bKmbI3n^-U9jd#o#+AkgZbwcHeGkW<{uYCt^JCBV$#xKA+ZA1UZpcK zvNGTeE8A%f5s+V=I26({L_vOe;RE}s#Ltibs9AP9dpUJKk-Tm0N9F~PFs zc6&t9PT+R4=RSWSQoxAavY4pnIiIDcr6r`EDN@H?0r9JJJ==TD`pvDM-S_#ITTbs5 z@(No&L%?p3gk~>B5(@h}e-jTfgicn?9~V-=;vf;(FD1ZRba2s?lbV|gFKNaG5O7e- zkO(%g!dAmiOW-Yp9WM3@iW*N$OjsvlSJP@3yR~XDvCclJt8luVb$1a?s`PQvzZel@ z9{ZNq z!>8pF&B*SsF3Uz_?YRUWqSW>`F-H|jBiPkeup+nQ(_QK+lYj!K-7Y_EdyV|eeRc#}1b=}*v=)B6~`!miKzU^d7?RhL9&p)owh`zCp$r{m*- zdFMAGph4F_ft{0+o`s9Br0S`-&p9hA&&*DqKg_%`3d(GlW^v(lHnf?aXzsigN`a7x z_@D{cDqXa8ZoPz7OCry>XV}r^ONf_prLF}|{HQ<0x|vIKHRL2|aJI#Vs-a7kM6QO$ zv8}WvR1LxSsz7j_H35n30u8J2`ENWL4 zU%hlPd?ortB}?>5Z8>GEw`BTP!h&42-yV@%6}5kfUa7sxfbE6LX8T1AmWpYIR_fa$ z&INU34#w5Sy%BA~X^KS}rdUjm9UfW3_QNQTorIFWbQ+R-#OZ0lpg|dB# zV5z)}v<$41l6darW#qWej3Q5M7y;!#P>C}Vl<0G#NK+vjLX6)Wy+tCSCf@t(=#ZsE zQjbVoh1zu1eSlC?#gmhc01F|any@r--{@Vo2j8=J#r2Jb*#BkU$T?VGCQOFD(I8+V z0zynXLd!8#tB_nEu`GI7qCuhxVJT*}#S+1qDFIMm&0vQ=UP>%APwFbLK4M+iGHg>! zb&;GDp02V|>>_=vLwCa!5I)O>l*R{^n4^t|qF^hyO&S#ghKUSy;xPZxt_vFdj9rHm z4ZocG6L{6ToLf$+l|@cpoFX|jTBgYP$H3Z6lpwk2qSvHqsf(G&z0EaOEr` zavJEfa<#OAt?!mm-2~&S>cM&T4oJ9e zY95OqWyyI6D4D5aCiXT^HYH2Bg2 zw~9x(pDo9YuOYI)#dL2G5!A4^S2T};x5@`5t!N&blb3G4m0UP+#q$9=6k`vW+I3+M zoHx=HMm1+6rxtL6M6y6ICFBeOTho@12a#{wp z>G;&%<%tP7D+G@y&Z*LfHs)olAkMi&>MBA$!oFW<3YK{u)o_CI;N&3XL=9dMc@cJu zO`T`@FK~;n4EkR^81EcRU18}ahXPL>y8`w++rWENgJ;7m-Dm+KV%bIu5Ry?cOa)0b zhU8%w(H1x_N?ip>H0w@4NW^S*g6FJ&9?uBC&yx*S?N)Td!8_2bbo^s;;{(gh!v0X= zSccK=V_ZNm$y$JMeRl$1tFy20cIo9of)SJTtL0eGh`mBnQM0nhC7}`I&ME9r+-jlq z^{W4%9P|=QLa~?uNHEpy5lJvn)r<8Ks}=(mTTJBA$!Dd#v;yREOT1K3xl)_WonZ<$ zgWtGOdckIY`^V|oVeL9A3Ty_s<+|d?>#TY_Kvc0_XSqm@uL$xAybLuv6FwX`dlc+V z%z^E`?xC=C6QTPYl0}2e>=`gG2`d^c7=FpTq=biM&}uR@WuNXZCVrV9brnDjS@&52 zNOgLgbR5G$ORMPsQlzC-W41T0n3h)HgIZfS@9r%|atUOa*-KWyyN>`4dIZce3m**u zVOd2UL=b+FfhiDLvmDgcbS#yI5%)p_!>V$$y}J<$Z*`{mJl&;J+>< zx>)H5D8S6~a!G#)4RT2zd&I*feM&T!bYjqYl@ON{`mEe3tze-tM(Ws$AnMr8Y;R-< zwQKJ5jp#J&h?Yh!0Bb=SnN|{+M$*{y1tpqBToC7$2pY+OZOhq6BlZ&|>1Jk=1;Y%I zh?W#3!;|cGT~swBiH37bk8#kPnIofB6X*4y?xky5FvkjZA<Wd^OdaXWzngfbxVRv&$ijY}w%p;VL~u)H58JBz^G9w z=AQy1pPh;=B{pd;b=6!wlXV-LsR#WH7$peG|jnI+_T>SoUs|t$~ z5iVVPjLI^Kkc6T-PkSm7`W*HY%!lu{NRAs+qID{|g zEGlk5>mCxJ=!n)v!H7cpYvONmmx^jZ3!w1kwhKb{UKw#s zRGH=)=iKp9c*qpEhJv@0;^M<6D1O@uy(tb}3K5ytmq7o;eQ`QEbHmASk*ICHF4MKm7nGdd z+Ge$c2Fa-09+6}eRbHlRo0}N464-cU?~@<)S@~C5K_WV>TuefhJ2$hv>g811{OcRh zY1k2MZBqpHgY46}JaTPwJDV;l)3uEYVo6z$dEj1WUMBGl^j`APfn5r+CJnXB(;_xA zH7JCizPxm^!N4m~fq39Xu{(J2RNV}gx(b`&tb1*_W*sNF z3eFC)PSic+k*k}#*w$6$#5gd%s&1TT=fV@F>sMsEpzV~R*w)XV+uPKtS`2SI#i&CP zgagJ`t%W`?9SLQ=Er@>NJM@Mvi8Y$+eLxhOGVyu?6Fs|oDq zGb@Q_rb}Ig*R!lUb*1JRCwYV6p;gp3aG78g6?VV!^K9!4!e>VPnl%E?(EqC0>pUF0 zlKF-r%^$p?u8g!rMG>=3csU|P+!I~_p;{@!S5UpgE|);MSO(fDbrn=Eu(aTI#t<)6&@h0L)@9E!`+l0b1%4Zx2XTin@N4E_0?Z zT!Ubny)APdS4Mg#{8w7RGRH_Al{Zt_-lSDTN%!V6C5a4jI(AH3=v)K#f}Hf#s>p@T zbT)p?DqZNfFs@uhd{q1N;-tydi{q+hz*nB&V_CpSJlAq^GSkhjsPbW^7d$3<0-dRy zOA<}XO<==lt?(#l>3A|E?PzGv`y+N=ssZGKUQgWa*~Y<6tUAWfG<*y=OebY zaTQfTFup1ioM%fwVmILYmRQ_CpkdjGS==H9?;F7fx&|hB@DLn^xFTj}buVtDEJ^GU zvu3Ns47Qkw8T8X*%o<|Liq#U$0C!P9892EYvi0AQU2 zsZ#*Arp($#p415&;`e8t5C#nKsuTGA75fcihA*8ihpXb{sIy76vN-D7Q{<>8S8I-X z4C423)CUq2ES=u9M;u9|)ha6ptVWI!3GoA?^|l#(UdfdSi+ncbOB+a0Yov}!njhI* z`D$8;&8GoH@;HsRR}(=^0c$~mIs%y#>6@WHvFRzRH9@%;USAy~D7aabmI2#NMZuJl z1z%%;_ZXfrZK$OuxMda8s7^%_XqeG8eoL~h?lxb zU5l51e?IGWG<$lL$d?&9K|46v!b7xl&YH-yw2)1;TSK%2!z)^Hj@1PT(^3mYK~fTh ziQAN?v@dQ2k9Pr(RzbrAWYjX^`3TbuGIT}X%h}&SYp7znU+OBDmay(U2$R6i2?|Y} z3t&lLE5#@6(LZdB$p3vPFDUWdNMA^)>MfjhNnnta{<23LDdAq_zt-r= zX%$1Z74qFyPPNvG>4sJk>=9=LX(?IiC|X+0_L{CGT1r@}M|2u?L|Zp)reNq1iu|>a zX=y#1-n>TBk_+PZH6dDx$<9g5GkxLx89`Ekx2tB*H@SM}6t{?Wa`&@t-~C)?(|9bG z;N7d?#4|=rNK6ZhCe|IkR#!?+G8E1ZQPNXuBU92JY-=cd z%(C&q{3sY-%}nRnl^_XHk_|E&8ApOJe&hJw1_-HT)$noz2`H%*Jf<1ubOh-=8Mp#z z7d!hlN{>Qr9a z`bO$1m;$W(#X3zuPV$*UWpuZ)F@Q?MK2kKB`ixM)KGGEWU-glkgRcX|z2QqZE$-q- zqtf$C^A5$0G0yS37xghS?kaACAb3QGPmR07i4dI~GGc{J0=u~t62mf2)OwMz3Y|FC zJx1sV=5dn4>!^3MH58~QnA}*elN5VLkQSZ)S<%d-j^MQLMK<};;+CF+7*jj#rx>Ru z``Olx6Sh^<8lZ-%N9-P~iMo|{PpnR3m|Oqf{y{-FSFG2BGXM|(8{U%V0SOBhD*6RYK9s_pwdLo;beO4w*E66qxpfC8Ru^nIUPHuEqaE5Jxe$C zm4;Eju8&;wG-Tt$*6X6jg>lFFAk{RF&CJV%76$W7Ze|AD7sD590MEc{n+F$HlNvEO zpkby?g;%Ts-@wh2(8(lf@yaiW30r08YCg4O?>58FTEW5x6OKt;1yeKDJp_C7&sdZ% z-mmH;2N)Duft|h~a=FujZ5>!ogDH6`B8#Lj(1o8U_=SK+&63%z_h$EaiS3=`wgKqq!Fz@d`V|>e{G-@)@mA1{60C2uVDsRviTgW1<9s%MP#zcX49W< z&}8Fcn7JWHHuhDZS$R3gHLxugIyz}n;4|uuY3y4wz2fnA!V5HjXzcq_odk-ZtZaC& zJ?-^r^%A;Ns0k%vI-6bVP(e&{j?}dXiOJWEbF=5O_lROuH#A@`das*bmPup8x}TdF3Titt?*YbuzpnmU|m4uD<@wTFO6fF%$i} z$bRIOD)xxu7VO_t`CS(?eHgN%kj1ut)5>S1g|vd~k|lK%yYyvyX}=S@wD67SH0+3$ zT@F$(RLWfbdt`PQz@`sYXm)Wy{8K^fvVB6aeN;R%Ba12-yaNyO=*_u9&6^Wp9))DE z*Ci*dcci~1& zGEOqjVNvICXv)AfiL|-rJ~lOvu)wCw=k&j7$~XsS0_tGjxi>^NI%0=6kK=huo&>a>~J?bVA!TiEHikATQ+MZna*e}hP<^aqP;#NyQC3h zl9)f#d=aVi4%@3@X09yh8MVtdpi{5|S{hjZ=7TiS`j5yo@&Q|3uvycHi{Tf*$g+YeEu{gE z#+-gj>Lv7)5GZ>2A3J*1A4D(zk-By|3AjFG-2rC8I#2V(3Hrgw$S!rpLG$I0$mBAU zE%p0@$OT4MTDr0%JEsrlva?8E|NOx$LeRccit9i&t&>WbQ*R< z%SNYxwICbax+O9j&1ci6ZP9Gxf~c`YvQb{9{cLE6jq=jq#?#bq79tz9jtM87ecP{z zOhsYOo-pj!#Dphh_-ckNV;{$CAtHKB>ME!fv+hel7HK2$61Mf? z7NQ~;Urk8o*(eyz);X4nVzVepr~&E`7g>y86LMkW@x(<^gE$>gM4T)YMUW#-%Vg{d zr!w|;F{FuITWyxQ3a1sUTR}L9`R*j^wov^8)>PDP9EciQI5q4zxTad%*zD{KN-4q9g>X<5d~9N|#6V589qi?T zKZ%kmq^`niE9`xwxJr?FJKNb5JUwBrGxl~C(EqBp;~e}224!Yy z9R;uFYSE#%z6f+q+_c`dK57$2h6n*4g_9vb^|y*?ssQ?%J*~5qxTu5FRRHZ~-8Nfw zpT|jBZKXa>9aB`Z)c3+JHx_(}-lBqip1$^iASZ1NagzOBhJ8nw0s#XBPD%*_0tVVo zJ1_G5A9lX49XxE$=MuCvs4ksbmBe2g?z!h($ShCSkl1b6(#A9Mss{dew0R#jaEn1&8XRGqy#pkK))?^KDcg!T73DaGuqG(b|{fMML;@w_luYp(3gwC%I)CRYPD+#puR?7;#bd z!dCOjE3hcLwsT3Vh%tQ?L5NYks67=qSC>6~!DeJwx|sm^?4_HBP`C2vCb0?R&nfKt z`+1wDo7t3u-U8?k2@BHAMtj83O~rQT3vJU&v4)J-2FPRE7mD33<`Ei+wnv;1q?-m( zM`cPQwpVXEb(nwZT1t&68aYr3mQCx01mhRgi7ibuIUT~Cg`m7C1681OVeejrM6ipk&!w&cr335E zAW%fAILXJ`iC(~(q8B$#Ul_-}?F%ws+egLC&2^niV6%-5wy4R%dd8BAUxX2@I)Rs| z>?Mp4eq~h(+~-|c%_h~#T3KbBBC*8%rHQ5LUt#K)j&RU>kG!2d;y3~8n097rmZy%% zX0%e^qi>d2diji8D2*Vo43s)5M{?NSReuq&B=%%t5&7?ogqs}f*B5F~B z)Sw%#W!25BWw1fF!V_ za!~3jKrUe2{RD`(m`<|yFIqLhE>}nw{hDJp)(a%XCl%oGpEb*oOSq_zT9g2zYQ96v zA?v9~+urPHGdoh)nx!!$uD52Xin^6ov-CSfYU#a0Q_IDG0L(;h%`#lVg5}0gdqh%8 z)X*KeXc@qO-L`|cWxUVIv(gH3%Ue=MrOIV&?~NVEEm6<L|d}l1lEGI^3#sU zCCim;`lcPaWN|^<07zL%>3mU1BQv;eNwumu896y=wr+u!2j-@lI)BX@W}eF_fj75% zr0@>C+*Ej?Jh{`7dZx$45#@CzEU1^TL58npRRR0BW(U#CeyOXV8pyhPc4(S$lAR0< z(oCSbDePT3Anf}C2eGN0JE(qv;ni=ub8ICHW}7s-dzUm8AOPjUQwfOC==$(h_0HX4 zH$w;`6g!a87A>!D*7fm#>%G@uLyQ)1~#!BHibvkQ2Cm8@mo^8NSLH4427U zf@}7aU6E(jqwH7mF5;gv zq^<(!LDtQNPZN8emvWK}INQQOWlo=6krz-8v#pF>L_jdUA|U5kGZ>8tD4F9!@`#4e z&4l(V`dIEsK}498f{?83Q_@PFA~3mA#;MrmarW)DUBotHq^`nbH0zEeOazZO$-}#7 z`2^Nfgl-&&5SivZo1Dlr4`248Fl&t{{D>9v18g|XE%jI{h3R4M=o|Ivhm%!bg|>Y*a28E zxwMSV%FHtbDJAfon9THCpq4=GUx(U42fm@3>SQriW~OHUmS{_y*1>b|_~fpzfVxda zt7g%w?9ffSiCIQUU4@Kc-G_E-W^t1H;p`BzOxhipSzcya_wOcVf${CU6BEICc7sX2 z8(K3^*|fsg0v(_;!+7B493U3h#DsWQnZN^>B_()H2#^2C7!@9Gv0tCU)wk=X1yWbx z@doS8B|HSHILVyd#42D-v5Fh#1{lXSW#F=(@eiz)8Zuw9tse-E9`m}#(|@WV=<`B%oPu$jd^{tYQ%x#hIIB25)G-?47> zy?TA*B(ZyGee`!IPQjjTtoKN2do%UZt#7t+c`=$F+bt|uanR|+~Q?OUl&UJtQOjB?D@|c7LE059kh@_pU z(R+3MGM@o^bT9GF+deB(r4_7SzLYvDa~80@&-PNQW~y&Qr(s95)ysomEyy{gdm~pb zi`n#pdv*2Vg18TmvV8N%L}=BtxD;A789C{2JEh<&*nFIWn~&iORg)8;U$br$tihE^ zd{71U-{4Ap{3O3t$dH-S3|_?kw?sqDxe|7H_g>iZ(kxgyrBx=-_wlSIMUq57uj zzQ}yEf^9{aG*j9$3Wiq&fOBleUNicxk~3luroi{b^+a?N8qMo%9(f#kHUcNBi-|({U`8y9s3RAg|CP1fve=Lhpr>l%BqJdPLY`2 z*{6wV8fB=Lm=;PYOCa$U5QN0`Nyy?3cxJl_Lw%u}%QKO-#@ zz5@}Ws5H1IHTq9@DFtv;>zHuT)UB{18Mp~q=dY`1=Fb6wwImE z`kPp(kJMF=?PT4H|JJPJBp1NhAy&E`3W7*g(r&hOfhn8{u;cDO*j8-+S9Ox}F#T^! zPw8g(tH9+Hs~{i%3d+dAUr+31X)1-F64YaXM5sEy1ocwrbOqIaW%vrJgY5F7e-kko zsjHyc&$^QcDnU6;GX8HOrbk0Ti@bAV!3Hb~3Et3xOgXzVky9g$0#kJ`N+2kg5EcX# z$!YuFnwzW&HZAYAUVa`Ba)n= z;`i&SDbSSm)y3^6V(Q|v(otGLV(KAvRO&>rz3%&Ixpw_e{;rSHv18i0DF*BXIcf0z z$aPaJ8;{wq>n0aQV1JO0T1Mx>=Q#&|RosAo0n;<{y1)mrMwN_@fo3y_IP*Ycik2-z zDry}(PYA~sFHB5$RK~5QS1oq!!TrQUlccV~D4unn->;d-NuFUuXub9>-~>z*_SV*E zZ0ni*)c=9;RsY9%cAqKyzBI|4ZJ_@F;ZOb^9?&ADC1C3OX92QLYedJ2Mf?a3kWY#` zRmc#V`7&OGO(OgFGvtI_udR`~3Y*hex16vM)Z-*2`>7WM)>J9z#<>s1fnHF2z>b3* z=6JKaKfH$@3M1s6xG+&*gg`t&aCC%G|A_geyl%i=L;8iUh>pQ8t#_^Vr{%^bmB%`b zo5B=3g{^?8|7h0f3;=))FY64Ds37a~vqvQB1p1l$1)dgBGlr}8KSVlr`-}{iMk*#k zi%6;{^qaG}(f<(Vd|B*o5jmaS))#6KT?8hBv@`vm$fZy#wto?xt6M}anDYTJTM9j} zu%yxCcS_=7GIQZ2+qN3wX_k?Z0gr>?&cM_~C)B|$g3m50Y3#Mbzk?YWrs9^RNeMqo zNYs?;#4gYJhv=wW>MHo!v2O7{nvR^Lh>;>X`U|dFq{65J+bSZcurQiM|Et2tdH6kC zwC`X;axOfhUldo8=m86N4F0yHq^SiWDx3yx9PGH1pmG`tsDuMz<|?2v*x|SX#7)Uk zR{_E{mUV#o#YG$7>|$t)Wa=0~= znQOa817Tf+mp3&u} z$V1=$t9j@v%1m#8v{r(GJhaLlkvtSwMVCVLjILzJ%KjxTI_k4@NLoTJs&!CILzOsJ zvAy_%)H6C18dao+(<&qBhA9K$tHCfqO6qzra-lSkM_9p@y*(or&oTgxX{lutY-gT2 zv7}jSZgy4MILX@wiEt){ViXzW#yX#*So%N?JU@aM2VOBBE@-^uz&YV#E7Jao@rJR# z%WM{gEqZ?YR~J2Bp>E|BJ$IcV*&IKp$>sMwHvM)W;z5)TlpmTn8iu9g6sCfdtglk=f;8Ha64grI}SE`Mm9AQHkD-iT*sh}Z-Ulx*q{;* zi@Bp5eTE%{>NU>15A2c%+Jge-fK}@h~yUW4-~Mh8@r{%0RFdWR!0XM`jem zrUxEIMiDju4+@NnHiUG}cW!f^Y~v zagr`ah)=+p3eJrK!6BbqZDB_~d5!r*yN*F2pJ)jNbFA8DXpW!2&axJCTa+01EICcoL~1RdaH3ktEzc}F9&%Xe(5!%<=v z7+y_4=UDxtmR-)k(EBg7Pmcp6aO19G{@h-cT~dM)0t@hHU`AHJmKTK5oGFF941v~f-WPx4&%#ykam$j_>9pNITvy*&%jLH?TrowdNK$yrX zaQWBI0#-TRxipz`Amp{Z(31y5jA!!+eB8)Bf_*_OVxGdsYV15!pKSP*)GLcz{x}(O z5#?3g5@=MrzB|CY9PHfrRxpnch2iPpf z5Zi>6o`%) zcT!g&wvTncI<6_lNj_(2sB~EhS1Qsy?fq=)bHWC@xo^?`s+;RPd=o|uaSufcv$0-$ z5G{B`P(dx&Z$ktW(hzteUXS**1Qk|}c-Sk*hSL4Q%c0$YHy^Z6NQxy_wpmTY25y=w>hp|G&LAf>W@+y){wgN9?Mit)V;Qe|tC+Ox^8X~f>a+5aw1V99vD8tS zQ;qGtU&YMHDbJ63$v2|YfDtFuEzgfD1ZzQ3`VG{tExRu4-nMu)U0B5ghLy=@8eI@~ znmyM-Z)Vx)@Y|M`mYxRP8OusM&vLSJVV>c$p1@13s)iIe0YSm!&xZ#-ftDhOr_6!} zKex;H)hw&WPHw4U^3PoPU_zBZF(3v#of{X|xR}D!84H9rs1Tlh?DFas^HD+g1 z1E!!y`P&H>NnMptNvwMw+@SVSk(2Zcn6!*l`S2#fem9oMH(I)3AmWOetMcRTwAT%3 zsJ5AKX=#p#UIho$kxKwUP&Pj>wqe>|K|oE}-#g8+o6DN{TRFE^F@-%h%CG-kj+&KK z8?`tY@)5Ps>jAUpin1PpeO`g+ee5$^LW1n`gFWJ5pC1C6eOfVC-@+xd?6bjVWv#S= z?6X(usAOr)_IAQd0roK&5Be8fP6x(B{`nH@S^hCay{6>^qL6>W7DesY_?MH1dD6@U z@jpPS@2ak*#kHkP%#5VcSZGz`rosm&MP-zh1J4Dt8$Zm9934g}jtT;JP;^40Wl3i3 ziFLYmpO}=88YTEeO|vw1xKotnqKD$8ss&DDZD&@^H~sJOw04}}EI1iaO6xam44`C* zC@e}{+0t2N%H7Zafw2`2Ij`DB5f456IBd_9aETdb;p%bAFTG8(C&DNxxE?&Q4#M?- z#6ZE7%bwpGMXdCk)Kz$8vhFyQN}&{9;2&q_;a1t}^=>L`lJ zXL}jZL{a7$KSenm7!xV#Foi>Xq5pu3kxHcV*!W?XTTmj2EAPViH!4U{a5E|+FD*ls zNa=a0^i0Gs(|H(l4nhk20|^TBWCU=NJYR@$|Np%b0X5J1u#<(+R3eR&x(cm}S@(%( z{Ph6%t{Dk4FG2 zNd*A{K0W}16hVv_{V3yB7+uc3ej80(v_k4CjQX?gQo=}FbSGIHjTKVeZxO2-Z~G+l zu)4{=;Ota0`|i~0;ygDx0D&C!Z&VGFTD=rG$|Z$h>0nX-J-MV%Vhs4;34-_!2Lbsh zm`O}@cvQ(wbk$f|PwJJ$PFJ4{JBi|{ZHz9STE~Pbo-T%i!NyYIp5OY!+XIf6>U5o7 zV2WPz_mu`RX6MEbHQgr7Ai>=%?I1NhEOk^OUB~wBk3nh*+#DKJ{K7e{b5V+Yr5<1u z=itoYP(sB-E}^dH5qhv?Z(qs9b0(n1g;c8;_?$ItnHyGWU)GbF4LgwWo$bI*Eu)?3_i|Jy#27}NRpzsWC`B^s!g;QggG_7*pm+Sl?x>@6zb zR=Z^*EkIB#4`~5{5?xi~odV@9cJFu$F;D}ks}ko<)~#1nuhE>OPE}f?LGQ^XvI@|R z^*<}^8GU9<4fAYcq8qx(p-3?x%QImEI!ik#P`rnoJkt&mwlj1_j9!|xM%~Km4BdB% z{BlQC%`dkC0x%W5mCy4M79@se>=8#W_QgF>&s5cw&w~uuSh#k!^7+(f1B@8 zQCad3+xwv^wT3?Ojp#IBM67!r2W!YHbFx8s;1a5a^lV($)D zC4Q+FE2fmLXXOMPg0ti$&zT`$E|kG4V4i0O&y6LH87OrXFi*4YRRoNv zR-ELDSmc-}u%^Ov<3N~L&-}M)4Y)lIE6O)!mo|S%ctE8@-SOTu8tb4hIOYZ7%f=l7#AmIdtn%Uo%g@3Q|G`4hUHR2l> zT}?#i*O}D>-%xbKH-rr?u7Z3Mk_&8*Z?pt)c~-`%aQTQm99xYD=PjwLaCwh)-#}ah zU{3I=3Cw{O57<&sx=|oX>^sl5>5F~mskZN2KSVn^09-cqdkt1mT7sc1(C!Kr{Dj?w z)DsIR!8vndHRpUns+Gk#Gf#$d#ES193%qa3&pygVFYh#r6Lf&QlW31P-oXMVF-{ZD z=L}ihI3k`rpOtKB1&ODZ)KNcCU$DIk;;6OLw$x8LP6x(B(y0aZ?Bv2PUfm8ZMk;Z> zVdJ&pH0ii765@iS(;D9Q1WyVv-@t?Bu)(GM!l4EVoK{s+gEE*;@bq|{ixwmr;2OWA zXxXB~gt0PWHJ^TBryh?Zo_Ry+Ds+Bi-B;ptW#c4ET-Y=fi!C5W?R^TjTCzr$# z*=&)z3Y=e9cO!u#=CzY-fFy;xTv1?6(Ty7iV#VqvA+ClQdnr{nEyD)|6w^e(A%Z%s zx|mJM(O=n7NVf1aQ$0@8%)V->y0poK_+d_ZDdsu}3R289_K2gH zIV0v5z&8if-Sr|y>&oiHFpv6-JS2@E!;F_Y3jO75@0sefgnGy~qSJs8kzXzYYxv_G z_zqe#pdN`|O4;;f)iuAkAo>GPT-3n(D>KsI19?O+@ajP*XrM2H1r5CSGbpp&iA+=b z9(ZOP2}VnbhLt8JERg}LIkcX=T2!3~W~0$a<*n>0?6QiGZ_bxpw^+@uji)Ck!Jc=uVK~>aWoSqvP9!( zCPHMFp1|8b*;`1u@I2E8KJWqe(Z!vrTvDwpp4oniJTt0>=9xzzejm?Flb|5aOtD8C z&)`dzr_crJ2e0=N7icF#_BvcfyN>$VXKA*ygk)19byULaVtYk3s2w~zG^(hEo!09p z#dh$^U^H0M?5}~G6ZT&5J|5v^whZlHVcEqq+0@w$t(!a6K!uW#mzoaGN7!{#PFijr zyg+Bdw@ZhbrHi1$=@S*zg<8AIuh1*>iSln6UoW9MEfAW!={C zns}Tf8O}x)#+y{|4&{i1J{bNbCE6ZqDCqAIl9N)RfJ^9FYNIP)0i{QmrZnHQ6R&*xvA@8b~+s zp&R3mpl;>$hU1z;2K|4#21Q*1pH5R7cYdNQ^wu?hN?4F@HrpeTZ=yEG>%u0U0s9@U zpXHjk1TmG+N>zKrSwXI8Bz0`2hzpRw_7Y8D)pF|DL{&}DqdF}Z6^om76wnK1&g;;z z0rg15O>H*64(5#azPJlyHK1jS8)TWR%pB_0G==ZUWt!u);GLyFG4K*fuOKacLZaym z1fvC0dzU9BTq)yKv#23EbXfw?%TTGSu&K|ww_0pugT@JNf|En+GCCnLyCkuxn-Yj! zV0bm{oMZhH1iMh!FrykF9zCkTH?M$N;MJpuM^J!xAh9R`;xSdmsPJgPj=i2htn#JQ zRd_UE-OmsYkwi}LDJIe6Yk!T0oKW$(fgnEY&8)V`j=h=sCT%n92~?hANJuM6fFZ5X zZVHNP$!}saHNIYzfnu$7n_8_PbsjFa1XWdT-w%Ru=sw4K@IO&HB5H@SzHP?Vp6Vq?U*qpF1WwOl=38vXm z0oWp0zh;fV%XFZ{z%wOo&fUqUSr$q%Pwxvx4rEhL;8y3wiE!up@6t95j1m`|wm8u| z98rw8{UNbXxSh#<|9%?r(qXBqaLZ%e10mc*k~!($BwhC0FLeUHhk_THZp_IfoiVCM zoA?%XT%;+ecn`qKJ17mpMLYdKFo~2HqfM?Url*SFY>uFX9og+&76j1L`krofr#{nI z6hhTdyRt~D=gE+kD1-Xe)Md~mfB;NwZy9u#gauh^m_6cHtMEtIgOlGBN)xr{I*%c{ zqb70IM4z4Kr5)s~x22A~1cC$4XM0m>QV+Rxx}UF{&K>9xF1c<2la8*U=GKh7n&~Ccg!@n5>3&5rxq?})?YZ5ul?huO7&NvTJ1xH{RwyQx|o2mq*PhsYz)9RZ( z4a-s@DIiWAYl&H_aJrgZZd;2us)y87GyDqH?QYV}g`Y&r?Sgrn6uvKErN~ij&4iAS z_G-tD8*??mWMASHePhiUrt>Gz%UabXlsdk6>$Hc(=dc?8PrNssAcku>h8xZ3v>;1~ z8Gn6Ey;QpdH7kpu2AvE;308fI^n$+y_D-+6mhKi*jq^Ye^N9EBCY;H4U3YJz+o$IG6r#BOwLaO>0%m%5d zdhN(mbu*9gF$d(`Ea(FIpjMEt+Qg)1WMoRV%FVIgDTcQQ4l^^_l(i1Yse;G`x#@rR zq(oD*ZJ9V*NDD84FX6PU9eMT*XD?g9Q-t<`ukKP;p>_xB!i!e(Ju5jU$byqCHgpH9 zU+u^%xjWfZR&83z!SHIO;~Z;IJ4jP01VE@PKmdyNmG(84cPtApMR+#EmZij|r6RoQ zYy@by4BFC@$h`a5(>u)I9_7;$9+#>LpSxLgG~y#{I01ZLA|J?TRLxcK0bjswAP5+i zc0HqNL8E&%(Gg!;1ZY8#2U{jQxKy+yG!0aYunYxM9b zlF>?wujxQQ80~SdmZY~EwP4m^oULaM#QesUJ3>#*=Fb(fqJB_(PM0SFU%ls*T@C2t9Fol zQmUrqrUCm*=~V{3>2%nt40ThJUxu1b+Q4sJNEQt;GvPk?^a5~>Pq1uQX;Q)+GFU05 zd4z~aBPaQ}4mG5~n&MM8&W&{}z2wL5vdNB1vaxnamT1;=DQgvqI24s-n6OdpK7pr` z*;B|c(LEB(@)u21^*lr=saIC1^YSUOOEXh=rKf|``1CMUPCgv;c971pM;s+!m2;Nq zf2+TP^cthq?Q|lS0-vSpq$MPmyQPl$L3*9-4YPi82dUq!{xZkubtA8^gOmeyU7Zt{ zWTp;`&_SBYW8~1es)OVr$~>Kz=7)=+P=Qzaq!H0%=jGb>Bv-sScc?jQILw|5pA0`5 z@P=0w4df4%3t z5LSm|{0gg??CU?L6ARUj_-{?1Ti)UGTt`toGR zNURfYsH;0eg8>1UvfeW12?+}pC}Zpq$41Gq3*hOjoBW-jZy2&sa4qdEvUhxTrb#=< zMPExDl{Me8z0d1XXXx{X{5<4zMv+H7sxOGI1|}U1MU~f$yxjVc?LTZr5BKytTp$ks zUbZs?6qHgmGcP+em5ZIU)GT-|E5t#5S%`!DvckYG^%DM(fvc%CpB>vf&TuHV_xMfGXT1*5Aq ziSsM7zTh8<&Q39kdvw(N-e%>+C>0{x*|$;kk$LLBEOg_l zyx0%FglZMcS%bHXD+xUUaHs&AbyGJu(>hTZLV`ReCDrnoL*mY z3Ohc%z^wc2vh6$}eC zeRf)0PSEse!ZueBIH9J`96F$yKF-}AlWYZaMpXm~Th0{k=T!}L4Ul@^O<)Bx%6p1zbi@2evD;ox z^o2<^%#U4&ec&sE@03-I6dKSFG@gTDi_k98?us$nvbz`BF~hWa&a)TWw+W~#YF8Es zbvPLk60CV&1KsMm2N3YF&?^!aWFcdZcv#5TYvkJo)R{qh0j{KN_I&HJ^p&)PbjP~T9*f)w0X(ImA^pM+;^{^9~Gr-kX?AgZoeG7jn< zV5DlHfINU;N&qXljIxO6h@aC@2rtg%D4sP_=LV@sO!ILKbSLN@)T}I8y5JOP>HCJ7 zmcF4pb;Z$F1=rawkc0$jX^lPNp`|r+VN@6BVg_s_TwF^_$9|;NxWP!1|RSu+uJ%sXEQ%_gLD;blV6^G^L_YdO3`WAF7vR_zJ2)?DPwb zh_F7Ex(cdmSoeK|N~D$(z>O}Og1c{rR*^4wHxdLt`mI$xaRMPzUB*mxU2*V|OA_LQ zXuidpRFb(dsW2;6oWT78c7M4|;!y8MaMjX=nybD+-O6ho4LL=&3N+Sib&S&0u@yCr zS~nK_fozp*k4UzPN^YzhM>jKI%^DL^o$IrbFRdU`T_JVU58f?o@6yK9ILh~p=rmwN zY#cQLYe9k<0qT(&M|ZI4MvZmj$OVxENO{RAGc!Gn$cZOjPKIgGYr=41rjV59TuuhO z0@{9#2dOC}4xK!5z=Q_zGJZAJ?qw&(HzrzoU+OBX3R!o0V_iNu$y3Fb8N?0oaP+&dGPOofC#I#rHDzNTn-JJxMsHB`^JEX9EQwLa6ob1MVwlOx6q99MU z-Uw7PxET6Km?46UYz`!MEo)$Y@JLly4VsAArd)lLU4>!7HQ2=f#?HtvSG7FH*1CcG&KDCtBx{aeDLXe%WsYO+ma zhfA6eGwqbR3c%-BcN+ny8ca^Qg`pyLifW4N6!tN+@oaAkfrZVb-49QK2Qh6jsMeBm zba@k7L3LwDJS3F{yUX!Gd#In<2!$X&r5VHw_$h)I;cD4bOkxGs%j|Nqro>G-Qddp* z7g;x>sqQp6NorG5G!Hfw?K$Y_Gr2*Q6A-q~6a^{M`+g#)rZOiy6vgpD!Q|3Pi7~!` z+GjCGUS*%JwL^z#H(g~fy|3ML4r*7{y6%mWp(#<@J>67SN>2d-KA!qS!h$^Yp*`Z^ zsSoX?^0k|$GHCBLC7xR1v-GR9gw@gpsiP9-Ew;A?<_>%}Bk*fzRB@@C)_WwK@)GPW z0;55es$z<&t!!e(KQZE*u(R(S9_4K_HF~9d_RNJd6>zh4)AXovcuY1c4?5nn*OkE= zS~F7f%&s%04L5_L%k2wFy^^AHrX`vmqdn)u+H>I5rTFwzvu2U!*Qe}Mqh>@$8B$ll z^dakZZKew)C+P%dTRf=Gbb$pV{Bvd>vnlw(S{%H<3>J@ZD}8+?=UY-Uy1hTVS}^+2 zKf&#N#HFCYqTXhBqw6EdPI za*}(SQGe-%P^2QY+*oka!Qx>1OHq&wGi^iZVAJxJVPi`&mp3bKB}Jat-qQYx@xEq% zr`l8wyFPoPsa~Hwg}RluKKt$zS!Y=@%{sqPHhQb0eG(RAo!$0`hjrlTM|&AmH|a+P zZ3kRR+fAz5TudvpRNEeLmXLK)q>f6OS!^%4IW@WSlUMql&38IG&?D?5ZKbH_m5Jvy zkK9T6neA`oXuO>y7tJ348)EYc56^`Vx0S>u7YR*>)z8`GmeuK!r90;MV~;+2#|!8Sy=X6 z#HI>Oo%(QX@#*_P@R>so6Fc9oZ60KtlxX`MwZbRi_0Y9vl~s+g@tcZ*c|}&sFrvrA27I3%dKvUq|69u|EzPwF1m@v#O+I2C03A_G>P0_GCv=N?}@P04s zH`J{>9x6XY9;)9$^U&!n!c;%GaM1gdN0vR}*aP=AW|2_d|LJk>N`v^dGuJf71~5}3a@Dd9aC zvzl64*{!!*5dZujbrn9FS@)Y3ntz<+OGbkhUqygpq}I?Dw)JHTY7N2osz2g9n+ky0 z*M2~~15YtnSWKX(48C;%sF;F2%aMB8M!Vx7K!9-6VMJq(j8LJmo4wl6f`}$IS)`>! zL(JB{SQoyhmS=w+y+0^UdK_}o_J6>liqDM&@!3bnqTupB@F`U|t;0kEtO5_P1j7$q z-A>v^k*#~#N3b2f>C>)-Zu*=~s+F~x+J7>9BAPx|TeN+f7XJenz%2CEHjhYPup)WT z9+8|9^N2;hKImp&Nv~Kr|dWD7)SI8;c zmrQ(eHy8`@$x={{)ObG1mhVp1eBvS)o=kjl)+P3bHzNynrV*XM+vnZh=z)V^QiWvj zrcrp;8E%t(z8w@g!IPpvVERYTPfFM!qgB%Kf%Wz`(~RKS^LJ)-31~Zx49rWL8UkE2};u_B~uVyG;6B8bMN8 zFRfsW^0(AcIg-fscEeP#pHyD&8_{XNh*+U~4c3B;Qm<8HMrp*Rziz1+#Rc&N0A(u_ zWR#3NdyAb~GVsD*Gx|?>F=E$tkX2fey7kvY1AO9_A~Hfj6~9s!)>IRF76fC|z3VIp>_~ z*h&xz1#hQRHTYmoS{HaCrKoS&CFYI(_V*hxqnT(iLu9VAe4{0Z%tJC#g-i!_?>>vn z^n~$JRe{omRi8mn1UESWJhR@9SAkLY`NDJ~L6}G_kOle0L@o9myfzC|M93{#f)RbG z-4s8Co!CvVFUUpA)6ZJ!V&yebtt?{cdNRZ!*l?4@)mN-kPzrjBm1?cUBtTw>u}37k z!1v>3UgvMbq%&-R*2FMveU@5FOUN*JQb#dN2HVSOO{<_ixA_|}PA6bJ>KS*GBBCbD zRjngaOb**V3Nyz05)Bu{p;kePX%mx`o!;8RR67!`VnOqyK?64B!~44RaQodYrB-wqfq3 z|Lr@r#N==e4sR{Eh61&d&jExFm%iQ~N;kyEBeKtyVhI!GH2c`)Y#Fn{=K^;0`_{BD zDv`PhpL1BZi0~0XILQ)7Rr`_l??a&qR&rwvCn>gJ4q4v7HcWS@>+JTzSv}$R#2*P} z0q{>a0Bn$lPvH1P>^S70ARsZH572y8)lCJdR~89faxx?&ShIbKu5Q|-gsE;WfrH)- z%tiKyB%r8^QgnIKmmxbpg~;a)pOsss6(pZWrH;y-er)f-6e6D+AMv+foDPhM1x`<} z7c6kz02d=InJ#1FJySIMxG>HJtbzqjPFh+CGL}D(Bh?SO@`tXlFLn$LtDp!9g|W-) z$DhFAo7iC(Oi+=S)!kEcE!2ioD~pD1Jw+P2vyG;q+aZ3Kx86Evf&>NYpy%un4-Gxn zMmKHlV7Q((g`=TqGt+0}6KMol=x3>;(q$-{o7ILES)b5=;+M>6Jl%#k=t-~^OIo|t^@4EP-kw2eHo9%LVnwjugSl)4rw@nb!Lb>THTW4H?{+Bi;H3oKwkgrB_V z0Poh0L_znny;^OFg1`qgADwrH06|MZFTVn}eHkY)5h>P+`Ez@jPOrlKaG{~08mHt5 zK`6WAWtd&nOPeHIEFn-tG@4yLzbz5bAgQb1dW3ba3Be`6bkZwHYRkbWu&MxX;{gDc zkP;rVnT)m32(FF#J`+kE3yBW6_M2Y0KRq7TF^JqB!!bajhUccyZ8SICPO6o~O;4N* zH;KCLe->}wI&B6et(TulB{0ZOE9?;uKdor1%cQXk*|N4&CjH~HvQJt;f{JS=W~fS| zacmDh$NkF6+{x3fix2q5bUH95mPw0Ygdjz=YZsZKo@3*S+iHq(VJvJLq^OjtscGqKQ&RCCyy6_Z)mu$Zp`t zn(yx(IUN`i%c3j5UXY4D0~aH$+!nC$D>~@1$b~Tgu(B(+LyIBFW_(;87oDA!X=Y9? zhb=rA**UO<2fw@A_d6|yy}Q{tX67#|6V0bSVKfNM`t?hb5|+u()!Zs#?-q9;3fe4n z6->XeZbb)8K~A!cK_Ln{2yjMPuPtR;>pD<91mmmait}tC;AYorM?Zq?aTb{VW6SNX zWr%$IoRz)J_>armspE*qPI){8M#GL`9x5=(*{S*+iDvrgR)}A8E{I{cKnUN5`k7cGyP>^NbvPV2D^HxXQ9NNHey=n4)h33#NJ|jO#BSuok441E3y>Vm7nsS37EoaWT9EKrzL@-H+5P zcr1|kB|AL>9zQA?23rJoyax}J^*B%t&us-2Vsb&j%z0`dGECcOcOo4hJ^Cc*za0&kh&Hh@yol7bz#ZB*xwOy(pF%>VnPgaR;S1e^B3D|)rlAed{EQS zc~`SjkYV5jWFY|Tw2QR>074b7z*D4GFNb^a1P)EfAUHra@OCoqsRE@W1m^KeFbiJR zUW>dwz+OWVhUc9ZJ8Iq;Nvf5_JBLn&cf=xbzD3x#-kM9f>8)_KNnntBw%8*c?%C2w zS2#x*vQ3?+!l}_&Ofs}m%^q=9kbIg*9hEr8*dDxDXcJ7X!BL2V-?u~q_SrM*6_Uc%KfXgjmSe28bSt}uJHxNgrdsjon)#`?EgkYu;V z32uRtL*z52b7b`ZPvGE>H0B6IG%`6h{JsvHRnvgO&^BI~0%LjXCC^@k1YIR?y z10IdwFJ8?loB?lUg=;rF8oaiT92h{QwRFR`6*Xxkk=l!}gG&-e z8+R0Lv%aUlkrU9EO?8Bic@<~2Pwz=AM*%e_rirXM-5~=oLcQlXueB5IB~ zxrsdE2mKws??}iK#gpUlLR!6+@JI!_?E{1+ zuY{dI(rbXkd?SV{4WjnkCwCK+mCYBh{5wF*4`38E61mn&N6l@yQ`saVKNBdahHrOb5W9@Ynu zZ+-O@OB>Nv%1kG2+tMm;Wmh}92Z=SM4(4_RiiVTJHl}KWW^P^}Zb)G()cN2yS-8-IJD^q#? zT(ddEJYvtE?+2tuc1qfeXE_5ne?O1LdzPa`vlr4PN>9A)faL$6C>$Z=(5^09|CGpWbs|k;Ma`CC_0|_C?Q?FKmxnF1q{D#gJRhs-1 z^%P^eSXMOgkqcR7#){EO;xm$aI0_y#rQ)+lw3RZGz-{MYW`wzoRx%sjk3$~?1)3D6 zRu9CyT^j2hLYB+ow0p z8C5{x$+F49a}|4}_cZ4pF)d7Z{-Q@j;W7UO!`b_LrO7;De?n7I(WzktW%OpFh&pgpqO4l@QI}4sT@>UE!s+%TF-4ygvc_am8A2`;3Oy; zGHUeu`9{u4hp8Q%1VR1Mpnf`(Lu;YCx#^he0R=&C7EgsG2SDa%iEHOP-% zDa+5_V$4#0c5*-e3_In~khX-Up&1(ciwhb%d<5I+o4@A=PSF)3{3 zvVa~DCC9XY1a-?4U(NRh&(>UMK05t*O@ZtZAxv@(i#Ae6*~@wF!izIOa!l~WG^kLR zplSwlX+Z>AaLojsM|3hB#tW_k96pns%ihl-khM^zkvq|uc2e%pPI#|y-;AO~!t8d3 z(`y<8A2fBa2QEy#h~J@|@KJ+&>~fF76hV)s4ODCBx~Z%EEq{t>k;dBl-1GYm)S^is~-ESnk4bIaC z^b?c%a7P7GkG%fmv66zGE(ap?;g5MB)2Ji5%eTo6dHEL0Y@gop?PLMvYfq>wU$0{S z^_H)5Vp^DdouNm(5;L3Fk=}z$N9&3G~WA0S~SNXZPA%FQhh;2ZQs!F2zwZ6STVK` zbK2o8ntM-=A-@dIs8>X<)OzrACDOy?Rf;_k&V_fc)Au;H2oq#T8h>ALFP&j1Sv^Ht zDPx~=+wNhqWN9T`;cSm&nG?f|r%zvUR@X3`K0*D`ghKNy3?`71GMa12NpE$v0xA^^ zP`#+70Ve~C`K)1=oot@nKCuy?N1XRg;%CuMlk$@23?01%E6_}4hu?@!yP_GJE^V` zeFPhI-Wy4;GTW!8L^lekM7Lq@qwkg0RX;KOE`*bjDwOU3IEi>DDTC6v}v!!sKU( zXd`tRAI@74fm=u8l^Qh*sF7_QMFGvDJgj*g0uw~n+RxuQDde6`OEvLkgr7=~O`*l15 z6)0P@mC|G3w(#nHY1>*Wxy;jn3Umk3XtZBcnzJrPunAA`cU#-x* zJQhJGKP?K=43LWtuU2FNgjry(PzCu3)-7c@0`bu=Woatw6h@|$rb^sh3%s&`N>3fp zR!UQOZX4ueX%eJIE2-f`>9LTzYt^6cwYnf!I`b*ng*FMB`B+HVkr_>kunr)H&jJMP zsjFYiBJ7%v*UxaTp&RP&Aa#WIWqWU0!~L*NbJMz7Ef{G9xH)l(QDfS!h|*))KpRTjK?>m6S_dsjS6?40koQFhQ=appjnroXIqwY2S?Lba`>aCY(x4fv zV_k+Vy;cFwqdmXCI>~6(Q=7wAVRw_>@T-Ng64FKWXUd1LFKZ98!)vPRXTY6_p;nLl z9NCjWKl{mx;Hqxr;uH9WTEKdorK$0lYQ)_t))b{DNVJvmQ=i*bZz@ZVR#FAdrrBW9 zV}gD3Ee6{|4LGU_@p~DzhlMDYz>{l^p z{y_n7GwkebT2tnQ%c9EBDPU2h$es!{g>g?;(ypgFqj||GFQ_Im+o!jnau!fmjx?2Z zw2`_?3(hOk z3|Cb()6`X!W|M^;&E6PSvM5G{KhTFXGuD?#&cDK=@!s0eqWKcirs+!&haI-3`TQmn z<~J~Nx}Pzc9NPmwzpG`D4Pi6-&Gouv?3IWyV)W9$>cYK?YKAhCDB4Py>cDMdo5?bx zl?;QkJu+jS3K=z;;dJ7xVa;$$2kMu$I5f|?G((Z0fs@F{jA!7ZTaXko?BdQSc>6Jk ziKnC}D}i*e_X9GaQOj6LHi}_NDT(2(t!su_vtP88QWC{&-@udzTBDV`2JX}Qfq*6j zsMP}jvLC^q3mmm+8l(EnVq!9*ma&*F%YF(<(~JB0CGCW|N^_~HtTZ1m+oz{AeG8~G zKFwvNDb!qN22&RfdjITRiyrY(8hBCZM_x0S0X$!U%~51JD3G=ygo#Xl(MIYg139mE za}=3%pQ<9G*}#_&KH^(9)d1<4#7u5(EHXnmzZyGN-n!AEc?L43iA>?p2+$au#Dv2w zc6Ji8Cu1#qaKQT@yVnCIFu_X6rNL(^Sk{R#OXKJ{?$fH~C@pV@wo-oLxb3UWWogk$ zUg4?0#nVy9qtW(F0%yH~xnSEjtMG4W`$qF{B}qLF+c(2E!|&!SEqHNv^VR30fOlGsV$0lRrs13A0)y3RmqcfAXnr5eu+N3t?nYrv^2$N-E_@2So6Vp`aQWCT4T3XXY13wgI@B2QRC3sjtC z3T3fKVT!Xww2^wvB+lE=0(WZ`D>Z5sP$S!|aRJREHXnhx(QeH&j&`+>cWbmDhC-&O z(ENNJW+mZpy$aQ4GZEIta5u;vn9ZczhhK}`doqd$20qSExOn$GSBc!YpHWjTh1Erb zmBehk;%~_kBbUb3eD2;A_+gjcYY((3U2R=dAm>B~lcgJ?jnsSAaNczoNOUXb9IH^caA*d5Sm$9| zIlF`K0X}Eu5W@GA>Yo!@t*w=;QCdl3 zIGZL2cXv9|4C&wevz4P7liZuIyHkz+OWEDge0!#qN2TC_ewqQc{3;6XoM-7_zi5Ft z)zd3XzL`>ifGp`2vh<7;LzeXDHST8uxIj0QXNtB`dS2nSQ!zb)9%&_$TA>~#f0#8+gug=+V3w|CNhsyjj2)>57zEoHV( zZ-TV1fI{?nD_MvxV9)fPApIt$g$dC;dc;eJ?qO?4dp`$w(r!bGQZ=gBS{P!CRE{3e zNKB3Di8fN-ImmgnS~E3TdoN3Q8cZ{}%^YHS^dkm^TR$CJ8?VaV;rJhUFy31~S}@;3 z)^m%ekzlVph$X!EIn_EAxr5w$=%!oPEbWUF4{`zN$0jl zF+GAJX(b=F#!VrhNx^FMK(K662s+2KX>iNr^(!!2h6_~@J?~l5gA&md;2}@q`E@%Z7W%bE->4tCq!ooC`6SaWg)5%sWT&L3J1NnhQjF)O+MJ0H^Rv! z-z;%PbdKlC5s4Z!P=WLlAxwi_5N)L1a-Q=>MBAM1^1hH3N+U>@w*uMiHn?vGeqrYd1aI=AZ!(@U92aizr9qEDai&1j zfUu8`GYQHo#sSLDXP;)@BPK%{W?9_d-I1t5M@3sHaaXwQ2a&Q0X(jLRG~wFq3rMih zo>2y8y@z>Xdq%tQZ|T-(&BL9M9yNkDmB2eyd-Tfi7jnVA(GIhtV7)??D3~4P6{>0a zRSaE9(+%$KZE%9BQL#2cN0!obo!b^}Bd^!A5>p$TAKlIiSm=IQT{}snUsfA4^p)Go zML{x*4+N>6r%;WrvFx)@=QrHvM${u+O?oy`)}#u|_UUQT%>ruD;5M=*4S)>5DE6Kl z%@WhXrZm&(5mA%O)8UQi-uL?az!NqFnvzb8wknj(B87?4LD5F)G(U3QzBWvh$k%oF z%t*MHX*N(N+drBBJdY?{0vC<;k8X4Lgf{a2kru{S$Q2c&rVTRrRWBq0mLITNT^Wa1 zcnIvx9t;0!G@12GX1&6mQtW256donZ{SDS2eHv!g#0#g#NI=|e{guDvwwMTMr2WZ# z{jm)SQsK77Bkex7E!0*PB(3BTPZ0`I<+jGtqTe~|Q5&2VLH*K9LG$eUHYh~Jt(ieW zpss0d5G|-d5J9mmz*dpH7HLVfvI#k9g@*dRtka zit=Hv6)8-geiv<|o>PqT?!gd(Z6tH9Qln-8H8OQN3^b2A`L{DxCksa( zZY!&k7DO6kimMa+YT~du$?S%i)qTSw!opyc#vWh=RjNsjcE~KEmM7Oe!&IrBTEyOy z=V&J=j5N3^a^I}&P>ni^wo;1xxNZA(vKnb6ZQyL05>%rh?Tn{KPn_?l|;7ebsrpt*kmPqv_L9ouC4$&Ufu()%hBGrT46;cza<`FxBy; zN4!+Wx4o=7wRyUH+N0{!S15Hw3R9hCqK(vV>Tq6odsLmeN{yNY)W}rlF$RNMMT5ZH z=q|+i9Q_#km9%ZG1@bp!%cDHuRx3QDd?BMUnH`f^1YSN5n?zx_X|2hRuaB1vyoVj$ z$i6-7oIjlw)hp~xV5RGtob$I#5py7oGdp*5LVJ{;6{4+_ug2VVX?t0Mw30<|cAf<7 zfV>**6InTHQG1*aLH*K|K)Jv7;ifAikB$V5Jff*5$M=QAqeU;uX1T-l=tsaPvZ4E(Z=z0=XVldIEBl(PN ztVs>_0-A)pCVnJ4DQH|X?&ROJFY2zo9<-BJUtcrZr?>iQSwNj>&_ULj;0`*oo9=MX zdq=1%J>sP^T|3A+6Uh_SsRQcFD24L8NMSlNTeOjSNgK|a-T`&yd8J0p0%~MB(++5! z+08aEH(Gmj;OKT8nSH$AHX~3kBFg4gD0B%bGQS_$rqxnl$NgC_Cg0)PPCHGcp7j$r09h+W&m6^qyiRAn|wU%&piaX{;Z{C2YJ>KjHXX()-tGoYBHvy ztR^o){4fB$XDzG6q_9~_3O(YbCMg|dH5tm&wH%s_u9XfclmjA#smV#vM(QBLI4`{; zs>uPRM$H0hWNNYmXdX5B7R-&*B#xt(bd=RZ3t}N;Dmt@|Z-mtr9s)1T137`e!))-( z7W;V}1O*;C(uxYxB2u>eY9=Rj#j~&|wGzBl!>5z+$a#T#^tdDHNoCPiO3VmuTcMMz zCt8UgoSip4Y1qkFPm(yxuM_GC)Gv)S&9lE@Ow)I2fS%OR0;DS>3@~VFW;B%(_+Tl@w9ec%q+A;`M5iQy9>QcUs>jLl$GU0G<{miGP!`t z@=hmNS>D1v=&dYQ#iTH0xlE6EDa++fva(F$>G~YnkSfcc3gtJE!jz>%XJN2Oy=6M* z`F2KS`Aw-&vw#|zvYZFLM_HcjY^*G^Ir@AjSy{9o&O)Z5Gh@igl*}S#8$7OjF{27! z30XsI+K*M&dcZEAVgh3g1{eDk2Bs}FRRidzjKO}e>LjK>8eB`bpY1xM-V70KrF1Re zwgWoLdZU%}g|qYYCK=LdG=EvdS$#XB-a!4*aMV1D?CjB-AQmVHNGQBM3YG&t5G5I2 z`Am26@HyBSrfJG66mkTzBbRz5C{+wvN>B=SbUC;|S4X==TPZ;=aoZi3AVGb!lC7Ol zeSju~tJMSHGW9u2dooj>1s?Umo}e2d2oQFIyi%_aKg-AMRordpk@_lhx|6IzZ=vba zQlYg4RH28RWfl4Zd#1MvRqrBbL+;f}-AmE~nh3c{o^_eJ$QrbsC#zBy)Swn3gDF{4 z5yCVmTC|b+%m&Wu+66VJsZyh60W~rWDi1V|28{-DquI?CjxOIt)*vm2vQX)U%)W&~ zLg0CH&sL02gacl7{OxCBNWeb&yIf$tIp2TtmGJ5gKXGE1b2d3u+L! zBMnN;(S==5gQ8x_tmi}1ftwMKiFK~jC^Bj)OafV&JjXFZ=hXt1oUg55&d)%L>@I{|iWc!0GI|*DmzKrnl zo#v1O7@OWQ6DuZ$NyIREMAI4e;?!YXWubY8r)+Rn6q>mTWtK=`LbFD+p-mv{ioMHu zDb#Ve-DA}VKl3c5R?P}(Wn$AGh#s+d8_bQw<}k(N;>-QEvM+ zCaP@Q8NVtU-Y>=nhgRz5i9wn93t}^pnRL!`cSV^2AEcqEd3Uy}M`r5sKw&Xap`<5G z@RZw}mMLAC;0Ojn9$BKO?C2M>L{;r33{)vmXSlPKx}o}5MO!IRpKx3FETSbFmc5WD zp}%RR@MUOPdU3@`KQmCJ(6#y?bhd*7on(DbW&i>4foFwTPoXK0BcvLnU(6!xD|;;{ z<7eD!s7a6_VPyBD?H*;>>v^MAbF_R~N_3%sN;ID)I8qRyIS{=fLa&M`VIuSjJ>n%o zuXK||=yRT|?cGp>PAQZVB87=ihG-*onJ+l+GIk0kLMN13H7lr6S#_d_sp;2k zOi}Vs)Ep}tC8!XlK~y1@C)dTDT!jn_*wfxjhYSo@o`#FDOGEB3^@ByGtqvUnhC)hu|CqzGqiD6oFiyraPqFYh27TxA4 z`wp6t?*3T13xkYNiqj(+g=tX@(MIYtcQ~&~cU*ZD?=IJEwmtV0QoiDSB|hco$waByxEW~+)9R3J2{$6`-bi*>XwhLd&Zw!GcFIT zbJE{3Sd3j7T#vYe{kx+GC5yIFo*r=97rVzDcruE#JOMk(EQL}jOVP_lr7S_a#Gs`F6|RH# z$885csQMfhZKVVi;KJt!Z_bc^;S>$&MdK*Nc{AM+>4hAVGGDL^#7DU;`O$zTq=#YnX#v*mVh2M=0jA zBPfR15xXIo%8p=A3>PQx`LC@@E?2T_7bBO(R2A;tmS_~6cSTz%Oa9#Ut!PX$~L=Gn&RJk{Yb!X8J(ycnA-xZIs;PHWfcMv@AX)(e!DFPu&8FPp=-b z`1FAIVZeG%dM1iVVbhgy^oS-tY!_%;4_STc^K^~rf$FnPp{y1uOnqJxZKU)+%XzQ# zK=oOz)TmiNjZA%B0Gg&grqkqLrEB=~dX3e8!7Hb^``YeEV~&5Jhpa$aAR__$b!NZ9 z_Hei-C+HZxJI6s^G}!q|rakb^J?{d)@8NDg&>W?}*5ylo%Xea^(r60jzTD`6a`TsH zE2Slb+y2o*mK&|)K2HP6O&R!Fgpu5Ya@PGGC^t~QH2yTta(Z~=rfv}%3w+KyaIZ1V z2;7P7*Y9*!DmL|eoq2_rE|wM08J!}QmnJd72$b^DlKa;n234k=Xe;HVDYtDM!}21i zj8@Vj22}=VQj}Uf5G9-1K+BJK9;Y_&3S3XLLO`G@yqReluz-b=l#h$8xr>0;7nH;v zvY_-p)2AgUZ3`$U>tkd=Sqt$ig7Sfw6ecL|(IZ}h@?MNAC>?mZ-hp-8j|dHim!&dYv4=bG87p_yteSGMZv+%;4_Tcot{T8M2H<@5AWegw z#-ph>cd}kjRGHSIt(2=C+_rg7S!J{mC!Ec4!?tsJ_cT_So}A@`?MnJdE~sA`f0}2t zd!owx9*`BpvQU^NiOhZ{6Yi&_F|uc?mIY?jl1jZ&^rKoXWN5q?wWK$LxTj;l4?3$^ zBHBtB>c?#tV1@*}(Msm_M7;r;6t7kf#LM&sI!E>l(3{G&dFRNB+bgmI^TS>Rjt7t4=0%M(=4%pJjY ze!eq~r|TiK9#x${g;Jd!(I`xH?4pg-PvSYRaW7Pz>b>L|H4CVbsm|{h3|mBj=(w8Y zH;oy=@xS+!l}8KYSI8Du9{5(B16EH|bKuJD2!mS#FYUVYA_3Kb-zYp~a5;0p+x#zn z>Q6v!;H{t9Nm!8b<){9ZF=EKlFiPe=z0eDVW`SrcrRPO%JExZ{G+N0_INKvM@CIzi zhmG9vn_W|PS~r^WX7)m{0UxBnr+GKBmq%>iCoC2tpVF|zuqh2l4g5UiDH9R{BBPeD z%)Bo~D`jRf_wF62n+nW%(N@aLcy4MEcY4a&l8L5IOIv0XP+MyDmbE3Ix6X{FJskAj zpJ_vnXsVF93HE1t%L9Ej&sMA6C@l#Rqo1>Sr^14li9jA-A(0zH8}V6CWd1Wgvp3CM|3z*6#$7^akx zwcNFbP%%}L@_mF(DWxQp+m`7gFORemOCMAdph*F0^+14Z6DETC#5Q4;;wB8tTk7hD z1**dP0E!BYmxblb$5p~zg)XKqDxtk)Q3*iPrzI*I3n(hj^^rv-9^!|Qs7+YNUH_$( zO?bthP5g%Ccg5eq(=($F*&du#-2~5N*I!Xz*b|@Hho+|;Iri3!V!{t{@qK8!R)ZNu zZq(GkN~M2*J&`@Wg$gAtIt6k=1|KkIlZ6ncqcOa7 zrhQflx!5=hUL@)%gC}sDFr{d6$)B8y@Hz`i#?-syZ`mg{x73T@;PJfP2M6}YqOH`6 zU*)z(uonwAyJ#gJU}E_T`o5yM%xAXnI_G@=xui=I@ImVPns>YV(60qoB(s}m)#uUU z=*G-!?~*lI%nWvSPiCUJX4Td&X6gA|3|UIgTinHaeQ=PM>}x#8-{iJM`^tk{D=FL; z2RYDapf&RD7Sih3E&6izi=B~Gz4`}UOPrFNT2Sn%o$>d;%@x2;P+Gp15x}M9gw#AoLz+u|8uRKgUftUKjl%ywIt4>lDPHd|? z4L!<3aP>79q(l4a4$@A23p7aU7q(mJr@iSWLRf^;iJJ&5JHP_@PDGY(Ua2oF)%Flz zoC+uUKoKmgPgSy{iftlw!_z#V<$ZCK?iOvOQF?;g?!ay+j8d&+E9RBI58-fMq>id0Q*- z!r&B&@L0M1G7y( z-GSM#Ux5Z@EmF2?R%O!USY~P1!GRl*;9Jh-t1l85n$5h9vRB)~fYdpGz4?8D*cej3 z`ql~9GTN9}Y9fUNs^-|J zex4y&8xykfoy?N385iQf*ZsqgY)Kiqmwf66ZhzFKOBKyh_+HD zzUQ_VFcX5?TFGbq@FEE`X#{HZj1u`zxJc%DE|R>Bm3Uzw>J+h{ABYvvK!maQ3lHS~ zIu`F1a4eSZFOS8t{k_Mc>G?^|nAW5v#bnj=Gr>K#bNPI>w%!kMfATQuBVRxa`Y+D!3DZqUsGn7V{s@n*p@%*d~rgcwfgRVR)t9cuc?MqVLG`*VF1iHD5 z@tmdQQd)_muv{uDk*QB3p#y0`Q^}=!6DpfLdELHjW&<*O&g|Nz>om6N=53G2oLdvx zTCyN;&+g6kaht@?6ko-p_>fD(84K5HX*HH){aU>E+CBsEfuJPv-3jDPWkH5|sizpO3yJV9%7=E2-QDk}LU(A;i;|vBv z8NfWNU9Jxkw`F}^%-m%FyISiG@iA@+k`sWxZF- z{QLmomz*1;+mAy%r)d4ymNBWO&?fB$P)%_9Bv}U#S3+)iVO1SGAm0Y5L$e|_NF-~J zA}_ecCrti#E%Ly-MQ{!D?7v+DMb{%SmCfbTK01;$&}7*vxDdM9LjlC@apgcYZ<9G1cZh4$54s(v~v#QOwS&{pxvJ%Fd$J0~zglm)K0 zg`Blv_23+jxTWr#9c^wf(0f=0QwOzeX-U}XKp7jB2WL+VCfm+r-8Q%5r+@f}M1D54 zvn5hIJ$dowrshTizJ9ePk1uDfBENi|)hc8xy~f1c^({1GP12jS z;ct3i9KT$&g5xN{XT-eReP?@Z*m{(N^3*^ol+B3SyrZZk@2YhWv&FX_g&CAiOXJqk zf6yYZs^^mv6|J8r=OBZb_EiYiAW-E!BVVtPd*N^#sz>_e=nA#ew)?R@{f3g`bqA5Z7M-e2>&i?g7*n*w$ixi zx1B6y2YW{s{X5T4#5r`7Ms>9^9(UdYSLfx8WL;~mGbtq+UE9yy(b%Os4oVSjaE>WH`yrnbJl+I zP=2~L*%&0A&Mv$i2g{ROU!Ln{H#>l;Oa}7yv zzH(-uJvPD`56{lH91#f)yDc=<7Up!shuXpu6XPRdL+r#|YwqGFTU}`VQf2cikec&3 z`b(Vmcu&|qSX*{VSMHYw>t31`4^~A)SZ^+%EvAj&|7g8=Na&*fQNF)a@_k9`Y2w;{ z4XOTH)>ZS*gN+xPA9GiJ!1LFTYY8)(lWu=x4I#tZO(;bI{>WNq{)hEh{iWw=8PMp@ ztoKZ%NzfVC$THlKy5KpBrCOa--DFMEO;~hZ%D+|4%dJxIMdyd!&7v$i^B+2w`D)Jf zSJpo!OPe7=C)w_IqN}Bg*AcpqYcquS{gYMQ+m>nRfws1Wmce=_-1sM}rp^gWd`Ib> zFlXa8RlHA-)@7MO)LOUxPxR95t(SLJN1N8tUXZunw2Jy?pp+}2EKez0nzN6Z-o&#t zp?pI;n+YWuA`9ipA^EP#@@>HXKrMgp3i)o@#%TCPu2;xcMW>}j*=4Vg%lKx$Z@TXt z@?G(47V{3symr(QaO7SX;>n=37P$#Ux~GM*7}A_ zktd4ufI3lh0MOH;^p_vDp}HDhb*RCtTBncXvpUnU7N&@Q7cgV7O2&reld-F%vRj2r zlM_V`sEL~Vrdk*FfUF!nurI#2FeyOl)k%qLOP{2)=&55TrpB`Pb|uejO)U1D{Z{ zlWcFCy*3~*BsAQS5aJAXLaIYU!y}w=aaOy_?sB-|LPG&%UQmIy#h}79LLy>q_5^q{ zxg!o%Y+(rzPDh+Gp2iUtZncx#ky9$B1+H81hAF^BU$+tw5@&Tm``RNyT(ODHgph;~ zm&4{rv^j}u;{3{K$A(VcZK{!f{iN(mlkEZdR}7!RnY034Yqfu}FWI&&yJnM+kj8fF z$nj0a4XHU}M#I3GAqh@nqMI;<-z2ordbjBH&`A@T+xiLlbJQHtkbJXfg@51^LbH>D6&BPFh_yRoT_Fka_6TbNysIl5{uctx<4O#( zTH``pX{L+wp{F_`!kzK95U1T09_L65b;Vj;HkT_R(UFiC3)xEx`e5=_Q-Cwp;e>7w z8Xp%9T_hsRnP9iYML>ofaWF{Ye#)nA7vEz; zAUj|r!=Q<o^vp^B?VYY*=B8HE*Qn|U2&_^8VhNPx5dIZ4Tt@e zurwfo)syN?-8J9##2SgK$W($Fr+82o(mI&1s7bNrX?Fg*!qVv94H`-3HnK z?#DUoAx>A?oO{s6YJ?@YoDm_8__z?egO0$6u*CS#1n}P(4x&d~i&s?S!|MsH6Xrc& zp3o~@-que@S%@~g0-g{Q?V)wZo$iy1R0q9)4>iQvp}QqQE5Lt-*}|ZmL*c4qPYX2f zN-i8=4TnY!4-XHG2!pndhfG*wBWw=19>iG_tneN9(I77DViph^0zEg@l^78h?{YZ8 z!<`A?b}J|j3^Qk#%bu2;3ZpDA-%8_b@$_02RU`juiQfTYqob^NKm_C*ng#|}Sga#4 z4lcKe31N=JMEEzfRtSn8UJByE!)&1I;jR!Dd^H;4bcEXzVMy9s4j5A;$h=Ft6vT$O zU~?}qJTxQ>7|@GD9kv7q+>dJybHL?+q&9);-^GRm2V_3gyZBWt-;K~&j3oT-Ws~=o8;$60|FsIGtblT!w39wnot_?k2&W7t> z{uRURf8b+)E&p1*uWDtN;IM%vhT9#9cDRDuT#2C};nsM#a3v<< z1f*Jio2+F2vg}HHz&)X%V!emZ6FR8F+xiKqbMXOJ3FcJ!MdYNHv%2KYo)w|w&iw3t z|C>ktZyx!-d8F4W$9vrUZypH~*Z<8U|2K~`oaO&-9{Im{q|OZXfAh%ypUflIU7cRI z{Mtf=@HTe11&}=yyl@!1nIKs2i4B|1ekk54?E6c0LSX)P3d0RN>|UXlf61Qie}KNM zp6|Nm-F8B(x3kmy;bCOGvY?c$k-qHKqY-J5^KNuB`LX}77A;h$dy)KnR@VcpwH(Y6eFe1ed{p)ag6+MFT1vR=P*+C*X(-c`KO5U*X%&^ zTLZ|TU$aBZp9~@?zh>9=*)*&K`LWuLYO^LJbpr5=HNi;~x+Dom@XtTsj_4&xJK2%> zaJ&4Hq_^Pq;U!6*!0kdylHlY*OC}^8fco3YECpntMkuujsyU>};?%_u*NT>q4uuw0>sw4LkR(YvC|Uk)RF zHLmqAe>;qr{H}Gid`T^|ADeUQUmIZF@IHwdu&ccJ{%Nv((5_RKLc?XoBV@qc3zvSr z*3I(B5aB$7i24em?r`RY3BK1t5p}77?1kT!oC>D1Na(2$qB&tW5~B48ERN%!A!3?> zn9LDN5HZ;hQS3Y-UQrO+IpQruY&Sx{vqvV|wbPb!3gHYVWFg^<5y8CbB0BNAg7_5? z=E5#)(_al4S1utVz$LY*sT#?BcrC`zlc5OG{V97DtwqcEDn|H8FH}N^=_78)Ihgc`rkl=LqXU$q75Q!MhMdua78 zmLgmn(Zdii`zJ(9R}fPWv6LgG7$Q#ojEG$dVh17)al{ToM2XvoIIkeiA|jh3&Ke@3 z?;zq21#uq{MG~+@?i(W3+(krSg50Xr;g=&iO=-*-)v1MUlVsdOMrVc5fiwDXMh8Pi zjr+(Lt1w1$#%#_QZODlG4H=sh#(K_poio-OGG6-~87CA*I%j;&8R>?MpZ`F{&kExQ z&iIQnelTR%A0Wd&QEC@cd6FD;J;qcU9;FBID^JUHTV>KiB(zcp&5=MqhXRD=dW7_M zK{NhBzz7A9fPjezNYDc?$uK=aLaIVofrPC{SYb%$@DCCWD}*#8oJK;LAz|5LBz&z9 z+(@{K1h*mKVj<#Md+n6P@|@HZ=Hk!c5UKJU4zuFaLbow0nvoHzFzlSsmNV>zjDbGL z7^*M^amEXrG02dywJ;{#Y6voY(y|0Dvn+>P!Pc*aE1YQmrz77HPCI> zKT9B@w}Ob_2$=6sM2ryv-lX8S8RD3s5TSk@Ea1$z9Vsv{HBLsauMT)jG&QHlbULfpk%nT zH{pmH)IhgA)|Ep<7X{G~5&cJ!gDrEql{6$|l}Exjg)jyQbGQ>@3=x495wTf8Y(T^w zj@V#`NbpC*NfD9WE(bmpL=*7^2YhS@*i#7szlZ?3{b2eL5r1>UkA{fbl@U=XNoo#r zg(TFyI!V~16{v-7dpN2fqqV|lkwntFf>tm@w~~g0DOHg$QXwRAFD7v>5)Bzgsv%>Q z!dS@}+c;yTA;YHzGCoik?{UVbobjF^qf-DfzEK#toNyEQZ*s&@M7(K;_^vJ@G8M!Xj`$uCR}2vif)U~K zg47(QLgdmK7^!}+-AOn33Q+^y<``2S5e*eYeMB_ni28t*Dm}ZD*)d&%O1W*IrChcWML{|mTi6h{RCDe;f zhKTiW(i&=R>Ra{G;#F@tuQ1!(+&ws6v9I81>s&SG-M2IkBqkz#(vH? z#u@t!89O^5BTHl?553kMB4ArEw>aXeA>#Xvh$uWpZWPlP6s>Y3=mHE?6E)Cl6H_A+ zRP_33OCyEwEGINW!m~yM^H})MJQbY23ZmB-lAHi)!CdHN2uOp^R#U(%1u&iaupAN7 z4H19C=cXy*H3hMYBi=>CE<;2le5sKlE-8rf9Fc>F^F|2MLK0IBa`{jp{DA~>v1A+~ ze;6UmXW^4h)QeilQj3}bi7gvs&&Cmf)IhIA&1K>16co`-L3BpMK#u6Fhd9^+jsLqaa#w1bkbHB3cpDAbKMrfg^ewBE~bYcOL@A6eoH2+qx)?IbjYGyng)wddxwQ9MjEN)0 z86x_PN5obIv6;KEk25wKGQg5$^t8e_$r)d9#z{j)F8qW-Tjj38_=PhbbH*=53{zcl zZ~)9Ts!WtyrP4&a6a|xmK{?$lm8gMkqdY$ay=bc-T607UB3c_F4ooF}?}K6}gpr&u z6$vBt2!889F{YspYZbyOPS}ZrReA(A(`Y&a5l0ln2ORMkB0exg%$kXan+oC^j`$4` z-xwlJ%tA!jNm6^5N|E%&Abm9^k>ukrxuE5`%~5;~5}XPl3<(`4;ZO}TM0B5vh*$+N z3=v~EVwfRf^*lr@QxJ<0v4JBN8zQdGN5tC-;vgbE=7@uai0TUwaZN#FBH~Am$TUR6 zE<%LwWT`>SK9k9ui!ixxwTI#1LyL9WkZRS@AE(FqaZhKQ0o5D}*!hI0h0wW$}w4G}$du1&svx}*YF!T}o*utX1#oCA9C z3cB!)LU@Z4jw9hMJp!9rWbQ)5bp?^d5kDa!%McOpDk6$bmzu*=m;_A()v7oh$5~-& zpxYeruOY&!AYku~B3g1pBSXaNuaoU1A(;xHFA|>PguaG^U-qCAa}~raM5J)UEJH-d zUPQd1AYMbn`yBC_A!71AM0}|rE+OIuM_e*QeDo$F9w~^23}Grs(qDp(`OuJHK7fR} zGo&Up*Mij{2%pJ;h+5P@w@Eu5L`1ZL=*AI45Yf#L@zPs}n5-ZsaKu7HOfW=TI)sSr z3gTss*pG;pjSwb(l70f_7H1T~DNeYGgi}TY^PqRpiC-1O9YEBATi#~k0J&p`*p`Nf zYBQwrZGZvtEJr*;4dez1^2w=Sf+-Lc&GrhR4H9~BLK{5-(~4&gBVv?-cpeec zIpTRk#OMzYK@`LqMC{^-HHL_{KSaba1@RFg&U3^^hKL6rk(ef+6$;@yB>ce%-{}%c zLo$z|59MY_&0#Jx3nvDFv#?3aPz$*|ST^S!Lq;=&5y2UqIU~Z5aXK9t@e0Gm8Dlxa zWymOX92v_M#!}AMG>aT`Uhh`Y5Yh7lBHmRHhd2V(j_hWELxv1;5*axPBbzgR=8SAZ zM)oJjC^lPemLjuJw*2AsH=uk)sDW;)1f52NO+hr~h*pSbY=kf+!na*PFa|1wew;7@ z3H^)+<~Pou6Y~_r?Aau}!*%#^nnp3(5OC)#0`@9^*SQae5%Ibn;%@S;3Z`>NxU3L9 z=Y+43@VOp=b?~X@5%G_L_zMwc%N*<#e;G24UO+~@IZ}(leKvDG0^JMch}zUZw?zwI zLPQS*5rv4M91&%R==?b`^#Z+62osU8h!ZC25lnW_i!acJ9SUJ95)N>}Ry{({gX{{X zFOhIoA)H1+1}B`>Be3?U{1qbZD~P*@Fwe#2xNC?Qas?69=St0Ct}+*OuK{ONp%%LB zvEwQ-Iw*{`oY9*z+8Q!$W*}p6NX|w^y23cZ z85cO?h#}+MYsmOPVcg`5KRM&3A>*&>$S6NgZkMw2NOBU)Fy>*?mZb)|&C=S9h~^5y zIS-q*3uibD84F;Kgw8P%6hbdZ`82 zAb;z*U<$rg!E_rD!3*Rzt+N2zG>jwaPz$+DS%akCK}L+i=*}6#IHS8E!}lICrYej{ zoUxcQCK)oi{)&v93S-*>60`!OgCn*XB2w-n;xh&DDR(22Gd?wBT>cFizbTA+oZ+(& zTjic1qskx1sIgFPmZ}S}SsHRiRcfKvET&<^)C{Dfqk?G15q&tKoe{$P$^&#`jKX-4 zGiGwei-wF_58>6AFyl}V>p0?7j##IMa7_Wx_#3_WSV0`+h>IL?R1d-W=(tD7_)%ee z&lwLm<9kEKd;cJ#!Xmj*{1#!O)LeuO>qjm08pZtRF)~^xjHaB?brDH_1w_LT(Z)nf z{c}!P5*0)oM~vrg#2GRcnUS$lVZ6i{TR7t-J;uSVpd3Dkcuz!J+H<|T2?^wlXm<@_ z{c~9z(&O(5B`ojgfuLtb^0Ajk(tSPc>GVu%>5AO>(Zk~m|4A)`(SWGqk^b2(!*XUsKZ zB$Y(Qn+oF%&iIfs-Y{aA_LGA{K|Zc1h%Y(fTaNhB2w}co3f(BQL~fNw$beU4Y{)5A9yzZlob8h6&`TDoQA4@4*c&t|BdL=@YL6syU+ztNJp^kh*E7gS zRv4o=V-{zOGGy$of{cv{gK)-coIwm3KUPJ?afNYgDVcK_q=h4n86vFJ5%H6PxW(Og z$Qic`853$CqvA5Tamp=2m8`W48@L>`kXwbN^l$(&S}KfYoY9Rlni(=42O{G+g%Qsg z6F4K@kkPItGEx-Aa?W^}GnN}NmefMV`wHV-WRSIcygKWPB0;f8)(rulLaO8AW zI2|~rpTOy0$f@B(&RB&rnsa6goY97yxTeV2q;S@A&g%kay&>ndX2?0AaMC&FbAgj? z$oaWBa(-4gKXA@p0_O)qj=d#v{8!5DRemLoq}nTSG?u3px@|S76*5{WjOLsX#Tm`@ z80>uTRCHeA)`ZEWE@r)X`FEy7**j}I77s; zc8K^|LAW{ME_cIi$hg=Z8I}~eRf?xzt5iwBRw+&`bX%ojM`VO53_EAEfCj|~}zx+9~3!U#^qrgd^gFtyNa+CQU_(OY4}a7HX= z#27MK#2{ma!kEe#%Q$1IA!BY&Wb9TLJ2~TR&e&4oNRG~k5L)o5EKN5X1r%o~Y-ctC^ z)AMk@%GesFHEEkp=Db}Do)}=k_xO290BIdNsZu-7i&bA5(q#OLW9a`U4jYjaHf3x? zlQ{UqLMZ)e5PUVl245v|C0N7l@$m7WL}y||h!wuG0UzlJ4GSX&D{rnu9-YsrT7Il2 z68aa^|0-O1{O2|#ciNt)L|Q+yIik_-zqBv8dmCfE7Er)Gcw1>#ljqA;L6i2G`N!W4 zP9f=JN+_9rG3RB=R>1?}x4|7%YqM}fYnHrfihHVQlvhpur<8$Hwh>$EjY?!&OTTiY z)#o`~Ebj}oko0x#s2X{7RK_R&-W5zrkV{2MS4gYyMNT7AsZ(AB$@OLil2KpgthQVb zj+2-mcXKl4?fS(?%;lV9^Ql#YeMnS1m$>@6qpIiCTScvxeb&sptu-lob64%)t$%B6 zp%bzEMYG_4n;)`0D6@Q8)Rmmlg-bmULMTB@-F*VdOEYFUET+}kP#U|6rVBr2?E~g% z)n?ABZ6d8Ra@tp2vtZ4fHT1o;>}9|Tt0p;eEvK=iye`Z9U=`_jJ?C$WcpA%)&@%Or z>=iw08PX$Yd}p6Vt4okFb7yt2G*PN>uPar;++a1Cv*b!RIaaQC2_f$dRVs0n{JwEo z*W8?KW=m%Y7F9m4$r|IS?N^h7kKK{}Z3NT2zDo{nxluLk({FN~HCbGO1#$hH6GQ^P z%V}pBDIT7)|3;J#7?MkFpFrsh=rKa|R;+%=zo`Dm&72k{%QCSZR{iMTb~m@I77x?v z&C6DkqqlNuN+)>NZpYdeVeOUlgD*i+KWW>emXb2BHl)&npT+yvqdGzw)qy>B*e%D! zIHXY>iQXO)OmI|_nLp)Rv0M_4(}sz%WQa#tQZB6~#ed1ECD~fOsZ9p|l2gy}quvSE zf61xseM0KbU)LtvCiQAyc_g3U171L@?`r0K26Ly(8es@(?!0yZ6sv7txnW5 z+iOTnuN^zg_2A#|_3wI~>q=5yL$y~=rB}}iY4h&o^e~&l*U@81uSkAMr379bia?-`W-Hea4*Fulre^la0+$YsiEO zxnsO-srCwa>W_Xay^`l?Rz7(esGdsmRFS;%SI(=%St<9Jd1YR%ggS?+C$fw18q%ZA z$_VpT_}cr2R|3szi;?8wO)HTDedh)>(rc)s{5kv4cimG*8JvoPvHrikgiIvKoy#>M zTdL#^wVW06&#vgFg(G>Y2!FAO!*tKs56r7h|CF@@+#4)61R5&n#b)D!EkB5dSswvI za%cOTe$pAx?m~ZEgb5JqV~v-#!0i6QWHzs5ot#_@ozYlmxh3jZtmPC96S->WYa#S9 z#Ps~6XH2Q^HRbhD=AgB-&8wNWJtA{%O=xSWu{Q54`2(v}p$q`~$idkY>!rQz>z?Uj zZpzQszWE(4o}b+2Yo||AEqFL5A-8N+Vo!seIDFRg|{J0s0_Dn@&23_`zymQ^uVcrYr#J)u<2b}p*;Su9sd|?e|vF0=EsTcD)SH7uo!VBia@gKI%c>ISz z8S5ru-q)l>)^hLhG51+Vf(Bn1T3aVoQ4LM#O-}@@NgG|yU9GS=k=5N(_mpt?l-b8; zrTCa9t|NZQxiNYT64h2ag(Sb3TLT)zmNBWO&>+$4ScCW^HG@a}yag$Qol?}GHLNrz zVrxXQ)+q9VYkb1wf7KjOb+~VI96$<{FEZylKBBtQwXUb1C)dx7G9QrIZC^g^wnu9> z(CuK-E5v=%{3$;jWIK2Jj4ma`vvG94r6g$&Cdojx^Nk>HgbS*ze@5C*q3$ha%N;T2 zbYflGqry=`g=A{&@}HzN-Yc!P=_{kmrHJ=%C_#*eLs2MW!+~86ziR4s_?YYR^R>%i zE%AIzY#De;6ndW}?{Zj_;K#)OZ<%eJH<{7TEJQ-*KT(ru*y8@gtfF%VT6$1VwN6eG z9*~#tIXvM}f(>8FWVCkQw+t1Iv#VU4ymRO2olEn!@fJz0HLI=ClTUe~jY>F91=^T|Gu{Tu-XMJqBCdN)@RkbsPBWmu~(cGgX3i6heaxm!|?e1fKmY=SvLp||yREP5G zWpyaIK3{dnHwInZ)juO`NQ`@=xl{~wNt;#Re%zIBU_Wkva9r4r19S4+x3h?JUh7|r z1d>PDTbo;+SI%P_V=?Q=^*-)N7O^_E_a>;$yL#;iU*`y^ke1umo#|tlC$ib%{riFL zc9v!0VKz+XttX2HxkIEAU|lBkn)mc-qYbEBtM&7z3CR)fUi0_@bep|Tr`r&d%l(_bzBUj`tb2>)k=Pte4IT)^&-w5AFKyzxjjkM*lAtyd0)_eY_ziMrPS%34fqud+m`@0|H4%40c zKjcle6i;76wtt-3f>a&jK52THrHsJuQ{lR&7Bb@{({pP7WcO^-o1U}aSFJxLRH~u3 zNGa+$mFcazeps}Dt{=Jy6Sw3ID9z%!AvkXpr;}d!N-SLObgbb@OwNvTZ?|O8o?+0z z%W=QG&o6ifuWW{MJc|srnBF$UUCZ<*@17# zYkj=*Mq!L#AAhLy@q16Lj|b79bvF`N?2+ia7J5t3c`5W}PzEe{AK~4p?!CoLLnx;? zX+2_szi!`qmbc+R*g?_VOz5|fZzi;*)ySI(&EN^P8#RoUuMyO1t@F^$gw_SzOo*x_ zbg_K%mFk_Z75U_A8Rl!B*Cx)Iw9|{+b|2F|%Bed1aZFIk9X(rI+^+y^{g*VMp zpK$&4wvc`N$V-s7FPqtbT>N-OZFB!k-iwev)E9$kM^7k&nsE`5R%MI3o{9WY?M4lc z9*+`FMm-+5N$!^L^@Kps7lZwYe51&lcL-e|-!q~~rsdZ+$`P^0_WP z=B@TTGS-k{*LF51nuAJYD%&7P!-UL_uecjX0F`szM#j%Vr(N*`^?z+SEmlCQ*GE@{sf zT8E*N?z9SN?&>DfJv?0-B)7%WagbywgX9aI;in|?!8FU|$?TIWebb5@b~o^`JhR0( z)s6m3sSc4--GHRLJ*~DWj9eNlh*Ai3#o(H1g))yQk=aMx!{C7kcD9!8ZsOUP?uae2 zCRw*&hyK5%`-xJYmYVK%nk*CZ$!(keQf@nW=l0I(Xwz!%w5EuOk-G76F|BD;PP&6k zroG;IeO){q^SV~a>+&s6OY3`i#cQDTCG++J;Eg(QH|!*E>G(3jkMCb-aeM21=}+As z!kZ(YU*)6s19;2*gp4)B>bryK{WGNTS$71g{6AgiGL>h?+L;T%9?FMTdg`uw{vU5w z9$3@y{d;eSh?~eN5kx`|yV$8EQA>-6t)-=wT1xC|Ek#1Ll(tl4?4tHPlm;zgYqhqd zRr`|nUh>`}_NA1n-~`(uML;$~ReNdDxHT18%atwUlA{F?|r4|YE1 zlH7L%x_UmRwdX+CGoD)p<$S%eOyQKo^T-<=*swlaezFJ+xd59A;Y*R6jWQ#5psQD>d}{D0QX18-H^~DR?C6Pjf}+4sFIzM@|FD=eq6#IYOT0%=uh# zaQWO3@=Z5#hRD}f&?DqLEj>c6)ys~M^Ys!(V6ri3(qhrFxg+Ezr4zMk=@Ig@{G7i$ zeEe5(3V}$|e!iPCLMh4Rb4{CdFQ=pIzcS;}y_~j^!V}ZOedK&{4W5?lA^ERF&IdWC z1OnJY;yQty7T2-Pofdy{B|9zNmPdz}@(qMH#iZ6q^3ID{kaWqvjMh?iR-DJAXT|qF z&iP1I`U_C;0U9YgE8d5|qCR%Je~I_G;+mq;^Wp)2=FF0mkGT?@KtAEKi9kMHiF!TH z*(eZzKsXNAaq$WNj02SSSI)$u3um&QLqe7TQYae#BImxcj;~!irn`;LCQPk^7xI?m zh6x0~l#eDBI7N;+bhFhb5(zPv2s=cs5iwcv-9VfVT|?r|t?5gMuE6vV`8B>7c#6TP zR2-dSUFM3glNVOW;!tjJ`ScL^BR&Vq!~@D8X{twu!S$y1hC4ZB>?~sOk(91H zs-{6b`E1hmu4!mSQOj^W0d9NhFl$w1xLNu2-j=GU=>y-QdLmNGus%f^D@kTl>xx;T z1p;VNc}?Zmad=(V4HYpYzc;`*kqk&x9%PSX3WB7MW1fY;a^RxoKq0i>hckQx@U^|BD1&_wR=e3Mn2 z@#BT_@{PD0ZHRyr37MvW0@CWZ5ZRmr-7IBUtaRbvxYP4J_-vvVP>`OU*HeH^aHHYp zR04d38B(|50u4Dh|Me>UD*RWtK`ihSm-Obs zHvnJ<=SP*ZJeB3mj9y(c*uc}%xoyfSam`@vssh&x3T%V6nEC3SD^`Xpe6do)D9DdtUvy@+`rS$y9%@*{#-w*+XCbq&Ah+EK2;r9{Y z)|IDc~pi{H_;_|;3L3s7VZm>|3g zP=Q-2ou@Wjzf{`ak^BYPeIq#n4IXSMkERTQw-%n>NN$ei4z@Hx?Gh~|kZAqBTULv=STsZI$y9wKC6`6DKDGp*=C_kQ(W2YQ zF(`JJr5bwUc5)~x*F3EPT6ilt^&b`vMOl}|DQN9=YZ>vlo5oTGVxiyqO&T?I@#mH5!R-GrO=3R1) z=+*q!{I|?|maf5W%$qwZ`raBbMDC`xS#R2Y-+WO5eLE2X<}qvBTjrOn-$qi96f`Pn zRg;V%lP%38`4b{Je!D~K?}Z{=j{}Bx<6$ zqMmc{x=Cr!bL5p|`B^!Hb%NLIvRX?wnrSwQJYBU0`Y72l-Q(;UZ{$C}SQsiX-4d%@ zlHIdZgvz9XE!+#-+?f4X0Ql8IN3EF>VNl^3zdd9Xe#)<+sFcxCY z7+E8%k47AwTQ$nOUw~P1sBJSg55uh4oF=3DY>QJ;I`WK@_6#pE%?pj2W2vol=f9Cg zbzF<&xt5v&6*MYJlXixg3Sd9;FP+9V9` zad~7bhod`ZMn|6mDwSfXFDch}Vxk*U7g`!Cc0L=cMHO5SxF$E{JR)jF=%33m!t_kF zG*q67F!Hsv=x(ZInY((u*NH|61o4Y3QF;P$Ev~d#*_aG#oVMg0f5D{vq^nK#luT^s z-+Rx`msoBn&3Vp*o^+U*4!Mbh`h2*sP=?1cOIg_`oDG@870Y^7`v?)=?+exudoP4<$)al!w(@4L3Yhf17WMrH z^Rnl<_PPmUxZw6Iiixxt4s>LzE!KrH8TZ#)QYHB|1jPDl@|uVCV5j$PQh=0<4vEuc zS^k?y%RGW9Dv}%@I{jlw_FXStlhVrOKDpA_-$;+KCsOAP*(hbNn_7sJRV>zTIcW#4<$^shbS?(5yl9-2np5PO>f zq-2a6H{G+4Ja|3UbaUCOw<265>3b~`JmiT5$iAvt3+h|TR@x&vkxHM7A3Lwd@ncI- z{7nc!(dfkge73~BlIO;5(DF}?mPXAFTJ9?AK@6@~k_<6DGGT1k&Sw*Mw0=E}zjOq! znG=PY9J16=4v7RFP!Ls3p59)lLhryDFgfWN1vf%tm47_(Yl?TU~Y5q}?Bg+@SZ~;g}aU-n$fhb9ryH%1uvThAfx%jV4bdDqHxV+YKv}0OSCziJaEbDgjpf07Hc{Tb8_=jTmi8tDu1(|G<@rvZGk88kO6kV26XdR%N=C_{{`=Ia^d>`Gg#9x-CQ)P zRtzy}1-b2TK+uZsF)wbkVh?BGaH2d;U+<;vZYYN4mD- z%LsCzje28{Ho9;2-+Z%Ck4u)#av4Uh8bcUQPFwA{Q8b3X|4&-|YGc@Q1$3$<=15%? zAjUv+yFH(cjll;Ogia-sg@x$u6-z1_`Bh6F0YIYZ!pq%SLI|17hL{sZm*N~Zz%q`kaA(13ZEK{ty31(gxKPL=AgydiH9 z6ksDyO%-6FK>@zl=x$-IK-<+E;Xl^+MYz46IGyy(cC4%TALRjk_{!_Tdo-fMlZk!>no!&Qizisv>Om(I9XvVOxXtE&CVi>+q6 zS4%jxawn*2oAe%{@+SBCQ4zio$EXWG(fk?fOQV;cta~S8?o&%NTp@jGStH4BZgL-v z-eiomqJSyr<7tbRW9mo={r18VOz*b#OkVt@mRT}zp$9uUHzkEev+ok#&BNEnVil+6 zt{aNcBBYF`FD;8;Pid3;g;0r|pKi5@bdhmavIRUBMV|kwu}SoQ6)BCoz2fp%zm^AZMg(T=Dw>ES zc|q3hl00Rzd;ieNMdHRkyt7%{D2d%{^!D6BgNfo5u+(Q#8kUAKYK2-uWMvap2Gzp| zYki%~Y?>b8{w>V9OW7mRaxr>WGur=oX5wjpKkOY;t z4wmaOa@7^Y@Z_}VWwwZ}Ab87v%N2~ptu_hKsv^?({zBvX^4tr~uorE-7^iKiXzk-I zCqawc#c5NR;!fG(CQh5Qg~e$DaTQ{m)(h_G6>#{g2WD9{xBnW5-O2!ATTce7|7E-sl2mMtf`MZU+qo;g-i+c~6 z=OS_AL4Tor;*t2BL3_6q+##FA4*B;H)?R&&{L|I1^mf*Dl2TzSrx0XL+UUomhDvol z8&3^ApdhOJ#f*Idg?m(8s-nvW>Z5E8-_ zLfPR626*0b&o&MIB3JCqN3UdY;Fe=bM!YbvgHA<%b&bj@ipwsy6`+lW&+K>9X` zHX#cxL?;G%fPY>Es?yE+Tv=E^4G{&`z|CCsJg9@2+VG0F;jSas*{$ARsb z4L4)p7Wf7LYz!Rxp0%eepJ4RrKyaL=rvt&Rt>QqiWvjb^pg{gjBjExm;_K>LOy9OH z;JvlSTg900f!b(p`l+PA@99*gzmk%Q?)SDfMn%tkfpxr86BEE`S^aZt z8r54aDmU)WYnvEAJ^)uP4ntf3X(D|wfaLZ_OiJUuMYJ_xYALjL%#k7{# zP~5qsC-6;mNzoaLMq7WEz)zj42?V?L+ z3JoHS=3J7Lg68j8RRX>9k@Zvg-R2LQ5XjZdr4(2yIq+>p@c3ub(6ou@=# z0LB4%z96IwmjmBONCnlvM$Xt$87mf8?S*`5@I~n1rX7o{i`>N_V~%YzKiFf-gnrnobXqcH)X^ zZ6P<@(U;4t)#YL7X#X;6j52~NNWx?evpB^Z@=DAO@+av?T48OVd|CjUABCI#O1M&} z#7gTM^3rtFW2Lo?vb+FHe~P*IA7Cb>S#K-53cw1WSm_ii#9V~*N_@CM@O;4^4oa73N_Q$4&>A6+;8J)s6mt$9+fIYtu^4uZ>FOyYpic5w|GnvQj}h6{Ze_z zXOp1i7Sw_t1ke*eguwN730kF-i87A^5i}^{#X9RyNeSM;SrDl`bpzN!89tlT9=wCr zt|!pf9ztvP-$BnBo7c|XBhbXec;>}Kyb1LO+=WAZ372g%7g7dX2!E)R{HR?#-wteT zT&Gv0+_vS4uuhNNVqK>6;PQ!4mC;ycztYH)(wB}cP!@;59d=lUDjUrR@PSoMf2vTK z45d9-VlYP{=nuNQ)0*jVOl|5sX>1MU7p^#ce&Hw9)Svh-q^Vc<9NbhNTn74(?ApJL zcI4Wcp`N>~6%-@w9g$Xsda8eCttFJjP5=BmYkTFjot%~vxdMUE^s2P!M_$?Vu#7)4 ztd~8Mat6@wowQ@a`7flkb@?2^0F=$XU~8u6%EGaNDAfF-t)|l2jNs>sw%&RI0^Z%M ztaK2(t`3}7_nVh((MqBj!HLVZ7=hq`H44SNkKF4G8jme#b$TdQ9LB}<`Vy+&Mbl1L_b7hfa+ZY`0n7SuIhxOa z6bbY?qP|_0%~Qg;Lflgd75QvzCLU0bKBb_ifN_TtTxZ%6zGnLN#p$f|ZRBR(;%6^f zqoiFm3v)gEj*-ZG*x_M~4eALJbFJ->r{?3ctmWk%-)akdKP_xo3^$AgqvE{sZTJQt zY`gp2Z0lx89?Qtp$@D0mo=&FU|5lt#zx}Pd$#j8D(AM|3v9>^pb|3PMe)U{>#kXRc zm#S^n&!x}(4!aMv8rQAUxK>>xowH8o|LB804@pwwjBm*-yS(cywnR;(htodYMbT5x z#Pim+JjC0m>;>yULryrkpei3HLht;h8S*$iGPe+kf4gZ|_3E{2)vjB;R_*FBbs}nU zE$EJ3UbL3sYwV6DU$Xkh7rrGEdG6VDtr=6)%G}K3cfd~+>3_aqDeZd6aHid)A2ml| zh_FmbbJCsh?|R*9m)PrtcQH-pdc6X_sEcK}waLiQ1Dbiq)NfQHre3WYwd>Tc(Wn8+ zwp)Yb2DMQ3Rcl=z{im2PTOd;G)(U8488{(*txZZ1-~W)h7`k1?rpS@I+^ZOSwk4c4 zB?ZC7h9>`_x`QQbB~f#SwHn&nZc+)l^xSR8^y>d9L^-+kF6?PK$C+vE*Hn>IW(BQH z`%k1)Gs5Oy{6C@`5MlF^TkLYL_DfZ6-Kc%3U833--bFm#|F7DA^Y7Gtv_b7h2x<=- zA))@F+ILBfvIV0a*R1U&nw;#gwv*>jO*Hiq8>zTv?NT?og&&EWX%N>4ow!1@=UjDm zkNkhH+gNgIq(zVK!ZYZ&l9~@>AC9SZcBseKP0*&ww&FxasCo4K>hw<{ryObo zrgGXvt2hR78go8Q2Cm=<9DdTn*iGMsq{ZihrJrcapF6ERQPpa+(Jz(PcDrxyFZk7L-m@k$BYpnze@%kA^y|?@5)>p~ZQ0 z*U7ZmnY0q$-L%=j9BwujH8HN!`QEYkUWzNF(*_#0&@rRkPShz>4x|duPHZ3-Tm3}q z)&oI{{^fx4%fGX{0lUQk=L0H8*SQF6c~Z(kX+eEyDi$BzFEkZjHf_RW5Fb76D_GZr z-J&!4U^nlKxWm1?7!dqednB?wvNkDGw?@O-@hxhOiGcqG508MMZcIudf+6tzl*F~@ z`Xg&>b+aNfQ|JyTx#P83>;!Io<9CxzKyg2n2||_su=*=3NQsDsO3-}|TOAbt!WxJ6 z{b3zp@~w)8tr4pEr_~d!e`1X`6sU`eKedJ#vg4G!B7;GiwzHod-o2Ym%AP!hm8YLX z0&aEUB5l!bBIpS8q4(92$gkfo{+!!jm^*04!}AIEvuEI*?qb@>S190)-AEd7K8}+e zgW-FQG5P&-YvTZ8zn~kEtrDv7m$lrhJMF&MM6Ti-x1ILlFL#~xg+cCh5b3YGFTsPS z^_%C7M*eLrYbfQm(~5k@`8w>oxK6WD20gxG^2m4zCkcZ^0xJ)cYE;-HJI* zteO+^ZCZ6x5VK|YqF}VEkZrb-AQEuWysHurF>}6{A?c)vN0)!;iy!;_pc8%bnG5d6#$( zc5~cCx1*S?z9et_PTWA%NPJx+ZX(d>--%9t=y$x+=Z3&FuQw^JO}yem z{>f!-?uhk8gYeIp2wx0AyMK+Q`P)L+T(urr?r+;rDW)!rOEC?qMbxW}|6e1fR>K-G z4QgwD*RES5rcoVq-_O>&2rGregf3}GKvef zHRT)J3i$=u2LIz$FAcKwcePrW+TovUll~uTC?|Vl5bbYo*78aPw|u7b+G}QO7XLTB z4s%4muy~Q$#yqn=BrhO+vbZ@a4yn8Ef#+Xr}qHUw3%mU_g^FnPIf0TdeHj3^GXy)0&}vNu^>)$rxVQR!x$3P-`%4c{>J{3N6QTKwtn*hD=yX z&LES(jJ;KDb0sC4XAn}|f{g;+ee~)Mxb%0Ag#?a<_a>5?>hVdb5K>Iyz4CAdmqG8n8 zL%fQ+i+{W*=#=k`H*8G;8aAp?Uq9tT^WU(wt8UC6qkrINtSJ7nn)ua+3;8;|=|pdK zOPjwBo#@qzh{m;`KCNIPm($WV#+d)1F{=S8*4kFeEI+Ze%~$zcWGh%>YZw#ir+e5; zA-322D#{{}g0rX*E(#LEawe~0O{e_}(>mwZ)8#FD$oOY!@uL{l^gRTN6PJpm7gu&+ z-yqcWE!*p6eYEN=TiaLn(P6P^T&3d}JNin=WPDLuLmy?gvo%C_+S)n`f+zVi+u52M z^ScOHG3{-wl?x(AT=%FCM4nZ)`qiGq}&%3D{Bw&)m*#PFZy;9 zVUO!zYh)(u%nr6UUoGs{_6q)pbA8iHgpJY?Y~=(Q5mWH$Xp1)Hze4W=#M(JwB(vIm z_Yz@nep3CS6NWYw`^SFrQ=OkAdyegXU0GhLhb#~Bv|ppFjhS?_=U5ZI5l0Dk%PM8e z=wj>XA$6eS>Xu_Wo}6wuHrOj}Io8}u-JqLmb^4a7%m7<>FId}m!FIH4hP8!JYkMCgCLO-y*Z^GI&o`4)ffwFb_*&Yj3;9nlfc)P#NQ&R5nByi)c z2^zVpvKQJs!1hBS+;)_FwpR!m{yuD8pn)(X80ArTA7`q#Qc@XcA35n0gyz3*3ql8O ztruwf;$L;i{LofO2@wHs3tJ4b#p){~hi7&Ug2OYF%?O$dwl&cckcT<60c!;_T)nE8 zg)#aPf?CI~#paoUlIGi*No|qzEH4J7zcW3uhS@Z2le;=oQ1h>W{ymMpvKjq0GkSFY zgLY+*GSoIkN#rG=Npv)yP4pmfABq`fE9=7(cq5`}cTP-fseHmy5Dg`&hRNUr8Rz77 znsJ1EO$xeya$>BsNNZ8FS&Md=(38U)8J$Mh{*m9ya+NQ#~WL4(HHhDi4)wd#~_ z^VHNSU)(1;}yu``;ToEgtEXtH|Aer>Qn!FdUCrChr)F?dH(m{6dT+d{fsL?k4nz?9%W9m zbya5YUq~b3lEBq1=Ces7fZ$4!t))PK8?jj|>j9w1a$sZyp|HLcmsu;O(N=_*w}PIs z<6=Cu@qFju1NU`;G8)gYeJ?3zcy^?jwl>OnK8G~s4AhBVWfsduq4KkA<&_&|1S3AR zoiPx!QJ$NX1@MrfbRik4K*=9@2cd{rwu*|+52C^XE30NfN9b4)6!xl#zn}`cWVUUZ zN0lF#!q)#Bj(FBIR8j2*bmnv0S4uVh3$B9Gsq3tY=pU#~Rp82sI@NTp?Hx&Zn=3(e zs?!hX&KI^tN+Mpw!8Z1C@ZH?TGJ8sz8NijM8ju+ZJtj$*G_)G+{5M5u#pUy=|6}A z=3}!8v;k8-NtrVpET5Rr(sQQE7uw)Kt1Caae({SNET5ZDaf79Ns{m1!lBp5tx*c=- zFT1Y1?)5VAy8^}b=(z%!u$WLV`UQ*8M-_OO-z}zv1a=AAV`*!%z2< zMQZuf3lw>4T-j>cxhB1qs$mz1T|fW)$Kjp+9nx1Hd_A*YT%kOvHkvyEDZvu<4qHbr z*}0#rQJQXNzQ;N(j{>A*wAg1m;3fY_1jgSW)h09(M3M2R>l}mM;t&|Hd_^C z1pkFz`r&hk!9!VcH$+!fyBmVc2*}+K9RUH~XjYco4bhjyS7pfEknhb1$lVY&gM6E4OC|G%_J8{rgJ%($W`JK)c&{Ku$}i%7H~xo*mQ!j zl+Pg&UT_e-eg_tXbY&0u<|Zgx&B{jHg&Cu+Ec9FyYItW?q;k-NAoZTDs-b)O`XyX0Hs`XgcY&Rhg_Ztk0(EK)b!w*X= zR2!}jgQmQ&9hc=DneM}&=gdO3QGk@)Kj+r+kPj1?nMXk$>{%?8B4bpc+-u%?w%1f*!s>&0W^?kA2NTtXjE}Qtnmzgvk(i7aiUaIKAD}~`$5d4QeR&r}8CCx~S z_~afE>cXMJV;>->YDSRcn_Ev$Kzwggv$8{q=Qh-rCF@^VI6J|Npr2oEWpe@r9rMer zrt~$VYVV(0QJ~Vh;gYQX^?mT~T|`;qE0E-Y`dNqcZg?i<(v2IQ4&PiZ0(A|_or$)4 z<@w;$e0dcEQXTRN9*Fvi&ku>dV)~)~manL+YyYc##R(*}H~Na>ss!}DVoykJ?W%I_ zA@{zbChJBE1%O%B8@W3x%a4iB%$>ynfn@!nVY!v$!iU}aiVp1U8p|O!zTz5fl;A6l z)8e}GBi!jxz2*_!_>X8yM)NbsW(rC}J+-J&Et^|48feVH2F-G+$E=IY5QeQ%3^bg&GQ{)#K zmLAsI{UXeU8@pc!-&}T|A*ba&mgHTGUN!d}JUun{<%dOcUwGJ^xfjU4X=qR&MZ8C0 zVAypR+Kst$$CR%f7FS0utBuy1`Y&s8Gt0ifL@VXIq_PFu`W5S=x@kzxP_eti>dMOjdyPm-D1f!$lTX zA#abj6iLb4T7O3unH%eWc0{!P+#>~Azlp>Puzr)$ob^vZG4)pjp`x|(;76*tMF>p? zRYSa7m@dQoQ9JJ)<=vx@txg}vGR!+%j*)l<@<)?{GA`7~tL&+K$Q7lpdDLi}_ogy} z&nAB6!=os>ab9^7g2>l_iDVOkj9*{R^OFP$y=R)qIz-R0nJMc_s79#@WUeRBxW+Fs zqsPBp0Y^?ik2HH;i@9`T&)>i|)t)P5#5B+ADx-4a?cpwKKEM-GYu(lzqAD!=aQMj?yzmJNx>I5Av;7Lpqd5X5m4TUD9Ia_V-MTf#SkK_$~#ZWkd zn)Ql1S3WLV@apOblnCB@EX5XIW!MBbR?KR}_D(qj76Lu*tN}j=TM%y80T0grN zT7JUcmudSv_VJI$@G;_YUZlL7w#8}L7g<&4HP641|B&R)q5RJnQO+6w!iSK5`mIofwS61QKYs)AiIl!)Id?APMWdcy#d)La#R5F#<19P*G8A07 z*%>1L&T<~fP>S@msM_r$#+@Kc-#r$HExuX|6)1E|Ad_3;~E8{Gi`5p z!mj;})%F-oaEn?a*z9Tc>E%uP>ej_~=??Y!6FaIv1bXSk^)pLS72u~z?Gg5Q?H zP9yBt%^(S$7SsuNuoGxc_;mF_vB#l4*iY4cUI5C3uH6M$ofN+0I^YY~a&e*;(naC( z&U<+cQ2J`#2u@>r8&;)fBoo&|fh6%sUOoA>pQ#Zp_W;@9j+cE{&V=)MQD|6+{4#PF z%Rx2({HkPrfLw{@EbI?NIbY=m%XL|idoMAU*pA{@&Kj#q)Pd#f_#1MFW%Xb=Pq2$w z^cXzqAePetd(RP2!m&Q+Fk3%lZF(>^GQhCa)yB;RD&w+jKA zWsl^?%1?eqtDb;Y%;<)xPL`tBW*I_!9j9zFd*)A=0P9mv6Dm{g&M7 zB`pxX%r64f=2@bdGlGacUDzjl!u6oEm^rM{z0%r?P*X2FZ;$c@1ZNj8pkI zH3g@h;?zoP$rPCdk_y*TyS&ybphQ$9Gg45z|yYAjAw!l@LTs*6)Qa4HU`R^U_zoLYcW zJ#cCZPE8wxlgn{(98Rsqsp&ZNIZl0rQ*&`@8BPtusf{?b4X3`tslhmP1gFw*DhsEG zRIlPx8qT|kQ=j0}6P%ieQ-ywk)Zs$YAnA{j2XJOMPA$f%syMY9ryAna5}ayQ> zGfsVnQ@wF&22Ksdsc&&=B2ImVQ=j701e{ucQ>$<)4W}03)K*A!Nt}<9`*7w#ocal; z#^KaioXWr{3r-EesXI6|0;iti)FzzrIsq#Wa|?|f(Qix&o>R?4ok}|zpgW5FLpkaM zS~cC?8uhJuBMMdoV}77xf>IV}=+w0|l$c{5g6dVfQ5+@t+Sf{rNilet=0-6TJGQ8& z3`OpDaK=d`T_1c=tqP8Clv5Gn?+BQwH?`NJ6O^H}K3HoyL)JE47jZ+Xkb zPom^O_70pt6$sp3=EQMLj|{WVlv^;Q<}RdpIgZk(Ln(VVxrqU!5e1Q_pFo}V+T&#C zCDP^nD8HZ!z9{*mgLGS*^JaZCqU?ymbn=;elB(EOISzlgA!rYjrvm)!^9{Hznv8aw zwuhsRUd~duZ?cQuOh9)7x(1=F=W9LX)r{3N$|?e+0F*h_UJQLz7G|f*DYqQl5)9V} zBUyUokC0C>`d@hZd(oi2m#f;#pjusgilI5b-|&`yGPL_BYxg1e5)A8`s#b0)2a5BI z;XdJU5B9vtaBFTF?1id-knb-)GT`1f;`VKvpMds7*{jHvPEl=-LYCj`ZD@02djPw0 zE7+TWl|pW9bg!(v4A&yR9)u*Du2ZUazZW_m(D`)-l1nj+hVgKbE&K z`ku+_>Q{%@)BwH3tV)d!h8$+eOjI3HimPA1F9n!dC@~J1W)Y z;f=OT1W|q`!omyTW)e`ls5m-s1G*u95@6q;*mezD?W|bICgSGkaf#zwa*{Yc8J$F< zHaX(t$?We5@OSka&Cqs_o5TsikoTrs_Y8G?)jV%f*C)lG@m_5oNI6wlL#N=>^F}#e}gjtt!x3iKhuUg$)K!&}ZXfLo2=F>mE}LF2mE%fs1~zKWxT9GuN{ zx?e9)`q-}aT5>?P*z?7+T|H0i7;KINFjc9JkpL!T1`S{$S2-JN>*28A2UW$Oj-NOh z%UuB&LKiN)>XeP+V=dMt{WGtdJs6f62#ezxi)phUYH88kURNGt;BI8L<^lTIyP)T^(r7n&00^p-A|0{?CfyrU4f=r0D_BjsYh(Q(8J`In|fR0)kd z=u{BVyFN|*ilLE@{EN^Cu`n$pbfJuM8={Dv@Ei@-g)s6ZphZLM(Q-ppM?J2Ntid-} z9Z5sMUDP&3u4#^}T8$UlI}8Sx0Sx{F4*qVm3O{c+^hR$}_@3tQ#6x6^u*b+>Gvu#0 zSeu|t=KWz)b6{4)8w1N@BxGe;U-R3K{+WLLBQSsI;d~B})E?;0EP0v8w6nj_sN1p8N6ng~;&YtP{&ZKqkhX{&|1f=fvL;NGq zS5shj^#+eIYMQ+obf17>Gsl>eWG^Qxzq>>ifc{8=m5ib&uC7jWo;afgobpR<3I9vO z|6?``647z>-9rCRvJoJ^&cpsW-5v!y2Lfz83JdWohV7-nNg;U*97U zChMfxWXF08!*2H=pY`@g5qlWLP9*shsMcnxHDpaAsUJXd``jxSWb8dvftC_dE;?BB zJ092@6pD5+bMZ5XuJ>z{0jT3Fa8Ub1$_yw1>uweB%K6+P1BQ9x7a z;Nks-j_W^Q;NYP+Z*OrFGuJ*)-d7w&e(neiC=X@m&rq?Su{=v#6#FK4P{1X2vFmre zUY5M*UzX|R3!b}}Irgg3Gm*O|=G;9p;qD3J?x}&hFuGs|Ph$;mG@(n0fU9yxtQzEp z|CScg7Ld+8H6@=+u`I{(>*FY-2uk|WUQ+ISj_PE~B(;MRFmOYzH`<>Qdt={M5K4{G zC<9Q-dG`9!aFKEdp;Tvf^-zuZ_NwxHp6=WEFgf~?&~XlA4#^;6moy9Qh(3J7A|cb)?(>RW!qxUoYA4;YPNQXy13 zD?(>j4{5`gK)!z^9`Fn!Em-gghPa;d$t{3#DpZkfHN zG{X!A1_WrSX`^Z^w};9bd6=~2u&T1o3H^pA zGroZ}&CmPNGS|T%)r?2+USqE&zivQj=mw=?r@(R)r7w@N za4jqt_cEaLaD$Sz4g~QD4-l~)*hn@2OmzcLc>~0!>v@398-Rl~27pyYfaHz#!SXLW zZOcve#_~@F+M`BV(iL0h2bQ5SxXq(n*bGX1(}3b|gK}+)y}Imok?YU_TVbuh=c3r5 z-f#p2HX3BHLpQAo45w_=;ZYuL1GT6{Q9NL`27N!!5lf?dKp@^9bc>7zgP6jC|0W9i z7WO#J(fl;0Ht*I?+U1XERj})UH=5+J25v`P)a&h&|J(`F^#umnd90;h zT-1-D?`H+7=dAX+Fb3^{q2fCO#=Dd$B=K zhK}z6Xvhc%tF)~+KqV66I3vS@{ntQWkCu`!LF81nYz)IO42KFABvsbO6k-eCT zl)c)Ny+Dna)zr*Ys&(>L2o zpzp%fO{8|Ph^SwQdGiuCy5IjCmMC(o1o`>U9}=RRjKoka!q4jj z1)!0C2Npy7et;FeL;%3}^}PBDPYzeFwM zOZdWE9+@ehJ_sY@PZaE^4h--56w9)Qp{&C&EgTsgR2a?r+3qhNGGHGtV#6Lv0xBO9 z6p4QR#jd~)rIND)1}!empOT_JO@>#Uw}4^JO*pRl`a!ebJ0K)iushAbdh=fm>)`}!F%j_VXCQJ2LY?N| zIrv%+e>etqXaQ$+0U+r1k}u5^X5z(gZVTD#ieAjUvLU94;~<*}kS4GOBfmVnnN<`A3XixwX$xp1(qgl1dEP-@ z=!y;MgX{8oF&)svM1X(E1y^^ULEhmY$p-9;r}p5~gxkf?rca?6vDcwz^Tif8X$$f+ z0g-byBW~LZqa_Q21JN@(bVB$w>bgt8y?!`oLVL2-9eYL0u_ua1f(|JDR_b~U#}{z2o&}3R)E~eP+JF}V#-9M)GZ&R zl+2)}@=z`@q0Gat7kU8Nt3doWQgXC|Uw9SZ+M2_W!zVw>fS1JZrf_)Myx~aQ z$e|@bX});qjphv~;e}#-9Ny9-5&k1{cw#Gm6mm3?w=(!m9Q>KWj)5@p3!JVohk}!J z2`H#?NEI}!2<*aKVtD5{ypCO=`LPQj;+{9EL><^u0d|LZ0lR0#I$#6COt|En*vz7i zDpC=&>Sr+OLTJ<}HBuu+Jue@IG|;walwLCg>hX5?OYjyQE+j;5f9tCtE(xrixTNBm zU6NB|%@jvDDVA2*RIE}}@G@vcY)BAFl1dbzozU2{-Uc|AZ3jR-q+ak}q~3eis4KKg zuoG7Z6Z`te_iA2{G!0kICW5`E+1WDw#{`RuEGAl9?uvA6hpT?-#h6u;{S_Sh0EA=P z(#Y>w2zUm6N0_wKl;=en&#)Z5%0icNNew4H2vHsFX4xn_4h-=0-?i?n^tqo zv>GxAni=GXmY(AZYNBwzZ;GMa$2$cG6`{Ku9FQ+M!`+>S4I2c5gJe^~a{w zJut5hPjPpba8!bWs+}%EI90()!vHKT^s)))SNjJL(yH|oM(H7r3UWEC7zUKJ(lB75 zg?2LZ4en%VJnEYdD>&zy&^{(Je(o;UhqzYS)2SU-!d~z<9+1=WxitxVpHSMa@rJUV zs>=~u49smL%xMc$L{t8p78=NgWC;GTWKUaB zc^NgUdPU z$-i4yCs!S)J3Va`?O9R76>v%SHu&C)N#&6S*E^at7&; zzt=H2m;N+A97UWCi=q2&8xY;&A^UF8JxT_%VESVl4TOp>Q8#%elFIOfLCyt?hhqGp z93rc~`k>k8JqrL=hf7Jz)C9sTjIcBt*)&=x{*KDvCTvZIcCoMFI4VJsqo zaeJJj3hG$J(ONpJ0dd3pL7dA3^Mg$<_eb|iR!nUVgT`Y9{D1@gInG%H`Poa>MOoFr zncp=i@`E$U@@fNanj2h?=3!M(&T8nOa}4}94m@=P?)gI{>!F(8MtY%X zSHOC+4A`gKU@vF{z2lKbZSFM`_oo`8;~pZ=^BOza$S(|l&rAUmP~Pi~nsTi?l>CFE zg#d?^b#YWpegAe%bf$T!BB=Ls7>TOjGJHH*31_%b)XL2u5PP37`<{qCtQ}RSDyT!_ zsAA}z1V@LuiSS*`;mLaC;8;g>`Ev&UnFx=WNAsS56Y?$O41_aQ0^`Z%$i%a4ZUI8c zV92{fz7}Ha$9VY~UQoi1szLK5Z!;d=U9C#`OUXPamdk zjf{8XhPiB~4sF_xszZB8DiIvoUwI}DZEhP!ML7!2GGkXAiAGg+vfv27;Mnk+j^1!( zljI6vUn$h5n3LR(Ac861x>O~UIT%#C0|RR(f`QySp!BwmGSZu-h^=rg4d|p6a689I z_PGiArFM?m@?-`)K?L5|-jOJcGsPV39y6i?xSb6QbFGL;41HezQuR=u5#TMqF-2eL z9({C2$LsR%4E#owLiwdLcq!RIyY8h}1xR~{ z^p`2-pYAc!-*uEqU0TWqU0dz&m1|OPxtfDId!iFW$uaLxPT^ctWryhSD>{h7=Q@*& zBYnGpr|QX|-{qmn5Jkk2-ldc$H<-L*!0uweCW-?5*OzBA>`!@Y7u)d5-DP~x^+OJS zd4>Tt$qY6Dz32gE{~d$IV^V0|QQ7iX*qM)6lIH91X)Udni^tc1{QU5y|_LdPH)3y6Bf&Fi#%KnB_!q zOW@!jx%D*@D$@o z>q}Qane$3}qNIh667q8c>{B@aZ6#WA0`a*U!gGmj)rbeE;Y#RCM|HT2AW%Pp3gDnc6n+VSTO^pf&$vji3?2H^kti?UN6%4K zfFksqg%4dM2tko;Aj%=jcorbh1D38I6kdngRDQH6c#*WE&sS zuOg>s2&dXQ3tVbQKqGFzMi!py!*NAGX#s~HK=v#=1~6?I+8@P^E*_2MJr9Gutj;i7 zxlc=Co9DXfPQGh|A-fdYW`_Epgs&Z;a^x-QK_JxbsH>sU6>Ro(!z-dQG0p&~6#Xvv z5*SoFs)2Jb{DcGzoXPt9*c3;U+<~D(M6O3y*OA}B5jp-O07FD>0!$p=>QqM+c`^fr zh+Gd$f{l@_!y~mA4hQHaRX~7lQUzI`zP1Re*ubiQ09{`N@mwSOhF5b1=qBh8pqrqR z4XCiCj&S*Rh7JL`9=+)=Aa`g0TxNGoK_NglsR9CYlPbvVre@0>5pZd@)BB)15TEO7 zfHl@uD0YP-6bI=hxDce9;F6<016MjC;SMjxm8;#RBR|o{5pl4nS~JbjMXr2X9RDlc zrjebdAaSc4eH+jq8I!NA0nnzBTf8E11MX!&VR(A%-HSW+6>hJf} zDLOoNG|ov5F>@Xw8jA62jzm-2H!K@U*Bm?Ep>84`)3!kX7J$;8L7y)@a8M=wIw(>C;f}1e3Mm*Yz z`e3@HpF5Z}6u)0iA&Z@IeFJzMBRGT*W97jNcOZ{TxGZxVxa?;D>SF{V8yk~;hIPPH zhPHr5gQ2j8JkJ31g$6`|GVm_M54NP1psitoPa_{HxIXxzldZTNG4g<=Y8Qd4kl9A*rENS(G$4G7M#& zhy?qN0sHQ1fa`RhDozLZ!qyFlf8Kf)_UAvNu%D<5;#CYljG(Ip$p)~gMlhm6lJAOS=;3PeLepn*nUI5sVmG`HL_Kuu!mT<_*5{2P_<1HXvRwA`)MdN`uDrMT!9e)3u`{=Mel#G4GZgEzU$8gQ$?285w|QzHw}tr%EU($@j2 zhGtz%ymYD)ymaY@L}k#g>vgSwaE_Qs7&_h0Q4*egjoZlLAuhxS#JMbj0sSFf3``q4 zD;fL*ooe2re_yyq7a(2)yCS=K^s(I!A5zElYl-|QsXu`f_Feiy2|lPJXLozt2K$&z zxrb*Xfs;1UJT$5=Jj4Y@>085fFc-^Q2$uu|ya#N17Xqzs8A>`sNxcV-ZL3DlHF*=x zrA>zONZGzO$QBDxypQiYqU9V0b(KM(S`QqY^Qj!S}^_ZVDlV~X5>M}|gsLh0|8 zr%@D~9X7*^5iub?>x0r1pc?suqqy`T1@6xSqwJ@S5fa?$#;p)|>?Pt6YQ-S4(`$vJbP_*M9^ViVD8PGf^5LLJifR*;IrcFNda((bc$J$UA zLC&1ry;a^9HGc$aNST-gws_RBBbx=Hia$CVarV9MvEEgXWrRNug}@msybcBDU9h~b zYt29a6@cLQVmIjuX$c2*@v+NUka@_bL!;nQB;KM`{-6VGQ55qt%p(Z~3B7a1MU_Se zCPoIPro)!LC;n_Wnd5;Xf58FQAFgPHSY|a}XEnJI1Fp{j)76A=QI+VqlRBoLwah{L z`#EdN0~sj16X@cWtS%F7&m`Suex#2n^7{s4GI`n<;H)DrV94`0TbqH~Jfx7|_xy3LQ3X;;Ib-BD z0PlYTPK@Zm$#NZtp&Yj&7-tIJ%nUpMoi78tk7c}%65+|rpGdi5?weB^RZ#mQ4ySSrCce8GQ^2n)OvaiQm^-_?98_(Jj_ z!}Y-z1-;{X8Lu9BZCx6J*fEzPsuh(Mf@H!w}W%Ej%;`e%FeKxy*LE^FlUsNbZy+7Q7!4kj3Bn}Avs6$QXVEMd3$Y%)*Ir>bT z^U_+*dJt!2--pqo5L$Ilom~-(5e=Q)(X@+Y=>!#as^L3-b>nZ=W6z-)Ha{gU^loiu z9SF1tXp9JYppJ7a>`r4SF8-{FGw9eab8zs^-7E;P2vRQ*srLkDRTNv_nE<=g0$g`< zII`Khyn(Ym1X~1ij))0O9tZo>0^Ce$g&6b8go_pJ(3khs`0gn*O9Uamd71J-p<|5?Hv96^Y(Uc=kwmadGqFt3w>GflKSMQ zvEu(yZu4c4KGHqtlm8OdLvM`H3t^aeDm|qYa#6qhRxHB<8SMi(p@04YEPeI|+2}tY z3k}Tg$R!S&H#&b9y^&KgIfSn+x;PZ$4F1@-|C>zuu{u6oEs-99x+5wAKY-Nn6 z7K<$Fko+v4DuQ_{Pg1&17bxzEG5nI^#1Ksc+ptB}H((fhccUI8ulOgF@zo4i5gHi}_ zeF{Q|0G?4386@^IU{5_Vf?die#3jS{`i@o9mcT>5JpS>|gWOH(Gz3w#6dpBH9)+LH zpTVj=vc}MrF+M3`XsZz{nT{}TpaRxU1%tq|SZ@ui#}mMA&BWI)P{3YQ!S>C{e~!JR zfz30)sMdh57PW@h$Q0FqG3yC60X-XOJfjiwde10-GLrKH~R|RrSnSSShg8N`2X5Ke{g(QWgEFujU6KN~W*br+f{-qQyQJ zW%!UHRWWbsHO!X!*!&Qsn*Z>zSNrG&>%r&WhFUjlsv0CkylH@AZJ0MB2%HwdRoi~M zBtQEWRAoPc2nWkU#Y>iqxGbJ#vI}NLV0rgA7X1{j-O-VO==ffmq64|h&(8O&Ry05n zCyW0rpqTENrh)e0ofqSjyEKX1)Gu;+L~OAYld553n;lhydFm2q2Jy2W7MSYNPKK!34?O07THvWj^;w!ox39r3jvc+3K|z$1H~W?xF=&#cI_y#VEBUfpWZe8_T`J|b;D$e(D)v~5TB3QUOm zO~PY5N2H_(k<7)jMM@N(yQ-iFKlNi(9DcSE$|>;615*zz(!*wY@b;aNZ*Ow+i6`-) zS?~|>Jhw9(7qRfDzCMey@ul+}os|}G44>4=*IckoE_UHvg$Y!h45;=B6m7Rn%1G~8 zEu3%9ho#J2jZx}08gfe=SsV-iZ3ObQYx3i;ww)xMuE2XXGD&4qHN46Hfwy%n@ZK}< z-u8o+z!$AUxVBLPUFQWQZ-p{X-U;ht;b@HN0zQVGeZx|safp|14&uBUgIcY93G z!Dq=FuGQxjJSNVI!R9p3v+BBjxACD)!}(F~_&b}>DvM`S^jRF^OFKJSbEKzYAHkRO zs!@)we+%_Q4E{qNDxRu1?|*WQ z7-injIt_7+iCFtnX9j~JyV_hC>{o0L5a4Xi@9b2TaM0nNH=vhhuGakEE^HQ&N6FRQ z@2@}_uWiM(#b9EpJPF8+|F6BJ|d}BrAs*02K zaeiyIQ^VP&}hGf)GA8xMnc_y7H}17K;~r%O|$IBFC$m#8&Ltc=5~plB@&a zibIu5SdSNp;kkh|1Nlc^AY{ z9Asvdl-3yh@9X?h>>UZYNrjAGfYJuYGCX>`BZjTlAm7v>sf=Ab3CM3HfR(xgu<&3bCqjdj&m^$y-LQdSRi$Yhoe~o@zC7w0Nr5 z%pS25Sz8I(N&z)xz4kG*v2Gy_ddu_+pXMK)%KA7L8l=-C{1gQ~Z=9pl%850L^KIvA zqgA#EI~YFg7k#{cbSn3o1M7tIi;EmZ*e1zhy~4uuPeiqhdobjGB`5}pyje*;ChMJoNWOL@>eR*0 zqKW>8UwF)F@|USJ#`NiL7-K@88Fi6V;!z)YEColyl;USs*DTL}SnY_$W^njRGnXXs zR5urDf&KJ5T422-a(4y!VJ*~KkC!3v%zdjSwypXbJtJ9u;XC<ZO8B`7 z{Q7?|?3VXeep{?y^e6MI{{XH352g|AEX;QWxH1*U_?3n(VtGo7x+VDOf;u6F*dO@i z@ZNuL82fL219nAd)7pMP|Zv4r!(pTKLZ+u(>0 z(f1+rMg)f{6#$tH@kl#T6Q`{`hPN(+7kq00B(+w^V!F$UeU6GE^cJY~RMe!^h?o+3 zBTpwSuNlKTepNHd*slss&H`Oihen2W;omYx3TE6A_D~gj(p%8}&Qmq(kj~j44Y9wD z2roEE#N0yAB`O#>z})X^mf^)VJEGY_4eT`?j8wZL-x0#&f*o-p*cPw{ePDwfZP`8z z>|-5_`mib$b|i`bTj1oYI7&=+7rB!cSFZ@~wG|chO%3}e9h*E|qcBG)78_>N{n)M+)H581(EP$oB;Up9y7Y z8g5e^mzrc%PSwMSa1n6IQzZD)D!ADoK?}7gPmFZLvGE%CSRLFDItqGNFLB>gaVd6; zWGT@+Cm~8pVP8rH1>N4{qtAD}v;y z(gT-^6M@iY(uKDw0fql9dHkXButY@(B^@Q$ZyJxgK0J&wipB2t88OKBO6cjHi79=y zA3VPP@BpK6Qko~lI!dF@6Mt#GK3+W4eLb~%+LeN?yBFb6&->t7GBD@odf3c+OFq8=pJ26bbk>&M52$X(pF{iLc}jOW7#@<;|{m6%?Kv+ z3CS(f_}?hv?F^z07e~A!fgLSkRD_?16m76F5v#&;Pvw{5>6_|f!~I$Haadsj>e&N+ zMc=E4{t?#0%g#fZMgB*kqY^`hG}W_C6CV3aV(-uGaGXi@`k}n$x%#Deg&^!7gq>sj zWCHdV^Jap=f($;ooTCDZ3pZHA@TlvaFF<h4eQasL6@BpC&EqXb>2fTG*B8H~dp-W$GnWOc9@VRhK)lkxyl8;kPcca`4J$5r8= z^1_YY(Y(JrebrY8%VK^P!}-R^Zk%ua$}gQNt@NG6SgLV=HjA-bWAp`L7GqL*{He`i ze6vx2oW+QfRDVKOyE*R?j7Vw(6C!I#>PPdGVZwx(j&dxys3G-<7qIN5BCq|6R$j^# z^_CY3?`EYqs5F^K9NAWMyNxs=rJg${5G*W^U5lh&zoP4OlXc zWfNUD6(fwGfwB|R%rK0W>gdm}+(l-J;ZX%AF~W!#%0zfGlB}aaQ&>k&iPy~s?^ll= zcJ6AFz}q)NaMJ}Z_(mcfbzE`~W12f^vlk?8wu+l`%!7NjccWtb==nwwJS)o?#h%x| zXFdV^t#n5U+abZXs^GBc!R&nv=v^I%rm$VgbTnp{CC~*G2y+7M?0XI9I~|BVw{j~- z9acEf$QGQTPO+SkEf1B?#c}3)|0r&ZX9eIbUtKEn=Id8mq#>@6wl1}W>wEv|Te zWTc}s&;76lW?v7HJkMS`$g`cA=6GLJ$pIIvUw7DjuqJxN2J-F z^9wpd10}m1GT9Nv*G+E{&JXTGZ`yVVzr_OY3A8HmB_H85j8%^@?_jfEKJRFJC_vn? z8w$_q=P1rDNftj^Sn%}zjyBk%$e*si)j&xjD+WL#A<;$#qDQ@i6ZNH7y^9Qt=A@B9 z1087?*TrAz)ceO89u*8&MG~to@#^^EQQ@e_2ZqZ2MC>_Z0j(|`$na0G3JPG43_$=p zOd=2VMULilXcYQ%D)OsoO=65esR35_zW(7!5!Z)75jhfmkrm!!8Ws87%S{UNABV&8 z=3C)k@el9OODO;Pev?ohHWJOvLz2;cUq+;%=Gc?QqLqTj4QREtU_dnwr34#-k&!nP22o z4cRQ4+nYBH=ba}&?UN*r305Ap>cGdMgEU+)D#fcdYFdPU9)nhp-7mM%8aGo{1D}Sj z)=EaJt&B`vWz|kC#B0<|4dMUP3kb!yEos%Fu;m&f&u3L&Ul+r+`v@j|bHj8qPd84D z=5dL@{@gG2F%8>vGcP{_H}j|bi2D{6!p+peg6q_9{y_t*hQJ;S!XPZ7-`3zgqGL~a z^cC~<(;N{Di|fd!%JO+Noo&eLm|qaNACB^sXHnJ?#NS#ZUs^oX-33L%Da*iO$8@x* zyGj=)ju74|pt$KhZ99Lx-_@d7fu zjs#6nK+XE$?&Q=Mo>Bxps=D}JGpZ`$scuxJ7w`HKVxGa0#{e%6Ea!UJ(cIS8FKDkP zfc}bomr${V@&|KZI~{IfoxmcAJl~53Oitp^ zA_T+5N)jH!;Yif%poqj147Xw7cOL(Hi&&9o%Em z$!xU*=PJ0zoLjTy8ro7FjnvR>1w{QyqJ6HSC9HJxX2&$3!%qNufjjE5`x5A$3WUY! zs7Bv#WHEH}S#rnq1hfOI9Q9e*7$dI}VwAkbt}E0kLC|%$0Egkcj+`lt7kqO)HpYLh z|FH&b;LZ}agNjRgDWSDPxG{Y06$J$I%(N-qDv$ z)6k~qXr6p7#wUH3YK)q(%@X$=71xvF=-Lu5&fkcDZSIl z0z}{J<+N)2>siq684dE}6Ciin(yQ_T|DeUgVvWputm0x-xHSLu*Heq}ya34iuLl0N z4(@SPp}h2aj(C<5%jZqOV5n`NPs;=@s}^_PMnNsT8Lk{od!SGAq>^}`dvTAtLwU3J zQBw>sBo|KG7v7`oiaer5dL-Xo4D(4SG=L-bWz^k2BU+o^dyAtYn=g65U;FYfW6sDA z(7%!P7-|~06(0j1?#pAYe;%fD%iad(wkMV*Yg*WN+*^hXuG|-Pn}1m9=gZmQD9vt2 z(c!>-MaPgtET2@QNgSWK6CpWVxi2z~^Yy2FYG|$6g@#sSDWk4HC-gX6y80uBn7?TOt>+)q6BorZy96DrfqL6N zc~vq3`Sv}Kd4v^ysDF4*a8!nI3BTM5Pp!8-`y3@Oo@|kMiGNTUFTSuJ-Rhr9&|_9m z9En(opG|2}I_%H#*oxo-u^+) zRl3YNh^K}J!qTc^bCtfn5uai}Xr5#-M`bYz%}@-GBV0(!jOHyqbHt)A$}6>kKEp3M zjlWO$9L`|7MBk#IQ$w17JAL6uKjC7$-TaCVciQY_dh;$v3Pl^8B+9{neMQLcJx+7%YnMdpVwBO-oarKjJAM zbI-#oqOLgr19 zz!SW{ay($}59lI3J18@VufG6byH(=Reu1epJLY9#Z15sFuhvTR)n0V7>rMKko!v7- z`L;`7!L2NoKbgg+GhC(E*JX^}BvaR>zni-{GlFlM>54*6l0_xQ{KC>463WCsrO@{k zp_g1k{d>=fgl%2_GuJA_8|F}!Utf*fr4@J7B(z@#T!Qh`(g#&qJk3Zg>#>%lDCER%{9J~rnu^EBvea``_`PMJ+87nZ2uzux4lOiy|$P~tp zZSr;6E=Nyv;`r0zzg9TvO!zpWWgHJLfSuQom?>6FbS6~d>Ca@w7{XQ;|EpnP6<&J_ zdY9Xxh7t?OP_ffEBO(X7f6j;`kQtK#oN4^eKa?fn1Mi}0o1I|HL0J6&tHUSdU|&|? zscZbECwM~zqdVvx20PYEadA+GR|P)iGm ztn;JkM=c!KZ2A1pG&~YAC%~1&{+4)uSn;O*fm-S}E7V;LidtoR|3n8; zr9_&&WlJ<#>h!4_S|QrnBIdmgTF|l>cQ0%i!ngf}zK$fk<=b43Pc)kA%4bt`_4(h9 zG}b+lW^nmp|KsS+I%zoVO&rQyt{@%<`Qd^Ff_L+WeSwE{=jiFiCrXN?d%6l#Q%|q4O!ARoSK`dHfKflFNV6s9E!hX{w!(b zisoo7V`uOzCl26c&Zg`SO`E?Z@^hy!b*|^fPPt4L;3U{NDcF|J4PDadr`gV%rCF0C zLyOOT;jF+KC5dcR6<8lDm*p}{+M8!;ptA-Wm}E%TFUhbTq>bWY!t{yFWUrYMAD{Lq8E(t(juo=P(BlIKhkiIIgkZLo?ng@1TiCZ@$5ld58{ zY4sI@llzKuoOqe0i=C?GY|PJH^>7ML2B+=SoqhR-*L*n5w{W7~)W)@h`9`%5JTO>h(})j=gkK-ByUclSWT1C8e2on(5WCNA4)TqoFf|pKRcaV9!X{Nmf`=1m26Y zP4J72=AaMu=wEv9%Z;4n*anHX){2O#tul_hX;+Nj9n?OEUu^7*vaR-ujdq~K4&wDc zbvEOVZaG^pR^ICYsld-^;;hOpNN(R-xuwTAvGTn`yUP6Krp{>FcYYb2B}P8Tq9y-M zGiON_gbBTfNwAH;xxYQF1S$bkOVw)74#y5{ZXd#5X^!u}5qf|7g!K=-$lf_^q62WR zt9`VL=juxQT2_2oR`A;nT{Lwy=znTdR^|pRO4}R`9lWcSvFUu$OVtCsQ)^(P_rgR zckgs4#}D`D7{Z&kafaGHA#RGQ4p>xGqpdTU6-Y>@6%uw|ndeUHP?pL*78F=A_Gd%( z>!w!77_-{L7~?7#K}}30Bd8&BAw#Uy!P%G<$7A1kCaRJV&sfo(?dVKnZ6sPt6)k%> z+}yxU&H*e#Lu+oLkzNmY_3FvM+U;D=vbhp>wu+0w*_F-GAg4=6rR-7X|I=NaW!N?e z^nnV5Wv$Wxu7%wRbhva^Y4OOa!X7@pJEPg z{~pd>?0=fL=S)1R5mB2_`|1W&b4L4Wa%chV2~3AfZu_`ntSm95D)Z|R1#JT$yZhuN;Z)v0Ek-IONM`I+9kqQqppa+l2e9@6EA-w1u*#9uUJO=yc zK>>N;0SL%fNFJ{%Jg~wk69=mJlX=m9;1wMNyiXw$smXPBJcM_ zrhJ6vDId{mifl2KV{BYyEMM|HVt`>!ZrW!j;!W(bNxL3BqC}RJBo8W!mNGR%sg|xd z40UYzWFs#TcgBJZ_0|CgJ(g!2BI-rsX;`OVUUYb;N<6Q$D-;`C(TkR9H%>e?wy3nl zh~M(8XYi!2_)GbU5(ku}Fb~}~li4u&0Ykp=EQJ|Nc*-~m&MS;_(XsP1>^WhSvow22 z%0AB!iDU-^_T;;PW;9xUnYKB`UlwW6`R9?A%>Zxd>uZm3PGGwv=yofpC-yCjmSm@@ zJa2EO5Za%_w#6?G^a%RnL9S$#9j@f6WOT{O$QW-P=WKz4PJy9K*hA-_KV<65-98@G zco;g^MAt${6~iYBovdu*EY9c7?_7rG4(S}sJAHvnT|WWM!$7>`>!Dc{!$T{YITwMD zbniq2XpJOxeHB|QO}kX$P6fX9X=gmEqami~h*aGjpM=*(O2lCbB2Rw|$if#i zyTtN4(~%_w8m?2vMV4gokeP5hNmY#^9M8MfggYi7yR1ei2*f~sd8RYgh91_Mx)YA! z8|xwnQH2$I(6Q%GwqW5D3bt23Y2U2Uv3KJ5wddg3+xP`-sew}U_UL(ZrOc9`(-lxG z*eb#ST8lgTA#j@N7j&`)N`2;)vJscPCqdsO#0I#8gmv+(n)U3Uqpmtt7d5OkpdNY&{<-|q%J``@g;N(Jn)P8 zmxf7YW_{+Z!hG1v&f=`51g^%9HT1Y{%KRf!Q5Pq?;;e~^f&Q|%zl!3iZ@vp7?e{8- zw7&%HV+A!0HRUyDIa^P^$lWw#%BR8ekx#El9zi_3 z^qmsR9=U@JJ~(e%WQaxU7c@TfEsJvSEfE;P79P7ub;Dy*Hu`)=5YH*U21~{5@?%(G zyz1+>gRm+?^b{)PnK-Oi3Jy&rhsORm)L{)Yw7NPP&D&YG3_Bf;m1v_>G+N@nZZq^A zxut6)f9X7?sSVd~hv>Kzk!@T7SGH2(E>m%Pt#meExf;-79f&H|)f|=UXAOxp{_aZL0u>j|wjo20hb2FL(SayGmajp6 z#MdyqLL4@^^eMb%t`ELZP>d(#b_rId{=^usTTH9Ccrc2PNR#5U13pb%}XZG4I#cBB)mf!k=pQyo8_v4X`@V;-? zFqYq1RD<5_4BI-tXlpbyGOE*W!KltjVNV+=DNLjS2E&TuYu|R3!TMT%A|BU3seSU* zJ7}LglAvNwYoGi>1EK^XL{vTd-bE!TPEXK%fjHvEH^ZoG{rDa_EUWRZgYjQ-O~n;> zidG7%h{wLgzFbZJ#s1R!&a$>X23SuO%(Sp=2f7vGr?;XQbkktFJOTFSEr5O5fPKL~ zEGphY{K!`Ha%O9=&+D*MY74d@8$L8(cc`!^w2j$T4d;CwhvGK(4re8??XytfWfjL0 zwqc0i_inK~ZzsO`f(HA&4r_!jyU=@$Z7arOGdS$@JlYdyAts39ck*EBvwwnTKG^}Q zQi6EKWS2VL9l-C6F>;&YRfL)%UghU2A|#`gu0uakMqJK*gn$j}BFDpQl8&KgW^PzP zan8qRZSz(sX2>dfslJ%jy(Djhz5dXBNrKu9L2G^NjN;fYrWMXPv`B^%4~1kyQ@r7- z(X+PCnT&o)0^tgX*u00@ggg6mkL77|yNC1E1F*~1aw{&5KeXW54mh8&ePuv?u0SFZ zYJ*)XEpp+|Lp^;jKK_t1-ge&rx#tT~nIGQNJ%acD1To}oD;!Qgw7^kun{^mfS=m~K zBTnG98HUD_Ip&2G=aCn>m*9zg@Qve+Ab2Qk{BLoRvEr$&!1edn1oGF8I?J=p625~M zehQ|!5GxB*D=!pT338WOHP|0*3|iK-{qeLut_A^O?-%OGDfL%(&p`R&T1MlhWnT<% zED%7Al(zG$gp58(@tly*X6;($7wQTisJJf>PwtZ-Yr}6jffarF4pU&>p}oV?h1Gzc z4DW#*X^*2-_f&1;!zT@O$gYovR>A+NC5nk0-l2ToUZRJm2drFeUVAqB32O7}haJOt zhtpU<{-|V+5I*5+G{nl(CTFXt5_4x?beU_+$v5=>2Gwjw0Eq~$U2R@=50Fw$I-9W8 zMtVhyEovLiIvsM$2BHU}7{7C}M<_oz!xh11O0;K9v_$cD7@zZO&tQJE5yl^%(ZDC^ z;8dqBKZ82;T?zRXl67|U;WR^U$XRDSwm}10s{@ggKR@nKo*(%UbAP^*XlErFZ37SO zCGrhBdjzk1+#{H8xPbWYl!pDaj!i!2;&}uOA~C=6oihTX3$+)cU_F%hnD&P=3fKP~ z!s9>0D`Gh#`$xn6^U2uB7*7z0=y@Ny5Z*iK8%Mmz?j$~EPmdse_IuRT=<8glw~{d% zc_AFbkXyH+7_yBDXQ|p`p{yhrde-lYv5p6^Jrd+G1)~gh!wq(@&uHOR!uXo&&hmWZ z1+W`pvQsQ%U>&blH!S0#vo=mwCD|7%V4{CcfK}jW&-4uC`x@PfM#=a00k4Xu@&jI~ zW3ju7&RE`jJphE=VIYC{9PrC$&J|SAd;PNb=s#GzcNK%wP6PNC1(^2trw>?r%~`_s zvtQur{(*50-3u(Hu2JNQ*X75ypvVEM1&gX{jgN}fHHw__=`_#9{S)T7w3HYbNG3`J zowos?YTSLp8O@q&Xic7gR^%qoCQG!57PJajR?{nlhu=cXF;0UVV?vT~!2*Q)6UIgN zaA4#P|5V&znc4Z|4l&E8D?3!zaDp?l^9?7+_7kMqzqO~XYF1tOX$R!JD&@UI^0wvx zh^BQY4{kd#5ht@3_L=y&NGSVJlli=q`CG77{n$MhqP4JkM#hBHGeTGa%V|0S;qH8{ zcO@QH09^#)1>azn)iW~7id*G2TH}o*ZhaN^?rmplR!0L$c>++2yUx07qy!qK0#TP^ z!adRDsG$we(GYD;W3Nk~92E$@st8Z}4Q;|j8qj?*Qf1K(qUli?uG$&hvH79#O$yKBI ztDe_rXs*@Ae_^gwQhg(L<1w-$w&@1|okSeQ7uLE{jvsB;HnezV0n-vfoC-ZTSS;xQEUZHcR48S8?eq)VV<} zjFfeEaD&^4q()8}Nx$2PDZs%c%|c z&^KLn(XFu0CqkXrz>HA&b8B4@F(Y5qY6=1msQTEBTXC$`#EHH8Aq$;9}^P#^Ux{<=lf0@QkU7!Rf0~k(b1aGJB9bnq$dl zn8=;Q*NsxTzvPo?L@(@gd)n5*8nLxigi3u`F7aYLiL60~XmfR5*PcRdK> zqa$5#$#~1R(6WZoB|}UxT^r(4b+ntl%g{sWA!T1hveWhr`Mj^?zKX03L8x}x63hDJ zSftlZ*?1}GSSe}lVRvzUG!VPo4leF$!bWML4JTYQj>CRwz=kw5X6gc(%1{RW6n5l_ zP=*`FmvkktEe(x4IvR;{Nj7V;y+g9e9rxb!ZRreNr(4vhb%sSHkH(*xMODK?!=j29 zEuCXhPOu?4H%U29RX3`1YLJmF{U+tiY3r%i?`pypH1shh?AAT>Jd8*jTW5>ryH0rw z3K+(iE-&5e4)*@ry*?g8ynRB9L0xRhCf>BPNU<~JDU`~)TSkQ08hI^?`Y8l5hj=&FwG zyG;(`tsH1T_DZ6w70!Nn<5?L6D0V!Nm-KAtzFvDXMm5pPy;Rbssx z8}&mE@wRkpd7Ut`fJWzGg{9CbH8jx}L+@(5WHG?b;%O#2!!oWJ$NNy=exRDG275`O z&$FVF)6A*vYKO6ZVr;>D&WcHq&44o+ zicUqQY8@m90b!|i>t9$+KiS=&P_pPLqz6orf#W$W;8Kkisntc)e7}g z{Vx+y?Q{t~RRyPgeK)i~+&S4m3rPGXlxP3$O6N%*qR&u4BE!AX5-#X%$Sw{$Q-QDq zswrEiNwmh4h_VEqO@6UBgt5ED2~%|YJG3o=in<}z%K8pIMFi#>N_Z-3H$kd7<1lq8 zrX|{<_|ku6S;cYC^8(${O#&mD(-(JX?@B?DroSvcAVfUPWPwe+Dx_kyu!F0%t+@i+ z#0pGHXr0eCis5-zM@I4*c_WQV8Rgs`pZXdf%#-TMw{~)s!D-*-2aK`u>DvNxcqVm* z1Hp-};@d1AFiZoc(Bkbb2rb@FfLB<7hh@3yp1xgrn;8`-7W@|Wu?(swPW3|IQ_A?uqS%t+sccQbJjkA5dSt-2V3fjur-UgHd)keg zv9>`xFVfw|XtVSu1f?a|rJfrcBu`k_{Zj6HBH-5jFz~05af})(Ycp0MrsVOgm4`8fcNBuUXZ#{h(vT7IJwoa+GzE_ORfW$>Rz8@uFAKrh#|0($q;ml{d$Z``P}@Ae%;xxK25k-G>t_aG z-fF{JMQtA`9Cukcdi0jaBh#_Z<&q!3QH;Q$aX=cjsBw#bjufGH>9Gdu{OaFIuw9oN z7k5XmoNqoE>q$g0KbnKByf-_rj|%#R#7h=d=nV3gWB9m1d}liLV4=apqUlD+7lsv6 zB6O#s6*H4EjYiR92o<={1ll{W$k zt;{GW%CDqi2(7-xq>jmisw((gstFDmj*@Bz_;ozXG@el1P=AXu&9~_sS3G+q-KZIM zeui1PqU(*lNXTjgHaFed??ekjHXD-jlJz`}1*vHx-Z0^5u~_JX@rC%Lxd@FnX@akp zg1?z=^gIEa>e$(MF6!8?uPAja^@{z1f3CXi>}O4|>!x64hgjhZqb3OA=bCtma?P9Q z6r1!G4u;#(@lH6;`f_|JKI!|AV8i=i<(7EUVkcOt)dc?fp_CK6NY1NL&dy{?6=PAaoAp2Xp|W0c6_5UYsipcK zM8HPhDljS2)9BgCd@Kg?%yXc=uv{t8)!R-Zb8U;QVl6<=tlF>oq14_E@uIBnksRG% z{n7M;_NsB}Qr&9&Z_(NN;%O#(7kp(6?d|wt*Cg^~D>CiR9m#TBnJIMe!?bP%?yWL{D98TXzRr zJ#OpaPM~=x6jc;{A5p~w32e6lQ$HX9M-H7B!aHA^T%7OhJXzZ7XybK@?nm&lZPDgZ z7@^70i)XEH#jw?q5w|k(=)M7_BhklMK$m(zhh{;;!mHrGL;TJ}pQ%utq4efIC_VaA zW-ny&j0-NgNa}lfRS6KkgHO^rvL8qp|59X3x&$rLu6fm0qyO)BzcT)6$au#Ph-CcE zknybXh+N;4E=uFG*_+UQY74_0I?wPlJ{z_Wo?CT&^;(#vw&GadQoH-G9>O2MHgnz( z{@`H>;frPCMV}BptA*kFfKEQ8HuwtP*C0gEBbDG6q>RN2qm7@fiT8X9uep+EejE3q z?T*F2qS8VtIbM~$(bbZz!(-p7Y7HS~us6U)E3oHU7**hD742F##6zp!LQCr#4ehvz zM&%RI(dW&SpI74*V^G1jSYnH->x12GR=$d+3ARul?o%E^TY5jxTOKiZHg5z>kNO%h z32(S8lR&^K=Mxy6JN%xj88$$se=G)#H73L1p(?fXez3PV+6F7Q11z{yF|THmFzoZb zt0I=o_yg~yfm0Ezy2TY^TV#OOx={_CjXok9DizSz0&a)$$gOz$6~Fi|dhtoWP!9P& z9PbLP8AUO<45sKr{#AwiA2k5q%pO*lkN@XpWlY!=iso07J=4C9Q$nSg^@YLU)0W;D zIs`E&E+<;{Iu>{_qWR4ot^`a{5zLjs{fn7pLq{QNcJFj01cc*!yLrT6!`@$M@}m$%nSGmdIdwlEDhK^5!7P zINnOIz?#BG`UbusIO@L@Vai1%Vy`=$c&;dv%3--I> z*a;Qj(SGcg^rZ&ynF-*TnneJI2e@OHTLqYK5EY_B1Gv>nl+#3h`=F~+#SOlG@}GOU zpL}%B>nEf6l0#6-<9mj)90dC?oaItu=r5o(zjw&hEz*J-%_kpr6@#bSa0FI}1yqM! zU5d5(6|6$144poF=%lG*pPsnf-jbI+>MCB$L|yrxs5nFesPWGWoRA4aXN(v*Y3i8e z9Rd~wdl6?FtmbH}W?NZp`A=3$jSqOk_<&Ug>S_&jl@;~V|3uwppdK|)u`{Yr%cmOZ zF)Qi`FDkhf<5`F_e)nY`=6HVoSuwWuK3DT ziv1(g1|LTm_)|-J{|RXeoq)y1w-I00o6kA{rxe%5`iU|0#7A7>``p*AhAdsC4f_VQ zW-~2qs+pEl4Rw*K7eO8o6im)hf`U~KZl<#tZ4Cd`EEmE|(*UQm@zwXu##2+IXXIwe zDE{kdbm}kHk}s9=EWx`nCZKPr(ROMqPke-N%>ydR3uj#w*64zkzLeaes}^*hwoh7*;8%3dWhnGe&_1P9%=yp=m1L#FgGRz1OBYM3UDaEjiu6U ztyvpSPcj(PLD>WCQuaIzV39qqR5Y5@@YoIb_8;KM`b*Ry)jdt>J{oGzw!V2(_=2ke zn`I`9=Bq9sccyCzr%G`q<6Sj(KD>ybo3$!HolCCjY_$f!p8(M0va20CssdcS?CQck z(EtuS0U-1$isTIyV9`}qO_rwtT+sm#C}gl^SbTfSl@M8bxw`Xm;dUYlZOHRhh6nQW zpIlJ^LG8l$sMJ~2c;`GAV^BMObiTVahqf`JE)RiU0H!**)v5eX(F0@1OVJxKMI1s* z>-aEjY-P$CwBy}>!diMMy*BZM>EX|_MD-+EsW=pJ5I3qrOVbGqW&dwECm(ghg2k85u&*fI1Z zgINL6Z^IL%s{prdySlMv8bGQJFu7zw13u^V*>!ndp@JYbTt#{RE^5gk8p=Qu#S?l_ z@b}F#p)hSKW7GO!2k&@JdEz<$|VWNE+-tYo9q9$%Gj^z+fC zW5@qQ42Q{|&oWZZ=yfH3ZzRg}Ji4l}ZQ@b$fK1z|Zi37lOuzXI!~$=U^b zq|2@(QfSUKcTKF+_auqpr^DU#*<>x<15BRk8E2nSRbARAI}t^h=+R ze$ivs5FD-SO~0a*do;PT`q{-JLnUH;SWK(3IyNb~jdv^ABcHk12cW z+LcG$ZH<(op5<$f`lS5FqN_Qb+;P~|&vq2{K zTLl{OA7G*_g+0#AZ>l-aoq&eE<(ppgg&=1O^^iTnB*^P{t6ydIe^`Q4o`($EaKJ;7k$S6Rh`|L>f5LQRUXcXlhEoMjiCa>;I z?y)(F#O6e!fzne=o^}%=#1?Zmvvng3#c;cH@-3>u{Ma-#G1=b~EAOYpgF2;G#CUe- zJRnY*cp=<#=EQhF$hyhbCfOS*xG+ncdu{o!*NqQTF#OmgJE#JYQSP$>ee547@~2-4 z@szZe5@n2WRYkfV>#iln&wO=_3S4BBRV3;qz(Enz=|b5}rv1p8{DC*QVa1&cD@M-K z{Z}379^0@Bdo#MTwiQ*P>l1@ssV{|XCAoz~d4h{f9`&SNd0ts} zEw-(*HJbgPa~N+_<<%y9!!2|debCv6#qeF2%3jW$g&jRD4BqxKAg$pusk&`S?-^PP ziC1QC4}5=N*ouT(LF|qc{^^RI4WrzYMkxpmQ)gss7c06Ou%cazoJG25Zm;BSin&!w zfARU~5b*%hs_>?&Gxx!TP59x;_^#R}Msc2$>~3YlDso?pYW^`w{kX6rUs44aJxq*f ze!Ggh5BB1_yQ{l9v(;+yWWl@Bsm@oFD^p}%6>$zL7NW(p%eSZtSKv{PZ4HFQ7A zT5B*Zo&b~E$lZpGR{?4_c6VZ9HGol10O+6U9?No6fP^OQr`aM6V7?AO(f#dqOX~7< zO<|88swj_|y3^SX4P~p2LIrDf&n2F=-FX#eOLKQB`&NTFW5Q6OM>(ZJe@iL!OaCwe zYO4OO1m@JI4tD<619x8<*ysEH^@+KHar}=OpHkzidRN0l(*MN_S89A=6RqF^)xlMw z2S(6U9+6(e6JmMznI*WK&cOcPn>2tZJ~xG5$X=9=1kq ztWYs{8+U6=f3#ra{0GK?w(g#6pNcWIox4BQ_**bO^u_Q*A(YMbRm&<-?8q*uK*=2t z2w{>s6sr`S^Og)L+R*!9z<|q~cepdwe6>9?I+G-Mj0_g<4v`7IORw7U1 z1Kmm3mZ5gI59`=&-T_%k_C;rRV=*7ro2*Y4w8Js07s(W7(TLZMF37}gmEyT)bl4V) z-!#2g5ym(C5nBa&p>u=WE&)B*(GecXvGq`S5G8`#}9n=ZeyB3VjSO-a3}ue%;g z)>2obCmF09PW2P5T%b`a0@>tKh#U8JSHQG2Q<}Z~-Bnp{4X=m9v!}sUy}Pe!8jgRX7N4{h&Oe}s;V8j3iq{(M zZpNO%njPQC0}nM2>T>)nh#y_%E)`Wf)u$7%N)JnD$SPrHD(~}G~tA}BHK%>n50jie{iv)Is83K12v#PL+7e2O%9q=Lc z^w>XURY&>4hpP1HnAj~R%8(Ib1mU9sh-19Jpl5k$Hy8|O7fl0xvR0iHEI8Vv>De{r%Gx6P^JCy zd3Q(lo5u7m6y)7ghqOOGhEHDTF3s=Gc9&$8dRgp+mG8xS&q4O$YHGh!wtE&!>SeW* z_+F-^%ysW)S(uCBHInl4+zVMJElqoRlEK>G+*eT{0E4s;hv#aU+#JV~UUb)GFIXiE z$nF)!BigO$DYcNT3flK2#MRGhOlK;BirV$Lm)#TCR#n=JSKL$C`&zW5`-`ZJg;tCs`zUHez@p$#__WlX- zbAB@tuuHx8n)&YX;%eqY%mVjB_M;}{c`2n;hocijR%6JqwSFgc7T?=yA920C z6(M;N$5(5zjFB7Rz^0-Rk7m;0Iq@bVJ?-0R$v*>)9R z?|S!iwnYQjYyx<^6IpVRjqa}OoDaZ8cW-uD1Ng@Lc63!Y;P?MpTa`z?hXQp^P2K4& zbl2S0QoAJke7vhFpnHjRJ*4p!$E-l%bCChjyu>@`zmCFuBHx&>C_TwwfFbLHP?W7! zy)J09u8|>J3l(+Jd+wGjT|;dqQLQMf#kw+5xKS!h`1>eK!!?*8I?TNHaVF5|{_AS+ z^beq^`6|kW571fhiiYx{i9(+Uo1;%mhX#e^_OmGmE5rocYR!&G)S7_>7%C8p5Dsgo z2mAV3?t^XUYREGaM)PIcp_?mO!iz{KiaTCa^KJZ(>pY#w0sV}81N&&+?dESTaa;&wQaKLV4M++@sIz7R}2)wI`K6d2# zb~0DTsxYA+qsL;D1~dE#FirQkv)CdP;MN{@FE(ETc;yKIrS>5x*r5WvyAR%As|N7? z695kFcUNNHssK$7xT~`>8o)^tfJ_Q1C6oH0uThF%9CW`Axi3sCsg&Xzj|SXIVYE9pxwA+C_RZ1~rqGiNRvquE8Ku}*9~FjdtfvOk z&4lqWvgg#aWMnh6w9~NqRBb8T{S>NQqb8j68C3g*mT-k+`g(t(o&gZ465rwxLb%zL z7?NRMt9Y+}fdcrIhWEKei7$QWZpEBx!t!6C#rcbt@MkH=b-b%8(LG?JXNW2sv$BPQ zMJ7h`ua6@z4;^65#9(@o!2m<10(m^&`KqRf1$UUgF|Sv03g?7=xWJ7Ka0J8^*5*r;dX$nZ_o_|xI=vCGVaQGD-d zl&D-S^i^KHWCN|4_gDfd0Equ;^Zw`El>?Fo zdLrZ1Zy+-68Xx4biwm)V^xlxWH7LzY(;*M?BgJU z$kw4{jP7)bF(LzRb!U_12P`V*nV>RJLmfBJo2yiFCS8P!%rz56^KBQAp^LSI3#2%& z;$7AHXXd<Wg zG(M|psVhGr_5PpGSCZvTJ>Uic$WB`7_Ihd>8R;BS(1bnXO?_{1eldPC1de`^1~Ea0 zAPo$@g+Zv5UWhxl5PUDwQsx|P9B8<2d-Kc3wMztK>S z5Aqrq$wGBhftgU&QBE!4FH)SJ@vby5M8Tt2R})yO`ebtO_vX z9^$rVG=ND@0GRVDYQt43K%w8HZ7oRTR;L!KUL``6ou6pBiH1(9Y2wzw=OI@{dKqR7exeggCG}9D@R7hFEj86g|Pd zsd!gaFcr~E6(IYOs}@Vs0Gd7lKukAdBNc!Ztzm7$wDg1Z^i&^CAC_0m=qPUf(zp4|yc*IU-;mgs zhso8oEKkF}f@!(xAS>ky8){@I63TpetR?(c3iUUbn8j6{UsX{>LBVav$_=&VZX!Lw zdD$ikd5w0TU+*KoqOA&3B)DJ%Yo)M*7+9j5}M--L?CXaFNk08%m3LMpz9uM{f& z;ALfkWnO4O8}^n&y}Q`6ICF!Bx^}3qa>*BdY9^Gv@Q9Z1kQ8S>-ZhmwirrMxn!fNS z4d9vy;NuHJh8Z~vsiQgh!oXqHJYmDUQd5ZV*P5R_7L}|f-yKzu$|`Ef%h8hzmWX%N z0{eAzK}*&_1sGGTpgn7=0knDoKu+<3s%)YPP^?5jQt1`pK9k%2Ebp1zHcmqxV@|1nOxD>TNV_e?N7T0k55^*VHpJ&|77ncb8E8g|cz& zV$Tt`LH1e3pNGVS*|&*Hu>CV}39&C0ml*pe;u2_oLtL1Bw73M@xws_R7aDhC#KmS8 zCl%l_LR=#3?-~Cc6qi8zba4r=&nfg&ws>d1ar>IMFuU0J6A!0~OR#;pxP;nwiA$h; zow$V9#Xd-QWvjSE+SiH;v%h6r#I^|dZ;`kJ*e8ffA^UdYKe6~4|LrvX6S~jFpJGv9 zhr;%k#3jf+)3|(UJUlEeA$BoM90@-bmr(m^i=)y&U z8R8OZ-zYAH?JJDSQgI2g9}$S{R94N>4Fwyqyv}RuVQBC zP%^-Q%aiSUu~)zScaV`}h2qh}ig;9`5=aWjNU}ijyzY2BsxL@GK^hCvM382Jq=Aei z6BO?*Ie=0y^AiD+mSdhJf><1Z1W|S>bye1B=SO79o*bQ+QCH4#+ zBZwVjBw3Dlb%@ycb(kO{Kt__ei07TeHdtLiM%smyh(}?s<59RE5g;S&!a~IJkHm8O zJ%a2z9F&begpr6pienk1Jw}i?LE;5T5~RE!l?16GNOeI{1gRrPeL)%t(nOHvf@BEN zPmlqE3=(9BAj1S1A;>5}#$*d>7i7F369t(h$P_`Q3i7NVGX$9>$TEOkUgxFPuxZZ{CSQVBU$+VBU#RVcv=2k(2F(5e3EkQC(2YV6(Vsb3RNzZCi6}dEAvj2ubk!Co>xTy6MqVyo=YXoyc0#v zyc1>5yc31cyc4C-yc5OJyc6Zqyc5L}ciB{6bE%+;KSeE&YZnDo+=+slOC{F46Ghj& z6Gd0tiAo@s%CLDS3bT193bVKqbwMtbYH^os+=^l?ZbdQArSfgwiGpt4iGnWfM8VIc z5^vt2=qvw;k}v)fo*6)P%JN9KF3Tg~$mFAJ&xZ@Y=6Nlb9GrP4Je_$b zT%LI+e4lwIoS=CpyrFqF#^+ABNBoy9vqv~e^Ht$7%{$>b%{$>k%{$>t%{$>$%{$>< z%{$>|%{$>@#a%TKDddu~6}QHn@Ve%maKCi7cWwECE;gLKR#2g!W|6_e!=6gEPo53a z`H)wxSWvT+@njT3UHB1D5p5oR3crs$#V1xQC@cT|E7bfut1y0dElhvM8mW&)nSaMd z;y1P}tXNPk&iMDjbkr3TMU}MIeipy$JR8KHu2_&H|GzrV{J+6m{BAgx{!gqj(!RDq zAykNV1L#fM*ePx-W`C_7en*3Jer5ThANi1%TPN`&l?r~Z*cM-CKQ78fJN#OJ4?_>JU(mbNK8xk|ynY!SlaMG?Z|B5EaEL#zPkQog@nm4kc zRNQNXpL3gn3~vTfvN=d_ItY%oeagNz17t}HkjX7YKqVRyLX1tV#Gh?I7PbRPZV&Q> zAeXyJ?h3h>CG2HCY7v*a`T5!$gq%Q$Whj5O0cx4BiwC8S&1}nfT|KSs=T!L1xYcnK%z* z_zNJrUIeL<{SxSsmq8A`0y63~kgbbB<}3jzlp|oDk$ADWcyvjS%PT-Otpwp5b8Bz!2YY=af!!9*hsviEyuMctpvuN!dnuGi+$m%qZ?0y)Ix4)VR(x?TQSAsOl0V$m;kPe8JE{d$^5fF%H zm*TJAmw^mi1=8qk5Vl#oc~rh}eH$LF*#S~>CrHWNAfJ8(vfwxfI{~s;knnFnuAc0}F%+a^ zb~tF+qJl(%JQgIm7)ZzBAdO3aoQefmo&fSe63B^iAn_GIHdO>^R9Q4$UzghHT?LO4 zs)IbA0mIAbp2|Bn$^>F-qWyNI)Ph7=uSw?I5MbgY=jHlJ){fvll@=7Nq}6 zAV*&Y$zJ{{XwGXOSqngZ6{PSYkamkf>MQ}-n*;J;E=Z51AQhK^I0d=69E5R@`fq>? zSq<{tT9DK0K)P=L`SWd%aqog$+zit51CXj)K|b3K^7_tf(DEOGWPA+L?f^)$!yq@0 zft39M?lT~BzXNG=0c7AMkms*}oV^OtGY`ad9c1`V zAeZt%><*B>1$oUG0Q-w^;pe-8)OUk?F35s{|KsYq1G6Za{u>~@_eMe@EkG(Y1k&g& zjSzZB0tCoIIzd26f{5m!1__MPv4Khns0fMzqObI-pCSSQMC$E=<*na%|9qiPf#p)ilXl`6gO;e zrnB9dmMLfjjhZFG2UTW26h;0hG6GPXZin}use1(3(d!s?i}m>Kl*bb$a%$TN@qbX{ z^P(H6#>SGW2a1geC|r|Kg!Vykv_Fagsbotlb7X5CimFvvDAGru$Qy}b-e}T|K~Xyv zSJ_O@v&n-N@yMf34gy!kqqvT%b*4Y?<;P@&D^DgjoFQRfLNOgzpiJ(#uxQ#vqAjj) znm#7+UtF&;?Z<^JQ}P@XD{(qtnm`3i#050dd0hB1y^OD2rdgPnDFoNLOjqATIG>je zDeME%fig|SMYDWfVIgh4HwVyc^Q&yzxe`Hy}n1W?kEcLaeV%mE}p{wb~=Y**Lf6Oe?$@c z6N=0Wboncay_Zo;xQ61T>nN_0*z_BUjW<1`1|AE5s zPZSOhQS^O;;?`d%nmtBQ8S)Rxo=;Ky7eziVl~Pu>zd+SiD_p7C)f9!7HHs%Bj@qJF zV^6DB*h180=uH~`yn^r9dAzDh{*P%<%+VdiB_9;Cd{Nl=p;#AyVoq}u&x5S7{oe}4 z|9;pCMc>va&XJfBhGIZ_6h}KyLRh=pJFbPJN{vPlm4ssGAQZRLP$Xuda2Z9mUuw1w z$DrzLHVT^wC|oC_XjwoOGc=31B1%8M7=a0|5I~CnSdfwU-k--yzf_Q)@ygWHjG}ls z8C7fE*|n&OT1BdL(r+lP0_5@PF!`OsE7P>iDCTWN@$W|{l0HK*{{ZQZkz=hs{}_G> zb@$JrDE=A6ua{7KdksbO4HU<2qBwCI#i~D1JpG4!cWL?X{tv$W_*$Wec0h676~$vO zT4dXxS&Z;U)y5zcqgtW(Hk>Y_P^5Oo1w_+-yW)Ql5D zi=qPG+Dw_d3EZK9uAigIeJ`nSJfWZ;;QC1(t+rRPcbfxfaP%OGB}d5$M+MefpFx%R zEQ%h#ph*6WKpX-n1db{6XO{f)jr{Yq{PVW_^O^jEV+mRAlz;ZfKMUlaTpT0_#KDRF z;NV4nXjLBntdf6lq@t?>^3Qbn2gems;?PKca7d&-AMu~*)0Z?cP2)G%;S=C!Hzl+Q z{=L^t@#8g6Gk;Pt^B1LR{-9*$?@4C^K{3|6B#pqFf#Mx!_3b*Ge619{0KAiQ_IZHBQri@aJFB~qrI6& z^lBc&%{)AtdE_(mm}cf7&CFw&nFk*;4=ZLKI?Oyyn0bIO^KfA15x~s1zL~!ZnfdlK z^DSuR+saJ$Qze#+dcT?byP3PVnftbxd$O6kteJbMnLh@Zxi6Zz)0w%?nYqhVo2bWC zo2bK8^J0#fzX4VAC!lKXY}Nb$sG7h3RP*Pb#A@znX6|Rz+|8=FmsOjnlT~vcGxK+! zY7_OaYVKgw+`p>vn@?h#;$uG?mpbOwhAr`iJZB_Io))Kcuv!Qk;}k#J|4gK%qOI_C zoHEq7@aI}FMzq~85bQAEzBwtm2?C7zeEeOmPyKB4_VUPSVyLH z<53)#30D)9C?vLbu&*^~D14Koq_nXxo%jlx24gogSJck0HI-H2rG)oFmt>`jmf&6} zOI8w$i#^FoC*$INveMJI=+sN;Y+MxgQidBB$9pMh#zkmvCBwLw)ms^0Tpa0b5zVoW z5^o@BeT)_;hvGg;R}CqLj~mR&LG5GIb2)VDtMoF=sw^*#_BBG6gL6NNi;R9sAH!!| zKcl6~;c`EV&~5q~xh{w4{f$0Q4qx^+8mb&T1{lRIhbaRrqJ3m}ac_Xqrh}~bSE&i7 zx5j0M@0|2@@oI~g5-uYcAby~d=x(7oMGJ5XVd+4nx4(sYC9TF?Lc#3|_gnbjk10fX zxkG7~m$ipwNQEqeAZCy<&@yfWE#l39#e&7|orq$CW5S*qYTjs!qmQpVyK^f{TW8NnHyyS+MevKPt9j(54_JtN{N(3xB;O)_< zK9|z6Y%a1{Yp4w@Pgh*RE&5F0dBy+VuQsdOfqzB3kmrgL@guAgz?FZcFRGpAMqjN?*T%;z=cqJijHA zjKL5zKnZ{vN8b>ry60_Y)FFqtn1(i1P&QQQuQdy+-DyqP3y%Jex)rT5mqKW!l4@yP zMeEKJpej>Iv&`Z&T8aK}1YFHjvMtT`(c-iS(<poB zEY)H3ePJ$K7^4(umC4pi7oz&3*Wni`RrGOx=SF4zf<8rLRjkq6ZL?H}Q7+^?M6++_&=xeW5gBc6NIKMZP42H1DBC}h*+XfX?g zY@~(sl|#bQsF8f>8XF1H%CMqqCI+@N#wo^sA-v-Un0^-24Z7(RVCj63zLu=OuO%EC z5?umE>BVK|&GaGVb)Y6j0@t*gots;Fucj|7KfI+^e-0$O1P+0v={LO^1^EpvOdq_B zIT){149DK{HmU>HQpvMcuMKoE9yW}2pwBhA>$LuZ#cBn0nSnN|HU&6pmCk0R>(DF< za>pwZEo0}eNA-U;(pb_G++qSdLgk%6JFN$@qZ@ty>4)EcxQk)m4u|`#nzyrzJseT& zH@hY%<1Ax`y^rb*??dQBWt?`~a>N~^Z-rluWIH{kZ%DG8=(Cb(5qvaJ$<_j~CS?m+ z{IZWKAO=FVG>yiSYrxvaxPLemyM1UhexDWeSg6N2J^rR$xMf=9WOD+AY?<@)El#$~d}^6|h%_mg z+Tg{Su>EL}aLx)g&!(WAgWDJdXZ&~ihPUo8qz|J3_g-K-NZN4I8fy9l+iH!&X4?*< z*{E-2FKjS7xI56v(yZWHH1qjRma{Z3I6~{E9HY&52u{TBgWOLKO$)~Df);tNK*ZD) zJ}OkQEJODD9@YE52lpZ+%d%i6NZ;#-RLOIf44Y9(XG@5v$*Qp%JOmX0y>J@wW#*@iXeTeN|YFK>G46~>;A z>1*q^*THI}(hlleLPB8Y@HWQ1z$QOjM-%%SRHs_(s<)bWM*ZywAJAP9>zJ z-dqfSry}eQuS{1`v<$L3l)gd_vTp(z!|+ujt zn8nb@1`o+#)ic?07(##VVDSBC2zGid?_iFfI;^EWfnkf@&(Y%23%*ri;LOTUe>gM4 zxEa_)p)cZNL7icY>#Q!MZ{*HauxU0u@@Fb-Ewdd&-_G|offciq!Lac_sEskQuOoUM$uR1c!h|JC3y#~7*D`YlgXKlg$%)NA7&>z%z(-yZh}aR0-uJV1YZ zFdRp_2afw`9ps?Zt=5n)zOyy z8o{$^J3>6}M9`B@hPru*on`zKL`{dA!?Afvx>n;H`8??d2I(~(Nn00WjZdN)KNtl4 zDviets}_(+Os6K0UW~VP{q$DNA)#NO-rL!vfVMqcY(;%4hAhIgs$~$#LFmnPewC7| z&5l{Uj&@13#|;uxhT0{_50lZV4)+?IfO9XdotL4qj z?^c*zPYm~`tru6rw0gp6R0oLuqE$P6n#eW}5H|I0ujd2VPADJuUsc>K^O1=LriYpp zy=-)lHIchOanY)sqc!V*b{p}x*XPKZXbxY`4A2{fEq2n@j~g-6Lt`K}v300ES~L16 z2GO*R(!Xjz>sH#h!(a~W71`IZiJVMRORQd~*lSNTwm3=_Ej#J0`#NnQk*!N><-bW4t~w{5B${fw+5xJ1@RIjpQeiKJc>5D1=QfLrAq!YMHIqX}e2X z*j%j?X_d~_-Dm^MxjqnLRwiln#rkV~Q13UW30$3wJ-6nE))7F@8cWx(L1^;oAaWfC z^pvsmf0Mv_=)C0j_RZAW z#zdQNWZN8~wz-oDPZlf1TIN`FfJ_EgK*Dlm3WW3vbJkK}P-G*RyLzcIU27rMmX1TM zdyd{hC9q<8SPrO56%TE-k*z|}z_e4hg866K&eZP-nK0qGxEV;^n{z12Jj=vOX`_%k z#4lG~ZWK2U)#q{R5c|O)`>+zdcXQn9w5w?E1W2t>=2#Z=2yHZaHJ|iT;QrAtFUz#v zqzy<5pkReEN9$!AYb9+-daXdF1sR>%jfZ-VcE-8_+tea#%En)wP+qZgEt-mIm%;|u zl18NuM#QwQNH2Z9tiz2%+SxWTJBk*jf6H~V30hS{JL^VfuG7%00EMheEn3}-TaBa5 zBD3>`*(4c_o|iEeo#Z-M#aC#-OhB8gBwR{;$d0bRbAqb=xJXtN*1lm;kYP94j`eXR zyjW!{60?5G9Ms>K+XNy9<9w#BU;F0Tn8N6zxrnZ>)YJSg?cI`T(snLWKlp65(phUw z)&$N+i@$2%>1tygl=W5BsQ8tbKF+5y4(vmmu71X%k3HMY!s1#R=TbwRbSy=h?_> zDH?4;qosp%qmw_kw>Rb%Y*a@^Nz0%fa7}gUTes}>zRhSl?NHmZ3?8gee88=*(hQPn zZ+Qn4<`?JW)LK^9f5|X>c@tPd8A=+}!LLz%doD-Vp+uAZ4R|J1k$TbkpuUR;}5I zCP8)5141C8t)4xGBM>odY}*uGyo1a1Cu5>)jRBYOL$qIS7UZl`;&)a1`dhhYfb`MucOd#I_Ln>{t_U->$TP+YVM$&^OxM~*Wjuiv$4|o9^-5REEL}W_`X#4f`#YF)&YmbYy{~ZGb*B-HJi~F} z^uG}e>(~q@oIx0WU2ucaP3!2a&N_?gh39Z~{*e;yGof^PqnxZdhiEaxZ&W&KLoz$f zJCEu=f6&?pW5(iZseiORWs{9h%Qi~<{F`USx?{|5;hl?cE5 zm-7l6IdA$uMDu=@b$#&ct;Tg-Mw=tsT+r&eK0MOHxV1Q!U1{HB=r7VcyK|&NV>pI( zR3`i?YxBZSw;I=G>aU2FU4mR}CAfRxmP?~-&%cD|x+@Z`{3N#Ya&}3gDN{OrOm4g|7`+M`w*{rH!@6rFfzRAUxa7jwpRII zOoX!Ikr5EtyOYbRx=#8#8(W&u2p2!*eW0XS7B_}=!)C+f50s&n>LLeJTSM{|YB2504fBSL-&0as6;~*}AL-C2y;$0}yWbB^Zc{?w%wLg>JNgOQ z(7PZQfGFx;2UNXxthf(jMTwFExe4jY_z0#jMiCH~$gZ z9qa_lKT!wvD zTRDtFt6s3PP8n|LJe2l$55PU%^1epe;h64mp!B}oyitKh(k^i43DDwz%y=vK`t!fM zwef}H2TeeWR+E}S%zHGx%CbY0Cghl&ta6YrPdows=?(VDC37hy8qDgOX{Y2?*>6uxC>Y>-D^IhcAHnUn1(5*TdD)wI^*|e{TWx%5Kp7UUxg=>BhdF5v+IE`b4>!NFH<8^b-Dbbbp>($-j*)SU0x*d&L} zCVaErqL?LLDEblx2RTOv7rxp6oAxN(R?olPtWhaWZa}ctCYjOuWpTy>gUWY_`A|E`;FZf>@@5n zRQrQ@zp>?m)$O*SdiM@ly~{%r8aK^1I}n{;N26T}sQNZ86b`-<=iIn)SJa`6$8K4) z^!MWMc~N`Yrcvo%q5~SypF!mZGR#YGd2xc1J`3S|B+>DWSUkQVN2~rY|EsuIDBg*` zkQjX>!NIat2B4KG9QJ-~tPyjBo?oN-heI@wjnrn|tpANpg1F&H5RMG)C*v|3WiEsc ziR}Ge=D+@2T*K!}c0ckx!iSI0#6;gT$olg~NPi6K>h!AFcs0(`81<#iF|^r?2Trtx zih+9~&b3kMyXZK|v6C`&*NCLX9pjgih>BBm({+Ovhm18&j{f2lf)`Iy)9D*MSbvv} zw3M8Ot29)VI`s%JCQA%go=3PV9QekVfU&wC9e){eQQn2<$IX z|0)iacdQQ`4_bwSIs&YCnB2+BvSQySxYfO;uyY+gVKIW2PyWP4Np!x47N6W({VfjP zn}T{ZgXr&#g>la7VKSJdG^EfWaAICX-n9IRMsdt&Vfss=J*MYT1XTTW+Y!!;>t)lp&%H_qn>xekBT9m$ z>)Ah1J@FBBs2E5;s_4s1oTUmnC1nFeN0q*ox3e{!mKya$ZIWMrJEjcL<~gkY%?3}*taEM#SNGwn2m1O(G^)F8&WKO+ zY9)rXxG`yEO|>6djP=(Xmb8V^hquG@DrJj81WieB^fl7lUFc@;e7?C(wYy_%b#K4Cq6n)|F70TG6j;Pl+Xw{nD?Sz*y zvHb+Mf%_+v6m2%gn#W|(G*&NY$L@v$o{hr8e=y~w@jae3k9(lSvIIDER>7?Td;0mo z#^=IIYiYLFkbo91aR1~lXi@)7zqUsIVAv%YVKP`$Um%*g8f>E0aN zYnI+DY;**1Q#WXFT8WL5#bR~;R8&U~)eB*riI);SOogaMq@hxl41|m&0|skP88)cR zLW4w5PAh{f)oCM8oel%eC}~Pn=;Yqj0=Rol$ z*8hjj_x(E+PW+@qtd6=9pl6*yS339CyNE%`f;&{bG)RA*vqfeRT1xQ*uciA)e-7b1`mG5!RY=M13lsXxIxBbgyXis-O{Ed zWgt%D`+4r*fo+XvHp3qg{23n7;b%7Wx#+F~Jz&$;LB?x7+kJ;7rjKVr)&ChIDeJ$) zBS5C1mCc~!B(D6HHXR&cJhvE6!kw0;SLZf^*%u`q1ku5R8&$}gbJ3&^yz-MV8)VP% zm8hNq$A2>37FeBt2boOYydldIJ@}3>!Z3Oc4<_N>rK+Em9Lvg`z6jN$;r`FY=2f11~7?TJL6cixsFogD>Lz_{yCzBtzdh#c(|$CJ%fKC%D#h6aT06!mp?onjr8O zV>2vkmcNA-58tNIK;I3PwVX9{YR2@=d%DAn_YH^1D_7yee~QbEwHp)jvVA#mYLg$oK?; zuSkow`i;YA-Y1Bj{~X@Fr1XoBC1U+`JlA6?_(IQr!k2g{VW9jU`l1i}FofFEtBh^@4Y6eqe@*FVS>g>hP+bO9*OUlL^?W)mJQ2RWrbJs- zM8zFcpTCQ37-6Zteizl}?or-4Yxgv#d5umPH&bQJK+csR-mvMq($dn^3sKXM2UN8o zuzb@UW5*~582bRxmVZFVX{?jF_tOFz*GZ>85PtFp%)f@t>)*R$OwZZb;ZH>W`IGK+ ztk6AafsLK*A0piO5hRfFna*j=aGmy!F^l5}eIB97Pk+fe-~Po=eY(Nm&A$-*^KS{V z|AB3Hj2AC9Y5EvVT>pUsl*EA@cU-(I@1hp}All(+GjP9*Zyz;}hWcC9U5}@Teujd_ z!_pT+qx3@q9Qr$gA3xVRovGcwcq#AD#dL>mdjVU1H$DxpY73py-qaNS`Q2C`VtpMQ z-EInlZyL7(t3Bx)_ia)~!sYie-LzROWB(Ag*VY2IbJObI~h%MTf z?J2o7ke;3CKSrNXG5j_j4mZ8(Xf4O{C9V?+^Ye-e^TtOOl}yYpoTl4;Oof?D$HZ}p zp^g0^&Uh)yI+5VNop8hJS{#i!^dHtj-xI`$105}Y1J90g9hQ7Q4EF?W8|Gj-)^uupF+90#)Ge#m(mD32 zFyxN$I>YMObh7Y>86J5z&C+sRyCfW}(uRc_j{^<>h?+7X;;z!$ zG8bFvgnVb1k7{k0Wa~b3T>cOWes(U2hCFi?eyRK<%UbJjY;~5bM&O}(u7|vnSqb{1 zg5k+@+`e0TxGEG+xO@+{8`s@a^p|P2=ucH|e%N1kF#_C8q)SnEBV!Yy;KY*5GTO%k(B2|ExW9DMw$TAT4V>1*)1K5momHfD8$=-3=C0~ zOl=@z)fr+Dc!adRsxs12Z%xDkFDAj9KXAU0n>ES~(sM?I=M|KkJYfEPC0(0! zu=*t=A~0Po)bp?hnFzEz%%D7UhiCVVX)9|c5=+6*SG1%$s_nFVFgPCB3rxpeheHpP z2(6^^C`@0XE@-&9hE*G>>?8Q6Hz42-C0*-ftZG6$2iY+D4`sNPT~-$%^MUD~m3nqB z5cPqqGGaq84T5KX7%MZZi9}um)7JHn@u$*C%h5WrOe9i-h8(4CGy+u+e0BqD{?k}@ zWK}saC=|gze=6|-GD%j?-HK{~oC@5COCaNZcD!*PvBe7nO;NDvq0&ct|7Ud~Q81Ju z1p_-m#>U+4daq%;ir5*7j=|=KN*JWKxf`HQRb{fr5dGt%UJ>Vrwn65qmh#^lK7XVP z((X^zsKn`zjhqfLpGgq9B2WKt$p%Hl_i+3Yl>Vjk)e6Y^i$nqO2~t341>9_(*A@ng zT;n4LTOB5jh!)V|Z)LDHh_gEC2CDbrVS%q7Ded84Pt{+m0!EJ#oy3<&Cn2j~XVbh$ zz0Wd!93j(d;Q!dz2F&VO;-0wk4^%!@256mw^-qwF!t~m|dYv31J_=bUyQogQ;E%^j zC#_Cc<3nT>FZ^t@qJ_hQqZ7l82RNHV5tYR^u2A(4F27j>J4fsmH<8^!)=C(;wuF$< zd>g%)*!^#`Fx}TvFjWx&hK#a-vNRk*pBQsS)@&eli~&&aMCqX=$Lf*9m+=YmWys`$ z;K6VCK}I)Ylf#JO+)I6;gljjF3`qPM@euyh_;$?dl+LLBtSh|oREgJ`g!SJM2gd~D z;E+wStJ$PP{kg&TG=xkid*~VQgtGUhct+_@(v?)GaH8pGxV0YAr7SZN58&76o;LDH z8kb+#LSLq2WDik$yuCnAJK1D1)*Tq1OspR_vf%kMB~B|M>mLyjhyx6Gu5{N%WmX3e zHAo^-gHTZ**~%2JcP@t05W(B>)^p?4jn#=nBXW2WB)l-jJ=UKmW|1=mr0;?&`6m4{ zF@yEQIMSwY)mqUJ>JPnew9H0V;viXyLeEAAXmO;eyV1=!zJ3Wd1WMu? zHu}5dkYTowFLRfzL|d(6GcXDnR!o`5tipcC|=M{Aew1icnXlcGqPXI!PsDY67tk_GR>2i>8G%&r1)GadmlixAYDB>(^ zhUQI0PpuwVRZJ8w6OiJC>oN39aTh&VhNltvOD`mUk>#RfeZeiS*bc5V74BM9v*l1U zGVR%;C;cT+#K_|9prlZI0m zj#y=6Ong(vx6A`J@ZvsBX0J38`c6v*ju7+A?4uBGBice;)>vyue6`F|AJN!kG4j%w zww>0qJD-SYWN2K~!51;8u@-%`?6RhsSZmrNYmLlqcUaM+6qjm0yz8a+RyK zX(N&=E#f61(~ZgVw&p$E^hi>En4aTb(+dpJVJjx?|aTO1DH{o>yTFED)CA^VfIvL#n^O0PMP9v0#K%m2`fcP&#bYfbv-%iPjMM zyL}T2l+UF|ln*u>46;P|T!Tb$Ydum?`E|C0d279d4^iklnU*MTnwDrOp|okbAzQq? zS)#>+_QUPY4JhxlmFR3jai{Hnu>JLZ%R68t%zL2fac^vcGjD;C=$qs`yj@cZ^xMfs z4=^?sHTd$rBI&!9e3#-rBOR@*l^b6q{3*faDGhL~{9+_g{$LaC)68(LHC>%zB>W2b z(q|hzwD#3T`tB#RO(#o~Khac5css#kVl83*_#x55gwn^4hS2=gK%z?trLP7JD6i&9 z^eaM%wW$H+GtYOVvoYUk zKzXJjQJziQ!8uF=%99C+%E<&yE*elrd?0EyZOj@7?IItVJZq57{N%@3gM~9c_$A8s zOEU;}5iR;lN-on&R!GKMBZh|hjhPU&j;U#zFAXw~G?rI`Sleuo}!)GiqXhfuB6a#EPtn75w{*N9Blm*j8%_OTlaFZEv=*u9qrAi@ zv^0BRR(8WpFEQS6RgeE*mEb>w2YZV#sNdo(CgUGhA2A94yzC=#@y|~_tW5M3CcOH{ zmz9owA|J2H{P^meADhJai=If~KEq$Mv!{6p7WBzf_|RYUK~$KS za_A5ua?ojUh!`%d*FQ#U65t-CnZxo>Vc!hbYRe%pR7`N@s5hRW9SX>Z6TTdk%&cvg z#c*YpxrVmbWyk{FJE!dvp61uexyoA)Veuj7FsG1i{`k98Nv1w$^G*7Izj zw3P_6dLQ0yB?|1=)*25uyUqDM7{XeM0f>~f#uVO%ORYt*G(t5#~5FHL(ZLQna--z2!(MaBM4DVch7p zqTH^KGI`s@3eJ4$9su9A6|wXQn({iLkUMlV>}osDALgBKw}bF7;coK|dDuhmFww)2 z{*R_((G-@=$I8Tl*-G0TVZy_fZ4bM`_hBMaI$A+UJ5gYRPc}MUyS$yqaG?KVkjaIP z5Z_byu8t6)@KSrxN*WD-A??LHTXxv(31{1jNfJnb_zq%(1kU-u+72Q|0)tkEi}6x_ zA^-})MXtP99|&i{#T0q*dmto6h+;>M`*RRhVj!HI;TZ_$BSaq=rwoE3MYjBZ5>!Qs zLOZs8trZ?%-}HMBb)Ph;`ZmN0;v+oq3wE^V2K%B!fYgVDTEV(x&*t!Vl*p6`9}b0# zXi+Nhwl7&hUarJ(lWmM>E|Xgf2{EEl+Vp8@1*c|swg)vvq)OFRRDHa{(;vol6eFd| zi8A$;XG^%+QKZQrbD(P{k!2%a31CGh5$Q_*$EyBVHf;y|q>LrL-AQ=ZvDJmvR z{sgQ~XAveH?V(R+(L?^f2Q2I?#@ooZ2v9nUP7d^c47d;5E@y{8_O~vgn+r1iQS&ls z+^Kf3yo;FN$QtI0TM5s*h+Gd=FfAMj969q~MTA$#>NtEU{I!d4f@Ud-n{;EAxCpq^ zRg86FH|B?1)d60_igbwVChTEDH{mETCWh-54#nMd%q3RXN{rdzHibiItT0Ip)4fN@$HF_0E7{G=Omx7j4Y&IFMPhvJ2o zR5Nwk?IenpB@<+_wsnx4fDazdJM*(Gg&hfEg7jfJw$eWEqKjw^xk=cjsfi-eHlI2N za_BY8P{JqU-jy53?S>@4%~!fwU^ znQ_e@8wrd4&aDeDy!)pbD;pqSoYft~j>;@D;&w(Pz zmKO?soCymCieC0~fmn+oI5kjAa$<~m*)|qK(jZYTHB7^{x11`t%7bl~f{g@beGqJ( z=N}8zgN2t3FEcEKcLs|rd-^}dZeO%|h^TdBgt^zsVdD_7*@+d*x3;?yhNOs%9;{)G zH4+$kos4{Wh{%E~DFWA(hm^bYzA#6tMiQMvikn5H8Y!$<|Q(uSLKZ;UYsb;o29k zgWFKCR%V!a)<|H6S6F0tS)s6zK1{jx@lx_x32LUWla5TaMgkpcEgbh3;ZVvYWvVq4 z)I%cS;Ar6jw}y#08@Z|jVOe6ZJ^ddWV_*@?$r6h^7-Eh!5*QiJCyx>fVC`_>EJ5a2 zBZ1&j0?qKEWg8nO_GE&!&8sP^(JSj_*~68QI6_n1J2K7`Ypdbu2y9hWFqs;OhNPlK z31=CNDb@D84J$@tB3#St!(3`8z-pz4Ts>BdfwXzTO(wtuYNb#!TD&D=Fm+n~dN^Bz z_bgVyXoxHocG8$h)9|d`7*QjQnIdiYdu+^sPriZAFHSV*{P8(t<^X&*nw8eu(qcZIl}gGY!kMv$rUL$?(%9Hlc=R^ zp&~~aXsWD!Heebx5?oX{R)MmhjJn^>lU?R28cTx*mW-xW0aF+(mqV}u~Hs*;%z#X3hF@4(hT~vQ> z%Fs-iHWE5a6f2}B6Qpg}OD2op#2doSnLU{j4FxP+Y*AyWa6ccP4s5}MXe1!DgYa2d zHNg*3C*#Z{VUlpQS%y`PI{-FM!Do8GB+UUH{RNrg?YbWExkF9*ZL_WX8H(NsR6fxIEu6I&GnGW=SOk*Xsb6pj7 z(qb_TTbM1Fj4f ze43?C#fK+bFy|Txc^hdKePm0s1rx8e`3^Qu7g3mM57)rbIZhQC%&gbtdK#NW^E`G6^oV9gsIhjI10tZSk9Uf8~`~nrdI2695xlA znr=mzBr~g#z$7O_Xu0SFvr9!+8@WmhpO=c>uJnJb)H>O4mC|<_dOX17=y92_Kh>CC;p1el-+eH3a+IndxE> z?4KqAJs4zaH4+VJ(L+LlOt40R>y9%bDsU#po=mOw_!_uO7jH-nGpYS>otkBl)G%|J z{|&O41$8eA7a8{$@uiW#xU*ydsrF=cnJ5hfTzx}kcQ7n36xPy{+0jVoo-^HWPR03Q zRx}iF^;M&o)W!@l6WVeGb|qo0B~=N3=r&7qbAO%gCt8_bVpCjFTu?9(sZwq=qt7dx=36mxhybL3b|ayAooRN*w070hXN4e7Gyiv*h*s@`mPZN5mh zr~hM3-p5JUd@;j`A*M6?(g8AF6$_+>8O)aBLG?-;IouYAp^j|Gyk%KXv_P1pf*H#O zfz@l`HK|~(vbUh-HL*}Cn54`ZLKccj8JcOy;(Q={MvMZA;a*aLC!QE%GOA{*o$Z}CF z{h1AHXE^Mv((=Otxx|`@FgS0#5isb&_ioQ_aTHxO3?4dgDISLXjB!7sflYr@;& z>V|N)eVMBMY$rIpLJW1F3#|G`ta^HyLFroIO~W(Zj_|rF(;$1w8 zj?-V7O3J8A8ukFnJE1DyDB2LfQf*HZW2Enqouz1w9W#Y^QMgkLGBQwv> zPxfIVuxEoHd97G0(_s!U6tF2zrjr9_s#@E**2>ytE-(~O(j8y+N*HbWyJEj1YnT!22+Vm`dW!b@tI3hYgAdSC39j!Xi! zax#qBBDV5fDRaWSUnDTGT{1D6(aIpq{#68{w}{WBg89CJq4`#^OS&_&7YTI#K)Unm z8|RGqyj-V2&{j;6rnNE%^LNdH)Q`k&txQDKb$uE*eJncLmQuU!s)YU@i>|J8fh{_> znAa83!2MLamte=oBFc%)n5D~Y1}xi7%N&Q=Il#Paq5~vu!|4GVFkKf4s7s)ALd~L^ z^k%lMM|0uOHW6)GOvyg0fydiKM+dsVWUKME$7OgtZLnR~!Ph%QD;#mzka@cTVd-{} z?W7B7v^M*flUGXF^GF1s(;SM*Laq&MaLh;7V7E{I`Xa zI$SPb3#RBIVPv6sPEJ8Zez_5YX}Uq}E3g zE~igLtOH$OYP+%ZllFaBCxA)_YAPr_(t}RF5${sOXW{_F9oFM6QFOB<#cWS+-zm ztyQpLpPnNo)tU$Y?h_+D*n+9ENMI{v!PUKDV8F!bMWs2Vc@-0;&~IR{6*FkP_z^bl z6KS53L5uaworQvH1m=8+(=pbU5o=c2&r}uI5X3&F1!B4^6tW5@=U3#&TF_vo%Zm9$ zR>HRZdL=MVR_d>^t^B^y+lmRY=3ioUAjO(CeSD)9VUDbAS2)`qk|T?=$Lv@w@bnQD z$BoIcSk1Ip0g(MQF7LB~39&Zbko`$U)@y{>uzEwp0g>a(woH750ASI1p1`p@0MTb-$nMW1M7ACcr`=>$lw@oGx%;On~JINr%J~nE=yW zU4A4huI7+%0OxOntu$t~s}gAOjhHMIOmDRmR(vC-%4C?(3I(`7#ymvt!Of)@!ya-E z3ZvFwAi=*@+cQV>LTUw&B6!qMx*5?y4o=egeOf zu^m%Yjf43oa2#R#&XBXUtAis4WA>`1u;R3sE)~pIl??7@#9Sw~V4|w;5@6RYixBa+ z;KL~MRFS}vylUj37X)vJ_15yhTvcC;hV5tZ>jXP7O%(}rnq%R#tPUwc*n%mlNT5YS z(RxArd0dEL3udb#fffsm82C7F?;a#e!bDXgK|L>CmkQ>k!fN^X917N4z!945m~U$38x0u) z=U;@qBV$ZDwG2Xk5hc=?>88>a$?P;dl-ZccrXDP^2vm4c55!bcc2IQ@zmBpolS~c3 zq4*&#njid0IJi$>mMI3AUn&N&f5q=!tYAW^J0|KNH8IobvoqoY6AM98#@T!pWaSwx{-pW`OCVZm*PXmQQF#nLp~cT5!E0ie(;{ zEy@b0$@1XN72zl=jTxdkudc_g#*Rz}m9xeotMY-&ATvRoTMzRuifng&AhVh|piXX} z#IoU&t2iBCHIqLL-DFY45!Z0BkTE8J`s+Q}foiS`n?Pfl#W*uTk-$!y54)~o;GpYz zCtxC|3tJ6mS6LJ$f*J-NT^FS?5vG7@w@p@2XBT9k^8%RxW^KBA8os_SZyrY%d`z<~6E;<@zK63T zzGkMTeivk4*Ph7?FhA2+q;S&iKSy_Fmt>6TnPy+&J_&V-u$HlynCbLoIHc&&nUiT) zJ&gwA0*&V}$6!V#5?CYYFkcnv`1OSmCSw|ZjZz-rH=ZWjInxSW!B+`JnTzR{TQuDn z;iYpiF~TfN1-D_`uUP2r_i+)5)l9tf__iF#&-{s;S;V-+5OXcP0bku0$ec=Mxbla{mHm{-lx$$opCVi4aRsp}p)lNg%hVr|{-Kb!K4v``=03!Q z49?jI`nmWKQ1ehsl*UY!boNiKV_)QT!j~GnRrTAH*^(-t_>t%${h6)F2X+_==4t8- z;*pptJ2*2bk>C!_6|?^@;UiOH8l{3KQ1VE`xOUbmpJ|+4eaf{3Wq%8AnG_Q$^???mreuj=WW#sg$ar$3LR4D=U~eiNqUFmi1Pgr;NbFNhC0tc$v)oe?$ilc468i z5(o}6Kp!am)y@g()V?7yDW*}1g=J50V-Ih{|E?n(ej=jm=>qd*QwmR?;Lg1Lc!}gm zxlhGF2l_ukj-`$;-$}(O!c*K|Im%1*L;~159h~{Mj7?0d^tcn83Q+OG&h37#ko8PN z*ledbW1#w(NVKQ_V;qlCIP**tc`(G}N+dAb<5woXiPTp5uEFYnW5X1!7*{OAaeS`XCQM2yA~LM$5>|oJ0a64{a2=qcmU+B@$>b3XcM+ z;dmetze?2&8Q^0hPZB`=zhbZ}{U7t)vXm#U)5$awHjNta5)Ke-$81WqS&(b1219NW zwFjZj5S2Z^(OFtBu~OOy7;CLtv4()jghffU3JUyrEMwHPV4pSd^~V zluI4ep|I0hb;DAyCG#a+9uF6rsneZU!&FJvrckbDNDY%DJt%-H*6Msmwqbgt|G-om zwM3dQC6a3)6xyg0VUVrrAnlk3DHC#R)oD_}3`iAl$yP0wj?8`JR!WYOy!GWYPJ?-m zP{7$|!Vfm}80fLuUhO5lnDD3#@`yO8nX6L<20F{aFwxORWpLjYyQAh2#ym%w0W%zZ zHyvUe)EpU!xsAS@NtKL5(k^NjP#x4D56%Je8j--hk_%UxsVM|H!qnD-wem5o(VMW? zQO(y2XCc(5uEuhRrt&~YHkx~7du;T@G@`J9bx7OYN zJH*Waf3%7^3m$)g`NQwvPZ7DQ5w4`d&N5l{`!TS>O&tt5Cx*CT`fScjMsTpwkry+QAu%1bdHm`?lceTF_Mk8LMkKEN5 zSNcC@ph9L~I9QEK34}#UajQ(aqiPTJ<5O&5LqST2GdnT$5eivhZl_WMA>CWWBM5X; zBe78cmQp{b1E=0i35Kg4YBzgQVIs5fM_N6xZ?Xk*BAH>Mr#eF_m<6cWx0y7Js&4+9MKJWB6t@J~fi^7z3v-DQ+?j6Chpx z90GmRWH003(2{1;D+&s6n>cQJ4)sw3-D~-0;W6J!WaSKk3}3YqGa`Ag7jq$zK%d?O z#zNI)#TobMV*N5B(%Pf&Yjd?bQzCillt>IS8B#T@^Hm2(duBoUTUw z3QT=OLN7pPCO~qM2{83h7YGPY(_|Kz;|PD_+3^WPmzcS~8ze zC~lw7EG3^2j)H8?Oh)w@N>oPDiAjt${svbA)j?9j{6!mX!1`cJu(Y}AB(u%@MIzb++FyoZ7NhHTWsY*LD_$}blNgb}P-!w$NcW+^5@h-! z5_npaiQ!WhU$&;xoqnA(gOu11pgh zkNJrDz@`>zsGm)<%|KJ?vFN*3?3R;nvhhpO$HAnDMjp=!L{X?ZgYh2)6LP^98h@dvbqWYX`; z@gX}VA|ipoM;bN>c1%Qs0v`C{^ajI*L-dz-d?2KyYGcQAL?|r4kn~I+7a5WXiBN!x zzjW=Y5fX8NOhrVZQG&tDN`%CDY{Ps+B+#Z!)XJz+L)Jhy*c^sO+K0DRgKa00``=D5 zyS3Who-WY+PATkYjdvPjOjbk!bC5!g@zB4G>LEcUDI(DTZZ$xrC?bJiKj~@T7N2n( zmYIpHp+#GDlnlk3L?qA}_xVyf-?vp=r8P4X&4#OO)l4ULXELH^L68)Nw>WEt*uBsS|-G_LnJVv!IaPd-$?~nksO8DhDaco#URXWui8T0=`1^$ z6($^-43X{Cky63@Lj7R{Dr5r8DMSKe^ngR*Y7qE!P(y6DP*o$NP+|wQi#=UnRXdi! z+zx8C2V+bvL;@Yhkz;qLn?0hf1esun1cGSL;~}Z z0~s-DB)uNRT6Kry7`4A$JDH+MB45X-y`7m)hy;4fGW5}K>dn!_r8a}|&9p)!(564- zwiWKVn`RB)c2q+g`E=^bcsg~7KmI`2v;eU0q;_&8Ef%q(OmGaGjT;*dYr3lLaH`j+ z065cstc|U9aus%VQhT`41v+$-4n^#+dZ_9Eb)D62m=QK+Rw5FZkr|CldONZK^Ai=p zi_U5n+iJ@Cj`a}NMeXWJ7Z^TCh93#L{Ig$zFJn|^aE--G)%`Ti-_yh%%veMM)96BW zfsox5r$DY$(o(eKS{-UE@)sC)of!Gke z8r(z2g+TjmYP<)VF{cp;Oe+g?uqAAtH_p@9#3sydGJ%r2n7>Fp3pH_Si6d*6u&4+edZ;F8!c0XMFF{ogb*cxOFe?!W zEZ-zN%Y(^RJ;`-MHlkclCli}6LlJ(P=&2S+A0{Otfj&c}PwC!`_IOvYJ#!KrN6xx< zoG`M6>4<9KWV~7=^T9ksPyT^^32GOcT~sbFn4h4Axzhi!Totl4VqtWm8jJTmn=luV z4?Is$2RpKYnTMhvGg0m9#0sVyI_C=SC93^ASi|f>BrvOO;c7Czrn@GoJ~r}nGjvE& zUvj1YW1912n%&6?e_Q*r;ohDmHeC{{8=NHLO4Mv$}hyP0IeBzCZz6>(oP#RSARdbzK!AwJm`H@%j`lVFl>el z8`58OmLSs$k!VP>y)SZBa}rD|L;}Gv(ld8}iX(WU;vp@VV2DIRY_!l~Gs6%G1cyua zsDbDnac>H8SaJ$XGDM=mA5AoW<{Bb_pjIF3fA6R*&Jfw3iH1m^NxW?1`=bl3A$JhI z&aLf=Z_-J<@#Q=Hqrzr(wWjsdvH|e#KsDB${*Mj2zYGr?sUtiXViqD27%dD|d{P+f z!SgF^aqeAm9|ac%;RAyHkM4)%eUZ+_azHLj#Zfu^zlAs;O9!GTBAy})8bNlxuzIlS zXS0Z+1;VF;)mT^hKSnzyqa{OfW>ItS9iq0iSwdEGpwAFB%AWp@R;SBg&JcBs2SdzH zL;|CyNWTq3)E1EbtQdcHn@yOUhy=S~@Xm9CDmsUwrt&^!a*)#?8Tsbw%W1BY{ln4X9PW(YaN$1cI2km{t`;bS^h z8ZbE#2{afX4gSqkouDWMI}&GmQ)rnjcBD#5sTq7YRE@W%|6@vz%Rn8fPIhF7NsFo> zFH@Z6D2{)Ftw}QCJOrVZ5zmYa-)quX2Btf2@PnDUuz;1 zlWAHG$A+mvwrqU<4-muDXnFDC4z$iv2gop+@7loVtL1HAZI+s9!^Sb7W~o&Y4p(hJ zZ8I$fwhmW&O4X?QHeeMuts?}F(8Jf=|Npwq1H6i&`~Tih5)vfT&_nMvbOb4a6fc)% zp$Q@MEP;fCARux@6hwL*1f>Xy0@73h7P?(gP+#?ZRm5Hb8`4M!<^TPjxqFn~^Za=p z?wt9|+1c6I+1Zx!U31Sc3=~=X<7_i?m^(V+Nw(4{Drqh)O6y>vhr6{(5us_dQ%%R= zZqIP>cr)Jwhr7e9d$Yol=H%(L$|i5P+pMINcQFk|xIJv~{A=9ivW(pV`6u@EGpmK6w~-4eK11V4dw!&B2jwpKx*f{)V|Z(j8$ldwpii zC^ykoF}_5&`LSPm7ZdrgJI8}GM`Syr2`Qf5lofaglT5=R~M?Au}K(uwWhcOBi`T= zMgDMe`H|pY^X?S4VH6RTcoIvP=;^piK0Xz5Y4t?6uJ!)3Yq;r|{bGHSnCSMhD5`t7 zN!b~!ZN5x&=U8-ik8m?41CPJ=Ij%okR`Xqt4O87mtexZMUVhkS{=U~-oQm-yUJvv& zgP(9?Oz$MOv#siJG_Tw@3#*zfNjS{J>2JUJD#=YKxrxnRV!BRqhnJ#_cJE9z&rfsv zL`YGafuXiyL;70OdU&`=*t?*Sd1|^l%T|C8pk#NqwHKI!$?k-3S$a}D+f~uDPH|gV zav{MsZe9we3h{Y;VyJOnq`2KJx;Y8GQ6;mM={&=2VQZaZl4iK$Blfeo73YSVvo$i? zm{O^3gJ>eO`i$K_y-je2Tic9IbsJje@rgL>#%4A)ucf*Hi>?6;esobY(>Bc=S5m4h zZ8oR5V=EkH_1~<)=q}c$=MX-9tY|K#xfOAwvIwg=pK4mnbnlH2&jyc%n~MjQHa9QL z#7GddYF@Zm&?vK`X`AlGTl60&PV{J!+0Xox?%r?F#vpq2*3zzK&MdsPkOgNy8E%3V zm*I2UkGQ?V1wFsmOnt=NVl!u-Hf3kKzgy@3EeSU>+GNf$>2ut{7PVd$ZuYgy>}*QT zbsw{+{0ew=$ed)Z%yl2IXy2-Ev!YYx-R7A`aeT{KCa(@RA9q|4Zzj*f9v1Wm(1HFd zTASbIVNwzF`5M#mF)Xr>J+$H)9z*xQ4!~4aBZ>$;<4ePE-?{(~VQSBJTUf_O)`y#e z8{IZ$@qEk@vh3c?;l|f~Wjk|c(7n5)AY%px-E>>r?s>HN%*qa?*y9*PQvCPNX8Pmq zVq3lltKN2BW?fTjf!o-Y@BYgST;O)Lng3q4BkqL-*h#YZ`OD$v@dN8xnb;?A5)hPl zg@dra%_Lkg+nzu#N=cu*a1&oASk;tUh`}hR8_@m-GaH)u3%xaF;nST9-GE*GkE@6l za);YYv1?}Rljt*9a{e{*@{{hP5qSEI?|#=o>{5@7{msm$+(ywv=(En~GYqmmX6$me zuKDCC3|eunS0cg=+PaI-GC{AGj4)frWn!!?a>s-VT3O0OEq1rt%y&`dwZ#}LQu1Y# z8UD2UlFhV@HYJw0XKbcfG(OGep0=3^70jk*-1lrIs)Cuk)IDW0J#fq}b3eA3+A$_< zxx3f4qe@JK`QhD7EzK{>-FRERtG2msh5KQYtoqq%5qIDZEK>3|RWxl@x>EInw_iMC+t!eYnT?R-QR5aw>2V6*=d`{)br+6IR=FU+=zV>oBz=%x9}I?=f9BxJjWp>X`i-+-c#9xd+PDHT4YcKbb+_ zKW_Uz#biB)31coUdm?7j?e2CFrp%_y2TbFQZi6TyI6uX~{o_Vl^vv7nwg?x;MGee> zjqU=w)Td1%Ot-PmwK7wlb(dI_(KN#RwIy@18N10%w2LfngAcm8t8IBiT!gt&@O&fa zz`CgxJ=G?{45_qbuo?NB`;bMY+eVoFowl?yna{a*S@d_?hz-5AR55*?cL!L~9&IkW zJF}@d^E|E~tTrOMcv+4Q_8*z3BG0PDciYTD|8*JR+Cn z4gi(Q&8%Tczl8lP$UiIsUjo?H(yV(4Gqs?v@5f7j4l3KPqXu7Ts#t?-51i#CokjNDIUWTBFx+4UubOZc?G>EsKjcs z^cD9JTYh6zgxPj!M?2GPH%@I*zIY=BK*gPXP1bIARFt5fHlstkm<4-xRy3R z+2bZh9A^_c?Zi+m@mqg0bg$bang~tEv0c~S^k`kaw%NVcZ5AcYrFWp7hS2ER)WDQ@ z)%DvdTBC}S|I4gj7J^J&cSax#i4~7~Ayn~KuVUU#CmMM)!bF{ZvAMZ_pIfIC5!Q9b zO!L@2x3~2O?253LHJA3e-7NZgcZ9vHxqrVqJzVM;dcb_JACs13_8c-P2iz6bc_`LU zyVS0`O|OIQu<#77^yPT7{h&K4ni;IF;!K$?2b(Le;f=M73UT}Ft@EZRRJ()=~;Oq_Y-b?h#w<@6|X z;&qG;$!v^|v}35(8$eUpzA;-OjW7JS-sbWfZfrCWTG`UJva`AM$%QJWTB2LeI*(r; zY5V7i!)_OgzBG}xe||me&Ip$(b2pmN8SW-qUVSqb8TVsj)946JH&Xu47W3#4cV<*F z*Z;x($UBxbFmWlk>xjOZS<-yoVPS&qisV;j@K)P56}gkz858dR42a(k#T z`;Ov7C+L@5k@mW-#+#Tw1&zVC=HGO;+VT_oBh8EhIMSxRg}aa4T>mTYMw$g{e!AO~ zf7@*qO@vk6Z&x|olsWD;w0lXMA2}LnkKJG1#+A09dB-E|UK;m~J2+g>!|!r0H8;P$ z<2j|Ajx;AW|I*Yw&yKkZZ6yz&5w+U>iaGqaJKUn}K>N=8+S){(a4QC1 zg+3kB^eC9O2p4k9Wq3L2=s8wQ4`nBrv4soTF=fz6@=K)#i_g>DK z)I^FeOpSt&q%5$mvyhAGaxNg?X9Zb<1pKO??N9-~D|qHX0e>o3^ss=x6-0~?a7n>} zpe49@3^n9ZytrIZP%=S4j)LdL3CL6M*=zw<6-<~bppf7QyMubf=#J|iknXt2Tu{nC zTrA~xKv~Q#aBGEtFa>|E6Hr{ikWB(gD%iY3K!k$dUKS9kVCn$@r4?*C3L#yztBjIG zr^ThLf~p@0D6e4Mc>xs(Qn_tZQ$`(?Js{gw)yp|C-%4?H1^50cpr!>u)bR9gLTaf? zi{Ay*QBd{|0reD6vk)t7prF)M0gV*wv!ICrY8GOVW(o#e1Avfj3nkPngi9+06>kZM zQ?S(Mqeoi>e}oBWub_W%0UZ@ADk-2d!Hev$MUWOm9bE+kL8QmJY5B%TDetKO%7$E^ zw}N$0A_VBG;G@z4?o$A*LwW=hQ0Wlh-?D}Rf>za#?K*1Ldlrk@hOV}&d5D!H(F00{ ztYm}-q~W8Odx6EJ%1ZGV4@mJ?FXx<&mg4aWeDDvVzDXoIS;MmW;*#hAsbQ*@bNbbi z;^_(wRS+;kL7AEVW>Z0_YvmW4i*V z9TMzR0IfrUT^8{8n`g;xk|($u(i@1&s~(Wuu;0r$5ISTHhZK~8C_2C!3c6TugkT11 zq-;7o-tvId_zrTxf7A|9e%vc}D0T>NQUP@i0ZuERt|7p?3aD!c@V)|y83KH$fC`2H zA1nB=c~HowN~l~2m(LVXxe(x-0xA~*e4&7Hg#ceEpj;uq*9s_92=J`}Y7_$eFNx`~GlAj<=?>$1I^LzzJo=PIDUAV9tX3Jd}iD4@U~z%_!Ptb>YzAlKD}DuMtv z6;L}6;0{RA*k(~X5FktewF3c)E1-5DKuHCZ3j~Nz0J%Up|3xaHQXpJP6Fkm=OUZtK zXb;HNm-BKCbpTOZK>;=Y04gb<#veds1r+lGs7mlkaUOsEBq22{37rpOnZuvB-r;;T zTZ-#=K$=j`%Q@8aLwyYtP|^>ekphbO0W=}l${Lri6wn+XC`77kspZu2!vd`pP|FXX zjRLCp0kl&WlK)eE~-2o&hpxPb4cm>qB1DL3Q!gc_Y30~sX z^J5PHP6$xQ9@!)V+1S`0)vG{fcz+w-`wl48<4m9HA z_+O?35^-E$r2+`V5v(Ctz$*DU41o0>kSdLrbEpl6;%6056%Jst0;<3PJZ}Myf2zKL zY*iO3y#Z`jKz%oW9SSJz2JoT+%DDmTQb08~fL9by%?)6W0_wQ&_)K>%eNCD;40D_+=p_CfPSp}3&1NfX^5%)bc(*VBk zfON-KUQT4uQ2ez53ZemgtAI*q0RK~v8?@wmB@{k`%LN5gJOj9>fC^^-KP#ZL8Nja! zC~OAsy8a0i5QY%3^e1`wuz0%ick6;QeiprisS zmjOg5pk^6BBtX#CO3^Zq(sU73Eq;6kAld`6vE{s+L!~klS5QEuGJr}7C`<-WSpjv) z0IDjWE*X!%>Po0a2A7%&C_x5LO98dV0O}~9>KH&h1(X{DXrO>{V*rg5P-6_Bi2$De z9LkG-Vh0D3B*EEqs91(X5xB)bD@UIY($K)PeNmvgA%h2oI}L0N#(T_6vu3zfP6 z#wegV7rA|3Q1U(>qy1>gh zRM0{N3l&f?3*adQRLKHZOfa1_US9=(V_~|Qv*F7NX zIPB#dicX>UhysdE@%hi2N~kpj@U{YKO#vKJK$R(g6ACCT1#n6M#iRhvD4>=Uz?v0G}wJVidqx1yqaz_*?-MqX5n;pkfrjmkKBr1@IpQ5QmcE z?;9nQg@Vg}6;KZf;5!A>fdcqJ0hONsepEosCxD+6Q0)oe7X?&z0{9IeXm=fTok0Fj z7b-dd{H1`3P5_w-sN)21SpjvN0J0QNy9pp$0Tr77auv+FVvp*4CDdnvOMwFFGXY#v zKv5=u>k25!1aMOUMVSEZfV_>}I%+Thgejl~6F~7~o_}NnP=pDjq`FXb2_QlN1(pCJ z{{dwMlvY4FC3uukKnW#)vI;1f1W;ZihFZcBGecs2_ylhZRsV2w;o?N(KRpRX~j(fN=`C zE({8ppoE%0aG9ilGC%-R6i@~Tz)?T}Ab=zVRQ&;%u7IjP04WM6^#hP9$DeF01%5zg zstW~v0A?wms1Lww1r+rGn5%%AJ^=F+P{#*gz5+`306ebX&!8nwD4|RbT%J@wl^%da z3aHNm@U#L7^Z-1gfTBDA%M?(K2VjK)3h@A}lH*T0fbu&aYt)5OI{@nxP-6#Rg957S z0Blr1bsd0B3Mi-p@SFnb=>Tj|5Tt$%$TlUE%mH{o0Tprpb}FDY4!}zaD2oH|vI6Si z0PI#k5gdTM3aEhtuusOnbO7aVKn|!24ZxcU zC};!lwg-X^m25zcdBmZ74ZsNn6s`d{rGUCM0B00Xs0QFY1r(_P_&@=5X#hS_Ksg$K z;3rC`L<4eG0rh79K372f8G!Q&C^ZA{r2=Zq0Q^S*)nov^Q9uP5fd7U7&VQ7U0r^f{ zC?Nyzg92*D0Q{(cf-wL;DWG5sz%L4@5d-j>0&2tn{GosvF?|2^mlEp3z$H@wg<$|L zE1)P0K$Zf^!2o0{pd1W9t^x|d0OS*_lv7NMfIAP(NM0h~f8Hrrb>b39_t61PpmcNY!q&(WoiJS|H z%MrZF`uNRNfQlXv{}?alP{IYpRTNON1)!P&Dz*UB2r8ju3rMU2sy z*$RH!6`+9!q!o?4oI@cN6gN>YXqbRz3dRn{^9Q)JP(ra4fL03DjS>*2fGR8SXsduK zD*){Yma|#>s4PGy4@k4_@^TK9RZ!ejfIR=8vI3fI=zo7^;9eDF6>Bpe_o)Lkg&c z0x(Yo6NRY0K=fN=__Z~`zv0ToUFCK0^D{lZH; zfJ6^)zXYABUe;N;QOc(&pk@gcNLE125`Y;BC{_ZHMu4U9vrWJ(56Hfs?d2S*lE8m1 z!DRXe`I%sl$2=kn$WbBX)E+_c0hz95KiWx)`)eTCvK@IaCfo@frn`3;|fDfFdCP8x&9^1Yn~A%7XxGQb0ivKL2=5 z31vXwvPA)9KmfKWpaKZM3ksyYOUN+{F;m$wyAr~}}bg2)^J zClpYq10JUo^v)A-Mghe+;PIXUYHQUz)#r-14d02LHanF64a0*X=q zR8~MC3V^B}2s)IY0I5#$7F)q@kORbeKw44T%Q@7XKyh6Kl$-#luYi&h01XvTZ33V% z!6RHnXMD&UpxF#Qe<6`|w9s;jO`yD$0xC-Y#1YJA4OEi=Xy*Z`paXM9S^Tvv?(6|6 z?&9Sf>O)}ZyJh{d097GCy3^%p*0Aq+0rz-7YUu6d9I8LSzYoE4^rzwjKz|R2zn{68 zEaoTDQ9RHCQao7JFXdEtK>1Lw+@Yugzyk^>;sEfF0%|w_3|Bx62Y`_Z9)oxTz{3RV z*otRv35fT=ln$K#61=QK1qXof3Mk+JFi`;o8~`ROpmYO3q5`Tl08CXtp$33y3aHNj zkW3Jic2S=JWQMv>p8+6^;2>Mh&%^`F@__W;Y%k|fngPXg6;PT1V4ea>GXTt2Kv4$H ze~*)F;X3%SdAKa}fUM&wFXvE!0mX|IP;&ubi2{l(04!BNnFWC53aGCDuu?&g+6o}6 zl~7FqU@gH~Hft00Pv~;3LpUNS3uDN&VL7$P~-qEuPLCg z0l*syC}RMSp@7l_07n&2r~u$C0$dzIi{MEC$2=hYbHd979cmF^fm0+qxWI_j0^aq2 zEbzXU6PW?{e@K9fV(1I35&us-ApU2WTgKvfw)mU}r1%Rj7j!5rfcn1jh(j3xfUgN~ zQ$hUz0sr-Y)bO2`b0`)7{~r`kB>><@1r!JX_=#X2Yb=u?;8&S{NTkZ&wVa{=Sl~|r z+zMGy0Dw#nh(E+W?{ILj3qgS6;(x^hQk>)E9O?mJ={yCD{|C4#>z7Nw;-3q-Mi&C9 z;kuV|80?P)ZYp4~KfoObthGu3jPeHvBfvd?MEMhx@PO19?&X{>vc*3bspRHgLhe+6 z0Dsm{Rzcil0TmP=#-AQB3J~E>P*uSJ3u-9%*six00q(l^{<}z)sT(48)9ZUV=goX6 zZlnN_{#-{>1zoNQXrTbX{`6?AV4Ph=TY@?49K`$6qeCj6|C31Xbkg$gZ%7SY6zuiM z0^JlK+@Ce{RDfWAg5C=5x9jLjaEdEMXg@vf^8nWwbOv}?Cpt#T2Pr^wKNlFPfU*4m z4=O-dKf!PXVKoJeQt(VI0b>+&sVgAC0?vOsY`Z3q9AiTf=+9awdq6rT(aSki8cT7K zf+@`eBrABixqws!i1}xY=?d!ERm^7OzFjHe{^|0lg6h^~KEbnW7DE5&vA_e;tcA?I z!D7Vuvv`pQr1)ts=OD13#Y+_+tY7Be6-p4*PnXpSzO!JRf*iXJqu}p*Wsyw^9_TCJ zc?F2?XQkT|{B6Mwf=zPpFPSVZFA2e>NXuXLat^}$S;HO$2=XV`r@%Ktz(EBIY>lrg zm=rG_844~W2nfEZ1hM|C^&JI>^d~r>V2-WzG{Js$IfDJ^@ty~y;U9Q82jTrJ{#XHm z`w7k}C>^vloFh5RDjDDpmoGgaRsP4zIf&|K@wW;P(@*f70z~u^Tu^{`euAGAAex`x zSAw9d^!dd?{!o{*PYd{40fPFu3_cnkY9~Va39cwWKtDmQ0)+DuTvdQzeu8TX5Xvw2 ze>aqTZnyppgo!!}*&T@H=Q71SAl*^I%Q=YQXK{oAMDP+9)Vyo7!H%d_Q|yzyt-1_y?G*0KxtQP6*)qd$ER)Y3hP_f4Zb77#=GiO#uV`;W0}=m<4kbAl{!I z^ArrPBOpkynERz{U4o$Vghyn@Jjom$=}M?SYgp_7DPH2`oJ9?!zGVs!!KrQn-cW$petH~Hz{q}pw-g|zpWv8+`4*fcSkHDI z8VwKJf1L4%H1s_$=OCP)HGHVx`f_|EL5v4vrB%F~^I7mMS)jTS z#O8B>SOwc`4RsVCI-ef(6(BaBppk;pqXaZnfarXBv>=$uW+678p!G~%f0IbN+Gsh# z@mbzp0fO-fIw{EAD4>f1gyYkrn}UbzI(ib|U6c*ThevM@aGgP?kC$~2cF!96D?rda z!2ktgUKKD%0mAO-F_d68*MXpWf(Jby+cnI~IS8|7@kj;35M@s?TFJwP@#@@F_HDG~PYfjcn!oHUbZp8D>f!uZIWh_mw0gty22(4Y_h~A{G)r6t+EOK<{Y_MHgRln z(k6II$g=4+!HXj19<>Sob`7~THrZg4%{F?3KGtyNH~X%u7x{3o8?>t$|D^Kk47ZB&AYy=o+a3rRiw&9-7$<$Thns^;TjS*1$#y1hJh^!k!) zXYYUG%4<^&M3DCVH;q}ld7o_4kPv;%j47Vg&i9(RRXnTC+DivZnRkk3MS1zmL*hJ0 zo#E9Y8qY9gE4VjS;k!RIzS`2fJl6EUZM->oee-;YtkThALM7aBtCrO@32$t#zINs7 z(!L2^nMnvo6UrQwRgSognqbTAf=Azu5A?Kn>}_~$nGA6r_itKv?aDV~edBMV8y0UD zI`THUHro2)S*&d7dbX{-Pm=oPt#IrEJh%O)sDAnO-o6|5Z(e8Z3fq+U+i97@(!hk< zs96<(Au>6{RvTZbtg35+Z;R)Y+iCJULh&G2+919SN;&_|Rx|xeWmWJ=QMHQg{u!5e zSp3gI)y#|kc�KEW-S+6n1~Q`Mp$Dqf#?Mt{J9WR94MOah?CECH=OdwS!JcgVO#@ zW7m#7A$>ddHj2*#oDn?pc6=i;E2>oLzge75R$P1S*;6vUQ~q68yL=n3%V*uj*Zy!q zyyyIz)~wXF%|DHQ^tPh4-Ootl=iNrRfUaToZAGSfrSD`3JP?oxxPm@T4}$Dc3xvztHL`4h*|owSQ?r#KxW`Exga3dr8&&sqMQQ)#cAAW^eMRDzf#QmV~b|{{ep*BfDzcvhWE>_%awj*!=A5 zjDkC}`ucoxOpoZS8opCzbaYlL-!Zd1IxEiihB+Rc)ldWZ9Sv5-XWU;KaNm%aIE{2nZSyeWxK}k+eP|7~I#ccwOTTVT2 ziF;98R-5Q@S+y|ETb0YIgJCwLTvol3JY_7ayy4Rel}p+ahuMBBwQ?9v9tX;0^%b4f z$8bV3x5{M=D8m!lV>nmL!lv0XNE>H1?1AZWc7r3&Zb;Z@Bs{wz;n__WtFm_KzN#_a zV%!KVs<-ysAt)%8$SPISE9W^7HE^@kEi}mnDr7}g2(6tP>Xn;1CA09&)R-5vl;=z> zO(>NW!-HO%z*DGKx~%5fPmje`^w!SPs#jzVMrKvzaE}}sS}D5@ZR6P%2`^6{TbI79 z?DTPIDN_=s&yIg2aRR>5nYNB+SN4m2G|tA@M{ztc+q;N`8NrHKTkb8je$tnB$Ujqa zWLA%`&2vor$gJi}mygWq#Pt1QH`$!LD1NtBe#2@9-6$@WhZE92X`Y~T8@z~QjP>x?fi zwQiI}N5TRh6fJ+d3x<(HNS94mq4>zkA9vg_kHgDiKlMBsZ+ z85KW6^~uUTRbA;>#nyY)R0urT(l?;&WUV`1@vNtyzTUqPz0mW+GL>a$_&52tA%E~%m6+PLf)@hGvQNAk@FCsgRJ%_uhFWs#Kz6-Y z>77%)z!`d%_Pi6PPr|23(b^sdvuoRa{mmEfVcggS&!WE ztfM|CCCL&o#XRdwanGt5PAlWRL)mdMGZg-1N7!9|XUohn@9*q(wWN>NvCo!8bDLYn zvt{uUU`q2o`#ZZz2XQ*!KM1EN>l8n6M!YvCyyicOf;&S6*g;clk*S$!cXXG`Z0V-q znc212Epsxn8%Ic;XZ>H8AiN@y5-ERI^4>$8g}+9KlE^{-+9Q~h?Va2hHTJGbES6K zistb>F_khFyV);vVZgsJMh2se}#d+eNRkP*7ixO9GMQ>Ryj?Wuhu%J8PmS4a~d&C z3FV(}opTrS-?q+a&$Miu_3sjw({Y*{5>NR88`1wVVVv)a?c!qyr`ur9S`1+v%YKF; zjytMB175gI99m*dax)G?zD4jE_mZWr}j_i`*Ikq=eG&fIBhZ|CnITV8HSjp}CGjNePkWkqCIu5@zu zu-rEF7w*EMFR{9hA^T#jN|1LEE8QtX@k~>8@FjdZEH%1%#;0MqLuJp_X_woTn-bqH zw~k%e2A)eW?0USHgD+UL%Pq~~eeH7V+u|MmS5RElEa+8D=Ch)9xeaW|8~%?`Qo$UY zU9A$A>D4~BVf!&qVzH7fe?SVwS_41wECcZq%kDoLveKP*-_F?5K6kTRb95P#D;EUw z#(3*b^v}myYMOILevg%I_;gHeYp(9rm|Qt{JH+S8lrk>fc8`hAZQeBIOH|KievS)W z6Ki#Yeu=f({1UR#of;XJ;&aCiVugeD=gKTGdw;H6r0m_FE3?Sg`*WMx>z|8(NbJsK zapuZ_+=}LSc1|sOnOE8usO?*9;v(wSiWz?t2Xfn#k_l$8FOXtt z9?Y$3N*v6U%dVJ%xpE%ud(dv*oP)V7nqF|xQa-eFhC$WDT0SU|SnH`QyiYM%1&T=iE74ec1V2nG;)`w_7*ze6AeY!SlI|n_h_w3kiPI zspwhvLkq;pb)16;h*;^)@QickbK_dtBd4c-1Xgz?>W>)HV^IAlJC(%w^5oc=;mZrn z@caF5qet4AIu9@Xkbexiruq7~#-YpNPbcNwWoPoW{sU(4roox5Q z$CL90u(?&I!yipzV`IJ04mHs^??`}FaP0Z`kFAvfg zRx#o#)Ge&lbG&Djnc!L9K*z$C)|uj2cR3*|-I-`!P0VW=Rx>u^^N~5w9LQ0%EPAM1xlT-N`OhURP64C*<55^)sM)^vaz!rp z;F7$0wllW--!zXe$*Xmb)bh6fT{uQ~wXDOqs7)ki_CAoWusRo)pj%>m%632XI)x`bHi&Ygfb^_!DU`??wTMdTONu^rXeKO7z9d%S%$Iku9T z=F4T?il+H>g0jBp{xqzw#LU!$#Oa}nfJgk_07XpXM|*M88KU3$^FvMP*t}RM#(o20 z=54h7E(FV4YYw91t#u#5oo^f6JnI<3<1Onn#^nJrl)Lgz43g)!Mo9kv(1>?E>$z`Ihx-sH2*a9cS18U zHNVlhnt3TJzY6=~L{`4cGrlYNGOu*Il0Te$gYU$xX58o}FK<9cu{O;R}@Hj1^8V`8u6o z+%gR$jv`J;oj4(JyuG_xo}DjuVEeN3V}n;6Z1n5w#5PHuwFD9SmK{Z?zO^;!)?!iK*)v56|%D{0 z_}o>w@;UX~)w<-rJ$JPs(=yLrZDU8szOcZD93l7!=_6NL*%7kf`K#3)lFh!eSfEld zl$MYq)plc`O0ht5!m{z~#k462=nlQTMHjXz7U;|J==hY>^yw4h$IXc!pOlbhd-}@r zS7o1--Ey^Q8(GKm#RBiaT@G=l8a|P{k{$R*6VDpjB4njImuh4rZMnL(GB?3@_-fs1 ztiXT2|0!AADc=sBd>NYNJe_g(;j3#p)A5{pRi?FT?p2xQYG+-Qqi9gp)tE%7;H14B zjvAjlEhQa~m{R7<4sB{hU!cEt-Ywr1weuaTbEKPRHSXzIclGwHpZa=M!oZM~?o7=% zn{_oHqq%15f_iplTIv4?GtOBO@R#k zsI>)htI>FEfgBP8))sWM(_v~@V23vyRveG6;VX1!9sZ2KT8Hs&+FI}8A%?Xs;7PW% zuHdn`wQk}s2duRbZ>+6VfS1+Q>V~)G)+)8svl^|zsw}(<&#J9ev?gSwJA3d_9%qcY zCNA2omoZ>nK~Wj@K>r;Da-yERqoA%mmEGmP7ds#lPe|J&PoFp?*_-+L`G=8P)+Y1- z6^G79e`4s!+r1HM;~xt+v3PE7twlH=SnDmkvKK4e`5TUCOI4kIP}{`R>1O|wKx9Vw zodp-8s>@iY;_th7T^b(JKZO?w^7jX6PX6|cG6xF!)|(<8b^Uj9max-TeA-0RGkv^w zuI<5=ExR)%HF^BRw6yq{$x|nKC+8%2m=iuNAteQm%0qMe2Ky{++Qih!IDk`=$Juf9 z&KCvp0N~p%3Su9S@fGe1)bkGMo%kyU8#BD}70+6SL)@}`__G6R&BH4bYu&`_39-_h zU$HQ*>&x9WxN63PFAH|g;4X>mQ&_`p|2_T**np_sLYW0V?NivuFWqz1-Vgrsn)Q`WNyYxO z57}?8aj7q`Mm)^PokJ>ik-l8-3v4HgmTM<&W_(&oQetS-1$O!ZXIUJXmOhSW^}aM3UOh(5j7PV52W!-M0E4?XLJk3B2*tY-~4?^z#z;aP*e@~k0Wdsfo7 zo;Bz@&pP*mX9XYo$uqnD>{&%>9sR{)M}GCJ&3|~-ioZPT#@}jXdR9xj=^-z&#UGS`Q=k@n9?)DevgwA(0{Zp_9KYQZ- z8usOsf2w~mK%BW>hQYk#LV3WtHQDZyx04GS43tCRqCY3JCr%;;+6GI1gy3guwLpxs zwJMbKte?U?>ovqTOKG}uIV_`9N?~_-k&v>bP|g~gklI_|@w~xWR>|~y@qri_Grw;s zY-aEJg8t>E=hng)(|T)RDIVrswiY(9=kU$`?brlgp9dEt>r)s@~z-Y@JsP0+6BNW=QA&7VmEumIvgfv_BtXioJJyyGkXT65NX82XaNT`Vb zW?3ZN`4FwajCb+p=c+By@kdbCD%va0DaDKAq`a(nk=y~DE?(4uD<~>nB(r7H z5=FB2MwTe*Xlscq8JJTNwbU>vKVGY0YdKz`NbZZSlqixbr^+RZWMB6zS=4Hf%pDWM z0~^9aLn!BZOCrmG0EZI9{@-e0RGm>-uM) zC3VfJl#zAu;c^+eGkJ}N*8SM2DAc+ZeTrn5jOY>%7vPLssB`{ z%{7;xuA}V1rx9{3R=U$7qt2nCTzM{3`BstKuXVgtBz4D!(#5xmYKh9W*8B{bvXMD(KFMyDU5xaBVs)0}#5thm1a zILA--6W65$@h7g!HTE;1{O%Lir3D|KxGr1w=ZWjh>0kNebs2AcPF|Ps=!DW0Cv83Z zPF|PGijPiSuOsjB0{8g>L(qa{5z@rO9`NDZ3SK&%?^%;)O-xO)tu}Q|U60|q zI-jz2jyQE)?%AF?b-k+{+i&>-*<7~1S$*nyeLJ?VhP*4E4z=*~b?MXTr?1PA^3v(+ z&7!5#a5;O7XTkdMrrhSSRn4H(>!BAh;b*SP9Y*Uj*IU~)^(z*5nzw9~*AE#}MULAg zA)iBMu7{49h~j~XI9_FxE<f4{_^ar901Mw0`&c z=%={tEAP7@+x*sjH{?jYc;AhNc3wU2&%!iv<-u`v?6}SeG(=aJvJ1vlZzP-7#D_jd zlS|D?OiNElN}Lf}r z;D%fsOdD`RcK7N5H)Qv|iqzg491jb8&d!XApOBjHNc_0u+4g!4x4U121umgT`lZx) zY$g8!)>(`wdu!z(yxv;hBd*?B{Si=at)CG|Z>?Yd^sIddowuywwGxrm#9?|qV{qWc zXL6ZY=lBiTgZCY`8!+wo4Y^lbbKLglvE#CxCinOaxmRj?;)cvQV^7?WTewXpZuF5S zCV}sKfgWD#2O#3!hUWK=@~q6Vp0%q|$Vzv1`!Z^ryisi;cVVZ7H=Ee$Z;5{|dZ-RQ z^*pIwZJGS`+p&*J{OJ>L37-<5n3m>U2p?#8v$iZ3*y;=Xzj%y|2j6~|M&Me{=MP8IBw|*G|~K zp=omRrpzV7PTrJr*@{s5?#Y|7MVC(Al-uaoQ#a-8)bEt_3nHJ8i4cFQ1@IgGc-LBs zAM&hM@kgPSoy8xjT5B4@_pLPvf7)rSZum=0YfVI8zF2q^(X%Aa;&sL*RnMq*`sP}h z_>Nq-DJRxHF5GNppQ=3Le^Umvvl7Ad@+aGAPWy}&Ki;fV-`?QVB@Y0@v!w&3( zH0PD28KaBeTG-TH{?zcVFlF}Ms$z%7YXAG_*BU0+=vIwJp;OaG{#@_KS%*saH{ebm z#LA16?##>>)aq7tM>`|L`gdTEocn1;OwgWMUka4vaqitf{`)Z#4$BI@Ko=I5$Amn6 zVk-Z1Xnb-~aw={cLsN4%UtlUcu>uFB&4ENDnmE}4lV(%?E`!wErt6oDHV^{GGFSO>L z5lC+%?q5O#y;$i^\n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2653,10 +2621,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:29.678176Z", - "iopub.status.busy": "2024-02-13T00:37:29.677985Z", - "iopub.status.idle": "2024-02-13T00:37:29.683662Z", - "shell.execute_reply": "2024-02-13T00:37:29.683103Z" + "iopub.execute_input": "2024-02-13T01:02:37.155873Z", + "iopub.status.busy": "2024-02-13T01:02:37.155666Z", + "iopub.status.idle": "2024-02-13T01:02:37.162357Z", + "shell.execute_reply": "2024-02-13T01:02:37.161820Z" }, "nbsphinx": "hidden" }, @@ -2693,10 +2661,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:29.685941Z", - "iopub.status.busy": "2024-02-13T00:37:29.685751Z", - "iopub.status.idle": "2024-02-13T00:37:29.889426Z", - "shell.execute_reply": "2024-02-13T00:37:29.888952Z" + "iopub.execute_input": "2024-02-13T01:02:37.164598Z", + "iopub.status.busy": "2024-02-13T01:02:37.164401Z", + "iopub.status.idle": "2024-02-13T01:02:37.368662Z", + "shell.execute_reply": "2024-02-13T01:02:37.368171Z" } }, "outputs": [ @@ -2738,10 +2706,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:29.891637Z", - "iopub.status.busy": "2024-02-13T00:37:29.891305Z", - "iopub.status.idle": "2024-02-13T00:37:29.899394Z", - "shell.execute_reply": "2024-02-13T00:37:29.898837Z" + "iopub.execute_input": "2024-02-13T01:02:37.370798Z", + "iopub.status.busy": "2024-02-13T01:02:37.370458Z", + "iopub.status.idle": "2024-02-13T01:02:37.378223Z", + "shell.execute_reply": "2024-02-13T01:02:37.377660Z" } }, "outputs": [ @@ -2766,47 +2734,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2827,10 +2795,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:29.901327Z", - "iopub.status.busy": "2024-02-13T00:37:29.900995Z", - "iopub.status.idle": "2024-02-13T00:37:30.094897Z", - "shell.execute_reply": "2024-02-13T00:37:30.094353Z" + "iopub.execute_input": "2024-02-13T01:02:37.380209Z", + "iopub.status.busy": "2024-02-13T01:02:37.380029Z", + "iopub.status.idle": "2024-02-13T01:02:37.576496Z", + "shell.execute_reply": "2024-02-13T01:02:37.575996Z" } }, "outputs": [ @@ -2870,10 +2838,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:30.097178Z", - "iopub.status.busy": "2024-02-13T00:37:30.096845Z", - "iopub.status.idle": "2024-02-13T00:37:30.101066Z", - "shell.execute_reply": "2024-02-13T00:37:30.100641Z" + "iopub.execute_input": "2024-02-13T01:02:37.578759Z", + "iopub.status.busy": "2024-02-13T01:02:37.578414Z", + "iopub.status.idle": "2024-02-13T01:02:37.582664Z", + "shell.execute_reply": "2024-02-13T01:02:37.582233Z" }, "nbsphinx": "hidden" }, @@ -2910,7 +2878,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00808d5dc47d421fa85dfba0084f6c14": { + "0150faad00cf4b0fa5003bd89bc6c035": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2928,25 +2896,81 @@ "text_color": null } }, - "09ac7217cdac4f0090621b6aa6e249c9": { + "017960e634c04c6988dde5fbc57d815e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b780b4fd2801474280ad84e713b25fb6", + "IPY_MODEL_abf91823558a430bbf6531d6199c83a6", + "IPY_MODEL_c44a3a846d79432e952ba641d52e33da" + ], + "layout": "IPY_MODEL_ea5f6403c8df4b90a9e3b07052e6aab2", + "tabbable": null, + "tooltip": null + } + }, + "0284a791f2dd45be979f1b9226c8f848": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ae88b8d5236542e18913a118fcf5f605", + "IPY_MODEL_09a69051582d4b2389b2afc3732e9c8f", + "IPY_MODEL_af52b95ed6354bd7a734942e3a64d975" + ], + "layout": "IPY_MODEL_b4989e9b88c54b5b8bd25e12894d3fdb", + "tabbable": null, + "tooltip": null + } + }, + "09a69051582d4b2389b2afc3732e9c8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f1266d99ab1e4818866e8aed409423f7", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_83ce5d03962d495694880128ff446cee", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "0c7df9b73cd548b099cdcf0e0fb5df9f": { + "0bb76ba717d44652ba27a4c3713e71c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2999,7 +3023,61 @@ "width": null } }, - "0e1c112aee9741da94938519f347530d": { + "0f4fcc0d5a6343069f27cdfe86c9e495": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1cbfe99bafd04a14ab8cb7faa17f4f8b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1f561d6db5ae4826b3fc5167682d3a31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "224ee9fc2fcb4996925f4645ddedd46e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3052,7 +3130,7 @@ "width": null } }, - "16c38bb99a474c918f8e60cc47285ade": { + "266c7c0676bc40a79f4b211437a4c5c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3105,7 +3183,7 @@ "width": null } }, - "17ae6848aeb144668f963e25484cb964": { + "28155f9b128149b4ae0619c27192a8c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3123,7 +3201,7 @@ "text_color": null } }, - "1a5eadcf3f514eeba7358449ae633b27": { + "286c3fd10aa34de4a545b92f43ec0c79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3176,7 +3254,30 @@ "width": null } }, - "1f97f78cd5ce4baea06729357699bb30": { + "290ee89891954d42a38256521074eb31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_80cff24225e94fb1a848312d83e579c9", + "placeholder": "​", + "style": "IPY_MODEL_0150faad00cf4b0fa5003bd89bc6c035", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:10<00:00, 7438.74 examples/s]" + } + }, + "33d4b91a76be42f899cc9b19ce29ec98": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3229,7 +3330,7 @@ "width": null } }, - "1ff69d394d274934a50f00709182e7ea": { + "35e8e62709d2438d95c258ca08ce6444": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3244,39 +3345,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a4d07b37c5e94378a988ee593aa78316", + "layout": "IPY_MODEL_6cf2fbfc9ba8487fa5c0e913ed71947f", "placeholder": "​", - "style": "IPY_MODEL_74b137f0e7b947ffbcb4059a8d38a1c8", + "style": "IPY_MODEL_879bc3b205db449f9be744303fd2b74b", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1759.53it/s]" - } - }, - "222a7af54c8649df990267fdbbee1160": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_385d974eaf754bcf8c398c25b6c9499a", - "IPY_MODEL_c2c86f406eea45f0b11781529e3b500d", - "IPY_MODEL_1ff69d394d274934a50f00709182e7ea" - ], - "layout": "IPY_MODEL_a1ef695750ad40d1966dd1085c70e925", - "tabbable": null, - "tooltip": null + "value": "Computing checksums: 100%" } }, - "23a13d349efc4287897987153c29f166": { + "3791f2f6fdf1488bb9ce979358d0d42e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3329,7 +3406,7 @@ "width": null } }, - "2527e986f423431d9a6eec568de2196a": { + "3a29b6c824884325bbe5bb82054eb553": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3344,39 +3421,47 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_16c38bb99a474c918f8e60cc47285ade", + "layout": "IPY_MODEL_8604d44a922e49a8baf2c3034c1d294a", "placeholder": "​", - "style": "IPY_MODEL_00808d5dc47d421fa85dfba0084f6c14", + "style": "IPY_MODEL_96ad25fea22247f1989297d300dba7bc", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 608.62it/s]" + "value": " 2/2 [00:00<00:00, 612.44it/s]" } }, - "26bd1480913747f0a959af1d21fb565d": { + "43566d9174474717b8af900fdd2d98ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7b6b2739a10d44a095ddb4311a09d61f", - "IPY_MODEL_e4c0049bf3e84bef856a8f99850b2596", - "IPY_MODEL_2527e986f423431d9a6eec568de2196a" - ], - "layout": "IPY_MODEL_fcf64e42e15848e2ae3dab58b8ea108c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "442936dd0751487c85f3f953bc4e0ca1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "26ce10597546456da40a64d480f343ff": { + "44e6f4754e5c45c6b288bfa9bc84d145": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3391,105 +3476,81 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eb97f842de024455bf69044218fa040b", + "layout": "IPY_MODEL_acc06a9f68ef4c638d64ef93d00095ca", "placeholder": "​", - "style": "IPY_MODEL_3c406d882dd74255896d51a6d7c41335", + "style": "IPY_MODEL_cf541ac967c94262a1103cd361a4c1f0", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": "Map (num_proc=4): 100%" } }, - "2cdee5f83d16428a93072384b20e8779": { + "476ce515376d40a6a1b77b3a48e1544b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0c7df9b73cd548b099cdcf0e0fb5df9f", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fef58c41d4dd45c68d6e618c743d4cda", - "tabbable": null, - "tooltip": null, - "value": 10000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "357cf811cee04d66861d917dfd3ad4bf": { + "5d22379e8beb4eaab47d79c7b9e49d87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7d80d84938ef40378f0eb8f55b45ef1b", - "placeholder": "​", - "style": "IPY_MODEL_c217d69478964dae88c1274d0901340b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_35e8e62709d2438d95c258ca08ce6444", + "IPY_MODEL_7c05c19aa60b4d54a3452e2fd0240831", + "IPY_MODEL_3a29b6c824884325bbe5bb82054eb553" + ], + "layout": "IPY_MODEL_6b43f9e45515425c9f4ae4ff2e725b89", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "385d974eaf754bcf8c398c25b6c9499a": { + "5e97d7a301904ec8a9e06bf177cb0f12": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_43ea77474a37447c9d15c3f03438033e", - "placeholder": "​", - "style": "IPY_MODEL_fede132b65bb4ffba07e243d53a97122", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a69ddf10b9024b26a50c8e8b332cbb7f", + "IPY_MODEL_65466b18e17943e8af0c17a631b72d6c", + "IPY_MODEL_a3afd91b200f45b997434a94c6b70f98" + ], + "layout": "IPY_MODEL_998bf8fdcaa34e36aca1dd98750cca71", "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "3a6868fbe42543d0bc1b8883173934d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "3c406d882dd74255896d51a6d7c41335": { + "6265b6477c47419baa6d3657108e3494": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3507,99 +3568,7 @@ "text_color": null } }, - "43ea77474a37447c9d15c3f03438033e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "45011e0acd124b578adf94aff3261694": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4583b02993a84977852b80caa13d5a5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f0749fe1d9094c67a3da5a96e92dab83", - "placeholder": "​", - "style": "IPY_MODEL_f42b5bd0cc5145d8869ea551a6af810d", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 68.0MB/s]" - } - }, - "4cd5172b48744d4fa2445e17a8d8c6bb": { + "65466b18e17943e8af0c17a631b72d6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3615,56 +3584,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_673e8456ce3a4242a15ea493ba2b49dd", + "layout": "IPY_MODEL_266c7c0676bc40a79f4b211437a4c5c9", "max": 30931277.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7ac35b404b3a4f188c15fc745cdd4051", + "style": "IPY_MODEL_442936dd0751487c85f3f953bc4e0ca1", "tabbable": null, "tooltip": null, "value": 30931277.0 } }, - "4e0fb6df343d4700873090f1bcbb194c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4f81160269a3406ba4bc9fff288e81e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1a5eadcf3f514eeba7358449ae633b27", - "placeholder": "​", - "style": "IPY_MODEL_dc90a6389c3346f2b9979255219e403b", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:10<00:00, 7618.00 examples/s]" - } - }, - "50d5dfa893c2494db508fc532766b59b": { + "6b43f9e45515425c9f4ae4ff2e725b89": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3717,7 +3647,7 @@ "width": null } }, - "53b1a538160e4bb9b1d199e73c8cc995": { + "6cf2fbfc9ba8487fa5c0e913ed71947f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3770,7 +3700,7 @@ "width": null } }, - "5bb73501283c402396c3c4ec0a9cfbd4": { + "6d60330d7af34294aeb021453ba77607": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3823,30 +3753,7 @@ "width": null } }, - "5d5e0b3cc35a4bdcab83e08abd6d1ba4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aeefbad967874224b2931d38f0a43e9f", - "placeholder": "​", - "style": "IPY_MODEL_09ac7217cdac4f0090621b6aa6e249c9", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "5d753cd01b6f415f9c0bece15d3a6596": { + "6fb9d8624ee04a9fad6a349bbc249937": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3861,33 +3768,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_23a13d349efc4287897987153c29f166", + "layout": "IPY_MODEL_b8aae7649d9d46a19e47ceaf09a22e98", "placeholder": "​", - "style": "IPY_MODEL_e2e10a3ddf35466fb71ef0563a157273", + "style": "IPY_MODEL_89cd05445b9c4c23a56734cf4bf569bf", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "650639ad46fc45cab1a1adf9632de03b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Generating train split: 100%" } }, - "673e8456ce3a4242a15ea493ba2b49dd": { + "7b8984690d9f4e529e0d44f6f8905f99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3940,7 +3829,33 @@ "width": null } }, - "6a9b7c3d25a741239144550516c54ae7": { + "7c05c19aa60b4d54a3452e2fd0240831": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d72b8791d66f4e64914720eb5e48a7d0", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a9ddff796cd94e8db90cd29d0c761389", + "tabbable": null, + "tooltip": null, + "value": 2.0 + } + }, + "80cff24225e94fb1a848312d83e579c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3993,43 +3908,47 @@ "width": null } }, - "712dd06b6891473e8f484b9437059cd8": { + "813e5ea418794e0ead8d5dc739fdd6ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6fb9d8624ee04a9fad6a349bbc249937", + "IPY_MODEL_f4f9c8e580594844b2aef4b62a6e23b7", + "IPY_MODEL_a73226b732ec46eb960b31ded94243cd" + ], + "layout": "IPY_MODEL_bff91e7450a4477ab4481bc40492a1da", + "tabbable": null, + "tooltip": null } }, - "74b137f0e7b947ffbcb4059a8d38a1c8": { + "83ce5d03962d495694880128ff446cee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "75d667d6fe2546efaaa4c7e734ac2b6c": { + "8604d44a922e49a8baf2c3034c1d294a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4082,99 +4001,61 @@ "width": null } }, - "7ac35b404b3a4f188c15fc745cdd4051": { + "879bc3b205db449f9be744303fd2b74b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7b6b2739a10d44a095ddb4311a09d61f": { + "89cd05445b9c4c23a56734cf4bf569bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_75d667d6fe2546efaaa4c7e734ac2b6c", - "placeholder": "​", - "style": "IPY_MODEL_17ae6848aeb144668f963e25484cb964", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7d80d84938ef40378f0eb8f55b45ef1b": { - "model_module": "@jupyter-widgets/base", + "8d86217e861247629cdfa23e33c318db": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7fa0ef5d9b2f47709dc45ca5cc72f205": { + "8fdeab14761843138de9b721a895adea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4227,7 +4108,25 @@ "width": null } }, - "7ff6c965484e41198b19228bc7b560fe": { + "96ad25fea22247f1989297d300dba7bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "97afc40bf46c4f9d8df2c34a72ef4294": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4243,7 +4142,33 @@ "description_width": "" } }, - "8030e028603943d9a37b842897400983": { + "98d3e9fff9ba4c988227fe6287a84f64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c041457eff12480cbae95dc10ad0e055", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_97afc40bf46c4f9d8df2c34a72ef4294", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "998bf8fdcaa34e36aca1dd98750cca71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4296,7 +4221,7 @@ "width": null } }, - "803e7c31492a4f00b312bd734f1bc6a5": { + "9fa718f6b4ef42cfa45fb8418239e633": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4312,41 +4237,128 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7fa0ef5d9b2f47709dc45ca5cc72f205", + "layout": "IPY_MODEL_224ee9fc2fcb4996925f4645ddedd46e", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7ff6c965484e41198b19228bc7b560fe", + "style": "IPY_MODEL_f29aa013dbd3419d8fb1c0017bd9de60", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "824f70d558444a8fb4fa98914b32c2d7": { + "a3afd91b200f45b997434a94c6b70f98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_26ce10597546456da40a64d480f343ff", - "IPY_MODEL_c587e3d295744ec4b6d61c92d33a2649", - "IPY_MODEL_c6808be84ca84217ab7d3d6f8a42cdbf" - ], - "layout": "IPY_MODEL_da7d4d6831c2467293aadfc55151f442", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0bb76ba717d44652ba27a4c3713e71c5", + "placeholder": "​", + "style": "IPY_MODEL_1f561d6db5ae4826b3fc5167682d3a31", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 63.3MB/s]" + } + }, + "a69ddf10b9024b26a50c8e8b332cbb7f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6d60330d7af34294aeb021453ba77607", + "placeholder": "​", + "style": "IPY_MODEL_0f4fcc0d5a6343069f27cdfe86c9e495", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "a73226b732ec46eb960b31ded94243cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bdbc27b9c9be42e6bd151324546f2581", + "placeholder": "​", + "style": "IPY_MODEL_b15ecf5ec9b645b1a089111331d6b287", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 922149.33 examples/s]" + } + }, + "a9ddff796cd94e8db90cd29d0c761389": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "88b04b7e9b4a4089b41826c2d153dfac": { + "abf91823558a430bbf6531d6199c83a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3791f2f6fdf1488bb9ce979358d0d42e", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_43566d9174474717b8af900fdd2d98ec", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "acc06a9f68ef4c638d64ef93d00095ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4399,79 +4411,71 @@ "width": null } }, - "9686a0ffbd234a7cb7be6bced38ad591": { + "ae88b8d5236542e18913a118fcf5f605": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d5e0b3cc35a4bdcab83e08abd6d1ba4", - "IPY_MODEL_803e7c31492a4f00b312bd734f1bc6a5", - "IPY_MODEL_4f81160269a3406ba4bc9fff288e81e2" - ], - "layout": "IPY_MODEL_d9ff26f71b104f939ca764b497393948", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_286c3fd10aa34de4a545b92f43ec0c79", + "placeholder": "​", + "style": "IPY_MODEL_476ce515376d40a6a1b77b3a48e1544b", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Generating test split: 100%" } }, - "9b5b8b9b315f43a9bc8737c0c5717292": { + "af52b95ed6354bd7a734942e3a64d975": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e2c1a3175adb4367b96f6fe95dbc42d3", - "IPY_MODEL_cc150cc87acc46f299b49ce5b7ca79ac", - "IPY_MODEL_e826b3cd9a654e4cae1e567976b9f4b0" - ], - "layout": "IPY_MODEL_5bb73501283c402396c3c4ec0a9cfbd4", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ec3eeef76e174ca784835f0f71a13899", + "placeholder": "​", + "style": "IPY_MODEL_6265b6477c47419baa6d3657108e3494", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 611200.75 examples/s]" } }, - "9eaa9f23d032404584b47b968c94bca7": { + "b15ecf5ec9b645b1a089111331d6b287": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_357cf811cee04d66861d917dfd3ad4bf", - "IPY_MODEL_4cd5172b48744d4fa2445e17a8d8c6bb", - "IPY_MODEL_4583b02993a84977852b80caa13d5a5f" - ], - "layout": "IPY_MODEL_53b1a538160e4bb9b1d199e73c8cc995", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a1ef695750ad40d1966dd1085c70e925": { + "b4989e9b88c54b5b8bd25e12894d3fdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4524,7 +4528,53 @@ "width": null } }, - "a4d07b37c5e94378a988ee593aa78316": { + "b7577c02ebb6405794e8be577726aa79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e2f6544bc40d45948ef2c5e35c16e464", + "placeholder": "​", + "style": "IPY_MODEL_8d86217e861247629cdfa23e33c318db", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:36<00:00, 1569.47it/s]" + } + }, + "b780b4fd2801474280ad84e713b25fb6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cd244e8ef32f4249bddc5e44eee16cde", + "placeholder": "​", + "style": "IPY_MODEL_28155f9b128149b4ae0619c27192a8c2", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "b8aae7649d9d46a19e47ceaf09a22e98": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4577,7 +4627,23 @@ "width": null } }, - "a567015401b24006beae8bf833841152": { + "bd0a5285b93d46cf987e4b053b932f18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bdbc27b9c9be42e6bd151324546f2581": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4630,7 +4696,7 @@ "width": null } }, - "aeefbad967874224b2931d38f0a43e9f": { + "bff91e7450a4477ab4481bc40492a1da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4683,31 +4749,7 @@ "width": null } }, - "b7f47718d33d49b49194bfe156774feb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d753cd01b6f415f9c0bece15d3a6596", - "IPY_MODEL_2cdee5f83d16428a93072384b20e8779", - "IPY_MODEL_d82f9e9499984b54b60eabfe6a1033ce" - ], - "layout": "IPY_MODEL_a567015401b24006beae8bf833841152", - "tabbable": null, - "tooltip": null - } - }, - "bd999c396d144a9e93ba3eb0fff65492": { + "c041457eff12480cbae95dc10ad0e055": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4760,77 +4802,7 @@ "width": null } }, - "c217d69478964dae88c1274d0901340b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c2c86f406eea45f0b11781529e3b500d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bd999c396d144a9e93ba3eb0fff65492", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e9fbf9d480a34260af644b847c95a7ff", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "c587e3d295744ec4b6d61c92d33a2649": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e2c76101dd1c4c1090fe3845190a0d3b", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c6ce77ac74d4455d809151d41f69c075", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 - } - }, - "c6808be84ca84217ab7d3d6f8a42cdbf": { + "c44a3a846d79432e952ba641d52e33da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4845,80 +4817,110 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0e1c112aee9741da94938519f347530d", + "layout": "IPY_MODEL_7b8984690d9f4e529e0d44f6f8905f99", "placeholder": "​", - "style": "IPY_MODEL_650639ad46fc45cab1a1adf9632de03b", + "style": "IPY_MODEL_e801a876c38942c5bfd6fcbeaea13934", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 89.5MB/s]" + "value": " 5.18M/5.18M [00:00<00:00, 62.4MB/s]" } }, - "c6ce77ac74d4455d809151d41f69c075": { + "c565faa2d0a14d12b39c26b4d8b090e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_44e6f4754e5c45c6b288bfa9bc84d145", + "IPY_MODEL_98d3e9fff9ba4c988227fe6287a84f64", + "IPY_MODEL_290ee89891954d42a38256521074eb31" + ], + "layout": "IPY_MODEL_eb24c98364834635a8d69527fffd8e9f", + "tabbable": null, + "tooltip": null } }, - "cc150cc87acc46f299b49ce5b7ca79ac": { - "model_module": "@jupyter-widgets/controls", + "cd244e8ef32f4249bddc5e44eee16cde": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1f97f78cd5ce4baea06729357699bb30", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_45011e0acd124b578adf94aff3261694", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d82f9e9499984b54b60eabfe6a1033ce": { + "cf541ac967c94262a1103cd361a4c1f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_50d5dfa893c2494db508fc532766b59b", - "placeholder": "​", - "style": "IPY_MODEL_3a6868fbe42543d0bc1b8883173934d5", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 584889.91 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d9ff26f71b104f939ca764b497393948": { + "d72b8791d66f4e64914720eb5e48a7d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4971,7 +4973,7 @@ "width": null } }, - "da7d4d6831c2467293aadfc55151f442": { + "e2f6544bc40d45948ef2c5e35c16e464": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5024,48 +5026,72 @@ "width": null } }, - "dc90a6389c3346f2b9979255219e403b": { + "e3b5fc9b72104a6095b9f1ce04f2bcce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa27ad85e9bb40c1ae5234db420a9aa7", + "placeholder": "​", + "style": "IPY_MODEL_1cbfe99bafd04a14ab8cb7faa17f4f8b", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "e2c1a3175adb4367b96f6fe95dbc42d3": { + "e403d0a7480e4f9f92eb3272b2fa1116": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_88b04b7e9b4a4089b41826c2d153dfac", - "placeholder": "​", - "style": "IPY_MODEL_f52ef3d7102747388631727069966d51", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3b5fc9b72104a6095b9f1ce04f2bcce", + "IPY_MODEL_9fa718f6b4ef42cfa45fb8418239e633", + "IPY_MODEL_b7577c02ebb6405794e8be577726aa79" + ], + "layout": "IPY_MODEL_33d4b91a76be42f899cc9b19ce29ec98", "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "tooltip": null + } + }, + "e801a876c38942c5bfd6fcbeaea13934": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e2c76101dd1c4c1090fe3845190a0d3b": { + "ea5f6403c8df4b90a9e3b07052e6aab2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5118,90 +5144,60 @@ "width": null } }, - "e2e10a3ddf35466fb71ef0563a157273": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e4c0049bf3e84bef856a8f99850b2596": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6a9b7c3d25a741239144550516c54ae7", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4e0fb6df343d4700873090f1bcbb194c", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "e826b3cd9a654e4cae1e567976b9f4b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8030e028603943d9a37b842897400983", - "placeholder": "​", - "style": "IPY_MODEL_712dd06b6891473e8f484b9437059cd8", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 811745.78 examples/s]" - } - }, - "e9fbf9d480a34260af644b847c95a7ff": { - "model_module": "@jupyter-widgets/controls", + "eb24c98364834635a8d69527fffd8e9f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "eb97f842de024455bf69044218fa040b": { + "ec3eeef76e174ca784835f0f71a13899": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5254,7 +5250,7 @@ "width": null } }, - "f0749fe1d9094c67a3da5a96e92dab83": { + "f1266d99ab1e4818866e8aed409423f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5307,43 +5303,49 @@ "width": null } }, - "f42b5bd0cc5145d8869ea551a6af810d": { + "f29aa013dbd3419d8fb1c0017bd9de60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "f52ef3d7102747388631727069966d51": { + "f4f9c8e580594844b2aef4b62a6e23b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8fdeab14761843138de9b721a895adea", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bd0a5285b93d46cf987e4b053b932f18", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "fcf64e42e15848e2ae3dab58b8ea108c": { + "fa27ad85e9bb40c1ae5234db420a9aa7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5395,40 +5397,6 @@ "visibility": null, "width": null } - }, - "fede132b65bb4ffba07e243d53a97122": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fef58c41d4dd45c68d6e618c743d4cda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 880e905a4..e3aa13e3e 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:34.336923Z", - "iopub.status.busy": "2024-02-13T00:37:34.336393Z", - "iopub.status.idle": "2024-02-13T00:37:35.420786Z", - "shell.execute_reply": "2024-02-13T00:37:35.420185Z" + "iopub.execute_input": "2024-02-13T01:02:41.833675Z", + "iopub.status.busy": "2024-02-13T01:02:41.833203Z", + "iopub.status.idle": "2024-02-13T01:02:42.973695Z", + "shell.execute_reply": "2024-02-13T01:02:42.973090Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:35.423501Z", - "iopub.status.busy": "2024-02-13T00:37:35.423087Z", - "iopub.status.idle": "2024-02-13T00:37:35.598151Z", - "shell.execute_reply": "2024-02-13T00:37:35.597664Z" + "iopub.execute_input": "2024-02-13T01:02:42.976454Z", + "iopub.status.busy": "2024-02-13T01:02:42.976170Z", + "iopub.status.idle": "2024-02-13T01:02:43.159646Z", + "shell.execute_reply": "2024-02-13T01:02:43.159002Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:35.600667Z", - "iopub.status.busy": "2024-02-13T00:37:35.600479Z", - "iopub.status.idle": "2024-02-13T00:37:35.612006Z", - "shell.execute_reply": "2024-02-13T00:37:35.611562Z" + "iopub.execute_input": "2024-02-13T01:02:43.162168Z", + "iopub.status.busy": "2024-02-13T01:02:43.161939Z", + "iopub.status.idle": "2024-02-13T01:02:43.174992Z", + "shell.execute_reply": "2024-02-13T01:02:43.174410Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:35.614029Z", - "iopub.status.busy": "2024-02-13T00:37:35.613636Z", - "iopub.status.idle": "2024-02-13T00:37:35.821630Z", - "shell.execute_reply": "2024-02-13T00:37:35.821088Z" + "iopub.execute_input": "2024-02-13T01:02:43.177058Z", + "iopub.status.busy": "2024-02-13T01:02:43.176739Z", + "iopub.status.idle": "2024-02-13T01:02:43.415019Z", + "shell.execute_reply": "2024-02-13T01:02:43.414405Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:35.823919Z", - "iopub.status.busy": "2024-02-13T00:37:35.823724Z", - "iopub.status.idle": "2024-02-13T00:37:35.851603Z", - "shell.execute_reply": "2024-02-13T00:37:35.851146Z" + "iopub.execute_input": "2024-02-13T01:02:43.417532Z", + "iopub.status.busy": "2024-02-13T01:02:43.417054Z", + "iopub.status.idle": "2024-02-13T01:02:43.445271Z", + "shell.execute_reply": "2024-02-13T01:02:43.444787Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:35.853669Z", - "iopub.status.busy": "2024-02-13T00:37:35.853254Z", - "iopub.status.idle": "2024-02-13T00:37:37.520183Z", - "shell.execute_reply": "2024-02-13T00:37:37.519564Z" + "iopub.execute_input": "2024-02-13T01:02:43.447651Z", + "iopub.status.busy": "2024-02-13T01:02:43.447205Z", + "iopub.status.idle": "2024-02-13T01:02:45.180624Z", + "shell.execute_reply": "2024-02-13T01:02:45.179973Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:37.522763Z", - "iopub.status.busy": "2024-02-13T00:37:37.522230Z", - "iopub.status.idle": "2024-02-13T00:37:37.538732Z", - "shell.execute_reply": "2024-02-13T00:37:37.538265Z" + "iopub.execute_input": "2024-02-13T01:02:45.183105Z", + "iopub.status.busy": "2024-02-13T01:02:45.182578Z", + "iopub.status.idle": "2024-02-13T01:02:45.200907Z", + "shell.execute_reply": "2024-02-13T01:02:45.200338Z" }, "scrolled": true }, @@ -489,14 +489,11 @@ "text": [ "Here is a summary of the different kinds of issues found in the data:\n", "\n", - " issue_type num_issues\n", - " label 64\n", - " outlier 7\n", - " near_duplicate 6\n", - " non_iid 1\n", - " null 0\n", - " class_imbalance 0\n", - "underperforming_group 0\n", + " issue_type num_issues\n", + " label 64\n", + " outlier 7\n", + "near_duplicate 6\n", + " non_iid 1\n", "\n", "Dataset Information: num_examples: 250, num_classes: 4\n", "\n", @@ -606,10 +603,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:37.540658Z", - "iopub.status.busy": "2024-02-13T00:37:37.540464Z", - "iopub.status.idle": "2024-02-13T00:37:38.958453Z", - "shell.execute_reply": "2024-02-13T00:37:38.957838Z" + "iopub.execute_input": "2024-02-13T01:02:45.203181Z", + "iopub.status.busy": "2024-02-13T01:02:45.202768Z", + "iopub.status.idle": "2024-02-13T01:02:46.648915Z", + "shell.execute_reply": "2024-02-13T01:02:46.648254Z" }, "id": "AaHC5MRKjruT" }, @@ -728,10 +725,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:38.961194Z", - "iopub.status.busy": "2024-02-13T00:37:38.960594Z", - "iopub.status.idle": "2024-02-13T00:37:38.974647Z", - "shell.execute_reply": "2024-02-13T00:37:38.974215Z" + "iopub.execute_input": "2024-02-13T01:02:46.651543Z", + "iopub.status.busy": "2024-02-13T01:02:46.650875Z", + "iopub.status.idle": "2024-02-13T01:02:46.664517Z", + "shell.execute_reply": "2024-02-13T01:02:46.664055Z" }, "id": "Wy27rvyhjruU" }, @@ -780,10 +777,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:38.976732Z", - "iopub.status.busy": "2024-02-13T00:37:38.976480Z", - "iopub.status.idle": "2024-02-13T00:37:39.048456Z", - "shell.execute_reply": "2024-02-13T00:37:39.047873Z" + "iopub.execute_input": "2024-02-13T01:02:46.666687Z", + "iopub.status.busy": "2024-02-13T01:02:46.666359Z", + "iopub.status.idle": "2024-02-13T01:02:46.741698Z", + "shell.execute_reply": "2024-02-13T01:02:46.741013Z" }, "id": "Db8YHnyVjruU" }, @@ -890,10 +887,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:39.051051Z", - "iopub.status.busy": "2024-02-13T00:37:39.050555Z", - "iopub.status.idle": "2024-02-13T00:37:39.258231Z", - "shell.execute_reply": "2024-02-13T00:37:39.257664Z" + "iopub.execute_input": "2024-02-13T01:02:46.744257Z", + "iopub.status.busy": "2024-02-13T01:02:46.743997Z", + "iopub.status.idle": "2024-02-13T01:02:46.959941Z", + "shell.execute_reply": "2024-02-13T01:02:46.959340Z" }, "id": "iJqAHuS2jruV" }, @@ -930,10 +927,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:39.260575Z", - "iopub.status.busy": "2024-02-13T00:37:39.260232Z", - "iopub.status.idle": "2024-02-13T00:37:39.277199Z", - "shell.execute_reply": "2024-02-13T00:37:39.276769Z" + "iopub.execute_input": "2024-02-13T01:02:46.962190Z", + "iopub.status.busy": "2024-02-13T01:02:46.961825Z", + "iopub.status.idle": "2024-02-13T01:02:46.979649Z", + "shell.execute_reply": "2024-02-13T01:02:46.979057Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1399,10 +1396,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:39.279222Z", - "iopub.status.busy": "2024-02-13T00:37:39.278903Z", - "iopub.status.idle": "2024-02-13T00:37:39.288296Z", - "shell.execute_reply": "2024-02-13T00:37:39.287868Z" + "iopub.execute_input": "2024-02-13T01:02:46.981879Z", + "iopub.status.busy": "2024-02-13T01:02:46.981516Z", + "iopub.status.idle": "2024-02-13T01:02:46.991691Z", + "shell.execute_reply": "2024-02-13T01:02:46.991205Z" }, "id": "0lonvOYvjruV" }, @@ -1549,10 +1546,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:39.290394Z", - "iopub.status.busy": "2024-02-13T00:37:39.290070Z", - "iopub.status.idle": "2024-02-13T00:37:39.375577Z", - "shell.execute_reply": "2024-02-13T00:37:39.374951Z" + "iopub.execute_input": "2024-02-13T01:02:46.993796Z", + "iopub.status.busy": "2024-02-13T01:02:46.993525Z", + "iopub.status.idle": "2024-02-13T01:02:47.086416Z", + "shell.execute_reply": "2024-02-13T01:02:47.085763Z" }, "id": "MfqTCa3kjruV" }, @@ -1633,10 +1630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:39.377920Z", - "iopub.status.busy": "2024-02-13T00:37:39.377692Z", - "iopub.status.idle": "2024-02-13T00:37:39.499197Z", - "shell.execute_reply": "2024-02-13T00:37:39.498547Z" + "iopub.execute_input": "2024-02-13T01:02:47.089076Z", + "iopub.status.busy": "2024-02-13T01:02:47.088611Z", + "iopub.status.idle": "2024-02-13T01:02:47.215679Z", + "shell.execute_reply": "2024-02-13T01:02:47.214901Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1696,10 +1693,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:39.501539Z", - "iopub.status.busy": "2024-02-13T00:37:39.501332Z", - "iopub.status.idle": "2024-02-13T00:37:39.505424Z", - "shell.execute_reply": "2024-02-13T00:37:39.504936Z" + "iopub.execute_input": "2024-02-13T01:02:47.217945Z", + "iopub.status.busy": "2024-02-13T01:02:47.217649Z", + "iopub.status.idle": "2024-02-13T01:02:47.221440Z", + "shell.execute_reply": "2024-02-13T01:02:47.220898Z" }, "id": "0rXP3ZPWjruW" }, @@ -1737,10 +1734,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:39.507408Z", - "iopub.status.busy": "2024-02-13T00:37:39.507232Z", - "iopub.status.idle": "2024-02-13T00:37:39.510931Z", - "shell.execute_reply": "2024-02-13T00:37:39.510362Z" + "iopub.execute_input": "2024-02-13T01:02:47.223439Z", + "iopub.status.busy": "2024-02-13T01:02:47.223109Z", + "iopub.status.idle": "2024-02-13T01:02:47.226899Z", + "shell.execute_reply": "2024-02-13T01:02:47.226348Z" }, "id": "-iRPe8KXjruW" }, @@ -1795,10 +1792,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:39.513248Z", - "iopub.status.busy": "2024-02-13T00:37:39.512859Z", - "iopub.status.idle": "2024-02-13T00:37:39.553205Z", - "shell.execute_reply": "2024-02-13T00:37:39.552731Z" + "iopub.execute_input": "2024-02-13T01:02:47.228890Z", + "iopub.status.busy": "2024-02-13T01:02:47.228567Z", + "iopub.status.idle": "2024-02-13T01:02:47.266132Z", + "shell.execute_reply": "2024-02-13T01:02:47.265631Z" }, "id": "ZpipUliyjruW" }, @@ -1849,10 +1846,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:39.555251Z", - "iopub.status.busy": "2024-02-13T00:37:39.554920Z", - "iopub.status.idle": "2024-02-13T00:37:39.597110Z", - "shell.execute_reply": "2024-02-13T00:37:39.596642Z" + "iopub.execute_input": "2024-02-13T01:02:47.268385Z", + "iopub.status.busy": "2024-02-13T01:02:47.268026Z", + "iopub.status.idle": "2024-02-13T01:02:47.310970Z", + "shell.execute_reply": "2024-02-13T01:02:47.310465Z" }, "id": "SLq-3q4xjruX" }, @@ -1921,10 +1918,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:39.599076Z", - "iopub.status.busy": "2024-02-13T00:37:39.598758Z", - "iopub.status.idle": "2024-02-13T00:37:39.690060Z", - "shell.execute_reply": "2024-02-13T00:37:39.689493Z" + "iopub.execute_input": "2024-02-13T01:02:47.313091Z", + "iopub.status.busy": "2024-02-13T01:02:47.312775Z", + "iopub.status.idle": "2024-02-13T01:02:47.407546Z", + "shell.execute_reply": "2024-02-13T01:02:47.406889Z" }, "id": "g5LHhhuqFbXK" }, @@ -1956,10 +1953,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:39.692611Z", - "iopub.status.busy": "2024-02-13T00:37:39.692367Z", - "iopub.status.idle": "2024-02-13T00:37:39.771815Z", - "shell.execute_reply": "2024-02-13T00:37:39.771177Z" + "iopub.execute_input": "2024-02-13T01:02:47.410185Z", + "iopub.status.busy": "2024-02-13T01:02:47.409818Z", + "iopub.status.idle": "2024-02-13T01:02:47.502742Z", + "shell.execute_reply": "2024-02-13T01:02:47.502159Z" }, "id": "p7w8F8ezBcet" }, @@ -2016,10 +2013,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:39.774187Z", - "iopub.status.busy": "2024-02-13T00:37:39.773955Z", - "iopub.status.idle": "2024-02-13T00:37:39.984108Z", - "shell.execute_reply": "2024-02-13T00:37:39.983487Z" + "iopub.execute_input": "2024-02-13T01:02:47.504966Z", + "iopub.status.busy": "2024-02-13T01:02:47.504681Z", + "iopub.status.idle": "2024-02-13T01:02:47.719273Z", + "shell.execute_reply": "2024-02-13T01:02:47.718779Z" }, "id": "WETRL74tE_sU" }, @@ -2054,10 +2051,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:39.986424Z", - "iopub.status.busy": "2024-02-13T00:37:39.986016Z", - "iopub.status.idle": "2024-02-13T00:37:40.152086Z", - "shell.execute_reply": "2024-02-13T00:37:40.151450Z" + "iopub.execute_input": "2024-02-13T01:02:47.721525Z", + "iopub.status.busy": "2024-02-13T01:02:47.721161Z", + "iopub.status.idle": "2024-02-13T01:02:47.914563Z", + "shell.execute_reply": "2024-02-13T01:02:47.913919Z" }, "id": "kCfdx2gOLmXS" }, @@ -2219,10 +2216,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:40.154261Z", - "iopub.status.busy": "2024-02-13T00:37:40.154028Z", - "iopub.status.idle": "2024-02-13T00:37:40.160333Z", - "shell.execute_reply": "2024-02-13T00:37:40.159779Z" + "iopub.execute_input": "2024-02-13T01:02:47.917096Z", + "iopub.status.busy": "2024-02-13T01:02:47.916711Z", + "iopub.status.idle": "2024-02-13T01:02:47.922691Z", + "shell.execute_reply": "2024-02-13T01:02:47.922142Z" }, "id": "-uogYRWFYnuu" }, @@ -2276,10 +2273,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:40.162300Z", - "iopub.status.busy": "2024-02-13T00:37:40.161998Z", - "iopub.status.idle": "2024-02-13T00:37:40.381020Z", - "shell.execute_reply": "2024-02-13T00:37:40.380421Z" + "iopub.execute_input": "2024-02-13T01:02:47.924839Z", + "iopub.status.busy": "2024-02-13T01:02:47.924517Z", + "iopub.status.idle": "2024-02-13T01:02:48.145432Z", + "shell.execute_reply": "2024-02-13T01:02:48.144840Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2326,10 +2323,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:40.383322Z", - "iopub.status.busy": "2024-02-13T00:37:40.383000Z", - "iopub.status.idle": "2024-02-13T00:37:41.471029Z", - "shell.execute_reply": "2024-02-13T00:37:41.470469Z" + "iopub.execute_input": "2024-02-13T01:02:48.147699Z", + "iopub.status.busy": "2024-02-13T01:02:48.147291Z", + "iopub.status.idle": "2024-02-13T01:02:49.223548Z", + "shell.execute_reply": "2024-02-13T01:02:49.222908Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index fcc15b91e..2c00a3472 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:44.932005Z", - "iopub.status.busy": "2024-02-13T00:37:44.931601Z", - "iopub.status.idle": "2024-02-13T00:37:45.972699Z", - "shell.execute_reply": "2024-02-13T00:37:45.972092Z" + "iopub.execute_input": "2024-02-13T01:02:52.661602Z", + "iopub.status.busy": "2024-02-13T01:02:52.661190Z", + "iopub.status.idle": "2024-02-13T01:02:53.734707Z", + "shell.execute_reply": "2024-02-13T01:02:53.734066Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:45.975225Z", - "iopub.status.busy": "2024-02-13T00:37:45.974955Z", - "iopub.status.idle": "2024-02-13T00:37:45.978111Z", - "shell.execute_reply": "2024-02-13T00:37:45.977577Z" + "iopub.execute_input": "2024-02-13T01:02:53.737582Z", + "iopub.status.busy": "2024-02-13T01:02:53.737271Z", + "iopub.status.idle": "2024-02-13T01:02:53.740704Z", + "shell.execute_reply": "2024-02-13T01:02:53.740129Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:45.980351Z", - "iopub.status.busy": "2024-02-13T00:37:45.979885Z", - "iopub.status.idle": "2024-02-13T00:37:45.987655Z", - "shell.execute_reply": "2024-02-13T00:37:45.987087Z" + "iopub.execute_input": "2024-02-13T01:02:53.742946Z", + "iopub.status.busy": "2024-02-13T01:02:53.742601Z", + "iopub.status.idle": "2024-02-13T01:02:53.750330Z", + "shell.execute_reply": "2024-02-13T01:02:53.749869Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:45.989596Z", - "iopub.status.busy": "2024-02-13T00:37:45.989277Z", - "iopub.status.idle": "2024-02-13T00:37:46.036506Z", - "shell.execute_reply": "2024-02-13T00:37:46.036090Z" + "iopub.execute_input": "2024-02-13T01:02:53.752459Z", + "iopub.status.busy": "2024-02-13T01:02:53.752125Z", + "iopub.status.idle": "2024-02-13T01:02:53.800557Z", + "shell.execute_reply": "2024-02-13T01:02:53.800055Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:46.038619Z", - "iopub.status.busy": "2024-02-13T00:37:46.038244Z", - "iopub.status.idle": "2024-02-13T00:37:46.055804Z", - "shell.execute_reply": "2024-02-13T00:37:46.055338Z" + "iopub.execute_input": "2024-02-13T01:02:53.802985Z", + "iopub.status.busy": "2024-02-13T01:02:53.802640Z", + "iopub.status.idle": "2024-02-13T01:02:53.820098Z", + "shell.execute_reply": "2024-02-13T01:02:53.819649Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:46.057855Z", - "iopub.status.busy": "2024-02-13T00:37:46.057526Z", - "iopub.status.idle": "2024-02-13T00:37:46.061414Z", - "shell.execute_reply": "2024-02-13T00:37:46.060976Z" + "iopub.execute_input": "2024-02-13T01:02:53.822293Z", + "iopub.status.busy": "2024-02-13T01:02:53.821960Z", + "iopub.status.idle": "2024-02-13T01:02:53.825813Z", + "shell.execute_reply": "2024-02-13T01:02:53.825373Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:46.063516Z", - "iopub.status.busy": "2024-02-13T00:37:46.063128Z", - "iopub.status.idle": "2024-02-13T00:37:46.092469Z", - "shell.execute_reply": "2024-02-13T00:37:46.091907Z" + "iopub.execute_input": "2024-02-13T01:02:53.827796Z", + "iopub.status.busy": "2024-02-13T01:02:53.827641Z", + "iopub.status.idle": "2024-02-13T01:02:53.854664Z", + "shell.execute_reply": "2024-02-13T01:02:53.854145Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:46.094643Z", - "iopub.status.busy": "2024-02-13T00:37:46.094316Z", - "iopub.status.idle": "2024-02-13T00:37:46.120466Z", - "shell.execute_reply": "2024-02-13T00:37:46.120024Z" + "iopub.execute_input": "2024-02-13T01:02:53.857515Z", + "iopub.status.busy": "2024-02-13T01:02:53.857114Z", + "iopub.status.idle": "2024-02-13T01:02:53.884830Z", + "shell.execute_reply": "2024-02-13T01:02:53.884388Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:46.122412Z", - "iopub.status.busy": "2024-02-13T00:37:46.122096Z", - "iopub.status.idle": "2024-02-13T00:37:47.897477Z", - "shell.execute_reply": "2024-02-13T00:37:47.896981Z" + "iopub.execute_input": "2024-02-13T01:02:53.886959Z", + "iopub.status.busy": "2024-02-13T01:02:53.886631Z", + "iopub.status.idle": "2024-02-13T01:02:55.700403Z", + "shell.execute_reply": "2024-02-13T01:02:55.699824Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:47.900018Z", - "iopub.status.busy": "2024-02-13T00:37:47.899596Z", - "iopub.status.idle": "2024-02-13T00:37:47.906288Z", - "shell.execute_reply": "2024-02-13T00:37:47.905738Z" + "iopub.execute_input": "2024-02-13T01:02:55.703078Z", + "iopub.status.busy": "2024-02-13T01:02:55.702551Z", + "iopub.status.idle": "2024-02-13T01:02:55.709491Z", + "shell.execute_reply": "2024-02-13T01:02:55.708927Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:47.908268Z", - "iopub.status.busy": "2024-02-13T00:37:47.907956Z", - "iopub.status.idle": "2024-02-13T00:37:47.920189Z", - "shell.execute_reply": "2024-02-13T00:37:47.919649Z" + "iopub.execute_input": "2024-02-13T01:02:55.711588Z", + "iopub.status.busy": "2024-02-13T01:02:55.711258Z", + "iopub.status.idle": "2024-02-13T01:02:55.723565Z", + "shell.execute_reply": "2024-02-13T01:02:55.723092Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:47.922098Z", - "iopub.status.busy": "2024-02-13T00:37:47.921787Z", - "iopub.status.idle": "2024-02-13T00:37:47.928124Z", - "shell.execute_reply": "2024-02-13T00:37:47.927682Z" + "iopub.execute_input": "2024-02-13T01:02:55.725578Z", + "iopub.status.busy": "2024-02-13T01:02:55.725251Z", + "iopub.status.idle": "2024-02-13T01:02:55.731542Z", + "shell.execute_reply": "2024-02-13T01:02:55.731090Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:47.930079Z", - "iopub.status.busy": "2024-02-13T00:37:47.929760Z", - "iopub.status.idle": "2024-02-13T00:37:47.932903Z", - "shell.execute_reply": "2024-02-13T00:37:47.932479Z" + "iopub.execute_input": "2024-02-13T01:02:55.733517Z", + "iopub.status.busy": "2024-02-13T01:02:55.733188Z", + "iopub.status.idle": "2024-02-13T01:02:55.735876Z", + "shell.execute_reply": "2024-02-13T01:02:55.735414Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:47.934798Z", - "iopub.status.busy": "2024-02-13T00:37:47.934474Z", - "iopub.status.idle": "2024-02-13T00:37:47.937711Z", - "shell.execute_reply": "2024-02-13T00:37:47.937181Z" + "iopub.execute_input": "2024-02-13T01:02:55.737822Z", + "iopub.status.busy": "2024-02-13T01:02:55.737505Z", + "iopub.status.idle": "2024-02-13T01:02:55.741036Z", + "shell.execute_reply": "2024-02-13T01:02:55.740591Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:47.939701Z", - "iopub.status.busy": "2024-02-13T00:37:47.939386Z", - "iopub.status.idle": "2024-02-13T00:37:47.941815Z", - "shell.execute_reply": "2024-02-13T00:37:47.941384Z" + "iopub.execute_input": "2024-02-13T01:02:55.743034Z", + "iopub.status.busy": "2024-02-13T01:02:55.742705Z", + "iopub.status.idle": "2024-02-13T01:02:55.745337Z", + "shell.execute_reply": "2024-02-13T01:02:55.744893Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:47.943801Z", - "iopub.status.busy": "2024-02-13T00:37:47.943429Z", - "iopub.status.idle": "2024-02-13T00:37:47.947682Z", - "shell.execute_reply": "2024-02-13T00:37:47.947148Z" + "iopub.execute_input": "2024-02-13T01:02:55.747247Z", + "iopub.status.busy": "2024-02-13T01:02:55.746933Z", + "iopub.status.idle": "2024-02-13T01:02:55.751016Z", + "shell.execute_reply": "2024-02-13T01:02:55.750516Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:47.949625Z", - "iopub.status.busy": "2024-02-13T00:37:47.949310Z", - "iopub.status.idle": "2024-02-13T00:37:47.978169Z", - "shell.execute_reply": "2024-02-13T00:37:47.977598Z" + "iopub.execute_input": "2024-02-13T01:02:55.753149Z", + "iopub.status.busy": "2024-02-13T01:02:55.752751Z", + "iopub.status.idle": "2024-02-13T01:02:55.781554Z", + "shell.execute_reply": "2024-02-13T01:02:55.780971Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:47.980456Z", - "iopub.status.busy": "2024-02-13T00:37:47.980036Z", - "iopub.status.idle": "2024-02-13T00:37:47.984796Z", - "shell.execute_reply": "2024-02-13T00:37:47.984246Z" + "iopub.execute_input": "2024-02-13T01:02:55.783903Z", + "iopub.status.busy": "2024-02-13T01:02:55.783584Z", + "iopub.status.idle": "2024-02-13T01:02:55.788275Z", + "shell.execute_reply": "2024-02-13T01:02:55.787745Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 0e1a55f3f..f029d0169 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:50.650771Z", - "iopub.status.busy": "2024-02-13T00:37:50.650550Z", - "iopub.status.idle": "2024-02-13T00:37:51.774800Z", - "shell.execute_reply": "2024-02-13T00:37:51.774125Z" + "iopub.execute_input": "2024-02-13T01:02:58.768811Z", + "iopub.status.busy": "2024-02-13T01:02:58.768396Z", + "iopub.status.idle": "2024-02-13T01:02:59.880006Z", + "shell.execute_reply": "2024-02-13T01:02:59.879407Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:51.777390Z", - "iopub.status.busy": "2024-02-13T00:37:51.777090Z", - "iopub.status.idle": "2024-02-13T00:37:51.979058Z", - "shell.execute_reply": "2024-02-13T00:37:51.978498Z" + "iopub.execute_input": "2024-02-13T01:02:59.882450Z", + "iopub.status.busy": "2024-02-13T01:02:59.882189Z", + "iopub.status.idle": "2024-02-13T01:03:00.080766Z", + "shell.execute_reply": "2024-02-13T01:03:00.080087Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:51.981825Z", - "iopub.status.busy": "2024-02-13T00:37:51.981245Z", - "iopub.status.idle": "2024-02-13T00:37:51.994150Z", - "shell.execute_reply": "2024-02-13T00:37:51.993656Z" + "iopub.execute_input": "2024-02-13T01:03:00.083792Z", + "iopub.status.busy": "2024-02-13T01:03:00.083150Z", + "iopub.status.idle": "2024-02-13T01:03:00.096677Z", + "shell.execute_reply": "2024-02-13T01:03:00.096078Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:51.996322Z", - "iopub.status.busy": "2024-02-13T00:37:51.995977Z", - "iopub.status.idle": "2024-02-13T00:37:54.679288Z", - "shell.execute_reply": "2024-02-13T00:37:54.678681Z" + "iopub.execute_input": "2024-02-13T01:03:00.099005Z", + "iopub.status.busy": "2024-02-13T01:03:00.098612Z", + "iopub.status.idle": "2024-02-13T01:03:02.722167Z", + "shell.execute_reply": "2024-02-13T01:03:02.721597Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:54.681640Z", - "iopub.status.busy": "2024-02-13T00:37:54.681268Z", - "iopub.status.idle": "2024-02-13T00:37:56.039215Z", - "shell.execute_reply": "2024-02-13T00:37:56.038664Z" + "iopub.execute_input": "2024-02-13T01:03:02.724722Z", + "iopub.status.busy": "2024-02-13T01:03:02.724201Z", + "iopub.status.idle": "2024-02-13T01:03:04.069993Z", + "shell.execute_reply": "2024-02-13T01:03:04.069438Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:56.041719Z", - "iopub.status.busy": "2024-02-13T00:37:56.041286Z", - "iopub.status.idle": "2024-02-13T00:37:56.045310Z", - "shell.execute_reply": "2024-02-13T00:37:56.044765Z" + "iopub.execute_input": "2024-02-13T01:03:04.072445Z", + "iopub.status.busy": "2024-02-13T01:03:04.072108Z", + "iopub.status.idle": "2024-02-13T01:03:04.075799Z", + "shell.execute_reply": "2024-02-13T01:03:04.075259Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:56.047526Z", - "iopub.status.busy": "2024-02-13T00:37:56.047149Z", - "iopub.status.idle": "2024-02-13T00:37:57.846739Z", - "shell.execute_reply": "2024-02-13T00:37:57.846141Z" + "iopub.execute_input": "2024-02-13T01:03:04.077763Z", + "iopub.status.busy": "2024-02-13T01:03:04.077443Z", + "iopub.status.idle": "2024-02-13T01:03:05.915145Z", + "shell.execute_reply": "2024-02-13T01:03:05.914526Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:57.849517Z", - "iopub.status.busy": "2024-02-13T00:37:57.848710Z", - "iopub.status.idle": "2024-02-13T00:37:57.856343Z", - "shell.execute_reply": "2024-02-13T00:37:57.855894Z" + "iopub.execute_input": "2024-02-13T01:03:05.917885Z", + "iopub.status.busy": "2024-02-13T01:03:05.917254Z", + "iopub.status.idle": "2024-02-13T01:03:05.924933Z", + "shell.execute_reply": "2024-02-13T01:03:05.924469Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:57.858417Z", - "iopub.status.busy": "2024-02-13T00:37:57.858103Z", - "iopub.status.idle": "2024-02-13T00:38:00.434248Z", - "shell.execute_reply": "2024-02-13T00:38:00.433629Z" + "iopub.execute_input": "2024-02-13T01:03:05.926896Z", + "iopub.status.busy": "2024-02-13T01:03:05.926639Z", + "iopub.status.idle": "2024-02-13T01:03:08.486417Z", + "shell.execute_reply": "2024-02-13T01:03:08.485824Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:00.436547Z", - "iopub.status.busy": "2024-02-13T00:38:00.436204Z", - "iopub.status.idle": "2024-02-13T00:38:00.439580Z", - "shell.execute_reply": "2024-02-13T00:38:00.439055Z" + "iopub.execute_input": "2024-02-13T01:03:08.488686Z", + "iopub.status.busy": "2024-02-13T01:03:08.488363Z", + "iopub.status.idle": "2024-02-13T01:03:08.492007Z", + "shell.execute_reply": "2024-02-13T01:03:08.491449Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:00.441604Z", - "iopub.status.busy": "2024-02-13T00:38:00.441278Z", - "iopub.status.idle": "2024-02-13T00:38:00.445327Z", - "shell.execute_reply": "2024-02-13T00:38:00.444780Z" + "iopub.execute_input": "2024-02-13T01:03:08.494000Z", + "iopub.status.busy": "2024-02-13T01:03:08.493695Z", + "iopub.status.idle": "2024-02-13T01:03:08.498016Z", + "shell.execute_reply": "2024-02-13T01:03:08.497458Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:00.447305Z", - "iopub.status.busy": "2024-02-13T00:38:00.446979Z", - "iopub.status.idle": "2024-02-13T00:38:00.450668Z", - "shell.execute_reply": "2024-02-13T00:38:00.450247Z" + "iopub.execute_input": "2024-02-13T01:03:08.500025Z", + "iopub.status.busy": "2024-02-13T01:03:08.499720Z", + "iopub.status.idle": "2024-02-13T01:03:08.502936Z", + "shell.execute_reply": "2024-02-13T01:03:08.502394Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 15426f4ed..108bde32a 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:02.954217Z", - "iopub.status.busy": "2024-02-13T00:38:02.954031Z", - "iopub.status.idle": "2024-02-13T00:38:04.091043Z", - "shell.execute_reply": "2024-02-13T00:38:04.090401Z" + "iopub.execute_input": "2024-02-13T01:03:11.142056Z", + "iopub.status.busy": "2024-02-13T01:03:11.141857Z", + "iopub.status.idle": "2024-02-13T01:03:12.303193Z", + "shell.execute_reply": "2024-02-13T01:03:12.302666Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:04.093582Z", - "iopub.status.busy": "2024-02-13T00:38:04.093297Z", - "iopub.status.idle": "2024-02-13T00:38:05.237712Z", - "shell.execute_reply": "2024-02-13T00:38:05.237027Z" + "iopub.execute_input": "2024-02-13T01:03:12.305972Z", + "iopub.status.busy": "2024-02-13T01:03:12.305454Z", + "iopub.status.idle": "2024-02-13T01:03:13.728705Z", + "shell.execute_reply": "2024-02-13T01:03:13.728015Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:05.240179Z", - "iopub.status.busy": "2024-02-13T00:38:05.239978Z", - "iopub.status.idle": "2024-02-13T00:38:05.243407Z", - "shell.execute_reply": "2024-02-13T00:38:05.242873Z" + "iopub.execute_input": "2024-02-13T01:03:13.731213Z", + "iopub.status.busy": "2024-02-13T01:03:13.731013Z", + "iopub.status.idle": "2024-02-13T01:03:13.734130Z", + "shell.execute_reply": "2024-02-13T01:03:13.733674Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:05.245459Z", - "iopub.status.busy": "2024-02-13T00:38:05.245057Z", - "iopub.status.idle": "2024-02-13T00:38:05.252238Z", - "shell.execute_reply": "2024-02-13T00:38:05.251811Z" + "iopub.execute_input": "2024-02-13T01:03:13.736193Z", + "iopub.status.busy": "2024-02-13T01:03:13.735849Z", + "iopub.status.idle": "2024-02-13T01:03:13.742674Z", + "shell.execute_reply": "2024-02-13T01:03:13.742242Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:05.254315Z", - "iopub.status.busy": "2024-02-13T00:38:05.254000Z", - "iopub.status.idle": "2024-02-13T00:38:05.742554Z", - "shell.execute_reply": "2024-02-13T00:38:05.741944Z" + "iopub.execute_input": "2024-02-13T01:03:13.744769Z", + "iopub.status.busy": "2024-02-13T01:03:13.744583Z", + "iopub.status.idle": "2024-02-13T01:03:14.236517Z", + "shell.execute_reply": "2024-02-13T01:03:14.235931Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:05.744999Z", - "iopub.status.busy": "2024-02-13T00:38:05.744654Z", - "iopub.status.idle": "2024-02-13T00:38:05.749919Z", - "shell.execute_reply": "2024-02-13T00:38:05.749469Z" + "iopub.execute_input": "2024-02-13T01:03:14.239143Z", + "iopub.status.busy": "2024-02-13T01:03:14.238954Z", + "iopub.status.idle": "2024-02-13T01:03:14.244593Z", + "shell.execute_reply": "2024-02-13T01:03:14.244094Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:05.752019Z", - "iopub.status.busy": "2024-02-13T00:38:05.751694Z", - "iopub.status.idle": "2024-02-13T00:38:05.755489Z", - "shell.execute_reply": "2024-02-13T00:38:05.754933Z" + "iopub.execute_input": "2024-02-13T01:03:14.246480Z", + "iopub.status.busy": "2024-02-13T01:03:14.246305Z", + "iopub.status.idle": "2024-02-13T01:03:14.250185Z", + "shell.execute_reply": "2024-02-13T01:03:14.249760Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:05.757600Z", - "iopub.status.busy": "2024-02-13T00:38:05.757207Z", - "iopub.status.idle": "2024-02-13T00:38:06.566098Z", - "shell.execute_reply": "2024-02-13T00:38:06.565532Z" + "iopub.execute_input": "2024-02-13T01:03:14.252075Z", + "iopub.status.busy": "2024-02-13T01:03:14.251894Z", + "iopub.status.idle": "2024-02-13T01:03:14.950221Z", + "shell.execute_reply": "2024-02-13T01:03:14.949600Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:06.568266Z", - "iopub.status.busy": "2024-02-13T00:38:06.568043Z", - "iopub.status.idle": "2024-02-13T00:38:06.749946Z", - "shell.execute_reply": "2024-02-13T00:38:06.749427Z" + "iopub.execute_input": "2024-02-13T01:03:14.952419Z", + "iopub.status.busy": "2024-02-13T01:03:14.952219Z", + "iopub.status.idle": "2024-02-13T01:03:15.130259Z", + "shell.execute_reply": "2024-02-13T01:03:15.129745Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:06.752333Z", - "iopub.status.busy": "2024-02-13T00:38:06.751901Z", - "iopub.status.idle": "2024-02-13T00:38:06.756259Z", - "shell.execute_reply": "2024-02-13T00:38:06.755830Z" + "iopub.execute_input": "2024-02-13T01:03:15.132867Z", + "iopub.status.busy": "2024-02-13T01:03:15.132537Z", + "iopub.status.idle": "2024-02-13T01:03:15.136795Z", + "shell.execute_reply": "2024-02-13T01:03:15.136356Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:06.758202Z", - "iopub.status.busy": "2024-02-13T00:38:06.757905Z", - "iopub.status.idle": "2024-02-13T00:38:07.208423Z", - "shell.execute_reply": "2024-02-13T00:38:07.207864Z" + "iopub.execute_input": "2024-02-13T01:03:15.138839Z", + "iopub.status.busy": "2024-02-13T01:03:15.138454Z", + "iopub.status.idle": "2024-02-13T01:03:15.596289Z", + "shell.execute_reply": "2024-02-13T01:03:15.595728Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:07.211175Z", - "iopub.status.busy": "2024-02-13T00:38:07.210858Z", - "iopub.status.idle": "2024-02-13T00:38:07.543264Z", - "shell.execute_reply": "2024-02-13T00:38:07.542696Z" + "iopub.execute_input": "2024-02-13T01:03:15.599042Z", + "iopub.status.busy": "2024-02-13T01:03:15.598713Z", + "iopub.status.idle": "2024-02-13T01:03:15.931718Z", + "shell.execute_reply": "2024-02-13T01:03:15.931130Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:07.545979Z", - "iopub.status.busy": "2024-02-13T00:38:07.545565Z", - "iopub.status.idle": "2024-02-13T00:38:07.912099Z", - "shell.execute_reply": "2024-02-13T00:38:07.911498Z" + "iopub.execute_input": "2024-02-13T01:03:15.934039Z", + "iopub.status.busy": "2024-02-13T01:03:15.933701Z", + "iopub.status.idle": "2024-02-13T01:03:16.295190Z", + "shell.execute_reply": "2024-02-13T01:03:16.294624Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:07.914949Z", - "iopub.status.busy": "2024-02-13T00:38:07.914582Z", - "iopub.status.idle": "2024-02-13T00:38:08.357594Z", - "shell.execute_reply": "2024-02-13T00:38:08.357052Z" + "iopub.execute_input": "2024-02-13T01:03:16.298397Z", + "iopub.status.busy": "2024-02-13T01:03:16.298037Z", + "iopub.status.idle": "2024-02-13T01:03:16.738397Z", + "shell.execute_reply": "2024-02-13T01:03:16.737826Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:08.361613Z", - "iopub.status.busy": "2024-02-13T00:38:08.361414Z", - "iopub.status.idle": "2024-02-13T00:38:08.787747Z", - "shell.execute_reply": "2024-02-13T00:38:08.787133Z" + "iopub.execute_input": "2024-02-13T01:03:16.742750Z", + "iopub.status.busy": "2024-02-13T01:03:16.742408Z", + "iopub.status.idle": "2024-02-13T01:03:17.168900Z", + "shell.execute_reply": "2024-02-13T01:03:17.168305Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:08.790980Z", - "iopub.status.busy": "2024-02-13T00:38:08.790532Z", - "iopub.status.idle": "2024-02-13T00:38:09.010584Z", - "shell.execute_reply": "2024-02-13T00:38:09.009975Z" + "iopub.execute_input": "2024-02-13T01:03:17.172162Z", + "iopub.status.busy": "2024-02-13T01:03:17.171719Z", + "iopub.status.idle": "2024-02-13T01:03:17.363729Z", + "shell.execute_reply": "2024-02-13T01:03:17.363164Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:09.013031Z", - "iopub.status.busy": "2024-02-13T00:38:09.012566Z", - "iopub.status.idle": "2024-02-13T00:38:09.194017Z", - "shell.execute_reply": "2024-02-13T00:38:09.193435Z" + "iopub.execute_input": "2024-02-13T01:03:17.366816Z", + "iopub.status.busy": "2024-02-13T01:03:17.366256Z", + "iopub.status.idle": "2024-02-13T01:03:17.569906Z", + "shell.execute_reply": "2024-02-13T01:03:17.569267Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:09.196458Z", - "iopub.status.busy": "2024-02-13T00:38:09.195907Z", - "iopub.status.idle": "2024-02-13T00:38:09.198906Z", - "shell.execute_reply": "2024-02-13T00:38:09.198434Z" + "iopub.execute_input": "2024-02-13T01:03:17.572554Z", + "iopub.status.busy": "2024-02-13T01:03:17.572028Z", + "iopub.status.idle": "2024-02-13T01:03:17.575133Z", + "shell.execute_reply": "2024-02-13T01:03:17.574708Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:09.200810Z", - "iopub.status.busy": "2024-02-13T00:38:09.200636Z", - "iopub.status.idle": "2024-02-13T00:38:10.107251Z", - "shell.execute_reply": "2024-02-13T00:38:10.106620Z" + "iopub.execute_input": "2024-02-13T01:03:17.577176Z", + "iopub.status.busy": "2024-02-13T01:03:17.576805Z", + "iopub.status.idle": "2024-02-13T01:03:18.520579Z", + "shell.execute_reply": "2024-02-13T01:03:18.519995Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:10.109515Z", - "iopub.status.busy": "2024-02-13T00:38:10.109333Z", - "iopub.status.idle": "2024-02-13T00:38:10.240271Z", - "shell.execute_reply": "2024-02-13T00:38:10.239670Z" + "iopub.execute_input": "2024-02-13T01:03:18.523127Z", + "iopub.status.busy": "2024-02-13T01:03:18.522711Z", + "iopub.status.idle": "2024-02-13T01:03:18.672007Z", + "shell.execute_reply": "2024-02-13T01:03:18.671522Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:10.242595Z", - "iopub.status.busy": "2024-02-13T00:38:10.242119Z", - "iopub.status.idle": "2024-02-13T00:38:10.423913Z", - "shell.execute_reply": "2024-02-13T00:38:10.423360Z" + "iopub.execute_input": "2024-02-13T01:03:18.674116Z", + "iopub.status.busy": "2024-02-13T01:03:18.673931Z", + "iopub.status.idle": "2024-02-13T01:03:18.814206Z", + "shell.execute_reply": "2024-02-13T01:03:18.813573Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:10.426135Z", - "iopub.status.busy": "2024-02-13T00:38:10.425801Z", - "iopub.status.idle": "2024-02-13T00:38:11.193456Z", - "shell.execute_reply": "2024-02-13T00:38:11.192845Z" + "iopub.execute_input": "2024-02-13T01:03:18.816350Z", + "iopub.status.busy": "2024-02-13T01:03:18.816156Z", + "iopub.status.idle": "2024-02-13T01:03:19.535673Z", + "shell.execute_reply": "2024-02-13T01:03:19.535130Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:11.195705Z", - "iopub.status.busy": "2024-02-13T00:38:11.195361Z", - "iopub.status.idle": "2024-02-13T00:38:11.199055Z", - "shell.execute_reply": "2024-02-13T00:38:11.198495Z" + "iopub.execute_input": "2024-02-13T01:03:19.537795Z", + "iopub.status.busy": "2024-02-13T01:03:19.537617Z", + "iopub.status.idle": "2024-02-13T01:03:19.541117Z", + "shell.execute_reply": "2024-02-13T01:03:19.540711Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 85bfdbf77..2fd4d0b8b 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:13.538819Z", - "iopub.status.busy": "2024-02-13T00:38:13.538332Z", - "iopub.status.idle": "2024-02-13T00:38:16.310196Z", - "shell.execute_reply": "2024-02-13T00:38:16.309618Z" + "iopub.execute_input": "2024-02-13T01:03:21.946350Z", + "iopub.status.busy": "2024-02-13T01:03:21.946175Z", + "iopub.status.idle": "2024-02-13T01:03:24.693428Z", + "shell.execute_reply": "2024-02-13T01:03:24.692797Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:16.312856Z", - "iopub.status.busy": "2024-02-13T00:38:16.312401Z", - "iopub.status.idle": "2024-02-13T00:38:16.652112Z", - "shell.execute_reply": "2024-02-13T00:38:16.651552Z" + "iopub.execute_input": "2024-02-13T01:03:24.696184Z", + "iopub.status.busy": "2024-02-13T01:03:24.695863Z", + "iopub.status.idle": "2024-02-13T01:03:25.047975Z", + "shell.execute_reply": "2024-02-13T01:03:25.047451Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:16.654843Z", - "iopub.status.busy": "2024-02-13T00:38:16.654258Z", - "iopub.status.idle": "2024-02-13T00:38:16.658614Z", - "shell.execute_reply": "2024-02-13T00:38:16.658201Z" + "iopub.execute_input": "2024-02-13T01:03:25.050426Z", + "iopub.status.busy": "2024-02-13T01:03:25.050112Z", + "iopub.status.idle": "2024-02-13T01:03:25.054262Z", + "shell.execute_reply": "2024-02-13T01:03:25.053845Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:16.660663Z", - "iopub.status.busy": "2024-02-13T00:38:16.660336Z", - "iopub.status.idle": "2024-02-13T00:38:22.677513Z", - "shell.execute_reply": "2024-02-13T00:38:22.676909Z" + "iopub.execute_input": "2024-02-13T01:03:25.056210Z", + "iopub.status.busy": "2024-02-13T01:03:25.056033Z", + "iopub.status.idle": "2024-02-13T01:03:29.390845Z", + "shell.execute_reply": "2024-02-13T01:03:29.390321Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1343488/170498071 [00:00<00:12, 13419215.78it/s]" + " 1%|▏ | 2326528/170498071 [00:00<00:07, 23219298.71it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 5701632/170498071 [00:00<00:05, 30978364.62it/s]" + " 8%|▊ | 13303808/170498071 [00:00<00:02, 73844881.63it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 10321920/170498071 [00:00<00:04, 37656354.51it/s]" + " 14%|█▍ | 24674304/170498071 [00:00<00:01, 91964167.23it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 14745600/170498071 [00:00<00:03, 40101818.24it/s]" + " 21%|██ | 34963456/170498071 [00:00<00:01, 96191879.75it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 19431424/170498071 [00:00<00:03, 42458496.10it/s]" + " 27%|██▋ | 45383680/170498071 [00:00<00:01, 99000165.63it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 23920640/170498071 [00:00<00:03, 43264444.74it/s]" + " 33%|███▎ | 56393728/170498071 [00:00<00:01, 102767412.84it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 28901376/170498071 [00:00<00:03, 45380202.56it/s]" + " 39%|███▉ | 67141632/170498071 [00:00<00:00, 104252034.08it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 33456128/170498071 [00:00<00:03, 44719865.87it/s]" + " 46%|████▌ | 77856768/170498071 [00:00<00:00, 105125468.20it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37945344/170498071 [00:00<00:03, 44112735.58it/s]" + " 52%|█████▏ | 88899584/170498071 [00:00<00:00, 106705587.58it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 42369024/170498071 [00:01<00:02, 44096193.62it/s]" + " 58%|█████▊ | 99581952/170498071 [00:01<00:00, 105304746.58it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 47120384/170498071 [00:01<00:02, 44949082.45it/s]" + " 65%|██████▍ | 110395392/170498071 [00:01<00:00, 106104853.34it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52559872/170498071 [00:01<00:02, 47695754.57it/s]" + " 71%|███████▏ | 121634816/170498071 [00:01<00:00, 107947015.29it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 58327040/170498071 [00:01<00:02, 50506916.33it/s]" + " 78%|███████▊ | 132677632/170498071 [00:01<00:00, 108681810.16it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 64225280/170498071 [00:01<00:02, 52788973.88it/s]" + " 84%|████████▍ | 143818752/170498071 [00:01<00:00, 109445329.99it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 69894144/170498071 [00:01<00:01, 53950833.55it/s]" + " 91%|█████████ | 154927104/170498071 [00:01<00:00, 109907364.09it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 75563008/170498071 [00:01<00:01, 54723606.58it/s]" + " 97%|█████████▋| 166035456/170498071 [00:01<00:00, 110199660.91it/s]" ] }, { @@ -380,135 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 81068032/170498071 [00:01<00:01, 53970263.14it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 51%|█████ | 86966272/170498071 [00:01<00:01, 55331395.01it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 54%|█████▍ | 92667904/170498071 [00:01<00:01, 55810311.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 98467840/170498071 [00:02<00:01, 56445352.26it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 104202240/170498071 [00:02<00:01, 56436844.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 109936640/170498071 [00:02<00:01, 56700992.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 115638272/170498071 [00:02<00:00, 55387515.28it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████ | 121208832/170498071 [00:02<00:00, 52110704.91it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 126484480/170498071 [00:02<00:00, 49544093.78it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 131596288/170498071 [00:02<00:00, 49943099.39it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|████████ | 136642560/170498071 [00:02<00:00, 49918243.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 141688832/170498071 [00:02<00:00, 49487234.83it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▌ | 146800640/170498071 [00:02<00:00, 49829573.92it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 151814144/170498071 [00:03<00:00, 48855803.82it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 156729344/170498071 [00:03<00:00, 48916303.76it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 162529280/170498071 [00:03<00:00, 51565119.38it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:03<00:00, 50407814.33it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 103483721.82it/s]" ] }, { @@ -626,10 +498,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:22.679908Z", - "iopub.status.busy": "2024-02-13T00:38:22.679558Z", - "iopub.status.idle": "2024-02-13T00:38:22.684187Z", - "shell.execute_reply": "2024-02-13T00:38:22.683763Z" + "iopub.execute_input": "2024-02-13T01:03:29.393043Z", + "iopub.status.busy": "2024-02-13T01:03:29.392764Z", + "iopub.status.idle": "2024-02-13T01:03:29.397461Z", + "shell.execute_reply": "2024-02-13T01:03:29.397032Z" }, "nbsphinx": "hidden" }, @@ -680,10 +552,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:22.686206Z", - "iopub.status.busy": "2024-02-13T00:38:22.685892Z", - "iopub.status.idle": "2024-02-13T00:38:23.234419Z", - "shell.execute_reply": "2024-02-13T00:38:23.233860Z" + "iopub.execute_input": "2024-02-13T01:03:29.399365Z", + "iopub.status.busy": "2024-02-13T01:03:29.399031Z", + "iopub.status.idle": "2024-02-13T01:03:29.922399Z", + "shell.execute_reply": "2024-02-13T01:03:29.921908Z" } }, "outputs": [ @@ -716,10 +588,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:23.236537Z", - "iopub.status.busy": "2024-02-13T00:38:23.236200Z", - "iopub.status.idle": "2024-02-13T00:38:23.754153Z", - "shell.execute_reply": "2024-02-13T00:38:23.753584Z" + "iopub.execute_input": "2024-02-13T01:03:29.924733Z", + "iopub.status.busy": "2024-02-13T01:03:29.924391Z", + "iopub.status.idle": "2024-02-13T01:03:30.450732Z", + "shell.execute_reply": "2024-02-13T01:03:30.450167Z" } }, "outputs": [ @@ -757,10 +629,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:23.756376Z", - "iopub.status.busy": "2024-02-13T00:38:23.756032Z", - "iopub.status.idle": "2024-02-13T00:38:23.760086Z", - "shell.execute_reply": "2024-02-13T00:38:23.759545Z" + "iopub.execute_input": "2024-02-13T01:03:30.453089Z", + "iopub.status.busy": "2024-02-13T01:03:30.452701Z", + "iopub.status.idle": "2024-02-13T01:03:30.456264Z", + "shell.execute_reply": "2024-02-13T01:03:30.455781Z" } }, "outputs": [], @@ -783,17 +655,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:23.762179Z", - "iopub.status.busy": "2024-02-13T00:38:23.761852Z", - "iopub.status.idle": "2024-02-13T00:38:36.441314Z", - "shell.execute_reply": "2024-02-13T00:38:36.440695Z" + "iopub.execute_input": "2024-02-13T01:03:30.458317Z", + "iopub.status.busy": "2024-02-13T01:03:30.457992Z", + "iopub.status.idle": "2024-02-13T01:03:43.148107Z", + "shell.execute_reply": "2024-02-13T01:03:43.147490Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ff543fd6f30d4622be8edea1bc3715b0", + "model_id": "92b33af26c3946f7839360511c1b8bae", "version_major": 2, "version_minor": 0 }, @@ -852,10 +724,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:36.443785Z", - "iopub.status.busy": "2024-02-13T00:38:36.443398Z", - "iopub.status.idle": "2024-02-13T00:38:38.033570Z", - "shell.execute_reply": "2024-02-13T00:38:38.033012Z" + "iopub.execute_input": "2024-02-13T01:03:43.150246Z", + "iopub.status.busy": "2024-02-13T01:03:43.150059Z", + "iopub.status.idle": "2024-02-13T01:03:44.712648Z", + "shell.execute_reply": "2024-02-13T01:03:44.712038Z" } }, "outputs": [ @@ -899,10 +771,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:38.036426Z", - "iopub.status.busy": "2024-02-13T00:38:38.035958Z", - "iopub.status.idle": "2024-02-13T00:38:38.466607Z", - "shell.execute_reply": "2024-02-13T00:38:38.466065Z" + "iopub.execute_input": "2024-02-13T01:03:44.715052Z", + "iopub.status.busy": "2024-02-13T01:03:44.714832Z", + "iopub.status.idle": "2024-02-13T01:03:45.140211Z", + "shell.execute_reply": "2024-02-13T01:03:45.139624Z" } }, "outputs": [ @@ -938,10 +810,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:38.469309Z", - "iopub.status.busy": "2024-02-13T00:38:38.468794Z", - "iopub.status.idle": "2024-02-13T00:38:39.120552Z", - "shell.execute_reply": "2024-02-13T00:38:39.119993Z" + "iopub.execute_input": "2024-02-13T01:03:45.142428Z", + "iopub.status.busy": "2024-02-13T01:03:45.142240Z", + "iopub.status.idle": "2024-02-13T01:03:45.802043Z", + "shell.execute_reply": "2024-02-13T01:03:45.801517Z" } }, "outputs": [ @@ -991,10 +863,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:39.123303Z", - "iopub.status.busy": "2024-02-13T00:38:39.122997Z", - "iopub.status.idle": "2024-02-13T00:38:39.461505Z", - "shell.execute_reply": "2024-02-13T00:38:39.461013Z" + "iopub.execute_input": "2024-02-13T01:03:45.804974Z", + "iopub.status.busy": "2024-02-13T01:03:45.804501Z", + "iopub.status.idle": "2024-02-13T01:03:46.149909Z", + "shell.execute_reply": "2024-02-13T01:03:46.149324Z" } }, "outputs": [ @@ -1042,10 +914,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:39.463648Z", - "iopub.status.busy": "2024-02-13T00:38:39.463464Z", - "iopub.status.idle": "2024-02-13T00:38:39.706411Z", - "shell.execute_reply": "2024-02-13T00:38:39.705868Z" + "iopub.execute_input": "2024-02-13T01:03:46.152129Z", + "iopub.status.busy": "2024-02-13T01:03:46.151736Z", + "iopub.status.idle": "2024-02-13T01:03:46.384794Z", + "shell.execute_reply": "2024-02-13T01:03:46.384057Z" } }, "outputs": [ @@ -1101,10 +973,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:39.709202Z", - "iopub.status.busy": "2024-02-13T00:38:39.708789Z", - "iopub.status.idle": "2024-02-13T00:38:39.795527Z", - "shell.execute_reply": "2024-02-13T00:38:39.795019Z" + "iopub.execute_input": "2024-02-13T01:03:46.387276Z", + "iopub.status.busy": "2024-02-13T01:03:46.386939Z", + "iopub.status.idle": "2024-02-13T01:03:46.472590Z", + "shell.execute_reply": "2024-02-13T01:03:46.471966Z" } }, "outputs": [], @@ -1125,10 +997,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:39.797869Z", - "iopub.status.busy": "2024-02-13T00:38:39.797538Z", - "iopub.status.idle": "2024-02-13T00:38:50.034714Z", - "shell.execute_reply": "2024-02-13T00:38:50.034060Z" + "iopub.execute_input": "2024-02-13T01:03:46.475190Z", + "iopub.status.busy": "2024-02-13T01:03:46.474822Z", + "iopub.status.idle": "2024-02-13T01:03:56.919476Z", + "shell.execute_reply": "2024-02-13T01:03:56.918783Z" } }, "outputs": [ @@ -1165,10 +1037,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:50.037502Z", - "iopub.status.busy": "2024-02-13T00:38:50.037041Z", - "iopub.status.idle": "2024-02-13T00:38:51.749256Z", - "shell.execute_reply": "2024-02-13T00:38:51.748688Z" + "iopub.execute_input": "2024-02-13T01:03:56.921895Z", + "iopub.status.busy": "2024-02-13T01:03:56.921456Z", + "iopub.status.idle": "2024-02-13T01:03:58.728547Z", + "shell.execute_reply": "2024-02-13T01:03:58.728037Z" } }, "outputs": [ @@ -1199,10 +1071,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:51.752032Z", - "iopub.status.busy": "2024-02-13T00:38:51.751440Z", - "iopub.status.idle": "2024-02-13T00:38:51.953634Z", - "shell.execute_reply": "2024-02-13T00:38:51.953124Z" + "iopub.execute_input": "2024-02-13T01:03:58.731271Z", + "iopub.status.busy": "2024-02-13T01:03:58.730667Z", + "iopub.status.idle": "2024-02-13T01:03:58.948375Z", + "shell.execute_reply": "2024-02-13T01:03:58.947775Z" } }, "outputs": [], @@ -1216,10 +1088,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:51.956085Z", - "iopub.status.busy": "2024-02-13T00:38:51.955736Z", - "iopub.status.idle": "2024-02-13T00:38:51.959607Z", - "shell.execute_reply": "2024-02-13T00:38:51.959036Z" + "iopub.execute_input": "2024-02-13T01:03:58.950843Z", + "iopub.status.busy": "2024-02-13T01:03:58.950500Z", + "iopub.status.idle": "2024-02-13T01:03:58.953541Z", + "shell.execute_reply": "2024-02-13T01:03:58.953112Z" } }, "outputs": [], @@ -1241,10 +1113,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:51.961529Z", - "iopub.status.busy": "2024-02-13T00:38:51.961271Z", - "iopub.status.idle": "2024-02-13T00:38:51.969247Z", - "shell.execute_reply": "2024-02-13T00:38:51.968771Z" + "iopub.execute_input": "2024-02-13T01:03:58.955699Z", + "iopub.status.busy": "2024-02-13T01:03:58.955268Z", + "iopub.status.idle": "2024-02-13T01:03:58.963594Z", + "shell.execute_reply": "2024-02-13T01:03:58.963008Z" }, "nbsphinx": "hidden" }, @@ -1289,7 +1161,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1c399fc6dfaf46e78dd6b627dd9ab79e": { + "03e194e884d844d696bb26dd15ae8166": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1304,15 +1176,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8ceb374fbc2f4adc96b72f019eac0d7b", + "layout": "IPY_MODEL_c067481e2c854162a43a69832dafac1d", "placeholder": "​", - "style": "IPY_MODEL_a4b4f176039345ef88ce5d31b744e86f", + "style": "IPY_MODEL_e255456cdbd940b1a0871b4201ff7f13", "tabbable": null, "tooltip": null, - "value": "model.safetensors: 100%" + "value": " 102M/102M [00:00<00:00, 187MB/s]" } }, - "3a6eff6e7a34490286388705121c5109": { + "28c1892184834bbb9e428562668c27bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1365,25 +1237,7 @@ "width": null } }, - "68d6368b9f4e4091939374ceb23813bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8ceb374fbc2f4adc96b72f019eac0d7b": { + "7ae945316e554eb5abaaca7e1881a842": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1436,7 +1290,80 @@ "width": null } }, - "8f9e6f5d41ec42ad847534bfdb6bd26f": { + "92b33af26c3946f7839360511c1b8bae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ad9367ce55be498f93dae398f378543b", + "IPY_MODEL_a16c2d0853d4451887b15287af0107a9", + "IPY_MODEL_03e194e884d844d696bb26dd15ae8166" + ], + "layout": "IPY_MODEL_af967ea5935e411f8a1ce18e0fb360f0", + "tabbable": null, + "tooltip": null + } + }, + "a16c2d0853d4451887b15287af0107a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7ae945316e554eb5abaaca7e1881a842", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e8256a3a68a4411ba396247ce62c59d0", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "ad9367ce55be498f93dae398f378543b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_28c1892184834bbb9e428562668c27bf", + "placeholder": "​", + "style": "IPY_MODEL_f8c09f90aad44bef847738e3e859f017", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "af967ea5935e411f8a1ce18e0fb360f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1489,51 +1416,7 @@ "width": null } }, - "91bdb5338d374cb7b81754d69354659a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3a6eff6e7a34490286388705121c5109", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_edcd63954a0e445b8d78f220d7e3b7ce", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "a4b4f176039345ef88ce5d31b744e86f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "de53c221b897471d9ee2bad1f34bd6ad": { + "c067481e2c854162a43a69832dafac1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1586,30 +1469,25 @@ "width": null } }, - "eaaf9257d4454c79b003911fddfdcba4": { + "e255456cdbd940b1a0871b4201ff7f13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8f9e6f5d41ec42ad847534bfdb6bd26f", - "placeholder": "​", - "style": "IPY_MODEL_68d6368b9f4e4091939374ceb23813bc", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 164MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "edcd63954a0e445b8d78f220d7e3b7ce": { + "e8256a3a68a4411ba396247ce62c59d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1625,28 +1503,22 @@ "description_width": "" } }, - "ff543fd6f30d4622be8edea1bc3715b0": { + "f8c09f90aad44bef847738e3e859f017": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1c399fc6dfaf46e78dd6b627dd9ab79e", - "IPY_MODEL_91bdb5338d374cb7b81754d69354659a", - "IPY_MODEL_eaaf9257d4454c79b003911fddfdcba4" - ], - "layout": "IPY_MODEL_de53c221b897471d9ee2bad1f34bd6ad", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index c43233657..f45de88ba 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:56.418963Z", - "iopub.status.busy": "2024-02-13T00:38:56.418538Z", - "iopub.status.idle": "2024-02-13T00:38:57.502296Z", - "shell.execute_reply": "2024-02-13T00:38:57.501688Z" + "iopub.execute_input": "2024-02-13T01:04:03.295564Z", + "iopub.status.busy": "2024-02-13T01:04:03.295384Z", + "iopub.status.idle": "2024-02-13T01:04:04.470389Z", + "shell.execute_reply": "2024-02-13T01:04:04.469810Z" }, "nbsphinx": "hidden" }, @@ -117,7 +117,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:57.504994Z", - "iopub.status.busy": "2024-02-13T00:38:57.504661Z", - "iopub.status.idle": "2024-02-13T00:38:57.522557Z", - "shell.execute_reply": "2024-02-13T00:38:57.522014Z" + "iopub.execute_input": "2024-02-13T01:04:04.473255Z", + "iopub.status.busy": "2024-02-13T01:04:04.472725Z", + "iopub.status.idle": "2024-02-13T01:04:04.492603Z", + "shell.execute_reply": "2024-02-13T01:04:04.492080Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:57.524915Z", - "iopub.status.busy": "2024-02-13T00:38:57.524458Z", - "iopub.status.idle": "2024-02-13T00:38:57.527466Z", - "shell.execute_reply": "2024-02-13T00:38:57.527014Z" + "iopub.execute_input": "2024-02-13T01:04:04.495177Z", + "iopub.status.busy": "2024-02-13T01:04:04.494663Z", + "iopub.status.idle": "2024-02-13T01:04:04.497965Z", + "shell.execute_reply": "2024-02-13T01:04:04.497440Z" }, "nbsphinx": "hidden" }, @@ -199,10 +199,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:57.529494Z", - "iopub.status.busy": "2024-02-13T00:38:57.529082Z", - "iopub.status.idle": "2024-02-13T00:38:57.604240Z", - "shell.execute_reply": "2024-02-13T00:38:57.603695Z" + "iopub.execute_input": "2024-02-13T01:04:04.500196Z", + "iopub.status.busy": "2024-02-13T01:04:04.499813Z", + "iopub.status.idle": "2024-02-13T01:04:04.611611Z", + "shell.execute_reply": "2024-02-13T01:04:04.610989Z" } }, "outputs": [ @@ -375,10 +375,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:57.606593Z", - "iopub.status.busy": "2024-02-13T00:38:57.606282Z", - "iopub.status.idle": "2024-02-13T00:38:57.783988Z", - "shell.execute_reply": "2024-02-13T00:38:57.783443Z" + "iopub.execute_input": "2024-02-13T01:04:04.613792Z", + "iopub.status.busy": "2024-02-13T01:04:04.613601Z", + "iopub.status.idle": "2024-02-13T01:04:04.805710Z", + "shell.execute_reply": "2024-02-13T01:04:04.805077Z" }, "nbsphinx": "hidden" }, @@ -418,10 +418,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:57.786254Z", - "iopub.status.busy": "2024-02-13T00:38:57.786047Z", - "iopub.status.idle": "2024-02-13T00:38:58.026415Z", - "shell.execute_reply": "2024-02-13T00:38:58.025843Z" + "iopub.execute_input": "2024-02-13T01:04:04.808407Z", + "iopub.status.busy": "2024-02-13T01:04:04.808098Z", + "iopub.status.idle": "2024-02-13T01:04:05.060992Z", + "shell.execute_reply": "2024-02-13T01:04:05.060368Z" } }, "outputs": [ @@ -457,10 +457,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:58.028577Z", - "iopub.status.busy": "2024-02-13T00:38:58.028250Z", - "iopub.status.idle": "2024-02-13T00:38:58.032455Z", - "shell.execute_reply": "2024-02-13T00:38:58.032007Z" + "iopub.execute_input": "2024-02-13T01:04:05.063164Z", + "iopub.status.busy": "2024-02-13T01:04:05.062952Z", + "iopub.status.idle": "2024-02-13T01:04:05.067821Z", + "shell.execute_reply": "2024-02-13T01:04:05.067325Z" } }, "outputs": [], @@ -478,10 +478,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:58.034470Z", - "iopub.status.busy": "2024-02-13T00:38:58.034154Z", - "iopub.status.idle": "2024-02-13T00:38:58.039926Z", - "shell.execute_reply": "2024-02-13T00:38:58.039514Z" + "iopub.execute_input": "2024-02-13T01:04:05.069776Z", + "iopub.status.busy": "2024-02-13T01:04:05.069582Z", + "iopub.status.idle": "2024-02-13T01:04:05.076631Z", + "shell.execute_reply": "2024-02-13T01:04:05.076188Z" } }, "outputs": [], @@ -528,10 +528,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:58.042002Z", - "iopub.status.busy": "2024-02-13T00:38:58.041688Z", - "iopub.status.idle": "2024-02-13T00:38:58.044105Z", - "shell.execute_reply": "2024-02-13T00:38:58.043689Z" + "iopub.execute_input": "2024-02-13T01:04:05.078739Z", + "iopub.status.busy": "2024-02-13T01:04:05.078520Z", + "iopub.status.idle": "2024-02-13T01:04:05.081378Z", + "shell.execute_reply": "2024-02-13T01:04:05.080921Z" } }, "outputs": [], @@ -546,10 +546,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:58.046106Z", - "iopub.status.busy": "2024-02-13T00:38:58.045692Z", - "iopub.status.idle": "2024-02-13T00:39:06.553915Z", - "shell.execute_reply": "2024-02-13T00:39:06.553250Z" + "iopub.execute_input": "2024-02-13T01:04:05.083440Z", + "iopub.status.busy": "2024-02-13T01:04:05.083057Z", + "iopub.status.idle": "2024-02-13T01:04:13.705031Z", + "shell.execute_reply": "2024-02-13T01:04:13.704339Z" } }, "outputs": [], @@ -573,10 +573,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.557117Z", - "iopub.status.busy": "2024-02-13T00:39:06.556457Z", - "iopub.status.idle": "2024-02-13T00:39:06.563589Z", - "shell.execute_reply": "2024-02-13T00:39:06.563063Z" + "iopub.execute_input": "2024-02-13T01:04:13.708170Z", + "iopub.status.busy": "2024-02-13T01:04:13.707545Z", + "iopub.status.idle": "2024-02-13T01:04:13.714879Z", + "shell.execute_reply": "2024-02-13T01:04:13.714322Z" } }, "outputs": [ @@ -679,10 +679,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.565703Z", - "iopub.status.busy": "2024-02-13T00:39:06.565363Z", - "iopub.status.idle": "2024-02-13T00:39:06.568975Z", - "shell.execute_reply": "2024-02-13T00:39:06.568518Z" + "iopub.execute_input": "2024-02-13T01:04:13.717129Z", + "iopub.status.busy": "2024-02-13T01:04:13.716739Z", + "iopub.status.idle": "2024-02-13T01:04:13.720642Z", + "shell.execute_reply": "2024-02-13T01:04:13.720087Z" } }, "outputs": [], @@ -697,10 +697,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.571038Z", - "iopub.status.busy": "2024-02-13T00:39:06.570698Z", - "iopub.status.idle": "2024-02-13T00:39:06.573718Z", - "shell.execute_reply": "2024-02-13T00:39:06.573205Z" + "iopub.execute_input": "2024-02-13T01:04:13.722849Z", + "iopub.status.busy": "2024-02-13T01:04:13.722451Z", + "iopub.status.idle": "2024-02-13T01:04:13.725984Z", + "shell.execute_reply": "2024-02-13T01:04:13.725412Z" } }, "outputs": [ @@ -735,10 +735,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.575707Z", - "iopub.status.busy": "2024-02-13T00:39:06.575385Z", - "iopub.status.idle": "2024-02-13T00:39:06.578370Z", - "shell.execute_reply": "2024-02-13T00:39:06.577927Z" + "iopub.execute_input": "2024-02-13T01:04:13.728368Z", + "iopub.status.busy": "2024-02-13T01:04:13.727935Z", + "iopub.status.idle": "2024-02-13T01:04:13.731295Z", + "shell.execute_reply": "2024-02-13T01:04:13.730827Z" } }, "outputs": [], @@ -757,10 +757,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.580361Z", - "iopub.status.busy": "2024-02-13T00:39:06.579975Z", - "iopub.status.idle": "2024-02-13T00:39:06.588115Z", - "shell.execute_reply": "2024-02-13T00:39:06.587568Z" + "iopub.execute_input": "2024-02-13T01:04:13.733426Z", + "iopub.status.busy": "2024-02-13T01:04:13.733117Z", + "iopub.status.idle": "2024-02-13T01:04:13.741608Z", + "shell.execute_reply": "2024-02-13T01:04:13.741157Z" } }, "outputs": [ @@ -884,10 +884,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.590154Z", - "iopub.status.busy": "2024-02-13T00:39:06.589761Z", - "iopub.status.idle": "2024-02-13T00:39:06.592516Z", - "shell.execute_reply": "2024-02-13T00:39:06.591957Z" + "iopub.execute_input": "2024-02-13T01:04:13.743531Z", + "iopub.status.busy": "2024-02-13T01:04:13.743351Z", + "iopub.status.idle": "2024-02-13T01:04:13.746048Z", + "shell.execute_reply": "2024-02-13T01:04:13.745614Z" }, "nbsphinx": "hidden" }, @@ -922,10 +922,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.594513Z", - "iopub.status.busy": "2024-02-13T00:39:06.594155Z", - "iopub.status.idle": "2024-02-13T00:39:06.716645Z", - "shell.execute_reply": "2024-02-13T00:39:06.716130Z" + "iopub.execute_input": "2024-02-13T01:04:13.748057Z", + "iopub.status.busy": "2024-02-13T01:04:13.747784Z", + "iopub.status.idle": "2024-02-13T01:04:13.870575Z", + "shell.execute_reply": "2024-02-13T01:04:13.870014Z" } }, "outputs": [ @@ -964,10 +964,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.719063Z", - "iopub.status.busy": "2024-02-13T00:39:06.718669Z", - "iopub.status.idle": "2024-02-13T00:39:06.827382Z", - "shell.execute_reply": "2024-02-13T00:39:06.826767Z" + "iopub.execute_input": "2024-02-13T01:04:13.873045Z", + "iopub.status.busy": "2024-02-13T01:04:13.872584Z", + "iopub.status.idle": "2024-02-13T01:04:13.977959Z", + "shell.execute_reply": "2024-02-13T01:04:13.977383Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.829853Z", - "iopub.status.busy": "2024-02-13T00:39:06.829461Z", - "iopub.status.idle": "2024-02-13T00:39:07.327639Z", - "shell.execute_reply": "2024-02-13T00:39:07.327093Z" + "iopub.execute_input": "2024-02-13T01:04:13.980497Z", + "iopub.status.busy": "2024-02-13T01:04:13.980105Z", + "iopub.status.idle": "2024-02-13T01:04:14.476861Z", + "shell.execute_reply": "2024-02-13T01:04:14.476315Z" } }, "outputs": [], @@ -1042,10 +1042,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:07.330082Z", - "iopub.status.busy": "2024-02-13T00:39:07.329859Z", - "iopub.status.idle": "2024-02-13T00:39:07.419336Z", - "shell.execute_reply": "2024-02-13T00:39:07.418737Z" + "iopub.execute_input": "2024-02-13T01:04:14.479487Z", + "iopub.status.busy": "2024-02-13T01:04:14.479069Z", + "iopub.status.idle": "2024-02-13T01:04:14.581489Z", + "shell.execute_reply": "2024-02-13T01:04:14.580890Z" } }, "outputs": [ @@ -1080,10 +1080,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:07.421793Z", - "iopub.status.busy": "2024-02-13T00:39:07.421346Z", - "iopub.status.idle": "2024-02-13T00:39:07.429742Z", - "shell.execute_reply": "2024-02-13T00:39:07.429271Z" + "iopub.execute_input": "2024-02-13T01:04:14.585989Z", + "iopub.status.busy": "2024-02-13T01:04:14.585754Z", + "iopub.status.idle": "2024-02-13T01:04:14.595235Z", + "shell.execute_reply": "2024-02-13T01:04:14.594685Z" } }, "outputs": [ @@ -1190,10 +1190,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:07.431780Z", - "iopub.status.busy": "2024-02-13T00:39:07.431603Z", - "iopub.status.idle": "2024-02-13T00:39:07.434130Z", - "shell.execute_reply": "2024-02-13T00:39:07.433705Z" + "iopub.execute_input": "2024-02-13T01:04:14.597698Z", + "iopub.status.busy": "2024-02-13T01:04:14.597213Z", + "iopub.status.idle": "2024-02-13T01:04:14.600294Z", + "shell.execute_reply": "2024-02-13T01:04:14.599758Z" }, "nbsphinx": "hidden" }, @@ -1218,10 +1218,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:07.436084Z", - "iopub.status.busy": "2024-02-13T00:39:07.435765Z", - "iopub.status.idle": "2024-02-13T00:39:12.904557Z", - "shell.execute_reply": "2024-02-13T00:39:12.903980Z" + "iopub.execute_input": "2024-02-13T01:04:14.602141Z", + "iopub.status.busy": "2024-02-13T01:04:14.601970Z", + "iopub.status.idle": "2024-02-13T01:04:20.213664Z", + "shell.execute_reply": "2024-02-13T01:04:20.213049Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:12.906989Z", - "iopub.status.busy": "2024-02-13T00:39:12.906561Z", - "iopub.status.idle": "2024-02-13T00:39:12.914429Z", - "shell.execute_reply": "2024-02-13T00:39:12.914006Z" + "iopub.execute_input": "2024-02-13T01:04:20.216188Z", + "iopub.status.busy": "2024-02-13T01:04:20.215724Z", + "iopub.status.idle": "2024-02-13T01:04:20.224540Z", + "shell.execute_reply": "2024-02-13T01:04:20.223937Z" } }, "outputs": [ @@ -1377,10 +1377,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:12.916267Z", - "iopub.status.busy": "2024-02-13T00:39:12.916098Z", - "iopub.status.idle": "2024-02-13T00:39:12.984177Z", - "shell.execute_reply": "2024-02-13T00:39:12.983711Z" + "iopub.execute_input": "2024-02-13T01:04:20.226697Z", + "iopub.status.busy": "2024-02-13T01:04:20.226371Z", + "iopub.status.idle": "2024-02-13T01:04:20.292062Z", + "shell.execute_reply": "2024-02-13T01:04:20.291419Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 2c84a07e4..5a19416ec 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:16.016581Z", - "iopub.status.busy": "2024-02-13T00:39:16.016411Z", - "iopub.status.idle": "2024-02-13T00:39:17.846185Z", - "shell.execute_reply": "2024-02-13T00:39:17.845532Z" + "iopub.execute_input": "2024-02-13T01:04:24.456211Z", + "iopub.status.busy": "2024-02-13T01:04:24.456033Z", + "iopub.status.idle": "2024-02-13T01:04:26.961154Z", + "shell.execute_reply": "2024-02-13T01:04:26.960465Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:17.848857Z", - "iopub.status.busy": "2024-02-13T00:39:17.848507Z", - "iopub.status.idle": "2024-02-13T00:40:20.168637Z", - "shell.execute_reply": "2024-02-13T00:40:20.167980Z" + "iopub.execute_input": "2024-02-13T01:04:26.963827Z", + "iopub.status.busy": "2024-02-13T01:04:26.963606Z", + "iopub.status.idle": "2024-02-13T01:06:05.695134Z", + "shell.execute_reply": "2024-02-13T01:06:05.694398Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:40:20.170997Z", - "iopub.status.busy": "2024-02-13T00:40:20.170812Z", - "iopub.status.idle": "2024-02-13T00:40:21.217733Z", - "shell.execute_reply": "2024-02-13T00:40:21.217103Z" + "iopub.execute_input": "2024-02-13T01:06:05.697918Z", + "iopub.status.busy": "2024-02-13T01:06:05.697527Z", + "iopub.status.idle": "2024-02-13T01:06:06.776866Z", + "shell.execute_reply": "2024-02-13T01:06:06.776248Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:40:21.220218Z", - "iopub.status.busy": "2024-02-13T00:40:21.219949Z", - "iopub.status.idle": "2024-02-13T00:40:21.223254Z", - "shell.execute_reply": "2024-02-13T00:40:21.222838Z" + "iopub.execute_input": "2024-02-13T01:06:06.779676Z", + "iopub.status.busy": "2024-02-13T01:06:06.779211Z", + "iopub.status.idle": "2024-02-13T01:06:06.782966Z", + "shell.execute_reply": "2024-02-13T01:06:06.782526Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:40:21.225373Z", - "iopub.status.busy": "2024-02-13T00:40:21.225050Z", - "iopub.status.idle": "2024-02-13T00:40:21.228867Z", - "shell.execute_reply": "2024-02-13T00:40:21.228454Z" + "iopub.execute_input": "2024-02-13T01:06:06.784992Z", + "iopub.status.busy": "2024-02-13T01:06:06.784723Z", + "iopub.status.idle": "2024-02-13T01:06:06.788767Z", + "shell.execute_reply": "2024-02-13T01:06:06.788300Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:40:21.230771Z", - "iopub.status.busy": "2024-02-13T00:40:21.230493Z", - "iopub.status.idle": "2024-02-13T00:40:21.234013Z", - "shell.execute_reply": "2024-02-13T00:40:21.233591Z" + "iopub.execute_input": "2024-02-13T01:06:06.790688Z", + "iopub.status.busy": "2024-02-13T01:06:06.790377Z", + "iopub.status.idle": "2024-02-13T01:06:06.793892Z", + "shell.execute_reply": "2024-02-13T01:06:06.793425Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:40:21.235957Z", - "iopub.status.busy": "2024-02-13T00:40:21.235652Z", - "iopub.status.idle": "2024-02-13T00:40:21.238285Z", - "shell.execute_reply": "2024-02-13T00:40:21.237864Z" + "iopub.execute_input": "2024-02-13T01:06:06.795857Z", + "iopub.status.busy": "2024-02-13T01:06:06.795538Z", + "iopub.status.idle": "2024-02-13T01:06:06.798235Z", + "shell.execute_reply": "2024-02-13T01:06:06.797802Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:40:21.240256Z", - "iopub.status.busy": "2024-02-13T00:40:21.239953Z", - "iopub.status.idle": "2024-02-13T00:41:37.524238Z", - "shell.execute_reply": "2024-02-13T00:41:37.523624Z" + "iopub.execute_input": "2024-02-13T01:06:06.800327Z", + "iopub.status.busy": "2024-02-13T01:06:06.799926Z", + "iopub.status.idle": "2024-02-13T01:07:22.998914Z", + "shell.execute_reply": "2024-02-13T01:07:22.998356Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4c4ea88a0faa4e7994b8500868517daa", + "model_id": "a9b1e8dc109a4f008f633ecea989f488", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6ea9834dc3244dd786fd5e8ff97b24a6", + "model_id": "780e886400954a6295d03c905586d673", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:41:37.526978Z", - "iopub.status.busy": "2024-02-13T00:41:37.526601Z", - "iopub.status.idle": "2024-02-13T00:41:38.162461Z", - "shell.execute_reply": "2024-02-13T00:41:38.161972Z" + "iopub.execute_input": "2024-02-13T01:07:23.001525Z", + "iopub.status.busy": "2024-02-13T01:07:23.001327Z", + "iopub.status.idle": "2024-02-13T01:07:23.692603Z", + "shell.execute_reply": "2024-02-13T01:07:23.692017Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:41:38.164799Z", - "iopub.status.busy": "2024-02-13T00:41:38.164336Z", - "iopub.status.idle": "2024-02-13T00:41:40.886173Z", - "shell.execute_reply": "2024-02-13T00:41:40.885669Z" + "iopub.execute_input": "2024-02-13T01:07:23.694960Z", + "iopub.status.busy": "2024-02-13T01:07:23.694489Z", + "iopub.status.idle": "2024-02-13T01:07:26.428519Z", + "shell.execute_reply": "2024-02-13T01:07:26.427975Z" } }, "outputs": [ @@ -519,10 +519,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:41:40.888366Z", - "iopub.status.busy": "2024-02-13T00:41:40.888013Z", - "iopub.status.idle": "2024-02-13T00:42:12.691599Z", - "shell.execute_reply": "2024-02-13T00:42:12.691127Z" + "iopub.execute_input": "2024-02-13T01:07:26.430734Z", + "iopub.status.busy": "2024-02-13T01:07:26.430400Z", + "iopub.status.idle": "2024-02-13T01:07:58.911826Z", + "shell.execute_reply": "2024-02-13T01:07:58.911253Z" } }, "outputs": [ @@ -539,7 +539,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 15666/4997817 [00:00<00:31, 156647.82it/s]" + " 0%| | 15242/4997817 [00:00<00:32, 152406.70it/s]" ] }, { @@ -547,7 +547,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 31368/4997817 [00:00<00:31, 156863.75it/s]" + " 1%| | 30489/4997817 [00:00<00:32, 152436.32it/s]" ] }, { @@ -555,7 +555,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 47055/4997817 [00:00<00:31, 156605.66it/s]" + " 1%| | 45744/4997817 [00:00<00:32, 152481.16it/s]" ] }, { @@ -563,7 +563,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 62955/4997817 [00:00<00:31, 157545.12it/s]" + " 1%| | 60993/4997817 [00:00<00:32, 151806.03it/s]" ] }, { @@ -571,7 +571,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 78718/4997817 [00:00<00:31, 157570.48it/s]" + " 2%|▏ | 76175/4997817 [00:00<00:32, 151395.78it/s]" ] }, { @@ -579,7 +579,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 94643/4997817 [00:00<00:31, 158136.82it/s]" + " 2%|▏ | 91323/4997817 [00:00<00:32, 151421.91it/s]" ] }, { @@ -587,7 +587,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 110459/4997817 [00:00<00:30, 158139.64it/s]" + " 2%|▏ | 106466/4997817 [00:00<00:32, 151281.22it/s]" ] }, { @@ -595,7 +595,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 126372/4997817 [00:00<00:30, 158453.21it/s]" + " 2%|▏ | 121595/4997817 [00:00<00:33, 146607.57it/s]" ] }, { @@ -603,7 +603,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 142218/4997817 [00:00<00:30, 158379.37it/s]" + " 3%|▎ | 136284/4997817 [00:00<00:33, 144508.49it/s]" ] }, { @@ -611,7 +611,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 158056/4997817 [00:01<00:31, 154882.18it/s]" + " 3%|▎ | 151665/4997817 [00:01<00:32, 147302.13it/s]" ] }, { @@ -619,7 +619,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 173791/4997817 [00:01<00:30, 155622.26it/s]" + " 3%|▎ | 167038/4997817 [00:01<00:32, 149228.72it/s]" ] }, { @@ -627,7 +627,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 189775/4997817 [00:01<00:30, 156888.89it/s]" + " 4%|▎ | 182466/4997817 [00:01<00:31, 150743.53it/s]" ] }, { @@ -635,7 +635,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 205726/4997817 [00:01<00:30, 157674.91it/s]" + " 4%|▍ | 197954/4997817 [00:01<00:31, 151982.28it/s]" ] }, { @@ -643,7 +643,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 221526/4997817 [00:01<00:30, 157768.32it/s]" + " 4%|▍ | 213323/4997817 [00:01<00:31, 152492.14it/s]" ] }, { @@ -651,7 +651,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 237525/4997817 [00:01<00:30, 158432.90it/s]" + " 5%|▍ | 228641/4997817 [00:01<00:31, 152694.02it/s]" ] }, { @@ -659,7 +659,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 253373/4997817 [00:01<00:29, 158187.36it/s]" + " 5%|▍ | 243993/4997817 [00:01<00:31, 152938.07it/s]" ] }, { @@ -667,7 +667,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 269195/4997817 [00:01<00:29, 158009.60it/s]" + " 5%|▌ | 259491/4997817 [00:01<00:30, 153547.03it/s]" ] }, { @@ -675,7 +675,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 284998/4997817 [00:01<00:29, 157833.11it/s]" + " 5%|▌ | 274849/4997817 [00:01<00:30, 153404.88it/s]" ] }, { @@ -683,7 +683,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 301002/4997817 [00:01<00:29, 158490.91it/s]" + " 6%|▌ | 290192/4997817 [00:01<00:30, 153075.01it/s]" ] }, { @@ -691,7 +691,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 316853/4997817 [00:02<00:30, 154219.28it/s]" + " 6%|▌ | 305566/4997817 [00:02<00:30, 153271.97it/s]" ] }, { @@ -699,7 +699,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 332791/4997817 [00:02<00:29, 155731.83it/s]" + " 6%|▋ | 321135/4997817 [00:02<00:30, 153992.99it/s]" ] }, { @@ -707,7 +707,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 348789/4997817 [00:02<00:29, 156985.01it/s]" + " 7%|▋ | 336698/4997817 [00:02<00:30, 154478.90it/s]" ] }, { @@ -715,7 +715,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 364733/4997817 [00:02<00:29, 157709.81it/s]" + " 7%|▋ | 352313/4997817 [00:02<00:29, 154975.81it/s]" ] }, { @@ -723,7 +723,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 380754/4997817 [00:02<00:29, 158450.53it/s]" + " 7%|▋ | 367876/4997817 [00:02<00:29, 155168.02it/s]" ] }, { @@ -731,7 +731,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 396750/4997817 [00:02<00:28, 158897.24it/s]" + " 8%|▊ | 383394/4997817 [00:02<00:29, 155077.74it/s]" ] }, { @@ -739,7 +739,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 412671/4997817 [00:02<00:28, 158986.37it/s]" + " 8%|▊ | 398965/4997817 [00:02<00:29, 155263.45it/s]" ] }, { @@ -747,7 +747,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 428575/4997817 [00:02<00:28, 158676.62it/s]" + " 8%|▊ | 414492/4997817 [00:02<00:29, 155043.00it/s]" ] }, { @@ -755,7 +755,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 444446/4997817 [00:02<00:28, 158550.43it/s]" + " 9%|▊ | 430010/4997817 [00:02<00:29, 155081.99it/s]" ] }, { @@ -763,7 +763,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 460417/4997817 [00:02<00:28, 158892.84it/s]" + " 9%|▉ | 445535/4997817 [00:02<00:29, 155130.17it/s]" ] }, { @@ -771,7 +771,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 476308/4997817 [00:03<00:28, 158775.05it/s]" + " 9%|▉ | 461061/4997817 [00:03<00:29, 155166.03it/s]" ] }, { @@ -779,7 +779,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 492187/4997817 [00:03<00:28, 158601.36it/s]" + " 10%|▉ | 476592/4997817 [00:03<00:29, 155206.80it/s]" ] }, { @@ -787,7 +787,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 508157/4997817 [00:03<00:28, 158926.32it/s]" + " 10%|▉ | 492212/4997817 [00:03<00:28, 155500.25it/s]" ] }, { @@ -795,7 +795,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 524051/4997817 [00:03<00:28, 158866.59it/s]" + " 10%|█ | 507763/4997817 [00:03<00:28, 155454.98it/s]" ] }, { @@ -803,7 +803,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 539939/4997817 [00:03<00:28, 158444.77it/s]" + " 10%|█ | 523309/4997817 [00:03<00:28, 155405.75it/s]" ] }, { @@ -811,7 +811,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 555915/4997817 [00:03<00:27, 158834.42it/s]" + " 11%|█ | 538850/4997817 [00:03<00:28, 155387.41it/s]" ] }, { @@ -819,7 +819,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 571799/4997817 [00:03<00:27, 158578.95it/s]" + " 11%|█ | 554484/4997817 [00:03<00:28, 155668.87it/s]" ] }, { @@ -827,7 +827,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 587674/4997817 [00:03<00:27, 158627.80it/s]" + " 11%|█▏ | 570055/4997817 [00:03<00:28, 155677.02it/s]" ] }, { @@ -835,7 +835,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 603538/4997817 [00:03<00:27, 158305.53it/s]" + " 12%|█▏ | 585623/4997817 [00:03<00:28, 155314.68it/s]" ] }, { @@ -843,7 +843,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 619505/4997817 [00:03<00:27, 158710.53it/s]" + " 12%|█▏ | 601157/4997817 [00:03<00:28, 155319.64it/s]" ] }, { @@ -851,7 +851,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 635377/4997817 [00:04<00:27, 158448.49it/s]" + " 12%|█▏ | 616690/4997817 [00:04<00:28, 155095.56it/s]" ] }, { @@ -859,7 +859,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 651310/4997817 [00:04<00:27, 158709.84it/s]" + " 13%|█▎ | 632200/4997817 [00:04<00:28, 154675.68it/s]" ] }, { @@ -867,7 +867,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 667182/4997817 [00:04<00:27, 158708.74it/s]" + " 13%|█▎ | 647728/4997817 [00:04<00:28, 154851.79it/s]" ] }, { @@ -875,7 +875,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 683054/4997817 [00:04<00:27, 158642.01it/s]" + " 13%|█▎ | 663259/4997817 [00:04<00:27, 154984.67it/s]" ] }, { @@ -883,7 +883,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 698919/4997817 [00:04<00:27, 158379.34it/s]" + " 14%|█▎ | 678785/4997817 [00:04<00:27, 155065.08it/s]" ] }, { @@ -891,7 +891,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 714758/4997817 [00:04<00:27, 158087.60it/s]" + " 14%|█▍ | 694326/4997817 [00:04<00:27, 155165.37it/s]" ] }, { @@ -899,7 +899,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 730567/4997817 [00:04<00:27, 157944.60it/s]" + " 14%|█▍ | 709847/4997817 [00:04<00:27, 155176.24it/s]" ] }, { @@ -907,7 +907,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 746362/4997817 [00:04<00:26, 157793.83it/s]" + " 15%|█▍ | 725382/4997817 [00:04<00:27, 155225.06it/s]" ] }, { @@ -915,7 +915,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 762223/4997817 [00:04<00:26, 158034.29it/s]" + " 15%|█▍ | 740905/4997817 [00:04<00:27, 155073.36it/s]" ] }, { @@ -923,7 +923,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 778220/4997817 [00:04<00:26, 158611.89it/s]" + " 15%|█▌ | 756413/4997817 [00:04<00:27, 154986.69it/s]" ] }, { @@ -931,7 +931,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 794085/4997817 [00:05<00:26, 158621.09it/s]" + " 15%|█▌ | 772046/4997817 [00:05<00:27, 155387.40it/s]" ] }, { @@ -939,7 +939,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 809948/4997817 [00:05<00:26, 158320.81it/s]" + " 16%|█▌ | 787585/4997817 [00:05<00:27, 155319.95it/s]" ] }, { @@ -947,7 +947,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 825965/4997817 [00:05<00:26, 158870.11it/s]" + " 16%|█▌ | 803295/4997817 [00:05<00:26, 155851.67it/s]" ] }, { @@ -955,7 +955,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 841913/4997817 [00:05<00:26, 159049.12it/s]" + " 16%|█▋ | 818903/4997817 [00:05<00:26, 155917.61it/s]" ] }, { @@ -963,7 +963,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 857819/4997817 [00:05<00:26, 159026.18it/s]" + " 17%|█▋ | 834504/4997817 [00:05<00:26, 155940.90it/s]" ] }, { @@ -971,7 +971,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 873722/4997817 [00:05<00:26, 158358.95it/s]" + " 17%|█▋ | 850099/4997817 [00:05<00:26, 155867.44it/s]" ] }, { @@ -979,7 +979,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 889606/4997817 [00:05<00:25, 158499.30it/s]" + " 17%|█▋ | 865773/4997817 [00:05<00:26, 156125.42it/s]" ] }, { @@ -987,7 +987,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 905457/4997817 [00:05<00:25, 158435.63it/s]" + " 18%|█▊ | 881399/4997817 [00:05<00:26, 156162.25it/s]" ] }, { @@ -995,7 +995,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 921348/4997817 [00:05<00:25, 158576.34it/s]" + " 18%|█▊ | 897053/4997817 [00:05<00:26, 156272.01it/s]" ] }, { @@ -1003,7 +1003,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 937206/4997817 [00:05<00:25, 158455.70it/s]" + " 18%|█▊ | 912767/4997817 [00:05<00:26, 156528.03it/s]" ] }, { @@ -1011,7 +1011,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 953141/4997817 [00:06<00:25, 158720.00it/s]" + " 19%|█▊ | 928420/4997817 [00:06<00:26, 156049.47it/s]" ] }, { @@ -1019,7 +1019,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 969014/4997817 [00:06<00:25, 158563.42it/s]" + " 19%|█▉ | 944026/4997817 [00:06<00:26, 155540.63it/s]" ] }, { @@ -1027,7 +1027,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 984871/4997817 [00:06<00:25, 158524.56it/s]" + " 19%|█▉ | 959667/4997817 [00:06<00:25, 155796.70it/s]" ] }, { @@ -1035,7 +1035,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1000724/4997817 [00:06<00:25, 158216.43it/s]" + " 20%|█▉ | 975248/4997817 [00:06<00:25, 155662.15it/s]" ] }, { @@ -1043,7 +1043,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1016660/4997817 [00:06<00:25, 158556.29it/s]" + " 20%|█▉ | 990815/4997817 [00:06<00:25, 155532.50it/s]" ] }, { @@ -1051,7 +1051,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1032516/4997817 [00:06<00:25, 158466.12it/s]" + " 20%|██ | 1006369/4997817 [00:06<00:25, 155139.14it/s]" ] }, { @@ -1059,7 +1059,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1048446/4997817 [00:06<00:24, 158711.88it/s]" + " 20%|██ | 1021963/4997817 [00:06<00:25, 155348.72it/s]" ] }, { @@ -1067,7 +1067,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1064367/4997817 [00:06<00:24, 158858.36it/s]" + " 21%|██ | 1037616/4997817 [00:06<00:25, 155699.80it/s]" ] }, { @@ -1075,7 +1075,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1080253/4997817 [00:06<00:24, 158782.98it/s]" + " 21%|██ | 1053288/4997817 [00:06<00:25, 156000.57it/s]" ] }, { @@ -1083,7 +1083,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1096132/4997817 [00:06<00:24, 158576.72it/s]" + " 21%|██▏ | 1068998/4997817 [00:06<00:25, 156326.00it/s]" ] }, { @@ -1091,7 +1091,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1112023/4997817 [00:07<00:24, 158673.09it/s]" + " 22%|██▏ | 1084631/4997817 [00:07<00:25, 156080.97it/s]" ] }, { @@ -1099,7 +1099,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1127891/4997817 [00:07<00:24, 158287.29it/s]" + " 22%|██▏ | 1100248/4997817 [00:07<00:24, 156103.33it/s]" ] }, { @@ -1107,7 +1107,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1143728/4997817 [00:07<00:24, 158280.58it/s]" + " 22%|██▏ | 1115868/4997817 [00:07<00:24, 156130.44it/s]" ] }, { @@ -1115,7 +1115,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1159571/4997817 [00:07<00:24, 158322.88it/s]" + " 23%|██▎ | 1131502/4997817 [00:07<00:24, 156189.39it/s]" ] }, { @@ -1123,7 +1123,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1175404/4997817 [00:07<00:24, 158003.51it/s]" + " 23%|██▎ | 1147133/4997817 [00:07<00:24, 156223.03it/s]" ] }, { @@ -1131,7 +1131,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1191255/4997817 [00:07<00:24, 158140.48it/s]" + " 23%|██▎ | 1162756/4997817 [00:07<00:24, 156176.59it/s]" ] }, { @@ -1139,7 +1139,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1207070/4997817 [00:07<00:24, 157891.06it/s]" + " 24%|██▎ | 1178374/4997817 [00:07<00:24, 155958.14it/s]" ] }, { @@ -1147,7 +1147,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1222860/4997817 [00:07<00:23, 157833.98it/s]" + " 24%|██▍ | 1193970/4997817 [00:07<00:24, 155667.97it/s]" ] }, { @@ -1155,7 +1155,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1238644/4997817 [00:07<00:23, 157669.57it/s]" + " 24%|██▍ | 1209566/4997817 [00:07<00:24, 155750.20it/s]" ] }, { @@ -1163,7 +1163,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1254503/4997817 [00:07<00:23, 157943.37it/s]" + " 25%|██▍ | 1225182/4997817 [00:07<00:24, 155870.32it/s]" ] }, { @@ -1171,7 +1171,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1270298/4997817 [00:08<00:23, 157893.30it/s]" + " 25%|██▍ | 1240771/4997817 [00:08<00:24, 155871.58it/s]" ] }, { @@ -1179,7 +1179,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1286088/4997817 [00:08<00:23, 157203.81it/s]" + " 25%|██▌ | 1256359/4997817 [00:08<00:24, 155587.49it/s]" ] }, { @@ -1187,7 +1187,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1301914/4997817 [00:08<00:23, 157517.66it/s]" + " 25%|██▌ | 1271995/4997817 [00:08<00:23, 155816.30it/s]" ] }, { @@ -1195,7 +1195,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1318042/4997817 [00:08<00:23, 158639.10it/s]" + " 26%|██▌ | 1287648/4997817 [00:08<00:23, 156026.05it/s]" ] }, { @@ -1203,7 +1203,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1334160/4997817 [00:08<00:22, 159397.76it/s]" + " 26%|██▌ | 1303353/4997817 [00:08<00:23, 156329.75it/s]" ] }, { @@ -1211,7 +1211,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1350245/4997817 [00:08<00:22, 159828.88it/s]" + " 26%|██▋ | 1318987/4997817 [00:08<00:23, 156114.83it/s]" ] }, { @@ -1219,7 +1219,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1366306/4997817 [00:08<00:22, 160060.40it/s]" + " 27%|██▋ | 1334661/4997817 [00:08<00:23, 156298.69it/s]" ] }, { @@ -1227,7 +1227,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1382313/4997817 [00:08<00:22, 159885.16it/s]" + " 27%|██▋ | 1350362/4997817 [00:08<00:23, 156508.78it/s]" ] }, { @@ -1235,7 +1235,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1398302/4997817 [00:08<00:22, 159798.99it/s]" + " 27%|██▋ | 1366059/4997817 [00:08<00:23, 156644.85it/s]" ] }, { @@ -1243,7 +1243,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1414283/4997817 [00:08<00:22, 159564.68it/s]" + " 28%|██▊ | 1381734/4997817 [00:08<00:23, 156672.73it/s]" ] }, { @@ -1251,7 +1251,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1430353/4997817 [00:09<00:22, 159903.29it/s]" + " 28%|██▊ | 1397441/4997817 [00:09<00:22, 156790.90it/s]" ] }, { @@ -1259,7 +1259,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1446451/4997817 [00:09<00:22, 160222.25it/s]" + " 28%|██▊ | 1413121/4997817 [00:09<00:22, 156732.15it/s]" ] }, { @@ -1267,7 +1267,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1462525/4997817 [00:09<00:22, 160375.18it/s]" + " 29%|██▊ | 1428795/4997817 [00:09<00:22, 156728.94it/s]" ] }, { @@ -1275,7 +1275,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1478572/4997817 [00:09<00:21, 160401.01it/s]" + " 29%|██▉ | 1444468/4997817 [00:09<00:22, 156303.73it/s]" ] }, { @@ -1283,7 +1283,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1494613/4997817 [00:09<00:21, 160375.89it/s]" + " 29%|██▉ | 1460162/4997817 [00:09<00:22, 156492.46it/s]" ] }, { @@ -1291,7 +1291,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1510651/4997817 [00:09<00:21, 160197.25it/s]" + " 30%|██▉ | 1475847/4997817 [00:09<00:22, 156596.70it/s]" ] }, { @@ -1299,7 +1299,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1526671/4997817 [00:09<00:21, 159669.14it/s]" + " 30%|██▉ | 1491541/4997817 [00:09<00:22, 156698.50it/s]" ] }, { @@ -1307,7 +1307,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1542639/4997817 [00:09<00:21, 159484.11it/s]" + " 30%|███ | 1507211/4997817 [00:09<00:22, 156694.74it/s]" ] }, { @@ -1315,7 +1315,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1558590/4997817 [00:09<00:21, 159489.29it/s]" + " 30%|███ | 1522881/4997817 [00:09<00:22, 156531.20it/s]" ] }, { @@ -1323,7 +1323,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1574540/4997817 [00:09<00:21, 159474.10it/s]" + " 31%|███ | 1538535/4997817 [00:09<00:22, 156505.59it/s]" ] }, { @@ -1331,7 +1331,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1590488/4997817 [00:10<00:21, 159413.30it/s]" + " 31%|███ | 1554223/4997817 [00:10<00:21, 156613.94it/s]" ] }, { @@ -1339,7 +1339,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1606510/4997817 [00:10<00:21, 159653.31it/s]" + " 31%|███▏ | 1569885/4997817 [00:10<00:21, 156472.42it/s]" ] }, { @@ -1347,7 +1347,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1622476/4997817 [00:10<00:21, 159292.49it/s]" + " 32%|███▏ | 1585533/4997817 [00:10<00:21, 156384.79it/s]" ] }, { @@ -1355,7 +1355,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1638491/4997817 [00:10<00:21, 159546.81it/s]" + " 32%|███▏ | 1601172/4997817 [00:10<00:21, 155887.13it/s]" ] }, { @@ -1363,7 +1363,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1654446/4997817 [00:10<00:20, 159265.41it/s]" + " 32%|███▏ | 1616779/4997817 [00:10<00:21, 155938.20it/s]" ] }, { @@ -1371,7 +1371,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1670373/4997817 [00:10<00:20, 159054.93it/s]" + " 33%|███▎ | 1632374/4997817 [00:10<00:21, 155856.46it/s]" ] }, { @@ -1379,7 +1379,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1686370/4997817 [00:10<00:20, 159326.74it/s]" + " 33%|███▎ | 1647960/4997817 [00:10<00:21, 155758.60it/s]" ] }, { @@ -1387,7 +1387,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1702372/4997817 [00:10<00:20, 159531.43it/s]" + " 33%|███▎ | 1663536/4997817 [00:10<00:21, 155540.29it/s]" ] }, { @@ -1395,7 +1395,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1718342/4997817 [00:10<00:20, 159579.36it/s]" + " 34%|███▎ | 1679096/4997817 [00:10<00:21, 155556.32it/s]" ] }, { @@ -1403,7 +1403,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1734304/4997817 [00:10<00:20, 159590.22it/s]" + " 34%|███▍ | 1694652/4997817 [00:10<00:21, 155379.81it/s]" ] }, { @@ -1411,7 +1411,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1750310/4997817 [00:11<00:20, 159727.34it/s]" + " 34%|███▍ | 1710217/4997817 [00:11<00:21, 155456.88it/s]" ] }, { @@ -1419,7 +1419,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1766283/4997817 [00:11<00:20, 159531.21it/s]" + " 35%|███▍ | 1725798/4997817 [00:11<00:21, 155558.60it/s]" ] }, { @@ -1427,7 +1427,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1782237/4997817 [00:11<00:21, 152189.63it/s]" + " 35%|███▍ | 1741468/4997817 [00:11<00:20, 155897.29it/s]" ] }, { @@ -1435,7 +1435,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1798210/4997817 [00:11<00:20, 154373.88it/s]" + " 35%|███▌ | 1757095/4997817 [00:11<00:20, 156007.17it/s]" ] }, { @@ -1443,7 +1443,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1814164/4997817 [00:11<00:20, 155885.19it/s]" + " 35%|███▌ | 1772698/4997817 [00:11<00:20, 156012.83it/s]" ] }, { @@ -1451,7 +1451,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1830086/4997817 [00:11<00:20, 156866.86it/s]" + " 36%|███▌ | 1788312/4997817 [00:11<00:20, 156047.33it/s]" ] }, { @@ -1459,7 +1459,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1846040/4997817 [00:11<00:19, 157656.96it/s]" + " 36%|███▌ | 1803941/4997817 [00:11<00:20, 156118.37it/s]" ] }, { @@ -1467,7 +1467,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1861916/4997817 [00:11<00:19, 157982.38it/s]" + " 36%|███▋ | 1819553/4997817 [00:11<00:20, 155999.32it/s]" ] }, { @@ -1475,7 +1475,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1877756/4997817 [00:11<00:19, 158103.61it/s]" + " 37%|███▋ | 1835153/4997817 [00:11<00:20, 155841.17it/s]" ] }, { @@ -1483,7 +1483,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1893631/4997817 [00:11<00:19, 158294.97it/s]" + " 37%|███▋ | 1850767/4997817 [00:11<00:20, 155929.75it/s]" ] }, { @@ -1491,7 +1491,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1909624/4997817 [00:12<00:19, 158782.08it/s]" + " 37%|███▋ | 1866361/4997817 [00:12<00:20, 155780.01it/s]" ] }, { @@ -1499,7 +1499,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1925553/4997817 [00:12<00:19, 158932.71it/s]" + " 38%|███▊ | 1881940/4997817 [00:12<00:20, 155737.88it/s]" ] }, { @@ -1507,7 +1507,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1941451/4997817 [00:12<00:19, 158328.69it/s]" + " 38%|███▊ | 1897538/4997817 [00:12<00:19, 155807.48it/s]" ] }, { @@ -1515,7 +1515,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1957395/4997817 [00:12<00:19, 158658.52it/s]" + " 38%|███▊ | 1913150/4997817 [00:12<00:19, 155898.53it/s]" ] }, { @@ -1523,7 +1523,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1973393/4997817 [00:12<00:19, 159051.70it/s]" + " 39%|███▊ | 1928750/4997817 [00:12<00:19, 155925.66it/s]" ] }, { @@ -1531,7 +1531,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1989322/4997817 [00:12<00:18, 159120.60it/s]" + " 39%|███▉ | 1944372/4997817 [00:12<00:19, 156011.40it/s]" ] }, { @@ -1539,7 +1539,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2005236/4997817 [00:12<00:18, 159063.51it/s]" + " 39%|███▉ | 1959974/4997817 [00:12<00:19, 155950.35it/s]" ] }, { @@ -1547,7 +1547,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2021144/4997817 [00:12<00:18, 158992.06it/s]" + " 40%|███▉ | 1975637/4997817 [00:12<00:19, 156151.18it/s]" ] }, { @@ -1555,7 +1555,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2037121/4997817 [00:12<00:18, 159223.28it/s]" + " 40%|███▉ | 1991253/4997817 [00:12<00:19, 155813.08it/s]" ] }, { @@ -1563,7 +1563,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2053044/4997817 [00:12<00:18, 159129.47it/s]" + " 40%|████ | 2006836/4997817 [00:12<00:19, 155817.08it/s]" ] }, { @@ -1571,7 +1571,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2068966/4997817 [00:13<00:18, 159152.89it/s]" + " 40%|████ | 2022418/4997817 [00:13<00:19, 155781.61it/s]" ] }, { @@ -1579,7 +1579,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2084899/4997817 [00:13<00:18, 159202.39it/s]" + " 41%|████ | 2038039/4997817 [00:13<00:18, 155906.81it/s]" ] }, { @@ -1587,7 +1587,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2100820/4997817 [00:13<00:18, 158761.52it/s]" + " 41%|████ | 2053733/4997817 [00:13<00:18, 156213.56it/s]" ] }, { @@ -1595,7 +1595,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2116697/4997817 [00:13<00:18, 158649.76it/s]" + " 41%|████▏ | 2069428/4997817 [00:13<00:18, 156432.74it/s]" ] }, { @@ -1603,7 +1603,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2132563/4997817 [00:13<00:18, 158552.83it/s]" + " 42%|████▏ | 2085120/4997817 [00:13<00:18, 156576.34it/s]" ] }, { @@ -1611,7 +1611,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2148419/4997817 [00:13<00:17, 158488.27it/s]" + " 42%|████▏ | 2100778/4997817 [00:13<00:18, 155681.34it/s]" ] }, { @@ -1619,7 +1619,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2164268/4997817 [00:13<00:17, 158456.13it/s]" + " 42%|████▏ | 2116348/4997817 [00:13<00:18, 155555.01it/s]" ] }, { @@ -1627,7 +1627,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2180136/4997817 [00:13<00:17, 158521.33it/s]" + " 43%|████▎ | 2131974/4997817 [00:13<00:18, 155762.47it/s]" ] }, { @@ -1635,7 +1635,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2196000/4997817 [00:13<00:17, 158553.20it/s]" + " 43%|████▎ | 2147551/4997817 [00:13<00:18, 155373.01it/s]" ] }, { @@ -1643,7 +1643,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2211942/4997817 [00:13<00:17, 158811.19it/s]" + " 43%|████▎ | 2163089/4997817 [00:13<00:18, 155018.71it/s]" ] }, { @@ -1651,7 +1651,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2227824/4997817 [00:14<00:17, 158577.27it/s]" + " 44%|████▎ | 2178592/4997817 [00:14<00:18, 152370.36it/s]" ] }, { @@ -1659,7 +1659,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2243682/4997817 [00:14<00:17, 158422.77it/s]" + " 44%|████▍ | 2194084/4997817 [00:14<00:18, 153120.90it/s]" ] }, { @@ -1667,7 +1667,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2259525/4997817 [00:14<00:17, 158421.70it/s]" + " 44%|████▍ | 2209572/4997817 [00:14<00:18, 153640.87it/s]" ] }, { @@ -1675,7 +1675,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2275368/4997817 [00:14<00:17, 152143.74it/s]" + " 45%|████▍ | 2225046/4997817 [00:14<00:18, 153966.37it/s]" ] }, { @@ -1683,7 +1683,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2290635/4997817 [00:14<00:17, 151173.45it/s]" + " 45%|████▍ | 2240545/4997817 [00:14<00:17, 154268.62it/s]" ] }, { @@ -1691,7 +1691,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2306230/4997817 [00:14<00:17, 152567.88it/s]" + " 45%|████▌ | 2256134/4997817 [00:14<00:17, 154751.32it/s]" ] }, { @@ -1699,7 +1699,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2322097/4997817 [00:14<00:17, 154362.99it/s]" + " 45%|████▌ | 2271612/4997817 [00:14<00:17, 154713.37it/s]" ] }, { @@ -1707,7 +1707,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2338019/4997817 [00:14<00:17, 155799.79it/s]" + " 46%|████▌ | 2287086/4997817 [00:14<00:17, 153875.18it/s]" ] }, { @@ -1715,7 +1715,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2353956/4997817 [00:14<00:16, 156860.01it/s]" + " 46%|████▌ | 2302518/4997817 [00:14<00:17, 154005.12it/s]" ] }, { @@ -1723,7 +1723,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2370062/4997817 [00:14<00:16, 158108.89it/s]" + " 46%|████▋ | 2318001/4997817 [00:14<00:17, 154249.74it/s]" ] }, { @@ -1731,7 +1731,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2386096/4997817 [00:15<00:16, 158773.62it/s]" + " 47%|████▋ | 2333428/4997817 [00:15<00:17, 152824.99it/s]" ] }, { @@ -1739,7 +1739,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2402094/4997817 [00:15<00:16, 159131.51it/s]" + " 47%|████▋ | 2348875/4997817 [00:15<00:17, 153312.47it/s]" ] }, { @@ -1747,7 +1747,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2418013/4997817 [00:15<00:16, 159062.45it/s]" + " 47%|████▋ | 2364533/4997817 [00:15<00:17, 154283.21it/s]" ] }, { @@ -1755,7 +1755,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2433924/4997817 [00:15<00:16, 158673.47it/s]" + " 48%|████▊ | 2380077/4997817 [00:15<00:16, 154626.11it/s]" ] }, { @@ -1763,7 +1763,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2449795/4997817 [00:15<00:16, 158657.52it/s]" + " 48%|████▊ | 2395542/4997817 [00:15<00:16, 154287.90it/s]" ] }, { @@ -1771,7 +1771,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2465785/4997817 [00:15<00:15, 159028.09it/s]" + " 48%|████▊ | 2411211/4997817 [00:15<00:16, 155003.22it/s]" ] }, { @@ -1779,7 +1779,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2481802/4997817 [00:15<00:15, 159367.88it/s]" + " 49%|████▊ | 2426880/4997817 [00:15<00:16, 155506.80it/s]" ] }, { @@ -1787,7 +1787,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2497925/4997817 [00:15<00:15, 159923.07it/s]" + " 49%|████▉ | 2442432/4997817 [00:15<00:16, 155483.38it/s]" ] }, { @@ -1795,7 +1795,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2513962/4997817 [00:15<00:15, 160054.80it/s]" + " 49%|████▉ | 2457982/4997817 [00:15<00:16, 154776.55it/s]" ] }, { @@ -1803,7 +1803,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2530040/4997817 [00:15<00:15, 160269.30it/s]" + " 49%|████▉ | 2473626/4997817 [00:15<00:16, 155270.67it/s]" ] }, { @@ -1811,7 +1811,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2546068/4997817 [00:16<00:15, 160138.03it/s]" + " 50%|████▉ | 2489155/4997817 [00:16<00:16, 152945.47it/s]" ] }, { @@ -1819,7 +1819,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2562083/4997817 [00:16<00:15, 159958.88it/s]" + " 50%|█████ | 2504608/4997817 [00:16<00:16, 153411.63it/s]" ] }, { @@ -1827,7 +1827,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2578080/4997817 [00:16<00:15, 159787.87it/s]" + " 50%|█████ | 2520150/4997817 [00:16<00:16, 154007.10it/s]" ] }, { @@ -1835,7 +1835,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2594059/4997817 [00:16<00:15, 156344.43it/s]" + " 51%|█████ | 2535722/4997817 [00:16<00:15, 154515.50it/s]" ] }, { @@ -1843,7 +1843,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2609883/4997817 [00:16<00:15, 156901.94it/s]" + " 51%|█████ | 2551303/4997817 [00:16<00:15, 154898.78it/s]" ] }, { @@ -1851,7 +1851,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2625962/4997817 [00:16<00:15, 158054.04it/s]" + " 51%|█████▏ | 2566916/4997817 [00:16<00:15, 155265.28it/s]" ] }, { @@ -1859,7 +1859,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2642039/4997817 [00:16<00:14, 158858.99it/s]" + " 52%|█████▏ | 2582456/4997817 [00:16<00:15, 155303.99it/s]" ] }, { @@ -1867,7 +1867,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2658073/4997817 [00:16<00:14, 159299.78it/s]" + " 52%|█████▏ | 2597988/4997817 [00:16<00:15, 154255.88it/s]" ] }, { @@ -1875,7 +1875,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2674048/4997817 [00:16<00:14, 159432.31it/s]" + " 52%|█████▏ | 2613531/4997817 [00:16<00:15, 154604.46it/s]" ] }, { @@ -1883,7 +1883,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2690018/4997817 [00:16<00:14, 159510.96it/s]" + " 53%|█████▎ | 2629103/4997817 [00:16<00:15, 154935.70it/s]" ] }, { @@ -1891,7 +1891,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2705972/4997817 [00:17<00:14, 159362.82it/s]" + " 53%|█████▎ | 2644659/4997817 [00:17<00:15, 155119.51it/s]" ] }, { @@ -1899,7 +1899,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2721935/4997817 [00:17<00:14, 159441.26it/s]" + " 53%|█████▎ | 2660264/4997817 [00:17<00:15, 155395.36it/s]" ] }, { @@ -1907,7 +1907,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2737881/4997817 [00:17<00:14, 159351.77it/s]" + " 54%|█████▎ | 2675970/4997817 [00:17<00:14, 155890.19it/s]" ] }, { @@ -1915,7 +1915,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2753818/4997817 [00:17<00:14, 158667.59it/s]" + " 54%|█████▍ | 2691560/4997817 [00:17<00:14, 155582.12it/s]" ] }, { @@ -1923,7 +1923,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2769712/4997817 [00:17<00:14, 158747.67it/s]" + " 54%|█████▍ | 2707140/4997817 [00:17<00:14, 155643.62it/s]" ] }, { @@ -1931,7 +1931,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2785718/4997817 [00:17<00:13, 159139.50it/s]" + " 54%|█████▍ | 2722760/4997817 [00:17<00:14, 155806.54it/s]" ] }, { @@ -1939,7 +1939,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2801696/4997817 [00:17<00:13, 159329.72it/s]" + " 55%|█████▍ | 2738442/4997817 [00:17<00:14, 156108.41it/s]" ] }, { @@ -1947,7 +1947,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2817630/4997817 [00:17<00:13, 159123.27it/s]" + " 55%|█████▌ | 2754054/4997817 [00:17<00:14, 155832.37it/s]" ] }, { @@ -1955,7 +1955,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2833543/4997817 [00:17<00:13, 158866.97it/s]" + " 55%|█████▌ | 2769638/4997817 [00:17<00:14, 155801.88it/s]" ] }, { @@ -1963,7 +1963,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2849515/4997817 [00:17<00:13, 159119.80it/s]" + " 56%|█████▌ | 2785236/4997817 [00:17<00:14, 155853.51it/s]" ] }, { @@ -1971,7 +1971,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2865428/4997817 [00:18<00:13, 158853.29it/s]" + " 56%|█████▌ | 2800883/4997817 [00:18<00:14, 156035.09it/s]" ] }, { @@ -1979,7 +1979,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2881370/4997817 [00:18<00:13, 159020.78it/s]" + " 56%|█████▋ | 2816487/4997817 [00:18<00:14, 149243.30it/s]" ] }, { @@ -1987,7 +1987,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2897273/4997817 [00:18<00:13, 158804.17it/s]" + " 57%|█████▋ | 2832047/4997817 [00:18<00:14, 151087.40it/s]" ] }, { @@ -1995,7 +1995,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2913154/4997817 [00:18<00:13, 158342.95it/s]" + " 57%|█████▋ | 2847658/4997817 [00:18<00:14, 152557.40it/s]" ] }, { @@ -2003,7 +2003,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2928989/4997817 [00:18<00:13, 158229.17it/s]" + " 57%|█████▋ | 2863262/4997817 [00:18<00:13, 153584.80it/s]" ] }, { @@ -2011,7 +2011,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2944813/4997817 [00:18<00:12, 157965.71it/s]" + " 58%|█████▊ | 2878803/4997817 [00:18<00:13, 154124.08it/s]" ] }, { @@ -2019,7 +2019,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2960610/4997817 [00:18<00:12, 157704.96it/s]" + " 58%|█████▊ | 2894313/4997817 [00:18<00:13, 154411.24it/s]" ] }, { @@ -2027,7 +2027,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2976411/4997817 [00:18<00:12, 157790.69it/s]" + " 58%|█████▊ | 2909874/4997817 [00:18<00:13, 154765.54it/s]" ] }, { @@ -2035,7 +2035,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2992243/4997817 [00:18<00:12, 157946.44it/s]" + " 59%|█████▊ | 2925374/4997817 [00:18<00:13, 154833.01it/s]" ] }, { @@ -2043,7 +2043,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3008086/4997817 [00:18<00:12, 158089.49it/s]" + " 59%|█████▉ | 2940865/4997817 [00:18<00:13, 154727.28it/s]" ] }, { @@ -2051,7 +2051,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3023896/4997817 [00:19<00:12, 157854.86it/s]" + " 59%|█████▉ | 2956389/4997817 [00:19<00:13, 154877.89it/s]" ] }, { @@ -2059,7 +2059,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3039789/4997817 [00:19<00:12, 158175.36it/s]" + " 59%|█████▉ | 2971910/4997817 [00:19<00:13, 154973.96it/s]" ] }, { @@ -2067,7 +2067,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3055607/4997817 [00:19<00:12, 158114.00it/s]" + " 60%|█████▉ | 2987427/4997817 [00:19<00:12, 155029.31it/s]" ] }, { @@ -2075,7 +2075,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3071420/4997817 [00:19<00:12, 158117.60it/s]" + " 60%|██████ | 3003022/4997817 [00:19<00:12, 155303.32it/s]" ] }, { @@ -2083,7 +2083,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3087232/4997817 [00:19<00:12, 157048.66it/s]" + " 60%|██████ | 3018554/4997817 [00:19<00:12, 155228.70it/s]" ] }, { @@ -2091,7 +2091,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3102944/4997817 [00:19<00:12, 157067.98it/s]" + " 61%|██████ | 3034188/4997817 [00:19<00:12, 155560.53it/s]" ] }, { @@ -2099,7 +2099,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3118888/4997817 [00:19<00:11, 157775.61it/s]" + " 61%|██████ | 3049758/4997817 [00:19<00:12, 155599.17it/s]" ] }, { @@ -2107,7 +2107,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3134867/4997817 [00:19<00:11, 158374.88it/s]" + " 61%|██████▏ | 3065389/4997817 [00:19<00:12, 155808.70it/s]" ] }, { @@ -2115,7 +2115,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3150754/4997817 [00:19<00:11, 158520.01it/s]" + " 62%|██████▏ | 3080975/4997817 [00:19<00:12, 155821.79it/s]" ] }, { @@ -2123,7 +2123,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3166669/4997817 [00:19<00:11, 158707.45it/s]" + " 62%|██████▏ | 3096561/4997817 [00:19<00:12, 155829.95it/s]" ] }, { @@ -2131,7 +2131,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3182541/4997817 [00:20<00:11, 158276.37it/s]" + " 62%|██████▏ | 3112145/4997817 [00:20<00:12, 155467.23it/s]" ] }, { @@ -2139,7 +2139,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3198370/4997817 [00:20<00:11, 155580.57it/s]" + " 63%|██████▎ | 3127693/4997817 [00:20<00:12, 154776.76it/s]" ] }, { @@ -2147,7 +2147,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3214146/4997817 [00:20<00:11, 156223.44it/s]" + " 63%|██████▎ | 3143257/4997817 [00:20<00:11, 155032.11it/s]" ] }, { @@ -2155,7 +2155,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3229896/4997817 [00:20<00:11, 156601.96it/s]" + " 63%|██████▎ | 3158761/4997817 [00:20<00:11, 155009.31it/s]" ] }, { @@ -2163,7 +2163,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3245585/4997817 [00:20<00:11, 156686.05it/s]" + " 64%|██████▎ | 3174327/4997817 [00:20<00:11, 155201.57it/s]" ] }, { @@ -2171,7 +2171,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3261389/4997817 [00:20<00:11, 157088.77it/s]" + " 64%|██████▍ | 3189921/4997817 [00:20<00:11, 155420.68it/s]" ] }, { @@ -2179,7 +2179,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3277256/4997817 [00:20<00:10, 157559.68it/s]" + " 64%|██████▍ | 3205500/4997817 [00:20<00:11, 155529.73it/s]" ] }, { @@ -2187,7 +2187,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3293139/4997817 [00:20<00:10, 157937.78it/s]" + " 64%|██████▍ | 3221054/4997817 [00:20<00:11, 155453.31it/s]" ] }, { @@ -2195,7 +2195,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3308935/4997817 [00:20<00:10, 157714.51it/s]" + " 65%|██████▍ | 3236600/4997817 [00:20<00:11, 155244.69it/s]" ] }, { @@ -2203,7 +2203,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3324777/4997817 [00:21<00:10, 157924.16it/s]" + " 65%|██████▌ | 3252125/4997817 [00:20<00:11, 155055.87it/s]" ] }, { @@ -2211,7 +2211,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3340601/4997817 [00:21<00:10, 158017.46it/s]" + " 65%|██████▌ | 3267656/4997817 [00:21<00:11, 155128.46it/s]" ] }, { @@ -2219,7 +2219,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3356404/4997817 [00:21<00:10, 157983.45it/s]" + " 66%|██████▌ | 3283190/4997817 [00:21<00:11, 155188.11it/s]" ] }, { @@ -2227,7 +2227,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3372236/4997817 [00:21<00:10, 158082.67it/s]" + " 66%|██████▌ | 3298734/4997817 [00:21<00:10, 155260.76it/s]" ] }, { @@ -2235,7 +2235,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3388115/4997817 [00:21<00:10, 158291.04it/s]" + " 66%|██████▋ | 3314261/4997817 [00:21<00:10, 155153.90it/s]" ] }, { @@ -2243,7 +2243,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3403945/4997817 [00:21<00:10, 158092.03it/s]" + " 67%|██████▋ | 3329777/4997817 [00:21<00:10, 155078.76it/s]" ] }, { @@ -2251,7 +2251,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3419755/4997817 [00:21<00:09, 158079.89it/s]" + " 67%|██████▋ | 3345292/4997817 [00:21<00:10, 155098.82it/s]" ] }, { @@ -2259,7 +2259,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3435564/4997817 [00:21<00:09, 157742.55it/s]" + " 67%|██████▋ | 3360830/4997817 [00:21<00:10, 155180.94it/s]" ] }, { @@ -2267,7 +2267,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3451339/4997817 [00:21<00:09, 157567.48it/s]" + " 68%|██████▊ | 3376404/4997817 [00:21<00:10, 155345.95it/s]" ] }, { @@ -2275,7 +2275,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3467096/4997817 [00:21<00:09, 157507.36it/s]" + " 68%|██████▊ | 3391944/4997817 [00:21<00:10, 155360.09it/s]" ] }, { @@ -2283,7 +2283,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3482982/4997817 [00:22<00:09, 157908.94it/s]" + " 68%|██████▊ | 3407558/4997817 [00:21<00:10, 155591.60it/s]" ] }, { @@ -2291,7 +2291,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3498774/4997817 [00:22<00:09, 157843.07it/s]" + " 68%|██████▊ | 3423135/4997817 [00:22<00:10, 155643.93it/s]" ] }, { @@ -2299,7 +2299,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3514597/4997817 [00:22<00:09, 157956.79it/s]" + " 69%|██████▉ | 3438700/4997817 [00:22<00:10, 155415.94it/s]" ] }, { @@ -2307,7 +2307,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3530435/4997817 [00:22<00:09, 158079.62it/s]" + " 69%|██████▉ | 3454382/4997817 [00:22<00:09, 155834.05it/s]" ] }, { @@ -2315,7 +2315,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3546453/4997817 [00:22<00:09, 158705.87it/s]" + " 69%|██████▉ | 3469966/4997817 [00:22<00:09, 155761.96it/s]" ] }, { @@ -2323,7 +2323,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3562348/4997817 [00:22<00:09, 158776.62it/s]" + " 70%|██████▉ | 3485570/4997817 [00:22<00:09, 155842.34it/s]" ] }, { @@ -2331,7 +2331,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3578283/4997817 [00:22<00:08, 158947.26it/s]" + " 70%|███████ | 3501173/4997817 [00:22<00:09, 155895.75it/s]" ] }, { @@ -2339,7 +2339,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3594254/4997817 [00:22<00:08, 159174.59it/s]" + " 70%|███████ | 3516763/4997817 [00:22<00:09, 154652.11it/s]" ] }, { @@ -2347,7 +2347,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3610172/4997817 [00:22<00:08, 159091.84it/s]" + " 71%|███████ | 3532339/4997817 [00:22<00:09, 154980.13it/s]" ] }, { @@ -2355,7 +2355,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3626082/4997817 [00:22<00:08, 159085.69it/s]" + " 71%|███████ | 3548111/4997817 [00:22<00:09, 155795.60it/s]" ] }, { @@ -2363,7 +2363,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3641994/4997817 [00:23<00:08, 159093.52it/s]" + " 71%|███████▏ | 3563847/4997817 [00:22<00:09, 156262.14it/s]" ] }, { @@ -2371,7 +2371,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3657904/4997817 [00:23<00:08, 158665.18it/s]" + " 72%|███████▏ | 3579545/4997817 [00:23<00:09, 156474.98it/s]" ] }, { @@ -2379,7 +2379,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3673771/4997817 [00:23<00:08, 158280.41it/s]" + " 72%|███████▏ | 3595198/4997817 [00:23<00:08, 156488.71it/s]" ] }, { @@ -2387,7 +2387,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3689631/4997817 [00:23<00:08, 158354.69it/s]" + " 72%|███████▏ | 3610848/4997817 [00:23<00:09, 151443.42it/s]" ] }, { @@ -2395,7 +2395,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3705492/4997817 [00:23<00:08, 158428.66it/s]" + " 73%|███████▎ | 3626500/4997817 [00:23<00:08, 152929.45it/s]" ] }, { @@ -2403,7 +2403,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3721336/4997817 [00:23<00:08, 157917.66it/s]" + " 73%|███████▎ | 3642039/4997817 [00:23<00:08, 153652.07it/s]" ] }, { @@ -2411,7 +2411,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3737299/4997817 [00:23<00:07, 158404.81it/s]" + " 73%|███████▎ | 3657709/4997817 [00:23<00:08, 154553.95it/s]" ] }, { @@ -2419,7 +2419,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3753140/4997817 [00:23<00:07, 158165.60it/s]" + " 73%|███████▎ | 3673302/4997817 [00:23<00:08, 154961.55it/s]" ] }, { @@ -2427,7 +2427,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3768985/4997817 [00:23<00:07, 158249.14it/s]" + " 74%|███████▍ | 3688944/4997817 [00:23<00:08, 155393.62it/s]" ] }, { @@ -2435,7 +2435,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3784839/4997817 [00:23<00:07, 158333.22it/s]" + " 74%|███████▍ | 3704553/4997817 [00:23<00:08, 155600.29it/s]" ] }, { @@ -2443,7 +2443,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3800712/4997817 [00:24<00:07, 158448.85it/s]" + " 74%|███████▍ | 3720119/4997817 [00:23<00:08, 155607.99it/s]" ] }, { @@ -2451,7 +2451,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3816628/4997817 [00:24<00:07, 158657.95it/s]" + " 75%|███████▍ | 3735684/4997817 [00:24<00:08, 155573.30it/s]" ] }, { @@ -2459,7 +2459,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3832566/4997817 [00:24<00:07, 158872.18it/s]" + " 75%|███████▌ | 3751245/4997817 [00:24<00:08, 155474.54it/s]" ] }, { @@ -2467,7 +2467,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3848478/4997817 [00:24<00:07, 158945.40it/s]" + " 75%|███████▌ | 3766828/4997817 [00:24<00:07, 155578.60it/s]" ] }, { @@ -2475,7 +2475,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3864464/4997817 [00:24<00:07, 159218.13it/s]" + " 76%|███████▌ | 3782415/4997817 [00:24<00:07, 155663.85it/s]" ] }, { @@ -2483,7 +2483,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3880386/4997817 [00:24<00:07, 158715.96it/s]" + " 76%|███████▌ | 3798032/4997817 [00:24<00:07, 155812.50it/s]" ] }, { @@ -2491,7 +2491,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3896258/4997817 [00:24<00:06, 158588.55it/s]" + " 76%|███████▋ | 3813654/4997817 [00:24<00:07, 155931.49it/s]" ] }, { @@ -2499,7 +2499,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3912178/4997817 [00:24<00:06, 158768.56it/s]" + " 77%|███████▋ | 3829267/4997817 [00:24<00:07, 155987.60it/s]" ] }, { @@ -2507,7 +2507,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3928056/4997817 [00:24<00:06, 158175.28it/s]" + " 77%|███████▋ | 3844880/4997817 [00:24<00:07, 156027.23it/s]" ] }, { @@ -2515,7 +2515,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3943913/4997817 [00:24<00:06, 158290.14it/s]" + " 77%|███████▋ | 3860491/4997817 [00:24<00:07, 156048.42it/s]" ] }, { @@ -2523,7 +2523,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3959782/4997817 [00:25<00:06, 158406.89it/s]" + " 78%|███████▊ | 3876097/4997817 [00:24<00:07, 155836.07it/s]" ] }, { @@ -2531,7 +2531,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3975624/4997817 [00:25<00:06, 158236.55it/s]" + " 78%|███████▊ | 3891690/4997817 [00:25<00:07, 155861.70it/s]" ] }, { @@ -2539,7 +2539,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3991448/4997817 [00:25<00:06, 158082.14it/s]" + " 78%|███████▊ | 3907277/4997817 [00:25<00:07, 155790.64it/s]" ] }, { @@ -2547,7 +2547,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4007257/4997817 [00:25<00:06, 158033.90it/s]" + " 78%|███████▊ | 3922857/4997817 [00:25<00:07, 151816.79it/s]" ] }, { @@ -2555,7 +2555,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4023185/4997817 [00:25<00:06, 158404.19it/s]" + " 79%|███████▉ | 3938612/4997817 [00:25<00:06, 153502.95it/s]" ] }, { @@ -2563,7 +2563,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4039026/4997817 [00:25<00:06, 157189.27it/s]" + " 79%|███████▉ | 3954052/4997817 [00:25<00:06, 153766.19it/s]" ] }, { @@ -2571,7 +2571,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4054748/4997817 [00:25<00:06, 153864.46it/s]" + " 79%|███████▉ | 3969617/4997817 [00:25<00:06, 154322.67it/s]" ] }, { @@ -2579,7 +2579,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4070703/4997817 [00:25<00:05, 155535.32it/s]" + " 80%|███████▉ | 3985128/4997817 [00:25<00:06, 154555.62it/s]" ] }, { @@ -2587,7 +2587,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4086501/4997817 [00:25<00:05, 156256.38it/s]" + " 80%|████████ | 4000591/4997817 [00:25<00:06, 154473.72it/s]" ] }, { @@ -2595,7 +2595,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4102334/4997817 [00:25<00:05, 156870.45it/s]" + " 80%|████████ | 4016123/4997817 [00:25<00:06, 154724.51it/s]" ] }, { @@ -2603,7 +2603,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4118134/4997817 [00:26<00:05, 157206.19it/s]" + " 81%|████████ | 4031599/4997817 [00:26<00:06, 154450.12it/s]" ] }, { @@ -2611,7 +2611,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4133861/4997817 [00:26<00:05, 156987.92it/s]" + " 81%|████████ | 4047047/4997817 [00:26<00:06, 154087.74it/s]" ] }, { @@ -2619,7 +2619,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4149600/4997817 [00:26<00:05, 157105.82it/s]" + " 81%|████████▏ | 4062458/4997817 [00:26<00:06, 154022.45it/s]" ] }, { @@ -2627,7 +2627,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4165360/4997817 [00:26<00:05, 157251.87it/s]" + " 82%|████████▏ | 4077862/4997817 [00:26<00:06, 147260.96it/s]" ] }, { @@ -2635,7 +2635,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4181117/4997817 [00:26<00:05, 157346.03it/s]" + " 82%|████████▏ | 4093304/4997817 [00:26<00:06, 149335.25it/s]" ] }, { @@ -2643,7 +2643,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4196854/4997817 [00:26<00:05, 157307.64it/s]" + " 82%|████████▏ | 4108555/4997817 [00:26<00:05, 150261.96it/s]" ] }, { @@ -2651,7 +2651,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4212616/4997817 [00:26<00:04, 157400.15it/s]" + " 83%|████████▎ | 4123944/4997817 [00:26<00:05, 151330.55it/s]" ] }, { @@ -2659,7 +2659,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4228362/4997817 [00:26<00:04, 157416.11it/s]" + " 83%|████████▎ | 4139383/4997817 [00:26<00:05, 152235.88it/s]" ] }, { @@ -2667,7 +2667,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4244212/4997817 [00:26<00:04, 157737.96it/s]" + " 83%|████████▎ | 4154671/4997817 [00:26<00:05, 152424.33it/s]" ] }, { @@ -2675,7 +2675,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4259987/4997817 [00:26<00:04, 157731.47it/s]" + " 83%|████████▎ | 4170003/4997817 [00:26<00:05, 152689.24it/s]" ] }, { @@ -2683,7 +2683,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4275954/4997817 [00:27<00:04, 158309.58it/s]" + " 84%|████████▎ | 4185376/4997817 [00:27<00:05, 152997.19it/s]" ] }, { @@ -2691,7 +2691,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4291786/4997817 [00:27<00:04, 158176.00it/s]" + " 84%|████████▍ | 4200712/4997817 [00:27<00:05, 153104.35it/s]" ] }, { @@ -2699,7 +2699,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4307613/4997817 [00:27<00:04, 158201.17it/s]" + " 84%|████████▍ | 4216098/4997817 [00:27<00:05, 153328.22it/s]" ] }, { @@ -2707,7 +2707,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4323517/4997817 [00:27<00:04, 158448.87it/s]" + " 85%|████████▍ | 4231495/4997817 [00:27<00:04, 153517.57it/s]" ] }, { @@ -2715,7 +2715,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4339362/4997817 [00:27<00:04, 158231.60it/s]" + " 85%|████████▍ | 4247243/4997817 [00:27<00:04, 154701.72it/s]" ] }, { @@ -2723,7 +2723,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4355232/4997817 [00:27<00:04, 158370.52it/s]" + " 85%|████████▌ | 4262871/4997817 [00:27<00:04, 155171.13it/s]" ] }, { @@ -2731,7 +2731,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4371139/4997817 [00:27<00:03, 158577.61it/s]" + " 86%|████████▌ | 4278523/4997817 [00:27<00:04, 155571.51it/s]" ] }, { @@ -2739,7 +2739,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4387039/4997817 [00:27<00:03, 158702.93it/s]" + " 86%|████████▌ | 4294172/4997817 [00:27<00:04, 155845.55it/s]" ] }, { @@ -2747,7 +2747,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4402910/4997817 [00:27<00:03, 158600.55it/s]" + " 86%|████████▌ | 4309805/4997817 [00:27<00:04, 155987.54it/s]" ] }, { @@ -2755,7 +2755,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4418771/4997817 [00:27<00:03, 158421.37it/s]" + " 87%|████████▋ | 4325405/4997817 [00:27<00:04, 155881.97it/s]" ] }, { @@ -2763,7 +2763,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4434614/4997817 [00:28<00:03, 158367.10it/s]" + " 87%|████████▋ | 4340994/4997817 [00:28<00:04, 155414.18it/s]" ] }, { @@ -2771,7 +2771,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4450537/4997817 [00:28<00:03, 158623.44it/s]" + " 87%|████████▋ | 4356660/4997817 [00:28<00:04, 155783.46it/s]" ] }, { @@ -2779,7 +2779,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4466498/4997817 [00:28<00:03, 158918.29it/s]" + " 87%|████████▋ | 4372239/4997817 [00:28<00:04, 155768.00it/s]" ] }, { @@ -2787,7 +2787,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4482552/4997817 [00:28<00:03, 159401.03it/s]" + " 88%|████████▊ | 4387936/4997817 [00:28<00:03, 156126.26it/s]" ] }, { @@ -2795,7 +2795,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4498549/4997817 [00:28<00:03, 159567.81it/s]" + " 88%|████████▊ | 4403549/4997817 [00:28<00:03, 156121.18it/s]" ] }, { @@ -2803,7 +2803,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4514506/4997817 [00:28<00:03, 159453.59it/s]" + " 88%|████████▊ | 4419162/4997817 [00:28<00:03, 155988.74it/s]" ] }, { @@ -2811,7 +2811,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4530452/4997817 [00:28<00:02, 158989.65it/s]" + " 89%|████████▊ | 4434857/4997817 [00:28<00:03, 156274.84it/s]" ] }, { @@ -2819,7 +2819,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4546352/4997817 [00:28<00:02, 158965.69it/s]" + " 89%|████████▉ | 4450485/4997817 [00:28<00:03, 155907.83it/s]" ] }, { @@ -2827,7 +2827,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4562249/4997817 [00:28<00:02, 158905.43it/s]" + " 89%|████████▉ | 4466107/4997817 [00:28<00:03, 155998.87it/s]" ] }, { @@ -2835,7 +2835,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4578269/4997817 [00:28<00:02, 159289.47it/s]" + " 90%|████████▉ | 4481761/4997817 [00:28<00:03, 156157.32it/s]" ] }, { @@ -2843,7 +2843,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4594290/4997817 [00:29<00:02, 159563.76it/s]" + " 90%|████████▉ | 4497377/4997817 [00:29<00:03, 155952.70it/s]" ] }, { @@ -2851,7 +2851,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4610247/4997817 [00:29<00:02, 159244.17it/s]" + " 90%|█████████ | 4512994/4997817 [00:29<00:03, 156015.15it/s]" ] }, { @@ -2859,7 +2859,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4626259/4997817 [00:29<00:02, 159504.17it/s]" + " 91%|█████████ | 4528766/4997817 [00:29<00:02, 156525.03it/s]" ] }, { @@ -2867,7 +2867,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4642224/4997817 [00:29<00:02, 159544.82it/s]" + " 91%|█████████ | 4544419/4997817 [00:29<00:02, 156444.50it/s]" ] }, { @@ -2875,7 +2875,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4658249/4997817 [00:29<00:02, 159753.25it/s]" + " 91%|█████████ | 4560064/4997817 [00:29<00:02, 149698.20it/s]" ] }, { @@ -2883,7 +2883,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4674225/4997817 [00:29<00:02, 159580.35it/s]" + " 92%|█████████▏| 4575663/4997817 [00:29<00:02, 151524.18it/s]" ] }, { @@ -2891,7 +2891,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4690184/4997817 [00:29<00:02, 152308.86it/s]" + " 92%|█████████▏| 4591244/4997817 [00:29<00:02, 152778.78it/s]" ] }, { @@ -2899,7 +2899,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4706107/4997817 [00:29<00:01, 154314.35it/s]" + " 92%|█████████▏| 4606883/4997817 [00:29<00:02, 153844.23it/s]" ] }, { @@ -2907,7 +2907,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4722163/4997817 [00:29<00:01, 156140.58it/s]" + " 92%|█████████▏| 4622390/4997817 [00:29<00:02, 154206.12it/s]" ] }, { @@ -2915,7 +2915,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4738189/4997817 [00:29<00:01, 157353.64it/s]" + " 93%|█████████▎| 4637939/4997817 [00:29<00:02, 154586.60it/s]" ] }, { @@ -2923,7 +2923,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4754098/4997817 [00:30<00:01, 157866.39it/s]" + " 93%|█████████▎| 4653434/4997817 [00:30<00:02, 154693.65it/s]" ] }, { @@ -2931,7 +2931,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4770036/4997817 [00:30<00:01, 158314.66it/s]" + " 93%|█████████▎| 4668958/4997817 [00:30<00:02, 154854.10it/s]" ] }, { @@ -2939,7 +2939,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4785885/4997817 [00:30<00:01, 158337.50it/s]" + " 94%|█████████▎| 4684546/4997817 [00:30<00:02, 155159.10it/s]" ] }, { @@ -2947,7 +2947,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4801731/4997817 [00:30<00:01, 158061.16it/s]" + " 94%|█████████▍| 4700166/4997817 [00:30<00:01, 155468.83it/s]" ] }, { @@ -2955,7 +2955,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▋| 4817546/4997817 [00:30<00:01, 158031.58it/s]" + " 94%|█████████▍| 4715717/4997817 [00:30<00:01, 155407.72it/s]" ] }, { @@ -2963,7 +2963,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4833476/4997817 [00:30<00:01, 158410.01it/s]" + " 95%|█████████▍| 4731292/4997817 [00:30<00:01, 155506.76it/s]" ] }, { @@ -2971,7 +2971,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4849322/4997817 [00:30<00:00, 158357.21it/s]" + " 95%|█████████▍| 4746845/4997817 [00:30<00:01, 155216.18it/s]" ] }, { @@ -2979,7 +2979,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4865161/4997817 [00:30<00:00, 158334.52it/s]" + " 95%|█████████▌| 4762368/4997817 [00:30<00:01, 155057.32it/s]" ] }, { @@ -2987,7 +2987,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4880997/4997817 [00:30<00:00, 158170.49it/s]" + " 96%|█████████▌| 4777875/4997817 [00:30<00:01, 155058.39it/s]" ] }, { @@ -2995,7 +2995,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4896816/4997817 [00:30<00:00, 158064.54it/s]" + " 96%|█████████▌| 4793382/4997817 [00:30<00:01, 155035.89it/s]" ] }, { @@ -3003,7 +3003,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4912737/4997817 [00:31<00:00, 158404.34it/s]" + " 96%|█████████▌| 4808887/4997817 [00:31<00:01, 154846.13it/s]" ] }, { @@ -3011,7 +3011,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4928579/4997817 [00:31<00:00, 158274.64it/s]" + " 97%|█████████▋| 4824372/4997817 [00:31<00:01, 154837.16it/s]" ] }, { @@ -3019,7 +3019,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4944464/4997817 [00:31<00:00, 158446.14it/s]" + " 97%|█████████▋| 4839995/4997817 [00:31<00:01, 155251.77it/s]" ] }, { @@ -3027,7 +3027,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4960310/4997817 [00:31<00:00, 158130.47it/s]" + " 97%|█████████▋| 4855563/4997817 [00:31<00:00, 155377.06it/s]" ] }, { @@ -3035,7 +3035,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4976212/4997817 [00:31<00:00, 158394.09it/s]" + " 97%|█████████▋| 4871109/4997817 [00:31<00:00, 155400.42it/s]" ] }, { @@ -3043,7 +3043,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4992052/4997817 [00:31<00:00, 156899.64it/s]" + " 98%|█████████▊| 4886656/4997817 [00:31<00:00, 155417.33it/s]" ] }, { @@ -3051,7 +3051,63 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:31<00:00, 158234.25it/s]" + " 98%|█████████▊| 4902254/4997817 [00:31<00:00, 155583.56it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4917813/4997817 [00:31<00:00, 155578.08it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▊| 4933371/4997817 [00:31<00:00, 155508.98it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4948922/4997817 [00:31<00:00, 155476.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4964470/4997817 [00:32<00:00, 155300.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4980009/4997817 [00:32<00:00, 155323.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4995682/4997817 [00:32<00:00, 155742.12it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 4997817/4997817 [00:32<00:00, 154929.69it/s]" ] }, { @@ -3290,10 +3346,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:12.693555Z", - "iopub.status.busy": "2024-02-13T00:42:12.693376Z", - "iopub.status.idle": "2024-02-13T00:42:27.180434Z", - "shell.execute_reply": "2024-02-13T00:42:27.179918Z" + "iopub.execute_input": "2024-02-13T01:07:58.914089Z", + "iopub.status.busy": "2024-02-13T01:07:58.913785Z", + "iopub.status.idle": "2024-02-13T01:08:13.670639Z", + "shell.execute_reply": "2024-02-13T01:08:13.670067Z" } }, "outputs": [], @@ -3307,10 +3363,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:27.182928Z", - "iopub.status.busy": "2024-02-13T00:42:27.182542Z", - "iopub.status.idle": "2024-02-13T00:42:30.893426Z", - "shell.execute_reply": "2024-02-13T00:42:30.892918Z" + "iopub.execute_input": "2024-02-13T01:08:13.673253Z", + "iopub.status.busy": "2024-02-13T01:08:13.672871Z", + "iopub.status.idle": "2024-02-13T01:08:17.493232Z", + "shell.execute_reply": "2024-02-13T01:08:17.492731Z" } }, "outputs": [ @@ -3379,17 +3435,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:30.895635Z", - "iopub.status.busy": "2024-02-13T00:42:30.895284Z", - "iopub.status.idle": "2024-02-13T00:42:32.248422Z", - "shell.execute_reply": "2024-02-13T00:42:32.247818Z" + "iopub.execute_input": "2024-02-13T01:08:17.495350Z", + "iopub.status.busy": "2024-02-13T01:08:17.495155Z", + "iopub.status.idle": "2024-02-13T01:08:18.872673Z", + "shell.execute_reply": "2024-02-13T01:08:18.872133Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b80d809a48e4215b1694d517ffd8b32", + "model_id": "d7fd7dbeb69e442ba7f07f5933cee601", "version_major": 2, "version_minor": 0 }, @@ -3419,10 +3475,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:32.251127Z", - "iopub.status.busy": "2024-02-13T00:42:32.250661Z", - "iopub.status.idle": "2024-02-13T00:42:32.809638Z", - "shell.execute_reply": "2024-02-13T00:42:32.808999Z" + "iopub.execute_input": "2024-02-13T01:08:18.874970Z", + "iopub.status.busy": "2024-02-13T01:08:18.874789Z", + "iopub.status.idle": "2024-02-13T01:08:19.433182Z", + "shell.execute_reply": "2024-02-13T01:08:19.432684Z" } }, "outputs": [], @@ -3436,10 +3492,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:32.812153Z", - "iopub.status.busy": "2024-02-13T00:42:32.811930Z", - "iopub.status.idle": "2024-02-13T00:42:38.935520Z", - "shell.execute_reply": "2024-02-13T00:42:38.934925Z" + "iopub.execute_input": "2024-02-13T01:08:19.435697Z", + "iopub.status.busy": "2024-02-13T01:08:19.435368Z", + "iopub.status.idle": "2024-02-13T01:08:25.504832Z", + "shell.execute_reply": "2024-02-13T01:08:25.504271Z" } }, "outputs": [ @@ -3512,10 +3568,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:38.937725Z", - "iopub.status.busy": "2024-02-13T00:42:38.937428Z", - "iopub.status.idle": "2024-02-13T00:42:38.993390Z", - "shell.execute_reply": "2024-02-13T00:42:38.992796Z" + "iopub.execute_input": "2024-02-13T01:08:25.507090Z", + "iopub.status.busy": "2024-02-13T01:08:25.506780Z", + "iopub.status.idle": "2024-02-13T01:08:25.563498Z", + "shell.execute_reply": "2024-02-13T01:08:25.562873Z" }, "nbsphinx": "hidden" }, @@ -3559,23 +3615,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "076a1777586d42da980b8145b5c0e08b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "191b3f8187434baba219dd533c4239a5": { + "0068535838c14b828d503f31aef6cbdd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3628,49 +3668,7 @@ "width": null } }, - "1e1fb156c98e4df5901b5d010619295b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2b80d809a48e4215b1694d517ffd8b32": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b3a8e4f7536443b5a541e48992640a0b", - "IPY_MODEL_b3098baf8cda44779e72082292496a24", - "IPY_MODEL_4f1cbf8c0ca4499da166911991dae32a" - ], - "layout": "IPY_MODEL_9c25f41c14724f27971af5370d799ff9", - "tabbable": null, - "tooltip": null - } - }, - "34ec5c26045e47109cf030d1f39c14d0": { + "0b83a87fdbd246008f9313e508cb7580": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3686,35 +3684,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_58f9628afc084415ba1251a649653118", + "layout": "IPY_MODEL_fab7354662d8417e95e99ab0292c2c3f", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_774443eeb6494388bef23db5a0b19bb2", + "style": "IPY_MODEL_fd475aa9d9574e9aae2aa8e86d5a7ba3", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "38b12e5884ca486e894c9dd4be67023b": { + "0ee93901775c4be18056d0ec093898e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "3e92d9cfd83c4448a7acd4dd76b34992": { + "12124e1de6a14cbba745965dcc680e32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3767,70 +3763,7 @@ "width": null } }, - "4879d1392a7c4f5ab0a1aa8f4efb9cf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4c4ea88a0faa4e7994b8500868517daa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8222b08d74b24290a6874951c527837f", - "IPY_MODEL_34ec5c26045e47109cf030d1f39c14d0", - "IPY_MODEL_a651683c0a084283abf9e3e3a414f194" - ], - "layout": "IPY_MODEL_3e92d9cfd83c4448a7acd4dd76b34992", - "tabbable": null, - "tooltip": null - } - }, - "4f1cbf8c0ca4499da166911991dae32a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_52c9b0821f414a7295d35cd1c39d2694", - "placeholder": "​", - "style": "IPY_MODEL_1e1fb156c98e4df5901b5d010619295b", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.95it/s]" - } - }, - "52c9b0821f414a7295d35cd1c39d2694": { + "164675dd4f8f4cbf9a623e389dea6ec9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3883,7 +3816,7 @@ "width": null } }, - "58f9628afc084415ba1251a649653118": { + "1892044b91a24dc1814d67fdfa1f44af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3936,70 +3869,7 @@ "width": null } }, - "6ea9834dc3244dd786fd5e8ff97b24a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dea3296f12ae42428ac7465bc6dbc3d6", - "IPY_MODEL_9b49b125dc7a4a869e21c8e924c6493a", - "IPY_MODEL_ae28ffa574184090b394d1be5872b863" - ], - "layout": "IPY_MODEL_191b3f8187434baba219dd533c4239a5", - "tabbable": null, - "tooltip": null - } - }, - "774443eeb6494388bef23db5a0b19bb2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8222b08d74b24290a6874951c527837f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c2b52fe4059142beaa9d21325ffc94d9", - "placeholder": "​", - "style": "IPY_MODEL_cd11163b103d4843b25b5f712d4bef09", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "8dea4dc0486b4fc388fe64ff88f2443a": { + "212585fef446459ebc7ffd64c67a3a49": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4052,7 +3922,7 @@ "width": null } }, - "96424d58f24d426fafcc906d16a19493": { + "2b22f26fbf0d4d48bbf08d2c5699e39e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4105,44 +3975,113 @@ "width": null } }, - "9b49b125dc7a4a869e21c8e924c6493a": { + "3223513373b74392bf291cff001ee706": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4f34fed5b7a5447bb12dfbe118790635": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b29ba3ed280e49379373683af600c5af", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4879d1392a7c4f5ab0a1aa8f4efb9cf5", + "layout": "IPY_MODEL_a2d4d8a4918b4dbfa1543307d349c0cb", + "placeholder": "​", + "style": "IPY_MODEL_664bf34e18f64059aebed6fe120f4c13", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "images processed using softmin: 100%" } }, - "9c25f41c14724f27971af5370d799ff9": { - "model_module": "@jupyter-widgets/base", + "5158abc568774a5c8fc6909f01cc89de": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "52695b63057145fa868503b531a7dd9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "52b44f8169b3497aaaa989c95b09886f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "59439af7eb914b98ae12e63c18c77940": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, @@ -4184,7 +4123,7 @@ "width": null } }, - "a3fcaef394c14ef080481ae7b041528e": { + "603b3a120ed54407855912b1605d3e4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4237,7 +4176,88 @@ "width": null } }, - "a651683c0a084283abf9e3e3a414f194": { + "664bf34e18f64059aebed6fe120f4c13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7707d742b6cf4103a3fd89ee2c8d1238": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "780e886400954a6295d03c905586d673": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_99bc13d8b35f43ae9901ce4b9a98355f", + "IPY_MODEL_0b83a87fdbd246008f9313e508cb7580", + "IPY_MODEL_7a13ac558a2f4b79a4aeb14d51407f77" + ], + "layout": "IPY_MODEL_2b22f26fbf0d4d48bbf08d2c5699e39e", + "tabbable": null, + "tooltip": null + } + }, + "7a13ac558a2f4b79a4aeb14d51407f77": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_12124e1de6a14cbba745965dcc680e32", + "placeholder": "​", + "style": "IPY_MODEL_52b44f8169b3497aaaa989c95b09886f", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:22<00:00,  1.34it/s]" + } + }, + "88d1cb815bfd44c5ab54795a354c77c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4252,15 +4272,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f3574e397974455789cc02a2a4ac5596", + "layout": "IPY_MODEL_e2646ab657a1459d84803f50862393a3", "placeholder": "​", - "style": "IPY_MODEL_38b12e5884ca486e894c9dd4be67023b", + "style": "IPY_MODEL_52695b63057145fa868503b531a7dd9d", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 433.20it/s]" + "value": " 30/30 [00:01<00:00, 22.33it/s]" } }, - "ae28ffa574184090b394d1be5872b863": { + "952501edbe2342999201781c8f40fd58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "99bc13d8b35f43ae9901ce4b9a98355f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4275,15 +4313,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_96424d58f24d426fafcc906d16a19493", + "layout": "IPY_MODEL_212585fef446459ebc7ffd64c67a3a49", "placeholder": "​", - "style": "IPY_MODEL_fdd5653325fc4ab5a8b567173af1df10", + "style": "IPY_MODEL_3223513373b74392bf291cff001ee706", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.35it/s]" + "value": "number of examples processed for checking labels: 100%" } }, - "b29ba3ed280e49379373683af600c5af": { + "a2d4d8a4918b4dbfa1543307d349c0cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4336,33 +4374,31 @@ "width": null } }, - "b3098baf8cda44779e72082292496a24": { + "a9b1e8dc109a4f008f633ecea989f488": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_faa337b288df409faa616d5854ec2c1d", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_076a1777586d42da980b8145b5c0e08b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3940f347c4a486dbde7fb66e9125243", + "IPY_MODEL_ff7f064d843b4b868b0a7215468a8b32", + "IPY_MODEL_ce3ff6e374464d1ea9848a66f8def783" + ], + "layout": "IPY_MODEL_1892044b91a24dc1814d67fdfa1f44af", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "b3a8e4f7536443b5a541e48992640a0b": { + "ce3ff6e374464d1ea9848a66f8def783": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4377,15 +4413,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8dea4dc0486b4fc388fe64ff88f2443a", + "layout": "IPY_MODEL_59439af7eb914b98ae12e63c18c77940", "placeholder": "​", - "style": "IPY_MODEL_c7612837a3a543d58472f1ae1a43291d", + "style": "IPY_MODEL_5158abc568774a5c8fc6909f01cc89de", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 30/30 [00:00<00:00, 440.57it/s]" + } + }, + "d7fd7dbeb69e442ba7f07f5933cee601": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4f34fed5b7a5447bb12dfbe118790635", + "IPY_MODEL_ebabc1c0f9a0495688cc38a27db910e7", + "IPY_MODEL_88d1cb815bfd44c5ab54795a354c77c9" + ], + "layout": "IPY_MODEL_603b3a120ed54407855912b1605d3e4e", + "tabbable": null, + "tooltip": null } }, - "c2b52fe4059142beaa9d21325ffc94d9": { + "e2646ab657a1459d84803f50862393a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4438,84 +4498,56 @@ "width": null } }, - "c7612837a3a543d58472f1ae1a43291d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cce2c124a4804740988d61e5c115b9f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cd11163b103d4843b25b5f712d4bef09": { + "e3940f347c4a486dbde7fb66e9125243": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0068535838c14b828d503f31aef6cbdd", + "placeholder": "​", + "style": "IPY_MODEL_952501edbe2342999201781c8f40fd58", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" } }, - "dea3296f12ae42428ac7465bc6dbc3d6": { + "ebabc1c0f9a0495688cc38a27db910e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a3fcaef394c14ef080481ae7b041528e", - "placeholder": "​", - "style": "IPY_MODEL_cce2c124a4804740988d61e5c115b9f6", + "layout": "IPY_MODEL_fde8329da0b24aff818eb65199ed223d", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0ee93901775c4be18056d0ec093898e0", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": 30.0 } }, - "f3574e397974455789cc02a2a4ac5596": { + "fab7354662d8417e95e99ab0292c2c3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4568,7 +4600,23 @@ "width": null } }, - "faa337b288df409faa616d5854ec2c1d": { + "fd475aa9d9574e9aae2aa8e86d5a7ba3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fde8329da0b24aff818eb65199ed223d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4621,22 +4669,30 @@ "width": null } }, - "fdd5653325fc4ab5a8b567173af1df10": { + "ff7f064d843b4b868b0a7215468a8b32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_164675dd4f8f4cbf9a623e389dea6ec9", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7707d742b6cf4103a3fd89ee2c8d1238", + "tabbable": null, + "tooltip": null, + "value": 30.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index c4bea62fc..7dce0276c 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:42.691173Z", - "iopub.status.busy": "2024-02-13T00:42:42.690999Z", - "iopub.status.idle": "2024-02-13T00:42:43.895573Z", - "shell.execute_reply": "2024-02-13T00:42:43.895028Z" + "iopub.execute_input": "2024-02-13T01:08:29.293945Z", + "iopub.status.busy": "2024-02-13T01:08:29.293768Z", + "iopub.status.idle": "2024-02-13T01:08:30.490030Z", + "shell.execute_reply": "2024-02-13T01:08:30.489507Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:43.898334Z", - "iopub.status.busy": "2024-02-13T00:42:43.897815Z", - "iopub.status.idle": "2024-02-13T00:42:43.921287Z", - "shell.execute_reply": "2024-02-13T00:42:43.920802Z" + "iopub.execute_input": "2024-02-13T01:08:30.492829Z", + "iopub.status.busy": "2024-02-13T01:08:30.492369Z", + "iopub.status.idle": "2024-02-13T01:08:30.516248Z", + "shell.execute_reply": "2024-02-13T01:08:30.515663Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:43.923449Z", - "iopub.status.busy": "2024-02-13T00:42:43.923199Z", - "iopub.status.idle": "2024-02-13T00:42:43.970211Z", - "shell.execute_reply": "2024-02-13T00:42:43.969737Z" + "iopub.execute_input": "2024-02-13T01:08:30.518838Z", + "iopub.status.busy": "2024-02-13T01:08:30.518325Z", + "iopub.status.idle": "2024-02-13T01:08:30.650610Z", + "shell.execute_reply": "2024-02-13T01:08:30.650061Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:43.972223Z", - "iopub.status.busy": "2024-02-13T00:42:43.971895Z", - "iopub.status.idle": "2024-02-13T00:42:43.975341Z", - "shell.execute_reply": "2024-02-13T00:42:43.974896Z" + "iopub.execute_input": "2024-02-13T01:08:30.652633Z", + "iopub.status.busy": "2024-02-13T01:08:30.652455Z", + "iopub.status.idle": "2024-02-13T01:08:30.656208Z", + "shell.execute_reply": "2024-02-13T01:08:30.655751Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:43.977060Z", - "iopub.status.busy": "2024-02-13T00:42:43.976888Z", - "iopub.status.idle": "2024-02-13T00:42:43.985075Z", - "shell.execute_reply": "2024-02-13T00:42:43.984666Z" + "iopub.execute_input": "2024-02-13T01:08:30.658256Z", + "iopub.status.busy": "2024-02-13T01:08:30.657954Z", + "iopub.status.idle": "2024-02-13T01:08:30.666462Z", + "shell.execute_reply": "2024-02-13T01:08:30.666011Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:43.986964Z", - "iopub.status.busy": "2024-02-13T00:42:43.986788Z", - "iopub.status.idle": "2024-02-13T00:42:43.989432Z", - "shell.execute_reply": "2024-02-13T00:42:43.988974Z" + "iopub.execute_input": "2024-02-13T01:08:30.668421Z", + "iopub.status.busy": "2024-02-13T01:08:30.668245Z", + "iopub.status.idle": "2024-02-13T01:08:30.670962Z", + "shell.execute_reply": "2024-02-13T01:08:30.670489Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:43.991509Z", - "iopub.status.busy": "2024-02-13T00:42:43.991083Z", - "iopub.status.idle": "2024-02-13T00:42:44.509476Z", - "shell.execute_reply": "2024-02-13T00:42:44.508919Z" + "iopub.execute_input": "2024-02-13T01:08:30.672828Z", + "iopub.status.busy": "2024-02-13T01:08:30.672654Z", + "iopub.status.idle": "2024-02-13T01:08:31.202087Z", + "shell.execute_reply": "2024-02-13T01:08:31.201460Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:44.511939Z", - "iopub.status.busy": "2024-02-13T00:42:44.511577Z", - "iopub.status.idle": "2024-02-13T00:42:46.185457Z", - "shell.execute_reply": "2024-02-13T00:42:46.184814Z" + "iopub.execute_input": "2024-02-13T01:08:31.204639Z", + "iopub.status.busy": "2024-02-13T01:08:31.204441Z", + "iopub.status.idle": "2024-02-13T01:08:32.925058Z", + "shell.execute_reply": "2024-02-13T01:08:32.924362Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:46.188122Z", - "iopub.status.busy": "2024-02-13T00:42:46.187581Z", - "iopub.status.idle": "2024-02-13T00:42:46.197623Z", - "shell.execute_reply": "2024-02-13T00:42:46.197181Z" + "iopub.execute_input": "2024-02-13T01:08:32.927748Z", + "iopub.status.busy": "2024-02-13T01:08:32.927142Z", + "iopub.status.idle": "2024-02-13T01:08:32.937409Z", + "shell.execute_reply": "2024-02-13T01:08:32.936870Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:46.199706Z", - "iopub.status.busy": "2024-02-13T00:42:46.199342Z", - "iopub.status.idle": "2024-02-13T00:42:46.203389Z", - "shell.execute_reply": "2024-02-13T00:42:46.202947Z" + "iopub.execute_input": "2024-02-13T01:08:32.939547Z", + "iopub.status.busy": "2024-02-13T01:08:32.939137Z", + "iopub.status.idle": "2024-02-13T01:08:32.943243Z", + "shell.execute_reply": "2024-02-13T01:08:32.942702Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:46.205451Z", - "iopub.status.busy": "2024-02-13T00:42:46.205150Z", - "iopub.status.idle": "2024-02-13T00:42:46.212479Z", - "shell.execute_reply": "2024-02-13T00:42:46.212050Z" + "iopub.execute_input": "2024-02-13T01:08:32.945513Z", + "iopub.status.busy": "2024-02-13T01:08:32.945094Z", + "iopub.status.idle": "2024-02-13T01:08:32.952809Z", + "shell.execute_reply": "2024-02-13T01:08:32.952241Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:46.214446Z", - "iopub.status.busy": "2024-02-13T00:42:46.214127Z", - "iopub.status.idle": "2024-02-13T00:42:46.324840Z", - "shell.execute_reply": "2024-02-13T00:42:46.324327Z" + "iopub.execute_input": "2024-02-13T01:08:32.955090Z", + "iopub.status.busy": "2024-02-13T01:08:32.954692Z", + "iopub.status.idle": "2024-02-13T01:08:33.067595Z", + "shell.execute_reply": "2024-02-13T01:08:33.066976Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:46.327188Z", - "iopub.status.busy": "2024-02-13T00:42:46.326779Z", - "iopub.status.idle": "2024-02-13T00:42:46.329720Z", - "shell.execute_reply": "2024-02-13T00:42:46.329164Z" + "iopub.execute_input": "2024-02-13T01:08:33.069839Z", + "iopub.status.busy": "2024-02-13T01:08:33.069415Z", + "iopub.status.idle": "2024-02-13T01:08:33.072322Z", + "shell.execute_reply": "2024-02-13T01:08:33.071796Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:46.331798Z", - "iopub.status.busy": "2024-02-13T00:42:46.331427Z", - "iopub.status.idle": "2024-02-13T00:42:48.366698Z", - "shell.execute_reply": "2024-02-13T00:42:48.365922Z" + "iopub.execute_input": "2024-02-13T01:08:33.074205Z", + "iopub.status.busy": "2024-02-13T01:08:33.074028Z", + "iopub.status.idle": "2024-02-13T01:08:35.103168Z", + "shell.execute_reply": "2024-02-13T01:08:35.102538Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:48.369882Z", - "iopub.status.busy": "2024-02-13T00:42:48.369266Z", - "iopub.status.idle": "2024-02-13T00:42:48.381941Z", - "shell.execute_reply": "2024-02-13T00:42:48.381371Z" + "iopub.execute_input": "2024-02-13T01:08:35.106336Z", + "iopub.status.busy": "2024-02-13T01:08:35.105516Z", + "iopub.status.idle": "2024-02-13T01:08:35.117507Z", + "shell.execute_reply": "2024-02-13T01:08:35.117029Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:48.384241Z", - "iopub.status.busy": "2024-02-13T00:42:48.383892Z", - "iopub.status.idle": "2024-02-13T00:42:48.415415Z", - "shell.execute_reply": "2024-02-13T00:42:48.414914Z" + "iopub.execute_input": "2024-02-13T01:08:35.119648Z", + "iopub.status.busy": "2024-02-13T01:08:35.119330Z", + "iopub.status.idle": "2024-02-13T01:08:35.175410Z", + "shell.execute_reply": "2024-02-13T01:08:35.174796Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index 18538d7df..3eb295acf 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:51.470844Z", - "iopub.status.busy": "2024-02-13T00:42:51.470633Z", - "iopub.status.idle": "2024-02-13T00:42:54.260427Z", - "shell.execute_reply": "2024-02-13T00:42:54.259865Z" + "iopub.execute_input": "2024-02-13T01:08:38.092425Z", + "iopub.status.busy": "2024-02-13T01:08:38.092254Z", + "iopub.status.idle": "2024-02-13T01:08:40.805897Z", + "shell.execute_reply": "2024-02-13T01:08:40.805327Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.263110Z", - "iopub.status.busy": "2024-02-13T00:42:54.262566Z", - "iopub.status.idle": "2024-02-13T00:42:54.265988Z", - "shell.execute_reply": "2024-02-13T00:42:54.265540Z" + "iopub.execute_input": "2024-02-13T01:08:40.808761Z", + "iopub.status.busy": "2024-02-13T01:08:40.808186Z", + "iopub.status.idle": "2024-02-13T01:08:40.811739Z", + "shell.execute_reply": "2024-02-13T01:08:40.811146Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.268097Z", - "iopub.status.busy": "2024-02-13T00:42:54.267704Z", - "iopub.status.idle": "2024-02-13T00:42:54.270840Z", - "shell.execute_reply": "2024-02-13T00:42:54.270310Z" + "iopub.execute_input": "2024-02-13T01:08:40.813751Z", + "iopub.status.busy": "2024-02-13T01:08:40.813439Z", + "iopub.status.idle": "2024-02-13T01:08:40.816553Z", + "shell.execute_reply": "2024-02-13T01:08:40.816015Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.272804Z", - "iopub.status.busy": "2024-02-13T00:42:54.272618Z", - "iopub.status.idle": "2024-02-13T00:42:54.315492Z", - "shell.execute_reply": "2024-02-13T00:42:54.314934Z" + "iopub.execute_input": "2024-02-13T01:08:40.818605Z", + "iopub.status.busy": "2024-02-13T01:08:40.818269Z", + "iopub.status.idle": "2024-02-13T01:08:40.868772Z", + "shell.execute_reply": "2024-02-13T01:08:40.868239Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.317595Z", - "iopub.status.busy": "2024-02-13T00:42:54.317320Z", - "iopub.status.idle": "2024-02-13T00:42:54.320853Z", - "shell.execute_reply": "2024-02-13T00:42:54.320398Z" + "iopub.execute_input": "2024-02-13T01:08:40.871094Z", + "iopub.status.busy": "2024-02-13T01:08:40.870690Z", + "iopub.status.idle": "2024-02-13T01:08:40.874329Z", + "shell.execute_reply": "2024-02-13T01:08:40.873872Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.322935Z", - "iopub.status.busy": "2024-02-13T00:42:54.322504Z", - "iopub.status.idle": "2024-02-13T00:42:54.326062Z", - "shell.execute_reply": "2024-02-13T00:42:54.325517Z" + "iopub.execute_input": "2024-02-13T01:08:40.876570Z", + "iopub.status.busy": "2024-02-13T01:08:40.876206Z", + "iopub.status.idle": "2024-02-13T01:08:40.879535Z", + "shell.execute_reply": "2024-02-13T01:08:40.878985Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'supported_cards_and_currencies', 'visa_or_mastercard', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'getting_spare_card', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'card_about_to_expire'}\n" + "Classes: {'cancel_transfer', 'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'card_about_to_expire', 'card_payment_fee_charged'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.328045Z", - "iopub.status.busy": "2024-02-13T00:42:54.327855Z", - "iopub.status.idle": "2024-02-13T00:42:54.331117Z", - "shell.execute_reply": "2024-02-13T00:42:54.330553Z" + "iopub.execute_input": "2024-02-13T01:08:40.881545Z", + "iopub.status.busy": "2024-02-13T01:08:40.881247Z", + "iopub.status.idle": "2024-02-13T01:08:40.884584Z", + "shell.execute_reply": "2024-02-13T01:08:40.884114Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.333127Z", - "iopub.status.busy": "2024-02-13T00:42:54.332818Z", - "iopub.status.idle": "2024-02-13T00:42:54.336153Z", - "shell.execute_reply": "2024-02-13T00:42:54.335666Z" + "iopub.execute_input": "2024-02-13T01:08:40.886567Z", + "iopub.status.busy": "2024-02-13T01:08:40.886294Z", + "iopub.status.idle": "2024-02-13T01:08:40.889639Z", + "shell.execute_reply": "2024-02-13T01:08:40.889197Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.338029Z", - "iopub.status.busy": "2024-02-13T00:42:54.337850Z", - "iopub.status.idle": "2024-02-13T00:42:58.199110Z", - "shell.execute_reply": "2024-02-13T00:42:58.198544Z" + "iopub.execute_input": "2024-02-13T01:08:40.891643Z", + "iopub.status.busy": "2024-02-13T01:08:40.891290Z", + "iopub.status.idle": "2024-02-13T01:08:44.750991Z", + "shell.execute_reply": "2024-02-13T01:08:44.750358Z" } }, "outputs": [ @@ -510,10 +510,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:58.201714Z", - "iopub.status.busy": "2024-02-13T00:42:58.201490Z", - "iopub.status.idle": "2024-02-13T00:42:58.204798Z", - "shell.execute_reply": "2024-02-13T00:42:58.204395Z" + "iopub.execute_input": "2024-02-13T01:08:44.753844Z", + "iopub.status.busy": "2024-02-13T01:08:44.753504Z", + "iopub.status.idle": "2024-02-13T01:08:44.757581Z", + "shell.execute_reply": "2024-02-13T01:08:44.756535Z" } }, "outputs": [], @@ -535,10 +535,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:58.206779Z", - "iopub.status.busy": "2024-02-13T00:42:58.206469Z", - "iopub.status.idle": "2024-02-13T00:42:58.209088Z", - "shell.execute_reply": "2024-02-13T00:42:58.208664Z" + "iopub.execute_input": "2024-02-13T01:08:44.759591Z", + "iopub.status.busy": "2024-02-13T01:08:44.759291Z", + "iopub.status.idle": "2024-02-13T01:08:44.762187Z", + "shell.execute_reply": "2024-02-13T01:08:44.761741Z" } }, "outputs": [], @@ -553,10 +553,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:58.210925Z", - "iopub.status.busy": "2024-02-13T00:42:58.210753Z", - "iopub.status.idle": "2024-02-13T00:43:00.504649Z", - "shell.execute_reply": "2024-02-13T00:43:00.503987Z" + "iopub.execute_input": "2024-02-13T01:08:44.764186Z", + "iopub.status.busy": "2024-02-13T01:08:44.763860Z", + "iopub.status.idle": "2024-02-13T01:08:47.070931Z", + "shell.execute_reply": "2024-02-13T01:08:47.070245Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.507863Z", - "iopub.status.busy": "2024-02-13T00:43:00.507121Z", - "iopub.status.idle": "2024-02-13T00:43:00.515183Z", - "shell.execute_reply": "2024-02-13T00:43:00.514651Z" + "iopub.execute_input": "2024-02-13T01:08:47.073800Z", + "iopub.status.busy": "2024-02-13T01:08:47.073235Z", + "iopub.status.idle": "2024-02-13T01:08:47.081363Z", + "shell.execute_reply": "2024-02-13T01:08:47.080887Z" } }, "outputs": [ @@ -683,10 +683,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.517502Z", - "iopub.status.busy": "2024-02-13T00:43:00.517046Z", - "iopub.status.idle": "2024-02-13T00:43:00.521338Z", - "shell.execute_reply": "2024-02-13T00:43:00.520782Z" + "iopub.execute_input": "2024-02-13T01:08:47.083578Z", + "iopub.status.busy": "2024-02-13T01:08:47.083233Z", + "iopub.status.idle": "2024-02-13T01:08:47.087478Z", + "shell.execute_reply": "2024-02-13T01:08:47.086756Z" } }, "outputs": [], @@ -700,10 +700,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.523586Z", - "iopub.status.busy": "2024-02-13T00:43:00.523250Z", - "iopub.status.idle": "2024-02-13T00:43:00.526277Z", - "shell.execute_reply": "2024-02-13T00:43:00.525748Z" + "iopub.execute_input": "2024-02-13T01:08:47.089472Z", + "iopub.status.busy": "2024-02-13T01:08:47.089153Z", + "iopub.status.idle": "2024-02-13T01:08:47.092142Z", + "shell.execute_reply": "2024-02-13T01:08:47.091597Z" } }, "outputs": [ @@ -738,10 +738,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.528442Z", - "iopub.status.busy": "2024-02-13T00:43:00.528108Z", - "iopub.status.idle": "2024-02-13T00:43:00.531026Z", - "shell.execute_reply": "2024-02-13T00:43:00.530560Z" + "iopub.execute_input": "2024-02-13T01:08:47.094142Z", + "iopub.status.busy": "2024-02-13T01:08:47.093964Z", + "iopub.status.idle": "2024-02-13T01:08:47.096933Z", + "shell.execute_reply": "2024-02-13T01:08:47.096350Z" } }, "outputs": [], @@ -761,10 +761,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.532986Z", - "iopub.status.busy": "2024-02-13T00:43:00.532662Z", - "iopub.status.idle": "2024-02-13T00:43:00.540215Z", - "shell.execute_reply": "2024-02-13T00:43:00.539751Z" + "iopub.execute_input": "2024-02-13T01:08:47.099370Z", + "iopub.status.busy": "2024-02-13T01:08:47.098865Z", + "iopub.status.idle": "2024-02-13T01:08:47.107470Z", + "shell.execute_reply": "2024-02-13T01:08:47.106936Z" } }, "outputs": [ @@ -889,10 +889,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.542231Z", - "iopub.status.busy": "2024-02-13T00:43:00.542041Z", - "iopub.status.idle": "2024-02-13T00:43:00.801720Z", - "shell.execute_reply": "2024-02-13T00:43:00.801085Z" + "iopub.execute_input": "2024-02-13T01:08:47.109868Z", + "iopub.status.busy": "2024-02-13T01:08:47.109487Z", + "iopub.status.idle": "2024-02-13T01:08:47.340849Z", + "shell.execute_reply": "2024-02-13T01:08:47.340332Z" }, "scrolled": true }, @@ -931,10 +931,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.805178Z", - "iopub.status.busy": "2024-02-13T00:43:00.804254Z", - "iopub.status.idle": "2024-02-13T00:43:00.983042Z", - "shell.execute_reply": "2024-02-13T00:43:00.982469Z" + "iopub.execute_input": "2024-02-13T01:08:47.343564Z", + "iopub.status.busy": "2024-02-13T01:08:47.343175Z", + "iopub.status.idle": "2024-02-13T01:08:47.521216Z", + "shell.execute_reply": "2024-02-13T01:08:47.520698Z" }, "scrolled": true }, @@ -967,10 +967,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.986898Z", - "iopub.status.busy": "2024-02-13T00:43:00.985865Z", - "iopub.status.idle": "2024-02-13T00:43:00.990975Z", - "shell.execute_reply": "2024-02-13T00:43:00.990455Z" + "iopub.execute_input": "2024-02-13T01:08:47.523754Z", + "iopub.status.busy": "2024-02-13T01:08:47.523385Z", + "iopub.status.idle": "2024-02-13T01:08:47.527063Z", + "shell.execute_reply": "2024-02-13T01:08:47.526595Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 9b2f4aa01..e96e1caaf 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:04.174708Z", - "iopub.status.busy": "2024-02-13T00:43:04.174530Z", - "iopub.status.idle": "2024-02-13T00:43:05.448184Z", - "shell.execute_reply": "2024-02-13T00:43:05.447435Z" + "iopub.execute_input": "2024-02-13T01:08:50.680983Z", + "iopub.status.busy": "2024-02-13T01:08:50.680568Z", + "iopub.status.idle": "2024-02-13T01:08:52.047522Z", + "shell.execute_reply": "2024-02-13T01:08:52.046779Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-02-13 00:43:04-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-02-13 01:08:50-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,16 +94,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.97, 2400:52e0:1a00::1070:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... connected.\r\n", - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", + "185.93.1.246, 2400:52e0:1a00::1069:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.246|:443... connected.\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -116,9 +109,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 4.82MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-02-13 00:43:04 (4.82 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-02-13 01:08:51 (7.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -138,9 +131,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-02-13 00:43:05-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.140.217, 52.217.108.172, 52.217.124.193, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.140.217|:443... connected.\r\n", + "--2024-02-13 01:08:51-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.82.132, 54.231.138.209, 3.5.28.120, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.82.132|:443... connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... " ] }, @@ -161,9 +160,17 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 89.6MB/s in 0.2s \r\n", + "pred_probs.npz 44%[=======> ] 7.25M 36.3MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 100%[===================>] 16.26M 60.7MB/s in 0.3s \r\n", "\r\n", - "2024-02-13 00:43:05 (89.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-02-13 01:08:51 (60.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -180,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:05.451079Z", - "iopub.status.busy": "2024-02-13T00:43:05.450671Z", - "iopub.status.idle": "2024-02-13T00:43:06.564340Z", - "shell.execute_reply": "2024-02-13T00:43:06.563771Z" + "iopub.execute_input": "2024-02-13T01:08:52.050051Z", + "iopub.status.busy": "2024-02-13T01:08:52.049854Z", + "iopub.status.idle": "2024-02-13T01:08:53.131521Z", + "shell.execute_reply": "2024-02-13T01:08:53.130959Z" }, "nbsphinx": "hidden" }, @@ -194,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -220,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:06.566928Z", - "iopub.status.busy": "2024-02-13T00:43:06.566437Z", - "iopub.status.idle": "2024-02-13T00:43:06.570020Z", - "shell.execute_reply": "2024-02-13T00:43:06.569578Z" + "iopub.execute_input": "2024-02-13T01:08:53.134166Z", + "iopub.status.busy": "2024-02-13T01:08:53.133673Z", + "iopub.status.idle": "2024-02-13T01:08:53.137466Z", + "shell.execute_reply": "2024-02-13T01:08:53.137011Z" } }, "outputs": [], @@ -273,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:06.572045Z", - "iopub.status.busy": "2024-02-13T00:43:06.571766Z", - "iopub.status.idle": "2024-02-13T00:43:06.574735Z", - "shell.execute_reply": "2024-02-13T00:43:06.574279Z" + "iopub.execute_input": "2024-02-13T01:08:53.139517Z", + "iopub.status.busy": "2024-02-13T01:08:53.139169Z", + "iopub.status.idle": "2024-02-13T01:08:53.142016Z", + "shell.execute_reply": "2024-02-13T01:08:53.141597Z" }, "nbsphinx": "hidden" }, @@ -294,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:06.576803Z", - "iopub.status.busy": "2024-02-13T00:43:06.576540Z", - "iopub.status.idle": "2024-02-13T00:43:15.738283Z", - "shell.execute_reply": "2024-02-13T00:43:15.737645Z" + "iopub.execute_input": "2024-02-13T01:08:53.143912Z", + "iopub.status.busy": "2024-02-13T01:08:53.143722Z", + "iopub.status.idle": "2024-02-13T01:09:02.179284Z", + "shell.execute_reply": "2024-02-13T01:09:02.178768Z" } }, "outputs": [], @@ -371,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:15.740962Z", - "iopub.status.busy": "2024-02-13T00:43:15.740620Z", - "iopub.status.idle": "2024-02-13T00:43:15.746062Z", - "shell.execute_reply": "2024-02-13T00:43:15.745601Z" + "iopub.execute_input": "2024-02-13T01:09:02.181744Z", + "iopub.status.busy": "2024-02-13T01:09:02.181477Z", + "iopub.status.idle": "2024-02-13T01:09:02.186852Z", + "shell.execute_reply": "2024-02-13T01:09:02.186427Z" }, "nbsphinx": "hidden" }, @@ -414,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:15.748134Z", - "iopub.status.busy": "2024-02-13T00:43:15.747800Z", - "iopub.status.idle": "2024-02-13T00:43:16.104300Z", - "shell.execute_reply": "2024-02-13T00:43:16.103644Z" + "iopub.execute_input": "2024-02-13T01:09:02.188840Z", + "iopub.status.busy": "2024-02-13T01:09:02.188513Z", + "iopub.status.idle": "2024-02-13T01:09:02.542148Z", + "shell.execute_reply": "2024-02-13T01:09:02.541571Z" } }, "outputs": [], @@ -454,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:16.106794Z", - "iopub.status.busy": "2024-02-13T00:43:16.106584Z", - "iopub.status.idle": "2024-02-13T00:43:16.110882Z", - "shell.execute_reply": "2024-02-13T00:43:16.110338Z" + "iopub.execute_input": "2024-02-13T01:09:02.544756Z", + "iopub.status.busy": "2024-02-13T01:09:02.544358Z", + "iopub.status.idle": "2024-02-13T01:09:02.548740Z", + "shell.execute_reply": "2024-02-13T01:09:02.548281Z" } }, "outputs": [ @@ -529,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:16.113016Z", - "iopub.status.busy": "2024-02-13T00:43:16.112696Z", - "iopub.status.idle": "2024-02-13T00:43:18.488955Z", - "shell.execute_reply": "2024-02-13T00:43:18.488232Z" + "iopub.execute_input": "2024-02-13T01:09:02.550853Z", + "iopub.status.busy": "2024-02-13T01:09:02.550545Z", + "iopub.status.idle": "2024-02-13T01:09:04.959158Z", + "shell.execute_reply": "2024-02-13T01:09:04.958496Z" } }, "outputs": [], @@ -554,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:18.492127Z", - "iopub.status.busy": "2024-02-13T00:43:18.491369Z", - "iopub.status.idle": "2024-02-13T00:43:18.495211Z", - "shell.execute_reply": "2024-02-13T00:43:18.494758Z" + "iopub.execute_input": "2024-02-13T01:09:04.962283Z", + "iopub.status.busy": "2024-02-13T01:09:04.961556Z", + "iopub.status.idle": "2024-02-13T01:09:04.965363Z", + "shell.execute_reply": "2024-02-13T01:09:04.964836Z" } }, "outputs": [ @@ -593,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:18.497244Z", - "iopub.status.busy": "2024-02-13T00:43:18.496929Z", - "iopub.status.idle": "2024-02-13T00:43:18.502291Z", - "shell.execute_reply": "2024-02-13T00:43:18.501828Z" + "iopub.execute_input": "2024-02-13T01:09:04.967363Z", + "iopub.status.busy": "2024-02-13T01:09:04.967026Z", + "iopub.status.idle": "2024-02-13T01:09:04.972235Z", + "shell.execute_reply": "2024-02-13T01:09:04.971776Z" } }, "outputs": [ @@ -774,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:18.504313Z", - "iopub.status.busy": "2024-02-13T00:43:18.503980Z", - "iopub.status.idle": "2024-02-13T00:43:18.529855Z", - "shell.execute_reply": "2024-02-13T00:43:18.529371Z" + "iopub.execute_input": "2024-02-13T01:09:04.974307Z", + "iopub.status.busy": "2024-02-13T01:09:04.973987Z", + "iopub.status.idle": "2024-02-13T01:09:05.000776Z", + "shell.execute_reply": "2024-02-13T01:09:05.000183Z" } }, "outputs": [ @@ -879,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:18.531957Z", - "iopub.status.busy": "2024-02-13T00:43:18.531643Z", - "iopub.status.idle": "2024-02-13T00:43:18.536502Z", - "shell.execute_reply": "2024-02-13T00:43:18.535960Z" + "iopub.execute_input": "2024-02-13T01:09:05.003014Z", + "iopub.status.busy": "2024-02-13T01:09:05.002661Z", + "iopub.status.idle": "2024-02-13T01:09:05.007683Z", + "shell.execute_reply": "2024-02-13T01:09:05.007189Z" } }, "outputs": [ @@ -956,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:18.538559Z", - "iopub.status.busy": "2024-02-13T00:43:18.538225Z", - "iopub.status.idle": "2024-02-13T00:43:19.973837Z", - "shell.execute_reply": "2024-02-13T00:43:19.973279Z" + "iopub.execute_input": "2024-02-13T01:09:05.009826Z", + "iopub.status.busy": "2024-02-13T01:09:05.009504Z", + "iopub.status.idle": "2024-02-13T01:09:06.463987Z", + "shell.execute_reply": "2024-02-13T01:09:06.463485Z" } }, "outputs": [ @@ -1131,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:19.976037Z", - "iopub.status.busy": "2024-02-13T00:43:19.975689Z", - "iopub.status.idle": "2024-02-13T00:43:19.979882Z", - "shell.execute_reply": "2024-02-13T00:43:19.979346Z" + "iopub.execute_input": "2024-02-13T01:09:06.466176Z", + "iopub.status.busy": "2024-02-13T01:09:06.465836Z", + "iopub.status.idle": "2024-02-13T01:09:06.469775Z", + "shell.execute_reply": "2024-02-13T01:09:06.469321Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index ce085bb5161f75b8de97e6e712b491f35022f0e6..daf5c9a426fb01c8d1dee7470109db0cadaacc5a 100644 GIT binary patch delta 9071 zcmeHMOQ>B}8TNQqELUUO(8LtMdv-4gnKZfU@vqlNBTA_ll9-9L4e5FkYHKP=5h2`& zgAN33LD@R6iW9L;EDrWWQ3npppgL3nDoz@xB^K;7_B&^vQ}3bWu6a2Lfdn@9U;pEK z{C{4#dGyyekN)cAEpg?lzV_5t{ncGvM2afrz)4ptv`(Do=p@(5X;-51+Dl35+qbr! zzqK{NpAQbVwx&Paov`8Se!BhqVMmAif55&o=}1cHOp+n!NQGDLoisTa zsWiurpnh_D`oM7EBKs@8J@5e}`t#4R^Iapj>|fbqyZsx_vBRIx-kTtewvGsYiz?+r zUYcl~&O>*DJ&Rm?3BhMnttv`B1ev^5qL`q#Gp2v>Z_@{dPrW()`J_{#YVC~{A}Ug- zdNHLGG?E9cIC=Chx_(i+S4uUqBX zx%_bd-+xU%Hfvr#k-a%S*sjA|mPofgo05ffb3(;tl)=Rq|X|3q}&DW=wx<>FaBJJsa zPw(rLjv-od1wbdOYSh(*;0y`iiI*@>=Nj7vR|Qig6&p$76E6z5rBKzPNZmhlgB{&B zrZWdNBV917MpCRLW~&T_vMNle@V)pXd$51@ake$^v+TzJXyX;*yxN0bk>_dg{>h)Q zlQR`V_11D*T_g%R!~`-+9=MT#)L4FS;uCDJ*Yfj#hhoW*VQHAQ3uXrdcMd$2ti$?z%?(Qx4{_LIq8qh)3t zSgn~||GH7Pyn-RP_27i&9X@elfy00S(?LnET_8eBYP8yC0o*|}dH>=z0Jc!Qu2>n1 z6&@|o6t*~KCsriB@_n4d=96F5&-Raor)38(fRL{Vs!9r+D67pvXfEPe!q_gtH>jCEJ z8k-?k7qu;hB3x0OQ>g|A84c>O61D_xtpELY+2P@h~C^*scXdcBkZ0Q?7q$=j__960Fx$V z@KMdpm&($^QPN7xi{TCq62{zkzzQNRWaQK%K+Ea6iM$A^u|;8 z$SsXmECqcbf7kxQPMr}-?o&UISyZ`_BA8G(Qq;UU82g+#rV&*hEw;mRVN$aI7ZNEM zVQZ{FYm%!L>k&9}4UnzotwXFay>k8QMj6ctkh4Z^3qLyQAb8&-pTUM;nk?b1l?mD6 zmr~l+d3q}yl#zr08C!+1gar>uVVDJWt1@4%^r(Z|oD6nPudq!*WUy$6B%CsNz9|{s z|L?Wwu~7zRt=NxTVqcgwqV{L+PI-U(68mTeFQuK0HpEQiRB>QCEI7h~YgJsKv6FZ$ zOe@xi$O(=NimeEC4<6h3TI@c@);V6ON-#E%|)hh1saXp<|4EDe~8A}Vsnw%Tx2#EndN`6Y%Vh6J#ll9*<55c S7n%3%MaB-_{P>~a!*2s;MnhNt delta 8973 zcmeHMO{iU074~{}l+fB38*O#)?oCRKgC=k7z1RM8WU7J{Yl=ZoYl!=oP;Ki^DLN>j zSSaG8f_j`-l1`)^)NlH}FO|=dH7T zzMr+;&#xZ2a`ngymk-Kz?)*dcJKyx%*=I7WyyoU)a2zW+RjQ6HG_NUYow*uozkBWA z)7K78@bk|8+QI2hwkOm6u`u0wdUCyc=3#N)Oj#w1inWlgtgTBWDi?#S*|wCZfBnP{jvRLFYC zGO17)KY?X*Tq-`<`P8~6za;MLKlb|cXOnrzY$!BNvL;qlMa?eOh?jMyT2p`cl=#JD z?$^h)-JdTBnvcXaLmt%q_0{Ro8Ii1Bmq^YdcthEAK{B@5=qSqW@bltGf9R#@gJLeD zYJpnw)oPA8`C1%O%H)_^k+Q$?lz4G6Gnt~XIiod|gY!N&ucV{W$Y&k9R~{1Y?`~Wa zxAqr*Eq*%LTK@&zS1t%O8hV+~jk$PN_r|s9@e_vltM_hy>+G>7p15az47IIBOIuKN z#&E=75?T@)hv>ZS=VynhtF95tri!r=y-)!|mop|Q;hkboic=`X*QerplM7?rI)KQoX~pj7hYo!BE__L9?5j)Ow3s;R z8nj_Rui|a(N&5ciS@DRN8>37l>1wH-8{nRrYi!V2b}i{$*aZ$;zyhxM%;a_Q*#=uv z$P%+aaus%Ck-Mw^n4TF8yoBA?UYj181?v+TbP3>KuQ0cTYBDMsBG#tAbbV;0mdRM6 zX7iAT%E5(_o2^PKlblUElM3$0hI5FrMP?g3RZXsG!b7>}?#j#J&L7_^4lW0EJ`$Uj z*c*#IB=h+h;9saAh|CH=HzB5?m2FOIZA%R?kVDl>87Z!^3g@Ps%mzGJ83jn3b1)cKrGtz%t-@}kVRvUgmSX<35qigexN1cqj*cVn@;&)x>T1K+KS zy=d}w_u6gZmbowBcyK~3Dl=zJS(WUyHwu_ZMJ+jGE6dEqLqk9^fRqfJK%goWFTuIp zd!H8{+!4I!k#a5$IuC+vCgn;->6josty;e;cq4Hapc@Oj{hUzUpY9OHXHZ$FocA#R z`Kp#=T=h;iZ=*q4tGGkgyfPd@j1c&015qvk@YXr2tUG{dSG+4IQzqvJFT<8f$SOrx z5e{Bj%W@}|k>Cs9(QGX4sW+#t`}bTNKk129RF1TXO)^Nq6NDiJl@0mgq6Et)s{J>9 z2X5S=z{s~{G=-I;AdM?B70^(Fed(dj&rU9kHD@1m*3V_w`}A0`c7Zk+)4JzPRgF+$|v7GTMegNa$#q9xSEf_J|mab`XeJ1;fvVJQyHh&@o5TLKAS{4&V9 z)*y3^4PKbKC;OY)zzQE`no|*DhKY;S!j~&Zp>Nuh{?f0+FDElnR5E4dqr>!rzu01*$WI`~GonNkX zGY77L>$ELmi%SJ)!Zc{C5|yASd5Nh7{N@oXrX>xu$}lnjZ4E8sy_jOf-nim1$AWjC zIwL+e8k>fN=sCy7a3@~E*zx7>RD5< z*!CQIS^5{AS^zH@18MO^f^Qi64>^Nf*AISEwy=Lz$3ib=b%rf$UFhzmm#5VI@yp__ zS%!zg=I*?uL9hW7>@*Dm9*lO?4$g6RxAVhh0GMWc1Cy#rX)dZ&M^$1M-*L?Iq6zWcb}C0q*+0og`d(!IYqGf-ou)> z)#&L1S zY<+4Ai}~Q;A6@R>vG{lX-DiJz{_qzzHE|E6vy-2HWF0~l8Qy2G-6SD?!D)}O-L9dq*jAA_wA%HCXznI z<}t{SJfI@Om5Klm$)&?a#=m$@gq|eA`<*>#+8%&VZmu)v2dGBZrWJ7n zbcSp05GXn1COau5>FBilDRVFhLy~MtNz^S8xloNfMy#-$%Kew@KzX&v_H@U;vel;b zym}hPJ&A;tYb!`=j=7#wjc56{P!Gf}p?^bwEL8}~(IGps1B5uHpezj8{#HX0Hj{9Y z6xJ359jUH^to4P^ rF3y(lg-!KpZB64)S$)Uu^cJAo?%;L@w>$W|vH!n=ru)XmR(AaWx4l8< delta 1939 zcmeHHJ8M=!5an(@1Y^X)5V7&Q1hFxioqf%2r=W$P#8$+FoqZq{Dx!sz5-lV@z{Mh9 zWn-a@-r7RT@IeZLjSo<)f_93Hn<%ItUa(HJ#m?-UGv}OLT%K55o_IXk4te4H1#|t1 zoeef{t%Q{-BREt(aTGC0pIx?+dntoT+L&9-c-M?K;bm(x&*TFbVUr?fz2`YN;|N6Z zM6TR^+bs50bqC%xtFKz=k`yvHX_HXAK7uM4DUCsqvJ2E5eZwvdh5#ARNtu;V=*W3X zb-vPoF&eU^R_!j2-m|H0^o(6=+H639PclgD6$K&$p0cMbg13UiWQqf@~Ur>K>(+1hHD=w%EQvcTY)?<0nO|?DLWT_k3U+%qTcY3YAq48Gww$k^P_;01}_rL2u(uds_Hnz0m EI}w^aV*mgE diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index d495bf991501c40cab8f708e41adcac6ad121323..987b4e43670d031d39a5ff7f6e7df5979acbcc2d 100644 GIT binary patch delta 1308 zcma)*ZA@EL9LD>c+uK76Ezpil3d12HTLe~GDllbn(`}KrIno9{XDUIT=qg^J(1Oo(hChOQ7i7rvVb9GZyd z;fqQCulXrS$(`J#UuDthlr1Oom4mZYiftv)m;ea)W=WjyZos)XJe^$RG^wa zVuu90#~U)x2n5+w7@NR((sB$*_>7OPK+J$4-k*n2LcWmLZOLK`GIw)m*{AMwW@#@%{+tPu>x3HX`@Q2_~E4=-;J;ln=6Eumr6z09JuF~3g) zf5k+wm&G-C`!QodEl+$7HObh|w=tw!XpbyBtrm^p{kIW9CEL@B8jSGMy;w>S=HGt+ zheRT>HivOJUc=NWQA03@8A5)RwHoMYL9%cPeMUN~-g+ikBe^z&0dhf(&xH$7p&ljt zt`Np0tmoztJRs2;gV5VkG>Xnq(S$?Y`DY|s`J3OO2xPlKqi8ZHSMsyirnBfkfS)@n z8lk&X%kwEpu%n!r&x-*)W{9J%offFCMsb*sg9Z(?Jt|P2J&)!@9AU9ZEaE91n}XMX zakdyk8n3&6lQMqcVv!+}KMXAMD*iN%X$j&F+4*!yJOh-s&f$oRB!1}{nq*j5?E(&v zfW~)e0qwBzwncG7mr%jC-Wuoo+)0v&oyI@u?J^l8B!?ci5kG$>f$TNXd{t_F818fKy}h=DR$#R#K}g&d#*~)NQel9d$znj9hy$aDSg4h3MMdH^W+sb< z%q{A?u(Ka5nYtK40t_)b0%~MoaY_`LEpA2#>h@=WLe1h#)&_RyC5C1D&(4qY@t*U( z&&PX4{#-U0S|%NnS}z)Uq!C@JyV6se_1>Xut1H`O%gjj2PS0@LQyunFe`cvE6+~hiE3iNSF0+lXZ~^`F(H&&d zhbv*i4Hj65>jJ)K-SL>x;wI&5EW7+7dI`BLP=6=3l2L&cbYVTUW+9G6B>{xo7ifMZ zHmjizlCe`SKNfgPat-v{VHD8SnHV4s1X@>uQpWR~B2sB(9?YzHJ$@FD$M~T_KoPyR z0U;#QekY2tgXvz!xJY)3^qY8C=-eCliR=+o7H&~x@t}~iIJyZYf;yU4iDJehXC=H# zy<0JdgUnlkbp#h!TPfZLI;iC>{DDiaqR*oEzTwka?v`{H!`&lD)vYF#3HsK@6S2Nqz0?{aUNIY+! zkw%pvjh;D=AyO*Q0Vg)Y$G*OR6*9Reg;la2I}j`2KAq}B2_{&67aRhamQ;f$uX09@ zd(f+spUqdiZBh*$8$cfkNUFj7QHsc2e=@}3t%Dd8P{{aUlYlas^8-S}p;fW>vgTVz z1=*)nO?^kJ1lF#muMXoR>e;u$NFZ{9mg9W9T@TcL?eGbgCKsPp&8!Z<*YD(6B6g>dx~m_ zH#jSZMpCbG@C9*<*DndpU&YhiR#HON$SQJ?MB>;ULcSze%VtF~u0tjrGm<%^urU+4 zCE*CWXeJva&SY{GIW6J~+L%B>@&TD^aYoY{PB`eaNK9yFHxr4M$erqq;yWJ0wyYs9 i$#VCi$f;y9BBCeE0*v-pi5qb=)<#;<&$?{noc?cYm>{D7 diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 85e0ec8261e1e0f8a651b786a38cbfb80e635a19..8c396b2faa7ee39c8e957fc1e2223f1f6dd4a184 100644 GIT binary patch delta 62 zcmdlWu|Z-(BBNn^hG~9Qp=E}?X{upzl5tW>qJfENnz^B=X|jPqN|J?f~)WD`G>ygFjaPVQ9&W$Z5x{M6>LAPkYmxL_N;O$HHQFp$aJSYG2 z|Nrtl&)EU>azK^4l)i+|KSU!BS3k5W4SbS{tIJ(A9Qr?Nv|owJ&F z;r`T{lO^)gp?3CM3av>*A#WRZ^DoBpZupuH-^EL&GD5vmFPOObxOx-9Y13^(%$M2b zNlZxC=Jh4t_j2IHK)z3D%;Nr;n*X47n(%*;ViVsv|CoVE5r6Jl$l#aeudr5$5AR&T zuPpe{9%}skTgLnnrP$$-w@TZ*+`9O9=)1q%jCD%1HxJdci6JM{y{H+6vCe1=83xEv?hwK(BYj8LPCdB_o-Td+@JCON|C z6IGd5m8@pUy6fvnlm?X3>0C^(RGF4B)Cv8|!!n){Su63Agze(*`%y1p7kLVC9W7L2 zK@E0`Aq!?1>y>GCIkH4wF*<+%ne14Pw`r3db^OGFnaM4y0Yk#R6`2Mc z67C&nR`4~Ay`;nR>&gKg=DfJp1)GE)L_s%x11>}pF(>>zsAue|5?iB>dvwEs*Py8C zpOMsGQevsk@6}U(ji*LMAMC?!hLyq^Kox_9^gBcFejJ3V8T6l8>W!V*@fN0FCf9&I zyK=E-03~3L7-(*z-W0dUeg|n_>*95T=p2jyH5p<+6N5U?>h}N@K5~s<3C+TF0E-NR zqT~})FnlOFM{yJwqtb)=j`YQH4vSY0L6zB&xbHD>IfQb?rsMS~>IkEiIhE)z{t3f} nv!YdCmr*?z!M`Joa(l3v9-Krfex%Y#)X?@YQpLa|wB&yQb_%&2 delta 1909 zcmd6lZA?>F7{~dad)sSic`>Lg;NWI6jBTj2-O04!j-^iks!;mk~_XkiJ`L6IT$bT zSbdb1@h3KgK4quNSy@|KJsYVnV|Xa2+G5?dt+ICOX6qKKv&!~JMQV71v)bly+dOuc zXKSsqrn1K4YH&YVp-c_N`M(=CMkrsLh?~I?S*_1Cj~;qOM4MNgm9SX~ZBIb;*clx1-P|kQh;A3uVS)kfYZw75UEl zsWlNXG(OW4fhQd}Z z#~2}pMe2^kW9+F^>;O7wrxELMj7}R-Mm&P@K~n;?o8ZAocEbdVKu(F&P|i)B4e_!I z8CWEc^D3%?<*h=WPP(M_O)><{(Y!V2lRi^3UOkm%yh!;X46gOu#l5t5b|0%_8^~?TM#GW zIeKOvuXv%|i=5t#7$qoSfl64ywXdihT4{aVoI!UTH(1J^c@0OjIL?OZu|$h=?E4+C zYH)?-@4}xrN^^H}WjERW-7pInX9IgN2~32#{MhTo27=!x?@&y0ynMQWW@seo54G1% zks%NIgWSWknwjKgR1d+*^j5SGET_>vevIF=A(J4T@!%4)d0JkaMPF)1@Lp3xJ3qZ7 z8ffPzg-oW%1S!(ev-?oO$2)x(3qf9eb#SPwM*#^=8aR#zs9}K< z_?_TG8r{V^k9`CqK^Nn}=YXG%oaSR63HADv#hrm9k_)qY53z=BtR`eQ6w{>xh@!DQ kuppnhd+;`{vzZ>erNa%{*w0Vl79Hv5$k*B911Qx04Iw35E&u=k diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 842935e7eff1b71f9b1541e06d1cecd8b4166023..194024f4b0a174cc363016711fa159e267be8288 100644 GIT binary patch delta 15019 zcmeHOYmi*Ub*6h}cO;OIWOjvw%+5#%3oL~Cd2e4UKpE}>zJ{` z8NswP+N4fKIub(32i_jL>E!0c$=92YCVMtjvTt)*(rCUMAJM!snc6(}%qh(U$=qGz z0lVUiwEvuCE1EAPM}L{&i?bJ+ub#1Q^V(&-%^Az4`PUvJdo~xIad5M1;4A*oZ;@%u zhtAk%_xAit3j?#3uJLcop?f!v9ys~Szqx2Ntv8=ub{Uq~H+j|pjala}TV?xK4)&jI zSFKJ5V>_5Mw=CbwPdbtGREzKZ^zEdldGDFiC$5Oov-(#L+7+v^bP!)P&pC5%Z?C~} z-&fy8u|)yu{dv%P);W@FAWIBJj@#Z-`TYjxz}R7%TPnuT#|ab<%ZSa;jk z#xz168isR9Y?i2$#ZeeB9f-ulCNohMw@$5WOtG*_?%9ro1u~1m&}ESkDsyQhjLD?1 zin~Ol%Cr|&HmI2Hn0%ix4H?D~GiAKcKi`#pT=o5zlm8|kOSV%wzq@r* zLpNlvQNPV9!UYxihg^XWnUo|nl4dTMw3SjTO{v9cG* z-%@%;cl%iJ=*?R9ImH{Hx4$EM_)9+`2m0s@vbnZwXr75T9rFFV$ap_?8|lmA-;h60 zYNt`@jBz{Vngp{!1T|uzSx&4KMiKFSzngePcFN{=I%W zyZQRTtCwEP}_B$7lU5fwKtjBvl?rpxY@em^NPrE4ZB1ibSyU|Y&*9VNF z$C4BCi^kClDz&ABg<*$Cod4!TdJ;Lo-#n4tjEg;F5}jG4%WMANd2|syr`A5=@l)xv zeEej3KcyGe+DD8>r|(KG^DFkDpOK666*KAe-Q*cRozvdDKAVzmgaJO-uG;&B&0Y3v z9pFO&eVjbu*M?YACI3Z8e?Z9?zx*5YmtSvc{<@od*Pp$Fen!_0 z8ETDtw|OxeXF&&$S)hDU(G*UN#{}eLHkjT zM<)>a@fg2#6@8z6*81DypIl9s)VjxFn)Q3N~X)SW;Iyyl1&!1RF&lpQ)`#D$Pu7qEE6+NlpViDUk475;z z3Yc|Lm_$WDDK1r(L^uHZa_?^n+{OrG{kC9U2{8^F1 z2@sqBt594C3BGGpB3w`acp5o>&A(TA@`>kHPN~*qY$F}$RNK^nbh#*rGtE;OYnM3{ z_~++Wd-JV7q<4|JN|QJR7YIxosgN_nbz+>un~ZDAa%}4n(kQXb{qtKWYm}H(#b%g) z?M7O!t02gD5@;z{q`1*m%2*{bja8hcA{f3Iou(!g4&MY;sSr1+gvHH9E(O=H`SiHD zmGnhPW`)eGG^xsXW^80rZd71nlbXO|&=kL6b7gGaNUJxJMu~my`K$`BceZT(xz|;e z&JNE!Z0@R4XRKLsKx2jtQyC_px3X}lKsaR>D5**%SWznT``1)fRvTdn5zcSXm7B<= zoo~j?fW7$(PwroE+~G$Y(_iAAUl<*AJ}x`s)B_q`FRAo4N_HfRJDut4AJXnV=a@86 zsuLY5ftbLagEZhtB+@tu^GULbz1vVCEaAKnM4aT(7?m-2vVdC$84L46`?2>vmPJ-r zkncokW#J^Cz=2YVITj(<{uvHDJlN9Cwyodt6S}ZoV!9n`r{;9GhSmYddlGBzl!CZ) zp$2D`63KzbnN5c>2h$-|sjbbBVnm`NWt@&P7D0hHEsLBmC1+32J4ij#X_kl>Q>7`K z*dWEE1|i9vl!!l%B-4}M_i5!W1Y3#mcCeM$cExUvs!Pi_7f~j3$W_d&fsP2$IOc*o z=%yiulp^3+l%!fCKZ=kWW|U=dsso&MYy*G)gOxptjcg=+P%mi^x)^FCz&@CcrL#%s z(n5qsIYvHA8YO1sP`)TLi}(usl7FJJ=EzVF3p0nD5h`t@cF-Ad3>~PQOW;8*4LG!` zGKE-#*^T7VlA94D@chmC22g9eo~VU44nwiM5GR)+m)pW<#d3 zG}0F7PC0-2>);nH7-&G68HmLwM!rNCr3N`Z48kZfECfEJ?O3a8=_F&uStT>Y62K%1 zEE2LjVl1?YU$j?c1hRErfHi*ZHXvJ>@piO5vkk}=N*!t=08fza#Xm9*nPvu}H(@ev zXO22{9U}Fc0J>Re_-hDvP6Opo6iUO)+t+sl8&s~dLL@2^Mk>d7BqWPj7$gka4q22> z|Ch=mq~6)AZDT-ZtESin^ILvHzlstF7 zz$0HL|hcbr=RUi!u(kwtV0jpP8Y&ACsTI5&huXzl( z-_9ImD`=uU@vb##Xv-0die+YZ4S4vy{7tse*rLlp+%u zDJC_NWj=ia5WX)AQRV{Fr7?I*2u5Yn6nGMVwILJx`_@z-M#fdYNA^y%j(EsH!a{he zi~=4P9_<`YobVeaj>NeV>zTj)zv$vdXX~z&Oy>H7KA{sDvC&yU6-B}VWps?)C2k;lq>idPSF&b4BGjmwAMHTb7j{uGIFwx zekt|H(Mic+?TE8R*_MiI+G3Mk^}rxmhXGef0_GCQC=@A=ObXcmjplNs$(7Z*L+U|6 zS%yfkKtF2&k=Za~5EOt&SAarKe)HRvt4KX!CN%H`8MSJYV5%%gOqRu|1=CB~d3TtA zD_MZ{)A}ll0NfoH(87ng{-M6g_&RFUx`^%&=!W8`ig;9@vv5(ANr!q+vDP+nvoI7W z(W1OvM4HVkYPJ#d8KSbF#UtVk;sT7)N*+cjP9TaRI4Tq=Vl9iM4u-(4vvD&-D$DGy zn^ifk4nB!ohC;S1EXGBEYrzFW4Oj`j1Fws{S?#2P08`vDkPf4?)0qa63)^D6!*NbA z4Har3&RK@M!5oNX!kiM2gj}&4#{(r=VjI&IO0>kbXhYlgg_#VTxT*)GgUm&Ur8gTOt3y``^FXtXw8C#D<>M{=2 z$XTo;0txGoOuJB_nj^Bd^lBGQQ1*y8i$c^?3TU$qH3k);uNXQgBxtG)pu#)289+iq z3Pn&@5wcH!HxwEmNG!lpn}940fkepyM4M=KHl6wR=U4u+ZXI(X2~=c)K!x}V(AF+; z5MW9tBZ@#a)h2eFg*pWeL%AwsM&wB7Q|w5$IM~j;K%qLxvx3Z+0;dt*Ceg+QKt`|@ z9Ci+DMEsR3U6 zD*P1gcVXp9a%oa>MI&Rd%vnc{E;%v26ZXosH7o?7qBHa`tpp!b$m7UHmP1Gwkz|75 zc;{DlfCO#^-P^|;l4 zOfyio43Zw@BNm{FRJdY>h#g)_v1sq2aST^Q2}6SRNi7hm5R5Sjw`{l~DzTlk;iANL ztCqt2hO;VrH2}g{C?oEyj#VVl&K4ZO65?<{`Qsr{R*#^M&=`d)Csw5{j8J%i%5w=9 zXxe7OcGHKNESM%rjRF~oBTq3N%Ho#{C=UfZe|}+Q3n?`_1bdyWx^~!YJg>6fY&DE% zf`dqbyC~Yi%L@ny3YPu{)DVl=u+`n;}?&M`o%*bdsnoS~5w~nn=*rkHn8UZIW6^?C;!jh4+lU z(?8l7r}OxO$31VKz1G@$t@Zn@wJxu`KKAZkj@|iCx1aVdzcSv?FJ@|?y@&-OWGVL( z&ZPBtU~DMUBo(12!%#CD#qq9Jx_4jRyunOqK4C^TKVs%KJI$o#i+WP?8|Jj;+Le=< zf2)scE;AFG-`6KLe{9bEAFo}M?r%Q7tUf|7m#dc9#l34*tZI%~@kw{Xxnw;4QElpF zCpF3Px)YS1I&<3e#xyNgY1_BBcYVKHwJx>&`LjP-u}&`TUERO9_bRz=z3tbs-%MM) zvH5^IrFs7HKm0$H(9>M{cz5%u6*s!G=hBl#wNz{w)3Rmfm5JLml^oyPd1ZC%GP{2L zidD;c*R7HLwiik^$F6MP_$H4oj5=adbMwj*n`fE7|X)Xi_!8q$V=$Bjyu447w(Gzk|fh(kZ{loCN} zyV6DZb|2q*u-4$77c(BkejIUTZ7BRW;9-yiLNX;HUT9agDBtd9U&VH*vZ<%EWr;`` zHWngL)+oV)gnKMvt?kMd?b>wj)UJk+o=OtU(lD{ictZGL7}zvP(nRqv3|m{3F3L5# zcE_)44dzMD3%Q@dMkZAtpoM|iMj0J?s?e--QNG>W?6j^1kA1~`YeEr6j4`Fcm}wSA zMsW!8RjysVWYI2f?@!OB)nj&#CWpp#2cwTU=BzdS_LFY(95T1kXf)jH@nnj7^0(wT zSD!-0xy^IP#2TLGf7~5Q$z(V7A~Nxu;=zEwSADLpZ@@?I*y4lklk3*?uDD9czC5G{ zt#E(QMS4aYedM`AbI643wWVbDNcUH#kE2lP>!3YpO?0 zIKH~P=gNEFk)Kn`N1VQC>&C4gTi&tgqj=!P%pn(iXuR{mkt3GZmTX-<_Cu)KJ0r<8 z*=wsvg^)w;&DG>q@=|u)8gfU4yy7OUCl`@7vbF2U*C>6f>h?WH=4DH+Cf_}_Mmuoy z+sDA4>8IS4H;_H_?W$`$NG^8x{lskRjpXhsxgZlak?X7E(rnKy=8w7d$E&G#gWF_g`p38a8$-BT7o>?-qeKO|4pY8!F^d|YwT z@BEbPA^mQ~ugE3YsDq@d0((w;p8O3Z`?4qhg`7so-@DgeB!|hj+%I0j$^O`3%USNG zU%@)LOUgzIZB~nEl{* z`T(Uj)>=1GJbHaR{q(W5Tk_X-_7ul*O@r>Ce_C@tnL{tm@ZPzd#MWhP3Zd`*ntNm(okxz#ZfEo>l#F#Arw3{$biGHXle-F?yx)gT z-xTyWgih`%bZR|1VHW*fCpp7CJDa{krex2~p)XX(<=La>(n~AEI{X};opCv!x5@fzH~NT#MStg^3$3qkG5~9d^E? zSbO&(no;sdcEuI+8cM#K{b&h&jntmb-?{AMmW79V>Ek482_pZPjghpwTKma+EF;gm zt1M0F+FI*o{@v1B$jjOFDc#&be(uKf(TnJtE!z_}b2U9B+tWv9QTlfAD8r*m2&LWb z&(_d4X;-(~u$Hc>jqZjHTPL)1X!O(lWPJ8UKmFqlI-%Q*?V}6Hso5i+r`J~L)b{7; zZp%j6Phak8=`i_Px|{^r&DYXp-8Gi)HDhASJK~$@XgKq^H_=6txR?0GdcI)72d`m* zvD8bWDAC|H$}M=YGCo^CD_2w-*4J9IFpg55up~%Dg2gdv8!J%McsAQNuX+cmr(P5) z&2<=8ffYP;p{R%)vV&CP7*y6vhMJYG}l@ zTX=P4T=s7d(fdhVYvqYJ@H`tQOr??VxrvklGgl(CJR@JKJVHtZyM;R{Ub)<_W0mW@ zrBbg)Q7WTEa4Qpq5;7Lt6I=%ptTt6~l=*Mb)z!M?p@MQIz%jEZ#BU^wNMrC`yu%$< zjdRaDMyuJ*U6uPt!z$blfb2r#B|YKB||H=;;lS*KeFh zB2*#MR;wgTSnPRzBw3_&+wi)yCXG`cwV9PH@O;!rffouMrOabI%oe^_xf4O;3yC6= zTNC-r8ZEfck?(sbS|XG_%)#eR7#MYB(%sqjRuv|MQ-ugZqVpvlxkLLaC*=XRolHV?ExZ7aCG!F)J(EUW66-`Ki0HP-t#F$( zv}||bj!Mud5u6mkwsUs1=AO+eQ_p0fHz3?ZqJ59)I6!TTB*|pNk^NL6c?@TXgZ4d@ zbrjm+W=ig8Z~&D#>EPA4g(1)FNVt`mRD_!+eSz%HaBE16$Sx{Ix>IRt6Wn!RvV8~h zWEw?+A?wCT7%&qfq+*ROi;a{3;w7xWxQ6t!h#63g!I@*EXgG5YGk&B4u9M(*!mUiY z`_}gWa)8|-r57MK_xqJ&>!Fc0P9q&5LKxyg`hk)rk}}4fvNU(UaXD@;uGYg;05brH z3Gz!U;hoHKDLf+u%r`|G6*#A?mj)3!H;IRSkVQwvgj)M1i9P&AW~ZK!<6MdCq=+_M zCbtC&Xa7Ux6l5=^xHNz@8#5niga_Ifh_xUMGLG9JhrSgS0NoHij050Ok)k(dcw|Bw zMGh$33c348JwT8#^rI4_PxPTYg&UI$u^fujBuN{v%jC8Ush5e}wxi;^7PxJBnNB&w zPX>gWLf}g{MIsnDiM0~A#uHyda?1S7dyB5EP8z!1*23>>=~pUWBG;ANj~E<5WnMaX zb;*&bBk?x0O+GK;&3Yknbr>P_A>Oo++K&_h59}~COuw6G@FWI@5}rmd#Y*N4MKA&D z`>{om4B7#wfE6(}JWM%S<}y$oHVF+=VG0Tp01V!PZ)M`0{7?D^jWX#)z&-r)%IF4A z4O9~15i`t)SVdfhAh&n~{Ekf9M}3v5JiB^A3#N1H6Apf(V*#KKqYUi#QPM~S$VA>E zj?s6`K|RPB7<9(+5ENh_wv`DkqOC-(EKuQXQkh&AQR1T!ZMoKl#R*qB4Hf4`!xp2W zj6{{y)kdtWP@zsiBmz)pA25h~sADe`$T%@l+!1=*0MIAMU4DY}!=&JdTVa7HiRWWy zHVCRqq>I9wQt9t9$}?vq(Y&K<5_wQD1E5Wjz$6l5#Ep-W_K?tVdvK>#mM>{rx6!Ta zmIlX9nTrlyU3O$gqOHuLBHCbEf=rVH7!|N2vN(BkzL|-bQ5qN5_Rb^%nL@YTOW=1H zO{r9efDsNX35_pWwOQ7CE4>*miuwQ*9{88UIt;5g<^~|DCJ`YvM0xa{h$~aU9hy*C z*eKCJ77;gVWOZai06_A346_ALln^+K!W2IO)NH_|sIaLKArj$vK~6rI1!usl1RkzJ zlZGgk;=)lEG;&I*MG6N_IkyP|z=Mlntb)?R1Ari*3=F$6>F!if_3LG_Nl*2{I_5u0 zf%k&%1uV!5M=%ayF;QTF_R=EYJ_7E}gvYhyQn3hu6IkVGUsx?=;P&=cdIlA7F$N_l zy=4p%r#R9{8U=}!BJgwqa(ToQRIfveFCwl){I(61Y0ev29pN55T&cOU>(!6W41+WM z0iowZZH+X*MU4Caw%}vD5}-7+z~R`mD*z}n;-OVWGhQ6)A0afO&gIB}p zhde%nU&HPGOm%#t%&b=Y)zKF~x;H>9R5A(|sbPG|KpTw-r9DE&uBg@lT|Q=lU{$Cu z4C+3sVWPYjPHUl10%aM{bIw~Ax5x_DS6oDlw$O0)!rLPs$ODBa^0q{`I zq4Z%I6vL0xAoYEQLYte+Kd-u`+CV=i^^tH8Q6Ot*q%ctaki#kfr7&$nisIDp6kJ83 zES0bs?ICOxg{c0L*jUy^$D)Tav}_+X=WU@<;Vr~NSvO;P6c1pSVU$RG%fRO<0?&<+ z5Yjl-Fb~ZXVMWm+DjkQm5wGle1_x1zkG_YEf~OC8WJeIM#G*F8WT{4t#?h_}f%Iu! zu*o!tRjdVWLHKQSKq^!S#3Yp5GE@|Rg*dO-!RCC9lWR9EV-yL<${Ni!fJnd-Po)Vw zH7BH=R7DSMK-02Jx_hQK2fGsCIoO?52kY}ifG>jtA>1=TyCF;w?;d)v3V>c@#8#*w z&475qa|3`Dsu_t+ps*(JLCYdEkXlOzpahyns7KMOH7JAtipawn?2-WlV}bZCwnl64 zel#zK)*>vtv_yfhpqY&;suLP{@^9+}Bju1%>6#%Gbo06bsiIxcnCby_N zQIz9j5{JkrN^*cB2=iW2_pAb>M9@EAei$om^7BG(NO2UbgVIKs+`^C&v2DKG>Y}Xa zuS}ahkYu8aK`$J2wx0mwz>*YlG`e;y@_203yPdm|uLI=e>iDd_qKdk1=xYiGhh2%U z^1-W~p@X+9B6LaVW`|!}9v~52;G#DNlyx+)TcxccbgA5N1${P0z^Xb;`(BOk+7Q;h> z_nEmIZKVtk4TgsX!$X7iOlNREa(HO)fg_9Ip~3Lb;Q#H=AaW0_te!_^JK9&h9RDj} KabI=hi2nwvapd0s diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 88294fc50b5f1c57339c90b292caf3a0268c5e49..15bbb6c23e983c630ed5d799f0795e8f647dbff7 100644 GIT binary patch delta 83 zcmX>*Rpjhckqvt|4dXLR^Ro&qGxSYU4U?0MlTs25Oia_v4NXmx4GdC}EQ}0HjV(+q jQj?4=O)ZU#OpKe~a<;$aWCUU+AZ7+)mg#RfSswrZnH(GG delta 83 zcmX>*Rpjhckqvt|4b$Q?vdk)rEcBBtk_}8vj4X^z(##Dl%}o+h4a|*FQjHVSEYmEE j4HAuwlTA`h&CHtLa<;$aWCUU+AZ7+)mg#RfSswrZn4cUq diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 90c8c4082829d8a2121da732e86a15476a7d700d..0d2c8187f6399f1971803f0558801563186edc11 100644 GIT binary patch delta 3887 zcmeHJy^CE%6z2{WEWDLO}EQSLmd zb?CEeTa#;Bo%}`s{B%_O+f6@z>xLW4;yeCw;i&j)^1T$I8`f9E@ws2tXJ@Z>!#_qm zHNEkAH~G_wb-9>|@mhLI+ClP}qI9(YMQ$?XR41ENtUa=b#?-2kjG;PSC`y4+M4dfDiy4g_k!*KdxM=cG zN@JMRrFbHi0V<8!25D&?N~`h|N~`b)<#i?uC~(I>zxCnD2dhhG&o1{%-WMA@Pudy; z>6lr*_{vRd%(9eSWGx+zEgzh``K|b}+h{CmiK`xe<+W2MPQLik%cmaB&S3YRZcT1! zb-5qDUK5A<7Ort3&pbOF0ayf`jq_B%x)PnSJSR=;FRBKdEjN>?z?xCIB>oqJ3CM$E zx`vv$+`tljVz2nFE|PL;Bt!;aLMWcC)uR$>k;r1)xo1@0jjs2NHm34xcJV-diPu@j zS^*qHP$9Ztl|fy|N$+;$2QK7nSc1`I)|De>woWcf10|&gq|MSoj!{)6QDqk=Rgh(y z*^f&xcAm7Y%2U#|3g6e?^TP|b#1VELRZEdIj9Cz@j;3U-YxV4iI#`(Pi5#&rAcLrx ztwxgdP9pm&6~2}<6Co%S9T7k<>^~TMLW%4R>wfj zNpQr(j&CYC1PtV5O`1(JB&gi?t^`}rG?n1x&&3zr25a}B%i61|+Fw&G{H-u(#NkHG(h?|uZ%zdY delta 3934 zcmeHJJ&0UY6y{yFa0zN*j5aziOAvxf_TGEW{j<Kd|8SK3(@n0wcJe>=JK6Phpr}lPN z{|5HlW#sJ-@CWga2$6fvMz!}Y>e=LRAtC8ZRJE{G+% z)&a2s)FNKyyB>qXFx2N6|B24zg1WTdoAQ9=|pL%n;2Ju~b- zV%NGRg38w!@Adu&%!m@NC%2gIlXc!8sWpm>QYLC=C{l$+lMQN@ zgRnB`oDB7ybSH;|ajWZ#iN#5p3C{tgHz6vHHf#DwYf71>(mJ_rUu9y@IJc5?Pg8F} z!7+{RoLl;EdExx|#eN~g0-5mVk^~l)J-316$BjUwX@wnLEw7CL9~|EJjD6l+Xw7MX zjy-zx7-FotBUF_s6A ziTG<6>5!Ca41o-& z4XsE>)^G@;ZU$+2 zXnE%}2PcD_He?IJ#E|;~7_XMMC=#t!;+UOwq$*x`ZL;E!k+^!9EVr@*TKGoOD8`x4 zjI3Qpe$icMOl_~lT5{c6-D(^evaeTH+0%WC*VvKu`h8~VU)R|itx(z-bR(5!(Kw67 kSu~E{DQ3|)PUu-Q?w?GvXqbp|@npnQ{^c2@pzX3B4y%g$N=bb_7IJ6crp{TM)tC z1yM(@1<`B40wU_Gq6k(juNTD5RlilvB$>&Oy#Mz+|9$`edGNWH%-MUjz1P}nt-bc1 zGe10#^Vu8Swm;C^Q8mxKsAjP~ufQF41Ou)>$Zyx&5wFAT4%+RZfX``nyL@h6IN;LV zy3?t-b{=fLWMGavtb0RVzsv5>?OHhK^Xp-|ClGOXy}^Jz;)oWEUfm?j{?S=Gd-yV% z+3XIl?y-kGE-h%+f*#%H3x&e&NFeC;hI|fpIBFk#S<^smeeHL)DHY9ZK8Gvp4*NBS z&#P-;d)OcHh1{W_*QG~7Ay1geH3@{|z8*asq;vW-zgKreoS~5B4#2?mh$8@V;R*U8 zKF!C{H3fv^#H2QzY(clj9r62}A-mt9g&a>YC3~}@E8l7%OYabw(JgPiEH~dNI?9S7#VQN$6holDJ2vG-t^3x=^1DR0 zT8yjj60LV0-Zxb!p6KldY_iS0VnFng10AAi@3p9FY8id|oxSvUFa29AZ9A3b(d*t_ zXTVhNR=PzmK9F4x4Vp|lx4yTro!shDd&sTtDi-0|~2-QEG@xgh*h8fE!wfl%!&V+9^jBwXmVg z$gLr*Qvi}!v70lMW)^XsSNhk0DQ)enSky~wF1dSy$TE8z`7STck0?#mpGo}*VyA>- zIZ{smD=5{HU3VGoSwT-+cT`80$9n?WG zd#0K$ufjuv)vTesr_D>Y^L0#7UEsi-Zb5^6e?g z0{Spys^Z2EvGb=YZ3Pji3uu7y!gR%J5q46eJT_VMH@ozFyHnbx2%m82a@)g7M(pD% zjTOF0GAV{3r}r-^Pr*%Y`uM^aM!j@4=a5wCU3r%mXX}6C=L~#X1mogix{0o6u2} zG>{j$WHg|Y8jdMlev{Hg$hRZr7P81KTQ&2%teWR@F2h@xv-`WFIw~c*B}`h3 zFw4W2tCjN5J>Wst+2rDtid(F;MUMwP(dS<4BoFUUTFYHK6tB43CXcUI##k#*m^*CI zMSCV}+Ns!hgZ08=%6#!8&5d;$1IWcYl}ho7ZR2rsv9-!TS~b@xZns5`OfLo|a`#p0 zY9%a>tWy?>Uku(Sh__s{MdXXNxy*7QVz+{aE#hur%Owpgr8b%S5ZK7E+eL5DJQv71 z$uPtTgZ3p%yE2!?rHq$;7>Rs(8|({9o>uZypUW35d8-dSWWhs=K?Ub52^ZhUHUdm* z3<*{vw=;9){db7*2%Rne{)f_%@VAZYO8d*iX1T+r=7@_)R_j{Ej!xK@SIbw9yGwMY zr?$Yjj^j1CIANCcghIoMmb_sTAsk&Xi~t85xB1D+MjqfZ#sHt<0otBd1}VBM-L2%w z70)YUYCqpA(#5;RkTxTS{khSB2gb{-yObUbloQ=`Ae8jnjW)XCOCHRfj3=+XU*sWR zw%ql+(vq>O`A_%g*7ur=pLrw?5`5iA_VP%cN*c)y9!bwUHo?3+S^BZ^vlx{Z-SL4- zl;z3FVX)tUze*Vx{NqS;D8RN<%EUZ|2@_1m8$K!&7XcV9<0la8ygXPddC}?LE4}2(-s<<_DG&_Ssr5w!dpwWb z##;uz=dp1QfTP=>hgb5*Z2*688`c-F{}n*$2YdmU7B5lSkr#D*`n~{nLe%#l;GcPN zzgbx;vbytVUdG0D-I+Q)wCzrA004;+VeQD1xzm-t&5QERIAdPFanGCO;DKt57-SH6 z1Bn#nMR6ti@@OT(TyNW}TpermlJcBM-tJO+Vl~19sgI7~h)Naxgzl+L<+v+$_iGSe z2v>|Gd2Q&kIuq-3J0szn14ny6Zk2$m0EhMFi_G$7n~ z*@Ea!_y{IfZXByROt535{6gBt8Ba1iPA#VP*vuoS&EF@e1uDQ%b|BBGPz$J6-dUjz zVz?{6Kux|eQO)O`KPRe1-1Gid$Z7Zt)ot?RyJ+t&KaW4jE;H4kibt-xNy&Kf2W6;` zkIzfr_>ov*2V9$ljjGhn~|Q~5+`4pkoI4E#@?y+AE7 zuy!s`hh`D43`aGC5 z1Y==ZpC5l5d%ik~;9hAVpvJfILbZ_Lp1)8XNge%Li>~z&C6U{o9oOX+SlQkBbCUEx zCt)N>-*$p>XhM>N8x>5vIY)vAjdG+c{FFSj@%`B$U5mua`?I?X_GgE*78|SjvqPeX z+5O4go!_6_-8I-h8<5c50Wvu$qBOEUr%1%SE=8h8N|92@A`Mw?M6%KT>>M95WLb}m z_ZhO#!`&dnk-h=|k*}=oD9i%*VveM&mAO5{D6^XwQj(O4;X6!Q*(8;oVxl~+vp8FP z-=722H~le3qC7=0%f($pr4R!sLs7EuF+-L-13}|AxBvWh#>UR4KJ|H&Qb?3I~BJ-QN-2_R0X*B<7(qaNQ!25{VccL2rR{R24e!e0uU zZz93H132#f#4yJRhT^VeAQ^_`Ed&#CTVK(g;x2#?I<*5j#ogBjP~7b`kj-~L;=De9 z<1X=ebwItiJA5D;;ztNpGLQ{%hQaTBY@CAp@~!lF;y|*)g##&9`~bTr%H92hk*$~D z=X@*C8a$99@3jW~BM7^8ARE^m2K`U4aSPG6(C1reY@GV9C1Msr9L!AG3f0>D)d3WM z-?wl8evN5aKSx@xqD45Bf7a;)CLV*Z@)hgk7i3`A!U+%!bD@s;s1q=+BR(-4t*i*9 z*Y;ye>o-U;BcHXRGn5CRI$<(2CZAX9w+J;dKb{PMBaIWVP*(;&SA1<1ZSzSrXXTS> zEI%M-TkOtfUaj(3GvAFA{S_abCCE!hiT(n1lMjv(zD%ESZcw+`TAR=M`xR-e$!Gm- zF+@9ojkf?%%$w*z=92;+194%y^)vQMl8@(n4S!xAQd(Mx;$`{Kv%k}!d;}64-zD(C z1U~H_BRnZ&dB>3DFC@D+pLPAUA#OXo<7pwx%eaA*-724yeZmqQ z_=Ag?cOEa?84V|*wcMtQ0XM8@ZaKpWoLV7~49fAF=TnY<0&OTm+7xktZ0iM=Q&hk% z$5%jhpv*-InwV8UYg3seHxz>FT*@F969_I%Wqq8jtS$scxUQhq4lYJ~ zmogpybdRF?Cl`?Vw->PbTO#Gj)Gc4|DlO&hML?ml0BvBR$)2xc$uEM%xdHTqwK=^# zwkJoEy(q-M==$$lS~HR8>jh*7%I74U+&))rLBseIXrn2lA<)MKWD386#9#{TsELK4 zo%iefnM{F*zKVl}Yy}078-}T8^Cu_>db3gq)xpk|*%>Kk*x4Ee*m==(z{Wmy7Ka{s z+Q}L+3VqRhEOSp|XIiA8?$D@#{oRf$yC9L5)r zIY9LWTG$-&hk-e)w6i%Z2f5KL+-WCQz17a zI@lWMp$3FF(pLZ=B{zfx%xMR<$xc=<&?=wD9GUoHww#i$WEPe}WU&b+m8~FZCo5P^ zEo=q1O#mx+*}+!uBFKwYaMVFo@FfT`Oc|~KHQc|JAhpi`6rDmdxqA-y4YLzL$SHKf z7W75dQUuI$#%%zBhyb+%0gBj%9Hjq3Cr9iu#5v^Ph)tXh!qkB7Q`f(<1sB>y%BpsD zy4TAlVVpImhRTRT)kT)+I0$ws<58l?P|k*0p0coZaOK!M-^psDhlrC*XcY_?w&i27 zKLTiILV%8{>`b&OooAe}EKu`Ot255%%Vk6Jx`s7(I!Dyt9D%GXMcJK>{tzHxgeeN| z2-v<3ux^ms>IOLlrM=BbmZ>~RgOuxMh&JLeV}z9m@F?oCuK+kQOhT%3l3`{abdX_| zTbBjq&8{6+!wNo1lTjy)p_tTgDW(26t^%1e3s&ht2bCQ@aG*&Guw2Y|WRKZk&Mlzi ziKR!Yi_LkUi_E#7i=3K(zhsVcaA>^&7CqWHhAAf)@@Q3nT_toe%M~|d`A(3XnRTv# zN|xN+MV7q6MV2gAR)ciiU2Mt31C9{MlGi1c^66O7t>=5(81hn|Twrg4o>QD$WD$*I z7kHa22@9X~ER^(Sh+SBbehfyArK~ft@ez;;<03sg=pq|_1;z?CJRkcX1SGU!Kt`>1 zAxfKE4Q+T{iqjAi$|P5&D`jfx!;%IAOL16|dSGASzy^!Y;8-8s=}BWuXQRx&8e^h| zpHOjq5s<8Q2?A_#q1E>50KLF{B^sIQB8|-z{*t*~gk%-~ESl>L40Aofkh$JvaJv}6 zwrX*k6#zo$)DGxmvhy@D*?($mvIPslWanvYvcxB>vB|F2@i?uUiH`5#4oa5Ea7-g>ZRsX! zy#o7>0TNm(Ad|->N(Z%u*1ABK>sP5cbXEoxBsf}vl8DpC-nO(sC!C`u4GCd7BoKf@ zkvL41(c~0`;;o1_!F;3Ki z@R^U%&Lr8a#~F@}(G2={idNjlQSbchd@mh1{${{pm8F8@qskYEN0qNXS#mJ)TFLM7 z(geZTSx1@nfXGwbK6`ZAfo^ykbX@%hya(D`ykH1#Y6ikT=Y?am39uYQ2U&ifXla12 zZqPD_kJ9$@fLbyx9;FSh<$$+H69vFaq;#TogvXX)u*9+bqi$?>@z_MiX0V%97Kn5o zYrc(-V-(!c#iKNsR60t7zZ7J;Ahmpe#TYf2VJZoRVpIgcF#qU^U;$rki~u>UbYLYDx@sYEeJCYxIRFm8HkO4LE~tV zZ^6$eab$f3z`_2Jn{M;*HmVdZy$Nw9zOE8Fw^L9g@-kuOqI$O zaJrM=C>FP97wV*d^K?>xa-OWb8#Z}qKX$h2NNcIiI=Gp^HW3)<;6Y|-DMT=^*)6cz z>@DHYbyF<~?pw;wC0}~_?i_E|FB4X#dn14Ba9jYNsQ)LC_Z8Db8@#y?0*jFeV-{#7Th-cIg+Oq5v45ad@D zs$!bxpnS=n$-5HK&vf~rM|JbPW{}3X1r49@7IYR$n4CU43t6b~NIbugH9oSCHC~R5 z!wT7+=%J*LR1Sb>I~KzFEIxs7odj#R3v|-`ux9eehu}nkd+lZG6tl9Bd08ru*8+po z8#ZOWOut(UQ6}*isj#=@LC7L+E#wt?69|q5@_Zo~$TJ`j9(KcDT4Ga?+*1IHEA$Y< z93&XBj$_PK{_7ElT;JoMsEnf=l(t8OO8_FR&BqIAZKf4*z@LRgAK$bcAa=m499AaF z#TjBAR`K$M%ZW9-A{odO?L>YNO{-kF1L*fFVqFg_qG`2MBbg!6{}N|Kvf?oS8dO9p zby^XHlmLPZk~^M=SKs^L=X`n2P5|v)1Y=c;yIflD?ea#x2KGO9)o!Oty?5$@Z znWaUn)pZ8@GqLfiI`%7{fJ)pNeukt>S&FP&N^jdIBF!Czw6Gs3q=gL%qEza+7^G5%k-ROMc7B%l1Y|?Sse?#yXAEM+!Cz9`Ql#`} z5i71c!`KLh6z2voaIKbe5zHZv?B>%FIcb+sf1{2+Np`Bs{$4~XoHB@2cmd-5&O@X6 z8}a+4h*x&SS#X^Zu1a!s9xgX(P^sVH7sXl7*q}VWbP%tdRY-HuAXf5KhJeel@p2N7 z3cyxsST%^Wym=7$;}rruL9Flnh9s9`<6A7r+q*@Y@;ZL*CjgEZ5)v?^`r9u>w0M^{le4W#F)+Lp{xoFx zt3mr}qz&gTFNyY1Tcn$E0`)vZ`2<^j7d;2_TFo2GDjzkNR9-fioq3tuz1KL6S&wvv z0yr+$c?=dNFw*)(kS<|B-GE@{4X$0T;aUn7>Ke+=Sa&TROnSd%FzbCIVir?3tAjWe z4JN&xs`loj1L;%M-kgaS+*8-yGUHHn+5J;68yE++ph%AoX0v(A7~w70xCg|-5Ka%T z3?`E~0;7gpb2Ik8!sDP){^R@^YwDee;*P-$H-o1vzd89V{nX{RxcEj<;1uPzEG<6{ zST|0%EluOR8%6$eFdJo7F>7)gHnuC~aneKEVhknOVViREv3YRSUAhQC|nUT=X$blFnToDKwyicShVwPh(%yfv`;t_Mv5-&+G4Wr ztBcvC!C!J|4VTO5tV92<48B_8If<1$?z()%H4~!}tbpSqvq}9b_*Pnv> zhjdZ4eGdY{>S9h8iP1`!RIDebtir)2k8ZQ1uEJq&Q&qSQaQ+{Ms?+tKtZU0NIELTl z{`W<-Xg7pibqw3u$o-#ixUnr48d~c+L&#e94PkG*kA$W(u-B2$n?u-Oe`K(K5f~Y)sf5?? z8whqrN!(zSf7Md3P}iIMjNbUQA!xNq54ryfSV4F{*|HC@U*nmgNK9N`9>Ug}q9CW` z+v)0igIZgr2f7k3zBhpBP!FbV=7yG#mgUONK}p3W?24xu!+RG6oK!+CN>+RU5EUh8 zw8~jHiZa|H{{n-dR2-Hte#TT>p7W(JXBCw+^ui5Fa_xnk57|V6f?WIbq!BeJ$F2wMDp!*1n~n;b0@)l4BUs*acmt^N+x2Vhfy;3xVT6OqC`d^?gRpjD&;KCQ_7Bw=)uX$j{x;- z7M#436m_?{=n<=N?NbT08YLL4tU!6PWpz+lqTCc0N>=>@rg|d_W&I7AZzx4Yixte< z`fqG=0RY~7Ki-UPz7s#J#iiu;e4M!Ws~J_}HvP)QIKInu97j9W+Ppc?{h^dEbP2iY zFHvG`%WdG3_%4?mpsL0ty9KJ6Syva!mddYCdUFkB9oxZ&;$5z>NXGa^Lk`j!J+$71 zt~t!4r_n)oxfWtu-{|`3S=IsEP7ZOzP}-FMT`Fe5Sue7?jo9_f1jbJ|vjeAM~ zAcRisfKHM9$)Ob4+YO`0Zq*Uz$)OzCiOLiuvSG}x7#mB6 zadt%y#ltAx&KQRA)>?x7#ejqx4?w1U08#2Yj0!;)8q`N4;Id)tNUk%emto`826cM4 z63Bvq0U%K#tiHo2<~7?nlzd3B95hfpOFVAS7=tu+4kguWXVt(|W2}Pv`lOoAhOs4l z3Zh`RG7l#Wh~XTrge>i-@>Q-%r1dv|qY`>DSRR3q61>BCQYIppYj|7tQOQogBt`AXdM@(DAkg-sBQc>GmJJ9=?s|kPnO!dZxq3pz56Rvf-?$ zDkQXcIBV)^L#SEUc*Stm6g{jSPMX>RfUnc!j%cgw4R94P8=s)(E{ei6)pH=T+wPMhB|`9SdA3_E@Pc% zkKh?vfsL6XSPXhdA3;kP0Es1G0ZS|jG#gw-3co;Rk5IildgEqRL$<{Rhc(Dya2e^m zu#9vL%B5uVr9Aa)v0wyid_IVY%lrBfr15nlSmW@QRCW!LSqreJ@kbfvA%Y=|?>4xt zL$K#?2>hiL03md02XxZ-nh~_HkHF*A>R4&(t(wG|5v*=y@tX<3TgPlUWn;ZzIU8 z9hbq-p{}s8c|u*Gv3D?_a042Qrzwn-!&%LeTkk;0FB?JYWW@+tC$J=FoqU$Bo((k+ z(5pv00;9)e^6p4lCi`JLSnh_uWasxGmAxZ*nf$~s#|eg(iDeWo`}+}0jH+EG07B^0 z4(PN@ULQ%zq}M2pe-9(h>mzxY5T92^(lR;48z`~`zhdDOub{|o=SsZMmHHhN*_m;$ zx`i-&6kEWPC{f8McC0gup*@C;Q%12zqlby3Xay{U;X)vN9Q!9qhYsJoqQV($>~uB1 z3lSSUs^KCy^}8=zd}pnZcVEP1Hw^w1@4kQonK)qGAg?tB`5el-b`+cW9mXJ^#>Oo? z$W6Lx7Pq1<`@&ZU@=lF7YeU9Uyi+5kjISBu>_Tx~9f`J! z*YXQg*tO-Lsgn6t7J-}pWfZ&l6EG~WUpOb;U8)XpO%SbR| zG?}rY*MWKn6ipdQUO>QYeFY&$j*eThJT_G2`?u7Q!6dQr&~`M1`Lm>dh+3(%r4D({ zLZy`jDYP0*rhMwxh44M?Q@<`GeqY;|#gwlL$%6NM#Np}`4PSwPnUEDZN-OIDlx59m zvS?)sb`*+RKr~De_Frj;EiphKEH(V4`)|=!OQ}$cswg(l>5B zu_~DAT_*UVlK23Ofu?#s43-`aqgwI1185g~ zTl{dDYE~}e1~l*NRxm*D-TM-KcgnY(;M-A>q)!Rgp&neFnp&50ko_3NY=shVO}P1J z^wn_S0ZT4JR*zJ_5=G@~>%MaK)pN_qSI;VEUk!iB*?xwUrUNXdG?y~W#RNmXdOb6= zevV-4%HtL;0EEz~9ni^FPcA3x-Y!cg#FN;s5pQxi`)lG=SahDHbqOkn3?)zFCFRu*3I2smssyXY`@`iSu`rR@nl!$I-;srjm>ZF&?;Hzbl#@6uF zGO5SaVGNDS@+%GjzSJ-iGBPZ}hyi0b&Yr-IK4W+R(?icOXwxEN4Cf()`D!`kA=#BM zD6r-46K#3uDPLrhBz0=Q)RIp$1pFNZtSqOjV|+Pf9bmQOwy&HFZhPezHs$4G5=(93 z<}sWVm|6gVO=Gy=799f=jMoS(2M1m6(wjz!a{SVp=89i>(;9rwzsZBUr@ZF}pV_BzfjIF)ZCcZXk>qzGdc)+(s{KmA0a2wc& z@iojNW9!uX##pqLA)B63%9YWvjqB7q6wzy(T(w^97`0{g5jFYJzgQh8SKbSoEa-Uj zIyKt>fb6zL9k}Uk)!ebyI9$%~l01=bGhXM=2Lu85DzmwxTzb8_O_@l9EQ`2()Oyt$ zr=x@td7NCYUXOi_0<#8HB%DeyxrJ2DG!@DTH>jP(HRGa-gTusCz$#R(=HE z+fR?Gw}`vOMK|mmEw+t|?!IDxxOSY}J;~ewKw$Kl(Joi!%D0;-Qo=-CMR}hX zN4GmnX$N2k^ZL(I=k=M_7Z!0iHhhyhM^U~&2)Ff2oWld-Vuz#}65_{ka`6`Us`elC zs&)|< zkEi*&0FYt+mW}86dwr{Vlelp_&EJOcG=Ixs_Hq7}jgQYCQrpm88J;{}7sXcHp*9oZ znek*h@~*qo0`U?{2W{57)obE?Xjf{@d$oOJQj9l3d|lhT$t<0~lX>BT>J{(>X6oM+ z1zVppfo62{1fJ2-3DMjc8PP?rc8SkuGN>qZoK>x9_*kHC8amB+EC#JZUqrFT2LXa=(Sl`0q0@8Wh08Om)$d*fj-0BPsW zC_rJ3KdTH&7Uls%n4ju|InKho_n7*oXkEdsZ3ohBQ4#xjr#ej$-73hpJ;jak#wXO> zBEN#JsJ_5$D1@+9P}~A~jR^3H;r!-Su=AT$K~r(gQ|dk9e1rR2Nc7x_Sk2R_TM<_= z_jkEbe*F*iR&f(^|Crl|`(ow}^cvy*nZf-vgZsCUyR(wVUQkJ6@9~oQtr$~DGvD6a61b15 zBZf7>3)PO>NT{+(QV6hVM5qoe<+eA} z722(I25x>I$<#v3f zZ<9dq(p>Qruy|c9w&tLWPgG*Ak{w+?qLX;6GU_ka#AXsyxmh}H1sgwB-mTfVjtC02 z?0C>LM5blID>sfBa(>B^cm12-DIg}{WpO5PBZ;$MBI#`EL=5NdQ!V3JEu;Ukcau;2 z7ethoCdv(EW_#KT6B7cTU*>(Fz9sfg;DaAJ5fG~Y$W?aoQRQ=5*OI?b*-f15>vkH^&1qTCs|Cn^(6ZEHwf&1{igOIX(UL~ zF}C0jbqaiEx(Hro`hSUw?_CzNCZUaXdMl+&1@MJUx$R>R=zlatr7c@>EnxcpL&UO{ zX&Xly?}}M|Bh1cOlW3LXwW66Kvm8E&%rbuxxe`z`1(zg6FKfk#?X8BUZ<-VXSF%uP zw;QH=DIVfJ4j+K%j!ClAW-b(uOrmvvQ=?QbHK=}JP(3n<7F#>bbhaY?WUX4)psasP zioNSLeW{2xlWFN+Z!{`ClOLkkWE#~i+(@JPl}7~>(LtVKRCgNu$HV1f{1VET$><>a zsWneblFCNY8u@#XXxEUmaIUGh0taSq!ut@@MwptX zIi|p(2O}J;k`eZm{(Wlu=sEw&g`?w&H`Gzq*Nho}U^8Bl6f5dUaS2Ot;S_RTvA`r# zv8vq40F=FDx5n9?68mYYX_u-zggqtJ?ndLunI@O2JZs21JI$=$wn3Sab!q_uarn?n!Yzk-Y7yC^G;x`Z)b}!I&$ZvYJ zw(o_2$*r`INB%3mBLslHLDQuOK*lhH`N%JVrmsZaRHpc4$mCG^)x(00@~~-AEda7q z1|Uz^){7a^;wt&vlB3yU ztwIJpj*fTeob|}h61SLy!IG*W_bGv7H?EYI!>lJZy zI%{k4W^ii9>NIk6dhEH)CY1n4B|RC9Rg%P}KdD5QD;|X4(?M>V3hR#Q0hu#MC+TpQ z4aKS0$lFab6~)c~R1g?AgEZ4|25TmLMy+P{OlQp`vGRas3@_9lN(*(Y<}j<7KncCj z+jp2cS(Qr+09=McZ~zz1U{7@34E98U83~>UuqnHk1_HmKj3+glR@8MzS8JfvcvSVqWm}a&|BJ~+(T*A zD<6ZDc%Q8Yz0rYJ?kLW(bZBcY!2mWC?x1F*PJ8}}7*RDE5!+G7!*h0T}vl4wq*IAtCcA7>}!9MmI z2DOhqHu)6sfWf0Tx3V`$l4qcyvS)sPJm%F|n8%>zqNX17mAl=u*qPk?sp&OE9G->Q z3~DY4x&0oPb@cGNXVvIC924Ei;4)_tvFciJ7v_Al2?lqg;NW0kyZUm4?ch=eLMg|$91vfH*nStj*W^;&{ zGE?T>Zt5tHtx>ziuKSlMXhz3{3@J5Uhu9a+j+OmvYH3lfV!pWIwNH>k7BadQT!xBot1!jcp#OFZ>##aj!u#2J%@A6L)=JSk$ityF`^cFo~j<5?uaxyC)n zyFdV6ave#0bD8hTi`9C3zf0!(cSmz`c}_?3%?VDc-P}axrn$^qk*oH@2v(N27vD9? zydN{iY9#zf1t58ZeQwf_TXhB2%ey48o|eRVw845r9c%mC#>Nd_P{8>n))z4AWy!2p zyad`2Mn%n*Kq|RhK+U1R`iVCUrHZM;0r+eDU zHNDMKlT+1Pb{;MInEQ+3Dh@wIRSC{xYV7W-A9eEd3#rE_wzpjXxRUCdE z8DK6Dfhr0=(3U>Xe6G>gMcz5k+)tbv?~5t<<~~aL#?L44mmv739sq~J(M+b!xlWQK z)u^f>xnhvHGt?$3PsUS)n}9T=3LC3p8|>!Mbhd1H%e`XuwfzY?#4^GkRUCD{0z;}-lY&X36>+eNqwYdO)f9Dc zriE5bMG;3e=`+6?llOt|48mW0Xu-eQW}CmXD&${sR@MBaOP7UhHu}6YxM)eZg-e4U zIg}fIQZw4v;S0hp_~pYEZo3oSqlRs*u}yRPd@WqM3tqkZwVK%qnj9{>?rY(7!E4#l zOzo+~>+yM7`0TpOU14h93}E2LBjHsn-HOd!bN<8JJIA><_}Pn!YCaU&fpa*nTFxC} z9+5YH>1>*u+4W~Gs8D+kcQ>MuW8BWPsBKi4*i&Kt`6DN66}B=FZtR z8(d3(#Nq77q9qIc=gwbrHYX19)1~ID|5qpFokvYwW!f^c_x}TeWbxboS_LtM$i0JS zi8f-j*OjJ^hHZ-x&i{kDl$962e&9c6tF7vO@T^Oa?iM`4vq3q-&$JHJnj?nmg9Swk z@O@f( z9z$ockAEXwo>*yq3SRDZq{!Ttk96MVsYn@g-cOgF%goc0OTvY6%Vp*f@PZx|*nwN47)ya% zah0WQjwj@?yIl5=*B@~KmgWx!>`sRUGWxweR-(;R;%CSeZNHAy*xj`z; zW%uY2r#Bdigngc%9@cbOSpuWk{)+iQCCBg4L!pSn9?7@WZ4dgwzJSZ+35+&Es|k{7%%0 z%jT)_hJ+z!eF)9iUL3GvxBSVxXH{ip}rxM?$(I z;IzZ&-2q+qYA(&MYe7%IYmeyg203Br@Z@dgdlZ|!aklVgc*xFzENPDY2g1VciS* zgq^%@*TO-cUk}?ofr!KF4F>EHM@+F=w-bw|V*@kGF+G@maJ(1S2U-R1U$>>BJwcaG*PKCjAQJLKf`PC<>~}zwN{fMj&nr1WO#|xz zdLi_K&ajT_*P}T?ZfDr#3dM34092Da(P`LonqVn&{~PkKw$E95=i^Tq*IR61zdHh7 zJ$D6tA@J+E9afMlVE5WV29Mt#zEqRkHe+G7ucM-1A*E9gF7C=`YX54yb}m_txx zrsXzeMN{fYT0c#gXCibHQ|7N-ZA}czNvka<1Q)`6u;M}<59rgQ>0nPzdpH2*>GOL- zG39HpOq(Aad<4cG4C!FVA($nwD?MZndOZ$MalO@+1A)>Vbm)G+2TU~N1_f&{lg>y8 zf`i@XV&7#yY5qX5HNo62zkJg&Hm3>Z^7vq@U9Nn~(k#al1jiAG1oZ&el+PRSyMy+y z4uK#9Ye+K!5xY$ob07$-#qJITG!1UY2g2Y=Ty_^MssQ{b;r=!8@CHAT4NKPp)m9yr zvC9|I-9e|@7xdeGL6|TN-aHmxY)uNVZLrm0Yl3w^mcDP9k>m5&HCS1GsP#g)_4@+; zh%*TCX+a0fye463#H~{I_(QPl!+xjJsd*y~-KRStD7ftQ5Cq0RkQbZH<#*};=Jmh8xLohn!Au%aBWi16mjsqXw}~4|)Tbf`oiA z$X6h^HKm}$1=NInIufCqnzZ&V!}YTwUrHGuRrVs-x1P5 zOuqw^;|+!(r`5qC!@7@SLXJ-lhQQV^u?lKIr_1m5c)^@ONJx|PfRQFrM(K$JK)oI( zL`XX&33j;3_ zhIGRd2szvims5k3Jp${V{THdH8+iO+1pW`p3P$AskD$XhYh0LH1mGt^NJU)|BRR;J!wKG{X_9?^t}`I^AKv<^Y!kdzdgJ86kHl z=ymCkXL-W$aMy&kyooES2}4bSZffG<>#tkm!;%ggY#M0!MI5l53+Xy6L5Ohlg z4Olp&*+CaBu!Pz@kj>``hTS1JZ}T`qnhr(^o)cV|FA{;RMlc+%zy843Au9rR20IE^ zd=M021x8>Wf@w_NZ^$}rCTeSW{!#G0EZp^Gtx{a?9Cv4IqbM=2!%Dj z8`m17oUU*XB6WP53RzhgaQQXZjl$}z7x{AhVaUHhZrIN;kI-L_#MoCU?!Xp)G+<2i+ncS7jlL52)MNXZ2Tc7cRIZhNZ5Q{$O0j=j{)p= zpwh;xc)d$e!_;xsHrNDyni=xkHBh+A{` zgSy8X1Y?7E>~O$d1MJfQ(mEm%GVFLE1$Kmxg?k|%a|bmyR2`hK{vv+JRDD{=q175F z>;V0Z^EWaySf`EghJw!+%TyaE0WvT6op`7vXc35GxXc{RkPo~+WLxoM%;*-B6ry*u9Wz(jFiiGtK*y zZjH0Xh30@b+bHAR+blh)Ahc@mGyEFoVQ z?m?hahJ^-N0`XvQPDpwjFxSq23wGX+(}jEiI}9cUQ2{c|CKQyk%$hRH#6{V}oH=Tj zSrdbba2W-*0%2GcK__gxA!qXFutU%wO@R$7coI+8NXjBk*s0kau23N40@oSxf&PPb z*yjcynG3^DN1=6c(Gt=yFZh0#6kLPBh+l)9uMd&~r%Q(|v5VK4ttrNoUD}%9OO{zc z>19p?D|#Ux7-s-ps26njq3i(hEucAJtL}$m^3z}q(9&b24ElP zcX%P~fS=r{-PLu2J-!=vija5%s0S8p06c3D^38}7woK`EEC@Ei8h(Zet9*?!HG&tYHZ^?IQW3xT6vV%ZdP4r;!}d2bqN9V?%oZ_RK( zI+U;RE9iJn2L&4_pE&$bj)lY-3PO4i<`*hhVW<+pDvXzgn)qHiMl{^iHKv|mIC1SX zWtxf5P0bmsG@HEqD@*&FCWeH2pq|pQ*y@$7R#;{>S+75RPH_61An|zO^f^J@=}K*Y zJAF=Y`kdhOIRPBwB!;b~j2re9=LB#X zcgpwI{{QiuphV0G@pr$zGro3k?PBZjVNBuGIp6 zAiQ88eW85mjWy3tm-{ZVIK9u(3wxEE zda<=nr_bR#jO$wBx6udAU+6zG41^A1lkGe?W`^0O*8Ccj&s=QnB9?^Yhe!aV`~#j> zybW)3Ut4og2>(S1*OE|cK@9wiLaePBPyhPh+w^N|?DQ|PTT2|)0%iQX1Su?=*Ad>P zP;(qU&l^?qBmAjp2EQy>a{@m-fuDZDPsf_UKR@HAgDaZDzrWze3tGTGzv3r+nRv}_ z_z7QuTJt-8!uOul{DGhFy=XNj@e{t;s^;JL3EzEG^Cy17chl7Tg`e=HCN+QKC;Y;2 z%^6|%2fsO5qu?j}LQstepJ4*3!C3Zk>mGQce^@HptoG*J0bp5RV?m|tvcft-XknSY z#X3-Q56hA*R+oHbh1Hgp3o!7Nlj1nf5q?AHwJ z4-IU1PKE7lmw^3~fqk5@6(M(AXoi<_S!Ky8Ycm1Osfb*XkwBy?+_He_7o8$Bc}o98 zBG8RV@8F#qiEjpO>8)>)P=TDBw@zHwe(d|ia0 z+o#(nP+nwEUSLpOo=6#*Q;GLzhXf)w8ALW3MD9r>0?nz2{FI$QWVb=&d4tHlL?Y0f ziiqARfylQ8k*^IRza(cxo7fHf#+1%FLg=49%Nwa26nlD z4bQ2tn{`XT4jb431AD1~4bQ2t$K@noUuR%nV_g` zfZb<4sZr@EcdxUS2@fN~_fcm8?wbbg9>)F1z}=G)_a|2Z?#~A9kBqC<&_pXg zro`3V3Ao*Ac%D1U4N;h@0gNj;*EH1ogVxk~cX$#gjx;F34;~}MDF(&iOfgw?Cw&RX z=NQNf8TnEJd0}eglEMV!n+@bmjC`+wyeT#EnxX{c7Y*cHjQqBNyel>G>w^-IzcY}J zGV<>R^3l}DZHwz8E18?NSshBc^xtAFgCD0(+hWa!ry*M!+WF)m35bIU5q_v15yvoM zVM@fCOA-(xgcxMRa~Uy6hzSe*WV6%?-%y%B?RuiNj;Y>%z4xPz!b1Er1& z_`2bOENZLcDBw2gxS)*nLv^1pqsVAq2g_HgaodiN#EynO@SfTp_~UZ*SUu^S$jFQj=K!I0AzHo{(~ z=5sm&u8{6_?>(Hcti)!7d_E)Wa0WG}!=<@&ugmZ9_zkx=V7UANpC_V?yt1Gfpvb|6 zd3(?E=CrVR9l%rz>OjWj@_EC4SJ-EG4ZF+lbOanhq;^$)(=bG=O(kn#GyJ;W>o@#P zyB>BqeTF~a^*B8NEuees9*5x&qBRW^Y2(e?`^Cs1Eo^>I*yZuqy+Nll=ra5+!www` zhwQrB<8g&Uex%ksP+M>Ny=+38&Ndh!w@(X){XvJ*+@b|Tj- z5R&_1;pAG?50SE*IaPrQR%_Y8}i?PkT%MHi7Z4U95*_$eyeW#emw+4p_1_eJS)O{nfP2%!oTA}(-?p&it+9L0zx?B^*MGcqolX9Cxy{3~+bHeL zPH(BEM|@v~^IT_!Dk7+P7xY~|Yx7(y{6Bkr6VQU@-iLn}&pOPqduOKOy)>lcsKA=< zpTmZBa5Mo`gaRh92IzCnMAL-Odyo9|rIKe)-yh`Mvk}cEfCWj%FNaKgp-IWg*kYWc zoP+;8e!fzmaQ!*v>rMIq|ZthUN{#)3LOHcJJsga0A>>{TpR1)8KeW~6J*X~Yu1Dp#-+DuT__ zcFLDZS8r3@K$eZW(JYFf|5PrFC|mF5YfdS-yrNLCn5ZAV-Y|^zQim6fpOvR=&%ySj zu}cp}bfU+*;DF6_bKeBDBR_FMF{wCU2QOkdW*sSU--m3dlCHfywI^{J=+^nh_N+rX zLecU97&JDZk_~7(_L@D}t5suLUFW-Hc(!L?HHQ7q8V7B`L7^L(7xs8}rdL1}Q-K5BI zD$!wmaD*xv%Yq<{g+2qI5IS0_>{V4~sXbEn}2wk>P|4jo9Ti7>ptdIp(+}gpj^uE ziDyk#7SO}0$%;;G(aB0%Cg2x6%$!*F#5BcYVQw;LepfAUb9?!lwMu{Zjkc;&u3%WP zv63w`JB?C!{Fh%bu+0c4In*{bqgrGtb3*Vdov+{=`Vf5*AmOYLr)mH&owL(nAaYu34`fD)Z~3Havpz76KG z-OW*pXK-$fSf+Ju#O9vM!NdO>zO50-W_=rxH?LA!TEL&A^K8yim%S;^hV4lMcLvXf za8bv#FkERJ7t@`*aGNrm4NULW8nHQ(TO&TJ*TQ%;?vU_mjYyrzs}ZTsZa}Yg6ZqWA zSQj%cT~2=T8*pfPsZ*nYsch7igKbHJ(ile3dCf^BCt4Cw1~FFe#nrK^h3JDP+NQK; zPEA-(dE>V16!HK9%VH8bAAeG57rkz)@`1w2goF*Lr&34*A}IX*7Nr&2>SS$s)=kPY z%4@uaD}5prpS56rEZ`dlD}(X3a;Q>b?Q5Q!SN~!GUz4c}RgNd%z9hI#n-29;e#Khd zsv+dh1(C{Q-6M6UtPCKC0@VYBgJacRY=1#SIb6cJ*?8qfWwh0WIQt8D;jkF1XAAi5 zacU9w-J*1}VoVCEiER8K&#W7z4m&^DQ<>YSEtlGoR5R3Q1l6Gd)HR#eY+kv!2$=V` zMNakK{_gov_-Q2dI<~K_?q5IxwSt6jI{BS zSxPSk*glg|(uGL5Z0DS_!e9SojC0Lo)FEaSjElPe1*(-xrwo`H-*n@77Lm8Z| zJr~=Px;EGVH{G7u%s4cHNL~Uc(X*>X&xW9kt8M(4Sy{_&l|8G#$}O^IRM=z##r0wU zh@G$!mJ7xsSLxO9*@APof+@WATh+r-N{KvBDVr*!O{x+oD^;t3ioV5 zWX)^`f8uwFi|@N%X~qBXJBUA4E9_$4>K?5EOQA5T8pKx% zdEs}=VCNJ@j!kv&?=EGn0G4O(Qp$PTY*q*1pXR`sE>>(T(TbgiPhz|iL+LCeBbknb z`xXi#8Br*VWHMF`DdaW3DWw*Ct}G-QnOP`oWU8nWHUh{ryhN!_A^+1Xbu39j79aux z5(NW;w4z)tMDZcjiwlKTH%d`vVdaf53TUrXSXW3|1wdj;Sip9v7nc3WW`1-H8zIz;%UCPzUmBdx) z&v)-vZ2YLfIw;*i?`~eY0|J?e-G$=UA%0DFzH5haFAH_2@waTCN`7)bM3h;l+4;&? zB;q8CfIw1tR>|QyVcA}ZuTq2++S zOO}PoHVaDu=8sBAwjtApyYq$X*;s_`$g6iMnTSs*g_J5xEUg3nUWk-Vy_6d4zDNj}coqU)h0uC|4p4dbdaP?i`-IPbuIVG>E@`rS3(3IoOH6 z`IvGp)0~m*@8rj`7q-;eT-NDaG0;yTzr1rJCGU(yppHCaFRUkoe`RXL0L*Z(-skd- ze*p8yJD1l)K<^D0Le3*UseJpNTeE)W^1@E$a+*-U2rL5BgrY}Qzh;9KC$6^WV&>9e#&3iljH12p8{Pdb z>^LH;kM{yMgUN=-cgK5S`|8Px8{0p9A2tfS{B@-VZ1kZXqG=uLJ%=EG;BCrSABYGw zils29E;hTch;cQL2W7tx!GP}=iZ$C0E()r&_m$!NEhtD(2(y8c1ij-^6#JL%YA+(o zA>;;jvhg3EV@Ed3SL`5*ox&8%Du@!VTcDId&cq(g{1!6{w;W)72`rvmC>6y!7b^n@ zZo)}SFx0=uWCI1_NZ_$k|6U-jl^V30_%{M^1Wj7RnhnHFh!Xwc^ck}Z1kh9@-iT+~ zNL=vg|1aeurDuc1t=SN}q!IaMQ3?_$=rFb@GE*c1kuAMwJ$d{TJ7C6y1Oz}G_%=f| znIKI->9{=DQbCSVCM43d!^YK}9HBzko(2xKTW-iDG1%llJ_2Hrjtv;?KE>KINPWs| zM4HxiDNF|9z7cZ~32Bjt;*O5WWPhVXM2ZmDoSi}i;`KC8K;-wWS+_*2%8H94yFYNU zqGF0ul_Fl*ft?$%eV=JvWdW~reldlrY_tFyL0}lBvRTDq!CsAE(~4tpsxl%@!9q>v zi*ofBR#sR{(dx=#a(kAm5fj!oV8}P*D3W7-F-ELCl5!*#%8@v^(vEdxPDi5@NyGMR zrz2@Lc z`7DQL*%iaO9VrF+hyb>(Pa=RF)h8an)|%Z~sYhgUAm=nt6fuMy)qz@4W7r7rf{o6D zNc-kK!d4y-qFe97%6s|e-GbmMs^#N?(-bci+fK0(8QCi;zW7sOmJ(k_- zFUt_cjz}-fheDd&Nce+3B8)vLrFjG^zaeQ#E%^LZABtiD4j79n;7dX5eHIL2hf97C z#STx;uR{qbiS4zBF!l+q{GcpUAca-J+^n=DrUy2vM9lSPk@0YB2Bkc2vhoenR2$^( zpu)CkT8`LIl$ONxQODadC4(O^Ddx!hFK5!O0;{t5s2OS*KDFd0tV&CE5%BuSV|f|r zFXy{^v5v40AHmiO0WHsC{q@MEfS>54w6#*jH6=84x0Q%J#fu1ZO^MLQ@)DsBqPV1l z_7uFzEQBeiJp~rC`Hhfvm^Qr6Pnc zFBP8Z7*%q+hh~{Y^`K)5@}sq%F7;9 z2k;~RWPf0{2`<(jWlP5bwvatoN?Q`kzo;_C+QzOzu4T%?1Vdh9z>Gd5*}V_HqtzeS zucfp~oh}ut)MJ`IFV^Z-D?%3cjW1N4`N;}F z#6nF!3Zl4BohrqJN*Tv}17VMLiWt*p7oVqRbJ2C&J3 zhJNgdzQPY=VcTVW$q#Hr!mv+zMJZwJto+RZtS6^6V;;%G-wMKNNW{W@BlaWjDNi(D z(gg|a=}VIwQccvi4p{fHL%uPb2#4h^6nq8c5IJ^o`Rnk4J+MFO?d2=r3fWR?s=dMt2^H}1|arn?@GW8oN;4{Q~A5f+5vCCAn21 z*yHxN>Hvh$sUFZtbt~;OoBqNpt71#?P{dnl7wRKkm)eE;ULtBDxrM>{RWW0B@5yHIQ^hZx{dSlPls18kv!nXj3~E@g05NQxbU0A`0!EMOme zh?R;-4vSeO8vwa~gSN8qO(w{Ko6PjGR5)lknuJsb@ZD1x>;(eKGB!!dQ-cjPLLMs> z#yUvh0~|u(gn0sbfeOFWP6{7o<==K!-LQuR-nfTN&-*gTV+!)P)J`UFk)2Ecv`r>3 zxfV=d2f(2T+y}pC0)KLl3A_R+bxc*mFX?a=l6eV+2|O$NTEP5`V8{giCArN;u+xsX z2>=M8Q$3)Q2^?^c3FPyG;g|{d5$}LQm;mv54q{-4{BcX}RABVwF~1#-+w6GMUzuz7 zq=sPwoHVIdhhQdpVS|AA<{GEa{T$>_-5C=NzQ-IaWRkj`D;Em`i|QxpDXR2^L(N528QkAeBGkAeDo5N#*(iQ2Dn2hblh~ zzo2r6UTPN0g|dxHs2zSuZR_zx$I4xCr9&ejUnY@B=~frH z>;SZF1ed)E+pI33aN=Tek;0pO10&DuGD`J-FFBG2C*%N|v{`B{JCc{z04L#B)==kZ zWw%_9!ms2@m$5o!E7t4QtFdYmbPm=G3l(nWmCM1kJP3n_YsR$*aI;Go*-97bS`fOF z`z~NPX^%v6L|@OGiOI=rAgtV9rAx)+r0>+L4LWr*3iuLsN_Z*di0Ii3Sbtdbj6ZiF znAQiV>R#+6=*)%8!7g=?ttuuy?jqK{*)!LiG&*T6y_3_SK{pdRG3zw9dEbjcDwB&0 z9^UZ6We#kc4BmAKTLcN|jTb`5Pl;I#aL~_9*2&LJfLA@x&%rO*EXUqf>%z}nC}5To z4Eee11xL#*2zE7+J(teo0EEz~9?;3;$LM7855T$Q9%T%zBV%-7@x*4NP8OdgA+`Na zklGM0hvEA%DY+YL%}#kUD?L+-C6jMo3oFpRpwh)kn9sq0 z;Gx_|=nfppZMP<6IMQU%K$uibq=!l)@+c|ZP84sXj@GLTBTL0RJg8q-aQ0Q~ZN6cU z@+$kCn@si=H<_$*3rQcz`o4?xF(k1CUPr*y`S$|sNdhCQeO+>T9Kl|}zSAkP@?@NX zg_^dAa>W-N*hV+4(cf_U6)-}ppH}*r5qYB+vATC)#E9ulZeha>Ut)?S*4EsvfE7E> zn4rV+<07 zNCnB?iEqCN`cr+G(m}C`XVN}VGy%mX@^X49^rfl190DYDCQV)rUSild0p9tUD0=b= z3SI3H_Bv1Y9dUqFi@{(xKx`ZZg?tlTG#vxi)y+B1P0Q z0LH|<*~3qM!gS(#6WTzh$cAB^`NnJ6L`uEES>pC}u(kgKbOA$)r=ffDtPUh>l*e z2+Lut%;g8S#L_)fk?kd`=;IYW?IQ%r_L5IiersS7MDm{=ag0nt#4>OLAod2CR^u^p zI+?}@nLbC#Bj8mOd^x};W%?K^XC-8^P{nkrpd1h&P#8$qz#elz%3*$F4ZO@oZ0R&P z9oy>!3*}4x+?8xRyibA}QMMy#H@g#Lf+JlxOPcwN^BkVOf9zV-U zI6;w0GgPgy9y@K$wxr-ch?KqFn-9DZ zqL!UEuuLemY$;YdV7W@LKOebVZs3XWvdHIebmSZQgV6t4&jL^?R5m08vK9+aIw4LF z-TY>^1dG;APvVq#TO2npvSDhT#XQdT;*@btcHDVz~S&X#OT1=Y+{)b=&D9FbUdt_j*D1g9g5<8Zs0lb zkQi+^BZkOBBc-A`;E@$8zt-jAF_5Q)A5(70@T+>iSnV}|lqWKwFa z!?wfy$Tj=}#Dj2$`CITsyJa$t0UpguBJxr{O2p;y{d<|$Iv;V{^{0uB=P7$xpG~VW ztaGrsXMeHdv^@zzo!6h-cspM6B$&rbAPEE;N;Tj0Bx_IS=}Ju;dm&<1_oFFSMdM3R z0Sqt2wHG}N8@W~e#f-ZgesLprH)5AWcAd1cyZVbD;V$GQlB3I!;_dy#UhY5w^f>~h zz1+KT_7@=VTPUvx6`qUJu~5_PqKx^`Tl!O&`*-LmcooaVh5XzZ?FOLU_|5wuRoR9gd|syWdkzprvJyF+%kBGNFl_@+ zb?_3)(f#lavyImrfV?JUQQP3NlVuLT%$%VDACbZ7o2&K|lHg^IwESlff6MjAXA1IP z$CgOmS7Y4*TC2pUPo*g=Mj01B4-1 z`R>={=HE0B!N?FgVXbc6h`iemj9Y<;AA3V)$*JiW5saV}d^CWpz!)g3U<+b?B=~K} zfduvjtT+T&FtCEAuf@1a9rO-z)7N4UDk<1%;#y3eGXb602~DA%i(LJkDBXmC8c42T^+0kBmfNWgN252mAsiHurYAbp12I{clh?%68hG2l0r7by z8`>09Q9^9FA!_OZPWuFOqLbSibn;#l`u2gsPdzR)ydCRy%brqUC#t)ba=Yl&(Ss}t zJk-g9taqP71IT=DYmu}oYU2J*&xAx${w9Faihr1-Qk4r}zl=zekyv3u6+XBMFq|!fdSV z$EKIXr@_cLzGWxji!x4w?qxI$t|$}JU=KETr)J>{iC;k(O@q$YIvq)ujc%f=KJdb{ z9dCd@qDwE;={?HMM$?de2r_9pG=q`X03%^7x6=U7l;8!2V8yznOiYR0*q~dZ*quk9 zZ+J5D9RfU9M)TsuGQRXM8=^cYx=N1s7JPQHEijUhL+#{<-9{6)sv7ha?u9_23;Rm% zQ+0MW4O-GbbZJ%|rz3VREiLu*z5OiFTk8Sr*|9P)H%^P*K8tn#5WTfh;S}0HFXb5a ztkgm{TSSl1ziS0$G(n=t6U2RH-C@tu=&l)z^u4k1r5{t^!QVUrv!wv#5-Ud6GFmY# zR3m1}yGLQg7|Zt`ime!<%f)P2id0-|Q8~>N{H3t%RUC@>$iSf3) zhJbe=VG+0i5D}nyAV7(+Ips7-o`*Jw7`XNs7}A__kr^XS!E%})&E|sfHl7#n@BBL# zRuD94iZquA?$ADgl9(gMu&*VN4PR$kKfum@R4%5-KjLHXE>?e!V^C_P=kLmClC-Q4 zTh8~e{kw9JMgw$=E4vV_L*-ux;I81GC1x<$@eEXNN1@H(qAA%u)$kq{r?m!yt-Q@YuT(TE0 z9HwZhS(LOr36aFsV<=LvoFZu-nLI_(VDS`5zw-?&8j%XIXl#IATr{4bL7+<;dn?4E zv6p&DFT;I-6nB9(@il|@5}@x8D9wm31@A8r@>3ip5k|igCt{(dU80OD$HNsgDOyyD zmE&u~d{~Su1yICvM+HrcGhM25!rijiJB(?rCgosz(iBL4^(Zd^m$3UDl@yGxIti1t zd!^V!^{*6>_(>ENQaj&+QMf885+BFk`W_;2I5#*I3yb0X?Nbo!7F0Gi@-tlBL^)zF zOE$jR*h!1-beSR3lvd zt{-Fh<6kOiH}F%XFzBC1bTVjD29Wuok_?)48AM5JF;gUh*u{RGA9y<#GE*T^|Hei#-CQ`vc zjg2|o)ij4o9O9+BnwHX`G*{D#VjzkBJO+&C7SC1Z7LA?TdrO^JT#V-HB0Je0D_@kIq{0EzWG@DQl-VGxAPfzjfP4#+6kK+h zBrl5o6=U6g5E+e|3eOHElGa@K{2?HJtHzSG^cgH#yY z@L=h#+2v&?_pI?9yS#RdQa?X8=#?7<{9!QEKq9@(5aEj)SlM!j=oS^ML(rU+9}-=# z5ate1K`z<}-2t;MPB!aw*XZ)HlBG@ylha6Umk`h5Me&@-SvY2GFgfPVR3q#fGGb`g ze!#%AdF_z+k;!GyEpVLH!ARudA>znn#Sow%FWc1)NxT~irvf_VOT=Y6EX9sXbeSPZ z7|R2|1YVFGgM{zl$8uHig6tpUppL-$r{thg;fWz+D+h-NM>q-ro){t=;XOly;~;9= zhr~`wfPcf25-7@(lE&hk6yi)ks^6eE>zHMz2r0&49fMb-)lw@x|3>O%-$N}s~sw|P=}Jt94cO$T{2Wm znlM%JlLe$-@!G61O;CCZ-)0_6ZQ`}r#exwW#l#uiIaItl`?O?oA<~NuZSd;sYl4&Y za@j(!&K@2rvhr6^WsJQ|fkPP}O$m`Z6O8#I=c$X}lzXG5+UU|k(`w5-#8snMx+?;$kF3TahT^ zQSy1i$ZM`1CcNebL_Lq1Ih`XD%few44bWS(?9O4dR^N({w+$0(^$-0nu2g$UN3E)(V>wQ{8e*8B{4 zHl=UO5~~0MQ@G2Ald6^sCsi@{rTz2+NNC}3p{Iy|*+4L)r+X#89SF7^$%^ebfDk&> z13GQT=M5(Xy$EgSbsj;SdBeqaocM%?3+2E)zw=wz``GO8l^x7W-4HL}oj*tCSd&=D z5?<$%;k0#F?NQC_$Z(<0pQMC)klWu$LRv(5wHKgH4o7{$&E$h#btsgC!vS23RQM7D zKt3EES#(@aNB}-(PND>N47E;Yk_RqZ3{d4;+J8X)MI%V{N+mYv)~B#;AlzNTC6fyM zMo_2(a1<&L(udF!2$eFz!%5S7G9o44_Dx6tw;B7MQGz+hs2>Xtr(J1)^iH$4if-+FphZF1#1EFK|9}@YP+;1QK0ZPi0{o&T`H~74i#;Pmpz}cj?#~2AfzDT=S1)0& zKF5xTZwLSc*#gxA1+s;mBght7juf`=D&p)MA#CAAEIc$q*n)gDS5Lm4sf+8G_)4lS zZ`LQwplBp5KJOrz^SEz_TE_;C6s!50SZ4rJ7;y^~+}u7?y_D6A6f^oD0>FDcl@M!D zcJVy%Tro_|Qs9F4Fg1s6f#Sta5CSsmi*RAI$KTFvEY4CAhd(-8HN$)RAdYDTYUuLs$=D!QEm}M@g6!Z;{!Mq)Bbdit&uz^7VaOqm zR1Nmf2($q9zz7Tv*e0+qd^x-GXcewKz}R45@IL&aC-`+Fd4kg;h0{Jwta1CsYpcKp zeuR<2*MGW=LNKK>KUSqqWPL{o$MXqFTg;b^g&?mpw^ym97OMIYsq|*2Mv~gcjS@ck z3xqx;`i46;%g0!8g6|)s_T=S9;gT$T=|jAft&N6DvRLA6k11u4If%uv3B4~IMeh6r z(wH|&O#dsTTwi156)2aCp{e4sQRL3IjuOiM7J)89sipGaunnK-W(1K9kHRE#C44DJ zTs7uP#=;d{607P{Wk6c7o)BXFh{X4d62AX6Db^{hd^sT&-!%!W#@v3&R*Rnhc|Sv@ncver%H51^tFZ2aFbm;TK@F1V*dG1wa5-^K)7P z*b*cxSM%C93DGt{lyMK_9Zi<9c{EuHUos844)3@CM_zHA(#nDy_0hsdeET)L>{0Jf z>iLb|z|%!;c-8nFe0sqR7p3-$CbMXb%y*6!X7RF=C<7~>7ZTAbPZj${lUW>w4&f@F zi9q`VZ_>$5d@i*T#fLz^H(?7|cLLrXKc&M>)W4j77ePseZYSZ1WcUU6)~W;8kE4bD zv&IO2l!c^QjS(vV6*9(<2Y~qkEG)U${*Yje8qd&2)8x-+$@`vyuV4_HRi_k(VB;2K zEqREhBN{0gnqkbH;v!>Lsur5I_*MDN-*sb1w^xr5y1kkghGeAH6=|&*BXoPe0K134 zNViYPo^(U7$5D8ZfxIV9!9q=IL>U9Mm19V?e}Qg89AGI#OvrlyLlLME$4kcu-TvWc z#f#sKF)01c>rTgt{EpMgQ2ZW@A+zlXNATkq(s*wqd}<779G3W+`D#g|`mz?*9$4R^ zN(?#`%vBTyz!zbbfDrh`khKVb%vBT+z-26wj>0;kdSVRk`KvO*gzPCl&Y%2MaSJ*5 zsb7`BEfa$Azsy&?V&7~>q64Z#5HKkrQ3=-9NQtO0whGOF0W1ar7D7BB#|Xl{%uC0R z9rS3q!oQ`ERS3>o!fa4pg0Xyis0e6Z7Uu;P*)^oD7h6L&uenYw=2{+n++atQSO)Hc zU(9>_2~k8W@Jf}41>m<5zb9m%xGzmkt$BKBM3~>%riFkn6Jy(VHP{gAaxS!y{b$~J)v#qh>9ac7~JvO99h2T^! zjzwX^k*;^FFo_y$5GFAg>#Kk{Mq*SLHI{rpXe{{v>rez3HCDujK!CzCqNb1K#VuKt z3arHoANyLyMEb2I8XeybFT3X!p7697y1g|Ho%Q*8KL z6`8}}mb^!6He8I)Qg}+s9b8$g-_=Ouxhjeco~feP0Q8Ts0laRIu#Iow2oFPq<74Bw z1M4_^8)}RN37E!-)PXV%D9F^o@v-sLK|m367p^#0z;|W_%uvVXdKyhy*EpKAK_sXF zaeR4dBwU7k3=V^^Zs<6nojNQG8b{ihHBM;9FY1JL0GYHyluE{7x}X}^;wcthq%G&$ zXRBk<2(VHJFdu1MGEVsEP2+^0o`aP)NeQTM!#Gj~01`980%nvZsB4L7f>FTK=2J(f zVfCaS%NDkz3<2MMIT$F-!ndIXNBT_=2HvCm#IIJfdjrS&2d;>&UTx`6sJ`={*s zN?Exz2pgDI)#5$Mt3@TL^)pmT84wgNQLas>RT;n!-Xhm{qdJk0m{cwJZ9ppH;k7aR z6i>KXEQVXDl4svaON&fMj6*{5b36vMp?@jiyH3L>Y>U>&V{Lr#LbZhLq_$3*t1%@AAEITYwg#>YP)-~&b>brysN2~-1nt9* zPB)p5Mz@8kCz;mUaXxP?RBy&M-y+q;?iB;CJcOgspP#o_?ZSSpjw}rfX8!;Tr@>BD z^Zkp}=UBU%$i}@RS=*Y({%iZNUtoaenL5CNfCIokx&p$Hqb-z4$`jGMma1Nb4XHta zBD?IStjZdglax81+Y54m&qO;dS7#|~JiL2{w=kc@fvl|IyB{&-L|?iZdPLXJa*vn022NS9wAmnA)|M#VCGsIgH}pYG@Qc2P!a%pFn39tLO8( zR;srsjGuf62JNnUO&<1}7|-K1G@bwlwwlY2TmhHDaZK7PLsFR>j80yqwqUH+cwV!RqvOSpjlEvI7G8Hx4B2br(FBz!KN*D?^XT|U;k2B{;+MOgX}~^9%yjk> z5Jk80!+4tJudGvVf*4tOTODKl8l`MAA^Ok_Y9~eMj+HV5Iwe|os~gp;AcTxH&}Vt{zzw7w|LQX3nbonrrxA3SC#3z&a`5T$kkiSpph>YtR$geWaCL6nOp zL|@&YPEnNgagHU{wxWg4+obM?SH_Y>=^z?Olodi0Al`&1-J~dglA^pKL>an8y-)c} zh;km%{CGmNe59;b=p&@MpOCJ7$?E9IjJTk_bnH2tc$65ezAUd!iT(=R_Kf zWw)s>uyGTG|E)lxVw6crGCYplKf{P(I+NGJ=@jg3VT)Z_lsKo{oU#jc1ZG{Cn|~mUcnzIHsGH+ zn-}q{d)3vf^(4{#mXo;sxCuW2m>K!2d$G;oaQHmFuPZS3hXV z=j$GWHN-wSzTA~gPFn7srWC%}Ww zoJ@q>;OzZJ%=mxCE00Jr$-Vm7J@{!8q6*+Qu0WtK1 zw@(H|>gv>`t@)y-)QRva_aB~8&*Phpz(32sRy)B5W#K=b{j}OOgC1=Q7GK0`-hpQI zXSG9E)HV2b(TW8N8Wgpb4GQqMXz`-jdGmq|Dq|3V1-|9WYv(QW`xf{X1wu&>yzUM) zZ&jiyhLfmSFmKM>3lc?}gjgI5*7}w&2?Z{wUFN%B-r~j(u^NP2KJU_GzOhF7&9&M5 z3sx*!c1eR;E&A85)yho%TT4?0-}$0yWoHNSKOM++?8(XGQ98bbv*mG^P!RuS#y-|M z^`+MQSAx z*AUCoq=3v8} zqj$ZdPReW-|B|10zvS#-OG~lEJW8w#{^CC!Z2Fq$E0bxV?AWJOI$IC4=HDJy$DVb| zv0;bbl(}<8w>&bFogKda_s)1wW~N9bgI)ebhDmFMky4nnXEFtD5I|sj3*iRsc2Z)R zPg{xIPR0}wZdj&JfE&HsVj8Tp>pSI~bC$1|+q1qqJOG;lxbz(n_8QE3R^!##DE#C z36?q+nnIlenhiRamD0I(eB%I=Qtp6fb_6OVNJYcC1szRK;4f|F&leaJz-Fb8FUIlc z&uvAfE^Ojd3SDb}3WTm>fggshJ35=LXA7rN=vqIO_VJUsZJwzkK*S?g3%n?Vk!uQd zy*1CiR~?AqaWT6?kiSik=Tph5__hjDX0*PW$(F&Mni|{hSjtf3CwTS(6Mg;={=^AB z7qzRu3q}X6Z=g!n2UKY2H)GFf17xl8PI4nQ&hfx6^K}&z(;HAzZ1jq zg_P-2ArtM3Ruj%t+!v*4U`KR}Zn{@tv!`*bzi9*uPa`Elak0nrGFD@9h}U>cI=eXD z_O#b@1-6lbcM9r!g<<-fZIB2T_JhRCEdl}R4)-%nz&7IXV7&U_{-zmNO>}liI+Q3& zQRNe8D3jU2X=EdB00FR(*QN;@xoM#3Q})#~vXL*Q(e~yY7%kl1yf&>lBiWZQk}UqG z0bq!orxTM7(}_v$bm4!%Qfe}odwR@BtgoQBPWUiD4^suxri1_K*{;6p^dtiTWHOL! zpcONa1Jq4nAg>Jo1F0AM<_Lbl>0}_&#-P%#oh}TdT^rza)%57mai+a0#dM$IzP^aXZds{0d{+nz2vko)jgE?4M*R0En zK03qH!peHi;7ZuqJ#t6yR=loiMb%O$GdPz%-vt zAc-i+TsUFVwCvER=i z3x9G3S@=EBdsOM|GvXEwOvnwUFj+%P7O>BN7;fM{o`DvfSa5dEhn;A_eABH-t4_wu zg{?(iX|8y0jidmRw``rOrgEcmV&pMjg&N~i;i7p zQmK*jv037gK2mtxCiJnjojHr&dXcG%at&Ye9(q_zGhYb=K_{z#KdemA4=ylGSCl&i z0Hx-CH zPuG|j>o-fdpW}oxE9$-4bQNQxX9@T74_T{TXZk^5GiHhPiM2(w%p&*WnuTJi^)_fj zTkSYY$kQHJfjs1XJ{9s%&MswmTDKL3anCx_aJC6?$S|^Ro|R-6Ic=k*H<+$f*tS{1 zGTNgEH_s9?E(N$tTjA28Brat)Z2~-kF74$+^?8ztag*r-xX=9EA=4ywgoF^MX72+7 z^k_vA9X;Bq1bS~-jUFwy!E`}8rp`|BXr*yX>Ctj##~tDl$(^h;r4JXkC9gqd|4aw zu$Z;Wv>SgZ+WByosgj*j8*8iCZTbk?g!_<$=I=4Vsb$AnL4K>K6(*M=%Iyu*RrLZm z75KD<**t_ffPvFc`tm}Hxkt43Q>2mUQN+6*}u%8`s&(vxUx5 z80~1Aa3{p*3c=_yV#F@46`sWQl!<33w_zKdSHZDVFweRNd%$ajKiOO>{K@LtB!2=F zNP{bIXrw=RNcNok32}ulO=0(56W#kGcCQo9+M#rd7QAQ*n8Ak;=Pdl#`!9(7MQ!xG zS527~<(IfjCDztiqNUeC(-bqytP|eFCThvMd`d#9^>4`m`lFQYMIjw|m%j_?$h)MB zmLp4emp&hurYVDXVHdMKySy&Rh`d>m?eBR~Ys<2P3zg|Cp(tncZ8L>{Ki@ar_PDyA>Nsk~c< zPDMG$m$ozaV{g>KjYZQz_Dvo76VM^lp2trtQ8Un!@8c;<12r z@QFwy*BA3BQP}$SP?7?W{=Q^yQsNTO3NE%ehH1mB%DEoLkH^ajC(UraMPE(Gcnj4P!L;_!t)6yLRY zs)2#0Qhtu#@K4jy>=ZBH&ElGk!zqHa6spb;)ajY%6Ry7wX zEySP10TAlbD}tt2T2lDGNy_OBkw7ua2v87U2~ZHA21JxP++sdYVci211r!8uMS=GT z4vsf>WNIKjUw8P$d`%&LC@Z$06tnSy{5U~=On}xBkw3X7!#q>r-7>-Xoo;FF#(&qw zJeXgfX>P~ow1T?dk1%!S`EB9p!+6~<`=G8xD_DSTZ5xAosI9pVKOQe0KM&qjdKd}3 z+bRa~>Sd;)Xq(pmEq0>@n|rfGfp}2%394d#K&+8-17eMw7)V+pVPwd@N5VkG*2oW~ z3So_`XLpN%yh{w^?Ewt8SG_#||CCzn2!Hr zUd(K3r4G$$I2;YK+!L1pfUY?_S`5IYdkI(q5rEThx~U8l>`u)ffU1TN9;Z_j5yAt1 zW?nYp50UU{hKuR|z^TC(gHizaqdDeotN!bqkW!F{9_RS~uoI2`y4|w@u^F;ugAx2b zz`x5i52H@Pp-xOyGf7u)$oGF!Sq=I*sO5jGtjPANuDo5I+57*4zHs_mf^PmuaGiOgrCxrYqJv({>?qj zUDyLbiWu$%=^(FlcTl7aYKqL)vi(5{7@iH%7W6@2fD!)P!Fa@w6BH3c3XhwK#{za7 zh+(er%V5K3@fv=#*xZ6w7n_rFjcr580jdIj@&Qlv{uQK<5s1)|3Op%skizqps9It! zhqtCfA_%*q!5Czv!2S>aQ>l4jc8Y_xdl{C!_@C7Tk8*-h3&5Vt`P zxFcGonNKP#B>6vt{3nJ)Vse$k41cY9c}RqN%UouiU51o2tUK&7FT-ERMReu!b#n!~ zG1eA6qMHX3A_akuNSdVA6#jb~==HY#px4Jjq}Sa*3-r1Z#KL^#4zGEg!d?%NVqXoB zVxI^J#qJEn6^nvnsxpPizU){in8k_7uY$>G!Q{tKgLrVk01VJh3^W(;p_S$$-sSi3 z?#;eRb9?@`%2*`#OQpG#4;&OLQm{975CnUz%VTvEBR+$5pT^;+E^9E61q{0;1+K{gh~2+f$YS=Qd-Wyu3ltCTyTQLPG- z>PCf0b;HAW7Q{as3SEWaY|qCIH+SYsN5a##kuZ_AziH~+wWUk*di0pHmA_i4<~0ll z&wgIb|ZlG2VY9Y()NxBSm45j2T5B0h-fl z{WxgDrEqvytVu&)rpAskeiPG~LXZ^qS=26m(ASo?s4;hCFNm4GU(EDp!(#D$t;W2b zeH11ieJD&m`X$Nn*>H0{+D=RsFzXz#_?qT4Tzs$QwUf*l{H=*8i*NCq#H)YQSsT!=YquWKFoN8WdVwcRJywHZ(<^Uv70lXJ~bC!7=)N|Wx z2=5xUZ%t~CE~+)dWhx0!>@!b+OH45WE%;+T$Z`S|3eKvq3v;1>XSOM#Ol-#&`^{5q zZjUqMb?NRv$mw%ATn?XI5BXe%)9-Wm;m!MCbmL9tMWzCeFW}VuF3sf!u&~|h4cPT? zz~j;b!JrHNgh=HT=G^GMJ1sXTHdi31+dY8o^|)L?SJ>xpx%80Tma%w3fujn zH?{y|1cGkE=}s@)=Los{e#37M+6^P*aR$7BfMMuTSZNel1&1!~Sw+CJJu-gb|9z9yP-*Ts73+P@?$Qg7PI!w7xz~y%b-Sz<3 ziPPzGzy%sP<(gy4Ppz_yF9~uN94b8MU?qsI_AH?`&Gg9inf$jtp1AINY zQ1YO&`x%~`mR+csHB`g-Bh{|zQw(B}z)5A!NlkTt08u4?f)R8g}sgj({T=n{dr&C}qMmXQIgyuIT}T z$t)+Ft+_7o-Mh@^(TsEZ48JD;lSKD{S{+X44_K;6h-dePiPki4?23nXe%xZ~t9eV^4*KwfSlYsYu-g@KIYM@rMBWfM z6Ii_cy4UXw!8m(`6^XUm;r0jZ;MNSg)8q1lHJ_myzOX$Aef8^ZJt&vAX4I52+nO`Y zfyy!t)zHr#-aN8k36YE<+0HRGW3@@yN0r0mFyg+Ok2&{>p4y(}-kO~XJx+4^J z20eB-wQ_l!5Pmr!0QP9mS2wJ1GB~E$21~Hr2d%mfCz%`Lm@v#{m~{RCte+yN6DHb> z009wCHpe>=Ag_GG;wbQHP7M}muN#itz{43nr^gRVk{6ab4NlP-1eFCIJFL^1+wVr# zkGq60I1fKyd0<(FRm)dpfsh}2WedT`_?-cqa5|WMz!$QIbhpRwxcx@h<=3LHu>V1^ zHN#xQlg;w2oM@3D|AyX{uDt5BrCkOD=&%4d$E%L#58EX?T%XaU^=`ZFBS!Xef>l~qlv%$YownlaTt zGIVnT2Q$yc+dpGzU(igK&=*l;S)c`Aa{@~pr~|ycUo${g0oVq?vId?LzRvMM!fr!h z-3y@?1O-6|VZcwiLvFhlqD@%)P{Zgi#ikCzlu$?yd!0eM8_dOLI5m$00#?663wb@B zScKUO^Dw{W3rn>v+%#Vwu62F;*fsc12AB>fZcm&pBLu;g!wdU1kKy&eObj@Tu-)yB z9$af#Y|00JtHCx2R&Q7x-C@7S9tvx^8<2IFkHWZx#p*$buw?VzCoKgw9fB)xAzlN-cNwmrU)Q`4hB+M` zx7)89@o?D(yG;ncU>(sxBbq;8_j|n%y}@ejbb((W0o&sWhx~HEYfeMS6RA1-OoncH zv;v{{g4bM^65*u>b~<3zLBsFB?m_HCy8=BB@HoN_O>SljJYk4h4Dga(@RN4C;f0{m z;qdwc9$4%($i{sYpK{qW(ZD`!dQcBR4+4-y^11v$*e-dUA1vYu8pw_m zG{cu4yW67iJvr8%Hb^goeBk|@VaSVwLVh2t3b3g$AU1Y7A?lUuKrjHiZnx8G1e{I` zFCZlK7_dKupfLnlq=s8Ln+uacZulAnES<2M1=0NhBODGpyxx%49)dN4mb&IRi>cNO zW3iLF<$X&R{!v$Jjs<*ksix6nD+mHphdb=C`|X-5Y&Z>wgxruBG0-_c-~_AlVp9QR zN!&gy3~L@l#6C~J@9~G+{y+#6>I>?Ih)gPev#e8AHK(EE8PuF{CPOzjXtDX$T(3B+ z{XNfxM2e9S2{y}=xG?{7OdQ2Jut%luz@)P(3Qij`5-8FLAc`y z7_bSX971e;3pn6QBakwL4TI06hc!P06khOIM#u@?88-bQY1tfK3NdY=rul~Bv#nJD z%qbtZJ&y|lF&7F3;bp)X)?ohvL+p(1Ukz%61v413I~{&EL;)_)rcd+06oY&n1T7Gz zIpQ2SAn=9FP8fF8kUcgaH4Fx6hxZ}kF=f6T zRA~gkl!Fjd!+Ph_HSjUuSRo9DKU%yIf+D$>YmT>=Yt6Av2`k5yTXP^xhXjiFQk~e> z`5>ThLzYd~An~I?x)S31AZ+OLfJcM8EP46GrfyAsy@v00gXm(?L1L*XZTXU?QFBI` z4BhkqhT^-rf@V5JNlVU$!K#19M9cJM6ZbJypFJ@+dt#7sW^wk!K%TP16PRaD49=by zoINoRXF4f4%(Ev3XF94ldtz|*#Nh0S!PygovnK{}YuC(4MatIh?1=#$f}A}uID2An z_Qc@KCtAtLl(Q!W$p;l@PYlkU7@R#ZID2A{bXsxt#Nh0S0Um?IPYf#9Yjfh4%cjfQ z2>HXULsCCfF}fXJKHPeN@=Wy0;Z~-yu5+VbkFtKIvJ-RoJ7cXsu(BHd>Nx8t_T?O& zS8XlqrNSpH*JoZhFLY7Kve1&n%P!bl@0tl!trqzFp#>#$bA9>d`aUyxUA5KT@dfy- z()u=wS6r}QUT9go^_kgxN42$p-RI}8R$IHUJN^8NYHLyF8o2ScJ`=B2m&{w}n-c;; zBeBYMA^)({Y*Xt)bNHAVYgcx34zI5P0wCoLP+nCAfAVE*{g-g*V{JW3xR!)k3u53i z3bD5S8T$7=_yWh;`a9`gWVe<$tOd&Wd=&p(F}D+ZLZiNRE?glQQC|l?^(`3u>*wMVe($b+9zNkm z%j)a#2|s96KOdj)BO~<-@CiR}Qoj(N@Xl%dB7DL-sr8HT2`|&sFPVFe38>DA?ig=< zMNu~MjTc(&85^M;{zTcB$^4Ot)?v!seEV{1sj`v3wcP6BQzlt$SvLa&TvIu>H3HUe zn9J=KSRYcJC3N=txqSDP)*ZfT@ zA8FeVm1WK2g?_81wC206v<_wY^YG4c2^5#EY0UQftR!4R;<^RyaEa?qi|c8ZgzJ~M zwE}mE#H~$>dwEV0?hO+6dVzbZ#JxT(?*7~)+{YyDZh?D1;_i;)j`Uf(#D@8)_DQ%O zN!&vM_qfD86vu6-qDMO<;acj&IIFy71B`QSJ&iL{>-j;ji&Xvoy<-w`Uy0mDAP|N&p`5xk|dJPNs`Y< zlCMjWP)^s!7y2e)e<`s)li2@|*icS~oncSH&R!_A(`KR2PQgN?9K!pOM~#eoH2Ku_U=dlDt-ugmOB8ei)V{&~}M^ zr^J3#VnaC{cE1rx*sn_LmnHTG5*y0tuvd*t!agOjPe^QKiBJTT(_z0bDha#m5}}Ar z@W;6!+-AKcHk8w0XTTpHPQ>bLsKg#5u_s7uD5t|73xBJ&0rnz^Jzrv9F0rAU4m&b7 h37bpo%@X@wi4A4M?$Izlsc)Iy2yPh1H{ENk{y$(%1wa4* diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index f05d3f433b2ec02f74461823d3db507c527632c3..0827b2ca758ef00e91e5d701dae2cae24db75724 100644 GIT binary patch delta 3189 zcma)8d3=pm8uq;B-uvAf_ht`?EJ!M7k*$}6B0=r3tGy(aretDG=?Fienp!9EiNg;i zQ)Q9sdve^w^n~&sv-LdSVb)1;@wbkLhs`{2AMwz|+t-w^k^O?~x@>M&2+Z}xiOhUZEhfbTrjH&d}h*OeW)7>UOy6&s_l(E^v~&Nj{O#$rUk{}+p&$Zb)H;ky&zL!B&oTy+PL8IP8XURI0ef76ck zI7k>EN)r(W3>9@r7{;{W3Vptpq1AvGV?gkm$x=gYX9%Ln7E{CWeNuyW3R=$4vec<- z4S7){l6g)E4rs5LIJ_td1I3DcxWo`5ru++;3@ya@1Gqq1yiFcTa2m>L4oPMH$}r!n zUYTM?7k;M{SK;QL9ma7gHVZ8d9KjHvhj5mmF|?lQSgDhjL{hXE^dZ^+y~KiJI1a71 z+WNuV;&RK6FFKA`^b{q>(F*9xFP*>;8e~&h;#VuB#3dCt&S;#?l=x+(l(_FCDxH|Z zS6-B58ZTB>V!I}**7ZLK61{40&xVUaE~eQ~%Xi(tFOE{hy3tv$BfLWDfVfwO7J!Y1 z-@<;_#pkzhiZm}xdJgvHdlynu@zHIJA)8Z~=J3Jy(3IyVFgqV~5A8L>DjjQCBel7$p5etdwRVGB?PethbH|0ASmhV`PiQScQ$ zv(fKmuX9_@xo`X4*{U z@KmIj%hxxd%d)81p><*vv5;8AfA43p8U2YQxC~OT@!)VuW`Dno%)fIo}mYf6|sK zyv4qTa^*+)rt)o3biqX>&&K^-9Ia*$+$V{G#0obpVLaPSjl^?F^b_G@5&ja%8{<50 z-kDBHax)ZX7s>`I#p13MKw6dJ+v{iWJ?by{YD~W7-RJ_N8_)7h>Pb$*Z85Vq`4S#* z`5z>BUz!Dt*(J^^{zjs@^_O&BcC+SfQ)wrB#l=(#f#$EgcK91?t0zddV7pP*1p}$p zO7b>)x`G#nQwGC}B4rfKU~=f>e~_pcOXo=Iqj1^<7;NXp%d!mR?@pk6`0|)Ex<-}t zQsdJp2^b|ZCsHZ2G3roBfH{({Os3|9v0~n96bkKCwN)3u&%RD=#EA^Dz&2i)Z2Zci}KE^fU^0|^^=N)DxK8x+LA zAT@l+;`T*eY>_)49yjiB_A7*+w7Sa|wefn&Adc8~jHheBdZ=*09>crfgw92YE9FnGQ zW23&EKall}6pj)KA+4p_INQiby@B1by8Rm(v&y$PUmMGAE-0w04ta;pwKmP@N zLaQ9+U0qw4`3~r*H&;dOETM846!A>(?YhgpsUnE=EHs({9Hp=+EX|Q0e^v>Za zPS%PfGmF6#crs$)pwJq@@Cr!bL5@O&XV?q zmjwDK)Tn!YH1nYxFQe{P1KAlX6&edJ7ZJh|%4!%k@!Uws^B{sPWq4o6MPsIwD3I(h zqpQxgV4vWi*c#2OpfWEb=T}=w;0hBsx)rlZRV~?*oNsu6$(&d6;qBNdlyP~qDNl)E z=cw9?yUGy36Jps_Ta6;g<1-UjcQHDS`4PSnnF%b5*{-Rb3bm7Hy!e{oIy>ADwXy^A z!F9f=1KW>kF+7oF0(1C>No)s=GP<~_Sl*Eh1l5_bR;J2W@0hWUeu;(3Z(;F9AJ){O qMK_c*!4VR*3%``gywQeVPi19twss9*Q2|KfXVO?S()ryqHt_#y=s=bL delta 3725 zcmdT`dsLKV8t3=CGxN<1i~}Ml4hgBHE6PRg6_##EiQvMT)rQI_AST1j$n2t6D_u`v zlfJ9C1f9y(P}HfORCLiOyP21?)m^02?NsKnl9gmw`+oE3I-S$me>*#W%s20Ep3CpK zz0dc=PRCoF4s)G(C4x4ax7(6RXP4cTwzwuEVQ$9U#MG4W8ObT7=}DRCDejWQ^zp?d z$?nq3(v0LpcXIOFl#$2%0Ha6Bft$n1os3F#S!*ec8o%N5mxqY~| zt-*DpaSZsbs4XuKI40VS!`yQB!iBTvd*-;y-4%07ekS2fx<4}bGLqPv|TxyZMo#9dS9J@DSJrI&!pio)6R=NDg&CpPI~ z4g#S6l_jPAi)pH@C@!g~Dyb>0tntjRm{&M^UQK0f)g_}Q^&`<2vvIjY79EH7|44nG zgFxOh+XtD}4+skK?rJi!{wuWKbVtauW!lVV%ffE|^{IGg9GQaozLp~b*zbGssFmnr z@=i=h_damkNnIo-#?u&YRgTk_*mb9wdPs)8gDKwlu4v!c<85~9IVy|1Yq=IA8&WV> zRvpG@@0X{y+s^3lx0axw%i`fZpO`S&clPTSOvv~B>0E>fGrb#s=*RWmSNccURw@QT z`bXw>&=B1_%4AVHV!Tlo+EF2sIw(WNIN`+I(rreZpVRF>P8GZX@Chtug@zHH;Ds92 z1JCd<8%97|BNUT$R(YV6#>@Nccpoi1IT$MiUXon{P=HpM;KcLF!$BurQ^8AjJBIPP zP)rB57;YaQr`*2bcPlqVAdc4z#NUWIg&tilcSNAshP~1qgP-s=yJOL4LL^@pi5`I~ z`SfVG1;)v|vFL|W=8QugWtjYKL09ft|m%F3;Zu1l70Lmsl__HF3K1i5BA-oh4Eb*TpBT4Y!) z4U@e)(5FqaC>}dPr27P2Eh{?^&Ex-yP-wr?@k0jA3SSK^Ux&WBEE*=elSLw?@uJ-r z4g6j6cbvvmP$fC}FT8;;UfY8Y2;n@x7jvDk zB_qE<8X`FN8#It=^X~8PXA0Mh5;mSwB^;{B>Rw#ITl(-l5G`BJ!=oO-gQ)<+r8|V; zjEcVe1A@)Al|4a5ufOJ_=_U>}(-lz3Rbn1)v``0d6Bkn;xGe}q$lz%Ycr@yAe-;K zgFYt|a8aS2-$GeDlNt~uznw`Z>BL3ueX}SNG{@>63(ha1CZL$lxG9%V!V`+g1#O=0 z{ompKIpO*evP0c-D@y6_D3;~(RIJqjWX{i{djuZj>IEuMcvv=9Py`ovC>MB4KO92? zFR9ccU1dbdEmhPAtmUj4+Cy5C?(EA!a&I&ZkstP`yd>1pBhZ?4d|HI8>_rTB-9ux@ z^1Kdtqf|CnZ+B>%%M*cA>>v4 z-!BIR1(n4aYlyQNXcEA(ZUtpyM?jIpGql!b(=k`!-M%X^A%F;y|R)hYf4UNoltKUU^QwXA`NlF_Dk>NL`A|YB^b;JQ-s$ z>UC8|)s}6nCKk7F$X5EEEIGQ#De}slYFE~EAXw(LQxB%ftR2*iTp7JnjcyJE@(_&SOFv~Wxn5eE= zh2AQ(a=Q{Oa~ZKNwTVtGPe<~HdN=oHN}Y^au3o$7p=}pKXbBcCk{aXe0pb8@OLggY zTn6{TFyW--_RDpb8wZPM-W?`3o2e-PXN6x7c#&IOVvRr>XUB-aLgi)laH0C5(=L%vv`{HOAzg9e1EpZxliFBukiJka z6Z%^Jeyr%$PU&PHxx!fMvl11x*mw~}+E+T>WZ0 z7wk$E<-mjT(KN9Rb2u?wR6-3#bB4&K9|Hp%o++Xn7{k|17BMCy$igYgOsZ^~B6gvV Wt8>JNaNH$V&JtH+foz{8ru_$AG<%o; diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 925c87ff630d5ff121ebad72ee7c80d7d4e89d2c..6ab652292fca9df7a064f1a70491928ab409d21a 100644 GIT binary patch delta 62 zcmZ1=xj=G5AfsV?hG~9Qp=E}?X{upzl5tW>qJfENnz^B=X|jPqN|J?I|jtzS_4dXLR^Ro&qGxSYU4U?0MlTs25Oia_v4NXmx4GdC}EQ}0HjV(+q cQj?4=O)ZU#OpKe~a<;$aWZeFilW8*_0B!6SEdT%j delta 72 zcmZ3mkz>I|jtzS_4b$Q?vdk)rEcBBtk_}8vj4X^z(##Dl%}o+h4a|*FQjHVSEYmEE c4HAuwlTA`h&CHtLa<;$aWZeFilW8*_0BS22c>n+a diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index e338ff1befbc03b7e2f675faab739add596f1995..4746f17dadd2a1d02106aba48965b9661e31d534 100644 GIT binary patch delta 80 zcmeDE&)oZ;dBY`6+xQIA{H#LD41Lp7!{j96q?AMh6Vo(vLsQda1A~+#3nK$lV+&J@ k)Ffj|Q%fTw6J!09{N!T&;{4L02sbCbkW19PL4RO7@n%QOpP kgG6KFWRp}=Gc)~^{N!T&;{4L0h($ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 3ee87d1a6c3f40347e9c84427926ef27cecadc8d..4a8c6611e679c45d2cc5a005e8bc4ec5fbe91c4a 100644 GIT binary patch delta 17248 zcmeHOd3+Q__D{Xe2?)U;kaH#%A&_Hw&Ta$@mx`Q;TtPHUEA_Evg=QOuc|sT-JMJ)zyCL%4`jNk-uL_J z`|7=_?w))a?0NVv-J;jTY>zq^{i_7IqRw+i{UWul*i$1{Rk|vx{SLRM)+c*BRSrjW zrQ&pWT#84jsdT9x)#-G*n$IL8)+IN}xhv1^*lch6S!s8=oL-Mp36RyvSNRIqrK~zt zrN~DwJx=B%kG3*!8w}*RON*D>x~(n_|MlKzY1q?f*qpJX3{vLHvm!a?-_qCQT+==> zCS|0hg~v!@@NT3WWx-{3Z`qx#BzZ(cCD1!7B`giiRG%%6k4@RCFy|g<3zB`MU3R$~ zF2y0j;Wixn(^5eNERWkBE> z2gU{UBTOKHO~D+Uy{WhPzAddJ@Q2^@jXWd}^Ky3N-sbPN#>b{@ck&!rcXr3Rwza#` z?sBVMm)jG_Y)Rp)URjkDpIYSe1WNbKN$teM$0iy!F)ZC1JFzvk9) z=?$>;YoH8V`hHBt^_?221|yHbPqgMsI5MT#(`}EmlJqea)8mdR7Mz_Ln<--+i;uNY zr;k-0=IGfS8?+d%w7YRHad{O-XnCs+heP&ywCZEKsdKX-%-4{aF~hrH&b<6 z2DT+mA1_1^+zm8t7I_k~<9TAcv2!ykZ_zvy%??CjtY&XtIM7NmZm<-InejCga@MF( z=hkM@f@k7mGk3XM;eet}4~m$sw0pcR)#VfWelLuT>~Q+9hRMz%#f^Dcn>nE?mcvYz zhGpL+1m?AlyLs`Un<48?mrEDe4&BB)HM>n0C6UotajR7|LI{DrdvmFm^#<))HhFE!v=ElHwO4}?Q!Ag9S zrAFwjrAD1vo9Ehm*B|3!vmbVQ4dKLfxRFP6rQPRKJYJudp9XvK343Ix$L&>$oPo*v z=44Omn(1{$Q->k4UBnQ+hv*&6E$@~=&T_Zc7~hVZXDMv*fJZrJLKm$|Ox6bf5yTkl zF1pY>=+CVrdwdrZME@-n>>`F)gXX5=@v+jQ9w%+6B}u*bz1m8XY)TjNu-II3>}zQQd!s;CM2j@&wL+49;L_Tk@Q%MimZBQ zrbM)&<-r>PpWCYihLpA&mM+$9XqYh^?S^;P4X4j3q))TwJdc4gi~1Ll)HV-#ClF11 z%>zyR4u%OS!j2j|nB-Bo>h$7#60Zku@5mEhog`$U!DHrytH{OAD=;O}=nS!jL!%9IjcBFiSjeh*)^}w9tGu)& z3HlpdVly@m=YpE;< z@NNnnv7e+Q@~3Nh9Xg^4c8?>igwEL0RRg+z56SBy_WcQ%wy?)XOCKiv=!NYhHl95| za(aEfz@^nmbn;-5AmmcKimb?vBH7E1f-ud}L@cMUiDB~Are?O_sYDSRg$JiQKHJfI z7+CXFtXMfAHrld~jKSDMHV`W(WZ*Tp#|&{JN$H5GopTfWU~J&#NMbPWEVZz-Y{&La zUyPQtS8>zEk4RdNO-u>53*+Jwdx{W3b>ls_Q!P?O3eAW(T*wd_ZcL!aX2PwoSp=$05rFuE2ldSN3`^rl(bSo${&r-flk@0=>QJrjc@P3=$z=9?u?WV3cU z^vU7jQDq*U?(0~1JZ{yARiX)xXMx1lcr8Mz!{_qiZIu=wD+|rJHVadbtSmMELYBcf zgIOjupv{(#NV?g-{^s$b#!ZVf+|n^-#iG+GN${g09-Igh>2Jw0HIkKiD#2T1R_FGs zwDAulg|2BKaosUEUa!ODaeKu6!;fyVLsnI6rWYP3b77{{c%Ij70oetSw()Urx{z<(i$zM2e~blrI3rWXnbvqXxG4Sb?T%DPDj`TOb1ixNiR(#h4itTNq73*SaiNyD$V?atS8y5qacv@P(s|7%xPOHpA`R` zmKwNJpN~VC|8W;s_u&*eEEBFx{2MH*teX{@!VIoAn}Vf_;b9%PI5y-7oirXjY?0{h z12BwE&LzF*lnG=3RHX(EZu7wG)Bw3On7+0Qy3^;fp$Jx{vNc4XD@CgnsnnSRdtp1?h59HGYMQ}}=P3u7qobWy)9}chRd2=K>Vj;{Y zX?%9MY2n#@Fc_A@h%`34xWNo&cpBYZ02iPvP0UW#8b2(A`B0e_W{p*N4=tTRlD3|( z!?g%rF`VS`29`*RV3;=Dt%7&6j`ubPJOED%-cbzb$+X~58Da>$suABLTIqTxtcJJs z#AUoEM7&oJZx+Ol^&^D=$Lz7vgmQ^abVGprKo^yh!mUH16R)I2Mb!scUr0`KQ1(G^~tk1L&) z?u2BT;e%pwEiJ7k1+?Trh+!QKKIk7BaL5P4$b|5K{;qUZm+&1nv2VL?n@HQf^=LN! z9>klXz_p};509-|i|)9n|2C4vQ)+S8y}q=Y3c0XEb8o5UUgNcW_it1o4(?5-Ejy$v z`dkSNid!DGyA}eP$wOKr%L=nDdn9^r1Z;s{X_K5a5(>#7-5h=un!^y?9N6%2;EsFJ z0{Yi{oeZLm3vd+;jDj>colXyqf>CfXJ#c1%N>0$yTS&6#pEeq5;oJ0pTs{^qrBkvM z3gF{(DnA1Ka2)EAM0+(uI$TK$oS8S;Jd2=Mk|cvR)DbVFW(4oP9@dhpug{2zTC%Jz zuU^FusIWJKX1)$Xh>MN02aZ*A>%n?u(VI%;g~)?zEgN}gaWRZC6TK$U-eci+P@5sv z1d|IEWCY$H;$Us#Z-N^3n>>zXVNIxc@HoifCQPy;7Lpy+OV)clO13{kNcKbqlMI?N zs5}~S>GAPU4X|3?1ek}f~?`bot8D$e{{%?nBe$ly_A4~N1Qg{d|q+om*cnMvzm=s}3 z_a2H&x|IH_6l}N|4gpNC3E3x4gM2cTHY~=fFgqifwLdcrGVynyv41i>KMhnehjr%% zewWjm-Z~v@*cZHKIxHp}gax9N1!Aa;Zx&|83;IAjUygxjw244GXybv{U}J&E2`-%p zO%fci@ks2qiAV&n6C(i|Y=Nc~eW>FMx;7N;=8aA?%?xPi1u|Hqz`P2i`HMz#T+qC) z(G<;wez9;-(0r}YoYH7;(Bv^ttWlV!(m$G3%)w%tZfDy>LW*4rcECR~hmNd+6?WBG z>2mpNo!%;!>h{+96nvxSb$DdCO0HBY{WbJ-9sJza*{G~lLyMPGEuOn@>2R%3u!OVo za@)fm&FUMcX2-NbaG*C8`B&+(FU8Kb)M9+n&~!J(?X|UWfngD ze4yGM-u4dN4!?#qcCqcT(W~si7w17HfkwNw?}=7wTL6zh6L(JAZ56GD@3wa_?}j6` zaLLbI%CE1$32cm+=U-a0d>iw8o@7|2Ic*LG$V{I((!*G!=hJETl4@}RNm~TJfJ?&J z(aiE2JNyI>w*ZEHm>o&I}_n z`7z7JD^3|?>R3-(!sHGy^Fc3A=^GHIg% z4tD+8J+Pk}u{8b}b4N>K^VIJNrB@;?SOcl>L#D{$E15itzsnR^{Ph~lP`D$14IL$lh{?M|ipUMR>Q?!!<5LY}9yY7GI5RBAXp~LOAjicO+q7RtGhG9qq9J;^~S9;9)~y ze+LKax5?jS@xl(TGGarL?#r@@^E1&w$3|!*@MV^$(;saDAN(_m1-sjq+#@^;-A!NH z2rKE)2ca7u$b$I1MG#-o1##DA3}Q;Q2x7l%9>hM`d`}F{+5$5OxUzW=9oZs?Y1qkv zh=VMG_}|`gm}hUZ1=ip-&FNROIVVT|Fszs_oRJRWNh? z_$E4d{xRrFXzi0Ek@k8V%L3kj|61GpZ_c4B9)}juSuqX<#QjqzmKp0xG(EBhF2c$j zeo7<12m@hL@m`Qw7eCyR7+zU|kL-mCfQPY_-3Ih~62_4yLRQ@#=8E9D-bpv_gJ06L zmvCLP!7OZ&fZ#V1jZeY*ZH;>f+BC+9i+b;N(v6LC@G_bycfgre%-OW6~8yh+h>4L-q-;mb)*62 z((<*Xv=d^28Gpdr1Uw@&ypC&bs%|a*`3<58tAWrj0N2vvWNC z^pCI%N(SHqolJgbI$aCG+Bab*ftl#rTdJ97NZP7CA_1GxViNa0;W0IDGu9i3y%M z27`c{7jn*F)Nc$3mV5y9_+Im?1Nc%Cf9Qb|xSlTSX?_aRVEc#<;g(Q;@Izegz4Q16 zc^Ucm(}Mfxu@B(Bt8};9dN|1D!x_YlC-K3+WufG{lkgpQ@&Y8;L7zJX2fKyfHqeX{ zu(3xtx(tnpH&@I+6d}`W7wR(Pjng=ziae1av+{U`l;?>IS^E)?Xjq=dGh|tw$Phnv zvLaMY559|~z32>N!y5zm{f~*JK}U1;4ASh?XdV|dyEU3UXJM}dhXu_m8qI! zwXS2DMv;uIwDBEL>);$J)%GlKSS#EQWFSANQKrd{d9>eo_zA8aD9&k*XpOi19qxv# zf#Gvn>=V3)^W)Pp@*hD^f*;Qbr})E!HwK7@38u*(h@rNx;3!NQC~6;DlQ4ZCuYK57 z`!zmn6Ma))Zm5~Bf7Z-G_^d?;UkGVC7`6-)(c3hTNAH1w;>d*iU^Jev2lD9c8z`c; z6+2md!$G{h2}v=4bY3~Af!Xs%;_lLL9G|ls8^}ex_z!$;`jyb{2y^KCz~K3RLOOx} z)dV~$TIs}p!DhHBKP+I}pS2!#&?TQUSoT=P#-P~^MFize#ssr3@>aUWaA z@Yj$GiS)gfS1IG43;F!D4%y-Jt77bD#nMUADLXwWOH(^1 z?=Kb8yPZ;^-KkW`it3aVeA(l!tgKXP+)n)BqtokEs+_*cS~i;n(e_%U%AwY(4!<8= ztgNY3+&=vCm>O4&;!)8{Ul6Br7-v$Ak4JEl9#3VBTUBaRSGB*!g&$n_ZA!PRlFg)F zut=5mkxrTErGAp5Q(`)zzf@+ga^Ux>6}iS)g*39)>35^@s^W51`)mDGa_aaZFX09AWcZ)K&^TU{-C{5ANc z8?Sy6oe_&k)O143CgGr~M@t2Tif_V5{0pzFRjUf@S^iqp>#Om5RF|g)7g4R^m#c7{ z)i`P^@hMcTLkmu4kDr*sedwe-sRw zwoZ+sJCiZ%)&lytEcLZ_HcO^X4*h7H3YZ*MBP)RiL(a`ii%oae;A({udi2ecGxvVBeX+u%ituUaCJkh>n;krL>_Y$F)O+-h*jrqvU{|gSmTP z8_Zr}7P9NeK)1!W2O6RQ`81##H6Xl>474YqJy4YfG+P5&qygb|WT4h=?SVFGKf`wX1g zw>=cTv<=1b-vSH2;?oihwm{-taWvy0DITyrGU%>;?Lc8bp-AiOLQ!?_TbMe)1pFdV zWV}!Nx5t~L;f>euZZ+V=1GYy7%n@Ii(pNKBt^qF70Pi;eVtWX%2n!ij^XPeV7u0N< z@C|H?U2?~=#Z@)i>hjskKdok_rRvs`6lFeRbZwUzj!u=u_5fv121p^AoMNmM%A_h<{ z3yi2JQ4mp7FxIWMB3Ny!QWY=MOD#feMO#Izh>HFCJLkMJJ3Eu?ZixN;S3jS2GiTrP zobx{CJoCOYJG&hEbH@|GuJJ1qwy}fp`;#2?GiEnT@iV>OF!JFORK`sAySwYd97M}nk5g4F#W~JQKui-tworxmL!^zH@otdo!Wj^ zSXta&yFOGr>-#Lk= zUhkobwUS=o?Cc%^`)%_Fe(3oD)(j4lcsr`cu_Nz^b^!k6Vur+ z&F1_7*3OT$TNhqC$t$@%cB)-hSD{6+JM0dh!)J3!cp^+47S+S8_t0e+-O~`O`MP_s zcz!BgEBUFE7~DkhVtPeObEuz+*Y=pr$9H1!BJrYTDn+3trn6z1&Es|@n$ov9;H-RV z`yHpYZ&V8i>zH41IV30+Xpg*{lG`WwJvN6O>z6(I%0-JDMc$YY|j2;qN(pTr(LOEqgFqc3sx3~6ZY7t zM5YAWbf3p<^Lep+eMiRdp(HgQU6QeU4e^>+yfKOQy}@Z$i`OE{K)1zx3{FtH;i=I* zqNO<8X;&-PmT1jCzIB?V4U5bPX6Qk|N1!Bzt6_4@tKLmCWy(&cQns)~Wf|<>{F2)x zX={q)a5%j#x6Mr#N13BzyOmI;Avay|+Th+P%)R;Jzf9qo3!F~1c&+7%Cu}-Fg;K=} zrp%GCy`p6b?rIGq1=VF*`|&?n#)zowV50u8*#W0Ia$aE&WTcE88rcZo}>`i#-B-TZntU8ZetH$-io^!X%iS>SYsRkB68 zQsCeh$p%M|Vx?td8~jS6XMB~2RrP6A zRkx>5Rj$TUszFF zWJ@IJv)!_D7?d=&mndl{oGx4N4=ZWwQH|+Ny+9?6HqEe-wjOsxRFcCwION{^kN@Ox zd6S2|xa~MQk+iKt2i5`qlN~;m9DI$jLY^VJ)crl2Z0-oj*zI(?{jg>>ofj(hdi-uL zUR={MnlU=27u8$y(lHp@oA}ebgEJG@Bsd+rLVNsHlXYC^ZE!>lXO4{RMpDw^>9Pg) zuzI(osAbgPzZ2PMI44IZ3H+jw6x-V{*Wm4)SfVLwhfC5F3^Xa{oMjfb&*k*mCA*vz z&r;CWZFk!}euu~Aa^c=6Yiyf52kJd_RJ9Gk5IcDO7f{^nMJ_2!%&jG^o}S8U&@D4TXsm{=jqU?8cOZ= z`6Y)WmSzVq=JLDkK9>vbgTm5m8QT`WQk|cEac&bpS3N+m)JA2Nbm!}qNsAR)=L;)z z_UJbGmFfKSNdtnu%F1awM3-1D^$5Xt98~2PjFIa=y{o>;Z2>ScHb;Ug=iDplPu`)^ z;4+KX4Y#-Lb|0O-J7Rdr3wv#QVDM)RIpf>tSFZVaj28iI#h}bZY{UqjE`?g>-Xs}L z->sxhqSj@AqRt)LM%O_)SG}wO!%%SbB(5<>;?iRT*A9Y`=ZuL>A38^4uZ<8!^0J4p zzC5t&$=BF}a#aN@3>3?W{DIWK+2@DiOVbNQ<`4MnHE{5$BK}RPeB?eh#(V-jz_#kJ5@uU! z;N<%J?0Y5si7s@8US{z*>>i)pMH@rp(&hKsogSCXLH81~$G6E-k*?~gQ%~CvEc)02 zVa?W6TbFO`4|DoOnw&L)4dh+Z0>>8j4s3dHB=46Nm^fcDeS%ZYk*mhD%)o@ZE-}-w zB`t7Z)>2-Y7C3p=Ak#l^h(+E!1wIg*d0%hVRs6YWf7-y)_*SR14jmR%H!Mu((7`GK zCTzG#GAvB3P=*^tecHG^%^BM^S86_uZ5?L-(W3jsx~3HjqQ@X@T3X=9Ca?Jn&T%Rd z*U0A+Y4YJQEP>4pk!JcQ4!Kr2u8j}Ozt7C3hFCHYLMJ+w=Z|H*ecMtybeKJ0+$Vfd z_3Y^(&c?*<6-YW-ue1#z#?NGAhaX7`oLzg4f0`CJc*w;+furY#vQNb9-&~$%K9A&_Oe4LTWj0e0b$s8DUQ^Io z6zH};(exb-?j<)}1MPTtT_+YVpS%Xz4sgU9)C&q%~K)q}|3HOsmmj5V%VturpF{ z9}?Keex;F@h~|SK@=SF6gmSD%`@RrcCPJA&$3og4z{wD#&EoXZj@>`1v?I)aOq&p5 zO#ee|o?UUC9|)Oz{H}%lS)MqB4Pr-x1vJjO%S~6Y>v&Rn;N(^}H>IP>S)ts$MiH!aG+S3uR$v*-P{WYUj=W8)tQY7;h5;HeC2pg zBF|2zReD7_tVGQY*iWPqHkt_?;e)*DrUsu{2t0 z+^}4`91fd{K9}VaB92ZcA%;flS~0Shpx@x7$@f0N3CcGc=Wus=NWKR(Vlwcp#}#5$ zbTZTNqv^CFzYMd471@GA9u*AOS0}Q&#h=|ybnZ*Q+tORgcc~jT>OZu?Ob_`$K1(pt z11oXd_~I0E%v}TCmN^7mwb;f;}C4)9$1vr^Z%(6!S z#K`+X!_O#ZCSgG_+JqR#XOI}jWYCg(Lk2Cm*TWHPkKqNkw+_UblYt`So5g^;Z~zIA zKSTk|P8{?An3b(Dj6h#9gD-B4XMrzljenORw#FXx02^+NDMT%#vOb^f47_kA-R6@# zUY}$ycEAlazt8SSc%k73~4g z`s`!|ZSe--XE6lGf3MFcl??0`&SY&gz4KND5S z2W4Utn}?vOG*k2xutmo{JhpNe3Cx(u>jUhsY%@FU;(VaXVFS#oKnyd=Iq2@-(sgW%5MuyZ09M9LFh$t^K9fmeY=$EcBfOxX z#v{goOcLX9G2m?+AjEiD1iBOleS$=Z>r@zlzGMbp6ytvIg>7!4eE2>#);t*T!tSp4qy$Oq$DFAsid0S_hFC3sH58B>)mj}M-GvC{_`e4>CD);WABcsU+h*_;qvCi2XrW7_lf*_TNwzCy3!@uHQ6{M^YaIRA~QKPu)~hw}u@ zpt2tZWr4Cm#HehzYJxqleDq#c8~EzCuks5P67_e$0c>@@6CB`0?Hq(SXCYyyWznEM zSs`H;Wl>ko#X(juE5e2mAZ!zvI-h3r{~1k3HXEV0L(kFICM7`%$5cwa&%gUok% zaF5#?wpM1F-S2mK;90ilE3elM|gqxl)03a17W91@K-!i%aqw)2$;AuX|)jtT@PkOt1tq6$qc@@ z2z$U6B)TPA?1=9~53u1XOd(v5%KH4cT^=8vtCKx=#}Src2YgQ9b9$W-C2FVJO+K$1 zzWL&$k0awID;UGuhoM_MRIHId2TSX{1KFh2?Ku1W*&(gIENI+<<|7J?pjA3PlucTF zANYYS^Hv;kC|hV15KyaxwlBLit>U(~w=-7mBpMx&_)!XImfR~Z-d+E33g8Io4r@1( z#^CpY!JWv%Ib^Vrcg>+D+<~T!Iid-HJvuhyv6aI}R4;k$!-f=F=oA;Q2I}2nRIg~l zq3zCB*-cMSI`O|TaY@Yb0h}d>1(#ntXbP5JkS{L34+>3J=a8mnz{Fu=y(Wh=y&8@{ z)9`}2+=Cdm=8&fMhyf4c0HNui2=p)xYDW6R#u`STFPXs?HGK>Cf~NnRBQ*UedVmcz zO(B**DsYv%OFjS(iAX}w@a-$R4;~(gDrl#}VTX%hn;-8V!~IqCcelsiArI)p`i*Fp zt8wdhE{C++jI%tO6Vh(STLtG~vGtS-;3dEtsP{>OdZ}G1+MBK_T|)UU zOnRy4kKf|_KoF?gMW7qdEl3n~`-0HzUT6}yAl?mA2Hn1zOS=679D#1(1-17gV!V_~ zy8T=X_!I{S-To*7{SF6xhr|ip!U*&wGx(xz4}&l0wr`%$?H|wsY^Ylb@jRpgTjdA6 zxK&Pd!$V(Kc#i~^y1vMpWmrHYzZ)OXbt&ILPgWxEh`ZKxoP_!&sr8d8!+efTEM z+mjbk@}+sGWYbYJkC8Y3OZiZjjz{K^l56tla`<%|GEzSHrE)n87i;(@UJeteE3c)X zSHKr!K+u6r=S{X~bgF{ZxTM8+vgTfKaqjxX7;s3>DY1&uG7kkv0;olSDfWj?n}WGgqXo!2A~o zI7G8GzmKy8(V(`U18sq}LB^=C6oTig+IEzJw&5!| z&`mCf+wXDue9;zV$q(PtgKHU^%a0FuqP7vCvRw#9Z6nf%pMj+HILdr{O9JfIOHd#x!| z8fBKqhQ&?x62kEIAoz7O0+OQai%vxW(pdbXVDTH|;w5CUk$)r@{0dF)YYfuyaXhwi z7>VmNc`dU$P38m{HgiWdvjc7tjyFbGn=D zEETrfC~UaB<%BOs#}Kx|=ak?XPkM4YZi<2cd!LI(&~>DWG`#&tT1&pvkA&S3=Y6~n5S6$IpB#oT_+k-sR02{5s_W3`T(**lz|n~8(w~Uzj#MP|Cv9iOOlWD#n#)OW+u<)u`!ja=n+63=-U*pdu(Hp(no{anX#&G1?J~Ze59CV z51b{a1y}1z&=suKAYoXod2)Q<*b{U4;{K%T1u${giSOu7y50^)a2I>KpaJh8=P1cd|8RHIQy$20NR z%3&m~;pD}wn#MQuCynRmHGY}WL4(_wt)g)i=I2lPPMV>~jx*dKbc4@?G=i+)nUDp- z0(Zc^ZyeAF5m#6^KJvEE4?_V z^8i)n97doonZXy=@OQu$q-`G{cIKt%0XAH~Da0{Ig=Fm!vfesuKk0R@K;%GF= zg2pjOMgVDS-r@Zcr{R-4leII~0(d{{xc-Ip-9RoGk?;XLvzLPDYIM z0+RDkF`xnm2suwFAUR)#gC>Gm*^rCy<7>A4w}opn&9D zh4bE65R&sFg21cMyjvj<# z9LA%Nvj#Ebq9JrdPVxB_Ikyu>qwz0-#@R^5dq`s=KPxD#Mbj4=g>?Km9$Pt#L^+e! z2JA;=C!P${ft;^4%30KXa67XN$yvY*Z6}O2>E4B;vId+X=mh251LOp92IZohuM=_} zR!DLlQb=;1T}X1SgCkg-;RPi*A2F&6NzQkO0c&so$+_n}g}_I_?6}$e$8U2o@rCt3 z)$#)K4d}KV1}XvvA4DTFprOF80W=W!bA>|Si_imXC~yio4U&Vqai znCV)aDToJEe+6g^R1X42)vpt(Uspt`Ukj6mMf~w1QvIWF1geJ@)ajjwvA2j+|0glv zRU9A|@e?A@T{!4Nq)>bk1|!gy%;1X}e+YcxzS>XNq~gBX7IXqL%ABI?f^3A$2meQO zqiX|*+yh^U_rsUsqlp}zN%6QH4!C7b52m2VRg59+z|fT@49nMEEP2~r?hD{ID(=Nu zr`S|sGpF3Nmlp@@OHF1O-?G_4jY-D^HWK%6x#YL+EyBs_-PoQ>JRx>T%^DL#Z zc|V$O(ukzvg?Mb`Fd7w3p2;>%;k$}R;c^Rwt9>-6eR(S@I_O&k`q>0DX*1o8GX>qC z!gqqgK;a-}RQO(@@HcFv@S`yKwFBgt0oEx{xFUm{#&#kZc775e{!X1!6_|K?5Bc&5 zEQ_DA0hm*MYy#`dkJ{ve&8!%1$af6bXPV?i!&r9wUWeT-SB+++y~B6ZZup@RFKoP( z-zJH_N*&cd!YG~6LZhuwM{BLntC&vmzs4zaFIF|h2NctZ{%JJl7l-sj$2rBcGcGTt zo$)g`B&S$N2@s$)(h03=aZ4%P29r@2%8qj8XqMK~6;e&u#9>8@zoNz1?AFHWrhkQe z^=LLIKk_(j;@60Yzkumqg%fY&3&f;THpFp)zalfPDp9)(9kyJzJn6wN8;tCacm-gNi=FR6a;P$9e_;N7RdJdSSR_7 z@yy1L7K=^cQJmK+#qz{U*&hCpsNP$`2HoFBbnWkpwXQu-9Nx8~;>LX_0(G@hpiXuz zP|75>h4-_IK&KEi*B<<75=&wnK32dhsMEqIPq>V&gy8^!6_>>YeQ5Y%adJ%Jx zJ|-X6MQ-{lxSSF(PlUx>K8>y87nGPi5b8U7aN2bEmN@V1poyjmqx{I#>{i~_AtstF zj1=^o2nwhNmkxr{0T63VkguD;0(`6^aIBxl)%+D8uzf&&W2^_QbkngU7dEDlZ&n{#sa#=Mi=Ib%G z9c{a+S)b5*Z&$N2zLVbTa~mWDADeXFz${xeC4tABeSor{hL!RsX$GdXki%{8aM${* zEen&(Lqy>1b6K)%tz~)qcj0MODrs#lP2T%hEqvAcZ6q=y@RheHaoos|YbpO*xYr!< zhU|Ebl^JOTyBJLEV4JB=eFmz-|WmS71LB$ZzKJ zF7i{?!w**!IOXoA*-+l!88|u4&-0w}=F==!UO11<;+1eKu2tPDdG5?hPZzeiIOMULoikLC{%+ps#O&VBO#o9U!QSOAz$E zLJ*9JLeOqOP>Bl(O7gmBaarvQR9%%5*RT#;Utw$IS8rx};FtV5bXdN%VF$c4Tm$36 z`J3Pp{EdUpQ4IWf!4#Rl#}njr%h}k$- zx`evst%7e1?!n=9v>jaqn}eOMz~(+Fa^h;xXwVg4DSmm`YL*H1;Lg?TMur24^j{pr?TX_+2%gU?Jpaul8u3G% zXiwRe&$9rLn$a+Yx5BEqejSAACy6k*5{1c&zz?86Im;wbPOBusz#uB8 z2+_k3;&j5I>cHli`GHL{r}FCn7K+*+X+_PI2UW6;@|*yhXQ{7uORoA_Prb`tD|wvG z>N;OtZC#b4y2j;oxU22*4*|B?8*5bd@`1$*YHqxC{=#xa{ir7i&(Gq_+4(Ev`Zh`e z_i;shB|HUZ=o0v18SdoxEcm(BlmW7R8cPV2Rdnk`_id>DpNop&R6-LB(ggX_lD1;L zy`4S5-vo~E=V&gV&!42=yE4mS{3MKq6_c6BD3|YGJNa2kwA`F1jI@xvis_XDsz~V| zrqtis@FdJ&L&Dsug>_4|;;Cb9oUT8=QS+k}#ZZ8^fxaGr5?0f!Ok%3dOv4_}A{HT(FUl=KaJt6}DMUh8HV2~+zXg3?e z`S)&_rSQu*JVS%3g~N4wSvtPbdimmBSQC4w?*(0t;0XcVgk`XT=b^ojRzNVF*vIzb zTO{TYn2;jo?uN;aH_6=}V^jE8kC56Z4@qq}d@6y8?y{d*IIn{na3Hm6kB}OCVUCs- z7!)QoBl0vs>qY>CrDcOht!XDY`vBX{9|33V!D>uyk0;pqAnVQevoIPeJ6jm#IZv_m z{1uO=>^xy4ULS;youCIdz*D6tiwMLn6e)a9DI|UC(R3aMg0sf~5YCN{QkD(+1@8`d#0v(_ju|-nox<7SmYh8brpTP#YYLiW3TF#m2F^0zn=8m!nvXc^;}e`ozh_O1u-*M9b_CxeihdV`qE}4vC$F=w_|b5jcLWaD#=prN z_#WXL6F9-&zR6~A{x8MD^EMm9zafu~{~``x%YL`~#4)x*F8v#HHw+~Aw}m@h5FB`i z9pjzhb}W3s|J^9*eW+A$_;IM96@GCAE12)63g*CPE_kv^{4-l=;zQusTd3e5zo=k= zUsMnVMXBIfQNg(Y2o=26Z>S({^X`y;JYneiO)xIJimUyiinqe2Xof0Y3#Q0b{J|vu z<|Lf4pYV$!E`TxFVi}T>PM?F- z5nelf3+4KK3Ea{uOnM0>0Ca zfu?`YQqfGswniyku~~lcdv=I7(^Y(iyz2*cEl(-MO#90AK70VrDy2-pw&nt}<9h%~ z*ZIk%y3Lu}9Q^JA8^F20l*sa8*yPgSjQ?W|JRNTq^#?7RFPmqXRktwwB78)6xJyMi zuwBdeG%nstkxwu_idTi+o6h;&%6m$h3qtSBkK=jp9#M86j(^M7lu~iti{}T?XMF;{ zA76@TI$#lBKHUF+n@VJ-&gc9_}8f?Vjp-@Z0&sfnxVG3pp4+P#)Bi|HP|dFl?T#Q*5{Q;eWfq`KSwRa#j6xifsxQtrq`7+T; z`^p3tO_)j4Zhc;f@Nqsw_(F;Bxrp$o5}~Odzn7cJDMDPih;T-U@M+8le=rB9TY2BO zq;0p~gTHy-p+j&E+H+&Pc#_h2C<-ynS9>D_+K0Q98wx-tO zg0J3H+3VnEqN;thUSGY_X|MIxxvIT2@~VlvXRzGE*E5UXQC(XNKa%IGb$O+lYHzjA z0YAiF>+!?Cb?0&Ws|4y#SMm2)>d=g)#apVRYN_7g_1InTAcecG-UrU^T9>2RD@k=ePd$!> z2lGequEFKidMd4qh{w z?_{x)={A(xW2XVLn`H6T`|CXQ?pn!FS0g#AYJHLy{_UCS`r2wwb*)n*OQnK|d3;bR zkFVNaFV(>}CE?#P@na?Gs+}&M!&O~loS3Dq3jQ@vr`uZ#m6d9|{%SjL;&9a0*4Ee7 zR98tsVB&d}86yYzlA+uYJ2*_oF5f?o7Z!S?aYNu=10_s#-@q%(B)~6+AYS&x?5P_Qmp!Wy~Je(4$oDw2}|!*O$waSMu>Q7sJBd*l-AL|28%>!pO!3 z9N!4z@c*yJcNfi0f!_^p_&fYPdt}2u;HAL?;~PH3zmDKvr|~cRIIQ6_{0r||HhhkM z!Bq)c#b05(>mb-y+2Y~n!3W958hIt}I|#OK8S>%X{1T3~-Mm1)|2E$L7fFNYlI$J$ z{cw1Kt|J`DS*!Uz?o$!m3c~O(1hgp#iE$0iLGsKsJXM8CF&m(&RH$ndsCi*fXp0DS zO`-v6oeH&9fx0^k3T+Xg9!fGmHLFku6sRL%P-u$?b-JSg>MttP`wG)Luk|oM zT~MLEQ=pOtYZXLWM5u1P3{bg)m1f8qESkX?28FhWP*ai(P~%jn(F)YGFetP|gu17< z0cx=dwLpRTWf&CNB0`<$V}N=mmRH0s0ppJ(@p)DfRwc=k; z&`y14Rj4l&sGq{1&=wKu3GvJA8dT~KrGmYOhzj-}qBR5BB0~LJ{ED;&HB^PFP@pD; zL7^=oln;I(Qg?2jt3q9?K;0Y$g|>)L%Pj_|Z7S3j1?r(ND6~a{dQtp1pgO@vnTqrq z1?gxQ651jnnR5(DeX2rzqClMsgF;(GsIl<7Av&tM4OI%*WvD1%#!#(*Xp0E7S^S2J zI=_9~uR?hgs1adMXp0DST>Nr`234&>%}}7`he4q&B2*fD4O2J4^(xdI3e=7;D6~a{ znkl{vt7Y}H3UyF{dNB+NZ4sgNh%ex2P#>vKA1F}&41+>jM5xcjmwz-UQ>9YDxJpsM zo|Re!(H0S^7#^P0aaF8B6)I3=VNhs`2(?f=!>na>g$gxAfvOLKLYoR@gY6Y;DC6f| zdwt#3afjkJm=?@ibYo53*4b8kkU-hK%@q%Jb{r%R+QV!3DiwW2Ww5%5cY{Y`!r)gB zyh}d*An$JbRYL2ChL6IZfoDTtcPQW=Q{f+}l=nZxzv0h@p@R*QmrC|jYH3%R+7x7% zDJ;l4YLH`<^6@?VkNi|v5U{lfva4-Dn!A;*}dyntqj7woba)wb5cQ{?y<~GrlW0vPX#>f9Z9CSNW diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 13bc38df29ef4b43ef2bafdeafd91ee333a22524..7232a7b46bb30b93b7bd1373142751bd0b21bc76 100644 GIT binary patch delta 64 zcmbQ&&N#1~af213VSI*ZepaDnhQ4X4VRDjjQc9wMiD{a-p{Z%Ifk8@=g^_`&v4yEc TYLc;~sil#TiSg!aMq?)cgTWGN delta 64 zcmbQ&&N#1~af213VOo4fmRV(yg?_R{vVp0Ik%h5Inz^B+xk+NGfw@sis&QhPWtxSt TL87s7vPr6`nc3!SMq?)ceV`Jy diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 394f3b3e030ed54d3c02ba4e80360d34d6645e53..1f6a9e53149c02a34e3cc7f01579b230f6724957 100644 GIT binary patch delta 68 zcmdmcif!*Hwhdc24dXLR^Ro&qGxSYU4U?0MlTs25Oia_v4NXmx4GdC}EQ}0HjV(+q YQj?4=O)ZU#OpKeKa&CXh$rv#k04rn`FaQ7m delta 68 zcmdmcif!*Hwhdc24b$Q?vdk)rEcBBtk_}8vj4X^z(##Dl%}o+h4a|*FQjHVSEYmEE Y4HAuwlTA`h&CHsga&CXh$rv#k048%5d;kCd diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index d332ff87e6df742017f8a774b9cff74a4a17ccc5..28043bbccc80b8b333101b8ba270eed3d6547ff6 100644 GIT binary patch delta 109923 zcma&P2bh(`^*^5Nz|xl8WtZjlzLe$my%!6hRF$S;FNh*dMT}Tc!5TY6WD>E!S0f71 zfNh9I1Qj(_uxnI6lNdX86qWzy%)B%2ytnZC^E~@JI-hgSoX?r^PQU+H^kl^+Tc4^} zyS{7U#F?47v*+b!4#`YUoIEWx?Ua+^>CCB}iA?6?c>I)Uxnw+(%4KrXr={|ld@`9% zUG_=Wt3K&kfxk-pRpGB1e>M24#a|u%y5Nswy5X-Lf8Fud1Ajg7*9(8W@z;RAKKN_I zUlabC@z)oBE%(j{7LCkc3mxSA^lv4%;mMi#H{(UbeeyZ+Y2*O`k?&*ie| zcs!p;pOj7JGpEE;C+FjtOfGv$wlgKI|G%U-tp9UjWirhwD%`F0$w9tECYg?BJ33in zMq~#2@7=CG3hi#7apqa&@+zdOM%dS{1{?YBSGlHCRwdI(w(bX4lf&xP(R>#x1JloO3-J;-BcG=_Yv)FwP zx*BXynN4LoQc3pLjV^ahs)Qz6vZ=k14}HjWcx4q}w)O{Ca~CTPDYh=>8Ot7j3U*0X zfKI!EINVi`?T@s233q)`p;4#eb$@qxG*qbg!QY8zrZb%uJXPd#iH-!Tc*i$`sP?W& zmljyF(dD&umFZl9`78X5ykZlWO4uw^VS33Wfl>|DA3c({jZ5bwo)SfDW70Rm*u2Hj zM*i|kt^+FBf=5u4!v5q>UClDCmi>8MC3ypP+9&e1ZlV2tTU~EgFwZl}f3ok?rvQ}K zU+|i%zP37>=*$>ZJAodM&3hv}i+%QASD%_r4O^ZAMhhSRuFGFi^Q8B}jr=d~x{j!n zuw7=t@YG~<3>*5XtI;xS*9U@O_?Guwfs&fS@Xq&LpHN0DVGZJ6q<)^2iK|u znx#?7>13iK&z4N^&mgjm8n%Kc-~^lSE-H6ksX8!z+Q+U_D}^2f-zp&Jv4)XuL9|JO z4n?;7eV0!fHA+op$oZ$P-4$i@_H0wm6zjEp;p$&o6VIlzS+hWs)DC@tS?sBA5qBH5 z90J^tOtRm;b@|GHeDrsqX`x1u301artalV^{?XNB2smv|_|fGr2lAyqf^9jJJ@k`y zi!yfDGN`xILw8T%ON0=_J3BI+Y+VJK@Y8#f5X8%<^KgaxuuAsl z9}qYxBAjsKu=NMmQDs5Fyo@IQeYN|O3U<*?+WlhVf_^#uw`<)f?^HIKv-)h|S2`2V zb)?zX!-F%})HZjcAs|B|1@bq)@Aes3SFOxOY(}Tu)YE-LrG=AU^%{rq9RvKM*mqU# zCPTnsoDHsa`wg(r`m_f3XB7tSRG#e9u2I&7%Fi~syQ3{rEkB#en?9ZC&Qv^!PnGDh zK^yJP!h4u_ida`?N@M(^Huns)W+<*Z-YvUoWmk07#8@g5F6yF%rv%|L7*BZIzo0=| zcAa|Q>MsrPWj>T|b+$8}VjCA}q8Og$&{1yv&OMV2kGlKV0v1y#kQ7X{vJ>M^M%|~P zhbGevSGb$37%J1$paoYg;8d4n%YeN1K=*ER(#m#$DwSti(6cOW`N1`s9X%3pvoUQG^!!G;VeXm9)D4zU0X?sBlJYTh1|IINudPX9 z{+2KqX7g!`SVga}`4~4oh)#jJq!385J;#7x8IX@T7Ttn{N_v)A>Jj>$fYOtiBIL^A z#1lZTIGx{o0{Vdx0DE|yr6Yt|M-J&IP}65`teD zkVj^^kFI1Zj@LQJ*uprQv^+FMQk2TlGb>v`u{fQdJ;(iJ1$%C)!=83l@GPPA&goP~ zGx>C0mSFc(oF>nyOuAD|I_{i-FO3%HVG5+!2Q%D$8|-F-a@x^6pX#VIKW`+Opk-L} zTHnuhH%ncD>Liq69dq0PJGq*YrLmLGqZ(=((;7=pS5A;2L*uy%+&|T@su`$*o#|XU zFDj{WG96E|MLz{+F%ZNYK;w!b@D40*fT7PoP3;licpLe5i`)lRvh!za8`1}|?!N)$ z2$oHjzNBf{1x>$^UY#NhVex<~-0xJd<4@OKJM=(S`D5oK^j2Nv?p9ly%*PYxBIqln ze2rsPb>js8EH?ZGH~Je}K$SKGP}<8E!J{%DfAR)2N2Mz>CbPb0J!9B|ms4LVvL&Q8 zCGCB7xjSGaV+{ccJENf{9{3|ho2D_PGWja)f?Q}gs)wU-ygTK{=W>Yk3%gHM8d3=c=f6Q{~14~(2(gTIH;?rs#ZsY1`lMsy2}W%F*Q{#cmMXdO^tfA#IuDLX--D$H+NL$&>#74)5O%4h=! zOk*i7IxE}S$ouJwl*(rFIT02%e!07@Cf%9C$+eaf36y~f8xr=3hC zQbe+)K2LpiI*(SIlS>F-*;td&0^JRP1o8A4U{?*Yl|#^>O?(o4b~P!pt^J-ay2DOTeodSmu(|j0pu|CQFaW4%IB!ZK4BGVL$)*5DVn;) z4>Kivcjd5Rk5fSMlLAS}&(?N;-17>}qF-O_Zp6qx*GUb%dD$8_#%aCRK}QfVli+%pMg| zCy_LJ^JR1tD%Fzbzx)dmMrmg4>+ZH{5@wTr@sD9&Y;`vaaZ1-lBComwI#n4tXd7mS zwh=9S-RoA4WI_r5Z3i5$O<^A(EBc_8E}|x7l36zS^Wbc99%FZnTIG<;raICY;($SO zX^_A7KN`AQmQnrt)xs#$*t$p134;$lH$s)LI*DZ%7~%U>l+FiyP9t~2n$`d<<%DU8 z-}ohUx4U0*H`JyRX&P};Gm{M^6UU@)$c)G=;@8K-ErP&1;&CGAEsOHUzNcz9=>yvW zIewLz&g0KKLrXwF^UB8$`^YCd}`u@qAFhe*D>iYvuOcDD0AY z$9M7Iqmj;F*lQMaB86r5n+DEeEtMV`Sy-s*Pg3!Y1ooGDd3>c+*L{TL=c{{pFaVaO zB}uZHU<1dnS?GDBRaqPW$RIfSixh;dxB7T6{~h!jx!SA(Qe)FT zo+kNmqGc|0-eTMj;!T#xB7v1Po`8WBX7>-T2ipvPYeIPlK1KR<2*qCXg8@(XTCDeD zW7UjB5?d@eIX-wi2Ip)6)oGDHoNdpb{`F}0^e8964`}zysI*YSIhny$+BF>L^|Vw` z{scSCA2JB!W!^;~ziE)?mx^*Id&%z!mbS`&?(ksnyib34jYYMDB+e#cE2}n>iN~?h z^7U8Y84SexR+WSsTyU#EwN9#Lczf1!OeMQ@pr@BmhTrI{rCHHggKo2>OqkMR;2P2z zDwSW5_k2~smix7@ro9*a+7Htd-?5M9=&EIhxV!ZECilDF&7U@XX3IrOV>A05zx3wc zv9FF9(!zGO`g`#UhIy{T#zALi78{#r2UZBunKZ_RVzCJ!sAFp~o}SfCp}LF^%2D|T z%3!?TfmHI+y!6_#Osh>l9y<&hJJxzOH8sc|M^K_|Y8;^zWX{+*r8d;V9!@>A#w=}@kf&a-(_;F%Lr8S`axsp8%{6FJ8*?Y5ai8G~Rk*q^}; zMp+l&us}ElldIY)@E{IG@BS9`(*?vuf2^br1yL={6PlG)_R)j z4Sgm~pb$9>VJzHf9~48?B_Uq7lB#F-1!5>yQW>O!Wt7jl6a9NlDw)K@g-A=U(pju1 zSk=_C8eZ7~(k&^FW5=!b1PxGzj6hjU`D&D6H7OHg0~HnZ%tz6@73j3PVTC7LRjejz zYtQ>pux0f8Yr#~RH1ZRQ=dVSLtxk7#CfS+qds;23xlDpSm$Xw&RBhbyNZ@(F)W$5+ zz}Tj?P$R#egD6&;I+N&T*Ls=^d|nIIf{CgDJF1mxgY4oqzr;Rord=K)+h7B#7C$Xr&{c_w=b{vDKdLHCV;Tp`w8i zrh-_BxMVFBgS$VC>S`mH1ZJ_sjV;5i82A;aDUe^c)pI;P7`9RJAFCat$`;W$?u6Gp z^@RdToh{knX=RT+t6dW8t&I6cuY10!U?2RmB+7a{kMfi5Ie5J6cA}J<7 zap%WwL9rX_vDMR~TBDc|!q-$M(G1zibQS=;S5J2%zv%<|Vps-cR+dV`4$mim$~XU!qH~F>UUW-Dqugx?%3^-PDuVkXHHZSM7l;FYUpB zzj-Qa*@PcaoN=7ZRgDeDb9Ww%g)o~}TEl1+ovDtL#mi2ob;%T)HwSg`yc+NLO7`;4 z%Btih)Z~{?aFeQpX_MfF0U9|X{nQp;>Eivcg4KVG2$xU;KPv5FwW0N1RL6;*db+Sr zs=eK7GT6_CkJO`}SIe>`qho?(Ujw0@DBF?EQ@OR2QQI15&Mq zC5|Mq#G@`3zhRj7+L{V{iVpQQRwr_p1|&v#@p;N)adyNqj4fXBpc`*J6b(_MwS=O5 zRSfdB7C?0pO7M}R!MiehoMCv~SZ^Cv?Go&(CkBjVAYN}M6R4CK=$nR3j4vN&g`i70 zZG@qv4905@@zT&ACoyqgA@6m8N;WqYvR2)&zxGFGt3dwiQN$2y zlGv;uhNx>8_0HQfU=|bnYy`C`i^ZZe@uOu0OF<>`7irK}4!pgI|3z=oF_jB2t{pznkvGLP_sK(XnSU*w>>PiAgF(4r$sDogs+WP@RO5 zqMVA8dHdV%{07;v0p6%h;FJ{QAR}uT zk{oopZRz4`sJFK*>8vG*5*nXeM}7QnbI^t66G;rh*PV~fX857rn%Zmz2YkillUZ!> zl_+8-UMF!J13L`?Do{pU!8BOx5_y)=An2mG=<=n|rb{pYqP{`pAU1|}qqNEi4891p zPvow3jSS{98u-jUOHIc!&m|92{^?3@kLp}H8D~5G?rrIwr9n?N zp3ZmR2pVR|Gug!}yj}JxweCLjw0kkbYgT$O$FwC*dfeO8MP@Y1V0wU02;|^s8@|fBxT?fVwTSvWWX^DFqSiZoqxQtk zN$5TOl4h63kpSGl5oMT3B|FeN(=|}R&c?9oNLXC5D^BO1zwX7xiQpzt$`QMp!lEcb z!Oq6CMZvB(osWLoi`^2ztr%s3TX8yn@Ll@)Kk*E{DA^RIoRSzmUv$ZYme{8~>ut3m zIu`&a%~n23Uu>mOg=Ds9fxn6G-a*~*@V5}*xPXb5fJdC~AImmAj}p}B+S;$rdn0zT zZEebbsPB!xi?(B1(^_+0Qak_I)zs+v&tb-l0IYIK%WI@<+utp&KY42Iz{7$5l!4ReTP83_iap)wd> z_njA8e2;BM-nhjmdQ@~T*?e9dJD9q|gizZFinBX*z$2}plKEG=sbcQ;Z*RX!e9snt z?Cr0NiCVeA0F(~f{cmqXNvlLYaSzqU!5@2D3n4b^V{{~zbuGWK!Y6sO)SwmMbTpM( zT{ezm1oDF0sSHd?f}j#Ap~Qdd;*(rjEtKksHYv6y!KWk$O5qYp{Dkg4$x1omFbQJH z5i^~?($j}l_SnxTh+H1WM~NEhJHCJ7wAa+#7$a+-jsQC5wQ{#NTAa*#^!1@K9{3wt zlF*@?q%m>2>*?RT{cS)StJ>p@6({r4`}t7!@)bVIGwHVF!2AlI<$#&YKj`oCVP7tn zM$_6p&ez&CBL_36RN}Ps+%CShDg}1eAf1(7+r<|x4RKe{HwT9tgw-YEea%kAiW$Dq z?2UR~KcQWW`}>irlxY#RYC*(T-tgr;Esu)y_!luMwdd=6eQOf&I9>qo@9U$fQ5=hp z@&+E5wi+1b6NIIRX1GK;9~h^iJ2MO|GKdqk8DBqTQ4CLB1I1dAn*_B<5R8-p__Zl2 z!LdDkeM`X%{KBOG{!7MYm%!vyu)|CZM7} zY{4*Je`1M`bq*WN7D-ZPxIvWcdUJ(!O^dDj4TE(QYfCM5d6lfrN^&j+_?^RT&c(3B zxftM02m1V2kVs@OJlrwPhc<|17WUO}+|;;rh_9c4pipvo6!UvSd{HA=Dr_BtrSoYA z`HsVSgs?>nCA4T{aLlrlugw6Isr^&Fn2~IldUCw)Yb-!$Q%YlPMrUs4ATm!)^5GNb z8Rw%tKU}O5Y-+Q~B+iG*sww!`7^Z53rP%vJd=W#Zn$qP=YTl7Pe7Y}5qAMUhwkYOn zQzofy5-l6i28X54^0b0sZ|gBWe7vtez}H%(%xR@{8DFHN(gDY7Vwk{U+nb6B@xV?D z4p7n-svuU3iGs3|5nX&>CdXrqeBmjISB=CemQ}#n%2A%NqOk0Am6a$gJJ~R|eTGG= z#W1JTM2VGDn>^cBQ_BV)>BB5A)rq^s#0!_Xb84Wq^Gsh4w(STL$1)S)X_lDhYb(I8 z@=N?AoNSJC=^IL$~#4AFb|5Rdk$(mc!;BagaO!v5v>foB=;IQ{xr|v$mQr>$;U{q2Z?_Xt^_D4Vpv&X!vyf?V4m7rya2`w!zm@ zpB7t9Io#XI$P-e6tS!*p5Xec!HrQ2ztl>akBY)v9nzj`3ukke*LR*LV#<8<+z_;Fp zof!!3HfZRI3JlWW$SF~LEPL>`-H2nzb-TmtVJ$tJJjVG5w; zl0aO?q7=yAc>*InM4{C(4Hjtn(zIy$XcYa?!68?Iv{6C6|2-gIgz@}SH0l9stcPe6 zbsm$x{nz*gl+akc+1Fgl)^70CO3;|w3;Bze*g+f;Zgwq@f{kI zdmctqg;BQ1<8Nle@A1{pqzYFa>GUy}VRT4&+OReaf{}6{Kk|Jlw5Ii#M3mD9+i*FM zKevs(O%J_*Axj=jj0j^ef-%7*v``AVJ=lJ)`g&>*gJ&G?%%!Ld(LtJ!)Jxot^AUYN zrf(BScV{oWVrh#iDz)Wh3XtyUgtc){?(c*QHPQ`>ORN1Ts7arLgR-Z!KoK2iK|aEdnmWJ5vIfr&$!`gU=-D)?o$OSI zqk+{)EF<`pNav}Zel$VBOj@L{DvP3L5!`G{TNK=i)A>yeezZC;!ysMwD2rS8m|=oj zaXPPV@?&8ml}q3l(Z&tbQ)aQXhI>h@zZhq4rElT7E^!Lxf6+<$E zH3LaS*by`QpQ`-m_!Xoqv0Sx3R-C-*|2%$&DJ{Rc)*mgF=Z$_px{IBAPzCe!$lan@ zsDhKCe(Z*I=GERixb!Q4>m(cpqevNuPmWPBomb^=#gimy9Q0W-5OzpW?!bdtn}H~k zL@in(ov#~6g>*)(zoi7qKrm7wod-HBhJ9;rlnQr_Oo~`Om)i}Xh;f$_heL#Cz!Aq` zofv3fj4KxV&&*Ie1I-rPg+vCLCj`X419fTl*(hJ25`?G}uZ5N=dK>qe9|MyM~2FiXL1K&)72FS;a^6o!6<0{DKDK#C%OB@w5#0{K-F{fAYu7e?Cp@Il!Y4I1p*l)CWGG7H|( z66yToL;bi+d&^+>{n8lQZ&MY#wMRxeKWd6e87C%je!*l+@BiST(sz7#)^LQswE(Zn z3Oq}Mqh&C@>^O^WnG0l&m z>j@M5Jut$>9=TDj*!D!ZiaGhN34S`?W#agP5so((Cc>~2!?%xiZ|DWqhiCaQmOXY9 z3IGS+$bcX!ZHp25afgDahP2t`hk~e1HY_%u?#F=k^kW?swOWrU+8bnKs9iaiKBtFG zKr7GVr3JG)!%Gute-T8{Wjkw|n-Igl^CT1Nmc+vUs%;7XEOW3nUQ6hbv3p}35I6GL6XohGs5^x6F>7aVgYVhe1GVR)SGI&?g9F|$ z7k5amb|TvBbLXSN7itKL$FKC`*uXCr+CGV%%5rDu0^1#(6ZD$+Yj^s8w8&=Cw9dZu zX+LIf*hyiRyd0gy1WOx1vrMFLJaYOuaKuhV{i5VFuU+HEcBUXE(M@ZqCn0mfyxaP`KSp;iRl1=wAZ&{MRK9EL zjh1g_Eo4ic_q(cyf)>+;_J5oDYzhMQce0%*GEue}dM?k}6rc!{0+*p|&2;Rp;PpMx zN&j&hb<#v$2~as=FGyGwJv7R=e<|=cl(Cs^Sl#s@b&r0usDF;S4%yTFh9&P~ z(F{cT+W>8uU@-{~0)R+yGT-*w$+maLLo$Mt25?#orzx=>CP?XIDL=1a zU?cykHh@}4w9x8dZr$@Vk|uLgZ^8mSak2qzjwsp5hPf%-0;qn($%eHSQL>W_t>?Q3 zaOTJJxxaf=9tYnoN*Vd11A~7;F=25*ro$NO8>ZlA{sdz>8OE?lEcT0fHU%(K)5eGp zp1i}^X8NT8_6zt3ElStM-u?xAbh2UW?3MsNjt*m5X~G`mffY36!6*F!=rpg~g)!!S z-2>h5-AdzfapR;%kwb<(M`ONa4sBNhOG=yQCdlkw?=N52_9JQz@pp z2IwP6nN98*XtsJ%nb}r)TMg_ROjBA)XNEv{N=g`+-4voS?!Cw9c(E+ znxU%4VVNX0SheAS zAIw2^jt|fSBgjTPrm137Z=>`$3LfXlF%=yHlbXWt0|_%OhK$x%5iu}BKbodiAQ&cb zh&Sg51AeVU_FC8Y0{yX3s&Ewn;M94&0w-6pg+atnTKIZ=fKHp*eb{%w zfXl$Bt_!=FP@uh3`lkH@53s3!cSqTs!vd`5%{A7Eo|%1Tuf3Hes@#LwX~P3Yn5-yI zZFfyX`)j82VIua5sCsB--LW8^>`u@1)$Uw z{oYMusTM4b2YShPNXeD^2WZC{8HnCbM8ih3Z4nJS-7x#p!BhuMk7&QiqSg~^OX{65 zf!aakU{poi2gYWgri+u0m=@C;VW8Wa^&T9+@eYRwon*vNtCJ|ZO9^0rM2`v6V_^?W zv1p@9B_o2cfW?DhAl$(2h^s7w^UC_+iNJtDC1JDmXp3`CBXfr;c$<#dnF{^ukF~h> z!-YtU@g3x`uq$@B6nR{UcFKT#B1s!vihYp;jSn$Qqy4U}(=7UJmKkz|9tVL1+Uy#` zeh8vQAOgyY#Y1L+5VRYLhT+ar%@~waRzWa9!@^%@QWVCGK@G^!a<;Aka1SpfTPF>7 zjtRI5a0GyGoZgxia4#E+vUBPyoNu2SzzF88g911gN;z2Eg>k|CxPwbUw;UW8Xe(%I zqkkX3=;bx)Jd3RLo`9;NQ?<%t^QlpTVrwm~W#+L8rAgB6Urs(c0E%rzIPEy*I&i4T zBH67-LRt_n5cIl;N*P4^(REI&`K(+OXkup`8>rQ0mh=sbX5d?1V)?=7nF`d6JmxQ? z0tfxpLLr?;!-PPz5Hu`&dZ|_5J(+hVN-dB1ml2RmKA#r{aS)H*r6h0^3n#cS5<*DY zOKHpDP{%b^FnY25rv)&;!cb`IaQfsyor!}v#~h4S?*O%JM8V^Pq@EaQExn#%&@eO5 zrmbp4kar8OHDoAuT};&PK7+i#OW-E!9BPH=?Z(eVO?RT`N7ML~q)xVYE*Lv8^uf>+ z{mFPnjMHZY`r`(HB1@>~;`mtsw@%jQ758gr)3Lx0OPypeR#}vR2i#1Md1>)`%HDnN^eO}5ybf}~%Pbq++ z%RrPK1IhLh>HNu6)RaL|IV?IoNuk_25trZ{v}KBm~hpYTxa>SZWw8`dtSI%!<_#WLz^w6Z2h&#ce` z@T)gajb3{<3S3H27>q1@H{gNnrdv?zHe8U!lv_~tHd>TL?2{=245iR3$*06ugVmx%U++cfq$9WrAsOI$yfgD(lu-{6rQGYTFcP z5SWuc)dG%fML0a7&6X6Aj259%Tl_xC|K7F=yPuLGLRfDTdo|)i-S-wGSPochrERc{ znSfz-!h2Q$Yu6o`V643&z|ef^1Dcnd@i>hv=v1pNRrKh%G`(X3wi)X-(742bQn!P* zy|V0}4d|_%7%moK!}1wd6R-O(&DNi|8*$BJQyJ!E?qs?5^?0;o@yqx)72?|V)|c^p z+OkQxM!L4`(?6lfyY09nYI_@#R%P?6Ipz6y%^S zs9==AdGFd_YppCrTtz@{r)vX-b9hr^;RyWj#bw{1hcAFJ6vQhg7}!4Z4SLQpAV0iE z5VP`a|3f7f)@4};P5C6)7vH02m)f!rEvp?r&~!xWsNDFYy@R_dOn)6(ckR-?nCW~- zV-Usu-q-j7;08T9Dw`$FmSU@FZD2OL{2P3O3SjhX*qFk>Ho>w0q{FTN`B`njDV1#Y z_cT_-++*>k04@{?$mXaKZIKx2RAuUIckr_ccIqxPb!AE`5ILQy6vq34^@3SXw!J3U zy%Ng_8~0!zgT74Y=P;lY-0s{H=q6nilb za;%CYpOrPizE*V>QkrZ-2^nRHfwpHaINvoOhz5=b*o1UOrJe2*#O8+SkIIXmJ~)Wp z{oSw80U@RFBbjVhwV{GL${y(`LY}@+p469oa--h_HyH?N~2ROF_=l zLF``6{2skJMah!;dQPy(dWoCz+xZ0Ub)(uB$vAA;aWbqpBzQ0v#3$gCT~2nC+g{x7 z6LjMjs1OB`^Ayv(V(Fr#^!#(***za-4VztQ{^8KzE!Ax2pFRC?I4iim>&<=C&9=#x zgko&r@Zez9*$-ua2_<`Zco2^#=f#8I7$MJG77eylrxb#%8bX{A-PSMY*1G8I@R*xe z_uVrhh&}GjE;vk6RdSeikc4Tm;(L(WgwW#&+w59*5EFEzVHlhfmLgDnux)^!9is&CDhgAgF4 zjWf1FhI=MbeE~&$0AQPaeMXS3qY+3?xQ%89yMs8NqadY66!BRoOy<`dN)-YGOX+|h z&h!-NR866t@!S+#$m8UjV27P<93r$1toYJFj}2k-nxHhBo(>KyPUho}qkf{k6D1?e zQK40njy#*PxHE_!V5NKr(8gZt3=S$z=6^qtx`G}nCxofgE@W7L?SOCehPiZQ`~Dp88J@U!LyF+hX& zZFHZtlYSsaFv+6dQ2x722)D-2M@a_lr2xL>94Zlz=&xWAFQwOTT5vRbz8nfl14^m! zmJ6t8z)L$yRvRs=X60w|4iEaOh>DpnU%bF7Cm2X%@xp+`lyw<^ z2`VcvEe80zm)T4uOgYkqSB9+!g~nMlZAhDxG>ZW~`YM~I4L4e@6w>ry$C;Q&qS9Ud z#MMM}-k?wQWe!@H0A*&DJ(T9j zC6fPi8roNpG=3M1*u}3#*M|3`;Tze)wlDd{hA#*XG?JCe{L5t)pZ?gv&7fV#8cH3D zD7XL24C0r%HA1^@7$YSZ=nN>4&U3e0d}x1}?8!nSd!o>eJS}J<+8#I!G&EE?ziXu? zW!qCI8v$0BVq4j$WbVF8k-{D>Mtkxz7RRzI4o%XJN)sy^!c&?ANm9khe8w8hiOi{Q zm$WCoT~kgAdhnXB!n8rbsyLm$cE82Sh2N2}3~D8i8c@O*KV%)T`sa=K9^j2%Y^QDx zw#v7SaV!C^(9z?gTUG}f+3+ia-E0y0HZqCO1EhR0KBuMB#UrG5uct2Z_?u9>h0MA{ z$a<4o>a!gu1jn#{J8-A{@KP!fa*uQk_k{gE|DgW!#AS*C$vE}zSf>0drGM>)AeL#2tyxRYRO|k zD->2Xi|z@HW*^;zcxzWk#$kye9R9uFJn>Je2ndKlsMrdEV)$Ex^VKg{HA7hGT0@t2 zvDAwCVR@6q(F$C}68%$X4WeI0Kn13(3I5%yW@wb0U5+U$EAb&hMG+A!FQ(#CR)SA` z(~MAAIi_M%R)W9tHbvaG8!h6C<6Mij@9?ZoHsG@ZmW>y_{D#x!{2e-%(iKnKq0 zk6e$&sFS7qydUvX3)8-^=%O!&7Ve=whflMxx3&o@VRIite`q7x;Ew0uWPyS(`0`GR z9zH`F*J^_{(8orn8;*?m*5cK`&U_Ue0-Y>HhX692nS|Jr0<}gbR!11^MuDEs2?;g1 z8MWkRi((&J1TBx=lfdUjY({}4_Ucr&1ZvYD>UTnh>0f`f$Qn*Nw87VK%+8gzvK~Gs zBulb^_5KKq6WGo`ODD$QF5W^HlpP>`V-d3uQHlMf)Wlxo#=4NK!+mTKYS?UJw@_`Z zFkn~XQZl&XOPQ>DEEp(ZK|HA;G8$ALl6Bdjpfj?JpgJ3#YScFJmmU;{GiyU4h}~*% z$v%g3G3zlj$BO&KBm8sNb=xp@vD54DU~`6+xVCOXbt+Eh+nPe?_RswgZB(LEt8pui zwB%~YFCU^_+nBaE>?4d`iqrYQts!*p=l=&ovSO6|{Xg0d%1K${Pq&58Q7LL&aR-=Q z8xY)T)A;cgcq5)U1wWSw)=4l)1lvsjZ8)A`BSvF?#uK1I2FLzNfU=eXuh7rHfTG)k zv{7&zU;>8GYr<5ZpxI^$Xif0c?%25rcdBAmDfX{PEFM%RZ)v%$=0QZ$W}^*gw={7#BY$xV|OiwNZ!hpIbtMZOBk0_xVZd3ji_#*tBeE=0df`M)yhp=%~9np|4a;GrNqB&KAKXh4H z@cO0@J`ANb`Ca3v3LqHxNC^@0pujjymml4m#O{_5<|U=odGGO55x`!#U!24IHtk^% z$giGg)rI~w*)$z#C;Bpcs2VAp*cP*uu}vYjAs{J8fdmsFu(i902iU1%`77K_{G%hR z3gNO0kQ0s^#QX(y0`nK)g6*ZsL4?2t3v!rv47Gg`16#)FqKJVF78rQ$II07K_CXb* zH4=(}t2Uj*vkq9Kp~+egO2DFHAvk$l2py80UQJ4D$08h_>T?Rw-nc*7flvb}^l=1F zz7j`;FFGWIK2B;9q_TVBkkCLg-LQD^45InM2<0WI)k!ZCtp0$|z`~4#A3x5rxb?5W zVU{#*{t9x~JydUsOL8`d4vauNiFHH>on|q>6Z5EAgBzCkV3VD64?fX*Mucj_Rae** z6O)S%LA4j^wt%+1@eowXG9bV0Y^u~?+P}cQRtMbyWia0NT&mJ2P5e}H0ymNI;RI!j zYq6T__hHEngxxhZf>|%Fv?dXmBM?KappyC2i!HYOl|4~lQj2Y+M=VjASgH}KqEwVc zupC$-oxixqBB)(7O?Cr0Gb`=MsLMmRyt{L5s1Ngv!{-QNWbEjR0>uwv>7UG;b29kZ z7#5`ni?g*SBj&~F{KjiT*jb!%Dyk}>Y{`17II+@&wew5v!Fh@IicxLXGXrsRYATHH zz9ED?#Up2-07^@+Kg~i>md5zmODw{)#em_mq?$&*lwwP+3C(1uos3vay#}$sm(dcy z0b&x!5no>+h!ey({kZ6Q{5Z$Ue+uDEV9;(9LiFKG*)AghLkwCO)QVzmydPG||G%x0;2 zr6H|c@ptOyCSF6mFn$n^Rdj}}SHY9{H2o04Mi#mp56>%1KFuw$PPX5*Xtbp z@jkj99fFY9v>Bro@!q)7UiUCoo@U=rUSQ1)7<83Z=KLw@{rz>bNHlyvgG6Z;0U5)7d>E~-2o<;t@Fhf7CmG=mR;3%mp-b5PzeF*#Uphz32cpGl(7WApYw0N57dk3J6<{m-cP#`bNJ+Ui<-FV_? z!&+;{W{fgQY3;k4#>YcngcI339);5+(FNnT`|xq4ABFwTiy>bbeBeu=jsgf>G^ytJ zg32&D($`->AqwN75S3l}{la6ng#5+O9a};}>{M;-%bGCy&G%kauA0`|uPHA?87c?n zbP3}dasE3fBuw5j20iTDqewB=pT$D&hP;I^HnK1%#+mmy?}i2yf>KvZpI_(|#x$q# zeT;u)29&+T#Z>>6_d`Ad(Pp>39~x|=8y5F#3}c$pf4g>B60+Pme!F(Z&PjOkXmc0^ zNmTI^6RIbD4Mc0iKnh<+aVw6P7ND3?U>6vpULsn6NlkI6xSLz^ByqPdnYv`zc`Yq!)g12{mCk=NUQ*D)V z_Y2RhWRu=<&tyjq4`12!=HIE~Q1e>+!AC}fFQ_E;*aOF1)jS(Msu%CiOAAaa&m373 z_89`sED(#q255LEvN&L@6%$2)vT#~JXq1x#7Fu}XAgc2s2=v+}exMXV=pvoOL9VZk zj?9r2z(y_mSYn_(XAuM&wCn?vzkJ#2P#pv*WCTH2kiUN^f?x|cvk*bB!NM#SP0>NH zg`5^d5Nxo}!f!`X5H2_{+{8B4guCL<0Z#Z1W@5=^$5PDyZf_6!aIV_` zaefi+*rB$ZHZmM6rL6?`{wGq)zkW~{!w!0s8i5d}+wou1ap7o4hm&V#G zb!(zE;{%GL zwS5#i#n_43=7&CD#K0+}O`sMC7abYcCip`Xhlj7gfGUZvvKa$hp%6ovsaK*tIzSlD z;QVret-2DG(gDG8=H^5Y7o+|`)F)nz4<89wB|~a*`10n};ebZ8!T#5Thv-yo>-;B( z=aJW0PLeIH@#pI-7bsP0{IJQQ<-$elcn%B9li$D~O+0;{jpJ(1)Qd390yB?^%eU7F z@4#~{AUDuN<@4_n<(YqmaUTTqFpZ-OSmKj#vtfUSAKT{Oh-sXLo#sIm(>M(}tgm`8 zj4L7_j6(-n!l@44I9;GYhkEFhFfNRsP_ab50gXJ7P2->!ML>w*#Y%jI#M|&Q*@~M` zDfcFI_mvn!6bJ}cEHiOF|4r)E5DSN)c|Ty(NdVd#FGX{bn`?V517P{5hf$L~;g zhqyS16&d=|bxxN_z-j1|_ox@#`7DYrgy z-}#B6j@5cRwbSq%)@Vh;z_i!K zS7FtJu@#SnhZu=W+L+R0f@5(yzpEl5%NCpa!U?jdwFI@| zbndT?pgIqE1J$_`8<3*6b5*AkI6H!?VYAq~Z=fTx5o~4R+(?}H-bA47T>itRBT@11%KTtPTtTeSj zGs>q^IK)N;h2JK{-f_dfFu)d!Y^08m4*G4gH&OV->3nUgqErQxZR#26yX>8Cjn)%` zkuBfC$6QJL=67hNpoAt5xGZ{}$`Y_3SlTAP!xO>gaR*AR7SDs_a5!JoMyk4MbPbvw z6T}W2fr95i6OipujH&m8BiKcK4y9Kk%(6{Cgy|5XR8&MgIPOb7#9(3|iQwsU!{)s9 z2)0Ulp$rY&w)q3b_@&go92mjA=x4vs+?5{VlZBYWp%!tEfc=VUqyel9r^Gda4}L}O zRg}y-Qjx8jNsX(t#sNgy$G& z1GTaf(>(LZkyn&qZx<3RnRa0{q)! z(4mQ_*h1@0k2Dz>-AGSVim*6EoEcGE=!baVDCs*gnSKKGZ6YjtGa=&Q6mXdNaB2kO z(R)J?I(eI>A9Oz?f?p_#3eh$wlcrHIusY=MS*T z3(qrPu3m9Qq)k~BGwJ7J5lqt+q>c7!k6?ygn9Tn&hsYj0FoJJDA;_*D7#UQY%mZgc zu;I8Wghsmaf6;2TVs@maCXTbYIHd=UViQH2I0wPfB69x)(^60kmNz2LpZ{Tg1p9Lf zGidXL*`e<^?}^9n?$9==>0c&|a+2vGPaGk6{09+`tm9Q+C=Ef>Z3e?T~nEY0-rd z+_5c)R05CoVo62R2E4N^cMfK;Bf^m;!!=t98*d~PFASC~ffFEf^OT;(f9ui`!IF~X z8+H>#ju@tmW-r7X9BnC`V?nrV2_wgeSC)vEEvao4#LJd2Y;E}i#q0D#@P)$p1vdP) zNWU&g@uFlV%Mvf+UP{||1M99Z{LCerPh(i*KofwXe5td?aOhQ*->tIO~t98QW?Kctg2~*MDv`MYD^>j4il4{;%iez;f z&(*LIw?$f&yV&Uz4`~ri8&y2u z3YvDh)DRZGSYgrh*4Vh#6Flv7L+^|`BUoh_bT&FUymBwUm-G{D^m|G2DVBH6j`&Mp z{`nD1JhTceR9dzB>D3Xeue^9JhC{&Vi%1Vr2!rCql_}>%0!7I3^CEGbXc*h~{s_z}L?rICOQVZDYR{0`=&ks)?6 z4B`n>@mP4{dLq>SiilsrR4XMc-V49$ib&7~w7Ji&h{Ww=!`!ux5vBG&DF4Wu);j$U z$_YCc;Y9Zh7AtQ}KAXWU8rh5I@HE-*6Y&xNNcjzf4CXs%&+5`hhmlTx;FaxJ9^8uB zY|-*rIOT|vB0VM^hXJ#IfoYqdHpECbY`*)P#Z7ss$O&ISPWhtPS-u?mg2m2*%hkyQ zu4qjj5^brM{X-hRWr|TOej|!l`b-I{(FqAGV_q5=To&akU!^ZIiqR{M*`jwJ7HxK9 zA-Wil_8S7u9KgJz9LW2E zeILrc49I7GL=ot_Ry#-;IQ5TNs~s!?`6vI;5x@yuTneQK;3wxIc(f>vwR!7^ee-G* zQGo!)P$ZC$5hwt0pc~^DamIb(7gXy-45SdeKx-yk9JUwaZA6@Ut#%DMC~cNMU>3Fw9JD zqN-qH+N>a3oX%^1)8$)?GC{RC{o$*ksMb@qqEd7s5JsV5*n!;&6m!FkIF(WTYOw@{ zLL|WsdKI;s>mu`FxZApKa}@O%w>L=8T0vPQZzlVvRD9!zh4@v=O>2Af%jrRR03=3PLs!m8zabn~&9c?Qqd0w4p-x}z*ycWv|9(Uiw+nafK{r-x>*jP+xk-83 zrue`Etw4BdGD*A-XV(Yx$8_G%>K}*KAymDGM^RAagZ1Du{=4+ptt`WXQI*MTeB}h0mTuEe4eY zi~1P#GXJV*-|h*ioxmg+Kj%Y3A|o`}GIE_iqnDG>vqieurugGWMvoMM@#D9YGwh`K z7#x}ziJ=iHN}ENRtQ1SF`!y0P6zHnW@XWE%FB~B$Y31gW4z0!wBaa*(?SVZNe-sN- zcseKUj7l!2hDq=F@w241L=Q!lBoZtfK!vnX9STgl#X!kBof^(7p(xJeid@!R8f{Wu zKuC<1jtWNu25eO%Ox-DmJHlu^C3QsxY$kOc??*Ka%D`#CAJaY-=3Ec~K=O z1hzmAQvmOEAq3?>{^opY9~6LcB8&o14&+CkM~wsYF+@Hx+NCCe7cFpj15HE(LA;>7 z=&JVF3>BeYNs&6-5x|;moZ=AKs|3IA5-S?5rW{HIT^YSJ{>t(0F$}S2D};3(h()v< z$itUev2bu9^I9LVaQJ9~{O&6#7U6MJSe>|*tD}JNZYQl}h<@Vr@_5@p(RhI>x?fVw z@?Wka?wb#Z`lSTrtn7+9FkyT&SPU&4A5GY)+S=KRiR#94QSXz&SJPbINy-gL&+_2= zKU(y#yn~?ze#AhPGA0!H+_IJU6^k=ZL31xaktwcM;3#7MgV2%+K%vSS{trJ^bnGqE z*ufA7cZGe*UE*u+8aRf5V8B4M*_+3si5F@Ji?7{Aty{3Pajn-fNxNg`B=innL2ViZ zi3O>64mUjvrg(FK;dlLJvyJoMXaS6Rf~V2(n*@St8Ia$y$|_2wFS94h;wSzDQK>8o zz%nX`7N_$*Yjj~2qfF2&PUkn>N5#4J+Nh_Jj+@PnHnRAtXq{-bSeeK2hgj3;c}dh? zQHW!08#nf_vUB7m(T*ZiYK!%qpB|zzopfW=Yh{ABF@>sJ+_~n`Xh5pFwaKlQMu%8w zhM{@usVIA05%m_ze|<-Eurh8aeDf%kA<@INZMb?bxXoN4$SLx7$^RNi%|U57TuN~ z(8Td;(g#*9yVSNoRaL+Ze;F{AfxBO6%SvpS1@8_Mur2m_Es9;no*-@F+8>m22Y!&1 z$mpzuCyU>RVjG>v;?@b~B@=&)wyI#!fnqpJ6FXvS3#if%0x3bZ9LV2%FM60o74~sF zZt{>=qbhAWbe#AKFC<9Dwm?A+l6N_nPuL#Cmb)Zx3pr`5{3AL#8+2yCU-^*AeEi** zWNhd765|mbn#%kb?W0wXqt&%4jU%oN zLu0M=@C$ZG6qEt@k@zv27g{Tn6nm8HB@XvoX15_xc@)~xZ<#B;8+RW*{nz5mq3G`?i zY7%yAX^l{9(W|hSFuk0aKzrMUtP4=Cw7^_LpW+o+A!+DWWZ2GG@GbNx5uYMIHy3)FQS#u26WXe*GP z>$SMI2@(8|JT@u6_Q#q!lEiLH4RRd_D~{QH0v2b_+$|%(F9@44=~|7cuoaSYHlz0fR7eaQ*9!^9&k|V?F)+IMX6*$0cTfzw&8QB7 zZ`Uf=HzFeB#2i;eq(DOFq5@KY8#$d4k6{lQRYOFiKu+6H0V%)@JD((D*m;lqfGUoVr7P-U zSQ~Q+C=={YKch~U#`uH#Q9XG57wxSwueIBL)qW|gpXIZB-PnE)9ut8PCq~ljs^PJ3 z>#TJ*mRRX($K_7+Yf-x3?f*Fz4s6skh@&JBR z{Jt?%FAx^YcqFWxLmx}J@<(YAmteIM*R~NBOpBbLox#9^sX8Dq+Ao!XHh{=z=M-og zSUWz3@%1ykV}UCA)#{2*qquvEbHP*%=;qV>hFC}=c((22v z^6pb&m?xap1Uj%r+cVY&Qftl|5*y8a+Ka&O=2)^o*~s9UqhgppENqDd3S@K!&$Pr6 z1(>1V>sX>2_CP;RuXipwJk}z|3fXigy)rlXq}VL>rURD)0g30B*9-e4b@?&VVz@5x zfF~eLwOC?5Ul{Z+ zjNx~1q(N~a4HQELrVWB$!bn#JJAZGHQy!8*tpsMu3nL@`kNFlYpSV_r$I9)ZOyK8$ zu$(I{W`bP6l#pSQ5=o*sq%6w&T@=Ig5asDtGVs9q1q`wve%qdbZP3J>Ie>G#EXvu! z7$%4)SIvTQa9ThBw2wt7cU>04^#9<|v0!Be+jtMeTG`ISV>Pu{*vTUX;#2?g=vdf+ z)=4yjckg4#k_bQV8sa|bNOahER01;)5q!(480IcGC>E(wh_<--pjfIXmH%)(@vIq- zmQkc}@Oaev!c>0YVvCob{jq1b54+*;Sg*PieT?Z>QqPFZWWS7#mBK(NUaZ33Viunu zyQycmfpsj5b+0CSY|`@37zQ#SsYQU!2y7C?$$ZLki;m@hLkD~;2h3#t?rn+?p2xz^ zx{7vKou=QD6bm#cq@aP|ITTt>6-5*`(xt}N({b-^%wJ+S0xyb4S`95gkuGhDg`TJHq5c&GQ_+>{dmd>CqpfEc}z3#HrO0dSO$X6 zHs%s|9)n8DNXIcZXoyF;{_+5QN(4J;kr+r^JOn1V*@(6%xY_B3#o!~Fn~iHd!Oc!L z^zKu7NBQ#s?4K@ zq^ma)zn*8s`U^$6J%I}k#8H^V1?X{Xc`>T(j#!BAWPy?}eCbm}bNh|dr{uJN)|)v$ z)?PA4pYFkVEmh;Ik zX}-3uRt9%aBowtVw;;`{GAF^<45oUn>s?bZ(nU?OT= zmYl(Ex(h=-1Qh}cQ4_7?eu ze1?X7)-8V!M=N$pSs4kbH1S8{aZ1RC^kIkj77l9S3%{p=M;y?uZNY}V?bfUKGDD0` zR>e-*y96RKpirV9v)^`6T|i_U>?kt_yOo=%zZc92D=>1|ZmUuVBVDSqIUFuWgwW>k z6R~pUqe5e#Skc9n7G^&xC9~}1=DO@mv&rW5V)NEpi;Prrwwb< zDg-v9EFV(ajuEk9ZsXGD;p=0m>TE%7d~26>427q@gPySyuSQ{2lUSn3Wm9yShgL<_ zz8DM9&x%P1y$C@Ww);g4`iqizNAGsj`BkrAx+6dY7n^y~oERhR{8Un_qc^8ulmxWV z3%8&LFG}WrZEQzvf9zFEQHnrT@tShPG{qBr+fmCUGt9Sf08ui_;U#IT=FEr)W*Fsb z3~Mli#fcim*G1|4dbh<5!+e2Ca?+w`%r-e&K$`_QjPGc(v@7_k|h;x7Z* z(PB}G{cRC+B&ej)_>KYoQ4D0mB3nYVU9cSBR5I*d(9w>@iGnnoc4&jG;T1uK_MUh< zx@ymN7*S!=jn_n}L@TjvbL0D-IqaqHFj}UcryHJpJy0-YvKE&?rpS6Foz$`yJyR{#buC-3szx_uH zPUgC|v;9Z3A7MN?wdp!fh_4^fes85DoyLR`KTb^z6mJvhQ`>^LjnzpkC5acO^9M&! zH5SArDu`Pa#iEoTZe!Y_AYPo#6XU1`3*yBn6U2+t`6CBY4Hm_T*UYeWXE96D!6PwK z70hf5eh`+F%!<=_pTjgWi4wDF(vtI1!OKRpJ;AFuoi9E@^D0Iqui|vxd^GXe$JLI3 ze-?Kn1TVDqR8~*aJ}(1i-0c|q7b)?1Q;FE{!R-MH6~xG-oU5JYYY!QS&g@}dd!j@- z|LSBS_I*IRNcObWK0)n;na_y4umL zY61EDyA+5s!O#Zf^X~xJ&R6kx$oA9QF@M|c)duF>fbX`MgXm@jU1@{_oH+>2Hdv6u z3G>>q75o3Sci!<)72W@5Hz5H*AoLQF&{DR9t;sH+(u=4ND^}Pf8<7rHPy{TGf}kK} zkRE!k!Ud#?1won$f>=PTU;zZwM<4lqX6D@8on&Hs{r>yCUiybi=FI!dIcLtD+h*oo zY8vsOv;yINnF`K4oP~F?2m(fH7gqSP&pXKvW@Le zQyfe;N^3wIOe=L7+K({<5g+7h?~-23Y9Qm_4!CppJC(N0WE`S$>4cOAMHr$o*-?Z-2bSog!1I^ruWe*D$bpc%1YqH zFLT%Xbj)hRPUUAM;)Qe$=6d32z-K(Lf>l1fsL?4axuh5yI=DRi5yripva(7F;~-?A zOD$>}|C`EvPw1*DK&J9NCb$CmETd-uj(XWPmqnDH?3!hZRnCP`aJR+DA+VB)_L3yyYR$F`ksrIsi&u4O5BiJk^Ov&DJe8Vy%TI8`mJ>!Q0{9S$y-@k}}iX#L_Zj#oAbRsRoWSY;FL}axZhpSIgMu*e)&+xIZ%=Cr(k$v<6%z> z#9&jB5Km9ic4Xmo@)jYUSr^GYmf40n@j#WS6*Z0!&n#t}h8>2E`_+|goLU+7%8 zI}2}kavs)FPd|*~KB6p!a=w*?*L(0Sne~1#t5Tc`7lM}kS@l`l1zFf9+K0RSTzT06 zFLiaWX9%w&yv@?+Fy+Rm{aJYP2cKKu^JciN;kg=VfPbW7%@Blx8xfV8FoV~&GGs>F zp)9=fgX7XX4Gr(5X{BYx_#@Q0f=3kU) zs(ir{;J0ENQ*OQ%IFx6jUHW}KKYz(9t~r;@kCoF7=R)pbm*yiQBWz`{$vkJ}hLr=q z;r`EAgl-pgc7LB$JEo4|1LGHE77vx zNBltEH^UxDeCMke_xa9O^hs#AA6voP;hk6TasOR0v?4U#|Al8g+;2`*Vyr*|@*`XD zKUS=0U3Z@Obf}d^Lp5-Y^XtcK2aE)HL3l7Q#xDDp+`J#cm&i2mi;;u*ou|~=U z+U(Bq#?VUZ#?E*fF4~{o6Y-!l|IVI>fu)2-*F+m4kg+eTnfPS$`3|-QB0X^c;x>5< z-<{<6zN{7zp=ezQ`MxAA_GfwYB4c?q?)irYvYLwuN4nVR#wZrkp86cjN{lb_)$?R|JD2&pWzdyihFOx~;mBl^zwCD%o#W(6^EL zQEe}^vf&|7tKV_)5|Kur3kfzn|1=wkLbb26-4a)^Z{2=7`>=K4bf+=9t*xiUIu*mg z4b7SwmD<~?TX+DPBOkEmWz>I<2a|fmj;8QGy@WK8OR=4)a3AmHN|R#4{ZSps{}z%L z{VWuVolN0>MpR(x|G8ips&`#g-8fDm3eqYV+wuM%y9WgD*m<@0uvldG|ZmTSJ`1iW;K?koqC&BR+QMptv<$mt8gY|4>ODLm)VIM)B zr^Hk{G|HBsv?I<}{sRl!JkDK;);Rg1)>tO~}G2|O`DpOdeBOgvx5|5BLX;hkO!;8p0oo#rABx)cS{23Cd<>P@X-zKw2S7T-u zn>VK1R6BmU4R0Yo>lQItQQP9ih(WyEgzC(+;Wec2livQa&PN7~SH2QBK-=!CtDm(zvJdMz}w2?=l zu)nQ2p48wOM5MR*t7_~V!at-^X8;a%Rm$IiV~P}R)Q2OBa#bN#TjjEO-I~`ninjCX zl^TO>EhH~}7N~p-F?+BrBPxn${cf<$7cGwJJG+Ztu-Jx~){68nO*uU(VhS&hQV;Lp z*DLT5??QZTBX*UrBOHkJmk@RK={A3qFtw$B&xhp4XCQ$i+Du}{ z4AThShDoeB$H!yt8=kh~QQ7GWw)%3Dd%q8J-AA`;B3+A0nb+PWA~ozG4dhu|uv_ zxN(f#^k3G9@n5PJi{6F*(F&@5;eQ!Iqhh?>^uLTMO!!}h(0Dn)Zu*aJDe{Fd@Sl1= z7qih?KFIe3;fWm;o95*NvN3Z}xL=0QIDf6_e>|_k+zvZ^Kmn`i0&L=f)GmxWAC;=g zx$kAjj7O48*UP9OJTF6L{I8ZBFM9^OXG@O@@=sS>wejzx;oIZbV)jJZgDhnq?ifr7 zKE=W%_@>W3+$@wVHF`I)<84;`1GWq+X2i}5+WEI$geuXyix1c`O+iG{g#$K!$wK2y ziXHE-Jcn)RB}MGX!!}>ZLSsM^a-td58hibi>BIeqN8@gJ+`^0Iu_E3)t|;)?y?q$# zVi;3k9LywNn#V!RLfLi^7k;TC4plhQA|f#<25&s2N{w3`LbqYCb6W3L_0 zCVrgU-q_OCe!V4TFQi}F*~4th1*8Ke;q|;~<7<;JUlWTx__Txm7m;uz!1^C9@UhJo zktZbzjg1|6r-m;hr31Kf!XSj1G60yRCbm`o<+3d^QXWxs{S}+PRH+f{!n<_TZ#ZmB zO%Y=6Z#XzgmKtw%<6R0TQdpl9dqPD&X6Rt;IX~X~n6dz8#3k^6i=``|2Y3Z9cgj(c zM(<%-uX{B%5BKHqE{1!lv6Z-&W)tG__wr@630@)61l)C&q+^=cd^_)D_^o)MXn^~Q zks``bBir3&#~Z257syDQO|Tg^?^Bq-Hx|KzkdL$Qz3hv&#=;Iwg-94m%Z%3^u;YzP z;bq*-iZFBavZo{Z#kE8<2+Ay;1_J*wCIH@5WkcbFA{`V)N{NY)eBs-ldu47+LV05=`W**vRgU7Gr2b{))Y( zGY8o51}@ER7Y--NIwIzxj@Tf(ZHhf3Dv0QODaG!K7RTsZKiH1m|cuJx!>{D`Gq>XNDsOAGyYPM9efsI7(KMP031r9ur3iEwVXYfmyD@ zZBhCQ6qpu#b~l<@w*;3LA||5Jq#(BNSZlZAA#p^kHiC#aV;U*Ji$>Otqo~B1%PXpy z5SdtWb(*f5z@u|-dpqtDuuEwU3r)7;WQ}j;upSNV{aK9;cHCY>B#B&-jdSq59T4^8#3GtSQ+NOpJEPB~97%z-h=OAn^ExxuIno-JMRcC-j8up+F*;jL=l(Y7rsw*1 zi`c^T#c*u}jnEo9uO(#3{-DIc$Rf8jYJK4yqSPUh>SFj{-$ zq;la>L{^Dp!2e{Vb>FDM=If{F}f&J~7Q9&XX@GHk{{q4BzH0ztiM$PT~ zN`Js047frlGEp+}!tswm_N=JL9U3rU}P}nkK{+8(Dk! zy$t-pIE=*}yua}APAuUV%0HP7ckt@UEKfi=|5iG@!J8|yRMZwaK{TqGwEF;9r8IdvJPzVZ9R&=dBQ1Z;I1X z5QI>Sf|8NT7M@^8#E2-O?rnxdELChwzrwqz@(j~9t}eplZ8S}YEjC*G&bx^FQxSWf zd2v|fIcPh1A9hyfbD&q-Ux|;1XpeFs@(aIWI7PT|f`go+8kUw0a}RZ?*}dLANNVOH z1!mmE7)}uy_2M1mXiOE_o?WW$xe?=zFuIg#V_|~BbQy0;x-koI$jjGimeoH>aZ^1{qmUP6JNDT<@qqNexF)b~OJ7+mJ{R8GRN& z$c%A~9C+4Qw9}3|TEsDEW|Bmu-tdkX~QfBP9yNQiKv1Fwz%v=Z{o&O;PO)}@VHqCc|<*Y_F>^~1dLI>(BZ&I z1rAHQqsk*NT$Z*)Wih37A7xV6GgMm*QqkgIlV>gB`TH@%HB15m0K+Tyi5 zkvNoD!x)>x^WF@GS&yP2o8m9$%xJ_`h_oWZAuZ*kDKKia;yG^yL(7`c&2bK9U^Vg_^+lxcCJSen ztH&`a6kN1tszSVS!Z|B9XR6!Lk{!N){8Cs`Y$SE$(dkpe(L~hZ_fB{eDN;o!VB%Tg zkT^%P5^_@myZ#D>vhYgx=fR1V6z~V!pLS8xwr&YPx1b5mW z#mr)(;T;jD%K+iDPXjKwi=0lI+Q(55FEqUv10u%+_Hh-DD?~>()z!ehtm451e8&K* zq2<$y)ZTnxKyRm0CEn9QI}=YX;Bsb+#MH{&b;UFrrNonnW%+zWKv(l=t=w>Vh)9bV zJZ@Pwn-k`vfwLi4T+Lz=G{xxv`?+nihuEoxj*OCGZd)K5uMS!^g3DU=NEh7t%o)I4 z{-Uu1Py5k;=w|LQo@RDz)`bm9ab!jX5v6aWIQ-FKSzoBj9KwCQn&xN`6-TIUO&q>x zaSXL_nCT_vt6{Um$T5sfi23|DxsZvwSwargTrRyVA%lLtohJW|VdD{|lYA~ImU~kV zK`uUE$i0k_M6_}@W6EPRE*WY186%Hy+|iiw7|u7EJZ+9INC)tsJL!<4zTAf07x3{5 zY;gktSJPuE$W6m#1uySWZ&^ZP{0scpMSr$1t9;;~ecq`7aWesrGh!;J4Zv+*Swf@k zOZ*r{4@W#e11b;qBLt{*T%N-= zc0d|MWOB!Le0CJCsV!JI-DoQB>u_fzw5YRgZ`6OGUyRt7IwP+ma#er3E=cZ(tfc-$ z(|ON7-_5k2>sR?h-AwzqtR(N5$uj`{;~qAM`9#&ZqM4cj))9!=V=47@W_F%GAc;d`?tWQg`#k zEJB)@JcIgi^Ge8SGly~i5|JUPXVsNxMD@Aw!Qc8K9J+37LmeAZzu z%exjMScA1@hm#x)<4R8IjC6L4ETWTlbWC}S&IKFHPL7dBINrfA2dl!BtJxFWRxN71GZor9Ict)Py+j3F5 zv4ofXG>c8zmY$u!|9uYDewaSonlPKKo0NV-;xZ~cavClH-rWO15}J<9VtJh%t>U?H z%ret~%?MzdTuUyF;fNq&v^abt#SO}^Iej)h@Q|LHu%0*Flr?$JG0xh0w%CI)aWyZ? zoz04Gff?ct-)uJYR@l~bwzN%9ur2B9^sLH#W?3rqwcWg=1$&Gi`H`k07Ks5NQe0LP zL(H|?(aMVcx^P>%hh5z4@J*|nQk8kOIBK)B$|+B<&AT0gtgp;wM@BhwEVG$qdirJS zdRSDL?zOJL-#o?eE3#xO_hIF1kz#Dcdk&|#cD5dZBSlV_N#KZdLv{uL8SFwA4bH+T8IooD)ExQ&Pq z7%uX%b;J3ICQ^>R66GcHtLYrsS9`g!DeUwiM;~kM9MM+^Z}BorRX^rPW%E94TwNC6 zgSv+uBdp!$i2P!y@4{x+947KB1=`+qcr1;?9?C(hQb6nZU__P9pL$=a9JSD z7rmb734IoVto)X=ZAt& z(P)lHw@QmaI^gJO#or>;g!;3nM5)#s-(dG(UYAHV-0R_{-?A0o ziA1WU$BJ;rg&9LgN+g>%R?vV1CA00pxgy&VzviYE%oQV<^(nIdG%tK&t{fV~ACJOQ zK9)^{Gkh#N!)u^W<|W2Q<_a2L8Znz(78rRXRII zWY}q*VX@6d%t40Xm1Vi+oRiJ7t4DG8q3d{xS-$1jgl8i&QqwGRWR~4}4C7jZd2CYk z48OJRJdtLWHf-qi&MdYzoKnRaL>W&t{ECFR#I4PlC(obv#Zfo=A_NPsAMnjsnRih^eG-(+yOq-B(JwTso@h;n1xx42v*_*^Xa3@*ZJ#IePyDeJ zM)UkT3eR}{Rp2NJMgBpB=w6|35eg~)GU9~`a>NsM%6odAe+fZps~qyk37&wlg0h^r z9OFb~Zpj6h#Z&Q`VisDKiu{kbVws7kC`=U;Ocj~fa-PVi zUauE3x8vSWKNic; zFk!wt`8MK(R%W@|DNnwMqTnhbz%#Ppe36j}jd`uB()LsDrPj0jDE~e21Nb5Io`uIe zGkY`K_DY*5HKiX$Mkn?Y!^t=*i}=xcI?jU8^0NGBHDCIX&W*`|WjrZ+kRMHXVfUyX z38J8@EZ9}pw5nykNX`U7pOxmPy_Q<9@*~9}K^vuGK#RnajvN{1_tf&T?0b|<$>gRy zB3p1BZJcHuiu}PT8ObP8hF=I;?J`j<3%G@8lTWp%Yn?Y=o}J%;rTpx?2Y>S+6Tf1> z%jSA_&6hd)4OKcbU*_m<)Obr?>5_DNbhXqfR#XtQ5P%lL<+k~9xU9cG4wqg|p->E$ zqMa?M$%jkiWg45f$dQ1(MzIgc76)bx`f~YfPO0`Ss+J2P zY1ky%IBw!`l9pzRxd6z-W~w-1Hj>e$iek(jMP_&420RICcnVHgAcuz=c;Q5{Tl_I$ zfgBi7Q4P& zGfIq#U1?POZh;&Xzh-&;oS0MhW%532m4!0fDlL@RhF_5{-MP|=3uU(1sZ!=bnQhlC zlrG=ID+NLF6ElQ@6onu~rdbxsOuHW%_}y(!PM}a^nrP!M#3Pbvqt`eR(y>K|tECSM z6a((uw0m8yR$fo~fJa*6A1?W6J1_2S@pN;w{UO$8jUzqdp8@!K1W!rc1lBkIlP3Hn zhtek(%Cx>2!iyr_d zC;<2I!lM)b@y7?~Xnu`~n!;Cs!B=qr{Ix(F0C&&<@XuWk2gU!h3s=e7d~Pk0Ph3a* zfkTPkHGRE69x>r`W;v8P(6UHg(b^XAq1nb(bx*Fs{+yniV(q+0h^Yc#+KB7hx^FT9G)67e2R0X0P~T3|!>dJ8O~5-bZ*16pHKxE_zhx z8nB23wmVuk)ma{!Qg9P{6?I{sZg*s94Oc63A8k7vIsZhjaBv$rIFehs8D{hBJVFi* z=Y#TL(b_sJo%P>UMtn<~+54zGYgGKlw*D&3vW`Ng9dqPa zpP?~2X|YVXYKu#zoNcj8xpCZ)jK#4j*L<-|IY3Ccap~Ca*z>m;my6F0(M%wbbHRT` zP|p3M+G0N+>s^aw&Q0b<-?muh+yI!%a}J+WuiLNhVwrQ|k1%}XIX8N-%(+Rt1`0*a z0T=xwboE>;b53VVO#i@9IYmk2T=|vxBq)({A&toIWnu!{(SP z>Yixk2;0|Gi2-9jC|jXM6s5;@o$Tfzq$ z`_#{_y~fD?*pZM_W2*BSIX7eE6xeuCra|H!Zt%}bj0xX4EY+=XOJ#6BrP5=+I!0Bq z))J+e?EFAy-NY+WBu}zGzzTknMQg~I8(5D-XGcplR(z*(ptZwNX-V6qrX^L_kV?*M z>wQb*g=5_eG=29{cCnIkk#!)ooJ@r{hu4=U-#eGetc0FO8`c&X?2BuheXR?ZvK@~( zJ6MaCGWR3Spmoktyo|@iGEVE)82_u{JW#m5F|}SI*S>uzCA~k*nQ7e$^<&dB zYW7>a)KcNmz8U?RSFTV2wV(-C+J5Uy$a~}S+H3DhPEE|>TBhzn%IPZ5u=F|Kdwe4~=J#xm*he$HRJ%(&U^3|6)_Stg_XHI*LpIoDLOx0k_l@hD**6RCN}6UGf3 zXR39|GM3cQ>AGe-DnFXvH)(twHn_dB4mN*uR*BU7Pe*62b+N3;3omqZc8&;zn$0EE z3}#2#I|sAm&M|798JBFg?u)7^?(B5Np<&j$eX=*PIgiDYuzjrax{|irGWk;?o9L5? zUC<{NmdV8UX_-unbIW)Z))y7-=<56??waKmw)^qquGYlmyhbxt7l#EFfWlH8$WqrR9%U%e5H<}R0w`h?1$)xA90=w02Nr{a2=jouvFXmGh~ z6xEU8wbC@a!ZAWc_u#)Co*~B za+dd`vz2wia<;CA(`N;NW?G6CF2r5izNA~7sfC@?!nWlGS{P`ld8UNoqonu)QoOAk z#XU%I{0eEhWrZ~T+uNP%Yi6!ct!}tNT3v62v>KKF*6LoQyc;R+Ov!ua_-rT{iy<9cXx_$+_=>cbU-1-&x5bUL@jo9=DoK38IsmhQ` zvdZ}foP&8)9Fo1PpTH{|jr{K)dm~FYDh`hRvK6CqALo3l^&+)BklGf9ObJ6D76Fro z%<=+cZ}pWjd#kRLhfL*_(d->u=v*9^xsnc<7NQ0nGD$0C_M&<;d(oCWWJ)ypR3>X# zk(;%xkZJ!h56z9oM71J^W=wei(I)y*jwLQ5DsIR68rg%R5&dW6N20N`*Yt>b9n0~r*auaLqRU$DO zRb55HbbQ+2VQEvM-!e37UmoggW=)s1xr&>HIg?3MFKa-S$3Y9ro0MEj{6pl|B59Hw zd`nogA|{jGe;Aq6dzH+j`&P+Jx_ebLlO{dl+!Xf&^ozmwQBi|3DYQyv5~@cB-?B1k zV@#uS9z&yxsL}b<=-ik_3m$i_joV>1`bKP{OQ=y)FF$>E&>-{ODw)1tBVKvV&1~EV z=f;{TIrFz%5UcT0rv-Aws}Vztz5TP<}j8VTKbC3JUKEp@kD zEp?;v-|9Y0h7Tj> zJ|C0hC97UxKaF+vN_FR87d(Gqp|2=VWhPfPHVZi6j_vHt2 z0{N~`uE))1y@yzKuk3opyz8@%ThhvDImm`?blzNk%VSPETe6+Uot4wDP!GGz;YD|# zz>S7IfkI5qEb_WT;i8;^{K7&5Mh=Qk!{S=M%N@qJ?D6`rbTsI3@pq90@ZVKb=noiU z9N9Z8X<=;7=qmF1atnMRUm&M2zc8Fzl%JCm#-cE+hw~cis$_4sl-nqCpLV*+ZIi(Z zY%Lm}9ZvNJecoWGC^wuRgcrd;DD3uxbG!xaKtXOUwozF((OKIV(k}bn_%tk?2!!$r z@L(i2*BA1`g93c6Az0*c7ZmUgBu@&$-lC$Mus7G|L$|oYprrc$7qO=IJJ_4K+4WM(@rWH+>C8$i3gzcwhmM>a4~_|UZaC-<2ZNz} z7iRevcnZ9x-$jMKTz@DOEDZW{ec@mz6!wHdfiP0fAIi-SVbj3KF_!Ae4|qcX#4f+k zkfqlVe3HwzbFZa(GYd&Cf+Dd-97sL3cqBdeR*ZMz!hgucf}lSi z8({@Gv@QnkV1mDe~kLCX^kAR}265Pg=|Ibcn=l_!9r5{G4EsTU zq03tkbisoh9GG4@(8}v1_0TCNGhJ%!@QXt<~n2$ly@5466xrIo<0#^Y`>XB`p2Xbb< z#Nom@-R-6P^r22sxX_=U8}j4LT7JIUQ&@xmxC8hkO^(-3`B_fG`7%GtYm<92C@t*4 zU>dyD$+?`uk7%Y?y zqy})YQIH>S`|~kq`3n4@e7rFa`a>98ac(SNxK^pn)_&uRH%@iQUW`+CIjsv%Qp;(a zjXv#kGn~-svY*a6YdgK(m?JF*R(eB-Gs5b_QI0LRae0uBy-odv-muR+(#pFLq$91o z4pNVu@{&`nT~6$Rkt3}kMDY&)4m{;F-*F`VNzX0= z_ht{Z;w99Id$T9RSr@M{TJ_HUI?g&`4Qo=6Jw|0Aqz7GY=vcQQ zyAysyn}u35R8v7GQo9qV-8lqL(87yrDexA8Hxc~qS~j%5D_e`6tF54468Z(9=c(N< zw6LqL0#{kbLWAJ%IyPo2{9Pygt;EKBR610T)>Ba5I@v*P{PGTJPcRnCYv8T*75ILF z?;*JVI@WF&{MDgX8<^+S%Tw@oJ!`TT{u0_#i_UJMpifb|!>QeI1P|B3Up7_XMFh_$cmu&$?x8U{ zqqzbfBzQl;pAx)Z3lC_az`qiFX+67e5H4?!(YmB%*QG0L+6LK6jq%GvolS6KcHz6y zp}vx#z}*P$Oz>RLQ^4mnc%quzpRA|yb8RPV1wYj1RGj-sZW8= z5Pa%&7CIAk`IMIZ(XX&oH_BL7#xIX`!;Lc5m09S2rDN^MRbW5C9)dd%?9sxH2Nd`L zg6}1G0KxZa;cY<$eu3cUHZu2FxJ>MGTGrB9Vb>D7iW=TQFs4jsT<+XPflm;8jNoqx zKBk3Vx=w+un`E%B5?o`G4E9wmeE50=wiBF*H9r^NGO?H#P^D$5YnM8074~*w^YF`i zIiKJ>EqqTq1s+N82!dZCc!U<7+g^be6TE=n*9pc-IE~p~bx`0#1iugH*Qm?yYuT($ z3i}(em#N_dL&o~D79P}Dftwhzqf+q8MaUfZ?g<`?agdx#g?5cn`KAUW_~pm8~TyTX1&>}hKFA~k$k z3opMzfv?>nV|@*NdAu5Jk-@%(wM#D@?4R#c;2eUz1a~CZtA%~N6u39R_ibTGwcs+b z_i5STcPs3R#6C|APb2twExh9%1ztz+YJztXyjly#-KW5x5d1O0-x2(=7Vdh#0>^EY z!LG2Coo)b^x5`*oV5hyMV?E&kg>?{{gd_W6-Q>ehd6MTi>#5ZKH zuV`U=kpee;Lv~auetEE61gElftxEUQkOvjGJHcJwU}G}iGO=B??8d$d`v|c^so`e` z9;$`^`;Y?9CU^$HD+r#Ug>UGu!0!;ehv1J0-lK(|8=$~H6a2#)EH69i@()_}y@3i_ zf18YT9sKfGr*D%TRfpwuEgkD>gB7?P!PgVqgW&76@NGjBxF5j}68r?g4{G7*Llt;3 z!4tQ!CVsd~>_jd5*)WCOM(h@9cpt%Av~bf$6!>d`za;n?-WS9i@Z4^063rQPNZ^y^_XLJUmLvC0)Ml>_TfqfK>UksxCYpqiTh<53%=? z9fJtIUkm39SKzS(|A$~k@PD-MlOq&(J;7@T-bL^lExhYV1wKjeas0NAx_n&ARvf9Y z@jFE5EfzL3)UuPc<_-~gt7XTu2VB@dS$))a?@-b_D*7NlWZZe zw`tjrMl0+nVxN-i1Y)1kvJIY5*rmi`l`Z#o6S0f5>;um#>=9xQO7;t44{F&3&nfJG ziTzcwm3GQF|EgubdtPCi?Ua3##@h9T&2D1TcIx`b`GUgUL~J+7-a~9REj#Q*g?*IR zVUm58*kM}M7^|>zh@C0fmBh}}vVV?K*msG2OR`6aeM`%>8?UhEiTzQse-Znmmi^BJ zg>A4)#&{cb6{C`(IYr_Qc*G*`CDSpk-@JRM`H+_Lb~#V*6^@J0>aY z6k;byc0RF_wCs#m6?QwZTP3@n*sWUji^&T64Y6k=dx_XHTDJLAg{{6@#d3-`!)|75kksf%;s z9EHs$)-KsL#M-s&O>-6YE@E$&Y?#>Fwd|yM3OkzEk&=Cx*pXWHSh2z`BNmI_xxWUn zi?wW{1q%BCv4?|$2Wx2xcCH8H} z9wYW`E&JCBg}p%RPm;Y#>`z*@!zzVs_?C=wJ+^xe;+*-G?4x>b>Eit2YK84UY+K3Z z5!+VF9$2HW1BiV{vLlFnNXyn-r?69reO0mxh<#Pd-nCv~cMywPAnxz`#J-_rXKhf} zZ;Aa%vX_bdO3R*pU14jyE#rJGo3se+ro1iVeC^x1IHzw?*dVd^AO~l=5SycA`x^?I zPi$|=4k5O;mR-A9VP7KlMajNK?2B6V@)m`Co!E7feUsRATDH|23i}zcpGfu`v7cz! zQQH(Y;T;+0IOg7fSk-<<#yRdCU7X+AuCOhMbx8I)VjWtx@=k^AMeH4tEh6>~Eqlu@ zg&jle(~^CK*r&DZ|rh2_$`I~li1%Sd(FEt z&cAEf{I?ah#k;bPnqmi8^pTg?rtj+dXvsSYdkeAHJ&?2a5!+qM{_w8CK29vQ`{V5M z#6F^B-R~*vJYunRGiO&5J6p>>wohT-BlaE1eoX8;TK0|o3VV^*pCwyiuZ;80TDHOg zg>AG~#<@N#eit@p5nF$+F3z0}Dr`q$+e!9TV%uriafcLkAhG=<`y{dbwCth73OkM1 z$&y`2>|`xl`vZmDN$fVs9w2s`mc9E!h5e4$uO)kh*srzhoR1VX={*_eYOLK+#5wgn z*+{u`5)#=2L}D+$ZB4&yqexoa^k9agN`oi}RSz6xKzo zQ?l0+>(sLEe6Fx}6MLs*A0+lpEnDT3!ahUnD9KJFc9fRwd0Jst5Q~j(xW8M7U8-fL zeyOk@5qm_kUlMyn%YJf3VgE<$e~<|%_ZNlzp4e|B z`zx{EXxV!&DQwLHGS1amlfMw>v;(q_svpqBdERA(ZB1-IvfYRcXxXo?C~P6IA;}IS zHl$^3zbWhlV#i5#Cb8qR?BL%Ob`!B1B>NVz8?@}}|5ey8i2YQuKN9q=s=85Q?;E3wP8?5$RXJxc5cl08H02U?cJDePaw{vp|_ zhh&`p(6XQ6lYcQbXB?7!)SOMK37h@IHb126qb3Oo+mqOvCHnxeH*49VM1>tr>|>IB zf!N2i?21YXJD=FOl3h#eTrGRPvcm2scCTbl5W82)`l~4HC1Ni~)_PdR`GS@mQB`3Z zAC_@$$U+SeXFIVC59{K*^IC=NOl$|q-cD=>EgN55VFwdCK(Zr=9iU~q)lk^!#7>p$ zVq&Li*_V?Pb~mv*BzuV19a{FonhJZC*l#8K8?oPN+4{8=w$>3D=NinCfjBogBKxSu z5nY_`ucNSShz&~iMq-0nc79!j4HKI$*@ubE*RtQ%Q`nb@eMz#jh=-S(FHK=r5xZQnZxFj&%T{lyu*Zn~ zP_kbU`=OS-y_v#ZCH7CrUi+bp^PgJwwdM+&`JwEi7TD|^eUw9Niw|{u^mz+~%_H^} z$@V7p7A@N>Lt#e{`?zFZB=&JF+c#5T7ZA(890Qxz5j#)IuF6u__lbQ^vY!z9o|e66 zQ`pPIUX*OyM>5VAwQR0KVN*Vmac;zty1`}#v5h{`#rY|x!ge9Hqh#+OwxgEaovpA# zh#e@|r->b?WfNQq`x>#+B)f#zXWr)7_N z6}I+K8D}gi>w!2oJu3Ss>8LKw4gCsx9kHzhTc`U`>_nCy>RS&JX{I*7D@^_$TlZLY zGixiYy52d8x*}3nAWeCMOexT^3v(6r6=KIrb~dr&we0r+h22c-M#;WI>_#n{-AZ9k z6Z^SjeGE&FimSk`h4+ttVAwk94Ela?&?+2Q+L*_K3h^?p~WiSC=*D5zJWu4Alt zQg$Z^y0qZ`u2aDKBzQNq*-xT(Yti;MDCqMNeTLA<5`9LCzR*@dS4(sSq1z<7LW{oN zPC-AG=tsxc(CMb9A8Em)4zZxM!p9=9t^bpaTC065GTZV$EqrH317ZO`c4X-D-SPS>- zroaaX-be6Bg7<0RH8(2o6@q^uIR3aCMt;%4m%1x(>T%gq$;VmJVz^9f@^M|PgEuQ| zS7JNimv_{i1b5QHPv4@zLkS*4@F)RiTeR$+9tt~ySVrtpYM5!^N_h&rN5F1)dU|El z;aytv=35o?2Wt0wYWKg??)O^w)!P)f&IuXmn)v0>YIcGZ7h(}+(&*A7&d0aMperpz zwkGnX6Y^+kt!0z%jA5~)_=H?ij5#QLNim^?S~PT*f=;A%Cs4a{2%eyY7xz-&Ed*~O z_}vq7NwLn|b9XD~mxO*n=y_`Q3vIiudlk6KCvr*gCvr*gC-PXR^ocH?AH7dOeV@o4 za^sixPYe2Q>^#5R-wY$h|Rz+ z4|L$9?4^v8x?buPR^Z!C%09wL6^J9Y^qRE&Sz!3cQHm`2=qu zc)k|Scu0W{61<<_PYK?yg$MLg;9m*8bW$!V{!~Wml9pZ9Ut!ZemEF`BzdY301ULRv z7wRhm6u29~oe92+;LcjO^&kZvM(|*QM-x0)3y&VGz%vP+j$gj0nAquB_U$1G`xddg zso@U@-mQhN8K%HL5`326KL|dng?l`#z;!>9!LEg09_;3y$)2k9nJ(B<9#P;M2yXM4 zTvSYK8!da{QHAYGY?vB;jNq^qPI+8`ClUNI!E*_ISqm3Dp}<=SHVEEJu%U&Q4p-na z1fTj$E-EJWl$QN*gu+(+T*kUGetE1LelBBO`Ey;YJx?jHpI{Hc9SHVl;m1cR@B;+j zOYi`K@72QFo>t%&2!8H!xu}@f=d`S4w8E|>b`>?egWy$KxbqkVK0)v?g1;sBm==EN z83nd}A%lID;2K}ZU|-e3ho4noJHeS>$VJ7(W`3dTs5;Lp?Cr$n;g|PvKEZif_@4hL z@JND35d0FsBed|`7Zi9g!3zj}o!|vp_^THc_z=PG1LBK{iG5$oW{p$W--x|T4JVwE zvA(Q@2fd`gO-{*3EX zeFfHXihmA!=MK+M1rD^p6!YEb@mB))tUEm?*8=&~XPyq1y>;t7lUU*&VUIw!y_4_p z1eBHw;CJ2Q`KqQ8!v6SM;X;`$-n7Outg$|s&K20^LEg^(((ytr&63{uJhtWmPm6=9 z+<^Awv+TDUJl=+MCDpCBg{h+zVUN$jtXzfa>koVSH`e77SvK=kPnRz9M7A%-HZB`AhxiVu&s4wa6Kv~yp*CK#k+?!F%ZQAF4t_5*g{Tg7KwV{&X^w%ZuYocw)f9FoJxxpv z>Q)6)Z*|q*{K@l0L&xG|^!&G0ED7j;=Ld4Bq9iYiCZEk@*|Pc3c^!LI7ab$ml4xHt zHSf$ZKRxb-xlQ=BT(cV`%l@K;(N_NKUp;%*cFjp1TgfBIUe<@qhoKGZ*EMc;;>oIR zjZ6NZdM>4o4chE^xu$b$Mf%dOMAeLTr&XHIDgW>^H`W*ON!ipi*?gie!)k_w=djn_ z@eFOqR~Go;tDazGU4H4So;kG=qu_Jd-SrROer&`Co>pbIOyKG*o=|07{=yc|H#L

    )H5# zr>kFro(AxT-MYj#pFQx2r_})mYOvUcQrYndyfKO{jOYFbk`i3D9xN?IHt}u$eyrhh zPn(0gl-XXNqfUfj(sg0{($7J&3dnB%QhQXc`2LsZFxlE+-k}YtTsof;PYLB$CY$a{ zv5j{lbfVxe!RQ-wyHys)4+{#(P*Tn>@tmi-3~EWd>X4#r9)Q4e_=q8zkV) z;F}@dU^S4>s`tKM!$!6m2Icw_1IEEJkU!h#9p2cGNu^Y~RavL=#lCc&t*-ISVTm3X zuO=bbJ79lF4eD&+fJiH^AM8D%Rw-N5g?Tpd6f|E!T^g{wQ~3+(4p?ga&=&89HI{X^ z^MZGEW!~x?hz=`}&9QZh^w=O%D5Th%&Ea`e=WPxun-!sbC@4WXTS;~1<0D)7f4aRt zMwdmFXYT7ARxgaM>K!>*l9h^tG--o^r;{!wq-Ox4n3w$wiH$byv-N` zpz=1I>Gd^cbEy=CF+Kh%j1AHxk(?l7QtK&|t@eY(lRc<90R+$S4wpdEqez%^V}>Z0 zRLjhek*FgB7;&l`lWK|oY_#{g26oH@@1TZ4F^_Q=>c&%_D-;TB<5{ETvB4Q{Bm2e; zHxb-dD6-^4M7pD<)A_QD_o&*T*Xm(H;QT;RN^M<+>Ji3g9uk|(X5_t1?2vs;-UMqS zY|*}GhK`y}=Wpb_J8G&K*HY}=NyatXD&Kcc@4xG7m)Edy<9#tcWxUs4)0j$R^C=OP zp2mDGpXn>gZb)+C~w>ka0p1a{xa)&8q)b}N(F2o zlTNYVq5gU7_eZ1ecaSDR`icqm(a{Kq@^qd*#yh)K0fLWIU@cDu_G695<2fOf1RZT` z{PBp*@^pUL@!qd%Dgf*^GfeKbA^yP(@8CxE(oemE>(l9cnp$7Sz*JE_{tJ23mgq^& zI1`JefUxwzpkcAh^W*w`Y4p z)j)pI0yIW8O2@G%8#{YTevY(!b=b3ZJ)4m#j1{Y8cep3|?Xy%!5@hzRx+RX#*xziAtYb?=<7G z^zLwt)fc9;JMQfGUFUf*I9hrw*cLLyVnLLLs;hhfhwD@ug-CE5Jz zsLwRYDgy~7`HPEaaMZZW7@+!a8xUR8gnQ8~U$u<7WnrpZ?2%>OkOh|H6S|DXNFV&t z5GgkhxWPDT1%-C>iYvU`jg9FqT}o z`+BFaiT8T(I^sf`2qpXH-is#V#-ygOzVlY^>osi6nlkG~KX`+;wWW-AsT;!B;j6u0 zHn7pZhcl^sF-b+^ZOEsScr)C!DL9Ay_4jDm25A&Xn)Q1S4w_Vqh>|Qg7xPPt?(*(a z%WmUZXZ4HTZe?xeTD&UxA3_%?^a#<`j(iAxqe*qFy>PGhl^S-%Bic7x=kZ6h2bAjQ zWbUJ9TBeZ4zzSSEbvbka$zO!$6O&d8XabP!OC*U)ph7yI_8>jdq$T7rtWhe+xCW6n z3p2(*C0HSy-}(?e(i~$(0X%f>l!;E~b$<{&dM1w^i+D8V^XSVloTN89K?Sp%3d6IW zFh#{luR}Up9l%`J_$M*ks3(Mipc`X=M3L><2M;YG;sC}H@oPhQjN)S22W7U|789HLtg^kjWC-#*HbE+xTm+3 z`(B{%n(#VY2AW}1ViMl@YG^Wh^mRm+0gSazUq^VEWXs$sf2a70Y(;z-*k~QI6(wMj zEv?NjQiK(Ad3c4I>Fi$+;|z?k*^Cc-^B5?#T5z+0@j`Puh*_AW+Oo^n%D;V$s)K_`2UEdQ7yGR^$n^w1G_9AO-v0`s=0QncR*ufCYj3RMeoo#P!cK@ za^_uo!E4@@>LRF3zm2LKU_icY|NA}f;k8--RobS!6FJD&ZSZcjCEPxsf&(^Mn!$+e z-VbVQ0k=A8+W1G=m#Qz>K`}h1#)s*aLKbyn)p{H*f+Q?lffM7-@IL_IHx-$Oc+?bz`r3sdg57zbctVvS{&ItF zM@^MH+(uq%Q;wF|=RfS{qtSRGlgx`)F|93y4t(_zOirNyS}g%(xln{ahKc}Vaii@5 z`Mf=Rcq&QMiVUGDrz1hU%@S~_Gf)p!134e+!$Zok?N$Y0?G|P10=cK%*RPR%kU`e@ zTsnd0)GvYec?K-fthWzuZ>^!wDKc8zP)SN`6GRu z0u7$%8>a1T4#f9kUsXbO9qQ{~iK1_i@`AK1n|JtqFW0aG#u`ruH=eBQQ=XJ)HHUly z(cxpRF|TOl5=s3|30fU>8fhvB1aIwe6tknD)A@*A-<(8=tIxMbBYXB>-=JF5PGG6e--wt&7cM6<&fnYDUL(_+ zWO|B7w6VYJ?HjCsdIIG1MKI?(pq3r8pTH6;e4aXB?7sD$DeR#`eeIM5r5aPslYC)V zp)||N8Aab4H7tI(^vR`g^x?jswqj|#GS;_$-O%Mf_(9DN=->RdJ$~?mxgGOAX1nsf zFk5@0r@%^Zl4LAk%2xXfO^>u3<%xfQAp8CWo zzOa+3^XA3Fd>_=X0Vn!e>$Dw>v56<5do4}ns}4tp(2&g*lW5?__&WRN<*+G@HL3Ne z91v-<;DHA2%cR&(z^A^F>gq-DR{qAZz8}{rT~tF`v!yGREZMJ4K;x2mlYra!2BIj8 z6K44(j3;LJw%1hE1=pYjmMXIoeP1-Nvwr65tWRPSg&?lH%jOGsNfupW_gOZsoD+DK z9eI{7;^?|CzJ8wX&|3ECIlitsSf|QtR}Mg#t?l#g&(1!Vx+ev?wAs3IebLGgZ~BSv zy&Cq`&(Zf**7crGol+&U{M6GZWKa7A!jh(AZOXY6?aRPy)ExHxN?&_pwqPWbYeFKy z4!H!RD`Wh&vnYgjTn1i{V8K%`PL}m8&5QY{Q!YoDXxMH0SHJXy8$`}R*9G#g&ZV$^ z?Me(CDr+~dK*Or0ee(G}Z)0OFk%@w}?)>Kyp@kn*$Q?Bw2ZfwBp zBRrwTt%&E7=0y+0JL?Uu922P&2gB%z<{mO^B&T*| zbaXnu=pNs^+Ij-m)?fSD*@m6I1`OoHWQKUBB}yf@Rwi1JDj5IQ8sB#{RY11$QR>rO znQEha;#!{%!*lHUNC|ovAY!~y^O|>_tStv2l|mmnF+t8ruR}Upm>Jo|FXsr&I(ju; z{VfLlQeKY3!KUt zuhCn5&7}g`2Ai?N*Tt@W(PTi{8stwuLmlkO|G@P%|Eeg$UjG*YNjmOQ9rK)TXd@f* zfv=fn;;VpFcli`d+<33mUz#Wx5;Muj&O1fC(@5huBxlG*0D;Z}a;X5T^J{9nf| zWh(_PZjDc7VA~}%WkJXcPuSs$Xh$3cVe$DFeQ(vU?f=n!NE*ry(CaM0EN5~r`35yM z=98IxwxIYWuz)4jaIhI^lWzd=Yqlkt3PK`53_~_hTS&0Y<9gfqg4gM}p^Qon(x`Y= zf?kIW8hfZnbezHyQZnYA+)7Uh%bd~B+>C!Nz0q$|*!n)F&JtSyRA-qlV#KQWZTOrz zOM^8@EWy6}93fGj&JX>N!u6J~sIwGWf}FBQy;T!gLb^mkSRdD|}PUoyEgW`0`k!NV{|Bi($ynAVf(f~O-e&=N>X zvJTkafO3lcs4wVYDDmK040a6;>zMhN%)DQtJRAYHb&!tM3)e`w)cD%3>0ww+*J15Q zlv)`6ov*f$HTzKH*prdM>m^D+3KbF<>+dl+G>?J*0CvAyM!HEdeW@Z9LMQubHxhh8 zga5c%wm4`qB0g>-$#Z>^s5JWTUJOOj#g1#QZiusf{*PL*A&Wj0MPZ zL;Z)>veU=HPcucFK^3;EFp5b-J!jCc#b%W~#BBYwOG6cX4q zk8#DJevAmysRX_H(BcgUx7#3|Py{Banj?6XS2{YGM@RYR)@p@Chl@v3Dj`>IP_bQ7 zg#fL>z${vx%+DX=|F*`qWE4OqR0-hkCMk5^I3C5E$`*61W)#{A)gh);Fa{E9=~o|$ z&~>AjTEP}t#P$;>po}YH+*70~JpM#~djm;ebqE|9rKTKb{QE?Ir-d1-!6VSx937p` ze>#q8ZR*Kr4CN@h_DBSJh4k0=^8c{^@)|X##Dp1o?(cvWR`8 zRG0O|1jgI6JDU-43uz(*o3RCHD_v@c{nn!<`7yc|l%+*MS?bA|3PIVyj7>q=Nw;iX zvcDfgd_mg5jh-Owq+5DBruu1=pD$pfq=;d9PwXNT#2f_1FjI&fgs4rtm%A0je!uWx z{-ZF+2gIgd0?7l-DUtrHX25(v+x|@^n6PmjAn& zN(!PvDk%KrWNK-DJ;#sfyj%h;?NEPbb5_ieVfzS8H`BbyY3KU!8m;kx7LGkU=TiSs z5#u#Kp|*D5`Dm#^0vy`<8*LVRIXam=w8Gzk=4WuX^>432o2vryBTuJ>m$(KEuZjqp zaT9ehRZ#xa8PsJK@g9@SyQrt>7>L-30P5|wgm#Z4(nLOFqncbg%Qmm^xAK1H`7s7o z8QAP0aKc*5ls&Qn6)f{7*liu;!&Q`p^%E}eV@PaS*EJ{HKj9`6onyMxwdXGKW6Y1$ zg0$@VI~!%iu+4MAr%;W9wgW21vRGNfa7xm4P_6p6x#14}{pEtQL@mzHW#Y{SHIDvO z(bXEmF4c|K`0*OB>S4qRT5U_WslAig{kP%8;I4-;psOhJugCm7 zl@XD}L5#Xw-yL{E@IK(Op~HrFB-p_ZpcpDFv9UDqB4X9SV3M#LJM~5IDo^LnKjOz0!htUtEpok{ zwAhg8*p##QCA3Sar$|YAo1UXSSomP4^U&jdY!&?S72~0evT=VkUfAjU+6{iJ*mtsHYW6Bo4WKn%pSX7V|L?r{+JuGjC;4CM_m4Cpu;U;l*iNrqHf4i zzWQByB7kB$PK010eB*EZUCkLW^vTm3usn$euAL4((83EuIpSdb4aPPv!nUy|cPQpq zswMkG-IAHO--yW!#Je2SZ5_;`4rXZz>z%!6cdLWDa;_v}p?=l>{8%Eqs4dW4 zpGjjvyNxUR0?)BI?SURg*M;$QUsD7(bp?jkX3{Gj_jf4o zp(?i>T`78;~V@P)u6c5^h)SrG-*c)f7KR=P713sklSUOnaVe0iMe z^-oh!A}MS*P6|qO1?=D+JUKLHv5cVk$qy?%hAoVN6AJ0k1+wfqaA!8 zDp4v)-z3Tep*N3mf!gArg97miIy{{Y;I(YuLyUi9Q7c_^h;hTth~J*oq|m7#^k$9; zV9#!Ks??i(MBuptOB!B7fL+Z&Bt z2=2Nwus;L4VRe)xr5n404-(y*O1A7CGlAlf*g4jW*2RZtZ=6hoH-FhX(1K}?Vip5A z8G&h>HB`?SQDY89^JBmyH%kW#HkfV@-S>b40>@(Si7-dSC?WAkdEvl7w}lvEM950F zjLknNunT)lj4`7^Y^-!k<+Vcscy@krTA-^wn@MC8r9>i4V^f-Lyzz9Dv4OBuLr{{v zaym-2ESdNJF~#7|e+nW3lmR2ni31(q{4{`5m6VeV8f9+mnP^aD$$Z|?6o40B5@=@U zpA{HXF2UBErTwt&@mG(fAgsLrw2~>jw8@%EX3V*K&>F-BT>zT~Zz>49z}~w6Hp`NE z*GY=oK(_c2ttbgf!{QkMf`dzNV;C%lSHbu>a}-tOv81Cs0?Tg8TN~r=&kM9S64;C$ z1}}{*7Y2Nd)SIAN6wiK5)xw)3o+GMJM@=X5o`r!KwQM8{3~Yc&7!@>?(U$i@`!PYY zL_n)E!Ltg;uQ)UCX^rp~M=XtTqpPVlS3>z0X9WU{INO-QPD!>p6zFVDi^VZIc%?=F zhOR9(&=M0B9IcA-+=cW|PNtt+&SnHs3vgdibZ%-Sb4bBtwNAg z%W~jNmr{fW82aWk*4A;D0j1Gj(#+*>D)@Sg3I53N1aV-M3E)0VlQrImPN53O_ghTC ze%JrQ^FoSP1tIk1#`@ly(MLG~?hNMMjE<@b$bWMk#rv(d82>Gb%E4D}F%Fi2yki-K z{XtJ4L^0`?NZZj+%%m~!op3>59^1AKU4X&6Wcdg@Zyyk3yB?>`)(G~~g6#AGkv4wP zje%*kY{4r5M5Pq6ibLimj`gEB2A7GcLXnxW%O6BfC-NZ^CHXvkb6{JIP0He}^ie3? zr4l7pvbP2rM9~bwXcxzqYJL~!WEVeVRGB_WkJK8dF;U>0~eI)zy!;J{j&$oHr`NlmBor|zOY0hOsdwn3&DSHO7Y zUTOu$K95SyCGeoNsHX6sQcGq-UctbSTBk^9&OQ$*inO%>%SdeV zu%Ndwk9)Le+XKDafnIl=Mw%pojn=OOddgDyq9+ucPC6A?#2lL>1aoYU_izXbgofFW zu?I@AN&w&bq$1T(31*-btpxBx|41!()H{K}bqP%3nX1DkBy3f#c_lKBm<_5Rfl+!I zD`j{rfq4a7TG-q?s+F($3$@(A?*|6gV$6|j3}V1Y=1(6yYBIaz{eVX&8=FtQAL!MI zj-mCNsAV3!-LYd7GTZT{>oP8KUifz!SzYxpT1OHOE27swMGq@%#Llw~TX1Bw?-RUk zYH*+d`|wJ4+9!dyfh@hvi*dH${#WRAEl?Lk=bRyZ)L~n*rO(7OdhL)PI%gx`&S3Lr zfnJdT>6T`&#}*nIH+`vmClR;y%+?^D9maI2{>5)7?wt+UL<;xm5PRhy#_M{x4F1C` z0hNUiC{PJt%xbh%769eI`SEvD8FbfT?s3<~K)WR&#?M5*o(u@oZ5-?|eASqxDF)@f z4-|cDEYvbC@258gdn;rsl$UI$7la&6v0xES)6OLlIU0M4o>$Oz1cYZwAR%cxpm0rq ztmZSEkp1f?^u8c*Q*#oZu?>rGAnn0{7xWCe&WvT^Tv=0C9{oAJJUEu!ZlS{C#%`%o zw|+_0y?$7*t3HLx3;P~Y#7@qwGu7pAQ5P`r9WU2GX=IpKXl=vB#r`@qt(} zSaoo45W96^khTG8xQSp|H`sb`u)7+_zwDvNKXYH|biY{$5%?v>=(qC zyG))RHIgEI{$%5)%i0~2sXH&%dTumDIM_9_H6T)#Lsvd?Nzj8set36b6Nlj)0}Q(j z&`$t;m_Y@%9+TXpl6g}$i0x*VOh>qqt&KkiC516@EU*61;BW&u*7i9R-A}0opHm28 zdl^VIvlo7(+#{2Y-h)3hxKAX zc~K~iZ(^6X*aH6eTpBHDR9proP}&Cm{akod8RKIP31WG2)dIu?Bv|r)s8SDZ?Hp0e-O-E}3})qhW|W_$hNL0s_y?wIY) zU_M=t7x#No9kLB)jhfHE9i6s8m3^vVyy<{EI&A|ws+-Rq)y5A#Hi#40psx*}smZHS zW%P(Gl@k>GfyxfaxHCZk^jKg?Cik5X#Ib9Xf#y(dK$n7@MTr&vi9x(6K7SdaCz-$w zI<)OBam6K$iDHl{+BZsKP>G0g6e85pQ5xO56W|BU3*w#e;LCL`Xp1@^gbCU5Q6k;a z3&P!5pe%-4S(FLzHKzpe0=eNzI}5i7lt!$IdG0%ny1Bzw;whNQVGYd`1GW`nDrL;+ zf%)v~l{84usIV>2KDw;BJ+GUroQ1hJ^P^eH^r@)^v( zyV&F4l6VU*KJ9|F1Gu6Oui)oD4euOX(ZPTlE@Es(UwG3kL7c+(J%b^Glpz-!nbQW3 zn!;{#qnbOJXTi6Ey^YyQs>1x2tAaR?-~F8N&t@q7JNh}}pF3}1VE%1Etey-0*hP!! zp=IlXp2lJ(X{N~pc?WBfnBrZY&TqUYh=pXqSfa^);yDE^IX@=II)Khf@^sR5HvEe< zK`a~#hUF*|X<#%r`Or8SPCICPRN4gMVUz#n};gRKna z_avcghHh6Db+zI{yiypbsVE>U!F?F)El=hjZl-#=U<9L63&(1VjyW%1dl<0R#rp z$KV(!I1RU8d50~*eP}6Qh90ky?#30k;->ozdZ2;hLUNj%T9T-GHvd~jKHo< zxU1mC4^cLbfHE!w(vo}?koRs6o=TU}W0>0VEJjh{4mxFeCT>U*tPSioELc~@_>zx; zb(USXqM%zvvHoMK>;s2}hBaVb6)T0rSd~Z`oA|}C*iVLrhFh?*4w%ly=2}DXY9OET zB?a@V?V)ZZf=FvqtcAWjD|=i=$YTk(Gq|-Q)LRYY_kBYF{;w|MKV{(7ZyRPDECYG? zd&Pe+n-&WVpv4W;O)?PbQeI+*tK1JckF_Dy66lhZCj`>2#i*75%FD5&+>wHOPGd+G z$sX*~147N%PlOkk7lR$H{3sR}N~OguJakg3s=&VQ}SD}!Mpw3JP^2=L8vuXvmdLfbc zC&t{Wym4?>+_!3q#}RQEamuHP0N>sb`l80BMA_`d<8;W2S-K1(F;`Z6=CBZ&(ays{ zgV~HdL(Q04Ph&;F>OC+r#aL5(lVsYShz>_U8zO-e`@>`es{?Az7}qZP+|$Y*41~~i zo^SxlSPEI~NoFA~-VdCtBFB<)=QHzU6+4zhX=cMCA#|kUCZKIOnYqoJH^I0|o|IZx z8Vljkh+@H>Ke|m|;cX#|&hoei1na$Y5f;i~2>b4^&_D-ol6Z!S!drsX6DE&szc^Zz z#2)Oli%|Huj*oJfJ~f0f4M~X;4k!o@79liZY=eHUm2TPHGpR@qw(=&cMi-oIznmP! z;qUv?A&kgDskuIv!(zwu6(Mh9k=nk#mS0h}a6GOFPa4V5p1qZAr=$wo-&A+(<$e)=&4WaMU zP~V7zT|+D$oi9~FI!_CYFyi$jE)VStpF(x~=)%x&fhN<4BZ16YwK6Iw?%U1dHOqIK1UmWWB>>vtWP@&oXl#X8PiKBIC zOpVWF{{k5cYm!)jb)AM*;pouzG~BgBTaouXTrtvmB6uoj5jW4DF84PtGDmOkb&)K)2sGhCP@ zEfPm>iDn%w7HwXQ{isKssA%qCiNFDjB7}1C)6gU~ngM)f2#|@mRHhZTW$(rmj?Ml@+y`8?F@Qmx3AQGS{NQD z)Y+D)?DI2fa-fDO9-5+M(?^Fo1|-Gx=lLAYKCF#lnqTm9@L>+#S1e=csbXnaf6Rxm z^Qm${7c)LGzp0^CJHKQjZp~PE6C&Bc2f6Yi^1T*nYl}R-y@+ZV#b7ugj}jZAIGh~H zY@G26RppqX$4&|Cs6e?4RDPf>;Ta@aae4)qI1;*KghatLWI_F7>BQL5{zyrF$5ko} zj5YY|&QGj&iIP!PELPHrESYL3A9$?_55uY40?MVgUOHI@@^W` zB(bc8m1mk?Sn?PRVU2{MDkYL^*K>$O2USH+C~MghcdGnz1%=328&I%H$|(w!i+Est zxd8?0NR;HV=SBpHgO=qo_Wx0ktlfffDejFFWE{fU)wNGKt^zGHvUVj!i71d_I)@1q ziW2Qes)%e24-|+z zJ$LLXL5EMEZ5$>3IjGi$jSt`ujjQfmR*D2b=a5feOF~RdGhG)X!NB_VF=RkP4 z4QZ1_aJADdo9F&s@x;`aF{$PZZTzG4AuO2f_ckgqo5hsZ>hDn2C@CD*zZ=&j zZGRho8UPnp;(Hg^AwFgs3f&}2`PFL?;i<=o+CSdKBL>@(cX`5?ts!I6*Wmo#5$}b( zI@y?F?}bL_M9a{P8;Q>gAB4I!Xfy_W80yuDmd2o`shUpO1t!T1wsI2_x?!S#wkw|6 zJKn}q`*=^d8J7@f0oqCq0W5}W!*ja|$R|EeUD(I}!;?&C%Ibn9JH2nT;MKwcwZ<^P z#xVH#Y{NFl@BAC}TVUyO%obr_>vGHnxo0zVTi}d2seBqo_$BEaPDo|tTNNsBh|Jy* zz!onONLi%IK|bSUMH(AOg>A|i&tqX*yiTD$1@D3N1~;Z1+K#dY`JY~M(=HdWXqSV0 z?CbQ-Eouvwy<=;qppE&Wq&_C?&~^lH%>oG|EZPo;yAu#I;{5TFZ6U1liu#l|5w8Qz zK038`3PrK1Z3i``9oi0Pnf~;>5T?B?$3<;wznrSBs678eYN{K$!kAE{HnnIMW@E&y z<3*etq9+txg|PoX-R20F*AYuR!LAt?j#t*@w|q>sJ!TKBJmgbMKHA2`Vd)|Ha0?s1 zN4Qy9At84T)AL~&?T&zLh1Y#XH9vBw=1^{7{!r~>sSEs^FDTkk0DG_<(eS|fY$~0j zs_#@;Byen69q&LX3@H&(jtZe96@_DGE>^(oQX!%a9S_4p&y!XzMN^hN6%@R)qPD4Pmqblmt#dB(YqJ$CAEOyolL+bxcB+ zge4?%DF~sQDT!(V{NDq^c*CZAaCboxv%?5la~ZwJ2-`9zvEQqrvZdTPAvi|V8w)Os z?>!`pIj53LTq348s%C(jy2A*No(YJqd=m2p6dUr|`Xap$i|?8IZ9>@NpfU$S=>sDz z6T`g@W@(CVf;4xB@oal=A2bnRor=Md!RJdRv%{q z|25W6w|$nl-QUJX^eFCl7(m310dy|Vmm@XM$GnmeaAyGim|QYoNe)X#DE>I9s_eVf z!5*t8)zlkChq2;0>*z4ffn$#XTQ?Wgj7ya}*5kNa$4m&11(vjE6yqF1N zvGeoe!hQ*^J|2ZCjEPMy7anf|T8nKwK0L~i*U9`>`7rwYFK1{6$e0G%*qPb^JDIob z8GaKVlIzcW6GnvC9^=Cgv3K`EXR!1pPc!>se0Vh5xhU*uOyJT3T%Sx_u^yM8S2wXW z^M`YhnSq)l1i7Dudu<&J@R<{dZ)^c*2`%Z1Fo=y4FNP*G}biq7sfraXQ)6xq?W|MXgN!{DeV9z&wI0)* ze^~w%!l@yZvVy!47PS|xJ#Ff z{KPW7gP?3$OQp2yB$c273hY*bFTI5t2g(S29A$+=0#56|Oa<1B);$wG2`9@G;jgzxcUTBIWe#Fhw| z*_pRrNB`i)$%2@i>3st|gB!!s7d@w#n>qIH6zQnmp_a_DWQ6YaPs#ZiRBl@dXpFPB z&?`8`NzpR?>^~9WsA1c85;5v6+g!ets84*EBKh;75xgH}@!Z%Mh+y=R%wRo*F414r zia$$$34M_;`7^))nn(j1i1^RnpekP65kbQsb2B3mTFxasH{SKm7o04h2>@=c z%d%~)kr5Tr`90e;CxucGVhl@Ka=Sc{vM^(DT{0qSZa@W)ckI;6DxiW|g>=5;W5ul- z=Xi4|95WMvit!7 zMawY&He%x@**se~HiGwexA^8qadqb8HsUyKDkw;E$PAM#WUl5BEZ5w!R|FFUq)31^ z_r_k4(N3xq7v>)5By!=2aLFh&NgwD_NN72wxd^pU-I^3;X)x8lu{ENuOUHtHf{r#V zU}MIjaT`?LNKPmnZMtU)T6krQ&kjb=*9e9rfvMyd@g^d!(3k4+I0K0KFa@Ip-1gtx z3w2oqu0xR<6eVRS?0wzEn4^wqlJQ){rK1AI?UA9rt7>Q^_x9OUc=3PZX zRCpDPpO+!p-6tYaa#+=4s~I}q0)`APoE@Fdo;ndOnRLuxpch5a^qUpIyOB$L(>c*L z{^D4Q;`>gf9*xk6cOh1#lDq~jJsV+cpblkE4(OI2q7N0GKRbf6ciMpPhRm}G<0HRj z(;oKr@SzhTEm(h^tG%X-jCVWdYVRo7sPiW$QgnlAcVi}jE(#aFfNUeK7pEB@ti9vb zmnvY>EOdUB5+>J3DapT?LiGy9!!;~8E1P2S9-O_Ez@N>IjI`5@&AA6sg@T;%)3*81 zT*nnbTf4ILU{#Y)OQO|d$qMwaGK30y^IeP%P?;VZ!io~QPdrLdoxPO+KJo~Moir&u z5qk1rD%m-pF?!Z)^0OS^>?ns`Im}Rd#u>>^ddY_zOZ@J7_FC$Hg>gZYa6Rw5;aYS| z4u&Z-!f@j4t`f_nX<7c)Z0d@CxYW2UNNMd0mQr7Aa30rNl0I-2=G(SQuVJ21pZ-X+Ul_pby+)Z zzAs=!O1$$rrQ%4*3!uw4020Vui0{I3v3N~65q#cIRdx4fiYIwTre&_0NjV2gs;DY zal9K;y31}H*~%Yyf*zKazK=dn2(|d5bj24&9H+1FPhsGUDIqdVfMfN*59lGG(`|$P zr|21Z`F8EGTklWXwKtS*>)rUr$QKRE4~zzI5n}<@+SWudoGW7Yki1lM`InWD@ioyt zM;;fB;09IkV*S=%A~ZLZ`Q(mV~|Wr{In9J~yKE*uqiKQFy-;E|7`__)oS(u;Mzp z&A4HsY+;*m!%pY#yb-~gtDuF?N#T>vqLOlHe0olOl3oyVuqKJ6C9(2!o_N;~lPKla zs4R+wJ3-CCj73SU9N;TIFx1LXNv%AcxBpjB^Wh9G?nROTSWh1^V5{!N8~~WPpeBO) z@ZNzs8)@rkfS>R`#m$c}he;8H_|_q*$r(9tvoWnn)rQ_gtLS9@{O5|9&oZb{Vm7iu zI^Xvz>Ol_3Mt%4?GhQD=ofYU=g7MX5xcz?oK2fjupp(RKw=H2AHZBJ*jEYX?H`GKi z)EqS_>QhRh%9KIzDbfYSXizGO=+XAp7SUFPJv*5OX^{=n}!u zFZGXai#ECSw|*a;#C}pl1|s`%0dO7dV3unlgTseL(M5u?a=%<3yp@B5mFoY!EsEC( zRH+viA|&wIv-M>RoW*VTIG9ayQ{u|0AMS(jas(s=DNqnaV1Y6V0@=i`BCR~+QDuOr zK^7Fd>au?!v+J|SWQKYUIH=n^6@Y`4TED@s3&4?a>r(+ZSgC$XhzelHaZz6#-Jwhm zMMXb@4aXP<(BAt$9EToT!^*mV@zsU}(eR3K(f;-Mia4L%OEG@WjHq82z@ti&hXFd~ zKZULRd9=eZK@#pP&YFow16ePF_*0`O;u9A}+jeJQ-D2Cvaw`+YP#ZuQV102xbO6RR zNl_5}WE^03>gMJV^Qja%+ycr^+=qZ8D^wJtjjk$Zaa97HQCXFvC_p*1J0`5cAUSbL z<@8hWJS7J#HDr4wfj3Ln=e}q+mdC;7~}hvJsR8`ZfcWy18Ur^t9Uk%M*Ie zY36g@xor0M=;f?=nCPdGxl_eFpKH4AOkiyAEws1ZTFlf>lqo`B-B3?RJ6@dv0 z@F2}QicL~6#b4e>MM}F+ttSy2R*ZIQ)8d^Q<%5xc!L&9Lg+p07dK%*gOjc3it1Gp+ z@Iu6vPBaS7>~8`>ut+6~Sb&i6z&gSKs>7Osz8ULpCr>tU=+njdjIRpcGZqkajJgQ!C?CHE?hUV*2Y z(6gbnw?(5=^8*}6JHVfvNi}%ijoLfX(;(YF4P|D)5Hf9A{J6SKs z*WHG=E7jsnrzx7!t-P zCh;~tgEKR4pF`1#>TDO<^aXLzDy3ahqn#B|RB9iFeoDu(dc^q@rl?WOU&CE(6|>dS zTfx*uEZu)xNU{3ohw)6oxqdctpQyU09CN-!mUsvE{GRy;x={_v`?3k_%O=<#9zoGp zgm~-aRIRffiw4LaRA{@r|6JHz`fIex4<3t#H0Cxt=JDv5iU_~#Dyr258>0S-I9szJ z+E)?bwbxLcf+!|86UiK&F&5V}wib);w16u%Y&y8|3pjnK1$0N+sA5Fg;!7d0ezhR|IV($8PH3(YfrbN9bX`8z~e^xI{qS%8yOeFvFLwisD{L z6bqi$#?15!qwTho41SbMXNi#8BNPrE+*Pgc+S{YJbrOYRyG(hx&7gd2mrI@D7u^xX z*NrdVicT_}#oh;s6=|VBCw%cV6-ASNtGd8BZ=owS%CZ7TSsogEa}9+`U>iDiA>#y! z%s>{$o!ij68{F-{_HF163|4CY&~+3f@%OZUPKam%^WW3{IRWDM_re1dASeJYmIbm& z+&+jB(Djup>KVV&Kf++UGJZDrTe`aZNjJgw_yhG0ppQMFLfzqC#7;AqU;S}(wzOOZ zeF)~3n%nZC$Ek+^aqW1S`aBS?s{Y*u>Lvv5To%{Pvgw^Mw6lWPs<(L%UQAKv-UbK5 z_lXHBGSv4dD_!aEgPx_}C#IOa$L^j*A4l7luZ`hT)=CeLx0CBCBBiRUTG ziKH7hMp3z=+>lls_cw~{efr0+?=wkv0ttdxvqp9p{t8%TKy0*?OrPn+H~8qS z?3RC0EN>YY!zNE*a^v?j{32Yuk)1Rs7O)VU;S`zOH7M3+C0hpfc!h#@+aAV8GN{#J zLyR9zKEjV{UZa>LYM6wg-fKY2ixNrTt~%9TcUH!-17b9FUZTSP@)iZD;6)%_;D{F) zWV>20za@A%h{@{iLGZ9Vo$vJyg{GiYjTw1va;fU&roYCk}*2+g2OBnj`+|M9+tY&)>Oul<6~iV zdQYr>L#j-XAMhG;G;2AM|JcB2>HN?bUhuSh_g1d~Y(=;S!Lymy-aR>aJug z;zBKTaftb*0Wq{n6al(eWFewg-HdIdIEFTg zGN3a$74=aBqaCbN|H>gTQSDR){V_wBqx*e2W9l;u`8*n#xY|OMf-R!lga}O)AP&&) zR?-*m@h^9pVvs_p30(}7iI^!sF$9zig54RQ97bE9B0{<%g9C=Eg1}Qjcu{TvC81p` z$z51@#v8)|WBu%yuOXkyU^_IGgR1O2ZjQ<^Jb31^oj*l1PdhF)0A~i2kam=WitO{* z$i}hY0(nz3hNYxi=b>+xBDN>Efl8bKkIhFpIIznCTQDExPzB`Y#$#Acy5khXfy}%0 z-#^8;R|fLWM#Qj&MrDA@7wIkmGzcBkAL6t%~OW+nmcJbM< zMr^OcH8M^};7>ZKs6&GG>?wS>_{fOFi)zQya6S9(DkF4BtN@EXRI-9pbh; zo&WVf3aDe28LgVLW5cvX@r{@NEJJgWnuHmP@$1o&%G3GyX%s%QZZJN&wC=dU_+h8> zM-N5N5V1P?c1_FOF}%ShaThuwT+s^DDgYn5BS3H(trL|rZ$3JPXD0Xv@geueaO(xc z<$Zjh5+nsmHder+PbX?C7aT{=MsVvW#~r;WgF+kaQ%`{qF0JZ>}}MS0~vc%CFRNd zvH8U2q#H1#H0F#BRY-X<-}5IitViy3S1gFD5;GVCi%5eH;+s&k7vR5@vFzQkF_sGD z1C<27`pg*CSzo_57E-7PG-XiSXfW@$6|wt&8%tO!bx>h1B=n9@Z4 z&=rbBpdpFxt7X{qMHo)!6PTz}-zWqP8$(Wn6^O@ZOGl^keoGXQAdb$$A};0@9f33{ zZiNCJ7pQfKQlG7*0e;@~idLW!Ow>kK0{G`QXnMG#0IR!8u8R$mmv+-7N_2_LhxoSD zUhC053@+~smv~apbTE0NJz?_lrysA3VFv?h4SZmqzS(wmOx+o;au8cmC1Xdzork3D zpryI|`ByP)Za}4iy(8teA&bC4OKnX0H3pdM{4MC7(-~}rqDd|!)RPSLHR{^|q%Ze${AMfKghAcb zw{JzmFj$H4wly@Y9Pu`KDl&ka_hzWjd8zAlSib=soXFj+u_EP5pI1rcIy zKvggRu>il}Lo^(%rZN>slE1c|`d8wN8#eQJ%X6xqEJImTKhd@XTs9c-t_JeM9-$tW zcvll)M7$cvUwjnrRKdwnAN#z zGevj*{ymtxfkCXd9oR$Pmlj%Er}j){H&n)6?%$KJR4kJ<|D>4i9N2^Tr81L859}FZ zC0lC0c!^>e)bO_6(bErCWzxLWRuHViE&%y4)sDuVVHMG18+&?7fkvqHW%K;m*D07m zvCEbK&u-d-fc?*!W*IIr{#XB=5v7XS^n|x4j6v1qGnp2uM-Fs*MSxb__%=nbrrSiP z<&tM_H<#O`P}#yU14|rrSs3y$6~?!dWjVqEzL|=_I~7J<4&%G~ zW7th_&lFktigk-`CW}vpsLIDFCUmf3 z&d;LkNWeFe$g-Qq!n~7?zK9-AU*eN(e{AfrDL3HzkJx^=aVo-3D$5@1g}r((FQg%3 z*KoG~XpQ&5Z*K=6#Q z2?wH2CB4vJ+LR z9R)v^FE+@(9oB;|zWGGZ$mi)C<@8M$jEFnW^Vuw2pe*)AO_|k$mj)vsuj7^i`1;8# zRH_5Y>$nM&ALE-9q?#Q&8+4`6<`*$Av$GIG(Whtk;59;IK?3e9n&+SocEHjsUW-uu z?my44D7SF!JmVyRr529up}H33P{dasG2QEwLouD#OAw+Q90BE|5K!gdfGP`say8<2 zeWo0wkmUyni6se93J&bfK$L<5mS!*_WlF&ja$69k;DDtT?#-xDz;Pc;yx=D7O_=SH zRfShZdhndsb44|5DaC=Kr*am0Nxo|=1wEnwqh4Wp*FP{qahaYM+mC@iM!iO0xFwKO zGeDQz!J`z#M`@lPb&k8j6i7hWIBFsfAp5 zbx)us!|q#*p$d*EU=n~nPnuoa6H=*-l!|*NE?C@?P)SWPDaZHUpSZ`bqpl0@BCO@8 zo;J4WtR8$?TPo3{%!-wW|5RoC^Xqz&C91~w#sjGb$Svy$lt^gf=Pv6>lt4y#??V(h zTup^<&9a#n_TcW-1Xehf9^SKn<%zBVXzd>ZQKC4;NtNO?9|v3cT}M!agJ+Y@G+bX92G2yPs%1ZLGzB=Q`b&khYv4Mj6tfJhK9=Geb?L9caC&`DE8DQRXHXq| zI8_|DM|}ou1m#q~uqMkcT-?)F3E=O}QdJv}Fy7dOihNp4yIb4y8dG0f*E2@R>NI}B z994(PFGu>kWjbS%#^0Q$E3F}qArVeFEXH#Q(~c?H0wkVGRB@F+;$fwuXbLI018CAh zU3Zug!8mKkQ9bQ4Mx|jnPv@6iNOjk~9^oocD_o^ru|NCP z^=OzS0><{X_4INe95UJ(uFj@a`Cpkat%na9C3uNeBBN zZc5VlAP1-02W25tgL(KSRr@FiDFjbi?L5TEbXgLPKuIR3|2|va4fC5BcgNkO=7kK@!CCT@JvW%rQ*~z{3VM(qQN1bbMJKjl3ZMi+;AKXo4b;6Dk zrscWr`uhJiw&1t2)B-s1htV8`k9M6dAi?y|Fzk6pfdw0~MnXFzBnnhin9iw!@{JFu zLJG<(Y(HfdVp#j?hv+?|5xZPe7AP0YIEgIEQC{S#L@?!4MTSl6AJw5c7^8(Vxyhs>7JjQEi+D(7*8F&IbFFXGY&9OE1k$6IItHx;3D@wA`A z4jdBSjmQl{;;}LV*ndsC2kCh4!x7t_LK53HkNjj`002c{N!7Eup0q&DQxs>z+LfJ_oLE4o#M?^+&zOj6*O!Z z1&TWp@zBsEVS`dvTmduaeY+s~(Pi{_=RYFeEoBxyjB_l{s$#NGV_p}6g;~}w+in+u zC1dn;0a%!&-}n*Hzd9ce)+g`~ki>D;2yu5dcKKV~n)+bqx2W;Zv7*$djVn4?J-Hc&H9W9oX3YdMqN=MlgDSFT(VT zUlP^AUWjvB!suSGSA2{Mv2+jrM$yDO1U}u4gN3MITx6196QQh(|QI(d*RQBnQ#TT&u92yTf035&^HtKBDVezDs zj7{;77X|y(kT@2({&jdfDq(6Nbjb{~WQEN-!iJ2&-yRW9IU1J1Guq-<&-&mJ~JjWK# z0AHgkZ`CGDo}}5|N2If};?X+DPz|6*v-PW5=il-`Rijy=OgH!U~$B^zjaZZ40~Zk7K88qDUW$5C;X113?SJElGr>h#w|&~`fl`c%Az=?0(KD#)0zzAk`>ZZEyMq|1a@ur4+I*-Fpl3)r;m*Q*7 zuRIp_l){+Xzyc%|T_cajdrLv;!?Cl8zP5bmsYG?thWKz>NYtdXAeZBh*%AgV4=3E&rAqj&`>!NhD#C4kp0(cI{~Y#MK+ zqO$Tuxp|Ftc@a4q#JHNk9EB>3I$9dwC#-PzNm%eBJ)55cX-y{il>>asO%A_uSn(?d z_=zit-{fr=kLK|zx$M_*eepLA#nYiCI->vCHgx$KR`*y77)SKq!7!yF#2>$nSpN6D zIPGV{eFZBqep2_$Q>V5MUeC{YAA>6mx(#o9AET#=5Fd9Zah>rc8sO>MrprpHAW`A=InB$vcS-6_HCj6G7dxJD~~hps#QnQF#d?3GQ8| zN@2JqHu0pmzKI)R?4!Eg1-L+yydXr~Coa9%@P2$`iKaV)n}4rL0~4|pElk?(a*=Xy zTL^Gn9LqQL_M=lLxDePWjTF9Hfz2*7o}$ul%P31i20OgoiTAp3RpY?fqQh`i!8MOl z|BRp*PI7g~i%mGm1O|z{ISn7&L11`Y0`7be93xzCX*L6%q&^xUf^A1S54Q<~hj6u$ z3&PVSPg5s-(xBc@Enc9K%j3gTy``nzOelmScYv-ntZLLH(j18Y(D#MMNm5_Y)ZA6ZN?KTRj3{GhT?`EV-!N1zVpnc z_x55TCx>er)v+<~^Hjl)8{CVXO)gc8c1ShLZ+eGXII45Fkf=q^zp1Vld&Pmv(_^6N zbzwT&EiJtxU4Sv#`2n?R)TH!S8`X-l+LS*UFp4X;Q)7OA?_SKxU|$6`R)8kX=;0kn zj2;uY-mrz>j9xxPqsO1;dJ|T<)DWY`e*dF-Tr#OQr0`@*FP-{>MKOBpp4=O;5M%M{ zVsFw)w=7=%Io0CWamGioX!I71GoCm(2~V28qG|-U5NaGZL&_S&Dir3`MQ<(0;hQQY z*m*g4;v}Po!;DPLXQ5U;r>0kO3*)AFyyDgM(pUI^&e#^6%)kuq{wlqZ(vi_u#oiQ7 zak-?0t!?$aij@OvrHjY)Vj;bP()^}gNeLZQ2AkTZ_4eYhCO-SkCR~bzej?-m__9;7 zKp$bD%5svW{PfF4wemj=R(vq)P3AU_0wG~;=M|#_p@;(*b5v7KvSn`Hp@xz%XSArE zDr)_?jX2$T9ICgFNMoaw48c4WPsItgBaTN1ItXTql3Ch7w)%KfypxXUB4~&MVNnm! zI%p~%bP!`Pcp@s^Nw+NC<|k$w78)OA2r5tRJjryh2*`GIE45Ik zm9PC6(RFaQd7@ke;~$UeMW+JNn0!>m-O9wfn)2CWdeO0Grkk0-(>Oz6G4mW6+bK09%4ZxfE; zCTL@u6CiYWNPMku>3w+8l*lL^bRG#0C+`itc+GWN=_hV(#}Op9v?kidr|wIQ;?FDa z+_3~#zmK7%7DO*cpD+9o!}F&^#+}_Q49}AiiIVL8JegX|mYdw{C_A^Qt-p7BP7)=i z4nBYy5ef=(H)$NW7G?DRwRhg}RTSO-=iWd<6Nq#PB$OoNHg3yJA|ga-7Mh9`lzUSI z1R-`56s&-vfWV;A0tiaS!YVz06hR;gB9=!G1v_BDuD{RBoZY*VOw9Mc-#!NVL;$QBn~ zNZe&2E_j|}iB$s#2`(Czu%dyE11TJ)54K296%h%uiWRJj8_bp0nNh%Tdwe*}z|^0M z1x#|00rx&Gz%N{Xgs(2(epk*me!H2E9CU_uQW$uVU&**Kv6_H;8W&i~xQ~^yjeBE! zoS>=s`GBYySBCpGUI8{?X;v`7%rq4le->upeP`DVn4ojA`KPbfmh!s}zDNi&;&66G zmEciJD8eVh3pXM}aRLv#@wxC9J2Wwdj>y7WqAxb12T1X>SF-qGdydIT@Zdgl>Vu0h z&f*0uz3aE2@#6V$y(dRy;T6$uWmZMGUJL8C&8iO1k7Kvpk%gCF!oNIxD-~}8;2&OD zVd)cf*3%ortYpgY&WX#y(!)5DfP6OoYOJ;1HOBH#ils$}KkeVTH;cO$ms(1Nd-43Z z(jMb1_u^s;6Yj1Op4E~Kc{ZyS-j(48 zOxvqchcWn?qA3A8_-TZ}g;ved$YBq^fF8_jVq`o)zDqSVVF*|9u~|*onZ;Q+2VLl4 zXA|&_!T%wKfhxD`APg>Hr$T|ap~aIa9@3)<X(-McAwwz^`Q4 z3;3fD9OL(PM{G&ofZ3SG&Q^dA5){abhs7r3V-$OrOYwW@u^CEGsF3WRq+vjERu2&o zozRMgO=we}Fk1|eqSPl(`+53Q7M@+2BFof~Q@8`Klx(&YQb|znkI*iqaKQ;k=ec=e*2!lU< zTec`K7NTCdnl~XlGAZE_Zh`s9yJ814TxY@^PRX>L7HMy~5iKZkbh7 zIQV5&h3DJ2p08)&^=Qk#v(oW|H3uUP%|*xd<2!qNH?(+!u}>`^jz+{U9Yu^u$w_c%X$(~1Iaf%$$fu^_8+eWidjAq(WP ziS=P3PAfv=?4B&V6bmQBr#;Dd?$ zfR?pk7gkLNaaTiMZR9bq$&#cjPk3+3$Ma^q;Vi|mL0dlO{U2=)x46nMn>NJN5^ITZ z+x7HF*JbRjhOYK@k)={P8)xD=yL`#JJenJh#^n|$eT)m@;I^-MPw$iO%HWd#P8e+I zYR=a5bJfCG);P92PYm~2msAqtWNI!BvObr%LKRR`W;FPLH}P-XU70u>5??#G+J)^= zQmuGg*(jImHAN=I)(+t+D`p!{{mdKlg$rHjm4$3@Z&%1NVrnvyf91bE`{ldvi$Hv$ zH11wbfG@={-Ak`1$7O@dg@3`SgvOo!@cZXKx}yh3{k$b{F%qgR7i}_2E%#BAZ~WqP z;U;?Sg;tHZMvH=%W@YU8#`sz;)6WP#4~WfeW;3E&;jmzSE z_egXs6u}O6;T{*ao$2n)-XDoxY6&crX}7z=@obyAFIv0slegQGuGY+->q^AgY^G9+ zT{ap$+{(7Gx2L)A8y8Ntt~(`dY#LS+MEDIO<{T8l0?PT%v>C?zOsyz}YAi3s)gPXE zsuCJoGkHtG(>C?u>gD{CC>5}_LtMSs5nTz(1U&av;!Ua1-OXDU?ziI~(Z%5}BA%w0 z!F5m7@H<{=D$;#p8W+EV{y{9)Fm%Ohex{7Dwa|$^1xIqQPJY|TbG1+4E8W)A zbG0;U1H{Z_Fiwl*60_Et z@roBxO^lp{38D(2;qJ-%(dyZl39Bf=ewmG_q6(q$T5sN!xc4=~{FAY3>$zHx`&d81 zpDEwQ=1jLssdA9==gQoFEh(PpX7uMBM}&ZDmm#pJ=MR|U0f-k-ZHNHGg*ILoS#~w= zDZiMnP2cIS`H^@ae zbZ)j%VJ@$zXkh^lPGr4{KjgwZl|0>rr!yfx&SaMN_ovp2dXfk$SGXvbg*RaKwuqWM zn+2BRmrc#vcm%e7fZMlVjwle_hbyHhaCRxa;67@zD^rqOU@2U`8JCg@<%PnDw{utj z+-lZPp}Lou)reaWRB{RV#UFU*;KqwP#t)&2$itxER=Q1s1Cp>L7xOCo3fl5<&Jhk; zZkpD_xbwcaUs5Bt$j_eQ8|fWu+&$Uo&6ZACNzw_|LZp-D$94Yl0J&yXQo-PxSrru< z{~-C+4xhNq!4`Aj93I8tGyzn1!g|+atpL6S>;gQb<7>a#H8DPWjGV)o65Ifv-R#06 zP^e?#a8k5bIu@#%63Y<$3fl7H>WU|kUwH3X8G~PVyJ_XevC~g-zYf-QW46P&^w@PP z+KfLK6dx4|pWwI3roen1KK=wcPQ_fK+p{j5uF~lwzftCdj35qFx_CsJ-fZJZ^g%1% z)RcJ2m0c;<*fGn6qf{>Y3jMDVG4(6cHrG#jj6Tn~aDIyLBg8+WK!XYozRa~T@B|UH zWc(>AWOx97f=9GczOiNjzu3SV)B#d9WFLM-NJw_QO~O%AWa&#f#eYRq%r?S{`DFzz zwXZB>)4sx-UzypogkMU8Q`y=4%r2TK@H3ZIjS8pYGK_34!+r+tRONglb(Q55my%Ng zl1t;!N|+)|k)=;KRVmw8wAON}l2AHTDckV8Mox9WohUY)l@E8($<(>oIpT~pzKBaW zmSYv5v$I8kfb=ddq{Fizl!si++rUQ_Z#kTv#!ZxrbkQ;HWI`Nr#9g%&P)%@$ZNiEs z+HK*Zjkl()kg9>VsZCf>!}2md@Vd5erzc>Os67ffettA?@=Dh*b};0|e1iuDRDvvs z5+T;5r8{iFipcnDH*e=}TDdbs0b2m1cJURg`%>H;EwRG0(j0ftG|XW|YE0P2o4r;l z)xA;y)+d!}R!L;kJ;0kEez(KUS?nLif^T#HiVnUIDEDZdY2of*m)8z?(gNB16Vv5k zS7UZ%OBJW;0mo|^W5oO9e0x)c&3{ow-dMx`bbAR!3lBl4maL)83o>!$C`G{Xf|rTc z^7w_Q<)GAfEi0=S^RXF-n)nEA4qLF&)skv}8#^Cv6>(9)*WW|#4op|?vqHUmX3awom#gLxfH1er$%@)Xo#Oo;J)m7x zG`axQPRIZH74Q8syP*d~@Y-o~z8kxjLXlZVI}B$%^WB+NE@mKXL`5$t8RYiNy3n17 z^W01VH#peIUtSL@Np3vLy4L3ei>p%n+LnPp6~Eqb_p6=jz0 zE>1UwG~AVyw&7+G2Cs2VvDBLR#?G2$|0^9co1)Tp@QB%ab_6rjEp;0@G8eQZ^5%M3Z{Cqm@O*iiUPK zD;MBS%IerP8rkQ&@#3ZbJ#M~v3on8Pgxy&86y|4l@K0qvI}A-?=HmlHxF^K3pJT(^ zAuCsw7LR?FwshmQ%ajqsoQ=4#=!xsXQ=iLN>yhYjTo=!`bQO<8wai?bE_Z7;UbieA zrDM*FBKvU*!v1TiZoC+SGi}&E)7-U0@Q-D88*j_tr>)Kk3ukSWvWtwyUTQqS z;@M6(8&ACXl!HKGXo~G;roVPEqK|JwVEdWru})~*9k%;y77_hb^1Q$HWGN$MQ0xUP z1E%LXq48Ue-FICPW_qs^8V_HHZksgIDW2Kj6y4U{jV~{DU+iF=y19#(ZyKc7yec|1 z9bzvImobit-{N;K%1XE7ZQ zo$1Ce3vQSTRn^nhxN#4yl^G>HcsPDyX0E&SHYjAK_>e(Osx;kRC9 z3>)aKo#$4iBjJ+Hdb zrdOi0v3HRBDyMTS=K7lH_@dozcd{@(A^snF(FITlzU1?S82QkEx-T$V$Bd!SO6_`%w+Xs30o`rn2)oHz5DtRvTVKwf9 z>)qLLvbKmWWX!)fwTW^0a5vu6c{aJT@IxJsQC#k(GEkD1w{Dy4VpVzF&F+XrR?xkF zq#JMSuH1@yAyc;s&)$j~B2!cWzHYP|Z|&f9W&(EdvbLYOao&G6zCE?|6C6tnf8+Ul zRuB2`=m(yLE0ivO5=R-nc`rHHk?*_3I-K&YxWr3}mCVEpv1OAx!zQyd!o6%;zN~@J z+2sLpF4HErICvJe<=eQOy@X)G?U0|d? z$-C=4r`?%&`j6F1rKjDk5f{GFhurg?!CYNgcK;c7xN^4f#B}aj#~;zb1>;!6Z(^WN zI`*a_unZ;sgiddjH?xg;v$#{e&zY6u%1j}fan7uOJ=>Tu+j1xz#7vgI679twW%6xc zVyTGx4D?yD+9V4y;Zfy$i-1Soma# zEOo-AO4-I&Yb=i{38h1ovW+`l0dZLiPo)yI@sN#| zh;UasRpc$Hal>wMxUId6?44vo%$B(+o=PPwE%^Ne4`lT?Y6*-Jd&zO7f=U^DfLE=c zA~i-;R4# ztK#Y)z=>EL@_A6w^XFKT2fB@gkIrLZJE$CF)^(1;zi zN7HUfRboc8$`Z!ukCdop27`e}=-;A>CmZ~+uvj1#kL&*t%e6XTt@QsBB40e+dcuvz zE*OlW=hdpoQI>xc_xhrtd6k%W0fjLs!x}Fl10rk9f8Tp>Y0%)}&C=PEZaj>^=oFpQ zW=B84}RswgQo|&c{1=y2toie(PId=Ku8NGJ{DK*$$4jLY}n z-bg1h-ao@TnYX(qQxw2NODD@qmWea4Hg@;mmJU1@tE%ht@Zg?JCo+co#5+}=UR3AG zEbB$psw6VLJIA{b{7tL-6xMa%$bUbcrj*{};UCYzr!eszi~rz(&+RG}z>!nDKpywH zQ&mD^;NRqT+d7s3R+8+&IY};0ElWp9mZvA%+}-oFm0d^2v93yjV8_+?b$GCWn}aKt!N&m(&S`OAy2 z<5?cOL6YjllpT*pC3)>0o`Ceg5?RV`Zm0&qDq$+0)yoW{C9>delDX%<4)vth%;j6a z+79zzA4dq!6UEnpmk;w~#s#3TC;?vz{(YDy9M6Uwo^4#!(t{U%%SL!Iq^#^J58h#N zUE&MDc_Tgeb;ONufu-y5kr?V$wyEpm6c1kcy*+y9=?sO9Hxq}fpW5wSvuiX*v`atj&OM}d%-oUo?NE|!a1ulTo4C;^LQ{>!ND}Pb+)IL z6Zh)nEj$;nGkrZ`+d;sb@6l@QDi`4!22doIyW6RQ^kdmZ*nLKac8VjmJ-AwUQ0A{uh99#o ze&>mXjTbO0$O{Bz>&AuhBy~v}?+@a$7jI$GZx4XbFMjoj07wJ=?_zv*J9Ef`y}~$B7_W#!R`Un=LU(!P?ywtoE2fyV3o)Lfo$z3x zzQxL8>~T+yd$RLzqGj=LKI+@=MfU-Z$Mf(mUPgQtaLq|iCcZpuiBgW?#BSCf}gSLI|MA`@l8af}*8YC%QNdFTe#!>|fTulH0ji=X zfH!FffgM+*#^HPU5I_Vnu#Gquo1$8In${L)>GSKsGv_+?W;_D5gnc1Zc!mIE$4NzI z-0}eL{cxY3XGFS{5)AH#tB@Jrj^lkF&ZlE3Di#K^^7Xi56I-)FmfIP8YqBYn+oG@} z87|{a+RUa6QA67|HVPl3_U4PQ`1g>{PWCjN^|1$g<@m0y@r^t7;_hZ8*kzVl_=<;T z8m^q{{(d4gHqPKv%2+(S@)$4zA~SB|#hxC~nEq{>JsK z(P328l489L&IZIi`I$2aW2J24z3IGd7yO9P&4oCkbd85^$>fl{8SnHHX12J@QaJV} zOlp<$jlr{ci*7xKHmNLSb$>y8D(4$t&*m)&&(c^ohc^)`J5gt9O{@{eJqz!|aIj-s zgrISe@U2q?3_-&Jaj_*gwtzP%Tx@GA!`+l+#HL|5*}j6*(hf)QK*Xw4oD|x>UBsId z?%FHP%UC>Iw%4u#KV}IvDSopxgyXmu!82ZTW2^`a;TsBk^(WlU#AkO+304G#FtO$E zHpP#84J8(09$#ts9WTSJV`U)c<@0gjxhl8x3(r-Vtd-Dz+gi(WwT#6J&sCX?|MgW* zeJ2~&#GBY|{D3#WM?tN)sAUx)Y%*7DJa)d8&gM)@8NgoI=DFSBV{Ny4B2M>Q zHo$=oiiu|Lg@S1I#4Wsz-Fbn=?BH^5qG)+XKF>&F#}=eCZaDGop_#+?IBL{DLHAq- z%O92Ei}!@QpdU9eyeA~!U??{4nKr|j=mv2?5(Ic18 zv-ihqE;IJZjH!{<^_*ZtMTG)XRCI_P)FCYMR;?BUykcIgg;zD?OjT9;m3l-u^@zYh z&+X3h=drVkGP0cw=h?c1d!FbLwLj*y?Ksai6FAf7v1vbK1kbbgg@(+rADzZNF{Cxl>1%EudC1qFa4A;+-k^O>K>Y917M~p;G zvAsU&IL{mgANaf=62)T zHJSCKCz0Q7@I|z!qkLG8j?qDpS{|Tp1QbbCPLz@p-}2hbg%ju=&UNI(mptl4k6q2In=c-N!BEtnH?Zpra0J`w<56ki)Ih96wg>N{Q^DQ7QN|bm!I$otI{? zX`Ne-a14>iu~jL}orCA|o+~Pu=NKbvb_Lge&wO@Kk@rQ%WXrraX#fdexP_eH?v$z) zq@rlE2-Y&BadKWEL@*gll-{5&&g2Cc%-&0#4Hk&{%sSepIhIkF z(Wz@pe9*h0w$qE16`1goYGgu(Yk|R@@aENVUc5lgnio)Ri)r4~wVi#TDdxR6DO=`> z26JXE;B!D`!tllmSb3SZxw9VrAxsd0B~X!27{*_wIYrVVDqZ!9=e zns{Cdwrhbm$GJTYIbUADf~DS`71SP9OPnnAJ}gQI9gi&Zx}B%uCE|uJU{BBYwyJNp z%aRv)!?kbVafC z2+@h2O^G-=h!P%Wqf*f#j@oSP_nyYj&d+S0z^zS~k#cE8Yr|~T-d_T1*O0XV(i-bF zt95fnDTB3iHhZb}m~*7v;&8HfEm`aZoxi@Ax+-h>pJ!npb%*bS^99-7Smty(6WbV}>-tuQkHV*@W{hsp#1QWaeWs zbJR3bcNNUkSg4x$fy|t?n>qS_F!LyxX}eH*(`F%glfD*adQ>ozvru{yUKsZ#fg}7b zs!CU;z{VdPMmoqufoY=KYcMgnf{C$YVvNm%vjCYGn^jtvmC0(Z^WN*cF7w&_ZQ8IG z)_Hq4UtP$@u^fJDV8k~3=42Y}4R1}SvrLo;C(YwMdd)&s_@?&<=X(oT>EsL#JMZWE zNzMZc*_8EOAOCmLdT$r!7bG10lN1Ivct<51fJb65ZP?)L>ik6-=A)QnzKs~!_?Hiz zqy^HD@x(^&LZ`FgB5~oby-?=TfT~d0mqZK60rmYBbaBrjIiRu@#RpWzBH6{)Z1pa2 z_7DYVP+cNQd7QpQa!_TkwvD}wWfzAfIjSm{T#HZCZu36mxPu)(-kKRw9hLW& z6iDQ(Uo&mg9ci{X-$Ek$z3rWs#t~=MVm#RLro@$sPB<`LLP!QoOKHrDiV6Hfs->L3 zE7bCs)!*FCv5RF_8?!jx)$Um=yV|=4z3ZGaMFHw+(?uzd^TEaPii(oBMQOtP?|R!N zRMpqMw#+qRpS_Fjy^U;cvDw^6HW$C=UE}=7Zu0}Oxr1z?Wc`=DovJkVqcAtZS?fhP z-#K5T`EKv~n2fSsRHxNeFUt9@#f!H2jw52e<1UG*yFvv2Bpa8Ljb5gWlSg6W_6jzJ zkd4818yrz=G^${u7Mu36cck+fGVzpYV!4(I;WP6KJ@ z(2K0}Abxb4W>Sv9lV2-X_?j%7vRf#x&O&ox!O@aUz}>5uYnm;gHpw{wD_xeTZPICp zXcLEr12i)OJl!(?p^M@X^EV3)A=JB-h%ulreaw)HnVxJ zPs`3N#xa|@(c%I>9s**Tiw1DwMHKrZaGV8>Uonz@^WI)F4PUz7Kwc~sWCMQkHa1rIeNQ^lLgAu<>;ilrBb;3n#`z(61;zf5zc5f7$}0$j z3;jmPK;JixYArMW{k}fc8!pGqTx#8L0T?Be1A%-VV6 zML{9XsfdJP0e`3vN7062!R%OeaZVsu7=}asJOf^AcBJNF@n6iJTbL7$1^Ft{C=Lk< z=Vb>9vV%F;49NmcUlU{MKi*}I)M^Z~Ef@F#Y1Ns<{xe@E*0q(dGu!#A*PT|3H*w*j zP+m?RqMnV9>*N&__=C}4G#o9!x1A&8O(-`O2o~X0c(?!;sYnq{=Pk%9{{oC+6&i=w%?QGanX z8ZOGgXH8TLLD>u?>38g$Mjcg(;8z#Qu89PR)~oY{|yHt#hCjF^8As)KqQLc zfLEMZ7~W|f-%T~siVF*~F%R;Iq#zu{be9{$rXws1i53S6ivxb?Nouqxm|I*N#i$M7 zwO5`$h5!`?Vi=n_xQ&c(jZKY%-F+`R(yB3zRqya7wHmwZAb)_5Vb+Yz?ci(W$+nHN zKwcmgD#oI(oNy={i^ihC044?aP!JA=@}k)^<xod@VU#SP;U>ag4&;NO56y5xmID z!K4?(p}p~OR$W7>Bd5Afsg|xLbRimN%~Pv!OANDgG0ZS?V7X8%h+bEW)<6Y7I#G1c`&wRCksv#w*+`6LDyyQ{A+Cvj-f z;2A@c*+nP4S5$i!M@{_S{o{Z4kN@32+U~loarfW-4hHpxObNdqG zfepSd5}a%ai*51Eaz3+!{l3L_nRDg>)?=$L!TH1zwqUEz_YlKF)k(uA zIcwm*Tax&HpAk6&8}Pqp;@$J4;VbddY|`*2c>di(TVhSy@WiEfjn;d368;%}GnP;d zug(8@3R;HO;eTy|rr~w@U%`6#s~-RBdT1P8pZ~>Q6c0a-|Fy=k(CAy{+v9NH?4(X! z5A)y9sg~2Xl=UCz@9yZz^0V+Tx7$_zRy;5H8tmlxal0?Akq0au+8$|G1Mf(NdzZ43 zYy8U{H`!ENPb!AlR3Hy3!p?z9S#+200#i#$vRw-s-O1~f)tEp!rrUHNPp2b#zFmi7 zCDkP4Pjrxy4K^jq^h%aAR+PMNbLTzM^0`e5@^n@Crir5EADfmxNy~Yx?O1Q>tZV!Y zoygKD@i((8adv!(wZ%Rk$4jzZupZpx(_hl^cQ;q~0WYxu*LCtc`;vlN;tG(ZtHAme zih}z|!M&tlVq5{TbPE1ysVG=P3Ko!pwQ&W=(kbZPN>Q-yC3g1WcnGlM#SFn7JwGW$ z;eVzI{6G~*VC7S(4Una)!2Z^D1&%gszykElH9LJZovmJ$4dIC^L6%NQ<5WdSFPoC? zq-0=R39@ubu1`~xjJ7EmNlG4!D?ye{$=tSzlILtnW|5MmaV5yoDfz6OqGX#*$re&_ zFs=kyIwhGM6eZu-lzd4_ev2zXmQKltbh{E~lVxn$mFOPJM8i1SA-Ub>LsG}C%~04b z%jD>|kl-r>>~$ioqt9h3bTQEdMBha;(mJ|xmO?*6^ixF7B^qfRJ>I3zZxH=D(L0Go zT1UU-w$UpP95E^UPryBpM992OBz0_EuZ>;qsLPJ8Ge<+xavAg%%cTaSbsGBl6b;xE zYH9G3hJ4b1v`)i}PKt&>HVrqBhT)_EX`P0nep5sKP5u=&{^8{;ZIHi*gK#8uc$=V! zm+%YTDw~4kRDq480co9vf{>!&h)u&G((naoKw78arLbLtv&IV9ihoJk(SRlI@uso` zQGX*iqf_u*wy7XF=3n6;K4S$t6Z7{Fw74=MLq`X5Ou7Uia9%}tzZG&u91>T6ES-XT za}@;-kb?V2!KAnXWa$)a%u^IBCIzLW;1wBw(L)gcy#hyPQ^E0}@c_KNf^8jU4*)WB z=6hab(joxo$o!AeytC#?IS7!}(NA`<(~eYD{*F0}QdY`gogp^SkchirlALE zxRx{^t<%u7o2g;#C=7yl4Q^k_rjEuSARI{@eq+9gm+(RGyiEb43cN%bkk)CKe~F@D zyG_GZ(ojwskk)DV{8B~3w>Ax5k%r$%1JXJTSv^b*6YfDLSS3f%`K#EFdl7+EvJsKg zvA6d$*%CemE+)A1D%pTn5{1orKN$BKNgey}6((E4z5a|We@d3mkY%KG^sXxvy54FT@Y<_o%v!FN5l31_ z*YB&)VWI;>UqUp}I(k4qlWzMcye9a@)w3Rh(}dorM`!gnQQ`FC#6CiXXAq6F&hSSA z6nZt$D~R4iG}1ac?P`Vofat?SpClS-9bI&dNuQkzr`O1M|Gk9rutElp;5?!cAH{WQY!rlF3cCTbVmh4_Vn=nXWe zxOr58Um$q4gkL6jwjLf7Q{Wv0mr3|tg3I)9X@Lnx=f_?CTC#r-`?a1uS!lAt)GFjnXGVmJ;8>AcN1*r;jXtS@CkyCN%$eaW68_I*9u?k_e}`J<5!~@LZ9}cNM}e;)cz}ds1P{=|XYV!P()Dne*!v~>B(eAF z*~l1^6)rC!7)!u;tzRQ}ksf~Feg!^2@IDEDLhwF4y!8PE{*~aLC7k%W4EE1@xYjre zE`!Uj%Z6&hCj5a~cOtgU>)Kdf{-DM3OY-Fe_mc4S1ozUz&pf2ScM?2W!V?G{t%nbd zSKv7WKPTa31V5*TTRv>U`McvTZ9bvpHMrmvF?)nuJE*k3-Tz}*P$BH_LSchSS%Crmi`09+=vShDvLTdZgAm}s)X z<>>@JBjE)EKck0@NeaAyU~G`!F7F}u4L$tlWCi}5;Nuehf#BnMIR7aVK7JT38#2~) z+1Z9L+{%!#u4`yx{rD7<6)r~z#t9u9?oMz>5AS_ifo~yrkc3APJV*~WnySDP34Tn% zvj~1n4-cGX!fQW{ySz%WTZmnyXP=*LvclyL$?y>ge@XBWJ^bmj3Y_qU40a7Rtu^A6 z{Dus6jW@Kx?l4nwqMfl`HdWL0 z+GxM{q5|g=e6fW45qz;8{(6Z54=4Cm3ExNXt$MiAOA7of!BZt%O7K)YeAmkgypiBH zCHywQZ|dPUmnrZU1b-&s9|`_U5C6Sffg5a)(XPkJa}n*74KmvGHfW=L=}HC8As9yk zakvM;VLd!?l>!eTc(8yzUi+{fO8PB>NQ^{y-1Uc~yaHZsftn>-wIE*7+M{s2v-%c8|ZNpk9Ic9WDuX zCfKEiGuA2awFF-+;lhn9a1$KXv$q)v`w+2XB|C)-kJZC#-caC|HnO%in+~rd^hG`T z^P37A|%vFOm| z{OG5agX1fB*qN*Ssl1qOfX3cZbY3ELc9lAv{Wr7HQHX<{UAj|YZwB z@VC1Zc!q?h5xkIKq;+s$j{=NGtr}nMp|cj@&SdO zO!N~(&)&lF$H8koeBhu0ze?~Lg3HJ>(mK;k-c{(2x3IwYxYu73d{htL@SXzK+A0I? z+$sa!c&iLJ(mK=g4k@&cXgARpfqE2P>){iJ75F-WuOYaIOe3u`-SLP*k0*K@(N7bN zw2mJ6fkMAb^b(>CqLJ3ouN+nAcZohg^s%k%_~a_x{^dgj{)6CO39eHnBaXDr^hF;l zbcZrlJ_U_kCYviraN9C1JmC`s?o%ck`*NahA{uF(>7D;m=zEC1ljujw*xG6ES`XJd zroi(FoSn&lLJB(ccsO579{L=nqdQ^aWUB5r=Jz^Uxc>#@0@cjf2)59;HQs9|n zdOFdIh(=mx`ui^xdNa`*h~9_v{3^W;eXYQ!2>zVlpUE`RI@9-kqtK1Ev;2kddb^Bw zo9!}W=WW-*o4!@xyzR2JB1HEh8fl$r=l2R7Bl;GiM{j3sm%wX1-0QRgKS}UJf}bPP zNb5{Lbw;6IBYG{-+lWS5N0*;f=ue3LkmzrSMp{QV`%$42cgUb6?2sXEvV)yn0k?N( z;hTO^;7$a42=1~&winVm(+hr9=<9c|AUG}1cLul=sje-iy0(RJUFF+*BM|MrJMr@tke ztKD0&xk5xEt)nmgOQHJ`eFf2jK(B|}diasQ75H9)?;`jyGL5v(^zMHYdcj+4!X`8} z!K(r59XDfBF&pCx+nP8Qe= zul4Zq+6ugd;Ee>oL#C0|nLblTp}!>h3!={vjkJ!=uBXt+yJW;0?2-{r-6bQAw2r>N zzCvF}bPmzIcQMBSxUGk`oTtDA1P>v&giIr?GhMTxLO->Ooh?UW6Z|~Ell1UqjTHEG zGW`nC+lfY6XZq=6h5jGW9})fSE>?cHO0VBLUxAZ$%YfJ1Ed$uJvg%- zZtu~;f21gIKZ36$crckpT4%aj8->1a4~w2eV-x&1!FTK7$5IuzluXYfdNt8V>rB6$ zrqFK_y^H7%_OSe~tMs~II|crc;4=g}-j)GJT4(y2_6nWywhVa7w`IUxL?f-EpX;E| zJ&3-9=&OlFT1WpcU7>F$`Zl7+f;tPg^>F)41!e@#AoxWxjkM16(2fed^=;<(35`wg zeu6jY;gwkm{1ur#N%Sv7Bds(2gG-^$-zy{DaIcJb+Fo}27kIr_3+H$gxHG}I1YfpS zHa5~a(__5~UAUK({|>JSzJuVX9xn4K@DwsVndldYMp|b&(XY_!h<=sm9edf@zpM26 zihu%tO7O=7e@CW~)|s9fROs6KWWa0flL2qGPsR*s9ep^Y&;g=-M0X_`X&rq*wnE=X z^mRlJ-Nz=>^7|Zm_?CzQKSJ<$f~S#bq;;kj=P2}weXOK5HvAC0p5T}D@K?DCe3(qX zOY{k%k=B{^U8vB16a5F#_1|Fw>R0LYot+gp6NUMMi4O0`=E}yaXujh_J zME4>3W}=bS(SLPO=rKg!L-Z3wBdwz^>8j8RiJnjNns;#aCfwG;Pjpk@y#((j_$Zl1 zT4#D+zC!-{p~7wnf2cN2}Y&h)k26}l(UmlA!=es;Dc zyw<}n^ibeY1dkwi9GOO1XZl!Ag`SNwPE+7D!Al69sfW{hD{vW^-c0lXqLJ2_9)6iZ ze@*l$qJQ1b%F?RzdiCWB-1vYDc%uU{;B61c=0aL$`ll-t`XZw9h`yX?q;+&&AB8R= zI!5%JL?f-EAMC5pPZRwl(Q`m&!fidgy`KUb1iwb`TVxt(o$1;G6#Cc!Ho=9)Cir`T zKheW|u2SGS2W7+)56Xx)KPV%Pw9fSOs}(v(bSI*_9b{1-yw<}@+VPqO< zo#~Wo75Y)4ClEcIXry&?^g4xJN%S(JHxP}qj$U%TLcdS+dqjVJkOi`r8haqR{)wH zXry)Y++u}(j_6rLFC`jj9sSv@3cZc!EkqxDmz7>trQ4aq6!;s0za;oKGL5v(^oZdK z-Q+#FA^SZU@ODV@4cYH$*|oPRY?t?BYh6h26#~YFY(0H$ghCe+T|o3*L?f-Mcjwy` z`Wd31B6=>-NbBhFqZIlLqF*O^C(%gj=(k4O=oJW#+>kBc9!Sa!*?P9_9X58kv+f}Y zCmoUjZ*fS{Nb4;3yHlYxEg9z^sFL=Pt#X&rs^Zj(lX&qf~pF$rY`Vi4y5RJ5serb%IcGO^w{{DdTF9~Dg z_3^9yKAzOE-`#JreABfgGY-ow*PL@?utwMTvn!sB5*%w{++D|20(A6a{RU#^;t*jG zDIIz5IE8#blJ`k+k|gibk{cgX$i25#jk!OFsFqLSi@dwP=x)_r(x!cm>Ln_7-VNhu0i@gjh$7Eb*bZ znH$q(WdXTbfr7|S#%FHutnm%S$L~g0(%i2Yr%Nb1ddh!({m`X-VGr0pBAnu^aW+teGZO z!d-n_f{&2N8Ina(XY!+23cFgeD~R1BStNCA+H8eIAs(i~#GaHak~+5NIg{mkquKHM zK>q!K+!y>k{x9eer(g}qv`{fUiA7D>)}2QGEg zc&g@zVYe5}=(9Hcsl+=+-F-(v(Tt&4{DVd`ft{M8C>$#ljv2sbCbkW19PL4RO7@n%QOpP UgG6KFWRp}=GqcV2IoIC@0J>KdLjV8( diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree index b512a600346a0bd1ad1eed90028236bbd18b6f53..0e2a3309c812fc413ba3cf9d78d0c90972c5a889 100644 GIT binary patch delta 501 zcmbPtn|0o8)(tB-4dXLR^Ro&qGxSYU4U?0MlTs25Oia_v4NXmx4GdC}EQ}0HjV(+q zQj?4=O)ZU#OpG_*Se56Wxa&wjPWaeti$;nj;lU=LiCNBfxca3tBEvtAY+f+-k z>nNxx8(UgWHf{;O}eHFHJ2wF)rm}>r_U%oIkC=Q@`GAw{j$vB#F+T}qL}#H z#Nv|FqU6M)6m=a1_4L$|lFYpHnE2v?#G=%gc&PYfg?hEg6YC@jiQt5n`9>MY&4~kQJe2H9eM=-l0&(r delta 387 zcmbPtn|0o8)(tB-4b$Q?vdk)rEcBBtk_}8vj4X^z(##Dl%}o+h4a|*FQjHVSEYmEE z4HAuwlTA`h&CE96S{H{uC@}?@e$&;!SCYx0$Prd+TOIJxxwy2h!98~2nS)y8U za%i<1QR=SNoSW=hr#e}-PGT}so%CeWdilwwK(=DN$n<^MjM9?>>J26r)k!eL)J{&^ zBQ|;7XZFb_>LN+dBR|=rp&95FIZ<^T1@*Gb;>7s;qWIjz;*!*&rr==E6-VcmzUb8^K##FY0);*Gv?yg9iQuJo?~uJxAk&!XSL1j|rO!pTo2J_LL9iP^(thIxq~U z_K(4PW(`Sxu$tLcwTb-U;k~U*v|av88yQ3F?Umvl+E0bxO&Q+bIz_ie)~Z!mQdx4@ zBLyqVjIP&Y__hAez&;ti9c`D_6UZ(cQy7h_;$^Wr8c8X_Lq4Y#mjxuxUi7y`NoDfE zCd8e37MWuotmQqeaV=F9qoRPLO5>t#dYn60 ztJ+4bAqIxcxboTvHV3R^2d2Y9E#V;TDcsb z;$pi>!bhPXZyLVZ8~=~Ed5a+Ke_1VwSCpL7ML}m}!5XF_M)k2`q#DFX=_HY&zF8*2 zMS~NJONk%I*W-TV(Z0;DEU6F4>3Y0;@M_eB`U1UO_ewum!Ir7Tc;Z9@)?R%AhR8AM z8;!L~jPQgU7tL_sr{}eWN%Fe#0>!@wuSz-IJTo22DOnCB$?Kboj}Ge*nVM=&Eyz!s zOiOBfg~?*JPF_T#QKqZyODfiYbA~6HF3-aEQt_FYM3{3_DcvrK%2SI;F!Ax>ks7}7 zSxreD%vt!~*8m=$|Z8 z_7FwZ$#IWSE6`2`*vA7%1ay+rp=4|1*tK99d?XiZOIdJ`2NPnAlo;m~J$655IhnH# z7R5ivS=We4UHzzgoW;$$XF^lgEWNL5DoQ5!dZKyP{Kh=1+7r2wV$#gJ0mHw5<(*s*=PkRvPZa1 zhfsj~uqz9p=@?b$u{JMDevxpS=I&R%8KIX5u#2ML27~mhFe9{_K$7vw%1~v&zbRCK zPu@+3rzqnbAWUglR#oN83hp+_#e-ZGFnA1JI8ogCt$5 zev98k@w~hsVPc_bcgH)Yj(-@{3!WMys!q0i&iyQkguk3+C>yfsD)Q0-o3&vO*(Os{ zo5{dG5rAwy0MoPWb{p9uO(m5T6{RIpO2?SRK>QU_+O#MIKUw*x(#V@fvkl*>JS>Ys zlKhI9SfQ-7v-uJ4=@pMx^b80T_JAf(1O9M|GprqDwzp7S4EqirWPA@>R42fp$q#3gj>WtUV++loGG8~8l!z!7(dKMrc z1ILWnAEh=<8qPjc;$^0!tNBp_S3g&+>_N$XR??|LQu@vw?&QC_kg^xW-ci!V0NZ4E z&-2M`8aHfS#06f&Dp}o}OH_?3b3VzEs4;|cXs@EaYC#Q2rxPchzbpIGWw|O}wfehv zzZi_r0Q|u}lKh3Kuf2-(Es0)3a7s-|vonOV2d=0&i-zGpxW{B8C4R>K^Uf$ssnGQ* zIw#B4zifo}a zmD5GZZ?JGl1`HnjH6Fj98puJ8AKt^1<&^kq7Bw-3pRuoaNer0+AM*-G=XO$NKg=;E z+wH@>?#>bYOrO5K#szcCIJiVEOQJ*hl{v99A9^X73B^G$pX?fAT8*ljR9QUPTv1gm zNVMBqJ)9PlmEdkUF+SFx`de}?a89K@Y3tuYnY3^&z#SK5C??XCHhhwclX{*(Efgw_ z+->XX<3c13W)eSEwK#4&U8Gdn*(GUxUq4Hnl}l4OOPY-jT-lh4Bm8Mb;i^Rn?Dt9^ zS+%4_;c0*G^fATXJK`_!$0w&0C}&YWyyVY@{JE4c2d4OQRRz!*Ppy3>B*S9vKnkyM z%D3S^YP*~61$zTU*llOZ=$+3~-c80cy#A%gK<}7Nx!~LLJ7D$vfk5WkqWP_xLGGTP zcn`Gj9!Msh%c(6Ui>(!!3-xn}ReZVzycOikmYch0}pHRJ1iU9$pb;^TGc)HQeOd|gA4!*GU= zBUWIi59Alz6~dWRm2&}=YEV7)$Ho& z3rb^jog@!(kEE-u#?x0;2Z}w9VX!VS5~r)nk%pB!Go)90|m<20%(0c+%H&%~_ z{BttA9l&H!y|xG7*TQX4ZwClrP?*M!FE2Go;y{R3oEQX0dGC?0OL566=Lv!3i1$0f zIbO;K0;pfM(Y@`}BPq3@Q6 zh<+&%u*Qo>-4RU@l>LvCeKlF#E&-m_xVP+h3&9DV@I4J)u&WP{2W9>Ht`2bCi*W7E z5fPO24_-v;Jtm5vtnX0P2SwIgl>v3(#qCwQuk1ODKp)6B&pQwW5rNe7NPVD?269tT z#TaQ82(@JJ4VB|L3? zAb#$>I#kbSf2FhwMOxk$Y&}T`-B<(ul;)`IQ?@F@#L)6uM1*DNFae1($UMD)ekw8L+@kPXx=Wri{a>`*RBr)yN);7b?9Ow zpl_L7*9E&i=IuHj#N`czv=*Af1j@fX);jY+AM70`wZX(;>@rK^{_JX|3Q~gEP&t`u znjGvdy17}Ut$)LxT!xT8_G?7vVDEuup+GhAr}ipv2Gd*b9OY&n$Zoe1sH7aw2Ge;| z+-s?VMO9sWyVr;A5C2F+^>@)(RL$)VM^V&|=sB(^9N8nPgIn@Bqcw3Cbto1sV#H7# z%zY228+oz@@(J&C4{3dqu0ew$P@EU7 zc8fMUxFRJA6huAO(~E87l!tRIdEES96hKxm=X^$;vniN$ zpN+w^`*>Pw(G7$qc$dR?EteI7+L0$~wA5KMn_xc(LF1&@g-x(;=y@z{=3h{8rGyV@ zb{k1n&}Pn5XkjGyit`IaGhrLzOuJEA?)6YKf&_|qFx5~%I33Z7GZdT9u6pu}=$s#% zW{Pqh!%2iMH0p9%%W>f-Sww$D(YKqRvm=mMM86P$BEV0_%9yPDA_Bz=C`|XNP%mae zB&wzuYTtEg-w`d}xqP&{Nh@#w>cpMuK$0^{$66N3;QD8x1g^X-szL)P%CNW{%7Djo ze9y|!v7VKoYtplhXxaYnBj9K5w`g=2rtA0(;CG2GdLL5o6D|QSUWnnIi$QJC5?-yv zf?AlV<>?uV-azP`M!hx(dcDf)g>`(-;T7_g5+q8Yzf+yliCqVsq0HOh+%6&X8eQYL z7>_ms`Zu>Q2^A^~e#C|U=ed%ElKhZ@du=S)S1*oEQ92`e#A7LFEg&P0STH?B8PDK4 z)^L8HLUP~?ahIgw5bbEg@$o^br?UkO2Iv~Xn!G!mlwSdNX%AnWkzGStYB|D!jy4p7 zMtBzxJ{-28og%+-J4!^AP0+{fC{0AO?3?XHtG(i)xy@D-%`J71A{8XLGLVM*$U&Mz z%}%7{8upOpNE--|n4E#)BxGr5jh7`wpUgleil(`lPW>e0rf;M&#YoY7c&7u&hxfVt zdr6ue3*poB2$#1HC3v3BMBxZsqc}cKFNg4X`e6vm(<34G%ZGeX3eAULy*D2;obC|n z;CZ1V3U7~+xZ9Udp|Tg%HeT=1z6k4*Q5FTVJWx4L3mCKoeojEWc??a2aWb}qB|$(ff%?*+I-Alepf8_IJ^rwD5+-L0kBSXv*JakUHBN2iZV| zT;YW1iEan4B0!<+jCj|;*WL{S3*2P`3mn?PO&ki{eFdo$jX(Q9`%tm=ASu*40eUti z!sP(y7Rn+Rq##=7g?g^p;7kAv4E4sWqkvH4!X`D8hVtPW&qG=9F)%y0yczlvmb|Hbo4n3Y_N*i zKq%R5jGFvo!{jNYMPtm;L*Rx`R_A@ljSo8PT}2pqJ{|ySL|$leC{|F5mU7zjkfZmJ zy+(8r?!z76FMBiE^C>A^nGQ!)r11&|wA*ucn#?N%ra8@kTr4h0J= z4Q1u#BWQ~#h<400qc>_P#>S|zwh6t+Z%E`e*h7`>Zsgl03^976)wE@EeRtGl+&gDTSzHCaMjk&46VN*D)HlFSYio^7 z0{A2cU&3|p7`Yo?!g#co5+>7IsXPi}oz!DwWjaAcbYDwUrk6%OTqbiP&%;9Wq^IFL zwDyC@Fpv5YT=PQ>T*Fn!fn93Oat$1CP|JN;bIvmm39fIr?$;rIW&;7%xOS1twHnt!GIrLuRx=1?RKpn5 zu!S|QZzz0fSsU^XWv)?S#N=MC(d5DI(OpIKjh@C`#q^DC3$7CSMq8L`41J>o;wq(Y z)akCV^ldFNdX!(oF$8nNNK-M(jII~MxScnk8@v)mucuOhd|SQ)8@KUW(3(D~RZOm& zI;o^|QCafTvP9P$!i4znNA~|xt{1|%bKk-S*edecBJesO@FL%Ymp%1uvaD8CKE9%K qk#h=ao~MQX@kZo%UgUXJ;Q5`vlYCR22~wW*E$|Fcb929ge*XoHr`0zA delta 9571 zcmcgyd3+RAw&tFsyVL0`y@rG(osd20bUOP2Bw^nY43I%YmPAMlErf0I1Oy>4M8TlJ z8z~h86m{IdKm*O-#v&jB0Y?}Hg$H3#5Fzjsgc+aCxwopjD@~&Q<~ff)=&JLbd$#Y~ zbE^vO+|Yb+QscWw@!U6?eLq&GR!*$4XU(0JlQJo1k}WeMEhjyrGCMUlJEOe9mYp`a zBE7saw=yT)R-T?dDWf7YE6Z_Lt<6%|@-ou%Y#CHrIA3;MM!ze3-F?5l&oq$>AJ`J!mwB9 z%Pont>AAkJ-7);Khc>~q<$yL6I z#!utA6=`saSuqO}(Fxg${!n2^4b)$zC8G=J_1ekw%+T+Nj&2@j(c6O+ojO&;S0z*> z4%>+qGzzLMnnMy1%v5ecL9Bx6q9c3Qqdj^|9ErDWYCe~@3GKEtSRQB_>0roL(9I3` z%3)iX1v+9A69} zU39RU`{4u!^HIIWjW!p z5Hxho13kNCSaZ^f`=-o}z&}%}BXIuAcD4R+8Zp^I!=G0s9v{4)r zA$FpqH_aKk6S6#N9%A*KF}7QPG)W`k(FU!3Fq0k``!pan{=rahY^Ap#oxW3Hx<~kI zr3N~4m&%jq(x9Z@j#~>cT%tI|B(!{*fzDX2)yX=SsRk?Q-SKlFS1GpQX(n>%2FP`3 z@%m8u^Mt%E?IkX5MEcW&FgkT&k6)?HeLSq(bLh&&F|UoRueUP}(rjrN$+ooQ)bt3P z`uy;bm#ly`lv!BWJ}kSZY*Xp*@{D_`)M4o=#L}I|h{~08+(SEIwphB0OyVksymU-; zypqj=K=~{L_eI|Ua}SD-=6F`F|})GdNmzb zxe_*tf>th&+C)zMHNM^c$F<$){_1MSw5nV}JI^Xo4!euXE;#N?X(IGuO&_HX;rG`c zu@dStw@?|x@3DmGbpG6Zq%+<8K@ywo^xb*Y5o4YuojQqUesc1?bZ63!W(}Y}J~}Bb zH3N5JDn1HirmN-+A6@y_=+5CRJZ2{dbM!g6)~vQC zH@z$jFyAYl-RL=@Kc}0Yu+Wk{>Yk4<+Z`Q6ue5&@Wk$p^^K|+Px%AfaqvB#@JyZWc zJG0EKKOs;&%sdvd=|^k*XxNK^?I89SHROsbQq43L=_O7W9am%_Ke!O(bdE3{^qy0@ znCrLru_K;nXj4O>awgMjVS4hmnnsK8+Szg)^lH9qa6_bRUWr9#&J zav=lO=Fx30+1eIzO2>r^SX=E?u7I^USV)tXv}J8ST12x{kFwa()wFzF5e(q*`W4TW zWGzvVdf72v%ym=fXR8dcDbhslG^cpsFBPe@WNrRcb+30i97tShSZIsqGB~9Q6}M_>(SlSAHoJuX6nPjm`wl zvOp}xVHn0~wd>iQy=oP&+49!+K5$JW~~y&Ge=<~E0~3d3=j-Bwe_yV0a8)AYA{Oa(QW*_xE5-Xxh}^xIHw zWJA;aZCn(zaWQ{$E255RTS5pKfk*<~=-9#ZAKsePW?5yMW#(;h5=tj;izIW}fbVb1 zbAiU~31oR2@Q>S>U18AylA&75XgjT@k@xr3d6n%oLT?^VhqwLtn^sdg2~oWzX@7Rk zKp#I53-8IWO%j%}qYe)FvwHHlKKHmrY0_W9$RTQN>P|QOttYv}FkU2tTA~vCinq8O zgwSy(W8kjL!BzYK%Pcy$TZD84GE{!0%<1w zy}f96sohvjyXrysIrhib@et zUOhQNI&9G`nr=CgLaJS>2Q?38)_H@UaaT8*-fpgervk9TCc5}&CTZaMD+1{Cqsw50 zsINTB^q0|@`{JN3fLH9+u>wN2bKNZg^pU?l3tJ@Jb4+)WOP8n2m*akVSu$vNg^~8&y3&c^=jqju|s%uWB*FsfH$am5$ zw-IqCCCiNbAYmnWCdZkR>-?ZM1H(OA>7VY!J)u~(uq$A~;@RwAu1@SLS$wBPPl4E`AXg?SdgrAj$sm8Jp2L?HY-f8lq zXKNHNHV7FiP|XqL&JseB{J_qH{3BS1N)QoVLm^@>35R~ny7)N?l7ko!<~lerG}`cZ zKW`4VId}P!IHG=Tc_6-z;UD2^4R&$N6)iQ#1@Vf)x*$HogdkpQ7ltgrW;b#oko0GW z@bm!^tJ*1*yKGOCb8Zm1PXWh8&0|5r&ju0=$1s1KKWvPB#S#BwLDEi-5mI#|M%ZN} z8c9vKVk8N0$8BMVi98^)K>UT3AtZxIBCUN~z#^-ebaMg1fe@19vZn1!x)LjgJYEM1 zGlI!Lp{cXS>nWyJ=r)lQN(Q@3aA>3(x)4eZx*+~QG1(1SyO2_Z#4dcFmE|y|jy{UJDM&8izmHT75-bem`Ly(*Rod@zv2rWhjs-+%Ml*2;7;8x zhUSok*2F_|rX-Ws2ppBgc36sShZI|rRvb1R#B<9%Z0>6Lu({0)htl<};m(6L(gdK_ zv5BMnCyO-Lc{rWK`#==_dqqQm(#MC(dS;W?0n(XF8a4qO(8-2PfX*{)Zu4?^h7D4~ zhK*OHjLz7eWDG!=j&-=OrZ-YwrQ=;urV}T*1V!hQNSNn_=I4|5T&w<2K;od@4LJ&M z?24;+m#uXp;|fWdYtcJ}sMX|#^nFN_3<3mZIeeyPZ+<5B=GTmdWHafyuW;xS@)Mk88n_*A zFpJH4{R7n65!KM`P6 z*e3M~_fw&F0=x;YV~n^*eG?%PHW?V5onJS&DU*HmdRR4=eXXAAwU5Dp3> z=M#(`K7VFak9PW{z-j{F43}nqSFU6Mm67v_+w68& z+ipfI0He+;xCO$6(eQ$Ip}$m!g?{^fD2AOzccGoeHicf|%o_t%C47SUAn|n*pa6~; z`EdTkDEv49y1St4iD>A&3v#|U5&Q}HM3|WfnX08M4X2UQ`U$?18b9O+S;I6X>} zn;zmLl&3)$U4J#uS@aML1?a(aB#O*j(LywWwgN)I$0Y7Jr%~K-UY?$3p2Ue+WMU+d zAT|pHTfZa@&$3O}hWv!BB!$Ypl6d>Jlde{aP$TxQ?FB?_il zQx%5)GsZq2ud4>z7vK;7lx}~VU9oRE_J!<<9mV!V?1~LAdo8 P&nNAhPf-i;ccA27nJb-z diff --git a/master/_modules/cleanlab/datalab/internal/report.html b/master/_modules/cleanlab/datalab/internal/report.html index 24b19b43e..3c7624449 100644 --- a/master/_modules/cleanlab/datalab/internal/report.html +++ b/master/_modules/cleanlab/datalab/internal/report.html @@ -699,6 +699,10 @@

    Source code for cleanlab.datalab.internal.report

    -
    +
    @@ -1474,7 +1474,7 @@

    Functionality 4: Adding a custom IssueManager -{"state": {"39e323c938e24069b74e6336672ef9cb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b11f17933f46479b9a8b1624517dd6b8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f6141ae3c35a4bcbb710efabf2ca82b2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_39e323c938e24069b74e6336672ef9cb", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b11f17933f46479b9a8b1624517dd6b8", "tabbable": null, "tooltip": null, "value": 132.0}}, "1e2d2887f06b4009819fa562671fe585": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "706b71cfad4945b1845c77184887981a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b3027111f016449187fee18d67829503": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1e2d2887f06b4009819fa562671fe585", "placeholder": "\u200b", "style": "IPY_MODEL_706b71cfad4945b1845c77184887981a", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "932e5a06576b46c09806294e778cdd44": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd94c6b0bd5448f8833cda3dc3026cc9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1814dfb5dc8f466d87751470bb21cb85": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_932e5a06576b46c09806294e778cdd44", "placeholder": "\u200b", "style": "IPY_MODEL_fd94c6b0bd5448f8833cda3dc3026cc9", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712810.89\u2007examples/s]"}}, "e9dabe1b0b1d4977bbd1fd74b2dedb53": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8f0fbac1628e4b98aa0fc969b12eabb9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b3027111f016449187fee18d67829503", "IPY_MODEL_f6141ae3c35a4bcbb710efabf2ca82b2", "IPY_MODEL_1814dfb5dc8f466d87751470bb21cb85"], "layout": "IPY_MODEL_e9dabe1b0b1d4977bbd1fd74b2dedb53", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"23c4b41bc69e4fcfb35a590afaa96855": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b92ea0aa324b4cf0a143ca86e0e4d58f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "90822746b9934cb9b08c8ded520b1300": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_23c4b41bc69e4fcfb35a590afaa96855", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b92ea0aa324b4cf0a143ca86e0e4d58f", "tabbable": null, "tooltip": null, "value": 132.0}}, "ccfafe7b74bf42a09ff4ed8678af84ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae4e26f004604a569abe9a0b62e0d05c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4596e9b62d184b00b7e50441cc8a7a8d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ccfafe7b74bf42a09ff4ed8678af84ab", "placeholder": "\u200b", "style": "IPY_MODEL_ae4e26f004604a569abe9a0b62e0d05c", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "5f140497161940fd9417e9333f6c963b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d27f3f8ddd2e4fff9ba56a4c400b1f03": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a10b6791af2d481682f6614e748b1fe3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5f140497161940fd9417e9333f6c963b", "placeholder": "\u200b", "style": "IPY_MODEL_d27f3f8ddd2e4fff9ba56a4c400b1f03", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712022.50\u2007examples/s]"}}, "60d28ef293f54a04b6cf569f88a91a15": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d177581f81748a08a8249134344f3a4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4596e9b62d184b00b7e50441cc8a7a8d", "IPY_MODEL_90822746b9934cb9b08c8ded520b1300", "IPY_MODEL_a10b6791af2d481682f6614e748b1fe3"], "layout": "IPY_MODEL_60d28ef293f54a04b6cf569f88a91a15", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 44aa6989b..4f2f3d7a1 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:03.023550Z", - "iopub.status.busy": "2024-02-13T00:32:03.023378Z", - "iopub.status.idle": "2024-02-13T00:32:04.175255Z", - "shell.execute_reply": "2024-02-13T00:32:04.174661Z" + "iopub.execute_input": "2024-02-13T00:57:07.765552Z", + "iopub.status.busy": "2024-02-13T00:57:07.765373Z", + "iopub.status.idle": "2024-02-13T00:57:08.901707Z", + "shell.execute_reply": "2024-02-13T00:57:08.901073Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:04.178074Z", - "iopub.status.busy": "2024-02-13T00:32:04.177408Z", - "iopub.status.idle": "2024-02-13T00:32:04.180729Z", - "shell.execute_reply": "2024-02-13T00:32:04.180283Z" + "iopub.execute_input": "2024-02-13T00:57:08.904406Z", + "iopub.status.busy": "2024-02-13T00:57:08.903961Z", + "iopub.status.idle": "2024-02-13T00:57:08.906902Z", + "shell.execute_reply": "2024-02-13T00:57:08.906459Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:04.182979Z", - "iopub.status.busy": "2024-02-13T00:32:04.182632Z", - "iopub.status.idle": "2024-02-13T00:32:04.191590Z", - "shell.execute_reply": "2024-02-13T00:32:04.191049Z" + "iopub.execute_input": "2024-02-13T00:57:08.909068Z", + "iopub.status.busy": "2024-02-13T00:57:08.908690Z", + "iopub.status.idle": "2024-02-13T00:57:08.917306Z", + "shell.execute_reply": "2024-02-13T00:57:08.916760Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:04.193930Z", - "iopub.status.busy": "2024-02-13T00:32:04.193542Z", - "iopub.status.idle": "2024-02-13T00:32:04.197914Z", - "shell.execute_reply": "2024-02-13T00:32:04.197493Z" + "iopub.execute_input": "2024-02-13T00:57:08.919362Z", + "iopub.status.busy": "2024-02-13T00:57:08.919009Z", + "iopub.status.idle": "2024-02-13T00:57:08.923939Z", + "shell.execute_reply": "2024-02-13T00:57:08.923409Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:04.200153Z", - "iopub.status.busy": "2024-02-13T00:32:04.199805Z", - "iopub.status.idle": "2024-02-13T00:32:04.387718Z", - "shell.execute_reply": "2024-02-13T00:32:04.387212Z" + "iopub.execute_input": "2024-02-13T00:57:08.926106Z", + "iopub.status.busy": "2024-02-13T00:57:08.925786Z", + "iopub.status.idle": "2024-02-13T00:57:09.111844Z", + "shell.execute_reply": "2024-02-13T00:57:09.111285Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:04.390060Z", - "iopub.status.busy": "2024-02-13T00:32:04.389784Z", - "iopub.status.idle": "2024-02-13T00:32:04.712659Z", - "shell.execute_reply": "2024-02-13T00:32:04.712104Z" + "iopub.execute_input": "2024-02-13T00:57:09.114699Z", + "iopub.status.busy": "2024-02-13T00:57:09.114258Z", + "iopub.status.idle": "2024-02-13T00:57:09.485723Z", + "shell.execute_reply": "2024-02-13T00:57:09.485142Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:04.714975Z", - "iopub.status.busy": "2024-02-13T00:32:04.714715Z", - "iopub.status.idle": "2024-02-13T00:32:04.739421Z", - "shell.execute_reply": "2024-02-13T00:32:04.738780Z" + "iopub.execute_input": "2024-02-13T00:57:09.487915Z", + "iopub.status.busy": "2024-02-13T00:57:09.487719Z", + "iopub.status.idle": "2024-02-13T00:57:09.511791Z", + "shell.execute_reply": "2024-02-13T00:57:09.511307Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:04.741809Z", - "iopub.status.busy": "2024-02-13T00:32:04.741605Z", - "iopub.status.idle": "2024-02-13T00:32:04.754314Z", - "shell.execute_reply": "2024-02-13T00:32:04.753833Z" + "iopub.execute_input": "2024-02-13T00:57:09.514313Z", + "iopub.status.busy": "2024-02-13T00:57:09.513878Z", + "iopub.status.idle": "2024-02-13T00:57:09.525513Z", + "shell.execute_reply": "2024-02-13T00:57:09.525072Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:04.757044Z", - "iopub.status.busy": "2024-02-13T00:32:04.756559Z", - "iopub.status.idle": "2024-02-13T00:32:06.487505Z", - "shell.execute_reply": "2024-02-13T00:32:06.486846Z" + "iopub.execute_input": "2024-02-13T00:57:09.527663Z", + "iopub.status.busy": "2024-02-13T00:57:09.527377Z", + "iopub.status.idle": "2024-02-13T00:57:11.216749Z", + "shell.execute_reply": "2024-02-13T00:57:11.216101Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:06.490495Z", - "iopub.status.busy": "2024-02-13T00:32:06.489803Z", - "iopub.status.idle": "2024-02-13T00:32:06.511313Z", - "shell.execute_reply": "2024-02-13T00:32:06.510823Z" + "iopub.execute_input": "2024-02-13T00:57:11.219770Z", + "iopub.status.busy": "2024-02-13T00:57:11.219211Z", + "iopub.status.idle": "2024-02-13T00:57:11.241238Z", + "shell.execute_reply": "2024-02-13T00:57:11.240697Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:06.513305Z", - "iopub.status.busy": "2024-02-13T00:32:06.513126Z", - "iopub.status.idle": "2024-02-13T00:32:06.534817Z", - "shell.execute_reply": "2024-02-13T00:32:06.534163Z" + "iopub.execute_input": "2024-02-13T00:57:11.243575Z", + "iopub.status.busy": "2024-02-13T00:57:11.243182Z", + "iopub.status.idle": "2024-02-13T00:57:11.262633Z", + "shell.execute_reply": "2024-02-13T00:57:11.262035Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:06.537075Z", - "iopub.status.busy": "2024-02-13T00:32:06.536629Z", - "iopub.status.idle": "2024-02-13T00:32:06.549641Z", - "shell.execute_reply": "2024-02-13T00:32:06.549093Z" + "iopub.execute_input": "2024-02-13T00:57:11.264732Z", + "iopub.status.busy": "2024-02-13T00:57:11.264458Z", + "iopub.status.idle": "2024-02-13T00:57:11.278936Z", + "shell.execute_reply": "2024-02-13T00:57:11.278458Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:06.551980Z", - "iopub.status.busy": "2024-02-13T00:32:06.551566Z", - "iopub.status.idle": "2024-02-13T00:32:06.571466Z", - "shell.execute_reply": "2024-02-13T00:32:06.570863Z" + "iopub.execute_input": "2024-02-13T00:57:11.281107Z", + "iopub.status.busy": "2024-02-13T00:57:11.280768Z", + "iopub.status.idle": "2024-02-13T00:57:11.301174Z", + "shell.execute_reply": "2024-02-13T00:57:11.300590Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8f0fbac1628e4b98aa0fc969b12eabb9", + "model_id": "9d177581f81748a08a8249134344f3a4", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:06.573643Z", - "iopub.status.busy": "2024-02-13T00:32:06.573322Z", - "iopub.status.idle": "2024-02-13T00:32:06.587508Z", - "shell.execute_reply": "2024-02-13T00:32:06.587007Z" + "iopub.execute_input": "2024-02-13T00:57:11.303558Z", + "iopub.status.busy": "2024-02-13T00:57:11.303274Z", + "iopub.status.idle": "2024-02-13T00:57:11.318341Z", + "shell.execute_reply": "2024-02-13T00:57:11.317822Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:06.589783Z", - "iopub.status.busy": "2024-02-13T00:32:06.589511Z", - "iopub.status.idle": "2024-02-13T00:32:06.595471Z", - "shell.execute_reply": "2024-02-13T00:32:06.595027Z" + "iopub.execute_input": "2024-02-13T00:57:11.320510Z", + "iopub.status.busy": "2024-02-13T00:57:11.320188Z", + "iopub.status.idle": "2024-02-13T00:57:11.325999Z", + "shell.execute_reply": "2024-02-13T00:57:11.325471Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:06.597600Z", - "iopub.status.busy": "2024-02-13T00:32:06.597201Z", - "iopub.status.idle": "2024-02-13T00:32:06.615287Z", - "shell.execute_reply": "2024-02-13T00:32:06.614696Z" + "iopub.execute_input": "2024-02-13T00:57:11.328129Z", + "iopub.status.busy": "2024-02-13T00:57:11.327741Z", + "iopub.status.idle": "2024-02-13T00:57:11.347087Z", + "shell.execute_reply": "2024-02-13T00:57:11.346530Z" } }, "outputs": [ @@ -1431,30 +1431,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1814dfb5dc8f466d87751470bb21cb85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_932e5a06576b46c09806294e778cdd44", - "placeholder": "​", - "style": "IPY_MODEL_fd94c6b0bd5448f8833cda3dc3026cc9", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 12810.89 examples/s]" - } - }, - "1e2d2887f06b4009819fa562671fe585": { + "23c4b41bc69e4fcfb35a590afaa96855": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1507,7 +1484,30 @@ "width": null } }, - "39e323c938e24069b74e6336672ef9cb": { + "4596e9b62d184b00b7e50441cc8a7a8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ccfafe7b74bf42a09ff4ed8678af84ab", + "placeholder": "​", + "style": "IPY_MODEL_ae4e26f004604a569abe9a0b62e0d05c", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "5f140497161940fd9417e9333f6c963b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1560,49 +1560,7 @@ "width": null } }, - "706b71cfad4945b1845c77184887981a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8f0fbac1628e4b98aa0fc969b12eabb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b3027111f016449187fee18d67829503", - "IPY_MODEL_f6141ae3c35a4bcbb710efabf2ca82b2", - "IPY_MODEL_1814dfb5dc8f466d87751470bb21cb85" - ], - "layout": "IPY_MODEL_e9dabe1b0b1d4977bbd1fd74b2dedb53", - "tabbable": null, - "tooltip": null - } - }, - "932e5a06576b46c09806294e778cdd44": { + "60d28ef293f54a04b6cf569f88a91a15": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1655,23 +1613,57 @@ "width": null } }, - "b11f17933f46479b9a8b1624517dd6b8": { + "90822746b9934cb9b08c8ded520b1300": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23c4b41bc69e4fcfb35a590afaa96855", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b92ea0aa324b4cf0a143ca86e0e4d58f", + "tabbable": null, + "tooltip": null, + "value": 132.0 } }, - "b3027111f016449187fee18d67829503": { + "9d177581f81748a08a8249134344f3a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4596e9b62d184b00b7e50441cc8a7a8d", + "IPY_MODEL_90822746b9934cb9b08c8ded520b1300", + "IPY_MODEL_a10b6791af2d481682f6614e748b1fe3" + ], + "layout": "IPY_MODEL_60d28ef293f54a04b6cf569f88a91a15", + "tabbable": null, + "tooltip": null + } + }, + "a10b6791af2d481682f6614e748b1fe3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1686,15 +1678,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1e2d2887f06b4009819fa562671fe585", + "layout": "IPY_MODEL_5f140497161940fd9417e9333f6c963b", "placeholder": "​", - "style": "IPY_MODEL_706b71cfad4945b1845c77184887981a", + "style": "IPY_MODEL_d27f3f8ddd2e4fff9ba56a4c400b1f03", "tabbable": null, "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "value": " 132/132 [00:00<00:00, 12022.50 examples/s]" } }, - "e9dabe1b0b1d4977bbd1fd74b2dedb53": { + "ae4e26f004604a569abe9a0b62e0d05c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b92ea0aa324b4cf0a143ca86e0e4d58f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ccfafe7b74bf42a09ff4ed8678af84ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1747,33 +1773,7 @@ "width": null } }, - "f6141ae3c35a4bcbb710efabf2ca82b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_39e323c938e24069b74e6336672ef9cb", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b11f17933f46479b9a8b1624517dd6b8", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "fd94c6b0bd5448f8833cda3dc3026cc9": { + "d27f3f8ddd2e4fff9ba56a4c400b1f03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/tutorials/datalab/datalab_quickstart.html b/master/tutorials/datalab/datalab_quickstart.html index bf5d0557f..e72320d1d 100644 --- a/master/tutorials/datalab/datalab_quickstart.html +++ b/master/tutorials/datalab/datalab_quickstart.html @@ -899,14 +899,11 @@

    4. Use Datalab to find issues in the dataset
     Here is a summary of the different kinds of issues found in the data:
     
    -           issue_type  num_issues
    -                label          17
    -              outlier           6
    -       near_duplicate           4
    -      class_imbalance           3
    -                 null           0
    -              non_iid           0
    -underperforming_group           0
    +     issue_type  num_issues
    +          label          17
    +        outlier           6
    + near_duplicate           4
    +class_imbalance           3
     
     Dataset Information: num_examples: 132, num_classes: 4
     
    diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb
    index de12dde96..ccbdfbaaa 100644
    --- a/master/tutorials/datalab/datalab_quickstart.ipynb
    +++ b/master/tutorials/datalab/datalab_quickstart.ipynb
    @@ -78,10 +78,10 @@
        "execution_count": 1,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:09.351379Z",
    -     "iopub.status.busy": "2024-02-13T00:32:09.350969Z",
    -     "iopub.status.idle": "2024-02-13T00:32:10.497590Z",
    -     "shell.execute_reply": "2024-02-13T00:32:10.497091Z"
    +     "iopub.execute_input": "2024-02-13T00:57:14.165662Z",
    +     "iopub.status.busy": "2024-02-13T00:57:14.165261Z",
    +     "iopub.status.idle": "2024-02-13T00:57:15.314470Z",
    +     "shell.execute_reply": "2024-02-13T00:57:15.313815Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -91,7 +91,7 @@
         "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]  # TODO: make sure this list is updated\n",
         "\n",
         "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
    -    "    %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n",
    +    "    %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n",
         "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
         "    %pip install $cmd\n",
         "else:\n",
    @@ -116,10 +116,10 @@
        "execution_count": 2,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:10.500228Z",
    -     "iopub.status.busy": "2024-02-13T00:32:10.499861Z",
    -     "iopub.status.idle": "2024-02-13T00:32:10.502940Z",
    -     "shell.execute_reply": "2024-02-13T00:32:10.502479Z"
    +     "iopub.execute_input": "2024-02-13T00:57:15.317221Z",
    +     "iopub.status.busy": "2024-02-13T00:57:15.316762Z",
    +     "iopub.status.idle": "2024-02-13T00:57:15.319818Z",
    +     "shell.execute_reply": "2024-02-13T00:57:15.319289Z"
         }
        },
        "outputs": [],
    @@ -250,10 +250,10 @@
        "execution_count": 3,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:10.504936Z",
    -     "iopub.status.busy": "2024-02-13T00:32:10.504677Z",
    -     "iopub.status.idle": "2024-02-13T00:32:10.513541Z",
    -     "shell.execute_reply": "2024-02-13T00:32:10.513013Z"
    +     "iopub.execute_input": "2024-02-13T00:57:15.322214Z",
    +     "iopub.status.busy": "2024-02-13T00:57:15.321953Z",
    +     "iopub.status.idle": "2024-02-13T00:57:15.331053Z",
    +     "shell.execute_reply": "2024-02-13T00:57:15.330613Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -356,10 +356,10 @@
        "execution_count": 4,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:10.515563Z",
    -     "iopub.status.busy": "2024-02-13T00:32:10.515237Z",
    -     "iopub.status.idle": "2024-02-13T00:32:10.520260Z",
    -     "shell.execute_reply": "2024-02-13T00:32:10.519741Z"
    +     "iopub.execute_input": "2024-02-13T00:57:15.333131Z",
    +     "iopub.status.busy": "2024-02-13T00:57:15.332805Z",
    +     "iopub.status.idle": "2024-02-13T00:57:15.337275Z",
    +     "shell.execute_reply": "2024-02-13T00:57:15.336863Z"
         }
        },
        "outputs": [],
    @@ -448,10 +448,10 @@
        "execution_count": 5,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:10.522252Z",
    -     "iopub.status.busy": "2024-02-13T00:32:10.522076Z",
    -     "iopub.status.idle": "2024-02-13T00:32:10.710585Z",
    -     "shell.execute_reply": "2024-02-13T00:32:10.710092Z"
    +     "iopub.execute_input": "2024-02-13T00:57:15.339418Z",
    +     "iopub.status.busy": "2024-02-13T00:57:15.339077Z",
    +     "iopub.status.idle": "2024-02-13T00:57:15.523728Z",
    +     "shell.execute_reply": "2024-02-13T00:57:15.523170Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -520,10 +520,10 @@
        "execution_count": 6,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:10.712906Z",
    -     "iopub.status.busy": "2024-02-13T00:32:10.712707Z",
    -     "iopub.status.idle": "2024-02-13T00:32:11.080516Z",
    -     "shell.execute_reply": "2024-02-13T00:32:11.079918Z"
    +     "iopub.execute_input": "2024-02-13T00:57:15.526160Z",
    +     "iopub.status.busy": "2024-02-13T00:57:15.525812Z",
    +     "iopub.status.idle": "2024-02-13T00:57:15.905756Z",
    +     "shell.execute_reply": "2024-02-13T00:57:15.905161Z"
         }
        },
        "outputs": [
    @@ -559,10 +559,10 @@
        "execution_count": 7,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:11.082819Z",
    -     "iopub.status.busy": "2024-02-13T00:32:11.082421Z",
    -     "iopub.status.idle": "2024-02-13T00:32:11.085344Z",
    -     "shell.execute_reply": "2024-02-13T00:32:11.084788Z"
    +     "iopub.execute_input": "2024-02-13T00:57:15.908267Z",
    +     "iopub.status.busy": "2024-02-13T00:57:15.907865Z",
    +     "iopub.status.idle": "2024-02-13T00:57:15.910614Z",
    +     "shell.execute_reply": "2024-02-13T00:57:15.910182Z"
         }
        },
        "outputs": [],
    @@ -602,10 +602,10 @@
        "execution_count": 8,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:11.087447Z",
    -     "iopub.status.busy": "2024-02-13T00:32:11.087122Z",
    -     "iopub.status.idle": "2024-02-13T00:32:11.122910Z",
    -     "shell.execute_reply": "2024-02-13T00:32:11.122342Z"
    +     "iopub.execute_input": "2024-02-13T00:57:15.912658Z",
    +     "iopub.status.busy": "2024-02-13T00:57:15.912390Z",
    +     "iopub.status.idle": "2024-02-13T00:57:15.947907Z",
    +     "shell.execute_reply": "2024-02-13T00:57:15.947275Z"
         }
        },
        "outputs": [
    @@ -647,10 +647,10 @@
        "execution_count": 9,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:11.125099Z",
    -     "iopub.status.busy": "2024-02-13T00:32:11.124749Z",
    -     "iopub.status.idle": "2024-02-13T00:32:12.826300Z",
    -     "shell.execute_reply": "2024-02-13T00:32:12.825642Z"
    +     "iopub.execute_input": "2024-02-13T00:57:15.950133Z",
    +     "iopub.status.busy": "2024-02-13T00:57:15.949795Z",
    +     "iopub.status.idle": "2024-02-13T00:57:17.696848Z",
    +     "shell.execute_reply": "2024-02-13T00:57:17.696179Z"
         }
        },
        "outputs": [
    @@ -703,10 +703,10 @@
        "execution_count": 10,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:12.828987Z",
    -     "iopub.status.busy": "2024-02-13T00:32:12.828316Z",
    -     "iopub.status.idle": "2024-02-13T00:32:12.845311Z",
    -     "shell.execute_reply": "2024-02-13T00:32:12.844762Z"
    +     "iopub.execute_input": "2024-02-13T00:57:17.699996Z",
    +     "iopub.status.busy": "2024-02-13T00:57:17.699208Z",
    +     "iopub.status.idle": "2024-02-13T00:57:17.719565Z",
    +     "shell.execute_reply": "2024-02-13T00:57:17.718974Z"
         }
        },
        "outputs": [
    @@ -716,14 +716,11 @@
          "text": [
           "Here is a summary of the different kinds of issues found in the data:\n",
           "\n",
    -      "           issue_type  num_issues\n",
    -      "                label          17\n",
    -      "              outlier           6\n",
    -      "       near_duplicate           4\n",
    -      "      class_imbalance           3\n",
    -      "                 null           0\n",
    -      "              non_iid           0\n",
    -      "underperforming_group           0\n",
    +      "     issue_type  num_issues\n",
    +      "          label          17\n",
    +      "        outlier           6\n",
    +      " near_duplicate           4\n",
    +      "class_imbalance           3\n",
           "\n",
           "Dataset Information: num_examples: 132, num_classes: 4\n",
           "\n",
    @@ -837,10 +834,10 @@
        "execution_count": 11,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:12.847567Z",
    -     "iopub.status.busy": "2024-02-13T00:32:12.847269Z",
    -     "iopub.status.idle": "2024-02-13T00:32:12.853804Z",
    -     "shell.execute_reply": "2024-02-13T00:32:12.853277Z"
    +     "iopub.execute_input": "2024-02-13T00:57:17.721932Z",
    +     "iopub.status.busy": "2024-02-13T00:57:17.721536Z",
    +     "iopub.status.idle": "2024-02-13T00:57:17.728083Z",
    +     "shell.execute_reply": "2024-02-13T00:57:17.727562Z"
         }
        },
        "outputs": [
    @@ -951,10 +948,10 @@
        "execution_count": 12,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:12.855774Z",
    -     "iopub.status.busy": "2024-02-13T00:32:12.855507Z",
    -     "iopub.status.idle": "2024-02-13T00:32:12.861400Z",
    -     "shell.execute_reply": "2024-02-13T00:32:12.860867Z"
    +     "iopub.execute_input": "2024-02-13T00:57:17.730257Z",
    +     "iopub.status.busy": "2024-02-13T00:57:17.729883Z",
    +     "iopub.status.idle": "2024-02-13T00:57:17.735589Z",
    +     "shell.execute_reply": "2024-02-13T00:57:17.735062Z"
         }
        },
        "outputs": [
    @@ -1021,10 +1018,10 @@
        "execution_count": 13,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:12.863448Z",
    -     "iopub.status.busy": "2024-02-13T00:32:12.863122Z",
    -     "iopub.status.idle": "2024-02-13T00:32:12.873363Z",
    -     "shell.execute_reply": "2024-02-13T00:32:12.872937Z"
    +     "iopub.execute_input": "2024-02-13T00:57:17.737529Z",
    +     "iopub.status.busy": "2024-02-13T00:57:17.737355Z",
    +     "iopub.status.idle": "2024-02-13T00:57:17.747692Z",
    +     "shell.execute_reply": "2024-02-13T00:57:17.747254Z"
         }
        },
        "outputs": [
    @@ -1216,10 +1213,10 @@
        "execution_count": 14,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:12.875343Z",
    -     "iopub.status.busy": "2024-02-13T00:32:12.875025Z",
    -     "iopub.status.idle": "2024-02-13T00:32:12.883623Z",
    -     "shell.execute_reply": "2024-02-13T00:32:12.883080Z"
    +     "iopub.execute_input": "2024-02-13T00:57:17.749689Z",
    +     "iopub.status.busy": "2024-02-13T00:57:17.749387Z",
    +     "iopub.status.idle": "2024-02-13T00:57:17.758117Z",
    +     "shell.execute_reply": "2024-02-13T00:57:17.757568Z"
         }
        },
        "outputs": [
    @@ -1335,10 +1332,10 @@
        "execution_count": 15,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:12.885637Z",
    -     "iopub.status.busy": "2024-02-13T00:32:12.885337Z",
    -     "iopub.status.idle": "2024-02-13T00:32:12.892059Z",
    -     "shell.execute_reply": "2024-02-13T00:32:12.891596Z"
    +     "iopub.execute_input": "2024-02-13T00:57:17.760271Z",
    +     "iopub.status.busy": "2024-02-13T00:57:17.759966Z",
    +     "iopub.status.idle": "2024-02-13T00:57:17.766752Z",
    +     "shell.execute_reply": "2024-02-13T00:57:17.766200Z"
         },
         "scrolled": true
        },
    @@ -1463,10 +1460,10 @@
        "execution_count": 16,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:12.894058Z",
    -     "iopub.status.busy": "2024-02-13T00:32:12.893735Z",
    -     "iopub.status.idle": "2024-02-13T00:32:12.902457Z",
    -     "shell.execute_reply": "2024-02-13T00:32:12.901970Z"
    +     "iopub.execute_input": "2024-02-13T00:57:17.768706Z",
    +     "iopub.status.busy": "2024-02-13T00:57:17.768403Z",
    +     "iopub.status.idle": "2024-02-13T00:57:17.777504Z",
    +     "shell.execute_reply": "2024-02-13T00:57:17.776965Z"
         }
        },
        "outputs": [
    diff --git a/master/tutorials/datalab/tabular.html b/master/tutorials/datalab/tabular.html
    index 86a0c242f..92f375093 100644
    --- a/master/tutorials/datalab/tabular.html
    +++ b/master/tutorials/datalab/tabular.html
    @@ -845,13 +845,11 @@ 

    5. Use cleanlab to find label issues
     Here is a summary of the different kinds of issues found in the data:
     
    -           issue_type  num_issues
    -                label         294
    -              outlier          46
    -       near_duplicate          17
    -              non_iid           1
    -      class_imbalance           0
    -underperforming_group           0
    +    issue_type  num_issues
    +         label         294
    +       outlier          46
    +near_duplicate          17
    +       non_iid           1
     
     Dataset Information: num_examples: 941, num_classes: 5
     
    diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb
    index f89a75a9b..671a3fd35 100644
    --- a/master/tutorials/datalab/tabular.ipynb
    +++ b/master/tutorials/datalab/tabular.ipynb
    @@ -74,10 +74,10 @@
        "execution_count": 1,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:15.721460Z",
    -     "iopub.status.busy": "2024-02-13T00:32:15.721277Z",
    -     "iopub.status.idle": "2024-02-13T00:32:16.804642Z",
    -     "shell.execute_reply": "2024-02-13T00:32:16.804046Z"
    +     "iopub.execute_input": "2024-02-13T00:57:20.430293Z",
    +     "iopub.status.busy": "2024-02-13T00:57:20.430100Z",
    +     "iopub.status.idle": "2024-02-13T00:57:21.495197Z",
    +     "shell.execute_reply": "2024-02-13T00:57:21.494634Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -87,7 +87,7 @@
         "dependencies = [\"cleanlab\", \"datasets\"]\n",
         "\n",
         "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
    -    "    %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n",
    +    "    %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n",
         "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
         "    %pip install $cmd\n",
         "else:\n",
    @@ -112,10 +112,10 @@
        "execution_count": 2,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:16.807330Z",
    -     "iopub.status.busy": "2024-02-13T00:32:16.806889Z",
    -     "iopub.status.idle": "2024-02-13T00:32:16.825709Z",
    -     "shell.execute_reply": "2024-02-13T00:32:16.825289Z"
    +     "iopub.execute_input": "2024-02-13T00:57:21.497947Z",
    +     "iopub.status.busy": "2024-02-13T00:57:21.497490Z",
    +     "iopub.status.idle": "2024-02-13T00:57:21.517182Z",
    +     "shell.execute_reply": "2024-02-13T00:57:21.516696Z"
         }
        },
        "outputs": [],
    @@ -155,10 +155,10 @@
        "execution_count": 3,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:16.827757Z",
    -     "iopub.status.busy": "2024-02-13T00:32:16.827490Z",
    -     "iopub.status.idle": "2024-02-13T00:32:17.035317Z",
    -     "shell.execute_reply": "2024-02-13T00:32:17.034751Z"
    +     "iopub.execute_input": "2024-02-13T00:57:21.519151Z",
    +     "iopub.status.busy": "2024-02-13T00:57:21.518890Z",
    +     "iopub.status.idle": "2024-02-13T00:57:21.683904Z",
    +     "shell.execute_reply": "2024-02-13T00:57:21.683335Z"
         }
        },
        "outputs": [
    @@ -265,10 +265,10 @@
        "execution_count": 4,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:17.037445Z",
    -     "iopub.status.busy": "2024-02-13T00:32:17.037119Z",
    -     "iopub.status.idle": "2024-02-13T00:32:17.040703Z",
    -     "shell.execute_reply": "2024-02-13T00:32:17.040255Z"
    +     "iopub.execute_input": "2024-02-13T00:57:21.685975Z",
    +     "iopub.status.busy": "2024-02-13T00:57:21.685787Z",
    +     "iopub.status.idle": "2024-02-13T00:57:21.689600Z",
    +     "shell.execute_reply": "2024-02-13T00:57:21.689152Z"
         }
        },
        "outputs": [],
    @@ -289,10 +289,10 @@
        "execution_count": 5,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:17.042644Z",
    -     "iopub.status.busy": "2024-02-13T00:32:17.042386Z",
    -     "iopub.status.idle": "2024-02-13T00:32:17.049999Z",
    -     "shell.execute_reply": "2024-02-13T00:32:17.049482Z"
    +     "iopub.execute_input": "2024-02-13T00:57:21.691590Z",
    +     "iopub.status.busy": "2024-02-13T00:57:21.691405Z",
    +     "iopub.status.idle": "2024-02-13T00:57:21.698933Z",
    +     "shell.execute_reply": "2024-02-13T00:57:21.698523Z"
         }
        },
        "outputs": [],
    @@ -337,10 +337,10 @@
        "execution_count": 6,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:17.052182Z",
    -     "iopub.status.busy": "2024-02-13T00:32:17.051921Z",
    -     "iopub.status.idle": "2024-02-13T00:32:17.054400Z",
    -     "shell.execute_reply": "2024-02-13T00:32:17.053971Z"
    +     "iopub.execute_input": "2024-02-13T00:57:21.701036Z",
    +     "iopub.status.busy": "2024-02-13T00:57:21.700706Z",
    +     "iopub.status.idle": "2024-02-13T00:57:21.703143Z",
    +     "shell.execute_reply": "2024-02-13T00:57:21.702719Z"
         }
        },
        "outputs": [],
    @@ -363,10 +363,10 @@
        "execution_count": 7,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:17.056366Z",
    -     "iopub.status.busy": "2024-02-13T00:32:17.056110Z",
    -     "iopub.status.idle": "2024-02-13T00:32:20.126784Z",
    -     "shell.execute_reply": "2024-02-13T00:32:20.126103Z"
    +     "iopub.execute_input": "2024-02-13T00:57:21.705189Z",
    +     "iopub.status.busy": "2024-02-13T00:57:21.704873Z",
    +     "iopub.status.idle": "2024-02-13T00:57:24.641793Z",
    +     "shell.execute_reply": "2024-02-13T00:57:24.641268Z"
         }
        },
        "outputs": [],
    @@ -402,10 +402,10 @@
        "execution_count": 8,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:20.129369Z",
    -     "iopub.status.busy": "2024-02-13T00:32:20.129177Z",
    -     "iopub.status.idle": "2024-02-13T00:32:20.139008Z",
    -     "shell.execute_reply": "2024-02-13T00:32:20.138545Z"
    +     "iopub.execute_input": "2024-02-13T00:57:24.644488Z",
    +     "iopub.status.busy": "2024-02-13T00:57:24.644079Z",
    +     "iopub.status.idle": "2024-02-13T00:57:24.654094Z",
    +     "shell.execute_reply": "2024-02-13T00:57:24.653641Z"
         }
        },
        "outputs": [],
    @@ -437,10 +437,10 @@
        "execution_count": 9,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:20.141099Z",
    -     "iopub.status.busy": "2024-02-13T00:32:20.140917Z",
    -     "iopub.status.idle": "2024-02-13T00:32:21.993496Z",
    -     "shell.execute_reply": "2024-02-13T00:32:21.992840Z"
    +     "iopub.execute_input": "2024-02-13T00:57:24.656197Z",
    +     "iopub.status.busy": "2024-02-13T00:57:24.656016Z",
    +     "iopub.status.idle": "2024-02-13T00:57:26.506190Z",
    +     "shell.execute_reply": "2024-02-13T00:57:26.505583Z"
         }
        },
        "outputs": [
    @@ -477,10 +477,10 @@
        "execution_count": 10,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:21.997354Z",
    -     "iopub.status.busy": "2024-02-13T00:32:21.995885Z",
    -     "iopub.status.idle": "2024-02-13T00:32:22.018652Z",
    -     "shell.execute_reply": "2024-02-13T00:32:22.018135Z"
    +     "iopub.execute_input": "2024-02-13T00:57:26.509996Z",
    +     "iopub.status.busy": "2024-02-13T00:57:26.508710Z",
    +     "iopub.status.idle": "2024-02-13T00:57:26.533221Z",
    +     "shell.execute_reply": "2024-02-13T00:57:26.532725Z"
         },
         "scrolled": true
        },
    @@ -491,13 +491,11 @@
          "text": [
           "Here is a summary of the different kinds of issues found in the data:\n",
           "\n",
    -      "           issue_type  num_issues\n",
    -      "                label         294\n",
    -      "              outlier          46\n",
    -      "       near_duplicate          17\n",
    -      "              non_iid           1\n",
    -      "      class_imbalance           0\n",
    -      "underperforming_group           0\n",
    +      "    issue_type  num_issues\n",
    +      "         label         294\n",
    +      "       outlier          46\n",
    +      "near_duplicate          17\n",
    +      "       non_iid           1\n",
           "\n",
           "Dataset Information: num_examples: 941, num_classes: 5\n",
           "\n",
    @@ -607,10 +605,10 @@
        "execution_count": 11,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:22.022280Z",
    -     "iopub.status.busy": "2024-02-13T00:32:22.021375Z",
    -     "iopub.status.idle": "2024-02-13T00:32:22.032683Z",
    -     "shell.execute_reply": "2024-02-13T00:32:22.032197Z"
    +     "iopub.execute_input": "2024-02-13T00:57:26.536756Z",
    +     "iopub.status.busy": "2024-02-13T00:57:26.535851Z",
    +     "iopub.status.idle": "2024-02-13T00:57:26.546857Z",
    +     "shell.execute_reply": "2024-02-13T00:57:26.546373Z"
         }
        },
        "outputs": [
    @@ -714,10 +712,10 @@
        "execution_count": 12,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:22.036175Z",
    -     "iopub.status.busy": "2024-02-13T00:32:22.035260Z",
    -     "iopub.status.idle": "2024-02-13T00:32:22.048076Z",
    -     "shell.execute_reply": "2024-02-13T00:32:22.047584Z"
    +     "iopub.execute_input": "2024-02-13T00:57:26.550350Z",
    +     "iopub.status.busy": "2024-02-13T00:57:26.549448Z",
    +     "iopub.status.idle": "2024-02-13T00:57:26.563610Z",
    +     "shell.execute_reply": "2024-02-13T00:57:26.563107Z"
         }
        },
        "outputs": [
    @@ -846,10 +844,10 @@
        "execution_count": 13,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:22.051608Z",
    -     "iopub.status.busy": "2024-02-13T00:32:22.050689Z",
    -     "iopub.status.idle": "2024-02-13T00:32:22.061953Z",
    -     "shell.execute_reply": "2024-02-13T00:32:22.061460Z"
    +     "iopub.execute_input": "2024-02-13T00:57:26.567092Z",
    +     "iopub.status.busy": "2024-02-13T00:57:26.566179Z",
    +     "iopub.status.idle": "2024-02-13T00:57:26.577057Z",
    +     "shell.execute_reply": "2024-02-13T00:57:26.576662Z"
         }
        },
        "outputs": [
    @@ -963,10 +961,10 @@
        "execution_count": 14,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:22.064185Z",
    -     "iopub.status.busy": "2024-02-13T00:32:22.063862Z",
    -     "iopub.status.idle": "2024-02-13T00:32:22.072840Z",
    -     "shell.execute_reply": "2024-02-13T00:32:22.072414Z"
    +     "iopub.execute_input": "2024-02-13T00:57:26.579467Z",
    +     "iopub.status.busy": "2024-02-13T00:57:26.579059Z",
    +     "iopub.status.idle": "2024-02-13T00:57:26.588188Z",
    +     "shell.execute_reply": "2024-02-13T00:57:26.587524Z"
         }
        },
        "outputs": [
    @@ -1077,10 +1075,10 @@
        "execution_count": 15,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:22.075086Z",
    -     "iopub.status.busy": "2024-02-13T00:32:22.074619Z",
    -     "iopub.status.idle": "2024-02-13T00:32:22.081235Z",
    -     "shell.execute_reply": "2024-02-13T00:32:22.080788Z"
    +     "iopub.execute_input": "2024-02-13T00:57:26.590264Z",
    +     "iopub.status.busy": "2024-02-13T00:57:26.590086Z",
    +     "iopub.status.idle": "2024-02-13T00:57:26.596978Z",
    +     "shell.execute_reply": "2024-02-13T00:57:26.596416Z"
         }
        },
        "outputs": [
    @@ -1164,10 +1162,10 @@
        "execution_count": 16,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:22.083373Z",
    -     "iopub.status.busy": "2024-02-13T00:32:22.083002Z",
    -     "iopub.status.idle": "2024-02-13T00:32:22.089400Z",
    -     "shell.execute_reply": "2024-02-13T00:32:22.088961Z"
    +     "iopub.execute_input": "2024-02-13T00:57:26.599106Z",
    +     "iopub.status.busy": "2024-02-13T00:57:26.598787Z",
    +     "iopub.status.idle": "2024-02-13T00:57:26.605208Z",
    +     "shell.execute_reply": "2024-02-13T00:57:26.604740Z"
         }
        },
        "outputs": [
    @@ -1260,10 +1258,10 @@
        "execution_count": 17,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:32:22.091433Z",
    -     "iopub.status.busy": "2024-02-13T00:32:22.091114Z",
    -     "iopub.status.idle": "2024-02-13T00:32:22.097631Z",
    -     "shell.execute_reply": "2024-02-13T00:32:22.097104Z"
    +     "iopub.execute_input": "2024-02-13T00:57:26.607335Z",
    +     "iopub.status.busy": "2024-02-13T00:57:26.606999Z",
    +     "iopub.status.idle": "2024-02-13T00:57:26.613586Z",
    +     "shell.execute_reply": "2024-02-13T00:57:26.613121Z"
         },
         "nbsphinx": "hidden"
        },
    diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html
    index 9a6c65d0b..24f5d0805 100644
    --- a/master/tutorials/datalab/text.html
    +++ b/master/tutorials/datalab/text.html
    @@ -707,7 +707,7 @@ 

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'card_payment_fee_charged', 'change_pin', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'cancel_transfer', 'visa_or_mastercard'}
    +Classes: {'supported_cards_and_currencies', 'visa_or_mastercard', 'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'change_pin'}
     

    Let’s view the i-th example in the dataset:

    @@ -754,43 +754,43 @@

    2. Load and format the text dataset
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    @@ -889,14 +889,11 @@

    4. Use cleanlab to find issues in your dataset
     Here is a summary of the different kinds of issues found in the data:
     
    -           issue_type  num_issues
    -                label          42
    -              outlier          38
    -       near_duplicate           4
    -              non_iid           1
    -                 null           0
    -      class_imbalance           0
    -underperforming_group           0
    +    issue_type  num_issues
    +         label          42
    +       outlier          38
    +near_duplicate           4
    +       non_iid           1
     
     Dataset Information: num_examples: 1000, num_classes: 10
     
    @@ -1526,7 +1523,7 @@ 

    Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index fdbac61f8..1c38577a5 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:24.618872Z", - "iopub.status.busy": "2024-02-13T00:32:24.618672Z", - "iopub.status.idle": "2024-02-13T00:32:27.512254Z", - "shell.execute_reply": "2024-02-13T00:32:27.511700Z" + "iopub.execute_input": "2024-02-13T00:57:29.286720Z", + "iopub.status.busy": "2024-02-13T00:57:29.286533Z", + "iopub.status.idle": "2024-02-13T00:57:32.182548Z", + "shell.execute_reply": "2024-02-13T00:57:32.181987Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:27.514805Z", - "iopub.status.busy": "2024-02-13T00:32:27.514329Z", - "iopub.status.idle": "2024-02-13T00:32:27.517575Z", - "shell.execute_reply": "2024-02-13T00:32:27.517126Z" + "iopub.execute_input": "2024-02-13T00:57:32.185293Z", + "iopub.status.busy": "2024-02-13T00:57:32.184795Z", + "iopub.status.idle": "2024-02-13T00:57:32.188115Z", + "shell.execute_reply": "2024-02-13T00:57:32.187650Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:27.519576Z", - "iopub.status.busy": "2024-02-13T00:32:27.519244Z", - "iopub.status.idle": "2024-02-13T00:32:27.522235Z", - "shell.execute_reply": "2024-02-13T00:32:27.521777Z" + "iopub.execute_input": "2024-02-13T00:57:32.190129Z", + "iopub.status.busy": "2024-02-13T00:57:32.189794Z", + "iopub.status.idle": "2024-02-13T00:57:32.192728Z", + "shell.execute_reply": "2024-02-13T00:57:32.192303Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:27.524186Z", - "iopub.status.busy": "2024-02-13T00:32:27.524009Z", - "iopub.status.idle": "2024-02-13T00:32:27.555163Z", - "shell.execute_reply": "2024-02-13T00:32:27.554689Z" + "iopub.execute_input": "2024-02-13T00:57:32.194775Z", + "iopub.status.busy": "2024-02-13T00:57:32.194455Z", + "iopub.status.idle": "2024-02-13T00:57:32.245563Z", + "shell.execute_reply": "2024-02-13T00:57:32.245021Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:27.557125Z", - "iopub.status.busy": "2024-02-13T00:32:27.556723Z", - "iopub.status.idle": "2024-02-13T00:32:27.560715Z", - "shell.execute_reply": "2024-02-13T00:32:27.560156Z" + "iopub.execute_input": "2024-02-13T00:57:32.247590Z", + "iopub.status.busy": "2024-02-13T00:57:32.247387Z", + "iopub.status.idle": "2024-02-13T00:57:32.251256Z", + "shell.execute_reply": "2024-02-13T00:57:32.250745Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'change_pin', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'cancel_transfer', 'visa_or_mastercard'}\n" + "Classes: {'supported_cards_and_currencies', 'visa_or_mastercard', 'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'change_pin'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:27.562802Z", - "iopub.status.busy": "2024-02-13T00:32:27.562444Z", - "iopub.status.idle": "2024-02-13T00:32:27.565633Z", - "shell.execute_reply": "2024-02-13T00:32:27.565055Z" + "iopub.execute_input": "2024-02-13T00:57:32.253434Z", + "iopub.status.busy": "2024-02-13T00:57:32.253063Z", + "iopub.status.idle": "2024-02-13T00:57:32.256134Z", + "shell.execute_reply": "2024-02-13T00:57:32.255580Z" } }, "outputs": [ @@ -365,17 +365,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:27.567792Z", - "iopub.status.busy": "2024-02-13T00:32:27.567418Z", - "iopub.status.idle": "2024-02-13T00:32:31.967132Z", - "shell.execute_reply": "2024-02-13T00:32:31.966465Z" + "iopub.execute_input": "2024-02-13T00:57:32.258192Z", + "iopub.status.busy": "2024-02-13T00:57:32.257862Z", + "iopub.status.idle": "2024-02-13T00:57:37.051418Z", + "shell.execute_reply": "2024-02-13T00:57:37.050794Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "721563384fdb412ca699da900b2d663e", + "model_id": "74f766a5e9cb4aca8bef53adb1f01229", "version_major": 2, "version_minor": 0 }, @@ -389,7 +389,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ae3207db94a240ddad978b263120bb82", + "model_id": "89a8bf72d76042de8fb70d519e3b4ac7", "version_major": 2, "version_minor": 0 }, @@ -403,7 +403,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7006475616574ee38162732928a4b857", + "model_id": "ff2c428e0a16432586f3e0b56163d363", "version_major": 2, "version_minor": 0 }, @@ -417,7 +417,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fbef0bce498f4647889bedb872970454", + "model_id": "0ba0b3b6e84046e1aa59bce33a10ef7c", "version_major": 2, "version_minor": 0 }, @@ -431,7 +431,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "da0b99c4f39e4d0881332ef99f9b7333", + "model_id": "71780f53dafd4e0c9790562d8c8f89fc", "version_major": 2, "version_minor": 0 }, @@ -445,7 +445,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "40a00371fe384ab28fbed616dbdc30b4", + "model_id": "063f977bf9824fbe9288f32a41bd2e48", "version_major": 2, "version_minor": 0 }, @@ -459,7 +459,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "761b71ed3865444bb364c465db70a01b", + "model_id": "37c3982fbbff47eeb204a37c2d2443bb", "version_major": 2, "version_minor": 0 }, @@ -522,10 +522,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:31.969985Z", - "iopub.status.busy": "2024-02-13T00:32:31.969574Z", - "iopub.status.idle": "2024-02-13T00:32:32.828856Z", - "shell.execute_reply": "2024-02-13T00:32:32.828251Z" + "iopub.execute_input": "2024-02-13T00:57:37.053963Z", + "iopub.status.busy": "2024-02-13T00:57:37.053770Z", + "iopub.status.idle": "2024-02-13T00:57:37.914374Z", + "shell.execute_reply": "2024-02-13T00:57:37.913793Z" }, "scrolled": true }, @@ -557,10 +557,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:32.843092Z", - "iopub.status.busy": "2024-02-13T00:32:32.842420Z", - "iopub.status.idle": "2024-02-13T00:32:32.845887Z", - "shell.execute_reply": "2024-02-13T00:32:32.845291Z" + "iopub.execute_input": "2024-02-13T00:57:37.918246Z", + "iopub.status.busy": "2024-02-13T00:57:37.917115Z", + "iopub.status.idle": "2024-02-13T00:57:37.921336Z", + "shell.execute_reply": "2024-02-13T00:57:37.920852Z" } }, "outputs": [], @@ -580,10 +580,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:32.850114Z", - "iopub.status.busy": "2024-02-13T00:32:32.847908Z", - "iopub.status.idle": "2024-02-13T00:32:34.442346Z", - "shell.execute_reply": "2024-02-13T00:32:34.441751Z" + "iopub.execute_input": "2024-02-13T00:57:37.924895Z", + "iopub.status.busy": "2024-02-13T00:57:37.923977Z", + "iopub.status.idle": "2024-02-13T00:57:39.533608Z", + "shell.execute_reply": "2024-02-13T00:57:39.533007Z" }, "scrolled": true }, @@ -628,10 +628,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:34.445441Z", - "iopub.status.busy": "2024-02-13T00:32:34.444663Z", - "iopub.status.idle": "2024-02-13T00:32:34.465061Z", - "shell.execute_reply": "2024-02-13T00:32:34.464586Z" + "iopub.execute_input": "2024-02-13T00:57:39.537051Z", + "iopub.status.busy": "2024-02-13T00:57:39.536179Z", + "iopub.status.idle": "2024-02-13T00:57:39.559879Z", + "shell.execute_reply": "2024-02-13T00:57:39.559337Z" }, "scrolled": true }, @@ -642,14 +642,11 @@ "text": [ "Here is a summary of the different kinds of issues found in the data:\n", "\n", - " issue_type num_issues\n", - " label 42\n", - " outlier 38\n", - " near_duplicate 4\n", - " non_iid 1\n", - " null 0\n", - " class_imbalance 0\n", - "underperforming_group 0\n", + " issue_type num_issues\n", + " label 42\n", + " outlier 38\n", + "near_duplicate 4\n", + " non_iid 1\n", "\n", "Dataset Information: num_examples: 1000, num_classes: 10\n", "\n", @@ -759,10 +756,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:34.467462Z", - "iopub.status.busy": "2024-02-13T00:32:34.467100Z", - "iopub.status.idle": "2024-02-13T00:32:34.476380Z", - "shell.execute_reply": "2024-02-13T00:32:34.475916Z" + "iopub.execute_input": "2024-02-13T00:57:39.562602Z", + "iopub.status.busy": "2024-02-13T00:57:39.562257Z", + "iopub.status.idle": "2024-02-13T00:57:39.571991Z", + "shell.execute_reply": "2024-02-13T00:57:39.571493Z" }, "scrolled": true }, @@ -872,10 +869,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:34.478776Z", - "iopub.status.busy": "2024-02-13T00:32:34.478399Z", - "iopub.status.idle": "2024-02-13T00:32:34.482927Z", - "shell.execute_reply": "2024-02-13T00:32:34.482437Z" + "iopub.execute_input": "2024-02-13T00:57:39.574042Z", + "iopub.status.busy": "2024-02-13T00:57:39.573869Z", + "iopub.status.idle": "2024-02-13T00:57:39.578181Z", + "shell.execute_reply": "2024-02-13T00:57:39.577722Z" } }, "outputs": [ @@ -913,10 +910,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:34.484782Z", - "iopub.status.busy": "2024-02-13T00:32:34.484506Z", - "iopub.status.idle": "2024-02-13T00:32:34.490052Z", - "shell.execute_reply": "2024-02-13T00:32:34.489681Z" + "iopub.execute_input": "2024-02-13T00:57:39.580119Z", + "iopub.status.busy": "2024-02-13T00:57:39.579796Z", + "iopub.status.idle": "2024-02-13T00:57:39.586379Z", + "shell.execute_reply": "2024-02-13T00:57:39.585940Z" } }, "outputs": [ @@ -1033,10 +1030,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:34.491904Z", - "iopub.status.busy": "2024-02-13T00:32:34.491637Z", - "iopub.status.idle": "2024-02-13T00:32:34.497453Z", - "shell.execute_reply": "2024-02-13T00:32:34.496917Z" + "iopub.execute_input": "2024-02-13T00:57:39.588368Z", + "iopub.status.busy": "2024-02-13T00:57:39.588045Z", + "iopub.status.idle": "2024-02-13T00:57:39.593887Z", + "shell.execute_reply": "2024-02-13T00:57:39.593453Z" } }, "outputs": [ @@ -1119,10 +1116,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:34.499472Z", - "iopub.status.busy": "2024-02-13T00:32:34.499023Z", - "iopub.status.idle": "2024-02-13T00:32:34.504917Z", - "shell.execute_reply": "2024-02-13T00:32:34.504388Z" + "iopub.execute_input": "2024-02-13T00:57:39.595820Z", + "iopub.status.busy": "2024-02-13T00:57:39.595476Z", + "iopub.status.idle": "2024-02-13T00:57:39.600983Z", + "shell.execute_reply": "2024-02-13T00:57:39.600563Z" } }, "outputs": [ @@ -1230,10 +1227,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:34.506921Z", - "iopub.status.busy": "2024-02-13T00:32:34.506617Z", - "iopub.status.idle": "2024-02-13T00:32:34.514938Z", - "shell.execute_reply": "2024-02-13T00:32:34.514382Z" + "iopub.execute_input": "2024-02-13T00:57:39.602840Z", + "iopub.status.busy": "2024-02-13T00:57:39.602609Z", + "iopub.status.idle": "2024-02-13T00:57:39.610768Z", + "shell.execute_reply": "2024-02-13T00:57:39.610262Z" } }, "outputs": [ @@ -1344,10 +1341,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:34.517033Z", - "iopub.status.busy": "2024-02-13T00:32:34.516642Z", - "iopub.status.idle": "2024-02-13T00:32:34.521909Z", - "shell.execute_reply": "2024-02-13T00:32:34.521374Z" + "iopub.execute_input": "2024-02-13T00:57:39.612748Z", + "iopub.status.busy": "2024-02-13T00:57:39.612460Z", + "iopub.status.idle": "2024-02-13T00:57:39.617789Z", + "shell.execute_reply": "2024-02-13T00:57:39.617352Z" } }, "outputs": [ @@ -1415,10 +1412,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:34.523823Z", - "iopub.status.busy": "2024-02-13T00:32:34.523525Z", - "iopub.status.idle": "2024-02-13T00:32:34.528644Z", - "shell.execute_reply": "2024-02-13T00:32:34.528108Z" + "iopub.execute_input": "2024-02-13T00:57:39.619575Z", + "iopub.status.busy": "2024-02-13T00:57:39.619285Z", + "iopub.status.idle": "2024-02-13T00:57:39.624537Z", + "shell.execute_reply": "2024-02-13T00:57:39.624096Z" } }, "outputs": [ @@ -1497,10 +1494,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:34.530662Z", - "iopub.status.busy": "2024-02-13T00:32:34.530342Z", - "iopub.status.idle": "2024-02-13T00:32:34.533868Z", - "shell.execute_reply": "2024-02-13T00:32:34.533351Z" + "iopub.execute_input": "2024-02-13T00:57:39.626510Z", + "iopub.status.busy": "2024-02-13T00:57:39.626205Z", + "iopub.status.idle": "2024-02-13T00:57:39.629802Z", + "shell.execute_reply": "2024-02-13T00:57:39.629287Z" } }, "outputs": [ @@ -1548,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:34.535935Z", - "iopub.status.busy": "2024-02-13T00:32:34.535642Z", - "iopub.status.idle": "2024-02-13T00:32:34.540895Z", - "shell.execute_reply": "2024-02-13T00:32:34.540345Z" + "iopub.execute_input": "2024-02-13T00:57:39.631841Z", + "iopub.status.busy": "2024-02-13T00:57:39.631483Z", + "iopub.status.idle": "2024-02-13T00:57:39.636603Z", + "shell.execute_reply": "2024-02-13T00:57:39.636143Z" }, "nbsphinx": "hidden" }, @@ -1601,7 +1598,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "038182a332334c96ae3f28c0559b9273": { + "053f19ea3e7442e090ea1b5782df2014": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1654,60 +1651,140 @@ "width": null } }, - "081d4d79dc6c438b856fdfe48c43675c": { - "model_module": "@jupyter-widgets/base", + "057a2a5aaf5242d5948b5cf09b4ab53b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "063f977bf9824fbe9288f32a41bd2e48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d5e67901191e46e494b2089e652ad0fc", + "IPY_MODEL_e1ef327bd80e480f889166bad8e7d926", + "IPY_MODEL_b31f545f818b4ed68d58a6afe63599f1" + ], + "layout": "IPY_MODEL_da5d01c7889b4b3896ac0601d91e82bc", + "tabbable": null, + "tooltip": null + } + }, + "06ba22d4f2834b119230c076d0956709": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_73575823c53b4c53b3c7050853dd03ca", + "placeholder": "​", + "style": "IPY_MODEL_5da7e42860ba451f970a8e64be1ce7f8", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "0772f98f728e4aafa97799472eaa2a6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0ba0b3b6e84046e1aa59bce33a10ef7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a8a9218a1dc3466fbb41fc14418b40a9", + "IPY_MODEL_fd559171dce74b13961c4be1bb1db235", + "IPY_MODEL_ddce6236e5624549b6ee2e3ee54c522e" + ], + "layout": "IPY_MODEL_6705d3fbe0d847a18e149408b48f2836", + "tabbable": null, + "tooltip": null } }, - "0a186754b4e84ad9ab6bc3bffe993d2d": { + "0f9a2a616d454a2090f564440b0989b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ebb0389e5d57422083a36e61d92ecd7a", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a73bc258e9a04313884f0ea42a346f07", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "29fed60ef39e4bcbb4152120ff4421ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1760,7 +1837,7 @@ "width": null } }, - "1ab4c9f57860460fa140a2e73e4786d0": { + "2c35451cfe484a1ebad3e963a472d0d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1813,7 +1890,7 @@ "width": null } }, - "1bfbc62308c84c588097e35c6858335a": { + "3261f9de558d42718084a0ce56098ca6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1831,48 +1908,47 @@ "text_color": null } }, - "20df44789aed4540ba0ca4cb638fd99b": { + "37c3982fbbff47eeb204a37c2d2443bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_714b7ad1fee641ee872cdd1d9e52ba66", - "placeholder": "​", - "style": "IPY_MODEL_756ee66a650947f68f8f07dd75d3e55b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aac753a5f8604361a352bbe085c17a0d", + "IPY_MODEL_414f40408c4843d1819d45487d91e78c", + "IPY_MODEL_5bfe62ee82b74110b0173395981e6142" + ], + "layout": "IPY_MODEL_5923227328e04fb8a7c1c6abb1c5df2b", "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 119kB/s]" + "tooltip": null } }, - "2243618c17e045b6b43696397fba70fa": { + "39889059c2ac454e88c976799807956e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "2a1b4dfa4f0a4a4da57d13840693b8f2": { + "3a01129f25714c0a83da6ecc121b6043": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1925,7 +2001,7 @@ "width": null } }, - "2b69dd67a0b54adb8a2d3dd61ec0917c": { + "3ca9565e5aeb4f7b9dcf51e3c5bfb464": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1943,7 +2019,56 @@ "text_color": null } }, - "359ac0517b55406ea6f66c16f4dc8e87": { + "405468ab210f4660bc3bd0b424ce1408": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_29fed60ef39e4bcbb4152120ff4421ca", + "placeholder": "​", + "style": "IPY_MODEL_9059a5b348e841a0807845b5f55da2a2", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 27.7MB/s]" + } + }, + "414f40408c4843d1819d45487d91e78c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_053f19ea3e7442e090ea1b5782df2014", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fe60b0b614874bef9016990e8366c426", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "4151685dd9bd447783f1887c70273b9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1996,7 +2121,7 @@ "width": null } }, - "3dae6f5c50a04da2a12bad5aa674a4f9": { + "4561aae9f2834e75ad8c52465593d481": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2049,7 +2174,7 @@ "width": null } }, - "3ebee71434c64cf0816f2f114ccf7d14": { + "466f1d6532094185a33c4d3ec4cee261": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2102,123 +2227,79 @@ "width": null } }, - "40a00371fe384ab28fbed616dbdc30b4": { + "4e3e47a3179e4ba999e2e08940afc356": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c3c5c73435c84fe78f2c94b72aac5824", - "IPY_MODEL_858009c1a8da4bc28c899c900e687488", - "IPY_MODEL_dd7fabea39ba47ccb014c5323696de42" - ], - "layout": "IPY_MODEL_359ac0517b55406ea6f66c16f4dc8e87", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_72d51c4b7c7043b491990592b99f3b78", + "placeholder": "​", + "style": "IPY_MODEL_0772f98f728e4aafa97799472eaa2a6e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "tokenizer.json: 100%" } }, - "47e2ecc0d4644662a8c501a352ad430a": { - "model_module": "@jupyter-widgets/base", + "4edce82468c94710815d8bb5ae015a0b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4ad6b8380c2346babef08d4e116e0962": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5f270d6ba34142358ea4d2b688f3e9b1", + "placeholder": "​", + "style": "IPY_MODEL_3ca9565e5aeb4f7b9dcf51e3c5bfb464", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "4c8f60ff77e94324aa04a2f380d3efd4": { + "53b3008ba43f40dab3da03db19007ada": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_83f8dd6198f54a3cb8f0f3cb267a9d35", - "placeholder": "​", - "style": "IPY_MODEL_5b5719a2e80a4e928b94591b3df37c26", + "layout": "IPY_MODEL_da5daad44a844f30a704fe95a1844ba8", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_39889059c2ac454e88c976799807956e", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": 665.0 } }, - "4fc93278443a4af6932af26b6c823681": { + "556b6edc51b44538b757bf3382a1cfae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2271,7 +2352,7 @@ "width": null } }, - "55fa5987ea9b4f7687087c2a1fefb657": { + "5923227328e04fb8a7c1c6abb1c5df2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2324,7 +2405,66 @@ "width": null } }, - "5b5719a2e80a4e928b94591b3df37c26": { + "5ae9109788fe49aabbe447b397b61fbf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5bfe62ee82b74110b0173395981e6142": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_947f7391ba5c4936a521ed67c48a5ec6", + "placeholder": "​", + "style": "IPY_MODEL_94a59821c7da4eb7983d690bd1289ffb", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 35.4MB/s]" + } + }, + "5da7e42860ba451f970a8e64be1ce7f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5ee8e2bc4c6a447cae42ac2c9be4a3aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2342,7 +2482,7 @@ "text_color": null } }, - "61ae35ef38d44dcbb44d057cd9a9706f": { + "5f270d6ba34142358ea4d2b688f3e9b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2395,7 +2535,7 @@ "width": null } }, - "62d39d93dd0143bcb6ae199c062e1eae": { + "6705d3fbe0d847a18e149408b48f2836": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2448,33 +2588,7 @@ "width": null } }, - "6454b93c987a4e2790bf95c7babe0ab7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4fc93278443a4af6932af26b6c823681", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_96cbaf493a7e41d9b3d607f3488179ac", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "6488b8f7cbff4d86b57a3d9f8f7b345d": { + "680957614dd14c93972e198ef1d482b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2527,25 +2641,7 @@ "width": null } }, - "6be8b3cf78c248c1b6ad6ac60f8a0462": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7006475616574ee38162732928a4b857": { + "71780f53dafd4e0c9790562d8c8f89fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2560,16 +2656,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_be0f2504590a4be0b9d3cc1d960e0fa8", - "IPY_MODEL_a0c86422343546598e45856f15c27c92", - "IPY_MODEL_20df44789aed4540ba0ca4cb638fd99b" + "IPY_MODEL_4e3e47a3179e4ba999e2e08940afc356", + "IPY_MODEL_9087893d392443b89e06d8ffceaedcd5", + "IPY_MODEL_405468ab210f4660bc3bd0b424ce1408" ], - "layout": "IPY_MODEL_b802a5c2984d4deeacd9791c714f4117", + "layout": "IPY_MODEL_9290e118a847445bbb1520f55eaf6d3d", "tabbable": null, "tooltip": null } }, - "7091de0184814bb4844f0f559cdb7bb3": { + "72d51c4b7c7043b491990592b99f3b78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2622,25 +2718,7 @@ "width": null } }, - "7102354e2b6e45ceafc14465fc4a9ab1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "714b7ad1fee641ee872cdd1d9e52ba66": { + "73575823c53b4c53b3c7050853dd03ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2693,33 +2771,7 @@ "width": null } }, - "718aa907ed514edc878c5110b7158fb4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_80bb877583b34cecb939460015a45ccf", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_aedf6f1857ea420199c203875f404733", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "721563384fdb412ca699da900b2d663e": { + "74f766a5e9cb4aca8bef53adb1f01229": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2734,16 +2786,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ccb086200e694bf5817d5bb207b83e7b", - "IPY_MODEL_f053bc7c32d341ad9f0e223652bdef4a", - "IPY_MODEL_eb3bc4798be742bd9034b913a1bc35bf" + "IPY_MODEL_4edce82468c94710815d8bb5ae015a0b", + "IPY_MODEL_8fba307dd615489a8a2428801642089b", + "IPY_MODEL_99dfa23fa38e4f1f8a9ae1846ac8e86a" ], - "layout": "IPY_MODEL_61ae35ef38d44dcbb44d057cd9a9706f", + "layout": "IPY_MODEL_a7e37dcb43144662b4805194e3a37e33", "tabbable": null, "tooltip": null } }, - "756ee66a650947f68f8f07dd75d3e55b": { + "755cc877c82547838e4a8b7ae49ac09e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2761,7 +2813,46 @@ "text_color": null } }, - "761b71ed3865444bb364c465db70a01b": { + "77a5ea73ecbc475d88ee6ed6358257b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "87463806ef68407094fca51832636e3d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ff6f7d0185ea4ac09b57237d020db1e7", + "placeholder": "​", + "style": "IPY_MODEL_fc7d7819bf534ca48906903f609da325", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 130kB/s]" + } + }, + "89a8bf72d76042de8fb70d519e3b4ac7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2776,16 +2867,42 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_aec27492d89a459786c0014f6068e2e3", - "IPY_MODEL_6454b93c987a4e2790bf95c7babe0ab7", - "IPY_MODEL_90eb60f586c24136b7da33209db7f254" + "IPY_MODEL_f5efd2c38bee47c8b17e81e31b33e822", + "IPY_MODEL_0f9a2a616d454a2090f564440b0989b4", + "IPY_MODEL_d3f7ce67bcfd467c805c3bad7be05389" ], - "layout": "IPY_MODEL_b4ae1c74a19140b89bda45a445076ebf", + "layout": "IPY_MODEL_b941745835b244ccbf75bbd346b70d53", "tabbable": null, "tooltip": null } }, - "7ed4807ca7ab4513b2eb0c18ecaa2f2b": { + "8fba307dd615489a8a2428801642089b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc2cae765246460ab328d49eb2134fd9", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a114469889ac4482afb17ab875fcdf32", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "9059a5b348e841a0807845b5f55da2a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2803,10 +2920,36 @@ "text_color": null } }, - "80bb877583b34cecb939460015a45ccf": { - "model_module": "@jupyter-widgets/base", + "9087893d392443b89e06d8ffceaedcd5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_680957614dd14c93972e198ef1d482b5", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b96c5e937b1e44ba862fa7f05a3ad4b8", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "9290e118a847445bbb1520f55eaf6d3d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -2856,7 +2999,7 @@ "width": null } }, - "83f8dd6198f54a3cb8f0f3cb267a9d35": { + "947f7391ba5c4936a521ed67c48a5ec6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2909,33 +3052,96 @@ "width": null } }, - "858009c1a8da4bc28c899c900e687488": { + "94a59821c7da4eb7983d690bd1289ffb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "999fb62113ad42da9e24423e51f95335": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "99dfa23fa38e4f1f8a9ae1846ac8e86a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e6984cd096fc4bd48c40af45b8dd3ae9", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b0f1699c1d014decbecc8f8fe9110996", + "layout": "IPY_MODEL_466f1d6532094185a33c4d3ec4cee261", + "placeholder": "​", + "style": "IPY_MODEL_5ee8e2bc4c6a447cae42ac2c9be4a3aa", "tabbable": null, "tooltip": null, - "value": 29.0 + "value": " 391/391 [00:00<00:00, 64.7kB/s]" + } + }, + "a114469889ac4482afb17ab875fcdf32": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a73bc258e9a04313884f0ea42a346f07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "859163ee7ccd4697bcf3b77dcf8fdb58": { + "a7e37dcb43144662b4805194e3a37e33": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2988,7 +3194,7 @@ "width": null } }, - "8659f5519aa64a879e58ea769013b745": { + "a8a9218a1dc3466fbb41fc14418b40a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3003,15 +3209,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_859163ee7ccd4697bcf3b77dcf8fdb58", + "layout": "IPY_MODEL_c85f95652d06485c8dcdc699b2eaca17", "placeholder": "​", - "style": "IPY_MODEL_6be8b3cf78c248c1b6ad6ac60f8a0462", + "style": "IPY_MODEL_755cc877c82547838e4a8b7ae49ac09e", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 195MB/s]" + "value": "pytorch_model.bin: 100%" } }, - "89c104c623714d74a5754ab9a760b762": { + "a8dc00fe1b9044d2b545fd394035098f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3064,7 +3270,30 @@ "width": null } }, - "8f6027c246b5408f8f8a40311053fccd": { + "aac753a5f8604361a352bbe085c17a0d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4151685dd9bd447783f1887c70273b9d", + "placeholder": "​", + "style": "IPY_MODEL_cd2e48efe75f4cc08306220b4edf9e4b", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "ab0b2d649866476494855b9bd7b45db1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3117,7 +3346,25 @@ "width": null } }, - "90eb60f586c24136b7da33209db7f254": { + "ae58cb1075e34682a4fa744bcf07b353": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b31f545f818b4ed68d58a6afe63599f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3132,31 +3379,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8f6027c246b5408f8f8a40311053fccd", + "layout": "IPY_MODEL_ab0b2d649866476494855b9bd7b45db1", "placeholder": "​", - "style": "IPY_MODEL_2243618c17e045b6b43696397fba70fa", + "style": "IPY_MODEL_ae58cb1075e34682a4fa744bcf07b353", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 35.5MB/s]" + "value": " 29.0/29.0 [00:00<00:00, 5.05kB/s]" } }, - "95d83e49098a4054bfc3e6f7ae63d18a": { - "model_module": "@jupyter-widgets/controls", + "b941745835b244ccbf75bbd346b70d53": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "96cbaf493a7e41d9b3d607f3488179ac": { + "b96c5e937b1e44ba862fa7f05a3ad4b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3172,7 +3456,7 @@ "description_width": "" } }, - "9dabb023c96242d5bb93d8e1b742c0f8": { + "bc2cae765246460ab328d49eb2134fd9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3225,137 +3509,67 @@ "width": null } }, - "a0c86422343546598e45856f15c27c92": { - "model_module": "@jupyter-widgets/controls", + "c2ebf10ba10c43779e48305b747dd2f2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0a186754b4e84ad9ab6bc3bffe993d2d", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f55845fa69324d6a906cb82e5b892f94", - "tabbable": null, - "tooltip": null, - "value": 665.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ae3207db94a240ddad978b263120bb82": { - "model_module": "@jupyter-widgets/controls", + "c50fc1aaa13f44a5811c14618a96c161": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_de2d80a09d834d39b4fda20200ef2c35", - "IPY_MODEL_718aa907ed514edc878c5110b7158fb4", - "IPY_MODEL_d39288021afa402aa0df5096c9c96871" - ], - "layout": "IPY_MODEL_89c104c623714d74a5754ab9a760b762", - "tabbable": null, - "tooltip": null - } - }, - "aec27492d89a459786c0014f6068e2e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_038182a332334c96ae3f28c0559b9273", - "placeholder": "​", - "style": "IPY_MODEL_e686b6f222f34cbaa1f8ed21c605cb93", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "aedf6f1857ea420199c203875f404733": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b0f1699c1d014decbecc8f8fe9110996": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b20f1d61d74d4d3fb42f937404cd48dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b4ae1c74a19140b89bda45a445076ebf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3401,51 +3615,7 @@ "width": null } }, - "b5ce67d73f7c4ea2b0fd43d4b3f42b25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e030203588084acdac15b4ad053fd4c2", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4ad6b8380c2346babef08d4e116e0962", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "b5f97f7c884047c4bb66d6b303cd102c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b802a5c2984d4deeacd9791c714f4117": { + "c85f95652d06485c8dcdc699b2eaca17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3498,83 +3668,43 @@ "width": null } }, - "b8f902a927db495e901fe34d54dbcad6": { - "model_module": "@jupyter-widgets/base", + "c9bcc28c2baa46508f87a162afef9d91": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "be0f2504590a4be0b9d3cc1d960e0fa8": { + "cd2e48efe75f4cc08306220b4edf9e4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3dae6f5c50a04da2a12bad5aa674a4f9", - "placeholder": "​", - "style": "IPY_MODEL_c3f8c2ad7999466aaf34e7a80da8bffd", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c3c5c73435c84fe78f2c94b72aac5824": { + "d3f7ce67bcfd467c805c3bad7be05389": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3589,33 +3719,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_47e2ecc0d4644662a8c501a352ad430a", + "layout": "IPY_MODEL_3a01129f25714c0a83da6ecc121b6043", "placeholder": "​", - "style": "IPY_MODEL_b5f97f7c884047c4bb66d6b303cd102c", + "style": "IPY_MODEL_3261f9de558d42718084a0ce56098ca6", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "c3f8c2ad7999466aaf34e7a80da8bffd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 2.21k/2.21k [00:00<00:00, 375kB/s]" } }, - "ccb086200e694bf5817d5bb207b83e7b": { + "d5e67901191e46e494b2089e652ad0fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3630,33 +3742,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_081d4d79dc6c438b856fdfe48c43675c", + "layout": "IPY_MODEL_c2ebf10ba10c43779e48305b747dd2f2", "placeholder": "​", - "style": "IPY_MODEL_2b69dd67a0b54adb8a2d3dd61ec0917c", + "style": "IPY_MODEL_5ae9109788fe49aabbe447b397b61fbf", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "cdb4ea107f364ec7a7fba1b2361af369": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "tokenizer_config.json: 100%" } }, - "cfc8ee80ada648349bf8865ef04e2600": { + "da5d01c7889b4b3896ac0601d91e82bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3709,100 +3803,7 @@ "width": null } }, - "d39288021afa402aa0df5096c9c96871": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_62d39d93dd0143bcb6ae199c062e1eae", - "placeholder": "​", - "style": "IPY_MODEL_cdb4ea107f364ec7a7fba1b2361af369", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 430kB/s]" - } - }, - "da0b99c4f39e4d0881332ef99f9b7333": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4c8f60ff77e94324aa04a2f380d3efd4", - "IPY_MODEL_f98b894a09a54b30a747534cd983ad6c", - "IPY_MODEL_e6f394fea6d74b7eb3f529ea820c996c" - ], - "layout": "IPY_MODEL_1ab4c9f57860460fa140a2e73e4786d0", - "tabbable": null, - "tooltip": null - } - }, - "dd7fabea39ba47ccb014c5323696de42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ebee71434c64cf0816f2f114ccf7d14", - "placeholder": "​", - "style": "IPY_MODEL_b20f1d61d74d4d3fb42f937404cd48dc", - "tabbable": null, - "tooltip": null, - "value": " 29.0/29.0 [00:00<00:00, 5.56kB/s]" - } - }, - "de2d80a09d834d39b4fda20200ef2c35": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cfc8ee80ada648349bf8865ef04e2600", - "placeholder": "​", - "style": "IPY_MODEL_7102354e2b6e45ceafc14465fc4a9ab1", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "e030203588084acdac15b4ad053fd4c2": { + "da5daad44a844f30a704fe95a1844ba8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3855,41 +3856,56 @@ "width": null } }, - "e1ccc4365f79492f89484634fe82de0e": { + "ddce6236e5624549b6ee2e3ee54c522e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4561aae9f2834e75ad8c52465593d481", + "placeholder": "​", + "style": "IPY_MODEL_c9bcc28c2baa46508f87a162afef9d91", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 107MB/s]" } }, - "e686b6f222f34cbaa1f8ed21c605cb93": { + "e1ef327bd80e480f889166bad8e7d926": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2c35451cfe484a1ebad3e963a472d0d8", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_999fb62113ad42da9e24423e51f95335", + "tabbable": null, + "tooltip": null, + "value": 29.0 } }, - "e6984cd096fc4bd48c40af45b8dd3ae9": { + "ebb0389e5d57422083a36e61d92ecd7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3942,7 +3958,7 @@ "width": null } }, - "e6f394fea6d74b7eb3f529ea820c996c": { + "f5efd2c38bee47c8b17e81e31b33e822": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3957,15 +3973,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9dabb023c96242d5bb93d8e1b742c0f8", + "layout": "IPY_MODEL_556b6edc51b44538b757bf3382a1cfae", "placeholder": "​", - "style": "IPY_MODEL_7ed4807ca7ab4513b2eb0c18ecaa2f2b", + "style": "IPY_MODEL_057a2a5aaf5242d5948b5cf09b4ab53b", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 32.1MB/s]" + "value": "README.md: 100%" } }, - "e73b862d2e22453fb6a61ef684af7677": { + "fc7d7819bf534ca48906903f609da325": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3983,30 +3999,7 @@ "text_color": null } }, - "eb3bc4798be742bd9034b913a1bc35bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_55fa5987ea9b4f7687087c2a1fefb657", - "placeholder": "​", - "style": "IPY_MODEL_e73b862d2e22453fb6a61ef684af7677", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 64.2kB/s]" - } - }, - "f053bc7c32d341ad9f0e223652bdef4a": { + "fd559171dce74b13961c4be1bb1db235": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4022,17 +4015,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7091de0184814bb4844f0f559cdb7bb3", - "max": 391.0, + "layout": "IPY_MODEL_a8dc00fe1b9044d2b545fd394035098f", + "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e1ccc4365f79492f89484634fe82de0e", + "style": "IPY_MODEL_77a5ea73ecbc475d88ee6ed6358257b3", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": 54245363.0 } }, - "f55845fa69324d6a906cb82e5b892f94": { + "fe60b0b614874bef9016990e8366c426": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4048,56 +4041,7 @@ "description_width": "" } }, - "f8eb384fd68a4201924b91e038093001": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6488b8f7cbff4d86b57a3d9f8f7b345d", - "placeholder": "​", - "style": "IPY_MODEL_1bfbc62308c84c588097e35c6858335a", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "f98b894a09a54b30a747534cd983ad6c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b8f902a927db495e901fe34d54dbcad6", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_95d83e49098a4054bfc3e6f7ae63d18a", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "fbef0bce498f4647889bedb872970454": { + "ff2c428e0a16432586f3e0b56163d363": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4112,14 +4056,67 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f8eb384fd68a4201924b91e038093001", - "IPY_MODEL_b5ce67d73f7c4ea2b0fd43d4b3f42b25", - "IPY_MODEL_8659f5519aa64a879e58ea769013b745" + "IPY_MODEL_06ba22d4f2834b119230c076d0956709", + "IPY_MODEL_53b3008ba43f40dab3da03db19007ada", + "IPY_MODEL_87463806ef68407094fca51832636e3d" ], - "layout": "IPY_MODEL_2a1b4dfa4f0a4a4da57d13840693b8f2", + "layout": "IPY_MODEL_c50fc1aaa13f44a5811c14618a96c161", "tabbable": null, "tooltip": null } + }, + "ff6f7d0185ea4ac09b57237d020db1e7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 5818938f5..f55f1f326 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:37.602869Z", - "iopub.status.busy": "2024-02-13T00:32:37.602311Z", - "iopub.status.idle": "2024-02-13T00:32:38.638327Z", - "shell.execute_reply": "2024-02-13T00:32:38.637685Z" + "iopub.execute_input": "2024-02-13T00:57:42.818481Z", + "iopub.status.busy": "2024-02-13T00:57:42.817969Z", + "iopub.status.idle": "2024-02-13T00:57:43.933830Z", + "shell.execute_reply": "2024-02-13T00:57:43.933303Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:38.641020Z", - "iopub.status.busy": "2024-02-13T00:32:38.640588Z", - "iopub.status.idle": "2024-02-13T00:32:38.643827Z", - "shell.execute_reply": "2024-02-13T00:32:38.643414Z" + "iopub.execute_input": "2024-02-13T00:57:43.936556Z", + "iopub.status.busy": "2024-02-13T00:57:43.936239Z", + "iopub.status.idle": "2024-02-13T00:57:43.940206Z", + "shell.execute_reply": "2024-02-13T00:57:43.939623Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:38.645879Z", - "iopub.status.busy": "2024-02-13T00:32:38.645648Z", - "iopub.status.idle": "2024-02-13T00:32:38.656809Z", - "shell.execute_reply": "2024-02-13T00:32:38.656368Z" + "iopub.execute_input": "2024-02-13T00:57:43.942739Z", + "iopub.status.busy": "2024-02-13T00:57:43.942407Z", + "iopub.status.idle": "2024-02-13T00:57:43.954238Z", + "shell.execute_reply": "2024-02-13T00:57:43.953686Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:38.658939Z", - "iopub.status.busy": "2024-02-13T00:32:38.658573Z", - "iopub.status.idle": "2024-02-13T00:32:42.320117Z", - "shell.execute_reply": "2024-02-13T00:32:42.319642Z" + "iopub.execute_input": "2024-02-13T00:57:43.956553Z", + "iopub.status.busy": "2024-02-13T00:57:43.956145Z", + "iopub.status.idle": "2024-02-13T00:57:47.513013Z", + "shell.execute_reply": "2024-02-13T00:57:47.512406Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 1a4fb5f2a..3a0ded7d8 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -701,13 +701,13 @@

    How can I find label issues in big datasets with limited memory?

    -
    +
    -
    +
    @@ -1621,7 +1621,7 @@

    Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

    Professional support and services are also available from our ML experts, learn more by emailing: info@cleanlab.ai

    diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 845f3bafc..caaf4d0bd 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:44.369172Z", - "iopub.status.busy": "2024-02-13T00:32:44.368987Z", - "iopub.status.idle": "2024-02-13T00:32:45.452029Z", - "shell.execute_reply": "2024-02-13T00:32:45.451454Z" + "iopub.execute_input": "2024-02-13T00:57:49.682203Z", + "iopub.status.busy": "2024-02-13T00:57:49.681660Z", + "iopub.status.idle": "2024-02-13T00:57:50.764811Z", + "shell.execute_reply": "2024-02-13T00:57:50.764290Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:45.454819Z", - "iopub.status.busy": "2024-02-13T00:32:45.454314Z", - "iopub.status.idle": "2024-02-13T00:32:45.457835Z", - "shell.execute_reply": "2024-02-13T00:32:45.457374Z" + "iopub.execute_input": "2024-02-13T00:57:50.767729Z", + "iopub.status.busy": "2024-02-13T00:57:50.767184Z", + "iopub.status.idle": "2024-02-13T00:57:50.770750Z", + "shell.execute_reply": "2024-02-13T00:57:50.770274Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:45.460065Z", - "iopub.status.busy": "2024-02-13T00:32:45.459621Z", - "iopub.status.idle": "2024-02-13T00:32:48.564679Z", - "shell.execute_reply": "2024-02-13T00:32:48.563870Z" + "iopub.execute_input": "2024-02-13T00:57:50.772970Z", + "iopub.status.busy": "2024-02-13T00:57:50.772593Z", + "iopub.status.idle": "2024-02-13T00:57:53.865373Z", + "shell.execute_reply": "2024-02-13T00:57:53.864614Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:48.568009Z", - "iopub.status.busy": "2024-02-13T00:32:48.567288Z", - "iopub.status.idle": "2024-02-13T00:32:48.603288Z", - "shell.execute_reply": "2024-02-13T00:32:48.602638Z" + "iopub.execute_input": "2024-02-13T00:57:53.868558Z", + "iopub.status.busy": "2024-02-13T00:57:53.867911Z", + "iopub.status.idle": "2024-02-13T00:57:53.903140Z", + "shell.execute_reply": "2024-02-13T00:57:53.902544Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:48.605917Z", - "iopub.status.busy": "2024-02-13T00:32:48.605658Z", - "iopub.status.idle": "2024-02-13T00:32:48.638958Z", - "shell.execute_reply": "2024-02-13T00:32:48.638279Z" + "iopub.execute_input": "2024-02-13T00:57:53.905641Z", + "iopub.status.busy": "2024-02-13T00:57:53.905398Z", + "iopub.status.idle": "2024-02-13T00:57:53.939424Z", + "shell.execute_reply": "2024-02-13T00:57:53.938685Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:48.641737Z", - "iopub.status.busy": "2024-02-13T00:32:48.641403Z", - "iopub.status.idle": "2024-02-13T00:32:48.644568Z", - "shell.execute_reply": "2024-02-13T00:32:48.644091Z" + "iopub.execute_input": "2024-02-13T00:57:53.942465Z", + "iopub.status.busy": "2024-02-13T00:57:53.941976Z", + "iopub.status.idle": "2024-02-13T00:57:53.945218Z", + "shell.execute_reply": "2024-02-13T00:57:53.944736Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:48.646609Z", - "iopub.status.busy": "2024-02-13T00:32:48.646299Z", - "iopub.status.idle": "2024-02-13T00:32:48.649397Z", - "shell.execute_reply": "2024-02-13T00:32:48.648974Z" + "iopub.execute_input": "2024-02-13T00:57:53.947277Z", + "iopub.status.busy": "2024-02-13T00:57:53.946957Z", + "iopub.status.idle": "2024-02-13T00:57:53.949487Z", + "shell.execute_reply": "2024-02-13T00:57:53.949060Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:48.651637Z", - "iopub.status.busy": "2024-02-13T00:32:48.651239Z", - "iopub.status.idle": "2024-02-13T00:32:48.678185Z", - "shell.execute_reply": "2024-02-13T00:32:48.677615Z" + "iopub.execute_input": "2024-02-13T00:57:53.951567Z", + "iopub.status.busy": "2024-02-13T00:57:53.951271Z", + "iopub.status.idle": "2024-02-13T00:57:53.977621Z", + "shell.execute_reply": "2024-02-13T00:57:53.977029Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4020d7af4784423f9d43a3991be664c0", + "model_id": "ffdf37b5f5d546f88e9dac6a21a6aa76", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88062473fb05480596db76f8e20656ab", + "model_id": "da2821d6db53481c92faa2c3e2db3560", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:48.682828Z", - "iopub.status.busy": "2024-02-13T00:32:48.682321Z", - "iopub.status.idle": "2024-02-13T00:32:48.689370Z", - "shell.execute_reply": "2024-02-13T00:32:48.688960Z" + "iopub.execute_input": "2024-02-13T00:57:53.981925Z", + "iopub.status.busy": "2024-02-13T00:57:53.981565Z", + "iopub.status.idle": "2024-02-13T00:57:53.987986Z", + "shell.execute_reply": "2024-02-13T00:57:53.987492Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:48.691297Z", - "iopub.status.busy": "2024-02-13T00:32:48.691119Z", - "iopub.status.idle": "2024-02-13T00:32:48.694654Z", - "shell.execute_reply": "2024-02-13T00:32:48.694202Z" + "iopub.execute_input": "2024-02-13T00:57:53.990128Z", + "iopub.status.busy": "2024-02-13T00:57:53.989810Z", + "iopub.status.idle": "2024-02-13T00:57:53.993296Z", + "shell.execute_reply": "2024-02-13T00:57:53.992798Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:48.696500Z", - "iopub.status.busy": "2024-02-13T00:32:48.696332Z", - "iopub.status.idle": "2024-02-13T00:32:48.702450Z", - "shell.execute_reply": "2024-02-13T00:32:48.702019Z" + "iopub.execute_input": "2024-02-13T00:57:53.995365Z", + "iopub.status.busy": "2024-02-13T00:57:53.995039Z", + "iopub.status.idle": "2024-02-13T00:57:54.001374Z", + "shell.execute_reply": "2024-02-13T00:57:54.000846Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:48.704226Z", - "iopub.status.busy": "2024-02-13T00:32:48.704052Z", - "iopub.status.idle": "2024-02-13T00:32:48.738534Z", - "shell.execute_reply": "2024-02-13T00:32:48.737926Z" + "iopub.execute_input": "2024-02-13T00:57:54.003377Z", + "iopub.status.busy": "2024-02-13T00:57:54.003089Z", + "iopub.status.idle": "2024-02-13T00:57:54.036711Z", + "shell.execute_reply": "2024-02-13T00:57:54.036120Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:48.741399Z", - "iopub.status.busy": "2024-02-13T00:32:48.741029Z", - "iopub.status.idle": "2024-02-13T00:32:48.774989Z", - "shell.execute_reply": "2024-02-13T00:32:48.774252Z" + "iopub.execute_input": "2024-02-13T00:57:54.039356Z", + "iopub.status.busy": "2024-02-13T00:57:54.038892Z", + "iopub.status.idle": "2024-02-13T00:57:54.075090Z", + "shell.execute_reply": "2024-02-13T00:57:54.074501Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:48.777737Z", - "iopub.status.busy": "2024-02-13T00:32:48.777503Z", - "iopub.status.idle": "2024-02-13T00:32:48.898789Z", - "shell.execute_reply": "2024-02-13T00:32:48.898147Z" + "iopub.execute_input": "2024-02-13T00:57:54.077956Z", + "iopub.status.busy": "2024-02-13T00:57:54.077546Z", + "iopub.status.idle": "2024-02-13T00:57:54.207008Z", + "shell.execute_reply": "2024-02-13T00:57:54.206367Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:48.901369Z", - "iopub.status.busy": "2024-02-13T00:32:48.900825Z", - "iopub.status.idle": "2024-02-13T00:32:52.004405Z", - "shell.execute_reply": "2024-02-13T00:32:52.003725Z" + "iopub.execute_input": "2024-02-13T00:57:54.209681Z", + "iopub.status.busy": "2024-02-13T00:57:54.209030Z", + "iopub.status.idle": "2024-02-13T00:57:57.256609Z", + "shell.execute_reply": "2024-02-13T00:57:57.255979Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:52.006748Z", - "iopub.status.busy": "2024-02-13T00:32:52.006527Z", - "iopub.status.idle": "2024-02-13T00:32:52.070830Z", - "shell.execute_reply": "2024-02-13T00:32:52.070184Z" + "iopub.execute_input": "2024-02-13T00:57:57.258814Z", + "iopub.status.busy": "2024-02-13T00:57:57.258621Z", + "iopub.status.idle": "2024-02-13T00:57:57.313945Z", + "shell.execute_reply": "2024-02-13T00:57:57.313349Z" } }, "outputs": [ @@ -1206,7 +1206,7 @@ }, { "cell_type": "markdown", - "id": "b55d1f15", + "id": "e403fc33", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1214,7 +1214,7 @@ }, { "cell_type": "markdown", - "id": "f9c78075", + "id": "c7e707ed", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1227,13 +1227,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "24f6bcf1", + "id": "b35a8b43", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:52.073285Z", - "iopub.status.busy": "2024-02-13T00:32:52.072893Z", - "iopub.status.idle": "2024-02-13T00:32:52.186778Z", - "shell.execute_reply": "2024-02-13T00:32:52.186035Z" + "iopub.execute_input": "2024-02-13T00:57:57.316260Z", + "iopub.status.busy": "2024-02-13T00:57:57.315912Z", + "iopub.status.idle": "2024-02-13T00:57:57.414357Z", + "shell.execute_reply": "2024-02-13T00:57:57.413777Z" } }, "outputs": [ @@ -1274,7 +1274,7 @@ }, { "cell_type": "markdown", - "id": "079965f4", + "id": "10ab7d4d", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1283,13 +1283,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "34bfccad", + "id": "00338c1d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:52.190149Z", - "iopub.status.busy": "2024-02-13T00:32:52.189890Z", - "iopub.status.idle": "2024-02-13T00:32:52.266659Z", - "shell.execute_reply": "2024-02-13T00:32:52.266085Z" + "iopub.execute_input": "2024-02-13T00:57:57.417577Z", + "iopub.status.busy": "2024-02-13T00:57:57.416802Z", + "iopub.status.idle": "2024-02-13T00:57:57.497490Z", + "shell.execute_reply": "2024-02-13T00:57:57.496974Z" } }, "outputs": [ @@ -1325,7 +1325,7 @@ }, { "cell_type": "markdown", - "id": "b7814872", + "id": "e4d8ce80", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1336,13 +1336,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "eaa1236b", + "id": "d4290fa0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:52.269162Z", - "iopub.status.busy": "2024-02-13T00:32:52.268969Z", - "iopub.status.idle": "2024-02-13T00:32:52.277637Z", - "shell.execute_reply": "2024-02-13T00:32:52.277095Z" + "iopub.execute_input": "2024-02-13T00:57:57.499925Z", + "iopub.status.busy": "2024-02-13T00:57:57.499542Z", + "iopub.status.idle": "2024-02-13T00:57:57.507836Z", + "shell.execute_reply": "2024-02-13T00:57:57.507395Z" } }, "outputs": [], @@ -1444,7 +1444,7 @@ }, { "cell_type": "markdown", - "id": "4aa28747", + "id": "5545ac5f", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1459,13 +1459,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "5ae609d1", + "id": "a4db7d34", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:52.279960Z", - "iopub.status.busy": "2024-02-13T00:32:52.279780Z", - "iopub.status.idle": "2024-02-13T00:32:52.300229Z", - "shell.execute_reply": "2024-02-13T00:32:52.299634Z" + "iopub.execute_input": "2024-02-13T00:57:57.509954Z", + "iopub.status.busy": "2024-02-13T00:57:57.509601Z", + "iopub.status.idle": "2024-02-13T00:57:57.529032Z", + "shell.execute_reply": "2024-02-13T00:57:57.528463Z" } }, "outputs": [ @@ -1482,7 +1482,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_5790/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_5744/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1516,13 +1516,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "1782de56", + "id": "0b4e19b4", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:52.302755Z", - "iopub.status.busy": "2024-02-13T00:32:52.302409Z", - "iopub.status.idle": "2024-02-13T00:32:52.305759Z", - "shell.execute_reply": "2024-02-13T00:32:52.305198Z" + "iopub.execute_input": "2024-02-13T00:57:57.531530Z", + "iopub.status.busy": "2024-02-13T00:57:57.531165Z", + "iopub.status.idle": "2024-02-13T00:57:57.534353Z", + "shell.execute_reply": "2024-02-13T00:57:57.533819Z" } }, "outputs": [ @@ -1617,69 +1617,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "024dc2e3c0c6448e81cc8ca9960392b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_201e3b22d67c4b3d8703bcaf3baa88a6", - "placeholder": "​", - "style": "IPY_MODEL_8cd69026a4584568831b9d74c408ae07", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1288651.84it/s]" - } - }, - "1b690b1c5bd742cdaae0562dc23c18e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_319aacbe100d45a6b2b596d4eb39c299", - "placeholder": "​", - "style": "IPY_MODEL_6c8963c6897e40b7893f133461b0a7f7", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "1ed52221dd5244fc9daf13e2aa38bd5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "201e3b22d67c4b3d8703bcaf3baa88a6": { + "022953dcb15c469db91d4b94fcbc0887": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1732,7 +1670,7 @@ "width": null } }, - "21341d456a1546a6ae5e0c3b0dc4b4a5": { + "2ce3920958274c9d8b07fe48b2facdcf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1785,7 +1723,48 @@ "width": null } }, - "319aacbe100d45a6b2b596d4eb39c299": { + "411b78844a38406a9c6068c5486df0cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_631fee0fa5d54a52b3ed22ff9f1c2a54", + "placeholder": "​", + "style": "IPY_MODEL_8785f96952fd4fc0859706ce38e08508", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1068721.40it/s]" + } + }, + "47add3408b7d483780952c7d034ecc35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "631fee0fa5d54a52b3ed22ff9f1c2a54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1838,7 +1817,64 @@ "width": null } }, - "3a25f1a9aef14c82a16814dd1de2f34c": { + "633ff1c0baf04138bb8910d6bdf07d33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "684086e8d393433ba678c51b665ae99b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "68e289b0033546ee9880db612625a058": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6a227ef55666473da26095046fc040fb", + "placeholder": "​", + "style": "IPY_MODEL_bef2bf5e9332418ca8cb62d98d3bd635", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1134147.42it/s]" + } + }, + "6a227ef55666473da26095046fc040fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1891,31 +1927,30 @@ "width": null } }, - "4020d7af4784423f9d43a3991be664c0": { + "6d054dbb1f414fb3b81e686eddacee35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1b690b1c5bd742cdaae0562dc23c18e3", - "IPY_MODEL_ff50fbac6b8e4bceb635275fd2249d70", - "IPY_MODEL_f7cf92eb60eb42a7bc5048e648e287ff" - ], - "layout": "IPY_MODEL_bcf3e163efd14f9ea08bb0d07144b39b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c070f9dbfa474b41ab7a51362e870977", + "placeholder": "​", + "style": "IPY_MODEL_47add3408b7d483780952c7d034ecc35", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "number of examples processed for checking labels: " } }, - "5a73d99772ff41f8bb42e712db52641d": { + "8785f96952fd4fc0859706ce38e08508": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1933,7 +1968,7 @@ "text_color": null } }, - "5fa1a67e503e4e3ba2d8082fb3e2761d": { + "945642d3798e457eb73514728a761fa6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1986,111 +2021,7 @@ "width": null } }, - "6c8963c6897e40b7893f133461b0a7f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8530c03cf7e7469eb182d6ed7fd2db72": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "88062473fb05480596db76f8e20656ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ec5a2f070ed14748951f6714f207001f", - "IPY_MODEL_aa832ae1eb7b481f8433caf36aedecdb", - "IPY_MODEL_024dc2e3c0c6448e81cc8ca9960392b8" - ], - "layout": "IPY_MODEL_5fa1a67e503e4e3ba2d8082fb3e2761d", - "tabbable": null, - "tooltip": null - } - }, - "8cd69026a4584568831b9d74c408ae07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "aa832ae1eb7b481f8433caf36aedecdb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d91698a9531b4cbd887780b32d39b637", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d4b2f5d0d07449eebb0c5f0b311731c0", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "bcf3e163efd14f9ea08bb0d07144b39b": { + "99e5a965a5364070ba9e9f62d26d0eeb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2143,23 +2074,51 @@ "width": null } }, - "d4b2f5d0d07449eebb0c5f0b311731c0": { + "b5ce729643524fbfb0f42cd2fdc627a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2ce3920958274c9d8b07fe48b2facdcf", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_633ff1c0baf04138bb8910d6bdf07d33", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "bef2bf5e9332418ca8cb62d98d3bd635": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d89a74f83c1e422db63bf211dbf83163": { + "c070f9dbfa474b41ab7a51362e870977": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2212,7 +2171,70 @@ "width": null } }, - "d91698a9531b4cbd887780b32d39b637": { + "d83f4dc612ec4726a3a6965ba6afd99e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "da2821d6db53481c92faa2c3e2db3560": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6d054dbb1f414fb3b81e686eddacee35", + "IPY_MODEL_f8171f5e9d4441819e95269dbfe064fb", + "IPY_MODEL_411b78844a38406a9c6068c5486df0cb" + ], + "layout": "IPY_MODEL_ee0f9d83f87646a890fc2cb1ac4f6ceb", + "tabbable": null, + "tooltip": null + } + }, + "e3990e953b814483955f997676d1d067": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_022953dcb15c469db91d4b94fcbc0887", + "placeholder": "​", + "style": "IPY_MODEL_684086e8d393433ba678c51b665ae99b", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "ee0f9d83f87646a890fc2cb1ac4f6ceb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2265,76 +2287,54 @@ "width": null } }, - "ec5a2f070ed14748951f6714f207001f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3a25f1a9aef14c82a16814dd1de2f34c", - "placeholder": "​", - "style": "IPY_MODEL_5a73d99772ff41f8bb42e712db52641d", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "f7cf92eb60eb42a7bc5048e648e287ff": { + "f8171f5e9d4441819e95269dbfe064fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d89a74f83c1e422db63bf211dbf83163", - "placeholder": "​", - "style": "IPY_MODEL_8530c03cf7e7469eb182d6ed7fd2db72", + "layout": "IPY_MODEL_945642d3798e457eb73514728a761fa6", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d83f4dc612ec4726a3a6965ba6afd99e", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1034353.64it/s]" + "value": 50.0 } }, - "ff50fbac6b8e4bceb635275fd2249d70": { + "ffdf37b5f5d546f88e9dac6a21a6aa76": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21341d456a1546a6ae5e0c3b0dc4b4a5", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1ed52221dd5244fc9daf13e2aa38bd5f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3990e953b814483955f997676d1d067", + "IPY_MODEL_b5ce729643524fbfb0f42cd2fdc627a5", + "IPY_MODEL_68e289b0033546ee9880db612625a058" + ], + "layout": "IPY_MODEL_99e5a965a5364070ba9e9f62d26d0eeb", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } } }, diff --git a/master/tutorials/image.html b/master/tutorials/image.html index 4efffd2f1..53e3022ae 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -643,25 +643,25 @@

    2. Fetch and normalize the Fashion-MNIST dataset
    -
    +
    -
    +
    -
    +
    -
    +

    Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

    @@ -1024,16 +1024,16 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    2%|▎ | 1/40 [00:00&lt;00:04, 9.44it/s]
    +
    5%|▌ | 2/40 [00:00&lt;00:02, 18.69it/s]

    </pre>

    -
    2%|▎ | 1/40 [00:00<00:04, 9.44it/s]
    +
    5%|▌ | 2/40 [00:00<00:02, 18.69it/s]

    end{sphinxVerbatim}

    -

    2%|▎ | 1/40 [00:00<00:04, 9.44it/s]

    +

    5%|▌ | 2/40 [00:00<00:02, 18.69it/s]

    -
    18%|█▊ | 7/40 [00:00&lt;00:00, 38.05it/s]
    +
    22%|██▎ | 9/40 [00:00&lt;00:00, 46.28it/s]

    </pre>

    -
    18%|█▊ | 7/40 [00:00<00:00, 38.05it/s]
    +
    22%|██▎ | 9/40 [00:00<00:00, 46.28it/s]

    end{sphinxVerbatim}

    -

    18%|█▊ | 7/40 [00:00<00:00, 38.05it/s]

    +

    22%|██▎ | 9/40 [00:00<00:00, 46.28it/s]

    -
    35%|███▌ | 14/40 [00:00&lt;00:00, 49.07it/s]
    +
    40%|████ | 16/40 [00:00&lt;00:00, 52.51it/s]

    </pre>

    -
    35%|███▌ | 14/40 [00:00<00:00, 49.07it/s]
    +
    40%|████ | 16/40 [00:00<00:00, 52.51it/s]

    end{sphinxVerbatim}

    -

    35%|███▌ | 14/40 [00:00<00:00, 49.07it/s]

    +

    40%|████ | 16/40 [00:00<00:00, 52.51it/s]

    -
    50%|█████ | 20/40 [00:00&lt;00:00, 52.15it/s]
    +
    57%|█████▊ | 23/40 [00:00&lt;00:00, 58.40it/s]

    </pre>

    -
    50%|█████ | 20/40 [00:00<00:00, 52.15it/s]
    +
    57%|█████▊ | 23/40 [00:00<00:00, 58.40it/s]

    end{sphinxVerbatim}

    -

    50%|█████ | 20/40 [00:00<00:00, 52.15it/s]

    +

    57%|█████▊ | 23/40 [00:00<00:00, 58.40it/s]

    -
    65%|██████▌ | 26/40 [00:00&lt;00:00, 51.28it/s]
    +
    75%|███████▌ | 30/40 [00:00&lt;00:00, 61.37it/s]

    </pre>

    -
    65%|██████▌ | 26/40 [00:00<00:00, 51.28it/s]
    +
    75%|███████▌ | 30/40 [00:00<00:00, 61.37it/s]

    end{sphinxVerbatim}

    -

    65%|██████▌ | 26/40 [00:00<00:00, 51.28it/s]

    +

    75%|███████▌ | 30/40 [00:00<00:00, 61.37it/s]

    -
    82%|████████▎ | 33/40 [00:00&lt;00:00, 56.49it/s]
    +
    95%|█████████▌| 38/40 [00:00&lt;00:00, 66.72it/s]

    </pre>

    -
    82%|████████▎ | 33/40 [00:00<00:00, 56.49it/s]
    +
    95%|█████████▌| 38/40 [00:00<00:00, 66.72it/s]

    end{sphinxVerbatim}

    -

    82%|████████▎ | 33/40 [00:00<00:00, 56.49it/s]

    +

    95%|█████████▌| 38/40 [00:00<00:00, 66.72it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 53.19it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 57.92it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 53.19it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 57.92it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 53.19it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 57.92it/s]

    -
    5%|▌ | 2/40 [00:00&lt;00:02, 17.53it/s]
    +
    5%|▌ | 2/40 [00:00&lt;00:02, 18.03it/s]

    </pre>

    -
    5%|▌ | 2/40 [00:00<00:02, 17.53it/s]
    +
    5%|▌ | 2/40 [00:00<00:02, 18.03it/s]

    end{sphinxVerbatim}

    -

    5%|▌ | 2/40 [00:00<00:02, 17.53it/s]

    +

    5%|▌ | 2/40 [00:00<00:02, 18.03it/s]

    -
    20%|██ | 8/40 [00:00&lt;00:00, 39.68it/s]
    +
    20%|██ | 8/40 [00:00&lt;00:00, 39.02it/s]

    </pre>

    -
    20%|██ | 8/40 [00:00<00:00, 39.68it/s]
    +
    20%|██ | 8/40 [00:00<00:00, 39.02it/s]

    end{sphinxVerbatim}

    -

    20%|██ | 8/40 [00:00<00:00, 39.68it/s]

    +

    20%|██ | 8/40 [00:00<00:00, 39.02it/s]

    -
    35%|███▌ | 14/40 [00:00&lt;00:00, 46.17it/s]
    +
    35%|███▌ | 14/40 [00:00&lt;00:00, 47.77it/s]

    </pre>

    -
    35%|███▌ | 14/40 [00:00<00:00, 46.17it/s]
    +
    35%|███▌ | 14/40 [00:00<00:00, 47.77it/s]

    end{sphinxVerbatim}

    -

    35%|███▌ | 14/40 [00:00<00:00, 46.17it/s]

    +

    35%|███▌ | 14/40 [00:00<00:00, 47.77it/s]

    -
    50%|█████ | 20/40 [00:00&lt;00:00, 51.16it/s]
    +
    52%|█████▎ | 21/40 [00:00&lt;00:00, 55.36it/s]

    </pre>

    -
    50%|█████ | 20/40 [00:00<00:00, 51.16it/s]
    +
    52%|█████▎ | 21/40 [00:00<00:00, 55.36it/s]

    end{sphinxVerbatim}

    -

    50%|█████ | 20/40 [00:00<00:00, 51.16it/s]

    +

    52%|█████▎ | 21/40 [00:00<00:00, 55.36it/s]

    -
    65%|██████▌ | 26/40 [00:00&lt;00:00, 53.41it/s]
    +
    70%|███████ | 28/40 [00:00&lt;00:00, 58.94it/s]

    </pre>

    -
    65%|██████▌ | 26/40 [00:00<00:00, 53.41it/s]
    +
    70%|███████ | 28/40 [00:00<00:00, 58.94it/s]

    end{sphinxVerbatim}

    -

    65%|██████▌ | 26/40 [00:00<00:00, 53.41it/s]

    +

    70%|███████ | 28/40 [00:00<00:00, 58.94it/s]

    -
    80%|████████ | 32/40 [00:00&lt;00:00, 55.30it/s]
    +
    88%|████████▊ | 35/40 [00:00&lt;00:00, 62.46it/s]

    </pre>

    -
    80%|████████ | 32/40 [00:00<00:00, 55.30it/s]
    +
    88%|████████▊ | 35/40 [00:00<00:00, 62.46it/s]

    end{sphinxVerbatim}

    -

    80%|████████ | 32/40 [00:00<00:00, 55.30it/s]

    - - -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    98%|█████████▊| 39/40 [00:00&lt;00:00, 59.21it/s]
    -

    </pre>

    -
    -
    -
    98%|█████████▊| 39/40 [00:00<00:00, 59.21it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    98%|█████████▊| 39/40 [00:00<00:00, 59.21it/s]

    +

    88%|████████▊ | 35/40 [00:00<00:00, 62.46it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 52.02it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 55.41it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 52.02it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 55.41it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 52.02it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 55.41it/s]

    @@ -1498,16 +1472,16 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    5%|▌ | 2/40 [00:00&lt;00:02, 18.45it/s]
    +
    5%|▌ | 2/40 [00:00&lt;00:02, 17.96it/s]

    </pre>

    -
    5%|▌ | 2/40 [00:00<00:02, 18.45it/s]
    +
    5%|▌ | 2/40 [00:00<00:02, 17.96it/s]

    end{sphinxVerbatim}

    -

    5%|▌ | 2/40 [00:00<00:02, 18.45it/s]

    +

    5%|▌ | 2/40 [00:00<00:02, 17.96it/s]

    -
    20%|██ | 8/40 [00:00&lt;00:00, 41.01it/s]
    +
    22%|██▎ | 9/40 [00:00&lt;00:00, 45.01it/s]

    </pre>

    -
    20%|██ | 8/40 [00:00<00:00, 41.01it/s]
    +
    22%|██▎ | 9/40 [00:00<00:00, 45.01it/s]

    end{sphinxVerbatim}

    -

    20%|██ | 8/40 [00:00<00:00, 41.01it/s]

    +

    22%|██▎ | 9/40 [00:00<00:00, 45.01it/s]

    -
    35%|███▌ | 14/40 [00:00&lt;00:00, 48.10it/s]
    +
    38%|███▊ | 15/40 [00:00&lt;00:00, 51.36it/s]

    </pre>

    -
    35%|███▌ | 14/40 [00:00<00:00, 48.10it/s]
    +
    38%|███▊ | 15/40 [00:00<00:00, 51.36it/s]

    end{sphinxVerbatim}

    -

    35%|███▌ | 14/40 [00:00<00:00, 48.10it/s]

    +

    38%|███▊ | 15/40 [00:00<00:00, 51.36it/s]

    -
    50%|█████ | 20/40 [00:00&lt;00:00, 50.98it/s]
    +
    55%|█████▌ | 22/40 [00:00&lt;00:00, 56.30it/s]

    </pre>

    -
    50%|█████ | 20/40 [00:00<00:00, 50.98it/s]
    +
    55%|█████▌ | 22/40 [00:00<00:00, 56.30it/s]

    end{sphinxVerbatim}

    -

    50%|█████ | 20/40 [00:00<00:00, 50.98it/s]

    +

    55%|█████▌ | 22/40 [00:00<00:00, 56.30it/s]

    -
    68%|██████▊ | 27/40 [00:00&lt;00:00, 56.60it/s]
    +
    72%|███████▎ | 29/40 [00:00&lt;00:00, 60.12it/s]

    </pre>

    -
    68%|██████▊ | 27/40 [00:00<00:00, 56.60it/s]
    +
    72%|███████▎ | 29/40 [00:00<00:00, 60.12it/s]

    end{sphinxVerbatim}

    -

    68%|██████▊ | 27/40 [00:00<00:00, 56.60it/s]

    +

    72%|███████▎ | 29/40 [00:00<00:00, 60.12it/s]

    -
    82%|████████▎ | 33/40 [00:00&lt;00:00, 57.32it/s]
    +
    92%|█████████▎| 37/40 [00:00&lt;00:00, 65.70it/s]

    </pre>

    -
    82%|████████▎ | 33/40 [00:00<00:00, 57.32it/s]
    +
    92%|█████████▎| 37/40 [00:00<00:00, 65.70it/s]

    end{sphinxVerbatim}

    -

    82%|████████▎ | 33/40 [00:00<00:00, 57.32it/s]

    +

    92%|█████████▎| 37/40 [00:00<00:00, 65.70it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 60.78it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 57.74it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 60.78it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 57.74it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 60.78it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    100%|██████████| 40/40 [00:00&lt;00:00, 52.51it/s]
    -

    </pre>

    -
    -
    -
    100%|██████████| 40/40 [00:00<00:00, 52.51it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    100%|██████████| 40/40 [00:00<00:00, 52.51it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 57.74it/s]

    -
    2%|▎ | 1/40 [00:00&lt;00:04, 8.66it/s]
    +
    2%|▎ | 1/40 [00:00&lt;00:04, 8.88it/s]

    </pre>

    -
    2%|▎ | 1/40 [00:00<00:04, 8.66it/s]
    +
    2%|▎ | 1/40 [00:00<00:04, 8.88it/s]

    end{sphinxVerbatim}

    -

    2%|▎ | 1/40 [00:00<00:04, 8.66it/s]

    +

    2%|▎ | 1/40 [00:00<00:04, 8.88it/s]

    -
    20%|██ | 8/40 [00:00&lt;00:00, 41.95it/s]
    +
    20%|██ | 8/40 [00:00&lt;00:00, 40.93it/s]

    </pre>

    -
    20%|██ | 8/40 [00:00<00:00, 41.95it/s]
    +
    20%|██ | 8/40 [00:00<00:00, 40.93it/s]

    end{sphinxVerbatim}

    -

    20%|██ | 8/40 [00:00<00:00, 41.95it/s]

    +

    20%|██ | 8/40 [00:00<00:00, 40.93it/s]

    -
    35%|███▌ | 14/40 [00:00&lt;00:00, 47.17it/s]
    +
    38%|███▊ | 15/40 [00:00&lt;00:00, 52.84it/s]

    </pre>

    -
    35%|███▌ | 14/40 [00:00<00:00, 47.17it/s]
    +
    38%|███▊ | 15/40 [00:00<00:00, 52.84it/s]

    end{sphinxVerbatim}

    -

    35%|███▌ | 14/40 [00:00<00:00, 47.17it/s]

    +

    38%|███▊ | 15/40 [00:00<00:00, 52.84it/s]

    -
    50%|█████ | 20/40 [00:00&lt;00:00, 49.58it/s]
    +
    52%|█████▎ | 21/40 [00:00&lt;00:00, 54.77it/s]

    </pre>

    -
    50%|█████ | 20/40 [00:00<00:00, 49.58it/s]
    +
    52%|█████▎ | 21/40 [00:00<00:00, 54.77it/s]

    end{sphinxVerbatim}

    -

    50%|█████ | 20/40 [00:00<00:00, 49.58it/s]

    +

    52%|█████▎ | 21/40 [00:00<00:00, 54.77it/s]

    -
    68%|██████▊ | 27/40 [00:00&lt;00:00, 54.05it/s]
    +
    70%|███████ | 28/40 [00:00&lt;00:00, 59.65it/s]

    </pre>

    -
    68%|██████▊ | 27/40 [00:00<00:00, 54.05it/s]
    +
    70%|███████ | 28/40 [00:00<00:00, 59.65it/s]

    end{sphinxVerbatim}

    -

    68%|██████▊ | 27/40 [00:00<00:00, 54.05it/s]

    +

    70%|███████ | 28/40 [00:00<00:00, 59.65it/s]

    -
    82%|████████▎ | 33/40 [00:00&lt;00:00, 55.03it/s]
    +
    90%|█████████ | 36/40 [00:00&lt;00:00, 65.28it/s]

    </pre>

    -
    82%|████████▎ | 33/40 [00:00<00:00, 55.03it/s]
    +
    90%|█████████ | 36/40 [00:00<00:00, 65.28it/s]

    end{sphinxVerbatim}

    -

    82%|████████▎ | 33/40 [00:00<00:00, 55.03it/s]

    +

    90%|█████████ | 36/40 [00:00<00:00, 65.28it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 51.80it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 57.65it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 51.80it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 57.65it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 51.80it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 57.65it/s]

    @@ -1963,42 +1920,16 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    2%|▎ | 1/40 [00:00&lt;00:04, 9.55it/s]
    -

    </pre>

    -
    -
    -
    2%|▎ | 1/40 [00:00<00:04, 9.55it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    2%|▎ | 1/40 [00:00<00:04, 9.55it/s]

    - - -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    18%|█▊ | 7/40 [00:00&lt;00:00, 36.26it/s]
    +
    5%|▌ | 2/40 [00:00&lt;00:02, 18.51it/s]

    </pre>

    -
    18%|█▊ | 7/40 [00:00<00:00, 36.26it/s]
    +
    5%|▌ | 2/40 [00:00<00:02, 18.51it/s]

    end{sphinxVerbatim}

    -

    18%|█▊ | 7/40 [00:00<00:00, 36.26it/s]

    +

    5%|▌ | 2/40 [00:00<00:02, 18.51it/s]

    -
    32%|███▎ | 13/40 [00:00&lt;00:00, 45.52it/s]
    +
    20%|██ | 8/40 [00:00&lt;00:00, 41.32it/s]

    </pre>

    -
    32%|███▎ | 13/40 [00:00<00:00, 45.52it/s]
    +
    20%|██ | 8/40 [00:00<00:00, 41.32it/s]

    end{sphinxVerbatim}

    -

    32%|███▎ | 13/40 [00:00<00:00, 45.52it/s]

    +

    20%|██ | 8/40 [00:00<00:00, 41.32it/s]

    -
    50%|█████ | 20/40 [00:00&lt;00:00, 52.83it/s]
    +
    35%|███▌ | 14/40 [00:00&lt;00:00, 49.08it/s]

    </pre>

    -
    50%|█████ | 20/40 [00:00<00:00, 52.83it/s]
    +
    35%|███▌ | 14/40 [00:00<00:00, 49.08it/s]

    end{sphinxVerbatim}

    -

    50%|█████ | 20/40 [00:00<00:00, 52.83it/s]

    +

    35%|███▌ | 14/40 [00:00<00:00, 49.08it/s]

    -
    65%|██████▌ | 26/40 [00:00&lt;00:00, 53.68it/s]
    +
    52%|█████▎ | 21/40 [00:00&lt;00:00, 54.20it/s]

    </pre>

    -
    65%|██████▌ | 26/40 [00:00<00:00, 53.68it/s]
    +
    52%|█████▎ | 21/40 [00:00<00:00, 54.20it/s]

    end{sphinxVerbatim}

    -

    65%|██████▌ | 26/40 [00:00<00:00, 53.68it/s]

    +

    52%|█████▎ | 21/40 [00:00<00:00, 54.20it/s]

    -
    80%|████████ | 32/40 [00:00&lt;00:00, 55.24it/s]
    +
    70%|███████ | 28/40 [00:00&lt;00:00, 57.66it/s]

    </pre>

    -
    80%|████████ | 32/40 [00:00<00:00, 55.24it/s]
    +
    70%|███████ | 28/40 [00:00<00:00, 57.66it/s]

    end{sphinxVerbatim}

    -

    80%|████████ | 32/40 [00:00<00:00, 55.24it/s]

    +

    70%|███████ | 28/40 [00:00<00:00, 57.66it/s]

    -
    98%|█████████▊| 39/40 [00:00&lt;00:00, 58.45it/s]
    +
    90%|█████████ | 36/40 [00:00&lt;00:00, 64.04it/s]

    </pre>

    -
    98%|█████████▊| 39/40 [00:00<00:00, 58.45it/s]
    +
    90%|█████████ | 36/40 [00:00<00:00, 64.04it/s]

    end{sphinxVerbatim}

    -

    98%|█████████▊| 39/40 [00:00<00:00, 58.45it/s]

    +

    90%|█████████ | 36/40 [00:00<00:00, 64.04it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 51.56it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 56.81it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 51.56it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 56.81it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 51.56it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 56.81it/s]

    -
    5%|▌ | 2/40 [00:00&lt;00:01, 19.02it/s]
    +
    2%|▎ | 1/40 [00:00&lt;00:04, 8.16it/s]

    </pre>

    -
    5%|▌ | 2/40 [00:00<00:01, 19.02it/s]
    +
    2%|▎ | 1/40 [00:00<00:04, 8.16it/s]

    end{sphinxVerbatim}

    -

    5%|▌ | 2/40 [00:00<00:01, 19.02it/s]

    +

    2%|▎ | 1/40 [00:00<00:04, 8.16it/s]

    -
    20%|██ | 8/40 [00:00&lt;00:00, 41.51it/s]
    +
    20%|██ | 8/40 [00:00&lt;00:00, 40.82it/s]

    </pre>

    -
    20%|██ | 8/40 [00:00<00:00, 41.51it/s]
    +
    20%|██ | 8/40 [00:00<00:00, 40.82it/s]

    end{sphinxVerbatim}

    -

    20%|██ | 8/40 [00:00<00:00, 41.51it/s]

    +

    20%|██ | 8/40 [00:00<00:00, 40.82it/s]

    -
    38%|███▊ | 15/40 [00:00&lt;00:00, 53.45it/s]
    +
    40%|████ | 16/40 [00:00&lt;00:00, 54.63it/s]

    </pre>

    -
    38%|███▊ | 15/40 [00:00<00:00, 53.45it/s]
    +
    40%|████ | 16/40 [00:00<00:00, 54.63it/s]

    end{sphinxVerbatim}

    -

    38%|███▊ | 15/40 [00:00<00:00, 53.45it/s]

    +

    40%|████ | 16/40 [00:00<00:00, 54.63it/s]

    -
    55%|█████▌ | 22/40 [00:00&lt;00:00, 57.92it/s]
    +
    57%|█████▊ | 23/40 [00:00&lt;00:00, 58.37it/s]

    </pre>

    -
    55%|█████▌ | 22/40 [00:00<00:00, 57.92it/s]
    +
    57%|█████▊ | 23/40 [00:00<00:00, 58.37it/s]

    end{sphinxVerbatim}

    -

    55%|█████▌ | 22/40 [00:00<00:00, 57.92it/s]

    +

    57%|█████▊ | 23/40 [00:00<00:00, 58.37it/s]

    -
    72%|███████▎ | 29/40 [00:00&lt;00:00, 59.93it/s]
    +
    75%|███████▌ | 30/40 [00:00&lt;00:00, 61.93it/s]

    </pre>

    -
    72%|███████▎ | 29/40 [00:00<00:00, 59.93it/s]
    +
    75%|███████▌ | 30/40 [00:00<00:00, 61.93it/s]

    end{sphinxVerbatim}

    -

    72%|███████▎ | 29/40 [00:00<00:00, 59.93it/s]

    +

    75%|███████▌ | 30/40 [00:00<00:00, 61.93it/s]

    -
    92%|█████████▎| 37/40 [00:00&lt;00:00, 64.45it/s]
    +
    95%|█████████▌| 38/40 [00:00&lt;00:00, 66.45it/s]

    </pre>

    -
    92%|█████████▎| 37/40 [00:00<00:00, 64.45it/s]
    +
    95%|█████████▌| 38/40 [00:00<00:00, 66.45it/s]

    end{sphinxVerbatim}

    -

    92%|█████████▎| 37/40 [00:00<00:00, 64.45it/s]

    +

    95%|█████████▌| 38/40 [00:00<00:00, 66.45it/s]

    -
    100%|██████████| 40/40 [00:00&lt;00:00, 57.73it/s]
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 57.43it/s]

    </pre>

    -
    100%|██████████| 40/40 [00:00<00:00, 57.73it/s]
    +
    100%|██████████| 40/40 [00:00<00:00, 57.43it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 40/40 [00:00<00:00, 57.73it/s]

    +

    100%|██████████| 40/40 [00:00<00:00, 57.43it/s]

    -
    +
    @@ -2490,20 +2421,12 @@

    View report
     Here is a summary of the different kinds of issues found in the data:
     
    -           issue_type  num_issues
    -              outlier        3772
    -                label        3585
    -       near_duplicate         175
    -      low_information         166
    -                 dark          16
    -                 null           0
    -              non_iid           0
    -      class_imbalance           0
    -underperforming_group           0
    -                light           0
    -     odd_aspect_ratio           0
    -             odd_size           0
    -               blurry           0
    +     issue_type  num_issues
    +        outlier        3772
    +          label        3585
    + near_duplicate         175
    +low_information         166
    +           dark          16
     
     Dataset Information: num_examples: 60000, num_classes: 10
     
    @@ -3178,35 +3101,35 @@ 

    Dark images - dark_score is_dark_issue + dark_score 34848 - 0.203922 True + 0.203922 50270 - 0.204588 True + 0.204588 3936 - 0.213098 True + 0.213098 733 - 0.217686 True + 0.217686 8094 - 0.230118 True + 0.230118 @@ -3300,35 +3223,35 @@

    Low information images - low_information_score is_low_information_issue + low_information_score 53050 - 0.067975 True + 0.067975 40875 - 0.089929 True + 0.089929 9594 - 0.092601 True + 0.092601 34825 - 0.107744 True + 0.107744 37530 - 0.108516 True + 0.108516 @@ -3356,7 +3279,7 @@

    Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index 407443a2c..fc0f9acc6 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:55.756628Z", - "iopub.status.busy": "2024-02-13T00:32:55.756449Z", - "iopub.status.idle": "2024-02-13T00:32:58.578424Z", - "shell.execute_reply": "2024-02-13T00:32:58.577872Z" + "iopub.execute_input": "2024-02-13T00:58:00.754772Z", + "iopub.status.busy": "2024-02-13T00:58:00.754577Z", + "iopub.status.idle": "2024-02-13T00:58:03.694773Z", + "shell.execute_reply": "2024-02-13T00:58:03.694251Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:58.580891Z", - "iopub.status.busy": "2024-02-13T00:32:58.580457Z", - "iopub.status.idle": "2024-02-13T00:32:58.583882Z", - "shell.execute_reply": "2024-02-13T00:32:58.583448Z" + "iopub.execute_input": "2024-02-13T00:58:03.697643Z", + "iopub.status.busy": "2024-02-13T00:58:03.697076Z", + "iopub.status.idle": "2024-02-13T00:58:03.700733Z", + "shell.execute_reply": "2024-02-13T00:58:03.700284Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:32:58.585721Z", - "iopub.status.busy": "2024-02-13T00:32:58.585532Z", - "iopub.status.idle": "2024-02-13T00:33:00.315367Z", - "shell.execute_reply": "2024-02-13T00:33:00.314861Z" + "iopub.execute_input": "2024-02-13T00:58:03.703050Z", + "iopub.status.busy": "2024-02-13T00:58:03.702664Z", + "iopub.status.idle": "2024-02-13T00:58:05.979467Z", + "shell.execute_reply": "2024-02-13T00:58:05.978945Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9eaa9f23d032404584b47b968c94bca7", + "model_id": "5e97d7a301904ec8a9e06bf177cb0f12", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "824f70d558444a8fb4fa98914b32c2d7", + "model_id": "017960e634c04c6988dde5fbc57d815e", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9b5b8b9b315f43a9bc8737c0c5717292", + "model_id": "813e5ea418794e0ead8d5dc739fdd6ee", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b7f47718d33d49b49194bfe156774feb", + "model_id": "0284a791f2dd45be979f1b9226c8f848", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:33:00.317522Z", - "iopub.status.busy": "2024-02-13T00:33:00.317229Z", - "iopub.status.idle": "2024-02-13T00:33:00.321190Z", - "shell.execute_reply": "2024-02-13T00:33:00.320731Z" + "iopub.execute_input": "2024-02-13T00:58:05.981689Z", + "iopub.status.busy": "2024-02-13T00:58:05.981409Z", + "iopub.status.idle": "2024-02-13T00:58:05.985238Z", + "shell.execute_reply": "2024-02-13T00:58:05.984781Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:33:00.323196Z", - "iopub.status.busy": "2024-02-13T00:33:00.322914Z", - "iopub.status.idle": "2024-02-13T00:33:11.264666Z", - "shell.execute_reply": "2024-02-13T00:33:11.264026Z" + "iopub.execute_input": "2024-02-13T00:58:05.987152Z", + "iopub.status.busy": "2024-02-13T00:58:05.986879Z", + "iopub.status.idle": "2024-02-13T00:58:16.978518Z", + "shell.execute_reply": "2024-02-13T00:58:16.977984Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9686a0ffbd234a7cb7be6bced38ad591", + "model_id": "c565faa2d0a14d12b39c26b4d8b090e7", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:33:11.267275Z", - "iopub.status.busy": "2024-02-13T00:33:11.267045Z", - "iopub.status.idle": "2024-02-13T00:33:29.237710Z", - "shell.execute_reply": "2024-02-13T00:33:29.237105Z" + "iopub.execute_input": "2024-02-13T00:58:16.981250Z", + "iopub.status.busy": "2024-02-13T00:58:16.980869Z", + "iopub.status.idle": "2024-02-13T00:58:35.570043Z", + "shell.execute_reply": "2024-02-13T00:58:35.569496Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:33:29.240507Z", - "iopub.status.busy": "2024-02-13T00:33:29.240101Z", - "iopub.status.idle": "2024-02-13T00:33:29.244824Z", - "shell.execute_reply": "2024-02-13T00:33:29.244401Z" + "iopub.execute_input": "2024-02-13T00:58:35.572770Z", + "iopub.status.busy": "2024-02-13T00:58:35.572389Z", + "iopub.status.idle": "2024-02-13T00:58:35.578304Z", + "shell.execute_reply": "2024-02-13T00:58:35.577847Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:33:29.246630Z", - "iopub.status.busy": "2024-02-13T00:33:29.246452Z", - "iopub.status.idle": "2024-02-13T00:33:29.250375Z", - "shell.execute_reply": "2024-02-13T00:33:29.249866Z" + "iopub.execute_input": "2024-02-13T00:58:35.580167Z", + "iopub.status.busy": "2024-02-13T00:58:35.579866Z", + "iopub.status.idle": "2024-02-13T00:58:35.583840Z", + "shell.execute_reply": "2024-02-13T00:58:35.583329Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:33:29.252505Z", - "iopub.status.busy": "2024-02-13T00:33:29.252330Z", - "iopub.status.idle": "2024-02-13T00:33:29.260794Z", - "shell.execute_reply": "2024-02-13T00:33:29.260382Z" + "iopub.execute_input": "2024-02-13T00:58:35.585854Z", + "iopub.status.busy": "2024-02-13T00:58:35.585564Z", + "iopub.status.idle": "2024-02-13T00:58:35.594411Z", + "shell.execute_reply": "2024-02-13T00:58:35.593839Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:33:29.262611Z", - "iopub.status.busy": "2024-02-13T00:33:29.262441Z", - "iopub.status.idle": "2024-02-13T00:33:29.290079Z", - "shell.execute_reply": "2024-02-13T00:33:29.289625Z" + "iopub.execute_input": "2024-02-13T00:58:35.596468Z", + "iopub.status.busy": "2024-02-13T00:58:35.596151Z", + "iopub.status.idle": "2024-02-13T00:58:35.623359Z", + "shell.execute_reply": "2024-02-13T00:58:35.622709Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:33:29.292158Z", - "iopub.status.busy": "2024-02-13T00:33:29.291894Z", - "iopub.status.idle": "2024-02-13T00:34:01.631526Z", - "shell.execute_reply": "2024-02-13T00:34:01.630773Z" + "iopub.execute_input": "2024-02-13T00:58:35.625991Z", + "iopub.status.busy": "2024-02-13T00:58:35.625671Z", + "iopub.status.idle": "2024-02-13T00:59:08.185564Z", + "shell.execute_reply": "2024-02-13T00:59:08.184818Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.760\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.837\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.454\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.654\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.44it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.69it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 7/40 [00:00<00:00, 38.05it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 46.28it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 49.07it/s]" + " 40%|████ | 16/40 [00:00<00:00, 52.51it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 20/40 [00:00<00:00, 52.15it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 58.40it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 51.28it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 61.37it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 56.49it/s]" + " 95%|█████████▌| 38/40 [00:00<00:00, 66.72it/s]" ] }, { @@ -798,7 +798,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 53.19it/s]" + "100%|██████████| 40/40 [00:00<00:00, 57.92it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.53it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.03it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 39.68it/s]" + " 20%|██ | 8/40 [00:00<00:00, 39.02it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 46.17it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 47.77it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 20/40 [00:00<00:00, 51.16it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 55.36it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 53.41it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 58.94it/s]" ] }, { @@ -868,7 +868,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 55.30it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 62.46it/s]" ] }, { @@ -876,15 +876,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 39/40 [00:00<00:00, 59.21it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 40/40 [00:00<00:00, 52.02it/s]" + "100%|██████████| 40/40 [00:00<00:00, 55.41it/s]" ] }, { @@ -906,14 +898,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.771\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.838\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.503\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.593\n", "Computing feature embeddings ...\n" ] }, @@ -930,15 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 20%|██ | 8/40 [00:00<00:00, 41.01it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.96it/s]" ] }, { @@ -946,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 48.10it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 45.01it/s]" ] }, { @@ -954,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 20/40 [00:00<00:00, 50.98it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 51.36it/s]" ] }, { @@ -962,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 27/40 [00:00<00:00, 56.60it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 56.30it/s]" ] }, { @@ -970,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 57.32it/s]" + " 72%|███████▎ | 29/40 [00:00<00:00, 60.12it/s]" ] }, { @@ -978,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 60.78it/s]" + " 92%|█████████▎| 37/40 [00:00<00:00, 65.70it/s]" ] }, { @@ -986,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 52.51it/s]" + "100%|██████████| 40/40 [00:00<00:00, 57.74it/s]" ] }, { @@ -1016,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.66it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.88it/s]" ] }, { @@ -1024,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 41.95it/s]" + " 20%|██ | 8/40 [00:00<00:00, 40.93it/s]" ] }, { @@ -1032,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 47.17it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 52.84it/s]" ] }, { @@ -1040,7 +1024,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 20/40 [00:00<00:00, 49.58it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 54.77it/s]" ] }, { @@ -1048,7 +1032,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 27/40 [00:00<00:00, 54.05it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 59.65it/s]" ] }, { @@ -1056,7 +1040,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 55.03it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 65.28it/s]" ] }, { @@ -1064,7 +1048,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 51.80it/s]" + "100%|██████████| 40/40 [00:00<00:00, 57.65it/s]" ] }, { @@ -1086,14 +1070,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.837\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.818\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.453\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.580\n", "Computing feature embeddings ...\n" ] }, @@ -1110,15 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.55it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 18%|█▊ | 7/40 [00:00<00:00, 36.26it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.51it/s]" ] }, { @@ -1126,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▎ | 13/40 [00:00<00:00, 45.52it/s]" + " 20%|██ | 8/40 [00:00<00:00, 41.32it/s]" ] }, { @@ -1134,7 +1110,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 20/40 [00:00<00:00, 52.83it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 49.08it/s]" ] }, { @@ -1142,7 +1118,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 53.68it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 54.20it/s]" ] }, { @@ -1150,7 +1126,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 55.24it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 57.66it/s]" ] }, { @@ -1158,7 +1134,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 39/40 [00:00<00:00, 58.45it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 64.04it/s]" ] }, { @@ -1166,7 +1142,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 51.56it/s]" + "100%|██████████| 40/40 [00:00<00:00, 56.81it/s]" ] }, { @@ -1196,7 +1172,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.02it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.16it/s]" ] }, { @@ -1204,7 +1180,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 41.51it/s]" + " 20%|██ | 8/40 [00:00<00:00, 40.82it/s]" ] }, { @@ -1212,7 +1188,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 53.45it/s]" + " 40%|████ | 16/40 [00:00<00:00, 54.63it/s]" ] }, { @@ -1220,7 +1196,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 57.92it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 58.37it/s]" ] }, { @@ -1228,7 +1204,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 59.93it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 61.93it/s]" ] }, { @@ -1236,7 +1212,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 64.45it/s]" + " 95%|█████████▌| 38/40 [00:00<00:00, 66.45it/s]" ] }, { @@ -1244,7 +1220,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 57.73it/s]" + "100%|██████████| 40/40 [00:00<00:00, 57.43it/s]" ] }, { @@ -1322,10 +1298,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:34:01.634066Z", - "iopub.status.busy": "2024-02-13T00:34:01.633674Z", - "iopub.status.idle": "2024-02-13T00:34:01.651297Z", - "shell.execute_reply": "2024-02-13T00:34:01.650763Z" + "iopub.execute_input": "2024-02-13T00:59:08.188354Z", + "iopub.status.busy": "2024-02-13T00:59:08.187953Z", + "iopub.status.idle": "2024-02-13T00:59:08.203040Z", + "shell.execute_reply": "2024-02-13T00:59:08.202573Z" } }, "outputs": [], @@ -1350,10 +1326,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:34:01.653598Z", - "iopub.status.busy": "2024-02-13T00:34:01.653409Z", - "iopub.status.idle": "2024-02-13T00:34:02.101998Z", - "shell.execute_reply": "2024-02-13T00:34:02.101435Z" + "iopub.execute_input": "2024-02-13T00:59:08.205177Z", + "iopub.status.busy": "2024-02-13T00:59:08.204907Z", + "iopub.status.idle": "2024-02-13T00:59:08.672404Z", + "shell.execute_reply": "2024-02-13T00:59:08.671787Z" } }, "outputs": [], @@ -1373,10 +1349,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:34:02.104501Z", - "iopub.status.busy": "2024-02-13T00:34:02.104157Z", - "iopub.status.idle": "2024-02-13T00:37:27.426886Z", - "shell.execute_reply": "2024-02-13T00:37:27.426223Z" + "iopub.execute_input": "2024-02-13T00:59:08.674848Z", + "iopub.status.busy": "2024-02-13T00:59:08.674501Z", + "iopub.status.idle": "2024-02-13T01:02:34.840489Z", + "shell.execute_reply": "2024-02-13T01:02:34.839806Z" } }, "outputs": [ @@ -1422,7 +1398,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "222a7af54c8649df990267fdbbee1160", + "model_id": "e403d0a7480e4f9f92eb3272b2fa1116", "version_major": 2, "version_minor": 0 }, @@ -1461,10 +1437,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:27.429579Z", - "iopub.status.busy": "2024-02-13T00:37:27.428898Z", - "iopub.status.idle": "2024-02-13T00:37:28.111025Z", - "shell.execute_reply": "2024-02-13T00:37:28.110481Z" + "iopub.execute_input": "2024-02-13T01:02:34.843190Z", + "iopub.status.busy": "2024-02-13T01:02:34.842533Z", + "iopub.status.idle": "2024-02-13T01:02:35.549472Z", + "shell.execute_reply": "2024-02-13T01:02:35.548918Z" } }, "outputs": [ @@ -1474,20 +1450,12 @@ "text": [ "Here is a summary of the different kinds of issues found in the data:\n", "\n", - " issue_type num_issues\n", - " outlier 3772\n", - " label 3585\n", - " near_duplicate 175\n", - " low_information 166\n", - " dark 16\n", - " null 0\n", - " non_iid 0\n", - " class_imbalance 0\n", - "underperforming_group 0\n", - " light 0\n", - " odd_aspect_ratio 0\n", - " odd_size 0\n", - " blurry 0\n", + " issue_type num_issues\n", + " outlier 3772\n", + " label 3585\n", + " near_duplicate 175\n", + "low_information 166\n", + " dark 16\n", "\n", "Dataset Information: num_examples: 60000, num_classes: 10\n", "\n", @@ -1613,10 +1581,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:28.113759Z", - "iopub.status.busy": "2024-02-13T00:37:28.113259Z", - "iopub.status.idle": "2024-02-13T00:37:28.174614Z", - "shell.execute_reply": "2024-02-13T00:37:28.174095Z" + "iopub.execute_input": "2024-02-13T01:02:35.552149Z", + "iopub.status.busy": "2024-02-13T01:02:35.551730Z", + "iopub.status.idle": "2024-02-13T01:02:35.613631Z", + "shell.execute_reply": "2024-02-13T01:02:35.613118Z" } }, "outputs": [ @@ -1720,10 +1688,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:28.176973Z", - "iopub.status.busy": "2024-02-13T00:37:28.176535Z", - "iopub.status.idle": "2024-02-13T00:37:28.184549Z", - "shell.execute_reply": "2024-02-13T00:37:28.184163Z" + "iopub.execute_input": "2024-02-13T01:02:35.615793Z", + "iopub.status.busy": "2024-02-13T01:02:35.615536Z", + "iopub.status.idle": "2024-02-13T01:02:35.624053Z", + "shell.execute_reply": "2024-02-13T01:02:35.623609Z" } }, "outputs": [ @@ -1853,10 +1821,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:28.186406Z", - "iopub.status.busy": "2024-02-13T00:37:28.186084Z", - "iopub.status.idle": "2024-02-13T00:37:28.190613Z", - "shell.execute_reply": "2024-02-13T00:37:28.190180Z" + "iopub.execute_input": "2024-02-13T01:02:35.626069Z", + "iopub.status.busy": "2024-02-13T01:02:35.625778Z", + "iopub.status.idle": "2024-02-13T01:02:35.630389Z", + "shell.execute_reply": "2024-02-13T01:02:35.629930Z" }, "nbsphinx": "hidden" }, @@ -1902,10 +1870,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:28.192727Z", - "iopub.status.busy": "2024-02-13T00:37:28.192307Z", - "iopub.status.idle": "2024-02-13T00:37:28.693460Z", - "shell.execute_reply": "2024-02-13T00:37:28.692943Z" + "iopub.execute_input": "2024-02-13T01:02:35.632341Z", + "iopub.status.busy": "2024-02-13T01:02:35.631985Z", + "iopub.status.idle": "2024-02-13T01:02:36.140502Z", + "shell.execute_reply": "2024-02-13T01:02:36.139929Z" } }, "outputs": [ @@ -1940,10 +1908,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:28.695669Z", - "iopub.status.busy": "2024-02-13T00:37:28.695328Z", - "iopub.status.idle": "2024-02-13T00:37:28.703541Z", - "shell.execute_reply": "2024-02-13T00:37:28.702996Z" + "iopub.execute_input": "2024-02-13T01:02:36.142829Z", + "iopub.status.busy": "2024-02-13T01:02:36.142489Z", + "iopub.status.idle": "2024-02-13T01:02:36.151064Z", + "shell.execute_reply": "2024-02-13T01:02:36.150522Z" } }, "outputs": [ @@ -2110,10 +2078,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:28.705905Z", - "iopub.status.busy": "2024-02-13T00:37:28.705575Z", - "iopub.status.idle": "2024-02-13T00:37:28.712683Z", - "shell.execute_reply": "2024-02-13T00:37:28.712224Z" + "iopub.execute_input": "2024-02-13T01:02:36.153978Z", + "iopub.status.busy": "2024-02-13T01:02:36.153514Z", + "iopub.status.idle": "2024-02-13T01:02:36.160812Z", + "shell.execute_reply": "2024-02-13T01:02:36.160340Z" }, "nbsphinx": "hidden" }, @@ -2189,10 +2157,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:28.714603Z", - "iopub.status.busy": "2024-02-13T00:37:28.714268Z", - "iopub.status.idle": "2024-02-13T00:37:29.177399Z", - "shell.execute_reply": "2024-02-13T00:37:29.176813Z" + "iopub.execute_input": "2024-02-13T01:02:36.162926Z", + "iopub.status.busy": "2024-02-13T01:02:36.162622Z", + "iopub.status.idle": "2024-02-13T01:02:36.642302Z", + "shell.execute_reply": "2024-02-13T01:02:36.641688Z" } }, "outputs": [ @@ -2229,10 +2197,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:29.179744Z", - "iopub.status.busy": "2024-02-13T00:37:29.179408Z", - "iopub.status.idle": "2024-02-13T00:37:29.194527Z", - "shell.execute_reply": "2024-02-13T00:37:29.194058Z" + "iopub.execute_input": "2024-02-13T01:02:36.644566Z", + "iopub.status.busy": "2024-02-13T01:02:36.644228Z", + "iopub.status.idle": "2024-02-13T01:02:36.659948Z", + "shell.execute_reply": "2024-02-13T01:02:36.659444Z" } }, "outputs": [ @@ -2389,10 +2357,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:29.196641Z", - "iopub.status.busy": "2024-02-13T00:37:29.196309Z", - "iopub.status.idle": "2024-02-13T00:37:29.201682Z", - "shell.execute_reply": "2024-02-13T00:37:29.201263Z" + "iopub.execute_input": "2024-02-13T01:02:36.662210Z", + "iopub.status.busy": "2024-02-13T01:02:36.661895Z", + "iopub.status.idle": "2024-02-13T01:02:36.667499Z", + "shell.execute_reply": "2024-02-13T01:02:36.667024Z" }, "nbsphinx": "hidden" }, @@ -2437,10 +2405,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:29.203671Z", - "iopub.status.busy": "2024-02-13T00:37:29.203358Z", - "iopub.status.idle": "2024-02-13T00:37:29.663858Z", - "shell.execute_reply": "2024-02-13T00:37:29.663286Z" + "iopub.execute_input": "2024-02-13T01:02:36.669469Z", + "iopub.status.busy": "2024-02-13T01:02:36.669147Z", + "iopub.status.idle": "2024-02-13T01:02:37.140776Z", + "shell.execute_reply": "2024-02-13T01:02:37.140223Z" } }, "outputs": [ @@ -2522,10 +2490,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:29.666379Z", - "iopub.status.busy": "2024-02-13T00:37:29.666181Z", - "iopub.status.idle": "2024-02-13T00:37:29.675842Z", - "shell.execute_reply": "2024-02-13T00:37:29.675332Z" + "iopub.execute_input": "2024-02-13T01:02:37.143358Z", + "iopub.status.busy": "2024-02-13T01:02:37.143134Z", + "iopub.status.idle": "2024-02-13T01:02:37.153301Z", + "shell.execute_reply": "2024-02-13T01:02:37.152783Z" } }, "outputs": [ @@ -2550,47 +2518,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "

    " ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2653,10 +2621,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:29.678176Z", - "iopub.status.busy": "2024-02-13T00:37:29.677985Z", - "iopub.status.idle": "2024-02-13T00:37:29.683662Z", - "shell.execute_reply": "2024-02-13T00:37:29.683103Z" + "iopub.execute_input": "2024-02-13T01:02:37.155873Z", + "iopub.status.busy": "2024-02-13T01:02:37.155666Z", + "iopub.status.idle": "2024-02-13T01:02:37.162357Z", + "shell.execute_reply": "2024-02-13T01:02:37.161820Z" }, "nbsphinx": "hidden" }, @@ -2693,10 +2661,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:29.685941Z", - "iopub.status.busy": "2024-02-13T00:37:29.685751Z", - "iopub.status.idle": "2024-02-13T00:37:29.889426Z", - "shell.execute_reply": "2024-02-13T00:37:29.888952Z" + "iopub.execute_input": "2024-02-13T01:02:37.164598Z", + "iopub.status.busy": "2024-02-13T01:02:37.164401Z", + "iopub.status.idle": "2024-02-13T01:02:37.368662Z", + "shell.execute_reply": "2024-02-13T01:02:37.368171Z" } }, "outputs": [ @@ -2738,10 +2706,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:29.891637Z", - "iopub.status.busy": "2024-02-13T00:37:29.891305Z", - "iopub.status.idle": "2024-02-13T00:37:29.899394Z", - "shell.execute_reply": "2024-02-13T00:37:29.898837Z" + "iopub.execute_input": "2024-02-13T01:02:37.370798Z", + "iopub.status.busy": "2024-02-13T01:02:37.370458Z", + "iopub.status.idle": "2024-02-13T01:02:37.378223Z", + "shell.execute_reply": "2024-02-13T01:02:37.377660Z" } }, "outputs": [ @@ -2766,47 +2734,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "
    " ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2827,10 +2795,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:29.901327Z", - "iopub.status.busy": "2024-02-13T00:37:29.900995Z", - "iopub.status.idle": "2024-02-13T00:37:30.094897Z", - "shell.execute_reply": "2024-02-13T00:37:30.094353Z" + "iopub.execute_input": "2024-02-13T01:02:37.380209Z", + "iopub.status.busy": "2024-02-13T01:02:37.380029Z", + "iopub.status.idle": "2024-02-13T01:02:37.576496Z", + "shell.execute_reply": "2024-02-13T01:02:37.575996Z" } }, "outputs": [ @@ -2870,10 +2838,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:37:30.097178Z", - "iopub.status.busy": "2024-02-13T00:37:30.096845Z", - "iopub.status.idle": "2024-02-13T00:37:30.101066Z", - "shell.execute_reply": "2024-02-13T00:37:30.100641Z" + "iopub.execute_input": "2024-02-13T01:02:37.578759Z", + "iopub.status.busy": "2024-02-13T01:02:37.578414Z", + "iopub.status.idle": "2024-02-13T01:02:37.582664Z", + "shell.execute_reply": "2024-02-13T01:02:37.582233Z" }, "nbsphinx": "hidden" }, @@ -2910,7 +2878,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00808d5dc47d421fa85dfba0084f6c14": { + "0150faad00cf4b0fa5003bd89bc6c035": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2928,25 +2896,81 @@ "text_color": null } }, - "09ac7217cdac4f0090621b6aa6e249c9": { + "017960e634c04c6988dde5fbc57d815e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b780b4fd2801474280ad84e713b25fb6", + "IPY_MODEL_abf91823558a430bbf6531d6199c83a6", + "IPY_MODEL_c44a3a846d79432e952ba641d52e33da" + ], + "layout": "IPY_MODEL_ea5f6403c8df4b90a9e3b07052e6aab2", + "tabbable": null, + "tooltip": null + } + }, + "0284a791f2dd45be979f1b9226c8f848": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ae88b8d5236542e18913a118fcf5f605", + "IPY_MODEL_09a69051582d4b2389b2afc3732e9c8f", + "IPY_MODEL_af52b95ed6354bd7a734942e3a64d975" + ], + "layout": "IPY_MODEL_b4989e9b88c54b5b8bd25e12894d3fdb", + "tabbable": null, + "tooltip": null + } + }, + "09a69051582d4b2389b2afc3732e9c8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f1266d99ab1e4818866e8aed409423f7", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_83ce5d03962d495694880128ff446cee", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "0c7df9b73cd548b099cdcf0e0fb5df9f": { + "0bb76ba717d44652ba27a4c3713e71c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2999,7 +3023,61 @@ "width": null } }, - "0e1c112aee9741da94938519f347530d": { + "0f4fcc0d5a6343069f27cdfe86c9e495": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1cbfe99bafd04a14ab8cb7faa17f4f8b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1f561d6db5ae4826b3fc5167682d3a31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "224ee9fc2fcb4996925f4645ddedd46e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3052,7 +3130,7 @@ "width": null } }, - "16c38bb99a474c918f8e60cc47285ade": { + "266c7c0676bc40a79f4b211437a4c5c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3105,7 +3183,7 @@ "width": null } }, - "17ae6848aeb144668f963e25484cb964": { + "28155f9b128149b4ae0619c27192a8c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3123,7 +3201,7 @@ "text_color": null } }, - "1a5eadcf3f514eeba7358449ae633b27": { + "286c3fd10aa34de4a545b92f43ec0c79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3176,7 +3254,30 @@ "width": null } }, - "1f97f78cd5ce4baea06729357699bb30": { + "290ee89891954d42a38256521074eb31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_80cff24225e94fb1a848312d83e579c9", + "placeholder": "​", + "style": "IPY_MODEL_0150faad00cf4b0fa5003bd89bc6c035", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:10<00:00, 7438.74 examples/s]" + } + }, + "33d4b91a76be42f899cc9b19ce29ec98": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3229,7 +3330,7 @@ "width": null } }, - "1ff69d394d274934a50f00709182e7ea": { + "35e8e62709d2438d95c258ca08ce6444": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3244,39 +3345,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a4d07b37c5e94378a988ee593aa78316", + "layout": "IPY_MODEL_6cf2fbfc9ba8487fa5c0e913ed71947f", "placeholder": "​", - "style": "IPY_MODEL_74b137f0e7b947ffbcb4059a8d38a1c8", + "style": "IPY_MODEL_879bc3b205db449f9be744303fd2b74b", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1759.53it/s]" - } - }, - "222a7af54c8649df990267fdbbee1160": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_385d974eaf754bcf8c398c25b6c9499a", - "IPY_MODEL_c2c86f406eea45f0b11781529e3b500d", - "IPY_MODEL_1ff69d394d274934a50f00709182e7ea" - ], - "layout": "IPY_MODEL_a1ef695750ad40d1966dd1085c70e925", - "tabbable": null, - "tooltip": null + "value": "Computing checksums: 100%" } }, - "23a13d349efc4287897987153c29f166": { + "3791f2f6fdf1488bb9ce979358d0d42e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3329,7 +3406,7 @@ "width": null } }, - "2527e986f423431d9a6eec568de2196a": { + "3a29b6c824884325bbe5bb82054eb553": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3344,39 +3421,47 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_16c38bb99a474c918f8e60cc47285ade", + "layout": "IPY_MODEL_8604d44a922e49a8baf2c3034c1d294a", "placeholder": "​", - "style": "IPY_MODEL_00808d5dc47d421fa85dfba0084f6c14", + "style": "IPY_MODEL_96ad25fea22247f1989297d300dba7bc", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 608.62it/s]" + "value": " 2/2 [00:00<00:00, 612.44it/s]" } }, - "26bd1480913747f0a959af1d21fb565d": { + "43566d9174474717b8af900fdd2d98ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7b6b2739a10d44a095ddb4311a09d61f", - "IPY_MODEL_e4c0049bf3e84bef856a8f99850b2596", - "IPY_MODEL_2527e986f423431d9a6eec568de2196a" - ], - "layout": "IPY_MODEL_fcf64e42e15848e2ae3dab58b8ea108c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "442936dd0751487c85f3f953bc4e0ca1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "26ce10597546456da40a64d480f343ff": { + "44e6f4754e5c45c6b288bfa9bc84d145": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3391,105 +3476,81 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eb97f842de024455bf69044218fa040b", + "layout": "IPY_MODEL_acc06a9f68ef4c638d64ef93d00095ca", "placeholder": "​", - "style": "IPY_MODEL_3c406d882dd74255896d51a6d7c41335", + "style": "IPY_MODEL_cf541ac967c94262a1103cd361a4c1f0", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": "Map (num_proc=4): 100%" } }, - "2cdee5f83d16428a93072384b20e8779": { + "476ce515376d40a6a1b77b3a48e1544b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0c7df9b73cd548b099cdcf0e0fb5df9f", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fef58c41d4dd45c68d6e618c743d4cda", - "tabbable": null, - "tooltip": null, - "value": 10000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "357cf811cee04d66861d917dfd3ad4bf": { + "5d22379e8beb4eaab47d79c7b9e49d87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7d80d84938ef40378f0eb8f55b45ef1b", - "placeholder": "​", - "style": "IPY_MODEL_c217d69478964dae88c1274d0901340b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_35e8e62709d2438d95c258ca08ce6444", + "IPY_MODEL_7c05c19aa60b4d54a3452e2fd0240831", + "IPY_MODEL_3a29b6c824884325bbe5bb82054eb553" + ], + "layout": "IPY_MODEL_6b43f9e45515425c9f4ae4ff2e725b89", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "385d974eaf754bcf8c398c25b6c9499a": { + "5e97d7a301904ec8a9e06bf177cb0f12": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_43ea77474a37447c9d15c3f03438033e", - "placeholder": "​", - "style": "IPY_MODEL_fede132b65bb4ffba07e243d53a97122", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a69ddf10b9024b26a50c8e8b332cbb7f", + "IPY_MODEL_65466b18e17943e8af0c17a631b72d6c", + "IPY_MODEL_a3afd91b200f45b997434a94c6b70f98" + ], + "layout": "IPY_MODEL_998bf8fdcaa34e36aca1dd98750cca71", "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "3a6868fbe42543d0bc1b8883173934d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "3c406d882dd74255896d51a6d7c41335": { + "6265b6477c47419baa6d3657108e3494": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3507,99 +3568,7 @@ "text_color": null } }, - "43ea77474a37447c9d15c3f03438033e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "45011e0acd124b578adf94aff3261694": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4583b02993a84977852b80caa13d5a5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f0749fe1d9094c67a3da5a96e92dab83", - "placeholder": "​", - "style": "IPY_MODEL_f42b5bd0cc5145d8869ea551a6af810d", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 68.0MB/s]" - } - }, - "4cd5172b48744d4fa2445e17a8d8c6bb": { + "65466b18e17943e8af0c17a631b72d6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3615,56 +3584,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_673e8456ce3a4242a15ea493ba2b49dd", + "layout": "IPY_MODEL_266c7c0676bc40a79f4b211437a4c5c9", "max": 30931277.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7ac35b404b3a4f188c15fc745cdd4051", + "style": "IPY_MODEL_442936dd0751487c85f3f953bc4e0ca1", "tabbable": null, "tooltip": null, "value": 30931277.0 } }, - "4e0fb6df343d4700873090f1bcbb194c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4f81160269a3406ba4bc9fff288e81e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1a5eadcf3f514eeba7358449ae633b27", - "placeholder": "​", - "style": "IPY_MODEL_dc90a6389c3346f2b9979255219e403b", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:10<00:00, 7618.00 examples/s]" - } - }, - "50d5dfa893c2494db508fc532766b59b": { + "6b43f9e45515425c9f4ae4ff2e725b89": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3717,7 +3647,7 @@ "width": null } }, - "53b1a538160e4bb9b1d199e73c8cc995": { + "6cf2fbfc9ba8487fa5c0e913ed71947f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3770,7 +3700,7 @@ "width": null } }, - "5bb73501283c402396c3c4ec0a9cfbd4": { + "6d60330d7af34294aeb021453ba77607": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3823,30 +3753,7 @@ "width": null } }, - "5d5e0b3cc35a4bdcab83e08abd6d1ba4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aeefbad967874224b2931d38f0a43e9f", - "placeholder": "​", - "style": "IPY_MODEL_09ac7217cdac4f0090621b6aa6e249c9", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "5d753cd01b6f415f9c0bece15d3a6596": { + "6fb9d8624ee04a9fad6a349bbc249937": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3861,33 +3768,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_23a13d349efc4287897987153c29f166", + "layout": "IPY_MODEL_b8aae7649d9d46a19e47ceaf09a22e98", "placeholder": "​", - "style": "IPY_MODEL_e2e10a3ddf35466fb71ef0563a157273", + "style": "IPY_MODEL_89cd05445b9c4c23a56734cf4bf569bf", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "650639ad46fc45cab1a1adf9632de03b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Generating train split: 100%" } }, - "673e8456ce3a4242a15ea493ba2b49dd": { + "7b8984690d9f4e529e0d44f6f8905f99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3940,7 +3829,33 @@ "width": null } }, - "6a9b7c3d25a741239144550516c54ae7": { + "7c05c19aa60b4d54a3452e2fd0240831": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d72b8791d66f4e64914720eb5e48a7d0", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a9ddff796cd94e8db90cd29d0c761389", + "tabbable": null, + "tooltip": null, + "value": 2.0 + } + }, + "80cff24225e94fb1a848312d83e579c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3993,43 +3908,47 @@ "width": null } }, - "712dd06b6891473e8f484b9437059cd8": { + "813e5ea418794e0ead8d5dc739fdd6ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6fb9d8624ee04a9fad6a349bbc249937", + "IPY_MODEL_f4f9c8e580594844b2aef4b62a6e23b7", + "IPY_MODEL_a73226b732ec46eb960b31ded94243cd" + ], + "layout": "IPY_MODEL_bff91e7450a4477ab4481bc40492a1da", + "tabbable": null, + "tooltip": null } }, - "74b137f0e7b947ffbcb4059a8d38a1c8": { + "83ce5d03962d495694880128ff446cee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "75d667d6fe2546efaaa4c7e734ac2b6c": { + "8604d44a922e49a8baf2c3034c1d294a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4082,99 +4001,61 @@ "width": null } }, - "7ac35b404b3a4f188c15fc745cdd4051": { + "879bc3b205db449f9be744303fd2b74b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7b6b2739a10d44a095ddb4311a09d61f": { + "89cd05445b9c4c23a56734cf4bf569bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_75d667d6fe2546efaaa4c7e734ac2b6c", - "placeholder": "​", - "style": "IPY_MODEL_17ae6848aeb144668f963e25484cb964", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7d80d84938ef40378f0eb8f55b45ef1b": { - "model_module": "@jupyter-widgets/base", + "8d86217e861247629cdfa23e33c318db": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7fa0ef5d9b2f47709dc45ca5cc72f205": { + "8fdeab14761843138de9b721a895adea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4227,7 +4108,25 @@ "width": null } }, - "7ff6c965484e41198b19228bc7b560fe": { + "96ad25fea22247f1989297d300dba7bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "97afc40bf46c4f9d8df2c34a72ef4294": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4243,7 +4142,33 @@ "description_width": "" } }, - "8030e028603943d9a37b842897400983": { + "98d3e9fff9ba4c988227fe6287a84f64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c041457eff12480cbae95dc10ad0e055", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_97afc40bf46c4f9d8df2c34a72ef4294", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "998bf8fdcaa34e36aca1dd98750cca71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4296,7 +4221,7 @@ "width": null } }, - "803e7c31492a4f00b312bd734f1bc6a5": { + "9fa718f6b4ef42cfa45fb8418239e633": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4312,41 +4237,128 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7fa0ef5d9b2f47709dc45ca5cc72f205", + "layout": "IPY_MODEL_224ee9fc2fcb4996925f4645ddedd46e", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7ff6c965484e41198b19228bc7b560fe", + "style": "IPY_MODEL_f29aa013dbd3419d8fb1c0017bd9de60", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "824f70d558444a8fb4fa98914b32c2d7": { + "a3afd91b200f45b997434a94c6b70f98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_26ce10597546456da40a64d480f343ff", - "IPY_MODEL_c587e3d295744ec4b6d61c92d33a2649", - "IPY_MODEL_c6808be84ca84217ab7d3d6f8a42cdbf" - ], - "layout": "IPY_MODEL_da7d4d6831c2467293aadfc55151f442", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0bb76ba717d44652ba27a4c3713e71c5", + "placeholder": "​", + "style": "IPY_MODEL_1f561d6db5ae4826b3fc5167682d3a31", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 63.3MB/s]" + } + }, + "a69ddf10b9024b26a50c8e8b332cbb7f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6d60330d7af34294aeb021453ba77607", + "placeholder": "​", + "style": "IPY_MODEL_0f4fcc0d5a6343069f27cdfe86c9e495", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "a73226b732ec46eb960b31ded94243cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bdbc27b9c9be42e6bd151324546f2581", + "placeholder": "​", + "style": "IPY_MODEL_b15ecf5ec9b645b1a089111331d6b287", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 922149.33 examples/s]" + } + }, + "a9ddff796cd94e8db90cd29d0c761389": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "88b04b7e9b4a4089b41826c2d153dfac": { + "abf91823558a430bbf6531d6199c83a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3791f2f6fdf1488bb9ce979358d0d42e", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_43566d9174474717b8af900fdd2d98ec", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "acc06a9f68ef4c638d64ef93d00095ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4399,79 +4411,71 @@ "width": null } }, - "9686a0ffbd234a7cb7be6bced38ad591": { + "ae88b8d5236542e18913a118fcf5f605": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d5e0b3cc35a4bdcab83e08abd6d1ba4", - "IPY_MODEL_803e7c31492a4f00b312bd734f1bc6a5", - "IPY_MODEL_4f81160269a3406ba4bc9fff288e81e2" - ], - "layout": "IPY_MODEL_d9ff26f71b104f939ca764b497393948", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_286c3fd10aa34de4a545b92f43ec0c79", + "placeholder": "​", + "style": "IPY_MODEL_476ce515376d40a6a1b77b3a48e1544b", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Generating test split: 100%" } }, - "9b5b8b9b315f43a9bc8737c0c5717292": { + "af52b95ed6354bd7a734942e3a64d975": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e2c1a3175adb4367b96f6fe95dbc42d3", - "IPY_MODEL_cc150cc87acc46f299b49ce5b7ca79ac", - "IPY_MODEL_e826b3cd9a654e4cae1e567976b9f4b0" - ], - "layout": "IPY_MODEL_5bb73501283c402396c3c4ec0a9cfbd4", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ec3eeef76e174ca784835f0f71a13899", + "placeholder": "​", + "style": "IPY_MODEL_6265b6477c47419baa6d3657108e3494", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 611200.75 examples/s]" } }, - "9eaa9f23d032404584b47b968c94bca7": { + "b15ecf5ec9b645b1a089111331d6b287": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_357cf811cee04d66861d917dfd3ad4bf", - "IPY_MODEL_4cd5172b48744d4fa2445e17a8d8c6bb", - "IPY_MODEL_4583b02993a84977852b80caa13d5a5f" - ], - "layout": "IPY_MODEL_53b1a538160e4bb9b1d199e73c8cc995", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a1ef695750ad40d1966dd1085c70e925": { + "b4989e9b88c54b5b8bd25e12894d3fdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4524,7 +4528,53 @@ "width": null } }, - "a4d07b37c5e94378a988ee593aa78316": { + "b7577c02ebb6405794e8be577726aa79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e2f6544bc40d45948ef2c5e35c16e464", + "placeholder": "​", + "style": "IPY_MODEL_8d86217e861247629cdfa23e33c318db", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:36<00:00, 1569.47it/s]" + } + }, + "b780b4fd2801474280ad84e713b25fb6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cd244e8ef32f4249bddc5e44eee16cde", + "placeholder": "​", + "style": "IPY_MODEL_28155f9b128149b4ae0619c27192a8c2", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "b8aae7649d9d46a19e47ceaf09a22e98": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4577,7 +4627,23 @@ "width": null } }, - "a567015401b24006beae8bf833841152": { + "bd0a5285b93d46cf987e4b053b932f18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bdbc27b9c9be42e6bd151324546f2581": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4630,7 +4696,7 @@ "width": null } }, - "aeefbad967874224b2931d38f0a43e9f": { + "bff91e7450a4477ab4481bc40492a1da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4683,31 +4749,7 @@ "width": null } }, - "b7f47718d33d49b49194bfe156774feb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d753cd01b6f415f9c0bece15d3a6596", - "IPY_MODEL_2cdee5f83d16428a93072384b20e8779", - "IPY_MODEL_d82f9e9499984b54b60eabfe6a1033ce" - ], - "layout": "IPY_MODEL_a567015401b24006beae8bf833841152", - "tabbable": null, - "tooltip": null - } - }, - "bd999c396d144a9e93ba3eb0fff65492": { + "c041457eff12480cbae95dc10ad0e055": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4760,77 +4802,7 @@ "width": null } }, - "c217d69478964dae88c1274d0901340b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c2c86f406eea45f0b11781529e3b500d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bd999c396d144a9e93ba3eb0fff65492", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e9fbf9d480a34260af644b847c95a7ff", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "c587e3d295744ec4b6d61c92d33a2649": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e2c76101dd1c4c1090fe3845190a0d3b", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c6ce77ac74d4455d809151d41f69c075", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 - } - }, - "c6808be84ca84217ab7d3d6f8a42cdbf": { + "c44a3a846d79432e952ba641d52e33da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4845,80 +4817,110 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0e1c112aee9741da94938519f347530d", + "layout": "IPY_MODEL_7b8984690d9f4e529e0d44f6f8905f99", "placeholder": "​", - "style": "IPY_MODEL_650639ad46fc45cab1a1adf9632de03b", + "style": "IPY_MODEL_e801a876c38942c5bfd6fcbeaea13934", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 89.5MB/s]" + "value": " 5.18M/5.18M [00:00<00:00, 62.4MB/s]" } }, - "c6ce77ac74d4455d809151d41f69c075": { + "c565faa2d0a14d12b39c26b4d8b090e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_44e6f4754e5c45c6b288bfa9bc84d145", + "IPY_MODEL_98d3e9fff9ba4c988227fe6287a84f64", + "IPY_MODEL_290ee89891954d42a38256521074eb31" + ], + "layout": "IPY_MODEL_eb24c98364834635a8d69527fffd8e9f", + "tabbable": null, + "tooltip": null } }, - "cc150cc87acc46f299b49ce5b7ca79ac": { - "model_module": "@jupyter-widgets/controls", + "cd244e8ef32f4249bddc5e44eee16cde": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1f97f78cd5ce4baea06729357699bb30", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_45011e0acd124b578adf94aff3261694", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d82f9e9499984b54b60eabfe6a1033ce": { + "cf541ac967c94262a1103cd361a4c1f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_50d5dfa893c2494db508fc532766b59b", - "placeholder": "​", - "style": "IPY_MODEL_3a6868fbe42543d0bc1b8883173934d5", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 584889.91 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d9ff26f71b104f939ca764b497393948": { + "d72b8791d66f4e64914720eb5e48a7d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4971,7 +4973,7 @@ "width": null } }, - "da7d4d6831c2467293aadfc55151f442": { + "e2f6544bc40d45948ef2c5e35c16e464": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5024,48 +5026,72 @@ "width": null } }, - "dc90a6389c3346f2b9979255219e403b": { + "e3b5fc9b72104a6095b9f1ce04f2bcce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa27ad85e9bb40c1ae5234db420a9aa7", + "placeholder": "​", + "style": "IPY_MODEL_1cbfe99bafd04a14ab8cb7faa17f4f8b", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "e2c1a3175adb4367b96f6fe95dbc42d3": { + "e403d0a7480e4f9f92eb3272b2fa1116": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_88b04b7e9b4a4089b41826c2d153dfac", - "placeholder": "​", - "style": "IPY_MODEL_f52ef3d7102747388631727069966d51", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3b5fc9b72104a6095b9f1ce04f2bcce", + "IPY_MODEL_9fa718f6b4ef42cfa45fb8418239e633", + "IPY_MODEL_b7577c02ebb6405794e8be577726aa79" + ], + "layout": "IPY_MODEL_33d4b91a76be42f899cc9b19ce29ec98", "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "tooltip": null + } + }, + "e801a876c38942c5bfd6fcbeaea13934": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e2c76101dd1c4c1090fe3845190a0d3b": { + "ea5f6403c8df4b90a9e3b07052e6aab2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5118,90 +5144,60 @@ "width": null } }, - "e2e10a3ddf35466fb71ef0563a157273": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e4c0049bf3e84bef856a8f99850b2596": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6a9b7c3d25a741239144550516c54ae7", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4e0fb6df343d4700873090f1bcbb194c", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "e826b3cd9a654e4cae1e567976b9f4b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8030e028603943d9a37b842897400983", - "placeholder": "​", - "style": "IPY_MODEL_712dd06b6891473e8f484b9437059cd8", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 811745.78 examples/s]" - } - }, - "e9fbf9d480a34260af644b847c95a7ff": { - "model_module": "@jupyter-widgets/controls", + "eb24c98364834635a8d69527fffd8e9f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "eb97f842de024455bf69044218fa040b": { + "ec3eeef76e174ca784835f0f71a13899": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5254,7 +5250,7 @@ "width": null } }, - "f0749fe1d9094c67a3da5a96e92dab83": { + "f1266d99ab1e4818866e8aed409423f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5307,43 +5303,49 @@ "width": null } }, - "f42b5bd0cc5145d8869ea551a6af810d": { + "f29aa013dbd3419d8fb1c0017bd9de60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "f52ef3d7102747388631727069966d51": { + "f4f9c8e580594844b2aef4b62a6e23b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8fdeab14761843138de9b721a895adea", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bd0a5285b93d46cf987e4b053b932f18", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "fcf64e42e15848e2ae3dab58b8ea108c": { + "fa27ad85e9bb40c1ae5234db420a9aa7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5395,40 +5397,6 @@ "visibility": null, "width": null } - }, - "fede132b65bb4ffba07e243d53a97122": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fef58c41d4dd45c68d6e618c743d4cda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/tutorials/indepth_overview.html b/master/tutorials/indepth_overview.html index 8c2624ce7..c2ebfbcd8 100644 --- a/master/tutorials/indepth_overview.html +++ b/master/tutorials/indepth_overview.html @@ -799,14 +799,11 @@

    Workflow 1: Use Datalab to detect many types of issues
     Here is a summary of the different kinds of issues found in the data:
     
    -           issue_type  num_issues
    -                label          64
    -              outlier           7
    -       near_duplicate           6
    -              non_iid           1
    -                 null           0
    -      class_imbalance           0
    -underperforming_group           0
    +    issue_type  num_issues
    +         label          64
    +       outlier           7
    +near_duplicate           6
    +       non_iid           1
     
     Dataset Information: num_examples: 250, num_classes: 4
     
    diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb
    index 880e905a4..e3aa13e3e 100644
    --- a/master/tutorials/indepth_overview.ipynb
    +++ b/master/tutorials/indepth_overview.ipynb
    @@ -53,10 +53,10 @@
        "execution_count": 1,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:34.336923Z",
    -     "iopub.status.busy": "2024-02-13T00:37:34.336393Z",
    -     "iopub.status.idle": "2024-02-13T00:37:35.420786Z",
    -     "shell.execute_reply": "2024-02-13T00:37:35.420185Z"
    +     "iopub.execute_input": "2024-02-13T01:02:41.833675Z",
    +     "iopub.status.busy": "2024-02-13T01:02:41.833203Z",
    +     "iopub.status.idle": "2024-02-13T01:02:42.973695Z",
    +     "shell.execute_reply": "2024-02-13T01:02:42.973090Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -68,7 +68,7 @@
         "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
         "\n",
         "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
    -    "    %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n",
    +    "    %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n",
         "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
         "    %pip install $cmd\n",
         "else:\n",
    @@ -95,10 +95,10 @@
        "execution_count": 2,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:35.423501Z",
    -     "iopub.status.busy": "2024-02-13T00:37:35.423087Z",
    -     "iopub.status.idle": "2024-02-13T00:37:35.598151Z",
    -     "shell.execute_reply": "2024-02-13T00:37:35.597664Z"
    +     "iopub.execute_input": "2024-02-13T01:02:42.976454Z",
    +     "iopub.status.busy": "2024-02-13T01:02:42.976170Z",
    +     "iopub.status.idle": "2024-02-13T01:02:43.159646Z",
    +     "shell.execute_reply": "2024-02-13T01:02:43.159002Z"
         },
         "id": "avXlHJcXjruP"
        },
    @@ -234,10 +234,10 @@
        "execution_count": 3,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:35.600667Z",
    -     "iopub.status.busy": "2024-02-13T00:37:35.600479Z",
    -     "iopub.status.idle": "2024-02-13T00:37:35.612006Z",
    -     "shell.execute_reply": "2024-02-13T00:37:35.611562Z"
    +     "iopub.execute_input": "2024-02-13T01:02:43.162168Z",
    +     "iopub.status.busy": "2024-02-13T01:02:43.161939Z",
    +     "iopub.status.idle": "2024-02-13T01:02:43.174992Z",
    +     "shell.execute_reply": "2024-02-13T01:02:43.174410Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -340,10 +340,10 @@
        "execution_count": 4,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:35.614029Z",
    -     "iopub.status.busy": "2024-02-13T00:37:35.613636Z",
    -     "iopub.status.idle": "2024-02-13T00:37:35.821630Z",
    -     "shell.execute_reply": "2024-02-13T00:37:35.821088Z"
    +     "iopub.execute_input": "2024-02-13T01:02:43.177058Z",
    +     "iopub.status.busy": "2024-02-13T01:02:43.176739Z",
    +     "iopub.status.idle": "2024-02-13T01:02:43.415019Z",
    +     "shell.execute_reply": "2024-02-13T01:02:43.414405Z"
         }
        },
        "outputs": [
    @@ -393,10 +393,10 @@
        "execution_count": 5,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:35.823919Z",
    -     "iopub.status.busy": "2024-02-13T00:37:35.823724Z",
    -     "iopub.status.idle": "2024-02-13T00:37:35.851603Z",
    -     "shell.execute_reply": "2024-02-13T00:37:35.851146Z"
    +     "iopub.execute_input": "2024-02-13T01:02:43.417532Z",
    +     "iopub.status.busy": "2024-02-13T01:02:43.417054Z",
    +     "iopub.status.idle": "2024-02-13T01:02:43.445271Z",
    +     "shell.execute_reply": "2024-02-13T01:02:43.444787Z"
         }
        },
        "outputs": [],
    @@ -428,10 +428,10 @@
        "execution_count": 6,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:35.853669Z",
    -     "iopub.status.busy": "2024-02-13T00:37:35.853254Z",
    -     "iopub.status.idle": "2024-02-13T00:37:37.520183Z",
    -     "shell.execute_reply": "2024-02-13T00:37:37.519564Z"
    +     "iopub.execute_input": "2024-02-13T01:02:43.447651Z",
    +     "iopub.status.busy": "2024-02-13T01:02:43.447205Z",
    +     "iopub.status.idle": "2024-02-13T01:02:45.180624Z",
    +     "shell.execute_reply": "2024-02-13T01:02:45.179973Z"
         }
        },
        "outputs": [
    @@ -475,10 +475,10 @@
        "execution_count": 7,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:37.522763Z",
    -     "iopub.status.busy": "2024-02-13T00:37:37.522230Z",
    -     "iopub.status.idle": "2024-02-13T00:37:37.538732Z",
    -     "shell.execute_reply": "2024-02-13T00:37:37.538265Z"
    +     "iopub.execute_input": "2024-02-13T01:02:45.183105Z",
    +     "iopub.status.busy": "2024-02-13T01:02:45.182578Z",
    +     "iopub.status.idle": "2024-02-13T01:02:45.200907Z",
    +     "shell.execute_reply": "2024-02-13T01:02:45.200338Z"
         },
         "scrolled": true
        },
    @@ -489,14 +489,11 @@
          "text": [
           "Here is a summary of the different kinds of issues found in the data:\n",
           "\n",
    -      "           issue_type  num_issues\n",
    -      "                label          64\n",
    -      "              outlier           7\n",
    -      "       near_duplicate           6\n",
    -      "              non_iid           1\n",
    -      "                 null           0\n",
    -      "      class_imbalance           0\n",
    -      "underperforming_group           0\n",
    +      "    issue_type  num_issues\n",
    +      "         label          64\n",
    +      "       outlier           7\n",
    +      "near_duplicate           6\n",
    +      "       non_iid           1\n",
           "\n",
           "Dataset Information: num_examples: 250, num_classes: 4\n",
           "\n",
    @@ -606,10 +603,10 @@
        "execution_count": 8,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:37.540658Z",
    -     "iopub.status.busy": "2024-02-13T00:37:37.540464Z",
    -     "iopub.status.idle": "2024-02-13T00:37:38.958453Z",
    -     "shell.execute_reply": "2024-02-13T00:37:38.957838Z"
    +     "iopub.execute_input": "2024-02-13T01:02:45.203181Z",
    +     "iopub.status.busy": "2024-02-13T01:02:45.202768Z",
    +     "iopub.status.idle": "2024-02-13T01:02:46.648915Z",
    +     "shell.execute_reply": "2024-02-13T01:02:46.648254Z"
         },
         "id": "AaHC5MRKjruT"
        },
    @@ -728,10 +725,10 @@
        "execution_count": 9,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:38.961194Z",
    -     "iopub.status.busy": "2024-02-13T00:37:38.960594Z",
    -     "iopub.status.idle": "2024-02-13T00:37:38.974647Z",
    -     "shell.execute_reply": "2024-02-13T00:37:38.974215Z"
    +     "iopub.execute_input": "2024-02-13T01:02:46.651543Z",
    +     "iopub.status.busy": "2024-02-13T01:02:46.650875Z",
    +     "iopub.status.idle": "2024-02-13T01:02:46.664517Z",
    +     "shell.execute_reply": "2024-02-13T01:02:46.664055Z"
         },
         "id": "Wy27rvyhjruU"
        },
    @@ -780,10 +777,10 @@
        "execution_count": 10,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:38.976732Z",
    -     "iopub.status.busy": "2024-02-13T00:37:38.976480Z",
    -     "iopub.status.idle": "2024-02-13T00:37:39.048456Z",
    -     "shell.execute_reply": "2024-02-13T00:37:39.047873Z"
    +     "iopub.execute_input": "2024-02-13T01:02:46.666687Z",
    +     "iopub.status.busy": "2024-02-13T01:02:46.666359Z",
    +     "iopub.status.idle": "2024-02-13T01:02:46.741698Z",
    +     "shell.execute_reply": "2024-02-13T01:02:46.741013Z"
         },
         "id": "Db8YHnyVjruU"
        },
    @@ -890,10 +887,10 @@
        "execution_count": 11,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:39.051051Z",
    -     "iopub.status.busy": "2024-02-13T00:37:39.050555Z",
    -     "iopub.status.idle": "2024-02-13T00:37:39.258231Z",
    -     "shell.execute_reply": "2024-02-13T00:37:39.257664Z"
    +     "iopub.execute_input": "2024-02-13T01:02:46.744257Z",
    +     "iopub.status.busy": "2024-02-13T01:02:46.743997Z",
    +     "iopub.status.idle": "2024-02-13T01:02:46.959941Z",
    +     "shell.execute_reply": "2024-02-13T01:02:46.959340Z"
         },
         "id": "iJqAHuS2jruV"
        },
    @@ -930,10 +927,10 @@
        "execution_count": 12,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:39.260575Z",
    -     "iopub.status.busy": "2024-02-13T00:37:39.260232Z",
    -     "iopub.status.idle": "2024-02-13T00:37:39.277199Z",
    -     "shell.execute_reply": "2024-02-13T00:37:39.276769Z"
    +     "iopub.execute_input": "2024-02-13T01:02:46.962190Z",
    +     "iopub.status.busy": "2024-02-13T01:02:46.961825Z",
    +     "iopub.status.idle": "2024-02-13T01:02:46.979649Z",
    +     "shell.execute_reply": "2024-02-13T01:02:46.979057Z"
         },
         "id": "PcPTZ_JJG3Cx"
        },
    @@ -1399,10 +1396,10 @@
        "execution_count": 13,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:39.279222Z",
    -     "iopub.status.busy": "2024-02-13T00:37:39.278903Z",
    -     "iopub.status.idle": "2024-02-13T00:37:39.288296Z",
    -     "shell.execute_reply": "2024-02-13T00:37:39.287868Z"
    +     "iopub.execute_input": "2024-02-13T01:02:46.981879Z",
    +     "iopub.status.busy": "2024-02-13T01:02:46.981516Z",
    +     "iopub.status.idle": "2024-02-13T01:02:46.991691Z",
    +     "shell.execute_reply": "2024-02-13T01:02:46.991205Z"
         },
         "id": "0lonvOYvjruV"
        },
    @@ -1549,10 +1546,10 @@
        "execution_count": 14,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:39.290394Z",
    -     "iopub.status.busy": "2024-02-13T00:37:39.290070Z",
    -     "iopub.status.idle": "2024-02-13T00:37:39.375577Z",
    -     "shell.execute_reply": "2024-02-13T00:37:39.374951Z"
    +     "iopub.execute_input": "2024-02-13T01:02:46.993796Z",
    +     "iopub.status.busy": "2024-02-13T01:02:46.993525Z",
    +     "iopub.status.idle": "2024-02-13T01:02:47.086416Z",
    +     "shell.execute_reply": "2024-02-13T01:02:47.085763Z"
         },
         "id": "MfqTCa3kjruV"
        },
    @@ -1633,10 +1630,10 @@
        "execution_count": 15,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:39.377920Z",
    -     "iopub.status.busy": "2024-02-13T00:37:39.377692Z",
    -     "iopub.status.idle": "2024-02-13T00:37:39.499197Z",
    -     "shell.execute_reply": "2024-02-13T00:37:39.498547Z"
    +     "iopub.execute_input": "2024-02-13T01:02:47.089076Z",
    +     "iopub.status.busy": "2024-02-13T01:02:47.088611Z",
    +     "iopub.status.idle": "2024-02-13T01:02:47.215679Z",
    +     "shell.execute_reply": "2024-02-13T01:02:47.214901Z"
         },
         "id": "9ZtWAYXqMAPL"
        },
    @@ -1696,10 +1693,10 @@
        "execution_count": 16,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:39.501539Z",
    -     "iopub.status.busy": "2024-02-13T00:37:39.501332Z",
    -     "iopub.status.idle": "2024-02-13T00:37:39.505424Z",
    -     "shell.execute_reply": "2024-02-13T00:37:39.504936Z"
    +     "iopub.execute_input": "2024-02-13T01:02:47.217945Z",
    +     "iopub.status.busy": "2024-02-13T01:02:47.217649Z",
    +     "iopub.status.idle": "2024-02-13T01:02:47.221440Z",
    +     "shell.execute_reply": "2024-02-13T01:02:47.220898Z"
         },
         "id": "0rXP3ZPWjruW"
        },
    @@ -1737,10 +1734,10 @@
        "execution_count": 17,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:39.507408Z",
    -     "iopub.status.busy": "2024-02-13T00:37:39.507232Z",
    -     "iopub.status.idle": "2024-02-13T00:37:39.510931Z",
    -     "shell.execute_reply": "2024-02-13T00:37:39.510362Z"
    +     "iopub.execute_input": "2024-02-13T01:02:47.223439Z",
    +     "iopub.status.busy": "2024-02-13T01:02:47.223109Z",
    +     "iopub.status.idle": "2024-02-13T01:02:47.226899Z",
    +     "shell.execute_reply": "2024-02-13T01:02:47.226348Z"
         },
         "id": "-iRPe8KXjruW"
        },
    @@ -1795,10 +1792,10 @@
        "execution_count": 18,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:39.513248Z",
    -     "iopub.status.busy": "2024-02-13T00:37:39.512859Z",
    -     "iopub.status.idle": "2024-02-13T00:37:39.553205Z",
    -     "shell.execute_reply": "2024-02-13T00:37:39.552731Z"
    +     "iopub.execute_input": "2024-02-13T01:02:47.228890Z",
    +     "iopub.status.busy": "2024-02-13T01:02:47.228567Z",
    +     "iopub.status.idle": "2024-02-13T01:02:47.266132Z",
    +     "shell.execute_reply": "2024-02-13T01:02:47.265631Z"
         },
         "id": "ZpipUliyjruW"
        },
    @@ -1849,10 +1846,10 @@
        "execution_count": 19,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:39.555251Z",
    -     "iopub.status.busy": "2024-02-13T00:37:39.554920Z",
    -     "iopub.status.idle": "2024-02-13T00:37:39.597110Z",
    -     "shell.execute_reply": "2024-02-13T00:37:39.596642Z"
    +     "iopub.execute_input": "2024-02-13T01:02:47.268385Z",
    +     "iopub.status.busy": "2024-02-13T01:02:47.268026Z",
    +     "iopub.status.idle": "2024-02-13T01:02:47.310970Z",
    +     "shell.execute_reply": "2024-02-13T01:02:47.310465Z"
         },
         "id": "SLq-3q4xjruX"
        },
    @@ -1921,10 +1918,10 @@
        "execution_count": 20,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:39.599076Z",
    -     "iopub.status.busy": "2024-02-13T00:37:39.598758Z",
    -     "iopub.status.idle": "2024-02-13T00:37:39.690060Z",
    -     "shell.execute_reply": "2024-02-13T00:37:39.689493Z"
    +     "iopub.execute_input": "2024-02-13T01:02:47.313091Z",
    +     "iopub.status.busy": "2024-02-13T01:02:47.312775Z",
    +     "iopub.status.idle": "2024-02-13T01:02:47.407546Z",
    +     "shell.execute_reply": "2024-02-13T01:02:47.406889Z"
         },
         "id": "g5LHhhuqFbXK"
        },
    @@ -1956,10 +1953,10 @@
        "execution_count": 21,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:39.692611Z",
    -     "iopub.status.busy": "2024-02-13T00:37:39.692367Z",
    -     "iopub.status.idle": "2024-02-13T00:37:39.771815Z",
    -     "shell.execute_reply": "2024-02-13T00:37:39.771177Z"
    +     "iopub.execute_input": "2024-02-13T01:02:47.410185Z",
    +     "iopub.status.busy": "2024-02-13T01:02:47.409818Z",
    +     "iopub.status.idle": "2024-02-13T01:02:47.502742Z",
    +     "shell.execute_reply": "2024-02-13T01:02:47.502159Z"
         },
         "id": "p7w8F8ezBcet"
        },
    @@ -2016,10 +2013,10 @@
        "execution_count": 22,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:39.774187Z",
    -     "iopub.status.busy": "2024-02-13T00:37:39.773955Z",
    -     "iopub.status.idle": "2024-02-13T00:37:39.984108Z",
    -     "shell.execute_reply": "2024-02-13T00:37:39.983487Z"
    +     "iopub.execute_input": "2024-02-13T01:02:47.504966Z",
    +     "iopub.status.busy": "2024-02-13T01:02:47.504681Z",
    +     "iopub.status.idle": "2024-02-13T01:02:47.719273Z",
    +     "shell.execute_reply": "2024-02-13T01:02:47.718779Z"
         },
         "id": "WETRL74tE_sU"
        },
    @@ -2054,10 +2051,10 @@
        "execution_count": 23,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:39.986424Z",
    -     "iopub.status.busy": "2024-02-13T00:37:39.986016Z",
    -     "iopub.status.idle": "2024-02-13T00:37:40.152086Z",
    -     "shell.execute_reply": "2024-02-13T00:37:40.151450Z"
    +     "iopub.execute_input": "2024-02-13T01:02:47.721525Z",
    +     "iopub.status.busy": "2024-02-13T01:02:47.721161Z",
    +     "iopub.status.idle": "2024-02-13T01:02:47.914563Z",
    +     "shell.execute_reply": "2024-02-13T01:02:47.913919Z"
         },
         "id": "kCfdx2gOLmXS"
        },
    @@ -2219,10 +2216,10 @@
        "execution_count": 24,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:40.154261Z",
    -     "iopub.status.busy": "2024-02-13T00:37:40.154028Z",
    -     "iopub.status.idle": "2024-02-13T00:37:40.160333Z",
    -     "shell.execute_reply": "2024-02-13T00:37:40.159779Z"
    +     "iopub.execute_input": "2024-02-13T01:02:47.917096Z",
    +     "iopub.status.busy": "2024-02-13T01:02:47.916711Z",
    +     "iopub.status.idle": "2024-02-13T01:02:47.922691Z",
    +     "shell.execute_reply": "2024-02-13T01:02:47.922142Z"
         },
         "id": "-uogYRWFYnuu"
        },
    @@ -2276,10 +2273,10 @@
        "execution_count": 25,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:40.162300Z",
    -     "iopub.status.busy": "2024-02-13T00:37:40.161998Z",
    -     "iopub.status.idle": "2024-02-13T00:37:40.381020Z",
    -     "shell.execute_reply": "2024-02-13T00:37:40.380421Z"
    +     "iopub.execute_input": "2024-02-13T01:02:47.924839Z",
    +     "iopub.status.busy": "2024-02-13T01:02:47.924517Z",
    +     "iopub.status.idle": "2024-02-13T01:02:48.145432Z",
    +     "shell.execute_reply": "2024-02-13T01:02:48.144840Z"
         },
         "id": "pG-ljrmcYp9Q"
        },
    @@ -2326,10 +2323,10 @@
        "execution_count": 26,
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:40.383322Z",
    -     "iopub.status.busy": "2024-02-13T00:37:40.383000Z",
    -     "iopub.status.idle": "2024-02-13T00:37:41.471029Z",
    -     "shell.execute_reply": "2024-02-13T00:37:41.470469Z"
    +     "iopub.execute_input": "2024-02-13T01:02:48.147699Z",
    +     "iopub.status.busy": "2024-02-13T01:02:48.147291Z",
    +     "iopub.status.idle": "2024-02-13T01:02:49.223548Z",
    +     "shell.execute_reply": "2024-02-13T01:02:49.222908Z"
         },
         "id": "wL3ngCnuLEWd"
        },
    diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb
    index fcc15b91e..2c00a3472 100644
    --- a/master/tutorials/multiannotator.ipynb
    +++ b/master/tutorials/multiannotator.ipynb
    @@ -89,10 +89,10 @@
        "id": "a3ddc95f",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:44.932005Z",
    -     "iopub.status.busy": "2024-02-13T00:37:44.931601Z",
    -     "iopub.status.idle": "2024-02-13T00:37:45.972699Z",
    -     "shell.execute_reply": "2024-02-13T00:37:45.972092Z"
    +     "iopub.execute_input": "2024-02-13T01:02:52.661602Z",
    +     "iopub.status.busy": "2024-02-13T01:02:52.661190Z",
    +     "iopub.status.idle": "2024-02-13T01:02:53.734707Z",
    +     "shell.execute_reply": "2024-02-13T01:02:53.734066Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -102,7 +102,7 @@
         "dependencies = [\"cleanlab\"]\n",
         "\n",
         "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
    -    "    %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n",
    +    "    %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n",
         "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
         "    %pip install $cmd\n",
         "else:\n",
    @@ -136,10 +136,10 @@
        "id": "c4efd119",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:45.975225Z",
    -     "iopub.status.busy": "2024-02-13T00:37:45.974955Z",
    -     "iopub.status.idle": "2024-02-13T00:37:45.978111Z",
    -     "shell.execute_reply": "2024-02-13T00:37:45.977577Z"
    +     "iopub.execute_input": "2024-02-13T01:02:53.737582Z",
    +     "iopub.status.busy": "2024-02-13T01:02:53.737271Z",
    +     "iopub.status.idle": "2024-02-13T01:02:53.740704Z",
    +     "shell.execute_reply": "2024-02-13T01:02:53.740129Z"
         }
        },
        "outputs": [],
    @@ -264,10 +264,10 @@
        "id": "c37c0a69",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:45.980351Z",
    -     "iopub.status.busy": "2024-02-13T00:37:45.979885Z",
    -     "iopub.status.idle": "2024-02-13T00:37:45.987655Z",
    -     "shell.execute_reply": "2024-02-13T00:37:45.987087Z"
    +     "iopub.execute_input": "2024-02-13T01:02:53.742946Z",
    +     "iopub.status.busy": "2024-02-13T01:02:53.742601Z",
    +     "iopub.status.idle": "2024-02-13T01:02:53.750330Z",
    +     "shell.execute_reply": "2024-02-13T01:02:53.749869Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -351,10 +351,10 @@
        "id": "99f69523",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:45.989596Z",
    -     "iopub.status.busy": "2024-02-13T00:37:45.989277Z",
    -     "iopub.status.idle": "2024-02-13T00:37:46.036506Z",
    -     "shell.execute_reply": "2024-02-13T00:37:46.036090Z"
    +     "iopub.execute_input": "2024-02-13T01:02:53.752459Z",
    +     "iopub.status.busy": "2024-02-13T01:02:53.752125Z",
    +     "iopub.status.idle": "2024-02-13T01:02:53.800557Z",
    +     "shell.execute_reply": "2024-02-13T01:02:53.800055Z"
         }
        },
        "outputs": [],
    @@ -380,10 +380,10 @@
        "id": "8f241c16",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:46.038619Z",
    -     "iopub.status.busy": "2024-02-13T00:37:46.038244Z",
    -     "iopub.status.idle": "2024-02-13T00:37:46.055804Z",
    -     "shell.execute_reply": "2024-02-13T00:37:46.055338Z"
    +     "iopub.execute_input": "2024-02-13T01:02:53.802985Z",
    +     "iopub.status.busy": "2024-02-13T01:02:53.802640Z",
    +     "iopub.status.idle": "2024-02-13T01:02:53.820098Z",
    +     "shell.execute_reply": "2024-02-13T01:02:53.819649Z"
         }
        },
        "outputs": [
    @@ -598,10 +598,10 @@
        "id": "4f0819ba",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:46.057855Z",
    -     "iopub.status.busy": "2024-02-13T00:37:46.057526Z",
    -     "iopub.status.idle": "2024-02-13T00:37:46.061414Z",
    -     "shell.execute_reply": "2024-02-13T00:37:46.060976Z"
    +     "iopub.execute_input": "2024-02-13T01:02:53.822293Z",
    +     "iopub.status.busy": "2024-02-13T01:02:53.821960Z",
    +     "iopub.status.idle": "2024-02-13T01:02:53.825813Z",
    +     "shell.execute_reply": "2024-02-13T01:02:53.825373Z"
         }
        },
        "outputs": [
    @@ -672,10 +672,10 @@
        "id": "d009f347",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:46.063516Z",
    -     "iopub.status.busy": "2024-02-13T00:37:46.063128Z",
    -     "iopub.status.idle": "2024-02-13T00:37:46.092469Z",
    -     "shell.execute_reply": "2024-02-13T00:37:46.091907Z"
    +     "iopub.execute_input": "2024-02-13T01:02:53.827796Z",
    +     "iopub.status.busy": "2024-02-13T01:02:53.827641Z",
    +     "iopub.status.idle": "2024-02-13T01:02:53.854664Z",
    +     "shell.execute_reply": "2024-02-13T01:02:53.854145Z"
         }
        },
        "outputs": [],
    @@ -699,10 +699,10 @@
        "id": "cbd1e415",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:46.094643Z",
    -     "iopub.status.busy": "2024-02-13T00:37:46.094316Z",
    -     "iopub.status.idle": "2024-02-13T00:37:46.120466Z",
    -     "shell.execute_reply": "2024-02-13T00:37:46.120024Z"
    +     "iopub.execute_input": "2024-02-13T01:02:53.857515Z",
    +     "iopub.status.busy": "2024-02-13T01:02:53.857114Z",
    +     "iopub.status.idle": "2024-02-13T01:02:53.884830Z",
    +     "shell.execute_reply": "2024-02-13T01:02:53.884388Z"
         }
        },
        "outputs": [],
    @@ -739,10 +739,10 @@
        "id": "6ca92617",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:46.122412Z",
    -     "iopub.status.busy": "2024-02-13T00:37:46.122096Z",
    -     "iopub.status.idle": "2024-02-13T00:37:47.897477Z",
    -     "shell.execute_reply": "2024-02-13T00:37:47.896981Z"
    +     "iopub.execute_input": "2024-02-13T01:02:53.886959Z",
    +     "iopub.status.busy": "2024-02-13T01:02:53.886631Z",
    +     "iopub.status.idle": "2024-02-13T01:02:55.700403Z",
    +     "shell.execute_reply": "2024-02-13T01:02:55.699824Z"
         }
        },
        "outputs": [],
    @@ -772,10 +772,10 @@
        "id": "bf945113",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:47.900018Z",
    -     "iopub.status.busy": "2024-02-13T00:37:47.899596Z",
    -     "iopub.status.idle": "2024-02-13T00:37:47.906288Z",
    -     "shell.execute_reply": "2024-02-13T00:37:47.905738Z"
    +     "iopub.execute_input": "2024-02-13T01:02:55.703078Z",
    +     "iopub.status.busy": "2024-02-13T01:02:55.702551Z",
    +     "iopub.status.idle": "2024-02-13T01:02:55.709491Z",
    +     "shell.execute_reply": "2024-02-13T01:02:55.708927Z"
         },
         "scrolled": true
        },
    @@ -886,10 +886,10 @@
        "id": "14251ee0",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:47.908268Z",
    -     "iopub.status.busy": "2024-02-13T00:37:47.907956Z",
    -     "iopub.status.idle": "2024-02-13T00:37:47.920189Z",
    -     "shell.execute_reply": "2024-02-13T00:37:47.919649Z"
    +     "iopub.execute_input": "2024-02-13T01:02:55.711588Z",
    +     "iopub.status.busy": "2024-02-13T01:02:55.711258Z",
    +     "iopub.status.idle": "2024-02-13T01:02:55.723565Z",
    +     "shell.execute_reply": "2024-02-13T01:02:55.723092Z"
         }
        },
        "outputs": [
    @@ -1139,10 +1139,10 @@
        "id": "efe16638",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:47.922098Z",
    -     "iopub.status.busy": "2024-02-13T00:37:47.921787Z",
    -     "iopub.status.idle": "2024-02-13T00:37:47.928124Z",
    -     "shell.execute_reply": "2024-02-13T00:37:47.927682Z"
    +     "iopub.execute_input": "2024-02-13T01:02:55.725578Z",
    +     "iopub.status.busy": "2024-02-13T01:02:55.725251Z",
    +     "iopub.status.idle": "2024-02-13T01:02:55.731542Z",
    +     "shell.execute_reply": "2024-02-13T01:02:55.731090Z"
         },
         "scrolled": true
        },
    @@ -1316,10 +1316,10 @@
        "id": "abd0fb0b",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:47.930079Z",
    -     "iopub.status.busy": "2024-02-13T00:37:47.929760Z",
    -     "iopub.status.idle": "2024-02-13T00:37:47.932903Z",
    -     "shell.execute_reply": "2024-02-13T00:37:47.932479Z"
    +     "iopub.execute_input": "2024-02-13T01:02:55.733517Z",
    +     "iopub.status.busy": "2024-02-13T01:02:55.733188Z",
    +     "iopub.status.idle": "2024-02-13T01:02:55.735876Z",
    +     "shell.execute_reply": "2024-02-13T01:02:55.735414Z"
         }
        },
        "outputs": [],
    @@ -1341,10 +1341,10 @@
        "id": "cdf061df",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:47.934798Z",
    -     "iopub.status.busy": "2024-02-13T00:37:47.934474Z",
    -     "iopub.status.idle": "2024-02-13T00:37:47.937711Z",
    -     "shell.execute_reply": "2024-02-13T00:37:47.937181Z"
    +     "iopub.execute_input": "2024-02-13T01:02:55.737822Z",
    +     "iopub.status.busy": "2024-02-13T01:02:55.737505Z",
    +     "iopub.status.idle": "2024-02-13T01:02:55.741036Z",
    +     "shell.execute_reply": "2024-02-13T01:02:55.740591Z"
         },
         "scrolled": true
        },
    @@ -1396,10 +1396,10 @@
        "id": "08949890",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:47.939701Z",
    -     "iopub.status.busy": "2024-02-13T00:37:47.939386Z",
    -     "iopub.status.idle": "2024-02-13T00:37:47.941815Z",
    -     "shell.execute_reply": "2024-02-13T00:37:47.941384Z"
    +     "iopub.execute_input": "2024-02-13T01:02:55.743034Z",
    +     "iopub.status.busy": "2024-02-13T01:02:55.742705Z",
    +     "iopub.status.idle": "2024-02-13T01:02:55.745337Z",
    +     "shell.execute_reply": "2024-02-13T01:02:55.744893Z"
         }
        },
        "outputs": [],
    @@ -1423,10 +1423,10 @@
        "id": "6948b073",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:47.943801Z",
    -     "iopub.status.busy": "2024-02-13T00:37:47.943429Z",
    -     "iopub.status.idle": "2024-02-13T00:37:47.947682Z",
    -     "shell.execute_reply": "2024-02-13T00:37:47.947148Z"
    +     "iopub.execute_input": "2024-02-13T01:02:55.747247Z",
    +     "iopub.status.busy": "2024-02-13T01:02:55.746933Z",
    +     "iopub.status.idle": "2024-02-13T01:02:55.751016Z",
    +     "shell.execute_reply": "2024-02-13T01:02:55.750516Z"
         }
        },
        "outputs": [
    @@ -1481,10 +1481,10 @@
        "id": "6f8e6914",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:47.949625Z",
    -     "iopub.status.busy": "2024-02-13T00:37:47.949310Z",
    -     "iopub.status.idle": "2024-02-13T00:37:47.978169Z",
    -     "shell.execute_reply": "2024-02-13T00:37:47.977598Z"
    +     "iopub.execute_input": "2024-02-13T01:02:55.753149Z",
    +     "iopub.status.busy": "2024-02-13T01:02:55.752751Z",
    +     "iopub.status.idle": "2024-02-13T01:02:55.781554Z",
    +     "shell.execute_reply": "2024-02-13T01:02:55.780971Z"
         }
        },
        "outputs": [],
    @@ -1527,10 +1527,10 @@
        "id": "b806d2ea",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:47.980456Z",
    -     "iopub.status.busy": "2024-02-13T00:37:47.980036Z",
    -     "iopub.status.idle": "2024-02-13T00:37:47.984796Z",
    -     "shell.execute_reply": "2024-02-13T00:37:47.984246Z"
    +     "iopub.execute_input": "2024-02-13T01:02:55.783903Z",
    +     "iopub.status.busy": "2024-02-13T01:02:55.783584Z",
    +     "iopub.status.idle": "2024-02-13T01:02:55.788275Z",
    +     "shell.execute_reply": "2024-02-13T01:02:55.787745Z"
         },
         "nbsphinx": "hidden"
        },
    diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb
    index 0e1a55f3f..f029d0169 100644
    --- a/master/tutorials/multilabel_classification.ipynb
    +++ b/master/tutorials/multilabel_classification.ipynb
    @@ -64,10 +64,10 @@
        "id": "7383d024-8273-4039-bccd-aab3020d331f",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:50.650771Z",
    -     "iopub.status.busy": "2024-02-13T00:37:50.650550Z",
    -     "iopub.status.idle": "2024-02-13T00:37:51.774800Z",
    -     "shell.execute_reply": "2024-02-13T00:37:51.774125Z"
    +     "iopub.execute_input": "2024-02-13T01:02:58.768811Z",
    +     "iopub.status.busy": "2024-02-13T01:02:58.768396Z",
    +     "iopub.status.idle": "2024-02-13T01:02:59.880006Z",
    +     "shell.execute_reply": "2024-02-13T01:02:59.879407Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -79,7 +79,7 @@
         "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
         "\n",
         "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
    -    "    %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n",
    +    "    %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n",
         "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
         "    %pip install $cmd\n",
         "else:\n",
    @@ -105,10 +105,10 @@
        "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:51.777390Z",
    -     "iopub.status.busy": "2024-02-13T00:37:51.777090Z",
    -     "iopub.status.idle": "2024-02-13T00:37:51.979058Z",
    -     "shell.execute_reply": "2024-02-13T00:37:51.978498Z"
    +     "iopub.execute_input": "2024-02-13T01:02:59.882450Z",
    +     "iopub.status.busy": "2024-02-13T01:02:59.882189Z",
    +     "iopub.status.idle": "2024-02-13T01:03:00.080766Z",
    +     "shell.execute_reply": "2024-02-13T01:03:00.080087Z"
         }
        },
        "outputs": [],
    @@ -268,10 +268,10 @@
        "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:51.981825Z",
    -     "iopub.status.busy": "2024-02-13T00:37:51.981245Z",
    -     "iopub.status.idle": "2024-02-13T00:37:51.994150Z",
    -     "shell.execute_reply": "2024-02-13T00:37:51.993656Z"
    +     "iopub.execute_input": "2024-02-13T01:03:00.083792Z",
    +     "iopub.status.busy": "2024-02-13T01:03:00.083150Z",
    +     "iopub.status.idle": "2024-02-13T01:03:00.096677Z",
    +     "shell.execute_reply": "2024-02-13T01:03:00.096078Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -407,10 +407,10 @@
        "id": "dac65d3b-51e8-4682-b829-beab610b56d6",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:51.996322Z",
    -     "iopub.status.busy": "2024-02-13T00:37:51.995977Z",
    -     "iopub.status.idle": "2024-02-13T00:37:54.679288Z",
    -     "shell.execute_reply": "2024-02-13T00:37:54.678681Z"
    +     "iopub.execute_input": "2024-02-13T01:03:00.099005Z",
    +     "iopub.status.busy": "2024-02-13T01:03:00.098612Z",
    +     "iopub.status.idle": "2024-02-13T01:03:02.722167Z",
    +     "shell.execute_reply": "2024-02-13T01:03:02.721597Z"
         }
        },
        "outputs": [
    @@ -454,10 +454,10 @@
        "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:54.681640Z",
    -     "iopub.status.busy": "2024-02-13T00:37:54.681268Z",
    -     "iopub.status.idle": "2024-02-13T00:37:56.039215Z",
    -     "shell.execute_reply": "2024-02-13T00:37:56.038664Z"
    +     "iopub.execute_input": "2024-02-13T01:03:02.724722Z",
    +     "iopub.status.busy": "2024-02-13T01:03:02.724201Z",
    +     "iopub.status.idle": "2024-02-13T01:03:04.069993Z",
    +     "shell.execute_reply": "2024-02-13T01:03:04.069438Z"
         }
        },
        "outputs": [],
    @@ -499,10 +499,10 @@
        "id": "ac1a60df",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:56.041719Z",
    -     "iopub.status.busy": "2024-02-13T00:37:56.041286Z",
    -     "iopub.status.idle": "2024-02-13T00:37:56.045310Z",
    -     "shell.execute_reply": "2024-02-13T00:37:56.044765Z"
    +     "iopub.execute_input": "2024-02-13T01:03:04.072445Z",
    +     "iopub.status.busy": "2024-02-13T01:03:04.072108Z",
    +     "iopub.status.idle": "2024-02-13T01:03:04.075799Z",
    +     "shell.execute_reply": "2024-02-13T01:03:04.075259Z"
         }
        },
        "outputs": [
    @@ -544,10 +544,10 @@
        "id": "d09115b6-ad44-474f-9c8a-85a459586439",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:56.047526Z",
    -     "iopub.status.busy": "2024-02-13T00:37:56.047149Z",
    -     "iopub.status.idle": "2024-02-13T00:37:57.846739Z",
    -     "shell.execute_reply": "2024-02-13T00:37:57.846141Z"
    +     "iopub.execute_input": "2024-02-13T01:03:04.077763Z",
    +     "iopub.status.busy": "2024-02-13T01:03:04.077443Z",
    +     "iopub.status.idle": "2024-02-13T01:03:05.915145Z",
    +     "shell.execute_reply": "2024-02-13T01:03:05.914526Z"
         }
        },
        "outputs": [
    @@ -594,10 +594,10 @@
        "id": "c18dd83b",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:57.849517Z",
    -     "iopub.status.busy": "2024-02-13T00:37:57.848710Z",
    -     "iopub.status.idle": "2024-02-13T00:37:57.856343Z",
    -     "shell.execute_reply": "2024-02-13T00:37:57.855894Z"
    +     "iopub.execute_input": "2024-02-13T01:03:05.917885Z",
    +     "iopub.status.busy": "2024-02-13T01:03:05.917254Z",
    +     "iopub.status.idle": "2024-02-13T01:03:05.924933Z",
    +     "shell.execute_reply": "2024-02-13T01:03:05.924469Z"
         }
        },
        "outputs": [
    @@ -633,10 +633,10 @@
        "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:37:57.858417Z",
    -     "iopub.status.busy": "2024-02-13T00:37:57.858103Z",
    -     "iopub.status.idle": "2024-02-13T00:38:00.434248Z",
    -     "shell.execute_reply": "2024-02-13T00:38:00.433629Z"
    +     "iopub.execute_input": "2024-02-13T01:03:05.926896Z",
    +     "iopub.status.busy": "2024-02-13T01:03:05.926639Z",
    +     "iopub.status.idle": "2024-02-13T01:03:08.486417Z",
    +     "shell.execute_reply": "2024-02-13T01:03:08.485824Z"
         }
        },
        "outputs": [
    @@ -671,10 +671,10 @@
        "id": "c1198575",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:00.436547Z",
    -     "iopub.status.busy": "2024-02-13T00:38:00.436204Z",
    -     "iopub.status.idle": "2024-02-13T00:38:00.439580Z",
    -     "shell.execute_reply": "2024-02-13T00:38:00.439055Z"
    +     "iopub.execute_input": "2024-02-13T01:03:08.488686Z",
    +     "iopub.status.busy": "2024-02-13T01:03:08.488363Z",
    +     "iopub.status.idle": "2024-02-13T01:03:08.492007Z",
    +     "shell.execute_reply": "2024-02-13T01:03:08.491449Z"
         }
        },
        "outputs": [
    @@ -721,10 +721,10 @@
        "id": "49161b19-7625-4fb7-add9-607d91a7eca1",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:00.441604Z",
    -     "iopub.status.busy": "2024-02-13T00:38:00.441278Z",
    -     "iopub.status.idle": "2024-02-13T00:38:00.445327Z",
    -     "shell.execute_reply": "2024-02-13T00:38:00.444780Z"
    +     "iopub.execute_input": "2024-02-13T01:03:08.494000Z",
    +     "iopub.status.busy": "2024-02-13T01:03:08.493695Z",
    +     "iopub.status.idle": "2024-02-13T01:03:08.498016Z",
    +     "shell.execute_reply": "2024-02-13T01:03:08.497458Z"
         }
        },
        "outputs": [],
    @@ -752,10 +752,10 @@
        "id": "d1a2c008",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:00.447305Z",
    -     "iopub.status.busy": "2024-02-13T00:38:00.446979Z",
    -     "iopub.status.idle": "2024-02-13T00:38:00.450668Z",
    -     "shell.execute_reply": "2024-02-13T00:38:00.450247Z"
    +     "iopub.execute_input": "2024-02-13T01:03:08.500025Z",
    +     "iopub.status.busy": "2024-02-13T01:03:08.499720Z",
    +     "iopub.status.idle": "2024-02-13T01:03:08.502936Z",
    +     "shell.execute_reply": "2024-02-13T01:03:08.502394Z"
         },
         "nbsphinx": "hidden"
        },
    diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb
    index 15426f4ed..108bde32a 100644
    --- a/master/tutorials/object_detection.ipynb
    +++ b/master/tutorials/object_detection.ipynb
    @@ -70,10 +70,10 @@
        "id": "0ba0dc70",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:02.954217Z",
    -     "iopub.status.busy": "2024-02-13T00:38:02.954031Z",
    -     "iopub.status.idle": "2024-02-13T00:38:04.091043Z",
    -     "shell.execute_reply": "2024-02-13T00:38:04.090401Z"
    +     "iopub.execute_input": "2024-02-13T01:03:11.142056Z",
    +     "iopub.status.busy": "2024-02-13T01:03:11.141857Z",
    +     "iopub.status.idle": "2024-02-13T01:03:12.303193Z",
    +     "shell.execute_reply": "2024-02-13T01:03:12.302666Z"
         },
         "nbsphinx": "hidden"
        },
    @@ -83,7 +83,7 @@
         "dependencies = [\"cleanlab\", \"matplotlib\"]\n",
         "\n",
         "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
    -    "    %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n",
    +    "    %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n",
         "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
         "    %pip install $cmd\n",
         "else:\n",
    @@ -109,10 +109,10 @@
        "id": "c90449c8",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:04.093582Z",
    -     "iopub.status.busy": "2024-02-13T00:38:04.093297Z",
    -     "iopub.status.idle": "2024-02-13T00:38:05.237712Z",
    -     "shell.execute_reply": "2024-02-13T00:38:05.237027Z"
    +     "iopub.execute_input": "2024-02-13T01:03:12.305972Z",
    +     "iopub.status.busy": "2024-02-13T01:03:12.305454Z",
    +     "iopub.status.idle": "2024-02-13T01:03:13.728705Z",
    +     "shell.execute_reply": "2024-02-13T01:03:13.728015Z"
         }
        },
        "outputs": [],
    @@ -130,10 +130,10 @@
        "id": "df8be4c6",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:05.240179Z",
    -     "iopub.status.busy": "2024-02-13T00:38:05.239978Z",
    -     "iopub.status.idle": "2024-02-13T00:38:05.243407Z",
    -     "shell.execute_reply": "2024-02-13T00:38:05.242873Z"
    +     "iopub.execute_input": "2024-02-13T01:03:13.731213Z",
    +     "iopub.status.busy": "2024-02-13T01:03:13.731013Z",
    +     "iopub.status.idle": "2024-02-13T01:03:13.734130Z",
    +     "shell.execute_reply": "2024-02-13T01:03:13.733674Z"
         }
        },
        "outputs": [],
    @@ -169,10 +169,10 @@
        "id": "2e9ffd6f",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:05.245459Z",
    -     "iopub.status.busy": "2024-02-13T00:38:05.245057Z",
    -     "iopub.status.idle": "2024-02-13T00:38:05.252238Z",
    -     "shell.execute_reply": "2024-02-13T00:38:05.251811Z"
    +     "iopub.execute_input": "2024-02-13T01:03:13.736193Z",
    +     "iopub.status.busy": "2024-02-13T01:03:13.735849Z",
    +     "iopub.status.idle": "2024-02-13T01:03:13.742674Z",
    +     "shell.execute_reply": "2024-02-13T01:03:13.742242Z"
         }
        },
        "outputs": [],
    @@ -198,10 +198,10 @@
        "id": "56705562",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:05.254315Z",
    -     "iopub.status.busy": "2024-02-13T00:38:05.254000Z",
    -     "iopub.status.idle": "2024-02-13T00:38:05.742554Z",
    -     "shell.execute_reply": "2024-02-13T00:38:05.741944Z"
    +     "iopub.execute_input": "2024-02-13T01:03:13.744769Z",
    +     "iopub.status.busy": "2024-02-13T01:03:13.744583Z",
    +     "iopub.status.idle": "2024-02-13T01:03:14.236517Z",
    +     "shell.execute_reply": "2024-02-13T01:03:14.235931Z"
         },
         "scrolled": true
        },
    @@ -242,10 +242,10 @@
        "id": "b08144d7",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:05.744999Z",
    -     "iopub.status.busy": "2024-02-13T00:38:05.744654Z",
    -     "iopub.status.idle": "2024-02-13T00:38:05.749919Z",
    -     "shell.execute_reply": "2024-02-13T00:38:05.749469Z"
    +     "iopub.execute_input": "2024-02-13T01:03:14.239143Z",
    +     "iopub.status.busy": "2024-02-13T01:03:14.238954Z",
    +     "iopub.status.idle": "2024-02-13T01:03:14.244593Z",
    +     "shell.execute_reply": "2024-02-13T01:03:14.244094Z"
         }
        },
        "outputs": [
    @@ -497,10 +497,10 @@
        "id": "3d70bec6",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:05.752019Z",
    -     "iopub.status.busy": "2024-02-13T00:38:05.751694Z",
    -     "iopub.status.idle": "2024-02-13T00:38:05.755489Z",
    -     "shell.execute_reply": "2024-02-13T00:38:05.754933Z"
    +     "iopub.execute_input": "2024-02-13T01:03:14.246480Z",
    +     "iopub.status.busy": "2024-02-13T01:03:14.246305Z",
    +     "iopub.status.idle": "2024-02-13T01:03:14.250185Z",
    +     "shell.execute_reply": "2024-02-13T01:03:14.249760Z"
         }
        },
        "outputs": [
    @@ -557,10 +557,10 @@
        "id": "4caa635d",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:05.757600Z",
    -     "iopub.status.busy": "2024-02-13T00:38:05.757207Z",
    -     "iopub.status.idle": "2024-02-13T00:38:06.566098Z",
    -     "shell.execute_reply": "2024-02-13T00:38:06.565532Z"
    +     "iopub.execute_input": "2024-02-13T01:03:14.252075Z",
    +     "iopub.status.busy": "2024-02-13T01:03:14.251894Z",
    +     "iopub.status.idle": "2024-02-13T01:03:14.950221Z",
    +     "shell.execute_reply": "2024-02-13T01:03:14.949600Z"
         }
        },
        "outputs": [
    @@ -616,10 +616,10 @@
        "id": "a9b4c590",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:06.568266Z",
    -     "iopub.status.busy": "2024-02-13T00:38:06.568043Z",
    -     "iopub.status.idle": "2024-02-13T00:38:06.749946Z",
    -     "shell.execute_reply": "2024-02-13T00:38:06.749427Z"
    +     "iopub.execute_input": "2024-02-13T01:03:14.952419Z",
    +     "iopub.status.busy": "2024-02-13T01:03:14.952219Z",
    +     "iopub.status.idle": "2024-02-13T01:03:15.130259Z",
    +     "shell.execute_reply": "2024-02-13T01:03:15.129745Z"
         }
        },
        "outputs": [
    @@ -660,10 +660,10 @@
        "id": "ffd9ebcc",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:06.752333Z",
    -     "iopub.status.busy": "2024-02-13T00:38:06.751901Z",
    -     "iopub.status.idle": "2024-02-13T00:38:06.756259Z",
    -     "shell.execute_reply": "2024-02-13T00:38:06.755830Z"
    +     "iopub.execute_input": "2024-02-13T01:03:15.132867Z",
    +     "iopub.status.busy": "2024-02-13T01:03:15.132537Z",
    +     "iopub.status.idle": "2024-02-13T01:03:15.136795Z",
    +     "shell.execute_reply": "2024-02-13T01:03:15.136356Z"
         }
        },
        "outputs": [
    @@ -700,10 +700,10 @@
        "id": "4dd46d67",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:06.758202Z",
    -     "iopub.status.busy": "2024-02-13T00:38:06.757905Z",
    -     "iopub.status.idle": "2024-02-13T00:38:07.208423Z",
    -     "shell.execute_reply": "2024-02-13T00:38:07.207864Z"
    +     "iopub.execute_input": "2024-02-13T01:03:15.138839Z",
    +     "iopub.status.busy": "2024-02-13T01:03:15.138454Z",
    +     "iopub.status.idle": "2024-02-13T01:03:15.596289Z",
    +     "shell.execute_reply": "2024-02-13T01:03:15.595728Z"
         }
        },
        "outputs": [
    @@ -762,10 +762,10 @@
        "id": "ceec2394",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:07.211175Z",
    -     "iopub.status.busy": "2024-02-13T00:38:07.210858Z",
    -     "iopub.status.idle": "2024-02-13T00:38:07.543264Z",
    -     "shell.execute_reply": "2024-02-13T00:38:07.542696Z"
    +     "iopub.execute_input": "2024-02-13T01:03:15.599042Z",
    +     "iopub.status.busy": "2024-02-13T01:03:15.598713Z",
    +     "iopub.status.idle": "2024-02-13T01:03:15.931718Z",
    +     "shell.execute_reply": "2024-02-13T01:03:15.931130Z"
         }
        },
        "outputs": [
    @@ -812,10 +812,10 @@
        "id": "94f82b0d",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:07.545979Z",
    -     "iopub.status.busy": "2024-02-13T00:38:07.545565Z",
    -     "iopub.status.idle": "2024-02-13T00:38:07.912099Z",
    -     "shell.execute_reply": "2024-02-13T00:38:07.911498Z"
    +     "iopub.execute_input": "2024-02-13T01:03:15.934039Z",
    +     "iopub.status.busy": "2024-02-13T01:03:15.933701Z",
    +     "iopub.status.idle": "2024-02-13T01:03:16.295190Z",
    +     "shell.execute_reply": "2024-02-13T01:03:16.294624Z"
         }
        },
        "outputs": [
    @@ -862,10 +862,10 @@
        "id": "1ea18c5d",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:07.914949Z",
    -     "iopub.status.busy": "2024-02-13T00:38:07.914582Z",
    -     "iopub.status.idle": "2024-02-13T00:38:08.357594Z",
    -     "shell.execute_reply": "2024-02-13T00:38:08.357052Z"
    +     "iopub.execute_input": "2024-02-13T01:03:16.298397Z",
    +     "iopub.status.busy": "2024-02-13T01:03:16.298037Z",
    +     "iopub.status.idle": "2024-02-13T01:03:16.738397Z",
    +     "shell.execute_reply": "2024-02-13T01:03:16.737826Z"
         }
        },
        "outputs": [
    @@ -925,10 +925,10 @@
        "id": "7e770d23",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:08.361613Z",
    -     "iopub.status.busy": "2024-02-13T00:38:08.361414Z",
    -     "iopub.status.idle": "2024-02-13T00:38:08.787747Z",
    -     "shell.execute_reply": "2024-02-13T00:38:08.787133Z"
    +     "iopub.execute_input": "2024-02-13T01:03:16.742750Z",
    +     "iopub.status.busy": "2024-02-13T01:03:16.742408Z",
    +     "iopub.status.idle": "2024-02-13T01:03:17.168900Z",
    +     "shell.execute_reply": "2024-02-13T01:03:17.168305Z"
         }
        },
        "outputs": [
    @@ -971,10 +971,10 @@
        "id": "57e84a27",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:08.790980Z",
    -     "iopub.status.busy": "2024-02-13T00:38:08.790532Z",
    -     "iopub.status.idle": "2024-02-13T00:38:09.010584Z",
    -     "shell.execute_reply": "2024-02-13T00:38:09.009975Z"
    +     "iopub.execute_input": "2024-02-13T01:03:17.172162Z",
    +     "iopub.status.busy": "2024-02-13T01:03:17.171719Z",
    +     "iopub.status.idle": "2024-02-13T01:03:17.363729Z",
    +     "shell.execute_reply": "2024-02-13T01:03:17.363164Z"
         }
        },
        "outputs": [
    @@ -1017,10 +1017,10 @@
        "id": "0302818a",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:09.013031Z",
    -     "iopub.status.busy": "2024-02-13T00:38:09.012566Z",
    -     "iopub.status.idle": "2024-02-13T00:38:09.194017Z",
    -     "shell.execute_reply": "2024-02-13T00:38:09.193435Z"
    +     "iopub.execute_input": "2024-02-13T01:03:17.366816Z",
    +     "iopub.status.busy": "2024-02-13T01:03:17.366256Z",
    +     "iopub.status.idle": "2024-02-13T01:03:17.569906Z",
    +     "shell.execute_reply": "2024-02-13T01:03:17.569267Z"
         }
        },
        "outputs": [
    @@ -1067,10 +1067,10 @@
        "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:09.196458Z",
    -     "iopub.status.busy": "2024-02-13T00:38:09.195907Z",
    -     "iopub.status.idle": "2024-02-13T00:38:09.198906Z",
    -     "shell.execute_reply": "2024-02-13T00:38:09.198434Z"
    +     "iopub.execute_input": "2024-02-13T01:03:17.572554Z",
    +     "iopub.status.busy": "2024-02-13T01:03:17.572028Z",
    +     "iopub.status.idle": "2024-02-13T01:03:17.575133Z",
    +     "shell.execute_reply": "2024-02-13T01:03:17.574708Z"
         }
        },
        "outputs": [],
    @@ -1090,10 +1090,10 @@
        "id": "3335b8a3-d0b4-415a-a97d-c203088a124e",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:09.200810Z",
    -     "iopub.status.busy": "2024-02-13T00:38:09.200636Z",
    -     "iopub.status.idle": "2024-02-13T00:38:10.107251Z",
    -     "shell.execute_reply": "2024-02-13T00:38:10.106620Z"
    +     "iopub.execute_input": "2024-02-13T01:03:17.577176Z",
    +     "iopub.status.busy": "2024-02-13T01:03:17.576805Z",
    +     "iopub.status.idle": "2024-02-13T01:03:18.520579Z",
    +     "shell.execute_reply": "2024-02-13T01:03:18.519995Z"
         }
        },
        "outputs": [
    @@ -1172,10 +1172,10 @@
        "id": "9d4b7677-6ebd-447d-b0a1-76e094686628",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:10.109515Z",
    -     "iopub.status.busy": "2024-02-13T00:38:10.109333Z",
    -     "iopub.status.idle": "2024-02-13T00:38:10.240271Z",
    -     "shell.execute_reply": "2024-02-13T00:38:10.239670Z"
    +     "iopub.execute_input": "2024-02-13T01:03:18.523127Z",
    +     "iopub.status.busy": "2024-02-13T01:03:18.522711Z",
    +     "iopub.status.idle": "2024-02-13T01:03:18.672007Z",
    +     "shell.execute_reply": "2024-02-13T01:03:18.671522Z"
         }
        },
        "outputs": [
    @@ -1214,10 +1214,10 @@
        "id": "59d7ee39-3785-434b-8680-9133014851cd",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:10.242595Z",
    -     "iopub.status.busy": "2024-02-13T00:38:10.242119Z",
    -     "iopub.status.idle": "2024-02-13T00:38:10.423913Z",
    -     "shell.execute_reply": "2024-02-13T00:38:10.423360Z"
    +     "iopub.execute_input": "2024-02-13T01:03:18.674116Z",
    +     "iopub.status.busy": "2024-02-13T01:03:18.673931Z",
    +     "iopub.status.idle": "2024-02-13T01:03:18.814206Z",
    +     "shell.execute_reply": "2024-02-13T01:03:18.813573Z"
         }
        },
        "outputs": [],
    @@ -1266,10 +1266,10 @@
        "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:10.426135Z",
    -     "iopub.status.busy": "2024-02-13T00:38:10.425801Z",
    -     "iopub.status.idle": "2024-02-13T00:38:11.193456Z",
    -     "shell.execute_reply": "2024-02-13T00:38:11.192845Z"
    +     "iopub.execute_input": "2024-02-13T01:03:18.816350Z",
    +     "iopub.status.busy": "2024-02-13T01:03:18.816156Z",
    +     "iopub.status.idle": "2024-02-13T01:03:19.535673Z",
    +     "shell.execute_reply": "2024-02-13T01:03:19.535130Z"
         }
        },
        "outputs": [
    @@ -1351,10 +1351,10 @@
        "id": "8ce74938",
        "metadata": {
         "execution": {
    -     "iopub.execute_input": "2024-02-13T00:38:11.195705Z",
    -     "iopub.status.busy": "2024-02-13T00:38:11.195361Z",
    -     "iopub.status.idle": "2024-02-13T00:38:11.199055Z",
    -     "shell.execute_reply": "2024-02-13T00:38:11.198495Z"
    +     "iopub.execute_input": "2024-02-13T01:03:19.537795Z",
    +     "iopub.status.busy": "2024-02-13T01:03:19.537617Z",
    +     "iopub.status.idle": "2024-02-13T01:03:19.541117Z",
    +     "shell.execute_reply": "2024-02-13T01:03:19.540711Z"
         },
         "nbsphinx": "hidden"
        },
    diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html
    index a6489c9a5..e8768e424 100644
    --- a/master/tutorials/outliers.html
    +++ b/master/tutorials/outliers.html
    @@ -731,16 +731,16 @@ 

    2. Pre-process the Cifar10 dataset
    
     
    -
    1%| | 1343488/170498071 [00:00&lt;00:12, 13419215.78it/s]
    +
    1%|▏ | 2326528/170498071 [00:00&lt;00:07, 23219298.71it/s]

    </pre>

    -
    1%| | 1343488/170498071 [00:00<00:12, 13419215.78it/s]
    +
    1%|▏ | 2326528/170498071 [00:00<00:07, 23219298.71it/s]

    end{sphinxVerbatim}

    -

    1%| | 1343488/170498071 [00:00<00:12, 13419215.78it/s]

    +

    1%|▏ | 2326528/170498071 [00:00<00:07, 23219298.71it/s]

    -
    3%|▎ | 5701632/170498071 [00:00&lt;00:05, 30978364.62it/s]
    +
    8%|▊ | 13303808/170498071 [00:00&lt;00:02, 73844881.63it/s]

    </pre>

    -
    3%|▎ | 5701632/170498071 [00:00<00:05, 30978364.62it/s]
    +
    8%|▊ | 13303808/170498071 [00:00<00:02, 73844881.63it/s]

    end{sphinxVerbatim}

    -

    3%|▎ | 5701632/170498071 [00:00<00:05, 30978364.62it/s]

    +

    8%|▊ | 13303808/170498071 [00:00<00:02, 73844881.63it/s]

    -
    6%|▌ | 10321920/170498071 [00:00&lt;00:04, 37656354.51it/s]
    +
    14%|█▍ | 24674304/170498071 [00:00&lt;00:01, 91964167.23it/s]

    </pre>

    -
    6%|▌ | 10321920/170498071 [00:00<00:04, 37656354.51it/s]
    +
    14%|█▍ | 24674304/170498071 [00:00<00:01, 91964167.23it/s]

    end{sphinxVerbatim}

    -

    6%|▌ | 10321920/170498071 [00:00<00:04, 37656354.51it/s]

    +

    14%|█▍ | 24674304/170498071 [00:00<00:01, 91964167.23it/s]

    -
    9%|▊ | 14745600/170498071 [00:00&lt;00:03, 40101818.24it/s]
    +
    21%|██ | 34963456/170498071 [00:00&lt;00:01, 96191879.75it/s]

    </pre>

    -
    9%|▊ | 14745600/170498071 [00:00<00:03, 40101818.24it/s]
    +
    21%|██ | 34963456/170498071 [00:00<00:01, 96191879.75it/s]

    end{sphinxVerbatim}

    -

    9%|▊ | 14745600/170498071 [00:00<00:03, 40101818.24it/s]

    +

    21%|██ | 34963456/170498071 [00:00<00:01, 96191879.75it/s]

    -
    11%|█▏ | 19431424/170498071 [00:00&lt;00:03, 42458496.10it/s]
    +
    27%|██▋ | 45383680/170498071 [00:00&lt;00:01, 99000165.63it/s]

    </pre>

    -
    11%|█▏ | 19431424/170498071 [00:00<00:03, 42458496.10it/s]
    +
    27%|██▋ | 45383680/170498071 [00:00<00:01, 99000165.63it/s]

    end{sphinxVerbatim}

    -

    11%|█▏ | 19431424/170498071 [00:00<00:03, 42458496.10it/s]

    +

    27%|██▋ | 45383680/170498071 [00:00<00:01, 99000165.63it/s]

    -
    14%|█▍ | 23920640/170498071 [00:00&lt;00:03, 43264444.74it/s]
    +
    33%|███▎ | 56393728/170498071 [00:00&lt;00:01, 102767412.84it/s]

    </pre>

    -
    14%|█▍ | 23920640/170498071 [00:00<00:03, 43264444.74it/s]
    +
    33%|███▎ | 56393728/170498071 [00:00<00:01, 102767412.84it/s]

    end{sphinxVerbatim}

    -

    14%|█▍ | 23920640/170498071 [00:00<00:03, 43264444.74it/s]

    +

    33%|███▎ | 56393728/170498071 [00:00<00:01, 102767412.84it/s]

    -
    17%|█▋ | 28901376/170498071 [00:00&lt;00:03, 45380202.56it/s]
    +
    39%|███▉ | 67141632/170498071 [00:00&lt;00:00, 104252034.08it/s]

    </pre>

    -
    17%|█▋ | 28901376/170498071 [00:00<00:03, 45380202.56it/s]
    +
    39%|███▉ | 67141632/170498071 [00:00<00:00, 104252034.08it/s]

    end{sphinxVerbatim}

    -

    17%|█▋ | 28901376/170498071 [00:00<00:03, 45380202.56it/s]

    +

    39%|███▉ | 67141632/170498071 [00:00<00:00, 104252034.08it/s]

    -
    20%|█▉ | 33456128/170498071 [00:00&lt;00:03, 44719865.87it/s]
    +
    46%|████▌ | 77856768/170498071 [00:00&lt;00:00, 105125468.20it/s]

    </pre>

    -
    20%|█▉ | 33456128/170498071 [00:00<00:03, 44719865.87it/s]
    +
    46%|████▌ | 77856768/170498071 [00:00<00:00, 105125468.20it/s]

    end{sphinxVerbatim}

    -

    20%|█▉ | 33456128/170498071 [00:00<00:03, 44719865.87it/s]

    +

    46%|████▌ | 77856768/170498071 [00:00<00:00, 105125468.20it/s]

    -
    22%|██▏ | 37945344/170498071 [00:00&lt;00:03, 44112735.58it/s]
    +
    52%|█████▏ | 88899584/170498071 [00:00&lt;00:00, 106705587.58it/s]

    </pre>

    -
    22%|██▏ | 37945344/170498071 [00:00<00:03, 44112735.58it/s]
    +
    52%|█████▏ | 88899584/170498071 [00:00<00:00, 106705587.58it/s]

    end{sphinxVerbatim}

    -

    22%|██▏ | 37945344/170498071 [00:00<00:03, 44112735.58it/s]

    +

    52%|█████▏ | 88899584/170498071 [00:00<00:00, 106705587.58it/s]

    -
    25%|██▍ | 42369024/170498071 [00:01&lt;00:02, 44096193.62it/s]
    +
    58%|█████▊ | 99581952/170498071 [00:01&lt;00:00, 105304746.58it/s]

    </pre>

    -
    25%|██▍ | 42369024/170498071 [00:01<00:02, 44096193.62it/s]
    +
    58%|█████▊ | 99581952/170498071 [00:01<00:00, 105304746.58it/s]

    end{sphinxVerbatim}

    -

    25%|██▍ | 42369024/170498071 [00:01<00:02, 44096193.62it/s]

    +

    58%|█████▊ | 99581952/170498071 [00:01<00:00, 105304746.58it/s]

    -
    28%|██▊ | 47120384/170498071 [00:01&lt;00:02, 44949082.45it/s]
    +
    65%|██████▍ | 110395392/170498071 [00:01&lt;00:00, 106104853.34it/s]

    </pre>

    -
    28%|██▊ | 47120384/170498071 [00:01<00:02, 44949082.45it/s]
    +
    65%|██████▍ | 110395392/170498071 [00:01<00:00, 106104853.34it/s]

    end{sphinxVerbatim}

    -

    28%|██▊ | 47120384/170498071 [00:01<00:02, 44949082.45it/s]

    +

    65%|██████▍ | 110395392/170498071 [00:01<00:00, 106104853.34it/s]

    -
    31%|███ | 52559872/170498071 [00:01&lt;00:02, 47695754.57it/s]
    +
    71%|███████▏ | 121634816/170498071 [00:01&lt;00:00, 107947015.29it/s]

    </pre>

    -
    31%|███ | 52559872/170498071 [00:01<00:02, 47695754.57it/s]
    +
    71%|███████▏ | 121634816/170498071 [00:01<00:00, 107947015.29it/s]

    end{sphinxVerbatim}

    -

    31%|███ | 52559872/170498071 [00:01<00:02, 47695754.57it/s]

    +

    71%|███████▏ | 121634816/170498071 [00:01<00:00, 107947015.29it/s]

    -
    34%|███▍ | 58327040/170498071 [00:01&lt;00:02, 50506916.33it/s]
    +
    78%|███████▊ | 132677632/170498071 [00:01&lt;00:00, 108681810.16it/s]

    </pre>

    -
    34%|███▍ | 58327040/170498071 [00:01<00:02, 50506916.33it/s]
    +
    78%|███████▊ | 132677632/170498071 [00:01<00:00, 108681810.16it/s]

    end{sphinxVerbatim}

    -

    34%|███▍ | 58327040/170498071 [00:01<00:02, 50506916.33it/s]

    +

    78%|███████▊ | 132677632/170498071 [00:01<00:00, 108681810.16it/s]

    -
    38%|███▊ | 64225280/170498071 [00:01&lt;00:02, 52788973.88it/s]
    +
    84%|████████▍ | 143818752/170498071 [00:01&lt;00:00, 109445329.99it/s]

    </pre>

    -
    38%|███▊ | 64225280/170498071 [00:01<00:02, 52788973.88it/s]
    +
    84%|████████▍ | 143818752/170498071 [00:01<00:00, 109445329.99it/s]

    end{sphinxVerbatim}

    -

    38%|███▊ | 64225280/170498071 [00:01<00:02, 52788973.88it/s]

    +

    84%|████████▍ | 143818752/170498071 [00:01<00:00, 109445329.99it/s]

    -
    41%|████ | 69894144/170498071 [00:01&lt;00:01, 53950833.55it/s]
    +
    91%|█████████ | 154927104/170498071 [00:01&lt;00:00, 109907364.09it/s]

    </pre>

    -
    41%|████ | 69894144/170498071 [00:01<00:01, 53950833.55it/s]
    +
    91%|█████████ | 154927104/170498071 [00:01<00:00, 109907364.09it/s]

    end{sphinxVerbatim}

    -

    41%|████ | 69894144/170498071 [00:01<00:01, 53950833.55it/s]

    +

    91%|█████████ | 154927104/170498071 [00:01<00:00, 109907364.09it/s]

    -
    44%|████▍ | 75563008/170498071 [00:01&lt;00:01, 54723606.58it/s]
    +
    97%|█████████▋| 166035456/170498071 [00:01&lt;00:00, 110199660.91it/s]

    </pre>

    -
    44%|████▍ | 75563008/170498071 [00:01<00:01, 54723606.58it/s]
    +
    97%|█████████▋| 166035456/170498071 [00:01<00:00, 110199660.91it/s]

    end{sphinxVerbatim}

    -

    44%|████▍ | 75563008/170498071 [00:01<00:01, 54723606.58it/s]

    - - -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    48%|████▊ | 81068032/170498071 [00:01&lt;00:01, 53970263.14it/s]
    -

    </pre>

    -
    -
    -
    48%|████▊ | 81068032/170498071 [00:01<00:01, 53970263.14it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    48%|████▊ | 81068032/170498071 [00:01<00:01, 53970263.14it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    51%|█████ | 86966272/170498071 [00:01&lt;00:01, 55331395.01it/s]
    -

    </pre>

    -
    -
    -
    51%|█████ | 86966272/170498071 [00:01<00:01, 55331395.01it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    51%|█████ | 86966272/170498071 [00:01<00:01, 55331395.01it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    54%|█████▍ | 92667904/170498071 [00:01&lt;00:01, 55810311.30it/s]
    -

    </pre>

    -
    -
    -
    54%|█████▍ | 92667904/170498071 [00:01<00:01, 55810311.30it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    54%|█████▍ | 92667904/170498071 [00:01<00:01, 55810311.30it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    58%|█████▊ | 98467840/170498071 [00:02&lt;00:01, 56445352.26it/s]
    -

    </pre>

    -
    -
    -
    58%|█████▊ | 98467840/170498071 [00:02<00:01, 56445352.26it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    58%|█████▊ | 98467840/170498071 [00:02<00:01, 56445352.26it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    61%|██████ | 104202240/170498071 [00:02&lt;00:01, 56436844.07it/s]
    -

    </pre>

    -
    -
    -
    61%|██████ | 104202240/170498071 [00:02<00:01, 56436844.07it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    61%|██████ | 104202240/170498071 [00:02<00:01, 56436844.07it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    64%|██████▍ | 109936640/170498071 [00:02&lt;00:01, 56700992.45it/s]
    -

    </pre>

    -
    -
    -
    64%|██████▍ | 109936640/170498071 [00:02<00:01, 56700992.45it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    64%|██████▍ | 109936640/170498071 [00:02<00:01, 56700992.45it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    68%|██████▊ | 115638272/170498071 [00:02&lt;00:00, 55387515.28it/s]
    -

    </pre>

    -
    -
    -
    68%|██████▊ | 115638272/170498071 [00:02<00:00, 55387515.28it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    68%|██████▊ | 115638272/170498071 [00:02<00:00, 55387515.28it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    71%|███████ | 121208832/170498071 [00:02&lt;00:00, 52110704.91it/s]
    -

    </pre>

    -
    -
    -
    71%|███████ | 121208832/170498071 [00:02<00:00, 52110704.91it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    71%|███████ | 121208832/170498071 [00:02<00:00, 52110704.91it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    74%|███████▍ | 126484480/170498071 [00:02&lt;00:00, 49544093.78it/s]
    -

    </pre>

    -
    -
    -
    74%|███████▍ | 126484480/170498071 [00:02<00:00, 49544093.78it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    74%|███████▍ | 126484480/170498071 [00:02<00:00, 49544093.78it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    77%|███████▋ | 131596288/170498071 [00:02&lt;00:00, 49943099.39it/s]
    -

    </pre>

    -
    -
    -
    77%|███████▋ | 131596288/170498071 [00:02<00:00, 49943099.39it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    77%|███████▋ | 131596288/170498071 [00:02<00:00, 49943099.39it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    80%|████████ | 136642560/170498071 [00:02&lt;00:00, 49918243.53it/s]
    -

    </pre>

    -
    -
    -
    80%|████████ | 136642560/170498071 [00:02<00:00, 49918243.53it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    80%|████████ | 136642560/170498071 [00:02<00:00, 49918243.53it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    83%|████████▎ | 141688832/170498071 [00:02&lt;00:00, 49487234.83it/s]
    -

    </pre>

    -
    -
    -
    83%|████████▎ | 141688832/170498071 [00:02<00:00, 49487234.83it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    83%|████████▎ | 141688832/170498071 [00:02<00:00, 49487234.83it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    86%|████████▌ | 146800640/170498071 [00:02&lt;00:00, 49829573.92it/s]
    -

    </pre>

    -
    -
    -
    86%|████████▌ | 146800640/170498071 [00:02<00:00, 49829573.92it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    86%|████████▌ | 146800640/170498071 [00:02<00:00, 49829573.92it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    89%|████████▉ | 151814144/170498071 [00:03&lt;00:00, 48855803.82it/s]
    -

    </pre>

    -
    -
    -
    89%|████████▉ | 151814144/170498071 [00:03<00:00, 48855803.82it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    89%|████████▉ | 151814144/170498071 [00:03<00:00, 48855803.82it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    92%|█████████▏| 156729344/170498071 [00:03&lt;00:00, 48916303.76it/s]
    -

    </pre>

    -
    -
    -
    92%|█████████▏| 156729344/170498071 [00:03<00:00, 48916303.76it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    92%|█████████▏| 156729344/170498071 [00:03<00:00, 48916303.76it/s]

    -
    -
    -
    -
    -
    -
    -
    -
    -
    more-to-come:
    -

    -
    class:
    -

    stderr

    -
    -
    -
    -
    -
    95%|█████████▌| 162529280/170498071 [00:03&lt;00:00, 51565119.38it/s]
    -

    </pre>

    -
    -
    -
    95%|█████████▌| 162529280/170498071 [00:03<00:00, 51565119.38it/s]
    -

    end{sphinxVerbatim}

    -
    -
    -
    -

    95%|█████████▌| 162529280/170498071 [00:03<00:00, 51565119.38it/s]

    +

    97%|█████████▋| 166035456/170498071 [00:01<00:00, 110199660.91it/s]

    -
    100%|██████████| 170498071/170498071 [00:03&lt;00:00, 50407814.33it/s]
    +
    100%|██████████| 170498071/170498071 [00:01&lt;00:00, 103483721.82it/s]

    </pre>

    -
    100%|██████████| 170498071/170498071 [00:03<00:00, 50407814.33it/s]
    +
    100%|██████████| 170498071/170498071 [00:01<00:00, 103483721.82it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 170498071/170498071 [00:03<00:00, 50407814.33it/s]

    +

    100%|██████████| 170498071/170498071 [00:01<00:00, 103483721.82it/s]

    -
    +
    @@ -1936,7 +1520,7 @@

    4. Use cleanlab and here.

    diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 85bfdbf77..2fd4d0b8b 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:13.538819Z", - "iopub.status.busy": "2024-02-13T00:38:13.538332Z", - "iopub.status.idle": "2024-02-13T00:38:16.310196Z", - "shell.execute_reply": "2024-02-13T00:38:16.309618Z" + "iopub.execute_input": "2024-02-13T01:03:21.946350Z", + "iopub.status.busy": "2024-02-13T01:03:21.946175Z", + "iopub.status.idle": "2024-02-13T01:03:24.693428Z", + "shell.execute_reply": "2024-02-13T01:03:24.692797Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:16.312856Z", - "iopub.status.busy": "2024-02-13T00:38:16.312401Z", - "iopub.status.idle": "2024-02-13T00:38:16.652112Z", - "shell.execute_reply": "2024-02-13T00:38:16.651552Z" + "iopub.execute_input": "2024-02-13T01:03:24.696184Z", + "iopub.status.busy": "2024-02-13T01:03:24.695863Z", + "iopub.status.idle": "2024-02-13T01:03:25.047975Z", + "shell.execute_reply": "2024-02-13T01:03:25.047451Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:16.654843Z", - "iopub.status.busy": "2024-02-13T00:38:16.654258Z", - "iopub.status.idle": "2024-02-13T00:38:16.658614Z", - "shell.execute_reply": "2024-02-13T00:38:16.658201Z" + "iopub.execute_input": "2024-02-13T01:03:25.050426Z", + "iopub.status.busy": "2024-02-13T01:03:25.050112Z", + "iopub.status.idle": "2024-02-13T01:03:25.054262Z", + "shell.execute_reply": "2024-02-13T01:03:25.053845Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:16.660663Z", - "iopub.status.busy": "2024-02-13T00:38:16.660336Z", - "iopub.status.idle": "2024-02-13T00:38:22.677513Z", - "shell.execute_reply": "2024-02-13T00:38:22.676909Z" + "iopub.execute_input": "2024-02-13T01:03:25.056210Z", + "iopub.status.busy": "2024-02-13T01:03:25.056033Z", + "iopub.status.idle": "2024-02-13T01:03:29.390845Z", + "shell.execute_reply": "2024-02-13T01:03:29.390321Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1343488/170498071 [00:00<00:12, 13419215.78it/s]" + " 1%|▏ | 2326528/170498071 [00:00<00:07, 23219298.71it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 5701632/170498071 [00:00<00:05, 30978364.62it/s]" + " 8%|▊ | 13303808/170498071 [00:00<00:02, 73844881.63it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 10321920/170498071 [00:00<00:04, 37656354.51it/s]" + " 14%|█▍ | 24674304/170498071 [00:00<00:01, 91964167.23it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 14745600/170498071 [00:00<00:03, 40101818.24it/s]" + " 21%|██ | 34963456/170498071 [00:00<00:01, 96191879.75it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 19431424/170498071 [00:00<00:03, 42458496.10it/s]" + " 27%|██▋ | 45383680/170498071 [00:00<00:01, 99000165.63it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 23920640/170498071 [00:00<00:03, 43264444.74it/s]" + " 33%|███▎ | 56393728/170498071 [00:00<00:01, 102767412.84it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 28901376/170498071 [00:00<00:03, 45380202.56it/s]" + " 39%|███▉ | 67141632/170498071 [00:00<00:00, 104252034.08it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 33456128/170498071 [00:00<00:03, 44719865.87it/s]" + " 46%|████▌ | 77856768/170498071 [00:00<00:00, 105125468.20it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37945344/170498071 [00:00<00:03, 44112735.58it/s]" + " 52%|█████▏ | 88899584/170498071 [00:00<00:00, 106705587.58it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 42369024/170498071 [00:01<00:02, 44096193.62it/s]" + " 58%|█████▊ | 99581952/170498071 [00:01<00:00, 105304746.58it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 47120384/170498071 [00:01<00:02, 44949082.45it/s]" + " 65%|██████▍ | 110395392/170498071 [00:01<00:00, 106104853.34it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52559872/170498071 [00:01<00:02, 47695754.57it/s]" + " 71%|███████▏ | 121634816/170498071 [00:01<00:00, 107947015.29it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 58327040/170498071 [00:01<00:02, 50506916.33it/s]" + " 78%|███████▊ | 132677632/170498071 [00:01<00:00, 108681810.16it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 64225280/170498071 [00:01<00:02, 52788973.88it/s]" + " 84%|████████▍ | 143818752/170498071 [00:01<00:00, 109445329.99it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 69894144/170498071 [00:01<00:01, 53950833.55it/s]" + " 91%|█████████ | 154927104/170498071 [00:01<00:00, 109907364.09it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 75563008/170498071 [00:01<00:01, 54723606.58it/s]" + " 97%|█████████▋| 166035456/170498071 [00:01<00:00, 110199660.91it/s]" ] }, { @@ -380,135 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 81068032/170498071 [00:01<00:01, 53970263.14it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 51%|█████ | 86966272/170498071 [00:01<00:01, 55331395.01it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 54%|█████▍ | 92667904/170498071 [00:01<00:01, 55810311.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 98467840/170498071 [00:02<00:01, 56445352.26it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 104202240/170498071 [00:02<00:01, 56436844.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 109936640/170498071 [00:02<00:01, 56700992.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 115638272/170498071 [00:02<00:00, 55387515.28it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████ | 121208832/170498071 [00:02<00:00, 52110704.91it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 126484480/170498071 [00:02<00:00, 49544093.78it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 131596288/170498071 [00:02<00:00, 49943099.39it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|████████ | 136642560/170498071 [00:02<00:00, 49918243.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 141688832/170498071 [00:02<00:00, 49487234.83it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▌ | 146800640/170498071 [00:02<00:00, 49829573.92it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 151814144/170498071 [00:03<00:00, 48855803.82it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 156729344/170498071 [00:03<00:00, 48916303.76it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 162529280/170498071 [00:03<00:00, 51565119.38it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:03<00:00, 50407814.33it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 103483721.82it/s]" ] }, { @@ -626,10 +498,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:22.679908Z", - "iopub.status.busy": "2024-02-13T00:38:22.679558Z", - "iopub.status.idle": "2024-02-13T00:38:22.684187Z", - "shell.execute_reply": "2024-02-13T00:38:22.683763Z" + "iopub.execute_input": "2024-02-13T01:03:29.393043Z", + "iopub.status.busy": "2024-02-13T01:03:29.392764Z", + "iopub.status.idle": "2024-02-13T01:03:29.397461Z", + "shell.execute_reply": "2024-02-13T01:03:29.397032Z" }, "nbsphinx": "hidden" }, @@ -680,10 +552,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:22.686206Z", - "iopub.status.busy": "2024-02-13T00:38:22.685892Z", - "iopub.status.idle": "2024-02-13T00:38:23.234419Z", - "shell.execute_reply": "2024-02-13T00:38:23.233860Z" + "iopub.execute_input": "2024-02-13T01:03:29.399365Z", + "iopub.status.busy": "2024-02-13T01:03:29.399031Z", + "iopub.status.idle": "2024-02-13T01:03:29.922399Z", + "shell.execute_reply": "2024-02-13T01:03:29.921908Z" } }, "outputs": [ @@ -716,10 +588,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:23.236537Z", - "iopub.status.busy": "2024-02-13T00:38:23.236200Z", - "iopub.status.idle": "2024-02-13T00:38:23.754153Z", - "shell.execute_reply": "2024-02-13T00:38:23.753584Z" + "iopub.execute_input": "2024-02-13T01:03:29.924733Z", + "iopub.status.busy": "2024-02-13T01:03:29.924391Z", + "iopub.status.idle": "2024-02-13T01:03:30.450732Z", + "shell.execute_reply": "2024-02-13T01:03:30.450167Z" } }, "outputs": [ @@ -757,10 +629,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:23.756376Z", - "iopub.status.busy": "2024-02-13T00:38:23.756032Z", - "iopub.status.idle": "2024-02-13T00:38:23.760086Z", - "shell.execute_reply": "2024-02-13T00:38:23.759545Z" + "iopub.execute_input": "2024-02-13T01:03:30.453089Z", + "iopub.status.busy": "2024-02-13T01:03:30.452701Z", + "iopub.status.idle": "2024-02-13T01:03:30.456264Z", + "shell.execute_reply": "2024-02-13T01:03:30.455781Z" } }, "outputs": [], @@ -783,17 +655,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:23.762179Z", - "iopub.status.busy": "2024-02-13T00:38:23.761852Z", - "iopub.status.idle": "2024-02-13T00:38:36.441314Z", - "shell.execute_reply": "2024-02-13T00:38:36.440695Z" + "iopub.execute_input": "2024-02-13T01:03:30.458317Z", + "iopub.status.busy": "2024-02-13T01:03:30.457992Z", + "iopub.status.idle": "2024-02-13T01:03:43.148107Z", + "shell.execute_reply": "2024-02-13T01:03:43.147490Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ff543fd6f30d4622be8edea1bc3715b0", + "model_id": "92b33af26c3946f7839360511c1b8bae", "version_major": 2, "version_minor": 0 }, @@ -852,10 +724,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:36.443785Z", - "iopub.status.busy": "2024-02-13T00:38:36.443398Z", - "iopub.status.idle": "2024-02-13T00:38:38.033570Z", - "shell.execute_reply": "2024-02-13T00:38:38.033012Z" + "iopub.execute_input": "2024-02-13T01:03:43.150246Z", + "iopub.status.busy": "2024-02-13T01:03:43.150059Z", + "iopub.status.idle": "2024-02-13T01:03:44.712648Z", + "shell.execute_reply": "2024-02-13T01:03:44.712038Z" } }, "outputs": [ @@ -899,10 +771,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:38.036426Z", - "iopub.status.busy": "2024-02-13T00:38:38.035958Z", - "iopub.status.idle": "2024-02-13T00:38:38.466607Z", - "shell.execute_reply": "2024-02-13T00:38:38.466065Z" + "iopub.execute_input": "2024-02-13T01:03:44.715052Z", + "iopub.status.busy": "2024-02-13T01:03:44.714832Z", + "iopub.status.idle": "2024-02-13T01:03:45.140211Z", + "shell.execute_reply": "2024-02-13T01:03:45.139624Z" } }, "outputs": [ @@ -938,10 +810,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:38.469309Z", - "iopub.status.busy": "2024-02-13T00:38:38.468794Z", - "iopub.status.idle": "2024-02-13T00:38:39.120552Z", - "shell.execute_reply": "2024-02-13T00:38:39.119993Z" + "iopub.execute_input": "2024-02-13T01:03:45.142428Z", + "iopub.status.busy": "2024-02-13T01:03:45.142240Z", + "iopub.status.idle": "2024-02-13T01:03:45.802043Z", + "shell.execute_reply": "2024-02-13T01:03:45.801517Z" } }, "outputs": [ @@ -991,10 +863,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:39.123303Z", - "iopub.status.busy": "2024-02-13T00:38:39.122997Z", - "iopub.status.idle": "2024-02-13T00:38:39.461505Z", - "shell.execute_reply": "2024-02-13T00:38:39.461013Z" + "iopub.execute_input": "2024-02-13T01:03:45.804974Z", + "iopub.status.busy": "2024-02-13T01:03:45.804501Z", + "iopub.status.idle": "2024-02-13T01:03:46.149909Z", + "shell.execute_reply": "2024-02-13T01:03:46.149324Z" } }, "outputs": [ @@ -1042,10 +914,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:39.463648Z", - "iopub.status.busy": "2024-02-13T00:38:39.463464Z", - "iopub.status.idle": "2024-02-13T00:38:39.706411Z", - "shell.execute_reply": "2024-02-13T00:38:39.705868Z" + "iopub.execute_input": "2024-02-13T01:03:46.152129Z", + "iopub.status.busy": "2024-02-13T01:03:46.151736Z", + "iopub.status.idle": "2024-02-13T01:03:46.384794Z", + "shell.execute_reply": "2024-02-13T01:03:46.384057Z" } }, "outputs": [ @@ -1101,10 +973,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:39.709202Z", - "iopub.status.busy": "2024-02-13T00:38:39.708789Z", - "iopub.status.idle": "2024-02-13T00:38:39.795527Z", - "shell.execute_reply": "2024-02-13T00:38:39.795019Z" + "iopub.execute_input": "2024-02-13T01:03:46.387276Z", + "iopub.status.busy": "2024-02-13T01:03:46.386939Z", + "iopub.status.idle": "2024-02-13T01:03:46.472590Z", + "shell.execute_reply": "2024-02-13T01:03:46.471966Z" } }, "outputs": [], @@ -1125,10 +997,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:39.797869Z", - "iopub.status.busy": "2024-02-13T00:38:39.797538Z", - "iopub.status.idle": "2024-02-13T00:38:50.034714Z", - "shell.execute_reply": "2024-02-13T00:38:50.034060Z" + "iopub.execute_input": "2024-02-13T01:03:46.475190Z", + "iopub.status.busy": "2024-02-13T01:03:46.474822Z", + "iopub.status.idle": "2024-02-13T01:03:56.919476Z", + "shell.execute_reply": "2024-02-13T01:03:56.918783Z" } }, "outputs": [ @@ -1165,10 +1037,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:50.037502Z", - "iopub.status.busy": "2024-02-13T00:38:50.037041Z", - "iopub.status.idle": "2024-02-13T00:38:51.749256Z", - "shell.execute_reply": "2024-02-13T00:38:51.748688Z" + "iopub.execute_input": "2024-02-13T01:03:56.921895Z", + "iopub.status.busy": "2024-02-13T01:03:56.921456Z", + "iopub.status.idle": "2024-02-13T01:03:58.728547Z", + "shell.execute_reply": "2024-02-13T01:03:58.728037Z" } }, "outputs": [ @@ -1199,10 +1071,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:51.752032Z", - "iopub.status.busy": "2024-02-13T00:38:51.751440Z", - "iopub.status.idle": "2024-02-13T00:38:51.953634Z", - "shell.execute_reply": "2024-02-13T00:38:51.953124Z" + "iopub.execute_input": "2024-02-13T01:03:58.731271Z", + "iopub.status.busy": "2024-02-13T01:03:58.730667Z", + "iopub.status.idle": "2024-02-13T01:03:58.948375Z", + "shell.execute_reply": "2024-02-13T01:03:58.947775Z" } }, "outputs": [], @@ -1216,10 +1088,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:51.956085Z", - "iopub.status.busy": "2024-02-13T00:38:51.955736Z", - "iopub.status.idle": "2024-02-13T00:38:51.959607Z", - "shell.execute_reply": "2024-02-13T00:38:51.959036Z" + "iopub.execute_input": "2024-02-13T01:03:58.950843Z", + "iopub.status.busy": "2024-02-13T01:03:58.950500Z", + "iopub.status.idle": "2024-02-13T01:03:58.953541Z", + "shell.execute_reply": "2024-02-13T01:03:58.953112Z" } }, "outputs": [], @@ -1241,10 +1113,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:51.961529Z", - "iopub.status.busy": "2024-02-13T00:38:51.961271Z", - "iopub.status.idle": "2024-02-13T00:38:51.969247Z", - "shell.execute_reply": "2024-02-13T00:38:51.968771Z" + "iopub.execute_input": "2024-02-13T01:03:58.955699Z", + "iopub.status.busy": "2024-02-13T01:03:58.955268Z", + "iopub.status.idle": "2024-02-13T01:03:58.963594Z", + "shell.execute_reply": "2024-02-13T01:03:58.963008Z" }, "nbsphinx": "hidden" }, @@ -1289,7 +1161,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1c399fc6dfaf46e78dd6b627dd9ab79e": { + "03e194e884d844d696bb26dd15ae8166": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1304,15 +1176,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8ceb374fbc2f4adc96b72f019eac0d7b", + "layout": "IPY_MODEL_c067481e2c854162a43a69832dafac1d", "placeholder": "​", - "style": "IPY_MODEL_a4b4f176039345ef88ce5d31b744e86f", + "style": "IPY_MODEL_e255456cdbd940b1a0871b4201ff7f13", "tabbable": null, "tooltip": null, - "value": "model.safetensors: 100%" + "value": " 102M/102M [00:00<00:00, 187MB/s]" } }, - "3a6eff6e7a34490286388705121c5109": { + "28c1892184834bbb9e428562668c27bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1365,25 +1237,7 @@ "width": null } }, - "68d6368b9f4e4091939374ceb23813bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8ceb374fbc2f4adc96b72f019eac0d7b": { + "7ae945316e554eb5abaaca7e1881a842": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1436,7 +1290,80 @@ "width": null } }, - "8f9e6f5d41ec42ad847534bfdb6bd26f": { + "92b33af26c3946f7839360511c1b8bae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ad9367ce55be498f93dae398f378543b", + "IPY_MODEL_a16c2d0853d4451887b15287af0107a9", + "IPY_MODEL_03e194e884d844d696bb26dd15ae8166" + ], + "layout": "IPY_MODEL_af967ea5935e411f8a1ce18e0fb360f0", + "tabbable": null, + "tooltip": null + } + }, + "a16c2d0853d4451887b15287af0107a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7ae945316e554eb5abaaca7e1881a842", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e8256a3a68a4411ba396247ce62c59d0", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "ad9367ce55be498f93dae398f378543b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_28c1892184834bbb9e428562668c27bf", + "placeholder": "​", + "style": "IPY_MODEL_f8c09f90aad44bef847738e3e859f017", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "af967ea5935e411f8a1ce18e0fb360f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1489,51 +1416,7 @@ "width": null } }, - "91bdb5338d374cb7b81754d69354659a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3a6eff6e7a34490286388705121c5109", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_edcd63954a0e445b8d78f220d7e3b7ce", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "a4b4f176039345ef88ce5d31b744e86f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "de53c221b897471d9ee2bad1f34bd6ad": { + "c067481e2c854162a43a69832dafac1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1586,30 +1469,25 @@ "width": null } }, - "eaaf9257d4454c79b003911fddfdcba4": { + "e255456cdbd940b1a0871b4201ff7f13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8f9e6f5d41ec42ad847534bfdb6bd26f", - "placeholder": "​", - "style": "IPY_MODEL_68d6368b9f4e4091939374ceb23813bc", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 164MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "edcd63954a0e445b8d78f220d7e3b7ce": { + "e8256a3a68a4411ba396247ce62c59d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1625,28 +1503,22 @@ "description_width": "" } }, - "ff543fd6f30d4622be8edea1bc3715b0": { + "f8c09f90aad44bef847738e3e859f017": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1c399fc6dfaf46e78dd6b627dd9ab79e", - "IPY_MODEL_91bdb5338d374cb7b81754d69354659a", - "IPY_MODEL_eaaf9257d4454c79b003911fddfdcba4" - ], - "layout": "IPY_MODEL_de53c221b897471d9ee2bad1f34bd6ad", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index c43233657..f45de88ba 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:56.418963Z", - "iopub.status.busy": "2024-02-13T00:38:56.418538Z", - "iopub.status.idle": "2024-02-13T00:38:57.502296Z", - "shell.execute_reply": "2024-02-13T00:38:57.501688Z" + "iopub.execute_input": "2024-02-13T01:04:03.295564Z", + "iopub.status.busy": "2024-02-13T01:04:03.295384Z", + "iopub.status.idle": "2024-02-13T01:04:04.470389Z", + "shell.execute_reply": "2024-02-13T01:04:04.469810Z" }, "nbsphinx": "hidden" }, @@ -117,7 +117,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:57.504994Z", - "iopub.status.busy": "2024-02-13T00:38:57.504661Z", - "iopub.status.idle": "2024-02-13T00:38:57.522557Z", - "shell.execute_reply": "2024-02-13T00:38:57.522014Z" + "iopub.execute_input": "2024-02-13T01:04:04.473255Z", + "iopub.status.busy": "2024-02-13T01:04:04.472725Z", + "iopub.status.idle": "2024-02-13T01:04:04.492603Z", + "shell.execute_reply": "2024-02-13T01:04:04.492080Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:57.524915Z", - "iopub.status.busy": "2024-02-13T00:38:57.524458Z", - "iopub.status.idle": "2024-02-13T00:38:57.527466Z", - "shell.execute_reply": "2024-02-13T00:38:57.527014Z" + "iopub.execute_input": "2024-02-13T01:04:04.495177Z", + "iopub.status.busy": "2024-02-13T01:04:04.494663Z", + "iopub.status.idle": "2024-02-13T01:04:04.497965Z", + "shell.execute_reply": "2024-02-13T01:04:04.497440Z" }, "nbsphinx": "hidden" }, @@ -199,10 +199,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:57.529494Z", - "iopub.status.busy": "2024-02-13T00:38:57.529082Z", - "iopub.status.idle": "2024-02-13T00:38:57.604240Z", - "shell.execute_reply": "2024-02-13T00:38:57.603695Z" + "iopub.execute_input": "2024-02-13T01:04:04.500196Z", + "iopub.status.busy": "2024-02-13T01:04:04.499813Z", + "iopub.status.idle": "2024-02-13T01:04:04.611611Z", + "shell.execute_reply": "2024-02-13T01:04:04.610989Z" } }, "outputs": [ @@ -375,10 +375,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:57.606593Z", - "iopub.status.busy": "2024-02-13T00:38:57.606282Z", - "iopub.status.idle": "2024-02-13T00:38:57.783988Z", - "shell.execute_reply": "2024-02-13T00:38:57.783443Z" + "iopub.execute_input": "2024-02-13T01:04:04.613792Z", + "iopub.status.busy": "2024-02-13T01:04:04.613601Z", + "iopub.status.idle": "2024-02-13T01:04:04.805710Z", + "shell.execute_reply": "2024-02-13T01:04:04.805077Z" }, "nbsphinx": "hidden" }, @@ -418,10 +418,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:57.786254Z", - "iopub.status.busy": "2024-02-13T00:38:57.786047Z", - "iopub.status.idle": "2024-02-13T00:38:58.026415Z", - "shell.execute_reply": "2024-02-13T00:38:58.025843Z" + "iopub.execute_input": "2024-02-13T01:04:04.808407Z", + "iopub.status.busy": "2024-02-13T01:04:04.808098Z", + "iopub.status.idle": "2024-02-13T01:04:05.060992Z", + "shell.execute_reply": "2024-02-13T01:04:05.060368Z" } }, "outputs": [ @@ -457,10 +457,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:58.028577Z", - "iopub.status.busy": "2024-02-13T00:38:58.028250Z", - "iopub.status.idle": "2024-02-13T00:38:58.032455Z", - "shell.execute_reply": "2024-02-13T00:38:58.032007Z" + "iopub.execute_input": "2024-02-13T01:04:05.063164Z", + "iopub.status.busy": "2024-02-13T01:04:05.062952Z", + "iopub.status.idle": "2024-02-13T01:04:05.067821Z", + "shell.execute_reply": "2024-02-13T01:04:05.067325Z" } }, "outputs": [], @@ -478,10 +478,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:58.034470Z", - "iopub.status.busy": "2024-02-13T00:38:58.034154Z", - "iopub.status.idle": "2024-02-13T00:38:58.039926Z", - "shell.execute_reply": "2024-02-13T00:38:58.039514Z" + "iopub.execute_input": "2024-02-13T01:04:05.069776Z", + "iopub.status.busy": "2024-02-13T01:04:05.069582Z", + "iopub.status.idle": "2024-02-13T01:04:05.076631Z", + "shell.execute_reply": "2024-02-13T01:04:05.076188Z" } }, "outputs": [], @@ -528,10 +528,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:58.042002Z", - "iopub.status.busy": "2024-02-13T00:38:58.041688Z", - "iopub.status.idle": "2024-02-13T00:38:58.044105Z", - "shell.execute_reply": "2024-02-13T00:38:58.043689Z" + "iopub.execute_input": "2024-02-13T01:04:05.078739Z", + "iopub.status.busy": "2024-02-13T01:04:05.078520Z", + "iopub.status.idle": "2024-02-13T01:04:05.081378Z", + "shell.execute_reply": "2024-02-13T01:04:05.080921Z" } }, "outputs": [], @@ -546,10 +546,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:38:58.046106Z", - "iopub.status.busy": "2024-02-13T00:38:58.045692Z", - "iopub.status.idle": "2024-02-13T00:39:06.553915Z", - "shell.execute_reply": "2024-02-13T00:39:06.553250Z" + "iopub.execute_input": "2024-02-13T01:04:05.083440Z", + "iopub.status.busy": "2024-02-13T01:04:05.083057Z", + "iopub.status.idle": "2024-02-13T01:04:13.705031Z", + "shell.execute_reply": "2024-02-13T01:04:13.704339Z" } }, "outputs": [], @@ -573,10 +573,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.557117Z", - "iopub.status.busy": "2024-02-13T00:39:06.556457Z", - "iopub.status.idle": "2024-02-13T00:39:06.563589Z", - "shell.execute_reply": "2024-02-13T00:39:06.563063Z" + "iopub.execute_input": "2024-02-13T01:04:13.708170Z", + "iopub.status.busy": "2024-02-13T01:04:13.707545Z", + "iopub.status.idle": "2024-02-13T01:04:13.714879Z", + "shell.execute_reply": "2024-02-13T01:04:13.714322Z" } }, "outputs": [ @@ -679,10 +679,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.565703Z", - "iopub.status.busy": "2024-02-13T00:39:06.565363Z", - "iopub.status.idle": "2024-02-13T00:39:06.568975Z", - "shell.execute_reply": "2024-02-13T00:39:06.568518Z" + "iopub.execute_input": "2024-02-13T01:04:13.717129Z", + "iopub.status.busy": "2024-02-13T01:04:13.716739Z", + "iopub.status.idle": "2024-02-13T01:04:13.720642Z", + "shell.execute_reply": "2024-02-13T01:04:13.720087Z" } }, "outputs": [], @@ -697,10 +697,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.571038Z", - "iopub.status.busy": "2024-02-13T00:39:06.570698Z", - "iopub.status.idle": "2024-02-13T00:39:06.573718Z", - "shell.execute_reply": "2024-02-13T00:39:06.573205Z" + "iopub.execute_input": "2024-02-13T01:04:13.722849Z", + "iopub.status.busy": "2024-02-13T01:04:13.722451Z", + "iopub.status.idle": "2024-02-13T01:04:13.725984Z", + "shell.execute_reply": "2024-02-13T01:04:13.725412Z" } }, "outputs": [ @@ -735,10 +735,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.575707Z", - "iopub.status.busy": "2024-02-13T00:39:06.575385Z", - "iopub.status.idle": "2024-02-13T00:39:06.578370Z", - "shell.execute_reply": "2024-02-13T00:39:06.577927Z" + "iopub.execute_input": "2024-02-13T01:04:13.728368Z", + "iopub.status.busy": "2024-02-13T01:04:13.727935Z", + "iopub.status.idle": "2024-02-13T01:04:13.731295Z", + "shell.execute_reply": "2024-02-13T01:04:13.730827Z" } }, "outputs": [], @@ -757,10 +757,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.580361Z", - "iopub.status.busy": "2024-02-13T00:39:06.579975Z", - "iopub.status.idle": "2024-02-13T00:39:06.588115Z", - "shell.execute_reply": "2024-02-13T00:39:06.587568Z" + "iopub.execute_input": "2024-02-13T01:04:13.733426Z", + "iopub.status.busy": "2024-02-13T01:04:13.733117Z", + "iopub.status.idle": "2024-02-13T01:04:13.741608Z", + "shell.execute_reply": "2024-02-13T01:04:13.741157Z" } }, "outputs": [ @@ -884,10 +884,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.590154Z", - "iopub.status.busy": "2024-02-13T00:39:06.589761Z", - "iopub.status.idle": "2024-02-13T00:39:06.592516Z", - "shell.execute_reply": "2024-02-13T00:39:06.591957Z" + "iopub.execute_input": "2024-02-13T01:04:13.743531Z", + "iopub.status.busy": "2024-02-13T01:04:13.743351Z", + "iopub.status.idle": "2024-02-13T01:04:13.746048Z", + "shell.execute_reply": "2024-02-13T01:04:13.745614Z" }, "nbsphinx": "hidden" }, @@ -922,10 +922,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.594513Z", - "iopub.status.busy": "2024-02-13T00:39:06.594155Z", - "iopub.status.idle": "2024-02-13T00:39:06.716645Z", - "shell.execute_reply": "2024-02-13T00:39:06.716130Z" + "iopub.execute_input": "2024-02-13T01:04:13.748057Z", + "iopub.status.busy": "2024-02-13T01:04:13.747784Z", + "iopub.status.idle": "2024-02-13T01:04:13.870575Z", + "shell.execute_reply": "2024-02-13T01:04:13.870014Z" } }, "outputs": [ @@ -964,10 +964,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.719063Z", - "iopub.status.busy": "2024-02-13T00:39:06.718669Z", - "iopub.status.idle": "2024-02-13T00:39:06.827382Z", - "shell.execute_reply": "2024-02-13T00:39:06.826767Z" + "iopub.execute_input": "2024-02-13T01:04:13.873045Z", + "iopub.status.busy": "2024-02-13T01:04:13.872584Z", + "iopub.status.idle": "2024-02-13T01:04:13.977959Z", + "shell.execute_reply": "2024-02-13T01:04:13.977383Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:06.829853Z", - "iopub.status.busy": "2024-02-13T00:39:06.829461Z", - "iopub.status.idle": "2024-02-13T00:39:07.327639Z", - "shell.execute_reply": "2024-02-13T00:39:07.327093Z" + "iopub.execute_input": "2024-02-13T01:04:13.980497Z", + "iopub.status.busy": "2024-02-13T01:04:13.980105Z", + "iopub.status.idle": "2024-02-13T01:04:14.476861Z", + "shell.execute_reply": "2024-02-13T01:04:14.476315Z" } }, "outputs": [], @@ -1042,10 +1042,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:07.330082Z", - "iopub.status.busy": "2024-02-13T00:39:07.329859Z", - "iopub.status.idle": "2024-02-13T00:39:07.419336Z", - "shell.execute_reply": "2024-02-13T00:39:07.418737Z" + "iopub.execute_input": "2024-02-13T01:04:14.479487Z", + "iopub.status.busy": "2024-02-13T01:04:14.479069Z", + "iopub.status.idle": "2024-02-13T01:04:14.581489Z", + "shell.execute_reply": "2024-02-13T01:04:14.580890Z" } }, "outputs": [ @@ -1080,10 +1080,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:07.421793Z", - "iopub.status.busy": "2024-02-13T00:39:07.421346Z", - "iopub.status.idle": "2024-02-13T00:39:07.429742Z", - "shell.execute_reply": "2024-02-13T00:39:07.429271Z" + "iopub.execute_input": "2024-02-13T01:04:14.585989Z", + "iopub.status.busy": "2024-02-13T01:04:14.585754Z", + "iopub.status.idle": "2024-02-13T01:04:14.595235Z", + "shell.execute_reply": "2024-02-13T01:04:14.594685Z" } }, "outputs": [ @@ -1190,10 +1190,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:07.431780Z", - "iopub.status.busy": "2024-02-13T00:39:07.431603Z", - "iopub.status.idle": "2024-02-13T00:39:07.434130Z", - "shell.execute_reply": "2024-02-13T00:39:07.433705Z" + "iopub.execute_input": "2024-02-13T01:04:14.597698Z", + "iopub.status.busy": "2024-02-13T01:04:14.597213Z", + "iopub.status.idle": "2024-02-13T01:04:14.600294Z", + "shell.execute_reply": "2024-02-13T01:04:14.599758Z" }, "nbsphinx": "hidden" }, @@ -1218,10 +1218,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:07.436084Z", - "iopub.status.busy": "2024-02-13T00:39:07.435765Z", - "iopub.status.idle": "2024-02-13T00:39:12.904557Z", - "shell.execute_reply": "2024-02-13T00:39:12.903980Z" + "iopub.execute_input": "2024-02-13T01:04:14.602141Z", + "iopub.status.busy": "2024-02-13T01:04:14.601970Z", + "iopub.status.idle": "2024-02-13T01:04:20.213664Z", + "shell.execute_reply": "2024-02-13T01:04:20.213049Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:12.906989Z", - "iopub.status.busy": "2024-02-13T00:39:12.906561Z", - "iopub.status.idle": "2024-02-13T00:39:12.914429Z", - "shell.execute_reply": "2024-02-13T00:39:12.914006Z" + "iopub.execute_input": "2024-02-13T01:04:20.216188Z", + "iopub.status.busy": "2024-02-13T01:04:20.215724Z", + "iopub.status.idle": "2024-02-13T01:04:20.224540Z", + "shell.execute_reply": "2024-02-13T01:04:20.223937Z" } }, "outputs": [ @@ -1377,10 +1377,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:12.916267Z", - "iopub.status.busy": "2024-02-13T00:39:12.916098Z", - "iopub.status.idle": "2024-02-13T00:39:12.984177Z", - "shell.execute_reply": "2024-02-13T00:39:12.983711Z" + "iopub.execute_input": "2024-02-13T01:04:20.226697Z", + "iopub.status.busy": "2024-02-13T01:04:20.226371Z", + "iopub.status.idle": "2024-02-13T01:04:20.292062Z", + "shell.execute_reply": "2024-02-13T01:04:20.291419Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 1c0d0f267..58200e580 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -716,13 +716,13 @@

    3. Use cleanlab to find label issues

    -
    +
    -
    +
    -
    0%| | 15666/4997817 [00:00&lt;00:31, 156647.82it/s]
    +
    0%| | 15242/4997817 [00:00&lt;00:32, 152406.70it/s]

    </pre>

    -
    0%| | 15666/4997817 [00:00<00:31, 156647.82it/s]
    +
    0%| | 15242/4997817 [00:00<00:32, 152406.70it/s]

    end{sphinxVerbatim}

    -

    0%| | 15666/4997817 [00:00<00:31, 156647.82it/s]

    +

    0%| | 15242/4997817 [00:00<00:32, 152406.70it/s]

    -
    1%| | 31368/4997817 [00:00&lt;00:31, 156863.75it/s]
    +
    1%| | 30489/4997817 [00:00&lt;00:32, 152436.32it/s]

    </pre>

    -
    1%| | 31368/4997817 [00:00<00:31, 156863.75it/s]
    +
    1%| | 30489/4997817 [00:00<00:32, 152436.32it/s]

    end{sphinxVerbatim}

    -

    1%| | 31368/4997817 [00:00<00:31, 156863.75it/s]

    +

    1%| | 30489/4997817 [00:00<00:32, 152436.32it/s]

    -
    1%| | 47055/4997817 [00:00&lt;00:31, 156605.66it/s]
    +
    1%| | 45744/4997817 [00:00&lt;00:32, 152481.16it/s]

    </pre>

    -
    1%| | 47055/4997817 [00:00<00:31, 156605.66it/s]
    +
    1%| | 45744/4997817 [00:00<00:32, 152481.16it/s]

    end{sphinxVerbatim}

    -

    1%| | 47055/4997817 [00:00<00:31, 156605.66it/s]

    +

    1%| | 45744/4997817 [00:00<00:32, 152481.16it/s]

    -
    1%|▏ | 62955/4997817 [00:00&lt;00:31, 157545.12it/s]
    +
    1%| | 60993/4997817 [00:00&lt;00:32, 151806.03it/s]

    </pre>

    -
    1%|▏ | 62955/4997817 [00:00<00:31, 157545.12it/s]
    +
    1%| | 60993/4997817 [00:00<00:32, 151806.03it/s]

    end{sphinxVerbatim}

    -

    1%|▏ | 62955/4997817 [00:00<00:31, 157545.12it/s]

    +

    1%| | 60993/4997817 [00:00<00:32, 151806.03it/s]

    -
    2%|▏ | 78718/4997817 [00:00&lt;00:31, 157570.48it/s]
    +
    2%|▏ | 76175/4997817 [00:00&lt;00:32, 151395.78it/s]

    </pre>

    -
    2%|▏ | 78718/4997817 [00:00<00:31, 157570.48it/s]
    +
    2%|▏ | 76175/4997817 [00:00<00:32, 151395.78it/s]

    end{sphinxVerbatim}

    -

    2%|▏ | 78718/4997817 [00:00<00:31, 157570.48it/s]

    +

    2%|▏ | 76175/4997817 [00:00<00:32, 151395.78it/s]

    -
    2%|▏ | 94643/4997817 [00:00&lt;00:31, 158136.82it/s]
    +
    2%|▏ | 91323/4997817 [00:00&lt;00:32, 151421.91it/s]

    </pre>

    -
    2%|▏ | 94643/4997817 [00:00<00:31, 158136.82it/s]
    +
    2%|▏ | 91323/4997817 [00:00<00:32, 151421.91it/s]

    end{sphinxVerbatim}

    -

    2%|▏ | 94643/4997817 [00:00<00:31, 158136.82it/s]

    +

    2%|▏ | 91323/4997817 [00:00<00:32, 151421.91it/s]

    -
    2%|▏ | 110459/4997817 [00:00&lt;00:30, 158139.64it/s]
    +
    2%|▏ | 106466/4997817 [00:00&lt;00:32, 151281.22it/s]

    </pre>

    -
    2%|▏ | 110459/4997817 [00:00<00:30, 158139.64it/s]
    +
    2%|▏ | 106466/4997817 [00:00<00:32, 151281.22it/s]

    end{sphinxVerbatim}

    -

    2%|▏ | 110459/4997817 [00:00<00:30, 158139.64it/s]

    +

    2%|▏ | 106466/4997817 [00:00<00:32, 151281.22it/s]

    -
    3%|▎ | 126372/4997817 [00:00&lt;00:30, 158453.21it/s]
    +
    2%|▏ | 121595/4997817 [00:00&lt;00:33, 146607.57it/s]

    </pre>

    -
    3%|▎ | 126372/4997817 [00:00<00:30, 158453.21it/s]
    +
    2%|▏ | 121595/4997817 [00:00<00:33, 146607.57it/s]

    end{sphinxVerbatim}

    -

    3%|▎ | 126372/4997817 [00:00<00:30, 158453.21it/s]

    +

    2%|▏ | 121595/4997817 [00:00<00:33, 146607.57it/s]

    -
    3%|▎ | 142218/4997817 [00:00&lt;00:30, 158379.37it/s]
    +
    3%|▎ | 136284/4997817 [00:00&lt;00:33, 144508.49it/s]

    </pre>

    -
    3%|▎ | 142218/4997817 [00:00<00:30, 158379.37it/s]
    +
    3%|▎ | 136284/4997817 [00:00<00:33, 144508.49it/s]

    end{sphinxVerbatim}

    -

    3%|▎ | 142218/4997817 [00:00<00:30, 158379.37it/s]

    +

    3%|▎ | 136284/4997817 [00:00<00:33, 144508.49it/s]

    -
    3%|▎ | 158056/4997817 [00:01&lt;00:31, 154882.18it/s]
    +
    3%|▎ | 151665/4997817 [00:01&lt;00:32, 147302.13it/s]

    </pre>

    -
    3%|▎ | 158056/4997817 [00:01<00:31, 154882.18it/s]
    +
    3%|▎ | 151665/4997817 [00:01<00:32, 147302.13it/s]

    end{sphinxVerbatim}

    -

    3%|▎ | 158056/4997817 [00:01<00:31, 154882.18it/s]

    +

    3%|▎ | 151665/4997817 [00:01<00:32, 147302.13it/s]

    -
    3%|▎ | 173791/4997817 [00:01&lt;00:30, 155622.26it/s]
    +
    3%|▎ | 167038/4997817 [00:01&lt;00:32, 149228.72it/s]

    </pre>

    -
    3%|▎ | 173791/4997817 [00:01<00:30, 155622.26it/s]
    +
    3%|▎ | 167038/4997817 [00:01<00:32, 149228.72it/s]

    end{sphinxVerbatim}

    -

    3%|▎ | 173791/4997817 [00:01<00:30, 155622.26it/s]

    +

    3%|▎ | 167038/4997817 [00:01<00:32, 149228.72it/s]

    -
    4%|▍ | 189775/4997817 [00:01&lt;00:30, 156888.89it/s]
    +
    4%|▎ | 182466/4997817 [00:01&lt;00:31, 150743.53it/s]

    </pre>

    -
    4%|▍ | 189775/4997817 [00:01<00:30, 156888.89it/s]
    +
    4%|▎ | 182466/4997817 [00:01<00:31, 150743.53it/s]

    end{sphinxVerbatim}

    -

    4%|▍ | 189775/4997817 [00:01<00:30, 156888.89it/s]

    +

    4%|▎ | 182466/4997817 [00:01<00:31, 150743.53it/s]

    -
    4%|▍ | 205726/4997817 [00:01&lt;00:30, 157674.91it/s]
    +
    4%|▍ | 197954/4997817 [00:01&lt;00:31, 151982.28it/s]

    </pre>

    -
    4%|▍ | 205726/4997817 [00:01<00:30, 157674.91it/s]
    +
    4%|▍ | 197954/4997817 [00:01<00:31, 151982.28it/s]

    end{sphinxVerbatim}

    -

    4%|▍ | 205726/4997817 [00:01<00:30, 157674.91it/s]

    +

    4%|▍ | 197954/4997817 [00:01<00:31, 151982.28it/s]

    -
    4%|▍ | 221526/4997817 [00:01&lt;00:30, 157768.32it/s]
    +
    4%|▍ | 213323/4997817 [00:01&lt;00:31, 152492.14it/s]

    </pre>

    -
    4%|▍ | 221526/4997817 [00:01<00:30, 157768.32it/s]
    +
    4%|▍ | 213323/4997817 [00:01<00:31, 152492.14it/s]

    end{sphinxVerbatim}

    -

    4%|▍ | 221526/4997817 [00:01<00:30, 157768.32it/s]

    +

    4%|▍ | 213323/4997817 [00:01<00:31, 152492.14it/s]

    -
    5%|▍ | 237525/4997817 [00:01&lt;00:30, 158432.90it/s]
    +
    5%|▍ | 228641/4997817 [00:01&lt;00:31, 152694.02it/s]

    </pre>

    -
    5%|▍ | 237525/4997817 [00:01<00:30, 158432.90it/s]
    +
    5%|▍ | 228641/4997817 [00:01<00:31, 152694.02it/s]

    end{sphinxVerbatim}

    -

    5%|▍ | 237525/4997817 [00:01<00:30, 158432.90it/s]

    +

    5%|▍ | 228641/4997817 [00:01<00:31, 152694.02it/s]

    -
    5%|▌ | 253373/4997817 [00:01&lt;00:29, 158187.36it/s]
    +
    5%|▍ | 243993/4997817 [00:01&lt;00:31, 152938.07it/s]

    </pre>

    -
    5%|▌ | 253373/4997817 [00:01<00:29, 158187.36it/s]
    +
    5%|▍ | 243993/4997817 [00:01<00:31, 152938.07it/s]

    end{sphinxVerbatim}

    -

    5%|▌ | 253373/4997817 [00:01<00:29, 158187.36it/s]

    +

    5%|▍ | 243993/4997817 [00:01<00:31, 152938.07it/s]

    -
    5%|▌ | 269195/4997817 [00:01&lt;00:29, 158009.60it/s]
    +
    5%|▌ | 259491/4997817 [00:01&lt;00:30, 153547.03it/s]

    </pre>

    -
    5%|▌ | 269195/4997817 [00:01<00:29, 158009.60it/s]
    +
    5%|▌ | 259491/4997817 [00:01<00:30, 153547.03it/s]

    end{sphinxVerbatim}

    -

    5%|▌ | 269195/4997817 [00:01<00:29, 158009.60it/s]

    +

    5%|▌ | 259491/4997817 [00:01<00:30, 153547.03it/s]

    -
    6%|▌ | 284998/4997817 [00:01&lt;00:29, 157833.11it/s]
    +
    5%|▌ | 274849/4997817 [00:01&lt;00:30, 153404.88it/s]

    </pre>

    -
    6%|▌ | 284998/4997817 [00:01<00:29, 157833.11it/s]
    +
    5%|▌ | 274849/4997817 [00:01<00:30, 153404.88it/s]

    end{sphinxVerbatim}

    -

    6%|▌ | 284998/4997817 [00:01<00:29, 157833.11it/s]

    +

    5%|▌ | 274849/4997817 [00:01<00:30, 153404.88it/s]

    -
    6%|▌ | 301002/4997817 [00:01&lt;00:29, 158490.91it/s]
    +
    6%|▌ | 290192/4997817 [00:01&lt;00:30, 153075.01it/s]

    </pre>

    -
    6%|▌ | 301002/4997817 [00:01<00:29, 158490.91it/s]
    +
    6%|▌ | 290192/4997817 [00:01<00:30, 153075.01it/s]

    end{sphinxVerbatim}

    -

    6%|▌ | 301002/4997817 [00:01<00:29, 158490.91it/s]

    +

    6%|▌ | 290192/4997817 [00:01<00:30, 153075.01it/s]

    -
    6%|▋ | 316853/4997817 [00:02&lt;00:30, 154219.28it/s]
    +
    6%|▌ | 305566/4997817 [00:02&lt;00:30, 153271.97it/s]

    </pre>

    -
    6%|▋ | 316853/4997817 [00:02<00:30, 154219.28it/s]
    +
    6%|▌ | 305566/4997817 [00:02<00:30, 153271.97it/s]

    end{sphinxVerbatim}

    -

    6%|▋ | 316853/4997817 [00:02<00:30, 154219.28it/s]

    +

    6%|▌ | 305566/4997817 [00:02<00:30, 153271.97it/s]

    -
    7%|▋ | 332791/4997817 [00:02&lt;00:29, 155731.83it/s]
    +
    6%|▋ | 321135/4997817 [00:02&lt;00:30, 153992.99it/s]

    </pre>

    -
    7%|▋ | 332791/4997817 [00:02<00:29, 155731.83it/s]
    +
    6%|▋ | 321135/4997817 [00:02<00:30, 153992.99it/s]

    end{sphinxVerbatim}

    -

    7%|▋ | 332791/4997817 [00:02<00:29, 155731.83it/s]

    +

    6%|▋ | 321135/4997817 [00:02<00:30, 153992.99it/s]

    -
    7%|▋ | 348789/4997817 [00:02&lt;00:29, 156985.01it/s]
    +
    7%|▋ | 336698/4997817 [00:02&lt;00:30, 154478.90it/s]

    </pre>

    -
    7%|▋ | 348789/4997817 [00:02<00:29, 156985.01it/s]
    +
    7%|▋ | 336698/4997817 [00:02<00:30, 154478.90it/s]

    end{sphinxVerbatim}

    -

    7%|▋ | 348789/4997817 [00:02<00:29, 156985.01it/s]

    +

    7%|▋ | 336698/4997817 [00:02<00:30, 154478.90it/s]

    -
    7%|▋ | 364733/4997817 [00:02&lt;00:29, 157709.81it/s]
    +
    7%|▋ | 352313/4997817 [00:02&lt;00:29, 154975.81it/s]

    </pre>

    -
    7%|▋ | 364733/4997817 [00:02<00:29, 157709.81it/s]
    +
    7%|▋ | 352313/4997817 [00:02<00:29, 154975.81it/s]

    end{sphinxVerbatim}

    -

    7%|▋ | 364733/4997817 [00:02<00:29, 157709.81it/s]

    +

    7%|▋ | 352313/4997817 [00:02<00:29, 154975.81it/s]

    -
    8%|▊ | 380754/4997817 [00:02&lt;00:29, 158450.53it/s]
    +
    7%|▋ | 367876/4997817 [00:02&lt;00:29, 155168.02it/s]

    </pre>

    -
    8%|▊ | 380754/4997817 [00:02<00:29, 158450.53it/s]
    +
    7%|▋ | 367876/4997817 [00:02<00:29, 155168.02it/s]

    end{sphinxVerbatim}

    -

    8%|▊ | 380754/4997817 [00:02<00:29, 158450.53it/s]

    +

    7%|▋ | 367876/4997817 [00:02<00:29, 155168.02it/s]

    -
    8%|▊ | 396750/4997817 [00:02&lt;00:28, 158897.24it/s]
    +
    8%|▊ | 383394/4997817 [00:02&lt;00:29, 155077.74it/s]

    </pre>

    -
    8%|▊ | 396750/4997817 [00:02<00:28, 158897.24it/s]
    +
    8%|▊ | 383394/4997817 [00:02<00:29, 155077.74it/s]

    end{sphinxVerbatim}

    -

    8%|▊ | 396750/4997817 [00:02<00:28, 158897.24it/s]

    +

    8%|▊ | 383394/4997817 [00:02<00:29, 155077.74it/s]

    -
    8%|▊ | 412671/4997817 [00:02&lt;00:28, 158986.37it/s]
    +
    8%|▊ | 398965/4997817 [00:02&lt;00:29, 155263.45it/s]

    </pre>

    -
    8%|▊ | 412671/4997817 [00:02<00:28, 158986.37it/s]
    +
    8%|▊ | 398965/4997817 [00:02<00:29, 155263.45it/s]

    end{sphinxVerbatim}

    -

    8%|▊ | 412671/4997817 [00:02<00:28, 158986.37it/s]

    +

    8%|▊ | 398965/4997817 [00:02<00:29, 155263.45it/s]

    -
    9%|▊ | 428575/4997817 [00:02&lt;00:28, 158676.62it/s]
    +
    8%|▊ | 414492/4997817 [00:02&lt;00:29, 155043.00it/s]

    </pre>

    -
    9%|▊ | 428575/4997817 [00:02<00:28, 158676.62it/s]
    +
    8%|▊ | 414492/4997817 [00:02<00:29, 155043.00it/s]

    end{sphinxVerbatim}

    -

    9%|▊ | 428575/4997817 [00:02<00:28, 158676.62it/s]

    +

    8%|▊ | 414492/4997817 [00:02<00:29, 155043.00it/s]

    -
    9%|▉ | 444446/4997817 [00:02&lt;00:28, 158550.43it/s]
    +
    9%|▊ | 430010/4997817 [00:02&lt;00:29, 155081.99it/s]

    </pre>

    -
    9%|▉ | 444446/4997817 [00:02<00:28, 158550.43it/s]
    +
    9%|▊ | 430010/4997817 [00:02<00:29, 155081.99it/s]

    end{sphinxVerbatim}

    -

    9%|▉ | 444446/4997817 [00:02<00:28, 158550.43it/s]

    +

    9%|▊ | 430010/4997817 [00:02<00:29, 155081.99it/s]

    -
    9%|▉ | 460417/4997817 [00:02&lt;00:28, 158892.84it/s]
    +
    9%|▉ | 445535/4997817 [00:02&lt;00:29, 155130.17it/s]

    </pre>

    -
    9%|▉ | 460417/4997817 [00:02<00:28, 158892.84it/s]
    +
    9%|▉ | 445535/4997817 [00:02<00:29, 155130.17it/s]

    end{sphinxVerbatim}

    -

    9%|▉ | 460417/4997817 [00:02<00:28, 158892.84it/s]

    +

    9%|▉ | 445535/4997817 [00:02<00:29, 155130.17it/s]

    -
    10%|▉ | 476308/4997817 [00:03&lt;00:28, 158775.05it/s]
    +
    9%|▉ | 461061/4997817 [00:03&lt;00:29, 155166.03it/s]

    </pre>

    -
    10%|▉ | 476308/4997817 [00:03<00:28, 158775.05it/s]
    +
    9%|▉ | 461061/4997817 [00:03<00:29, 155166.03it/s]

    end{sphinxVerbatim}

    -

    10%|▉ | 476308/4997817 [00:03<00:28, 158775.05it/s]

    +

    9%|▉ | 461061/4997817 [00:03<00:29, 155166.03it/s]

    -
    10%|▉ | 492187/4997817 [00:03&lt;00:28, 158601.36it/s]
    +
    10%|▉ | 476592/4997817 [00:03&lt;00:29, 155206.80it/s]

    </pre>

    -
    10%|▉ | 492187/4997817 [00:03<00:28, 158601.36it/s]
    +
    10%|▉ | 476592/4997817 [00:03<00:29, 155206.80it/s]

    end{sphinxVerbatim}

    -

    10%|▉ | 492187/4997817 [00:03<00:28, 158601.36it/s]

    +

    10%|▉ | 476592/4997817 [00:03<00:29, 155206.80it/s]

    -
    10%|█ | 508157/4997817 [00:03&lt;00:28, 158926.32it/s]
    +
    10%|▉ | 492212/4997817 [00:03&lt;00:28, 155500.25it/s]

    </pre>

    -
    10%|█ | 508157/4997817 [00:03<00:28, 158926.32it/s]
    +
    10%|▉ | 492212/4997817 [00:03<00:28, 155500.25it/s]

    end{sphinxVerbatim}

    -

    10%|█ | 508157/4997817 [00:03<00:28, 158926.32it/s]

    +

    10%|▉ | 492212/4997817 [00:03<00:28, 155500.25it/s]

    -
    10%|█ | 524051/4997817 [00:03&lt;00:28, 158866.59it/s]
    +
    10%|█ | 507763/4997817 [00:03&lt;00:28, 155454.98it/s]

    </pre>

    -
    10%|█ | 524051/4997817 [00:03<00:28, 158866.59it/s]
    +
    10%|█ | 507763/4997817 [00:03<00:28, 155454.98it/s]

    end{sphinxVerbatim}

    -

    10%|█ | 524051/4997817 [00:03<00:28, 158866.59it/s]

    +

    10%|█ | 507763/4997817 [00:03<00:28, 155454.98it/s]

    -
    11%|█ | 539939/4997817 [00:03&lt;00:28, 158444.77it/s]
    +
    10%|█ | 523309/4997817 [00:03&lt;00:28, 155405.75it/s]

    </pre>

    -
    11%|█ | 539939/4997817 [00:03<00:28, 158444.77it/s]
    +
    10%|█ | 523309/4997817 [00:03<00:28, 155405.75it/s]

    end{sphinxVerbatim}

    -

    11%|█ | 539939/4997817 [00:03<00:28, 158444.77it/s]

    +

    10%|█ | 523309/4997817 [00:03<00:28, 155405.75it/s]

    -
    11%|█ | 555915/4997817 [00:03&lt;00:27, 158834.42it/s]
    +
    11%|█ | 538850/4997817 [00:03&lt;00:28, 155387.41it/s]

    </pre>

    -
    11%|█ | 555915/4997817 [00:03<00:27, 158834.42it/s]
    +
    11%|█ | 538850/4997817 [00:03<00:28, 155387.41it/s]

    end{sphinxVerbatim}

    -

    11%|█ | 555915/4997817 [00:03<00:27, 158834.42it/s]

    +

    11%|█ | 538850/4997817 [00:03<00:28, 155387.41it/s]

    -
    11%|█▏ | 571799/4997817 [00:03&lt;00:27, 158578.95it/s]
    +
    11%|█ | 554484/4997817 [00:03&lt;00:28, 155668.87it/s]

    </pre>

    -
    11%|█▏ | 571799/4997817 [00:03<00:27, 158578.95it/s]
    +
    11%|█ | 554484/4997817 [00:03<00:28, 155668.87it/s]

    end{sphinxVerbatim}

    -

    11%|█▏ | 571799/4997817 [00:03<00:27, 158578.95it/s]

    +

    11%|█ | 554484/4997817 [00:03<00:28, 155668.87it/s]

    -
    12%|█▏ | 587674/4997817 [00:03&lt;00:27, 158627.80it/s]
    +
    11%|█▏ | 570055/4997817 [00:03&lt;00:28, 155677.02it/s]

    </pre>

    -
    12%|█▏ | 587674/4997817 [00:03<00:27, 158627.80it/s]
    +
    11%|█▏ | 570055/4997817 [00:03<00:28, 155677.02it/s]

    end{sphinxVerbatim}

    -

    12%|█▏ | 587674/4997817 [00:03<00:27, 158627.80it/s]

    +

    11%|█▏ | 570055/4997817 [00:03<00:28, 155677.02it/s]

    -
    12%|█▏ | 603538/4997817 [00:03&lt;00:27, 158305.53it/s]
    +
    12%|█▏ | 585623/4997817 [00:03&lt;00:28, 155314.68it/s]

    </pre>

    -
    12%|█▏ | 603538/4997817 [00:03<00:27, 158305.53it/s]
    +
    12%|█▏ | 585623/4997817 [00:03<00:28, 155314.68it/s]

    end{sphinxVerbatim}

    -

    12%|█▏ | 603538/4997817 [00:03<00:27, 158305.53it/s]

    +

    12%|█▏ | 585623/4997817 [00:03<00:28, 155314.68it/s]

    -
    12%|█▏ | 619505/4997817 [00:03&lt;00:27, 158710.53it/s]
    +
    12%|█▏ | 601157/4997817 [00:03&lt;00:28, 155319.64it/s]

    </pre>

    -
    12%|█▏ | 619505/4997817 [00:03<00:27, 158710.53it/s]
    +
    12%|█▏ | 601157/4997817 [00:03<00:28, 155319.64it/s]

    end{sphinxVerbatim}

    -

    12%|█▏ | 619505/4997817 [00:03<00:27, 158710.53it/s]

    +

    12%|█▏ | 601157/4997817 [00:03<00:28, 155319.64it/s]

    -
    13%|█▎ | 635377/4997817 [00:04&lt;00:27, 158448.49it/s]
    +
    12%|█▏ | 616690/4997817 [00:04&lt;00:28, 155095.56it/s]

    </pre>

    -
    13%|█▎ | 635377/4997817 [00:04<00:27, 158448.49it/s]
    +
    12%|█▏ | 616690/4997817 [00:04<00:28, 155095.56it/s]

    end{sphinxVerbatim}

    -

    13%|█▎ | 635377/4997817 [00:04<00:27, 158448.49it/s]

    +

    12%|█▏ | 616690/4997817 [00:04<00:28, 155095.56it/s]

    -
    13%|█▎ | 651310/4997817 [00:04&lt;00:27, 158709.84it/s]
    +
    13%|█▎ | 632200/4997817 [00:04&lt;00:28, 154675.68it/s]

    </pre>

    -
    13%|█▎ | 651310/4997817 [00:04<00:27, 158709.84it/s]
    +
    13%|█▎ | 632200/4997817 [00:04<00:28, 154675.68it/s]

    end{sphinxVerbatim}

    -

    13%|█▎ | 651310/4997817 [00:04<00:27, 158709.84it/s]

    +

    13%|█▎ | 632200/4997817 [00:04<00:28, 154675.68it/s]

    -
    13%|█▎ | 667182/4997817 [00:04&lt;00:27, 158708.74it/s]
    +
    13%|█▎ | 647728/4997817 [00:04&lt;00:28, 154851.79it/s]

    </pre>

    -
    13%|█▎ | 667182/4997817 [00:04<00:27, 158708.74it/s]
    +
    13%|█▎ | 647728/4997817 [00:04<00:28, 154851.79it/s]

    end{sphinxVerbatim}

    -

    13%|█▎ | 667182/4997817 [00:04<00:27, 158708.74it/s]

    +

    13%|█▎ | 647728/4997817 [00:04<00:28, 154851.79it/s]

    -
    14%|█▎ | 683054/4997817 [00:04&lt;00:27, 158642.01it/s]
    +
    13%|█▎ | 663259/4997817 [00:04&lt;00:27, 154984.67it/s]

    </pre>

    -
    14%|█▎ | 683054/4997817 [00:04<00:27, 158642.01it/s]
    +
    13%|█▎ | 663259/4997817 [00:04<00:27, 154984.67it/s]

    end{sphinxVerbatim}

    -

    14%|█▎ | 683054/4997817 [00:04<00:27, 158642.01it/s]

    +

    13%|█▎ | 663259/4997817 [00:04<00:27, 154984.67it/s]

    -
    14%|█▍ | 698919/4997817 [00:04&lt;00:27, 158379.34it/s]
    +
    14%|█▎ | 678785/4997817 [00:04&lt;00:27, 155065.08it/s]

    </pre>

    -
    14%|█▍ | 698919/4997817 [00:04<00:27, 158379.34it/s]
    +
    14%|█▎ | 678785/4997817 [00:04<00:27, 155065.08it/s]

    end{sphinxVerbatim}

    -

    14%|█▍ | 698919/4997817 [00:04<00:27, 158379.34it/s]

    +

    14%|█▎ | 678785/4997817 [00:04<00:27, 155065.08it/s]

    -
    14%|█▍ | 714758/4997817 [00:04&lt;00:27, 158087.60it/s]
    +
    14%|█▍ | 694326/4997817 [00:04&lt;00:27, 155165.37it/s]

    </pre>

    -
    14%|█▍ | 714758/4997817 [00:04<00:27, 158087.60it/s]
    +
    14%|█▍ | 694326/4997817 [00:04<00:27, 155165.37it/s]

    end{sphinxVerbatim}

    -

    14%|█▍ | 714758/4997817 [00:04<00:27, 158087.60it/s]

    +

    14%|█▍ | 694326/4997817 [00:04<00:27, 155165.37it/s]

    -
    15%|█▍ | 730567/4997817 [00:04&lt;00:27, 157944.60it/s]
    +
    14%|█▍ | 709847/4997817 [00:04&lt;00:27, 155176.24it/s]

    </pre>

    -
    15%|█▍ | 730567/4997817 [00:04<00:27, 157944.60it/s]
    +
    14%|█▍ | 709847/4997817 [00:04<00:27, 155176.24it/s]

    end{sphinxVerbatim}

    -

    15%|█▍ | 730567/4997817 [00:04<00:27, 157944.60it/s]

    +

    14%|█▍ | 709847/4997817 [00:04<00:27, 155176.24it/s]

    -
    15%|█▍ | 746362/4997817 [00:04&lt;00:26, 157793.83it/s]
    +
    15%|█▍ | 725382/4997817 [00:04&lt;00:27, 155225.06it/s]

    </pre>

    -
    15%|█▍ | 746362/4997817 [00:04<00:26, 157793.83it/s]
    +
    15%|█▍ | 725382/4997817 [00:04<00:27, 155225.06it/s]

    end{sphinxVerbatim}

    -

    15%|█▍ | 746362/4997817 [00:04<00:26, 157793.83it/s]

    +

    15%|█▍ | 725382/4997817 [00:04<00:27, 155225.06it/s]

    -
    15%|█▌ | 762223/4997817 [00:04&lt;00:26, 158034.29it/s]
    +
    15%|█▍ | 740905/4997817 [00:04&lt;00:27, 155073.36it/s]

    </pre>

    -
    15%|█▌ | 762223/4997817 [00:04<00:26, 158034.29it/s]
    +
    15%|█▍ | 740905/4997817 [00:04<00:27, 155073.36it/s]

    end{sphinxVerbatim}

    -

    15%|█▌ | 762223/4997817 [00:04<00:26, 158034.29it/s]

    +

    15%|█▍ | 740905/4997817 [00:04<00:27, 155073.36it/s]

    -
    16%|█▌ | 778220/4997817 [00:04&lt;00:26, 158611.89it/s]
    +
    15%|█▌ | 756413/4997817 [00:04&lt;00:27, 154986.69it/s]

    </pre>

    -
    16%|█▌ | 778220/4997817 [00:04<00:26, 158611.89it/s]
    +
    15%|█▌ | 756413/4997817 [00:04<00:27, 154986.69it/s]

    end{sphinxVerbatim}

    -

    16%|█▌ | 778220/4997817 [00:04<00:26, 158611.89it/s]

    +

    15%|█▌ | 756413/4997817 [00:04<00:27, 154986.69it/s]

    -
    16%|█▌ | 794085/4997817 [00:05&lt;00:26, 158621.09it/s]
    +
    15%|█▌ | 772046/4997817 [00:05&lt;00:27, 155387.40it/s]

    </pre>

    -
    16%|█▌ | 794085/4997817 [00:05<00:26, 158621.09it/s]
    +
    15%|█▌ | 772046/4997817 [00:05<00:27, 155387.40it/s]

    end{sphinxVerbatim}

    -

    16%|█▌ | 794085/4997817 [00:05<00:26, 158621.09it/s]

    +

    15%|█▌ | 772046/4997817 [00:05<00:27, 155387.40it/s]

    -
    16%|█▌ | 809948/4997817 [00:05&lt;00:26, 158320.81it/s]
    +
    16%|█▌ | 787585/4997817 [00:05&lt;00:27, 155319.95it/s]

    </pre>

    -
    16%|█▌ | 809948/4997817 [00:05<00:26, 158320.81it/s]
    +
    16%|█▌ | 787585/4997817 [00:05<00:27, 155319.95it/s]

    end{sphinxVerbatim}

    -

    16%|█▌ | 809948/4997817 [00:05<00:26, 158320.81it/s]

    +

    16%|█▌ | 787585/4997817 [00:05<00:27, 155319.95it/s]

    -
    17%|█▋ | 825965/4997817 [00:05&lt;00:26, 158870.11it/s]
    +
    16%|█▌ | 803295/4997817 [00:05&lt;00:26, 155851.67it/s]

    </pre>

    -
    17%|█▋ | 825965/4997817 [00:05<00:26, 158870.11it/s]
    +
    16%|█▌ | 803295/4997817 [00:05<00:26, 155851.67it/s]

    end{sphinxVerbatim}

    -

    17%|█▋ | 825965/4997817 [00:05<00:26, 158870.11it/s]

    +

    16%|█▌ | 803295/4997817 [00:05<00:26, 155851.67it/s]

    -
    17%|█▋ | 841913/4997817 [00:05&lt;00:26, 159049.12it/s]
    +
    16%|█▋ | 818903/4997817 [00:05&lt;00:26, 155917.61it/s]

    </pre>

    -
    17%|█▋ | 841913/4997817 [00:05<00:26, 159049.12it/s]
    +
    16%|█▋ | 818903/4997817 [00:05<00:26, 155917.61it/s]

    end{sphinxVerbatim}

    -

    17%|█▋ | 841913/4997817 [00:05<00:26, 159049.12it/s]

    +

    16%|█▋ | 818903/4997817 [00:05<00:26, 155917.61it/s]

    -
    17%|█▋ | 857819/4997817 [00:05&lt;00:26, 159026.18it/s]
    +
    17%|█▋ | 834504/4997817 [00:05&lt;00:26, 155940.90it/s]

    </pre>

    -
    17%|█▋ | 857819/4997817 [00:05<00:26, 159026.18it/s]
    +
    17%|█▋ | 834504/4997817 [00:05<00:26, 155940.90it/s]

    end{sphinxVerbatim}

    -

    17%|█▋ | 857819/4997817 [00:05<00:26, 159026.18it/s]

    +

    17%|█▋ | 834504/4997817 [00:05<00:26, 155940.90it/s]

    -
    17%|█▋ | 873722/4997817 [00:05&lt;00:26, 158358.95it/s]
    +
    17%|█▋ | 850099/4997817 [00:05&lt;00:26, 155867.44it/s]

    </pre>

    -
    17%|█▋ | 873722/4997817 [00:05<00:26, 158358.95it/s]
    +
    17%|█▋ | 850099/4997817 [00:05<00:26, 155867.44it/s]

    end{sphinxVerbatim}

    -

    17%|█▋ | 873722/4997817 [00:05<00:26, 158358.95it/s]

    +

    17%|█▋ | 850099/4997817 [00:05<00:26, 155867.44it/s]

    -
    18%|█▊ | 889606/4997817 [00:05&lt;00:25, 158499.30it/s]
    +
    17%|█▋ | 865773/4997817 [00:05&lt;00:26, 156125.42it/s]

    </pre>

    -
    18%|█▊ | 889606/4997817 [00:05<00:25, 158499.30it/s]
    +
    17%|█▋ | 865773/4997817 [00:05<00:26, 156125.42it/s]

    end{sphinxVerbatim}

    -

    18%|█▊ | 889606/4997817 [00:05<00:25, 158499.30it/s]

    +

    17%|█▋ | 865773/4997817 [00:05<00:26, 156125.42it/s]

    -
    18%|█▊ | 905457/4997817 [00:05&lt;00:25, 158435.63it/s]
    +
    18%|█▊ | 881399/4997817 [00:05&lt;00:26, 156162.25it/s]

    </pre>

    -
    18%|█▊ | 905457/4997817 [00:05<00:25, 158435.63it/s]
    +
    18%|█▊ | 881399/4997817 [00:05<00:26, 156162.25it/s]

    end{sphinxVerbatim}

    -

    18%|█▊ | 905457/4997817 [00:05<00:25, 158435.63it/s]

    +

    18%|█▊ | 881399/4997817 [00:05<00:26, 156162.25it/s]

    -
    18%|█▊ | 921348/4997817 [00:05&lt;00:25, 158576.34it/s]
    +
    18%|█▊ | 897053/4997817 [00:05&lt;00:26, 156272.01it/s]

    </pre>

    -
    18%|█▊ | 921348/4997817 [00:05<00:25, 158576.34it/s]
    +
    18%|█▊ | 897053/4997817 [00:05<00:26, 156272.01it/s]

    end{sphinxVerbatim}

    -

    18%|█▊ | 921348/4997817 [00:05<00:25, 158576.34it/s]

    +

    18%|█▊ | 897053/4997817 [00:05<00:26, 156272.01it/s]

    -
    19%|█▉ | 937206/4997817 [00:05&lt;00:25, 158455.70it/s]
    +
    18%|█▊ | 912767/4997817 [00:05&lt;00:26, 156528.03it/s]

    </pre>

    -
    19%|█▉ | 937206/4997817 [00:05<00:25, 158455.70it/s]
    +
    18%|█▊ | 912767/4997817 [00:05<00:26, 156528.03it/s]

    end{sphinxVerbatim}

    -

    19%|█▉ | 937206/4997817 [00:05<00:25, 158455.70it/s]

    +

    18%|█▊ | 912767/4997817 [00:05<00:26, 156528.03it/s]

    -
    19%|█▉ | 953141/4997817 [00:06&lt;00:25, 158720.00it/s]
    +
    19%|█▊ | 928420/4997817 [00:06&lt;00:26, 156049.47it/s]

    </pre>

    -
    19%|█▉ | 953141/4997817 [00:06<00:25, 158720.00it/s]
    +
    19%|█▊ | 928420/4997817 [00:06<00:26, 156049.47it/s]

    end{sphinxVerbatim}

    -

    19%|█▉ | 953141/4997817 [00:06<00:25, 158720.00it/s]

    +

    19%|█▊ | 928420/4997817 [00:06<00:26, 156049.47it/s]

    -
    19%|█▉ | 969014/4997817 [00:06&lt;00:25, 158563.42it/s]
    +
    19%|█▉ | 944026/4997817 [00:06&lt;00:26, 155540.63it/s]

    </pre>

    -
    19%|█▉ | 969014/4997817 [00:06<00:25, 158563.42it/s]
    +
    19%|█▉ | 944026/4997817 [00:06<00:26, 155540.63it/s]

    end{sphinxVerbatim}

    -

    19%|█▉ | 969014/4997817 [00:06<00:25, 158563.42it/s]

    +

    19%|█▉ | 944026/4997817 [00:06<00:26, 155540.63it/s]

    -
    20%|█▉ | 984871/4997817 [00:06&lt;00:25, 158524.56it/s]
    +
    19%|█▉ | 959667/4997817 [00:06&lt;00:25, 155796.70it/s]

    </pre>

    -
    20%|█▉ | 984871/4997817 [00:06<00:25, 158524.56it/s]
    +
    19%|█▉ | 959667/4997817 [00:06<00:25, 155796.70it/s]

    end{sphinxVerbatim}

    -

    20%|█▉ | 984871/4997817 [00:06<00:25, 158524.56it/s]

    +

    19%|█▉ | 959667/4997817 [00:06<00:25, 155796.70it/s]

    -
    20%|██ | 1000724/4997817 [00:06&lt;00:25, 158216.43it/s]
    +
    20%|█▉ | 975248/4997817 [00:06&lt;00:25, 155662.15it/s]

    </pre>

    -
    20%|██ | 1000724/4997817 [00:06<00:25, 158216.43it/s]
    +
    20%|█▉ | 975248/4997817 [00:06<00:25, 155662.15it/s]

    end{sphinxVerbatim}

    -

    20%|██ | 1000724/4997817 [00:06<00:25, 158216.43it/s]

    +

    20%|█▉ | 975248/4997817 [00:06<00:25, 155662.15it/s]

    -
    20%|██ | 1016660/4997817 [00:06&lt;00:25, 158556.29it/s]
    +
    20%|█▉ | 990815/4997817 [00:06&lt;00:25, 155532.50it/s]

    </pre>

    -
    20%|██ | 1016660/4997817 [00:06<00:25, 158556.29it/s]
    +
    20%|█▉ | 990815/4997817 [00:06<00:25, 155532.50it/s]

    end{sphinxVerbatim}

    -

    20%|██ | 1016660/4997817 [00:06<00:25, 158556.29it/s]

    +

    20%|█▉ | 990815/4997817 [00:06<00:25, 155532.50it/s]

    -
    21%|██ | 1032516/4997817 [00:06&lt;00:25, 158466.12it/s]
    +
    20%|██ | 1006369/4997817 [00:06&lt;00:25, 155139.14it/s]

    </pre>

    -
    21%|██ | 1032516/4997817 [00:06<00:25, 158466.12it/s]
    +
    20%|██ | 1006369/4997817 [00:06<00:25, 155139.14it/s]

    end{sphinxVerbatim}

    -

    21%|██ | 1032516/4997817 [00:06<00:25, 158466.12it/s]

    +

    20%|██ | 1006369/4997817 [00:06<00:25, 155139.14it/s]

    -
    21%|██ | 1048446/4997817 [00:06&lt;00:24, 158711.88it/s]
    +
    20%|██ | 1021963/4997817 [00:06&lt;00:25, 155348.72it/s]

    </pre>

    -
    21%|██ | 1048446/4997817 [00:06<00:24, 158711.88it/s]
    +
    20%|██ | 1021963/4997817 [00:06<00:25, 155348.72it/s]

    end{sphinxVerbatim}

    -

    21%|██ | 1048446/4997817 [00:06<00:24, 158711.88it/s]

    +

    20%|██ | 1021963/4997817 [00:06<00:25, 155348.72it/s]

    -
    21%|██▏ | 1064367/4997817 [00:06&lt;00:24, 158858.36it/s]
    +
    21%|██ | 1037616/4997817 [00:06&lt;00:25, 155699.80it/s]

    </pre>

    -
    21%|██▏ | 1064367/4997817 [00:06<00:24, 158858.36it/s]
    +
    21%|██ | 1037616/4997817 [00:06<00:25, 155699.80it/s]

    end{sphinxVerbatim}

    -

    21%|██▏ | 1064367/4997817 [00:06<00:24, 158858.36it/s]

    +

    21%|██ | 1037616/4997817 [00:06<00:25, 155699.80it/s]

    -
    22%|██▏ | 1080253/4997817 [00:06&lt;00:24, 158782.98it/s]
    +
    21%|██ | 1053288/4997817 [00:06&lt;00:25, 156000.57it/s]

    </pre>

    -
    22%|██▏ | 1080253/4997817 [00:06<00:24, 158782.98it/s]
    +
    21%|██ | 1053288/4997817 [00:06<00:25, 156000.57it/s]

    end{sphinxVerbatim}

    -

    22%|██▏ | 1080253/4997817 [00:06<00:24, 158782.98it/s]

    +

    21%|██ | 1053288/4997817 [00:06<00:25, 156000.57it/s]

    -
    22%|██▏ | 1096132/4997817 [00:06&lt;00:24, 158576.72it/s]
    +
    21%|██▏ | 1068998/4997817 [00:06&lt;00:25, 156326.00it/s]

    </pre>

    -
    22%|██▏ | 1096132/4997817 [00:06<00:24, 158576.72it/s]
    +
    21%|██▏ | 1068998/4997817 [00:06<00:25, 156326.00it/s]

    end{sphinxVerbatim}

    -

    22%|██▏ | 1096132/4997817 [00:06<00:24, 158576.72it/s]

    +

    21%|██▏ | 1068998/4997817 [00:06<00:25, 156326.00it/s]

    -
    22%|██▏ | 1112023/4997817 [00:07&lt;00:24, 158673.09it/s]
    +
    22%|██▏ | 1084631/4997817 [00:07&lt;00:25, 156080.97it/s]

    </pre>

    -
    22%|██▏ | 1112023/4997817 [00:07<00:24, 158673.09it/s]
    +
    22%|██▏ | 1084631/4997817 [00:07<00:25, 156080.97it/s]

    end{sphinxVerbatim}

    -

    22%|██▏ | 1112023/4997817 [00:07<00:24, 158673.09it/s]

    +

    22%|██▏ | 1084631/4997817 [00:07<00:25, 156080.97it/s]

    -
    23%|██▎ | 1127891/4997817 [00:07&lt;00:24, 158287.29it/s]
    +
    22%|██▏ | 1100248/4997817 [00:07&lt;00:24, 156103.33it/s]

    </pre>

    -
    23%|██▎ | 1127891/4997817 [00:07<00:24, 158287.29it/s]
    +
    22%|██▏ | 1100248/4997817 [00:07<00:24, 156103.33it/s]

    end{sphinxVerbatim}

    -

    23%|██▎ | 1127891/4997817 [00:07<00:24, 158287.29it/s]

    +

    22%|██▏ | 1100248/4997817 [00:07<00:24, 156103.33it/s]

    -
    23%|██▎ | 1143728/4997817 [00:07&lt;00:24, 158280.58it/s]
    +
    22%|██▏ | 1115868/4997817 [00:07&lt;00:24, 156130.44it/s]

    </pre>

    -
    23%|██▎ | 1143728/4997817 [00:07<00:24, 158280.58it/s]
    +
    22%|██▏ | 1115868/4997817 [00:07<00:24, 156130.44it/s]

    end{sphinxVerbatim}

    -

    23%|██▎ | 1143728/4997817 [00:07<00:24, 158280.58it/s]

    +

    22%|██▏ | 1115868/4997817 [00:07<00:24, 156130.44it/s]

    -
    23%|██▎ | 1159571/4997817 [00:07&lt;00:24, 158322.88it/s]
    +
    23%|██▎ | 1131502/4997817 [00:07&lt;00:24, 156189.39it/s]

    </pre>

    -
    23%|██▎ | 1159571/4997817 [00:07<00:24, 158322.88it/s]
    +
    23%|██▎ | 1131502/4997817 [00:07<00:24, 156189.39it/s]

    end{sphinxVerbatim}

    -

    23%|██▎ | 1159571/4997817 [00:07<00:24, 158322.88it/s]

    +

    23%|██▎ | 1131502/4997817 [00:07<00:24, 156189.39it/s]

    -
    24%|██▎ | 1175404/4997817 [00:07&lt;00:24, 158003.51it/s]
    +
    23%|██▎ | 1147133/4997817 [00:07&lt;00:24, 156223.03it/s]

    </pre>

    -
    24%|██▎ | 1175404/4997817 [00:07<00:24, 158003.51it/s]
    +
    23%|██▎ | 1147133/4997817 [00:07<00:24, 156223.03it/s]

    end{sphinxVerbatim}

    -

    24%|██▎ | 1175404/4997817 [00:07<00:24, 158003.51it/s]

    +

    23%|██▎ | 1147133/4997817 [00:07<00:24, 156223.03it/s]

    -
    24%|██▍ | 1191255/4997817 [00:07&lt;00:24, 158140.48it/s]
    +
    23%|██▎ | 1162756/4997817 [00:07&lt;00:24, 156176.59it/s]

    </pre>

    -
    24%|██▍ | 1191255/4997817 [00:07<00:24, 158140.48it/s]
    +
    23%|██▎ | 1162756/4997817 [00:07<00:24, 156176.59it/s]

    end{sphinxVerbatim}

    -

    24%|██▍ | 1191255/4997817 [00:07<00:24, 158140.48it/s]

    +

    23%|██▎ | 1162756/4997817 [00:07<00:24, 156176.59it/s]

    -
    24%|██▍ | 1207070/4997817 [00:07&lt;00:24, 157891.06it/s]
    +
    24%|██▎ | 1178374/4997817 [00:07&lt;00:24, 155958.14it/s]

    </pre>

    -
    24%|██▍ | 1207070/4997817 [00:07<00:24, 157891.06it/s]
    +
    24%|██▎ | 1178374/4997817 [00:07<00:24, 155958.14it/s]

    end{sphinxVerbatim}

    -

    24%|██▍ | 1207070/4997817 [00:07<00:24, 157891.06it/s]

    +

    24%|██▎ | 1178374/4997817 [00:07<00:24, 155958.14it/s]

    -
    24%|██▍ | 1222860/4997817 [00:07&lt;00:23, 157833.98it/s]
    +
    24%|██▍ | 1193970/4997817 [00:07&lt;00:24, 155667.97it/s]

    </pre>

    -
    24%|██▍ | 1222860/4997817 [00:07<00:23, 157833.98it/s]
    +
    24%|██▍ | 1193970/4997817 [00:07<00:24, 155667.97it/s]

    end{sphinxVerbatim}

    -

    24%|██▍ | 1222860/4997817 [00:07<00:23, 157833.98it/s]

    +

    24%|██▍ | 1193970/4997817 [00:07<00:24, 155667.97it/s]

    -
    25%|██▍ | 1238644/4997817 [00:07&lt;00:23, 157669.57it/s]
    +
    24%|██▍ | 1209566/4997817 [00:07&lt;00:24, 155750.20it/s]

    </pre>

    -
    25%|██▍ | 1238644/4997817 [00:07<00:23, 157669.57it/s]
    +
    24%|██▍ | 1209566/4997817 [00:07<00:24, 155750.20it/s]

    end{sphinxVerbatim}

    -

    25%|██▍ | 1238644/4997817 [00:07<00:23, 157669.57it/s]

    +

    24%|██▍ | 1209566/4997817 [00:07<00:24, 155750.20it/s]

    -
    25%|██▌ | 1254503/4997817 [00:07&lt;00:23, 157943.37it/s]
    +
    25%|██▍ | 1225182/4997817 [00:07&lt;00:24, 155870.32it/s]

    </pre>

    -
    25%|██▌ | 1254503/4997817 [00:07<00:23, 157943.37it/s]
    +
    25%|██▍ | 1225182/4997817 [00:07<00:24, 155870.32it/s]

    end{sphinxVerbatim}

    -

    25%|██▌ | 1254503/4997817 [00:07<00:23, 157943.37it/s]

    +

    25%|██▍ | 1225182/4997817 [00:07<00:24, 155870.32it/s]

    -
    25%|██▌ | 1270298/4997817 [00:08&lt;00:23, 157893.30it/s]
    +
    25%|██▍ | 1240771/4997817 [00:08&lt;00:24, 155871.58it/s]

    </pre>

    -
    25%|██▌ | 1270298/4997817 [00:08<00:23, 157893.30it/s]
    +
    25%|██▍ | 1240771/4997817 [00:08<00:24, 155871.58it/s]

    end{sphinxVerbatim}

    -

    25%|██▌ | 1270298/4997817 [00:08<00:23, 157893.30it/s]

    +

    25%|██▍ | 1240771/4997817 [00:08<00:24, 155871.58it/s]

    -
    26%|██▌ | 1286088/4997817 [00:08&lt;00:23, 157203.81it/s]
    +
    25%|██▌ | 1256359/4997817 [00:08&lt;00:24, 155587.49it/s]

    </pre>

    -
    26%|██▌ | 1286088/4997817 [00:08<00:23, 157203.81it/s]
    +
    25%|██▌ | 1256359/4997817 [00:08<00:24, 155587.49it/s]

    end{sphinxVerbatim}

    -

    26%|██▌ | 1286088/4997817 [00:08<00:23, 157203.81it/s]

    +

    25%|██▌ | 1256359/4997817 [00:08<00:24, 155587.49it/s]

    -
    26%|██▌ | 1301914/4997817 [00:08&lt;00:23, 157517.66it/s]
    +
    25%|██▌ | 1271995/4997817 [00:08&lt;00:23, 155816.30it/s]

    </pre>

    -
    26%|██▌ | 1301914/4997817 [00:08<00:23, 157517.66it/s]
    +
    25%|██▌ | 1271995/4997817 [00:08<00:23, 155816.30it/s]

    end{sphinxVerbatim}

    -

    26%|██▌ | 1301914/4997817 [00:08<00:23, 157517.66it/s]

    +

    25%|██▌ | 1271995/4997817 [00:08<00:23, 155816.30it/s]

    -
    26%|██▋ | 1318042/4997817 [00:08&lt;00:23, 158639.10it/s]
    +
    26%|██▌ | 1287648/4997817 [00:08&lt;00:23, 156026.05it/s]

    </pre>

    -
    26%|██▋ | 1318042/4997817 [00:08<00:23, 158639.10it/s]
    +
    26%|██▌ | 1287648/4997817 [00:08<00:23, 156026.05it/s]

    end{sphinxVerbatim}

    -

    26%|██▋ | 1318042/4997817 [00:08<00:23, 158639.10it/s]

    +

    26%|██▌ | 1287648/4997817 [00:08<00:23, 156026.05it/s]

    -
    27%|██▋ | 1334160/4997817 [00:08&lt;00:22, 159397.76it/s]
    +
    26%|██▌ | 1303353/4997817 [00:08&lt;00:23, 156329.75it/s]

    </pre>

    -
    27%|██▋ | 1334160/4997817 [00:08<00:22, 159397.76it/s]
    +
    26%|██▌ | 1303353/4997817 [00:08<00:23, 156329.75it/s]

    end{sphinxVerbatim}

    -

    27%|██▋ | 1334160/4997817 [00:08<00:22, 159397.76it/s]

    +

    26%|██▌ | 1303353/4997817 [00:08<00:23, 156329.75it/s]

    -
    27%|██▋ | 1350245/4997817 [00:08&lt;00:22, 159828.88it/s]
    +
    26%|██▋ | 1318987/4997817 [00:08&lt;00:23, 156114.83it/s]

    </pre>

    -
    27%|██▋ | 1350245/4997817 [00:08<00:22, 159828.88it/s]
    +
    26%|██▋ | 1318987/4997817 [00:08<00:23, 156114.83it/s]

    end{sphinxVerbatim}

    -

    27%|██▋ | 1350245/4997817 [00:08<00:22, 159828.88it/s]

    +

    26%|██▋ | 1318987/4997817 [00:08<00:23, 156114.83it/s]

    -
    27%|██▋ | 1366306/4997817 [00:08&lt;00:22, 160060.40it/s]
    +
    27%|██▋ | 1334661/4997817 [00:08&lt;00:23, 156298.69it/s]

    </pre>

    -
    27%|██▋ | 1366306/4997817 [00:08<00:22, 160060.40it/s]
    +
    27%|██▋ | 1334661/4997817 [00:08<00:23, 156298.69it/s]

    end{sphinxVerbatim}

    -

    27%|██▋ | 1366306/4997817 [00:08<00:22, 160060.40it/s]

    +

    27%|██▋ | 1334661/4997817 [00:08<00:23, 156298.69it/s]

    -
    28%|██▊ | 1382313/4997817 [00:08&lt;00:22, 159885.16it/s]
    +
    27%|██▋ | 1350362/4997817 [00:08&lt;00:23, 156508.78it/s]

    </pre>

    -
    28%|██▊ | 1382313/4997817 [00:08<00:22, 159885.16it/s]
    +
    27%|██▋ | 1350362/4997817 [00:08<00:23, 156508.78it/s]

    end{sphinxVerbatim}

    -

    28%|██▊ | 1382313/4997817 [00:08<00:22, 159885.16it/s]

    +

    27%|██▋ | 1350362/4997817 [00:08<00:23, 156508.78it/s]

    -
    28%|██▊ | 1398302/4997817 [00:08&lt;00:22, 159798.99it/s]
    +
    27%|██▋ | 1366059/4997817 [00:08&lt;00:23, 156644.85it/s]

    </pre>

    -
    28%|██▊ | 1398302/4997817 [00:08<00:22, 159798.99it/s]
    +
    27%|██▋ | 1366059/4997817 [00:08<00:23, 156644.85it/s]

    end{sphinxVerbatim}

    -

    28%|██▊ | 1398302/4997817 [00:08<00:22, 159798.99it/s]

    +

    27%|██▋ | 1366059/4997817 [00:08<00:23, 156644.85it/s]

    -
    28%|██▊ | 1414283/4997817 [00:08&lt;00:22, 159564.68it/s]
    +
    28%|██▊ | 1381734/4997817 [00:08&lt;00:23, 156672.73it/s]

    </pre>

    -
    28%|██▊ | 1414283/4997817 [00:08<00:22, 159564.68it/s]
    +
    28%|██▊ | 1381734/4997817 [00:08<00:23, 156672.73it/s]

    end{sphinxVerbatim}

    -

    28%|██▊ | 1414283/4997817 [00:08<00:22, 159564.68it/s]

    +

    28%|██▊ | 1381734/4997817 [00:08<00:23, 156672.73it/s]

    -
    29%|██▊ | 1430353/4997817 [00:09&lt;00:22, 159903.29it/s]
    +
    28%|██▊ | 1397441/4997817 [00:09&lt;00:22, 156790.90it/s]

    </pre>

    -
    29%|██▊ | 1430353/4997817 [00:09<00:22, 159903.29it/s]
    +
    28%|██▊ | 1397441/4997817 [00:09<00:22, 156790.90it/s]

    end{sphinxVerbatim}

    -

    29%|██▊ | 1430353/4997817 [00:09<00:22, 159903.29it/s]

    +

    28%|██▊ | 1397441/4997817 [00:09<00:22, 156790.90it/s]

    -
    29%|██▉ | 1446451/4997817 [00:09&lt;00:22, 160222.25it/s]
    +
    28%|██▊ | 1413121/4997817 [00:09&lt;00:22, 156732.15it/s]

    </pre>

    -
    29%|██▉ | 1446451/4997817 [00:09<00:22, 160222.25it/s]
    +
    28%|██▊ | 1413121/4997817 [00:09<00:22, 156732.15it/s]

    end{sphinxVerbatim}

    -

    29%|██▉ | 1446451/4997817 [00:09<00:22, 160222.25it/s]

    +

    28%|██▊ | 1413121/4997817 [00:09<00:22, 156732.15it/s]

    -
    29%|██▉ | 1462525/4997817 [00:09&lt;00:22, 160375.18it/s]
    +
    29%|██▊ | 1428795/4997817 [00:09&lt;00:22, 156728.94it/s]

    </pre>

    -
    29%|██▉ | 1462525/4997817 [00:09<00:22, 160375.18it/s]
    +
    29%|██▊ | 1428795/4997817 [00:09<00:22, 156728.94it/s]

    end{sphinxVerbatim}

    -

    29%|██▉ | 1462525/4997817 [00:09<00:22, 160375.18it/s]

    +

    29%|██▊ | 1428795/4997817 [00:09<00:22, 156728.94it/s]

    -
    30%|██▉ | 1478572/4997817 [00:09&lt;00:21, 160401.01it/s]
    +
    29%|██▉ | 1444468/4997817 [00:09&lt;00:22, 156303.73it/s]

    </pre>

    -
    30%|██▉ | 1478572/4997817 [00:09<00:21, 160401.01it/s]
    +
    29%|██▉ | 1444468/4997817 [00:09<00:22, 156303.73it/s]

    end{sphinxVerbatim}

    -

    30%|██▉ | 1478572/4997817 [00:09<00:21, 160401.01it/s]

    +

    29%|██▉ | 1444468/4997817 [00:09<00:22, 156303.73it/s]

    -
    30%|██▉ | 1494613/4997817 [00:09&lt;00:21, 160375.89it/s]
    +
    29%|██▉ | 1460162/4997817 [00:09&lt;00:22, 156492.46it/s]

    </pre>

    -
    30%|██▉ | 1494613/4997817 [00:09<00:21, 160375.89it/s]
    +
    29%|██▉ | 1460162/4997817 [00:09<00:22, 156492.46it/s]

    end{sphinxVerbatim}

    -

    30%|██▉ | 1494613/4997817 [00:09<00:21, 160375.89it/s]

    +

    29%|██▉ | 1460162/4997817 [00:09<00:22, 156492.46it/s]

    -
    30%|███ | 1510651/4997817 [00:09&lt;00:21, 160197.25it/s]
    +
    30%|██▉ | 1475847/4997817 [00:09&lt;00:22, 156596.70it/s]

    </pre>

    -
    30%|███ | 1510651/4997817 [00:09<00:21, 160197.25it/s]
    +
    30%|██▉ | 1475847/4997817 [00:09<00:22, 156596.70it/s]

    end{sphinxVerbatim}

    -

    30%|███ | 1510651/4997817 [00:09<00:21, 160197.25it/s]

    +

    30%|██▉ | 1475847/4997817 [00:09<00:22, 156596.70it/s]

    -
    31%|███ | 1526671/4997817 [00:09&lt;00:21, 159669.14it/s]
    +
    30%|██▉ | 1491541/4997817 [00:09&lt;00:22, 156698.50it/s]

    </pre>

    -
    31%|███ | 1526671/4997817 [00:09<00:21, 159669.14it/s]
    +
    30%|██▉ | 1491541/4997817 [00:09<00:22, 156698.50it/s]

    end{sphinxVerbatim}

    -

    31%|███ | 1526671/4997817 [00:09<00:21, 159669.14it/s]

    +

    30%|██▉ | 1491541/4997817 [00:09<00:22, 156698.50it/s]

    -
    31%|███ | 1542639/4997817 [00:09&lt;00:21, 159484.11it/s]
    +
    30%|███ | 1507211/4997817 [00:09&lt;00:22, 156694.74it/s]

    </pre>

    -
    31%|███ | 1542639/4997817 [00:09<00:21, 159484.11it/s]
    +
    30%|███ | 1507211/4997817 [00:09<00:22, 156694.74it/s]

    end{sphinxVerbatim}

    -

    31%|███ | 1542639/4997817 [00:09<00:21, 159484.11it/s]

    +

    30%|███ | 1507211/4997817 [00:09<00:22, 156694.74it/s]

    -
    31%|███ | 1558590/4997817 [00:09&lt;00:21, 159489.29it/s]
    +
    30%|███ | 1522881/4997817 [00:09&lt;00:22, 156531.20it/s]

    </pre>

    -
    31%|███ | 1558590/4997817 [00:09<00:21, 159489.29it/s]
    +
    30%|███ | 1522881/4997817 [00:09<00:22, 156531.20it/s]

    end{sphinxVerbatim}

    -

    31%|███ | 1558590/4997817 [00:09<00:21, 159489.29it/s]

    +

    30%|███ | 1522881/4997817 [00:09<00:22, 156531.20it/s]

    -
    32%|███▏ | 1574540/4997817 [00:09&lt;00:21, 159474.10it/s]
    +
    31%|███ | 1538535/4997817 [00:09&lt;00:22, 156505.59it/s]

    </pre>

    -
    32%|███▏ | 1574540/4997817 [00:09<00:21, 159474.10it/s]
    +
    31%|███ | 1538535/4997817 [00:09<00:22, 156505.59it/s]

    end{sphinxVerbatim}

    -

    32%|███▏ | 1574540/4997817 [00:09<00:21, 159474.10it/s]

    +

    31%|███ | 1538535/4997817 [00:09<00:22, 156505.59it/s]

    -
    32%|███▏ | 1590488/4997817 [00:10&lt;00:21, 159413.30it/s]
    +
    31%|███ | 1554223/4997817 [00:10&lt;00:21, 156613.94it/s]

    </pre>

    -
    32%|███▏ | 1590488/4997817 [00:10<00:21, 159413.30it/s]
    +
    31%|███ | 1554223/4997817 [00:10<00:21, 156613.94it/s]

    end{sphinxVerbatim}

    -

    32%|███▏ | 1590488/4997817 [00:10<00:21, 159413.30it/s]

    +

    31%|███ | 1554223/4997817 [00:10<00:21, 156613.94it/s]

    -
    32%|███▏ | 1606510/4997817 [00:10&lt;00:21, 159653.31it/s]
    +
    31%|███▏ | 1569885/4997817 [00:10&lt;00:21, 156472.42it/s]

    </pre>

    -
    32%|███▏ | 1606510/4997817 [00:10<00:21, 159653.31it/s]
    +
    31%|███▏ | 1569885/4997817 [00:10<00:21, 156472.42it/s]

    end{sphinxVerbatim}

    -

    32%|███▏ | 1606510/4997817 [00:10<00:21, 159653.31it/s]

    +

    31%|███▏ | 1569885/4997817 [00:10<00:21, 156472.42it/s]

    -
    32%|███▏ | 1622476/4997817 [00:10&lt;00:21, 159292.49it/s]
    +
    32%|███▏ | 1585533/4997817 [00:10&lt;00:21, 156384.79it/s]

    </pre>

    -
    32%|███▏ | 1622476/4997817 [00:10<00:21, 159292.49it/s]
    +
    32%|███▏ | 1585533/4997817 [00:10<00:21, 156384.79it/s]

    end{sphinxVerbatim}

    -

    32%|███▏ | 1622476/4997817 [00:10<00:21, 159292.49it/s]

    +

    32%|███▏ | 1585533/4997817 [00:10<00:21, 156384.79it/s]

    -
    33%|███▎ | 1638491/4997817 [00:10&lt;00:21, 159546.81it/s]
    +
    32%|███▏ | 1601172/4997817 [00:10&lt;00:21, 155887.13it/s]

    </pre>

    -
    33%|███▎ | 1638491/4997817 [00:10<00:21, 159546.81it/s]
    +
    32%|███▏ | 1601172/4997817 [00:10<00:21, 155887.13it/s]

    end{sphinxVerbatim}

    -

    33%|███▎ | 1638491/4997817 [00:10<00:21, 159546.81it/s]

    +

    32%|███▏ | 1601172/4997817 [00:10<00:21, 155887.13it/s]

    -
    33%|███▎ | 1654446/4997817 [00:10&lt;00:20, 159265.41it/s]
    +
    32%|███▏ | 1616779/4997817 [00:10&lt;00:21, 155938.20it/s]

    </pre>

    -
    33%|███▎ | 1654446/4997817 [00:10<00:20, 159265.41it/s]
    +
    32%|███▏ | 1616779/4997817 [00:10<00:21, 155938.20it/s]

    end{sphinxVerbatim}

    -

    33%|███▎ | 1654446/4997817 [00:10<00:20, 159265.41it/s]

    +

    32%|███▏ | 1616779/4997817 [00:10<00:21, 155938.20it/s]

    -
    33%|███▎ | 1670373/4997817 [00:10&lt;00:20, 159054.93it/s]
    +
    33%|███▎ | 1632374/4997817 [00:10&lt;00:21, 155856.46it/s]

    </pre>

    -
    33%|███▎ | 1670373/4997817 [00:10<00:20, 159054.93it/s]
    +
    33%|███▎ | 1632374/4997817 [00:10<00:21, 155856.46it/s]

    end{sphinxVerbatim}

    -

    33%|███▎ | 1670373/4997817 [00:10<00:20, 159054.93it/s]

    +

    33%|███▎ | 1632374/4997817 [00:10<00:21, 155856.46it/s]

    -
    34%|███▎ | 1686370/4997817 [00:10&lt;00:20, 159326.74it/s]
    +
    33%|███▎ | 1647960/4997817 [00:10&lt;00:21, 155758.60it/s]

    </pre>

    -
    34%|███▎ | 1686370/4997817 [00:10<00:20, 159326.74it/s]
    +
    33%|███▎ | 1647960/4997817 [00:10<00:21, 155758.60it/s]

    end{sphinxVerbatim}

    -

    34%|███▎ | 1686370/4997817 [00:10<00:20, 159326.74it/s]

    +

    33%|███▎ | 1647960/4997817 [00:10<00:21, 155758.60it/s]

    -
    34%|███▍ | 1702372/4997817 [00:10&lt;00:20, 159531.43it/s]
    +
    33%|███▎ | 1663536/4997817 [00:10&lt;00:21, 155540.29it/s]

    </pre>

    -
    34%|███▍ | 1702372/4997817 [00:10<00:20, 159531.43it/s]
    +
    33%|███▎ | 1663536/4997817 [00:10<00:21, 155540.29it/s]

    end{sphinxVerbatim}

    -

    34%|███▍ | 1702372/4997817 [00:10<00:20, 159531.43it/s]

    +

    33%|███▎ | 1663536/4997817 [00:10<00:21, 155540.29it/s]

    -
    34%|███▍ | 1718342/4997817 [00:10&lt;00:20, 159579.36it/s]
    +
    34%|███▎ | 1679096/4997817 [00:10&lt;00:21, 155556.32it/s]

    </pre>

    -
    34%|███▍ | 1718342/4997817 [00:10<00:20, 159579.36it/s]
    +
    34%|███▎ | 1679096/4997817 [00:10<00:21, 155556.32it/s]

    end{sphinxVerbatim}

    -

    34%|███▍ | 1718342/4997817 [00:10<00:20, 159579.36it/s]

    +

    34%|███▎ | 1679096/4997817 [00:10<00:21, 155556.32it/s]

    -
    35%|███▍ | 1734304/4997817 [00:10&lt;00:20, 159590.22it/s]
    +
    34%|███▍ | 1694652/4997817 [00:10&lt;00:21, 155379.81it/s]

    </pre>

    -
    35%|███▍ | 1734304/4997817 [00:10<00:20, 159590.22it/s]
    +
    34%|███▍ | 1694652/4997817 [00:10<00:21, 155379.81it/s]

    end{sphinxVerbatim}

    -

    35%|███▍ | 1734304/4997817 [00:10<00:20, 159590.22it/s]

    +

    34%|███▍ | 1694652/4997817 [00:10<00:21, 155379.81it/s]

    -
    35%|███▌ | 1750310/4997817 [00:11&lt;00:20, 159727.34it/s]
    +
    34%|███▍ | 1710217/4997817 [00:11&lt;00:21, 155456.88it/s]

    </pre>

    -
    35%|███▌ | 1750310/4997817 [00:11<00:20, 159727.34it/s]
    +
    34%|███▍ | 1710217/4997817 [00:11<00:21, 155456.88it/s]

    end{sphinxVerbatim}

    -

    35%|███▌ | 1750310/4997817 [00:11<00:20, 159727.34it/s]

    +

    34%|███▍ | 1710217/4997817 [00:11<00:21, 155456.88it/s]

    -
    35%|███▌ | 1766283/4997817 [00:11&lt;00:20, 159531.21it/s]
    +
    35%|███▍ | 1725798/4997817 [00:11&lt;00:21, 155558.60it/s]

    </pre>

    -
    35%|███▌ | 1766283/4997817 [00:11<00:20, 159531.21it/s]
    +
    35%|███▍ | 1725798/4997817 [00:11<00:21, 155558.60it/s]

    end{sphinxVerbatim}

    -

    35%|███▌ | 1766283/4997817 [00:11<00:20, 159531.21it/s]

    +

    35%|███▍ | 1725798/4997817 [00:11<00:21, 155558.60it/s]

    -
    36%|███▌ | 1782237/4997817 [00:11&lt;00:21, 152189.63it/s]
    +
    35%|███▍ | 1741468/4997817 [00:11&lt;00:20, 155897.29it/s]

    </pre>

    -
    36%|███▌ | 1782237/4997817 [00:11<00:21, 152189.63it/s]
    +
    35%|███▍ | 1741468/4997817 [00:11<00:20, 155897.29it/s]

    end{sphinxVerbatim}

    -

    36%|███▌ | 1782237/4997817 [00:11<00:21, 152189.63it/s]

    +

    35%|███▍ | 1741468/4997817 [00:11<00:20, 155897.29it/s]

    -
    36%|███▌ | 1798210/4997817 [00:11&lt;00:20, 154373.88it/s]
    +
    35%|███▌ | 1757095/4997817 [00:11&lt;00:20, 156007.17it/s]

    </pre>

    -
    36%|███▌ | 1798210/4997817 [00:11<00:20, 154373.88it/s]
    +
    35%|███▌ | 1757095/4997817 [00:11<00:20, 156007.17it/s]

    end{sphinxVerbatim}

    -

    36%|███▌ | 1798210/4997817 [00:11<00:20, 154373.88it/s]

    +

    35%|███▌ | 1757095/4997817 [00:11<00:20, 156007.17it/s]

    -
    36%|███▋ | 1814164/4997817 [00:11&lt;00:20, 155885.19it/s]
    +
    35%|███▌ | 1772698/4997817 [00:11&lt;00:20, 156012.83it/s]

    </pre>

    -
    36%|███▋ | 1814164/4997817 [00:11<00:20, 155885.19it/s]
    +
    35%|███▌ | 1772698/4997817 [00:11<00:20, 156012.83it/s]

    end{sphinxVerbatim}

    -

    36%|███▋ | 1814164/4997817 [00:11<00:20, 155885.19it/s]

    +

    35%|███▌ | 1772698/4997817 [00:11<00:20, 156012.83it/s]

    -
    37%|███▋ | 1830086/4997817 [00:11&lt;00:20, 156866.86it/s]
    +
    36%|███▌ | 1788312/4997817 [00:11&lt;00:20, 156047.33it/s]

    </pre>

    -
    37%|███▋ | 1830086/4997817 [00:11<00:20, 156866.86it/s]
    +
    36%|███▌ | 1788312/4997817 [00:11<00:20, 156047.33it/s]

    end{sphinxVerbatim}

    -

    37%|███▋ | 1830086/4997817 [00:11<00:20, 156866.86it/s]

    +

    36%|███▌ | 1788312/4997817 [00:11<00:20, 156047.33it/s]

    -
    37%|███▋ | 1846040/4997817 [00:11&lt;00:19, 157656.96it/s]
    +
    36%|███▌ | 1803941/4997817 [00:11&lt;00:20, 156118.37it/s]

    </pre>

    -
    37%|███▋ | 1846040/4997817 [00:11<00:19, 157656.96it/s]
    +
    36%|███▌ | 1803941/4997817 [00:11<00:20, 156118.37it/s]

    end{sphinxVerbatim}

    -

    37%|███▋ | 1846040/4997817 [00:11<00:19, 157656.96it/s]

    +

    36%|███▌ | 1803941/4997817 [00:11<00:20, 156118.37it/s]

    -
    37%|███▋ | 1861916/4997817 [00:11&lt;00:19, 157982.38it/s]
    +
    36%|███▋ | 1819553/4997817 [00:11&lt;00:20, 155999.32it/s]

    </pre>

    -
    37%|███▋ | 1861916/4997817 [00:11<00:19, 157982.38it/s]
    +
    36%|███▋ | 1819553/4997817 [00:11<00:20, 155999.32it/s]

    end{sphinxVerbatim}

    -

    37%|███▋ | 1861916/4997817 [00:11<00:19, 157982.38it/s]

    +

    36%|███▋ | 1819553/4997817 [00:11<00:20, 155999.32it/s]

    -
    38%|███▊ | 1877756/4997817 [00:11&lt;00:19, 158103.61it/s]
    +
    37%|███▋ | 1835153/4997817 [00:11&lt;00:20, 155841.17it/s]

    </pre>

    -
    38%|███▊ | 1877756/4997817 [00:11<00:19, 158103.61it/s]
    +
    37%|███▋ | 1835153/4997817 [00:11<00:20, 155841.17it/s]

    end{sphinxVerbatim}

    -

    38%|███▊ | 1877756/4997817 [00:11<00:19, 158103.61it/s]

    +

    37%|███▋ | 1835153/4997817 [00:11<00:20, 155841.17it/s]

    -
    38%|███▊ | 1893631/4997817 [00:11&lt;00:19, 158294.97it/s]
    +
    37%|███▋ | 1850767/4997817 [00:11&lt;00:20, 155929.75it/s]

    </pre>

    -
    38%|███▊ | 1893631/4997817 [00:11<00:19, 158294.97it/s]
    +
    37%|███▋ | 1850767/4997817 [00:11<00:20, 155929.75it/s]

    end{sphinxVerbatim}

    -

    38%|███▊ | 1893631/4997817 [00:11<00:19, 158294.97it/s]

    +

    37%|███▋ | 1850767/4997817 [00:11<00:20, 155929.75it/s]

    -
    38%|███▊ | 1909624/4997817 [00:12&lt;00:19, 158782.08it/s]
    +
    37%|███▋ | 1866361/4997817 [00:12&lt;00:20, 155780.01it/s]

    </pre>

    -
    38%|███▊ | 1909624/4997817 [00:12<00:19, 158782.08it/s]
    +
    37%|███▋ | 1866361/4997817 [00:12<00:20, 155780.01it/s]

    end{sphinxVerbatim}

    -

    38%|███▊ | 1909624/4997817 [00:12<00:19, 158782.08it/s]

    +

    37%|███▋ | 1866361/4997817 [00:12<00:20, 155780.01it/s]

    -
    39%|███▊ | 1925553/4997817 [00:12&lt;00:19, 158932.71it/s]
    +
    38%|███▊ | 1881940/4997817 [00:12&lt;00:20, 155737.88it/s]

    </pre>

    -
    39%|███▊ | 1925553/4997817 [00:12<00:19, 158932.71it/s]
    +
    38%|███▊ | 1881940/4997817 [00:12<00:20, 155737.88it/s]

    end{sphinxVerbatim}

    -

    39%|███▊ | 1925553/4997817 [00:12<00:19, 158932.71it/s]

    +

    38%|███▊ | 1881940/4997817 [00:12<00:20, 155737.88it/s]

    -
    39%|███▉ | 1941451/4997817 [00:12&lt;00:19, 158328.69it/s]
    +
    38%|███▊ | 1897538/4997817 [00:12&lt;00:19, 155807.48it/s]

    </pre>

    -
    39%|███▉ | 1941451/4997817 [00:12<00:19, 158328.69it/s]
    +
    38%|███▊ | 1897538/4997817 [00:12<00:19, 155807.48it/s]

    end{sphinxVerbatim}

    -

    39%|███▉ | 1941451/4997817 [00:12<00:19, 158328.69it/s]

    +

    38%|███▊ | 1897538/4997817 [00:12<00:19, 155807.48it/s]

    -
    39%|███▉ | 1957395/4997817 [00:12&lt;00:19, 158658.52it/s]
    +
    38%|███▊ | 1913150/4997817 [00:12&lt;00:19, 155898.53it/s]

    </pre>

    -
    39%|███▉ | 1957395/4997817 [00:12<00:19, 158658.52it/s]
    +
    38%|███▊ | 1913150/4997817 [00:12<00:19, 155898.53it/s]

    end{sphinxVerbatim}

    -

    39%|███▉ | 1957395/4997817 [00:12<00:19, 158658.52it/s]

    +

    38%|███▊ | 1913150/4997817 [00:12<00:19, 155898.53it/s]

    -
    39%|███▉ | 1973393/4997817 [00:12&lt;00:19, 159051.70it/s]
    +
    39%|███▊ | 1928750/4997817 [00:12&lt;00:19, 155925.66it/s]

    </pre>

    -
    39%|███▉ | 1973393/4997817 [00:12<00:19, 159051.70it/s]
    +
    39%|███▊ | 1928750/4997817 [00:12<00:19, 155925.66it/s]

    end{sphinxVerbatim}

    -

    39%|███▉ | 1973393/4997817 [00:12<00:19, 159051.70it/s]

    +

    39%|███▊ | 1928750/4997817 [00:12<00:19, 155925.66it/s]

    -
    40%|███▉ | 1989322/4997817 [00:12&lt;00:18, 159120.60it/s]
    +
    39%|███▉ | 1944372/4997817 [00:12&lt;00:19, 156011.40it/s]

    </pre>

    -
    40%|███▉ | 1989322/4997817 [00:12<00:18, 159120.60it/s]
    +
    39%|███▉ | 1944372/4997817 [00:12<00:19, 156011.40it/s]

    end{sphinxVerbatim}

    -

    40%|███▉ | 1989322/4997817 [00:12<00:18, 159120.60it/s]

    +

    39%|███▉ | 1944372/4997817 [00:12<00:19, 156011.40it/s]

    -
    40%|████ | 2005236/4997817 [00:12&lt;00:18, 159063.51it/s]
    +
    39%|███▉ | 1959974/4997817 [00:12&lt;00:19, 155950.35it/s]

    </pre>

    -
    40%|████ | 2005236/4997817 [00:12<00:18, 159063.51it/s]
    +
    39%|███▉ | 1959974/4997817 [00:12<00:19, 155950.35it/s]

    end{sphinxVerbatim}

    -

    40%|████ | 2005236/4997817 [00:12<00:18, 159063.51it/s]

    +

    39%|███▉ | 1959974/4997817 [00:12<00:19, 155950.35it/s]

    -
    40%|████ | 2021144/4997817 [00:12&lt;00:18, 158992.06it/s]
    +
    40%|███▉ | 1975637/4997817 [00:12&lt;00:19, 156151.18it/s]

    </pre>

    -
    40%|████ | 2021144/4997817 [00:12<00:18, 158992.06it/s]
    +
    40%|███▉ | 1975637/4997817 [00:12<00:19, 156151.18it/s]

    end{sphinxVerbatim}

    -

    40%|████ | 2021144/4997817 [00:12<00:18, 158992.06it/s]

    +

    40%|███▉ | 1975637/4997817 [00:12<00:19, 156151.18it/s]

    -
    41%|████ | 2037121/4997817 [00:12&lt;00:18, 159223.28it/s]
    +
    40%|███▉ | 1991253/4997817 [00:12&lt;00:19, 155813.08it/s]

    </pre>

    -
    41%|████ | 2037121/4997817 [00:12<00:18, 159223.28it/s]
    +
    40%|███▉ | 1991253/4997817 [00:12<00:19, 155813.08it/s]

    end{sphinxVerbatim}

    -

    41%|████ | 2037121/4997817 [00:12<00:18, 159223.28it/s]

    +

    40%|███▉ | 1991253/4997817 [00:12<00:19, 155813.08it/s]

    -
    41%|████ | 2053044/4997817 [00:12&lt;00:18, 159129.47it/s]
    +
    40%|████ | 2006836/4997817 [00:12&lt;00:19, 155817.08it/s]

    </pre>

    -
    41%|████ | 2053044/4997817 [00:12<00:18, 159129.47it/s]
    +
    40%|████ | 2006836/4997817 [00:12<00:19, 155817.08it/s]

    end{sphinxVerbatim}

    -

    41%|████ | 2053044/4997817 [00:12<00:18, 159129.47it/s]

    +

    40%|████ | 2006836/4997817 [00:12<00:19, 155817.08it/s]

    -
    41%|████▏ | 2068966/4997817 [00:13&lt;00:18, 159152.89it/s]
    +
    40%|████ | 2022418/4997817 [00:13&lt;00:19, 155781.61it/s]

    </pre>

    -
    41%|████▏ | 2068966/4997817 [00:13<00:18, 159152.89it/s]
    +
    40%|████ | 2022418/4997817 [00:13<00:19, 155781.61it/s]

    end{sphinxVerbatim}

    -

    41%|████▏ | 2068966/4997817 [00:13<00:18, 159152.89it/s]

    +

    40%|████ | 2022418/4997817 [00:13<00:19, 155781.61it/s]

    -
    42%|████▏ | 2084899/4997817 [00:13&lt;00:18, 159202.39it/s]
    +
    41%|████ | 2038039/4997817 [00:13&lt;00:18, 155906.81it/s]

    </pre>

    -
    42%|████▏ | 2084899/4997817 [00:13<00:18, 159202.39it/s]
    +
    41%|████ | 2038039/4997817 [00:13<00:18, 155906.81it/s]

    end{sphinxVerbatim}

    -

    42%|████▏ | 2084899/4997817 [00:13<00:18, 159202.39it/s]

    +

    41%|████ | 2038039/4997817 [00:13<00:18, 155906.81it/s]

    -
    42%|████▏ | 2100820/4997817 [00:13&lt;00:18, 158761.52it/s]
    +
    41%|████ | 2053733/4997817 [00:13&lt;00:18, 156213.56it/s]

    </pre>

    -
    42%|████▏ | 2100820/4997817 [00:13<00:18, 158761.52it/s]
    +
    41%|████ | 2053733/4997817 [00:13<00:18, 156213.56it/s]

    end{sphinxVerbatim}

    -

    42%|████▏ | 2100820/4997817 [00:13<00:18, 158761.52it/s]

    +

    41%|████ | 2053733/4997817 [00:13<00:18, 156213.56it/s]

    -
    42%|████▏ | 2116697/4997817 [00:13&lt;00:18, 158649.76it/s]
    +
    41%|████▏ | 2069428/4997817 [00:13&lt;00:18, 156432.74it/s]

    </pre>

    -
    42%|████▏ | 2116697/4997817 [00:13<00:18, 158649.76it/s]
    +
    41%|████▏ | 2069428/4997817 [00:13<00:18, 156432.74it/s]

    end{sphinxVerbatim}

    -

    42%|████▏ | 2116697/4997817 [00:13<00:18, 158649.76it/s]

    +

    41%|████▏ | 2069428/4997817 [00:13<00:18, 156432.74it/s]

    -
    43%|████▎ | 2132563/4997817 [00:13&lt;00:18, 158552.83it/s]
    +
    42%|████▏ | 2085120/4997817 [00:13&lt;00:18, 156576.34it/s]

    </pre>

    -
    43%|████▎ | 2132563/4997817 [00:13<00:18, 158552.83it/s]
    +
    42%|████▏ | 2085120/4997817 [00:13<00:18, 156576.34it/s]

    end{sphinxVerbatim}

    -

    43%|████▎ | 2132563/4997817 [00:13<00:18, 158552.83it/s]

    +

    42%|████▏ | 2085120/4997817 [00:13<00:18, 156576.34it/s]

    -
    43%|████▎ | 2148419/4997817 [00:13&lt;00:17, 158488.27it/s]
    +
    42%|████▏ | 2100778/4997817 [00:13&lt;00:18, 155681.34it/s]

    </pre>

    -
    43%|████▎ | 2148419/4997817 [00:13<00:17, 158488.27it/s]
    +
    42%|████▏ | 2100778/4997817 [00:13<00:18, 155681.34it/s]

    end{sphinxVerbatim}

    -

    43%|████▎ | 2148419/4997817 [00:13<00:17, 158488.27it/s]

    +

    42%|████▏ | 2100778/4997817 [00:13<00:18, 155681.34it/s]

    -
    43%|████▎ | 2164268/4997817 [00:13&lt;00:17, 158456.13it/s]
    +
    42%|████▏ | 2116348/4997817 [00:13&lt;00:18, 155555.01it/s]

    </pre>

    -
    43%|████▎ | 2164268/4997817 [00:13<00:17, 158456.13it/s]
    +
    42%|████▏ | 2116348/4997817 [00:13<00:18, 155555.01it/s]

    end{sphinxVerbatim}

    -

    43%|████▎ | 2164268/4997817 [00:13<00:17, 158456.13it/s]

    +

    42%|████▏ | 2116348/4997817 [00:13<00:18, 155555.01it/s]

    -
    44%|████▎ | 2180136/4997817 [00:13&lt;00:17, 158521.33it/s]
    +
    43%|████▎ | 2131974/4997817 [00:13&lt;00:18, 155762.47it/s]

    </pre>

    -
    44%|████▎ | 2180136/4997817 [00:13<00:17, 158521.33it/s]
    +
    43%|████▎ | 2131974/4997817 [00:13<00:18, 155762.47it/s]

    end{sphinxVerbatim}

    -

    44%|████▎ | 2180136/4997817 [00:13<00:17, 158521.33it/s]

    +

    43%|████▎ | 2131974/4997817 [00:13<00:18, 155762.47it/s]

    -
    44%|████▍ | 2196000/4997817 [00:13&lt;00:17, 158553.20it/s]
    +
    43%|████▎ | 2147551/4997817 [00:13&lt;00:18, 155373.01it/s]

    </pre>

    -
    44%|████▍ | 2196000/4997817 [00:13<00:17, 158553.20it/s]
    +
    43%|████▎ | 2147551/4997817 [00:13<00:18, 155373.01it/s]

    end{sphinxVerbatim}

    -

    44%|████▍ | 2196000/4997817 [00:13<00:17, 158553.20it/s]

    +

    43%|████▎ | 2147551/4997817 [00:13<00:18, 155373.01it/s]

    -
    44%|████▍ | 2211942/4997817 [00:13&lt;00:17, 158811.19it/s]
    +
    43%|████▎ | 2163089/4997817 [00:13&lt;00:18, 155018.71it/s]

    </pre>

    -
    44%|████▍ | 2211942/4997817 [00:13<00:17, 158811.19it/s]
    +
    43%|████▎ | 2163089/4997817 [00:13<00:18, 155018.71it/s]

    end{sphinxVerbatim}

    -

    44%|████▍ | 2211942/4997817 [00:13<00:17, 158811.19it/s]

    +

    43%|████▎ | 2163089/4997817 [00:13<00:18, 155018.71it/s]

    -
    45%|████▍ | 2227824/4997817 [00:14&lt;00:17, 158577.27it/s]
    +
    44%|████▎ | 2178592/4997817 [00:14&lt;00:18, 152370.36it/s]

    </pre>

    -
    45%|████▍ | 2227824/4997817 [00:14<00:17, 158577.27it/s]
    +
    44%|████▎ | 2178592/4997817 [00:14<00:18, 152370.36it/s]

    end{sphinxVerbatim}

    -

    45%|████▍ | 2227824/4997817 [00:14<00:17, 158577.27it/s]

    +

    44%|████▎ | 2178592/4997817 [00:14<00:18, 152370.36it/s]

    -
    45%|████▍ | 2243682/4997817 [00:14&lt;00:17, 158422.77it/s]
    +
    44%|████▍ | 2194084/4997817 [00:14&lt;00:18, 153120.90it/s]

    </pre>

    -
    45%|████▍ | 2243682/4997817 [00:14<00:17, 158422.77it/s]
    +
    44%|████▍ | 2194084/4997817 [00:14<00:18, 153120.90it/s]

    end{sphinxVerbatim}

    -

    45%|████▍ | 2243682/4997817 [00:14<00:17, 158422.77it/s]

    +

    44%|████▍ | 2194084/4997817 [00:14<00:18, 153120.90it/s]

    -
    45%|████▌ | 2259525/4997817 [00:14&lt;00:17, 158421.70it/s]
    +
    44%|████▍ | 2209572/4997817 [00:14&lt;00:18, 153640.87it/s]

    </pre>

    -
    45%|████▌ | 2259525/4997817 [00:14<00:17, 158421.70it/s]
    +
    44%|████▍ | 2209572/4997817 [00:14<00:18, 153640.87it/s]

    end{sphinxVerbatim}

    -

    45%|████▌ | 2259525/4997817 [00:14<00:17, 158421.70it/s]

    +

    44%|████▍ | 2209572/4997817 [00:14<00:18, 153640.87it/s]

    -
    46%|████▌ | 2275368/4997817 [00:14&lt;00:17, 152143.74it/s]
    +
    45%|████▍ | 2225046/4997817 [00:14&lt;00:18, 153966.37it/s]

    </pre>

    -
    46%|████▌ | 2275368/4997817 [00:14<00:17, 152143.74it/s]
    +
    45%|████▍ | 2225046/4997817 [00:14<00:18, 153966.37it/s]

    end{sphinxVerbatim}

    -

    46%|████▌ | 2275368/4997817 [00:14<00:17, 152143.74it/s]

    +

    45%|████▍ | 2225046/4997817 [00:14<00:18, 153966.37it/s]

    -
    46%|████▌ | 2290635/4997817 [00:14&lt;00:17, 151173.45it/s]
    +
    45%|████▍ | 2240545/4997817 [00:14&lt;00:17, 154268.62it/s]

    </pre>

    -
    46%|████▌ | 2290635/4997817 [00:14<00:17, 151173.45it/s]
    +
    45%|████▍ | 2240545/4997817 [00:14<00:17, 154268.62it/s]

    end{sphinxVerbatim}

    -

    46%|████▌ | 2290635/4997817 [00:14<00:17, 151173.45it/s]

    +

    45%|████▍ | 2240545/4997817 [00:14<00:17, 154268.62it/s]

    -
    46%|████▌ | 2306230/4997817 [00:14&lt;00:17, 152567.88it/s]
    +
    45%|████▌ | 2256134/4997817 [00:14&lt;00:17, 154751.32it/s]

    </pre>

    -
    46%|████▌ | 2306230/4997817 [00:14<00:17, 152567.88it/s]
    +
    45%|████▌ | 2256134/4997817 [00:14<00:17, 154751.32it/s]

    end{sphinxVerbatim}

    -

    46%|████▌ | 2306230/4997817 [00:14<00:17, 152567.88it/s]

    +

    45%|████▌ | 2256134/4997817 [00:14<00:17, 154751.32it/s]

    -
    46%|████▋ | 2322097/4997817 [00:14&lt;00:17, 154362.99it/s]
    +
    45%|████▌ | 2271612/4997817 [00:14&lt;00:17, 154713.37it/s]

    </pre>

    -
    46%|████▋ | 2322097/4997817 [00:14<00:17, 154362.99it/s]
    +
    45%|████▌ | 2271612/4997817 [00:14<00:17, 154713.37it/s]

    end{sphinxVerbatim}

    -

    46%|████▋ | 2322097/4997817 [00:14<00:17, 154362.99it/s]

    +

    45%|████▌ | 2271612/4997817 [00:14<00:17, 154713.37it/s]

    -
    47%|████▋ | 2338019/4997817 [00:14&lt;00:17, 155799.79it/s]
    +
    46%|████▌ | 2287086/4997817 [00:14&lt;00:17, 153875.18it/s]

    </pre>

    -
    47%|████▋ | 2338019/4997817 [00:14<00:17, 155799.79it/s]
    +
    46%|████▌ | 2287086/4997817 [00:14<00:17, 153875.18it/s]

    end{sphinxVerbatim}

    -

    47%|████▋ | 2338019/4997817 [00:14<00:17, 155799.79it/s]

    +

    46%|████▌ | 2287086/4997817 [00:14<00:17, 153875.18it/s]

    -
    47%|████▋ | 2353956/4997817 [00:14&lt;00:16, 156860.01it/s]
    +
    46%|████▌ | 2302518/4997817 [00:14&lt;00:17, 154005.12it/s]

    </pre>

    -
    47%|████▋ | 2353956/4997817 [00:14<00:16, 156860.01it/s]
    +
    46%|████▌ | 2302518/4997817 [00:14<00:17, 154005.12it/s]

    end{sphinxVerbatim}

    -

    47%|████▋ | 2353956/4997817 [00:14<00:16, 156860.01it/s]

    +

    46%|████▌ | 2302518/4997817 [00:14<00:17, 154005.12it/s]

    -
    47%|████▋ | 2370062/4997817 [00:14&lt;00:16, 158108.89it/s]
    +
    46%|████▋ | 2318001/4997817 [00:14&lt;00:17, 154249.74it/s]

    </pre>

    -
    47%|████▋ | 2370062/4997817 [00:14<00:16, 158108.89it/s]
    +
    46%|████▋ | 2318001/4997817 [00:14<00:17, 154249.74it/s]

    end{sphinxVerbatim}

    -

    47%|████▋ | 2370062/4997817 [00:14<00:16, 158108.89it/s]

    +

    46%|████▋ | 2318001/4997817 [00:14<00:17, 154249.74it/s]

    -
    48%|████▊ | 2386096/4997817 [00:15&lt;00:16, 158773.62it/s]
    +
    47%|████▋ | 2333428/4997817 [00:15&lt;00:17, 152824.99it/s]

    </pre>

    -
    48%|████▊ | 2386096/4997817 [00:15<00:16, 158773.62it/s]
    +
    47%|████▋ | 2333428/4997817 [00:15<00:17, 152824.99it/s]

    end{sphinxVerbatim}

    -

    48%|████▊ | 2386096/4997817 [00:15<00:16, 158773.62it/s]

    +

    47%|████▋ | 2333428/4997817 [00:15<00:17, 152824.99it/s]

    -
    48%|████▊ | 2402094/4997817 [00:15&lt;00:16, 159131.51it/s]
    +
    47%|████▋ | 2348875/4997817 [00:15&lt;00:17, 153312.47it/s]

    </pre>

    -
    48%|████▊ | 2402094/4997817 [00:15<00:16, 159131.51it/s]
    +
    47%|████▋ | 2348875/4997817 [00:15<00:17, 153312.47it/s]

    end{sphinxVerbatim}

    -

    48%|████▊ | 2402094/4997817 [00:15<00:16, 159131.51it/s]

    +

    47%|████▋ | 2348875/4997817 [00:15<00:17, 153312.47it/s]

    -
    48%|████▊ | 2418013/4997817 [00:15&lt;00:16, 159062.45it/s]
    +
    47%|████▋ | 2364533/4997817 [00:15&lt;00:17, 154283.21it/s]

    </pre>

    -
    48%|████▊ | 2418013/4997817 [00:15<00:16, 159062.45it/s]
    +
    47%|████▋ | 2364533/4997817 [00:15<00:17, 154283.21it/s]

    end{sphinxVerbatim}

    -

    48%|████▊ | 2418013/4997817 [00:15<00:16, 159062.45it/s]

    +

    47%|████▋ | 2364533/4997817 [00:15<00:17, 154283.21it/s]

    -
    49%|████▊ | 2433924/4997817 [00:15&lt;00:16, 158673.47it/s]
    +
    48%|████▊ | 2380077/4997817 [00:15&lt;00:16, 154626.11it/s]

    </pre>

    -
    49%|████▊ | 2433924/4997817 [00:15<00:16, 158673.47it/s]
    +
    48%|████▊ | 2380077/4997817 [00:15<00:16, 154626.11it/s]

    end{sphinxVerbatim}

    -

    49%|████▊ | 2433924/4997817 [00:15<00:16, 158673.47it/s]

    +

    48%|████▊ | 2380077/4997817 [00:15<00:16, 154626.11it/s]

    -
    49%|████▉ | 2449795/4997817 [00:15&lt;00:16, 158657.52it/s]
    +
    48%|████▊ | 2395542/4997817 [00:15&lt;00:16, 154287.90it/s]

    </pre>

    -
    49%|████▉ | 2449795/4997817 [00:15<00:16, 158657.52it/s]
    +
    48%|████▊ | 2395542/4997817 [00:15<00:16, 154287.90it/s]

    end{sphinxVerbatim}

    -

    49%|████▉ | 2449795/4997817 [00:15<00:16, 158657.52it/s]

    +

    48%|████▊ | 2395542/4997817 [00:15<00:16, 154287.90it/s]

    -
    49%|████▉ | 2465785/4997817 [00:15&lt;00:15, 159028.09it/s]
    +
    48%|████▊ | 2411211/4997817 [00:15&lt;00:16, 155003.22it/s]

    </pre>

    -
    49%|████▉ | 2465785/4997817 [00:15<00:15, 159028.09it/s]
    +
    48%|████▊ | 2411211/4997817 [00:15<00:16, 155003.22it/s]

    end{sphinxVerbatim}

    -

    49%|████▉ | 2465785/4997817 [00:15<00:15, 159028.09it/s]

    +

    48%|████▊ | 2411211/4997817 [00:15<00:16, 155003.22it/s]

    -
    50%|████▉ | 2481802/4997817 [00:15&lt;00:15, 159367.88it/s]
    +
    49%|████▊ | 2426880/4997817 [00:15&lt;00:16, 155506.80it/s]

    </pre>

    -
    50%|████▉ | 2481802/4997817 [00:15<00:15, 159367.88it/s]
    +
    49%|████▊ | 2426880/4997817 [00:15<00:16, 155506.80it/s]

    end{sphinxVerbatim}

    -

    50%|████▉ | 2481802/4997817 [00:15<00:15, 159367.88it/s]

    +

    49%|████▊ | 2426880/4997817 [00:15<00:16, 155506.80it/s]

    -
    50%|████▉ | 2497925/4997817 [00:15&lt;00:15, 159923.07it/s]
    +
    49%|████▉ | 2442432/4997817 [00:15&lt;00:16, 155483.38it/s]

    </pre>

    -
    50%|████▉ | 2497925/4997817 [00:15<00:15, 159923.07it/s]
    +
    49%|████▉ | 2442432/4997817 [00:15<00:16, 155483.38it/s]

    end{sphinxVerbatim}

    -

    50%|████▉ | 2497925/4997817 [00:15<00:15, 159923.07it/s]

    +

    49%|████▉ | 2442432/4997817 [00:15<00:16, 155483.38it/s]

    -
    50%|█████ | 2513962/4997817 [00:15&lt;00:15, 160054.80it/s]
    +
    49%|████▉ | 2457982/4997817 [00:15&lt;00:16, 154776.55it/s]

    </pre>

    -
    50%|█████ | 2513962/4997817 [00:15<00:15, 160054.80it/s]
    +
    49%|████▉ | 2457982/4997817 [00:15<00:16, 154776.55it/s]

    end{sphinxVerbatim}

    -

    50%|█████ | 2513962/4997817 [00:15<00:15, 160054.80it/s]

    +

    49%|████▉ | 2457982/4997817 [00:15<00:16, 154776.55it/s]

    -
    51%|█████ | 2530040/4997817 [00:15&lt;00:15, 160269.30it/s]
    +
    49%|████▉ | 2473626/4997817 [00:15&lt;00:16, 155270.67it/s]

    </pre>

    -
    51%|█████ | 2530040/4997817 [00:15<00:15, 160269.30it/s]
    +
    49%|████▉ | 2473626/4997817 [00:15<00:16, 155270.67it/s]

    end{sphinxVerbatim}

    -

    51%|█████ | 2530040/4997817 [00:15<00:15, 160269.30it/s]

    +

    49%|████▉ | 2473626/4997817 [00:15<00:16, 155270.67it/s]

    -
    51%|█████ | 2546068/4997817 [00:16&lt;00:15, 160138.03it/s]
    +
    50%|████▉ | 2489155/4997817 [00:16&lt;00:16, 152945.47it/s]

    </pre>

    -
    51%|█████ | 2546068/4997817 [00:16<00:15, 160138.03it/s]
    +
    50%|████▉ | 2489155/4997817 [00:16<00:16, 152945.47it/s]

    end{sphinxVerbatim}

    -

    51%|█████ | 2546068/4997817 [00:16<00:15, 160138.03it/s]

    +

    50%|████▉ | 2489155/4997817 [00:16<00:16, 152945.47it/s]

    -
    51%|█████▏ | 2562083/4997817 [00:16&lt;00:15, 159958.88it/s]
    +
    50%|█████ | 2504608/4997817 [00:16&lt;00:16, 153411.63it/s]

    </pre>

    -
    51%|█████▏ | 2562083/4997817 [00:16<00:15, 159958.88it/s]
    +
    50%|█████ | 2504608/4997817 [00:16<00:16, 153411.63it/s]

    end{sphinxVerbatim}

    -

    51%|█████▏ | 2562083/4997817 [00:16<00:15, 159958.88it/s]

    +

    50%|█████ | 2504608/4997817 [00:16<00:16, 153411.63it/s]

    -
    52%|█████▏ | 2578080/4997817 [00:16&lt;00:15, 159787.87it/s]
    +
    50%|█████ | 2520150/4997817 [00:16&lt;00:16, 154007.10it/s]

    </pre>

    -
    52%|█████▏ | 2578080/4997817 [00:16<00:15, 159787.87it/s]
    +
    50%|█████ | 2520150/4997817 [00:16<00:16, 154007.10it/s]

    end{sphinxVerbatim}

    -

    52%|█████▏ | 2578080/4997817 [00:16<00:15, 159787.87it/s]

    +

    50%|█████ | 2520150/4997817 [00:16<00:16, 154007.10it/s]

    -
    52%|█████▏ | 2594059/4997817 [00:16&lt;00:15, 156344.43it/s]
    +
    51%|█████ | 2535722/4997817 [00:16&lt;00:15, 154515.50it/s]

    </pre>

    -
    52%|█████▏ | 2594059/4997817 [00:16<00:15, 156344.43it/s]
    +
    51%|█████ | 2535722/4997817 [00:16<00:15, 154515.50it/s]

    end{sphinxVerbatim}

    -

    52%|█████▏ | 2594059/4997817 [00:16<00:15, 156344.43it/s]

    +

    51%|█████ | 2535722/4997817 [00:16<00:15, 154515.50it/s]

    -
    52%|█████▏ | 2609883/4997817 [00:16&lt;00:15, 156901.94it/s]
    +
    51%|█████ | 2551303/4997817 [00:16&lt;00:15, 154898.78it/s]

    </pre>

    -
    52%|█████▏ | 2609883/4997817 [00:16<00:15, 156901.94it/s]
    +
    51%|█████ | 2551303/4997817 [00:16<00:15, 154898.78it/s]

    end{sphinxVerbatim}

    -

    52%|█████▏ | 2609883/4997817 [00:16<00:15, 156901.94it/s]

    +

    51%|█████ | 2551303/4997817 [00:16<00:15, 154898.78it/s]

    -
    53%|█████▎ | 2625962/4997817 [00:16&lt;00:15, 158054.04it/s]
    +
    51%|█████▏ | 2566916/4997817 [00:16&lt;00:15, 155265.28it/s]

    </pre>

    -
    53%|█████▎ | 2625962/4997817 [00:16<00:15, 158054.04it/s]
    +
    51%|█████▏ | 2566916/4997817 [00:16<00:15, 155265.28it/s]

    end{sphinxVerbatim}

    -

    53%|█████▎ | 2625962/4997817 [00:16<00:15, 158054.04it/s]

    +

    51%|█████▏ | 2566916/4997817 [00:16<00:15, 155265.28it/s]

    -
    53%|█████▎ | 2642039/4997817 [00:16&lt;00:14, 158858.99it/s]
    +
    52%|█████▏ | 2582456/4997817 [00:16&lt;00:15, 155303.99it/s]

    </pre>

    -
    53%|█████▎ | 2642039/4997817 [00:16<00:14, 158858.99it/s]
    +
    52%|█████▏ | 2582456/4997817 [00:16<00:15, 155303.99it/s]

    end{sphinxVerbatim}

    -

    53%|█████▎ | 2642039/4997817 [00:16<00:14, 158858.99it/s]

    +

    52%|█████▏ | 2582456/4997817 [00:16<00:15, 155303.99it/s]

    -
    53%|█████▎ | 2658073/4997817 [00:16&lt;00:14, 159299.78it/s]
    +
    52%|█████▏ | 2597988/4997817 [00:16&lt;00:15, 154255.88it/s]

    </pre>

    -
    53%|█████▎ | 2658073/4997817 [00:16<00:14, 159299.78it/s]
    +
    52%|█████▏ | 2597988/4997817 [00:16<00:15, 154255.88it/s]

    end{sphinxVerbatim}

    -

    53%|█████▎ | 2658073/4997817 [00:16<00:14, 159299.78it/s]

    +

    52%|█████▏ | 2597988/4997817 [00:16<00:15, 154255.88it/s]

    -
    54%|█████▎ | 2674048/4997817 [00:16&lt;00:14, 159432.31it/s]
    +
    52%|█████▏ | 2613531/4997817 [00:16&lt;00:15, 154604.46it/s]

    </pre>

    -
    54%|█████▎ | 2674048/4997817 [00:16<00:14, 159432.31it/s]
    +
    52%|█████▏ | 2613531/4997817 [00:16<00:15, 154604.46it/s]

    end{sphinxVerbatim}

    -

    54%|█████▎ | 2674048/4997817 [00:16<00:14, 159432.31it/s]

    +

    52%|█████▏ | 2613531/4997817 [00:16<00:15, 154604.46it/s]

    -
    54%|█████▍ | 2690018/4997817 [00:16&lt;00:14, 159510.96it/s]
    +
    53%|█████▎ | 2629103/4997817 [00:16&lt;00:15, 154935.70it/s]

    </pre>

    -
    54%|█████▍ | 2690018/4997817 [00:16<00:14, 159510.96it/s]
    +
    53%|█████▎ | 2629103/4997817 [00:16<00:15, 154935.70it/s]

    end{sphinxVerbatim}

    -

    54%|█████▍ | 2690018/4997817 [00:16<00:14, 159510.96it/s]

    +

    53%|█████▎ | 2629103/4997817 [00:16<00:15, 154935.70it/s]

    -
    54%|█████▍ | 2705972/4997817 [00:17&lt;00:14, 159362.82it/s]
    +
    53%|█████▎ | 2644659/4997817 [00:17&lt;00:15, 155119.51it/s]

    </pre>

    -
    54%|█████▍ | 2705972/4997817 [00:17<00:14, 159362.82it/s]
    +
    53%|█████▎ | 2644659/4997817 [00:17<00:15, 155119.51it/s]

    end{sphinxVerbatim}

    -

    54%|█████▍ | 2705972/4997817 [00:17<00:14, 159362.82it/s]

    +

    53%|█████▎ | 2644659/4997817 [00:17<00:15, 155119.51it/s]

    -
    54%|█████▍ | 2721935/4997817 [00:17&lt;00:14, 159441.26it/s]
    +
    53%|█████▎ | 2660264/4997817 [00:17&lt;00:15, 155395.36it/s]

    </pre>

    -
    54%|█████▍ | 2721935/4997817 [00:17<00:14, 159441.26it/s]
    +
    53%|█████▎ | 2660264/4997817 [00:17<00:15, 155395.36it/s]

    end{sphinxVerbatim}

    -

    54%|█████▍ | 2721935/4997817 [00:17<00:14, 159441.26it/s]

    +

    53%|█████▎ | 2660264/4997817 [00:17<00:15, 155395.36it/s]

    -
    55%|█████▍ | 2737881/4997817 [00:17&lt;00:14, 159351.77it/s]
    +
    54%|█████▎ | 2675970/4997817 [00:17&lt;00:14, 155890.19it/s]

    </pre>

    -
    55%|█████▍ | 2737881/4997817 [00:17<00:14, 159351.77it/s]
    +
    54%|█████▎ | 2675970/4997817 [00:17<00:14, 155890.19it/s]

    end{sphinxVerbatim}

    -

    55%|█████▍ | 2737881/4997817 [00:17<00:14, 159351.77it/s]

    +

    54%|█████▎ | 2675970/4997817 [00:17<00:14, 155890.19it/s]

    -
    55%|█████▌ | 2753818/4997817 [00:17&lt;00:14, 158667.59it/s]
    +
    54%|█████▍ | 2691560/4997817 [00:17&lt;00:14, 155582.12it/s]

    </pre>

    -
    55%|█████▌ | 2753818/4997817 [00:17<00:14, 158667.59it/s]
    +
    54%|█████▍ | 2691560/4997817 [00:17<00:14, 155582.12it/s]

    end{sphinxVerbatim}

    -

    55%|█████▌ | 2753818/4997817 [00:17<00:14, 158667.59it/s]

    +

    54%|█████▍ | 2691560/4997817 [00:17<00:14, 155582.12it/s]

    -
    55%|█████▌ | 2769712/4997817 [00:17&lt;00:14, 158747.67it/s]
    +
    54%|█████▍ | 2707140/4997817 [00:17&lt;00:14, 155643.62it/s]

    </pre>

    -
    55%|█████▌ | 2769712/4997817 [00:17<00:14, 158747.67it/s]
    +
    54%|█████▍ | 2707140/4997817 [00:17<00:14, 155643.62it/s]

    end{sphinxVerbatim}

    -

    55%|█████▌ | 2769712/4997817 [00:17<00:14, 158747.67it/s]

    +

    54%|█████▍ | 2707140/4997817 [00:17<00:14, 155643.62it/s]

    -
    56%|█████▌ | 2785718/4997817 [00:17&lt;00:13, 159139.50it/s]
    +
    54%|█████▍ | 2722760/4997817 [00:17&lt;00:14, 155806.54it/s]

    </pre>

    -
    56%|█████▌ | 2785718/4997817 [00:17<00:13, 159139.50it/s]
    +
    54%|█████▍ | 2722760/4997817 [00:17<00:14, 155806.54it/s]

    end{sphinxVerbatim}

    -

    56%|█████▌ | 2785718/4997817 [00:17<00:13, 159139.50it/s]

    +

    54%|█████▍ | 2722760/4997817 [00:17<00:14, 155806.54it/s]

    -
    56%|█████▌ | 2801696/4997817 [00:17&lt;00:13, 159329.72it/s]
    +
    55%|█████▍ | 2738442/4997817 [00:17&lt;00:14, 156108.41it/s]

    </pre>

    -
    56%|█████▌ | 2801696/4997817 [00:17<00:13, 159329.72it/s]
    +
    55%|█████▍ | 2738442/4997817 [00:17<00:14, 156108.41it/s]

    end{sphinxVerbatim}

    -

    56%|█████▌ | 2801696/4997817 [00:17<00:13, 159329.72it/s]

    +

    55%|█████▍ | 2738442/4997817 [00:17<00:14, 156108.41it/s]

    -
    56%|█████▋ | 2817630/4997817 [00:17&lt;00:13, 159123.27it/s]
    +
    55%|█████▌ | 2754054/4997817 [00:17&lt;00:14, 155832.37it/s]

    </pre>

    -
    56%|█████▋ | 2817630/4997817 [00:17<00:13, 159123.27it/s]
    +
    55%|█████▌ | 2754054/4997817 [00:17<00:14, 155832.37it/s]

    end{sphinxVerbatim}

    -

    56%|█████▋ | 2817630/4997817 [00:17<00:13, 159123.27it/s]

    +

    55%|█████▌ | 2754054/4997817 [00:17<00:14, 155832.37it/s]

    -
    57%|█████▋ | 2833543/4997817 [00:17&lt;00:13, 158866.97it/s]
    +
    55%|█████▌ | 2769638/4997817 [00:17&lt;00:14, 155801.88it/s]

    </pre>

    -
    57%|█████▋ | 2833543/4997817 [00:17<00:13, 158866.97it/s]
    +
    55%|█████▌ | 2769638/4997817 [00:17<00:14, 155801.88it/s]

    end{sphinxVerbatim}

    -

    57%|█████▋ | 2833543/4997817 [00:17<00:13, 158866.97it/s]

    +

    55%|█████▌ | 2769638/4997817 [00:17<00:14, 155801.88it/s]

    -
    57%|█████▋ | 2849515/4997817 [00:17&lt;00:13, 159119.80it/s]
    +
    56%|█████▌ | 2785236/4997817 [00:17&lt;00:14, 155853.51it/s]

    </pre>

    -
    57%|█████▋ | 2849515/4997817 [00:17<00:13, 159119.80it/s]
    +
    56%|█████▌ | 2785236/4997817 [00:17<00:14, 155853.51it/s]

    end{sphinxVerbatim}

    -

    57%|█████▋ | 2849515/4997817 [00:17<00:13, 159119.80it/s]

    +

    56%|█████▌ | 2785236/4997817 [00:17<00:14, 155853.51it/s]

    -
    57%|█████▋ | 2865428/4997817 [00:18&lt;00:13, 158853.29it/s]
    +
    56%|█████▌ | 2800883/4997817 [00:18&lt;00:14, 156035.09it/s]

    </pre>

    -
    57%|█████▋ | 2865428/4997817 [00:18<00:13, 158853.29it/s]
    +
    56%|█████▌ | 2800883/4997817 [00:18<00:14, 156035.09it/s]

    end{sphinxVerbatim}

    -

    57%|█████▋ | 2865428/4997817 [00:18<00:13, 158853.29it/s]

    +

    56%|█████▌ | 2800883/4997817 [00:18<00:14, 156035.09it/s]

    -
    58%|█████▊ | 2881370/4997817 [00:18&lt;00:13, 159020.78it/s]
    +
    56%|█████▋ | 2816487/4997817 [00:18&lt;00:14, 149243.30it/s]

    </pre>

    -
    58%|█████▊ | 2881370/4997817 [00:18<00:13, 159020.78it/s]
    +
    56%|█████▋ | 2816487/4997817 [00:18<00:14, 149243.30it/s]

    end{sphinxVerbatim}

    -

    58%|█████▊ | 2881370/4997817 [00:18<00:13, 159020.78it/s]

    +

    56%|█████▋ | 2816487/4997817 [00:18<00:14, 149243.30it/s]

    -
    58%|█████▊ | 2897273/4997817 [00:18&lt;00:13, 158804.17it/s]
    +
    57%|█████▋ | 2832047/4997817 [00:18&lt;00:14, 151087.40it/s]

    </pre>

    -
    58%|█████▊ | 2897273/4997817 [00:18<00:13, 158804.17it/s]
    +
    57%|█████▋ | 2832047/4997817 [00:18<00:14, 151087.40it/s]

    end{sphinxVerbatim}

    -

    58%|█████▊ | 2897273/4997817 [00:18<00:13, 158804.17it/s]

    +

    57%|█████▋ | 2832047/4997817 [00:18<00:14, 151087.40it/s]

    -
    58%|█████▊ | 2913154/4997817 [00:18&lt;00:13, 158342.95it/s]
    +
    57%|█████▋ | 2847658/4997817 [00:18&lt;00:14, 152557.40it/s]

    </pre>

    -
    58%|█████▊ | 2913154/4997817 [00:18<00:13, 158342.95it/s]
    +
    57%|█████▋ | 2847658/4997817 [00:18<00:14, 152557.40it/s]

    end{sphinxVerbatim}

    -

    58%|█████▊ | 2913154/4997817 [00:18<00:13, 158342.95it/s]

    +

    57%|█████▋ | 2847658/4997817 [00:18<00:14, 152557.40it/s]

    -
    59%|█████▊ | 2928989/4997817 [00:18&lt;00:13, 158229.17it/s]
    +
    57%|█████▋ | 2863262/4997817 [00:18&lt;00:13, 153584.80it/s]

    </pre>

    -
    59%|█████▊ | 2928989/4997817 [00:18<00:13, 158229.17it/s]
    +
    57%|█████▋ | 2863262/4997817 [00:18<00:13, 153584.80it/s]

    end{sphinxVerbatim}

    -

    59%|█████▊ | 2928989/4997817 [00:18<00:13, 158229.17it/s]

    +

    57%|█████▋ | 2863262/4997817 [00:18<00:13, 153584.80it/s]

    -
    59%|█████▉ | 2944813/4997817 [00:18&lt;00:12, 157965.71it/s]
    +
    58%|█████▊ | 2878803/4997817 [00:18&lt;00:13, 154124.08it/s]

    </pre>

    -
    59%|█████▉ | 2944813/4997817 [00:18<00:12, 157965.71it/s]
    +
    58%|█████▊ | 2878803/4997817 [00:18<00:13, 154124.08it/s]

    end{sphinxVerbatim}

    -

    59%|█████▉ | 2944813/4997817 [00:18<00:12, 157965.71it/s]

    +

    58%|█████▊ | 2878803/4997817 [00:18<00:13, 154124.08it/s]

    -
    59%|█████▉ | 2960610/4997817 [00:18&lt;00:12, 157704.96it/s]
    +
    58%|█████▊ | 2894313/4997817 [00:18&lt;00:13, 154411.24it/s]

    </pre>

    -
    59%|█████▉ | 2960610/4997817 [00:18<00:12, 157704.96it/s]
    +
    58%|█████▊ | 2894313/4997817 [00:18<00:13, 154411.24it/s]

    end{sphinxVerbatim}

    -

    59%|█████▉ | 2960610/4997817 [00:18<00:12, 157704.96it/s]

    +

    58%|█████▊ | 2894313/4997817 [00:18<00:13, 154411.24it/s]

    -
    60%|█████▉ | 2976411/4997817 [00:18&lt;00:12, 157790.69it/s]
    +
    58%|█████▊ | 2909874/4997817 [00:18&lt;00:13, 154765.54it/s]

    </pre>

    -
    60%|█████▉ | 2976411/4997817 [00:18<00:12, 157790.69it/s]
    +
    58%|█████▊ | 2909874/4997817 [00:18<00:13, 154765.54it/s]

    end{sphinxVerbatim}

    -

    60%|█████▉ | 2976411/4997817 [00:18<00:12, 157790.69it/s]

    +

    58%|█████▊ | 2909874/4997817 [00:18<00:13, 154765.54it/s]

    -
    60%|█████▉ | 2992243/4997817 [00:18&lt;00:12, 157946.44it/s]
    +
    59%|█████▊ | 2925374/4997817 [00:18&lt;00:13, 154833.01it/s]

    </pre>

    -
    60%|█████▉ | 2992243/4997817 [00:18<00:12, 157946.44it/s]
    +
    59%|█████▊ | 2925374/4997817 [00:18<00:13, 154833.01it/s]

    end{sphinxVerbatim}

    -

    60%|█████▉ | 2992243/4997817 [00:18<00:12, 157946.44it/s]

    +

    59%|█████▊ | 2925374/4997817 [00:18<00:13, 154833.01it/s]

    -
    60%|██████ | 3008086/4997817 [00:18&lt;00:12, 158089.49it/s]
    +
    59%|█████▉ | 2940865/4997817 [00:18&lt;00:13, 154727.28it/s]

    </pre>

    -
    60%|██████ | 3008086/4997817 [00:18<00:12, 158089.49it/s]
    +
    59%|█████▉ | 2940865/4997817 [00:18<00:13, 154727.28it/s]

    end{sphinxVerbatim}

    -

    60%|██████ | 3008086/4997817 [00:18<00:12, 158089.49it/s]

    +

    59%|█████▉ | 2940865/4997817 [00:18<00:13, 154727.28it/s]

    -
    61%|██████ | 3023896/4997817 [00:19&lt;00:12, 157854.86it/s]
    +
    59%|█████▉ | 2956389/4997817 [00:19&lt;00:13, 154877.89it/s]

    </pre>

    -
    61%|██████ | 3023896/4997817 [00:19<00:12, 157854.86it/s]
    +
    59%|█████▉ | 2956389/4997817 [00:19<00:13, 154877.89it/s]

    end{sphinxVerbatim}

    -

    61%|██████ | 3023896/4997817 [00:19<00:12, 157854.86it/s]

    +

    59%|█████▉ | 2956389/4997817 [00:19<00:13, 154877.89it/s]

    -
    61%|██████ | 3039789/4997817 [00:19&lt;00:12, 158175.36it/s]
    +
    59%|█████▉ | 2971910/4997817 [00:19&lt;00:13, 154973.96it/s]

    </pre>

    -
    61%|██████ | 3039789/4997817 [00:19<00:12, 158175.36it/s]
    +
    59%|█████▉ | 2971910/4997817 [00:19<00:13, 154973.96it/s]

    end{sphinxVerbatim}

    -

    61%|██████ | 3039789/4997817 [00:19<00:12, 158175.36it/s]

    +

    59%|█████▉ | 2971910/4997817 [00:19<00:13, 154973.96it/s]

    -
    61%|██████ | 3055607/4997817 [00:19&lt;00:12, 158114.00it/s]
    +
    60%|█████▉ | 2987427/4997817 [00:19&lt;00:12, 155029.31it/s]

    </pre>

    -
    61%|██████ | 3055607/4997817 [00:19<00:12, 158114.00it/s]
    +
    60%|█████▉ | 2987427/4997817 [00:19<00:12, 155029.31it/s]

    end{sphinxVerbatim}

    -

    61%|██████ | 3055607/4997817 [00:19<00:12, 158114.00it/s]

    +

    60%|█████▉ | 2987427/4997817 [00:19<00:12, 155029.31it/s]

    -
    61%|██████▏ | 3071420/4997817 [00:19&lt;00:12, 158117.60it/s]
    +
    60%|██████ | 3003022/4997817 [00:19&lt;00:12, 155303.32it/s]

    </pre>

    -
    61%|██████▏ | 3071420/4997817 [00:19<00:12, 158117.60it/s]
    +
    60%|██████ | 3003022/4997817 [00:19<00:12, 155303.32it/s]

    end{sphinxVerbatim}

    -

    61%|██████▏ | 3071420/4997817 [00:19<00:12, 158117.60it/s]

    +

    60%|██████ | 3003022/4997817 [00:19<00:12, 155303.32it/s]

    -
    62%|██████▏ | 3087232/4997817 [00:19&lt;00:12, 157048.66it/s]
    +
    60%|██████ | 3018554/4997817 [00:19&lt;00:12, 155228.70it/s]

    </pre>

    -
    62%|██████▏ | 3087232/4997817 [00:19<00:12, 157048.66it/s]
    +
    60%|██████ | 3018554/4997817 [00:19<00:12, 155228.70it/s]

    end{sphinxVerbatim}

    -

    62%|██████▏ | 3087232/4997817 [00:19<00:12, 157048.66it/s]

    +

    60%|██████ | 3018554/4997817 [00:19<00:12, 155228.70it/s]

    -
    62%|██████▏ | 3102944/4997817 [00:19&lt;00:12, 157067.98it/s]
    +
    61%|██████ | 3034188/4997817 [00:19&lt;00:12, 155560.53it/s]

    </pre>

    -
    62%|██████▏ | 3102944/4997817 [00:19<00:12, 157067.98it/s]
    +
    61%|██████ | 3034188/4997817 [00:19<00:12, 155560.53it/s]

    end{sphinxVerbatim}

    -

    62%|██████▏ | 3102944/4997817 [00:19<00:12, 157067.98it/s]

    +

    61%|██████ | 3034188/4997817 [00:19<00:12, 155560.53it/s]

    -
    62%|██████▏ | 3118888/4997817 [00:19&lt;00:11, 157775.61it/s]
    +
    61%|██████ | 3049758/4997817 [00:19&lt;00:12, 155599.17it/s]

    </pre>

    -
    62%|██████▏ | 3118888/4997817 [00:19<00:11, 157775.61it/s]
    +
    61%|██████ | 3049758/4997817 [00:19<00:12, 155599.17it/s]

    end{sphinxVerbatim}

    -

    62%|██████▏ | 3118888/4997817 [00:19<00:11, 157775.61it/s]

    +

    61%|██████ | 3049758/4997817 [00:19<00:12, 155599.17it/s]

    -
    63%|██████▎ | 3134867/4997817 [00:19&lt;00:11, 158374.88it/s]
    +
    61%|██████▏ | 3065389/4997817 [00:19&lt;00:12, 155808.70it/s]

    </pre>

    -
    63%|██████▎ | 3134867/4997817 [00:19<00:11, 158374.88it/s]
    +
    61%|██████▏ | 3065389/4997817 [00:19<00:12, 155808.70it/s]

    end{sphinxVerbatim}

    -

    63%|██████▎ | 3134867/4997817 [00:19<00:11, 158374.88it/s]

    +

    61%|██████▏ | 3065389/4997817 [00:19<00:12, 155808.70it/s]

    -
    63%|██████▎ | 3150754/4997817 [00:19&lt;00:11, 158520.01it/s]
    +
    62%|██████▏ | 3080975/4997817 [00:19&lt;00:12, 155821.79it/s]

    </pre>

    -
    63%|██████▎ | 3150754/4997817 [00:19<00:11, 158520.01it/s]
    +
    62%|██████▏ | 3080975/4997817 [00:19<00:12, 155821.79it/s]

    end{sphinxVerbatim}

    -

    63%|██████▎ | 3150754/4997817 [00:19<00:11, 158520.01it/s]

    +

    62%|██████▏ | 3080975/4997817 [00:19<00:12, 155821.79it/s]

    -
    63%|██████▎ | 3166669/4997817 [00:19&lt;00:11, 158707.45it/s]
    +
    62%|██████▏ | 3096561/4997817 [00:19&lt;00:12, 155829.95it/s]

    </pre>

    -
    63%|██████▎ | 3166669/4997817 [00:19<00:11, 158707.45it/s]
    +
    62%|██████▏ | 3096561/4997817 [00:19<00:12, 155829.95it/s]

    end{sphinxVerbatim}

    -

    63%|██████▎ | 3166669/4997817 [00:19<00:11, 158707.45it/s]

    +

    62%|██████▏ | 3096561/4997817 [00:19<00:12, 155829.95it/s]

    -
    64%|██████▎ | 3182541/4997817 [00:20&lt;00:11, 158276.37it/s]
    +
    62%|██████▏ | 3112145/4997817 [00:20&lt;00:12, 155467.23it/s]

    </pre>

    -
    64%|██████▎ | 3182541/4997817 [00:20<00:11, 158276.37it/s]
    +
    62%|██████▏ | 3112145/4997817 [00:20<00:12, 155467.23it/s]

    end{sphinxVerbatim}

    -

    64%|██████▎ | 3182541/4997817 [00:20<00:11, 158276.37it/s]

    +

    62%|██████▏ | 3112145/4997817 [00:20<00:12, 155467.23it/s]

    -
    64%|██████▍ | 3198370/4997817 [00:20&lt;00:11, 155580.57it/s]
    +
    63%|██████▎ | 3127693/4997817 [00:20&lt;00:12, 154776.76it/s]

    </pre>

    -
    64%|██████▍ | 3198370/4997817 [00:20<00:11, 155580.57it/s]
    +
    63%|██████▎ | 3127693/4997817 [00:20<00:12, 154776.76it/s]

    end{sphinxVerbatim}

    -

    64%|██████▍ | 3198370/4997817 [00:20<00:11, 155580.57it/s]

    +

    63%|██████▎ | 3127693/4997817 [00:20<00:12, 154776.76it/s]

    -
    64%|██████▍ | 3214146/4997817 [00:20&lt;00:11, 156223.44it/s]
    +
    63%|██████▎ | 3143257/4997817 [00:20&lt;00:11, 155032.11it/s]

    </pre>

    -
    64%|██████▍ | 3214146/4997817 [00:20<00:11, 156223.44it/s]
    +
    63%|██████▎ | 3143257/4997817 [00:20<00:11, 155032.11it/s]

    end{sphinxVerbatim}

    -

    64%|██████▍ | 3214146/4997817 [00:20<00:11, 156223.44it/s]

    +

    63%|██████▎ | 3143257/4997817 [00:20<00:11, 155032.11it/s]

    -
    65%|██████▍ | 3229896/4997817 [00:20&lt;00:11, 156601.96it/s]
    +
    63%|██████▎ | 3158761/4997817 [00:20&lt;00:11, 155009.31it/s]

    </pre>

    -
    65%|██████▍ | 3229896/4997817 [00:20<00:11, 156601.96it/s]
    +
    63%|██████▎ | 3158761/4997817 [00:20<00:11, 155009.31it/s]

    end{sphinxVerbatim}

    -

    65%|██████▍ | 3229896/4997817 [00:20<00:11, 156601.96it/s]

    +

    63%|██████▎ | 3158761/4997817 [00:20<00:11, 155009.31it/s]

    -
    65%|██████▍ | 3245585/4997817 [00:20&lt;00:11, 156686.05it/s]
    +
    64%|██████▎ | 3174327/4997817 [00:20&lt;00:11, 155201.57it/s]

    </pre>

    -
    65%|██████▍ | 3245585/4997817 [00:20<00:11, 156686.05it/s]
    +
    64%|██████▎ | 3174327/4997817 [00:20<00:11, 155201.57it/s]

    end{sphinxVerbatim}

    -

    65%|██████▍ | 3245585/4997817 [00:20<00:11, 156686.05it/s]

    +

    64%|██████▎ | 3174327/4997817 [00:20<00:11, 155201.57it/s]

    -
    65%|██████▌ | 3261389/4997817 [00:20&lt;00:11, 157088.77it/s]
    +
    64%|██████▍ | 3189921/4997817 [00:20&lt;00:11, 155420.68it/s]

    </pre>

    -
    65%|██████▌ | 3261389/4997817 [00:20<00:11, 157088.77it/s]
    +
    64%|██████▍ | 3189921/4997817 [00:20<00:11, 155420.68it/s]

    end{sphinxVerbatim}

    -

    65%|██████▌ | 3261389/4997817 [00:20<00:11, 157088.77it/s]

    +

    64%|██████▍ | 3189921/4997817 [00:20<00:11, 155420.68it/s]

    -
    66%|██████▌ | 3277256/4997817 [00:20&lt;00:10, 157559.68it/s]
    +
    64%|██████▍ | 3205500/4997817 [00:20&lt;00:11, 155529.73it/s]

    </pre>

    -
    66%|██████▌ | 3277256/4997817 [00:20<00:10, 157559.68it/s]
    +
    64%|██████▍ | 3205500/4997817 [00:20<00:11, 155529.73it/s]

    end{sphinxVerbatim}

    -

    66%|██████▌ | 3277256/4997817 [00:20<00:10, 157559.68it/s]

    +

    64%|██████▍ | 3205500/4997817 [00:20<00:11, 155529.73it/s]

    -
    66%|██████▌ | 3293139/4997817 [00:20&lt;00:10, 157937.78it/s]
    +
    64%|██████▍ | 3221054/4997817 [00:20&lt;00:11, 155453.31it/s]

    </pre>

    -
    66%|██████▌ | 3293139/4997817 [00:20<00:10, 157937.78it/s]
    +
    64%|██████▍ | 3221054/4997817 [00:20<00:11, 155453.31it/s]

    end{sphinxVerbatim}

    -

    66%|██████▌ | 3293139/4997817 [00:20<00:10, 157937.78it/s]

    +

    64%|██████▍ | 3221054/4997817 [00:20<00:11, 155453.31it/s]

    -
    66%|██████▌ | 3308935/4997817 [00:20&lt;00:10, 157714.51it/s]
    +
    65%|██████▍ | 3236600/4997817 [00:20&lt;00:11, 155244.69it/s]

    </pre>

    -
    66%|██████▌ | 3308935/4997817 [00:20<00:10, 157714.51it/s]
    +
    65%|██████▍ | 3236600/4997817 [00:20<00:11, 155244.69it/s]

    end{sphinxVerbatim}

    -

    66%|██████▌ | 3308935/4997817 [00:20<00:10, 157714.51it/s]

    +

    65%|██████▍ | 3236600/4997817 [00:20<00:11, 155244.69it/s]

    -
    67%|██████▋ | 3324777/4997817 [00:21&lt;00:10, 157924.16it/s]
    +
    65%|██████▌ | 3252125/4997817 [00:20&lt;00:11, 155055.87it/s]

    </pre>

    -
    67%|██████▋ | 3324777/4997817 [00:21<00:10, 157924.16it/s]
    +
    65%|██████▌ | 3252125/4997817 [00:20<00:11, 155055.87it/s]

    end{sphinxVerbatim}

    -

    67%|██████▋ | 3324777/4997817 [00:21<00:10, 157924.16it/s]

    +

    65%|██████▌ | 3252125/4997817 [00:20<00:11, 155055.87it/s]

    -
    67%|██████▋ | 3340601/4997817 [00:21&lt;00:10, 158017.46it/s]
    +
    65%|██████▌ | 3267656/4997817 [00:21&lt;00:11, 155128.46it/s]

    </pre>

    -
    67%|██████▋ | 3340601/4997817 [00:21<00:10, 158017.46it/s]
    +
    65%|██████▌ | 3267656/4997817 [00:21<00:11, 155128.46it/s]

    end{sphinxVerbatim}

    -

    67%|██████▋ | 3340601/4997817 [00:21<00:10, 158017.46it/s]

    +

    65%|██████▌ | 3267656/4997817 [00:21<00:11, 155128.46it/s]

    -
    67%|██████▋ | 3356404/4997817 [00:21&lt;00:10, 157983.45it/s]
    +
    66%|██████▌ | 3283190/4997817 [00:21&lt;00:11, 155188.11it/s]

    </pre>

    -
    67%|██████▋ | 3356404/4997817 [00:21<00:10, 157983.45it/s]
    +
    66%|██████▌ | 3283190/4997817 [00:21<00:11, 155188.11it/s]

    end{sphinxVerbatim}

    -

    67%|██████▋ | 3356404/4997817 [00:21<00:10, 157983.45it/s]

    +

    66%|██████▌ | 3283190/4997817 [00:21<00:11, 155188.11it/s]

    -
    67%|██████▋ | 3372236/4997817 [00:21&lt;00:10, 158082.67it/s]
    +
    66%|██████▌ | 3298734/4997817 [00:21&lt;00:10, 155260.76it/s]

    </pre>

    -
    67%|██████▋ | 3372236/4997817 [00:21<00:10, 158082.67it/s]
    +
    66%|██████▌ | 3298734/4997817 [00:21<00:10, 155260.76it/s]

    end{sphinxVerbatim}

    -

    67%|██████▋ | 3372236/4997817 [00:21<00:10, 158082.67it/s]

    +

    66%|██████▌ | 3298734/4997817 [00:21<00:10, 155260.76it/s]

    -
    68%|██████▊ | 3388115/4997817 [00:21&lt;00:10, 158291.04it/s]
    +
    66%|██████▋ | 3314261/4997817 [00:21&lt;00:10, 155153.90it/s]

    </pre>

    -
    68%|██████▊ | 3388115/4997817 [00:21<00:10, 158291.04it/s]
    +
    66%|██████▋ | 3314261/4997817 [00:21<00:10, 155153.90it/s]

    end{sphinxVerbatim}

    -

    68%|██████▊ | 3388115/4997817 [00:21<00:10, 158291.04it/s]

    +

    66%|██████▋ | 3314261/4997817 [00:21<00:10, 155153.90it/s]

    -
    68%|██████▊ | 3403945/4997817 [00:21&lt;00:10, 158092.03it/s]
    +
    67%|██████▋ | 3329777/4997817 [00:21&lt;00:10, 155078.76it/s]

    </pre>

    -
    68%|██████▊ | 3403945/4997817 [00:21<00:10, 158092.03it/s]
    +
    67%|██████▋ | 3329777/4997817 [00:21<00:10, 155078.76it/s]

    end{sphinxVerbatim}

    -

    68%|██████▊ | 3403945/4997817 [00:21<00:10, 158092.03it/s]

    +

    67%|██████▋ | 3329777/4997817 [00:21<00:10, 155078.76it/s]

    -
    68%|██████▊ | 3419755/4997817 [00:21&lt;00:09, 158079.89it/s]
    +
    67%|██████▋ | 3345292/4997817 [00:21&lt;00:10, 155098.82it/s]

    </pre>

    -
    68%|██████▊ | 3419755/4997817 [00:21<00:09, 158079.89it/s]
    +
    67%|██████▋ | 3345292/4997817 [00:21<00:10, 155098.82it/s]

    end{sphinxVerbatim}

    -

    68%|██████▊ | 3419755/4997817 [00:21<00:09, 158079.89it/s]

    +

    67%|██████▋ | 3345292/4997817 [00:21<00:10, 155098.82it/s]

    -
    69%|██████▊ | 3435564/4997817 [00:21&lt;00:09, 157742.55it/s]
    +
    67%|██████▋ | 3360830/4997817 [00:21&lt;00:10, 155180.94it/s]

    </pre>

    -
    69%|██████▊ | 3435564/4997817 [00:21<00:09, 157742.55it/s]
    +
    67%|██████▋ | 3360830/4997817 [00:21<00:10, 155180.94it/s]

    end{sphinxVerbatim}

    -

    69%|██████▊ | 3435564/4997817 [00:21<00:09, 157742.55it/s]

    +

    67%|██████▋ | 3360830/4997817 [00:21<00:10, 155180.94it/s]

    -
    69%|██████▉ | 3451339/4997817 [00:21&lt;00:09, 157567.48it/s]
    +
    68%|██████▊ | 3376404/4997817 [00:21&lt;00:10, 155345.95it/s]

    </pre>

    -
    69%|██████▉ | 3451339/4997817 [00:21<00:09, 157567.48it/s]
    +
    68%|██████▊ | 3376404/4997817 [00:21<00:10, 155345.95it/s]

    end{sphinxVerbatim}

    -

    69%|██████▉ | 3451339/4997817 [00:21<00:09, 157567.48it/s]

    +

    68%|██████▊ | 3376404/4997817 [00:21<00:10, 155345.95it/s]

    -
    69%|██████▉ | 3467096/4997817 [00:21&lt;00:09, 157507.36it/s]
    +
    68%|██████▊ | 3391944/4997817 [00:21&lt;00:10, 155360.09it/s]

    </pre>

    -
    69%|██████▉ | 3467096/4997817 [00:21<00:09, 157507.36it/s]
    +
    68%|██████▊ | 3391944/4997817 [00:21<00:10, 155360.09it/s]

    end{sphinxVerbatim}

    -

    69%|██████▉ | 3467096/4997817 [00:21<00:09, 157507.36it/s]

    +

    68%|██████▊ | 3391944/4997817 [00:21<00:10, 155360.09it/s]

    -
    70%|██████▉ | 3482982/4997817 [00:22&lt;00:09, 157908.94it/s]
    +
    68%|██████▊ | 3407558/4997817 [00:21&lt;00:10, 155591.60it/s]

    </pre>

    -
    70%|██████▉ | 3482982/4997817 [00:22<00:09, 157908.94it/s]
    +
    68%|██████▊ | 3407558/4997817 [00:21<00:10, 155591.60it/s]

    end{sphinxVerbatim}

    -

    70%|██████▉ | 3482982/4997817 [00:22<00:09, 157908.94it/s]

    +

    68%|██████▊ | 3407558/4997817 [00:21<00:10, 155591.60it/s]

    -
    70%|███████ | 3498774/4997817 [00:22&lt;00:09, 157843.07it/s]
    +
    68%|██████▊ | 3423135/4997817 [00:22&lt;00:10, 155643.93it/s]

    </pre>

    -
    70%|███████ | 3498774/4997817 [00:22<00:09, 157843.07it/s]
    +
    68%|██████▊ | 3423135/4997817 [00:22<00:10, 155643.93it/s]

    end{sphinxVerbatim}

    -

    70%|███████ | 3498774/4997817 [00:22<00:09, 157843.07it/s]

    +

    68%|██████▊ | 3423135/4997817 [00:22<00:10, 155643.93it/s]

    -
    70%|███████ | 3514597/4997817 [00:22&lt;00:09, 157956.79it/s]
    +
    69%|██████▉ | 3438700/4997817 [00:22&lt;00:10, 155415.94it/s]

    </pre>

    -
    70%|███████ | 3514597/4997817 [00:22<00:09, 157956.79it/s]
    +
    69%|██████▉ | 3438700/4997817 [00:22<00:10, 155415.94it/s]

    end{sphinxVerbatim}

    -

    70%|███████ | 3514597/4997817 [00:22<00:09, 157956.79it/s]

    +

    69%|██████▉ | 3438700/4997817 [00:22<00:10, 155415.94it/s]

    -
    71%|███████ | 3530435/4997817 [00:22&lt;00:09, 158079.62it/s]
    +
    69%|██████▉ | 3454382/4997817 [00:22&lt;00:09, 155834.05it/s]

    </pre>

    -
    71%|███████ | 3530435/4997817 [00:22<00:09, 158079.62it/s]
    +
    69%|██████▉ | 3454382/4997817 [00:22<00:09, 155834.05it/s]

    end{sphinxVerbatim}

    -

    71%|███████ | 3530435/4997817 [00:22<00:09, 158079.62it/s]

    +

    69%|██████▉ | 3454382/4997817 [00:22<00:09, 155834.05it/s]

    -
    71%|███████ | 3546453/4997817 [00:22&lt;00:09, 158705.87it/s]
    +
    69%|██████▉ | 3469966/4997817 [00:22&lt;00:09, 155761.96it/s]

    </pre>

    -
    71%|███████ | 3546453/4997817 [00:22<00:09, 158705.87it/s]
    +
    69%|██████▉ | 3469966/4997817 [00:22<00:09, 155761.96it/s]

    end{sphinxVerbatim}

    -

    71%|███████ | 3546453/4997817 [00:22<00:09, 158705.87it/s]

    +

    69%|██████▉ | 3469966/4997817 [00:22<00:09, 155761.96it/s]

    -
    71%|███████▏ | 3562348/4997817 [00:22&lt;00:09, 158776.62it/s]
    +
    70%|██████▉ | 3485570/4997817 [00:22&lt;00:09, 155842.34it/s]

    </pre>

    -
    71%|███████▏ | 3562348/4997817 [00:22<00:09, 158776.62it/s]
    +
    70%|██████▉ | 3485570/4997817 [00:22<00:09, 155842.34it/s]

    end{sphinxVerbatim}

    -

    71%|███████▏ | 3562348/4997817 [00:22<00:09, 158776.62it/s]

    +

    70%|██████▉ | 3485570/4997817 [00:22<00:09, 155842.34it/s]

    -
    72%|███████▏ | 3578283/4997817 [00:22&lt;00:08, 158947.26it/s]
    +
    70%|███████ | 3501173/4997817 [00:22&lt;00:09, 155895.75it/s]

    </pre>

    -
    72%|███████▏ | 3578283/4997817 [00:22<00:08, 158947.26it/s]
    +
    70%|███████ | 3501173/4997817 [00:22<00:09, 155895.75it/s]

    end{sphinxVerbatim}

    -

    72%|███████▏ | 3578283/4997817 [00:22<00:08, 158947.26it/s]

    +

    70%|███████ | 3501173/4997817 [00:22<00:09, 155895.75it/s]

    -
    72%|███████▏ | 3594254/4997817 [00:22&lt;00:08, 159174.59it/s]
    +
    70%|███████ | 3516763/4997817 [00:22&lt;00:09, 154652.11it/s]

    </pre>

    -
    72%|███████▏ | 3594254/4997817 [00:22<00:08, 159174.59it/s]
    +
    70%|███████ | 3516763/4997817 [00:22<00:09, 154652.11it/s]

    end{sphinxVerbatim}

    -

    72%|███████▏ | 3594254/4997817 [00:22<00:08, 159174.59it/s]

    +

    70%|███████ | 3516763/4997817 [00:22<00:09, 154652.11it/s]

    -
    72%|███████▏ | 3610172/4997817 [00:22&lt;00:08, 159091.84it/s]
    +
    71%|███████ | 3532339/4997817 [00:22&lt;00:09, 154980.13it/s]

    </pre>

    -
    72%|███████▏ | 3610172/4997817 [00:22<00:08, 159091.84it/s]
    +
    71%|███████ | 3532339/4997817 [00:22<00:09, 154980.13it/s]

    end{sphinxVerbatim}

    -

    72%|███████▏ | 3610172/4997817 [00:22<00:08, 159091.84it/s]

    +

    71%|███████ | 3532339/4997817 [00:22<00:09, 154980.13it/s]

    -
    73%|███████▎ | 3626082/4997817 [00:22&lt;00:08, 159085.69it/s]
    +
    71%|███████ | 3548111/4997817 [00:22&lt;00:09, 155795.60it/s]

    </pre>

    -
    73%|███████▎ | 3626082/4997817 [00:22<00:08, 159085.69it/s]
    +
    71%|███████ | 3548111/4997817 [00:22<00:09, 155795.60it/s]

    end{sphinxVerbatim}

    -

    73%|███████▎ | 3626082/4997817 [00:22<00:08, 159085.69it/s]

    +

    71%|███████ | 3548111/4997817 [00:22<00:09, 155795.60it/s]

    -
    73%|███████▎ | 3641994/4997817 [00:23&lt;00:08, 159093.52it/s]
    +
    71%|███████▏ | 3563847/4997817 [00:22&lt;00:09, 156262.14it/s]

    </pre>

    -
    73%|███████▎ | 3641994/4997817 [00:23<00:08, 159093.52it/s]
    +
    71%|███████▏ | 3563847/4997817 [00:22<00:09, 156262.14it/s]

    end{sphinxVerbatim}

    -

    73%|███████▎ | 3641994/4997817 [00:23<00:08, 159093.52it/s]

    +

    71%|███████▏ | 3563847/4997817 [00:22<00:09, 156262.14it/s]

    -
    73%|███████▎ | 3657904/4997817 [00:23&lt;00:08, 158665.18it/s]
    +
    72%|███████▏ | 3579545/4997817 [00:23&lt;00:09, 156474.98it/s]

    </pre>

    -
    73%|███████▎ | 3657904/4997817 [00:23<00:08, 158665.18it/s]
    +
    72%|███████▏ | 3579545/4997817 [00:23<00:09, 156474.98it/s]

    end{sphinxVerbatim}

    -

    73%|███████▎ | 3657904/4997817 [00:23<00:08, 158665.18it/s]

    +

    72%|███████▏ | 3579545/4997817 [00:23<00:09, 156474.98it/s]

    -
    74%|███████▎ | 3673771/4997817 [00:23&lt;00:08, 158280.41it/s]
    +
    72%|███████▏ | 3595198/4997817 [00:23&lt;00:08, 156488.71it/s]

    </pre>

    -
    74%|███████▎ | 3673771/4997817 [00:23<00:08, 158280.41it/s]
    +
    72%|███████▏ | 3595198/4997817 [00:23<00:08, 156488.71it/s]

    end{sphinxVerbatim}

    -

    74%|███████▎ | 3673771/4997817 [00:23<00:08, 158280.41it/s]

    +

    72%|███████▏ | 3595198/4997817 [00:23<00:08, 156488.71it/s]

    -
    74%|███████▍ | 3689631/4997817 [00:23&lt;00:08, 158354.69it/s]
    +
    72%|███████▏ | 3610848/4997817 [00:23&lt;00:09, 151443.42it/s]

    </pre>

    -
    74%|███████▍ | 3689631/4997817 [00:23<00:08, 158354.69it/s]
    +
    72%|███████▏ | 3610848/4997817 [00:23<00:09, 151443.42it/s]

    end{sphinxVerbatim}

    -

    74%|███████▍ | 3689631/4997817 [00:23<00:08, 158354.69it/s]

    +

    72%|███████▏ | 3610848/4997817 [00:23<00:09, 151443.42it/s]

    -
    74%|███████▍ | 3705492/4997817 [00:23&lt;00:08, 158428.66it/s]
    +
    73%|███████▎ | 3626500/4997817 [00:23&lt;00:08, 152929.45it/s]

    </pre>

    -
    74%|███████▍ | 3705492/4997817 [00:23<00:08, 158428.66it/s]
    +
    73%|███████▎ | 3626500/4997817 [00:23<00:08, 152929.45it/s]

    end{sphinxVerbatim}

    -

    74%|███████▍ | 3705492/4997817 [00:23<00:08, 158428.66it/s]

    +

    73%|███████▎ | 3626500/4997817 [00:23<00:08, 152929.45it/s]

    -
    74%|███████▍ | 3721336/4997817 [00:23&lt;00:08, 157917.66it/s]
    +
    73%|███████▎ | 3642039/4997817 [00:23&lt;00:08, 153652.07it/s]

    </pre>

    -
    74%|███████▍ | 3721336/4997817 [00:23<00:08, 157917.66it/s]
    +
    73%|███████▎ | 3642039/4997817 [00:23<00:08, 153652.07it/s]

    end{sphinxVerbatim}

    -

    74%|███████▍ | 3721336/4997817 [00:23<00:08, 157917.66it/s]

    +

    73%|███████▎ | 3642039/4997817 [00:23<00:08, 153652.07it/s]

    -
    75%|███████▍ | 3737299/4997817 [00:23&lt;00:07, 158404.81it/s]
    +
    73%|███████▎ | 3657709/4997817 [00:23&lt;00:08, 154553.95it/s]

    </pre>

    -
    75%|███████▍ | 3737299/4997817 [00:23<00:07, 158404.81it/s]
    +
    73%|███████▎ | 3657709/4997817 [00:23<00:08, 154553.95it/s]

    end{sphinxVerbatim}

    -

    75%|███████▍ | 3737299/4997817 [00:23<00:07, 158404.81it/s]

    +

    73%|███████▎ | 3657709/4997817 [00:23<00:08, 154553.95it/s]

    -
    75%|███████▌ | 3753140/4997817 [00:23&lt;00:07, 158165.60it/s]
    +
    73%|███████▎ | 3673302/4997817 [00:23&lt;00:08, 154961.55it/s]

    </pre>

    -
    75%|███████▌ | 3753140/4997817 [00:23<00:07, 158165.60it/s]
    +
    73%|███████▎ | 3673302/4997817 [00:23<00:08, 154961.55it/s]

    end{sphinxVerbatim}

    -

    75%|███████▌ | 3753140/4997817 [00:23<00:07, 158165.60it/s]

    +

    73%|███████▎ | 3673302/4997817 [00:23<00:08, 154961.55it/s]

    -
    75%|███████▌ | 3768985/4997817 [00:23&lt;00:07, 158249.14it/s]
    +
    74%|███████▍ | 3688944/4997817 [00:23&lt;00:08, 155393.62it/s]

    </pre>

    -
    75%|███████▌ | 3768985/4997817 [00:23<00:07, 158249.14it/s]
    +
    74%|███████▍ | 3688944/4997817 [00:23<00:08, 155393.62it/s]

    end{sphinxVerbatim}

    -

    75%|███████▌ | 3768985/4997817 [00:23<00:07, 158249.14it/s]

    +

    74%|███████▍ | 3688944/4997817 [00:23<00:08, 155393.62it/s]

    -
    76%|███████▌ | 3784839/4997817 [00:23&lt;00:07, 158333.22it/s]
    +
    74%|███████▍ | 3704553/4997817 [00:23&lt;00:08, 155600.29it/s]

    </pre>

    -
    76%|███████▌ | 3784839/4997817 [00:23<00:07, 158333.22it/s]
    +
    74%|███████▍ | 3704553/4997817 [00:23<00:08, 155600.29it/s]

    end{sphinxVerbatim}

    -

    76%|███████▌ | 3784839/4997817 [00:23<00:07, 158333.22it/s]

    +

    74%|███████▍ | 3704553/4997817 [00:23<00:08, 155600.29it/s]

    -
    76%|███████▌ | 3800712/4997817 [00:24&lt;00:07, 158448.85it/s]
    +
    74%|███████▍ | 3720119/4997817 [00:23&lt;00:08, 155607.99it/s]

    </pre>

    -
    76%|███████▌ | 3800712/4997817 [00:24<00:07, 158448.85it/s]
    +
    74%|███████▍ | 3720119/4997817 [00:23<00:08, 155607.99it/s]

    end{sphinxVerbatim}

    -

    76%|███████▌ | 3800712/4997817 [00:24<00:07, 158448.85it/s]

    +

    74%|███████▍ | 3720119/4997817 [00:23<00:08, 155607.99it/s]

    -
    76%|███████▋ | 3816628/4997817 [00:24&lt;00:07, 158657.95it/s]
    +
    75%|███████▍ | 3735684/4997817 [00:24&lt;00:08, 155573.30it/s]

    </pre>

    -
    76%|███████▋ | 3816628/4997817 [00:24<00:07, 158657.95it/s]
    +
    75%|███████▍ | 3735684/4997817 [00:24<00:08, 155573.30it/s]

    end{sphinxVerbatim}

    -

    76%|███████▋ | 3816628/4997817 [00:24<00:07, 158657.95it/s]

    +

    75%|███████▍ | 3735684/4997817 [00:24<00:08, 155573.30it/s]

    -
    77%|███████▋ | 3832566/4997817 [00:24&lt;00:07, 158872.18it/s]
    +
    75%|███████▌ | 3751245/4997817 [00:24&lt;00:08, 155474.54it/s]

    </pre>

    -
    77%|███████▋ | 3832566/4997817 [00:24<00:07, 158872.18it/s]
    +
    75%|███████▌ | 3751245/4997817 [00:24<00:08, 155474.54it/s]

    end{sphinxVerbatim}

    -

    77%|███████▋ | 3832566/4997817 [00:24<00:07, 158872.18it/s]

    +

    75%|███████▌ | 3751245/4997817 [00:24<00:08, 155474.54it/s]

    -
    77%|███████▋ | 3848478/4997817 [00:24&lt;00:07, 158945.40it/s]
    +
    75%|███████▌ | 3766828/4997817 [00:24&lt;00:07, 155578.60it/s]

    </pre>

    -
    77%|███████▋ | 3848478/4997817 [00:24<00:07, 158945.40it/s]
    +
    75%|███████▌ | 3766828/4997817 [00:24<00:07, 155578.60it/s]

    end{sphinxVerbatim}

    -

    77%|███████▋ | 3848478/4997817 [00:24<00:07, 158945.40it/s]

    +

    75%|███████▌ | 3766828/4997817 [00:24<00:07, 155578.60it/s]

    -
    77%|███████▋ | 3864464/4997817 [00:24&lt;00:07, 159218.13it/s]
    +
    76%|███████▌ | 3782415/4997817 [00:24&lt;00:07, 155663.85it/s]

    </pre>

    -
    77%|███████▋ | 3864464/4997817 [00:24<00:07, 159218.13it/s]
    +
    76%|███████▌ | 3782415/4997817 [00:24<00:07, 155663.85it/s]

    end{sphinxVerbatim}

    -

    77%|███████▋ | 3864464/4997817 [00:24<00:07, 159218.13it/s]

    +

    76%|███████▌ | 3782415/4997817 [00:24<00:07, 155663.85it/s]

    -
    78%|███████▊ | 3880386/4997817 [00:24&lt;00:07, 158715.96it/s]
    +
    76%|███████▌ | 3798032/4997817 [00:24&lt;00:07, 155812.50it/s]

    </pre>

    -
    78%|███████▊ | 3880386/4997817 [00:24<00:07, 158715.96it/s]
    +
    76%|███████▌ | 3798032/4997817 [00:24<00:07, 155812.50it/s]

    end{sphinxVerbatim}

    -

    78%|███████▊ | 3880386/4997817 [00:24<00:07, 158715.96it/s]

    +

    76%|███████▌ | 3798032/4997817 [00:24<00:07, 155812.50it/s]

    -
    78%|███████▊ | 3896258/4997817 [00:24&lt;00:06, 158588.55it/s]
    +
    76%|███████▋ | 3813654/4997817 [00:24&lt;00:07, 155931.49it/s]

    </pre>

    -
    78%|███████▊ | 3896258/4997817 [00:24<00:06, 158588.55it/s]
    +
    76%|███████▋ | 3813654/4997817 [00:24<00:07, 155931.49it/s]

    end{sphinxVerbatim}

    -

    78%|███████▊ | 3896258/4997817 [00:24<00:06, 158588.55it/s]

    +

    76%|███████▋ | 3813654/4997817 [00:24<00:07, 155931.49it/s]

    -
    78%|███████▊ | 3912178/4997817 [00:24&lt;00:06, 158768.56it/s]
    +
    77%|███████▋ | 3829267/4997817 [00:24&lt;00:07, 155987.60it/s]

    </pre>

    -
    78%|███████▊ | 3912178/4997817 [00:24<00:06, 158768.56it/s]
    +
    77%|███████▋ | 3829267/4997817 [00:24<00:07, 155987.60it/s]

    end{sphinxVerbatim}

    -

    78%|███████▊ | 3912178/4997817 [00:24<00:06, 158768.56it/s]

    +

    77%|███████▋ | 3829267/4997817 [00:24<00:07, 155987.60it/s]

    -
    79%|███████▊ | 3928056/4997817 [00:24&lt;00:06, 158175.28it/s]
    +
    77%|███████▋ | 3844880/4997817 [00:24&lt;00:07, 156027.23it/s]

    </pre>

    -
    79%|███████▊ | 3928056/4997817 [00:24<00:06, 158175.28it/s]
    +
    77%|███████▋ | 3844880/4997817 [00:24<00:07, 156027.23it/s]

    end{sphinxVerbatim}

    -

    79%|███████▊ | 3928056/4997817 [00:24<00:06, 158175.28it/s]

    +

    77%|███████▋ | 3844880/4997817 [00:24<00:07, 156027.23it/s]

    -
    79%|███████▉ | 3943913/4997817 [00:24&lt;00:06, 158290.14it/s]
    +
    77%|███████▋ | 3860491/4997817 [00:24&lt;00:07, 156048.42it/s]

    </pre>

    -
    79%|███████▉ | 3943913/4997817 [00:24<00:06, 158290.14it/s]
    +
    77%|███████▋ | 3860491/4997817 [00:24<00:07, 156048.42it/s]

    end{sphinxVerbatim}

    -

    79%|███████▉ | 3943913/4997817 [00:24<00:06, 158290.14it/s]

    +

    77%|███████▋ | 3860491/4997817 [00:24<00:07, 156048.42it/s]

    -
    79%|███████▉ | 3959782/4997817 [00:25&lt;00:06, 158406.89it/s]
    +
    78%|███████▊ | 3876097/4997817 [00:24&lt;00:07, 155836.07it/s]

    </pre>

    -
    79%|███████▉ | 3959782/4997817 [00:25<00:06, 158406.89it/s]
    +
    78%|███████▊ | 3876097/4997817 [00:24<00:07, 155836.07it/s]

    end{sphinxVerbatim}

    -

    79%|███████▉ | 3959782/4997817 [00:25<00:06, 158406.89it/s]

    +

    78%|███████▊ | 3876097/4997817 [00:24<00:07, 155836.07it/s]

    -
    80%|███████▉ | 3975624/4997817 [00:25&lt;00:06, 158236.55it/s]
    +
    78%|███████▊ | 3891690/4997817 [00:25&lt;00:07, 155861.70it/s]

    </pre>

    -
    80%|███████▉ | 3975624/4997817 [00:25<00:06, 158236.55it/s]
    +
    78%|███████▊ | 3891690/4997817 [00:25<00:07, 155861.70it/s]

    end{sphinxVerbatim}

    -

    80%|███████▉ | 3975624/4997817 [00:25<00:06, 158236.55it/s]

    +

    78%|███████▊ | 3891690/4997817 [00:25<00:07, 155861.70it/s]

    -
    80%|███████▉ | 3991448/4997817 [00:25&lt;00:06, 158082.14it/s]
    +
    78%|███████▊ | 3907277/4997817 [00:25&lt;00:07, 155790.64it/s]

    </pre>

    -
    80%|███████▉ | 3991448/4997817 [00:25<00:06, 158082.14it/s]
    +
    78%|███████▊ | 3907277/4997817 [00:25<00:07, 155790.64it/s]

    end{sphinxVerbatim}

    -

    80%|███████▉ | 3991448/4997817 [00:25<00:06, 158082.14it/s]

    +

    78%|███████▊ | 3907277/4997817 [00:25<00:07, 155790.64it/s]

    -
    80%|████████ | 4007257/4997817 [00:25&lt;00:06, 158033.90it/s]
    +
    78%|███████▊ | 3922857/4997817 [00:25&lt;00:07, 151816.79it/s]

    </pre>

    -
    80%|████████ | 4007257/4997817 [00:25<00:06, 158033.90it/s]
    +
    78%|███████▊ | 3922857/4997817 [00:25<00:07, 151816.79it/s]

    end{sphinxVerbatim}

    -

    80%|████████ | 4007257/4997817 [00:25<00:06, 158033.90it/s]

    +

    78%|███████▊ | 3922857/4997817 [00:25<00:07, 151816.79it/s]

    -
    80%|████████ | 4023185/4997817 [00:25&lt;00:06, 158404.19it/s]
    +
    79%|███████▉ | 3938612/4997817 [00:25&lt;00:06, 153502.95it/s]

    </pre>

    -
    80%|████████ | 4023185/4997817 [00:25<00:06, 158404.19it/s]
    +
    79%|███████▉ | 3938612/4997817 [00:25<00:06, 153502.95it/s]

    end{sphinxVerbatim}

    -

    80%|████████ | 4023185/4997817 [00:25<00:06, 158404.19it/s]

    +

    79%|███████▉ | 3938612/4997817 [00:25<00:06, 153502.95it/s]

    -
    81%|████████ | 4039026/4997817 [00:25&lt;00:06, 157189.27it/s]
    +
    79%|███████▉ | 3954052/4997817 [00:25&lt;00:06, 153766.19it/s]

    </pre>

    -
    81%|████████ | 4039026/4997817 [00:25<00:06, 157189.27it/s]
    +
    79%|███████▉ | 3954052/4997817 [00:25<00:06, 153766.19it/s]

    end{sphinxVerbatim}

    -

    81%|████████ | 4039026/4997817 [00:25<00:06, 157189.27it/s]

    +

    79%|███████▉ | 3954052/4997817 [00:25<00:06, 153766.19it/s]

    -
    81%|████████ | 4054748/4997817 [00:25&lt;00:06, 153864.46it/s]
    +
    79%|███████▉ | 3969617/4997817 [00:25&lt;00:06, 154322.67it/s]

    </pre>

    -
    81%|████████ | 4054748/4997817 [00:25<00:06, 153864.46it/s]
    +
    79%|███████▉ | 3969617/4997817 [00:25<00:06, 154322.67it/s]

    end{sphinxVerbatim}

    -

    81%|████████ | 4054748/4997817 [00:25<00:06, 153864.46it/s]

    +

    79%|███████▉ | 3969617/4997817 [00:25<00:06, 154322.67it/s]

    -
    81%|████████▏ | 4070703/4997817 [00:25&lt;00:05, 155535.32it/s]
    +
    80%|███████▉ | 3985128/4997817 [00:25&lt;00:06, 154555.62it/s]

    </pre>

    -
    81%|████████▏ | 4070703/4997817 [00:25<00:05, 155535.32it/s]
    +
    80%|███████▉ | 3985128/4997817 [00:25<00:06, 154555.62it/s]

    end{sphinxVerbatim}

    -

    81%|████████▏ | 4070703/4997817 [00:25<00:05, 155535.32it/s]

    +

    80%|███████▉ | 3985128/4997817 [00:25<00:06, 154555.62it/s]

    -
    82%|████████▏ | 4086501/4997817 [00:25&lt;00:05, 156256.38it/s]
    +
    80%|████████ | 4000591/4997817 [00:25&lt;00:06, 154473.72it/s]

    </pre>

    -
    82%|████████▏ | 4086501/4997817 [00:25<00:05, 156256.38it/s]
    +
    80%|████████ | 4000591/4997817 [00:25<00:06, 154473.72it/s]

    end{sphinxVerbatim}

    -

    82%|████████▏ | 4086501/4997817 [00:25<00:05, 156256.38it/s]

    +

    80%|████████ | 4000591/4997817 [00:25<00:06, 154473.72it/s]

    -
    82%|████████▏ | 4102334/4997817 [00:25&lt;00:05, 156870.45it/s]
    +
    80%|████████ | 4016123/4997817 [00:25&lt;00:06, 154724.51it/s]

    </pre>

    -
    82%|████████▏ | 4102334/4997817 [00:25<00:05, 156870.45it/s]
    +
    80%|████████ | 4016123/4997817 [00:25<00:06, 154724.51it/s]

    end{sphinxVerbatim}

    -

    82%|████████▏ | 4102334/4997817 [00:25<00:05, 156870.45it/s]

    +

    80%|████████ | 4016123/4997817 [00:25<00:06, 154724.51it/s]

    -
    82%|████████▏ | 4118134/4997817 [00:26&lt;00:05, 157206.19it/s]
    +
    81%|████████ | 4031599/4997817 [00:26&lt;00:06, 154450.12it/s]

    </pre>

    -
    82%|████████▏ | 4118134/4997817 [00:26<00:05, 157206.19it/s]
    +
    81%|████████ | 4031599/4997817 [00:26<00:06, 154450.12it/s]

    end{sphinxVerbatim}

    -

    82%|████████▏ | 4118134/4997817 [00:26<00:05, 157206.19it/s]

    +

    81%|████████ | 4031599/4997817 [00:26<00:06, 154450.12it/s]

    -
    83%|████████▎ | 4133861/4997817 [00:26&lt;00:05, 156987.92it/s]
    +
    81%|████████ | 4047047/4997817 [00:26&lt;00:06, 154087.74it/s]

    </pre>

    -
    83%|████████▎ | 4133861/4997817 [00:26<00:05, 156987.92it/s]
    +
    81%|████████ | 4047047/4997817 [00:26<00:06, 154087.74it/s]

    end{sphinxVerbatim}

    -

    83%|████████▎ | 4133861/4997817 [00:26<00:05, 156987.92it/s]

    +

    81%|████████ | 4047047/4997817 [00:26<00:06, 154087.74it/s]

    -
    83%|████████▎ | 4149600/4997817 [00:26&lt;00:05, 157105.82it/s]
    +
    81%|████████▏ | 4062458/4997817 [00:26&lt;00:06, 154022.45it/s]

    </pre>

    -
    83%|████████▎ | 4149600/4997817 [00:26<00:05, 157105.82it/s]
    +
    81%|████████▏ | 4062458/4997817 [00:26<00:06, 154022.45it/s]

    end{sphinxVerbatim}

    -

    83%|████████▎ | 4149600/4997817 [00:26<00:05, 157105.82it/s]

    +

    81%|████████▏ | 4062458/4997817 [00:26<00:06, 154022.45it/s]

    -
    83%|████████▎ | 4165360/4997817 [00:26&lt;00:05, 157251.87it/s]
    +
    82%|████████▏ | 4077862/4997817 [00:26&lt;00:06, 147260.96it/s]

    </pre>

    -
    83%|████████▎ | 4165360/4997817 [00:26<00:05, 157251.87it/s]
    +
    82%|████████▏ | 4077862/4997817 [00:26<00:06, 147260.96it/s]

    end{sphinxVerbatim}

    -

    83%|████████▎ | 4165360/4997817 [00:26<00:05, 157251.87it/s]

    +

    82%|████████▏ | 4077862/4997817 [00:26<00:06, 147260.96it/s]

    -
    84%|████████▎ | 4181117/4997817 [00:26&lt;00:05, 157346.03it/s]
    +
    82%|████████▏ | 4093304/4997817 [00:26&lt;00:06, 149335.25it/s]

    </pre>

    -
    84%|████████▎ | 4181117/4997817 [00:26<00:05, 157346.03it/s]
    +
    82%|████████▏ | 4093304/4997817 [00:26<00:06, 149335.25it/s]

    end{sphinxVerbatim}

    -

    84%|████████▎ | 4181117/4997817 [00:26<00:05, 157346.03it/s]

    +

    82%|████████▏ | 4093304/4997817 [00:26<00:06, 149335.25it/s]

    -
    84%|████████▍ | 4196854/4997817 [00:26&lt;00:05, 157307.64it/s]
    +
    82%|████████▏ | 4108555/4997817 [00:26&lt;00:05, 150261.96it/s]

    </pre>

    -
    84%|████████▍ | 4196854/4997817 [00:26<00:05, 157307.64it/s]
    +
    82%|████████▏ | 4108555/4997817 [00:26<00:05, 150261.96it/s]

    end{sphinxVerbatim}

    -

    84%|████████▍ | 4196854/4997817 [00:26<00:05, 157307.64it/s]

    +

    82%|████████▏ | 4108555/4997817 [00:26<00:05, 150261.96it/s]

    -
    84%|████████▍ | 4212616/4997817 [00:26&lt;00:04, 157400.15it/s]
    +
    83%|████████▎ | 4123944/4997817 [00:26&lt;00:05, 151330.55it/s]

    </pre>

    -
    84%|████████▍ | 4212616/4997817 [00:26<00:04, 157400.15it/s]
    +
    83%|████████▎ | 4123944/4997817 [00:26<00:05, 151330.55it/s]

    end{sphinxVerbatim}

    -

    84%|████████▍ | 4212616/4997817 [00:26<00:04, 157400.15it/s]

    +

    83%|████████▎ | 4123944/4997817 [00:26<00:05, 151330.55it/s]

    -
    85%|████████▍ | 4228362/4997817 [00:26&lt;00:04, 157416.11it/s]
    +
    83%|████████▎ | 4139383/4997817 [00:26&lt;00:05, 152235.88it/s]

    </pre>

    -
    85%|████████▍ | 4228362/4997817 [00:26<00:04, 157416.11it/s]
    +
    83%|████████▎ | 4139383/4997817 [00:26<00:05, 152235.88it/s]

    end{sphinxVerbatim}

    -

    85%|████████▍ | 4228362/4997817 [00:26<00:04, 157416.11it/s]

    +

    83%|████████▎ | 4139383/4997817 [00:26<00:05, 152235.88it/s]

    -
    85%|████████▍ | 4244212/4997817 [00:26&lt;00:04, 157737.96it/s]
    +
    83%|████████▎ | 4154671/4997817 [00:26&lt;00:05, 152424.33it/s]

    </pre>

    -
    85%|████████▍ | 4244212/4997817 [00:26<00:04, 157737.96it/s]
    +
    83%|████████▎ | 4154671/4997817 [00:26<00:05, 152424.33it/s]

    end{sphinxVerbatim}

    -

    85%|████████▍ | 4244212/4997817 [00:26<00:04, 157737.96it/s]

    +

    83%|████████▎ | 4154671/4997817 [00:26<00:05, 152424.33it/s]

    -
    85%|████████▌ | 4259987/4997817 [00:26&lt;00:04, 157731.47it/s]
    +
    83%|████████▎ | 4170003/4997817 [00:26&lt;00:05, 152689.24it/s]

    </pre>

    -
    85%|████████▌ | 4259987/4997817 [00:26<00:04, 157731.47it/s]
    +
    83%|████████▎ | 4170003/4997817 [00:26<00:05, 152689.24it/s]

    end{sphinxVerbatim}

    -

    85%|████████▌ | 4259987/4997817 [00:26<00:04, 157731.47it/s]

    +

    83%|████████▎ | 4170003/4997817 [00:26<00:05, 152689.24it/s]

    -
    86%|████████▌ | 4275954/4997817 [00:27&lt;00:04, 158309.58it/s]
    +
    84%|████████▎ | 4185376/4997817 [00:27&lt;00:05, 152997.19it/s]

    </pre>

    -
    86%|████████▌ | 4275954/4997817 [00:27<00:04, 158309.58it/s]
    +
    84%|████████▎ | 4185376/4997817 [00:27<00:05, 152997.19it/s]

    end{sphinxVerbatim}

    -

    86%|████████▌ | 4275954/4997817 [00:27<00:04, 158309.58it/s]

    +

    84%|████████▎ | 4185376/4997817 [00:27<00:05, 152997.19it/s]

    -
    86%|████████▌ | 4291786/4997817 [00:27&lt;00:04, 158176.00it/s]
    +
    84%|████████▍ | 4200712/4997817 [00:27&lt;00:05, 153104.35it/s]

    </pre>

    -
    86%|████████▌ | 4291786/4997817 [00:27<00:04, 158176.00it/s]
    +
    84%|████████▍ | 4200712/4997817 [00:27<00:05, 153104.35it/s]

    end{sphinxVerbatim}

    -

    86%|████████▌ | 4291786/4997817 [00:27<00:04, 158176.00it/s]

    +

    84%|████████▍ | 4200712/4997817 [00:27<00:05, 153104.35it/s]

    -
    86%|████████▌ | 4307613/4997817 [00:27&lt;00:04, 158201.17it/s]
    +
    84%|████████▍ | 4216098/4997817 [00:27&lt;00:05, 153328.22it/s]

    </pre>

    -
    86%|████████▌ | 4307613/4997817 [00:27<00:04, 158201.17it/s]
    +
    84%|████████▍ | 4216098/4997817 [00:27<00:05, 153328.22it/s]

    end{sphinxVerbatim}

    -

    86%|████████▌ | 4307613/4997817 [00:27<00:04, 158201.17it/s]

    +

    84%|████████▍ | 4216098/4997817 [00:27<00:05, 153328.22it/s]

    -
    87%|████████▋ | 4323517/4997817 [00:27&lt;00:04, 158448.87it/s]
    +
    85%|████████▍ | 4231495/4997817 [00:27&lt;00:04, 153517.57it/s]

    </pre>

    -
    87%|████████▋ | 4323517/4997817 [00:27<00:04, 158448.87it/s]
    +
    85%|████████▍ | 4231495/4997817 [00:27<00:04, 153517.57it/s]

    end{sphinxVerbatim}

    -

    87%|████████▋ | 4323517/4997817 [00:27<00:04, 158448.87it/s]

    +

    85%|████████▍ | 4231495/4997817 [00:27<00:04, 153517.57it/s]

    -
    87%|████████▋ | 4339362/4997817 [00:27&lt;00:04, 158231.60it/s]
    +
    85%|████████▍ | 4247243/4997817 [00:27&lt;00:04, 154701.72it/s]

    </pre>

    -
    87%|████████▋ | 4339362/4997817 [00:27<00:04, 158231.60it/s]
    +
    85%|████████▍ | 4247243/4997817 [00:27<00:04, 154701.72it/s]

    end{sphinxVerbatim}

    -

    87%|████████▋ | 4339362/4997817 [00:27<00:04, 158231.60it/s]

    +

    85%|████████▍ | 4247243/4997817 [00:27<00:04, 154701.72it/s]

    -
    87%|████████▋ | 4355232/4997817 [00:27&lt;00:04, 158370.52it/s]
    +
    85%|████████▌ | 4262871/4997817 [00:27&lt;00:04, 155171.13it/s]

    </pre>

    -
    87%|████████▋ | 4355232/4997817 [00:27<00:04, 158370.52it/s]
    +
    85%|████████▌ | 4262871/4997817 [00:27<00:04, 155171.13it/s]

    end{sphinxVerbatim}

    -

    87%|████████▋ | 4355232/4997817 [00:27<00:04, 158370.52it/s]

    +

    85%|████████▌ | 4262871/4997817 [00:27<00:04, 155171.13it/s]

    -
    87%|████████▋ | 4371139/4997817 [00:27&lt;00:03, 158577.61it/s]
    +
    86%|████████▌ | 4278523/4997817 [00:27&lt;00:04, 155571.51it/s]

    </pre>

    -
    87%|████████▋ | 4371139/4997817 [00:27<00:03, 158577.61it/s]
    +
    86%|████████▌ | 4278523/4997817 [00:27<00:04, 155571.51it/s]

    end{sphinxVerbatim}

    -

    87%|████████▋ | 4371139/4997817 [00:27<00:03, 158577.61it/s]

    +

    86%|████████▌ | 4278523/4997817 [00:27<00:04, 155571.51it/s]

    -
    88%|████████▊ | 4387039/4997817 [00:27&lt;00:03, 158702.93it/s]
    +
    86%|████████▌ | 4294172/4997817 [00:27&lt;00:04, 155845.55it/s]

    </pre>

    -
    88%|████████▊ | 4387039/4997817 [00:27<00:03, 158702.93it/s]
    +
    86%|████████▌ | 4294172/4997817 [00:27<00:04, 155845.55it/s]

    end{sphinxVerbatim}

    -

    88%|████████▊ | 4387039/4997817 [00:27<00:03, 158702.93it/s]

    +

    86%|████████▌ | 4294172/4997817 [00:27<00:04, 155845.55it/s]

    -
    88%|████████▊ | 4402910/4997817 [00:27&lt;00:03, 158600.55it/s]
    +
    86%|████████▌ | 4309805/4997817 [00:27&lt;00:04, 155987.54it/s]

    </pre>

    -
    88%|████████▊ | 4402910/4997817 [00:27<00:03, 158600.55it/s]
    +
    86%|████████▌ | 4309805/4997817 [00:27<00:04, 155987.54it/s]

    end{sphinxVerbatim}

    -

    88%|████████▊ | 4402910/4997817 [00:27<00:03, 158600.55it/s]

    +

    86%|████████▌ | 4309805/4997817 [00:27<00:04, 155987.54it/s]

    -
    88%|████████▊ | 4418771/4997817 [00:27&lt;00:03, 158421.37it/s]
    +
    87%|████████▋ | 4325405/4997817 [00:27&lt;00:04, 155881.97it/s]

    </pre>

    -
    88%|████████▊ | 4418771/4997817 [00:27<00:03, 158421.37it/s]
    +
    87%|████████▋ | 4325405/4997817 [00:27<00:04, 155881.97it/s]

    end{sphinxVerbatim}

    -

    88%|████████▊ | 4418771/4997817 [00:27<00:03, 158421.37it/s]

    +

    87%|████████▋ | 4325405/4997817 [00:27<00:04, 155881.97it/s]

    -
    89%|████████▊ | 4434614/4997817 [00:28&lt;00:03, 158367.10it/s]
    +
    87%|████████▋ | 4340994/4997817 [00:28&lt;00:04, 155414.18it/s]

    </pre>

    -
    89%|████████▊ | 4434614/4997817 [00:28<00:03, 158367.10it/s]
    +
    87%|████████▋ | 4340994/4997817 [00:28<00:04, 155414.18it/s]

    end{sphinxVerbatim}

    -

    89%|████████▊ | 4434614/4997817 [00:28<00:03, 158367.10it/s]

    +

    87%|████████▋ | 4340994/4997817 [00:28<00:04, 155414.18it/s]

    -
    89%|████████▉ | 4450537/4997817 [00:28&lt;00:03, 158623.44it/s]
    +
    87%|████████▋ | 4356660/4997817 [00:28&lt;00:04, 155783.46it/s]

    </pre>

    -
    89%|████████▉ | 4450537/4997817 [00:28<00:03, 158623.44it/s]
    +
    87%|████████▋ | 4356660/4997817 [00:28<00:04, 155783.46it/s]

    end{sphinxVerbatim}

    -

    89%|████████▉ | 4450537/4997817 [00:28<00:03, 158623.44it/s]

    +

    87%|████████▋ | 4356660/4997817 [00:28<00:04, 155783.46it/s]

    -
    89%|████████▉ | 4466498/4997817 [00:28&lt;00:03, 158918.29it/s]
    +
    87%|████████▋ | 4372239/4997817 [00:28&lt;00:04, 155768.00it/s]

    </pre>

    -
    89%|████████▉ | 4466498/4997817 [00:28<00:03, 158918.29it/s]
    +
    87%|████████▋ | 4372239/4997817 [00:28<00:04, 155768.00it/s]

    end{sphinxVerbatim}

    -

    89%|████████▉ | 4466498/4997817 [00:28<00:03, 158918.29it/s]

    +

    87%|████████▋ | 4372239/4997817 [00:28<00:04, 155768.00it/s]

    -
    90%|████████▉ | 4482552/4997817 [00:28&lt;00:03, 159401.03it/s]
    +
    88%|████████▊ | 4387936/4997817 [00:28&lt;00:03, 156126.26it/s]

    </pre>

    -
    90%|████████▉ | 4482552/4997817 [00:28<00:03, 159401.03it/s]
    +
    88%|████████▊ | 4387936/4997817 [00:28<00:03, 156126.26it/s]

    end{sphinxVerbatim}

    -

    90%|████████▉ | 4482552/4997817 [00:28<00:03, 159401.03it/s]

    +

    88%|████████▊ | 4387936/4997817 [00:28<00:03, 156126.26it/s]

    -
    90%|█████████ | 4498549/4997817 [00:28&lt;00:03, 159567.81it/s]
    +
    88%|████████▊ | 4403549/4997817 [00:28&lt;00:03, 156121.18it/s]

    </pre>

    -
    90%|█████████ | 4498549/4997817 [00:28<00:03, 159567.81it/s]
    +
    88%|████████▊ | 4403549/4997817 [00:28<00:03, 156121.18it/s]

    end{sphinxVerbatim}

    -

    90%|█████████ | 4498549/4997817 [00:28<00:03, 159567.81it/s]

    +

    88%|████████▊ | 4403549/4997817 [00:28<00:03, 156121.18it/s]

    -
    90%|█████████ | 4514506/4997817 [00:28&lt;00:03, 159453.59it/s]
    +
    88%|████████▊ | 4419162/4997817 [00:28&lt;00:03, 155988.74it/s]

    </pre>

    -
    90%|█████████ | 4514506/4997817 [00:28<00:03, 159453.59it/s]
    +
    88%|████████▊ | 4419162/4997817 [00:28<00:03, 155988.74it/s]

    end{sphinxVerbatim}

    -

    90%|█████████ | 4514506/4997817 [00:28<00:03, 159453.59it/s]

    +

    88%|████████▊ | 4419162/4997817 [00:28<00:03, 155988.74it/s]

    -
    91%|█████████ | 4530452/4997817 [00:28&lt;00:02, 158989.65it/s]
    +
    89%|████████▊ | 4434857/4997817 [00:28&lt;00:03, 156274.84it/s]

    </pre>

    -
    91%|█████████ | 4530452/4997817 [00:28<00:02, 158989.65it/s]
    +
    89%|████████▊ | 4434857/4997817 [00:28<00:03, 156274.84it/s]

    end{sphinxVerbatim}

    -

    91%|█████████ | 4530452/4997817 [00:28<00:02, 158989.65it/s]

    +

    89%|████████▊ | 4434857/4997817 [00:28<00:03, 156274.84it/s]

    -
    91%|█████████ | 4546352/4997817 [00:28&lt;00:02, 158965.69it/s]
    +
    89%|████████▉ | 4450485/4997817 [00:28&lt;00:03, 155907.83it/s]

    </pre>

    -
    91%|█████████ | 4546352/4997817 [00:28<00:02, 158965.69it/s]
    +
    89%|████████▉ | 4450485/4997817 [00:28<00:03, 155907.83it/s]

    end{sphinxVerbatim}

    -

    91%|█████████ | 4546352/4997817 [00:28<00:02, 158965.69it/s]

    +

    89%|████████▉ | 4450485/4997817 [00:28<00:03, 155907.83it/s]

    -
    91%|█████████▏| 4562249/4997817 [00:28&lt;00:02, 158905.43it/s]
    +
    89%|████████▉ | 4466107/4997817 [00:28&lt;00:03, 155998.87it/s]

    </pre>

    -
    91%|█████████▏| 4562249/4997817 [00:28<00:02, 158905.43it/s]
    +
    89%|████████▉ | 4466107/4997817 [00:28<00:03, 155998.87it/s]

    end{sphinxVerbatim}

    -

    91%|█████████▏| 4562249/4997817 [00:28<00:02, 158905.43it/s]

    +

    89%|████████▉ | 4466107/4997817 [00:28<00:03, 155998.87it/s]

    -
    92%|█████████▏| 4578269/4997817 [00:28&lt;00:02, 159289.47it/s]
    +
    90%|████████▉ | 4481761/4997817 [00:28&lt;00:03, 156157.32it/s]

    </pre>

    -
    92%|█████████▏| 4578269/4997817 [00:28<00:02, 159289.47it/s]
    +
    90%|████████▉ | 4481761/4997817 [00:28<00:03, 156157.32it/s]

    end{sphinxVerbatim}

    -

    92%|█████████▏| 4578269/4997817 [00:28<00:02, 159289.47it/s]

    +

    90%|████████▉ | 4481761/4997817 [00:28<00:03, 156157.32it/s]

    -
    92%|█████████▏| 4594290/4997817 [00:29&lt;00:02, 159563.76it/s]
    +
    90%|████████▉ | 4497377/4997817 [00:29&lt;00:03, 155952.70it/s]

    </pre>

    -
    92%|█████████▏| 4594290/4997817 [00:29<00:02, 159563.76it/s]
    +
    90%|████████▉ | 4497377/4997817 [00:29<00:03, 155952.70it/s]

    end{sphinxVerbatim}

    -

    92%|█████████▏| 4594290/4997817 [00:29<00:02, 159563.76it/s]

    +

    90%|████████▉ | 4497377/4997817 [00:29<00:03, 155952.70it/s]

    -
    92%|█████████▏| 4610247/4997817 [00:29&lt;00:02, 159244.17it/s]
    +
    90%|█████████ | 4512994/4997817 [00:29&lt;00:03, 156015.15it/s]

    </pre>

    -
    92%|█████████▏| 4610247/4997817 [00:29<00:02, 159244.17it/s]
    +
    90%|█████████ | 4512994/4997817 [00:29<00:03, 156015.15it/s]

    end{sphinxVerbatim}

    -

    92%|█████████▏| 4610247/4997817 [00:29<00:02, 159244.17it/s]

    +

    90%|█████████ | 4512994/4997817 [00:29<00:03, 156015.15it/s]

    -
    93%|█████████▎| 4626259/4997817 [00:29&lt;00:02, 159504.17it/s]
    +
    91%|█████████ | 4528766/4997817 [00:29&lt;00:02, 156525.03it/s]

    </pre>

    -
    93%|█████████▎| 4626259/4997817 [00:29<00:02, 159504.17it/s]
    +
    91%|█████████ | 4528766/4997817 [00:29<00:02, 156525.03it/s]

    end{sphinxVerbatim}

    -

    93%|█████████▎| 4626259/4997817 [00:29<00:02, 159504.17it/s]

    +

    91%|█████████ | 4528766/4997817 [00:29<00:02, 156525.03it/s]

    -
    93%|█████████▎| 4642224/4997817 [00:29&lt;00:02, 159544.82it/s]
    +
    91%|█████████ | 4544419/4997817 [00:29&lt;00:02, 156444.50it/s]

    </pre>

    -
    93%|█████████▎| 4642224/4997817 [00:29<00:02, 159544.82it/s]
    +
    91%|█████████ | 4544419/4997817 [00:29<00:02, 156444.50it/s]

    end{sphinxVerbatim}

    -

    93%|█████████▎| 4642224/4997817 [00:29<00:02, 159544.82it/s]

    +

    91%|█████████ | 4544419/4997817 [00:29<00:02, 156444.50it/s]

    -
    93%|█████████▎| 4658249/4997817 [00:29&lt;00:02, 159753.25it/s]
    +
    91%|█████████ | 4560064/4997817 [00:29&lt;00:02, 149698.20it/s]

    </pre>

    -
    93%|█████████▎| 4658249/4997817 [00:29<00:02, 159753.25it/s]
    +
    91%|█████████ | 4560064/4997817 [00:29<00:02, 149698.20it/s]

    end{sphinxVerbatim}

    -

    93%|█████████▎| 4658249/4997817 [00:29<00:02, 159753.25it/s]

    +

    91%|█████████ | 4560064/4997817 [00:29<00:02, 149698.20it/s]

    -
    94%|█████████▎| 4674225/4997817 [00:29&lt;00:02, 159580.35it/s]
    +
    92%|█████████▏| 4575663/4997817 [00:29&lt;00:02, 151524.18it/s]

    </pre>

    -
    94%|█████████▎| 4674225/4997817 [00:29<00:02, 159580.35it/s]
    +
    92%|█████████▏| 4575663/4997817 [00:29<00:02, 151524.18it/s]

    end{sphinxVerbatim}

    -

    94%|█████████▎| 4674225/4997817 [00:29<00:02, 159580.35it/s]

    +

    92%|█████████▏| 4575663/4997817 [00:29<00:02, 151524.18it/s]

    -
    94%|█████████▍| 4690184/4997817 [00:29&lt;00:02, 152308.86it/s]
    +
    92%|█████████▏| 4591244/4997817 [00:29&lt;00:02, 152778.78it/s]

    </pre>

    -
    94%|█████████▍| 4690184/4997817 [00:29<00:02, 152308.86it/s]
    +
    92%|█████████▏| 4591244/4997817 [00:29<00:02, 152778.78it/s]

    end{sphinxVerbatim}

    -

    94%|█████████▍| 4690184/4997817 [00:29<00:02, 152308.86it/s]

    +

    92%|█████████▏| 4591244/4997817 [00:29<00:02, 152778.78it/s]

    -
    94%|█████████▍| 4706107/4997817 [00:29&lt;00:01, 154314.35it/s]
    +
    92%|█████████▏| 4606883/4997817 [00:29&lt;00:02, 153844.23it/s]

    </pre>

    -
    94%|█████████▍| 4706107/4997817 [00:29<00:01, 154314.35it/s]
    +
    92%|█████████▏| 4606883/4997817 [00:29<00:02, 153844.23it/s]

    end{sphinxVerbatim}

    -

    94%|█████████▍| 4706107/4997817 [00:29<00:01, 154314.35it/s]

    +

    92%|█████████▏| 4606883/4997817 [00:29<00:02, 153844.23it/s]

    -
    94%|█████████▍| 4722163/4997817 [00:29&lt;00:01, 156140.58it/s]
    +
    92%|█████████▏| 4622390/4997817 [00:29&lt;00:02, 154206.12it/s]

    </pre>

    -
    94%|█████████▍| 4722163/4997817 [00:29<00:01, 156140.58it/s]
    +
    92%|█████████▏| 4622390/4997817 [00:29<00:02, 154206.12it/s]

    end{sphinxVerbatim}

    -

    94%|█████████▍| 4722163/4997817 [00:29<00:01, 156140.58it/s]

    +

    92%|█████████▏| 4622390/4997817 [00:29<00:02, 154206.12it/s]

    -
    95%|█████████▍| 4738189/4997817 [00:29&lt;00:01, 157353.64it/s]
    +
    93%|█████████▎| 4637939/4997817 [00:29&lt;00:02, 154586.60it/s]

    </pre>

    -
    95%|█████████▍| 4738189/4997817 [00:29<00:01, 157353.64it/s]
    +
    93%|█████████▎| 4637939/4997817 [00:29<00:02, 154586.60it/s]

    end{sphinxVerbatim}

    -

    95%|█████████▍| 4738189/4997817 [00:29<00:01, 157353.64it/s]

    +

    93%|█████████▎| 4637939/4997817 [00:29<00:02, 154586.60it/s]

    -
    95%|█████████▌| 4754098/4997817 [00:30&lt;00:01, 157866.39it/s]
    +
    93%|█████████▎| 4653434/4997817 [00:30&lt;00:02, 154693.65it/s]

    </pre>

    -
    95%|█████████▌| 4754098/4997817 [00:30<00:01, 157866.39it/s]
    +
    93%|█████████▎| 4653434/4997817 [00:30<00:02, 154693.65it/s]

    end{sphinxVerbatim}

    -

    95%|█████████▌| 4754098/4997817 [00:30<00:01, 157866.39it/s]

    +

    93%|█████████▎| 4653434/4997817 [00:30<00:02, 154693.65it/s]

    -
    95%|█████████▌| 4770036/4997817 [00:30&lt;00:01, 158314.66it/s]
    +
    93%|█████████▎| 4668958/4997817 [00:30&lt;00:02, 154854.10it/s]

    </pre>

    -
    95%|█████████▌| 4770036/4997817 [00:30<00:01, 158314.66it/s]
    +
    93%|█████████▎| 4668958/4997817 [00:30<00:02, 154854.10it/s]

    end{sphinxVerbatim}

    -

    95%|█████████▌| 4770036/4997817 [00:30<00:01, 158314.66it/s]

    +

    93%|█████████▎| 4668958/4997817 [00:30<00:02, 154854.10it/s]

    -
    96%|█████████▌| 4785885/4997817 [00:30&lt;00:01, 158337.50it/s]
    +
    94%|█████████▎| 4684546/4997817 [00:30&lt;00:02, 155159.10it/s]

    </pre>

    -
    96%|█████████▌| 4785885/4997817 [00:30<00:01, 158337.50it/s]
    +
    94%|█████████▎| 4684546/4997817 [00:30<00:02, 155159.10it/s]

    end{sphinxVerbatim}

    -

    96%|█████████▌| 4785885/4997817 [00:30<00:01, 158337.50it/s]

    +

    94%|█████████▎| 4684546/4997817 [00:30<00:02, 155159.10it/s]

    -
    96%|█████████▌| 4801731/4997817 [00:30&lt;00:01, 158061.16it/s]
    +
    94%|█████████▍| 4700166/4997817 [00:30&lt;00:01, 155468.83it/s]

    </pre>

    -
    96%|█████████▌| 4801731/4997817 [00:30<00:01, 158061.16it/s]
    +
    94%|█████████▍| 4700166/4997817 [00:30<00:01, 155468.83it/s]

    end{sphinxVerbatim}

    -

    96%|█████████▌| 4801731/4997817 [00:30<00:01, 158061.16it/s]

    +

    94%|█████████▍| 4700166/4997817 [00:30<00:01, 155468.83it/s]

    -
    96%|█████████▋| 4817546/4997817 [00:30&lt;00:01, 158031.58it/s]
    +
    94%|█████████▍| 4715717/4997817 [00:30&lt;00:01, 155407.72it/s]

    </pre>

    -
    96%|█████████▋| 4817546/4997817 [00:30<00:01, 158031.58it/s]
    +
    94%|█████████▍| 4715717/4997817 [00:30<00:01, 155407.72it/s]

    end{sphinxVerbatim}

    -

    96%|█████████▋| 4817546/4997817 [00:30<00:01, 158031.58it/s]

    +

    94%|█████████▍| 4715717/4997817 [00:30<00:01, 155407.72it/s]

    -
    97%|█████████▋| 4833476/4997817 [00:30&lt;00:01, 158410.01it/s]
    +
    95%|█████████▍| 4731292/4997817 [00:30&lt;00:01, 155506.76it/s]

    </pre>

    -
    97%|█████████▋| 4833476/4997817 [00:30<00:01, 158410.01it/s]
    +
    95%|█████████▍| 4731292/4997817 [00:30<00:01, 155506.76it/s]

    end{sphinxVerbatim}

    -

    97%|█████████▋| 4833476/4997817 [00:30<00:01, 158410.01it/s]

    +

    95%|█████████▍| 4731292/4997817 [00:30<00:01, 155506.76it/s]

    -
    97%|█████████▋| 4849322/4997817 [00:30&lt;00:00, 158357.21it/s]
    +
    95%|█████████▍| 4746845/4997817 [00:30&lt;00:01, 155216.18it/s]

    </pre>

    -
    97%|█████████▋| 4849322/4997817 [00:30<00:00, 158357.21it/s]
    +
    95%|█████████▍| 4746845/4997817 [00:30<00:01, 155216.18it/s]

    end{sphinxVerbatim}

    -

    97%|█████████▋| 4849322/4997817 [00:30<00:00, 158357.21it/s]

    +

    95%|█████████▍| 4746845/4997817 [00:30<00:01, 155216.18it/s]

    -
    97%|█████████▋| 4865161/4997817 [00:30&lt;00:00, 158334.52it/s]
    +
    95%|█████████▌| 4762368/4997817 [00:30&lt;00:01, 155057.32it/s]

    </pre>

    -
    97%|█████████▋| 4865161/4997817 [00:30<00:00, 158334.52it/s]
    +
    95%|█████████▌| 4762368/4997817 [00:30<00:01, 155057.32it/s]

    end{sphinxVerbatim}

    -

    97%|█████████▋| 4865161/4997817 [00:30<00:00, 158334.52it/s]

    +

    95%|█████████▌| 4762368/4997817 [00:30<00:01, 155057.32it/s]

    -
    98%|█████████▊| 4880997/4997817 [00:30&lt;00:00, 158170.49it/s]
    +
    96%|█████████▌| 4777875/4997817 [00:30&lt;00:01, 155058.39it/s]

    </pre>

    -
    98%|█████████▊| 4880997/4997817 [00:30<00:00, 158170.49it/s]
    +
    96%|█████████▌| 4777875/4997817 [00:30<00:01, 155058.39it/s]

    end{sphinxVerbatim}

    -

    98%|█████████▊| 4880997/4997817 [00:30<00:00, 158170.49it/s]

    +

    96%|█████████▌| 4777875/4997817 [00:30<00:01, 155058.39it/s]

    -
    98%|█████████▊| 4896816/4997817 [00:30&lt;00:00, 158064.54it/s]
    +
    96%|█████████▌| 4793382/4997817 [00:30&lt;00:01, 155035.89it/s]

    </pre>

    -
    98%|█████████▊| 4896816/4997817 [00:30<00:00, 158064.54it/s]
    +
    96%|█████████▌| 4793382/4997817 [00:30<00:01, 155035.89it/s]

    end{sphinxVerbatim}

    -

    98%|█████████▊| 4896816/4997817 [00:30<00:00, 158064.54it/s]

    +

    96%|█████████▌| 4793382/4997817 [00:30<00:01, 155035.89it/s]

    -
    98%|█████████▊| 4912737/4997817 [00:31&lt;00:00, 158404.34it/s]
    +
    96%|█████████▌| 4808887/4997817 [00:31&lt;00:01, 154846.13it/s]

    </pre>

    -
    98%|█████████▊| 4912737/4997817 [00:31<00:00, 158404.34it/s]
    +
    96%|█████████▌| 4808887/4997817 [00:31<00:01, 154846.13it/s]

    end{sphinxVerbatim}

    -

    98%|█████████▊| 4912737/4997817 [00:31<00:00, 158404.34it/s]

    +

    96%|█████████▌| 4808887/4997817 [00:31<00:01, 154846.13it/s]

    -
    99%|█████████▊| 4928579/4997817 [00:31&lt;00:00, 158274.64it/s]
    +
    97%|█████████▋| 4824372/4997817 [00:31&lt;00:01, 154837.16it/s]

    </pre>

    -
    99%|█████████▊| 4928579/4997817 [00:31<00:00, 158274.64it/s]
    +
    97%|█████████▋| 4824372/4997817 [00:31<00:01, 154837.16it/s]

    end{sphinxVerbatim}

    -

    99%|█████████▊| 4928579/4997817 [00:31<00:00, 158274.64it/s]

    +

    97%|█████████▋| 4824372/4997817 [00:31<00:01, 154837.16it/s]

    -
    99%|█████████▉| 4944464/4997817 [00:31&lt;00:00, 158446.14it/s]
    +
    97%|█████████▋| 4839995/4997817 [00:31&lt;00:01, 155251.77it/s]

    </pre>

    -
    99%|█████████▉| 4944464/4997817 [00:31<00:00, 158446.14it/s]
    +
    97%|█████████▋| 4839995/4997817 [00:31<00:01, 155251.77it/s]

    end{sphinxVerbatim}

    -

    99%|█████████▉| 4944464/4997817 [00:31<00:00, 158446.14it/s]

    +

    97%|█████████▋| 4839995/4997817 [00:31<00:01, 155251.77it/s]

    -
    99%|█████████▉| 4960310/4997817 [00:31&lt;00:00, 158130.47it/s]
    +
    97%|█████████▋| 4855563/4997817 [00:31&lt;00:00, 155377.06it/s]

    </pre>

    -
    99%|█████████▉| 4960310/4997817 [00:31<00:00, 158130.47it/s]
    +
    97%|█████████▋| 4855563/4997817 [00:31<00:00, 155377.06it/s]

    end{sphinxVerbatim}

    -

    99%|█████████▉| 4960310/4997817 [00:31<00:00, 158130.47it/s]

    +

    97%|█████████▋| 4855563/4997817 [00:31<00:00, 155377.06it/s]

    + + +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    97%|█████████▋| 4871109/4997817 [00:31&lt;00:00, 155400.42it/s]
    +

    </pre>

    +
    +
    +
    97%|█████████▋| 4871109/4997817 [00:31<00:00, 155400.42it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    97%|█████████▋| 4871109/4997817 [00:31<00:00, 155400.42it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    98%|█████████▊| 4886656/4997817 [00:31&lt;00:00, 155417.33it/s]
    +

    </pre>

    +
    +
    +
    98%|█████████▊| 4886656/4997817 [00:31<00:00, 155417.33it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    98%|█████████▊| 4886656/4997817 [00:31<00:00, 155417.33it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    98%|█████████▊| 4902254/4997817 [00:31&lt;00:00, 155583.56it/s]
    +

    </pre>

    +
    +
    +
    98%|█████████▊| 4902254/4997817 [00:31<00:00, 155583.56it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    98%|█████████▊| 4902254/4997817 [00:31<00:00, 155583.56it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    98%|█████████▊| 4917813/4997817 [00:31&lt;00:00, 155578.08it/s]
    +

    </pre>

    +
    +
    +
    98%|█████████▊| 4917813/4997817 [00:31<00:00, 155578.08it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    98%|█████████▊| 4917813/4997817 [00:31<00:00, 155578.08it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    99%|█████████▊| 4933371/4997817 [00:31&lt;00:00, 155508.98it/s]
    +

    </pre>

    +
    +
    +
    99%|█████████▊| 4933371/4997817 [00:31<00:00, 155508.98it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    99%|█████████▊| 4933371/4997817 [00:31<00:00, 155508.98it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    99%|█████████▉| 4948922/4997817 [00:31&lt;00:00, 155476.20it/s]
    +

    </pre>

    +
    +
    +
    99%|█████████▉| 4948922/4997817 [00:31<00:00, 155476.20it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    99%|█████████▉| 4948922/4997817 [00:31<00:00, 155476.20it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    99%|█████████▉| 4964470/4997817 [00:32&lt;00:00, 155300.85it/s]
    +

    </pre>

    +
    +
    +
    99%|█████████▉| 4964470/4997817 [00:32<00:00, 155300.85it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    99%|█████████▉| 4964470/4997817 [00:32<00:00, 155300.85it/s]

    -
    100%|█████████▉| 4976212/4997817 [00:31&lt;00:00, 158394.09it/s]
    +
    100%|█████████▉| 4980009/4997817 [00:32&lt;00:00, 155323.62it/s]

    </pre>

    -
    100%|█████████▉| 4976212/4997817 [00:31<00:00, 158394.09it/s]
    +
    100%|█████████▉| 4980009/4997817 [00:32<00:00, 155323.62it/s]

    end{sphinxVerbatim}

    -

    100%|█████████▉| 4976212/4997817 [00:31<00:00, 158394.09it/s]

    +

    100%|█████████▉| 4980009/4997817 [00:32<00:00, 155323.62it/s]

    -
    100%|█████████▉| 4992052/4997817 [00:31&lt;00:00, 156899.64it/s]
    +
    100%|█████████▉| 4995682/4997817 [00:32&lt;00:00, 155742.12it/s]

    </pre>

    -
    100%|█████████▉| 4992052/4997817 [00:31<00:00, 156899.64it/s]
    +
    100%|█████████▉| 4995682/4997817 [00:32<00:00, 155742.12it/s]

    end{sphinxVerbatim}

    -

    100%|█████████▉| 4992052/4997817 [00:31<00:00, 156899.64it/s]

    +

    100%|█████████▉| 4995682/4997817 [00:32<00:00, 155742.12it/s]

    -
    100%|██████████| 4997817/4997817 [00:31&lt;00:00, 158234.25it/s]
    +
    100%|██████████| 4997817/4997817 [00:32&lt;00:00, 154929.69it/s]

    </pre>

    -
    100%|██████████| 4997817/4997817 [00:31<00:00, 158234.25it/s]
    +
    100%|██████████| 4997817/4997817 [00:32<00:00, 154929.69it/s]

    end{sphinxVerbatim}

    -

    100%|██████████| 4997817/4997817 [00:31<00:00, 158234.25it/s]

    +

    100%|██████████| 4997817/4997817 [00:32<00:00, 154929.69it/s]

    -
    +

    Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

    @@ -9303,7 +9485,7 @@

    Get label quality scores -{"state": {"58f9628afc084415ba1251a649653118": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "774443eeb6494388bef23db5a0b19bb2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "34ec5c26045e47109cf030d1f39c14d0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_58f9628afc084415ba1251a649653118", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_774443eeb6494388bef23db5a0b19bb2", "tabbable": null, "tooltip": null, "value": 30.0}}, "c2b52fe4059142beaa9d21325ffc94d9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cd11163b103d4843b25b5f712d4bef09": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8222b08d74b24290a6874951c527837f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c2b52fe4059142beaa9d21325ffc94d9", "placeholder": "\u200b", "style": "IPY_MODEL_cd11163b103d4843b25b5f712d4bef09", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "f3574e397974455789cc02a2a4ac5596": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "38b12e5884ca486e894c9dd4be67023b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a651683c0a084283abf9e3e3a414f194": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3574e397974455789cc02a2a4ac5596", "placeholder": "\u200b", "style": "IPY_MODEL_38b12e5884ca486e894c9dd4be67023b", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007433.20it/s]"}}, "3e92d9cfd83c4448a7acd4dd76b34992": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c4ea88a0faa4e7994b8500868517daa": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8222b08d74b24290a6874951c527837f", "IPY_MODEL_34ec5c26045e47109cf030d1f39c14d0", "IPY_MODEL_a651683c0a084283abf9e3e3a414f194"], "layout": "IPY_MODEL_3e92d9cfd83c4448a7acd4dd76b34992", "tabbable": null, "tooltip": null}}, "b29ba3ed280e49379373683af600c5af": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4879d1392a7c4f5ab0a1aa8f4efb9cf5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9b49b125dc7a4a869e21c8e924c6493a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b29ba3ed280e49379373683af600c5af", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4879d1392a7c4f5ab0a1aa8f4efb9cf5", "tabbable": null, "tooltip": null, "value": 30.0}}, "a3fcaef394c14ef080481ae7b041528e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cce2c124a4804740988d61e5c115b9f6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dea3296f12ae42428ac7465bc6dbc3d6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a3fcaef394c14ef080481ae7b041528e", "placeholder": "\u200b", "style": "IPY_MODEL_cce2c124a4804740988d61e5c115b9f6", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "96424d58f24d426fafcc906d16a19493": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fdd5653325fc4ab5a8b567173af1df10": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ae28ffa574184090b394d1be5872b863": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_96424d58f24d426fafcc906d16a19493", "placeholder": "\u200b", "style": "IPY_MODEL_fdd5653325fc4ab5a8b567173af1df10", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:22<00:00,\u2007\u20071.35it/s]"}}, "191b3f8187434baba219dd533c4239a5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6ea9834dc3244dd786fd5e8ff97b24a6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_dea3296f12ae42428ac7465bc6dbc3d6", "IPY_MODEL_9b49b125dc7a4a869e21c8e924c6493a", "IPY_MODEL_ae28ffa574184090b394d1be5872b863"], "layout": "IPY_MODEL_191b3f8187434baba219dd533c4239a5", "tabbable": null, "tooltip": null}}, "faa337b288df409faa616d5854ec2c1d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "076a1777586d42da980b8145b5c0e08b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b3098baf8cda44779e72082292496a24": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_faa337b288df409faa616d5854ec2c1d", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_076a1777586d42da980b8145b5c0e08b", "tabbable": null, "tooltip": null, "value": 30.0}}, "8dea4dc0486b4fc388fe64ff88f2443a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c7612837a3a543d58472f1ae1a43291d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b3a8e4f7536443b5a541e48992640a0b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8dea4dc0486b4fc388fe64ff88f2443a", "placeholder": "\u200b", "style": "IPY_MODEL_c7612837a3a543d58472f1ae1a43291d", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "52c9b0821f414a7295d35cd1c39d2694": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1e1fb156c98e4df5901b5d010619295b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4f1cbf8c0ca4499da166911991dae32a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_52c9b0821f414a7295d35cd1c39d2694", "placeholder": "\u200b", "style": "IPY_MODEL_1e1fb156c98e4df5901b5d010619295b", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200722.95it/s]"}}, "9c25f41c14724f27971af5370d799ff9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b80d809a48e4215b1694d517ffd8b32": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b3a8e4f7536443b5a541e48992640a0b", "IPY_MODEL_b3098baf8cda44779e72082292496a24", "IPY_MODEL_4f1cbf8c0ca4499da166911991dae32a"], "layout": "IPY_MODEL_9c25f41c14724f27971af5370d799ff9", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"164675dd4f8f4cbf9a623e389dea6ec9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7707d742b6cf4103a3fd89ee2c8d1238": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ff7f064d843b4b868b0a7215468a8b32": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_164675dd4f8f4cbf9a623e389dea6ec9", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7707d742b6cf4103a3fd89ee2c8d1238", "tabbable": null, "tooltip": null, "value": 30.0}}, "0068535838c14b828d503f31aef6cbdd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "952501edbe2342999201781c8f40fd58": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e3940f347c4a486dbde7fb66e9125243": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0068535838c14b828d503f31aef6cbdd", "placeholder": "\u200b", "style": "IPY_MODEL_952501edbe2342999201781c8f40fd58", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "59439af7eb914b98ae12e63c18c77940": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5158abc568774a5c8fc6909f01cc89de": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ce3ff6e374464d1ea9848a66f8def783": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59439af7eb914b98ae12e63c18c77940", "placeholder": "\u200b", "style": "IPY_MODEL_5158abc568774a5c8fc6909f01cc89de", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007440.57it/s]"}}, "1892044b91a24dc1814d67fdfa1f44af": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a9b1e8dc109a4f008f633ecea989f488": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e3940f347c4a486dbde7fb66e9125243", "IPY_MODEL_ff7f064d843b4b868b0a7215468a8b32", "IPY_MODEL_ce3ff6e374464d1ea9848a66f8def783"], "layout": "IPY_MODEL_1892044b91a24dc1814d67fdfa1f44af", "tabbable": null, "tooltip": null}}, "fab7354662d8417e95e99ab0292c2c3f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd475aa9d9574e9aae2aa8e86d5a7ba3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0b83a87fdbd246008f9313e508cb7580": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fab7354662d8417e95e99ab0292c2c3f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fd475aa9d9574e9aae2aa8e86d5a7ba3", "tabbable": null, "tooltip": null, "value": 30.0}}, "212585fef446459ebc7ffd64c67a3a49": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3223513373b74392bf291cff001ee706": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "99bc13d8b35f43ae9901ce4b9a98355f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_212585fef446459ebc7ffd64c67a3a49", "placeholder": "\u200b", "style": "IPY_MODEL_3223513373b74392bf291cff001ee706", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "12124e1de6a14cbba745965dcc680e32": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52b44f8169b3497aaaa989c95b09886f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7a13ac558a2f4b79a4aeb14d51407f77": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_12124e1de6a14cbba745965dcc680e32", "placeholder": "\u200b", "style": "IPY_MODEL_52b44f8169b3497aaaa989c95b09886f", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:22<00:00,\u2007\u20071.34it/s]"}}, "2b22f26fbf0d4d48bbf08d2c5699e39e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "780e886400954a6295d03c905586d673": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_99bc13d8b35f43ae9901ce4b9a98355f", "IPY_MODEL_0b83a87fdbd246008f9313e508cb7580", "IPY_MODEL_7a13ac558a2f4b79a4aeb14d51407f77"], "layout": "IPY_MODEL_2b22f26fbf0d4d48bbf08d2c5699e39e", "tabbable": null, "tooltip": null}}, "fde8329da0b24aff818eb65199ed223d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0ee93901775c4be18056d0ec093898e0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ebabc1c0f9a0495688cc38a27db910e7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fde8329da0b24aff818eb65199ed223d", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0ee93901775c4be18056d0ec093898e0", "tabbable": null, "tooltip": null, "value": 30.0}}, "a2d4d8a4918b4dbfa1543307d349c0cb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "664bf34e18f64059aebed6fe120f4c13": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4f34fed5b7a5447bb12dfbe118790635": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a2d4d8a4918b4dbfa1543307d349c0cb", "placeholder": "\u200b", "style": "IPY_MODEL_664bf34e18f64059aebed6fe120f4c13", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "e2646ab657a1459d84803f50862393a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52695b63057145fa868503b531a7dd9d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "88d1cb815bfd44c5ab54795a354c77c9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e2646ab657a1459d84803f50862393a3", "placeholder": "\u200b", "style": "IPY_MODEL_52695b63057145fa868503b531a7dd9d", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200722.33it/s]"}}, "603b3a120ed54407855912b1605d3e4e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d7fd7dbeb69e442ba7f07f5933cee601": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4f34fed5b7a5447bb12dfbe118790635", "IPY_MODEL_ebabc1c0f9a0495688cc38a27db910e7", "IPY_MODEL_88d1cb815bfd44c5ab54795a354c77c9"], "layout": "IPY_MODEL_603b3a120ed54407855912b1605d3e4e", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 2c84a07e4..5a19416ec 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:16.016581Z", - "iopub.status.busy": "2024-02-13T00:39:16.016411Z", - "iopub.status.idle": "2024-02-13T00:39:17.846185Z", - "shell.execute_reply": "2024-02-13T00:39:17.845532Z" + "iopub.execute_input": "2024-02-13T01:04:24.456211Z", + "iopub.status.busy": "2024-02-13T01:04:24.456033Z", + "iopub.status.idle": "2024-02-13T01:04:26.961154Z", + "shell.execute_reply": "2024-02-13T01:04:26.960465Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:39:17.848857Z", - "iopub.status.busy": "2024-02-13T00:39:17.848507Z", - "iopub.status.idle": "2024-02-13T00:40:20.168637Z", - "shell.execute_reply": "2024-02-13T00:40:20.167980Z" + "iopub.execute_input": "2024-02-13T01:04:26.963827Z", + "iopub.status.busy": "2024-02-13T01:04:26.963606Z", + "iopub.status.idle": "2024-02-13T01:06:05.695134Z", + "shell.execute_reply": "2024-02-13T01:06:05.694398Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:40:20.170997Z", - "iopub.status.busy": "2024-02-13T00:40:20.170812Z", - "iopub.status.idle": "2024-02-13T00:40:21.217733Z", - "shell.execute_reply": "2024-02-13T00:40:21.217103Z" + "iopub.execute_input": "2024-02-13T01:06:05.697918Z", + "iopub.status.busy": "2024-02-13T01:06:05.697527Z", + "iopub.status.idle": "2024-02-13T01:06:06.776866Z", + "shell.execute_reply": "2024-02-13T01:06:06.776248Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:40:21.220218Z", - "iopub.status.busy": "2024-02-13T00:40:21.219949Z", - "iopub.status.idle": "2024-02-13T00:40:21.223254Z", - "shell.execute_reply": "2024-02-13T00:40:21.222838Z" + "iopub.execute_input": "2024-02-13T01:06:06.779676Z", + "iopub.status.busy": "2024-02-13T01:06:06.779211Z", + "iopub.status.idle": "2024-02-13T01:06:06.782966Z", + "shell.execute_reply": "2024-02-13T01:06:06.782526Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:40:21.225373Z", - "iopub.status.busy": "2024-02-13T00:40:21.225050Z", - "iopub.status.idle": "2024-02-13T00:40:21.228867Z", - "shell.execute_reply": "2024-02-13T00:40:21.228454Z" + "iopub.execute_input": "2024-02-13T01:06:06.784992Z", + "iopub.status.busy": "2024-02-13T01:06:06.784723Z", + "iopub.status.idle": "2024-02-13T01:06:06.788767Z", + "shell.execute_reply": "2024-02-13T01:06:06.788300Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:40:21.230771Z", - "iopub.status.busy": "2024-02-13T00:40:21.230493Z", - "iopub.status.idle": "2024-02-13T00:40:21.234013Z", - "shell.execute_reply": "2024-02-13T00:40:21.233591Z" + "iopub.execute_input": "2024-02-13T01:06:06.790688Z", + "iopub.status.busy": "2024-02-13T01:06:06.790377Z", + "iopub.status.idle": "2024-02-13T01:06:06.793892Z", + "shell.execute_reply": "2024-02-13T01:06:06.793425Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:40:21.235957Z", - "iopub.status.busy": "2024-02-13T00:40:21.235652Z", - "iopub.status.idle": "2024-02-13T00:40:21.238285Z", - "shell.execute_reply": "2024-02-13T00:40:21.237864Z" + "iopub.execute_input": "2024-02-13T01:06:06.795857Z", + "iopub.status.busy": "2024-02-13T01:06:06.795538Z", + "iopub.status.idle": "2024-02-13T01:06:06.798235Z", + "shell.execute_reply": "2024-02-13T01:06:06.797802Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:40:21.240256Z", - "iopub.status.busy": "2024-02-13T00:40:21.239953Z", - "iopub.status.idle": "2024-02-13T00:41:37.524238Z", - "shell.execute_reply": "2024-02-13T00:41:37.523624Z" + "iopub.execute_input": "2024-02-13T01:06:06.800327Z", + "iopub.status.busy": "2024-02-13T01:06:06.799926Z", + "iopub.status.idle": "2024-02-13T01:07:22.998914Z", + "shell.execute_reply": "2024-02-13T01:07:22.998356Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4c4ea88a0faa4e7994b8500868517daa", + "model_id": "a9b1e8dc109a4f008f633ecea989f488", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6ea9834dc3244dd786fd5e8ff97b24a6", + "model_id": "780e886400954a6295d03c905586d673", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:41:37.526978Z", - "iopub.status.busy": "2024-02-13T00:41:37.526601Z", - "iopub.status.idle": "2024-02-13T00:41:38.162461Z", - "shell.execute_reply": "2024-02-13T00:41:38.161972Z" + "iopub.execute_input": "2024-02-13T01:07:23.001525Z", + "iopub.status.busy": "2024-02-13T01:07:23.001327Z", + "iopub.status.idle": "2024-02-13T01:07:23.692603Z", + "shell.execute_reply": "2024-02-13T01:07:23.692017Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:41:38.164799Z", - "iopub.status.busy": "2024-02-13T00:41:38.164336Z", - "iopub.status.idle": "2024-02-13T00:41:40.886173Z", - "shell.execute_reply": "2024-02-13T00:41:40.885669Z" + "iopub.execute_input": "2024-02-13T01:07:23.694960Z", + "iopub.status.busy": "2024-02-13T01:07:23.694489Z", + "iopub.status.idle": "2024-02-13T01:07:26.428519Z", + "shell.execute_reply": "2024-02-13T01:07:26.427975Z" } }, "outputs": [ @@ -519,10 +519,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:41:40.888366Z", - "iopub.status.busy": "2024-02-13T00:41:40.888013Z", - "iopub.status.idle": "2024-02-13T00:42:12.691599Z", - "shell.execute_reply": "2024-02-13T00:42:12.691127Z" + "iopub.execute_input": "2024-02-13T01:07:26.430734Z", + "iopub.status.busy": "2024-02-13T01:07:26.430400Z", + "iopub.status.idle": "2024-02-13T01:07:58.911826Z", + "shell.execute_reply": "2024-02-13T01:07:58.911253Z" } }, "outputs": [ @@ -539,7 +539,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 15666/4997817 [00:00<00:31, 156647.82it/s]" + " 0%| | 15242/4997817 [00:00<00:32, 152406.70it/s]" ] }, { @@ -547,7 +547,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 31368/4997817 [00:00<00:31, 156863.75it/s]" + " 1%| | 30489/4997817 [00:00<00:32, 152436.32it/s]" ] }, { @@ -555,7 +555,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 47055/4997817 [00:00<00:31, 156605.66it/s]" + " 1%| | 45744/4997817 [00:00<00:32, 152481.16it/s]" ] }, { @@ -563,7 +563,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 62955/4997817 [00:00<00:31, 157545.12it/s]" + " 1%| | 60993/4997817 [00:00<00:32, 151806.03it/s]" ] }, { @@ -571,7 +571,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 78718/4997817 [00:00<00:31, 157570.48it/s]" + " 2%|▏ | 76175/4997817 [00:00<00:32, 151395.78it/s]" ] }, { @@ -579,7 +579,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 94643/4997817 [00:00<00:31, 158136.82it/s]" + " 2%|▏ | 91323/4997817 [00:00<00:32, 151421.91it/s]" ] }, { @@ -587,7 +587,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 110459/4997817 [00:00<00:30, 158139.64it/s]" + " 2%|▏ | 106466/4997817 [00:00<00:32, 151281.22it/s]" ] }, { @@ -595,7 +595,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 126372/4997817 [00:00<00:30, 158453.21it/s]" + " 2%|▏ | 121595/4997817 [00:00<00:33, 146607.57it/s]" ] }, { @@ -603,7 +603,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 142218/4997817 [00:00<00:30, 158379.37it/s]" + " 3%|▎ | 136284/4997817 [00:00<00:33, 144508.49it/s]" ] }, { @@ -611,7 +611,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 158056/4997817 [00:01<00:31, 154882.18it/s]" + " 3%|▎ | 151665/4997817 [00:01<00:32, 147302.13it/s]" ] }, { @@ -619,7 +619,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 173791/4997817 [00:01<00:30, 155622.26it/s]" + " 3%|▎ | 167038/4997817 [00:01<00:32, 149228.72it/s]" ] }, { @@ -627,7 +627,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 189775/4997817 [00:01<00:30, 156888.89it/s]" + " 4%|▎ | 182466/4997817 [00:01<00:31, 150743.53it/s]" ] }, { @@ -635,7 +635,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 205726/4997817 [00:01<00:30, 157674.91it/s]" + " 4%|▍ | 197954/4997817 [00:01<00:31, 151982.28it/s]" ] }, { @@ -643,7 +643,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 221526/4997817 [00:01<00:30, 157768.32it/s]" + " 4%|▍ | 213323/4997817 [00:01<00:31, 152492.14it/s]" ] }, { @@ -651,7 +651,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 237525/4997817 [00:01<00:30, 158432.90it/s]" + " 5%|▍ | 228641/4997817 [00:01<00:31, 152694.02it/s]" ] }, { @@ -659,7 +659,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 253373/4997817 [00:01<00:29, 158187.36it/s]" + " 5%|▍ | 243993/4997817 [00:01<00:31, 152938.07it/s]" ] }, { @@ -667,7 +667,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 269195/4997817 [00:01<00:29, 158009.60it/s]" + " 5%|▌ | 259491/4997817 [00:01<00:30, 153547.03it/s]" ] }, { @@ -675,7 +675,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 284998/4997817 [00:01<00:29, 157833.11it/s]" + " 5%|▌ | 274849/4997817 [00:01<00:30, 153404.88it/s]" ] }, { @@ -683,7 +683,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 301002/4997817 [00:01<00:29, 158490.91it/s]" + " 6%|▌ | 290192/4997817 [00:01<00:30, 153075.01it/s]" ] }, { @@ -691,7 +691,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 316853/4997817 [00:02<00:30, 154219.28it/s]" + " 6%|▌ | 305566/4997817 [00:02<00:30, 153271.97it/s]" ] }, { @@ -699,7 +699,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 332791/4997817 [00:02<00:29, 155731.83it/s]" + " 6%|▋ | 321135/4997817 [00:02<00:30, 153992.99it/s]" ] }, { @@ -707,7 +707,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 348789/4997817 [00:02<00:29, 156985.01it/s]" + " 7%|▋ | 336698/4997817 [00:02<00:30, 154478.90it/s]" ] }, { @@ -715,7 +715,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 364733/4997817 [00:02<00:29, 157709.81it/s]" + " 7%|▋ | 352313/4997817 [00:02<00:29, 154975.81it/s]" ] }, { @@ -723,7 +723,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 380754/4997817 [00:02<00:29, 158450.53it/s]" + " 7%|▋ | 367876/4997817 [00:02<00:29, 155168.02it/s]" ] }, { @@ -731,7 +731,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 396750/4997817 [00:02<00:28, 158897.24it/s]" + " 8%|▊ | 383394/4997817 [00:02<00:29, 155077.74it/s]" ] }, { @@ -739,7 +739,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 412671/4997817 [00:02<00:28, 158986.37it/s]" + " 8%|▊ | 398965/4997817 [00:02<00:29, 155263.45it/s]" ] }, { @@ -747,7 +747,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 428575/4997817 [00:02<00:28, 158676.62it/s]" + " 8%|▊ | 414492/4997817 [00:02<00:29, 155043.00it/s]" ] }, { @@ -755,7 +755,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 444446/4997817 [00:02<00:28, 158550.43it/s]" + " 9%|▊ | 430010/4997817 [00:02<00:29, 155081.99it/s]" ] }, { @@ -763,7 +763,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 460417/4997817 [00:02<00:28, 158892.84it/s]" + " 9%|▉ | 445535/4997817 [00:02<00:29, 155130.17it/s]" ] }, { @@ -771,7 +771,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 476308/4997817 [00:03<00:28, 158775.05it/s]" + " 9%|▉ | 461061/4997817 [00:03<00:29, 155166.03it/s]" ] }, { @@ -779,7 +779,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 492187/4997817 [00:03<00:28, 158601.36it/s]" + " 10%|▉ | 476592/4997817 [00:03<00:29, 155206.80it/s]" ] }, { @@ -787,7 +787,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 508157/4997817 [00:03<00:28, 158926.32it/s]" + " 10%|▉ | 492212/4997817 [00:03<00:28, 155500.25it/s]" ] }, { @@ -795,7 +795,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 524051/4997817 [00:03<00:28, 158866.59it/s]" + " 10%|█ | 507763/4997817 [00:03<00:28, 155454.98it/s]" ] }, { @@ -803,7 +803,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 539939/4997817 [00:03<00:28, 158444.77it/s]" + " 10%|█ | 523309/4997817 [00:03<00:28, 155405.75it/s]" ] }, { @@ -811,7 +811,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 555915/4997817 [00:03<00:27, 158834.42it/s]" + " 11%|█ | 538850/4997817 [00:03<00:28, 155387.41it/s]" ] }, { @@ -819,7 +819,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 571799/4997817 [00:03<00:27, 158578.95it/s]" + " 11%|█ | 554484/4997817 [00:03<00:28, 155668.87it/s]" ] }, { @@ -827,7 +827,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 587674/4997817 [00:03<00:27, 158627.80it/s]" + " 11%|█▏ | 570055/4997817 [00:03<00:28, 155677.02it/s]" ] }, { @@ -835,7 +835,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 603538/4997817 [00:03<00:27, 158305.53it/s]" + " 12%|█▏ | 585623/4997817 [00:03<00:28, 155314.68it/s]" ] }, { @@ -843,7 +843,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 619505/4997817 [00:03<00:27, 158710.53it/s]" + " 12%|█▏ | 601157/4997817 [00:03<00:28, 155319.64it/s]" ] }, { @@ -851,7 +851,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 635377/4997817 [00:04<00:27, 158448.49it/s]" + " 12%|█▏ | 616690/4997817 [00:04<00:28, 155095.56it/s]" ] }, { @@ -859,7 +859,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 651310/4997817 [00:04<00:27, 158709.84it/s]" + " 13%|█▎ | 632200/4997817 [00:04<00:28, 154675.68it/s]" ] }, { @@ -867,7 +867,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 667182/4997817 [00:04<00:27, 158708.74it/s]" + " 13%|█▎ | 647728/4997817 [00:04<00:28, 154851.79it/s]" ] }, { @@ -875,7 +875,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 683054/4997817 [00:04<00:27, 158642.01it/s]" + " 13%|█▎ | 663259/4997817 [00:04<00:27, 154984.67it/s]" ] }, { @@ -883,7 +883,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 698919/4997817 [00:04<00:27, 158379.34it/s]" + " 14%|█▎ | 678785/4997817 [00:04<00:27, 155065.08it/s]" ] }, { @@ -891,7 +891,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 714758/4997817 [00:04<00:27, 158087.60it/s]" + " 14%|█▍ | 694326/4997817 [00:04<00:27, 155165.37it/s]" ] }, { @@ -899,7 +899,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 730567/4997817 [00:04<00:27, 157944.60it/s]" + " 14%|█▍ | 709847/4997817 [00:04<00:27, 155176.24it/s]" ] }, { @@ -907,7 +907,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 746362/4997817 [00:04<00:26, 157793.83it/s]" + " 15%|█▍ | 725382/4997817 [00:04<00:27, 155225.06it/s]" ] }, { @@ -915,7 +915,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 762223/4997817 [00:04<00:26, 158034.29it/s]" + " 15%|█▍ | 740905/4997817 [00:04<00:27, 155073.36it/s]" ] }, { @@ -923,7 +923,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 778220/4997817 [00:04<00:26, 158611.89it/s]" + " 15%|█▌ | 756413/4997817 [00:04<00:27, 154986.69it/s]" ] }, { @@ -931,7 +931,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 794085/4997817 [00:05<00:26, 158621.09it/s]" + " 15%|█▌ | 772046/4997817 [00:05<00:27, 155387.40it/s]" ] }, { @@ -939,7 +939,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 809948/4997817 [00:05<00:26, 158320.81it/s]" + " 16%|█▌ | 787585/4997817 [00:05<00:27, 155319.95it/s]" ] }, { @@ -947,7 +947,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 825965/4997817 [00:05<00:26, 158870.11it/s]" + " 16%|█▌ | 803295/4997817 [00:05<00:26, 155851.67it/s]" ] }, { @@ -955,7 +955,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 841913/4997817 [00:05<00:26, 159049.12it/s]" + " 16%|█▋ | 818903/4997817 [00:05<00:26, 155917.61it/s]" ] }, { @@ -963,7 +963,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 857819/4997817 [00:05<00:26, 159026.18it/s]" + " 17%|█▋ | 834504/4997817 [00:05<00:26, 155940.90it/s]" ] }, { @@ -971,7 +971,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 873722/4997817 [00:05<00:26, 158358.95it/s]" + " 17%|█▋ | 850099/4997817 [00:05<00:26, 155867.44it/s]" ] }, { @@ -979,7 +979,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 889606/4997817 [00:05<00:25, 158499.30it/s]" + " 17%|█▋ | 865773/4997817 [00:05<00:26, 156125.42it/s]" ] }, { @@ -987,7 +987,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 905457/4997817 [00:05<00:25, 158435.63it/s]" + " 18%|█▊ | 881399/4997817 [00:05<00:26, 156162.25it/s]" ] }, { @@ -995,7 +995,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 921348/4997817 [00:05<00:25, 158576.34it/s]" + " 18%|█▊ | 897053/4997817 [00:05<00:26, 156272.01it/s]" ] }, { @@ -1003,7 +1003,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 937206/4997817 [00:05<00:25, 158455.70it/s]" + " 18%|█▊ | 912767/4997817 [00:05<00:26, 156528.03it/s]" ] }, { @@ -1011,7 +1011,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 953141/4997817 [00:06<00:25, 158720.00it/s]" + " 19%|█▊ | 928420/4997817 [00:06<00:26, 156049.47it/s]" ] }, { @@ -1019,7 +1019,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 969014/4997817 [00:06<00:25, 158563.42it/s]" + " 19%|█▉ | 944026/4997817 [00:06<00:26, 155540.63it/s]" ] }, { @@ -1027,7 +1027,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 984871/4997817 [00:06<00:25, 158524.56it/s]" + " 19%|█▉ | 959667/4997817 [00:06<00:25, 155796.70it/s]" ] }, { @@ -1035,7 +1035,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1000724/4997817 [00:06<00:25, 158216.43it/s]" + " 20%|█▉ | 975248/4997817 [00:06<00:25, 155662.15it/s]" ] }, { @@ -1043,7 +1043,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1016660/4997817 [00:06<00:25, 158556.29it/s]" + " 20%|█▉ | 990815/4997817 [00:06<00:25, 155532.50it/s]" ] }, { @@ -1051,7 +1051,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1032516/4997817 [00:06<00:25, 158466.12it/s]" + " 20%|██ | 1006369/4997817 [00:06<00:25, 155139.14it/s]" ] }, { @@ -1059,7 +1059,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1048446/4997817 [00:06<00:24, 158711.88it/s]" + " 20%|██ | 1021963/4997817 [00:06<00:25, 155348.72it/s]" ] }, { @@ -1067,7 +1067,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1064367/4997817 [00:06<00:24, 158858.36it/s]" + " 21%|██ | 1037616/4997817 [00:06<00:25, 155699.80it/s]" ] }, { @@ -1075,7 +1075,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1080253/4997817 [00:06<00:24, 158782.98it/s]" + " 21%|██ | 1053288/4997817 [00:06<00:25, 156000.57it/s]" ] }, { @@ -1083,7 +1083,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1096132/4997817 [00:06<00:24, 158576.72it/s]" + " 21%|██▏ | 1068998/4997817 [00:06<00:25, 156326.00it/s]" ] }, { @@ -1091,7 +1091,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1112023/4997817 [00:07<00:24, 158673.09it/s]" + " 22%|██▏ | 1084631/4997817 [00:07<00:25, 156080.97it/s]" ] }, { @@ -1099,7 +1099,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1127891/4997817 [00:07<00:24, 158287.29it/s]" + " 22%|██▏ | 1100248/4997817 [00:07<00:24, 156103.33it/s]" ] }, { @@ -1107,7 +1107,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1143728/4997817 [00:07<00:24, 158280.58it/s]" + " 22%|██▏ | 1115868/4997817 [00:07<00:24, 156130.44it/s]" ] }, { @@ -1115,7 +1115,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1159571/4997817 [00:07<00:24, 158322.88it/s]" + " 23%|██▎ | 1131502/4997817 [00:07<00:24, 156189.39it/s]" ] }, { @@ -1123,7 +1123,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1175404/4997817 [00:07<00:24, 158003.51it/s]" + " 23%|██▎ | 1147133/4997817 [00:07<00:24, 156223.03it/s]" ] }, { @@ -1131,7 +1131,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1191255/4997817 [00:07<00:24, 158140.48it/s]" + " 23%|██▎ | 1162756/4997817 [00:07<00:24, 156176.59it/s]" ] }, { @@ -1139,7 +1139,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1207070/4997817 [00:07<00:24, 157891.06it/s]" + " 24%|██▎ | 1178374/4997817 [00:07<00:24, 155958.14it/s]" ] }, { @@ -1147,7 +1147,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1222860/4997817 [00:07<00:23, 157833.98it/s]" + " 24%|██▍ | 1193970/4997817 [00:07<00:24, 155667.97it/s]" ] }, { @@ -1155,7 +1155,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1238644/4997817 [00:07<00:23, 157669.57it/s]" + " 24%|██▍ | 1209566/4997817 [00:07<00:24, 155750.20it/s]" ] }, { @@ -1163,7 +1163,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1254503/4997817 [00:07<00:23, 157943.37it/s]" + " 25%|██▍ | 1225182/4997817 [00:07<00:24, 155870.32it/s]" ] }, { @@ -1171,7 +1171,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1270298/4997817 [00:08<00:23, 157893.30it/s]" + " 25%|██▍ | 1240771/4997817 [00:08<00:24, 155871.58it/s]" ] }, { @@ -1179,7 +1179,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1286088/4997817 [00:08<00:23, 157203.81it/s]" + " 25%|██▌ | 1256359/4997817 [00:08<00:24, 155587.49it/s]" ] }, { @@ -1187,7 +1187,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1301914/4997817 [00:08<00:23, 157517.66it/s]" + " 25%|██▌ | 1271995/4997817 [00:08<00:23, 155816.30it/s]" ] }, { @@ -1195,7 +1195,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1318042/4997817 [00:08<00:23, 158639.10it/s]" + " 26%|██▌ | 1287648/4997817 [00:08<00:23, 156026.05it/s]" ] }, { @@ -1203,7 +1203,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1334160/4997817 [00:08<00:22, 159397.76it/s]" + " 26%|██▌ | 1303353/4997817 [00:08<00:23, 156329.75it/s]" ] }, { @@ -1211,7 +1211,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1350245/4997817 [00:08<00:22, 159828.88it/s]" + " 26%|██▋ | 1318987/4997817 [00:08<00:23, 156114.83it/s]" ] }, { @@ -1219,7 +1219,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1366306/4997817 [00:08<00:22, 160060.40it/s]" + " 27%|██▋ | 1334661/4997817 [00:08<00:23, 156298.69it/s]" ] }, { @@ -1227,7 +1227,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1382313/4997817 [00:08<00:22, 159885.16it/s]" + " 27%|██▋ | 1350362/4997817 [00:08<00:23, 156508.78it/s]" ] }, { @@ -1235,7 +1235,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1398302/4997817 [00:08<00:22, 159798.99it/s]" + " 27%|██▋ | 1366059/4997817 [00:08<00:23, 156644.85it/s]" ] }, { @@ -1243,7 +1243,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1414283/4997817 [00:08<00:22, 159564.68it/s]" + " 28%|██▊ | 1381734/4997817 [00:08<00:23, 156672.73it/s]" ] }, { @@ -1251,7 +1251,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1430353/4997817 [00:09<00:22, 159903.29it/s]" + " 28%|██▊ | 1397441/4997817 [00:09<00:22, 156790.90it/s]" ] }, { @@ -1259,7 +1259,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1446451/4997817 [00:09<00:22, 160222.25it/s]" + " 28%|██▊ | 1413121/4997817 [00:09<00:22, 156732.15it/s]" ] }, { @@ -1267,7 +1267,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1462525/4997817 [00:09<00:22, 160375.18it/s]" + " 29%|██▊ | 1428795/4997817 [00:09<00:22, 156728.94it/s]" ] }, { @@ -1275,7 +1275,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1478572/4997817 [00:09<00:21, 160401.01it/s]" + " 29%|██▉ | 1444468/4997817 [00:09<00:22, 156303.73it/s]" ] }, { @@ -1283,7 +1283,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1494613/4997817 [00:09<00:21, 160375.89it/s]" + " 29%|██▉ | 1460162/4997817 [00:09<00:22, 156492.46it/s]" ] }, { @@ -1291,7 +1291,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1510651/4997817 [00:09<00:21, 160197.25it/s]" + " 30%|██▉ | 1475847/4997817 [00:09<00:22, 156596.70it/s]" ] }, { @@ -1299,7 +1299,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1526671/4997817 [00:09<00:21, 159669.14it/s]" + " 30%|██▉ | 1491541/4997817 [00:09<00:22, 156698.50it/s]" ] }, { @@ -1307,7 +1307,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1542639/4997817 [00:09<00:21, 159484.11it/s]" + " 30%|███ | 1507211/4997817 [00:09<00:22, 156694.74it/s]" ] }, { @@ -1315,7 +1315,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1558590/4997817 [00:09<00:21, 159489.29it/s]" + " 30%|███ | 1522881/4997817 [00:09<00:22, 156531.20it/s]" ] }, { @@ -1323,7 +1323,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1574540/4997817 [00:09<00:21, 159474.10it/s]" + " 31%|███ | 1538535/4997817 [00:09<00:22, 156505.59it/s]" ] }, { @@ -1331,7 +1331,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1590488/4997817 [00:10<00:21, 159413.30it/s]" + " 31%|███ | 1554223/4997817 [00:10<00:21, 156613.94it/s]" ] }, { @@ -1339,7 +1339,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1606510/4997817 [00:10<00:21, 159653.31it/s]" + " 31%|███▏ | 1569885/4997817 [00:10<00:21, 156472.42it/s]" ] }, { @@ -1347,7 +1347,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1622476/4997817 [00:10<00:21, 159292.49it/s]" + " 32%|███▏ | 1585533/4997817 [00:10<00:21, 156384.79it/s]" ] }, { @@ -1355,7 +1355,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1638491/4997817 [00:10<00:21, 159546.81it/s]" + " 32%|███▏ | 1601172/4997817 [00:10<00:21, 155887.13it/s]" ] }, { @@ -1363,7 +1363,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1654446/4997817 [00:10<00:20, 159265.41it/s]" + " 32%|███▏ | 1616779/4997817 [00:10<00:21, 155938.20it/s]" ] }, { @@ -1371,7 +1371,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1670373/4997817 [00:10<00:20, 159054.93it/s]" + " 33%|███▎ | 1632374/4997817 [00:10<00:21, 155856.46it/s]" ] }, { @@ -1379,7 +1379,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1686370/4997817 [00:10<00:20, 159326.74it/s]" + " 33%|███▎ | 1647960/4997817 [00:10<00:21, 155758.60it/s]" ] }, { @@ -1387,7 +1387,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1702372/4997817 [00:10<00:20, 159531.43it/s]" + " 33%|███▎ | 1663536/4997817 [00:10<00:21, 155540.29it/s]" ] }, { @@ -1395,7 +1395,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1718342/4997817 [00:10<00:20, 159579.36it/s]" + " 34%|███▎ | 1679096/4997817 [00:10<00:21, 155556.32it/s]" ] }, { @@ -1403,7 +1403,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1734304/4997817 [00:10<00:20, 159590.22it/s]" + " 34%|███▍ | 1694652/4997817 [00:10<00:21, 155379.81it/s]" ] }, { @@ -1411,7 +1411,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1750310/4997817 [00:11<00:20, 159727.34it/s]" + " 34%|███▍ | 1710217/4997817 [00:11<00:21, 155456.88it/s]" ] }, { @@ -1419,7 +1419,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1766283/4997817 [00:11<00:20, 159531.21it/s]" + " 35%|███▍ | 1725798/4997817 [00:11<00:21, 155558.60it/s]" ] }, { @@ -1427,7 +1427,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1782237/4997817 [00:11<00:21, 152189.63it/s]" + " 35%|███▍ | 1741468/4997817 [00:11<00:20, 155897.29it/s]" ] }, { @@ -1435,7 +1435,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1798210/4997817 [00:11<00:20, 154373.88it/s]" + " 35%|███▌ | 1757095/4997817 [00:11<00:20, 156007.17it/s]" ] }, { @@ -1443,7 +1443,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1814164/4997817 [00:11<00:20, 155885.19it/s]" + " 35%|███▌ | 1772698/4997817 [00:11<00:20, 156012.83it/s]" ] }, { @@ -1451,7 +1451,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1830086/4997817 [00:11<00:20, 156866.86it/s]" + " 36%|███▌ | 1788312/4997817 [00:11<00:20, 156047.33it/s]" ] }, { @@ -1459,7 +1459,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1846040/4997817 [00:11<00:19, 157656.96it/s]" + " 36%|███▌ | 1803941/4997817 [00:11<00:20, 156118.37it/s]" ] }, { @@ -1467,7 +1467,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1861916/4997817 [00:11<00:19, 157982.38it/s]" + " 36%|███▋ | 1819553/4997817 [00:11<00:20, 155999.32it/s]" ] }, { @@ -1475,7 +1475,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1877756/4997817 [00:11<00:19, 158103.61it/s]" + " 37%|███▋ | 1835153/4997817 [00:11<00:20, 155841.17it/s]" ] }, { @@ -1483,7 +1483,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1893631/4997817 [00:11<00:19, 158294.97it/s]" + " 37%|███▋ | 1850767/4997817 [00:11<00:20, 155929.75it/s]" ] }, { @@ -1491,7 +1491,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1909624/4997817 [00:12<00:19, 158782.08it/s]" + " 37%|███▋ | 1866361/4997817 [00:12<00:20, 155780.01it/s]" ] }, { @@ -1499,7 +1499,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1925553/4997817 [00:12<00:19, 158932.71it/s]" + " 38%|███▊ | 1881940/4997817 [00:12<00:20, 155737.88it/s]" ] }, { @@ -1507,7 +1507,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1941451/4997817 [00:12<00:19, 158328.69it/s]" + " 38%|███▊ | 1897538/4997817 [00:12<00:19, 155807.48it/s]" ] }, { @@ -1515,7 +1515,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1957395/4997817 [00:12<00:19, 158658.52it/s]" + " 38%|███▊ | 1913150/4997817 [00:12<00:19, 155898.53it/s]" ] }, { @@ -1523,7 +1523,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1973393/4997817 [00:12<00:19, 159051.70it/s]" + " 39%|███▊ | 1928750/4997817 [00:12<00:19, 155925.66it/s]" ] }, { @@ -1531,7 +1531,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1989322/4997817 [00:12<00:18, 159120.60it/s]" + " 39%|███▉ | 1944372/4997817 [00:12<00:19, 156011.40it/s]" ] }, { @@ -1539,7 +1539,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2005236/4997817 [00:12<00:18, 159063.51it/s]" + " 39%|███▉ | 1959974/4997817 [00:12<00:19, 155950.35it/s]" ] }, { @@ -1547,7 +1547,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2021144/4997817 [00:12<00:18, 158992.06it/s]" + " 40%|███▉ | 1975637/4997817 [00:12<00:19, 156151.18it/s]" ] }, { @@ -1555,7 +1555,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2037121/4997817 [00:12<00:18, 159223.28it/s]" + " 40%|███▉ | 1991253/4997817 [00:12<00:19, 155813.08it/s]" ] }, { @@ -1563,7 +1563,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2053044/4997817 [00:12<00:18, 159129.47it/s]" + " 40%|████ | 2006836/4997817 [00:12<00:19, 155817.08it/s]" ] }, { @@ -1571,7 +1571,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2068966/4997817 [00:13<00:18, 159152.89it/s]" + " 40%|████ | 2022418/4997817 [00:13<00:19, 155781.61it/s]" ] }, { @@ -1579,7 +1579,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2084899/4997817 [00:13<00:18, 159202.39it/s]" + " 41%|████ | 2038039/4997817 [00:13<00:18, 155906.81it/s]" ] }, { @@ -1587,7 +1587,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2100820/4997817 [00:13<00:18, 158761.52it/s]" + " 41%|████ | 2053733/4997817 [00:13<00:18, 156213.56it/s]" ] }, { @@ -1595,7 +1595,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2116697/4997817 [00:13<00:18, 158649.76it/s]" + " 41%|████▏ | 2069428/4997817 [00:13<00:18, 156432.74it/s]" ] }, { @@ -1603,7 +1603,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2132563/4997817 [00:13<00:18, 158552.83it/s]" + " 42%|████▏ | 2085120/4997817 [00:13<00:18, 156576.34it/s]" ] }, { @@ -1611,7 +1611,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2148419/4997817 [00:13<00:17, 158488.27it/s]" + " 42%|████▏ | 2100778/4997817 [00:13<00:18, 155681.34it/s]" ] }, { @@ -1619,7 +1619,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2164268/4997817 [00:13<00:17, 158456.13it/s]" + " 42%|████▏ | 2116348/4997817 [00:13<00:18, 155555.01it/s]" ] }, { @@ -1627,7 +1627,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2180136/4997817 [00:13<00:17, 158521.33it/s]" + " 43%|████▎ | 2131974/4997817 [00:13<00:18, 155762.47it/s]" ] }, { @@ -1635,7 +1635,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2196000/4997817 [00:13<00:17, 158553.20it/s]" + " 43%|████▎ | 2147551/4997817 [00:13<00:18, 155373.01it/s]" ] }, { @@ -1643,7 +1643,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2211942/4997817 [00:13<00:17, 158811.19it/s]" + " 43%|████▎ | 2163089/4997817 [00:13<00:18, 155018.71it/s]" ] }, { @@ -1651,7 +1651,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2227824/4997817 [00:14<00:17, 158577.27it/s]" + " 44%|████▎ | 2178592/4997817 [00:14<00:18, 152370.36it/s]" ] }, { @@ -1659,7 +1659,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2243682/4997817 [00:14<00:17, 158422.77it/s]" + " 44%|████▍ | 2194084/4997817 [00:14<00:18, 153120.90it/s]" ] }, { @@ -1667,7 +1667,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2259525/4997817 [00:14<00:17, 158421.70it/s]" + " 44%|████▍ | 2209572/4997817 [00:14<00:18, 153640.87it/s]" ] }, { @@ -1675,7 +1675,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2275368/4997817 [00:14<00:17, 152143.74it/s]" + " 45%|████▍ | 2225046/4997817 [00:14<00:18, 153966.37it/s]" ] }, { @@ -1683,7 +1683,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2290635/4997817 [00:14<00:17, 151173.45it/s]" + " 45%|████▍ | 2240545/4997817 [00:14<00:17, 154268.62it/s]" ] }, { @@ -1691,7 +1691,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2306230/4997817 [00:14<00:17, 152567.88it/s]" + " 45%|████▌ | 2256134/4997817 [00:14<00:17, 154751.32it/s]" ] }, { @@ -1699,7 +1699,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2322097/4997817 [00:14<00:17, 154362.99it/s]" + " 45%|████▌ | 2271612/4997817 [00:14<00:17, 154713.37it/s]" ] }, { @@ -1707,7 +1707,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2338019/4997817 [00:14<00:17, 155799.79it/s]" + " 46%|████▌ | 2287086/4997817 [00:14<00:17, 153875.18it/s]" ] }, { @@ -1715,7 +1715,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2353956/4997817 [00:14<00:16, 156860.01it/s]" + " 46%|████▌ | 2302518/4997817 [00:14<00:17, 154005.12it/s]" ] }, { @@ -1723,7 +1723,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2370062/4997817 [00:14<00:16, 158108.89it/s]" + " 46%|████▋ | 2318001/4997817 [00:14<00:17, 154249.74it/s]" ] }, { @@ -1731,7 +1731,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2386096/4997817 [00:15<00:16, 158773.62it/s]" + " 47%|████▋ | 2333428/4997817 [00:15<00:17, 152824.99it/s]" ] }, { @@ -1739,7 +1739,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2402094/4997817 [00:15<00:16, 159131.51it/s]" + " 47%|████▋ | 2348875/4997817 [00:15<00:17, 153312.47it/s]" ] }, { @@ -1747,7 +1747,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2418013/4997817 [00:15<00:16, 159062.45it/s]" + " 47%|████▋ | 2364533/4997817 [00:15<00:17, 154283.21it/s]" ] }, { @@ -1755,7 +1755,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2433924/4997817 [00:15<00:16, 158673.47it/s]" + " 48%|████▊ | 2380077/4997817 [00:15<00:16, 154626.11it/s]" ] }, { @@ -1763,7 +1763,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2449795/4997817 [00:15<00:16, 158657.52it/s]" + " 48%|████▊ | 2395542/4997817 [00:15<00:16, 154287.90it/s]" ] }, { @@ -1771,7 +1771,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2465785/4997817 [00:15<00:15, 159028.09it/s]" + " 48%|████▊ | 2411211/4997817 [00:15<00:16, 155003.22it/s]" ] }, { @@ -1779,7 +1779,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2481802/4997817 [00:15<00:15, 159367.88it/s]" + " 49%|████▊ | 2426880/4997817 [00:15<00:16, 155506.80it/s]" ] }, { @@ -1787,7 +1787,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2497925/4997817 [00:15<00:15, 159923.07it/s]" + " 49%|████▉ | 2442432/4997817 [00:15<00:16, 155483.38it/s]" ] }, { @@ -1795,7 +1795,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2513962/4997817 [00:15<00:15, 160054.80it/s]" + " 49%|████▉ | 2457982/4997817 [00:15<00:16, 154776.55it/s]" ] }, { @@ -1803,7 +1803,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2530040/4997817 [00:15<00:15, 160269.30it/s]" + " 49%|████▉ | 2473626/4997817 [00:15<00:16, 155270.67it/s]" ] }, { @@ -1811,7 +1811,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2546068/4997817 [00:16<00:15, 160138.03it/s]" + " 50%|████▉ | 2489155/4997817 [00:16<00:16, 152945.47it/s]" ] }, { @@ -1819,7 +1819,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2562083/4997817 [00:16<00:15, 159958.88it/s]" + " 50%|█████ | 2504608/4997817 [00:16<00:16, 153411.63it/s]" ] }, { @@ -1827,7 +1827,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2578080/4997817 [00:16<00:15, 159787.87it/s]" + " 50%|█████ | 2520150/4997817 [00:16<00:16, 154007.10it/s]" ] }, { @@ -1835,7 +1835,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2594059/4997817 [00:16<00:15, 156344.43it/s]" + " 51%|█████ | 2535722/4997817 [00:16<00:15, 154515.50it/s]" ] }, { @@ -1843,7 +1843,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2609883/4997817 [00:16<00:15, 156901.94it/s]" + " 51%|█████ | 2551303/4997817 [00:16<00:15, 154898.78it/s]" ] }, { @@ -1851,7 +1851,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2625962/4997817 [00:16<00:15, 158054.04it/s]" + " 51%|█████▏ | 2566916/4997817 [00:16<00:15, 155265.28it/s]" ] }, { @@ -1859,7 +1859,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2642039/4997817 [00:16<00:14, 158858.99it/s]" + " 52%|█████▏ | 2582456/4997817 [00:16<00:15, 155303.99it/s]" ] }, { @@ -1867,7 +1867,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2658073/4997817 [00:16<00:14, 159299.78it/s]" + " 52%|█████▏ | 2597988/4997817 [00:16<00:15, 154255.88it/s]" ] }, { @@ -1875,7 +1875,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2674048/4997817 [00:16<00:14, 159432.31it/s]" + " 52%|█████▏ | 2613531/4997817 [00:16<00:15, 154604.46it/s]" ] }, { @@ -1883,7 +1883,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2690018/4997817 [00:16<00:14, 159510.96it/s]" + " 53%|█████▎ | 2629103/4997817 [00:16<00:15, 154935.70it/s]" ] }, { @@ -1891,7 +1891,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2705972/4997817 [00:17<00:14, 159362.82it/s]" + " 53%|█████▎ | 2644659/4997817 [00:17<00:15, 155119.51it/s]" ] }, { @@ -1899,7 +1899,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2721935/4997817 [00:17<00:14, 159441.26it/s]" + " 53%|█████▎ | 2660264/4997817 [00:17<00:15, 155395.36it/s]" ] }, { @@ -1907,7 +1907,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2737881/4997817 [00:17<00:14, 159351.77it/s]" + " 54%|█████▎ | 2675970/4997817 [00:17<00:14, 155890.19it/s]" ] }, { @@ -1915,7 +1915,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2753818/4997817 [00:17<00:14, 158667.59it/s]" + " 54%|█████▍ | 2691560/4997817 [00:17<00:14, 155582.12it/s]" ] }, { @@ -1923,7 +1923,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2769712/4997817 [00:17<00:14, 158747.67it/s]" + " 54%|█████▍ | 2707140/4997817 [00:17<00:14, 155643.62it/s]" ] }, { @@ -1931,7 +1931,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2785718/4997817 [00:17<00:13, 159139.50it/s]" + " 54%|█████▍ | 2722760/4997817 [00:17<00:14, 155806.54it/s]" ] }, { @@ -1939,7 +1939,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2801696/4997817 [00:17<00:13, 159329.72it/s]" + " 55%|█████▍ | 2738442/4997817 [00:17<00:14, 156108.41it/s]" ] }, { @@ -1947,7 +1947,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2817630/4997817 [00:17<00:13, 159123.27it/s]" + " 55%|█████▌ | 2754054/4997817 [00:17<00:14, 155832.37it/s]" ] }, { @@ -1955,7 +1955,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2833543/4997817 [00:17<00:13, 158866.97it/s]" + " 55%|█████▌ | 2769638/4997817 [00:17<00:14, 155801.88it/s]" ] }, { @@ -1963,7 +1963,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2849515/4997817 [00:17<00:13, 159119.80it/s]" + " 56%|█████▌ | 2785236/4997817 [00:17<00:14, 155853.51it/s]" ] }, { @@ -1971,7 +1971,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2865428/4997817 [00:18<00:13, 158853.29it/s]" + " 56%|█████▌ | 2800883/4997817 [00:18<00:14, 156035.09it/s]" ] }, { @@ -1979,7 +1979,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2881370/4997817 [00:18<00:13, 159020.78it/s]" + " 56%|█████▋ | 2816487/4997817 [00:18<00:14, 149243.30it/s]" ] }, { @@ -1987,7 +1987,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2897273/4997817 [00:18<00:13, 158804.17it/s]" + " 57%|█████▋ | 2832047/4997817 [00:18<00:14, 151087.40it/s]" ] }, { @@ -1995,7 +1995,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2913154/4997817 [00:18<00:13, 158342.95it/s]" + " 57%|█████▋ | 2847658/4997817 [00:18<00:14, 152557.40it/s]" ] }, { @@ -2003,7 +2003,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2928989/4997817 [00:18<00:13, 158229.17it/s]" + " 57%|█████▋ | 2863262/4997817 [00:18<00:13, 153584.80it/s]" ] }, { @@ -2011,7 +2011,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2944813/4997817 [00:18<00:12, 157965.71it/s]" + " 58%|█████▊ | 2878803/4997817 [00:18<00:13, 154124.08it/s]" ] }, { @@ -2019,7 +2019,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2960610/4997817 [00:18<00:12, 157704.96it/s]" + " 58%|█████▊ | 2894313/4997817 [00:18<00:13, 154411.24it/s]" ] }, { @@ -2027,7 +2027,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2976411/4997817 [00:18<00:12, 157790.69it/s]" + " 58%|█████▊ | 2909874/4997817 [00:18<00:13, 154765.54it/s]" ] }, { @@ -2035,7 +2035,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2992243/4997817 [00:18<00:12, 157946.44it/s]" + " 59%|█████▊ | 2925374/4997817 [00:18<00:13, 154833.01it/s]" ] }, { @@ -2043,7 +2043,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3008086/4997817 [00:18<00:12, 158089.49it/s]" + " 59%|█████▉ | 2940865/4997817 [00:18<00:13, 154727.28it/s]" ] }, { @@ -2051,7 +2051,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3023896/4997817 [00:19<00:12, 157854.86it/s]" + " 59%|█████▉ | 2956389/4997817 [00:19<00:13, 154877.89it/s]" ] }, { @@ -2059,7 +2059,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3039789/4997817 [00:19<00:12, 158175.36it/s]" + " 59%|█████▉ | 2971910/4997817 [00:19<00:13, 154973.96it/s]" ] }, { @@ -2067,7 +2067,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3055607/4997817 [00:19<00:12, 158114.00it/s]" + " 60%|█████▉ | 2987427/4997817 [00:19<00:12, 155029.31it/s]" ] }, { @@ -2075,7 +2075,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3071420/4997817 [00:19<00:12, 158117.60it/s]" + " 60%|██████ | 3003022/4997817 [00:19<00:12, 155303.32it/s]" ] }, { @@ -2083,7 +2083,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3087232/4997817 [00:19<00:12, 157048.66it/s]" + " 60%|██████ | 3018554/4997817 [00:19<00:12, 155228.70it/s]" ] }, { @@ -2091,7 +2091,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3102944/4997817 [00:19<00:12, 157067.98it/s]" + " 61%|██████ | 3034188/4997817 [00:19<00:12, 155560.53it/s]" ] }, { @@ -2099,7 +2099,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3118888/4997817 [00:19<00:11, 157775.61it/s]" + " 61%|██████ | 3049758/4997817 [00:19<00:12, 155599.17it/s]" ] }, { @@ -2107,7 +2107,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3134867/4997817 [00:19<00:11, 158374.88it/s]" + " 61%|██████▏ | 3065389/4997817 [00:19<00:12, 155808.70it/s]" ] }, { @@ -2115,7 +2115,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3150754/4997817 [00:19<00:11, 158520.01it/s]" + " 62%|██████▏ | 3080975/4997817 [00:19<00:12, 155821.79it/s]" ] }, { @@ -2123,7 +2123,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3166669/4997817 [00:19<00:11, 158707.45it/s]" + " 62%|██████▏ | 3096561/4997817 [00:19<00:12, 155829.95it/s]" ] }, { @@ -2131,7 +2131,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3182541/4997817 [00:20<00:11, 158276.37it/s]" + " 62%|██████▏ | 3112145/4997817 [00:20<00:12, 155467.23it/s]" ] }, { @@ -2139,7 +2139,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3198370/4997817 [00:20<00:11, 155580.57it/s]" + " 63%|██████▎ | 3127693/4997817 [00:20<00:12, 154776.76it/s]" ] }, { @@ -2147,7 +2147,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3214146/4997817 [00:20<00:11, 156223.44it/s]" + " 63%|██████▎ | 3143257/4997817 [00:20<00:11, 155032.11it/s]" ] }, { @@ -2155,7 +2155,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3229896/4997817 [00:20<00:11, 156601.96it/s]" + " 63%|██████▎ | 3158761/4997817 [00:20<00:11, 155009.31it/s]" ] }, { @@ -2163,7 +2163,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3245585/4997817 [00:20<00:11, 156686.05it/s]" + " 64%|██████▎ | 3174327/4997817 [00:20<00:11, 155201.57it/s]" ] }, { @@ -2171,7 +2171,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3261389/4997817 [00:20<00:11, 157088.77it/s]" + " 64%|██████▍ | 3189921/4997817 [00:20<00:11, 155420.68it/s]" ] }, { @@ -2179,7 +2179,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3277256/4997817 [00:20<00:10, 157559.68it/s]" + " 64%|██████▍ | 3205500/4997817 [00:20<00:11, 155529.73it/s]" ] }, { @@ -2187,7 +2187,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3293139/4997817 [00:20<00:10, 157937.78it/s]" + " 64%|██████▍ | 3221054/4997817 [00:20<00:11, 155453.31it/s]" ] }, { @@ -2195,7 +2195,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3308935/4997817 [00:20<00:10, 157714.51it/s]" + " 65%|██████▍ | 3236600/4997817 [00:20<00:11, 155244.69it/s]" ] }, { @@ -2203,7 +2203,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3324777/4997817 [00:21<00:10, 157924.16it/s]" + " 65%|██████▌ | 3252125/4997817 [00:20<00:11, 155055.87it/s]" ] }, { @@ -2211,7 +2211,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3340601/4997817 [00:21<00:10, 158017.46it/s]" + " 65%|██████▌ | 3267656/4997817 [00:21<00:11, 155128.46it/s]" ] }, { @@ -2219,7 +2219,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3356404/4997817 [00:21<00:10, 157983.45it/s]" + " 66%|██████▌ | 3283190/4997817 [00:21<00:11, 155188.11it/s]" ] }, { @@ -2227,7 +2227,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3372236/4997817 [00:21<00:10, 158082.67it/s]" + " 66%|██████▌ | 3298734/4997817 [00:21<00:10, 155260.76it/s]" ] }, { @@ -2235,7 +2235,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3388115/4997817 [00:21<00:10, 158291.04it/s]" + " 66%|██████▋ | 3314261/4997817 [00:21<00:10, 155153.90it/s]" ] }, { @@ -2243,7 +2243,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3403945/4997817 [00:21<00:10, 158092.03it/s]" + " 67%|██████▋ | 3329777/4997817 [00:21<00:10, 155078.76it/s]" ] }, { @@ -2251,7 +2251,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3419755/4997817 [00:21<00:09, 158079.89it/s]" + " 67%|██████▋ | 3345292/4997817 [00:21<00:10, 155098.82it/s]" ] }, { @@ -2259,7 +2259,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3435564/4997817 [00:21<00:09, 157742.55it/s]" + " 67%|██████▋ | 3360830/4997817 [00:21<00:10, 155180.94it/s]" ] }, { @@ -2267,7 +2267,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3451339/4997817 [00:21<00:09, 157567.48it/s]" + " 68%|██████▊ | 3376404/4997817 [00:21<00:10, 155345.95it/s]" ] }, { @@ -2275,7 +2275,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3467096/4997817 [00:21<00:09, 157507.36it/s]" + " 68%|██████▊ | 3391944/4997817 [00:21<00:10, 155360.09it/s]" ] }, { @@ -2283,7 +2283,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3482982/4997817 [00:22<00:09, 157908.94it/s]" + " 68%|██████▊ | 3407558/4997817 [00:21<00:10, 155591.60it/s]" ] }, { @@ -2291,7 +2291,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3498774/4997817 [00:22<00:09, 157843.07it/s]" + " 68%|██████▊ | 3423135/4997817 [00:22<00:10, 155643.93it/s]" ] }, { @@ -2299,7 +2299,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3514597/4997817 [00:22<00:09, 157956.79it/s]" + " 69%|██████▉ | 3438700/4997817 [00:22<00:10, 155415.94it/s]" ] }, { @@ -2307,7 +2307,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3530435/4997817 [00:22<00:09, 158079.62it/s]" + " 69%|██████▉ | 3454382/4997817 [00:22<00:09, 155834.05it/s]" ] }, { @@ -2315,7 +2315,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3546453/4997817 [00:22<00:09, 158705.87it/s]" + " 69%|██████▉ | 3469966/4997817 [00:22<00:09, 155761.96it/s]" ] }, { @@ -2323,7 +2323,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3562348/4997817 [00:22<00:09, 158776.62it/s]" + " 70%|██████▉ | 3485570/4997817 [00:22<00:09, 155842.34it/s]" ] }, { @@ -2331,7 +2331,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3578283/4997817 [00:22<00:08, 158947.26it/s]" + " 70%|███████ | 3501173/4997817 [00:22<00:09, 155895.75it/s]" ] }, { @@ -2339,7 +2339,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3594254/4997817 [00:22<00:08, 159174.59it/s]" + " 70%|███████ | 3516763/4997817 [00:22<00:09, 154652.11it/s]" ] }, { @@ -2347,7 +2347,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3610172/4997817 [00:22<00:08, 159091.84it/s]" + " 71%|███████ | 3532339/4997817 [00:22<00:09, 154980.13it/s]" ] }, { @@ -2355,7 +2355,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3626082/4997817 [00:22<00:08, 159085.69it/s]" + " 71%|███████ | 3548111/4997817 [00:22<00:09, 155795.60it/s]" ] }, { @@ -2363,7 +2363,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3641994/4997817 [00:23<00:08, 159093.52it/s]" + " 71%|███████▏ | 3563847/4997817 [00:22<00:09, 156262.14it/s]" ] }, { @@ -2371,7 +2371,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3657904/4997817 [00:23<00:08, 158665.18it/s]" + " 72%|███████▏ | 3579545/4997817 [00:23<00:09, 156474.98it/s]" ] }, { @@ -2379,7 +2379,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3673771/4997817 [00:23<00:08, 158280.41it/s]" + " 72%|███████▏ | 3595198/4997817 [00:23<00:08, 156488.71it/s]" ] }, { @@ -2387,7 +2387,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3689631/4997817 [00:23<00:08, 158354.69it/s]" + " 72%|███████▏ | 3610848/4997817 [00:23<00:09, 151443.42it/s]" ] }, { @@ -2395,7 +2395,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3705492/4997817 [00:23<00:08, 158428.66it/s]" + " 73%|███████▎ | 3626500/4997817 [00:23<00:08, 152929.45it/s]" ] }, { @@ -2403,7 +2403,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3721336/4997817 [00:23<00:08, 157917.66it/s]" + " 73%|███████▎ | 3642039/4997817 [00:23<00:08, 153652.07it/s]" ] }, { @@ -2411,7 +2411,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3737299/4997817 [00:23<00:07, 158404.81it/s]" + " 73%|███████▎ | 3657709/4997817 [00:23<00:08, 154553.95it/s]" ] }, { @@ -2419,7 +2419,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3753140/4997817 [00:23<00:07, 158165.60it/s]" + " 73%|███████▎ | 3673302/4997817 [00:23<00:08, 154961.55it/s]" ] }, { @@ -2427,7 +2427,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3768985/4997817 [00:23<00:07, 158249.14it/s]" + " 74%|███████▍ | 3688944/4997817 [00:23<00:08, 155393.62it/s]" ] }, { @@ -2435,7 +2435,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3784839/4997817 [00:23<00:07, 158333.22it/s]" + " 74%|███████▍ | 3704553/4997817 [00:23<00:08, 155600.29it/s]" ] }, { @@ -2443,7 +2443,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3800712/4997817 [00:24<00:07, 158448.85it/s]" + " 74%|███████▍ | 3720119/4997817 [00:23<00:08, 155607.99it/s]" ] }, { @@ -2451,7 +2451,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3816628/4997817 [00:24<00:07, 158657.95it/s]" + " 75%|███████▍ | 3735684/4997817 [00:24<00:08, 155573.30it/s]" ] }, { @@ -2459,7 +2459,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3832566/4997817 [00:24<00:07, 158872.18it/s]" + " 75%|███████▌ | 3751245/4997817 [00:24<00:08, 155474.54it/s]" ] }, { @@ -2467,7 +2467,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3848478/4997817 [00:24<00:07, 158945.40it/s]" + " 75%|███████▌ | 3766828/4997817 [00:24<00:07, 155578.60it/s]" ] }, { @@ -2475,7 +2475,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3864464/4997817 [00:24<00:07, 159218.13it/s]" + " 76%|███████▌ | 3782415/4997817 [00:24<00:07, 155663.85it/s]" ] }, { @@ -2483,7 +2483,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3880386/4997817 [00:24<00:07, 158715.96it/s]" + " 76%|███████▌ | 3798032/4997817 [00:24<00:07, 155812.50it/s]" ] }, { @@ -2491,7 +2491,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3896258/4997817 [00:24<00:06, 158588.55it/s]" + " 76%|███████▋ | 3813654/4997817 [00:24<00:07, 155931.49it/s]" ] }, { @@ -2499,7 +2499,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3912178/4997817 [00:24<00:06, 158768.56it/s]" + " 77%|███████▋ | 3829267/4997817 [00:24<00:07, 155987.60it/s]" ] }, { @@ -2507,7 +2507,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3928056/4997817 [00:24<00:06, 158175.28it/s]" + " 77%|███████▋ | 3844880/4997817 [00:24<00:07, 156027.23it/s]" ] }, { @@ -2515,7 +2515,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3943913/4997817 [00:24<00:06, 158290.14it/s]" + " 77%|███████▋ | 3860491/4997817 [00:24<00:07, 156048.42it/s]" ] }, { @@ -2523,7 +2523,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3959782/4997817 [00:25<00:06, 158406.89it/s]" + " 78%|███████▊ | 3876097/4997817 [00:24<00:07, 155836.07it/s]" ] }, { @@ -2531,7 +2531,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3975624/4997817 [00:25<00:06, 158236.55it/s]" + " 78%|███████▊ | 3891690/4997817 [00:25<00:07, 155861.70it/s]" ] }, { @@ -2539,7 +2539,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3991448/4997817 [00:25<00:06, 158082.14it/s]" + " 78%|███████▊ | 3907277/4997817 [00:25<00:07, 155790.64it/s]" ] }, { @@ -2547,7 +2547,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4007257/4997817 [00:25<00:06, 158033.90it/s]" + " 78%|███████▊ | 3922857/4997817 [00:25<00:07, 151816.79it/s]" ] }, { @@ -2555,7 +2555,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4023185/4997817 [00:25<00:06, 158404.19it/s]" + " 79%|███████▉ | 3938612/4997817 [00:25<00:06, 153502.95it/s]" ] }, { @@ -2563,7 +2563,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4039026/4997817 [00:25<00:06, 157189.27it/s]" + " 79%|███████▉ | 3954052/4997817 [00:25<00:06, 153766.19it/s]" ] }, { @@ -2571,7 +2571,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4054748/4997817 [00:25<00:06, 153864.46it/s]" + " 79%|███████▉ | 3969617/4997817 [00:25<00:06, 154322.67it/s]" ] }, { @@ -2579,7 +2579,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4070703/4997817 [00:25<00:05, 155535.32it/s]" + " 80%|███████▉ | 3985128/4997817 [00:25<00:06, 154555.62it/s]" ] }, { @@ -2587,7 +2587,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4086501/4997817 [00:25<00:05, 156256.38it/s]" + " 80%|████████ | 4000591/4997817 [00:25<00:06, 154473.72it/s]" ] }, { @@ -2595,7 +2595,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4102334/4997817 [00:25<00:05, 156870.45it/s]" + " 80%|████████ | 4016123/4997817 [00:25<00:06, 154724.51it/s]" ] }, { @@ -2603,7 +2603,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4118134/4997817 [00:26<00:05, 157206.19it/s]" + " 81%|████████ | 4031599/4997817 [00:26<00:06, 154450.12it/s]" ] }, { @@ -2611,7 +2611,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4133861/4997817 [00:26<00:05, 156987.92it/s]" + " 81%|████████ | 4047047/4997817 [00:26<00:06, 154087.74it/s]" ] }, { @@ -2619,7 +2619,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4149600/4997817 [00:26<00:05, 157105.82it/s]" + " 81%|████████▏ | 4062458/4997817 [00:26<00:06, 154022.45it/s]" ] }, { @@ -2627,7 +2627,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4165360/4997817 [00:26<00:05, 157251.87it/s]" + " 82%|████████▏ | 4077862/4997817 [00:26<00:06, 147260.96it/s]" ] }, { @@ -2635,7 +2635,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4181117/4997817 [00:26<00:05, 157346.03it/s]" + " 82%|████████▏ | 4093304/4997817 [00:26<00:06, 149335.25it/s]" ] }, { @@ -2643,7 +2643,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4196854/4997817 [00:26<00:05, 157307.64it/s]" + " 82%|████████▏ | 4108555/4997817 [00:26<00:05, 150261.96it/s]" ] }, { @@ -2651,7 +2651,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4212616/4997817 [00:26<00:04, 157400.15it/s]" + " 83%|████████▎ | 4123944/4997817 [00:26<00:05, 151330.55it/s]" ] }, { @@ -2659,7 +2659,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4228362/4997817 [00:26<00:04, 157416.11it/s]" + " 83%|████████▎ | 4139383/4997817 [00:26<00:05, 152235.88it/s]" ] }, { @@ -2667,7 +2667,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4244212/4997817 [00:26<00:04, 157737.96it/s]" + " 83%|████████▎ | 4154671/4997817 [00:26<00:05, 152424.33it/s]" ] }, { @@ -2675,7 +2675,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4259987/4997817 [00:26<00:04, 157731.47it/s]" + " 83%|████████▎ | 4170003/4997817 [00:26<00:05, 152689.24it/s]" ] }, { @@ -2683,7 +2683,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4275954/4997817 [00:27<00:04, 158309.58it/s]" + " 84%|████████▎ | 4185376/4997817 [00:27<00:05, 152997.19it/s]" ] }, { @@ -2691,7 +2691,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4291786/4997817 [00:27<00:04, 158176.00it/s]" + " 84%|████████▍ | 4200712/4997817 [00:27<00:05, 153104.35it/s]" ] }, { @@ -2699,7 +2699,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4307613/4997817 [00:27<00:04, 158201.17it/s]" + " 84%|████████▍ | 4216098/4997817 [00:27<00:05, 153328.22it/s]" ] }, { @@ -2707,7 +2707,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4323517/4997817 [00:27<00:04, 158448.87it/s]" + " 85%|████████▍ | 4231495/4997817 [00:27<00:04, 153517.57it/s]" ] }, { @@ -2715,7 +2715,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4339362/4997817 [00:27<00:04, 158231.60it/s]" + " 85%|████████▍ | 4247243/4997817 [00:27<00:04, 154701.72it/s]" ] }, { @@ -2723,7 +2723,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4355232/4997817 [00:27<00:04, 158370.52it/s]" + " 85%|████████▌ | 4262871/4997817 [00:27<00:04, 155171.13it/s]" ] }, { @@ -2731,7 +2731,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4371139/4997817 [00:27<00:03, 158577.61it/s]" + " 86%|████████▌ | 4278523/4997817 [00:27<00:04, 155571.51it/s]" ] }, { @@ -2739,7 +2739,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4387039/4997817 [00:27<00:03, 158702.93it/s]" + " 86%|████████▌ | 4294172/4997817 [00:27<00:04, 155845.55it/s]" ] }, { @@ -2747,7 +2747,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4402910/4997817 [00:27<00:03, 158600.55it/s]" + " 86%|████████▌ | 4309805/4997817 [00:27<00:04, 155987.54it/s]" ] }, { @@ -2755,7 +2755,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4418771/4997817 [00:27<00:03, 158421.37it/s]" + " 87%|████████▋ | 4325405/4997817 [00:27<00:04, 155881.97it/s]" ] }, { @@ -2763,7 +2763,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4434614/4997817 [00:28<00:03, 158367.10it/s]" + " 87%|████████▋ | 4340994/4997817 [00:28<00:04, 155414.18it/s]" ] }, { @@ -2771,7 +2771,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4450537/4997817 [00:28<00:03, 158623.44it/s]" + " 87%|████████▋ | 4356660/4997817 [00:28<00:04, 155783.46it/s]" ] }, { @@ -2779,7 +2779,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4466498/4997817 [00:28<00:03, 158918.29it/s]" + " 87%|████████▋ | 4372239/4997817 [00:28<00:04, 155768.00it/s]" ] }, { @@ -2787,7 +2787,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4482552/4997817 [00:28<00:03, 159401.03it/s]" + " 88%|████████▊ | 4387936/4997817 [00:28<00:03, 156126.26it/s]" ] }, { @@ -2795,7 +2795,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4498549/4997817 [00:28<00:03, 159567.81it/s]" + " 88%|████████▊ | 4403549/4997817 [00:28<00:03, 156121.18it/s]" ] }, { @@ -2803,7 +2803,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4514506/4997817 [00:28<00:03, 159453.59it/s]" + " 88%|████████▊ | 4419162/4997817 [00:28<00:03, 155988.74it/s]" ] }, { @@ -2811,7 +2811,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4530452/4997817 [00:28<00:02, 158989.65it/s]" + " 89%|████████▊ | 4434857/4997817 [00:28<00:03, 156274.84it/s]" ] }, { @@ -2819,7 +2819,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4546352/4997817 [00:28<00:02, 158965.69it/s]" + " 89%|████████▉ | 4450485/4997817 [00:28<00:03, 155907.83it/s]" ] }, { @@ -2827,7 +2827,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4562249/4997817 [00:28<00:02, 158905.43it/s]" + " 89%|████████▉ | 4466107/4997817 [00:28<00:03, 155998.87it/s]" ] }, { @@ -2835,7 +2835,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4578269/4997817 [00:28<00:02, 159289.47it/s]" + " 90%|████████▉ | 4481761/4997817 [00:28<00:03, 156157.32it/s]" ] }, { @@ -2843,7 +2843,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4594290/4997817 [00:29<00:02, 159563.76it/s]" + " 90%|████████▉ | 4497377/4997817 [00:29<00:03, 155952.70it/s]" ] }, { @@ -2851,7 +2851,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4610247/4997817 [00:29<00:02, 159244.17it/s]" + " 90%|█████████ | 4512994/4997817 [00:29<00:03, 156015.15it/s]" ] }, { @@ -2859,7 +2859,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4626259/4997817 [00:29<00:02, 159504.17it/s]" + " 91%|█████████ | 4528766/4997817 [00:29<00:02, 156525.03it/s]" ] }, { @@ -2867,7 +2867,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4642224/4997817 [00:29<00:02, 159544.82it/s]" + " 91%|█████████ | 4544419/4997817 [00:29<00:02, 156444.50it/s]" ] }, { @@ -2875,7 +2875,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4658249/4997817 [00:29<00:02, 159753.25it/s]" + " 91%|█████████ | 4560064/4997817 [00:29<00:02, 149698.20it/s]" ] }, { @@ -2883,7 +2883,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4674225/4997817 [00:29<00:02, 159580.35it/s]" + " 92%|█████████▏| 4575663/4997817 [00:29<00:02, 151524.18it/s]" ] }, { @@ -2891,7 +2891,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4690184/4997817 [00:29<00:02, 152308.86it/s]" + " 92%|█████████▏| 4591244/4997817 [00:29<00:02, 152778.78it/s]" ] }, { @@ -2899,7 +2899,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4706107/4997817 [00:29<00:01, 154314.35it/s]" + " 92%|█████████▏| 4606883/4997817 [00:29<00:02, 153844.23it/s]" ] }, { @@ -2907,7 +2907,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4722163/4997817 [00:29<00:01, 156140.58it/s]" + " 92%|█████████▏| 4622390/4997817 [00:29<00:02, 154206.12it/s]" ] }, { @@ -2915,7 +2915,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4738189/4997817 [00:29<00:01, 157353.64it/s]" + " 93%|█████████▎| 4637939/4997817 [00:29<00:02, 154586.60it/s]" ] }, { @@ -2923,7 +2923,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4754098/4997817 [00:30<00:01, 157866.39it/s]" + " 93%|█████████▎| 4653434/4997817 [00:30<00:02, 154693.65it/s]" ] }, { @@ -2931,7 +2931,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4770036/4997817 [00:30<00:01, 158314.66it/s]" + " 93%|█████████▎| 4668958/4997817 [00:30<00:02, 154854.10it/s]" ] }, { @@ -2939,7 +2939,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4785885/4997817 [00:30<00:01, 158337.50it/s]" + " 94%|█████████▎| 4684546/4997817 [00:30<00:02, 155159.10it/s]" ] }, { @@ -2947,7 +2947,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4801731/4997817 [00:30<00:01, 158061.16it/s]" + " 94%|█████████▍| 4700166/4997817 [00:30<00:01, 155468.83it/s]" ] }, { @@ -2955,7 +2955,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▋| 4817546/4997817 [00:30<00:01, 158031.58it/s]" + " 94%|█████████▍| 4715717/4997817 [00:30<00:01, 155407.72it/s]" ] }, { @@ -2963,7 +2963,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4833476/4997817 [00:30<00:01, 158410.01it/s]" + " 95%|█████████▍| 4731292/4997817 [00:30<00:01, 155506.76it/s]" ] }, { @@ -2971,7 +2971,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4849322/4997817 [00:30<00:00, 158357.21it/s]" + " 95%|█████████▍| 4746845/4997817 [00:30<00:01, 155216.18it/s]" ] }, { @@ -2979,7 +2979,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4865161/4997817 [00:30<00:00, 158334.52it/s]" + " 95%|█████████▌| 4762368/4997817 [00:30<00:01, 155057.32it/s]" ] }, { @@ -2987,7 +2987,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4880997/4997817 [00:30<00:00, 158170.49it/s]" + " 96%|█████████▌| 4777875/4997817 [00:30<00:01, 155058.39it/s]" ] }, { @@ -2995,7 +2995,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4896816/4997817 [00:30<00:00, 158064.54it/s]" + " 96%|█████████▌| 4793382/4997817 [00:30<00:01, 155035.89it/s]" ] }, { @@ -3003,7 +3003,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4912737/4997817 [00:31<00:00, 158404.34it/s]" + " 96%|█████████▌| 4808887/4997817 [00:31<00:01, 154846.13it/s]" ] }, { @@ -3011,7 +3011,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4928579/4997817 [00:31<00:00, 158274.64it/s]" + " 97%|█████████▋| 4824372/4997817 [00:31<00:01, 154837.16it/s]" ] }, { @@ -3019,7 +3019,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4944464/4997817 [00:31<00:00, 158446.14it/s]" + " 97%|█████████▋| 4839995/4997817 [00:31<00:01, 155251.77it/s]" ] }, { @@ -3027,7 +3027,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4960310/4997817 [00:31<00:00, 158130.47it/s]" + " 97%|█████████▋| 4855563/4997817 [00:31<00:00, 155377.06it/s]" ] }, { @@ -3035,7 +3035,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4976212/4997817 [00:31<00:00, 158394.09it/s]" + " 97%|█████████▋| 4871109/4997817 [00:31<00:00, 155400.42it/s]" ] }, { @@ -3043,7 +3043,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4992052/4997817 [00:31<00:00, 156899.64it/s]" + " 98%|█████████▊| 4886656/4997817 [00:31<00:00, 155417.33it/s]" ] }, { @@ -3051,7 +3051,63 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:31<00:00, 158234.25it/s]" + " 98%|█████████▊| 4902254/4997817 [00:31<00:00, 155583.56it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4917813/4997817 [00:31<00:00, 155578.08it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▊| 4933371/4997817 [00:31<00:00, 155508.98it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4948922/4997817 [00:31<00:00, 155476.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4964470/4997817 [00:32<00:00, 155300.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4980009/4997817 [00:32<00:00, 155323.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4995682/4997817 [00:32<00:00, 155742.12it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 4997817/4997817 [00:32<00:00, 154929.69it/s]" ] }, { @@ -3290,10 +3346,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:12.693555Z", - "iopub.status.busy": "2024-02-13T00:42:12.693376Z", - "iopub.status.idle": "2024-02-13T00:42:27.180434Z", - "shell.execute_reply": "2024-02-13T00:42:27.179918Z" + "iopub.execute_input": "2024-02-13T01:07:58.914089Z", + "iopub.status.busy": "2024-02-13T01:07:58.913785Z", + "iopub.status.idle": "2024-02-13T01:08:13.670639Z", + "shell.execute_reply": "2024-02-13T01:08:13.670067Z" } }, "outputs": [], @@ -3307,10 +3363,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:27.182928Z", - "iopub.status.busy": "2024-02-13T00:42:27.182542Z", - "iopub.status.idle": "2024-02-13T00:42:30.893426Z", - "shell.execute_reply": "2024-02-13T00:42:30.892918Z" + "iopub.execute_input": "2024-02-13T01:08:13.673253Z", + "iopub.status.busy": "2024-02-13T01:08:13.672871Z", + "iopub.status.idle": "2024-02-13T01:08:17.493232Z", + "shell.execute_reply": "2024-02-13T01:08:17.492731Z" } }, "outputs": [ @@ -3379,17 +3435,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:30.895635Z", - "iopub.status.busy": "2024-02-13T00:42:30.895284Z", - "iopub.status.idle": "2024-02-13T00:42:32.248422Z", - "shell.execute_reply": "2024-02-13T00:42:32.247818Z" + "iopub.execute_input": "2024-02-13T01:08:17.495350Z", + "iopub.status.busy": "2024-02-13T01:08:17.495155Z", + "iopub.status.idle": "2024-02-13T01:08:18.872673Z", + "shell.execute_reply": "2024-02-13T01:08:18.872133Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b80d809a48e4215b1694d517ffd8b32", + "model_id": "d7fd7dbeb69e442ba7f07f5933cee601", "version_major": 2, "version_minor": 0 }, @@ -3419,10 +3475,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:32.251127Z", - "iopub.status.busy": "2024-02-13T00:42:32.250661Z", - "iopub.status.idle": "2024-02-13T00:42:32.809638Z", - "shell.execute_reply": "2024-02-13T00:42:32.808999Z" + "iopub.execute_input": "2024-02-13T01:08:18.874970Z", + "iopub.status.busy": "2024-02-13T01:08:18.874789Z", + "iopub.status.idle": "2024-02-13T01:08:19.433182Z", + "shell.execute_reply": "2024-02-13T01:08:19.432684Z" } }, "outputs": [], @@ -3436,10 +3492,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:32.812153Z", - "iopub.status.busy": "2024-02-13T00:42:32.811930Z", - "iopub.status.idle": "2024-02-13T00:42:38.935520Z", - "shell.execute_reply": "2024-02-13T00:42:38.934925Z" + "iopub.execute_input": "2024-02-13T01:08:19.435697Z", + "iopub.status.busy": "2024-02-13T01:08:19.435368Z", + "iopub.status.idle": "2024-02-13T01:08:25.504832Z", + "shell.execute_reply": "2024-02-13T01:08:25.504271Z" } }, "outputs": [ @@ -3512,10 +3568,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:38.937725Z", - "iopub.status.busy": "2024-02-13T00:42:38.937428Z", - "iopub.status.idle": "2024-02-13T00:42:38.993390Z", - "shell.execute_reply": "2024-02-13T00:42:38.992796Z" + "iopub.execute_input": "2024-02-13T01:08:25.507090Z", + "iopub.status.busy": "2024-02-13T01:08:25.506780Z", + "iopub.status.idle": "2024-02-13T01:08:25.563498Z", + "shell.execute_reply": "2024-02-13T01:08:25.562873Z" }, "nbsphinx": "hidden" }, @@ -3559,23 +3615,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "076a1777586d42da980b8145b5c0e08b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "191b3f8187434baba219dd533c4239a5": { + "0068535838c14b828d503f31aef6cbdd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3628,49 +3668,7 @@ "width": null } }, - "1e1fb156c98e4df5901b5d010619295b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2b80d809a48e4215b1694d517ffd8b32": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b3a8e4f7536443b5a541e48992640a0b", - "IPY_MODEL_b3098baf8cda44779e72082292496a24", - "IPY_MODEL_4f1cbf8c0ca4499da166911991dae32a" - ], - "layout": "IPY_MODEL_9c25f41c14724f27971af5370d799ff9", - "tabbable": null, - "tooltip": null - } - }, - "34ec5c26045e47109cf030d1f39c14d0": { + "0b83a87fdbd246008f9313e508cb7580": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3686,35 +3684,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_58f9628afc084415ba1251a649653118", + "layout": "IPY_MODEL_fab7354662d8417e95e99ab0292c2c3f", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_774443eeb6494388bef23db5a0b19bb2", + "style": "IPY_MODEL_fd475aa9d9574e9aae2aa8e86d5a7ba3", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "38b12e5884ca486e894c9dd4be67023b": { + "0ee93901775c4be18056d0ec093898e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "3e92d9cfd83c4448a7acd4dd76b34992": { + "12124e1de6a14cbba745965dcc680e32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3767,70 +3763,7 @@ "width": null } }, - "4879d1392a7c4f5ab0a1aa8f4efb9cf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4c4ea88a0faa4e7994b8500868517daa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8222b08d74b24290a6874951c527837f", - "IPY_MODEL_34ec5c26045e47109cf030d1f39c14d0", - "IPY_MODEL_a651683c0a084283abf9e3e3a414f194" - ], - "layout": "IPY_MODEL_3e92d9cfd83c4448a7acd4dd76b34992", - "tabbable": null, - "tooltip": null - } - }, - "4f1cbf8c0ca4499da166911991dae32a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_52c9b0821f414a7295d35cd1c39d2694", - "placeholder": "​", - "style": "IPY_MODEL_1e1fb156c98e4df5901b5d010619295b", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.95it/s]" - } - }, - "52c9b0821f414a7295d35cd1c39d2694": { + "164675dd4f8f4cbf9a623e389dea6ec9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3883,7 +3816,7 @@ "width": null } }, - "58f9628afc084415ba1251a649653118": { + "1892044b91a24dc1814d67fdfa1f44af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3936,70 +3869,7 @@ "width": null } }, - "6ea9834dc3244dd786fd5e8ff97b24a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dea3296f12ae42428ac7465bc6dbc3d6", - "IPY_MODEL_9b49b125dc7a4a869e21c8e924c6493a", - "IPY_MODEL_ae28ffa574184090b394d1be5872b863" - ], - "layout": "IPY_MODEL_191b3f8187434baba219dd533c4239a5", - "tabbable": null, - "tooltip": null - } - }, - "774443eeb6494388bef23db5a0b19bb2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8222b08d74b24290a6874951c527837f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c2b52fe4059142beaa9d21325ffc94d9", - "placeholder": "​", - "style": "IPY_MODEL_cd11163b103d4843b25b5f712d4bef09", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "8dea4dc0486b4fc388fe64ff88f2443a": { + "212585fef446459ebc7ffd64c67a3a49": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4052,7 +3922,7 @@ "width": null } }, - "96424d58f24d426fafcc906d16a19493": { + "2b22f26fbf0d4d48bbf08d2c5699e39e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4105,44 +3975,113 @@ "width": null } }, - "9b49b125dc7a4a869e21c8e924c6493a": { + "3223513373b74392bf291cff001ee706": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4f34fed5b7a5447bb12dfbe118790635": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b29ba3ed280e49379373683af600c5af", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4879d1392a7c4f5ab0a1aa8f4efb9cf5", + "layout": "IPY_MODEL_a2d4d8a4918b4dbfa1543307d349c0cb", + "placeholder": "​", + "style": "IPY_MODEL_664bf34e18f64059aebed6fe120f4c13", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "images processed using softmin: 100%" } }, - "9c25f41c14724f27971af5370d799ff9": { - "model_module": "@jupyter-widgets/base", + "5158abc568774a5c8fc6909f01cc89de": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "52695b63057145fa868503b531a7dd9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "52b44f8169b3497aaaa989c95b09886f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "59439af7eb914b98ae12e63c18c77940": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, @@ -4184,7 +4123,7 @@ "width": null } }, - "a3fcaef394c14ef080481ae7b041528e": { + "603b3a120ed54407855912b1605d3e4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4237,7 +4176,88 @@ "width": null } }, - "a651683c0a084283abf9e3e3a414f194": { + "664bf34e18f64059aebed6fe120f4c13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7707d742b6cf4103a3fd89ee2c8d1238": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "780e886400954a6295d03c905586d673": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_99bc13d8b35f43ae9901ce4b9a98355f", + "IPY_MODEL_0b83a87fdbd246008f9313e508cb7580", + "IPY_MODEL_7a13ac558a2f4b79a4aeb14d51407f77" + ], + "layout": "IPY_MODEL_2b22f26fbf0d4d48bbf08d2c5699e39e", + "tabbable": null, + "tooltip": null + } + }, + "7a13ac558a2f4b79a4aeb14d51407f77": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_12124e1de6a14cbba745965dcc680e32", + "placeholder": "​", + "style": "IPY_MODEL_52b44f8169b3497aaaa989c95b09886f", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:22<00:00,  1.34it/s]" + } + }, + "88d1cb815bfd44c5ab54795a354c77c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4252,15 +4272,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f3574e397974455789cc02a2a4ac5596", + "layout": "IPY_MODEL_e2646ab657a1459d84803f50862393a3", "placeholder": "​", - "style": "IPY_MODEL_38b12e5884ca486e894c9dd4be67023b", + "style": "IPY_MODEL_52695b63057145fa868503b531a7dd9d", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 433.20it/s]" + "value": " 30/30 [00:01<00:00, 22.33it/s]" } }, - "ae28ffa574184090b394d1be5872b863": { + "952501edbe2342999201781c8f40fd58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "99bc13d8b35f43ae9901ce4b9a98355f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4275,15 +4313,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_96424d58f24d426fafcc906d16a19493", + "layout": "IPY_MODEL_212585fef446459ebc7ffd64c67a3a49", "placeholder": "​", - "style": "IPY_MODEL_fdd5653325fc4ab5a8b567173af1df10", + "style": "IPY_MODEL_3223513373b74392bf291cff001ee706", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.35it/s]" + "value": "number of examples processed for checking labels: 100%" } }, - "b29ba3ed280e49379373683af600c5af": { + "a2d4d8a4918b4dbfa1543307d349c0cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4336,33 +4374,31 @@ "width": null } }, - "b3098baf8cda44779e72082292496a24": { + "a9b1e8dc109a4f008f633ecea989f488": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_faa337b288df409faa616d5854ec2c1d", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_076a1777586d42da980b8145b5c0e08b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3940f347c4a486dbde7fb66e9125243", + "IPY_MODEL_ff7f064d843b4b868b0a7215468a8b32", + "IPY_MODEL_ce3ff6e374464d1ea9848a66f8def783" + ], + "layout": "IPY_MODEL_1892044b91a24dc1814d67fdfa1f44af", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "b3a8e4f7536443b5a541e48992640a0b": { + "ce3ff6e374464d1ea9848a66f8def783": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4377,15 +4413,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8dea4dc0486b4fc388fe64ff88f2443a", + "layout": "IPY_MODEL_59439af7eb914b98ae12e63c18c77940", "placeholder": "​", - "style": "IPY_MODEL_c7612837a3a543d58472f1ae1a43291d", + "style": "IPY_MODEL_5158abc568774a5c8fc6909f01cc89de", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 30/30 [00:00<00:00, 440.57it/s]" + } + }, + "d7fd7dbeb69e442ba7f07f5933cee601": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4f34fed5b7a5447bb12dfbe118790635", + "IPY_MODEL_ebabc1c0f9a0495688cc38a27db910e7", + "IPY_MODEL_88d1cb815bfd44c5ab54795a354c77c9" + ], + "layout": "IPY_MODEL_603b3a120ed54407855912b1605d3e4e", + "tabbable": null, + "tooltip": null } }, - "c2b52fe4059142beaa9d21325ffc94d9": { + "e2646ab657a1459d84803f50862393a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4438,84 +4498,56 @@ "width": null } }, - "c7612837a3a543d58472f1ae1a43291d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cce2c124a4804740988d61e5c115b9f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cd11163b103d4843b25b5f712d4bef09": { + "e3940f347c4a486dbde7fb66e9125243": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0068535838c14b828d503f31aef6cbdd", + "placeholder": "​", + "style": "IPY_MODEL_952501edbe2342999201781c8f40fd58", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" } }, - "dea3296f12ae42428ac7465bc6dbc3d6": { + "ebabc1c0f9a0495688cc38a27db910e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a3fcaef394c14ef080481ae7b041528e", - "placeholder": "​", - "style": "IPY_MODEL_cce2c124a4804740988d61e5c115b9f6", + "layout": "IPY_MODEL_fde8329da0b24aff818eb65199ed223d", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0ee93901775c4be18056d0ec093898e0", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": 30.0 } }, - "f3574e397974455789cc02a2a4ac5596": { + "fab7354662d8417e95e99ab0292c2c3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4568,7 +4600,23 @@ "width": null } }, - "faa337b288df409faa616d5854ec2c1d": { + "fd475aa9d9574e9aae2aa8e86d5a7ba3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fde8329da0b24aff818eb65199ed223d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4621,22 +4669,30 @@ "width": null } }, - "fdd5653325fc4ab5a8b567173af1df10": { + "ff7f064d843b4b868b0a7215468a8b32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_164675dd4f8f4cbf9a623e389dea6ec9", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7707d742b6cf4103a3fd89ee2c8d1238", + "tabbable": null, + "tooltip": null, + "value": 30.0 } } }, diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index c4bea62fc..7dce0276c 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:42.691173Z", - "iopub.status.busy": "2024-02-13T00:42:42.690999Z", - "iopub.status.idle": "2024-02-13T00:42:43.895573Z", - "shell.execute_reply": "2024-02-13T00:42:43.895028Z" + "iopub.execute_input": "2024-02-13T01:08:29.293945Z", + "iopub.status.busy": "2024-02-13T01:08:29.293768Z", + "iopub.status.idle": "2024-02-13T01:08:30.490030Z", + "shell.execute_reply": "2024-02-13T01:08:30.489507Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:43.898334Z", - "iopub.status.busy": "2024-02-13T00:42:43.897815Z", - "iopub.status.idle": "2024-02-13T00:42:43.921287Z", - "shell.execute_reply": "2024-02-13T00:42:43.920802Z" + "iopub.execute_input": "2024-02-13T01:08:30.492829Z", + "iopub.status.busy": "2024-02-13T01:08:30.492369Z", + "iopub.status.idle": "2024-02-13T01:08:30.516248Z", + "shell.execute_reply": "2024-02-13T01:08:30.515663Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:43.923449Z", - "iopub.status.busy": "2024-02-13T00:42:43.923199Z", - "iopub.status.idle": "2024-02-13T00:42:43.970211Z", - "shell.execute_reply": "2024-02-13T00:42:43.969737Z" + "iopub.execute_input": "2024-02-13T01:08:30.518838Z", + "iopub.status.busy": "2024-02-13T01:08:30.518325Z", + "iopub.status.idle": "2024-02-13T01:08:30.650610Z", + "shell.execute_reply": "2024-02-13T01:08:30.650061Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:43.972223Z", - "iopub.status.busy": "2024-02-13T00:42:43.971895Z", - "iopub.status.idle": "2024-02-13T00:42:43.975341Z", - "shell.execute_reply": "2024-02-13T00:42:43.974896Z" + "iopub.execute_input": "2024-02-13T01:08:30.652633Z", + "iopub.status.busy": "2024-02-13T01:08:30.652455Z", + "iopub.status.idle": "2024-02-13T01:08:30.656208Z", + "shell.execute_reply": "2024-02-13T01:08:30.655751Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:43.977060Z", - "iopub.status.busy": "2024-02-13T00:42:43.976888Z", - "iopub.status.idle": "2024-02-13T00:42:43.985075Z", - "shell.execute_reply": "2024-02-13T00:42:43.984666Z" + "iopub.execute_input": "2024-02-13T01:08:30.658256Z", + "iopub.status.busy": "2024-02-13T01:08:30.657954Z", + "iopub.status.idle": "2024-02-13T01:08:30.666462Z", + "shell.execute_reply": "2024-02-13T01:08:30.666011Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:43.986964Z", - "iopub.status.busy": "2024-02-13T00:42:43.986788Z", - "iopub.status.idle": "2024-02-13T00:42:43.989432Z", - "shell.execute_reply": "2024-02-13T00:42:43.988974Z" + "iopub.execute_input": "2024-02-13T01:08:30.668421Z", + "iopub.status.busy": "2024-02-13T01:08:30.668245Z", + "iopub.status.idle": "2024-02-13T01:08:30.670962Z", + "shell.execute_reply": "2024-02-13T01:08:30.670489Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:43.991509Z", - "iopub.status.busy": "2024-02-13T00:42:43.991083Z", - "iopub.status.idle": "2024-02-13T00:42:44.509476Z", - "shell.execute_reply": "2024-02-13T00:42:44.508919Z" + "iopub.execute_input": "2024-02-13T01:08:30.672828Z", + "iopub.status.busy": "2024-02-13T01:08:30.672654Z", + "iopub.status.idle": "2024-02-13T01:08:31.202087Z", + "shell.execute_reply": "2024-02-13T01:08:31.201460Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:44.511939Z", - "iopub.status.busy": "2024-02-13T00:42:44.511577Z", - "iopub.status.idle": "2024-02-13T00:42:46.185457Z", - "shell.execute_reply": "2024-02-13T00:42:46.184814Z" + "iopub.execute_input": "2024-02-13T01:08:31.204639Z", + "iopub.status.busy": "2024-02-13T01:08:31.204441Z", + "iopub.status.idle": "2024-02-13T01:08:32.925058Z", + "shell.execute_reply": "2024-02-13T01:08:32.924362Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:46.188122Z", - "iopub.status.busy": "2024-02-13T00:42:46.187581Z", - "iopub.status.idle": "2024-02-13T00:42:46.197623Z", - "shell.execute_reply": "2024-02-13T00:42:46.197181Z" + "iopub.execute_input": "2024-02-13T01:08:32.927748Z", + "iopub.status.busy": "2024-02-13T01:08:32.927142Z", + "iopub.status.idle": "2024-02-13T01:08:32.937409Z", + "shell.execute_reply": "2024-02-13T01:08:32.936870Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:46.199706Z", - "iopub.status.busy": "2024-02-13T00:42:46.199342Z", - "iopub.status.idle": "2024-02-13T00:42:46.203389Z", - "shell.execute_reply": "2024-02-13T00:42:46.202947Z" + "iopub.execute_input": "2024-02-13T01:08:32.939547Z", + "iopub.status.busy": "2024-02-13T01:08:32.939137Z", + "iopub.status.idle": "2024-02-13T01:08:32.943243Z", + "shell.execute_reply": "2024-02-13T01:08:32.942702Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:46.205451Z", - "iopub.status.busy": "2024-02-13T00:42:46.205150Z", - "iopub.status.idle": "2024-02-13T00:42:46.212479Z", - "shell.execute_reply": "2024-02-13T00:42:46.212050Z" + "iopub.execute_input": "2024-02-13T01:08:32.945513Z", + "iopub.status.busy": "2024-02-13T01:08:32.945094Z", + "iopub.status.idle": "2024-02-13T01:08:32.952809Z", + "shell.execute_reply": "2024-02-13T01:08:32.952241Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:46.214446Z", - "iopub.status.busy": "2024-02-13T00:42:46.214127Z", - "iopub.status.idle": "2024-02-13T00:42:46.324840Z", - "shell.execute_reply": "2024-02-13T00:42:46.324327Z" + "iopub.execute_input": "2024-02-13T01:08:32.955090Z", + "iopub.status.busy": "2024-02-13T01:08:32.954692Z", + "iopub.status.idle": "2024-02-13T01:08:33.067595Z", + "shell.execute_reply": "2024-02-13T01:08:33.066976Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:46.327188Z", - "iopub.status.busy": "2024-02-13T00:42:46.326779Z", - "iopub.status.idle": "2024-02-13T00:42:46.329720Z", - "shell.execute_reply": "2024-02-13T00:42:46.329164Z" + "iopub.execute_input": "2024-02-13T01:08:33.069839Z", + "iopub.status.busy": "2024-02-13T01:08:33.069415Z", + "iopub.status.idle": "2024-02-13T01:08:33.072322Z", + "shell.execute_reply": "2024-02-13T01:08:33.071796Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:46.331798Z", - "iopub.status.busy": "2024-02-13T00:42:46.331427Z", - "iopub.status.idle": "2024-02-13T00:42:48.366698Z", - "shell.execute_reply": "2024-02-13T00:42:48.365922Z" + "iopub.execute_input": "2024-02-13T01:08:33.074205Z", + "iopub.status.busy": "2024-02-13T01:08:33.074028Z", + "iopub.status.idle": "2024-02-13T01:08:35.103168Z", + "shell.execute_reply": "2024-02-13T01:08:35.102538Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:48.369882Z", - "iopub.status.busy": "2024-02-13T00:42:48.369266Z", - "iopub.status.idle": "2024-02-13T00:42:48.381941Z", - "shell.execute_reply": "2024-02-13T00:42:48.381371Z" + "iopub.execute_input": "2024-02-13T01:08:35.106336Z", + "iopub.status.busy": "2024-02-13T01:08:35.105516Z", + "iopub.status.idle": "2024-02-13T01:08:35.117507Z", + "shell.execute_reply": "2024-02-13T01:08:35.117029Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:48.384241Z", - "iopub.status.busy": "2024-02-13T00:42:48.383892Z", - "iopub.status.idle": "2024-02-13T00:42:48.415415Z", - "shell.execute_reply": "2024-02-13T00:42:48.414914Z" + "iopub.execute_input": "2024-02-13T01:08:35.119648Z", + "iopub.status.busy": "2024-02-13T01:08:35.119330Z", + "iopub.status.idle": "2024-02-13T01:08:35.175410Z", + "shell.execute_reply": "2024-02-13T01:08:35.174796Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index a117adbd0..86cab9796 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -733,7 +733,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'supported_cards_and_currencies', 'visa_or_mastercard', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'getting_spare_card', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'card_about_to_expire'}
    +Classes: {'cancel_transfer', 'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'card_about_to_expire', 'card_payment_fee_charged'}
     

    Let’s print the first example in the train set.

    diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index 18538d7df..3eb295acf 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:51.470844Z", - "iopub.status.busy": "2024-02-13T00:42:51.470633Z", - "iopub.status.idle": "2024-02-13T00:42:54.260427Z", - "shell.execute_reply": "2024-02-13T00:42:54.259865Z" + "iopub.execute_input": "2024-02-13T01:08:38.092425Z", + "iopub.status.busy": "2024-02-13T01:08:38.092254Z", + "iopub.status.idle": "2024-02-13T01:08:40.805897Z", + "shell.execute_reply": "2024-02-13T01:08:40.805327Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.263110Z", - "iopub.status.busy": "2024-02-13T00:42:54.262566Z", - "iopub.status.idle": "2024-02-13T00:42:54.265988Z", - "shell.execute_reply": "2024-02-13T00:42:54.265540Z" + "iopub.execute_input": "2024-02-13T01:08:40.808761Z", + "iopub.status.busy": "2024-02-13T01:08:40.808186Z", + "iopub.status.idle": "2024-02-13T01:08:40.811739Z", + "shell.execute_reply": "2024-02-13T01:08:40.811146Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.268097Z", - "iopub.status.busy": "2024-02-13T00:42:54.267704Z", - "iopub.status.idle": "2024-02-13T00:42:54.270840Z", - "shell.execute_reply": "2024-02-13T00:42:54.270310Z" + "iopub.execute_input": "2024-02-13T01:08:40.813751Z", + "iopub.status.busy": "2024-02-13T01:08:40.813439Z", + "iopub.status.idle": "2024-02-13T01:08:40.816553Z", + "shell.execute_reply": "2024-02-13T01:08:40.816015Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.272804Z", - "iopub.status.busy": "2024-02-13T00:42:54.272618Z", - "iopub.status.idle": "2024-02-13T00:42:54.315492Z", - "shell.execute_reply": "2024-02-13T00:42:54.314934Z" + "iopub.execute_input": "2024-02-13T01:08:40.818605Z", + "iopub.status.busy": "2024-02-13T01:08:40.818269Z", + "iopub.status.idle": "2024-02-13T01:08:40.868772Z", + "shell.execute_reply": "2024-02-13T01:08:40.868239Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.317595Z", - "iopub.status.busy": "2024-02-13T00:42:54.317320Z", - "iopub.status.idle": "2024-02-13T00:42:54.320853Z", - "shell.execute_reply": "2024-02-13T00:42:54.320398Z" + "iopub.execute_input": "2024-02-13T01:08:40.871094Z", + "iopub.status.busy": "2024-02-13T01:08:40.870690Z", + "iopub.status.idle": "2024-02-13T01:08:40.874329Z", + "shell.execute_reply": "2024-02-13T01:08:40.873872Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.322935Z", - "iopub.status.busy": "2024-02-13T00:42:54.322504Z", - "iopub.status.idle": "2024-02-13T00:42:54.326062Z", - "shell.execute_reply": "2024-02-13T00:42:54.325517Z" + "iopub.execute_input": "2024-02-13T01:08:40.876570Z", + "iopub.status.busy": "2024-02-13T01:08:40.876206Z", + "iopub.status.idle": "2024-02-13T01:08:40.879535Z", + "shell.execute_reply": "2024-02-13T01:08:40.878985Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'supported_cards_and_currencies', 'visa_or_mastercard', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'getting_spare_card', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'card_about_to_expire'}\n" + "Classes: {'cancel_transfer', 'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'card_about_to_expire', 'card_payment_fee_charged'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.328045Z", - "iopub.status.busy": "2024-02-13T00:42:54.327855Z", - "iopub.status.idle": "2024-02-13T00:42:54.331117Z", - "shell.execute_reply": "2024-02-13T00:42:54.330553Z" + "iopub.execute_input": "2024-02-13T01:08:40.881545Z", + "iopub.status.busy": "2024-02-13T01:08:40.881247Z", + "iopub.status.idle": "2024-02-13T01:08:40.884584Z", + "shell.execute_reply": "2024-02-13T01:08:40.884114Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.333127Z", - "iopub.status.busy": "2024-02-13T00:42:54.332818Z", - "iopub.status.idle": "2024-02-13T00:42:54.336153Z", - "shell.execute_reply": "2024-02-13T00:42:54.335666Z" + "iopub.execute_input": "2024-02-13T01:08:40.886567Z", + "iopub.status.busy": "2024-02-13T01:08:40.886294Z", + "iopub.status.idle": "2024-02-13T01:08:40.889639Z", + "shell.execute_reply": "2024-02-13T01:08:40.889197Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:54.338029Z", - "iopub.status.busy": "2024-02-13T00:42:54.337850Z", - "iopub.status.idle": "2024-02-13T00:42:58.199110Z", - "shell.execute_reply": "2024-02-13T00:42:58.198544Z" + "iopub.execute_input": "2024-02-13T01:08:40.891643Z", + "iopub.status.busy": "2024-02-13T01:08:40.891290Z", + "iopub.status.idle": "2024-02-13T01:08:44.750991Z", + "shell.execute_reply": "2024-02-13T01:08:44.750358Z" } }, "outputs": [ @@ -510,10 +510,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:58.201714Z", - "iopub.status.busy": "2024-02-13T00:42:58.201490Z", - "iopub.status.idle": "2024-02-13T00:42:58.204798Z", - "shell.execute_reply": "2024-02-13T00:42:58.204395Z" + "iopub.execute_input": "2024-02-13T01:08:44.753844Z", + "iopub.status.busy": "2024-02-13T01:08:44.753504Z", + "iopub.status.idle": "2024-02-13T01:08:44.757581Z", + "shell.execute_reply": "2024-02-13T01:08:44.756535Z" } }, "outputs": [], @@ -535,10 +535,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:58.206779Z", - "iopub.status.busy": "2024-02-13T00:42:58.206469Z", - "iopub.status.idle": "2024-02-13T00:42:58.209088Z", - "shell.execute_reply": "2024-02-13T00:42:58.208664Z" + "iopub.execute_input": "2024-02-13T01:08:44.759591Z", + "iopub.status.busy": "2024-02-13T01:08:44.759291Z", + "iopub.status.idle": "2024-02-13T01:08:44.762187Z", + "shell.execute_reply": "2024-02-13T01:08:44.761741Z" } }, "outputs": [], @@ -553,10 +553,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:42:58.210925Z", - "iopub.status.busy": "2024-02-13T00:42:58.210753Z", - "iopub.status.idle": "2024-02-13T00:43:00.504649Z", - "shell.execute_reply": "2024-02-13T00:43:00.503987Z" + "iopub.execute_input": "2024-02-13T01:08:44.764186Z", + "iopub.status.busy": "2024-02-13T01:08:44.763860Z", + "iopub.status.idle": "2024-02-13T01:08:47.070931Z", + "shell.execute_reply": "2024-02-13T01:08:47.070245Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.507863Z", - "iopub.status.busy": "2024-02-13T00:43:00.507121Z", - "iopub.status.idle": "2024-02-13T00:43:00.515183Z", - "shell.execute_reply": "2024-02-13T00:43:00.514651Z" + "iopub.execute_input": "2024-02-13T01:08:47.073800Z", + "iopub.status.busy": "2024-02-13T01:08:47.073235Z", + "iopub.status.idle": "2024-02-13T01:08:47.081363Z", + "shell.execute_reply": "2024-02-13T01:08:47.080887Z" } }, "outputs": [ @@ -683,10 +683,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.517502Z", - "iopub.status.busy": "2024-02-13T00:43:00.517046Z", - "iopub.status.idle": "2024-02-13T00:43:00.521338Z", - "shell.execute_reply": "2024-02-13T00:43:00.520782Z" + "iopub.execute_input": "2024-02-13T01:08:47.083578Z", + "iopub.status.busy": "2024-02-13T01:08:47.083233Z", + "iopub.status.idle": "2024-02-13T01:08:47.087478Z", + "shell.execute_reply": "2024-02-13T01:08:47.086756Z" } }, "outputs": [], @@ -700,10 +700,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.523586Z", - "iopub.status.busy": "2024-02-13T00:43:00.523250Z", - "iopub.status.idle": "2024-02-13T00:43:00.526277Z", - "shell.execute_reply": "2024-02-13T00:43:00.525748Z" + "iopub.execute_input": "2024-02-13T01:08:47.089472Z", + "iopub.status.busy": "2024-02-13T01:08:47.089153Z", + "iopub.status.idle": "2024-02-13T01:08:47.092142Z", + "shell.execute_reply": "2024-02-13T01:08:47.091597Z" } }, "outputs": [ @@ -738,10 +738,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.528442Z", - "iopub.status.busy": "2024-02-13T00:43:00.528108Z", - "iopub.status.idle": "2024-02-13T00:43:00.531026Z", - "shell.execute_reply": "2024-02-13T00:43:00.530560Z" + "iopub.execute_input": "2024-02-13T01:08:47.094142Z", + "iopub.status.busy": "2024-02-13T01:08:47.093964Z", + "iopub.status.idle": "2024-02-13T01:08:47.096933Z", + "shell.execute_reply": "2024-02-13T01:08:47.096350Z" } }, "outputs": [], @@ -761,10 +761,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.532986Z", - "iopub.status.busy": "2024-02-13T00:43:00.532662Z", - "iopub.status.idle": "2024-02-13T00:43:00.540215Z", - "shell.execute_reply": "2024-02-13T00:43:00.539751Z" + "iopub.execute_input": "2024-02-13T01:08:47.099370Z", + "iopub.status.busy": "2024-02-13T01:08:47.098865Z", + "iopub.status.idle": "2024-02-13T01:08:47.107470Z", + "shell.execute_reply": "2024-02-13T01:08:47.106936Z" } }, "outputs": [ @@ -889,10 +889,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.542231Z", - "iopub.status.busy": "2024-02-13T00:43:00.542041Z", - "iopub.status.idle": "2024-02-13T00:43:00.801720Z", - "shell.execute_reply": "2024-02-13T00:43:00.801085Z" + "iopub.execute_input": "2024-02-13T01:08:47.109868Z", + "iopub.status.busy": "2024-02-13T01:08:47.109487Z", + "iopub.status.idle": "2024-02-13T01:08:47.340849Z", + "shell.execute_reply": "2024-02-13T01:08:47.340332Z" }, "scrolled": true }, @@ -931,10 +931,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.805178Z", - "iopub.status.busy": "2024-02-13T00:43:00.804254Z", - "iopub.status.idle": "2024-02-13T00:43:00.983042Z", - "shell.execute_reply": "2024-02-13T00:43:00.982469Z" + "iopub.execute_input": "2024-02-13T01:08:47.343564Z", + "iopub.status.busy": "2024-02-13T01:08:47.343175Z", + "iopub.status.idle": "2024-02-13T01:08:47.521216Z", + "shell.execute_reply": "2024-02-13T01:08:47.520698Z" }, "scrolled": true }, @@ -967,10 +967,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:43:00.986898Z", - "iopub.status.busy": "2024-02-13T00:43:00.985865Z", - "iopub.status.idle": "2024-02-13T00:43:00.990975Z", - "shell.execute_reply": "2024-02-13T00:43:00.990455Z" + "iopub.execute_input": "2024-02-13T01:08:47.523754Z", + "iopub.status.busy": "2024-02-13T01:08:47.523385Z", + "iopub.status.idle": "2024-02-13T01:08:47.527063Z", + "shell.execute_reply": "2024-02-13T01:08:47.526595Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 7b265c9b7..af785538b 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -626,7 +626,7 @@

    1. Install required dependencies and download data
    ---2024-02-13 00:43:04--  https://data.deepai.org/conll2003.zip
    +--2024-02-13 01:08:50--  https://data.deepai.org/conll2003.zip
     Resolving data.deepai.org (data.deepai.org)...
     
    @@ -635,17 +635,9 @@

    1. Install required dependencies and download data
    -169.150.236.97, 2400:52e0:1a00::1070:1
    -Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... connected.
    -HTTP request sent, awaiting response...
    -
    - -
    -
    -
    -
    -
    -200 OK
    +185.93.1.246, 2400:52e0:1a00::1069:1
    +Connecting to data.deepai.org (data.deepai.org)|185.93.1.246|:443... connected.
    +HTTP request sent, awaiting response... 200 OK
     Length: 982975 (960K) [application/zip]
     Saving to: ‘conll2003.zip’
    @@ -666,25 +658,25 @@

    1. Install required dependencies and download data
    -

    conll2003.zip 100%[===================&gt;] 959.94K 4.82MB/s in 0.2s

    +

    conll2003.zip 100%[===================&gt;] 959.94K –.-KB/s in 0.1s

    -

    2024-02-13 00:43:04 (4.82 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    +

    2024-02-13 01:08:51 (7.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    mkdir: cannot create directory ‘data’: File exists </pre>

    -

    conll2003.zip 100%[===================>] 959.94K 4.82MB/s in 0.2s

    +

    conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.1s

    -

    2024-02-13 00:43:04 (4.82 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    +

    2024-02-13 01:08:51 (7.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    mkdir: cannot create directory ‘data’: File exists end{sphinxVerbatim}

    -

    conll2003.zip 100%[===================>] 959.94K 4.82MB/s in 0.2s

    +

    conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.1s

    -

    2024-02-13 00:43:04 (4.82 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    +

    2024-02-13 01:08:51 (7.92 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    mkdir: cannot create directory ‘data’: File exists

    +
    +
    +
    +
    +
     HTTP request sent, awaiting response...
     
    @@ -730,29 +729,46 @@

    1. Install required dependencies and download data

    if num_classes is not None: dataset_information += f", num_classes: {num_classes}" + if not self.show_all_issues: + # Drop any items in the issue_summary that have no issues (any issue detected in data needs to have num_issues > 0) + summary = summary.query("num_issues > 0") + if self.show_summary_score: return ( "Here is a summary of the different kinds of issues found in the data:\n\n" diff --git a/master/_sources/cleanlab/datalab/guide/custom_issue_manager.rst b/master/_sources/cleanlab/datalab/guide/custom_issue_manager.rst index ae700dd40..dd7ddcc09 100644 --- a/master/_sources/cleanlab/datalab/guide/custom_issue_manager.rst +++ b/master/_sources/cleanlab/datalab/guide/custom_issue_manager.rst @@ -149,10 +149,7 @@ Optionally, you can also add a description of the type of issue this issue manag Advanced Issue Check ~~~~~~~~~~~~~~~~~~~~ -.. note:: - - WIP: This section is a work in progress. - +There could be different types of issues detected in a dataset. A local issue which affects individual data points in a dataset and can be tracked via `Datalab.issues` dataframe (to see which data points are exhibiting this type of issue). Alternatively, a global issue which affects the overall dataset but is not easily attributable to individual data points (hard to say one data point exhibits the issue but another does not). Even for global issues, we recommend trying to assign a per data point score (and boolean) if possible, see the Non-IID IssueManager as an example of this. Note that a global issue must have num_issues greater than 0 in its `issue_summary`, otherwise it won't show up in `Datalab.report()` by default. Use with Datalab diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb index b07dc0227..67597bfff 100644 --- a/master/_sources/tutorials/audio.ipynb +++ b/master/_sources/tutorials/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 20571a1ea..025c61b54 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 61a43b50e..51065f955 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index af4482d08..b66b50e79 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 02f4dec76..0a74b5a7b 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 19aff9033..3bb5c4145 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 7f9112f94..b7eb5a299 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 1f32339ad..9722072ae 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 52d80ca65..9ac24001a 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index e52b927e9..746c5edb0 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 18c042613..7eebfe712 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 2590063ad..1a897b9ff 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index ebdc488a5..2629ae48a 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index 1f4543bf9..1d11b59c5 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index 7b1e3256c..4b392c9c9 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 19a0d0196..757119d64 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/cleanlab/datalab/guide/custom_issue_manager.html b/master/cleanlab/datalab/guide/custom_issue_manager.html index bb3974dcf..8ad79ad9b 100644 --- a/master/cleanlab/datalab/guide/custom_issue_manager.html +++ b/master/cleanlab/datalab/guide/custom_issue_manager.html @@ -673,10 +673,7 @@

    Implementing IssueManagers

    Advanced Issue Check#

    -
    -

    Note

    -

    WIP: This section is a work in progress.

    -
    +

    There could be different types of issues detected in a dataset. A local issue which affects individual data points in a dataset and can be tracked via Datalab.issues dataframe (to see which data points are exhibiting this type of issue). Alternatively, a global issue which affects the overall dataset but is not easily attributable to individual data points (hard to say one data point exhibits the issue but another does not). Even for global issues, we recommend trying to assign a per data point score (and boolean) if possible, see the Non-IID IssueManager as an example of this. Note that a global issue must have num_issues greater than 0 in its issue_summary, otherwise it won’t show up in Datalab.report() by default.

    diff --git a/master/searchindex.js b/master/searchindex.js index f1e84c76c..0f0400536 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 74, 76, 77, 84, 86, 87], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 76, 77, 84, 86, 87], "generate_noise_matrix_from_trac": [0, 1, 76, 77, 84, 86, 87], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 14, 35, 39, 41, 42, 43, 44, 45, 46, 58, 81, 83, 95], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 26, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "us": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 73, 74, 76, 81, 85, 90], "benchmark": [1, 32, 73, 74, 76, 77, 84, 86, 87], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 76, 77, 81, 85, 90], "": [1, 2, 3, 8, 16, 31, 32, 36, 39, 42, 44, 46, 51, 52, 56, 58, 59, 60, 61, 63, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "core": [1, 4, 35, 37, 65, 67], "algorithm": [1, 2, 6, 8, 27, 33, 46, 51, 60, 69, 71, 73, 82, 84, 86, 95], "These": [1, 2, 3, 6, 8, 19, 32, 34, 36, 37, 38, 49, 51, 52, 55, 59, 60, 64, 68, 69, 71, 72, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "introduc": [1, 75, 82, 84], "synthet": [1, 86, 87, 92], "nois": [1, 2, 3, 31, 37, 40, 46, 52, 76, 77, 81, 86, 91], "label": [1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 14, 18, 19, 20, 25, 27, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 81, 85, 89, 90], "classif": [1, 3, 4, 5, 8, 10, 12, 14, 29, 31, 35, 37, 40, 42, 43, 46, 51, 52, 53, 54, 55, 60, 61, 69, 70, 71, 72, 73, 74, 76, 77, 85, 86, 89, 90, 91, 92], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 34, 35, 36, 37, 40, 42, 46, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 78, 79, 85, 86, 90, 93], "specif": [1, 3, 4, 7, 12, 13, 14, 23, 28, 34, 49, 53, 56, 59, 68, 72, 79, 80, 83, 84, 88, 95], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "modul": [1, 3, 11, 12, 13, 14, 19, 25, 28, 29, 31, 32, 33, 34, 35, 36, 37, 42, 44, 46, 49, 51, 56, 59, 60, 61, 73, 82, 83, 87], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 26, 29, 31, 32, 33, 35, 36, 37, 40, 46, 50, 51, 52, 53, 58, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 89, 90, 91, 92, 93, 94, 95], "gener": [1, 2, 3, 5, 8, 16, 21, 28, 31, 42, 46, 47, 60, 61, 63, 68, 75, 76, 77, 80, 81, 82, 83, 84, 86, 87, 89, 90, 92, 94, 95], "valid": [1, 2, 3, 4, 8, 10, 29, 31, 37, 38, 40, 41, 42, 44, 46, 51, 53, 56, 59, 61, 63, 64, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 87, 88, 91, 92, 93, 94, 95], "matric": [1, 3, 40, 82], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 16, 20, 22, 28, 31, 32, 36, 37, 40, 42, 45, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 26, 28, 33, 34, 35, 36, 37, 39, 41, 46, 49, 51, 53, 60, 62, 64, 67, 71, 73, 75, 76, 79, 80, 81, 83, 85, 86, 87, 91, 94], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "possibl": [1, 2, 3, 8, 31, 32, 36, 37, 39, 40, 42, 53, 54, 55, 56, 58, 59, 60, 61, 63, 69, 71, 72, 77, 82, 84, 86, 87, 88, 91, 92, 95], "noisi": [1, 2, 3, 8, 31, 33, 36, 37, 40, 46, 52, 53, 55, 61, 63, 64, 65, 67, 68, 74, 76, 77, 79, 80, 82, 85, 86], "given": [1, 2, 3, 8, 12, 26, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 45, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 64, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "matrix": [1, 2, 3, 4, 8, 14, 16, 27, 31, 37, 39, 40, 43, 46, 47, 53, 56, 58, 59, 60, 61, 79, 88, 89], "trace": [1, 76, 77, 84, 86, 87], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 22, 23, 29, 31, 32, 33, 35, 36, 37, 39, 40, 42, 44, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 72, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "more": [1, 2, 3, 4, 5, 8, 11, 12, 14, 16, 22, 31, 32, 35, 36, 39, 42, 44, 46, 51, 52, 53, 54, 55, 56, 58, 59, 61, 63, 64, 67, 68, 69, 71, 73, 75, 76, 79, 80, 81, 82, 83, 86, 87, 88, 89, 92, 95], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 22, 26, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 77, 81, 82, 84, 86, 87, 88, 92, 93, 94, 95], "noise_matrix": [1, 2, 3, 8, 40, 46, 76, 77, 84, 86, 87], "py": [1, 3, 28, 32, 33, 37, 40, 42, 75, 76, 77, 80, 82, 84, 86, 87, 94], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 37, 51, 52, 53, 58, 60, 61, 63, 65, 67, 68, 72, 76, 84, 86], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 41, 45, 46, 47, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 69, 75, 76, 77, 79, 80, 82, 83, 84, 86, 88, 89, 91, 92, 94], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72], "prior": [1, 2, 3, 31, 37, 40, 42], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 22, 29, 31, 35, 37, 40, 43, 44, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "p": [1, 2, 3, 8, 31, 37, 39, 40, 46, 51, 59, 60, 61, 65, 79, 80, 84, 86, 95], "true_label": [1, 2, 3, 31, 40, 46, 84, 86], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 22, 24, 27, 31, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 75, 76, 77, 82, 84, 86, 87, 88, 89, 92, 93, 95], "check": [1, 2, 4, 7, 8, 10, 14, 23, 29, 32, 35, 36, 41, 47, 50, 56, 59, 63, 73, 75, 76, 77, 82, 83, 84, 86, 87, 91, 93, 94], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 22, 33, 36, 40, 42, 44, 58, 63, 77, 80, 82, 84, 86, 87, 88, 89, 91, 94], "achiev": [1, 2, 32, 33, 36, 63, 82, 86, 95], "better": [1, 4, 37, 51, 53, 61, 63, 64, 73, 75, 77, 79, 80, 82, 84, 87, 88, 89, 94, 95], "than": [1, 2, 3, 5, 8, 22, 24, 27, 31, 37, 46, 50, 51, 56, 58, 60, 61, 63, 67, 71, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 95], "random": [1, 2, 3, 5, 8, 16, 27, 35, 42, 51, 61, 63, 75, 76, 77, 79, 82, 83, 84, 86, 87, 89, 93], "perform": [1, 2, 5, 8, 22, 24, 27, 32, 36, 42, 59, 63, 73, 76, 82, 84, 86, 87, 90, 91, 93, 94], "averag": [1, 3, 8, 20, 24, 31, 32, 36, 42, 44, 51, 52, 59, 60, 61, 82, 86, 89], "amount": [1, 3, 83], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 77, 80, 83, 93, 94], "np": [1, 2, 3, 4, 5, 14, 16, 27, 31, 33, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 68, 69, 71, 72, 75, 76, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "ndarrai": [1, 2, 3, 4, 14, 21, 22, 26, 27, 31, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 95], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 22, 31, 33, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 77, 80, 82, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "shape": [1, 2, 3, 4, 14, 16, 31, 33, 35, 37, 39, 40, 41, 42, 44, 45, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 81, 82, 84, 87, 88, 89, 92, 95], "condit": [1, 2, 3, 40, 45, 46, 61, 83, 84, 95], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 24, 31, 35, 36, 37, 39, 40, 42, 43, 45, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 81, 82, 84, 85, 87, 88, 89, 92, 95], "k_": [1, 2, 3, 40, 46], "k_y": [1, 2, 3, 40, 46], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 35, 36, 37, 39, 40, 45, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 67, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94], "fraction": [1, 2, 3, 8, 18, 33, 40, 46, 51, 63, 79, 82], "exampl": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 86, 87, 88, 90, 91, 92, 93, 94, 95], "everi": [1, 2, 3, 4, 14, 32, 36, 37, 40, 45, 46, 53, 61, 63, 64, 75, 76, 77, 79, 80, 82, 83, 86, 88, 90, 92, 93, 95], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95], "other": [1, 2, 3, 4, 8, 14, 20, 23, 31, 32, 34, 35, 36, 37, 40, 43, 46, 47, 49, 51, 52, 55, 59, 60, 61, 63, 68, 75, 76, 77, 79, 80, 82, 83, 84, 87, 89, 92, 95], "assum": [1, 2, 3, 10, 37, 40, 45, 46, 61, 65, 68, 82, 87, 89, 91, 92, 95], "column": [1, 2, 3, 4, 8, 10, 11, 26, 31, 35, 37, 40, 42, 43, 45, 46, 51, 52, 53, 55, 56, 59, 60, 61, 63, 68, 69, 71, 72, 75, 76, 77, 80, 81, 82, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95], "sum": [1, 2, 3, 22, 27, 31, 40, 42, 46, 52, 53, 55, 58, 63, 76, 77, 82, 83, 84, 86, 87, 92, 95], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 81, 82, 90], "each": [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 18, 20, 21, 22, 27, 28, 31, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 46, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 40, 42, 45, 46, 47, 50, 51, 52, 53, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 87, 88, 91, 92, 93, 95], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 42, 45, 46, 51, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 32, 35, 36, 37, 46, 51, 52, 53, 55, 56, 72, 75, 77, 79, 80, 81, 82, 83, 84, 91, 94, 95], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 40, 42, 43, 44, 45, 46, 51, 53, 55, 58, 59, 60, 61, 63, 64, 69, 71, 72, 73, 75, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 92, 95], "perfect": [1, 2, 31, 63, 84, 88], "exactli": [1, 3, 8, 31, 32, 36, 37, 54, 60, 76, 77, 79, 80, 83, 84], "yield": [1, 32, 36], "between": [1, 4, 8, 13, 14, 19, 20, 22, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 44, 49, 51, 52, 55, 58, 60, 61, 63, 64, 67, 71, 72, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "below": [1, 3, 4, 8, 31, 32, 35, 36, 37, 39, 42, 51, 52, 53, 58, 59, 67, 71, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "we": [1, 2, 3, 4, 5, 8, 11, 20, 32, 35, 36, 37, 42, 46, 47, 51, 58, 59, 61, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "loop": [1, 3, 40, 46, 83, 88], "implement": [1, 2, 3, 4, 7, 12, 20, 32, 33, 35, 36, 40, 46, 63, 73, 75, 76, 79, 89, 90, 93], "what": [1, 4, 7, 8, 14, 28, 31, 33, 35, 37, 51, 52, 56, 58, 75, 76, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "doe": [1, 2, 3, 8, 35, 36, 37, 42, 47, 58, 59, 63, 65, 67, 71, 75, 76, 77, 79, 80, 83, 87, 91, 92, 94], "do": [1, 2, 4, 8, 31, 35, 36, 46, 47, 60, 61, 65, 75, 76, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "fast": 1, "explain": [1, 8], "python": [1, 2, 36, 50, 63, 75, 76, 77, 80, 81, 89, 94], "pseudocod": [1, 90], "happen": [1, 8, 37, 53, 80, 86, 92], "n": [1, 2, 3, 4, 5, 31, 32, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 75, 80, 81, 82, 83, 86, 87, 88, 91, 92, 93, 94, 95], "without": [1, 2, 4, 8, 10, 12, 18, 32, 36, 55, 63, 73, 75, 80, 84, 88, 89, 94], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 35, 36, 37, 39, 41, 44, 45, 46, 50, 51, 53, 55, 56, 58, 59, 61, 63, 65, 67, 68, 73, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94], "distinct": [1, 16, 46, 95], "natur": [1, 8, 86, 89], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 92, 95], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "count_joint": 1, "len": [1, 2, 3, 5, 31, 35, 40, 45, 46, 47, 60, 61, 63, 76, 77, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "y": [1, 2, 3, 4, 6, 16, 26, 27, 36, 40, 42, 46, 47, 50, 59, 63, 64, 75, 76, 77, 79, 82, 84, 86, 87, 89, 91, 94], "round": [1, 35, 37, 46, 63, 82, 91], "astyp": [1, 86], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 35, 36, 37, 42, 43, 44, 45, 46, 47, 52, 53, 55, 59, 60, 61, 63, 65, 67, 68, 69, 72, 75, 76, 83, 88, 89], "rang": [1, 3, 4, 5, 10, 40, 42, 44, 46, 59, 63, 64, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 95], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 31, 35, 37, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95], "pragma": 1, "cover": [1, 3, 74, 81], "choic": [1, 6, 37, 44, 82, 83, 87, 89], "replac": [1, 45, 50, 61, 76, 77, 80, 81, 82, 83, 86, 89, 93, 94], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 61, 75, 76, 77], "05": [1, 8, 22, 26, 45, 59, 63, 69, 71, 79, 81, 82, 84, 88, 89, 92, 95], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 76, 77, 84, 86, 87], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 63, 65, 67, 68, 71, 72, 76, 77, 82, 83, 84, 86, 87, 92], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 22, 34, 36, 42, 63, 75, 76, 77, 79, 81, 84, 86, 87, 93], "max_it": [1, 75, 80, 89, 94], "10000": [1, 35, 81, 82], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 32, 33, 36, 37, 39, 40, 42, 45, 46, 47, 50, 51, 53, 59, 60, 61, 63, 65, 75, 76, 77, 79, 81, 82, 83, 84, 86, 87, 89, 91, 93, 94], "diagon": [1, 3, 4, 37, 40, 46], "equal": [1, 3, 8, 10, 53, 58, 68, 90], "creat": [1, 2, 7, 14, 16, 32, 35, 36, 37, 46, 63, 73, 75, 79, 80, 82, 83, 92, 94, 95], "impli": [1, 8, 31, 52, 59], "float": [1, 2, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 34, 35, 36, 37, 39, 41, 42, 44, 45, 46, 51, 52, 53, 55, 58, 59, 63, 67, 71, 75, 76, 77, 84, 86, 87], "entri": [1, 3, 4, 31, 32, 36, 37, 39, 43, 44, 46, 51, 52, 53, 56, 79, 80, 84, 87, 88, 91, 93, 94], "maximum": [1, 8, 60, 68, 72, 92], "minimum": [1, 6, 8, 18, 37, 39, 53, 58, 71], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 22, 32, 36, 37, 58, 63, 76, 82, 84, 86, 88, 89], "default": [1, 2, 3, 4, 5, 8, 12, 14, 24, 26, 28, 31, 32, 33, 35, 36, 37, 39, 40, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 76, 82, 83, 91, 92], "If": [1, 2, 3, 4, 8, 10, 11, 14, 22, 24, 29, 31, 32, 35, 36, 37, 39, 40, 42, 45, 46, 50, 51, 52, 53, 56, 58, 59, 60, 63, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "have": [1, 2, 3, 4, 8, 14, 19, 22, 25, 31, 32, 34, 35, 36, 37, 40, 42, 46, 50, 51, 52, 53, 56, 58, 59, 60, 61, 63, 64, 68, 72, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 28, 31, 32, 35, 36, 37, 40, 42, 43, 45, 46, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "necessari": [1, 2, 3, 5, 8, 10, 45, 76], "In": [1, 2, 3, 8, 31, 32, 35, 36, 51, 52, 54, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 94, 95], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 22, 23, 24, 27, 32, 36, 46, 51, 55, 59, 63, 68, 72, 73, 75, 77, 80, 82, 86, 87, 89, 91, 93, 94], "satisfi": [1, 3, 31], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 26, 30, 32, 33, 34, 35, 36, 37, 40, 46, 49, 50, 53, 60, 61, 63, 65, 73, 74, 75, 81, 82, 84, 90], "argument": [1, 2, 3, 4, 8, 14, 21, 23, 26, 27, 32, 35, 36, 37, 42, 47, 50, 51, 52, 53, 55, 58, 59, 60, 61, 63, 67, 68, 69, 71, 77, 80, 81, 82, 83, 87, 88, 91, 94, 95], "when": [1, 2, 3, 4, 8, 10, 12, 21, 22, 32, 36, 37, 40, 42, 46, 50, 53, 55, 56, 58, 60, 61, 63, 64, 76, 77, 79, 80, 83, 86, 90, 91, 92, 93, 94, 95], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 50, 51, 52, 53, 56, 58, 59, 60, 61, 63, 65, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "rate": [1, 2, 3, 8, 33, 46, 75, 95], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 35, 36, 37, 41, 42, 44, 46, 50, 51, 53, 56, 58, 59, 60, 61, 63, 65, 67, 68, 76, 77, 79, 80, 82, 86, 87, 89, 90, 91, 92, 93, 94, 95], "note": [1, 2, 3, 5, 6, 8, 10, 23, 27, 29, 32, 35, 36, 37, 42, 46, 51, 56, 58, 59, 60, 61, 63, 64, 68, 74, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "you": [1, 2, 3, 4, 5, 8, 12, 14, 31, 32, 34, 35, 36, 37, 42, 49, 50, 51, 53, 56, 58, 59, 60, 61, 63, 64, 65, 68, 69, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "high": [1, 2, 14, 35, 37, 46, 58, 61, 63, 76, 77, 81, 83, 84, 88, 91, 92, 93, 94, 95], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 25, 31, 32, 34, 35, 36, 37, 40, 42, 46, 51, 52, 56, 58, 59, 60, 61, 63, 65, 68, 72, 74, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 95], "imposs": [1, 8, 84], "also": [1, 2, 3, 4, 5, 8, 20, 29, 31, 32, 35, 36, 37, 42, 45, 50, 51, 60, 63, 68, 71, 72, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 95], "low": [1, 8, 46, 51, 73, 76, 77, 80, 84, 88, 92], "zero": [1, 3, 4, 32, 36, 39, 46, 47, 76, 83, 87, 88, 89], "forc": [1, 2, 3, 4, 36, 76, 95], "instead": [1, 2, 3, 8, 11, 14, 28, 31, 32, 35, 36, 37, 40, 46, 50, 51, 53, 55, 59, 60, 61, 63, 64, 67, 69, 71, 74, 75, 79, 80, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 95], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 22, 26, 31, 32, 35, 36, 37, 39, 40, 45, 46, 47, 50, 51, 60, 61, 63, 65, 67, 71, 72, 73, 75, 76, 77, 80, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95], "guarante": [1, 3, 4, 13, 19, 25, 32, 34, 36, 38, 40, 49, 74], "produc": [1, 2, 4, 8, 14, 42, 51, 61, 63, 65, 67, 73, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95], "higher": [1, 4, 8, 31, 37, 39, 40, 42, 44, 51, 52, 63, 77, 80, 82, 88], "opposit": [1, 95], "occur": [1, 3, 8, 31, 45, 58, 76, 77, 82, 83, 89], "small": [1, 3, 8, 31, 35, 42, 46, 52, 59, 80, 81, 83, 87, 89, 94], "numpi": [1, 3, 4, 5, 8, 10, 16, 27, 35, 36, 42, 44, 45, 47, 50, 55, 58, 63, 64, 69, 71, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "max": [1, 37, 60, 61, 77, 83, 89], "tri": [1, 32, 36, 90], "befor": [1, 2, 3, 32, 36, 44, 46, 60, 63, 68, 80, 82, 84, 86, 89, 91, 93, 94], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 22, 26, 31, 32, 35, 36, 37, 40, 42, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 75, 76, 77, 79, 82, 83, 84, 87, 91, 92, 93], "left": [1, 2, 37, 39, 44, 46, 53, 56, 59, 76, 77, 87, 88, 89, 92], "stochast": 1, "exceed": 1, "m": [1, 4, 32, 36, 41, 42, 51, 56, 58, 59, 60, 76, 77, 81, 86, 87, 88, 95], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 32, 36, 50, 82, 84, 92], "length": [1, 4, 10, 22, 23, 31, 33, 37, 46, 53, 56, 60, 61, 63, 65, 68, 72, 75, 87, 89, 92, 93, 95], "must": [1, 2, 3, 4, 14, 31, 32, 33, 34, 36, 37, 40, 42, 43, 46, 49, 50, 51, 52, 53, 60, 61, 63, 65, 67, 68, 69, 71, 72, 75, 86, 90, 92, 95], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 31, 35, 37, 43, 46, 47, 51, 53, 59, 65, 67, 68, 69, 71, 72, 75, 82, 86, 87, 88, 92, 93, 94, 95], "ball": [1, 81], "bin": [1, 3, 53, 76, 77, 89], "ensur": [1, 2, 8, 32, 36, 46, 47, 58, 61, 63, 75, 76, 77, 80, 82, 83, 84, 89, 90, 91, 93, 94], "most": [1, 3, 4, 5, 8, 14, 31, 35, 37, 42, 50, 51, 52, 53, 56, 58, 59, 60, 61, 64, 67, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 89, 91, 92, 93, 94], "least": [1, 8, 16, 27, 31, 35, 51, 52, 58, 61, 71, 77, 82, 83, 86, 89, 92], "int_arrai": [1, 46], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 28, 31, 32, 33, 34, 35, 36, 37, 41, 42, 43, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 68, 69, 72, 73, 74, 75, 76, 79, 80, 83, 87, 88, 89, 90, 91, 92, 93, 94, 95], "model": [2, 3, 4, 8, 14, 16, 26, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 45, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 76, 77, 81, 85, 90, 92, 95], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 30, 31, 32, 35, 36, 37, 40, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 69, 71, 72, 73, 75, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95], "regular": [2, 3, 35, 50], "multi": [2, 3, 8, 31, 32, 35, 36, 37, 41, 42, 43, 46, 47, 52, 53, 54, 55, 60, 61, 73, 82, 84, 85], "task": [2, 4, 5, 8, 9, 10, 12, 13, 14, 26, 28, 31, 35, 40, 42, 43, 44, 46, 51, 53, 61, 63, 73, 75, 80, 81, 82, 84, 87, 89, 91, 92, 94, 95], "cleanlearn": [2, 3, 8, 21, 26, 32, 46, 50, 62, 63, 64, 73, 74, 91, 93, 94], "wrap": [2, 32, 36, 50, 60, 63, 73, 76, 77, 79, 80, 84, 91, 93, 94], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 36, 42, 50, 59, 60, 63, 68, 75, 76, 77, 79, 80, 83, 84, 88, 93, 94], "sklearn": [2, 3, 4, 6, 8, 16, 27, 31, 36, 42, 46, 50, 60, 63, 64, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 93, 94], "classifi": [2, 3, 36, 42, 46, 51, 54, 60, 61, 73, 74, 75, 79, 80, 82, 86, 87, 89, 90, 92, 93, 94, 95], "adher": [2, 36, 63], "estim": [2, 3, 4, 7, 11, 20, 31, 35, 36, 37, 40, 46, 51, 52, 53, 58, 60, 63, 65, 67, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 95], "api": [2, 3, 12, 50, 56, 59, 60, 63, 74, 82, 91], "defin": [2, 3, 4, 5, 8, 12, 20, 31, 32, 33, 35, 36, 37, 61, 63, 65, 75, 76, 77, 79, 82, 86, 89, 95], "four": [2, 8, 81, 84, 95], "clf": [2, 3, 4, 42, 63, 73, 79, 82, 84, 87, 93], "fit": [2, 3, 4, 6, 8, 16, 34, 36, 49, 50, 60, 62, 63, 73, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 93, 94, 95], "sample_weight": [2, 36, 63, 84], "predict_proba": [2, 4, 31, 34, 36, 42, 49, 50, 75, 76, 77, 79, 80, 82, 84, 86, 87, 89, 93], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 24, 26, 29, 31, 34, 35, 36, 37, 39, 40, 42, 43, 45, 46, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 81, 82, 84, 85, 89, 91, 92, 94, 95], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 37, 39, 42, 44, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 67, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 89, 91, 93, 94], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 37, 42, 43, 46, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 68, 69, 70, 71, 72, 74, 78, 83, 85, 90, 94], "e": [2, 3, 4, 8, 10, 20, 31, 32, 35, 36, 37, 40, 42, 43, 46, 47, 51, 52, 53, 54, 56, 59, 60, 61, 63, 65, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 22, 23, 24, 26, 27, 42, 46, 60, 63, 73, 76, 77, 79, 80, 82, 84, 86, 87, 91, 93], "element": [2, 3, 4, 31, 37, 39, 46, 51, 53, 61, 68, 69, 71, 75, 80, 82, 94, 95], "first": [2, 4, 8, 15, 22, 23, 31, 35, 42, 46, 51, 52, 56, 59, 61, 63, 75, 76, 79, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "index": [2, 8, 22, 31, 37, 45, 46, 47, 52, 61, 63, 68, 71, 72, 75, 76, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "should": [2, 3, 4, 5, 8, 12, 20, 22, 27, 31, 32, 35, 36, 37, 39, 40, 42, 44, 45, 46, 50, 51, 52, 55, 56, 58, 59, 60, 61, 63, 64, 68, 69, 71, 72, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 29, 31, 32, 35, 36, 37, 39, 40, 42, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 68, 69, 71, 72, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 23, 25, 31, 32, 34, 35, 36, 37, 38, 42, 46, 47, 49, 51, 56, 58, 60, 63, 75, 76, 77, 79, 80, 83, 84, 86, 87, 89, 90, 91, 93], "sampl": [2, 3, 4, 6, 8, 14, 18, 37, 39, 42, 53, 56, 59, 61, 63, 64, 73, 74, 81, 82, 84, 85, 87, 88, 91, 92, 94, 95], "size": [2, 8, 27, 32, 35, 36, 37, 42, 53, 58, 59, 63, 65, 67, 79, 82, 83, 84, 86, 87, 88, 90, 92, 94], "here": [2, 4, 5, 8, 12, 35, 37, 40, 50, 51, 52, 53, 55, 56, 59, 60, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "re": [2, 4, 32, 36, 45, 51, 63, 73, 75, 76, 79, 80, 82, 91, 92, 93, 94, 95], "weight": [2, 8, 32, 33, 36, 42, 51, 58, 61, 63, 75, 76, 77, 80, 94], "loss": [2, 33, 50, 61, 63, 83], "while": [2, 3, 8, 32, 35, 36, 41, 42, 46, 63, 73, 82, 83, 84, 86, 87, 91], "train": [2, 3, 4, 8, 14, 16, 32, 33, 34, 36, 42, 46, 50, 51, 56, 59, 60, 63, 64, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 90, 92, 95], "support": [2, 3, 4, 10, 12, 28, 29, 35, 42, 46, 47, 60, 61, 71, 73, 74, 75, 76, 77, 82, 83], "your": [2, 3, 4, 7, 8, 14, 31, 32, 34, 35, 36, 37, 42, 46, 49, 50, 51, 52, 53, 55, 60, 61, 63, 64, 65, 67, 68, 74, 75, 79, 81, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "recommend": [2, 4, 8, 11, 14, 35, 37, 51, 76, 77, 82, 83, 90, 91], "furthermor": 2, "correctli": [2, 3, 8, 31, 32, 36, 37, 40, 47, 52, 53, 58, 59, 63, 65, 80, 82, 87, 88, 91, 92, 94], "clonabl": [2, 63], "via": [2, 4, 8, 11, 14, 16, 20, 31, 33, 35, 36, 42, 46, 51, 56, 59, 60, 61, 63, 64, 67, 71, 75, 76, 77, 79, 80, 81, 82, 83, 87, 88, 89, 90, 91, 92, 93, 94, 95], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 35, 36, 37, 40, 41, 42, 44, 45, 46, 47, 50, 51, 52, 53, 55, 58, 60, 61, 63, 64, 67, 69, 71, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 95], "clone": [2, 63, 87], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 35, 39, 40, 41, 42, 43, 44, 45, 46, 47, 55, 59, 63, 69, 74, 75, 76, 82, 84, 86, 87, 88, 89, 91, 95], "multipl": [2, 3, 4, 10, 11, 29, 31, 37, 45, 51, 52, 53, 55, 58, 59, 63, 73, 76, 77, 82, 83, 85, 87, 88, 91], "g": [2, 3, 4, 8, 10, 20, 31, 32, 36, 37, 43, 46, 53, 54, 56, 59, 60, 61, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94], "manual": [2, 63, 75, 82, 89, 90, 91, 93, 94, 95], "pytorch": [2, 32, 33, 36, 63, 73, 75, 82, 85, 87, 92], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 42, 46, 50, 60, 63, 75, 76, 77, 80, 82, 84, 87, 89, 90, 91, 92, 94, 95], "__init__": [2, 33, 63, 83], "independ": [2, 3, 8, 52, 63, 80, 90, 91, 95], "compat": [2, 32, 35, 36, 50, 63, 64, 67, 71, 73, 82, 90, 91, 93, 94], "neural": [2, 33, 50, 60, 63, 75, 82, 83, 87, 89, 91], "network": [2, 32, 33, 36, 50, 60, 63, 75, 80, 82, 83, 87, 89, 91, 94], "typic": [2, 32, 36, 60, 63, 75, 77, 79, 80, 83, 89, 90, 93, 94], "initi": [2, 3, 11, 16, 32, 36, 51, 63, 80, 82, 93], "insid": [2, 36, 63, 82, 84], "There": [2, 3, 73, 84, 86], "two": [2, 3, 8, 16, 22, 31, 32, 35, 36, 43, 46, 56, 58, 59, 74, 76, 77, 79, 80, 82, 83, 84, 87, 91, 92, 94, 95], "new": [2, 5, 12, 20, 32, 35, 36, 41, 45, 46, 51, 63, 75, 76, 80, 81, 82, 89, 90, 94, 95], "notion": 2, "confid": [2, 3, 8, 20, 31, 35, 37, 40, 42, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 67, 71, 73, 79, 80, 83, 84, 86, 87, 88, 90, 92, 93, 95], "packag": [2, 4, 5, 7, 8, 9, 13, 30, 34, 37, 38, 46, 49, 56, 59, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "prune": [2, 3, 37, 53, 63, 74, 88], "everyth": [2, 59, 84], "els": [2, 59, 76, 81, 82, 83, 86, 87, 88], "mathemat": [2, 3, 8, 40, 87], "keep": [2, 11, 12, 46, 73, 76, 81, 82, 92], "belong": [2, 3, 8, 31, 37, 39, 40, 52, 53, 54, 55, 60, 61, 65, 69, 71, 72, 77, 83, 84, 87, 89, 92, 95], "2": [2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 50, 52, 53, 55, 56, 59, 60, 61, 63, 64, 68, 69, 71, 72, 81, 82, 90], "error": [2, 3, 4, 8, 32, 36, 37, 39, 40, 46, 52, 53, 55, 56, 58, 59, 61, 63, 65, 67, 68, 71, 74, 75, 76, 77, 79, 80, 81, 85, 93], "erron": [2, 3, 31, 37, 40, 46, 52, 53, 61, 63, 64, 65, 89, 91], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 35, 42, 44, 45, 51, 55, 58, 63, 64, 69, 71, 72, 73, 79, 80, 82, 87, 88, 89, 91, 92, 93, 94, 95], "linear_model": [2, 4, 31, 46, 63, 73, 75, 76, 77, 80, 82, 84, 86, 89, 94], "logisticregress": [2, 3, 4, 31, 46, 73, 75, 76, 77, 80, 82, 84, 86, 89, 94], "logreg": 2, "cl": [2, 12, 26, 63, 73, 82, 84, 91, 93, 94], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 26, 28, 32, 35, 36, 37, 41, 42, 46, 50, 51, 53, 60, 61, 63, 69, 73, 75, 76, 77, 80, 81, 82, 84, 86, 88, 89, 91, 94], "x_train": [2, 76, 77, 84, 86, 87, 91, 93], "labels_maybe_with_error": 2, "had": [2, 3, 63, 88], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 34, 35, 36, 37, 49, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 78, 85, 86, 90, 91, 94], "pred": [2, 37, 46, 90, 91, 93, 94], "x_test": [2, 76, 77, 84, 87, 91, 93], "might": [2, 51, 63, 68, 76, 77, 82, 83, 88, 93, 94], "case": [2, 3, 11, 31, 42, 51, 63, 75, 76, 77, 79, 81, 82, 83, 84, 89, 91, 93, 94, 95], "standard": [2, 3, 4, 26, 31, 37, 50, 52, 53, 55, 61, 63, 73, 76, 77, 79, 81, 84, 88, 93], "adapt": [2, 32, 34, 46, 49, 63, 89], "skorch": [2, 63, 73, 82], "kera": [2, 49, 56, 59, 63, 73, 82, 88], "scikera": [2, 50, 63, 82], "open": [2, 35, 81, 88, 95], "doesn": [2, 63, 73], "t": [2, 3, 8, 15, 23, 32, 33, 35, 36, 37, 42, 44, 45, 55, 60, 61, 63, 69, 71, 72, 73, 76, 77, 79, 80, 81, 83, 84, 87, 88, 91, 95], "alreadi": [2, 4, 8, 14, 32, 35, 36, 40, 50, 51, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 93, 94], "exist": [2, 4, 8, 10, 16, 32, 35, 36, 45, 50, 56, 58, 60, 63, 73, 74, 76, 77, 80, 86, 94, 95], "made": [2, 4, 14, 32, 36, 63, 80, 82, 83, 86, 88, 90, 91, 93, 94], "easi": [2, 40, 63, 76, 77, 81, 82, 84, 87], "inherit": [2, 5, 33, 63], "baseestim": [2, 36, 63], "yourmodel": [2, 63], "def": [2, 5, 12, 32, 36, 50, 63, 75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 94, 95], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 27, 32, 33, 35, 36, 37, 42, 60, 61, 63, 76, 80, 81, 83, 87, 92, 93, 94, 95], "refer": [2, 8, 14, 32, 36, 52, 53, 55, 56, 58, 59, 63, 67, 68, 76, 77, 79, 80, 82, 83, 84, 87, 90, 91], "origin": [2, 4, 8, 36, 37, 45, 46, 50, 52, 53, 56, 59, 60, 63, 64, 67, 69, 71, 76, 79, 80, 82, 83, 84, 88, 89, 91, 93, 94, 95], "total": [2, 3, 31, 35, 46, 52, 72, 82, 83, 92], "state": [2, 3, 4, 32, 33, 36, 41, 63, 84, 87, 88, 95], "art": [2, 33, 84, 87], "northcutt": [2, 3, 31, 60, 61], "et": [2, 3, 31, 33, 60, 61], "al": [2, 3, 31, 33, 60, 61], "2021": [2, 3, 31, 60, 61], "weak": [2, 59], "supervis": [2, 8, 76, 77, 82, 86], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 22, 23, 24, 27, 31, 32, 34, 35, 36, 37, 41, 45, 46, 49, 56, 59, 60, 61, 63, 65, 69, 71, 74, 76, 85, 90], "uncertainti": [2, 8, 39, 60, 63, 82, 89, 91], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 23, 26, 28, 29, 32, 36, 37, 40, 42, 51, 58, 59, 63, 73, 76, 77, 80, 82, 83, 84, 87, 90, 94], "work": [2, 3, 5, 8, 10, 26, 31, 32, 35, 36, 37, 40, 45, 46, 47, 50, 51, 61, 63, 73, 74, 76, 77, 81, 89, 91, 94], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 32, 34, 35, 36, 45, 46, 49, 51, 52, 55, 56, 60, 61, 63, 67, 68, 69, 71, 73, 74, 76, 77, 79, 80, 82, 83, 84, 87, 88, 89, 95], "deep": [2, 34, 36, 49, 50, 63, 80], "see": [2, 3, 4, 11, 12, 28, 31, 32, 35, 36, 37, 42, 46, 50, 52, 53, 55, 56, 59, 60, 61, 63, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "subfield": 2, "theori": [2, 84], "machin": [2, 4, 12, 14, 28, 34, 49, 63, 76, 77, 81, 86], "across": [2, 3, 4, 5, 8, 11, 20, 31, 35, 42, 52, 59, 60, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 90, 91], "varieti": [2, 82, 93, 94], "like": [2, 3, 4, 5, 8, 12, 31, 32, 35, 36, 37, 40, 46, 50, 51, 52, 55, 56, 58, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "pu": [2, 46], "input": [2, 3, 4, 8, 14, 22, 31, 32, 35, 36, 40, 42, 45, 46, 47, 50, 59, 63, 73, 74, 75, 77, 80, 81, 82, 83, 84, 86, 87, 88, 91, 92, 94, 95], "discret": [2, 29, 37, 40, 46, 60, 61, 65, 67, 68], "vector": [2, 3, 4, 8, 14, 37, 40, 42, 43, 46, 60, 61, 73, 75, 76, 77, 79, 80, 83, 84, 87, 88, 89, 92, 94, 95], "would": [2, 3, 4, 32, 35, 36, 37, 46, 53, 63, 73, 76, 82, 83, 84, 89, 91, 94, 95], "obtain": [2, 4, 6, 8, 14, 37, 51, 53, 56, 59, 61, 64, 75, 77, 80, 82, 86, 88, 90, 92, 95], "been": [2, 31, 37, 40, 45, 46, 51, 52, 56, 58, 60, 61, 63, 75, 76, 79, 82, 84, 86, 87, 88, 89, 92, 95], "dure": [2, 8, 14, 60, 63, 75, 79, 80, 82, 84, 87, 90, 91, 93, 94, 95], "denot": [2, 3, 40, 42, 46, 53, 60, 61, 71], "tild": 2, "paper": [2, 8, 51, 60, 69, 71, 81, 84, 86, 89, 91, 95], "cv_n_fold": [2, 3, 63, 94], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 36, 37, 39, 41, 42, 46, 51, 52, 55, 56, 59, 63, 64, 71, 76, 80, 81, 82, 87, 88, 89, 90, 92, 94, 95], "converge_latent_estim": [2, 3], "pulearn": [2, 46], "find_label_issues_kwarg": [2, 8, 63, 74, 82, 84], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 53, 69, 82], "clean": [2, 58, 61, 63, 64, 73, 76, 77, 81, 91, 93, 94], "even": [2, 3, 31, 35, 39, 40, 46, 63, 75, 82, 84, 86, 87, 88], "messi": [2, 63, 84], "ridden": [2, 63], "autom": [2, 63, 73, 77, 81, 82], "robust": [2, 40, 63, 77, 82], "prone": [2, 63], "out": [2, 3, 4, 8, 14, 24, 32, 36, 37, 42, 50, 53, 54, 56, 59, 60, 61, 63, 64, 72, 73, 74, 81, 82, 84, 85, 87, 88, 89, 91, 92, 94, 95], "current": [2, 3, 5, 8, 11, 12, 20, 32, 36, 37, 42, 51, 58, 63, 76, 77, 82, 86, 88], "intend": [2, 11, 12, 13, 14, 28, 29, 38, 51, 67, 71, 75, 76, 77, 80, 84], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 36, 37, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 55, 58, 59, 60, 61, 63, 65, 67, 68, 72, 74, 75, 76, 79, 80, 81, 82, 83, 84, 86, 88, 90, 93, 94, 95], "follow": [2, 3, 8, 12, 26, 29, 31, 32, 35, 36, 42, 44, 51, 52, 56, 58, 59, 60, 63, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "experiment": [2, 32, 33, 35, 36, 53, 74, 82], "wrapper": [2, 4, 50, 75, 91, 93, 94], "around": [2, 4, 58, 76, 77, 88, 89, 95], "fasttext": [2, 49], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 35, 36, 60, 63, 79, 80, 81, 82, 92, 93, 94, 95], "along": [2, 42, 53, 71, 76, 77, 82, 83, 89], "dimens": [2, 46, 65, 68, 82, 83, 89, 92], "select": [2, 7, 8, 22, 51, 61, 82, 83, 86, 89], "split": [2, 3, 4, 8, 10, 35, 42, 45, 46, 63, 75, 76, 77, 79, 80, 81, 83, 84, 87, 90, 93, 95], "cross": [2, 3, 8, 31, 37, 40, 41, 42, 53, 56, 59, 61, 63, 64, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 87, 88, 91, 92, 93, 94, 95], "fold": [2, 3, 31, 37, 40, 63, 75, 79, 81, 82, 88, 92, 93], "By": [2, 31, 52, 53, 63, 76, 82, 92], "need": [2, 3, 8, 31, 32, 35, 36, 37, 52, 53, 55, 60, 63, 73, 75, 76, 77, 80, 82, 84, 86, 87, 88, 92, 94], "holdout": [2, 3, 63], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 22, 23, 24, 27, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 46, 51, 52, 53, 55, 58, 59, 60, 61, 63, 64, 65, 67, 73, 74, 76, 77, 81, 84, 85, 88, 89, 91, 92, 94], "them": [2, 3, 4, 5, 7, 8, 9, 10, 23, 30, 32, 34, 35, 36, 37, 49, 51, 60, 63, 74, 76, 77, 79, 80, 82, 83, 86, 87, 89, 91, 92, 93, 94, 95], "numer": [2, 3, 4, 8, 11, 20, 26, 29, 42, 58, 60, 63, 68, 73, 74, 75, 76, 77, 78, 80, 83, 84, 86, 87, 89, 91, 93, 94], "consist": [2, 3, 32, 36, 46, 51, 92, 95], "latent": [2, 3, 40], "thei": [2, 3, 4, 13, 19, 22, 25, 32, 33, 34, 36, 37, 38, 44, 46, 50, 53, 58, 61, 63, 64, 67, 71, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 89, 91, 94, 95], "relat": [2, 3, 11, 17, 18, 22, 23, 24, 27, 40, 46, 52, 63, 77, 80], "close": [2, 3, 8, 35, 40, 60, 75, 76, 77, 79, 80, 82, 83, 84, 88], "form": [2, 3, 8, 32, 33, 36, 40, 45, 46, 61, 63, 82], "equival": [2, 3, 32, 36, 40, 60, 89, 91], "iter": [2, 3, 31, 32, 36, 37, 46, 52, 53, 63, 82, 86, 92], "enforc": [2, 32, 36, 46], "perfectli": [2, 31, 52, 84], "certain": [2, 3, 4, 32, 36, 50, 59, 63, 76, 77, 81, 88, 89], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 35, 36, 37, 41, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 71, 76, 77, 82, 83, 95], "keyword": [2, 3, 4, 8, 14, 21, 23, 26, 32, 35, 36, 37, 39, 42, 45, 50, 51, 53, 60, 61, 63, 69, 71, 76], "filter": [2, 3, 8, 35, 45, 52, 54, 55, 57, 59, 66, 67, 68, 70, 71, 72, 73, 74, 75, 77, 80, 81, 82, 83, 87, 88, 91, 92, 93, 94, 95], "find_label_issu": [2, 3, 8, 26, 35, 37, 52, 53, 54, 55, 56, 57, 58, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 82, 87, 88, 91, 92, 93, 94, 95], "particularli": [2, 73, 86, 89], "filter_bi": [2, 3, 35, 37, 53, 74, 82], "frac_nois": [2, 37, 53, 69, 82], "min_examples_per_class": [2, 37, 53, 77, 82, 84], "impact": [2, 8, 76, 77, 83], "ml": [2, 4, 8, 13, 63, 73, 76, 77, 79, 80, 83, 86, 87, 91, 93, 94], "accuraci": [2, 33, 61, 75, 82, 83, 84, 86, 89, 91, 92, 93, 94], "n_job": [2, 35, 37, 53, 65, 67, 69, 82, 89, 92], "disabl": [2, 32, 36, 37, 89], "process": [2, 3, 5, 11, 14, 32, 35, 36, 37, 45, 51, 53, 59, 65, 67, 69, 75, 76, 82, 86, 90, 94], "caus": [2, 37, 42, 76, 77, 82], "rank": [2, 3, 8, 31, 35, 37, 42, 52, 53, 54, 56, 57, 59, 60, 62, 66, 68, 69, 70, 72, 73, 74, 76, 77, 81, 82, 87, 88, 89, 92, 93, 94, 95], "get_label_quality_scor": [2, 35, 37, 38, 42, 51, 53, 54, 55, 56, 57, 58, 61, 62, 64, 66, 67, 69, 70, 71, 74, 84, 87, 88, 92, 95], "adjust_pred_prob": [2, 8, 55, 60, 61, 84], "control": [2, 4, 7, 8, 14, 35, 37, 51, 59, 60, 63, 69, 71, 76, 77, 81, 82], "how": [2, 3, 4, 8, 10, 11, 12, 14, 20, 31, 32, 33, 35, 36, 40, 46, 51, 52, 55, 56, 58, 60, 61, 63, 67, 71, 73, 76, 77, 79, 80, 81, 83, 88, 89, 90, 91, 92, 93, 94], "much": [2, 8, 31, 35, 37, 63, 82, 84, 86, 89], "output": [2, 3, 4, 8, 14, 32, 33, 36, 40, 46, 50, 51, 52, 56, 58, 59, 60, 63, 67, 68, 71, 72, 73, 74, 75, 76, 80, 81, 82, 83, 88, 89, 90, 91, 94], "print": [2, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 46, 51, 52, 53, 58, 60, 61, 63, 65, 67, 68, 72, 74, 75, 77, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "suppress": [2, 35, 51, 58, 60, 61, 63, 65, 67, 68, 92, 95], "statement": [2, 35, 51, 58, 60, 61, 63, 65, 67, 68], "big": [2, 35, 53, 59, 63, 84], "limit": [2, 4, 14, 35, 53, 88, 92, 95], "memori": [2, 32, 35, 36, 53, 59, 65, 67, 76, 92], "label_issues_batch": [2, 34, 53, 82], "find_label_issues_batch": [2, 34, 35, 53, 82], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 22, 24, 27, 31, 35, 37, 39, 40, 41, 42, 43, 46, 47, 51, 52, 53, 55, 56, 59, 60, 61, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 91, 93, 94], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 24, 26, 27, 35, 58, 59, 60, 61, 67, 71, 76, 88, 89, 92, 95], "inverse_noise_matrix": [2, 3, 8, 40, 46, 74, 84], "label_issu": [2, 35, 37, 53, 56, 63, 65, 74, 75, 80, 82, 83, 84, 87, 91, 93, 94], "clf_kwarg": [2, 3, 8, 63], "clf_final_kwarg": [2, 63], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 31, 35, 37, 39, 51, 52, 53, 55, 56, 58, 59, 61, 63, 64, 67, 71, 73, 75, 79, 80, 83, 84, 86, 88, 90, 91], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 35, 36, 37, 39, 44, 46, 53, 55, 56, 59, 61, 63, 64, 65, 67, 71, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 91, 92, 93, 94, 95], "identifi": [2, 3, 4, 5, 8, 10, 14, 23, 28, 31, 35, 37, 53, 56, 59, 61, 63, 64, 65, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 87, 89, 91, 92, 93, 94, 95], "final": [2, 8, 63, 79, 88, 90, 91, 93], "remain": [2, 63, 74, 83, 87, 91, 93, 94, 95], "datasetlik": [2, 46, 63], "beyond": [2, 4, 5, 7, 9, 30, 73, 91, 92], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 41, 50, 51, 52, 63, 71, 75, 76, 77, 79, 80, 82, 84, 86, 91, 93, 94, 95], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 41, 46, 47, 50, 51, 52, 63, 68, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 91, 92, 94, 95], "scipi": [2, 4, 11, 46], "spars": [2, 4, 8, 11, 14, 16, 27, 46, 47, 79], "csr_matrix": [2, 4, 11, 14, 16, 27], "torch": [2, 32, 33, 36, 75, 80, 81, 83, 89, 94], "util": [2, 4, 8, 14, 28, 32, 33, 36, 38, 51, 56, 59, 63, 73, 74, 75, 76, 77, 82, 83, 84, 89], "tensorflow": [2, 46, 50, 73, 75, 82], "object": [2, 4, 8, 10, 11, 14, 28, 32, 33, 35, 36, 42, 46, 47, 50, 53, 56, 57, 58, 59, 60, 63, 71, 73, 75, 77, 79, 83, 84, 85, 87, 91, 94], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 35, 36, 37, 43, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 67, 68, 69, 71, 72, 74, 75, 76, 77, 81, 82, 83, 84, 87, 88, 91, 94, 95], "index_list": 2, "subset": [2, 3, 4, 14, 31, 35, 37, 46, 61, 68, 72, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 93, 94, 95], "wa": [2, 3, 10, 12, 35, 46, 51, 52, 58, 60, 72, 75, 76, 77, 79, 80, 82, 84, 87, 88, 90, 92, 93, 94, 95], "abl": [2, 3, 8, 63, 75, 82, 84, 86, 87], "format": [2, 3, 4, 8, 10, 32, 35, 36, 37, 40, 41, 42, 43, 46, 47, 50, 51, 52, 53, 56, 59, 60, 61, 63, 65, 67, 68, 71, 72, 75, 76, 77, 79, 81, 83, 86, 91, 92, 93, 95], "make": [2, 3, 4, 16, 32, 35, 36, 42, 50, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "sure": [2, 4, 35, 37, 42, 75, 76, 77, 79, 80, 81, 83, 86, 87, 88, 89, 91, 93, 94], "shuffl": [2, 8, 46, 75, 80, 83, 87, 89], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 36, 40, 42, 45, 46, 51, 56, 58, 63, 69, 71, 72, 73, 75, 76, 77, 79, 80, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "batch": [2, 35, 46, 50, 51, 65, 67, 82, 83, 89], "order": [2, 4, 8, 29, 31, 32, 36, 37, 40, 41, 42, 46, 51, 52, 53, 56, 59, 60, 61, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 91, 92, 94, 95], "destroi": [2, 46], "oper": [2, 32, 35, 36, 46, 50, 61, 73, 80, 82, 89, 93, 94], "eg": [2, 8, 46, 56, 59, 76, 77, 82], "repeat": [2, 46, 51, 86, 89], "appli": [2, 32, 34, 36, 37, 42, 43, 45, 46, 55, 60, 69, 75, 76, 77, 79, 82, 83, 86, 87, 89, 90, 91, 92, 93, 94], "array_lik": [2, 3, 31, 37, 46, 53, 60, 64], "some": [2, 3, 4, 8, 12, 20, 31, 32, 34, 36, 37, 40, 45, 46, 49, 51, 52, 53, 55, 56, 59, 60, 61, 63, 65, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 95], "seri": [2, 3, 35, 46, 47, 63, 71, 82], "row": [2, 3, 4, 8, 11, 23, 31, 35, 37, 39, 40, 46, 51, 52, 53, 55, 60, 61, 63, 68, 69, 71, 72, 75, 76, 79, 80, 81, 82, 83, 86, 87, 89, 93, 95], "rather": [2, 3, 22, 31, 46, 50, 51, 58, 67, 71, 86, 90, 91, 92, 94, 95], "leav": [2, 37], "per": [2, 3, 11, 31, 35, 37, 42, 45, 51, 52, 53, 55, 58, 59, 61, 64, 65, 67, 71, 77, 82, 88, 95], "determin": [2, 3, 8, 10, 14, 20, 22, 26, 31, 35, 37, 42, 46, 51, 53, 56, 58, 61, 67, 71, 76, 82, 86, 88, 89, 91], "cutoff": [2, 3, 89], "consid": [2, 3, 4, 8, 11, 14, 21, 22, 24, 27, 31, 32, 36, 37, 46, 51, 58, 60, 61, 64, 67, 71, 75, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 93, 94], "section": [2, 3, 5, 8, 74, 79, 83, 88], "3": [2, 3, 4, 5, 8, 29, 31, 32, 36, 37, 40, 41, 42, 43, 44, 45, 46, 50, 53, 60, 61, 63, 64, 69, 71, 81, 82, 90], "equat": [2, 3, 40], "advanc": [2, 3, 4, 7, 8, 14, 58, 60, 71, 74, 77, 78, 84], "user": [2, 3, 4, 8, 12, 14, 23, 28, 29, 32, 36, 37, 58, 60, 61, 63, 67, 71, 84], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 27, 28, 32, 35, 36, 37, 42, 45, 51, 52, 53, 56, 58, 60, 61, 63, 64, 72, 74, 75, 77, 80, 83, 86, 88, 91, 94], "automat": [2, 3, 4, 22, 31, 73, 79, 80, 81, 82, 83, 86, 87, 88, 91, 92, 93, 94, 95], "greater": [2, 3, 4, 7, 8, 24, 35, 46, 58, 77, 81, 82, 95], "count": [2, 20, 22, 31, 35, 37, 40, 46, 52, 53, 59, 74, 82, 83, 88], "observ": [2, 3, 40, 75, 76, 77, 86, 89, 91], "mislabel": [2, 8, 31, 35, 37, 40, 51, 52, 53, 56, 58, 61, 67, 69, 71, 73, 75, 79, 80, 82, 83, 84, 88, 91, 93, 94], "one": [2, 3, 4, 8, 22, 31, 32, 35, 36, 37, 42, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 83, 86, 89, 90, 91, 93, 94, 95], "get_label_issu": [2, 34, 35, 62, 63, 84, 91, 93, 94], "either": [2, 3, 5, 8, 32, 35, 36, 37, 51, 53, 58, 60, 61, 65, 67, 77, 82, 87, 88], "boolean": [2, 5, 8, 20, 35, 37, 45, 51, 53, 56, 61, 63, 65, 67, 68, 73, 75, 77, 80, 82, 83, 88, 91, 92, 94], "label_issues_mask": [2, 37, 61, 63, 74], "indic": [2, 3, 4, 5, 8, 11, 20, 31, 35, 36, 37, 39, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 67, 69, 71, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "its": [2, 4, 7, 8, 14, 32, 35, 36, 37, 44, 45, 53, 56, 59, 60, 61, 63, 65, 69, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92, 94, 95], "return_indices_ranked_bi": [2, 35, 37, 53, 69, 74, 82, 84, 93, 94], "significantli": [2, 83, 84, 86, 90], "reduc": [2, 35, 37, 46, 75, 82], "time": [2, 8, 32, 35, 36, 46, 51, 74, 76, 81, 82, 83, 84, 88, 89, 91, 92, 93, 94, 95], "take": [2, 4, 8, 31, 32, 36, 41, 42, 46, 50, 61, 79, 83, 86, 87, 88, 93, 95], "run": [2, 4, 5, 7, 9, 12, 14, 22, 23, 30, 32, 35, 36, 63, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "skip": [2, 8, 32, 36, 63, 75, 82, 87, 95], "slow": [2, 3], "step": [2, 5, 22, 42, 59, 82, 83, 84, 86, 90], "caution": [2, 4, 82], "previous": [2, 4, 11, 46, 60, 63, 74, 75, 76, 79, 80, 86, 90, 93], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 41, 42, 46, 63, 76, 79, 82, 83, 91, 92, 93, 95], "individu": [2, 8, 11, 22, 32, 36, 51, 55, 58, 61, 63, 69, 71, 74, 77, 79, 82, 86, 87, 88, 93, 95], "still": [2, 35, 36, 46, 60, 75, 82, 83, 89, 93], "extra": [2, 32, 36, 46, 50, 51, 52, 63, 80, 82, 83, 86, 89], "receiv": [2, 8, 32, 36, 52, 55, 56, 63, 65, 69, 77, 88], "overwritten": [2, 63], "callabl": [2, 3, 32, 36, 42, 45, 50, 55, 82], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 35, 36, 38, 41, 45, 46, 59, 61, 63, 68, 75, 76, 77, 82, 83, 84, 87, 95], "appropri": [2, 8, 14, 53, 61, 76, 79, 87, 88], "earli": [2, 83], "stop": [2, 83], "x_valid": 2, "y_valid": 2, "could": [2, 8, 20, 31, 46, 60, 76, 79, 83, 87, 91, 93, 95], "f": [2, 5, 75, 76, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "ignor": [2, 32, 36, 45, 50, 63, 68, 72, 75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "allow": [2, 31, 32, 35, 36, 39, 46, 51, 59, 60, 63, 65, 67, 75, 82, 83, 90, 92, 94], "access": [2, 8, 11, 32, 36, 63, 77, 80, 83, 87, 94], "hyperparamet": [2, 55, 60, 83], "purpos": [2, 76, 77, 82, 87, 91], "want": [2, 4, 8, 31, 35, 47, 51, 53, 63, 76, 80, 81, 83, 86, 88, 89, 90, 92, 94, 95], "explicitli": [2, 6, 8, 36, 63, 82], "yourself": [2, 4, 35, 77], "altern": [2, 5, 8, 42, 46, 50, 51, 61, 74, 75, 79, 80, 82, 83, 84, 86, 87, 89, 91, 94], "same": [2, 3, 4, 5, 8, 10, 12, 14, 22, 26, 32, 35, 36, 37, 46, 50, 51, 53, 60, 61, 63, 67, 68, 71, 72, 73, 76, 77, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 94], "effect": [2, 8, 23, 32, 36, 51, 60, 63, 79, 80, 82, 83, 89], "offer": [2, 4, 75, 76, 77, 80, 82, 84, 87, 94], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 46, 51, 63, 76, 80, 82, 83, 84, 86, 88, 89, 90, 91, 92, 94], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 35, 36, 42, 60, 63, 76, 93], "label_issues_df": [2, 63, 83], "similar": [2, 8, 31, 32, 36, 46, 51, 55, 56, 58, 60, 63, 67, 71, 76, 77, 79, 80, 82, 83, 84, 88, 89, 92], "document": [2, 3, 4, 8, 12, 14, 31, 32, 35, 36, 37, 42, 45, 50, 52, 53, 55, 58, 59, 60, 63, 67, 68, 69, 71, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "descript": [2, 4, 5, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 46, 56, 63, 76, 77], "were": [2, 3, 4, 31, 36, 52, 58, 71, 75, 79, 82, 84, 86, 88, 90, 92, 93], "present": [2, 3, 4, 8, 10, 11, 18, 31, 46, 60, 68, 73, 79, 82, 83, 89], "actual": [2, 3, 4, 31, 51, 52, 61, 77, 82, 84, 95], "num_class": [2, 31, 35, 46, 50, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 93, 94], "uniqu": [2, 27, 46, 68, 76, 82, 87, 89], "given_label": [2, 4, 26, 31, 40, 63, 68, 72, 75, 76, 77, 79, 80, 83, 84, 91, 92, 94, 95], "normal": [2, 3, 16, 22, 27, 37, 39, 42, 44, 45, 46, 61, 82, 84, 89], "trick": [2, 82], "distribut": [2, 3, 4, 8, 22, 24, 31, 36, 37, 41, 44, 51, 59, 60, 61, 73, 76, 77, 79, 80, 83, 88, 89], "account": [2, 31, 51, 55, 60, 61, 80, 82, 84, 86, 87, 89, 91, 94], "word": [2, 3, 45, 71, 72, 82], "remov": [2, 8, 27, 31, 32, 36, 37, 63, 73, 80, 81, 82, 83, 87, 89, 91, 93, 94], "so": [2, 3, 4, 5, 8, 12, 22, 31, 32, 35, 36, 37, 46, 51, 52, 58, 61, 63, 67, 71, 75, 76, 77, 80, 83, 84, 87, 89, 92], "proportion": [2, 8, 37], "just": [2, 3, 4, 8, 11, 31, 33, 35, 46, 50, 61, 63, 65, 73, 74, 75, 77, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 94], "procedur": 2, "get": [2, 3, 4, 6, 11, 27, 32, 33, 36, 37, 42, 45, 46, 51, 53, 55, 60, 61, 63, 64, 65, 73, 75, 80, 81, 82, 83, 84, 89, 90, 91, 93, 94], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 24, 44, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 73, 76, 78, 83, 85, 87, 91, 92, 93, 94, 95], "arg": [2, 10, 20, 23, 27, 32, 33, 36, 42, 46, 61, 63], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 35, 36, 42, 50, 63, 65, 67, 69, 82], "test": [2, 8, 22, 36, 42, 50, 63, 73, 76, 77, 79, 80, 83, 90, 91, 93, 94, 95], "expect": [2, 3, 32, 36, 37, 42, 51, 60, 61, 63, 82, 84, 86, 87, 88, 91, 93, 94, 95], "class_predict": 2, "evalu": [2, 8, 32, 33, 34, 35, 36, 59, 63, 75, 76, 77, 82, 83, 84, 86, 90, 91, 92, 93, 94], "simpli": [2, 31, 61, 76, 77, 79, 80, 82, 84, 87, 91, 92, 94, 95], "quantifi": [2, 4, 5, 8, 11, 37, 55, 60, 63, 73, 77, 79, 80, 83, 84, 88], "save_spac": [2, 8, 62, 63], "potenti": [2, 8, 31, 37, 45, 53, 56, 59, 61, 63, 65, 67, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 92, 93, 95], "cach": [2, 80, 94], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 46, 47, 50, 51, 52, 74, 75, 76, 77, 79, 80, 81, 82, 84, 86, 91, 92, 93, 94], "unlik": [2, 8, 37, 39, 42, 50, 52, 53, 55, 71, 76, 86, 87, 89, 91], "both": [2, 4, 8, 14, 22, 31, 32, 36, 37, 46, 51, 53, 61, 65, 67, 72, 73, 76, 82, 83, 84, 86, 95], "mask": [2, 35, 37, 45, 46, 53, 56, 61, 63, 65, 67, 68, 73, 81, 82, 86, 88, 92, 95], "prefer": [2, 61, 69, 87], "plan": 2, "subsequ": [2, 3, 32, 36, 80, 82, 84, 88, 94], "invok": [2, 32, 36, 84, 90], "scratch": [2, 63], "To": [2, 4, 5, 7, 8, 9, 11, 14, 22, 30, 32, 35, 36, 37, 50, 51, 53, 55, 59, 60, 61, 63, 64, 65, 67, 73, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "share": [2, 61, 63], "mostli": [2, 46, 58, 63, 87, 91], "longer": [2, 29, 41, 42, 45, 63, 74, 80, 82, 88, 94], "info": [2, 4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 52, 63, 71, 76, 77, 81, 82, 95], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 35, 39, 51, 52, 55, 59, 63, 68, 71, 75, 76, 79, 80, 81, 82, 83, 84, 86, 89], "docstr": [2, 31, 32, 36, 46, 63, 81, 84], "unless": [2, 32, 36, 63, 82], "our": [2, 3, 8, 50, 51, 61, 63, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "is_label_issu": [2, 26, 63, 75, 76, 77, 79, 80, 83, 84, 87, 91, 94], "entir": [2, 8, 22, 35, 37, 40, 52, 53, 58, 61, 63, 65, 67, 68, 73, 76, 77, 82, 88, 89, 90, 92, 95], "accur": [2, 3, 4, 8, 14, 31, 35, 37, 51, 52, 53, 56, 59, 61, 63, 64, 65, 67, 68, 74, 77, 79, 80, 82, 83, 86, 91], "label_qu": [2, 51, 63, 84, 86, 91, 94], "measur": [2, 31, 51, 52, 63, 73, 81, 82, 84, 86, 87, 91, 92, 93, 95], "qualiti": [2, 3, 4, 5, 8, 11, 26, 27, 31, 35, 37, 39, 42, 51, 52, 53, 55, 56, 58, 61, 63, 64, 67, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 91, 93, 94], "lower": [2, 4, 5, 8, 11, 24, 35, 42, 44, 51, 52, 55, 58, 59, 61, 63, 64, 67, 71, 75, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 94, 95], "eas": 2, "comparison": [2, 32, 36, 59, 84, 86], "against": [2, 32, 36, 76, 79, 82, 86, 87], "predicted_label": [2, 4, 26, 63, 68, 72, 75, 76, 77, 79, 80, 83, 84, 91, 92, 94], "ad": [2, 32, 36, 77, 86, 91], "precis": [2, 53, 56, 59, 82, 84, 92, 95], "definit": [2, 5, 29, 42, 63, 79, 93], "accessor": [2, 63], "describ": [2, 8, 16, 51, 60, 61, 63, 69, 71, 84, 86, 87, 88, 90, 95], "precomput": [2, 4, 40, 63, 81], "clear": [2, 32, 36, 63, 80, 91, 94], "save": [2, 4, 14, 32, 35, 36, 59, 63, 82, 88, 92, 95], "space": [2, 8, 60, 63, 79, 81, 83], "place": [2, 32, 36, 46, 63, 86, 93], "larg": [2, 35, 63, 79, 80, 82, 83, 88, 89, 92, 95], "deploi": [2, 63, 79, 80, 82, 83], "care": [2, 8, 32, 36, 63, 80, 82, 84], "avail": [2, 4, 5, 10, 12, 28, 36, 63, 82, 84, 86, 88, 91], "cannot": [2, 4, 10, 12, 46, 90, 95], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 29, 36, 42, 63], "__init_subclass__": [2, 34, 36, 62, 63], "set_": [2, 36, 63], "_request": [2, 36, 63], "pep": [2, 36, 63], "487": [2, 36, 63], "look": [2, 4, 5, 14, 32, 36, 46, 63, 68, 76, 77, 79, 80, 82, 84, 86, 87, 88, 89, 92, 93, 95], "inform": [2, 4, 5, 8, 11, 14, 28, 32, 36, 46, 51, 52, 56, 59, 63, 68, 71, 72, 73, 75, 76, 79, 80, 84, 86, 89, 92, 95], "__metadata_request__": [2, 36, 63], "infer": [2, 36, 46, 63, 68, 72, 83, 86, 87, 93, 94], "signatur": [2, 32, 36, 63], "accept": [2, 32, 36, 61, 63, 76, 77], "metadata": [2, 36, 63, 79, 80, 83, 95], "through": [2, 4, 5, 36, 63, 75, 77, 80, 81, 82, 86, 88, 89, 94], "develop": [2, 7, 36, 63, 82, 84, 95], "request": [2, 36, 63, 77, 80, 81, 87, 93, 94, 95], "those": [2, 3, 8, 35, 36, 37, 50, 51, 53, 59, 63, 67, 71, 72, 73, 75, 82, 83, 88, 92], "http": [2, 4, 5, 7, 8, 9, 16, 30, 32, 33, 35, 36, 39, 46, 56, 59, 60, 63, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "www": [2, 36, 63, 89], "org": [2, 16, 32, 33, 36, 46, 60, 63, 82, 84, 95], "dev": [2, 36, 63], "0487": [2, 36, 63], "get_metadata_rout": [2, 34, 36, 62, 63], "rout": [2, 36, 63], "pleas": [2, 32, 36, 50, 63, 73, 75, 76, 77, 80, 81, 82, 83, 84, 86, 87, 89, 91, 94, 95], "guid": [2, 5, 36, 63, 74, 83], "mechan": [2, 32, 36, 63], "metadatarequest": [2, 36, 63], "encapsul": [2, 14, 36, 58, 63], "get_param": [2, 34, 36, 49, 50, 62, 63], "subobject": [2, 36, 63], "param": [2, 8, 32, 36, 50, 60, 63, 82], "name": [2, 4, 5, 8, 10, 11, 29, 31, 32, 36, 41, 42, 46, 50, 51, 52, 59, 63, 68, 72, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 91, 92, 94, 95], "set_fit_request": [2, 34, 36, 62, 63], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 40, 42, 45, 46, 50, 51, 52, 56, 58, 59, 61, 63, 68, 72, 75, 76, 82, 86, 87, 88, 95], "unchang": [2, 32, 36, 63, 95], "relev": [2, 14, 22, 36, 63, 83], "enable_metadata_rout": [2, 36, 63], "set_config": [2, 36, 63], "meta": [2, 36, 63], "rais": [2, 4, 10, 11, 29, 32, 36, 39, 42, 63, 75, 82], "alia": [2, 32, 36, 63], "metadata_rout": [2, 36, 63], "retain": [2, 36, 46, 63], "chang": [2, 32, 35, 36, 39, 63, 71, 75, 76, 80, 82, 88, 89, 94, 95], "version": [2, 4, 5, 7, 8, 9, 13, 19, 25, 30, 32, 34, 36, 38, 39, 46, 49, 50, 61, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "sub": [2, 36, 58, 63], "pipelin": [2, 36, 63, 91], "otherwis": [2, 8, 29, 31, 32, 35, 36, 37, 43, 45, 46, 53, 60, 63, 65, 67, 68, 72, 80, 82, 94], "updat": [2, 11, 32, 35, 36, 63, 74, 76, 83], "set_param": [2, 34, 36, 49, 50, 62, 63], "simpl": [2, 32, 36, 37, 51, 61, 63, 76, 77, 79, 80, 83, 86, 89, 91, 93, 94], "well": [2, 3, 8, 32, 36, 39, 40, 51, 53, 59, 61, 63, 68, 71, 72, 74, 76, 77, 79, 80, 82, 83, 84, 86, 88, 89], "nest": [2, 32, 36, 47, 63, 69, 71, 72, 95], "latter": [2, 32, 36, 63, 89], "compon": [2, 36, 63], "__": [2, 36, 63], "set_score_request": [2, 62, 63], "structur": [3, 60, 79, 93], "unobserv": 3, "less": [3, 4, 8, 27, 35, 42, 51, 60, 61, 65, 67, 71, 77, 79, 81, 82, 83, 84, 88, 95], "channel": [3, 75, 84], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 31, 40, 46, 52, 77, 81, 94], "inv": 3, "confident_joint": [3, 20, 31, 37, 46, 52, 53, 74, 82, 84], "un": 3, "under": [3, 8, 32, 36, 52, 59, 60, 77, 89], "joint": [3, 31, 37, 40, 46, 52, 53, 81], "num_label_issu": [3, 35, 37, 53, 68, 72, 74], "estimation_method": [3, 35], "off_diagon": 3, "multi_label": [3, 31, 37, 46, 47, 53, 87], "don": [3, 73, 77, 79, 80, 83, 84, 88, 91], "statis": 3, "compute_confident_joint": [3, 31, 37, 46, 53, 84], "off": [3, 37, 46, 58, 83, 84, 88, 89], "j": [3, 4, 31, 32, 36, 37, 53, 56, 59, 60, 69, 71, 72, 76, 77, 84, 92, 95], "confident_learn": [3, 37, 53, 84], "off_diagonal_calibr": 3, "calibr": [3, 37, 46, 51, 86], "cj": [3, 40, 46], "axi": [3, 27, 40, 42, 44, 65, 68, 75, 76, 77, 82, 83, 84, 86, 87, 89, 91, 92], "bincount": [3, 76, 77, 84, 86, 87], "alwai": [3, 8, 32, 36, 46, 75, 84, 91, 93, 94], "estimate_issu": 3, "over": [3, 8, 32, 35, 36, 58, 59, 65, 67, 77, 79, 81, 82, 83, 84, 89, 91, 93], "As": [3, 5, 73, 76, 77, 80, 84, 91, 95], "add": [3, 4, 5, 10, 11, 32, 36, 50, 59, 75, 76, 77, 80, 82, 83, 84, 87, 94], "approach": [3, 31, 35, 37, 79, 84, 87, 89, 91, 93], "custom": [3, 5, 8, 9, 26, 32, 35, 36, 42, 45, 61, 77, 80, 84, 91, 94], "know": [3, 76, 77, 79, 80, 82, 83, 84, 86, 91], "cut": [3, 58, 73, 84], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 88, 89, 95], "underestim": 3, "few": [3, 59, 73, 77, 82, 86, 87, 88, 89, 95], "4": [3, 4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 41, 42, 45, 55, 56, 58, 59, 61, 64, 71, 81, 82, 87, 92, 95], "detail": [3, 4, 8, 12, 14, 28, 31, 32, 36, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 67, 68, 69, 73, 74, 75, 87, 89, 95], "num_issu": [3, 5, 35, 75, 76, 77, 79, 80, 83, 84], "calibrate_confident_joint": 3, "up": [3, 8, 15, 22, 23, 26, 37, 42, 51, 81, 82, 88, 91, 94, 95], "p_": [3, 31, 37], "pair": [3, 4, 8, 31, 37, 84], "v": [3, 8, 35, 52, 53, 55, 61, 76, 77, 87, 88, 89, 90], "rest": [3, 4, 5, 7, 8, 9, 30, 52, 53, 55, 63, 76, 77, 79, 80, 82, 83, 84, 86, 91, 93, 94], "fashion": [3, 4, 65, 93], "2x2": 3, "incorrectli": [3, 31, 52, 53, 56, 79, 95], "calibrated_cj": 3, "c": [3, 8, 45, 53, 61, 73, 75, 76, 77, 79, 80, 82, 84, 87, 88, 89, 90, 91, 93], "whose": [3, 4, 8, 24, 32, 36, 40, 45, 51, 55, 58, 64, 67, 71, 72, 75, 76, 77, 79, 80, 82, 83, 84, 87, 88, 89, 92, 95], "truli": [3, 89, 92], "estimate_joint": [3, 31, 84], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 53, 59, 84, 88, 90, 92, 95], "return_indices_of_off_diagon": 3, "frequenc": [3, 22, 51, 52, 59, 68, 88, 89], "done": [3, 8, 63, 76, 82, 84, 87, 89, 90], "overfit": [3, 8, 56, 59, 75, 76, 77, 79, 80, 83, 90, 93], "classifict": 3, "singl": [3, 4, 10, 22, 31, 32, 36, 42, 43, 46, 51, 52, 58, 59, 60, 61, 71, 75, 76, 82, 84, 87, 88, 93], "baselin": [3, 32, 37, 89, 91, 94], "proxi": 3, "union": [3, 4, 10, 42, 46, 47, 53, 59, 63, 67, 71, 82], "tupl": [3, 27, 32, 36, 40, 41, 43, 45, 46, 51, 53, 59, 67, 69, 71, 72, 75, 95], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 35, 40, 51, 65, 67, 73, 82, 83, 92, 94], "practic": [3, 77, 83, 84, 89, 91, 93, 94], "complet": [3, 75, 76, 77, 79, 80, 82, 83, 84, 87, 88, 91], "gist": 3, "cj_ish": 3, "guess": [3, 40, 84, 86], "8": [3, 4, 5, 6, 41, 42, 43, 45, 55, 69, 71, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "parallel": [3, 37, 59, 69, 81], "again": [3, 50, 82, 89, 93], "simplifi": [3, 12], "understand": [3, 7, 31, 52, 59, 77, 84, 91, 92, 95], "100": [3, 32, 36, 61, 76, 77, 79, 81, 82, 83, 84, 87, 88, 89, 92, 93, 94, 95], "optim": [3, 32, 33, 36, 50, 83, 86], "speed": [3, 37, 81, 82, 91, 94], "dtype": [3, 21, 22, 27, 32, 36, 45, 46, 55, 71, 75, 88], "enumer": [3, 32, 36, 75, 76, 77, 83, 95], "s_label": 3, "confident_bin": 3, "6": [3, 4, 36, 42, 46, 71, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "num_confident_bin": 3, "argmax": [3, 37, 61, 65, 68, 75, 82, 84, 88, 89, 92], "elif": 3, "estimate_lat": 3, "py_method": [3, 40], "cnt": [3, 40], "1d": [3, 4, 10, 14, 35, 37, 42, 43, 46, 47, 55, 64, 75, 93], "eqn": [3, 40], "margin": [3, 37, 40, 42, 61], "marginal_p": [3, 40], "shorthand": [3, 11], "proport": [3, 8, 31, 52, 84, 90], "poorli": [3, 40, 93], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 84], "variabl": [3, 5, 12, 23, 46, 63, 64, 75, 76, 79, 84, 87, 91], "exact": [3, 40, 76, 77, 79, 83, 93], "within": [3, 4, 8, 13, 32, 33, 36, 38, 53, 58, 67, 69, 71, 76, 77, 82, 83, 88, 92], "percent": 3, "often": [3, 31, 40, 52, 82, 84, 90, 92], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 46, 47, 59, 75, 76, 79, 80, 82, 83, 87, 88, 89, 91, 94], "wai": [3, 4, 50, 73, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 90, 93, 94], "pro": 3, "con": 3, "pred_proba": [3, 90], "combin": [3, 31, 76, 81, 82, 83, 84, 90, 91], "becaus": [3, 40, 46, 58, 80, 82, 84, 86, 88], "littl": [3, 35, 81, 88, 95], "uniform": [3, 61, 81, 82, 84], "20": [3, 5, 72, 75, 80, 81, 82, 83, 84, 88, 89, 91, 92, 95], "Such": [3, 83, 89], "bound": [3, 21, 32, 36, 45, 55, 56, 58, 59, 88], "reason": [3, 20, 32, 36], "comment": [3, 45, 95], "end": [3, 4, 32, 36, 59, 83, 89, 92, 95], "file": [3, 4, 10, 34, 35, 49, 59, 75, 76, 79, 80, 81, 82, 88, 89, 92, 93, 95], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 84], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 35, 36, 74, 76, 77, 79, 80, 83, 84, 92, 93, 95], "five": [3, 56, 59, 84, 88], "estimate_cv_predicted_prob": [3, 84], "estimate_noise_matric": 3, "get_confident_threshold": [3, 34, 35], "amongst": [3, 8, 88], "confident_threshold": [3, 8, 20, 35, 60], "unifi": 4, "audit": [4, 7, 10, 11, 14, 75, 78, 79, 80, 82, 83, 84, 87, 88, 91], "kind": [4, 5, 75, 76, 79, 80, 81, 83, 84], "addit": [4, 5, 7, 8, 9, 11, 28, 30, 32, 36, 42, 47, 51, 59, 69, 75, 76, 79, 80, 84, 86, 89, 90, 93, 94], "depend": [4, 5, 7, 8, 9, 10, 11, 30, 34, 37, 39, 46, 49, 53, 60, 63, 64, 73], "instal": [4, 5, 7, 8, 9, 30, 32, 34, 35, 36, 37, 49, 50, 65, 67], "pip": [4, 5, 7, 9, 30, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "development": [4, 5, 7, 9, 30], "git": [4, 5, 7, 9, 30, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94], "github": [4, 5, 7, 9, 30, 32, 33, 46, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "com": [4, 5, 7, 9, 30, 32, 33, 35, 39, 46, 60, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "egg": [4, 5, 7, 9, 30, 73, 81], "label_nam": [4, 5, 6, 8, 10, 16, 27, 73, 75, 76, 77, 79, 80, 82, 83, 84, 87, 88, 91], "image_kei": [4, 83], "interfac": [4, 73, 82, 84], "librari": [4, 8, 36, 56, 59, 60, 73, 76, 80, 81, 82, 94], "goal": [4, 91], "track": [4, 11, 12, 73, 76, 81, 82, 84], "intermedi": [4, 7, 77], "statist": [4, 8, 11, 20, 22, 31, 51, 52, 59, 77, 79, 80, 84], "convert": [4, 10, 29, 32, 36, 43, 44, 47, 51, 58, 67, 71, 74, 75, 80, 81, 82, 83, 86, 87, 88, 94], "hug": [4, 10, 83], "face": [4, 10, 14, 81, 83, 87], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 36, 42, 51, 52, 58, 60, 76, 77, 80, 82, 83, 84, 86, 88], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 36, 46, 51, 52, 64, 68, 71, 72, 79, 80, 82, 86, 87, 94, 95], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 36, 41, 46, 51, 52, 55, 56, 58, 59, 76, 77, 79, 80, 84, 86, 87, 88], "path": [4, 10, 32, 35, 36, 59, 75, 76, 82, 88], "local": [4, 10, 32, 33, 36, 75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 95], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 42, 60, 69, 71, 72, 73, 76, 77, 78, 81, 82, 84, 85, 86, 89], "txt": [4, 10, 95], "csv": [4, 10, 79, 80, 91, 93, 94], "json": [4, 10], "hub": [4, 10], "multiclass": [4, 10, 13, 42, 46, 51, 87], "regress": [4, 5, 10, 12, 14, 19, 26, 29, 76, 77, 80, 85, 86, 89, 94], "multilabel": [4, 10, 12, 13, 29, 43, 87], "imag": [4, 7, 31, 36, 56, 58, 59, 60, 65, 67, 68, 73, 76, 77, 81, 82, 85, 86, 87, 88, 90, 92], "point": [4, 5, 8, 16, 22, 32, 36, 76, 77, 79, 80, 82, 83, 84, 86], "field": [4, 8, 32, 36], "themselv": [4, 91, 93, 94], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 45, 69, 71, 77, 83, 85, 87, 92], "load_dataset": [4, 10, 83], "glue": 4, "sst2": 4, "properti": [4, 10, 11, 29, 32, 36], "has_label": [4, 10], "class_nam": [4, 10, 18, 31, 52, 59, 68, 72, 73, 81, 84, 88, 92, 95], "empti": [4, 10, 40, 51, 77, 82, 87], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 73, 75, 76, 77, 79, 80, 82, 83, 84, 87, 91], "knn_graph": [4, 8, 14, 16, 17, 22, 24, 27, 79], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 75, 76, 77, 79, 80, 82, 83, 84, 87, 91], "sort": [4, 14, 35, 37, 42, 51, 53, 56, 58, 59, 61, 67, 69, 71, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95], "common": [4, 11, 14, 77, 78, 81, 82, 84, 87, 88, 92], "real": [4, 14, 73, 76, 77, 82, 84, 86, 91, 92], "world": [4, 14, 73, 76, 77, 82, 84, 86, 91, 92], "interact": [4, 14, 80, 82], "embed": [4, 8, 14, 60, 73, 75, 76, 77, 79, 80, 84, 87, 91, 94], "thereof": [4, 14], "insight": [4, 14, 59, 86], "act": [4, 8, 58, 76], "issuefind": [4, 13, 14, 28], "logic": [4, 12, 35, 37, 65, 67], "best": [4, 14, 41, 51, 61, 76, 77, 79, 80, 82, 83, 86, 87, 89, 91, 93, 94, 95], "2d": [4, 14, 35, 42, 43, 45, 46, 51, 75, 87, 93], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 52, 75, 76, 77, 79, 80, 83, 84], "properli": [4, 8, 35, 41, 46, 47, 65, 75, 76, 77, 79, 80, 82, 83, 84, 87, 89, 91, 92], "respect": [4, 32, 36, 56, 59, 75, 76, 77, 79, 80, 83, 84, 87, 88], "lexicograph": [4, 41, 46, 75, 76, 77, 79, 80, 83, 84, 87], "represent": [4, 8, 14, 29, 32, 36, 43, 53, 73, 75, 76, 77, 80, 82, 83, 84, 89, 94], "num_featur": [4, 14, 32, 36, 50], "distanc": [4, 8, 14, 16, 22, 24, 27, 44, 58, 60, 79, 89], "nearest": [4, 8, 14, 21, 22, 24, 44, 60, 77, 80, 89], "neighbor": [4, 8, 14, 16, 21, 22, 24, 44, 60, 76, 77, 79, 80, 82, 83, 89], "graph": [4, 8, 11, 14, 16, 22, 27], "squar": [4, 46, 63, 81, 91], "csr": 4, "evenli": 4, "omit": [4, 58, 59, 83, 88], "itself": [4, 32, 36, 88], "three": [4, 8, 31, 51, 52, 63, 68, 75, 76, 77, 79, 81, 84, 86, 90, 91, 92, 93, 95], "indptr": 4, "wise": 4, "start": [4, 5, 8, 29, 32, 33, 36, 42, 73, 79, 87, 95], "th": [4, 41, 45, 46, 51, 53, 56, 58, 59, 60, 69, 71, 72, 80, 87, 88, 95], "ascend": [4, 31, 52, 83, 84], "segment": [4, 65, 67, 68, 85], "reflect": [4, 79, 80, 86, 88, 89, 91, 93, 94], "maintain": 4, "posit": [4, 32, 36, 44, 46, 59, 81, 89], "nearestneighbor": [4, 8, 16, 60, 79, 89], "kneighbors_graph": [4, 16, 79], "illustr": 4, "todens": 4, "second": [4, 42, 46, 59, 61, 76, 82, 84, 95], "duplic": [4, 7, 19, 20, 32, 36, 73, 76, 84, 91], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 36, 42, 50], "neither": [4, 8, 12, 88], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 51, 82, 86, 95], "unspecifi": [4, 14, 37, 53], "interest": [4, 14, 20, 68, 72, 80, 84, 91, 92, 93, 94, 95], "constructor": [4, 8, 14, 21, 26], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "respons": [4, 14, 20, 63, 64, 81, 91, 95], "random_st": [4, 75, 76, 77, 83, 84, 87, 89, 93], "lab": [4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 35, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 91], "comprehens": [4, 73, 83, 87, 91], "nbr": 4, "n_neighbor": [4, 8, 16, 60], "metric": [4, 8, 17, 22, 27, 46, 50, 59, 60, 75, 79, 80, 83, 84, 91, 93, 94], "euclidean": [4, 8, 58, 60, 79], "mode": [4, 16, 32, 35, 36, 89], "4x4": 4, "float64": [4, 22, 32, 36, 71], "compress": [4, 8, 46, 65, 67], "toarrai": 4, "NOT": [4, 35, 80], "23606798": 4, "41421356": 4, "configur": [4, 14, 42, 77], "suppos": [4, 8, 56, 89, 91, 93, 94], "who": [4, 58, 79, 84, 93, 95], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 76], "clean_learning_kwarg": [4, 8, 21, 26, 91], "labelissuemanag": [4, 8, 12, 19, 21], "prune_method": [4, 74], "prune_by_noise_r": [4, 37, 53, 84], "report": [4, 5, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 52, 72, 73, 75, 76, 77, 79, 80, 84, 87, 91, 95], "include_descript": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "show_summary_scor": [4, 28], "show_all_issu": [4, 28], "summari": [4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 49, 50, 52, 57, 66, 67, 69, 70, 71, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 91, 92, 95], "show": [4, 22, 32, 36, 41, 46, 59, 68, 72, 77, 79, 80, 81, 82, 83, 84, 86, 89, 91, 92, 93, 95], "top": [4, 8, 31, 35, 37, 46, 53, 56, 59, 61, 68, 72, 73, 75, 76, 77, 79, 80, 81, 82, 84, 88, 89, 91, 94, 95], "suffer": [4, 8, 11, 20, 53, 61, 72, 95], "onc": [4, 20, 31, 32, 36, 76, 82, 84, 87, 88, 93], "familiar": 4, "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 42, 51, 52, 55, 58, 59, 63, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 88, 95], "sever": [4, 5, 8, 10, 11, 20, 32, 35, 36, 37, 55, 58, 60, 61, 67, 71, 73, 75, 76, 77, 79, 80, 81, 82, 84, 88, 89, 93, 94, 95], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 46, 73, 75, 76, 77, 79, 80, 82, 83, 87, 89, 91, 93, 94, 95], "With": [4, 35, 80, 84, 86, 91, 92, 94, 95], "usag": [4, 35, 50], "issue_summari": [4, 8, 11, 76], "dataissu": [4, 11, 13, 14, 28], "outlier": [4, 7, 12, 19, 20, 27, 38, 61, 73, 76, 77, 84, 85, 91], "someth": [4, 5, 32, 36, 61, 88], "123": [4, 76, 77], "456": [4, 75, 93, 94], "nearest_neighbor": 4, "7": [4, 42, 43, 50, 69, 71, 75, 76, 77, 79, 80, 81, 82, 86, 87, 88, 89, 91, 92, 93, 94, 95], "9": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 42, 43, 55, 69, 71, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "distance_to_nearest_neighbor": [4, 76, 77, 79, 80, 83, 84], "789": 4, "get_issu": [4, 8, 11, 75, 77, 79, 80, 82, 83, 87, 91], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 76, 77], "focu": [4, 11, 80, 92, 95], "full": [4, 8, 11, 35, 59, 83, 95], "summar": [4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 52, 68, 72, 73, 92], "valueerror": [4, 10, 11, 29, 39, 42, 82], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 68, 77, 79, 80, 83, 84, 88], "lie": [4, 8, 60, 61, 75, 76, 77, 79, 80, 83, 84, 94], "directli": [4, 12, 14, 28, 29, 35, 50, 51, 77, 80, 87, 88, 91, 94], "compar": [4, 51, 60, 71, 76, 77, 79, 84, 88], "get_issue_summari": [4, 11, 77], "get_info": [4, 11, 77, 80], "yet": [4, 15, 19, 23, 81, 86], "list_possible_issue_typ": [4, 12, 13], "regist": [4, 5, 12, 13, 15, 23, 32, 36, 76], "rtype": [4, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36], "registri": [4, 12, 13], "list_default_issue_typ": [4, 12, 13], "folder": [4, 75, 76, 83], "load": [4, 10, 35, 59, 81, 82, 83, 84, 88, 89, 92, 95], "futur": [4, 8, 20, 32, 36, 51, 73, 75, 76, 80, 82, 94], "overwrit": [4, 76], "separ": [4, 31, 42, 55, 76, 77, 82, 83, 88, 90], "static": 4, "rememb": [4, 80, 82, 84], "part": [4, 8, 32, 36, 37, 56, 58, 59, 75, 76, 81, 92, 95], "ident": [4, 8, 20, 46, 80], "walk": 5, "alongsid": [5, 32, 36, 76, 82], "pre": [5, 6, 8, 32, 36, 76, 77, 83, 91, 92, 95], "runtim": [5, 32, 35, 36, 63, 65, 67, 75, 82, 83], "issue_manager_factori": [5, 12, 76], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 42, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "thing": [5, 36, 84, 91, 94], "next": [5, 51, 73, 75, 79, 80, 82, 86, 88, 91, 93, 94, 95], "dummi": 5, "randint": [5, 27, 42, 76, 77, 82], "mark": [5, 8, 74, 88, 89, 91], "regard": [5, 77, 84], "rand": [5, 42, 76, 77], "is_": [5, 8, 76], "_issu": [5, 8, 76], "issue_score_kei": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 76], "whole": [5, 22, 32, 36, 77], "make_summari": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 76], "popul": [5, 77, 80], "verbosity_level": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "std": [5, 88], "raw_scor": 5, "bit": 5, "involv": [5, 35, 68, 72, 82, 87], "intermediate_arg": 5, "min": [5, 42, 58, 71, 76, 82, 89], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 22, 23, 24, 26, 27, 76], "instanti": [5, 14, 35, 50, 60, 75, 77, 79, 94], "477762": 5, "286455": 5, "term": [5, 8, 40, 46, 59, 75, 76, 77, 79, 80, 83, 84], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 24, 75, 76, 77, 79, 80, 81, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "003042": 5, "058117": 5, "11": [5, 50, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "121908": 5, "15": [5, 44, 63, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "169312": 5, "17": [5, 75, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 94, 95], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 76, 77, 81, 84], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 27], "group": [6, 7, 22, 27, 81, 88, 95], "dbscan": [6, 8, 27, 82], "hdbscan": [6, 82], "etc": [6, 8, 20, 32, 36, 40, 50, 51, 69, 73, 76, 77, 79, 80, 82, 84, 87, 91], "sensit": [6, 8, 44], "ep": [6, 27, 59], "radiu": 6, "min_sampl": [6, 27], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 73, 75, 82, 83, 86, 91, 93, 94], "kmean": [6, 82], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 27, 82], "cluster_id": [6, 8, 27, 82], "labels_": 6, "underperforming_group": [6, 8, 12, 19, 77, 79, 80, 82, 83, 84], "search": [7, 8, 18, 22, 23, 45, 63, 82, 90], "nondefault": 7, "Near": [7, 82], "iid": [7, 22, 79, 84], "imbal": [7, 19, 55, 60, 61, 77], "null": [7, 12, 19, 77, 80, 83, 84], "valuat": [7, 16], "togeth": [7, 8, 40, 76, 77, 79, 80, 83, 84, 91, 94, 95], "built": [7, 42], "own": [7, 32, 34, 36, 49, 55, 56, 59, 65, 69, 75, 77, 79, 80, 82, 83, 86, 87, 91, 92, 93, 94, 95], "prerequisit": 7, "basic": [7, 36, 50, 79, 80, 89], "page": [8, 77, 82, 84], "variou": [8, 11, 26, 34, 47, 49, 73, 76, 77, 79, 80, 81, 84, 86, 88, 93], "sai": [8, 32, 36, 87, 92], "why": [8, 80], "matter": [8, 31, 52, 80, 94], "_score": 8, "flag": [8, 20, 22, 37, 42, 52, 53, 56, 63, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 91, 92, 94], "badli": [8, 58, 95], "code": [8, 32, 36, 40, 46, 50, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "issue_scor": 8, "outlier_scor": [8, 24, 76, 77, 79, 80, 83, 84, 89], "atyp": [8, 60, 76, 77, 79, 80, 83, 84, 89], "datapoint": [8, 27, 37, 42, 46, 61, 64, 73, 75, 76, 77, 79, 80, 82, 90, 91, 93, 94], "is_issu": [8, 20], "is_outlier_issu": [8, 76, 77, 79, 80, 83, 84], "annot": [8, 31, 41, 51, 52, 53, 55, 56, 58, 59, 68, 71, 72, 73, 75, 76, 77, 79, 80, 82, 83, 84, 85, 88, 92], "transform": [8, 42, 44, 46, 60, 61, 77, 80, 83, 89, 93, 94, 95], "dissimilar": [8, 79, 80], "preced": 8, "cosin": [8, 60, 89], "incorrect": [8, 58, 61, 64, 75, 76, 77, 79, 80, 83, 84, 88, 91, 93], "due": [8, 35, 37, 61, 65, 67, 75, 76, 77, 79, 80, 83, 84, 91], "appear": [8, 31, 41, 52, 53, 56, 64, 77, 79, 80, 83, 91, 92], "likelihood": [8, 35, 37, 53, 58, 60, 61, 65, 69], "now": [8, 35, 74, 75, 77, 86, 88, 89, 91, 93, 94, 95], "u": [8, 75, 76, 79, 82, 83, 84, 86, 87, 90, 91, 92, 93, 94, 95], "token": [8, 45, 67, 68, 69, 70, 71, 72, 82, 84, 85], "calcul": [8, 16, 22, 35, 42, 51, 55, 56, 58, 59, 60, 63, 67, 81, 83], "hamper": [8, 81, 83], "analyt": [8, 73, 82, 86], "lead": [8, 58, 61, 83, 88], "draw": [8, 76, 77], "conclus": [8, 80], "try": [8, 35, 37, 50, 51, 65, 67, 73, 77, 79, 80, 82, 83, 84, 92], "veri": [8, 31, 52, 56, 58, 76, 77, 79, 80, 82, 83, 84, 86, 89, 91, 94], "rare": [8, 37, 59, 76, 77, 79, 80, 82, 83, 84], "anomal": [8, 61, 76, 77, 79, 80, 83, 84], "articl": [8, 35, 82], "ai": [8, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95], "blog": 8, "unexpect": [8, 32, 36, 80], "consequ": 8, "inspect": [8, 75, 77, 83, 84, 88, 91, 94], "neg": [8, 58, 59, 76, 77, 81], "affect": [8, 32, 36, 65, 71, 80, 82], "extrem": [8, 76, 77, 79, 80, 82, 83, 84], "rel": [8, 31, 51, 52, 60, 76, 77, 79, 80, 83, 84, 89], "record": [8, 32, 36, 75, 79, 91], "abbrevi": 8, "misspel": 8, "typo": [8, 72], "resolut": 8, "video": [8, 81], "audio": [8, 76, 77, 82, 85], "minor": [8, 45], "variat": 8, "translat": 8, "d": [8, 44, 79, 80, 84, 87, 91, 93, 95], "constant": [8, 27, 63], "median": [8, 26, 44], "question": [8, 20, 73, 84], "nearli": [8, 20, 77, 79, 80, 83], "awar": [8, 74, 84], "presenc": [8, 84], "signific": [8, 79, 80, 84], "violat": [8, 79, 80, 84], "assumpt": [8, 79, 80, 84], "changepoint": [8, 79, 80, 84], "shift": [8, 79, 80, 84], "drift": [8, 77, 79, 84], "autocorrel": [8, 79, 80, 84], "almost": [8, 79, 80, 84], "adjac": [8, 79, 80, 84], "tend": [8, 31, 40, 79, 80, 84, 92, 95], "sequenti": [8, 32, 36, 50, 83], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 45, 46, 71, 79, 80, 81, 84, 90, 93, 95], "x1": [8, 56, 59, 88], "x2": [8, 56, 59, 88], "10th": 8, "100th": 8, "90": [8, 71, 79, 84, 90, 91, 92, 93], "similarli": [8, 32, 36, 76, 79, 82, 83, 88], "math": [8, 83], "behind": [8, 60, 84], "fundament": 8, "proper": [8, 46, 51, 56, 59, 80, 83, 86, 88, 93], "closer": [8, 58, 88], "scenario": [8, 61, 76, 77], "underli": [8, 60, 69, 71, 95], "stem": [8, 60, 89], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 87, 89], "partit": [8, 90], "ahead": 8, "good": [8, 32, 36, 44, 50, 52, 58, 61, 65, 67, 68, 73, 79, 80, 83], "fix": [8, 51, 80, 84, 91, 94], "problem": [8, 35, 42, 68, 73, 76, 77, 80, 82, 83], "deploy": [8, 84, 91, 93, 94], "overlook": [8, 58, 88], "fact": 8, "thu": [8, 31, 36, 52, 75, 79, 80, 84, 90, 93, 95], "diagnos": [8, 77, 82], "rarest": [8, 77], "q": [8, 88], "fall": [8, 58, 67, 71, 84, 89], "subpar": 8, "special": [8, 45], "techniqu": [8, 88], "smote": 8, "asymmetr": [8, 31], "too": [8, 37, 42, 60, 77, 82, 83, 88], "dark": [8, 92], "bright": [8, 95], "blurri": [8, 83], "abnorm": [8, 59, 83, 88], "cluster": [8, 16, 27], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 51, 59, 77, 82, 83, 86, 87, 88, 92], "get_self_confidence_for_each_label": [8, 42, 61], "power": [8, 79, 80, 81, 83, 84, 95], "r": [8, 35, 63, 76, 77, 91, 92], "tabular": [8, 73, 76, 77, 78, 82, 85, 86], "categor": [8, 60, 76, 77, 78, 82, 91, 93], "encod": [8, 43, 59, 65, 68, 79, 80, 82, 91, 92, 93, 94], "miss": [8, 23, 32, 36, 46, 56, 58, 79, 82, 88, 91], "pattern": 8, "contribut": [8, 16, 88], "isn": [8, 15, 23], "approxim": [8, 16, 35, 60, 86], "shaplei": [8, 16], "knn": [8, 11, 16, 22, 27, 60, 79, 89], "scalabl": 8, "sacrific": 8, "One": [8, 46, 60, 82], "quantif": 8, "exert": [8, 77], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 76, 77, 79, 80, 82, 83, 84], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 22, 77, 79, 80, 83, 84], "non_iid_kwarg": 8, "class_imbal": [8, 12, 18, 77, 79, 80, 83, 84], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 19, 21, 26], "health_summari": [8, 21, 31, 73, 81], "health_summary_kwarg": 8, "tandem": [8, 81], "view": [8, 32, 36, 37, 67, 69, 71, 73, 75, 76, 77, 79, 80, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "ood_kwarg": 8, "outofdistribut": [8, 24, 60, 89], "outsid": [8, 87], "outlierissuemanag": [8, 12, 19, 24, 76], "nearduplicateissuemanag": [8, 12, 17, 19], "noniidissuemanag": [8, 12, 19, 22], "num_permut": [8, 22], "permut": [8, 22], "significance_threshold": [8, 22], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 12, 18, 19], "underperforminggroupissuemanag": [8, 12, 19, 27], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 27], "filter_cluster_id": [8, 19, 27], "clustering_kwarg": [8, 27], "faq": [8, 73, 77, 79, 80, 83, 85], "nullissuemanag": [8, 12, 19, 23], "data_valuation_kwarg": 8, "data_valu": [8, 12, 19], "datavaluationissuemanag": [8, 12, 16, 19], "codeblock": 8, "demonstr": [8, 35, 76, 77, 80, 82, 83, 84, 86, 87, 88, 91, 92], "howev": [8, 32, 36, 46, 75, 79, 80, 83, 86, 90, 92, 93, 94], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 75, 76, 81, 83, 86, 88, 92], "fewer": [8, 37, 46, 88], "vice": [8, 52], "versa": [8, 52], "light": [8, 81, 83, 88, 92], "29": [8, 81, 83, 86, 87, 88, 92, 95], "low_inform": [8, 83], "odd_aspect_ratio": [8, 83], "35": [8, 76, 81, 83, 86, 87, 88, 92], "odd_siz": [8, 83], "10": [8, 16, 17, 21, 22, 27, 32, 33, 59, 60, 61, 72, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "doc": [8, 32, 36, 73, 75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "data_issu": [9, 13, 14, 28, 76], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 32, 36, 50, 61, 76, 77, 83, 86], "dataformaterror": [10, 13], "add_not": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": [10, 13], "datasetdict": 10, "usual": [10, 28, 83, 86, 91], "datasetloaderror": [10, 13], "dataset_typ": 10, "fail": 10, "hold": 10, "associ": [10, 14, 32, 36, 59, 86], "sublist": 10, "map_to_int": 10, "abc": [10, 20], "is_avail": [10, 83], "serv": [11, 14, 86], "central": [11, 95], "repositori": 11, "strategi": [11, 42, 82], "being": [11, 31, 32, 36, 37, 42, 45, 46, 61, 79, 82, 84, 91, 92, 93], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 32, 35, 36, 37, 46, 53, 56, 59, 63, 65, 67, 76, 77, 82], "recomput": [11, 94], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 31, 52, 73], "get_data_statist": [11, 13], "concret": 12, "subclass": [12, 32, 36, 60, 76], "regressionlabelissuemanag": [12, 19, 25, 26], "multilabelissuemanag": 12, "from_str": [12, 29, 38, 42], "my_issu": 12, "stabl": [13, 19, 25, 34, 38, 46, 49, 60, 74], "unregist": 13, "instati": 14, "public": [14, 84, 88, 92, 95], "creation": [14, 36], "execut": [14, 32, 36, 76, 82, 88], "coordin": [14, 56, 58, 59, 88, 95], "behavior": [14, 31, 32, 36, 59, 82], "At": [14, 59, 82], "get_available_issue_typ": 14, "direct": [15, 23, 32, 36], "valuabl": 16, "vstack": [16, 46, 81, 82, 83, 84, 86, 87], "25": [16, 22, 32, 42, 44, 77, 81, 83, 84, 86, 87, 88, 89, 92, 95], "classvar": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "short": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 45, 46], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 46, 76, 77, 82, 83, 84, 86, 87], "some_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "additional_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "default_threshold": [16, 19, 24], "arxiv": [16, 84], "ab": [16, 84, 88], "1911": 16, "07128": 16, "larger": [16, 63, 65, 67, 80, 81, 82, 83], "collect_info": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "info_to_omit": [16, 17, 18, 20, 21, 22, 24, 26, 27], "compos": [16, 17, 18, 20, 21, 22, 24, 26, 27, 32, 36, 80, 89, 94], "is_x_issu": [16, 17, 18, 20, 21, 22, 24, 26, 27], "x_score": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_a": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b1": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b2": [16, 17, 18, 20, 21, 22, 24, 26, 27], "report_str": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "_": [17, 20, 21, 22, 23, 26, 27, 42, 45, 46, 75, 76, 81, 83, 84, 87, 93], "near_duplicate_set": [17, 19, 76, 77, 79, 80, 82, 83, 84], "occurr": [17, 18, 20, 22, 23, 24, 27, 45], "median_nn_dist": 17, "near_duplicate_scor": [17, 76, 77, 79, 80, 82, 83, 84], "class_imbalance_scor": [18, 77], "bleed": [19, 25, 34], "edg": [19, 25, 34, 58, 73, 84, 95], "sharp": [19, 25, 34], "get_health_summari": [19, 21], "ood": [19, 24, 60, 61, 76, 77, 80, 83, 84, 89], "simplified_kolmogorov_smirnov_test": [19, 22], "outlier_cluster_label": [19, 27], "no_underperforming_cluster_id": [19, 27], "set_knn_graph": [19, 27], "perform_clust": [19, 27], "get_worst_clust": [19, 27], "find_issues_with_predict": [19, 25, 26], "find_issues_with_featur": [19, 25, 26], "believ": [20, 92], "priori": [20, 84], "global": [20, 32, 36], "anoth": [20, 31, 35, 45, 58, 61, 79, 80, 82, 84, 86, 89, 94], "abstract": 20, "applic": [21, 51, 82, 84, 86, 95], "typevar": [21, 32, 36, 45, 55, 58, 59], "scalartyp": 21, "covari": [21, 63, 91], "summary_dict": 21, "label_scor": [21, 26, 75, 76, 77, 79, 80, 83, 84, 87, 91], "neighbor_histogram": 22, "non_neighbor_histogram": 22, "kolmogorov": 22, "smirnov": 22, "largest": [22, 35, 42, 61, 65, 67, 88, 92], "empir": [22, 41, 51], "cumul": 22, "ecdf": 22, "histogram": [22, 79, 91], "absolut": [22, 26], "dimension": [22, 46, 75, 84, 89], "trial": 22, "non_iid_scor": [22, 77, 79, 80, 84], "null_track": 23, "extend": [23, 43, 83, 88, 89, 95], "superclass": 23, "arbitrari": [23, 31, 67, 71, 76, 89, 91], "prompt": 23, "address": [23, 76, 77, 80, 82, 94], "enabl": [23, 36], "null_scor": [23, 77], "37037": 24, "q3_avg_dist": 24, "iqr_avg_dist": 24, "median_outlier_scor": 24, "multipli": 26, "deleg": 26, "confus": [27, 31, 32, 36, 37, 46, 59, 94, 95], "50": [27, 36, 82, 83, 84, 86, 88, 89, 91, 92], "keepdim": [27, 82], "signifi": 27, "absenc": 27, "find_issues_kwarg": 27, "int64": [27, 75, 86], "npt": 27, "int_": 27, "id": [27, 51, 76, 82, 83, 86], "unique_cluster_id": 27, "_description_": 27, "performed_clust": 27, "worst_cluster_id": 27, "underperforming_group_scor": [27, 77], "datset": 28, "exclud": [28, 68, 72, 76, 82, 95], "get_report": 28, "qualnam": [29, 42], "boundari": [29, 42, 76, 77], "enum": [29, 42], "continu": [29, 80, 82, 83, 86, 88, 91, 93, 94, 95], "binari": [29, 42, 46, 53, 55, 84, 95], "simultan": [29, 91], "task_str": 29, "is_classif": 29, "__contains__": [29, 38, 42], "member": [29, 32, 36, 42, 76, 77], "typeerror": [29, 42], "12": [29, 42, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "__getitem__": [29, 38, 42], "match": [29, 31, 32, 36, 37, 42, 51, 52, 61, 76, 77, 81, 83, 88, 90, 92], "__iter__": [29, 38, 42], "__len__": [29, 38, 42], "alias": [29, 42], "is_regress": 29, "is_multilabel": 29, "overview": [31, 75, 77, 79, 80, 83, 86, 88, 89, 91, 93, 94, 95], "modifi": [31, 32, 35, 36, 46, 82, 84], "help": [31, 32, 36, 59, 73, 74, 75, 76, 79, 80, 81, 82, 83, 86, 87, 91, 92, 93, 94, 95], "rank_classes_by_label_qu": [31, 77], "merg": [31, 45, 73, 81, 82, 95], "find_overlapping_class": [31, 82, 84], "problemat": [31, 52, 68, 72, 75, 88, 95], "unnorm": [31, 52, 84], "abov": [31, 32, 35, 36, 46, 51, 58, 59, 61, 67, 71, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 95], "model_select": [31, 42, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 91, 93, 94], "cross_val_predict": [31, 36, 75, 76, 77, 79, 80, 82, 84, 86, 90, 91, 93, 94], "get_data_labels_from_dataset": 31, "yourfavoritemodel": [31, 84], "cv": [31, 42, 75, 76, 77, 79, 84, 86, 93], "df": [31, 46, 72, 75, 82], "overall_label_qu": [31, 52], "col": 31, "prob": [31, 45, 84, 90], "divid": [31, 52, 61], "label_nois": [31, 52], "human": [31, 81, 92, 95], "clearli": [31, 61, 83, 88, 92], "num": [31, 52, 81, 84], "overlap": [31, 73, 81, 82, 84], "ontolog": 31, "publish": [31, 95], "therefor": [31, 61], "vehicl": [31, 81], "truck": [31, 81, 89, 92], "intuit": [31, 52], "car": [31, 81, 88, 92], "frequent": [31, 51, 79, 82, 91], "characterist": 31, "l": [31, 32, 36, 56, 58, 59], "class1": 31, "class2": 31, "relationship": 31, "dog": [31, 46, 52, 54, 68, 81, 82, 89, 90, 95], "cat": [31, 46, 52, 54, 81, 82, 89, 90], "captur": [31, 75, 88, 89, 92], "co": [31, 32, 33], "noisy_label": [31, 76, 77, 87], "overlapping_class": 31, "descend": [31, 32, 36, 42, 52, 59], "overall_label_health_scor": [31, 52, 84], "suggest": [31, 51, 52, 58, 80, 82, 83, 91, 94], "half": [31, 32, 34, 36, 52, 81, 95], "health_scor": [31, 52], "classes_by_label_qu": [31, 77], "cnn": [32, 34, 36, 83], "cifar": [32, 33, 81, 89], "teach": [32, 33], "bhanml": 32, "blob": 32, "master": [32, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94], "call_bn": [32, 34], "bn": 32, "input_channel": 32, "n_output": 32, "dropout_r": 32, "top_bn": 32, "architectur": [32, 36], "shown": [32, 59, 76, 82, 86, 89, 90, 92, 95], "forward": [32, 33, 34, 36, 83, 86], "overridden": [32, 36], "although": [32, 36, 60, 79, 93], "recip": [32, 36], "afterward": [32, 36], "sinc": [32, 36, 39, 47, 52, 59, 67, 71, 82, 86, 87, 88, 90, 95], "former": [32, 36], "hook": [32, 36, 81], "silent": [32, 35, 36], "t_destin": [32, 34, 36], "__call__": [32, 34, 36, 38, 42], "add_modul": [32, 34, 36], "child": [32, 36], "fn": [32, 36, 59], "recurs": [32, 36, 42], "submodul": [32, 36], "children": [32, 34, 36, 95], "nn": [32, 33, 36, 83], "init": [32, 36, 84], "no_grad": [32, 36, 83, 89], "init_weight": [32, 36], "linear": [32, 36, 80, 83, 94], "fill_": [32, 36], "net": [32, 36, 75, 81, 83], "in_featur": [32, 36], "out_featur": [32, 36], "bia": [32, 36, 83], "tensor": [32, 33, 36, 75, 80, 83, 89, 94], "requires_grad": [32, 36], "bfloat16": [32, 34, 36], "cast": [32, 36, 75], "buffer": [32, 34, 36], "datatyp": [32, 36], "xdoctest": [32, 36], "undefin": [32, 36], "var": [32, 36], "buf": [32, 36], "20l": [32, 36], "1l": [32, 36], "5l": [32, 36], "call_super_init": [32, 34, 36], "immedi": [32, 36, 89], "compil": [32, 34, 36, 50], "cpu": [32, 34, 36, 37, 75, 83], "move": [32, 36, 42, 74, 81], "cuda": [32, 34, 36, 75, 83], "devic": [32, 36, 75, 83], "gpu": [32, 36, 75, 80, 94], "live": [32, 36], "copi": [32, 36, 63, 75, 76, 77, 79, 82, 87, 90, 91, 93], "doubl": [32, 34, 36], "dump_patch": [32, 34, 36], "eval": [32, 34, 36, 83, 87, 89], "dropout": [32, 36], "batchnorm": [32, 36], "grad": [32, 36], "extra_repr": [32, 34, 36], "line": [32, 36, 73, 76, 81, 86, 89, 95], "get_buff": [32, 34, 36], "target": [32, 33, 36, 63, 64, 89, 91], "throw": [32, 36], "get_submodul": [32, 34, 36], "explan": [32, 36], "fulli": [32, 36, 50, 82], "qualifi": [32, 36], "referenc": [32, 36], "attributeerror": [32, 36], "invalid": [32, 36, 80], "resolv": [32, 36, 95], "get_extra_st": [32, 34, 36], "state_dict": [32, 34, 36], "set_extra_st": [32, 34, 36], "build": [32, 36, 83, 92], "picklabl": [32, 36], "serial": [32, 36], "backward": [32, 36, 83], "break": [32, 36, 83, 88], "pickl": [32, 36, 88], "get_paramet": [32, 34, 36], "let": [32, 36, 60, 61, 75, 77, 79, 80, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "net_b": [32, 36], "net_c": [32, 36], "conv": [32, 36], "conv2d": [32, 36, 83], "16": [32, 36, 42, 67, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 92, 94, 95], "33": [32, 36, 81, 83, 88, 92], "kernel_s": [32, 36], "stride": [32, 36], "200": [32, 36, 61, 81, 88, 95], "diagram": [32, 36, 90], "degre": [32, 36], "queri": [32, 36, 77, 82, 83, 87], "named_modul": [32, 34, 36], "o": [32, 36, 44, 45, 75, 76, 77, 81, 82, 84, 87, 88, 95], "transit": [32, 36], "ipu": [32, 34, 36], "load_state_dict": [32, 34, 36], "strict": [32, 36, 42], "persist": [32, 36], "strictli": [32, 36], "inplac": [32, 36, 86], "preserv": [32, 36, 46], "namedtupl": [32, 36], "missing_kei": [32, 36], "unexpected_kei": [32, 36], "runtimeerror": [32, 36], "idx": [32, 36, 46, 47, 59, 76, 82, 83, 84, 86, 88, 89], "named_buff": [32, 34, 36], "prefix": [32, 36, 75, 95], "remove_dupl": [32, 36], "prepend": [32, 36], "running_var": [32, 36], "named_children": [32, 34, 36], "conv4": [32, 36], "conv5": [32, 36], "memo": [32, 36], "named_paramet": [32, 34, 36], "register_backward_hook": [32, 34, 36], "deprec": [32, 36, 39, 75, 80, 82, 94], "favor": [32, 36], "register_full_backward_hook": [32, 34, 36], "removablehandl": [32, 36], "register_buff": [32, 34, 36], "running_mean": [32, 36], "register_forward_hook": [32, 34, 36], "with_kwarg": [32, 36], "always_cal": [32, 36], "won": [32, 36, 76, 77, 82, 87], "possibli": [32, 36, 79, 93], "fire": [32, 36, 81], "register_module_forward_hook": [32, 36], "regardless": [32, 36, 76, 77], "register_forward_pre_hook": [32, 34, 36], "And": [32, 36], "forward_pr": [32, 36], "register_module_forward_pre_hook": [32, 36], "gradient": [32, 36, 79, 83, 91], "grad_input": [32, 36], "grad_output": [32, 36], "technic": [32, 36], "caller": [32, 36], "register_module_full_backward_hook": [32, 36], "register_full_backward_pre_hook": [32, 34, 36], "backward_pr": [32, 36], "register_module_full_backward_pre_hook": [32, 36], "register_load_state_dict_post_hook": [32, 34, 36], "post": [32, 36], "incompatible_kei": [32, 36], "modif": [32, 36], "thrown": [32, 36], "register_modul": [32, 34, 36], "register_paramet": [32, 34, 36], "register_state_dict_pre_hook": [32, 34, 36], "keep_var": [32, 36], "requires_grad_": [32, 34, 36], "autograd": [32, 36], "freez": [32, 36, 75, 80, 94], "finetun": [32, 36], "gan": [32, 36], "share_memori": [32, 34, 36], "share_memory_": [32, 36], "destin": [32, 36], "shallow": [32, 36], "releas": [32, 36, 74, 75, 82], "design": [32, 36], "ordereddict": [32, 36], "detach": [32, 36, 83], "non_block": [32, 36], "memory_format": [32, 36], "channels_last": [32, 36], "Its": [32, 36, 42, 52, 58], "complex": [32, 36, 75], "integr": [32, 36, 73], "asynchron": [32, 36], "host": [32, 36], "pin": [32, 36, 80, 81, 94], "desir": [32, 36, 45, 59], "4d": [32, 36], "ignore_w": [32, 36], "determinist": [32, 36, 75], "1913": [32, 36], "3420": [32, 36], "5113": [32, 36], "2325": [32, 36], "env": [32, 36], "torch_doctest_cuda1": [32, 36], "gpu1": [32, 36], "1914": [32, 36], "5112": [32, 36], "2324": [32, 36], "float16": [32, 36], "cdoubl": [32, 36], "3741": [32, 36], "2382": [32, 36], "5593": [32, 36], "4443": [32, 36], "complex128": [32, 36], "6122": [32, 36], "1150": [32, 36], "to_empti": [32, 34, 36], "storag": [32, 36, 80, 94], "dst_type": [32, 36], "xpu": [32, 34, 36], "zero_grad": [32, 34, 36, 83], "set_to_non": [32, 36], "reset": [32, 36], "context": [32, 36, 88], "noisili": [33, 84], "han": 33, "2018": 33, "cifar_cnn": [33, 34], "loss_coteach": [33, 34], "y_1": 33, "y_2": 33, "forget_r": 33, "class_weight": 33, "logit": [33, 50, 83], "decim": [33, 46], "quickli": [33, 75, 79, 80, 82, 83, 87, 89, 92, 93, 95], "forget": [33, 42, 95], "rate_schedul": 33, "epoch": [33, 34, 36, 82, 83], "initialize_lr_schedul": [33, 34], "lr": [33, 34, 36], "001": [33, 61, 82], "250": [33, 76, 77, 84, 88], "epoch_decay_start": 33, "80": [33, 79, 83, 87, 89, 91, 92, 93], "schedul": 33, "adjust": [33, 37, 55, 60, 61, 73, 84], "beta": 33, "adam": 33, "adjust_learning_r": [33, 34], "alpha_plan": 33, "beta1_plan": 33, "forget_rate_schedul": [33, 34], "num_gradu": 33, "expon": 33, "tell": [33, 80, 83, 84, 94], "train_load": [33, 36], "model1": [33, 84], "optimizer1": 33, "model2": [33, 84], "optimizer2": 33, "dataload": [33, 83, 89], "parser": 33, "parse_arg": 33, "num_iter_per_epoch": 33, "print_freq": 33, "topk": 33, "top1": 33, "top5": 33, "test_load": 33, "offici": [34, 49, 95], "wish": [34, 49, 89, 92, 95], "adj_confident_thresholds_shar": [34, 35], "labels_shar": [34, 35], "pred_probs_shar": [34, 35], "labelinspector": [34, 35, 82], "get_num_issu": [34, 35], "get_quality_scor": [34, 35], "update_confident_threshold": [34, 35], "score_label_qu": [34, 35], "split_arr": [34, 35], "mnist_pytorch": 34, "get_mnist_dataset": [34, 36], "get_sklearn_digits_dataset": [34, 36], "simplenet": [34, 36], "batch_siz": [34, 35, 36, 65, 67, 82, 83, 89, 92], "log_interv": [34, 36], "momentum": [34, 36], "no_cuda": [34, 36], "test_batch_s": [34, 36, 83], "loader": [34, 36, 83], "set_predict_proba_request": [34, 36], "set_predict_request": [34, 36], "coteach": [34, 74], "mini": [35, 65, 67, 82], "low_self_confid": [35, 37, 53], "self_confid": [35, 37, 38, 42, 53, 55, 61, 69, 71, 82, 84, 93, 94], "conveni": [35, 75, 80, 94], "script": 35, "labels_fil": [35, 82], "pred_probs_fil": [35, 82], "quality_score_kwarg": 35, "num_issue_kwarg": 35, "return_mask": 35, "variant": [35, 51, 92], "read": [35, 39, 77, 82, 84, 89, 95], "zarr": [35, 82], "memmap": [35, 92], "pythonspe": 35, "mmap": [35, 82], "hdf5": 35, "further": [35, 52, 53, 55, 58, 59, 67, 68, 75, 82], "yourfil": 35, "npy": [35, 81, 82, 92], "mmap_mod": [35, 92], "tip": [35, 37, 50, 82], "save_arrai": 35, "your_arrai": 35, "disk": [35, 81, 82], "npz": [35, 95], "maxim": [35, 51, 65, 67, 92], "multiprocess": [35, 37, 53, 65, 67, 82, 83], "linux": [35, 65, 67], "physic": [35, 37, 65, 67, 88], "psutil": [35, 37, 65, 67], "labels_arrai": [35, 47], "predprob": 35, "pred_probs_arrai": 35, "back": [35, 59, 76, 82, 88, 89], "store_result": 35, "becom": [35, 89], "verifi": [35, 82, 86, 89], "long": [35, 51, 60, 86], "enough": [35, 46, 82], "chunk": [35, 90], "ram": [35, 81], "faster": [35, 60, 63, 65, 67, 82, 84], "end_index": 35, "labels_batch": 35, "pred_probs_batch": 35, "batch_result": 35, "indices_of_examples_with_issu": [35, 82], "shortcut": 35, "encount": [35, 37, 65], "1000": [35, 75, 80, 82, 89], "aggreg": [35, 38, 42, 51, 55, 58, 61, 71, 82, 84, 86], "fetch": [35, 75, 77], "seen": [35, 82, 89, 95], "far": [35, 51], "label_quality_scor": [35, 55, 58, 61, 64, 84, 88], "method1": 35, "method2": 35, "normalized_margin": [35, 37, 38, 42, 53, 55, 61, 69, 71], "low_normalized_margin": [35, 37, 53], "issue_indic": [35, 58, 83], "update_num_issu": 35, "arr": [35, 82], "chunksiz": 35, "convnet": 36, "bespok": [36, 50], "download": [36, 75, 82, 89], "mnist": [36, 73, 75, 81], "handwritten": 36, "digit": [36, 75, 81], "last": [36, 42, 56, 59, 76, 77, 82, 86, 88, 95], "sklearn_digits_test_s": 36, "hard": [36, 81, 89], "64": [36, 79, 83, 84, 88, 89, 92, 93], "01": [36, 61, 63, 75, 83, 84, 87, 88, 89, 92], "templat": 36, "flexibli": 36, "among": [36, 51, 84], "test_set": 36, "Be": 36, "overrid": 36, "train_idx": [36, 46, 89], "train_label": [36, 89, 94], "scikit": [36, 46, 60, 73, 75, 76, 77, 79, 80, 82, 85, 91, 94], "encourag": [37, 53, 61, 64], "multilabel_classif": [37, 52, 53, 55, 61, 82, 87], "pred_probs_by_class": 37, "prune_count_matrix_col": 37, "rank_by_kwarg": [37, 53, 61, 84], "num_to_remove_per_class": [37, 53], "bad": [37, 53, 58, 61, 80, 82, 94], "seem": [37, 84, 87], "aren": 37, "confidence_weighted_entropi": [37, 38, 42, 53, 55, 61, 69, 71], "label_issues_idx": [37, 61], "entropi": [37, 39, 41, 42, 60, 61], "prune_by_class": [37, 53, 84], "predicted_neq_given": [37, 53, 84], "prune_counts_matrix": 37, "smallest": [37, 61], "unus": 37, "number_of_mislabeled_examples_in_class_k": 37, "delet": [37, 73, 82, 94], "thread": [37, 53], "window": [37, 75, 81], "shorter": [37, 56], "find_predicted_neq_given": 37, "find_label_issues_using_argmax_confusion_matrix": 37, "remove_noise_from_class": [38, 46], "clip_noise_r": [38, 46], "clip_valu": [38, 46], "value_count": [38, 46, 82], "value_counts_fill_missing_class": [38, 46], "get_missing_class": [38, 46], "round_preserving_sum": [38, 46], "round_preserving_row_tot": [38, 46], "estimate_pu_f1": [38, 46], "confusion_matrix": [38, 46], "print_square_matrix": [38, 46], "print_noise_matrix": [38, 46, 84], "print_inverse_noise_matrix": [38, 46], "print_joint_matrix": [38, 46, 84], "compress_int_arrai": [38, 46], "train_val_split": [38, 46], "subset_x_i": [38, 46], "subset_label": [38, 46], "subset_data": [38, 46], "extract_indices_tf": [38, 46], "unshuffle_tensorflow_dataset": [38, 46], "is_torch_dataset": [38, 46], "is_tensorflow_dataset": [38, 46], "csr_vstack": [38, 46], "append_extra_datapoint": [38, 46], "get_num_class": [38, 46], "num_unique_class": [38, 46], "get_unique_class": [38, 46], "format_label": [38, 46], "smart_display_datafram": [38, 46], "force_two_dimens": [38, 46], "latent_algebra": [38, 74], "compute_ps_py_inv_noise_matrix": [38, 40], "compute_py_inv_noise_matrix": [38, 40], "compute_inv_noise_matrix": [38, 40], "compute_noise_matrix_from_invers": [38, 40], "compute_pi": [38, 40], "compute_pyx": [38, 40], "label_quality_util": 38, "get_normalized_entropi": [38, 39], "multilabel_util": [38, 87], "stack_compl": [38, 43], "get_onehot_num_class": [38, 43], "int2onehot": [38, 43, 87], "onehot2int": [38, 43, 87], "multilabel_scor": [38, 55], "classlabelscor": [38, 42], "exponential_moving_averag": [38, 42, 55], "softmin": [38, 42, 55, 58, 67, 71], "possible_method": [38, 42], "multilabelscor": [38, 42], "get_class_label_quality_scor": [38, 42], "multilabel_pi": [38, 42], "get_cross_validated_multilabel_pred_prob": [38, 42], "transform_distances_to_scor": [38, 44], "token_classification_util": [38, 95], "get_sent": [38, 45, 95], "filter_sent": [38, 45, 95], "process_token": [38, 45], "merge_prob": [38, 45], "color_sent": [38, 45], "assert_valid_input": [38, 47], "assert_valid_class_label": [38, 47], "assert_nonempty_input": [38, 47], "assert_indexing_work": [38, 47], "labels_to_arrai": [38, 47], "labels_to_list_multilabel": [38, 47], "min_allowed_prob": 39, "wikipedia": 39, "activ": [39, 41, 51, 73, 86], "towardsdatasci": 39, "cheatsheet": 39, "ec57bc067c0b": 39, "clip": [39, 46, 75], "behav": 39, "unnecessari": [39, 82], "slightli": [39, 93, 94], "interv": [39, 42, 89], "herein": 40, "inexact": 40, "cours": 40, "propag": 40, "throughout": [40, 46, 63, 75, 86, 92, 95], "easili": [40, 74, 75, 77, 79, 80, 84, 86, 87, 89, 90, 91, 92, 93, 94], "increas": [40, 58, 60, 61, 75, 76, 82, 86, 87, 95], "dot": [40, 71, 82], "true_labels_class_count": 40, "pyx": 40, "multiannot": 41, "assert_valid_inputs_multiannot": 41, "labels_multiannot": [41, 51], "ensembl": [41, 42, 51, 61, 79, 82, 87, 89, 91, 93], "allow_single_label": 41, "annotator_id": 41, "assert_valid_pred_prob": 41, "pred_probs_unlabel": [41, 51], "format_multiannotator_label": [41, 51, 86], "formatted_label": [41, 46], "old": [41, 46, 74, 75, 81], "check_consensus_label_class": 41, "consensus_label": [41, 51, 86], "consensus_method": [41, 51], "consensu": [41, 51, 73, 85, 95], "establish": [41, 91, 94], "compute_soft_cross_entropi": 41, "soft": [41, 81], "find_best_temp_scal": 41, "coarse_search_rang": [41, 63, 82], "fine_search_s": [41, 63, 82], "temperatur": [41, 42, 58, 67, 71], "scale": [41, 44, 81, 82, 89, 92, 93], "factor": [41, 42, 44, 65, 67], "minim": [41, 58, 89], "temp_scale_pred_prob": 41, "temp": 41, "sharpen": [41, 81], "smoothen": 41, "get_normalized_margin_for_each_label": [42, 61], "get_confidence_weighted_entropy_for_each_label": [42, 61], "75": [42, 76, 77, 81, 86, 87, 88, 91, 92, 95], "scorer": 42, "alpha": [42, 55, 58, 76, 77, 84, 87, 91], "exponenti": 42, "ema": 42, "s_1": 42, "s_k": 42, "ema_k": 42, "accord": [42, 53, 79, 80, 84, 95], "formula": [42, 44], "_t": 42, "cdot": 42, "s_t": 42, "qquad": 42, "leq": 42, "_1": 42, "give": [42, 61, 84, 86, 92], "recent": [42, 95], "success": 42, "previou": [42, 82, 83, 88], "discount": 42, "s_ema": 42, "175": [42, 83, 84, 88], "underflow": 42, "nan": [42, 51, 79, 86, 91, 93], "aggregated_scor": 42, "base_scor": 42, "base_scorer_kwarg": 42, "aggregator_kwarg": [42, 55], "n_sampl": 42, "n_label": 42, "worst": [42, 86], "class_label_quality_scor": 42, "42": [42, 80, 81, 88, 92, 95], "452": 42, "new_scor": 42, "575": 42, "get_label_quality_scores_per_class": [42, 54, 55], "ml_scorer": 42, "binar": [42, 43], "reformat": [42, 75], "wider": 42, "splitter": 42, "kfold": [42, 83], "onevsrestclassifi": [42, 87], "randomforestclassifi": [42, 84, 87], "n_split": [42, 77, 83, 87], "pred_prob_slic": 43, "onehot": 43, "hot": [43, 53, 59, 65, 68, 79, 81, 82, 91, 92, 93], "onehot_matrix": 43, "avg_dist": 44, "scaling_factor": 44, "exp": [44, 60, 61, 76], "dt": 44, "right": [44, 56, 59, 80, 87, 88, 89, 94], "strength": [44, 59], "pronounc": 44, "differenti": 44, "ly": 44, "rule": [44, 45, 81], "thumb": 44, "ood_features_scor": [44, 60, 89], "88988177": 44, "80519832": 44, "token_classif": [45, 69, 71, 72, 82], "sentenc": [45, 69, 71, 72, 80, 94], "readabl": 45, "lambda": [45, 75, 76, 82, 86], "long_sent": 45, "headlin": 45, "charact": [45, 46], "s1": 45, "s2": 45, "processed_token": 45, "alecnlcb": 45, "entiti": [45, 73, 82, 95], "mapped_ent": 45, "unique_ident": 45, "loc": [45, 76, 77, 83, 95], "nbitbas": [45, 55], "probs_merg": 45, "55": [45, 81, 83, 88, 91, 92], "0125": [45, 71], "0375": 45, "075": 45, "025": 45, "color": [45, 68, 76, 77, 79, 84, 87, 89, 91, 92], "red": [45, 59, 76, 77, 81, 84, 87, 88, 89, 92], "colored_sent": 45, "termcolor": 45, "31msentenc": 45, "0m": 45, "ancillari": 46, "class_without_nois": 46, "any_other_class": 46, "choos": [46, 61, 79, 82, 84, 91, 93], "tradition": 46, "new_sum": 46, "fill": 46, "wherea": [46, 53, 90], "come": [46, 76, 77, 82, 83, 89, 92], "major": [46, 51, 74, 83, 89], "versu": [46, 84], "obviou": 46, "cgdeboer": 46, "iteround": 46, "reach": 46, "prob_s_eq_1": 46, "claesen": 46, "f1": [46, 59, 80, 84], "BE": 46, "left_nam": 46, "top_nam": 46, "titl": [46, 76, 77, 84, 87, 89], "short_titl": 46, "round_plac": 46, "pretti": [46, 84], "joint_matrix": 46, "num_possible_valu": 46, "holdout_idx": 46, "extract": [46, 60, 75, 80, 86, 89, 92, 94], "allow_shuffl": 46, "turn": [46, 73, 88], "shuffledataset": 46, "histori": 46, "pre_x": 46, "buffer_s": 46, "csr_matric": 46, "append": [46, 75, 81, 82, 83, 84, 86, 87, 88, 89, 95], "bottom": [46, 56, 59, 88], "to_data": 46, "from_data": 46, "taken": 46, "label_matrix": 46, "canon": 46, "displai": [46, 59, 68, 72, 75, 80, 84, 94, 95], "jupyt": [46, 75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 95], "notebook": [46, 51, 75, 77, 81, 82, 84, 86, 87, 88, 92, 95], "consol": 46, "html": [46, 56, 59, 60, 79, 82, 84], "allow_missing_class": 47, "allow_one_class": 47, "length_x": 47, "labellik": 47, "labels_list": [47, 53], "keraswrappermodel": [49, 50, 73], "keraswrappersequenti": [49, 50], "tf": [50, 75], "legaci": 50, "lack": 50, "keraswrapp": 50, "huggingface_keras_imdb": 50, "unit": [50, 95], "model_kwarg": [50, 63], "compile_kwarg": 50, "sparsecategoricalcrossentropi": 50, "layer": [50, 75, 80, 89, 94], "dens": 50, "my_keras_model": 50, "from_logit": 50, "declar": 50, "apply_softmax": 50, "analysi": 51, "analyz": [51, 73, 84, 86, 87], "get_label_quality_multiannot": [51, 86], "vote": 51, "crowdsourc": [51, 73, 86], "dawid": [51, 86], "skene": [51, 86], "analog": [51, 81, 86], "chosen": [51, 61, 82, 86], "crowdlab": [51, 86], "unlabel": [51, 79, 80, 83, 86, 89, 92], "decid": [51, 80, 81, 86, 91, 94, 95], "get_active_learning_scor": [51, 86], "activelab": [51, 86], "priorit": [51, 58, 88, 92, 95], "showcas": 51, "main": 51, "best_qual": 51, "quality_method": 51, "calibrate_prob": 51, "return_detailed_qu": 51, "return_annotator_stat": 51, "return_weight": 51, "label_quality_score_kwarg": 51, "necessarili": [51, 59, 80, 84], "did": [51, 52, 75, 79, 84, 86, 91, 93, 94], "majority_vot": 51, "ti": 51, "broken": [51, 59, 81, 91], "highest": [51, 59, 76, 83, 90], "0th": 51, "consensus_quality_scor": [51, 86], "annotator_agr": [51, 86], "reman": 51, "1st": 51, "2nd": [51, 65], "3rd": 51, "consensus_label_suffix": 51, "consensus_quality_score_suffix": 51, "suffix": 51, "emsembl": 51, "weigh": [51, 81], "agreement": [51, 86], "agre": 51, "prevent": [51, 82], "overconfid": [51, 90], "wrong": [51, 56, 58, 74, 76, 77, 80, 82, 84, 88, 94], "detailed_label_qu": [51, 86], "annotator_stat": [51, 86], "model_weight": 51, "annotator_weight": 51, "warn": [51, 76, 77, 82], "labels_info": 51, "num_annot": [51, 86], "deriv": [51, 86], "quality_annotator_1": 51, "quality_annotator_2": 51, "quality_annotator_m": 51, "annotator_qu": [51, 86], "num_examples_label": [51, 86], "agreement_with_consensu": [51, 86], "worst_class": [51, 86], "trustworthi": [51, 86, 91], "get_label_quality_multiannotator_ensembl": 51, "weigtht": 51, "budget": 51, "retrain": [51, 91, 94], "active_learning_scor": 51, "improv": [51, 77, 81, 82, 83, 84, 91, 92, 93, 94], "active_learning_scores_unlabel": 51, "get_active_learning_scores_ensembl": 51, "henc": [51, 75, 76, 86], "get_majority_vote_label": [51, 86], "event": 51, "lastli": [51, 79], "convert_long_to_wide_dataset": 51, "labels_multiannotator_long": 51, "wide": [51, 75, 93, 94], "suitabl": [51, 79, 93], "labels_multiannotator_wid": 51, "common_multilabel_issu": [52, 54], "mutual": [52, 87], "exclus": [52, 87], "rank_classes_by_multilabel_qu": [52, 54], "overall_multilabel_health_scor": [52, 54], "multilabel_health_summari": [52, 54], "classes_by_multilabel_qu": 52, "inner": [53, 67], "find_multilabel_issues_per_class": [53, 54], "per_class_label_issu": 53, "label_issues_list": 53, "pred_probs_list": [53, 61, 83, 84], "anim": [54, 89], "rat": 54, "predat": 54, "pet": 54, "reptil": 54, "manner": [55, 86, 91, 93, 94], "box": [56, 58, 59, 81, 88], "object_detect": [56, 58, 59, 88], "return_indices_ranked_by_scor": [56, 88], "overlapping_label_check": [56, 58], "suboptim": [56, 58], "locat": [56, 58, 88, 92, 95], "bbox": [56, 59, 88], "image_nam": [56, 59], "y1": [56, 59, 88], "y2": [56, 59, 88], "later": [56, 59, 60, 94, 95], "corner": [56, 59, 88], "xyxi": [56, 59, 88], "io": [56, 59, 75, 81], "keras_cv": [56, 59], "bounding_box": [56, 59, 88], "detectron": [56, 59, 88], "detectron2": [56, 59, 88], "readthedoc": [56, 59], "en": [56, 59], "latest": [56, 59], "visual": [56, 57, 59, 76, 77, 83, 91, 93, 95], "draw_box": [56, 59], "mmdetect": [56, 59, 88], "swap": [56, 58, 68, 72], "penal": [56, 58], "concern": [56, 58, 73, 77], "issues_from_scor": [57, 58, 66, 67, 68, 70, 71, 72, 88, 92, 95], "compute_overlooked_box_scor": [57, 58], "compute_badloc_box_scor": [57, 58], "compute_swap_box_scor": [57, 58], "pool_box_scores_per_imag": [57, 58], "object_counts_per_imag": [57, 59, 88], "bounding_box_size_distribut": [57, 59, 88], "class_label_distribut": [57, 59, 88], "get_sorted_bbox_count_idx": [57, 59], "plot_class_size_distribut": [57, 59], "plot_class_distribut": [57, 59], "get_average_per_class_confusion_matrix": [57, 59], "calculate_per_class_metr": [57, 59], "aggregation_weight": 58, "imperfect": [58, 82], "chose": [58, 86, 88], "imperfectli": [58, 88], "dirti": [58, 61, 64, 91], "subtyp": 58, "badloc": 58, "nonneg": 58, "high_probability_threshold": 58, "auxiliary_input": [58, 59], "vari": [58, 77], "iou": [58, 59], "heavili": 58, "auxiliarytypesdict": 58, "pred_label": [58, 94], "pred_label_prob": 58, "pred_bbox": 58, "lab_label": 58, "lab_bbox": 58, "similarity_matrix": 58, "min_possible_similar": 58, "scores_overlook": 58, "low_probability_threshold": 58, "scores_badloc": 58, "accident": [58, 79, 80, 82, 94], "scores_swap": 58, "box_scor": 58, "image_scor": [58, 67, 92], "discov": [59, 77, 95], "auxiliari": [59, 89, 92], "_get_valid_inputs_for_compute_scor": 59, "object_count": 59, "down": 59, "bbox_siz": 59, "class_distribut": 59, "plot": [59, 76, 77, 84, 87, 89, 91, 92], "sorted_idx": [59, 89], "class_to_show": 59, "hidden": [59, 89], "max_class_to_show": 59, "prediction_threshold": 59, "overlai": [59, 88], "figsiz": [59, 76, 77, 83, 84, 87, 89], "save_path": [59, 88], "blue": [59, 81, 84, 88], "overlaid": 59, "side": [59, 81, 88], "figur": [59, 84, 87, 89, 91], "extens": [59, 84, 86], "png": [59, 88], "pdf": [59, 60], "svg": 59, "matplotlib": [59, 76, 77, 83, 84, 87, 88, 89, 91], "num_proc": [59, 83], "intersect": [59, 82], "tp": 59, "fp": 59, "ground": [59, 81, 84, 86, 91], "truth": [59, 84, 86, 91], "bias": 59, "avg_metr": 59, "distionari": 59, "95": [59, 69, 71, 79, 81, 84, 89, 91, 92], "per_class_metr": 59, "Of": 60, "li": 60, "smaller": [60, 87, 88], "find_top_issu": [60, 61, 89], "reli": [60, 75, 76, 77, 80, 88, 89, 91, 94], "dist_metr": 60, "dim": [60, 83, 92], "subtract": [60, 61], "renorm": [60, 61, 82], "least_confid": 60, "sum_": 60, "log": [60, 61, 74], "softmax": [60, 67, 71, 83], "literatur": 60, "gen": 60, "liu": 60, "lochman": 60, "zach": 60, "openaccess": 60, "thecvf": 60, "content": [60, 75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "cvpr2023": 60, "liu_gen_pushing_the_limits_of_softmax": 60, "based_out": 60, "distribution_detection_cvpr_2023_pap": 60, "fit_scor": [60, 89], "ood_predictions_scor": 60, "pretrain": [60, 75, 80, 89, 94], "adjust_confident_threshold": 60, "probabilist": [60, 75, 76, 77, 79, 80, 89, 90, 93], "order_label_issu": [61, 74], "whichev": [61, 90], "argsort": [61, 80, 83, 84, 88, 89, 91, 94], "max_": 61, "get_label_quality_ensemble_scor": [61, 82, 84], "weight_ensemble_members_bi": 61, "custom_weight": 61, "log_loss_search_t_valu": 61, "0001": [61, 81], "scheme": 61, "log_loss_search": 61, "log_loss": [61, 80], "1e0": 61, "1e1": 61, "1e2": 61, "2e2": 61, "quality_scor": [61, 89], "forth": 61, "top_issue_indic": 61, "rank_bi": [61, 74], "weird": [61, 72], "minu": 61, "prob_label": 61, "max_prob_not_label": 61, "idea": [61, 88], "AND": [61, 80], "get_epistemic_uncertainti": [62, 63], "get_aleatoric_uncertainti": [62, 63], "corrupt": [63, 91], "linearregress": [63, 82, 91], "y_with_nois": 63, "n_boot": [63, 82], "include_aleatoric_uncertainti": [63, 82], "sole": [63, 76, 86, 89, 93], "bootstrap": [63, 82, 91], "resampl": [63, 75, 82], "epistem": [63, 82, 89, 91], "aleator": [63, 82, 91], "model_final_kwarg": 63, "coars": 63, "thorough": [63, 82], "fine": [63, 75, 80, 89, 94], "grain": 63, "grid": 63, "varianc": [63, 84], "epistemic_uncertainti": 63, "residu": [63, 64, 82], "deviat": [63, 88, 91], "ie": 63, "aleatoric_uncertainti": 63, "outr": 64, "contin": 64, "raw": [64, 73, 74, 77, 81, 83, 86, 88, 89, 91], "aka": [64, 75, 84, 88, 91, 95], "00323821": 64, "33692597": 64, "00191686": 64, "semant": [65, 67, 68, 85], "pixel": [65, 67, 68, 89, 92], "h": [65, 67, 68, 92], "height": [65, 67, 68, 92], "w": [65, 67, 68, 92], "width": [65, 67, 68, 92], "labels_one_hot": [65, 68, 92], "stream": [65, 89, 95], "downsampl": [65, 67, 92], "shrink": [65, 67], "divis": [65, 67, 76], "display_issu": [66, 67, 68, 69, 70, 71, 72, 92, 95], "common_label_issu": [66, 68, 70, 72, 92, 95], "filter_by_class": [66, 68, 92], "segmant": [67, 68], "num_pixel_issu": [67, 92], "product": [67, 82, 83], "pixel_scor": [67, 92], "highlight": [68, 72, 76, 77, 79, 92], "enter": 68, "legend": [68, 76, 77, 87, 88, 91, 92], "colormap": 68, "background": 68, "person": [68, 82, 88, 92, 95], "ambigu": [68, 72, 75, 80, 81, 84, 94, 95], "systemat": [68, 72, 86], "misunderstood": [68, 72], "issues_df": [68, 83], "class_index": 68, "issues_subset": [68, 72], "filter_by_token": [70, 72, 95], "token_score_method": 71, "sentence_score_method": 71, "sentence_score_kwarg": 71, "compris": [71, 72], "token_scor": [71, 95], "converg": 71, "toward": 71, "_softmin_sentence_scor": 71, "sentence_scor": [71, 95], "token_info": 71, "70": [71, 79, 92], "02": [71, 76, 77, 83, 84, 88, 89, 92, 95], "03": [71, 79, 81, 84, 88, 89, 92, 95], "04": [71, 79, 83, 88, 89, 92, 95], "08": [71, 84, 88, 91, 92, 95], "commonli": [72, 74, 76, 77, 87, 95], "But": [72, 80, 84, 91, 95], "restrict": [72, 82], "reliabl": [73, 75, 82, 86, 92, 93], "thousand": 73, "imagenet": [73, 81], "popular": [73, 86, 88], "centric": [73, 79, 80, 83, 85], "capabl": 73, "minut": [73, 75, 79, 80, 81, 86, 87, 88, 91, 92, 93, 94, 95], "conda": 73, "feature_embed": [73, 89], "Then": [73, 82, 83, 93, 94], "your_dataset": [73, 75, 76, 77, 79, 80, 82, 83], "column_name_of_label": [73, 75, 76, 77, 79, 80, 83], "plagu": [73, 77], "untrain": 73, "\u30c4": 73, "label_issues_info": [73, 77], "sklearn_compatible_model": 73, "framework": [73, 87, 88], "complianc": 73, "tag": [73, 87, 95], "sequenc": 73, "recognit": [73, 75, 82, 95], "train_data": [73, 89, 91, 93, 94], "gotten": 73, "test_data": [73, 84, 87, 89, 91, 93, 94], "deal": [73, 77], "tutori": [73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "feel": [73, 75, 77, 82], "free": [73, 75, 77, 79, 80, 82, 83, 84], "ask": [73, 82], "slack": [73, 82], "project": [73, 91], "welcom": 73, "commun": [73, 82], "guidelin": [73, 88], "piec": 73, "studio": [73, 77, 79, 80, 82, 83], "platform": [73, 79, 80, 82, 83], "automl": [73, 82], "foundat": 73, "smart": [73, 79, 80, 82, 83], "edit": [73, 82], "easier": [73, 84], "unreli": [73, 75, 79, 80, 93], "link": [73, 75, 81, 88], "older": 74, "outlin": 74, "substitut": 74, "v2": [74, 79, 93], "get_noise_indic": 74, "psx": 74, "sorted_index_method": 74, "order_label_error": 74, "label_errors_bool": 74, "latent_estim": 74, "num_label_error": 74, "learningwithnoisylabel": 74, "neatli": 74, "organ": [74, 79, 81, 93, 95], "reorgan": 74, "baseline_method": 74, "incorpor": [74, 84], "research": [74, 84], "polyplex": 74, "terminologi": 74, "label_error": 74, "quickstart": [75, 76, 77, 79, 80, 81, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "spoken": 75, "500": [75, 89, 95], "english": [75, 81], "pronunci": 75, "wav": 75, "huggingfac": [75, 76, 77, 83], "voxceleb": 75, "speech": [75, 95], "your_pred_prob": [75, 76, 77, 79, 80], "tensorflow_io": 75, "huggingface_hub": 75, "branch": [75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94], "reproduc": [75, 79, 84, 86], "command": 75, "wget": [75, 88, 92, 95], "navig": 75, "browser": 75, "jakobovski": 75, "archiv": [75, 95], "v1": 75, "tar": [75, 89], "gz": [75, 89], "mkdir": [75, 95], "spoken_digit": 75, "xf": 75, "6_nicolas_32": 75, "data_path": 75, "listdir": 75, "nondeterminist": 75, "file_nam": 75, "endswith": 75, "file_path": 75, "join": [75, 82, 83], "39": [75, 76, 80, 81, 82, 83, 88, 91, 92, 94, 95], "7_george_26": 75, "0_nicolas_24": 75, "0_nicolas_6": 75, "listen": 75, "display_exampl": 75, "click": [75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "expand": [75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "pulldown": [75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "colab": [75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 95], "tfio": 75, "pathlib": 75, "ipython": 75, "load_wav_16k_mono": 75, "filenam": 75, "khz": 75, "file_cont": 75, "read_fil": 75, "sample_r": 75, "decode_wav": 75, "desired_channel": 75, "squeez": 75, "rate_in": 75, "rate_out": 75, "16000": 75, "wav_file_nam": 75, "audio_r": 75, "wav_file_exampl": 75, "plai": [75, 81, 82], "button": 75, "wav_file_name_exampl": 75, "7_jackson_43": 75, "hear": 75, "extractor": 75, "encoderclassifi": 75, "spkrec": 75, "xvect": 75, "feature_extractor": 75, "from_hparam": 75, "run_opt": 75, "uncom": 75, "ffmpeg": 75, "system": [75, 79, 80, 83, 92], "backend": 75, "wav_audio_file_path": 75, "head": [75, 77, 79, 80, 81, 83, 84, 86, 91, 93, 94], "torchaudio": 75, "extract_audio_embed": 75, "emb": [75, 83], "signal": 75, "encode_batch": 75, "embeddings_list": [75, 83], "embeddings_arrai": 75, "opt": [75, 77, 80, 94], "hostedtoolcach": [75, 77, 80, 94], "x64": [75, 77, 80, 94], "lib": [75, 77, 80, 94], "python3": [75, 77, 80, 94], "site": [75, 77, 80, 94], "650": 75, "userwarn": [75, 76, 77, 80, 94], "stft": 75, "return_complex": 75, "view_as_r": 75, "recov": 75, "trigger": 75, "aten": 75, "src": 75, "nativ": 75, "spectralop": 75, "cpp": 75, "863": [75, 94], "_vf": 75, "n_fft": 75, "hop_length": 75, "win_length": 75, "attr": 75, "512": [75, 83], "14": [75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "196311": 75, "319459": 75, "478975": 75, "2890875": 75, "8170238": 75, "89265": 75, "24": [75, 81, 84, 86, 88, 91, 92], "898056": 75, "256195": 75, "559641": 75, "559721": 75, "62067": 75, "285245": 75, "21": [75, 76, 81, 82, 84, 88, 91, 92, 95], "709627": 75, "5033693": 75, "913803": 75, "819831": 75, "1831515": 75, "208763": 75, "084257": 75, "3210397": 75, "005453": 75, "216152": 75, "478235": 75, "6821785": 75, "053807": 75, "242471": 75, "091424": 75, "78334856": 75, "03954": 75, "23": [75, 81, 83, 84, 88, 91, 92], "569176": 75, "19": [75, 80, 81, 82, 83, 84, 88, 89, 91, 92, 94], "761097": 75, "1258295": 75, "753237": 75, "3508866": 75, "598274": 75, "23712": 75, "2500": 75, "leverag": [75, 80, 82, 84, 86, 94], "tune": [75, 80, 81, 89, 94], "computation": [75, 80, 94], "intens": [75, 80, 94], "held": [75, 79, 80, 81, 88, 89, 90, 93], "straightforward": [75, 79, 93], "benefit": [75, 90, 92, 93], "tol": 75, "num_crossval_fold": [75, 79, 86, 93], "decreas": [75, 82], "never": [75, 84, 87, 89, 90], "accuracy_scor": [75, 80, 84, 93, 94], "cv_accuraci": 75, "9708": 75, "probabilit": [75, 94], "9976": 75, "986": 75, "002161": 75, "176": [75, 81, 84, 87], "002483": 75, "2318": 75, "004411": 75, "1005": 75, "004857": 75, "1871": 75, "007494": 75, "investig": 75, "040587": 75, "999207": 75, "999377": 75, "975220": 75, "999367": 75, "18": [75, 80, 81, 82, 83, 84, 88, 89, 91, 92, 94], "identified_label_issu": [75, 80], "lowest_quality_label": [75, 80, 84, 91, 94], "sort_valu": [75, 77, 79, 80, 82, 83, 84, 86, 87, 91], "516": 75, "1946": 75, "469": 75, "2132": 75, "worth": [75, 84], "iloc": [75, 79, 80, 91, 93, 94], "6_yweweler_25": 75, "7_nicolas_43": 75, "6_theo_27": 75, "6_yweweler_36": 75, "6_yweweler_14": 75, "6_yweweler_35": 75, "6_nicolas_8": 75, "sound": 75, "quit": [75, 89], "22": [75, 76, 81, 83, 84, 87, 88, 89, 92, 95], "blindli": [75, 82, 91, 93, 94], "trust": [75, 82, 84, 86, 90, 91, 93, 94], "underneath": 76, "hood": 76, "alert": 76, "introduct": 76, "mayb": [76, 77, 80], "examin": [76, 77, 79, 88, 93], "your_feature_matrix": [76, 77], "toi": [76, 77, 81, 83, 84, 86], "train_test_split": [76, 77, 89, 93, 94], "inf": [76, 77], "mid": [76, 77], "bins_map": [76, 77], "create_data": [76, 77], "y_bin": [76, 77], "y_i": [76, 77], "y_bin_idx": [76, 77], "y_train": [76, 77, 84, 91], "y_test": [76, 77, 84, 91], "y_train_idx": [76, 77], "y_test_idx": [76, 77], "test_siz": [76, 77, 93, 94], "slide": [76, 77, 81], "decis": [76, 77, 93], "frame": [76, 77], "x_out": [76, 77], "tini": [76, 77], "concaten": [76, 77, 82, 90], "y_out": [76, 77], "y_out_bin": [76, 77], "y_out_bin_idx": [76, 77], "exact_duplicate_idx": [76, 77], "x_duplic": [76, 77], "y_duplic": [76, 77], "y_duplicate_idx": [76, 77], "noisy_labels_idx": [76, 77, 87], "scatter": [76, 77, 84, 87, 91], "black": [76, 77, 81, 91], "cyan": [76, 77], "pyplot": [76, 77, 83, 84, 87, 89, 91], "plt": [76, 77, 83, 84, 87, 89, 91], "plot_data": [76, 77, 84, 87, 91], "fig": [76, 77, 81, 83, 89, 91], "ax": [76, 77, 83, 89, 91], "subplot": [76, 77, 83, 89], "set_titl": [76, 77, 83, 89], "set_xlabel": [76, 77], "x_1": [76, 77], "fontsiz": [76, 77, 83, 84, 87], "set_ylabel": [76, 77], "x_2": [76, 77], "set_xlim": [76, 77], "set_ylim": [76, 77], "linestyl": [76, 77], "circl": [76, 77, 84, 87], "misclassifi": [76, 77], "zip": [76, 77, 83, 88, 95], "label_err": [76, 77], "180": [76, 77, 88], "marker": [76, 77], "facecolor": [76, 77], "edgecolor": [76, 77], "linewidth": [76, 77, 89], "dup": [76, 77], "first_legend": [76, 77], "align": [76, 77], "title_fontproperti": [76, 77], "semibold": [76, 77], "second_legend": [76, 77], "45": [76, 77, 81, 83, 84, 88, 92], "gca": [76, 77], "add_artist": [76, 77], "tight_layout": [76, 77], "ideal": [76, 77], "logist": [76, 77, 80, 86, 89, 94], "remaind": 76, "modal": [76, 77, 82, 86], "132": [76, 77, 84, 88], "9318": 76, "77": [76, 77, 79, 88, 89, 92, 93], "006940": 76, "007830": 76, "40": [76, 77, 80, 81, 83, 92], "014828": 76, "107": [76, 77, 84, 87], "021241": 76, "120": [76, 77, 93], "026407": 76, "notic": [76, 84, 86, 88], "3558": [76, 77], "126": [76, 77, 84, 88], "006636": [76, 77], "130": [76, 77], "012571": [76, 77], "129": [76, 77], "127": [76, 77], "014909": [76, 77], "128": [76, 77, 83], "017443": [76, 77], "6160": [76, 77], "is_near_duplicate_issu": [76, 77, 79, 80, 82, 83, 84], "131": [76, 77, 92], "000000e": [76, 77], "00": [76, 77, 79, 81, 83, 89, 92, 93, 95], "000002": [76, 77], "463180e": [76, 77], "07": [76, 77, 79, 83, 84, 88, 91, 92], "51": [76, 77, 79, 81, 83, 84, 88, 89, 92], "161148": [76, 77], "859087e": [76, 77], "30": [76, 77, 81, 82, 83, 87, 92, 95], "3453": 76, "029542": 76, "031182": 76, "057961": 76, "058244": 76, "home": [76, 77, 80, 81, 94], "runner": [76, 77, 80, 94], "329": [76, 83, 88], "359": 76, "338": 76, "34": [76, 81, 84, 86, 88, 89, 92, 95], "54": [76, 81, 83, 84, 88, 89, 92], "039122": 76, "53": [76, 77, 79, 81, 83, 87, 88, 92, 93], "044598": 76, "105": [76, 88], "105196": 76, "133654": 76, "43": [76, 81, 84, 88, 92, 95], "168033": 76, "125": 76, "101107": 76, "37": [76, 81, 83, 92], "183382": 76, "109": [76, 81, 88], "209259": 76, "211042": 76, "221316": 76, "average_ood_scor": 76, "34530442089193386": 76, "52": [76, 81, 83, 88, 92, 95], "169820": 76, "087324e": 76, "89": [76, 79, 88, 89, 91, 92, 94, 95], "92": [76, 83, 84, 88, 89, 92, 93], "259024": 76, "583757e": 76, "91": [76, 88, 92], "346458": 76, "341292e": 76, "specfi": 76, "new_lab": 76, "scoring_funct": 76, "div": 76, "rem": 76, "inv_scal": 76, "49": [76, 81, 83, 84, 88, 92], "superstitionissuemanag": 76, "unlucki": 76, "superstit": 76, "to_seri": 76, "issues_mask": 76, "summary_scor": 76, "9242": 76, "is_superstition_issu": 76, "superstition_scor": 76, "26": [76, 81, 83, 84, 86, 88, 92], "047581": 76, "090635": 76, "129591": 76, "65": [76, 83, 88, 92, 93], "164840": 76, "demo": [77, 79, 87, 93], "lurk": [77, 83, 84], "_split": 77, "737": 77, "thoroughli": 77, "preprocess": [77, 79, 89, 91, 93, 94], "904": 77, "review": [77, 79, 80, 81, 82, 84, 88, 91, 92, 93, 94, 95], "8561": 77, "001908": 77, "58": [77, 79, 81, 83, 84, 88, 89, 92, 93], "003564": 77, "007331": 77, "008963": 77, "009664": 77, "0227": 77, "is_class_imbalance_issu": 77, "022727": 77, "86": [77, 79, 83, 84, 88, 89, 91, 92, 93], "87": [77, 83, 88, 91, 92, 94], "auto": [77, 81, 82, 91, 93, 94], "conceptu": 77, "856061": 77, "355772": 77, "616034": 77, "821750": 77, "901562": 77, "betweeen": 77, "is_null_issu": 77, "is_non_iid_issu": [77, 79, 80, 84], "is_underperforming_group_issu": 77, "859131": 77, "417707": 77, "664083": 77, "970324": 77, "816953": 77, "375317": 77, "641516": 77, "890575": 77, "531021": 77, "460593": 77, "601188": 77, "826147": 77, "752808": 77, "321635": 77, "562539": 77, "948362": 77, "090243": 77, "472909": 77, "746763": 77, "878267": 77, "examples_w_issu": [77, 82], "013445": 77, "025184": 77, "026376": 77, "inde": [77, 80], "miscellan": [77, 95], "428571": 77, "111111": 77, "571429": 77, "407407": 77, "592593": 77, "337838": 77, "092593": 77, "662162": 77, "333333": [77, 81], "952381": 77, "666667": 77, "portion": 77, "huge": [77, 84], "worri": [77, 80], "critic": 77, "highli": [77, 83], "sql": [79, 93], "databas": [79, 93], "excel": [79, 93], "parquet": [79, 93], "student": [79, 91, 93, 95], "grade": [79, 91, 93], "900": [79, 91, 93], "exam": [79, 91, 93], "letter": [79, 93, 95], "hundr": [79, 93], "histgradientboostingclassifi": 79, "standardscal": [79, 89, 93], "grades_data": [79, 93], "read_csv": [79, 80, 91, 93, 94], "stud_id": [79, 93], "exam_1": [79, 91, 93], "exam_2": [79, 91, 93], "exam_3": [79, 91, 93], "letter_grad": [79, 93], "f48f73": [79, 93], "0bd4e7": [79, 93], "81": [79, 80, 88, 91, 92, 93, 95], "great": [79, 81, 93], "particip": [79, 93], "cb9d7a": [79, 93], "61": [79, 84, 88, 89, 91, 92, 93], "94": [79, 81, 84, 88, 91, 92, 93], "78": [79, 81, 84, 88, 91, 92, 93], "9acca4": [79, 93], "48": [79, 81, 83, 84, 88, 89, 92, 93], "x_raw": [79, 93], "cat_featur": 79, "x_encod": [79, 93], "get_dummi": [79, 91, 93], "drop_first": [79, 93], "numeric_featur": [79, 93], "scaler": [79, 89, 93], "x_process": [79, 93], "fit_transform": [79, 93], "bring": [79, 80, 83, 86, 91, 93, 94], "byod": [79, 80, 83, 86, 91, 93, 94], "boost": [79, 82, 86, 91], "xgboost": [79, 82, 91], "think": [79, 80, 82, 87, 92, 95], "carefulli": [79, 80, 83, 93], "nonzero": 79, "suspici": [79, 93], "tabl": [79, 81, 86, 93], "358": 79, "294": [79, 88], "46": [79, 81, 83, 84, 88, 92], "941": 79, "7109": 79, "000005": [79, 80, 91], "886": 79, "000059": 79, "709": 79, "000104": 79, "723": 79, "000169": 79, "689": 79, "000181": 79, "3590": 79, "051882e": 79, "683133e": 79, "536582e": 79, "406589e": 79, "324246e": 79, "6165": 79, "582": 79, "185": [79, 81, 88], "187": [79, 81], "27": [79, 81, 83, 84, 88, 92, 95], "898": 79, "637": [79, 93], "0014": [79, 81], "595": 79, "702427": 79, "147": [79, 84, 88], "711186": 79, "157": [79, 84], "721394": 79, "771": [79, 83], "731979": 79, "740335": 79, "0014153602099278074": 79, "issue_result": 79, "000842": 79, "555944": 79, "004374": 79, "sorted_issu": 79, "73": [79, 81, 87, 88, 91, 92], "deserv": 79, "outlier_result": 79, "sorted_outli": 79, "56": [79, 81, 83, 91, 92], "96": [79, 81, 84, 87, 88, 91, 92], "lt": [79, 80, 81, 83, 86, 89, 92], "style": [79, 92], "font": 79, "18px": 79, "ff00ff": 79, "bac": 79, "unintend": [79, 80], "mistak": [79, 80, 83, 93, 94], "duplicate_result": 79, "690": 79, "246": [79, 88], "perhap": [79, 84, 86], "twice": 79, "67": [79, 81, 88, 91, 92], "wari": [79, 80, 82], "super": [79, 80, 83], "intent": [80, 94], "servic": [80, 82, 94], "onlin": [80, 94], "bank": [80, 81, 94], "banking77": [80, 94], "oo": [80, 94], "000": [80, 81, 83, 94, 95], "categori": [80, 83, 94], "scope": [80, 94], "dive": 80, "your_featur": 80, "sentence_transform": [80, 94], "sentencetransform": [80, 94], "payment": [80, 94], "cancel_transf": [80, 94], "transfer": [80, 94], "fund": [80, 94], "cancel": [80, 94], "transact": [80, 94], "my": [80, 94], "revert": [80, 94], "morn": [80, 94], "realis": [80, 94], "yesterdai": [80, 94], "rent": [80, 94], "realli": [80, 86, 92, 94], "tomorrow": [80, 94], "raw_text": [80, 94], "card_payment_fee_charg": [80, 94], "change_pin": [80, 94], "lost_or_stolen_phon": [80, 94], "beneficiary_not_allow": [80, 94], "card_about_to_expir": [80, 94], "getting_spare_card": [80, 94], "apple_pay_or_google_pai": [80, 94], "supported_cards_and_curr": [80, 94], "visa_or_mastercard": [80, 94], "utter": [80, 94], "suit": [80, 81, 82, 94], "electra": [80, 94], "discrimin": [80, 94], "googl": [80, 94], "text_embed": 80, "No": [80, 82, 94], "google_electra": [80, 94], "pool": [80, 82, 89, 94], "_util": [80, 94], "831": [80, 94], "typedstorag": [80, 94], "untypedstorag": [80, 94], "untyped_storag": [80, 94], "fget": [80, 94], "__get__": [80, 94], "owner": [80, 94], "400": [80, 94], "data_dict": [80, 84, 86], "85": [80, 88, 92], "38": [80, 81, 83, 88, 89, 92], "9710": 80, "981": 80, "974": 80, "000146": 80, "982": [80, 81], "000224": 80, "971": 80, "000507": 80, "980": [80, 81], "000960": 80, "3584": 80, "994": 80, "009642": 80, "999": 80, "013067": 80, "013841": 80, "433": 80, "014722": 80, "989": 80, "018224": 80, "6070": 80, "160": [80, 91], "095724": 80, "148": 80, "006237": 80, "546": 80, "099341": 80, "514": 80, "006485": 80, "481": 80, "123418": 80, "008165": 80, "0000": [80, 81, 84], "313": [80, 88], "564102": 80, "572258": 80, "28": [80, 81, 83, 84, 86, 89, 92, 95], "574915": 80, "31": [80, 81, 84, 86, 88, 89, 92], "575507": 80, "575874": 80, "792090": 80, "257611": 80, "698710": 80, "182121": 80, "771619": 80, "to_numpi": [80, 82, 91, 94], "data_with_suggested_label": 80, "suggested_label": 80, "charg": [80, 94], "cash": [80, 94], "holidai": [80, 94], "sent": [80, 94, 95], "card": [80, 81, 94], "mine": [80, 94], "expir": [80, 94], "me": [80, 94], "withdraw": 80, "monei": 80, "whoever": [80, 94], "outlier_issu": [80, 83], "lowest_quality_outli": 80, "OR": 80, "636c65616e6c616220697320617765736f6d6521": 80, "phone": [80, 81], "gone": 80, "gt": [80, 86, 95], "samp": 80, "br": 80, "press": [80, 95], "nonsens": 80, "sens": 80, "detriment": 80, "duplicate_issu": 80, "fee": 80, "pai": 80, "go": [80, 81, 84], "strongli": 80, "p_valu": 80, "benign": 80, "shortlist": [80, 91, 94], "curat": [80, 85], "mnist_test_set": 81, "imagenet_val_set": 81, "tench": 81, "goldfish": 81, "white": [81, 95], "shark": 81, "tiger": 81, "hammerhead": 81, "electr": 81, "rai": 81, "stingrai": 81, "cock": 81, "hen": 81, "ostrich": 81, "brambl": 81, "goldfinch": 81, "hous": 81, "finch": 81, "junco": 81, "indigo": 81, "bunt": 81, "american": [81, 95], "robin": 81, "bulbul": 81, "jai": 81, "magpi": 81, "chickade": 81, "dipper": 81, "kite": 81, "bald": 81, "eagl": 81, "vultur": 81, "grei": 81, "owl": 81, "salamand": 81, "smooth": 81, "newt": 81, "spot": [81, 88], "axolotl": 81, "bullfrog": 81, "tree": 81, "frog": [81, 89], "tail": 81, "loggerhead": 81, "sea": 81, "turtl": 81, "leatherback": 81, "mud": 81, "terrapin": 81, "band": 81, "gecko": 81, "green": [81, 95], "iguana": 81, "carolina": 81, "anol": 81, "desert": 81, "grassland": 81, "whiptail": 81, "lizard": 81, "agama": 81, "frill": 81, "neck": 81, "allig": 81, "gila": 81, "monster": 81, "european": 81, "chameleon": 81, "komodo": 81, "dragon": 81, "nile": 81, "crocodil": 81, "triceratop": 81, "worm": 81, "snake": 81, "ring": 81, "eastern": 81, "hog": 81, "nose": 81, "kingsnak": 81, "garter": 81, "water": 81, "vine": 81, "night": 81, "boa": 81, "constrictor": 81, "african": 81, "rock": 81, "indian": 81, "cobra": 81, "mamba": 81, "saharan": 81, "horn": 81, "viper": 81, "diamondback": 81, "rattlesnak": 81, "sidewind": 81, "trilobit": 81, "harvestman": 81, "scorpion": 81, "yellow": 81, "garden": 81, "spider": 81, "barn": 81, "southern": 81, "widow": 81, "tarantula": 81, "wolf": 81, "tick": 81, "centiped": 81, "grous": 81, "ptarmigan": 81, "ruf": 81, "prairi": 81, "peacock": 81, "quail": 81, "partridg": 81, "parrot": 81, "macaw": 81, "sulphur": 81, "crest": 81, "cockatoo": 81, "lorikeet": 81, "coucal": 81, "bee": 81, "eater": 81, "hornbil": 81, "hummingbird": 81, "jacamar": 81, "toucan": 81, "duck": [81, 94], "breast": 81, "mergans": 81, "goos": 81, "swan": 81, "tusker": 81, "echidna": 81, "platypu": 81, "wallabi": 81, "koala": 81, "wombat": 81, "jellyfish": 81, "anemon": 81, "brain": 81, "coral": 81, "flatworm": 81, "nematod": 81, "conch": 81, "snail": 81, "slug": 81, "chiton": 81, "chamber": 81, "nautilu": 81, "dung": 81, "crab": 81, "fiddler": 81, "king": 81, "lobster": 81, "spini": 81, "crayfish": 81, "hermit": 81, "isopod": 81, "stork": 81, "spoonbil": 81, "flamingo": 81, "heron": 81, "egret": 81, "bittern": 81, "crane": 81, "bird": [81, 89], "limpkin": 81, "gallinul": 81, "coot": 81, "bustard": 81, "ruddi": 81, "turnston": 81, "dunlin": 81, "redshank": 81, "dowitch": 81, "oystercatch": 81, "pelican": 81, "penguin": 81, "albatross": 81, "whale": 81, "killer": 81, "dugong": 81, "lion": 81, "chihuahua": 81, "japanes": 81, "chin": 81, "maltes": 81, "pekinges": 81, "shih": 81, "tzu": 81, "charl": 81, "spaniel": 81, "papillon": 81, "terrier": 81, "rhodesian": 81, "ridgeback": 81, "afghan": [81, 95], "hound": 81, "basset": 81, "beagl": 81, "bloodhound": 81, "bluetick": 81, "coonhound": 81, "tan": 81, "walker": 81, "foxhound": 81, "redbon": 81, "borzoi": 81, "irish": 81, "wolfhound": 81, "italian": 81, "greyhound": 81, "whippet": 81, "ibizan": 81, "norwegian": 81, "elkhound": 81, "otterhound": 81, "saluki": 81, "scottish": 81, "deerhound": 81, "weimaran": 81, "staffordshir": 81, "bull": 81, "bedlington": 81, "border": 81, "kerri": 81, "norfolk": 81, "norwich": 81, "yorkshir": 81, "wire": 81, "fox": 81, "lakeland": 81, "sealyham": 81, "airedal": 81, "cairn": 81, "australian": 81, "dandi": 81, "dinmont": 81, "boston": 81, "miniatur": 81, "schnauzer": 81, "giant": 81, "tibetan": 81, "silki": 81, "coat": [81, 83], "wheaten": 81, "west": 81, "highland": 81, "lhasa": 81, "apso": 81, "flat": 81, "retriev": 81, "curli": 81, "golden": 81, "labrador": 81, "chesapeak": 81, "bai": 81, "german": [81, 95], "shorthair": 81, "pointer": 81, "vizsla": 81, "setter": 81, "gordon": 81, "brittani": 81, "clumber": 81, "springer": 81, "welsh": 81, "cocker": 81, "sussex": 81, "kuvasz": 81, "schipperk": 81, "groenendael": 81, "malinoi": 81, "briard": 81, "kelpi": 81, "komondor": 81, "sheepdog": 81, "shetland": 81, "colli": 81, "bouvier": 81, "de": 81, "flandr": 81, "rottweil": 81, "shepherd": 81, "dobermann": 81, "pinscher": 81, "swiss": [81, 95], "mountain": 81, "bernes": 81, "appenzel": 81, "sennenhund": 81, "entlebuch": 81, "boxer": 81, "bullmastiff": 81, "mastiff": 81, "french": 81, "bulldog": 81, "dane": 81, "st": 81, "bernard": 81, "huski": 81, "alaskan": 81, "malamut": 81, "siberian": 81, "dalmatian": 81, "affenpinsch": 81, "basenji": 81, "pug": 81, "leonberg": 81, "newfoundland": 81, "pyrenean": 81, "samoi": 81, "pomeranian": 81, "chow": 81, "keeshond": 81, "griffon": 81, "bruxelloi": 81, "pembrok": 81, "corgi": 81, "cardigan": 81, "poodl": 81, "mexican": 81, "hairless": 81, "tundra": 81, "coyot": 81, "dingo": 81, "dhole": 81, "wild": 81, "hyena": 81, "kit": 81, "arctic": 81, "tabbi": 81, "persian": 81, "siames": 81, "egyptian": 81, "mau": 81, "cougar": 81, "lynx": 81, "leopard": 81, "snow": 81, "jaguar": 81, "cheetah": 81, "brown": [81, 92], "bear": 81, "polar": 81, "sloth": 81, "mongoos": 81, "meerkat": 81, "beetl": 81, "ladybug": 81, "longhorn": 81, "leaf": 81, "rhinocero": 81, "weevil": 81, "fly": 81, "ant": 81, "grasshopp": 81, "cricket": 81, "stick": 81, "insect": 81, "cockroach": 81, "manti": 81, "cicada": 81, "leafhopp": 81, "lacew": 81, "dragonfli": 81, "damselfli": 81, "admir": 81, "ringlet": 81, "monarch": 81, "butterfli": 81, "gossam": 81, "wing": 81, "starfish": 81, "urchin": 81, "cucumb": 81, "cottontail": 81, "rabbit": 81, "hare": 81, "angora": 81, "hamster": 81, "porcupin": 81, "squirrel": 81, "marmot": 81, "beaver": 81, "guinea": 81, "pig": 81, "sorrel": 81, "zebra": 81, "boar": 81, "warthog": 81, "hippopotamu": 81, "ox": 81, "buffalo": 81, "bison": 81, "bighorn": 81, "sheep": 81, "alpin": 81, "ibex": 81, "hartebeest": 81, "impala": 81, "gazel": 81, "dromedari": 81, "llama": 81, "weasel": 81, "mink": 81, "polecat": 81, "foot": 81, "ferret": 81, "otter": 81, "skunk": 81, "badger": 81, "armadillo": 81, "toed": 81, "orangutan": 81, "gorilla": 81, "chimpanze": 81, "gibbon": 81, "siamang": 81, "guenon": 81, "pata": 81, "monkei": 81, "baboon": 81, "macaqu": 81, "langur": 81, "colobu": 81, "probosci": 81, "marmoset": 81, "capuchin": 81, "howler": 81, "titi": 81, "geoffroi": 81, "lemur": 81, "indri": 81, "asian": 81, "eleph": 81, "bush": 81, "snoek": 81, "eel": 81, "coho": 81, "salmon": 81, "beauti": 81, "clownfish": 81, "sturgeon": 81, "garfish": 81, "lionfish": 81, "pufferfish": 81, "abacu": 81, "abaya": 81, "academ": 81, "gown": 81, "accordion": 81, "acoust": 81, "guitar": 81, "aircraft": 81, "carrier": 81, "airlin": 81, "airship": 81, "altar": 81, "ambul": 81, "amphibi": 81, "clock": [81, 95], "apiari": 81, "apron": 81, "wast": 81, "assault": 81, "rifl": 81, "backpack": 81, "bakeri": 81, "balanc": 81, "beam": 81, "balloon": 81, "ballpoint": 81, "pen": 81, "aid": 81, "banjo": 81, "balust": 81, "barbel": 81, "barber": 81, "chair": [81, 88], "barbershop": 81, "baromet": 81, "barrel": 81, "wheelbarrow": 81, "basebal": 81, "basketbal": 81, "bassinet": 81, "bassoon": 81, "swim": 81, "cap": 81, "bath": 81, "towel": 81, "bathtub": 81, "station": 81, "wagon": 81, "lighthous": 81, "beaker": 81, "militari": 81, "beer": 81, "bottl": 81, "glass": 81, "bell": 81, "cot": 81, "bib": 81, "bicycl": [81, 92], "bikini": 81, "binder": 81, "binocular": 81, "birdhous": 81, "boathous": 81, "bobsleigh": 81, "bolo": 81, "tie": 81, "poke": 81, "bonnet": 81, "bookcas": 81, "bookstor": 81, "bow": 81, "brass": 81, "bra": 81, "breakwat": 81, "breastplat": 81, "broom": 81, "bucket": 81, "buckl": 81, "bulletproof": 81, "vest": 81, "butcher": 81, "shop": 81, "taxicab": 81, "cauldron": 81, "candl": 81, "cannon": 81, "cano": 81, "mirror": [81, 88], "carousel": 81, "tool": [81, 84, 86], "carton": 81, "wheel": 81, "teller": 81, "cassett": 81, "player": 81, "castl": 81, "catamaran": 81, "cd": 81, "cello": 81, "mobil": [81, 95], "chain": 81, "fenc": [81, 92], "mail": 81, "chainsaw": 81, "chest": 81, "chiffoni": 81, "chime": 81, "china": 81, "cabinet": 81, "christma": 81, "stock": 81, "church": 81, "movi": 81, "theater": 81, "cleaver": 81, "cliff": 81, "dwell": 81, "cloak": 81, "clog": 81, "cocktail": 81, "shaker": 81, "coffe": 81, "mug": 81, "coffeemak": 81, "coil": 81, "lock": 81, "keyboard": 81, "confectioneri": 81, "ship": [81, 89], "corkscrew": 81, "cornet": 81, "cowboi": 81, "boot": 81, "hat": 81, "cradl": 81, "crash": 81, "helmet": 81, "crate": 81, "infant": 81, "bed": 81, "crock": 81, "pot": 81, "croquet": 81, "crutch": 81, "cuirass": 81, "dam": 81, "desk": 81, "desktop": 81, "rotari": 81, "dial": 81, "telephon": 81, "diaper": 81, "watch": 81, "dine": 81, "dishcloth": 81, "dishwash": 81, "disc": 81, "brake": 81, "dock": 81, "sled": 81, "dome": 81, "doormat": 81, "drill": 81, "rig": 81, "drum": 81, "drumstick": 81, "dumbbel": 81, "dutch": 81, "oven": 81, "fan": 81, "locomot": 81, "entertain": 81, "center": 81, "envelop": 81, "espresso": 81, "powder": 81, "feather": 81, "fireboat": 81, "engin": [81, 92], "screen": 81, "sheet": 81, "flagpol": 81, "flute": 81, "footbal": 81, "forklift": 81, "fountain": 81, "poster": 81, "freight": 81, "fry": 81, "pan": 81, "fur": 81, "garbag": 81, "ga": 81, "pump": 81, "goblet": 81, "kart": 81, "golf": 81, "cart": 81, "gondola": 81, "gong": 81, "grand": 81, "piano": 81, "greenhous": 81, "grill": 81, "groceri": 81, "guillotin": 81, "barrett": 81, "hair": 81, "sprai": 81, "hammer": 81, "dryer": 81, "hand": [81, 84], "handkerchief": 81, "drive": 81, "harmonica": 81, "harp": 81, "harvest": 81, "hatchet": 81, "holster": 81, "honeycomb": 81, "hoop": 81, "skirt": 81, "horizont": 81, "bar": 81, "hors": [81, 89, 94], "drawn": 81, "hourglass": 81, "ipod": 81, "cloth": 81, "iron": 81, "jack": 81, "lantern": 81, "jean": 81, "jeep": 81, "shirt": [81, 83], "jigsaw": 81, "puzzl": 81, "pull": 81, "rickshaw": 81, "joystick": 81, "kimono": 81, "knee": 81, "pad": 81, "knot": 81, "ladl": 81, "lampshad": 81, "laptop": 81, "lawn": 81, "mower": 81, "knife": 81, "lifeboat": 81, "lighter": 81, "limousin": 81, "ocean": 81, "liner": 81, "lipstick": 81, "slip": 81, "shoe": 81, "lotion": 81, "speaker": 81, "loup": 81, "sawmil": 81, "magnet": 81, "compass": 81, "bag": [81, 83, 89, 90], "mailbox": 81, "tight": 81, "tank": 81, "manhol": 81, "maraca": 81, "marimba": 81, "maypol": 81, "maze": 81, "cup": [81, 88], "medicin": 81, "megalith": 81, "microphon": 81, "microwav": 81, "milk": 81, "minibu": 81, "miniskirt": 81, "minivan": 81, "missil": 81, "mitten": 81, "mix": 81, "bowl": 81, "modem": 81, "monasteri": 81, "monitor": 81, "mope": 81, "mortar": 81, "mosqu": 81, "mosquito": 81, "scooter": 81, "bike": 81, "tent": 81, "mous": [81, 82], "mousetrap": 81, "van": 81, "muzzl": 81, "nail": 81, "brace": 81, "necklac": 81, "nippl": 81, "obelisk": 81, "obo": 81, "ocarina": 81, "odomet": 81, "oil": 81, "oscilloscop": 81, "overskirt": 81, "bullock": 81, "oxygen": 81, "packet": 81, "paddl": 81, "padlock": 81, "paintbrush": 81, "pajama": 81, "palac": [81, 95], "parachut": 81, "park": 81, "bench": 81, "meter": 81, "passeng": 81, "patio": 81, "payphon": 81, "pedest": 81, "pencil": 81, "perfum": 81, "petri": 81, "dish": 81, "photocopi": 81, "plectrum": 81, "pickelhaub": 81, "picket": 81, "pickup": 81, "pier": 81, "piggi": 81, "pill": 81, "pillow": 81, "ping": 81, "pong": 81, "pinwheel": 81, "pirat": 81, "pitcher": 81, "plane": 81, "planetarium": 81, "plastic": 81, "plate": 81, "rack": 81, "plow": 81, "plunger": 81, "polaroid": 81, "camera": 81, "pole": [81, 92], "polic": 81, "poncho": 81, "billiard": 81, "soda": 81, "potter": 81, "prayer": 81, "rug": 81, "printer": 81, "prison": 81, "projectil": 81, "projector": 81, "hockei": 81, "puck": 81, "punch": 81, "purs": 81, "quill": 81, "quilt": 81, "race": 81, "racket": 81, "radiat": 81, "radio": 81, "telescop": 81, "rain": 81, "recreat": 81, "reel": 81, "reflex": 81, "refriger": 81, "remot": 81, "restaur": 81, "revolv": 81, "rotisseri": 81, "eras": 81, "rugbi": 81, "ruler": 81, "safe": 81, "safeti": 81, "salt": 81, "sandal": [81, 83], "sarong": 81, "saxophon": 81, "scabbard": 81, "school": 81, "bu": [81, 92], "schooner": 81, "scoreboard": 81, "crt": 81, "screw": 81, "screwdriv": 81, "seat": 81, "belt": 81, "sew": 81, "shield": 81, "shoji": 81, "basket": 81, "shovel": 81, "shower": 81, "curtain": 81, "ski": 81, "sleep": 81, "door": 81, "slot": 81, "snorkel": 81, "snowmobil": 81, "snowplow": 81, "soap": 81, "dispens": 81, "soccer": [81, 95], "sock": 81, "solar": 81, "thermal": 81, "collector": 81, "sombrero": 81, "soup": 81, "heater": 81, "shuttl": 81, "spatula": 81, "motorboat": 81, "web": 81, "spindl": 81, "sport": [81, 95], "spotlight": 81, "stage": 81, "steam": 81, "arch": 81, "bridg": 81, "steel": 81, "stethoscop": 81, "scarf": 81, "stone": 81, "wall": [81, 92], "stopwatch": 81, "stove": 81, "strainer": 81, "tram": 81, "stretcher": 81, "couch": 81, "stupa": 81, "submarin": 81, "sundial": 81, "sunglass": 81, "sunscreen": 81, "suspens": 81, "mop": 81, "sweatshirt": 81, "swimsuit": 81, "swing": 81, "switch": 81, "syring": 81, "lamp": 81, "tape": 81, "teapot": 81, "teddi": 81, "televis": [81, 95], "tenni": 81, "thatch": 81, "roof": 81, "front": 81, "thimbl": 81, "thresh": 81, "throne": 81, "tile": 81, "toaster": 81, "tobacco": 81, "toilet": 81, "totem": 81, "tow": 81, "tractor": 81, "semi": 81, "trailer": 81, "trai": 81, "trench": 81, "tricycl": 81, "trimaran": 81, "tripod": 81, "triumphal": 81, "trolleybu": 81, "trombon": 81, "tub": 81, "turnstil": 81, "typewrit": 81, "umbrella": 81, "unicycl": 81, "upright": 81, "vacuum": 81, "cleaner": 81, "vase": 81, "vault": 81, "velvet": 81, "vend": 81, "vestment": 81, "viaduct": 81, "violin": 81, "volleybal": 81, "waffl": 81, "wallet": 81, "wardrob": 81, "sink": 81, "wash": 81, "jug": 81, "tower": 81, "whiskei": 81, "whistl": 81, "wig": 81, "shade": [81, 92], "windsor": 81, "wine": 81, "wok": 81, "wooden": 81, "spoon": 81, "wool": 81, "rail": 81, "shipwreck": 81, "yawl": 81, "yurt": 81, "websit": 81, "comic": 81, "book": 81, "crossword": 81, "traffic": [81, 88, 92], "sign": [81, 92, 95], "dust": 81, "jacket": [81, 88], "menu": 81, "guacamol": 81, "consomm": 81, "trifl": 81, "ic": 81, "cream": 81, "pop": 81, "baguett": 81, "bagel": 81, "pretzel": 81, "cheeseburg": 81, "mash": 81, "potato": 81, "cabbag": 81, "broccoli": 81, "cauliflow": 81, "zucchini": 81, "spaghetti": 81, "squash": 81, "acorn": 81, "butternut": 81, "artichok": 81, "pepper": 81, "cardoon": 81, "mushroom": 81, "granni": 81, "smith": 81, "strawberri": 81, "orang": 81, "lemon": 81, "pineappl": 81, "banana": 81, "jackfruit": 81, "custard": 81, "appl": 81, "pomegran": 81, "hai": 81, "carbonara": 81, "chocol": 81, "syrup": 81, "dough": 81, "meatloaf": 81, "pizza": 81, "pie": 81, "burrito": 81, "eggnog": 81, "alp": 81, "bubbl": 81, "reef": 81, "geyser": 81, "lakeshor": 81, "promontori": 81, "shoal": 81, "seashor": 81, "vallei": 81, "volcano": 81, "bridegroom": 81, "scuba": 81, "diver": 81, "rapese": 81, "daisi": 81, "ladi": 81, "slipper": 81, "corn": 81, "rose": 81, "hip": 81, "chestnut": 81, "fungu": 81, "agar": 81, "gyromitra": 81, "stinkhorn": 81, "earth": 81, "star": 81, "wood": 81, "bolet": 81, "ear": 81, "cifar10_test_set": 81, "airplan": [81, 89], "automobil": [81, 89], "deer": [81, 89], "cifar100_test_set": 81, "aquarium_fish": 81, "babi": 81, "boi": 81, "camel": 81, "caterpillar": 81, "cattl": [81, 95], "cloud": 81, "dinosaur": 81, "dolphin": 81, "flatfish": 81, "forest": 81, "girl": 81, "kangaroo": 81, "lawn_mow": 81, "man": 81, "maple_tre": 81, "motorcycl": [81, 92], "oak_tre": 81, "orchid": 81, "palm_tre": 81, "pear": 81, "pickup_truck": 81, "pine_tre": 81, "plain": 81, "poppi": 81, "possum": 81, "raccoon": 81, "road": [81, 92], "rocket": 81, "seal": 81, "shrew": 81, "skyscrap": 81, "streetcar": 81, "sunflow": 81, "sweet_pepp": 81, "trout": 81, "tulip": 81, "willow_tre": 81, "woman": [81, 88], "caltech256": 81, "ak47": 81, "bat": 81, "glove": 81, "birdbath": 81, "blimp": 81, "bonsai": 81, "boom": 81, "breadmak": 81, "buddha": 81, "bulldoz": 81, "cactu": 81, "cake": 81, "tire": 81, "cartman": 81, "cereal": 81, "chandeli": 81, "chess": 81, "board": 81, "chimp": 81, "chopstick": 81, "coffin": 81, "coin": 81, "comet": 81, "cormor": 81, "globe": 81, "diamond": 81, "dice": 81, "doorknob": 81, "drink": 81, "straw": 81, "dumb": 81, "eiffel": 81, "elk": 81, "ewer": 81, "eyeglass": 81, "fern": 81, "fighter": 81, "jet": [81, 91], "extinguish": 81, "hydrant": 81, "firework": 81, "flashlight": 81, "floppi": 81, "fri": 81, "frisbe": 81, "galaxi": 81, "giraff": 81, "goat": 81, "gate": 81, "grape": 81, "pick": [81, 82], "hamburg": 81, "hammock": 81, "harpsichord": 81, "hawksbil": 81, "helicopt": 81, "hibiscu": 81, "homer": 81, "simpson": 81, "horsesho": 81, "air": 81, "skeleton": 81, "ibi": 81, "cone": 81, "iri": 81, "jesu": 81, "christ": 81, "joi": 81, "kayak": 81, "ketch": 81, "ladder": 81, "lath": 81, "licens": 81, "lightbulb": 81, "lightn": 81, "mandolin": 81, "mar": 81, "mattress": 81, "megaphon": 81, "menorah": 81, "microscop": 81, "minaret": 81, "minotaur": 81, "motorbik": 81, "mussel": 81, "neckti": 81, "octopu": 81, "palm": 81, "pilot": 81, "paperclip": 81, "shredder": 81, "pci": 81, "peopl": [81, 88], "pez": 81, "picnic": 81, "pram": 81, "prai": 81, "pyramid": 81, "rainbow": 81, "roulett": 81, "saddl": 81, "saturn": 81, "segwai": 81, "propel": 81, "sextant": 81, "music": 81, "skateboard": 81, "smokestack": 81, "sneaker": 81, "boat": 81, "stain": 81, "steer": 81, "stirrup": 81, "superman": 81, "sushi": 81, "armi": [81, 95], "sword": 81, "tambourin": 81, "teepe": 81, "court": 81, "theodolit": 81, "tomato": 81, "tombston": 81, "tour": 81, "pisa": 81, "treadmil": 81, "fork": 81, "tweezer": 81, "unicorn": 81, "vcr": 81, "waterfal": 81, "watermelon": 81, "weld": 81, "windmil": 81, "xylophon": 81, "yarmulk": 81, "yo": 81, "toad": 81, "twenty_news_test_set": 81, "alt": 81, "atheism": 81, "comp": 81, "graphic": [81, 92], "misc": [81, 95], "sy": 81, "ibm": 81, "pc": 81, "hardwar": 81, "mac": 81, "forsal": 81, "rec": 81, "sci": 81, "crypt": 81, "electron": 81, "med": 81, "soc": 81, "religion": 81, "christian": [81, 95], "talk": [81, 95], "polit": 81, "gun": 81, "mideast": 81, "amazon": 81, "neutral": 81, "imdb_test_set": 81, "all_class": 81, "20news_test_set": 81, "_load_classes_predprobs_label": 81, "dataset_nam": 81, "labelerror": 81, "url_bas": 81, "5392f6c71473055060be3044becdde1cbc18284d": 81, "url_label": 81, "original_test_label": 81, "_original_label": 81, "url_prob": 81, "cross_validated_predicted_prob": 81, "_pyx": 81, "num_part": 81, "datatset": 81, "bytesio": 81, "allow_pickl": 81, "pred_probs_part": 81, "url": 81, "_of_": 81, "nload": 81, "imdb": 81, "ve": [81, 82, 84, 86, 88], "interpret": [81, 82, 84, 87, 91], "capit": 81, "29780": 81, "256": [81, 82, 88], "780": 81, "medic": [81, 95], "doctor": 81, "254": [81, 88], "359223": 81, "640777": 81, "184": [81, 84], "258427": 81, "341176": 81, "263158": 81, "658824": 81, "337349": 81, "246575": 81, "662651": 81, "248": 81, "330000": 81, "355769": 81, "670000": 81, "251": [81, 88], "167": [81, 84, 88], "252": 81, "112": 81, "253": [81, 88], "022989": 81, "255": [81, 83], "049505": 81, "190": [81, 84, 88], "66": [81, 92], "002216": 81, "000974": 81, "59": [81, 83, 88, 92], "88": [81, 82, 83, 84, 87, 88, 91, 92], "000873": 81, "000739": 81, "79": [81, 88, 92, 93], "32635": 81, "32636": 81, "47": [81, 83, 88, 92], "32637": 81, "32638": 81, "32639": 81, "32640": 81, "051": 81, "93": [81, 88, 91, 92, 93], "002242": 81, "997758": 81, "002088": 81, "001045": 81, "997912": 81, "002053": 81, "997947": 81, "001980": 81, "000991": 81, "998020": 81, "001946": 81, "002915": 81, "998054": 81, "001938": 81, "002904": 81, "998062": 81, "001020": 81, "998980": 81, "001018": 81, "002035": 81, "998982": 81, "999009": 81, "0003": 81, "0002": 81, "36": [81, 83, 92, 95], "41": [81, 83, 88, 89, 91, 92], "44": [81, 87, 88, 89, 92, 94], "71": [81, 84, 88, 89, 91, 92], "071": 81, "067269": 81, "929": 81, "046": 81, "058243": 81, "954": 81, "035": 81, "032096": 81, "965": 81, "031": 81, "012232": 81, "969": 81, "022": 81, "025896": 81, "978": 81, "020": [81, 84], "013092": 81, "018": 81, "013065": 81, "016": 81, "030542": 81, "984": 81, "013": 81, "020833": 81, "987": 81, "012": 81, "010020": 81, "988": 81, "0073": 81, "0020": 81, "0016": 81, "0015": 81, "0013": 81, "0012": 81, "0010": 81, "0008": 81, "0007": 81, "0006": 81, "0005": 81, "0004": 81, "244": [81, 88], "98": [81, 82, 83, 91, 92], "452381": 81, "459770": 81, "72": [81, 83, 84, 87, 91, 92], "523364": 81, "460784": 81, "446602": 81, "57": [81, 83, 84, 92], "68": [81, 83, 84, 88, 89, 92, 93], "103774": 81, "030612": 81, "97": [81, 82, 84, 88, 91, 92, 93, 95], "110092": 81, "049020": 81, "99": [81, 84, 92, 93], "0034": 81, "0032": 81, "0026": 81, "0025": 81, "4945": 81, "4946": 81, "4947": 81, "4948": 81, "4949": 81, "4950": 81, "846": 81, "82": [81, 83, 84, 88, 91, 92, 95], "7532": 81, "532": 81, "034483": 81, "009646": 81, "965517": 81, "030457": 81, "020513": 81, "969543": 81, "028061": 81, "035443": 81, "971939": 81, "025316": 81, "005168": 81, "974684": 81, "049751": 81, "979487": 81, "019920": 81, "042802": 81, "980080": 81, "017677": 81, "005115": 81, "982323": 81, "012987": 81, "005236": 81, "987013": 81, "012723": 81, "025126": 81, "987277": 81, "010989": 81, "008264": 81, "989011": 81, "010283": 81, "027778": 81, "989717": 81, "009677": 81, "990323": 81, "007614": 81, "010127": 81, "992386": 81, "005051": 81, "994949": 81, "005025": 81, "994975": 81, "005013": 81, "994987": 81, "001859": 81, "001328": 81, "000929": 81, "000664": 81, "186": [81, 84], "188": [81, 84, 87], "189": [81, 84], "snippet": 82, "nlp": [82, 95], "mind": [82, 84], "number_of_class": 82, "total_number_of_data_point": 82, "drop": [82, 86, 91, 94], "feed": 82, "alphabet": 82, "labels_proper_format": 82, "your_classifi": 82, "issues_datafram": 82, "class_predicted_for_flagged_exampl": 82, "class_predicted_for_all_exampl": 82, "grant": 82, "datataset": 82, "fair": [82, 84], "game": 82, "speedup": [82, 89], "flexibl": 82, "tempfil": 82, "mkdtemp": 82, "sped": 82, "anywai": 82, "pred_probs_merg": 82, "merge_rare_class": 82, "count_threshold": 82, "class_mapping_orig2new": 82, "heath_summari": 82, "num_examples_per_class": 82, "rare_class": 82, "num_classes_merg": 82, "other_class": 82, "labels_merg": 82, "new_c": 82, "merged_prob": 82, "hstack": [82, 83, 84, 86], "new_class": 82, "original_class": 82, "num_check": 82, "ones_array_ref": 82, "isclos": 82, "though": [82, 84, 95], "successfulli": 82, "meaning": [82, 89], "virtuou": [82, 86], "cycl": [82, 86], "jointli": 82, "junk": 82, "clutter": 82, "unknown": 82, "caltech": 82, "combined_boolean_mask": 82, "mask1": 82, "mask2": 82, "gradientboostingclassifi": [82, 84], "true_error": [82, 84, 87], "101": [82, 88], "102": [82, 87, 88], "104": [82, 84, 88], "model_to_find_error": 82, "model_to_return": 82, "cl0": 82, "randomizedsearchcv": 82, "expens": 82, "param_distribut": 82, "learning_r": [82, 84], "max_depth": [82, 84], "magnitud": 82, "coeffici": [82, 91], "optin": 82, "environ": [82, 84], "rerun": [82, 84], "cell": [82, 84], "On": [82, 84, 88], "unabl": [82, 84], "render": [82, 84], "nbviewer": [82, 84], "nbsp": [82, 84], "cleanlearninginot": [82, 84], "fittedcleanlearn": [82, 84], "linearregressionlinearregress": 82, "n_init": 82, "fit_predict": 82, "continuous_column": 82, "categorical_column": 82, "data_df": 82, "feature_a": 82, "feature_b": 82, "unexpectedli": 82, "emphas": 82, "especi": [82, 83, 91, 93, 94], "crucial": 82, "merge_duplicate_set": 82, "merge_kei": 82, "construct_group_kei": 82, "merged_set": 82, "consolidate_set": 82, "tolist": [82, 87], "issubset": 82, "frozenset": 82, "sets_list": 82, "mutabl": 82, "new_set": 82, "current_set": 82, "intersecting_set": 82, "lowest_score_strategi": 82, "sub_df": 82, "idxmin": 82, "filter_near_dupl": 82, "strategy_fn": 82, "strategy_kwarg": 82, "duplicate_row": 82, "group_kei": 82, "to_keep_indic": 82, "groupbi": 82, "explod": 82, "to_remov": 82, "isin": [82, 89], "kept": 82, "near_duplicate_issu": [82, 83], "ids_to_remove_seri": 82, "tmp": 82, "ipykernel_5790": 82, "1995098996": 82, "deprecationwarn": 82, "dataframegroupbi": 82, "include_group": 82, "silenc": 82, "assist": 82, "streamlin": 82, "ux": 82, "agpl": 82, "compani": 82, "commerci": 82, "alter": 82, "email": 82, "discuss": 82, "anywher": 82, "profession": 82, "expert": 82, "60": [83, 84, 91, 92], "excess": 83, "torchvis": [83, 89], "tensordataset": 83, "stratifiedkfold": [83, 87], "tqdm": 83, "fashion_mnist": 83, "num_row": 83, "60000": 83, "pil": 83, "transformed_dataset": 83, "with_format": 83, "unsqueez": 83, "cpu_count": 83, "torch_dataset": 83, "quick": [83, 87], "relu": 83, "batchnorm2d": 83, "maxpool2d": 83, "lazylinear": 83, "flatten": 83, "get_test_accuraci": 83, "testload": [83, 89], "energi": 83, "trainload": [83, 89], "n_epoch": 83, "patienc": 83, "criterion": 83, "crossentropyloss": 83, "adamw": 83, "best_test_accuraci": 83, "start_epoch": 83, "running_loss": 83, "best_epoch": 83, "end_epoch": 83, "3f": [83, 91], "acc": [83, 84], "time_taken": 83, "compute_embed": 83, "compute_pred_prob": 83, "train_batch_s": 83, "num_work": 83, "worker": [83, 95], "train_id_list": 83, "test_id_list": 83, "train_id": 83, "test_id": 83, "embeddings_model": 83, "ntrain": 83, "trainset": 83, "testset": 83, "pin_memori": 83, "fold_embed": 83, "fold_pred_prob": 83, "finish": 83, "482": 83, "720": 83, "760": 83, "195": 83, "454": 83, "stderr": [83, 89, 92], "sphinxverbatim": [83, 89, 92, 95], "44it": [83, 92], "05it": [83, 92], "07it": [83, 89, 92], "15it": [83, 92], "28it": [83, 89, 92], "49it": [83, 92], "19it": [83, 92], "53it": [83, 89, 92], "68it": [83, 92], "17it": [83, 92], "16it": [83, 92], "41it": [83, 92], "30it": [83, 89, 92], "21it": [83, 92], "02it": 83, "493": 83, "060": 83, "330": [83, 88], "505": 83, "503": 83, "45it": [83, 89, 92], "01it": [83, 89, 92], "10it": [83, 89, 92], "98it": [83, 92], "60it": [83, 92], "32it": [83, 92], "78it": [83, 89, 92], "51it": [83, 89, 92], "66it": [83, 92], "95it": [83, 92], "58it": [83, 89, 92], "03it": [83, 92], "80it": [83, 92], "476": 83, "340": 83, "837": 83, "328": [83, 88], "310": 83, "453": 83, "55it": [83, 89, 92], "26it": [83, 89, 92], "52it": [83, 92], "83it": [83, 89, 92], "24it": [83, 89, 92], "56it": [83, 89, 92], "92it": [83, 89, 92], "93it": [83, 92], "73it": 83, "reorder": 83, "vision": 83, "grayscal": 83, "exce": 83, "max_preval": 83, "7714": 83, "3772": 83, "3585": 83, "166": 83, "3651": 83, "27080": 83, "873833e": 83, "40378": 83, "915575e": 83, "25316": 83, "390277e": 83, "06": [83, 84, 88, 92, 95], "2090": 83, "751164e": 83, "14999": 83, "881301e": 83, "9569": 83, "11262": 83, "000003": 83, "19228": 83, "000010": 83, "dress": 83, "32657": 83, "000013": 83, "21282": 83, "000016": 83, "53564": 83, "000018": 83, "pullov": 83, "6321": 83, "30968": 83, "001267": 83, "30659": 83, "000022": [83, 95], "47824": 83, "001454": 83, "3370": 83, "000026": 83, "54565": 83, "001854": 83, "9762": 83, "258": 83, "47139": 83, "000033": 83, "166980": 83, "986195": 83, "997205": 83, "948781": 83, "999358": 83, "54078": 83, "17371": 83, "000025": 83, "plot_label_issue_exampl": 83, "ncol": [83, 89], "nrow": [83, 89], "ceil": 83, "axes_list": 83, "label_issue_indic": 83, "gl": 83, "sl": 83, "fontdict": 83, "imshow": [83, 89], "cmap": [83, 91], "grai": 83, "subplots_adjust": 83, "hspace": 83, "outsiz": 83, "outlier_issues_df": 83, "depict": [83, 87, 88, 89, 90, 92], "plot_outlier_issues_exampl": 83, "n_comparison_imag": 83, "sample_from_class": 83, "number_of_sampl": 83, "non_outlier_indic": 83, "isnul": 83, "non_outlier_indices_excluding_curr": 83, "sampled_indic": 83, "label_scores_of_sampl": 83, "top_score_indic": 83, "top_label_indic": 83, "sampled_imag": 83, "get_image_given_label_and_sampl": 83, "image_from_dataset": 83, "corresponding_label": 83, "comparison_imag": 83, "images_to_plot": 83, "idlist": 83, "iterrow": 83, "closest": 83, "counterpart": 83, "near_duplicate_issues_df": 83, "plot_near_duplicate_issue_exampl": 83, "seen_id_pair": 83, "get_image_and_given_label_and_predicted_label": 83, "duplicate_imag": 83, "nd_set": 83, "challeng": 83, "dark_issu": 83, "reveal": [83, 88, 92], "dark_scor": 83, "dark_issues_df": 83, "is_dark_issu": 83, "34848": 83, "203922": 83, "50270": 83, "204588": 83, "3936": 83, "213098": 83, "733": 83, "217686": 83, "8094": 83, "230118": 83, "plot_image_issue_exampl": 83, "difficult": 83, "disproportion": 83, "lowinfo_issu": 83, "low_information_scor": 83, "lowinfo_issues_df": 83, "is_low_information_issu": 83, "53050": 83, "067975": 83, "40875": 83, "089929": 83, "9594": 83, "092601": 83, "34825": 83, "107744": 83, "37530": 83, "108516": 83, "lot": 83, "depth": 84, "survei": [84, 95], "focus": [84, 86, 87, 91], "scienc": 84, "multivariate_norm": [84, 86, 87], "make_data": [84, 86], "cov": [84, 86, 87], "avg_trac": [84, 87], "test_label": [84, 87, 89, 94], "py_tru": 84, "noise_matrix_tru": 84, "noise_marix": 84, "s_test": 84, "noisy_test_label": 84, "purpl": 84, "val": 84, "namespac": 84, "exec": 84, "markerfacecolor": [84, 87], "markeredgecolor": [84, 87, 91], "markers": [84, 87, 91], "markeredgewidth": [84, 87, 91], "realist": 84, "7560": 84, "637318e": 84, "896262e": 84, "548391e": 84, "923417e": 84, "375075e": 84, "3454": 84, "014051": 84, "020451": 84, "249": [84, 88], "042594": 84, "043859": 84, "045954": 84, "6120": 84, "023714": 84, "007136": 84, "119": [84, 88], "107266": 84, "103": [84, 88], "033738": 84, "238": [84, 88], "119505": 84, "236": [84, 88, 95], "037843": 84, "222": 84, "614915": 84, "122": [84, 88], "624422": 84, "625965": 84, "626079": 84, "118": 84, "627675": 84, "695223": 84, "323529": 84, "523015": 84, "013720": 84, "675727": 84, "646521": 84, "anyth": 84, "enhanc": [84, 86, 88], "magic": 84, "83": [84, 88, 89, 91, 92, 93, 95], "liter": 84, "identif": 84, "x27": 84, "logisticregressionlogisticregress": 84, "ever": 84, "092": 84, "040": 84, "024": 84, "004": 84, "surpris": 84, "1705": 84, "01936": 84, "ton": 84, "yourfavoritemodel1": 84, "merged_label": 84, "merged_test_label": 84, "newli": [84, 86], "yourfavoritemodel2": 84, "yourfavoritemodel3": 84, "cl3": 84, "takeawai": 84, "That": [84, 87], "randomli": 84, "my_test_pred_prob": 84, "my_test_pr": 84, "issues_test": 84, "corrected_test_label": 84, "pretend": 84, "cl_test_pr": 84, "69": [84, 91, 92], "fairli": 84, "label_acc": 84, "percentag": 84, "offset": 84, "nquestion": 84, "overestim": 84, "answer": 84, "experienc": 84, "76": [84, 87, 88, 91, 92, 93], "knowledg": 84, "quantiti": [84, 91], "prioiri": 84, "known": 84, "versatil": 84, "label_issues_indic": 84, "213": [84, 88], "212": [84, 93], "218": [84, 88], "152": 84, "197": [84, 88], "196": [84, 88], "170": 84, "214": 84, "164": [84, 87], "198": [84, 88], "191": [84, 88], "63": [84, 88, 91, 92], "121": [84, 94], "117": [84, 91], "62": [84, 88, 91, 92], "206": [84, 88], "115": [84, 88], "193": [84, 95], "194": 84, "201": [84, 88], "174": 84, "163": 84, "150": [84, 86, 88, 95], "169": [84, 95], "151": [84, 88], "168": 84, "precision_scor": 84, "recall_scor": 84, "f1_score": 84, "true_label_issu": 84, "filter_by_list": 84, "718750": [84, 86], "807018": 84, "912": 84, "733333": 84, "800000": 84, "721311": 84, "792793": 84, "908": 84, "676923": 84, "765217": 84, "892": 84, "567901": 84, "702290": 84, "844": 84, "gaug": 84, "label_issues_count": 84, "155": [84, 88], "156": 84, "172": [84, 87, 95], "easiest": 84, "modular": 84, "penalti": 84, "l2": 84, "model3": 84, "n_estim": 84, "cv_pred_probs_1": 84, "cv_pred_probs_2": 84, "cv_pred_probs_3": 84, "label_quality_scores_best": 84, "cv_pred_probs_ensembl": 84, "label_quality_scores_bett": 84, "superior": [84, 90], "workflow": [85, 91], "speechbrain": 85, "timm": 85, "glad": 86, "multiannotator_label": 86, "300": [86, 95], "noisier": 86, "111": [86, 91], "local_data": [86, 87], "true_labels_train": [86, 87], "noise_matrix_bett": 86, "noise_matrix_wors": 86, "transpos": [86, 89], "dropna": 86, "zfill": 86, "row_na_check": 86, "notna": 86, "reset_index": 86, "a0001": 86, "a0002": 86, "a0003": 86, "a0004": 86, "a0005": 86, "a0006": 86, "a0007": 86, "a0008": 86, "a0009": 86, "a0010": 86, "a0041": 86, "a0042": 86, "a0043": 86, "a0044": 86, "a0045": 86, "a0046": 86, "a0047": 86, "a0048": 86, "a0049": 86, "a0050": 86, "na": 86, "60856743": 86, "41693214": 86, "40908785": 86, "87147629": 86, "64941785": 86, "10774851": 86, "0524466": 86, "71853246": 86, "37169848": 86, "66031048": 86, "multiannotator_util": 86, "crude": 86, "straight": 86, "majority_vote_label": 86, "736118": 86, "757751": 86, "782232": 86, "715565": 86, "824256": 86, "quality_annotator_a0001": 86, "quality_annotator_a0002": 86, "quality_annotator_a0003": 86, "quality_annotator_a0004": 86, "quality_annotator_a0005": 86, "quality_annotator_a0006": 86, "quality_annotator_a0007": 86, "quality_annotator_a0008": 86, "quality_annotator_a0009": 86, "quality_annotator_a0010": 86, "quality_annotator_a0041": 86, "quality_annotator_a0042": 86, "quality_annotator_a0043": 86, "quality_annotator_a0044": 86, "quality_annotator_a0045": 86, "quality_annotator_a0046": 86, "quality_annotator_a0047": 86, "quality_annotator_a0048": 86, "quality_annotator_a0049": 86, "quality_annotator_a0050": 86, "070564": 86, "216078": 86, "119188": 86, "alongisd": 86, "244981": 86, "208333": 86, "295979": 86, "294118": 86, "324197": 86, "310345": 86, "355316": 86, "346154": 86, "439732": 86, "480000": 86, "a0031": 86, "523205": 86, "580645": 86, "a0034": 86, "535313": 86, "607143": 86, "a0021": 86, "606999": 86, "a0015": 86, "609526": 86, "678571": 86, "a0011": 86, "621103": 86, "692308": 86, "wors": 86, "improved_consensus_label": 86, "majority_vote_accuraci": 86, "cleanlab_label_accuraci": 86, "8581081081081081": 86, "9797297297297297": 86, "besid": 86, "sorted_consensus_quality_scor": 86, "worst_qual": 86, "better_qu": 86, "worst_quality_accuraci": 86, "better_quality_accuraci": 86, "9893238434163701": 86, "improved_pred_prob": 86, "treat": [86, 87, 91, 95], "analzi": 86, "copyright": 87, "advertis": 87, "violenc": 87, "nsfw": 87, "suppli": [87, 88, 91], "celeba": 87, "make_multilabel_data": 87, "boxes_coordin": 87, "box_multilabel": 87, "make_multi": 87, "bx1": 87, "by1": 87, "bx2": 87, "by2": 87, "label_list": 87, "ur": 87, "upper": 87, "inidx": 87, "logical_and": 87, "inv_d": 87, "labels_idx": 87, "true_labels_test": 87, "dict_unique_label": 87, "get_color_arrai": 87, "dcolor": 87, "aa4400": 87, "55227f": 87, "55a100": 87, "00ff00": 87, "007f7f": 87, "386b55": 87, "0000ff": 87, "simplic": 87, "advis": 87, "y_onehot": 87, "single_class_label": 87, "stratifi": [87, 90], "kf": 87, "train_index": 87, "test_index": 87, "clf_cv": 87, "x_train_cv": 87, "x_test_cv": 87, "y_train_cv": 87, "y_test_cv": 87, "y_pred_cv": 87, "saw": 87, "num_to_displai": 87, "09": [87, 88, 91, 92], "275": 87, "267": 87, "225": 87, "171": 87, "234": 87, "165": 87, "227": [87, 88], "262": [87, 88], "263": [87, 88], "266": [87, 88], "139": 87, "143": [87, 88], "216": [87, 88], "265": 87, "159": [87, 88], "despit": [87, 95], "suspect": 87, "888": 87, "8224": 87, "9632": 87, "968": 87, "6512": 87, "0444": 87, "774": 87, "labels_binary_format": 87, "labels_list_format": 87, "surround": 88, "scene": 88, "coco": 88, "everydai": 88, "has_label_issu": 88, "insal": 88, "nc": [88, 92, 95], "s3": [88, 92, 95], "amazonaw": [88, 92, 95], "objectdetectionbenchmark": 88, "tutorial_obj": 88, "pkl": 88, "example_imag": 88, "unzip": [88, 95], "_separate_label": 88, "_separate_predict": 88, "begin": 88, "image_path": 88, "rb": 88, "image_to_visu": 88, "seg_map": 88, "334": 88, "float32": 88, "bboxes_ignor": 88, "290": 88, "286": 88, "285": 88, "224": 88, "231": 88, "293": 88, "235": 88, "289": 88, "282": 88, "74": [88, 89, 91, 92, 93], "281": 88, "271": 88, "280": 88, "277": 88, "279": 88, "287": 88, "299": 88, "276": 88, "307": 88, "321": 88, "326": 88, "333": 88, "261": 88, "319": 88, "257": 88, "295": 88, "283": 88, "243": 88, "303": 88, "316": 88, "247": 88, "323": 88, "327": 88, "226": 88, "228": 88, "232": 88, "219": 88, "239": 88, "240": 88, "209": 88, "242": 88, "202": 88, "230": 88, "215": 88, "220": 88, "229": 88, "217": [88, 95], "237": 88, "207": 88, "204": 88, "84": [88, 91, 92], "205": 88, "223": 88, "153": 88, "149": 88, "140": [88, 95], "124": [88, 95], "268": 88, "273": 88, "108": [88, 95], "284": 88, "110": 88, "136": 88, "145": 88, "173": 88, "297": 88, "317": 88, "192": 88, "332": 88, "324": 88, "203": 88, "320": 88, "314": 88, "199": 88, "291": 88, "000000481413": 88, "jpg": 88, "42398": 88, "44503": 88, "337": [88, 94], "29968": 88, "336": 88, "21005": 88, "9978472": 88, "forgot": 88, "drew": 88, "label_issue_idx": 88, "num_examples_to_show": 88, "138": 88, "candid": 88, "97489622": 88, "70610878": 88, "98764951": 88, "88899237": 88, "99085805": 88, "issue_idx": 88, "95569726e": 88, "03354841e": 88, "57510169e": 88, "58447666e": 88, "39755858e": 88, "issue_to_visu": 88, "000000009483": 88, "95569726168054e": 88, "addition": [88, 92], "visibl": 88, "missmatch": 88, "likelei": 88, "agnost": 88, "vaidat": 88, "inconsist": 88, "000000395701": 88, "033548411774308e": 88, "armchair": 88, "tv": 88, "000000154004": 88, "38300759625496356": 88, "foreground": 88, "000000448410": 88, "0008575101690203273": 88, "crowd": 88, "alon": 88, "explor": [88, 89], "resembl": [88, 89], "000000499768": 88, "9748962231208227": 88, "000000521141": 88, "8889923658893665": 88, "000000143931": 88, "9876495074395956": 88, "bonu": 88, "uncov": 88, "irregular": 88, "anomali": 88, "unusu": [88, 89], "object_detection_util": 88, "calculate_bounding_box_area": 88, "num_imgs_to_show": 88, "lab_object_count": 88, "pred_object_count": 88, "000000430073": 88, "000000183709": 88, "000000189475": 88, "studi": 88, "label_norm": 88, "pred_norm": 88, "area": [88, 92], "assess": 88, "lab_area": 88, "pred_area": 88, "lab_area_mean": 88, "lab_area_std": 88, "max_deviation_valu": 88, "max_deviation_class": 88, "deviation_valu": 88, "deviation_class": 88, "mean_area": 88, "std_area": 88, "class_area": 88, "deviations_awai": 88, "max_deviation_index": 88, "num_imgs_to_show_per_class": 88, "class_num": 88, "sorted_indic": 88, "000000422886": 88, "000000341828": 88, "000000461009": 88, "train_feature_embed": 89, "ood_train_feature_scor": 89, "test_feature_embed": 89, "ood_test_feature_scor": 89, "ood_train_predictions_scor": 89, "train_pred_prob": 89, "ood_test_predictions_scor": 89, "test_pred_prob": 89, "pylab": 89, "rcparam": 89, "baggingclassifi": 89, "therebi": 89, "rescal": 89, "transform_norm": 89, "totensor": 89, "root": 89, "animal_class": 89, "non_animal_class": 89, "animal_idx": 89, "test_idx": 89, "toronto": 89, "edu": 89, "kriz": 89, "170498071": 89, "1343488": 89, "13419215": 89, "5701632": 89, "30978364": 89, "62it": [89, 92], "10321920": 89, "37656354": 89, "14745600": 89, "40101818": 89, "19431424": 89, "42458496": 89, "23920640": 89, "43264444": 89, "74it": [89, 92], "28901376": 89, "45380202": 89, "33456128": 89, "44719865": 89, "87it": [89, 92], "37945344": 89, "44112735": 89, "42369024": 89, "44096193": 89, "47120384": 89, "44949082": 89, "52559872": 89, "47695754": 89, "57it": [89, 92], "58327040": 89, "50506916": 89, "33it": [89, 92], "64225280": 89, "52788973": 89, "88it": [89, 92], "69894144": 89, "53950833": 89, "75563008": 89, "54723606": 89, "81068032": 89, "53970263": 89, "14it": [89, 92], "86966272": 89, "55331395": 89, "92667904": 89, "55810311": 89, "98467840": 89, "56445352": 89, "104202240": 89, "56436844": 89, "109936640": 89, "56700992": 89, "115638272": 89, "55387515": 89, "121208832": 89, "52110704": 89, "91it": [89, 92], "126484480": 89, "49544093": 89, "131596288": 89, "49943099": 89, "39it": [89, 92], "136642560": 89, "49918243": 89, "141688832": 89, "49487234": 89, "146800640": 89, "49829573": 89, "151814144": 89, "48855803": 89, "82it": [89, 92], "156729344": 89, "48916303": 89, "76it": [89, 92], "162529280": 89, "51565119": 89, "38it": [89, 92], "50407814": 89, "5000": 89, "plot_imag": 89, "visualize_outli": 89, "txt_class": 89, "img": [89, 91], "npimg": 89, "show_label": 89, "data_subset": 89, "resnet50": 89, "corpu": 89, "2048": 89, "embed_imag": 89, "create_model": 89, "strang": 89, "odd": 89, "train_ood_features_scor": 89, "top_train_ood_features_idx": 89, "fun": 89, "negat": 89, "homogen": 89, "bottom_train_ood_features_idx": 89, "test_ood_features_scor": 89, "top_ood_features_idx": 89, "inevit": 89, "trade": 89, "5th": 89, "percentil": 89, "fifth_percentil": 89, "plt_rang": 89, "hist": 89, "train_outlier_scor": 89, "ylabel": 89, "axvlin": 89, "test_outlier_scor": 89, "ood_features_indic": 89, "revisit": 89, "return_invers": 89, "train_feature_embeddings_sc": 89, "test_feature_embeddings_sc": 89, "train_pred_label": 89, "9702": 89, "train_ood_predictions_scor": 89, "test_ood_predictions_scor": 89, "mainli": [89, 95], "lost": 89, "unsuit": 90, "ok": [90, 95], "convention": 90, "aforement": 90, "hypothet": 90, "contrast": 90, "tradit": 90, "disjoint": 90, "out_of_sample_pred_probs_for_a": 90, "out_of_sample_pred_probs_for_b": 90, "out_of_sample_pred_probs_for_c": 90, "out_of_sample_pred_prob": 90, "price": 91, "incom": 91, "ag": 91, "sensor": 91, "histgradientboostingregressor": 91, "r2_score": 91, "student_grades_r": 91, "final_scor": 91, "true_final_scor": 91, "homework": 91, "3d": 91, "hue": 91, "mpl_toolkit": 91, "mplot3d": 91, "axes3d": 91, "errors_idx": 91, "add_subplot": 91, "z": 91, "colorbar": 91, "errors_mask": 91, "feature_column": 91, "predicted_column": 91, "x_train_raw": 91, "x_test_raw": 91, "categorical_featur": [91, 93], "randomforestregressor": 91, "636197": 91, "499503": 91, "843478": 91, "776647": 91, "350358": 91, "170547": 91, "706969": 91, "984759": 91, "812515": 91, "795928": 91, "identified_issu": [91, 94], "141": 91, "659": 91, "367": 91, "318": 91, "305": 91, "560": 91, "657": 91, "688": 91, "view_datapoint": 91, "concat": 91, "consum": [91, 94], "baseline_model": [91, 94], "preds_og": 91, "r2_og": 91, "838": 91, "robustli": [91, 93, 94], "acceler": [91, 94], "found_label_issu": 91, "preds_cl": 91, "r2_cl": 91, "926": 91, "effort": [91, 93, 94], "favorit": 91, "968627e": 91, "228799": 91, "646674e": 91, "402962": 91, "323818e": 91, "952758": 91, "422144e": 91, "456908": 91, "465815e": 91, "753968": 91, "110719": 91, "000044": 91, "670640": 91, "000060": 91, "749976": 91, "000066": 91, "947007": 91, "000314": 91, "648396": 91, "plu": 91, "synthia": 92, "imagesegment": 92, "given_mask": 92, "predicted_mask": 92, "set_printopt": [92, 95], "sky": 92, "sidewalk": 92, "veget": 92, "terrain": 92, "rider": 92, "pred_probs_filepath": 92, "1088": 92, "1920": 92, "label_filepath": 92, "synthia_class": 92, "maunal": 92, "100000": 92, "244800": 92, "leftmost": 92, "middl": [92, 95], "infact": 92, "rightmost": 92, "discrep": 92, "4997817": 92, "15666": 92, "156647": 92, "31368": 92, "156863": 92, "75it": 92, "47055": 92, "156605": 92, "62955": 92, "157545": 92, "12it": 92, "78718": 92, "157570": 92, "48it": 92, "94643": 92, "158136": 92, "110459": 92, "158139": 92, "64it": 92, "126372": 92, "158453": 92, "142218": 92, "158379": 92, "37it": 92, "158056": 92, "154882": 92, "18it": 92, "173791": 92, "155622": 92, "189775": 92, "156888": 92, "89it": 92, "205726": 92, "157674": 92, "221526": 92, "157768": 92, "237525": 92, "158432": 92, "90it": 92, "253373": 92, "158187": 92, "36it": 92, "269195": 92, "158009": 92, "284998": 92, "157833": 92, "11it": 92, "301002": 92, "158490": 92, "316853": 92, "154219": 92, "332791": 92, "155731": 92, "348789": 92, "156985": 92, "364733": 92, "157709": 92, "81it": 92, "380754": 92, "158450": 92, "396750": 92, "158897": 92, "412671": 92, "158986": 92, "428575": 92, "158676": 92, "444446": 92, "158550": 92, "43it": 92, "460417": 92, "158892": 92, "84it": 92, "476308": 92, "158775": 92, "492187": 92, "158601": 92, "508157": 92, "158926": 92, "524051": 92, "158866": 92, "59it": 92, "539939": 92, "158444": 92, "77it": 92, "555915": 92, "158834": 92, "42it": 92, "571799": 92, "158578": 92, "587674": 92, "158627": 92, "603538": 92, "158305": 92, "619505": 92, "158710": 92, "635377": 92, "158448": 92, "651310": 92, "158709": 92, "667182": 92, "158708": 92, "683054": 92, "158642": 92, "698919": 92, "34it": 92, "714758": 92, "158087": 92, "730567": 92, "157944": 92, "746362": 92, "157793": 92, "762223": 92, "158034": 92, "29it": 92, "778220": 92, "158611": 92, "794085": 92, "158621": 92, "09it": 92, "809948": 92, "158320": 92, "825965": 92, "158870": 92, "841913": 92, "159049": 92, "857819": 92, "159026": 92, "873722": 92, "158358": 92, "889606": 92, "158499": 92, "905457": 92, "158435": 92, "63it": 92, "921348": 92, "158576": 92, "937206": 92, "158455": 92, "70it": 92, "953141": 92, "158720": 92, "00it": 92, "969014": 92, "158563": 92, "984871": 92, "158524": 92, "1000724": 92, "158216": 92, "1016660": 92, "158556": 92, "1032516": 92, "158466": 92, "1048446": 92, "158711": 92, "1064367": 92, "158858": 92, "1080253": 92, "158782": 92, "1096132": 92, "72it": 92, "1112023": 92, "158673": 92, "1127891": 92, "158287": 92, "1143728": 92, "158280": 92, "1159571": 92, "158322": 92, "1175404": 92, "158003": 92, "1191255": 92, "158140": 92, "1207070": 92, "157891": 92, "06it": 92, "1222860": 92, "1238644": 92, "157669": 92, "1254503": 92, "157943": 92, "1270298": 92, "157893": 92, "1286088": 92, "157203": 92, "1301914": 92, "157517": 92, "1318042": 92, "158639": 92, "1334160": 92, "159397": 92, "1350245": 92, "159828": 92, "1366306": 92, "160060": 92, "40it": 92, "1382313": 92, "159885": 92, "1398302": 92, "159798": 92, "99it": 92, "1414283": 92, "159564": 92, "1430353": 92, "159903": 92, "1446451": 92, "160222": 92, "25it": 92, "1462525": 92, "160375": 92, "1478572": 92, "160401": 92, "1494613": 92, "1510651": 92, "160197": 92, "1526671": 92, "159669": 92, "1542639": 92, "159484": 92, "1558590": 92, "159489": 92, "1574540": 92, "159474": 92, "1590488": 92, "159413": 92, "1606510": 92, "159653": 92, "31it": 92, "1622476": 92, "159292": 92, "1638491": 92, "159546": 92, "1654446": 92, "159265": 92, "1670373": 92, "159054": 92, "1686370": 92, "159326": 92, "1702372": 92, "159531": 92, "1718342": 92, "159579": 92, "1734304": 92, "159590": 92, "22it": 92, "1750310": 92, "159727": 92, "1766283": 92, "1782237": 92, "152189": 92, "1798210": 92, "154373": 92, "1814164": 92, "155885": 92, "1830086": 92, "156866": 92, "86it": 92, "1846040": 92, "157656": 92, "96it": 92, "1861916": 92, "157982": 92, "1877756": 92, "158103": 92, "61it": 92, "1893631": 92, "158294": 92, "97it": 92, "1909624": 92, "08it": 92, "1925553": 92, "158932": 92, "71it": 92, "1941451": 92, "158328": 92, "69it": 92, "1957395": 92, "158658": 92, "1973393": 92, "159051": 92, "1989322": 92, "159120": 92, "2005236": 92, "159063": 92, "2021144": 92, "158992": 92, "2037121": 92, "159223": 92, "2053044": 92, "159129": 92, "47it": 92, "2068966": 92, "159152": 92, "2084899": 92, "159202": 92, "2100820": 92, "158761": 92, "2116697": 92, "158649": 92, "2132563": 92, "158552": 92, "2148419": 92, "158488": 92, "27it": 92, "2164268": 92, "158456": 92, "13it": 92, "2180136": 92, "158521": 92, "2196000": 92, "158553": 92, "20it": 92, "2211942": 92, "158811": 92, "2227824": 92, "158577": 92, "2243682": 92, "158422": 92, "2259525": 92, "158421": 92, "2275368": 92, "152143": 92, "2290635": 92, "151173": 92, "2306230": 92, "152567": 92, "2322097": 92, "154362": 92, "2338019": 92, "155799": 92, "79it": 92, "2353956": 92, "156860": 92, "2370062": 92, "158108": 92, "2386096": 92, "158773": 92, "2402094": 92, "159131": 92, "2418013": 92, "159062": 92, "2433924": 92, "2449795": 92, "158657": 92, "2465785": 92, "159028": 92, "2481802": 92, "159367": 92, "2497925": 92, "159923": 92, "2513962": 92, "160054": 92, "2530040": 92, "160269": 92, "2546068": 92, "160138": 92, "2562083": 92, "159958": 92, "2578080": 92, "159787": 92, "2594059": 92, "156344": 92, "2609883": 92, "156901": 92, "94it": 92, "2625962": 92, "158054": 92, "04it": 92, "2642039": 92, "2658073": 92, "159299": 92, "2674048": 92, "159432": 92, "2690018": 92, "159510": 92, "2705972": 92, "159362": 92, "2721935": 92, "159441": 92, "2737881": 92, "159351": 92, "2753818": 92, "158667": 92, "2769712": 92, "158747": 92, "67it": 92, "2785718": 92, "159139": 92, "50it": 92, "2801696": 92, "159329": 92, "2817630": 92, "159123": 92, "2833543": 92, "2849515": 92, "159119": 92, "2865428": 92, "158853": 92, "2881370": 92, "159020": 92, "2897273": 92, "158804": 92, "2913154": 92, "158342": 92, "2928989": 92, "158229": 92, "2944813": 92, "157965": 92, "2960610": 92, "157704": 92, "2976411": 92, "157790": 92, "2992243": 92, "157946": 92, "3008086": 92, "158089": 92, "3023896": 92, "157854": 92, "3039789": 92, "158175": 92, "3055607": 92, "158114": 92, "3071420": 92, "158117": 92, "3087232": 92, "157048": 92, "3102944": 92, "157067": 92, "3118888": 92, "157775": 92, "3134867": 92, "158374": 92, "3150754": 92, "158520": 92, "3166669": 92, "158707": 92, "3182541": 92, "158276": 92, "3198370": 92, "155580": 92, "3214146": 92, "156223": 92, "3229896": 92, "156601": 92, "3245585": 92, "156686": 92, "3261389": 92, "157088": 92, "3277256": 92, "157559": 92, "3293139": 92, "157937": 92, "3308935": 92, "157714": 92, "3324777": 92, "157924": 92, "3340601": 92, "158017": 92, "46it": 92, "3356404": 92, "157983": 92, "3372236": 92, "158082": 92, "3388115": 92, "158291": 92, "3403945": 92, "158092": 92, "3419755": 92, "158079": 92, "3435564": 92, "157742": 92, "3451339": 92, "157567": 92, "3467096": 92, "157507": 92, "3482982": 92, "157908": 92, "3498774": 92, "157843": 92, "3514597": 92, "157956": 92, "3530435": 92, "3546453": 92, "158705": 92, "3562348": 92, "158776": 92, "3578283": 92, "158947": 92, "3594254": 92, "159174": 92, "3610172": 92, "159091": 92, "3626082": 92, "159085": 92, "3641994": 92, "159093": 92, "3657904": 92, "158665": 92, "3673771": 92, "3689631": 92, "158354": 92, "3705492": 92, "158428": 92, "3721336": 92, "157917": 92, "3737299": 92, "158404": 92, "3753140": 92, "158165": 92, "3768985": 92, "158249": 92, "3784839": 92, "158333": 92, "3800712": 92, "85it": 92, "3816628": 92, "3832566": 92, "158872": 92, "3848478": 92, "158945": 92, "3864464": 92, "159218": 92, "3880386": 92, "158715": 92, "3896258": 92, "158588": 92, "3912178": 92, "158768": 92, "3928056": 92, "3943913": 92, "158290": 92, "3959782": 92, "158406": 92, "3975624": 92, "158236": 92, "3991448": 92, "4007257": 92, "158033": 92, "4023185": 92, "4039026": 92, "157189": 92, "4054748": 92, "153864": 92, "4070703": 92, "155535": 92, "4086501": 92, "156256": 92, "4102334": 92, "156870": 92, "4118134": 92, "157206": 92, "4133861": 92, "156987": 92, "4149600": 92, "157105": 92, "4165360": 92, "157251": 92, "4181117": 92, "157346": 92, "4196854": 92, "157307": 92, "4212616": 92, "157400": 92, "4228362": 92, "157416": 92, "4244212": 92, "157737": 92, "4259987": 92, "157731": 92, "4275954": 92, "158309": 92, "4291786": 92, "158176": 92, "4307613": 92, "158201": 92, "4323517": 92, "4339362": 92, "158231": 92, "4355232": 92, "158370": 92, "4371139": 92, "4387039": 92, "158702": 92, "4402910": 92, "158600": 92, "4418771": 92, "4434614": 92, "158367": 92, "4450537": 92, "158623": 92, "4466498": 92, "158918": 92, "4482552": 92, "159401": 92, "4498549": 92, "159567": 92, "4514506": 92, "159453": 92, "4530452": 92, "158989": 92, "65it": 92, "4546352": 92, "158965": 92, "4562249": 92, "158905": 92, "4578269": 92, "159289": 92, "4594290": 92, "159563": 92, "4610247": 92, "159244": 92, "4626259": 92, "159504": 92, "4642224": 92, "159544": 92, "4658249": 92, "159753": 92, "4674225": 92, "159580": 92, "35it": 92, "4690184": 92, "152308": 92, "4706107": 92, "154314": 92, "4722163": 92, "156140": 92, "4738189": 92, "157353": 92, "4754098": 92, "157866": 92, "4770036": 92, "158314": 92, "4785885": 92, "158337": 92, "4801731": 92, "158061": 92, "4817546": 92, "158031": 92, "4833476": 92, "158410": 92, "4849322": 92, "158357": 92, "4865161": 92, "158334": 92, "4880997": 92, "158170": 92, "4896816": 92, "158064": 92, "54it": 92, "4912737": 92, "4928579": 92, "158274": 92, "4944464": 92, "158446": 92, "4960310": 92, "158130": 92, "4976212": 92, "158394": 92, "4992052": 92, "156899": 92, "158234": 92, "3263230": 92, "783379": 92, "275110": 92, "255792": 92, "78225": 92, "55990": 92, "54427": 92, "33591": 92, "24645": 92, "21308": 92, "15045": 92, "14171": 92, "13832": 92, "13498": 92, "11490": 92, "9164": 92, "8769": 92, "6999": 92, "6031": 92, "5011": 92, "mistakenli": 92, "class_issu": 92, "aim": [92, 95], "domin": 92, "extratreesclassifi": 93, "extratre": 93, "ranked_label_issu": [93, 94], "labelencod": [93, 94], "labels_raw": 93, "interg": [93, 94], "tress": 93, "827": 93, "cheat": 93, "0pt": 93, "233": 93, "labels_train": 93, "labels_test": 93, "acc_og": [93, 94], "783068783068783": 93, "acc_cl": [93, 94], "8095238095238095": 93, "earlier": [94, 95], "raw_label": 94, "raw_train_text": 94, "raw_test_text": 94, "raw_train_label": 94, "raw_test_label": 94, "encond": 94, "train_text": 94, "test_text": 94, "858371": 94, "547274": 94, "826228": 94, "966008": 94, "792449": 94, "646": 94, "390": 94, "628": 94, "702": 94, "135": 94, "735": 94, "print_as_df": 94, "inverse_transform": 94, "fight": 94, "bunch": 95, "conll": 95, "2003": 95, "love": 95, "n_i": 95, "optional_list_of_ordered_class_nam": 95, "deepai": 95, "conll2003": 95, "rm": 95, "tokenclassif": 95, "2024": 95, "2400": 95, "52e0": 95, "1a00": 95, "1070": 95, "connect": 95, "443": 95, "await": 95, "982975": 95, "960k": 95, "kb": 95, "959": 95, "94k": 95, "82mb": 95, "mb": 95, "directori": 95, "inflat": 95, "17045998": 95, "16m": 95, "octet": 95, "26m": 95, "6mb": 95, "bert": 95, "read_npz": 95, "filepath": 95, "corrsespond": 95, "iob2": 95, "given_ent": 95, "entity_map": 95, "readfil": 95, "sep": 95, "startswith": 95, "docstart": 95, "isalpha": 95, "isupp": 95, "indices_to_preview": 95, "nsentenc": 95, "eu": 95, "reject": 95, "boycott": 95, "british": 95, "lamb": 95, "00030412": 95, "00023826": 95, "99936208": 95, "00007009": 95, "00002545": 95, "99998795": 95, "00000401": 95, "00000218": 95, "00000455": 95, "00000131": 95, "00000749": 95, "99996115": 95, "00001371": 95, "0000087": 95, "00000895": 95, "99998936": 95, "00000382": 95, "00000178": 95, "00000366": 95, "00000137": 95, "99999101": 95, "00000266": 95, "00000174": 95, "0000035": 95, "00000109": 95, "99998768": 95, "00000482": 95, "00000202": 95, "00000438": 95, "0000011": 95, "00000465": 95, "99996392": 95, "00001105": 95, "0000116": 95, "00000878": 95, "99998671": 95, "00000364": 95, "00000213": 95, "00000472": 95, "00000281": 95, "99999073": 95, "00000211": 95, "00000159": 95, "00000442": 95, "00000115": 95, "peter": 95, "blackburn": 95, "00000358": 95, "00000529": 95, "99995623": 95, "0000129": 95, "0000024": 95, "00001812": 95, "99994141": 95, "00001645": 95, "00002162": 95, "brussel": 95, "1996": 95, "00001172": 95, "00000821": 95, "00004661": 95, "0000618": 95, "99987167": 95, "99999061": 95, "00000201": 95, "00000195": 95, "00000408": 95, "00000135": 95, "2254": 95, "2907": 95, "19392": 95, "9962": 95, "8904": 95, "19303": 95, "12918": 95, "9256": 95, "11855": 95, "18392": 95, "20426": 95, "19402": 95, "14744": 95, "19371": 95, "4645": 95, "10331": 95, "9430": 95, "6143": 95, "18367": 95, "12914": 95, "todai": 95, "weather": 95, "march": 95, "scalfaro": 95, "northern": 95, "himself": 95, "said": 95, "germani": 95, "nastja": 95, "rysich": 95, "north": 95, "spla": 95, "fought": 95, "khartoum": 95, "govern": 95, "south": 95, "1983": 95, "autonomi": 95, "animist": 95, "region": 95, "moslem": 95, "arabis": 95, "mayor": 95, "antonio": 95, "gonzalez": 95, "garcia": 95, "revolutionari": 95, "parti": 95, "wednesdai": 95, "troop": 95, "raid": 95, "farm": 95, "stole": 95, "rape": 95, "women": 95, "spring": 95, "chg": 95, "hrw": 95, "12pct": 95, "princ": 95, "photo": 95, "moment": 95, "spokeswoman": 95, "rainier": 95, "told": 95, "reuter": 95, "danila": 95, "carib": 95, "w224": 95, "equip": 95, "radiomet": 95, "earn": 95, "19996": 95, "london": 95, "denom": 95, "sale": 95, "uk": 95, "jp": 95, "fr": 95, "maccabi": 95, "hapoel": 95, "haifa": 95, "tel": 95, "aviv": 95, "hospit": 95, "rever": 95, "roman": 95, "cathol": 95, "nun": 95, "admit": 95, "calcutta": 95, "week": 95, "ago": 95, "fever": 95, "vomit": 95, "allianc": 95, "embattl": 95, "kabul": 95, "salang": 95, "highwai": 95, "mondai": 95, "tuesdai": 95, "suprem": 95, "council": 95, "led": 95, "jumbish": 95, "milli": 95, "movement": 95, "warlord": 95, "abdul": 95, "rashid": 95, "dostum": 95, "dollar": 95, "exchang": 95, "3570": 95, "12049": 95, "born": 95, "1937": 95, "provinc": 95, "anhui": 95, "dai": 95, "came": 95, "shanghai": 95, "citi": 95, "prolif": 95, "author": 95, "teacher": 95, "chines": 95, "16764": 95, "1990": 95, "historian": 95, "alan": 95, "john": 95, "percival": 95, "taylor": 95, "di": 95, "20446": 95, "pace": 95, "bowler": 95, "ian": 95, "harvei": 95, "claim": 95, "victoria": 95, "15514": 95, "cotti": 95, "osc": 95, "foreign": 95, "minist": 95, "7525": 95, "sultan": 95, "specter": 95, "met": 95, "crown": 95, "abdullah": 95, "defenc": 95, "aviat": 95, "jeddah": 95, "saudi": 95, "agenc": 95, "2288": 95, "hi": 95, "customari": 95, "outfit": 95, "champion": 95, "damp": 95, "scalp": 95, "canada": 95, "reign": 95, "olymp": 95, "donovan": 95, "bailei": 95, "1992": 95, "linford": 95, "christi": 95, "britain": 95, "1984": 95, "1988": 95, "carl": 95, "lewi": 95, "ambigi": 95, "punctuat": 95, "chicago": 95, "digest": 95, "philadelphia": 95, "usda": 95, "york": 95, "token_issu": 95, "471": 95, "kean": 95, "year": 95, "contract": 95, "manchest": 95, "19072": 95, "societi": 95, "million": 95, "bite": 95, "deliv": 95, "19910": 95, "father": 95, "clarenc": 95, "woolmer": 95, "renam": 95, "uttar": 95, "pradesh": 95, "india": 95, "ranji": 95, "trophi": 95, "nation": 95, "championship": 95, "captain": 95, "1949": 95, "15658": 95, "19879": 95, "iii": 95, "brian": 95, "shimer": 95, "randi": 95, "jone": 95, "19104": 95}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [31, 0, 0, "-", "dataset"], [34, 0, 0, "-", "experimental"], [37, 0, 0, "-", "filter"], [38, 0, 0, "-", "internal"], [49, 0, 0, "-", "models"], [51, 0, 0, "-", "multiannotator"], [54, 0, 0, "-", "multilabel_classification"], [57, 0, 0, "-", "object_detection"], [60, 0, 0, "-", "outlier"], [61, 0, 0, "-", "rank"], [62, 0, 0, "-", "regression"], [66, 0, 0, "-", "segmentation"], [70, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [28, 0, 0, "-", "report"], [29, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"], [10, 2, 1, "", "MultiClass"], [10, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [22, 0, 0, "-", "noniid"], [23, 0, 0, "-", "null"], [24, 0, 0, "-", "outlier"], [27, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, 2, 1, "", "NonIIDIssueManager"], [22, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[23, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[24, 6, 1, "", "DEFAULT_THRESHOLDS"], [24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 6, 1, "", "ood"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, 2, 1, "", "RegressionLabelIssueManager"], [26, 1, 1, "", "find_issues_with_features"], [26, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[27, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [27, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "filter_cluster_ids"], [27, 3, 1, "", "find_issues"], [27, 3, 1, "", "get_worst_cluster"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "perform_clustering"], [27, 3, 1, "", "report"], [27, 3, 1, "", "set_knn_graph"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[28, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[28, 3, 1, "", "get_report"], [28, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[29, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[29, 6, 1, "", "CLASSIFICATION"], [29, 6, 1, "", "MULTILABEL"], [29, 6, 1, "", "REGRESSION"], [29, 3, 1, "", "__contains__"], [29, 3, 1, "", "__getitem__"], [29, 3, 1, "", "__iter__"], [29, 3, 1, "", "__len__"], [29, 3, 1, "", "from_str"], [29, 4, 1, "", "is_classification"], [29, 4, 1, "", "is_multilabel"], [29, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[31, 1, 1, "", "find_overlapping_classes"], [31, 1, 1, "", "health_summary"], [31, 1, 1, "", "overall_label_health_score"], [31, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[32, 0, 0, "-", "cifar_cnn"], [33, 0, 0, "-", "coteaching"], [35, 0, 0, "-", "label_issues_batched"], [36, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[32, 2, 1, "", "CNN"], [32, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[32, 6, 1, "", "T_destination"], [32, 3, 1, "", "__call__"], [32, 3, 1, "", "add_module"], [32, 3, 1, "", "apply"], [32, 3, 1, "", "bfloat16"], [32, 3, 1, "", "buffers"], [32, 6, 1, "", "call_super_init"], [32, 3, 1, "", "children"], [32, 3, 1, "", "compile"], [32, 3, 1, "", "cpu"], [32, 3, 1, "", "cuda"], [32, 3, 1, "", "double"], [32, 6, 1, "", "dump_patches"], [32, 3, 1, "", "eval"], [32, 3, 1, "", "extra_repr"], [32, 3, 1, "", "float"], [32, 3, 1, "id0", "forward"], [32, 3, 1, "", "get_buffer"], [32, 3, 1, "", "get_extra_state"], [32, 3, 1, "", "get_parameter"], [32, 3, 1, "", "get_submodule"], [32, 3, 1, "", "half"], [32, 3, 1, "", "ipu"], [32, 3, 1, "", "load_state_dict"], [32, 3, 1, "", "modules"], [32, 3, 1, "", "named_buffers"], [32, 3, 1, "", "named_children"], [32, 3, 1, "", "named_modules"], [32, 3, 1, "", "named_parameters"], [32, 3, 1, "", "parameters"], [32, 3, 1, "", "register_backward_hook"], [32, 3, 1, "", "register_buffer"], [32, 3, 1, "", "register_forward_hook"], [32, 3, 1, "", "register_forward_pre_hook"], [32, 3, 1, "", "register_full_backward_hook"], [32, 3, 1, "", "register_full_backward_pre_hook"], [32, 3, 1, "", "register_load_state_dict_post_hook"], [32, 3, 1, "", "register_module"], [32, 3, 1, "", "register_parameter"], [32, 3, 1, "", "register_state_dict_pre_hook"], [32, 3, 1, "", "requires_grad_"], [32, 3, 1, "", "set_extra_state"], [32, 3, 1, "", "share_memory"], [32, 3, 1, "", "state_dict"], [32, 3, 1, "", "to"], [32, 3, 1, "", "to_empty"], [32, 3, 1, "", "train"], [32, 6, 1, "", "training"], [32, 3, 1, "", "type"], [32, 3, 1, "", "xpu"], [32, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[33, 1, 1, "", "adjust_learning_rate"], [33, 1, 1, "", "evaluate"], [33, 1, 1, "", "forget_rate_scheduler"], [33, 1, 1, "", "initialize_lr_scheduler"], [33, 1, 1, "", "loss_coteaching"], [33, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[35, 2, 1, "", "LabelInspector"], [35, 7, 1, "", "adj_confident_thresholds_shared"], [35, 1, 1, "", "find_label_issues_batched"], [35, 7, 1, "", "labels_shared"], [35, 7, 1, "", "pred_probs_shared"], [35, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[35, 3, 1, "", "get_confident_thresholds"], [35, 3, 1, "", "get_label_issues"], [35, 3, 1, "", "get_num_issues"], [35, 3, 1, "", "get_quality_scores"], [35, 3, 1, "", "score_label_quality"], [35, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[36, 2, 1, "", "CNN"], [36, 2, 1, "", "SimpleNet"], [36, 1, 1, "", "get_mnist_dataset"], [36, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[36, 3, 1, "", "__init_subclass__"], [36, 6, 1, "", "batch_size"], [36, 6, 1, "", "dataset"], [36, 6, 1, "", "epochs"], [36, 3, 1, "id0", "fit"], [36, 3, 1, "", "get_metadata_routing"], [36, 3, 1, "", "get_params"], [36, 6, 1, "", "loader"], [36, 6, 1, "", "log_interval"], [36, 6, 1, "", "lr"], [36, 6, 1, "", "momentum"], [36, 6, 1, "", "no_cuda"], [36, 3, 1, "id1", "predict"], [36, 3, 1, "id4", "predict_proba"], [36, 6, 1, "", "seed"], [36, 3, 1, "", "set_fit_request"], [36, 3, 1, "", "set_params"], [36, 3, 1, "", "set_predict_proba_request"], [36, 3, 1, "", "set_predict_request"], [36, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[36, 6, 1, "", "T_destination"], [36, 3, 1, "", "__call__"], [36, 3, 1, "", "add_module"], [36, 3, 1, "", "apply"], [36, 3, 1, "", "bfloat16"], [36, 3, 1, "", "buffers"], [36, 6, 1, "", "call_super_init"], [36, 3, 1, "", "children"], [36, 3, 1, "", "compile"], [36, 3, 1, "", "cpu"], [36, 3, 1, "", "cuda"], [36, 3, 1, "", "double"], [36, 6, 1, "", "dump_patches"], [36, 3, 1, "", "eval"], [36, 3, 1, "", "extra_repr"], [36, 3, 1, "", "float"], [36, 3, 1, "", "forward"], [36, 3, 1, "", "get_buffer"], [36, 3, 1, "", "get_extra_state"], [36, 3, 1, "", "get_parameter"], [36, 3, 1, "", "get_submodule"], [36, 3, 1, "", "half"], [36, 3, 1, "", "ipu"], [36, 3, 1, "", "load_state_dict"], [36, 3, 1, "", "modules"], [36, 3, 1, "", "named_buffers"], [36, 3, 1, "", "named_children"], [36, 3, 1, "", "named_modules"], [36, 3, 1, "", "named_parameters"], [36, 3, 1, "", "parameters"], [36, 3, 1, "", "register_backward_hook"], [36, 3, 1, "", "register_buffer"], [36, 3, 1, "", "register_forward_hook"], [36, 3, 1, "", "register_forward_pre_hook"], [36, 3, 1, "", "register_full_backward_hook"], [36, 3, 1, "", "register_full_backward_pre_hook"], [36, 3, 1, "", "register_load_state_dict_post_hook"], [36, 3, 1, "", "register_module"], [36, 3, 1, "", "register_parameter"], [36, 3, 1, "", "register_state_dict_pre_hook"], [36, 3, 1, "", "requires_grad_"], [36, 3, 1, "", "set_extra_state"], [36, 3, 1, "", "share_memory"], [36, 3, 1, "", "state_dict"], [36, 3, 1, "", "to"], [36, 3, 1, "", "to_empty"], [36, 3, 1, "", "train"], [36, 6, 1, "", "training"], [36, 3, 1, "", "type"], [36, 3, 1, "", "xpu"], [36, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[37, 1, 1, "", "find_label_issues"], [37, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [37, 1, 1, "", "find_predicted_neq_given"], [37, 7, 1, "", "pred_probs_by_class"], [37, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[39, 0, 0, "-", "label_quality_utils"], [40, 0, 0, "-", "latent_algebra"], [41, 0, 0, "-", "multiannotator_utils"], [42, 0, 0, "-", "multilabel_scorer"], [43, 0, 0, "-", "multilabel_utils"], [44, 0, 0, "-", "outlier"], [45, 0, 0, "-", "token_classification_utils"], [46, 0, 0, "-", "util"], [47, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[39, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[40, 1, 1, "", "compute_inv_noise_matrix"], [40, 1, 1, "", "compute_noise_matrix_from_inverse"], [40, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [40, 1, 1, "", "compute_py"], [40, 1, 1, "", "compute_py_inv_noise_matrix"], [40, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[41, 1, 1, "", "assert_valid_inputs_multiannotator"], [41, 1, 1, "", "assert_valid_pred_probs"], [41, 1, 1, "", "check_consensus_label_classes"], [41, 1, 1, "", "compute_soft_cross_entropy"], [41, 1, 1, "", "find_best_temp_scaler"], [41, 1, 1, "", "format_multiannotator_labels"], [41, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[42, 2, 1, "", "Aggregator"], [42, 2, 1, "", "ClassLabelScorer"], [42, 2, 1, "", "MultilabelScorer"], [42, 1, 1, "", "exponential_moving_average"], [42, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [42, 1, 1, "", "get_label_quality_scores"], [42, 1, 1, "", "multilabel_py"], [42, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[42, 3, 1, "", "__call__"], [42, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[42, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [42, 6, 1, "", "NORMALIZED_MARGIN"], [42, 6, 1, "", "SELF_CONFIDENCE"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "__contains__"], [42, 3, 1, "", "__getitem__"], [42, 3, 1, "", "__iter__"], [42, 3, 1, "", "__len__"], [42, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[42, 3, 1, "", "__call__"], [42, 3, 1, "", "aggregate"], [42, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[43, 1, 1, "", "get_onehot_num_classes"], [43, 1, 1, "", "int2onehot"], [43, 1, 1, "", "onehot2int"], [43, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[44, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[45, 1, 1, "", "color_sentence"], [45, 1, 1, "", "filter_sentence"], [45, 1, 1, "", "get_sentence"], [45, 1, 1, "", "mapping"], [45, 1, 1, "", "merge_probs"], [45, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[46, 1, 1, "", "append_extra_datapoint"], [46, 1, 1, "", "clip_noise_rates"], [46, 1, 1, "", "clip_values"], [46, 1, 1, "", "compress_int_array"], [46, 1, 1, "", "confusion_matrix"], [46, 1, 1, "", "csr_vstack"], [46, 1, 1, "", "estimate_pu_f1"], [46, 1, 1, "", "extract_indices_tf"], [46, 1, 1, "", "force_two_dimensions"], [46, 1, 1, "", "format_labels"], [46, 1, 1, "", "get_missing_classes"], [46, 1, 1, "", "get_num_classes"], [46, 1, 1, "", "get_unique_classes"], [46, 1, 1, "", "is_tensorflow_dataset"], [46, 1, 1, "", "is_torch_dataset"], [46, 1, 1, "", "num_unique_classes"], [46, 1, 1, "", "print_inverse_noise_matrix"], [46, 1, 1, "", "print_joint_matrix"], [46, 1, 1, "", "print_noise_matrix"], [46, 1, 1, "", "print_square_matrix"], [46, 1, 1, "", "remove_noise_from_class"], [46, 1, 1, "", "round_preserving_row_totals"], [46, 1, 1, "", "round_preserving_sum"], [46, 1, 1, "", "smart_display_dataframe"], [46, 1, 1, "", "subset_X_y"], [46, 1, 1, "", "subset_data"], [46, 1, 1, "", "subset_labels"], [46, 1, 1, "", "train_val_split"], [46, 1, 1, "", "unshuffle_tensorflow_dataset"], [46, 1, 1, "", "value_counts"], [46, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[47, 1, 1, "", "assert_indexing_works"], [47, 1, 1, "", "assert_nonempty_input"], [47, 1, 1, "", "assert_valid_class_labels"], [47, 1, 1, "", "assert_valid_inputs"], [47, 1, 1, "", "labels_to_array"], [47, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[50, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[50, 2, 1, "", "KerasWrapperModel"], [50, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[50, 3, 1, "", "fit"], [50, 3, 1, "", "get_params"], [50, 3, 1, "", "predict"], [50, 3, 1, "", "predict_proba"], [50, 3, 1, "", "set_params"], [50, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[50, 3, 1, "", "fit"], [50, 3, 1, "", "get_params"], [50, 3, 1, "", "predict"], [50, 3, 1, "", "predict_proba"], [50, 3, 1, "", "set_params"], [50, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[51, 1, 1, "", "convert_long_to_wide_dataset"], [51, 1, 1, "", "get_active_learning_scores"], [51, 1, 1, "", "get_active_learning_scores_ensemble"], [51, 1, 1, "", "get_label_quality_multiannotator"], [51, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [51, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[52, 0, 0, "-", "dataset"], [53, 0, 0, "-", "filter"], [55, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[52, 1, 1, "", "common_multilabel_issues"], [52, 1, 1, "", "multilabel_health_summary"], [52, 1, 1, "", "overall_multilabel_health_score"], [52, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[53, 1, 1, "", "find_label_issues"], [53, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[55, 1, 1, "", "get_label_quality_scores"], [55, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[56, 0, 0, "-", "filter"], [58, 0, 0, "-", "rank"], [59, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[56, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[58, 1, 1, "", "compute_badloc_box_scores"], [58, 1, 1, "", "compute_overlooked_box_scores"], [58, 1, 1, "", "compute_swap_box_scores"], [58, 1, 1, "", "get_label_quality_scores"], [58, 1, 1, "", "issues_from_scores"], [58, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[59, 1, 1, "", "bounding_box_size_distribution"], [59, 1, 1, "", "calculate_per_class_metrics"], [59, 1, 1, "", "class_label_distribution"], [59, 1, 1, "", "get_average_per_class_confusion_matrix"], [59, 1, 1, "", "get_sorted_bbox_count_idxs"], [59, 1, 1, "", "object_counts_per_image"], [59, 1, 1, "", "plot_class_distribution"], [59, 1, 1, "", "plot_class_size_distributions"], [59, 1, 1, "", "visualize"]], "cleanlab.outlier": [[60, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "fit_score"], [60, 3, 1, "", "score"]], "cleanlab.rank": [[61, 1, 1, "", "find_top_issues"], [61, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [61, 1, 1, "", "get_label_quality_ensemble_scores"], [61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "get_normalized_margin_for_each_label"], [61, 1, 1, "", "get_self_confidence_for_each_label"], [61, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[63, 0, 0, "-", "learn"], [64, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[63, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[63, 3, 1, "", "__init_subclass__"], [63, 3, 1, "", "find_label_issues"], [63, 3, 1, "", "fit"], [63, 3, 1, "", "get_aleatoric_uncertainty"], [63, 3, 1, "", "get_epistemic_uncertainty"], [63, 3, 1, "", "get_label_issues"], [63, 3, 1, "", "get_metadata_routing"], [63, 3, 1, "", "get_params"], [63, 3, 1, "", "predict"], [63, 3, 1, "", "save_space"], [63, 3, 1, "", "score"], [63, 3, 1, "", "set_fit_request"], [63, 3, 1, "", "set_params"], [63, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[64, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[65, 0, 0, "-", "filter"], [67, 0, 0, "-", "rank"], [68, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[65, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[68, 1, 1, "", "common_label_issues"], [68, 1, 1, "", "display_issues"], [68, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[69, 0, 0, "-", "filter"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[69, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[72, 1, 1, "", "common_label_issues"], [72, 1, 1, "", "display_issues"], [72, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 75, 79, 80, 82, 83, 84, 87, 93, 94, 95], "count": [3, 84], "datalab": [4, 5, 7, 8, 9, 76, 77, 78, 79, 80, 84, 87], "creat": [5, 76, 77, 84, 86], "your": [5, 73, 76, 77, 80, 82, 84], "own": 5, "issu": [5, 7, 8, 19, 26, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 92, 93, 95], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 76], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 76], "us": [5, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "gener": 6, "cluster": [6, 82], "id": 6, "guid": [7, 9], "type": [7, 8, 84], "custom": [7, 76], "can": [8, 77, 81, 82, 84, 86], "detect": [8, 77, 79, 80, 82, 84, 88, 89], "estim": [8, 84, 86, 87], "each": 8, "label": [8, 21, 26, 73, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95], "outlier": [8, 24, 44, 60, 79, 80, 83, 87, 89], "Near": [8, 77, 79, 80, 83], "duplic": [8, 17, 77, 79, 80, 82, 83, 87], "non": [8, 80], "iid": [8, 80], "class": [8, 74, 84, 92], "imbal": [8, 18], "imag": [8, 83, 89], "specif": [8, 19, 92], "underperform": [8, 82], "group": [8, 82], "null": [8, 23], "data": [8, 10, 73, 75, 76, 77, 79, 80, 81, 82, 84, 86, 87, 88, 89, 91, 92, 93, 95], "valuat": 8, "option": 8, "paramet": [8, 84], "get": [9, 76, 77, 86, 87, 88, 92, 95], "start": [9, 81], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 38], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 82, 84], "task": [19, 29], "noniid": 22, "regress": [25, 62, 63, 64, 82, 91], "prioriti": 26, "order": 26, "find": [26, 73, 75, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "underperforming_group": 27, "report": [28, 83], "dataset": [31, 52, 73, 77, 80, 81, 82, 83, 84, 87, 88, 89, 91, 92, 94, 95], "cifar_cnn": 32, "coteach": 33, "experiment": 34, "label_issues_batch": 35, "mnist_pytorch": 36, "filter": [37, 53, 56, 65, 69, 84], "label_quality_util": 39, "latent_algebra": 40, "multiannotator_util": 41, "multilabel_scor": 42, "multilabel_util": 43, "token_classification_util": 45, "util": 46, "valid": [47, 83, 90], "fasttext": 48, "model": [49, 73, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "kera": 50, "multiannot": [51, 86], "multilabel_classif": 54, "rank": [55, 58, 61, 64, 67, 71, 84], "object_detect": 57, "summari": [59, 68, 72], "learn": [63, 77, 82, 84, 93], "segment": [66, 92], "token_classif": [70, 95], "cleanlab": [73, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "open": [73, 82], "sourc": [73, 82], "document": 73, "quickstart": 73, "1": [73, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "instal": [73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "2": [73, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "common": [73, 74, 95], "3": [73, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "handl": [73, 82], "error": [73, 82, 83, 84, 86, 87, 88, 91, 92, 94, 95], "train": [73, 75, 82, 89, 91, 93, 94], "robust": [73, 84, 91, 93, 94], "noisi": [73, 84, 91, 93, 94], "4": [73, 75, 76, 77, 79, 80, 83, 84, 86, 88, 89, 91, 93, 94], "curat": [73, 81], "fix": [73, 82], "level": [73, 81, 84, 95], "5": [73, 75, 77, 79, 83, 84, 86, 91, 93], "improv": [73, 86], "via": [73, 84, 86], "mani": [73, 84], "other": [73, 86, 88, 91], "techniqu": 73, "contribut": 73, "easi": [73, 79, 80, 83], "mode": [73, 79, 80, 83], "how": [74, 82, 84, 86, 87, 95], "migrat": 74, "version": 74, "0": 74, "from": [74, 76, 77, 84, 91, 93, 94], "pre": [74, 75, 82, 89], "function": [74, 76], "name": 74, "chang": 74, "modul": [74, 84], "new": 74, "remov": 74, "argument": [74, 76], "variabl": 74, "audio": 75, "speechbrain": 75, "depend": [75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "import": [75, 76, 77, 81, 83, 84, 86], "them": [75, 81, 84], "load": [75, 76, 77, 79, 80, 91, 93, 94], "featur": [75, 83, 89], "fit": 75, "linear": 75, "comput": [75, 79, 80, 82, 83, 86, 90, 93], "out": [75, 76, 77, 79, 80, 83, 86, 90, 93], "sampl": [75, 76, 77, 79, 80, 83, 86, 90, 93], "predict": [75, 76, 77, 79, 80, 83, 86, 87, 88, 90, 93], "probabl": [75, 76, 77, 79, 80, 83, 86, 90, 93], "workflow": [76, 84], "audit": [76, 77], "requir": [76, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "classifi": [76, 77], "instanti": 76, "object": [76, 88], "increment": 76, "search": 76, "specifi": [76, 82], "nondefault": 76, "save": 76, "ad": 76, "A": 77, "unifi": 77, "all": [77, 84], "kind": [77, 88], "skip": [77, 81, 84, 86], "detail": [77, 81, 84, 86], "more": [77, 84, 91, 93, 94], "about": 77, "addit": 77, "inform": [77, 83], "tutori": [78, 81, 85], "tabular": [79, 93], "numer": 79, "categor": 79, "column": 79, "process": [79, 89, 91, 93], "select": [79, 93], "construct": 79, "k": [79, 83, 90], "nearest": 79, "neighbour": 79, "graph": 79, "text": [80, 94, 95], "format": [80, 82, 87, 88, 94], "defin": [80, 83, 91, 94], "drift": [80, 87], "fetch": [81, 83], "evalu": 81, "health": [81, 84], "8": [81, 84], "popular": 81, "faq": 82, "what": [82, 84, 90], "do": [82, 84], "i": [82, 84, 90], "infer": 82, "correct": 82, "exampl": [82, 83, 84, 89], "ha": 82, "flag": 82, "should": 82, "v": 82, "test": [82, 84, 89], "big": 82, "limit": 82, "memori": 82, "why": 82, "isn": 82, "t": 82, "cleanlearn": [82, 84], "work": [82, 84, 86, 95], "me": 82, "differ": [82, 88], "clean": [82, 84], "final": 82, "hyperparamet": 82, "tune": 82, "onli": 82, "one": [82, 84, 87, 92], "doe": [82, 86, 95], "take": 82, "so": 82, "long": 82, "slice": 82, "when": [82, 84], "identifi": [82, 88], "run": 82, "licens": 82, "under": 82, "an": 82, "answer": 82, "question": 82, "pytorch": [83, 89], "normal": 83, "fashion": 83, "mnist": 83, "prepar": 83, "fold": [83, 90], "cross": [83, 90], "embed": [83, 89], "7": [83, 84], "view": 83, "most": [83, 95], "like": 83, "sever": 83, "set": [83, 84], "dark": 83, "top": [83, 92], "low": 83, "The": 84, "centric": 84, "ai": 84, "machin": 84, "find_label_issu": 84, "line": 84, "code": 84, "visual": [84, 88, 89, 92], "twenti": 84, "lowest": 84, "qualiti": [84, 86, 87, 88, 92, 95], "see": 84, "now": 84, "let": 84, "": 84, "happen": 84, "we": 84, "merg": 84, "seafoam": 84, "green": 84, "yellow": 84, "too": 84, "you": 84, "re": 84, "6": 84, "One": 84, "score": [84, 86, 87, 88, 92, 95], "rule": 84, "overal": [84, 92], "accur": 84, "thi": 84, "directli": 84, "fulli": 84, "character": 84, "nois": 84, "matrix": [84, 87], "joint": 84, "prior": 84, "true": 84, "distribut": 84, "flip": 84, "rate": 84, "ani": 84, "again": 84, "support": 84, "lot": 84, "method": 84, "filter_bi": 84, "automat": 84, "everi": 84, "uniqu": 84, "num_label_issu": 84, "threshold": 84, "found": 84, "Not": 84, "sure": 84, "ensembl": 84, "multipl": [84, 86], "predictor": 84, "consensu": 86, "annot": 86, "initi": 86, "major": 86, "vote": 86, "better": 86, "statist": 86, "compar": 86, "inspect": 86, "potenti": [86, 91, 94], "retrain": 86, "further": 86, "multi": 87, "beyond": 87, "mislabel": [87, 92, 95], "given": 87, "hot": 87, "binari": 87, "without": 87, "applic": 87, "real": 87, "download": [88, 92, 95], "objectlab": 88, "exploratori": 88, "analysi": 88, "timm": 89, "cifar10": 89, "some": 89, "pred_prob": [89, 92, 95], "wai": 91, "semant": 92, "which": 92, "ar": 92, "commonli": 92, "focus": 92, "scikit": 93, "token": 95, "word": 95, "sentenc": 95, "contain": 95, "particular": 95}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "datalab": [[4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[5, "creating-your-own-issues-manager"]], "Prerequisites": [[5, "prerequisites"]], "Implementing IssueManagers": [[5, "implementing-issuemanagers"]], "Basic Issue Check": [[5, "basic-issue-check"]], "Intermediate Issue Check": [[5, "intermediate-issue-check"]], "Advanced Issue Check": [[5, "advanced-issue-check"]], "Use with Datalab": [[5, "use-with-datalab"]], "Generating Cluster IDs": [[6, "generating-cluster-ids"]], "Datalab guides": [[7, "datalab-guides"]], "Types of issues": [[7, "types-of-issues"]], "Customizing issue types": [[7, "customizing-issue-types"]], "Datalab Issue Types": [[8, "datalab-issue-types"]], "Types of issues Datalab can detect": [[8, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[8, "estimates-for-each-issue-type"]], "Label Issue": [[8, "label-issue"]], "Outlier Issue": [[8, "outlier-issue"]], "(Near) Duplicate Issue": [[8, "near-duplicate-issue"]], "Non-IID Issue": [[8, "non-iid-issue"]], "Class Imbalance Issue": [[8, "class-imbalance-issue"]], "Image-specific Issues": [[8, "image-specific-issues"]], "Underperforming Group Issue": [[8, "underperforming-group-issue"]], "Null Issue": [[8, "null-issue"]], "Data Valuation Issue": [[8, "data-valuation-issue"]], "Optional Issue Parameters": [[8, "optional-issue-parameters"]], "Label Issue Parameters": [[8, "label-issue-parameters"]], "Outlier Issue Parameters": [[8, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[8, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[8, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[8, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[8, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[8, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[8, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[8, "image-issue-parameters"]], "Getting Started": [[9, "getting-started"]], "Guides": [[9, "guides"]], "API Reference": [[9, "api-reference"]], "data": [[10, "module-cleanlab.datalab.internal.data"]], "data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[13, "internal"], [38, "internal"]], "issue_finder": [[14, "issue-finder"]], "data_valuation": [[16, "data-valuation"]], "duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[19, "issue-manager"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[19, "registered-issue-managers"]], "Unregistered issue managers": [[19, "unregistered-issue-managers"]], "ML task-specific issue managers": [[19, "ml-task-specific-issue-managers"]], "label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[23, "null"]], "outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [44, "module-cleanlab.internal.outlier"], [60, "module-cleanlab.outlier"]], "regression": [[25, "regression"], [62, "regression"]], "Priority Order for finding issues:": [[26, null]], "underperforming_group": [[27, "underperforming-group"]], "report": [[28, "report"]], "task": [[29, "task"]], "dataset": [[31, "module-cleanlab.dataset"], [52, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[32, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[33, "module-cleanlab.experimental.coteaching"]], "experimental": [[34, "experimental"]], "label_issues_batched": [[35, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[36, "module-cleanlab.experimental.mnist_pytorch"]], "filter": [[37, "module-cleanlab.filter"], [53, "module-cleanlab.multilabel_classification.filter"], [56, "filter"], [65, "filter"], [69, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[39, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[40, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[41, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[42, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[43, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[45, "module-cleanlab.internal.token_classification_utils"]], "util": [[46, "module-cleanlab.internal.util"]], "validation": [[47, "module-cleanlab.internal.validation"]], "fasttext": [[48, "fasttext"]], "models": [[49, "models"]], "keras": [[50, "module-cleanlab.models.keras"]], "multiannotator": [[51, "module-cleanlab.multiannotator"]], "multilabel_classification": [[54, "multilabel-classification"]], "rank": [[55, "module-cleanlab.multilabel_classification.rank"], [58, "module-cleanlab.object_detection.rank"], [61, "module-cleanlab.rank"], [67, "module-cleanlab.segmentation.rank"], [71, "module-cleanlab.token_classification.rank"]], "object_detection": [[57, "object-detection"]], "summary": [[59, "summary"], [68, "module-cleanlab.segmentation.summary"], [72, "module-cleanlab.token_classification.summary"]], "regression.learn": [[63, "module-cleanlab.regression.learn"]], "regression.rank": [[64, "module-cleanlab.regression.rank"]], "segmentation": [[66, "segmentation"]], "token_classification": [[70, "token-classification"]], "cleanlab open-source documentation": [[73, "cleanlab-open-source-documentation"]], "Quickstart": [[73, "quickstart"]], "1. Install cleanlab": [[73, "install-cleanlab"]], "2. Find common issues in your data": [[73, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[73, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[73, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[73, "improve-your-data-via-many-other-techniques"]], "Contributing": [[73, "contributing"]], "Easy Mode": [[73, "easy-mode"], [79, "Easy-Mode"], [80, "Easy-Mode"], [83, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[74, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[74, "function-and-class-name-changes"]], "Module name changes": [[74, "module-name-changes"]], "New modules": [[74, "new-modules"]], "Removed modules": [[74, "removed-modules"]], "Common argument and variable name changes": [[74, "common-argument-and-variable-name-changes"]], "Audio Classification with SpeechBrain and Cleanlab": [[75, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[75, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[75, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[75, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[75, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[75, "5.-Use-cleanlab-to-find-label-issues"], [79, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[76, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[76, "Install-and-import-required-dependencies"]], "Create and load the data": [[76, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[76, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[76, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[76, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[76, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[76, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[76, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[77, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[77, "1.-Install-and-import-required-dependencies"], [83, "1.-Install-and-import-required-dependencies"], [86, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[77, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[77, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[77, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[77, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[77, "Get-additional-information"]], "Near duplicate issues": [[77, "Near-duplicate-issues"], [83, "Near-duplicate-issues"]], "Datalab Tutorials": [[78, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[79, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "1. Install required dependencies": [[79, "1.-Install-required-dependencies"], [80, "1.-Install-required-dependencies"], [91, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"]], "2. Load and process the data": [[79, "2.-Load-and-process-the-data"], [91, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[79, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Construct K nearest neighbours graph": [[79, "4.-Construct-K-nearest-neighbours-graph"]], "Label issues": [[79, "Label-issues"], [80, "Label-issues"], [83, "Label-issues"]], "Outlier issues": [[79, "Outlier-issues"], [80, "Outlier-issues"], [83, "Outlier-issues"]], "Near-duplicate issues": [[79, "Near-duplicate-issues"], [80, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[80, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "2. Load and format the text dataset": [[80, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[80, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[80, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[80, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[81, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[81, "Install-dependencies-and-import-them"], [84, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[81, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[81, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[82, "FAQ"]], "What data can cleanlab detect issues in?": [[82, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[82, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[82, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[82, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[82, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[82, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[82, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[82, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[82, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[82, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[82, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[82, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[82, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[82, "Can't-find-an-answer-to-your-question?"]], "Image Classification with PyTorch and Cleanlab": [[83, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[83, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[83, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[83, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[83, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[83, "7.-Use-cleanlab-to-find-issues"]], "View report": [[83, "View-report"]], "View most likely examples with label errors": [[83, "View-most-likely-examples-with-label-errors"]], "View most severe outliers": [[83, "View-most-severe-outliers"]], "View sets of near duplicate images": [[83, "View-sets-of-near-duplicate-images"]], "Dark images": [[83, "Dark-images"]], "View top examples of dark images": [[83, "View-top-examples-of-dark-images"]], "Low information images": [[83, "Low-information-images"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[84, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[84, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[84, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[84, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[84, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[84, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[84, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[84, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[84, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[84, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[84, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[84, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[84, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[84, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[84, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[84, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[84, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[84, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[84, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[84, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[84, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[84, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[85, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[86, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[86, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[86, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[86, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[86, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[86, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[86, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[86, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[86, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[87, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[87, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[87, "2.-Format-data,-labels,-and-model-predictions"], [88, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[87, "3.-Use-cleanlab-to-find-label-issues"], [88, "3.-Use-cleanlab-to-find-label-issues"], [92, "3.-Use-cleanlab-to-find-label-issues"], [95, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[87, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[87, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[87, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[87, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[87, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[88, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[88, "1.-Install-required-dependencies-and-download-data"], [92, "1.-Install-required-dependencies-and-download-data"], [95, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[88, "Get-label-quality-scores"], [92, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[88, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[88, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[88, "Other-uses-of-visualize"]], "Exploratory data analysis": [[88, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[89, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[89, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[89, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[89, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[89, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[89, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[90, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[90, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[90, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[91, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[91, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[91, "4.-Train-a-more-robust-model-from-noisy-labels"], [94, "4.-Train-a-more-robust-model-from-noisy-labels"]], "5. Other ways to find noisy labels in regression datasets": [[91, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[92, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[92, "2.-Get-data,-labels,-and-pred_probs"], [95, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[92, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[92, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[92, "Focusing-on-one-specific-class"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[93, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "4. Use cleanlab to find label issues": [[93, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[93, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[94, "Text-Classification-with-Noisy-Labels"]], "3. Define a classification model and use cleanlab to find potential label errors": [[94, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "Find Label Errors in Token Classification (Text) Datasets": [[95, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[95, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[95, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[95, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[95, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"], [10, "module-cleanlab.datalab.internal.data"], [11, "module-cleanlab.datalab.internal.data_issues"], [12, "module-cleanlab.datalab.internal.issue_manager_factory"], [13, "module-cleanlab.datalab.internal"], [14, "module-cleanlab.datalab.internal.issue_finder"], [16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [17, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [18, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [21, "module-cleanlab.datalab.internal.issue_manager.label"], [22, "module-cleanlab.datalab.internal.issue_manager.noniid"], [23, "module-cleanlab.datalab.internal.issue_manager.null"], [24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [28, "module-cleanlab.datalab.internal.report"], [29, "module-cleanlab.datalab.internal.task"], [31, "module-cleanlab.dataset"], [32, "module-cleanlab.experimental.cifar_cnn"], [33, "module-cleanlab.experimental.coteaching"], [34, "module-cleanlab.experimental"], [35, "module-cleanlab.experimental.label_issues_batched"], [36, "module-cleanlab.experimental.mnist_pytorch"], [37, "module-cleanlab.filter"], [38, "module-cleanlab.internal"], [39, "module-cleanlab.internal.label_quality_utils"], [40, "module-cleanlab.internal.latent_algebra"], [41, "module-cleanlab.internal.multiannotator_utils"], [42, "module-cleanlab.internal.multilabel_scorer"], [43, "module-cleanlab.internal.multilabel_utils"], [44, "module-cleanlab.internal.outlier"], [45, "module-cleanlab.internal.token_classification_utils"], [46, "module-cleanlab.internal.util"], [47, "module-cleanlab.internal.validation"], [49, "module-cleanlab.models"], [50, "module-cleanlab.models.keras"], [51, "module-cleanlab.multiannotator"], [52, "module-cleanlab.multilabel_classification.dataset"], [53, "module-cleanlab.multilabel_classification.filter"], [54, "module-cleanlab.multilabel_classification"], [55, "module-cleanlab.multilabel_classification.rank"], [56, "module-cleanlab.object_detection.filter"], [57, "module-cleanlab.object_detection"], [58, "module-cleanlab.object_detection.rank"], [59, "module-cleanlab.object_detection.summary"], [60, "module-cleanlab.outlier"], [61, "module-cleanlab.rank"], [62, "module-cleanlab.regression"], [63, "module-cleanlab.regression.learn"], [64, "module-cleanlab.regression.rank"], [65, "module-cleanlab.segmentation.filter"], [66, "module-cleanlab.segmentation"], [67, "module-cleanlab.segmentation.rank"], [68, "module-cleanlab.segmentation.summary"], [69, "module-cleanlab.token_classification.filter"], [70, "module-cleanlab.token_classification"], [71, "module-cleanlab.token_classification.rank"], [72, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "datalab (class in cleanlab.datalab.datalab)": [[4, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[4, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[4, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[9, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[10, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[10, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[10, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[10, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[10, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[13, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[14, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[23, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "reporter (class in cleanlab.datalab.internal.report)": [[28, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[28, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[29, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[29, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[29, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[29, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[29, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[29, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[29, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[29, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[31, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[32, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[32, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[32, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.forward"], [32, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[33, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[34, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[35, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[36, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [36, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [36, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [36, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.filter": [[37, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[37, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[37, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[37, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[37, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[37, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[38, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[39, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[39, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[40, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[41, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[42, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[42, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[42, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[43, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[44, "module-cleanlab.internal.outlier"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[44, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[45, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[46, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[47, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[49, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[50, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[50, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[50, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[51, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[52, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[53, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[53, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[53, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[54, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[55, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[55, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[55, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[56, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[56, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[57, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[58, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[59, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[60, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[60, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[60, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[60, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[60, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[61, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[61, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[61, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[62, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[63, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[63, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[63, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[64, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[64, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[65, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[65, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[66, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[67, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[67, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[67, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[68, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[68, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[68, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[68, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[69, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[69, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[70, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[71, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[71, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[71, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[72, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[72, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[72, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[72, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 74, 76, 77, 84, 86, 87], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 76, 77, 84, 86, 87], "generate_noise_matrix_from_trac": [0, 1, 76, 77, 84, 86, 87], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 14, 35, 39, 41, 42, 43, 44, 45, 46, 58, 81, 83, 95], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 26, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "us": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 73, 74, 76, 81, 85, 90], "benchmark": [1, 32, 73, 74, 76, 77, 84, 86, 87], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 76, 77, 81, 85, 90], "": [1, 2, 3, 8, 16, 31, 32, 36, 39, 42, 44, 46, 51, 52, 56, 58, 59, 60, 61, 63, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "core": [1, 4, 35, 37, 65, 67], "algorithm": [1, 2, 6, 8, 27, 33, 46, 51, 60, 69, 71, 73, 82, 84, 86, 95], "These": [1, 2, 3, 6, 8, 19, 32, 34, 36, 37, 38, 49, 51, 52, 55, 59, 60, 64, 68, 69, 71, 72, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "introduc": [1, 75, 82, 84], "synthet": [1, 86, 87, 92], "nois": [1, 2, 3, 31, 37, 40, 46, 52, 76, 77, 81, 86, 91], "label": [1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 14, 18, 19, 20, 25, 27, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 81, 85, 89, 90], "classif": [1, 3, 4, 5, 8, 10, 12, 14, 29, 31, 35, 37, 40, 42, 43, 46, 51, 52, 53, 54, 55, 60, 61, 69, 70, 71, 72, 73, 74, 76, 77, 85, 86, 89, 90, 91, 92], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 34, 35, 36, 37, 40, 42, 46, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 78, 79, 85, 86, 90, 93], "specif": [1, 3, 4, 7, 12, 13, 14, 23, 28, 34, 49, 53, 56, 59, 68, 72, 79, 80, 83, 84, 88, 95], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "modul": [1, 3, 11, 12, 13, 14, 19, 25, 28, 29, 31, 32, 33, 34, 35, 36, 37, 42, 44, 46, 49, 51, 56, 59, 60, 61, 73, 82, 83, 87], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 26, 29, 31, 32, 33, 35, 36, 37, 40, 46, 50, 51, 52, 53, 58, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 89, 90, 91, 92, 93, 94, 95], "gener": [1, 2, 3, 5, 8, 16, 21, 28, 31, 42, 46, 47, 60, 61, 63, 68, 75, 76, 77, 80, 81, 82, 83, 84, 86, 87, 89, 90, 92, 94, 95], "valid": [1, 2, 3, 4, 8, 10, 29, 31, 37, 38, 40, 41, 42, 44, 46, 51, 53, 56, 59, 61, 63, 64, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 87, 88, 91, 92, 93, 94, 95], "matric": [1, 3, 40, 82], "which": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 20, 22, 28, 31, 32, 36, 37, 40, 42, 45, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 26, 28, 33, 34, 35, 36, 37, 39, 41, 46, 49, 51, 53, 60, 62, 64, 67, 71, 73, 75, 76, 79, 80, 81, 83, 85, 86, 87, 91, 94], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "possibl": [1, 2, 3, 5, 8, 31, 32, 36, 37, 39, 40, 42, 53, 54, 55, 56, 58, 59, 60, 61, 63, 69, 71, 72, 77, 82, 84, 86, 87, 88, 91, 92, 95], "noisi": [1, 2, 3, 8, 31, 33, 36, 37, 40, 46, 52, 53, 55, 61, 63, 64, 65, 67, 68, 74, 76, 77, 79, 80, 82, 85, 86], "given": [1, 2, 3, 8, 12, 26, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 45, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 64, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "matrix": [1, 2, 3, 4, 8, 14, 16, 27, 31, 37, 39, 40, 43, 46, 47, 53, 56, 58, 59, 60, 61, 79, 88, 89], "trace": [1, 76, 77, 84, 86, 87], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 22, 23, 29, 31, 32, 33, 35, 36, 37, 39, 40, 42, 44, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 72, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "more": [1, 2, 3, 4, 5, 8, 11, 12, 14, 16, 22, 31, 32, 35, 36, 39, 42, 44, 46, 51, 52, 53, 54, 55, 56, 58, 59, 61, 63, 64, 67, 68, 69, 71, 73, 75, 76, 79, 80, 81, 82, 83, 86, 87, 88, 89, 92, 95], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 22, 26, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 77, 81, 82, 84, 86, 87, 88, 92, 93, 94, 95], "noise_matrix": [1, 2, 3, 8, 40, 46, 76, 77, 84, 86, 87], "py": [1, 3, 28, 32, 33, 37, 40, 42, 75, 76, 77, 80, 82, 84, 86, 87, 94], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 37, 51, 52, 53, 58, 60, 61, 63, 65, 67, 68, 72, 76, 84, 86], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 41, 45, 46, 47, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 69, 75, 76, 77, 79, 80, 82, 83, 84, 86, 88, 89, 91, 92, 94], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72], "prior": [1, 2, 3, 31, 37, 40, 42], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 22, 29, 31, 35, 37, 40, 43, 44, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "p": [1, 2, 3, 8, 31, 37, 39, 40, 46, 51, 59, 60, 61, 65, 79, 80, 84, 86, 95], "true_label": [1, 2, 3, 31, 40, 46, 84, 86], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 22, 24, 27, 31, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 75, 76, 77, 82, 84, 86, 87, 88, 89, 92, 93, 95], "check": [1, 2, 4, 7, 8, 10, 14, 23, 29, 32, 35, 36, 41, 47, 50, 56, 59, 63, 73, 75, 76, 77, 82, 83, 84, 86, 87, 91, 93, 94], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 22, 33, 36, 40, 42, 44, 58, 63, 77, 80, 82, 84, 86, 87, 88, 89, 91, 94], "achiev": [1, 2, 32, 33, 36, 63, 82, 86, 95], "better": [1, 4, 37, 51, 53, 61, 63, 64, 73, 75, 77, 79, 80, 82, 84, 87, 88, 89, 94, 95], "than": [1, 2, 3, 5, 8, 22, 24, 27, 31, 37, 46, 50, 51, 56, 58, 60, 61, 63, 67, 71, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 95], "random": [1, 2, 3, 5, 8, 16, 27, 35, 42, 51, 61, 63, 75, 76, 77, 79, 82, 83, 84, 86, 87, 89, 93], "perform": [1, 2, 5, 8, 22, 24, 27, 32, 36, 42, 59, 63, 73, 76, 82, 84, 86, 87, 90, 91, 93, 94], "averag": [1, 3, 8, 20, 24, 31, 32, 36, 42, 44, 51, 52, 59, 60, 61, 82, 86, 89], "amount": [1, 3, 83], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 77, 80, 83, 93, 94], "np": [1, 2, 3, 4, 5, 14, 16, 27, 31, 33, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 68, 69, 71, 72, 75, 76, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "ndarrai": [1, 2, 3, 4, 14, 21, 22, 26, 27, 31, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 95], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 22, 31, 33, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 77, 80, 82, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "shape": [1, 2, 3, 4, 14, 16, 31, 33, 35, 37, 39, 40, 41, 42, 44, 45, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 81, 82, 84, 87, 88, 89, 92, 95], "condit": [1, 2, 3, 40, 45, 46, 61, 83, 84, 95], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 24, 31, 35, 36, 37, 39, 40, 42, 43, 45, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 81, 82, 84, 85, 87, 88, 89, 92, 95], "k_": [1, 2, 3, 40, 46], "k_y": [1, 2, 3, 40, 46], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 35, 36, 37, 39, 40, 45, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 67, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94], "fraction": [1, 2, 3, 8, 18, 33, 40, 46, 51, 63, 79, 82], "exampl": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 86, 87, 88, 90, 91, 92, 93, 94, 95], "everi": [1, 2, 3, 4, 14, 32, 36, 37, 40, 45, 46, 53, 61, 63, 64, 75, 76, 77, 79, 80, 82, 83, 86, 88, 90, 92, 93, 95], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95], "other": [1, 2, 3, 4, 8, 14, 20, 23, 31, 32, 34, 35, 36, 37, 40, 43, 46, 47, 49, 51, 52, 55, 59, 60, 61, 63, 68, 75, 76, 77, 79, 80, 82, 83, 84, 87, 89, 92, 95], "assum": [1, 2, 3, 10, 37, 40, 45, 46, 61, 65, 68, 82, 87, 89, 91, 92, 95], "column": [1, 2, 3, 4, 8, 10, 11, 26, 31, 35, 37, 40, 42, 43, 45, 46, 51, 52, 53, 55, 56, 59, 60, 61, 63, 68, 69, 71, 72, 75, 76, 77, 80, 81, 82, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95], "sum": [1, 2, 3, 22, 27, 31, 40, 42, 46, 52, 53, 55, 58, 63, 76, 77, 82, 83, 84, 86, 87, 92, 95], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 81, 82, 90], "each": [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 18, 20, 21, 22, 27, 28, 31, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 46, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 40, 42, 45, 46, 47, 50, 51, 52, 53, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 87, 88, 91, 92, 93, 95], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 42, 45, 46, 51, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 32, 35, 36, 37, 46, 51, 52, 53, 55, 56, 72, 75, 77, 79, 80, 81, 82, 83, 84, 91, 94, 95], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 40, 42, 43, 44, 45, 46, 51, 53, 55, 58, 59, 60, 61, 63, 64, 69, 71, 72, 73, 75, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 92, 95], "perfect": [1, 2, 31, 63, 84, 88], "exactli": [1, 3, 8, 31, 32, 36, 37, 54, 60, 76, 77, 79, 80, 83, 84], "yield": [1, 32, 36], "between": [1, 4, 8, 13, 14, 19, 20, 22, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 44, 49, 51, 52, 55, 58, 60, 61, 63, 64, 67, 71, 72, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "below": [1, 3, 4, 8, 31, 32, 35, 36, 37, 39, 42, 51, 52, 53, 58, 59, 67, 71, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "we": [1, 2, 3, 4, 5, 8, 11, 20, 32, 35, 36, 37, 42, 46, 47, 51, 58, 59, 61, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "loop": [1, 3, 40, 46, 83, 88], "implement": [1, 2, 3, 4, 7, 12, 20, 32, 33, 35, 36, 40, 46, 63, 73, 75, 76, 79, 89, 90, 93], "what": [1, 4, 7, 8, 14, 28, 31, 33, 35, 37, 51, 52, 56, 58, 75, 76, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "doe": [1, 2, 3, 5, 8, 35, 36, 37, 42, 47, 58, 59, 63, 65, 67, 71, 75, 76, 77, 79, 80, 83, 87, 91, 92, 94], "do": [1, 2, 4, 8, 31, 35, 36, 46, 47, 60, 61, 65, 75, 76, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "fast": 1, "explain": [1, 8], "python": [1, 2, 36, 50, 63, 75, 76, 77, 80, 81, 89, 94], "pseudocod": [1, 90], "happen": [1, 8, 37, 53, 80, 86, 92], "n": [1, 2, 3, 4, 5, 31, 32, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 75, 80, 81, 82, 83, 86, 87, 88, 91, 92, 93, 94, 95], "without": [1, 2, 4, 8, 10, 12, 18, 32, 36, 55, 63, 73, 75, 80, 84, 88, 89, 94], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 35, 36, 37, 39, 41, 44, 45, 46, 50, 51, 53, 55, 56, 58, 59, 61, 63, 65, 67, 68, 73, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94], "distinct": [1, 16, 46, 95], "natur": [1, 8, 86, 89], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 92, 95], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "count_joint": 1, "len": [1, 2, 3, 5, 31, 35, 40, 45, 46, 47, 60, 61, 63, 76, 77, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "y": [1, 2, 3, 4, 6, 16, 26, 27, 36, 40, 42, 46, 47, 50, 59, 63, 64, 75, 76, 77, 79, 82, 84, 86, 87, 89, 91, 94], "round": [1, 35, 37, 46, 63, 82, 91], "astyp": [1, 86], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 35, 36, 37, 42, 43, 44, 45, 46, 47, 52, 53, 55, 59, 60, 61, 63, 65, 67, 68, 69, 72, 75, 76, 83, 88, 89], "rang": [1, 3, 4, 5, 10, 40, 42, 44, 46, 59, 63, 64, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 95], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 31, 35, 37, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95], "pragma": 1, "cover": [1, 3, 74, 81], "choic": [1, 6, 37, 44, 82, 83, 87, 89], "replac": [1, 45, 50, 61, 76, 77, 80, 81, 82, 83, 86, 89, 93, 94], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 61, 75, 76, 77], "05": [1, 8, 22, 26, 45, 59, 63, 69, 71, 79, 81, 82, 84, 88, 92], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 76, 77, 84, 86, 87], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 63, 65, 67, 68, 71, 72, 76, 77, 82, 83, 84, 86, 87, 92], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 22, 34, 36, 42, 63, 75, 76, 77, 79, 81, 84, 86, 87, 93], "max_it": [1, 75, 80, 89, 94], "10000": [1, 35, 81, 82], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 32, 33, 36, 37, 39, 40, 42, 45, 46, 47, 50, 51, 53, 59, 60, 61, 63, 65, 75, 76, 77, 79, 81, 82, 83, 84, 86, 87, 89, 91, 93, 94], "diagon": [1, 3, 4, 37, 40, 46], "equal": [1, 3, 8, 10, 53, 58, 68, 90], "creat": [1, 2, 7, 14, 16, 32, 35, 36, 37, 46, 63, 73, 75, 79, 80, 82, 83, 92, 94, 95], "impli": [1, 8, 31, 52, 59], "float": [1, 2, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 34, 35, 36, 37, 39, 41, 42, 44, 45, 46, 51, 52, 53, 55, 58, 59, 63, 67, 71, 75, 76, 77, 84, 86, 87], "entri": [1, 3, 4, 31, 32, 36, 37, 39, 43, 44, 46, 51, 52, 53, 56, 79, 80, 84, 87, 88, 91, 93, 94], "maximum": [1, 8, 60, 68, 72, 92], "minimum": [1, 6, 8, 18, 37, 39, 53, 58, 71], "noise_r": 1, "non": [1, 2, 3, 4, 5, 7, 14, 22, 32, 36, 37, 58, 63, 76, 82, 84, 86, 88, 89], "default": [1, 2, 3, 4, 5, 8, 12, 14, 24, 26, 28, 31, 32, 33, 35, 36, 37, 39, 40, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 76, 82, 83, 91, 92], "If": [1, 2, 3, 4, 8, 10, 11, 14, 22, 24, 29, 31, 32, 35, 36, 37, 39, 40, 42, 45, 46, 50, 51, 52, 53, 56, 58, 59, 60, 63, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "have": [1, 2, 3, 4, 5, 8, 14, 19, 22, 25, 31, 32, 34, 35, 36, 37, 40, 42, 46, 50, 51, 52, 53, 56, 58, 59, 60, 61, 63, 64, 68, 72, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 28, 31, 32, 35, 36, 37, 40, 42, 43, 45, 46, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "necessari": [1, 2, 3, 5, 8, 10, 45, 76], "In": [1, 2, 3, 8, 31, 32, 35, 36, 51, 52, 54, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 94, 95], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 22, 23, 24, 27, 32, 36, 46, 51, 55, 59, 63, 68, 72, 73, 75, 77, 80, 82, 86, 87, 89, 91, 93, 94], "satisfi": [1, 3, 31], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 26, 30, 32, 33, 34, 35, 36, 37, 40, 46, 49, 50, 53, 60, 61, 63, 65, 73, 74, 75, 81, 82, 84, 90], "argument": [1, 2, 3, 4, 8, 14, 21, 23, 26, 27, 32, 35, 36, 37, 42, 47, 50, 51, 52, 53, 55, 58, 59, 60, 61, 63, 67, 68, 69, 71, 77, 80, 81, 82, 83, 87, 88, 91, 94, 95], "when": [1, 2, 3, 4, 8, 10, 12, 21, 22, 32, 36, 37, 40, 42, 46, 50, 53, 55, 56, 58, 60, 61, 63, 64, 76, 77, 79, 80, 83, 86, 90, 91, 92, 93, 94, 95], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 50, 51, 52, 53, 56, 58, 59, 60, 61, 63, 65, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "rate": [1, 2, 3, 8, 33, 46, 75, 95], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 35, 36, 37, 41, 42, 44, 46, 50, 51, 53, 56, 58, 59, 60, 61, 63, 65, 67, 68, 76, 77, 79, 80, 82, 86, 87, 89, 90, 91, 92, 93, 94, 95], "note": [1, 2, 3, 5, 6, 8, 10, 23, 27, 29, 32, 35, 36, 37, 42, 46, 51, 56, 58, 59, 60, 61, 63, 64, 68, 74, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "you": [1, 2, 3, 4, 5, 8, 12, 14, 31, 32, 34, 35, 36, 37, 42, 49, 50, 51, 53, 56, 58, 59, 60, 61, 63, 64, 65, 68, 69, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "high": [1, 2, 14, 35, 37, 46, 58, 61, 63, 76, 77, 81, 83, 84, 88, 91, 92, 93, 94, 95], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 25, 31, 32, 34, 35, 36, 37, 40, 42, 46, 51, 52, 56, 58, 59, 60, 61, 63, 65, 68, 72, 74, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 95], "imposs": [1, 8, 84], "also": [1, 2, 3, 4, 5, 8, 20, 29, 31, 32, 35, 36, 37, 42, 45, 50, 51, 60, 63, 68, 71, 72, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 95], "low": [1, 8, 46, 51, 73, 76, 77, 80, 84, 88, 92], "zero": [1, 3, 4, 32, 36, 39, 46, 47, 76, 83, 87, 88, 89], "forc": [1, 2, 3, 4, 36, 76, 95], "instead": [1, 2, 3, 8, 11, 14, 28, 31, 32, 35, 36, 37, 40, 46, 50, 51, 53, 55, 59, 60, 61, 63, 64, 67, 69, 71, 74, 75, 79, 80, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 95], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 22, 26, 31, 32, 35, 36, 37, 39, 40, 45, 46, 47, 50, 51, 60, 61, 63, 65, 67, 71, 72, 73, 75, 76, 77, 80, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95], "guarante": [1, 3, 4, 13, 19, 25, 32, 34, 36, 38, 40, 49, 74], "produc": [1, 2, 4, 8, 14, 42, 51, 61, 63, 65, 67, 73, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95], "higher": [1, 4, 8, 31, 37, 39, 40, 42, 44, 51, 52, 63, 77, 80, 82, 88], "opposit": [1, 95], "occur": [1, 3, 8, 31, 45, 58, 76, 77, 82, 83, 89], "small": [1, 3, 8, 31, 35, 42, 46, 52, 59, 80, 81, 83, 87, 89, 94], "numpi": [1, 3, 4, 5, 8, 10, 16, 27, 35, 36, 42, 44, 45, 47, 50, 55, 58, 63, 64, 69, 71, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "max": [1, 37, 60, 61, 77, 83, 89], "tri": [1, 32, 36, 90], "befor": [1, 2, 3, 32, 36, 44, 46, 60, 63, 68, 80, 82, 84, 86, 89, 91, 93, 94], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 22, 26, 31, 32, 35, 36, 37, 40, 42, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 75, 76, 77, 79, 82, 83, 84, 87, 91, 92, 93], "left": [1, 2, 37, 39, 44, 46, 53, 56, 59, 76, 77, 87, 88, 89, 92], "stochast": 1, "exceed": 1, "m": [1, 4, 32, 36, 41, 42, 51, 56, 58, 59, 60, 76, 77, 81, 86, 87, 88, 95], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 32, 36, 50, 82, 84, 92], "length": [1, 4, 10, 22, 23, 31, 33, 37, 46, 53, 56, 60, 61, 63, 65, 68, 72, 75, 87, 89, 92, 93, 95], "must": [1, 2, 3, 4, 5, 14, 31, 32, 33, 34, 36, 37, 40, 42, 43, 46, 49, 50, 51, 52, 53, 60, 61, 63, 65, 67, 68, 69, 71, 72, 75, 86, 90, 92, 95], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 31, 35, 37, 43, 46, 47, 51, 53, 59, 65, 67, 68, 69, 71, 72, 75, 82, 86, 87, 88, 92, 93, 94, 95], "ball": [1, 81], "bin": [1, 3, 53, 76, 77, 89], "ensur": [1, 2, 8, 32, 36, 46, 47, 58, 61, 63, 75, 76, 77, 80, 82, 83, 84, 89, 90, 91, 93, 94], "most": [1, 3, 4, 5, 8, 14, 31, 35, 37, 42, 50, 51, 52, 53, 56, 58, 59, 60, 61, 64, 67, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 89, 91, 92, 93, 94], "least": [1, 8, 16, 27, 31, 35, 51, 52, 58, 61, 71, 77, 82, 83, 86, 89, 92], "int_arrai": [1, 46], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 28, 31, 32, 33, 34, 35, 36, 37, 41, 42, 43, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 68, 69, 72, 73, 74, 75, 76, 79, 80, 83, 87, 88, 89, 90, 91, 92, 93, 94, 95], "model": [2, 3, 4, 8, 14, 16, 26, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 45, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 76, 77, 81, 85, 90, 92, 95], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 30, 31, 32, 35, 36, 37, 40, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 69, 71, 72, 73, 75, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95], "regular": [2, 3, 35, 50], "multi": [2, 3, 8, 31, 32, 35, 36, 37, 41, 42, 43, 46, 47, 52, 53, 54, 55, 60, 61, 73, 82, 84, 85], "task": [2, 4, 5, 8, 9, 10, 12, 13, 14, 26, 28, 31, 35, 40, 42, 43, 44, 46, 51, 53, 61, 63, 73, 75, 80, 81, 82, 84, 87, 89, 91, 92, 94, 95], "cleanlearn": [2, 3, 8, 21, 26, 32, 46, 50, 62, 63, 64, 73, 74, 91, 93, 94], "wrap": [2, 32, 36, 50, 60, 63, 73, 76, 77, 79, 80, 84, 91, 93, 94], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 36, 42, 50, 59, 60, 63, 68, 75, 76, 77, 79, 80, 83, 84, 88, 93, 94], "sklearn": [2, 3, 4, 6, 8, 16, 27, 31, 36, 42, 46, 50, 60, 63, 64, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 93, 94], "classifi": [2, 3, 36, 42, 46, 51, 54, 60, 61, 73, 74, 75, 79, 80, 82, 86, 87, 89, 90, 92, 93, 94, 95], "adher": [2, 36, 63], "estim": [2, 3, 4, 7, 11, 20, 31, 35, 36, 37, 40, 46, 51, 52, 53, 58, 60, 63, 65, 67, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 95], "api": [2, 3, 12, 50, 56, 59, 60, 63, 74, 82, 91], "defin": [2, 3, 4, 5, 8, 12, 20, 31, 32, 33, 35, 36, 37, 61, 63, 65, 75, 76, 77, 79, 82, 86, 89, 95], "four": [2, 8, 81, 84, 95], "clf": [2, 3, 4, 42, 63, 73, 79, 82, 84, 87, 93], "fit": [2, 3, 4, 6, 8, 16, 34, 36, 49, 50, 60, 62, 63, 73, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 93, 94, 95], "sample_weight": [2, 36, 63, 84], "predict_proba": [2, 4, 31, 34, 36, 42, 49, 50, 75, 76, 77, 79, 80, 82, 84, 86, 87, 89, 93], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 24, 26, 29, 31, 34, 35, 36, 37, 39, 40, 42, 43, 45, 46, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 81, 82, 84, 85, 89, 91, 92, 94, 95], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 37, 39, 42, 44, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 67, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 89, 91, 93, 94], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 37, 42, 43, 46, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 68, 69, 70, 71, 72, 74, 78, 83, 85, 90, 94], "e": [2, 3, 4, 8, 10, 20, 31, 32, 35, 36, 37, 40, 42, 43, 46, 47, 51, 52, 53, 54, 56, 59, 60, 61, 63, 65, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 22, 23, 24, 26, 27, 42, 46, 60, 63, 73, 76, 77, 79, 80, 82, 84, 86, 87, 91, 93], "element": [2, 3, 4, 31, 37, 39, 46, 51, 53, 61, 68, 69, 71, 75, 80, 82, 94, 95], "first": [2, 4, 8, 15, 22, 23, 31, 35, 42, 46, 51, 52, 56, 59, 61, 63, 75, 76, 79, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "index": [2, 8, 22, 31, 37, 45, 46, 47, 52, 61, 63, 68, 71, 72, 75, 76, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "should": [2, 3, 4, 5, 8, 12, 20, 22, 27, 31, 32, 35, 36, 37, 39, 40, 42, 44, 45, 46, 50, 51, 52, 55, 56, 58, 59, 60, 61, 63, 64, 68, 69, 71, 72, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 29, 31, 32, 35, 36, 37, 39, 40, 42, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 68, 69, 71, 72, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 23, 25, 31, 32, 34, 35, 36, 37, 38, 42, 46, 47, 49, 51, 56, 58, 60, 63, 75, 76, 77, 79, 80, 83, 84, 86, 87, 89, 90, 91, 93], "sampl": [2, 3, 4, 6, 8, 14, 18, 37, 39, 42, 53, 56, 59, 61, 63, 64, 73, 74, 81, 82, 84, 85, 87, 88, 91, 92, 94, 95], "size": [2, 8, 27, 32, 35, 36, 37, 42, 53, 58, 59, 63, 65, 67, 79, 82, 83, 84, 86, 87, 88, 90, 92, 94], "here": [2, 4, 5, 8, 12, 35, 37, 40, 50, 51, 52, 53, 55, 56, 59, 60, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "re": [2, 4, 32, 36, 45, 51, 63, 73, 75, 76, 79, 80, 82, 91, 92, 93, 94, 95], "weight": [2, 8, 32, 33, 36, 42, 51, 58, 61, 63, 75, 76, 77, 80, 94], "loss": [2, 33, 50, 61, 63, 83], "while": [2, 3, 8, 32, 35, 36, 41, 42, 46, 63, 73, 82, 83, 84, 86, 87, 91], "train": [2, 3, 4, 8, 14, 16, 32, 33, 34, 36, 42, 46, 50, 51, 56, 59, 60, 63, 64, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 90, 92, 95], "support": [2, 3, 4, 10, 12, 28, 29, 35, 42, 46, 47, 60, 61, 71, 73, 74, 75, 76, 77, 82, 83], "your": [2, 3, 4, 7, 8, 14, 31, 32, 34, 35, 36, 37, 42, 46, 49, 50, 51, 52, 53, 55, 60, 61, 63, 64, 65, 67, 68, 74, 75, 79, 81, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "recommend": [2, 4, 5, 8, 11, 14, 35, 37, 51, 76, 77, 82, 83, 90, 91], "furthermor": 2, "correctli": [2, 3, 8, 31, 32, 36, 37, 40, 47, 52, 53, 58, 59, 63, 65, 80, 82, 87, 88, 91, 92, 94], "clonabl": [2, 63], "via": [2, 4, 5, 8, 11, 14, 16, 20, 31, 33, 35, 36, 42, 46, 51, 56, 59, 60, 61, 63, 64, 67, 71, 75, 76, 77, 79, 80, 81, 82, 83, 87, 88, 89, 90, 91, 92, 93, 94, 95], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 35, 36, 37, 40, 41, 42, 44, 45, 46, 47, 50, 51, 52, 53, 55, 58, 60, 61, 63, 64, 67, 69, 71, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 95], "clone": [2, 63, 87], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 35, 39, 40, 41, 42, 43, 44, 45, 46, 47, 55, 59, 63, 69, 74, 75, 76, 82, 84, 86, 87, 88, 89, 91, 95], "multipl": [2, 3, 4, 10, 11, 29, 31, 37, 45, 51, 52, 53, 55, 58, 59, 63, 73, 76, 77, 82, 83, 85, 87, 88, 91], "g": [2, 3, 4, 8, 10, 20, 31, 32, 36, 37, 43, 46, 53, 54, 56, 59, 60, 61, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94], "manual": [2, 63, 75, 82, 89, 90, 91, 93, 94, 95], "pytorch": [2, 32, 33, 36, 63, 73, 75, 82, 85, 87, 92], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 42, 46, 50, 60, 63, 75, 76, 77, 80, 82, 84, 87, 89, 90, 91, 92, 94, 95], "__init__": [2, 33, 63, 83], "independ": [2, 3, 8, 52, 63, 80, 90, 91, 95], "compat": [2, 32, 35, 36, 50, 63, 64, 67, 71, 73, 82, 90, 91, 93, 94], "neural": [2, 33, 50, 60, 63, 75, 82, 83, 87, 89, 91], "network": [2, 32, 33, 36, 50, 60, 63, 75, 80, 82, 83, 87, 89, 91, 94], "typic": [2, 32, 36, 60, 63, 75, 77, 79, 80, 83, 89, 90, 93, 94], "initi": [2, 3, 11, 16, 32, 36, 51, 63, 80, 82, 93], "insid": [2, 36, 63, 82, 84], "There": [2, 3, 5, 73, 84, 86], "two": [2, 3, 8, 16, 22, 31, 32, 35, 36, 43, 46, 56, 58, 59, 74, 76, 77, 79, 80, 82, 83, 84, 87, 91, 92, 94, 95], "new": [2, 5, 12, 20, 32, 35, 36, 41, 45, 46, 51, 63, 75, 76, 80, 81, 82, 89, 90, 94, 95], "notion": 2, "confid": [2, 3, 8, 20, 31, 35, 37, 40, 42, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 67, 71, 73, 79, 80, 83, 84, 86, 87, 88, 90, 92, 93, 95], "packag": [2, 4, 5, 7, 8, 9, 13, 30, 34, 37, 38, 46, 49, 56, 59, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "prune": [2, 3, 37, 53, 63, 74, 88], "everyth": [2, 59, 84], "els": [2, 59, 76, 81, 82, 83, 86, 87, 88], "mathemat": [2, 3, 8, 40, 87], "keep": [2, 11, 12, 46, 73, 76, 81, 82, 92], "belong": [2, 3, 8, 31, 37, 39, 40, 52, 53, 54, 55, 60, 61, 65, 69, 71, 72, 77, 83, 84, 87, 89, 92, 95], "2": [2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 50, 52, 53, 55, 56, 59, 60, 61, 63, 64, 68, 69, 71, 72, 81, 82, 90], "error": [2, 3, 4, 8, 32, 36, 37, 39, 40, 46, 52, 53, 55, 56, 58, 59, 61, 63, 65, 67, 68, 71, 74, 75, 76, 77, 79, 80, 81, 85, 93], "erron": [2, 3, 31, 37, 40, 46, 52, 53, 61, 63, 64, 65, 89, 91], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 35, 42, 44, 45, 51, 55, 58, 63, 64, 69, 71, 72, 73, 79, 80, 82, 87, 88, 89, 91, 92, 93, 94, 95], "linear_model": [2, 4, 31, 46, 63, 73, 75, 76, 77, 80, 82, 84, 86, 89, 94], "logisticregress": [2, 3, 4, 31, 46, 73, 75, 76, 77, 80, 82, 84, 86, 89, 94], "logreg": 2, "cl": [2, 12, 26, 63, 73, 82, 84, 91, 93, 94], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 26, 28, 32, 35, 36, 37, 41, 42, 46, 50, 51, 53, 60, 61, 63, 69, 73, 75, 76, 77, 80, 81, 82, 84, 86, 88, 89, 91, 94], "x_train": [2, 76, 77, 84, 86, 87, 91, 93], "labels_maybe_with_error": 2, "had": [2, 3, 63, 88], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 34, 35, 36, 37, 49, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 78, 85, 86, 90, 91, 94], "pred": [2, 37, 46, 90, 91, 93, 94], "x_test": [2, 76, 77, 84, 87, 91, 93], "might": [2, 51, 63, 68, 76, 77, 82, 83, 88, 93, 94], "case": [2, 3, 11, 31, 42, 51, 63, 75, 76, 77, 79, 81, 82, 83, 84, 89, 91, 93, 94, 95], "standard": [2, 3, 4, 26, 31, 37, 50, 52, 53, 55, 61, 63, 73, 76, 77, 79, 81, 84, 88, 93], "adapt": [2, 32, 34, 46, 49, 63, 89], "skorch": [2, 63, 73, 82], "kera": [2, 49, 56, 59, 63, 73, 82, 88], "scikera": [2, 50, 63, 82], "open": [2, 35, 81, 88, 95], "doesn": [2, 63, 73], "t": [2, 3, 5, 8, 15, 23, 32, 33, 35, 36, 37, 42, 44, 45, 55, 60, 61, 63, 69, 71, 72, 73, 76, 77, 79, 80, 81, 83, 84, 87, 88, 91, 95], "alreadi": [2, 4, 8, 14, 32, 35, 36, 40, 50, 51, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 93, 94], "exist": [2, 4, 8, 10, 16, 32, 35, 36, 45, 50, 56, 58, 60, 63, 73, 74, 76, 77, 80, 86, 94, 95], "made": [2, 4, 14, 32, 36, 63, 80, 82, 83, 86, 88, 90, 91, 93, 94], "easi": [2, 40, 63, 76, 77, 81, 82, 84, 87], "inherit": [2, 5, 33, 63], "baseestim": [2, 36, 63], "yourmodel": [2, 63], "def": [2, 5, 12, 32, 36, 50, 63, 75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 94, 95], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 27, 32, 33, 35, 36, 37, 42, 60, 61, 63, 76, 80, 81, 83, 87, 92, 93, 94, 95], "refer": [2, 8, 14, 32, 36, 52, 53, 55, 56, 58, 59, 63, 67, 68, 76, 77, 79, 80, 82, 83, 84, 87, 90, 91], "origin": [2, 4, 8, 36, 37, 45, 46, 50, 52, 53, 56, 59, 60, 63, 64, 67, 69, 71, 76, 79, 80, 82, 83, 84, 88, 89, 91, 93, 94, 95], "total": [2, 3, 31, 35, 46, 52, 72, 82, 83, 92], "state": [2, 3, 4, 32, 33, 36, 41, 63, 84, 87, 88, 95], "art": [2, 33, 84, 87], "northcutt": [2, 3, 31, 60, 61], "et": [2, 3, 31, 33, 60, 61], "al": [2, 3, 31, 33, 60, 61], "2021": [2, 3, 31, 60, 61], "weak": [2, 59], "supervis": [2, 8, 76, 77, 82, 86], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 22, 23, 24, 27, 31, 32, 34, 35, 36, 37, 41, 45, 46, 49, 56, 59, 60, 61, 63, 65, 69, 71, 74, 76, 85, 90], "uncertainti": [2, 8, 39, 60, 63, 82, 89, 91], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 23, 26, 28, 29, 32, 36, 37, 40, 42, 51, 58, 59, 63, 73, 76, 77, 80, 82, 83, 84, 87, 90, 94], "work": [2, 3, 5, 8, 10, 26, 31, 32, 35, 36, 37, 40, 45, 46, 47, 50, 51, 61, 63, 73, 74, 76, 77, 81, 89, 91, 94], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 32, 34, 35, 36, 45, 46, 49, 51, 52, 55, 56, 60, 61, 63, 67, 68, 69, 71, 73, 74, 76, 77, 79, 80, 82, 83, 84, 87, 88, 89, 95], "deep": [2, 34, 36, 49, 50, 63, 80], "see": [2, 3, 4, 5, 11, 12, 28, 31, 32, 35, 36, 37, 42, 46, 50, 52, 53, 55, 56, 59, 60, 61, 63, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "subfield": 2, "theori": [2, 84], "machin": [2, 4, 12, 14, 28, 34, 49, 63, 76, 77, 81, 86], "across": [2, 3, 4, 5, 8, 11, 20, 31, 35, 42, 52, 59, 60, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 90, 91], "varieti": [2, 82, 93, 94], "like": [2, 3, 4, 5, 8, 12, 31, 32, 35, 36, 37, 40, 46, 50, 51, 52, 55, 56, 58, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "pu": [2, 46], "input": [2, 3, 4, 8, 14, 22, 31, 32, 35, 36, 40, 42, 45, 46, 47, 50, 59, 63, 73, 74, 75, 77, 80, 81, 82, 83, 84, 86, 87, 88, 91, 92, 94, 95], "discret": [2, 29, 37, 40, 46, 60, 61, 65, 67, 68], "vector": [2, 3, 4, 8, 14, 37, 40, 42, 43, 46, 60, 61, 73, 75, 76, 77, 79, 80, 83, 84, 87, 88, 89, 92, 94, 95], "would": [2, 3, 4, 32, 35, 36, 37, 46, 53, 63, 73, 76, 82, 83, 84, 89, 91, 94, 95], "obtain": [2, 4, 6, 8, 14, 37, 51, 53, 56, 59, 61, 64, 75, 77, 80, 82, 86, 88, 90, 92, 95], "been": [2, 31, 37, 40, 45, 46, 51, 52, 56, 58, 60, 61, 63, 75, 76, 79, 82, 84, 86, 87, 88, 89, 92, 95], "dure": [2, 8, 14, 60, 63, 75, 79, 80, 82, 84, 87, 90, 91, 93, 94, 95], "denot": [2, 3, 40, 42, 46, 53, 60, 61, 71], "tild": 2, "paper": [2, 8, 51, 60, 69, 71, 81, 84, 86, 89, 91, 95], "cv_n_fold": [2, 3, 63, 94], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 36, 37, 39, 41, 42, 46, 51, 52, 55, 56, 59, 63, 64, 71, 76, 80, 81, 82, 87, 88, 89, 90, 92, 94, 95], "converge_latent_estim": [2, 3], "pulearn": [2, 46], "find_label_issues_kwarg": [2, 8, 63, 74, 82, 84], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 53, 69, 82], "clean": [2, 58, 61, 63, 64, 73, 76, 77, 81, 91, 93, 94], "even": [2, 3, 5, 31, 35, 39, 40, 46, 63, 75, 82, 84, 86, 87, 88], "messi": [2, 63, 84], "ridden": [2, 63], "autom": [2, 63, 73, 77, 81, 82], "robust": [2, 40, 63, 77, 82], "prone": [2, 63], "out": [2, 3, 4, 8, 14, 24, 32, 36, 37, 42, 50, 53, 54, 56, 59, 60, 61, 63, 64, 72, 73, 74, 81, 82, 84, 85, 87, 88, 89, 91, 92, 94, 95], "current": [2, 3, 5, 8, 11, 12, 20, 32, 36, 37, 42, 51, 58, 63, 76, 77, 82, 86, 88], "intend": [2, 11, 12, 13, 14, 28, 29, 38, 51, 67, 71, 75, 76, 77, 80, 84], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 36, 37, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 55, 58, 59, 60, 61, 63, 65, 67, 68, 72, 74, 75, 76, 79, 80, 81, 82, 83, 84, 86, 88, 90, 93, 94, 95], "follow": [2, 3, 8, 12, 26, 29, 31, 32, 35, 36, 42, 44, 51, 52, 56, 58, 59, 60, 63, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "experiment": [2, 32, 33, 35, 36, 53, 74, 82], "wrapper": [2, 4, 50, 75, 91, 93, 94], "around": [2, 4, 58, 76, 77, 88, 89, 95], "fasttext": [2, 49], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 35, 36, 60, 63, 79, 80, 81, 82, 92, 93, 94, 95], "along": [2, 42, 53, 71, 76, 77, 82, 83, 89], "dimens": [2, 46, 65, 68, 82, 83, 89, 92], "select": [2, 7, 8, 22, 51, 61, 82, 83, 86, 89], "split": [2, 3, 4, 8, 10, 35, 42, 45, 46, 63, 75, 76, 77, 79, 80, 81, 83, 84, 87, 90, 93, 95], "cross": [2, 3, 8, 31, 37, 40, 41, 42, 53, 56, 59, 61, 63, 64, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 87, 88, 91, 92, 93, 94, 95], "fold": [2, 3, 31, 37, 40, 63, 75, 79, 81, 82, 88, 92, 93], "By": [2, 31, 52, 53, 63, 76, 82, 92], "need": [2, 3, 8, 31, 32, 35, 36, 37, 52, 53, 55, 60, 63, 73, 75, 76, 77, 80, 82, 84, 86, 87, 88, 92, 94], "holdout": [2, 3, 63], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 22, 23, 24, 27, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 46, 51, 52, 53, 55, 58, 59, 60, 61, 63, 64, 65, 67, 73, 74, 76, 77, 81, 84, 85, 88, 89, 91, 92, 94], "them": [2, 3, 4, 5, 7, 8, 9, 10, 23, 30, 32, 34, 35, 36, 37, 49, 51, 60, 63, 74, 76, 77, 79, 80, 82, 83, 86, 87, 89, 91, 92, 93, 94, 95], "numer": [2, 3, 4, 8, 11, 20, 26, 29, 42, 58, 60, 63, 68, 73, 74, 75, 76, 77, 78, 80, 83, 84, 86, 87, 89, 91, 93, 94], "consist": [2, 3, 32, 36, 46, 51, 92, 95], "latent": [2, 3, 40], "thei": [2, 3, 4, 13, 19, 22, 25, 32, 33, 34, 36, 37, 38, 44, 46, 50, 53, 58, 61, 63, 64, 67, 71, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 89, 91, 94, 95], "relat": [2, 3, 11, 17, 18, 22, 23, 24, 27, 40, 46, 52, 63, 77, 80], "close": [2, 3, 8, 35, 40, 60, 75, 76, 77, 79, 80, 82, 83, 84, 88], "form": [2, 3, 8, 32, 33, 36, 40, 45, 46, 61, 63, 82], "equival": [2, 3, 32, 36, 40, 60, 89, 91], "iter": [2, 3, 31, 32, 36, 37, 46, 52, 53, 63, 82, 86, 92], "enforc": [2, 32, 36, 46], "perfectli": [2, 31, 52, 84], "certain": [2, 3, 4, 32, 36, 50, 59, 63, 76, 77, 81, 88, 89], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 35, 36, 37, 41, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 71, 76, 77, 82, 83, 95], "keyword": [2, 3, 4, 8, 14, 21, 23, 26, 32, 35, 36, 37, 39, 42, 45, 50, 51, 53, 60, 61, 63, 69, 71, 76], "filter": [2, 3, 8, 35, 45, 52, 54, 55, 57, 59, 66, 67, 68, 70, 71, 72, 73, 74, 75, 77, 80, 81, 82, 83, 87, 88, 91, 92, 93, 94, 95], "find_label_issu": [2, 3, 8, 26, 35, 37, 52, 53, 54, 55, 56, 57, 58, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 82, 87, 88, 91, 92, 93, 94, 95], "particularli": [2, 73, 86, 89], "filter_bi": [2, 3, 35, 37, 53, 74, 82], "frac_nois": [2, 37, 53, 69, 82], "min_examples_per_class": [2, 37, 53, 77, 82, 84], "impact": [2, 8, 76, 77, 83], "ml": [2, 4, 8, 13, 63, 73, 76, 77, 79, 80, 83, 86, 87, 91, 93, 94], "accuraci": [2, 33, 61, 75, 82, 83, 84, 86, 89, 91, 92, 93, 94], "n_job": [2, 35, 37, 53, 65, 67, 69, 82, 89, 92], "disabl": [2, 32, 36, 37, 89], "process": [2, 3, 5, 11, 14, 32, 35, 36, 37, 45, 51, 53, 59, 65, 67, 69, 75, 76, 82, 86, 90, 94], "caus": [2, 37, 42, 76, 77, 82], "rank": [2, 3, 8, 31, 35, 37, 42, 52, 53, 54, 56, 57, 59, 60, 62, 66, 68, 69, 70, 72, 73, 74, 76, 77, 81, 82, 87, 88, 89, 92, 93, 94, 95], "get_label_quality_scor": [2, 35, 37, 38, 42, 51, 53, 54, 55, 56, 57, 58, 61, 62, 64, 66, 67, 69, 70, 71, 74, 84, 87, 88, 92, 95], "adjust_pred_prob": [2, 8, 55, 60, 61, 84], "control": [2, 4, 7, 8, 14, 35, 37, 51, 59, 60, 63, 69, 71, 76, 77, 81, 82], "how": [2, 3, 4, 8, 10, 11, 12, 14, 20, 31, 32, 33, 35, 36, 40, 46, 51, 52, 55, 56, 58, 60, 61, 63, 67, 71, 73, 76, 77, 79, 80, 81, 83, 88, 89, 90, 91, 92, 93, 94], "much": [2, 8, 31, 35, 37, 63, 82, 84, 86, 89], "output": [2, 3, 4, 8, 14, 32, 33, 36, 40, 46, 50, 51, 52, 56, 58, 59, 60, 63, 67, 68, 71, 72, 73, 74, 75, 76, 80, 81, 82, 83, 88, 89, 90, 91, 94], "print": [2, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 46, 51, 52, 53, 58, 60, 61, 63, 65, 67, 68, 72, 74, 75, 77, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "suppress": [2, 35, 51, 58, 60, 61, 63, 65, 67, 68, 92, 95], "statement": [2, 35, 51, 58, 60, 61, 63, 65, 67, 68], "big": [2, 35, 53, 59, 63, 84], "limit": [2, 4, 14, 35, 53, 88, 92, 95], "memori": [2, 32, 35, 36, 53, 59, 65, 67, 76, 92], "label_issues_batch": [2, 34, 53, 82], "find_label_issues_batch": [2, 34, 35, 53, 82], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 22, 24, 27, 31, 35, 37, 39, 40, 41, 42, 43, 46, 47, 51, 52, 53, 55, 56, 59, 60, 61, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 91, 93, 94], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 24, 26, 27, 35, 58, 59, 60, 61, 67, 71, 76, 88, 89, 92, 95], "inverse_noise_matrix": [2, 3, 8, 40, 46, 74, 84], "label_issu": [2, 35, 37, 53, 56, 63, 65, 74, 75, 80, 82, 83, 84, 87, 91, 93, 94], "clf_kwarg": [2, 3, 8, 63], "clf_final_kwarg": [2, 63], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 31, 35, 37, 39, 51, 52, 53, 55, 56, 58, 59, 61, 63, 64, 67, 71, 73, 75, 79, 80, 83, 84, 86, 88, 90, 91], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 35, 36, 37, 39, 44, 46, 53, 55, 56, 59, 61, 63, 64, 65, 67, 71, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 91, 92, 93, 94, 95], "identifi": [2, 3, 4, 5, 8, 10, 14, 23, 28, 31, 35, 37, 53, 56, 59, 61, 63, 64, 65, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 87, 89, 91, 92, 93, 94, 95], "final": [2, 8, 63, 79, 88, 90, 91, 93], "remain": [2, 63, 74, 83, 87, 91, 93, 94, 95], "datasetlik": [2, 46, 63], "beyond": [2, 4, 5, 7, 9, 30, 73, 91, 92], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 41, 50, 51, 52, 63, 71, 75, 76, 77, 79, 80, 82, 84, 86, 91, 93, 94, 95], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 41, 46, 47, 50, 51, 52, 63, 68, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 91, 92, 94, 95], "scipi": [2, 4, 11, 46], "spars": [2, 4, 8, 11, 14, 16, 27, 46, 47, 79], "csr_matrix": [2, 4, 11, 14, 16, 27], "torch": [2, 32, 33, 36, 75, 80, 81, 83, 89, 94], "util": [2, 4, 8, 14, 28, 32, 33, 36, 38, 51, 56, 59, 63, 73, 74, 75, 76, 77, 82, 83, 84, 89], "tensorflow": [2, 46, 50, 73, 75, 82], "object": [2, 4, 8, 10, 11, 14, 28, 32, 33, 35, 36, 42, 46, 47, 50, 53, 56, 57, 58, 59, 60, 63, 71, 73, 75, 77, 79, 83, 84, 85, 87, 91, 94], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 35, 36, 37, 43, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 67, 68, 69, 71, 72, 74, 75, 76, 77, 81, 82, 83, 84, 87, 88, 91, 94, 95], "index_list": 2, "subset": [2, 3, 4, 14, 31, 35, 37, 46, 61, 68, 72, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 93, 94, 95], "wa": [2, 3, 10, 12, 35, 46, 51, 52, 58, 60, 72, 75, 76, 77, 79, 80, 82, 84, 87, 88, 90, 92, 93, 94, 95], "abl": [2, 3, 8, 63, 75, 82, 84, 86, 87], "format": [2, 3, 4, 8, 10, 32, 35, 36, 37, 40, 41, 42, 43, 46, 47, 50, 51, 52, 53, 56, 59, 60, 61, 63, 65, 67, 68, 71, 72, 75, 76, 77, 79, 81, 83, 86, 91, 92, 93, 95], "make": [2, 3, 4, 16, 32, 35, 36, 42, 50, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "sure": [2, 4, 35, 37, 42, 75, 76, 77, 79, 80, 81, 83, 86, 87, 88, 89, 91, 93, 94], "shuffl": [2, 8, 46, 75, 80, 83, 87, 89], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 36, 40, 42, 45, 46, 51, 56, 58, 63, 69, 71, 72, 73, 75, 76, 77, 79, 80, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "batch": [2, 35, 46, 50, 51, 65, 67, 82, 83, 89], "order": [2, 4, 8, 29, 31, 32, 36, 37, 40, 41, 42, 46, 51, 52, 53, 56, 59, 60, 61, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 91, 92, 94, 95], "destroi": [2, 46], "oper": [2, 32, 35, 36, 46, 50, 61, 73, 80, 82, 89, 93, 94], "eg": [2, 8, 46, 56, 59, 76, 77, 82], "repeat": [2, 46, 51, 86, 89], "appli": [2, 32, 34, 36, 37, 42, 43, 45, 46, 55, 60, 69, 75, 76, 77, 79, 82, 83, 86, 87, 89, 90, 91, 92, 93, 94], "array_lik": [2, 3, 31, 37, 46, 53, 60, 64], "some": [2, 3, 4, 8, 12, 20, 31, 32, 34, 36, 37, 40, 45, 46, 49, 51, 52, 53, 55, 56, 59, 60, 61, 63, 65, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 95], "seri": [2, 3, 35, 46, 47, 63, 71, 82], "row": [2, 3, 4, 8, 11, 23, 31, 35, 37, 39, 40, 46, 51, 52, 53, 55, 60, 61, 63, 68, 69, 71, 72, 75, 76, 79, 80, 81, 82, 83, 86, 87, 89, 93, 95], "rather": [2, 3, 22, 31, 46, 50, 51, 58, 67, 71, 86, 90, 91, 92, 94, 95], "leav": [2, 37], "per": [2, 3, 5, 11, 31, 35, 37, 42, 45, 51, 52, 53, 55, 58, 59, 61, 64, 65, 67, 71, 77, 82, 88, 95], "determin": [2, 3, 8, 10, 14, 20, 22, 26, 31, 35, 37, 42, 46, 51, 53, 56, 58, 61, 67, 71, 76, 82, 86, 88, 89, 91], "cutoff": [2, 3, 89], "consid": [2, 3, 4, 8, 11, 14, 21, 22, 24, 27, 31, 32, 36, 37, 46, 51, 58, 60, 61, 64, 67, 71, 75, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 93, 94], "section": [2, 3, 5, 8, 74, 79, 83, 88], "3": [2, 3, 4, 5, 8, 29, 31, 32, 36, 37, 40, 41, 42, 43, 44, 45, 46, 50, 53, 60, 61, 63, 64, 69, 71, 81, 82, 90], "equat": [2, 3, 40], "advanc": [2, 3, 4, 7, 8, 14, 58, 60, 71, 74, 77, 78, 84], "user": [2, 3, 4, 8, 12, 14, 23, 28, 29, 32, 36, 37, 58, 60, 61, 63, 67, 71, 84], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 27, 28, 32, 35, 36, 37, 42, 45, 51, 52, 53, 56, 58, 60, 61, 63, 64, 72, 74, 75, 77, 80, 83, 86, 88, 91, 94], "automat": [2, 3, 4, 22, 31, 73, 79, 80, 81, 82, 83, 86, 87, 88, 91, 92, 93, 94, 95], "greater": [2, 3, 4, 5, 7, 8, 24, 35, 46, 58, 77, 81, 82, 95], "count": [2, 20, 22, 31, 35, 37, 40, 46, 52, 53, 59, 74, 82, 83, 88], "observ": [2, 3, 40, 75, 76, 77, 86, 89, 91], "mislabel": [2, 8, 31, 35, 37, 40, 51, 52, 53, 56, 58, 61, 67, 69, 71, 73, 75, 79, 80, 82, 83, 84, 88, 91, 93, 94], "one": [2, 3, 4, 5, 8, 22, 31, 32, 35, 36, 37, 42, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 83, 86, 89, 90, 91, 93, 94, 95], "get_label_issu": [2, 34, 35, 62, 63, 84, 91, 93, 94], "either": [2, 3, 5, 8, 32, 35, 36, 37, 51, 53, 58, 60, 61, 65, 67, 77, 82, 87, 88], "boolean": [2, 5, 8, 20, 35, 37, 45, 51, 53, 56, 61, 63, 65, 67, 68, 73, 75, 77, 80, 82, 83, 88, 91, 92, 94], "label_issues_mask": [2, 37, 61, 63, 74], "indic": [2, 3, 4, 5, 8, 11, 20, 31, 35, 36, 37, 39, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 67, 69, 71, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "its": [2, 4, 5, 7, 8, 14, 32, 35, 36, 37, 44, 45, 53, 56, 59, 60, 61, 63, 65, 69, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92, 94, 95], "return_indices_ranked_bi": [2, 35, 37, 53, 69, 74, 82, 84, 93, 94], "significantli": [2, 83, 84, 86, 90], "reduc": [2, 35, 37, 46, 75, 82], "time": [2, 8, 32, 35, 36, 46, 51, 74, 76, 81, 82, 83, 84, 88, 89, 91, 92, 93, 94, 95], "take": [2, 4, 8, 31, 32, 36, 41, 42, 46, 50, 61, 79, 83, 86, 87, 88, 93, 95], "run": [2, 4, 5, 7, 9, 12, 14, 22, 23, 30, 32, 35, 36, 63, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "skip": [2, 8, 32, 36, 63, 75, 82, 87, 95], "slow": [2, 3], "step": [2, 5, 22, 42, 59, 82, 83, 84, 86, 90], "caution": [2, 4, 82], "previous": [2, 4, 11, 46, 60, 63, 74, 75, 76, 79, 80, 86, 90, 93], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 41, 42, 46, 63, 76, 79, 82, 83, 91, 92, 93, 95], "individu": [2, 5, 8, 11, 22, 32, 36, 51, 55, 58, 61, 63, 69, 71, 74, 77, 79, 82, 86, 87, 88, 93, 95], "still": [2, 35, 36, 46, 60, 75, 82, 83, 89, 93], "extra": [2, 32, 36, 46, 50, 51, 52, 63, 80, 82, 83, 86, 89], "receiv": [2, 8, 32, 36, 52, 55, 56, 63, 65, 69, 77, 88], "overwritten": [2, 63], "callabl": [2, 3, 32, 36, 42, 45, 50, 55, 82], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 35, 36, 38, 41, 45, 46, 59, 61, 63, 68, 75, 76, 77, 82, 83, 84, 87, 95], "appropri": [2, 8, 14, 53, 61, 76, 79, 87, 88], "earli": [2, 83], "stop": [2, 83], "x_valid": 2, "y_valid": 2, "could": [2, 5, 8, 20, 31, 46, 60, 76, 79, 83, 87, 91, 93, 95], "f": [2, 5, 75, 76, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "ignor": [2, 32, 36, 45, 50, 63, 68, 72, 75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "allow": [2, 31, 32, 35, 36, 39, 46, 51, 59, 60, 63, 65, 67, 75, 82, 83, 90, 92, 94], "access": [2, 8, 11, 32, 36, 63, 77, 80, 83, 87, 94], "hyperparamet": [2, 55, 60, 83], "purpos": [2, 76, 77, 82, 87, 91], "want": [2, 4, 8, 31, 35, 47, 51, 53, 63, 76, 80, 81, 83, 86, 88, 89, 90, 92, 94, 95], "explicitli": [2, 6, 8, 36, 63, 82], "yourself": [2, 4, 35, 77], "altern": [2, 5, 8, 42, 46, 50, 51, 61, 74, 75, 79, 80, 82, 83, 84, 86, 87, 89, 91, 94], "same": [2, 3, 4, 5, 8, 10, 12, 14, 22, 26, 32, 35, 36, 37, 46, 50, 51, 53, 60, 61, 63, 67, 68, 71, 72, 73, 76, 77, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 94], "effect": [2, 8, 23, 32, 36, 51, 60, 63, 79, 80, 82, 83, 89], "offer": [2, 4, 75, 76, 77, 80, 82, 84, 87, 94], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 46, 51, 63, 76, 80, 82, 83, 84, 86, 88, 89, 90, 91, 92, 94], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 35, 36, 42, 60, 63, 76, 93], "label_issues_df": [2, 63, 83], "similar": [2, 8, 31, 32, 36, 46, 51, 55, 56, 58, 60, 63, 67, 71, 76, 77, 79, 80, 82, 83, 84, 88, 89, 92], "document": [2, 3, 4, 8, 12, 14, 31, 32, 35, 36, 37, 42, 45, 50, 52, 53, 55, 58, 59, 60, 63, 67, 68, 69, 71, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "descript": [2, 4, 5, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 46, 56, 63, 76, 77], "were": [2, 3, 4, 31, 36, 52, 58, 71, 75, 79, 82, 84, 86, 88, 90, 92, 93], "present": [2, 3, 4, 8, 10, 11, 18, 31, 46, 60, 68, 73, 79, 82, 83, 89], "actual": [2, 3, 4, 31, 51, 52, 61, 77, 82, 84, 95], "num_class": [2, 31, 35, 46, 50, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 93, 94], "uniqu": [2, 27, 46, 68, 76, 82, 87, 89], "given_label": [2, 4, 26, 31, 40, 63, 68, 72, 75, 76, 77, 79, 80, 83, 84, 91, 92, 94, 95], "normal": [2, 3, 16, 22, 27, 37, 39, 42, 44, 45, 46, 61, 82, 84, 89], "trick": [2, 82], "distribut": [2, 3, 4, 8, 22, 24, 31, 36, 37, 41, 44, 51, 59, 60, 61, 73, 76, 77, 79, 80, 83, 88, 89], "account": [2, 31, 51, 55, 60, 61, 80, 82, 84, 86, 87, 89, 91, 94], "word": [2, 3, 45, 71, 72, 82], "remov": [2, 8, 27, 31, 32, 36, 37, 63, 73, 80, 81, 82, 83, 87, 89, 91, 93, 94], "so": [2, 3, 4, 5, 8, 12, 22, 31, 32, 35, 36, 37, 46, 51, 52, 58, 61, 63, 67, 71, 75, 76, 77, 80, 83, 84, 87, 89, 92], "proportion": [2, 8, 37], "just": [2, 3, 4, 8, 11, 31, 33, 35, 46, 50, 61, 63, 65, 73, 74, 75, 77, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 94], "procedur": 2, "get": [2, 3, 4, 6, 11, 27, 32, 33, 36, 37, 42, 45, 46, 51, 53, 55, 60, 61, 63, 64, 65, 73, 75, 80, 81, 82, 83, 84, 89, 90, 91, 93, 94], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 24, 44, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 73, 76, 78, 83, 85, 87, 91, 92, 93, 94, 95], "arg": [2, 10, 20, 23, 27, 32, 33, 36, 42, 46, 61, 63], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 35, 36, 42, 50, 63, 65, 67, 69, 82], "test": [2, 8, 22, 36, 42, 50, 63, 73, 76, 77, 79, 80, 83, 90, 91, 93, 94, 95], "expect": [2, 3, 32, 36, 37, 42, 51, 60, 61, 63, 82, 84, 86, 87, 88, 91, 93, 94, 95], "class_predict": 2, "evalu": [2, 8, 32, 33, 34, 35, 36, 59, 63, 75, 76, 77, 82, 83, 84, 86, 90, 91, 92, 93, 94], "simpli": [2, 31, 61, 76, 77, 79, 80, 82, 84, 87, 91, 92, 94, 95], "quantifi": [2, 4, 5, 8, 11, 37, 55, 60, 63, 73, 77, 79, 80, 83, 84, 88], "save_spac": [2, 8, 62, 63], "potenti": [2, 8, 31, 37, 45, 53, 56, 59, 61, 63, 65, 67, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 92, 93, 95], "cach": [2, 80, 94], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 46, 47, 50, 51, 52, 74, 75, 76, 77, 79, 80, 81, 82, 84, 86, 91, 92, 93, 94], "unlik": [2, 8, 37, 39, 42, 50, 52, 53, 55, 71, 76, 86, 87, 89, 91], "both": [2, 4, 8, 14, 22, 31, 32, 36, 37, 46, 51, 53, 61, 65, 67, 72, 73, 76, 82, 83, 84, 86, 95], "mask": [2, 35, 37, 45, 46, 53, 56, 61, 63, 65, 67, 68, 73, 81, 82, 86, 88, 92, 95], "prefer": [2, 61, 69, 87], "plan": 2, "subsequ": [2, 3, 32, 36, 80, 82, 84, 88, 94], "invok": [2, 32, 36, 84, 90], "scratch": [2, 63], "To": [2, 4, 5, 7, 8, 9, 11, 14, 22, 30, 32, 35, 36, 37, 50, 51, 53, 55, 59, 60, 61, 63, 64, 65, 67, 73, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "share": [2, 61, 63], "mostli": [2, 46, 58, 63, 87, 91], "longer": [2, 29, 41, 42, 45, 63, 74, 80, 82, 88, 94], "info": [2, 4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 52, 63, 71, 76, 77, 81, 82, 95], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 35, 39, 51, 52, 55, 59, 63, 68, 71, 75, 76, 79, 80, 81, 82, 83, 84, 86, 89], "docstr": [2, 31, 32, 36, 46, 63, 81, 84], "unless": [2, 32, 36, 63, 82], "our": [2, 3, 8, 50, 51, 61, 63, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "is_label_issu": [2, 26, 63, 75, 76, 77, 79, 80, 83, 84, 87, 91, 94], "entir": [2, 8, 22, 35, 37, 40, 52, 53, 58, 61, 63, 65, 67, 68, 73, 76, 77, 82, 88, 89, 90, 92, 95], "accur": [2, 3, 4, 8, 14, 31, 35, 37, 51, 52, 53, 56, 59, 61, 63, 64, 65, 67, 68, 74, 77, 79, 80, 82, 83, 86, 91], "label_qu": [2, 51, 63, 84, 86, 91, 94], "measur": [2, 31, 51, 52, 63, 73, 81, 82, 84, 86, 87, 91, 92, 93, 95], "qualiti": [2, 3, 4, 5, 8, 11, 26, 27, 31, 35, 37, 39, 42, 51, 52, 53, 55, 56, 58, 61, 63, 64, 67, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 91, 93, 94], "lower": [2, 4, 5, 8, 11, 24, 35, 42, 44, 51, 52, 55, 58, 59, 61, 63, 64, 67, 71, 75, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 94, 95], "eas": 2, "comparison": [2, 32, 36, 59, 84, 86], "against": [2, 32, 36, 76, 79, 82, 86, 87], "predicted_label": [2, 4, 26, 63, 68, 72, 75, 76, 77, 79, 80, 83, 84, 91, 92, 94], "ad": [2, 32, 36, 77, 86, 91], "precis": [2, 53, 56, 59, 82, 84, 92, 95], "definit": [2, 5, 29, 42, 63, 79, 93], "accessor": [2, 63], "describ": [2, 8, 16, 51, 60, 61, 63, 69, 71, 84, 86, 87, 88, 90, 95], "precomput": [2, 4, 40, 63, 81], "clear": [2, 32, 36, 63, 80, 91, 94], "save": [2, 4, 14, 32, 35, 36, 59, 63, 82, 88, 92, 95], "space": [2, 8, 60, 63, 79, 81, 83], "place": [2, 32, 36, 46, 63, 86, 93], "larg": [2, 35, 63, 79, 80, 82, 83, 88, 89, 92, 95], "deploi": [2, 63, 79, 80, 82, 83], "care": [2, 8, 32, 36, 63, 80, 82, 84], "avail": [2, 4, 5, 10, 12, 28, 36, 63, 82, 84, 86, 88, 91], "cannot": [2, 4, 10, 12, 46, 90, 95], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 29, 36, 42, 63], "__init_subclass__": [2, 34, 36, 62, 63], "set_": [2, 36, 63], "_request": [2, 36, 63], "pep": [2, 36, 63], "487": [2, 36, 63], "look": [2, 4, 5, 14, 32, 36, 46, 63, 68, 76, 77, 79, 80, 82, 84, 86, 87, 88, 89, 92, 93, 95], "inform": [2, 4, 5, 8, 11, 14, 28, 32, 36, 46, 51, 52, 56, 59, 63, 68, 71, 72, 73, 75, 76, 79, 80, 84, 86, 89, 92, 95], "__metadata_request__": [2, 36, 63], "infer": [2, 36, 46, 63, 68, 72, 83, 86, 87, 93, 94], "signatur": [2, 32, 36, 63], "accept": [2, 32, 36, 61, 63, 76, 77], "metadata": [2, 36, 63, 79, 80, 83, 95], "through": [2, 4, 5, 36, 63, 75, 77, 80, 81, 82, 86, 88, 89, 94], "develop": [2, 7, 36, 63, 82, 84, 95], "request": [2, 36, 63, 77, 80, 81, 87, 93, 94, 95], "those": [2, 3, 8, 35, 36, 37, 50, 51, 53, 59, 63, 67, 71, 72, 73, 75, 82, 83, 88, 92], "http": [2, 4, 5, 7, 8, 9, 16, 30, 32, 33, 35, 36, 39, 46, 56, 59, 60, 63, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "www": [2, 36, 63, 89], "org": [2, 16, 32, 33, 36, 46, 60, 63, 82, 84, 95], "dev": [2, 36, 63], "0487": [2, 36, 63], "get_metadata_rout": [2, 34, 36, 62, 63], "rout": [2, 36, 63], "pleas": [2, 32, 36, 50, 63, 73, 75, 76, 77, 80, 81, 82, 83, 84, 86, 87, 89, 91, 94, 95], "guid": [2, 5, 36, 63, 74, 83], "mechan": [2, 32, 36, 63], "metadatarequest": [2, 36, 63], "encapsul": [2, 14, 36, 58, 63], "get_param": [2, 34, 36, 49, 50, 62, 63], "subobject": [2, 36, 63], "param": [2, 8, 32, 36, 50, 60, 63, 82], "name": [2, 4, 5, 8, 10, 11, 29, 31, 32, 36, 41, 42, 46, 50, 51, 52, 59, 63, 68, 72, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 91, 92, 94, 95], "set_fit_request": [2, 34, 36, 62, 63], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 40, 42, 45, 46, 50, 51, 52, 56, 58, 59, 61, 63, 68, 72, 75, 76, 82, 86, 87, 88, 95], "unchang": [2, 32, 36, 63, 95], "relev": [2, 14, 22, 36, 63, 83], "enable_metadata_rout": [2, 36, 63], "set_config": [2, 36, 63], "meta": [2, 36, 63], "rais": [2, 4, 10, 11, 29, 32, 36, 39, 42, 63, 75, 82], "alia": [2, 32, 36, 63], "metadata_rout": [2, 36, 63], "retain": [2, 36, 46, 63], "chang": [2, 32, 35, 36, 39, 63, 71, 75, 76, 80, 82, 88, 89, 94, 95], "version": [2, 4, 5, 7, 8, 9, 13, 19, 25, 30, 32, 34, 36, 38, 39, 46, 49, 50, 61, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "sub": [2, 36, 58, 63], "pipelin": [2, 36, 63, 91], "otherwis": [2, 5, 8, 29, 31, 32, 35, 36, 37, 43, 45, 46, 53, 60, 63, 65, 67, 68, 72, 80, 82, 94], "updat": [2, 11, 32, 35, 36, 63, 74, 76, 83], "set_param": [2, 34, 36, 49, 50, 62, 63], "simpl": [2, 32, 36, 37, 51, 61, 63, 76, 77, 79, 80, 83, 86, 89, 91, 93, 94], "well": [2, 3, 8, 32, 36, 39, 40, 51, 53, 59, 61, 63, 68, 71, 72, 74, 76, 77, 79, 80, 82, 83, 84, 86, 88, 89], "nest": [2, 32, 36, 47, 63, 69, 71, 72, 95], "latter": [2, 32, 36, 63, 89], "compon": [2, 36, 63], "__": [2, 36, 63], "set_score_request": [2, 62, 63], "structur": [3, 60, 79, 93], "unobserv": 3, "less": [3, 4, 8, 27, 35, 42, 51, 60, 61, 65, 67, 71, 77, 79, 81, 82, 83, 84, 88, 95], "channel": [3, 75, 84], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 31, 40, 46, 52, 77, 81, 94], "inv": 3, "confident_joint": [3, 20, 31, 37, 46, 52, 53, 74, 82, 84], "un": 3, "under": [3, 8, 32, 36, 52, 59, 60, 77, 89], "joint": [3, 31, 37, 40, 46, 52, 53, 81], "num_label_issu": [3, 35, 37, 53, 68, 72, 74], "estimation_method": [3, 35], "off_diagon": 3, "multi_label": [3, 31, 37, 46, 47, 53, 87], "don": [3, 73, 77, 79, 80, 83, 84, 88, 91], "statis": 3, "compute_confident_joint": [3, 31, 37, 46, 53, 84], "off": [3, 37, 46, 58, 83, 84, 88, 89], "j": [3, 4, 31, 32, 36, 37, 53, 56, 59, 60, 69, 71, 72, 76, 77, 84, 92, 95], "confident_learn": [3, 37, 53, 84], "off_diagonal_calibr": 3, "calibr": [3, 37, 46, 51, 86], "cj": [3, 40, 46], "axi": [3, 27, 40, 42, 44, 65, 68, 75, 76, 77, 82, 83, 84, 86, 87, 89, 91, 92], "bincount": [3, 76, 77, 84, 86, 87], "alwai": [3, 8, 32, 36, 46, 75, 84, 91, 93, 94], "estimate_issu": 3, "over": [3, 8, 32, 35, 36, 58, 59, 65, 67, 77, 79, 81, 82, 83, 84, 89, 91, 93], "As": [3, 5, 73, 76, 77, 80, 84, 91, 95], "add": [3, 4, 5, 10, 11, 32, 36, 50, 59, 75, 76, 77, 80, 82, 83, 84, 87, 94], "approach": [3, 31, 35, 37, 79, 84, 87, 89, 91, 93], "custom": [3, 5, 8, 9, 26, 32, 35, 36, 42, 45, 61, 77, 80, 84, 91, 94], "know": [3, 76, 77, 79, 80, 82, 83, 84, 86, 91], "cut": [3, 58, 73, 84], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 88, 89, 95], "underestim": 3, "few": [3, 59, 73, 77, 82, 86, 87, 88, 89, 95], "4": [3, 4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 41, 42, 45, 55, 56, 58, 59, 61, 64, 71, 81, 82, 87, 92, 95], "detail": [3, 4, 8, 12, 14, 28, 31, 32, 36, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 67, 68, 69, 73, 74, 75, 87, 89, 95], "num_issu": [3, 5, 35, 75, 76, 77, 79, 80, 83, 84], "calibrate_confident_joint": 3, "up": [3, 5, 8, 15, 22, 23, 26, 37, 42, 51, 81, 82, 88, 91, 94, 95], "p_": [3, 31, 37], "pair": [3, 4, 8, 31, 37, 84], "v": [3, 8, 35, 52, 53, 55, 61, 76, 77, 87, 88, 89, 90], "rest": [3, 4, 5, 7, 8, 9, 30, 52, 53, 55, 63, 76, 77, 79, 80, 82, 83, 84, 86, 91, 93, 94], "fashion": [3, 4, 65, 93], "2x2": 3, "incorrectli": [3, 31, 52, 53, 56, 79, 95], "calibrated_cj": 3, "c": [3, 8, 45, 53, 61, 73, 75, 76, 77, 79, 80, 82, 84, 87, 88, 89, 90, 91, 93], "whose": [3, 4, 8, 24, 32, 36, 40, 45, 51, 55, 58, 64, 67, 71, 72, 75, 76, 77, 79, 80, 82, 83, 84, 87, 88, 89, 92, 95], "truli": [3, 89, 92], "estimate_joint": [3, 31, 84], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 53, 59, 84, 88, 90, 92, 95], "return_indices_of_off_diagon": 3, "frequenc": [3, 22, 51, 52, 59, 68, 88, 89], "done": [3, 8, 63, 76, 82, 84, 87, 89, 90], "overfit": [3, 8, 56, 59, 75, 76, 77, 79, 80, 83, 90, 93], "classifict": 3, "singl": [3, 4, 10, 22, 31, 32, 36, 42, 43, 46, 51, 52, 58, 59, 60, 61, 71, 75, 76, 82, 84, 87, 88, 93], "baselin": [3, 32, 37, 89, 91, 94], "proxi": 3, "union": [3, 4, 10, 42, 46, 47, 53, 59, 63, 67, 71, 82], "tupl": [3, 27, 32, 36, 40, 41, 43, 45, 46, 51, 53, 59, 67, 69, 71, 72, 75, 95], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 35, 40, 51, 65, 67, 73, 82, 83, 92, 94], "practic": [3, 77, 83, 84, 89, 91, 93, 94], "complet": [3, 75, 76, 77, 79, 80, 82, 83, 84, 87, 88, 91], "gist": 3, "cj_ish": 3, "guess": [3, 40, 84, 86], "8": [3, 4, 5, 6, 41, 42, 43, 45, 55, 69, 71, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "parallel": [3, 37, 59, 69, 81], "again": [3, 50, 82, 89, 93], "simplifi": [3, 12], "understand": [3, 7, 31, 52, 59, 77, 84, 91, 92, 95], "100": [3, 32, 36, 61, 76, 77, 79, 81, 82, 83, 84, 87, 88, 89, 92, 93, 94, 95], "optim": [3, 32, 33, 36, 50, 83, 86], "speed": [3, 37, 81, 82, 91, 94], "dtype": [3, 21, 22, 27, 32, 36, 45, 46, 55, 71, 75, 88], "enumer": [3, 32, 36, 75, 76, 77, 83, 95], "s_label": 3, "confident_bin": 3, "6": [3, 4, 36, 42, 46, 71, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "num_confident_bin": 3, "argmax": [3, 37, 61, 65, 68, 75, 82, 84, 88, 89, 92], "elif": 3, "estimate_lat": 3, "py_method": [3, 40], "cnt": [3, 40], "1d": [3, 4, 10, 14, 35, 37, 42, 43, 46, 47, 55, 64, 75, 93], "eqn": [3, 40], "margin": [3, 37, 40, 42, 61], "marginal_p": [3, 40], "shorthand": [3, 11], "proport": [3, 8, 31, 52, 84, 90], "poorli": [3, 40, 93], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 84], "variabl": [3, 5, 12, 23, 46, 63, 64, 75, 76, 79, 84, 87, 91], "exact": [3, 40, 76, 77, 79, 83, 93], "within": [3, 4, 8, 13, 32, 33, 36, 38, 53, 58, 67, 69, 71, 76, 77, 82, 83, 88, 92], "percent": 3, "often": [3, 31, 40, 52, 82, 84, 90, 92], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 46, 47, 59, 75, 76, 79, 80, 82, 83, 87, 88, 89, 91, 94], "wai": [3, 4, 50, 73, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 90, 93, 94], "pro": 3, "con": 3, "pred_proba": [3, 90], "combin": [3, 31, 76, 81, 82, 83, 84, 90, 91], "becaus": [3, 40, 46, 58, 80, 82, 84, 86, 88], "littl": [3, 35, 81, 88, 95], "uniform": [3, 61, 81, 82, 84], "20": [3, 5, 72, 75, 80, 81, 82, 83, 84, 88, 91, 92, 95], "Such": [3, 83, 89], "bound": [3, 21, 32, 36, 45, 55, 56, 58, 59, 88], "reason": [3, 20, 32, 36], "comment": [3, 45, 95], "end": [3, 4, 32, 36, 59, 83, 89, 92, 95], "file": [3, 4, 10, 34, 35, 49, 59, 75, 76, 79, 80, 81, 82, 88, 89, 92, 93, 95], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 84], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 35, 36, 74, 76, 77, 79, 80, 83, 84, 92, 93, 95], "five": [3, 56, 59, 84, 88], "estimate_cv_predicted_prob": [3, 84], "estimate_noise_matric": 3, "get_confident_threshold": [3, 34, 35], "amongst": [3, 8, 88], "confident_threshold": [3, 8, 20, 35, 60], "unifi": 4, "audit": [4, 7, 10, 11, 14, 75, 78, 79, 80, 82, 83, 84, 87, 88, 91], "kind": [4, 5, 75, 76, 79, 80, 81, 83, 84], "addit": [4, 5, 7, 8, 9, 11, 28, 30, 32, 36, 42, 47, 51, 59, 69, 75, 76, 79, 80, 84, 86, 89, 90, 93, 94], "depend": [4, 5, 7, 8, 9, 10, 11, 30, 34, 37, 39, 46, 49, 53, 60, 63, 64, 73], "instal": [4, 5, 7, 8, 9, 30, 32, 34, 35, 36, 37, 49, 50, 65, 67], "pip": [4, 5, 7, 9, 30, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "development": [4, 5, 7, 9, 30], "git": [4, 5, 7, 9, 30, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94], "github": [4, 5, 7, 9, 30, 32, 33, 46, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "com": [4, 5, 7, 9, 30, 32, 33, 35, 39, 46, 60, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "egg": [4, 5, 7, 9, 30, 73, 81], "label_nam": [4, 5, 6, 8, 10, 16, 27, 73, 75, 76, 77, 79, 80, 82, 83, 84, 87, 88, 91], "image_kei": [4, 83], "interfac": [4, 73, 82, 84], "librari": [4, 8, 36, 56, 59, 60, 73, 76, 80, 81, 82, 94], "goal": [4, 91], "track": [4, 5, 11, 12, 73, 76, 81, 82, 84], "intermedi": [4, 7, 77], "statist": [4, 8, 11, 20, 22, 31, 51, 52, 59, 77, 79, 80, 84], "convert": [4, 10, 29, 32, 36, 43, 44, 47, 51, 58, 67, 71, 74, 75, 80, 81, 82, 83, 86, 87, 88, 94], "hug": [4, 10, 83], "face": [4, 10, 14, 81, 83, 87], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 36, 42, 51, 52, 58, 60, 76, 77, 80, 82, 83, 84, 86, 88], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 36, 46, 51, 52, 64, 68, 71, 72, 79, 80, 82, 86, 87, 94, 95], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 36, 41, 46, 51, 52, 55, 56, 58, 59, 76, 77, 79, 80, 84, 86, 87, 88], "path": [4, 10, 32, 35, 36, 59, 75, 76, 82, 88], "local": [4, 5, 10, 32, 33, 36, 75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 95], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 42, 60, 69, 71, 72, 73, 76, 77, 78, 81, 82, 84, 85, 86, 89], "txt": [4, 10, 95], "csv": [4, 10, 79, 80, 91, 93, 94], "json": [4, 10], "hub": [4, 10], "multiclass": [4, 10, 13, 42, 46, 51, 87], "regress": [4, 5, 10, 12, 14, 19, 26, 29, 76, 77, 80, 85, 86, 89, 94], "multilabel": [4, 10, 12, 13, 29, 43, 87], "imag": [4, 7, 31, 36, 56, 58, 59, 60, 65, 67, 68, 73, 76, 77, 81, 82, 85, 86, 87, 88, 90, 92], "point": [4, 5, 8, 16, 22, 32, 36, 76, 77, 79, 80, 82, 83, 84, 86], "field": [4, 8, 32, 36], "themselv": [4, 91, 93, 94], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 45, 69, 71, 77, 83, 85, 87, 92], "load_dataset": [4, 10, 83], "glue": 4, "sst2": 4, "properti": [4, 10, 11, 29, 32, 36], "has_label": [4, 10], "class_nam": [4, 10, 18, 31, 52, 59, 68, 72, 73, 81, 84, 88, 92, 95], "empti": [4, 10, 40, 51, 77, 82, 87], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 73, 75, 76, 77, 79, 80, 82, 83, 84, 87, 91], "knn_graph": [4, 8, 14, 16, 17, 22, 24, 27, 79], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 75, 76, 77, 79, 80, 82, 83, 84, 87, 91], "sort": [4, 14, 35, 37, 42, 51, 53, 56, 58, 59, 61, 67, 69, 71, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95], "common": [4, 11, 14, 77, 78, 81, 82, 84, 87, 88, 92], "real": [4, 14, 73, 76, 77, 82, 84, 86, 91, 92], "world": [4, 14, 73, 76, 77, 82, 84, 86, 91, 92], "interact": [4, 14, 80, 82], "embed": [4, 8, 14, 60, 73, 75, 76, 77, 79, 80, 84, 87, 91, 94], "thereof": [4, 14], "insight": [4, 14, 59, 86], "act": [4, 8, 58, 76], "issuefind": [4, 13, 14, 28], "logic": [4, 12, 35, 37, 65, 67], "best": [4, 14, 41, 51, 61, 76, 77, 79, 80, 82, 83, 86, 87, 89, 91, 93, 94, 95], "2d": [4, 14, 35, 42, 43, 45, 46, 51, 75, 87, 93], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 52, 75, 76, 77, 79, 80, 83, 84], "properli": [4, 8, 35, 41, 46, 47, 65, 75, 76, 77, 79, 80, 82, 83, 84, 87, 89, 91, 92], "respect": [4, 32, 36, 56, 59, 75, 76, 77, 79, 80, 83, 84, 87, 88], "lexicograph": [4, 41, 46, 75, 76, 77, 79, 80, 83, 84, 87], "represent": [4, 8, 14, 29, 32, 36, 43, 53, 73, 75, 76, 77, 80, 82, 83, 84, 89, 94], "num_featur": [4, 14, 32, 36, 50], "distanc": [4, 8, 14, 16, 22, 24, 27, 44, 58, 60, 79, 89], "nearest": [4, 8, 14, 21, 22, 24, 44, 60, 77, 80, 89], "neighbor": [4, 8, 14, 16, 21, 22, 24, 44, 60, 76, 77, 79, 80, 82, 83, 89], "graph": [4, 8, 11, 14, 16, 22, 27], "squar": [4, 46, 63, 81, 91], "csr": 4, "evenli": 4, "omit": [4, 58, 59, 83, 88], "itself": [4, 32, 36, 88], "three": [4, 8, 31, 51, 52, 63, 68, 75, 76, 77, 79, 81, 84, 86, 90, 91, 92, 93, 95], "indptr": 4, "wise": 4, "start": [4, 5, 8, 29, 32, 33, 36, 42, 73, 79, 87, 95], "th": [4, 41, 45, 46, 51, 53, 56, 58, 59, 60, 69, 71, 72, 80, 87, 88, 95], "ascend": [4, 31, 52, 83, 84], "segment": [4, 65, 67, 68, 85], "reflect": [4, 79, 80, 86, 88, 89, 91, 93, 94], "maintain": 4, "posit": [4, 32, 36, 44, 46, 59, 81, 89], "nearestneighbor": [4, 8, 16, 60, 79, 89], "kneighbors_graph": [4, 16, 79], "illustr": 4, "todens": 4, "second": [4, 42, 46, 59, 61, 76, 82, 84, 95], "duplic": [4, 7, 19, 20, 32, 36, 73, 76, 84, 91], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 36, 42, 50], "neither": [4, 8, 12, 88], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 51, 82, 86, 95], "unspecifi": [4, 14, 37, 53], "interest": [4, 14, 20, 68, 72, 80, 84, 91, 92, 93, 94, 95], "constructor": [4, 8, 14, 21, 26], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "respons": [4, 14, 20, 63, 64, 81, 91, 95], "random_st": [4, 75, 76, 77, 83, 84, 87, 89, 93], "lab": [4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 35, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 91], "comprehens": [4, 73, 83, 87, 91], "nbr": 4, "n_neighbor": [4, 8, 16, 60], "metric": [4, 8, 17, 22, 27, 46, 50, 59, 60, 75, 79, 80, 83, 84, 91, 93, 94], "euclidean": [4, 8, 58, 60, 79], "mode": [4, 16, 32, 35, 36, 89], "4x4": 4, "float64": [4, 22, 32, 36, 71], "compress": [4, 8, 46, 65, 67], "toarrai": 4, "NOT": [4, 35, 80], "23606798": 4, "41421356": 4, "configur": [4, 14, 42, 77], "suppos": [4, 8, 56, 89, 91, 93, 94], "who": [4, 58, 79, 84, 93, 95], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 76], "clean_learning_kwarg": [4, 8, 21, 26, 91], "labelissuemanag": [4, 8, 12, 19, 21], "prune_method": [4, 74], "prune_by_noise_r": [4, 37, 53, 84], "report": [4, 5, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 52, 72, 73, 75, 76, 77, 79, 80, 84, 87, 91, 95], "include_descript": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "show_summary_scor": [4, 28], "show_all_issu": [4, 28], "summari": [4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 49, 50, 52, 57, 66, 67, 69, 70, 71, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 91, 92, 95], "show": [4, 5, 22, 32, 36, 41, 46, 59, 68, 72, 77, 79, 80, 81, 82, 83, 84, 86, 89, 91, 92, 93, 95], "top": [4, 8, 31, 35, 37, 46, 53, 56, 59, 61, 68, 72, 73, 75, 76, 77, 79, 80, 81, 82, 84, 88, 89, 91, 94, 95], "suffer": [4, 8, 11, 20, 53, 61, 72, 95], "onc": [4, 20, 31, 32, 36, 76, 82, 84, 87, 88, 93], "familiar": 4, "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 42, 51, 52, 55, 58, 59, 63, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 88, 95], "sever": [4, 5, 8, 10, 11, 20, 32, 35, 36, 37, 55, 58, 60, 61, 67, 71, 73, 75, 76, 77, 79, 80, 81, 82, 84, 88, 89, 93, 94, 95], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 46, 73, 75, 76, 77, 79, 80, 82, 83, 87, 89, 91, 93, 94, 95], "With": [4, 35, 80, 84, 86, 91, 92, 94, 95], "usag": [4, 35, 50], "issue_summari": [4, 5, 8, 11, 76], "dataissu": [4, 11, 13, 14, 28], "outlier": [4, 7, 12, 19, 20, 27, 38, 61, 73, 76, 77, 84, 85, 91], "someth": [4, 5, 32, 36, 61, 88], "123": [4, 76, 77], "456": [4, 75, 93, 94], "nearest_neighbor": 4, "7": [4, 42, 43, 50, 69, 71, 75, 76, 77, 79, 80, 81, 82, 86, 87, 88, 89, 91, 92, 93, 94, 95], "9": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 42, 43, 55, 69, 71, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "distance_to_nearest_neighbor": [4, 76, 77, 79, 80, 83, 84], "789": 4, "get_issu": [4, 8, 11, 75, 77, 79, 80, 82, 83, 87, 91], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 76, 77], "focu": [4, 11, 80, 92, 95], "full": [4, 8, 11, 35, 59, 83, 95], "summar": [4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 52, 68, 72, 73, 92], "valueerror": [4, 10, 11, 29, 39, 42, 82], "specific_issu": [4, 11], "exhibit": [4, 5, 8, 11, 68, 77, 79, 80, 83, 84, 88], "lie": [4, 8, 60, 61, 75, 76, 77, 79, 80, 83, 84, 94], "directli": [4, 12, 14, 28, 29, 35, 50, 51, 77, 80, 87, 88, 91, 94], "compar": [4, 51, 60, 71, 76, 77, 79, 84, 88], "get_issue_summari": [4, 11, 77], "get_info": [4, 11, 77, 80], "yet": [4, 15, 19, 23, 81, 86], "list_possible_issue_typ": [4, 12, 13], "regist": [4, 5, 12, 13, 15, 23, 32, 36, 76], "rtype": [4, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36], "registri": [4, 12, 13], "list_default_issue_typ": [4, 12, 13], "folder": [4, 75, 76, 83], "load": [4, 10, 35, 59, 81, 82, 83, 84, 88, 89, 92, 95], "futur": [4, 8, 20, 32, 36, 51, 73, 75, 76, 80, 82, 94], "overwrit": [4, 76], "separ": [4, 31, 42, 55, 76, 77, 82, 83, 88, 90], "static": 4, "rememb": [4, 80, 82, 84], "part": [4, 8, 32, 36, 37, 56, 58, 59, 75, 76, 81, 92, 95], "ident": [4, 8, 20, 46, 80], "walk": 5, "alongsid": [5, 32, 36, 76, 82], "pre": [5, 6, 8, 32, 36, 76, 77, 83, 91, 92, 95], "runtim": [5, 32, 35, 36, 63, 65, 67, 75, 82, 83], "issue_manager_factori": [5, 12, 76], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 42, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "thing": [5, 36, 84, 91, 94], "next": [5, 51, 73, 75, 79, 80, 82, 86, 88, 91, 93, 94, 95], "dummi": 5, "randint": [5, 27, 42, 76, 77, 82], "mark": [5, 8, 74, 88, 89, 91], "regard": [5, 77, 84], "rand": [5, 42, 76, 77], "is_": [5, 8, 76], "_issu": [5, 8, 76], "issue_score_kei": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 76], "whole": [5, 22, 32, 36, 77], "make_summari": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 76], "popul": [5, 77, 80], "verbosity_level": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "std": [5, 88], "raw_scor": 5, "bit": 5, "involv": [5, 35, 68, 72, 82, 87], "intermediate_arg": 5, "min": [5, 42, 58, 71, 76, 82, 89], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "affect": [5, 8, 32, 36, 65, 71, 80, 82], "global": [5, 20, 32, 36], "easili": [5, 40, 74, 75, 77, 79, 80, 84, 86, 87, 89, 90, 91, 92, 93, 94], "hard": [5, 36, 81, 89], "sai": [5, 8, 32, 36, 87, 92], "anoth": [5, 20, 31, 35, 45, 58, 61, 79, 80, 82, 84, 86, 89, 94], "try": [5, 8, 35, 37, 50, 51, 65, 67, 73, 77, 79, 80, 82, 83, 84, 92], "iid": [5, 7, 22, 79, 84], "won": [5, 32, 36, 76, 77, 82, 87], "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 22, 23, 24, 26, 27, 76], "instanti": [5, 14, 35, 50, 60, 75, 77, 79, 94], "477762": 5, "286455": 5, "term": [5, 8, 40, 46, 59, 75, 76, 77, 79, 80, 83, 84], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 24, 75, 76, 77, 79, 80, 81, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "003042": 5, "058117": 5, "11": [5, 50, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "121908": 5, "15": [5, 44, 63, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "169312": 5, "17": [5, 75, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 94, 95], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 76, 77, 81, 84], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 27], "group": [6, 7, 22, 27, 81, 88, 95], "dbscan": [6, 8, 27, 82], "hdbscan": [6, 82], "etc": [6, 8, 20, 32, 36, 40, 50, 51, 69, 73, 76, 77, 79, 80, 82, 84, 87, 91], "sensit": [6, 8, 44], "ep": [6, 27, 59], "radiu": 6, "min_sampl": [6, 27], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 73, 75, 82, 83, 86, 91, 93, 94], "kmean": [6, 82], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 27, 82], "cluster_id": [6, 8, 27, 82], "labels_": 6, "underperforming_group": [6, 8, 12, 19, 77, 79, 80, 82, 83, 84], "search": [7, 8, 18, 22, 23, 45, 63, 82, 90], "nondefault": 7, "Near": [7, 82], "imbal": [7, 19, 55, 60, 61, 77], "null": [7, 12, 19, 77, 80, 83, 84], "valuat": [7, 16], "togeth": [7, 8, 40, 76, 77, 79, 80, 83, 84, 91, 94, 95], "built": [7, 42], "own": [7, 32, 34, 36, 49, 55, 56, 59, 65, 69, 75, 77, 79, 80, 82, 83, 86, 87, 91, 92, 93, 94, 95], "prerequisit": 7, "basic": [7, 36, 50, 79, 80, 89], "page": [8, 77, 82, 84], "variou": [8, 11, 26, 34, 47, 49, 73, 76, 77, 79, 80, 81, 84, 86, 88, 93], "why": [8, 80], "matter": [8, 31, 52, 80, 94], "_score": 8, "flag": [8, 20, 22, 37, 42, 52, 53, 56, 63, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 91, 92, 94], "badli": [8, 58, 95], "code": [8, 32, 36, 40, 46, 50, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "issue_scor": 8, "outlier_scor": [8, 24, 76, 77, 79, 80, 83, 84, 89], "atyp": [8, 60, 76, 77, 79, 80, 83, 84, 89], "datapoint": [8, 27, 37, 42, 46, 61, 64, 73, 75, 76, 77, 79, 80, 82, 90, 91, 93, 94], "is_issu": [8, 20], "is_outlier_issu": [8, 76, 77, 79, 80, 83, 84], "annot": [8, 31, 41, 51, 52, 53, 55, 56, 58, 59, 68, 71, 72, 73, 75, 76, 77, 79, 80, 82, 83, 84, 85, 88, 92], "transform": [8, 42, 44, 46, 60, 61, 77, 80, 83, 89, 93, 94, 95], "dissimilar": [8, 79, 80], "preced": 8, "cosin": [8, 60, 89], "incorrect": [8, 58, 61, 64, 75, 76, 77, 79, 80, 83, 84, 88, 91, 93], "due": [8, 35, 37, 61, 65, 67, 75, 76, 77, 79, 80, 83, 84, 91], "appear": [8, 31, 41, 52, 53, 56, 64, 77, 79, 80, 83, 91, 92], "likelihood": [8, 35, 37, 53, 58, 60, 61, 65, 69], "now": [8, 35, 74, 75, 77, 86, 88, 89, 91, 93, 94, 95], "u": [8, 75, 76, 79, 82, 83, 84, 86, 87, 90, 91, 92, 93, 94, 95], "token": [8, 45, 67, 68, 69, 70, 71, 72, 82, 84, 85], "calcul": [8, 16, 22, 35, 42, 51, 55, 56, 58, 59, 60, 63, 67, 81, 83], "hamper": [8, 81, 83], "analyt": [8, 73, 82, 86], "lead": [8, 58, 61, 83, 88], "draw": [8, 76, 77], "conclus": [8, 80], "veri": [8, 31, 52, 56, 58, 76, 77, 79, 80, 82, 83, 84, 86, 89, 91, 94], "rare": [8, 37, 59, 76, 77, 79, 80, 82, 83, 84], "anomal": [8, 61, 76, 77, 79, 80, 83, 84], "articl": [8, 35, 82], "ai": [8, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95], "blog": 8, "unexpect": [8, 32, 36, 80], "consequ": 8, "inspect": [8, 75, 77, 83, 84, 88, 91, 94], "neg": [8, 58, 59, 76, 77, 81], "extrem": [8, 76, 77, 79, 80, 82, 83, 84], "rel": [8, 31, 51, 52, 60, 76, 77, 79, 80, 83, 84, 89], "record": [8, 32, 36, 75, 79, 91], "abbrevi": 8, "misspel": 8, "typo": [8, 72], "resolut": 8, "video": [8, 81], "audio": [8, 76, 77, 82, 85], "minor": [8, 45], "variat": 8, "translat": 8, "d": [8, 44, 79, 80, 84, 87, 91, 93, 95], "constant": [8, 27, 63], "median": [8, 26, 44], "question": [8, 20, 73, 84], "nearli": [8, 20, 77, 79, 80, 83], "awar": [8, 74, 84], "presenc": [8, 84], "signific": [8, 79, 80, 84], "violat": [8, 79, 80, 84], "assumpt": [8, 79, 80, 84], "changepoint": [8, 79, 80, 84], "shift": [8, 79, 80, 84], "drift": [8, 77, 79, 84], "autocorrel": [8, 79, 80, 84], "almost": [8, 79, 80, 84], "adjac": [8, 79, 80, 84], "tend": [8, 31, 40, 79, 80, 84, 92, 95], "sequenti": [8, 32, 36, 50, 83], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 45, 46, 71, 79, 80, 81, 84, 90, 93, 95], "x1": [8, 56, 59, 88], "x2": [8, 56, 59, 88], "10th": 8, "100th": 8, "90": [8, 71, 79, 83, 84, 90, 91, 92, 93], "similarli": [8, 32, 36, 76, 79, 82, 83, 88], "math": [8, 83], "behind": [8, 60, 84], "fundament": 8, "proper": [8, 46, 51, 56, 59, 80, 83, 86, 88, 93], "closer": [8, 58, 88], "scenario": [8, 61, 76, 77], "underli": [8, 60, 69, 71, 95], "stem": [8, 60, 89], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 87, 89], "partit": [8, 90], "ahead": 8, "good": [8, 32, 36, 44, 50, 52, 58, 61, 65, 67, 68, 73, 79, 80, 83], "fix": [8, 51, 80, 84, 91, 94], "problem": [8, 35, 42, 68, 73, 76, 77, 80, 82, 83], "deploy": [8, 84, 91, 93, 94], "overlook": [8, 58, 88], "fact": 8, "thu": [8, 31, 36, 52, 75, 79, 80, 84, 90, 93, 95], "diagnos": [8, 77, 82], "rarest": [8, 77], "q": [8, 88], "fall": [8, 58, 67, 71, 84, 89], "subpar": 8, "special": [8, 45], "techniqu": [8, 88], "smote": 8, "asymmetr": [8, 31], "too": [8, 37, 42, 60, 77, 82, 83, 88], "dark": [8, 92], "bright": [8, 95], "blurri": [8, 83], "abnorm": [8, 59, 83, 88], "cluster": [8, 16, 27], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 51, 59, 77, 82, 83, 86, 87, 88, 92], "get_self_confidence_for_each_label": [8, 42, 61], "power": [8, 79, 80, 81, 83, 84, 95], "r": [8, 35, 63, 76, 77, 91, 92], "tabular": [8, 73, 76, 77, 78, 82, 85, 86], "categor": [8, 60, 76, 77, 78, 82, 91, 93], "encod": [8, 43, 59, 65, 68, 79, 80, 82, 91, 92, 93, 94], "miss": [8, 23, 32, 36, 46, 56, 58, 79, 82, 88, 91], "pattern": 8, "contribut": [8, 16, 88], "isn": [8, 15, 23], "approxim": [8, 16, 35, 60, 86], "shaplei": [8, 16], "knn": [8, 11, 16, 22, 27, 60, 79, 89], "scalabl": 8, "sacrific": 8, "One": [8, 46, 60, 82], "quantif": 8, "exert": [8, 77], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 76, 77, 79, 80, 82, 83, 84], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 22, 77, 79, 80, 83, 84], "non_iid_kwarg": 8, "class_imbal": [8, 12, 18, 77, 79, 80, 83, 84], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 19, 21, 26], "health_summari": [8, 21, 31, 73, 81], "health_summary_kwarg": 8, "tandem": [8, 81], "view": [8, 32, 36, 37, 67, 69, 71, 73, 75, 76, 77, 79, 80, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "ood_kwarg": 8, "outofdistribut": [8, 24, 60, 89], "outsid": [8, 87], "outlierissuemanag": [8, 12, 19, 24, 76], "nearduplicateissuemanag": [8, 12, 17, 19], "noniidissuemanag": [8, 12, 19, 22], "num_permut": [8, 22], "permut": [8, 22], "significance_threshold": [8, 22], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 12, 18, 19], "underperforminggroupissuemanag": [8, 12, 19, 27], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 27], "filter_cluster_id": [8, 19, 27], "clustering_kwarg": [8, 27], "faq": [8, 73, 77, 79, 80, 83, 85], "nullissuemanag": [8, 12, 19, 23], "data_valuation_kwarg": 8, "data_valu": [8, 12, 19], "datavaluationissuemanag": [8, 12, 16, 19], "codeblock": 8, "demonstr": [8, 35, 76, 77, 80, 82, 83, 84, 86, 87, 88, 91, 92], "howev": [8, 32, 36, 46, 75, 79, 80, 83, 86, 90, 92, 93, 94], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 75, 76, 81, 86, 88, 92], "fewer": [8, 37, 46, 88], "vice": [8, 52], "versa": [8, 52], "light": [8, 81, 83, 88, 92], "29": [8, 81, 83, 86, 87, 88, 92, 95], "low_inform": [8, 83], "odd_aspect_ratio": [8, 83], "35": [8, 76, 81, 83, 86, 87, 88, 92], "odd_siz": [8, 83], "10": [8, 16, 17, 21, 22, 27, 32, 33, 59, 60, 61, 72, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "doc": [8, 32, 36, 73, 75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "data_issu": [9, 13, 14, 28, 76], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 32, 36, 50, 61, 76, 77, 83, 86], "dataformaterror": [10, 13], "add_not": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": [10, 13], "datasetdict": 10, "usual": [10, 28, 83, 86, 91], "datasetloaderror": [10, 13], "dataset_typ": 10, "fail": 10, "hold": 10, "associ": [10, 14, 32, 36, 59, 86], "sublist": 10, "map_to_int": 10, "abc": [10, 20], "is_avail": [10, 83], "serv": [11, 14, 86], "central": [11, 95], "repositori": 11, "strategi": [11, 42, 82], "being": [11, 31, 32, 36, 37, 42, 45, 46, 61, 79, 82, 84, 91, 92, 93], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 32, 35, 36, 37, 46, 53, 56, 59, 63, 65, 67, 76, 77, 82], "recomput": [11, 94], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 31, 52, 73], "get_data_statist": [11, 13], "concret": 12, "subclass": [12, 32, 36, 60, 76], "regressionlabelissuemanag": [12, 19, 25, 26], "multilabelissuemanag": 12, "from_str": [12, 29, 38, 42], "my_issu": 12, "stabl": [13, 19, 25, 34, 38, 46, 49, 60, 74], "unregist": 13, "instati": 14, "public": [14, 84, 88, 92, 95], "creation": [14, 36], "execut": [14, 32, 36, 76, 82, 88], "coordin": [14, 56, 58, 59, 88, 95], "behavior": [14, 31, 32, 36, 59, 82], "At": [14, 59, 82], "get_available_issue_typ": 14, "direct": [15, 23, 32, 36], "valuabl": 16, "vstack": [16, 46, 81, 82, 83, 84, 86, 87], "25": [16, 22, 32, 42, 44, 77, 81, 83, 84, 86, 87, 88, 92, 95], "classvar": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "short": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 45, 46], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 46, 76, 77, 82, 83, 84, 86, 87], "some_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "additional_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "default_threshold": [16, 19, 24], "arxiv": [16, 84], "ab": [16, 84, 88], "1911": 16, "07128": 16, "larger": [16, 63, 65, 67, 80, 81, 82, 83], "collect_info": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "info_to_omit": [16, 17, 18, 20, 21, 22, 24, 26, 27], "compos": [16, 17, 18, 20, 21, 22, 24, 26, 27, 32, 36, 80, 89, 94], "is_x_issu": [16, 17, 18, 20, 21, 22, 24, 26, 27], "x_score": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_a": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b1": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b2": [16, 17, 18, 20, 21, 22, 24, 26, 27], "report_str": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "_": [17, 20, 21, 22, 23, 26, 27, 42, 45, 46, 75, 76, 81, 83, 84, 87, 93], "near_duplicate_set": [17, 19, 76, 77, 79, 80, 82, 83, 84], "occurr": [17, 18, 20, 22, 23, 24, 27, 45], "median_nn_dist": 17, "near_duplicate_scor": [17, 76, 77, 79, 80, 82, 83, 84], "class_imbalance_scor": [18, 77], "bleed": [19, 25, 34], "edg": [19, 25, 34, 58, 73, 84, 95], "sharp": [19, 25, 34], "get_health_summari": [19, 21], "ood": [19, 24, 60, 61, 76, 77, 80, 83, 84, 89], "simplified_kolmogorov_smirnov_test": [19, 22], "outlier_cluster_label": [19, 27], "no_underperforming_cluster_id": [19, 27], "set_knn_graph": [19, 27], "perform_clust": [19, 27], "get_worst_clust": [19, 27], "find_issues_with_predict": [19, 25, 26], "find_issues_with_featur": [19, 25, 26], "believ": [20, 92], "priori": [20, 84], "abstract": 20, "applic": [21, 51, 82, 84, 86, 95], "typevar": [21, 32, 36, 45, 55, 58, 59], "scalartyp": 21, "covari": [21, 63, 91], "summary_dict": 21, "label_scor": [21, 26, 75, 76, 77, 79, 80, 83, 84, 87, 91], "neighbor_histogram": 22, "non_neighbor_histogram": 22, "kolmogorov": 22, "smirnov": 22, "largest": [22, 35, 42, 61, 65, 67, 88, 92], "empir": [22, 41, 51], "cumul": 22, "ecdf": 22, "histogram": [22, 79, 91], "absolut": [22, 26], "dimension": [22, 46, 75, 84, 89], "trial": 22, "non_iid_scor": [22, 77, 79, 80, 84], "null_track": 23, "extend": [23, 43, 83, 88, 89, 95], "superclass": 23, "arbitrari": [23, 31, 67, 71, 76, 89, 91], "prompt": 23, "address": [23, 76, 77, 80, 82, 94], "enabl": [23, 36], "null_scor": [23, 77], "37037": 24, "q3_avg_dist": 24, "iqr_avg_dist": 24, "median_outlier_scor": 24, "multipli": 26, "deleg": 26, "confus": [27, 31, 32, 36, 37, 46, 59, 94, 95], "50": [27, 36, 82, 84, 86, 88, 89, 91, 92, 95], "keepdim": [27, 82], "signifi": 27, "absenc": 27, "find_issues_kwarg": 27, "int64": [27, 75, 86], "npt": 27, "int_": 27, "id": [27, 51, 76, 82, 83, 86], "unique_cluster_id": 27, "_description_": 27, "performed_clust": 27, "worst_cluster_id": 27, "underperforming_group_scor": [27, 77], "datset": 28, "exclud": [28, 68, 72, 76, 82, 95], "get_report": 28, "qualnam": [29, 42], "boundari": [29, 42, 76, 77], "enum": [29, 42], "continu": [29, 80, 82, 83, 86, 88, 91, 93, 94, 95], "binari": [29, 42, 46, 53, 55, 84, 95], "simultan": [29, 91], "task_str": 29, "is_classif": 29, "__contains__": [29, 38, 42], "member": [29, 32, 36, 42, 76, 77], "typeerror": [29, 42], "12": [29, 42, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "__getitem__": [29, 38, 42], "match": [29, 31, 32, 36, 37, 42, 51, 52, 61, 76, 77, 81, 83, 88, 90, 92], "__iter__": [29, 38, 42], "__len__": [29, 38, 42], "alias": [29, 42], "is_regress": 29, "is_multilabel": 29, "overview": [31, 75, 77, 79, 80, 83, 86, 88, 89, 91, 93, 94, 95], "modifi": [31, 32, 35, 36, 46, 82, 84], "help": [31, 32, 36, 59, 73, 74, 75, 76, 79, 80, 81, 82, 83, 86, 87, 91, 92, 93, 94, 95], "rank_classes_by_label_qu": [31, 77], "merg": [31, 45, 73, 81, 82, 95], "find_overlapping_class": [31, 82, 84], "problemat": [31, 52, 68, 72, 75, 88, 95], "unnorm": [31, 52, 84], "abov": [31, 32, 35, 36, 46, 51, 58, 59, 61, 67, 71, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 95], "model_select": [31, 42, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 91, 93, 94], "cross_val_predict": [31, 36, 75, 76, 77, 79, 80, 82, 84, 86, 90, 91, 93, 94], "get_data_labels_from_dataset": 31, "yourfavoritemodel": [31, 84], "cv": [31, 42, 75, 76, 77, 79, 84, 86, 93], "df": [31, 46, 72, 75, 82], "overall_label_qu": [31, 52], "col": 31, "prob": [31, 45, 84, 90], "divid": [31, 52, 61], "label_nois": [31, 52], "human": [31, 81, 92, 95], "clearli": [31, 61, 83, 88, 92], "num": [31, 52, 81, 84], "overlap": [31, 73, 81, 82, 84], "ontolog": 31, "publish": [31, 95], "therefor": [31, 61], "vehicl": [31, 81], "truck": [31, 81, 89, 92], "intuit": [31, 52], "car": [31, 81, 88, 92], "frequent": [31, 51, 79, 82, 91], "characterist": 31, "l": [31, 32, 36, 56, 58, 59], "class1": 31, "class2": 31, "relationship": 31, "dog": [31, 46, 52, 54, 68, 81, 82, 89, 90, 95], "cat": [31, 46, 52, 54, 81, 82, 89, 90], "captur": [31, 75, 88, 89, 92], "co": [31, 32, 33], "noisy_label": [31, 76, 77, 87], "overlapping_class": 31, "descend": [31, 32, 36, 42, 52, 59], "overall_label_health_scor": [31, 52, 84], "suggest": [31, 51, 52, 58, 80, 82, 83, 91, 94], "half": [31, 32, 34, 36, 52, 81, 95], "health_scor": [31, 52], "classes_by_label_qu": [31, 77], "cnn": [32, 34, 36, 83], "cifar": [32, 33, 81, 89], "teach": [32, 33], "bhanml": 32, "blob": 32, "master": [32, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94], "call_bn": [32, 34], "bn": 32, "input_channel": 32, "n_output": 32, "dropout_r": 32, "top_bn": 32, "architectur": [32, 36], "shown": [32, 59, 76, 82, 86, 89, 90, 92, 95], "forward": [32, 33, 34, 36, 83, 86], "overridden": [32, 36], "although": [32, 36, 60, 79, 93], "recip": [32, 36], "afterward": [32, 36], "sinc": [32, 36, 39, 47, 52, 59, 67, 71, 82, 86, 87, 88, 90, 95], "former": [32, 36], "hook": [32, 36, 81], "silent": [32, 35, 36], "t_destin": [32, 34, 36], "__call__": [32, 34, 36, 38, 42], "add_modul": [32, 34, 36], "child": [32, 36], "fn": [32, 36, 59], "recurs": [32, 36, 42], "submodul": [32, 36], "children": [32, 34, 36, 95], "nn": [32, 33, 36, 83], "init": [32, 36, 84], "no_grad": [32, 36, 83, 89], "init_weight": [32, 36], "linear": [32, 36, 80, 83, 94], "fill_": [32, 36], "net": [32, 36, 75, 81, 83], "in_featur": [32, 36], "out_featur": [32, 36], "bia": [32, 36, 83], "tensor": [32, 33, 36, 75, 80, 83, 89, 94], "requires_grad": [32, 36], "bfloat16": [32, 34, 36], "cast": [32, 36, 75], "buffer": [32, 34, 36], "datatyp": [32, 36], "xdoctest": [32, 36], "undefin": [32, 36], "var": [32, 36], "buf": [32, 36], "20l": [32, 36], "1l": [32, 36], "5l": [32, 36], "call_super_init": [32, 34, 36], "immedi": [32, 36, 89], "compil": [32, 34, 36, 50], "cpu": [32, 34, 36, 37, 75, 83], "move": [32, 36, 42, 74, 81], "cuda": [32, 34, 36, 75, 83], "devic": [32, 36, 75, 83], "gpu": [32, 36, 75, 80, 94], "live": [32, 36], "copi": [32, 36, 63, 75, 76, 77, 79, 82, 87, 90, 91, 93], "doubl": [32, 34, 36], "dump_patch": [32, 34, 36], "eval": [32, 34, 36, 83, 87, 89], "dropout": [32, 36], "batchnorm": [32, 36], "grad": [32, 36], "extra_repr": [32, 34, 36], "line": [32, 36, 73, 76, 81, 86, 89, 95], "get_buff": [32, 34, 36], "target": [32, 33, 36, 63, 64, 89, 91], "throw": [32, 36], "get_submodul": [32, 34, 36], "explan": [32, 36], "fulli": [32, 36, 50, 82], "qualifi": [32, 36], "referenc": [32, 36], "attributeerror": [32, 36], "invalid": [32, 36, 80], "resolv": [32, 36, 95], "get_extra_st": [32, 34, 36], "state_dict": [32, 34, 36], "set_extra_st": [32, 34, 36], "build": [32, 36, 83, 92], "picklabl": [32, 36], "serial": [32, 36], "backward": [32, 36, 83], "break": [32, 36, 83, 88], "pickl": [32, 36, 88], "get_paramet": [32, 34, 36], "let": [32, 36, 60, 61, 75, 77, 79, 80, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "net_b": [32, 36], "net_c": [32, 36], "conv": [32, 36], "conv2d": [32, 36, 83], "16": [32, 36, 42, 67, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 92, 94, 95], "33": [32, 36, 81, 88, 89, 92], "kernel_s": [32, 36], "stride": [32, 36], "200": [32, 36, 61, 81, 88, 95], "diagram": [32, 36, 90], "degre": [32, 36], "queri": [32, 36, 77, 82, 83, 87], "named_modul": [32, 34, 36], "o": [32, 36, 44, 45, 75, 76, 77, 81, 82, 84, 87, 88, 95], "transit": [32, 36], "ipu": [32, 34, 36], "load_state_dict": [32, 34, 36], "strict": [32, 36, 42], "persist": [32, 36], "strictli": [32, 36], "inplac": [32, 36, 86], "preserv": [32, 36, 46], "namedtupl": [32, 36], "missing_kei": [32, 36], "unexpected_kei": [32, 36], "runtimeerror": [32, 36], "idx": [32, 36, 46, 47, 59, 76, 82, 83, 84, 86, 88, 89], "named_buff": [32, 34, 36], "prefix": [32, 36, 75, 95], "remove_dupl": [32, 36], "prepend": [32, 36], "running_var": [32, 36], "named_children": [32, 34, 36], "conv4": [32, 36], "conv5": [32, 36], "memo": [32, 36], "named_paramet": [32, 34, 36], "register_backward_hook": [32, 34, 36], "deprec": [32, 36, 39, 75, 80, 82, 94], "favor": [32, 36], "register_full_backward_hook": [32, 34, 36], "removablehandl": [32, 36], "register_buff": [32, 34, 36], "running_mean": [32, 36], "register_forward_hook": [32, 34, 36], "with_kwarg": [32, 36], "always_cal": [32, 36], "possibli": [32, 36, 79, 93], "fire": [32, 36, 81], "register_module_forward_hook": [32, 36], "regardless": [32, 36, 76, 77], "register_forward_pre_hook": [32, 34, 36], "And": [32, 36], "forward_pr": [32, 36], "register_module_forward_pre_hook": [32, 36], "gradient": [32, 36, 79, 83, 91], "grad_input": [32, 36], "grad_output": [32, 36], "technic": [32, 36], "caller": [32, 36], "register_module_full_backward_hook": [32, 36], "register_full_backward_pre_hook": [32, 34, 36], "backward_pr": [32, 36], "register_module_full_backward_pre_hook": [32, 36], "register_load_state_dict_post_hook": [32, 34, 36], "post": [32, 36], "incompatible_kei": [32, 36], "modif": [32, 36], "thrown": [32, 36], "register_modul": [32, 34, 36], "register_paramet": [32, 34, 36], "register_state_dict_pre_hook": [32, 34, 36], "keep_var": [32, 36], "requires_grad_": [32, 34, 36], "autograd": [32, 36], "freez": [32, 36, 75, 80, 94], "finetun": [32, 36], "gan": [32, 36], "share_memori": [32, 34, 36], "share_memory_": [32, 36], "destin": [32, 36], "shallow": [32, 36], "releas": [32, 36, 74, 75, 82], "design": [32, 36], "ordereddict": [32, 36], "detach": [32, 36, 83], "non_block": [32, 36], "memory_format": [32, 36], "channels_last": [32, 36], "Its": [32, 36, 42, 52, 58], "complex": [32, 36, 75], "integr": [32, 36, 73], "asynchron": [32, 36], "host": [32, 36], "pin": [32, 36, 80, 81, 94], "desir": [32, 36, 45, 59], "4d": [32, 36], "ignore_w": [32, 36], "determinist": [32, 36, 75], "1913": [32, 36], "3420": [32, 36], "5113": [32, 36], "2325": [32, 36], "env": [32, 36], "torch_doctest_cuda1": [32, 36], "gpu1": [32, 36], "1914": [32, 36], "5112": [32, 36], "2324": [32, 36], "float16": [32, 36], "cdoubl": [32, 36], "3741": [32, 36], "2382": [32, 36], "5593": [32, 36], "4443": [32, 36], "complex128": [32, 36], "6122": [32, 36], "1150": [32, 36], "to_empti": [32, 34, 36], "storag": [32, 36, 80, 94], "dst_type": [32, 36], "xpu": [32, 34, 36], "zero_grad": [32, 34, 36, 83], "set_to_non": [32, 36], "reset": [32, 36], "context": [32, 36, 88], "noisili": [33, 84], "han": 33, "2018": 33, "cifar_cnn": [33, 34], "loss_coteach": [33, 34], "y_1": 33, "y_2": 33, "forget_r": 33, "class_weight": 33, "logit": [33, 50, 83], "decim": [33, 46], "quickli": [33, 75, 79, 80, 82, 83, 87, 89, 92, 93, 95], "forget": [33, 42, 95], "rate_schedul": 33, "epoch": [33, 34, 36, 82, 83], "initialize_lr_schedul": [33, 34], "lr": [33, 34, 36], "001": [33, 61, 82], "250": [33, 76, 77, 84, 88], "epoch_decay_start": 33, "80": [33, 79, 87, 91, 92, 93], "schedul": 33, "adjust": [33, 37, 55, 60, 61, 73, 84], "beta": 33, "adam": 33, "adjust_learning_r": [33, 34], "alpha_plan": 33, "beta1_plan": 33, "forget_rate_schedul": [33, 34], "num_gradu": 33, "expon": 33, "tell": [33, 80, 83, 84, 94], "train_load": [33, 36], "model1": [33, 84], "optimizer1": 33, "model2": [33, 84], "optimizer2": 33, "dataload": [33, 83, 89], "parser": 33, "parse_arg": 33, "num_iter_per_epoch": 33, "print_freq": 33, "topk": 33, "top1": 33, "top5": 33, "test_load": 33, "offici": [34, 49, 95], "wish": [34, 49, 89, 92, 95], "adj_confident_thresholds_shar": [34, 35], "labels_shar": [34, 35], "pred_probs_shar": [34, 35], "labelinspector": [34, 35, 82], "get_num_issu": [34, 35], "get_quality_scor": [34, 35], "update_confident_threshold": [34, 35], "score_label_qu": [34, 35], "split_arr": [34, 35], "mnist_pytorch": 34, "get_mnist_dataset": [34, 36], "get_sklearn_digits_dataset": [34, 36], "simplenet": [34, 36], "batch_siz": [34, 35, 36, 65, 67, 82, 83, 89, 92], "log_interv": [34, 36], "momentum": [34, 36], "no_cuda": [34, 36], "test_batch_s": [34, 36, 83], "loader": [34, 36, 83], "set_predict_proba_request": [34, 36], "set_predict_request": [34, 36], "coteach": [34, 74], "mini": [35, 65, 67, 82], "low_self_confid": [35, 37, 53], "self_confid": [35, 37, 38, 42, 53, 55, 61, 69, 71, 82, 84, 93, 94], "conveni": [35, 75, 80, 94], "script": 35, "labels_fil": [35, 82], "pred_probs_fil": [35, 82], "quality_score_kwarg": 35, "num_issue_kwarg": 35, "return_mask": 35, "variant": [35, 51, 92], "read": [35, 39, 77, 82, 84, 89, 95], "zarr": [35, 82], "memmap": [35, 92], "pythonspe": 35, "mmap": [35, 82], "hdf5": 35, "further": [35, 52, 53, 55, 58, 59, 67, 68, 75, 82], "yourfil": 35, "npy": [35, 81, 82, 92], "mmap_mod": [35, 92], "tip": [35, 37, 50, 82], "save_arrai": 35, "your_arrai": 35, "disk": [35, 81, 82], "npz": [35, 95], "maxim": [35, 51, 65, 67, 92], "multiprocess": [35, 37, 53, 65, 67, 82, 83], "linux": [35, 65, 67], "physic": [35, 37, 65, 67, 88], "psutil": [35, 37, 65, 67], "labels_arrai": [35, 47], "predprob": 35, "pred_probs_arrai": 35, "back": [35, 59, 76, 82, 88, 89], "store_result": 35, "becom": [35, 89], "verifi": [35, 82, 86, 89], "long": [35, 51, 60, 86], "enough": [35, 46, 82], "chunk": [35, 90], "ram": [35, 81], "faster": [35, 60, 63, 65, 67, 82, 84], "end_index": 35, "labels_batch": 35, "pred_probs_batch": 35, "batch_result": 35, "indices_of_examples_with_issu": [35, 82], "shortcut": 35, "encount": [35, 37, 65], "1000": [35, 75, 80, 82, 89], "aggreg": [35, 38, 42, 51, 55, 58, 61, 71, 82, 84, 86], "fetch": [35, 75, 77], "seen": [35, 82, 89, 95], "far": [35, 51], "label_quality_scor": [35, 55, 58, 61, 64, 84, 88], "method1": 35, "method2": 35, "normalized_margin": [35, 37, 38, 42, 53, 55, 61, 69, 71], "low_normalized_margin": [35, 37, 53], "issue_indic": [35, 58, 83], "update_num_issu": 35, "arr": [35, 82], "chunksiz": 35, "convnet": 36, "bespok": [36, 50], "download": [36, 75, 82, 89], "mnist": [36, 73, 75, 81], "handwritten": 36, "digit": [36, 75, 81], "last": [36, 42, 56, 59, 76, 77, 82, 86, 88, 95], "sklearn_digits_test_s": 36, "64": [36, 79, 83, 84, 88, 92, 93], "01": [36, 61, 63, 75, 84, 87, 88, 89, 92, 95], "templat": 36, "flexibli": 36, "among": [36, 51, 84], "test_set": 36, "Be": 36, "overrid": 36, "train_idx": [36, 46, 89], "train_label": [36, 89, 94], "scikit": [36, 46, 60, 73, 75, 76, 77, 79, 80, 82, 85, 91, 94], "encourag": [37, 53, 61, 64], "multilabel_classif": [37, 52, 53, 55, 61, 82, 87], "pred_probs_by_class": 37, "prune_count_matrix_col": 37, "rank_by_kwarg": [37, 53, 61, 84], "num_to_remove_per_class": [37, 53], "bad": [37, 53, 58, 61, 80, 82, 94], "seem": [37, 84, 87], "aren": 37, "confidence_weighted_entropi": [37, 38, 42, 53, 55, 61, 69, 71], "label_issues_idx": [37, 61], "entropi": [37, 39, 41, 42, 60, 61], "prune_by_class": [37, 53, 84], "predicted_neq_given": [37, 53, 84], "prune_counts_matrix": 37, "smallest": [37, 61], "unus": 37, "number_of_mislabeled_examples_in_class_k": 37, "delet": [37, 73, 82, 94], "thread": [37, 53], "window": [37, 75, 81], "shorter": [37, 56], "find_predicted_neq_given": 37, "find_label_issues_using_argmax_confusion_matrix": 37, "remove_noise_from_class": [38, 46], "clip_noise_r": [38, 46], "clip_valu": [38, 46], "value_count": [38, 46, 82], "value_counts_fill_missing_class": [38, 46], "get_missing_class": [38, 46], "round_preserving_sum": [38, 46], "round_preserving_row_tot": [38, 46], "estimate_pu_f1": [38, 46], "confusion_matrix": [38, 46], "print_square_matrix": [38, 46], "print_noise_matrix": [38, 46, 84], "print_inverse_noise_matrix": [38, 46], "print_joint_matrix": [38, 46, 84], "compress_int_arrai": [38, 46], "train_val_split": [38, 46], "subset_x_i": [38, 46], "subset_label": [38, 46], "subset_data": [38, 46], "extract_indices_tf": [38, 46], "unshuffle_tensorflow_dataset": [38, 46], "is_torch_dataset": [38, 46], "is_tensorflow_dataset": [38, 46], "csr_vstack": [38, 46], "append_extra_datapoint": [38, 46], "get_num_class": [38, 46], "num_unique_class": [38, 46], "get_unique_class": [38, 46], "format_label": [38, 46], "smart_display_datafram": [38, 46], "force_two_dimens": [38, 46], "latent_algebra": [38, 74], "compute_ps_py_inv_noise_matrix": [38, 40], "compute_py_inv_noise_matrix": [38, 40], "compute_inv_noise_matrix": [38, 40], "compute_noise_matrix_from_invers": [38, 40], "compute_pi": [38, 40], "compute_pyx": [38, 40], "label_quality_util": 38, "get_normalized_entropi": [38, 39], "multilabel_util": [38, 87], "stack_compl": [38, 43], "get_onehot_num_class": [38, 43], "int2onehot": [38, 43, 87], "onehot2int": [38, 43, 87], "multilabel_scor": [38, 55], "classlabelscor": [38, 42], "exponential_moving_averag": [38, 42, 55], "softmin": [38, 42, 55, 58, 67, 71], "possible_method": [38, 42], "multilabelscor": [38, 42], "get_class_label_quality_scor": [38, 42], "multilabel_pi": [38, 42], "get_cross_validated_multilabel_pred_prob": [38, 42], "transform_distances_to_scor": [38, 44], "token_classification_util": [38, 95], "get_sent": [38, 45, 95], "filter_sent": [38, 45, 95], "process_token": [38, 45], "merge_prob": [38, 45], "color_sent": [38, 45], "assert_valid_input": [38, 47], "assert_valid_class_label": [38, 47], "assert_nonempty_input": [38, 47], "assert_indexing_work": [38, 47], "labels_to_arrai": [38, 47], "labels_to_list_multilabel": [38, 47], "min_allowed_prob": 39, "wikipedia": 39, "activ": [39, 41, 51, 73, 86], "towardsdatasci": 39, "cheatsheet": 39, "ec57bc067c0b": 39, "clip": [39, 46, 75], "behav": 39, "unnecessari": [39, 82], "slightli": [39, 93, 94], "interv": [39, 42, 89], "herein": 40, "inexact": 40, "cours": 40, "propag": 40, "throughout": [40, 46, 63, 75, 86, 92, 95], "increas": [40, 58, 60, 61, 75, 76, 82, 86, 87, 95], "dot": [40, 71, 82], "true_labels_class_count": 40, "pyx": 40, "multiannot": 41, "assert_valid_inputs_multiannot": 41, "labels_multiannot": [41, 51], "ensembl": [41, 42, 51, 61, 79, 82, 87, 89, 91, 93], "allow_single_label": 41, "annotator_id": 41, "assert_valid_pred_prob": 41, "pred_probs_unlabel": [41, 51], "format_multiannotator_label": [41, 51, 86], "formatted_label": [41, 46], "old": [41, 46, 74, 75, 81], "check_consensus_label_class": 41, "consensus_label": [41, 51, 86], "consensus_method": [41, 51], "consensu": [41, 51, 73, 85, 95], "establish": [41, 91, 94], "compute_soft_cross_entropi": 41, "soft": [41, 81], "find_best_temp_scal": 41, "coarse_search_rang": [41, 63, 82], "fine_search_s": [41, 63, 82], "temperatur": [41, 42, 58, 67, 71], "scale": [41, 44, 81, 82, 89, 92, 93], "factor": [41, 42, 44, 65, 67], "minim": [41, 58, 89], "temp_scale_pred_prob": 41, "temp": 41, "sharpen": [41, 81], "smoothen": 41, "get_normalized_margin_for_each_label": [42, 61], "get_confidence_weighted_entropy_for_each_label": [42, 61], "75": [42, 76, 77, 81, 83, 86, 87, 88, 91, 92, 95], "scorer": 42, "alpha": [42, 55, 58, 76, 77, 84, 87, 91], "exponenti": 42, "ema": 42, "s_1": 42, "s_k": 42, "ema_k": 42, "accord": [42, 53, 79, 80, 84, 95], "formula": [42, 44], "_t": 42, "cdot": 42, "s_t": 42, "qquad": 42, "leq": 42, "_1": 42, "give": [42, 61, 84, 86, 92], "recent": [42, 95], "success": 42, "previou": [42, 82, 83, 88], "discount": 42, "s_ema": 42, "175": [42, 83, 84, 88], "underflow": 42, "nan": [42, 51, 79, 86, 91, 93], "aggregated_scor": 42, "base_scor": 42, "base_scorer_kwarg": 42, "aggregator_kwarg": [42, 55], "n_sampl": 42, "n_label": 42, "worst": [42, 86], "class_label_quality_scor": 42, "42": [42, 80, 81, 88, 92, 95], "452": 42, "new_scor": 42, "575": 42, "get_label_quality_scores_per_class": [42, 54, 55], "ml_scorer": 42, "binar": [42, 43], "reformat": [42, 75], "wider": 42, "splitter": 42, "kfold": [42, 83], "onevsrestclassifi": [42, 87], "randomforestclassifi": [42, 84, 87], "n_split": [42, 77, 83, 87], "pred_prob_slic": 43, "onehot": 43, "hot": [43, 53, 59, 65, 68, 79, 81, 82, 91, 92, 93], "onehot_matrix": 43, "avg_dist": 44, "scaling_factor": 44, "exp": [44, 60, 61, 76], "dt": 44, "right": [44, 56, 59, 80, 87, 88, 89, 94], "strength": [44, 59], "pronounc": 44, "differenti": 44, "ly": 44, "rule": [44, 45, 81], "thumb": 44, "ood_features_scor": [44, 60, 89], "88988177": 44, "80519832": 44, "token_classif": [45, 69, 71, 72, 82], "sentenc": [45, 69, 71, 72, 80, 94], "readabl": 45, "lambda": [45, 75, 76, 82, 86], "long_sent": 45, "headlin": 45, "charact": [45, 46], "s1": 45, "s2": 45, "processed_token": 45, "alecnlcb": 45, "entiti": [45, 73, 82, 95], "mapped_ent": 45, "unique_ident": 45, "loc": [45, 76, 77, 83, 95], "nbitbas": [45, 55], "probs_merg": 45, "55": [45, 81, 83, 88, 91, 92], "0125": [45, 71], "0375": 45, "075": 45, "025": 45, "color": [45, 68, 76, 77, 79, 84, 87, 89, 91, 92], "red": [45, 59, 76, 77, 81, 84, 87, 88, 89, 92], "colored_sent": 45, "termcolor": 45, "31msentenc": 45, "0m": 45, "ancillari": 46, "class_without_nois": 46, "any_other_class": 46, "choos": [46, 61, 79, 82, 84, 91, 93], "tradition": 46, "new_sum": 46, "fill": 46, "wherea": [46, 53, 90], "come": [46, 76, 77, 82, 83, 89, 92], "major": [46, 51, 74, 83, 89], "versu": [46, 84], "obviou": 46, "cgdeboer": 46, "iteround": 46, "reach": 46, "prob_s_eq_1": 46, "claesen": 46, "f1": [46, 59, 80, 84], "BE": 46, "left_nam": 46, "top_nam": 46, "titl": [46, 76, 77, 84, 87, 89], "short_titl": 46, "round_plac": 46, "pretti": [46, 84], "joint_matrix": 46, "num_possible_valu": 46, "holdout_idx": 46, "extract": [46, 60, 75, 80, 86, 89, 92, 94], "allow_shuffl": 46, "turn": [46, 73, 88], "shuffledataset": 46, "histori": 46, "pre_x": 46, "buffer_s": 46, "csr_matric": 46, "append": [46, 75, 81, 82, 83, 84, 86, 87, 88, 89, 95], "bottom": [46, 56, 59, 88], "to_data": 46, "from_data": 46, "taken": 46, "label_matrix": 46, "canon": 46, "displai": [46, 59, 68, 72, 75, 80, 84, 94, 95], "jupyt": [46, 75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 95], "notebook": [46, 51, 75, 77, 81, 82, 84, 86, 87, 88, 92, 95], "consol": 46, "html": [46, 56, 59, 60, 79, 82, 84], "allow_missing_class": 47, "allow_one_class": 47, "length_x": 47, "labellik": 47, "labels_list": [47, 53], "keraswrappermodel": [49, 50, 73], "keraswrappersequenti": [49, 50], "tf": [50, 75], "legaci": 50, "lack": 50, "keraswrapp": 50, "huggingface_keras_imdb": 50, "unit": [50, 95], "model_kwarg": [50, 63], "compile_kwarg": 50, "sparsecategoricalcrossentropi": 50, "layer": [50, 75, 80, 89, 94], "dens": 50, "my_keras_model": 50, "from_logit": 50, "declar": 50, "apply_softmax": 50, "analysi": 51, "analyz": [51, 73, 84, 86, 87], "get_label_quality_multiannot": [51, 86], "vote": 51, "crowdsourc": [51, 73, 86], "dawid": [51, 86], "skene": [51, 86], "analog": [51, 81, 86], "chosen": [51, 61, 82, 86], "crowdlab": [51, 86], "unlabel": [51, 79, 80, 83, 86, 89, 92], "decid": [51, 80, 81, 86, 91, 94, 95], "get_active_learning_scor": [51, 86], "activelab": [51, 86], "priorit": [51, 58, 88, 92, 95], "showcas": 51, "main": 51, "best_qual": 51, "quality_method": 51, "calibrate_prob": 51, "return_detailed_qu": 51, "return_annotator_stat": 51, "return_weight": 51, "label_quality_score_kwarg": 51, "necessarili": [51, 59, 80, 84], "did": [51, 52, 75, 79, 84, 86, 91, 93, 94], "majority_vot": 51, "ti": 51, "broken": [51, 59, 81, 91], "highest": [51, 59, 76, 83, 90], "0th": 51, "consensus_quality_scor": [51, 86], "annotator_agr": [51, 86], "reman": 51, "1st": 51, "2nd": [51, 65], "3rd": 51, "consensus_label_suffix": 51, "consensus_quality_score_suffix": 51, "suffix": 51, "emsembl": 51, "weigh": [51, 81], "agreement": [51, 86], "agre": 51, "prevent": [51, 82], "overconfid": [51, 90], "wrong": [51, 56, 58, 74, 76, 77, 80, 82, 84, 88, 94], "detailed_label_qu": [51, 86], "annotator_stat": [51, 86], "model_weight": 51, "annotator_weight": 51, "warn": [51, 76, 77, 82], "labels_info": 51, "num_annot": [51, 86], "deriv": [51, 86], "quality_annotator_1": 51, "quality_annotator_2": 51, "quality_annotator_m": 51, "annotator_qu": [51, 86], "num_examples_label": [51, 86], "agreement_with_consensu": [51, 86], "worst_class": [51, 86], "trustworthi": [51, 86, 91], "get_label_quality_multiannotator_ensembl": 51, "weigtht": 51, "budget": 51, "retrain": [51, 91, 94], "active_learning_scor": 51, "improv": [51, 77, 81, 82, 83, 84, 91, 92, 93, 94], "active_learning_scores_unlabel": 51, "get_active_learning_scores_ensembl": 51, "henc": [51, 75, 76, 86], "get_majority_vote_label": [51, 86], "event": 51, "lastli": [51, 79], "convert_long_to_wide_dataset": 51, "labels_multiannotator_long": 51, "wide": [51, 75, 93, 94], "suitabl": [51, 79, 93], "labels_multiannotator_wid": 51, "common_multilabel_issu": [52, 54], "mutual": [52, 87], "exclus": [52, 87], "rank_classes_by_multilabel_qu": [52, 54], "overall_multilabel_health_scor": [52, 54], "multilabel_health_summari": [52, 54], "classes_by_multilabel_qu": 52, "inner": [53, 67], "find_multilabel_issues_per_class": [53, 54], "per_class_label_issu": 53, "label_issues_list": 53, "pred_probs_list": [53, 61, 83, 84], "anim": [54, 89], "rat": 54, "predat": 54, "pet": 54, "reptil": 54, "manner": [55, 86, 91, 93, 94], "box": [56, 58, 59, 81, 88], "object_detect": [56, 58, 59, 88], "return_indices_ranked_by_scor": [56, 88], "overlapping_label_check": [56, 58], "suboptim": [56, 58], "locat": [56, 58, 88, 92, 95], "bbox": [56, 59, 88], "image_nam": [56, 59], "y1": [56, 59, 88], "y2": [56, 59, 88], "later": [56, 59, 60, 94, 95], "corner": [56, 59, 88], "xyxi": [56, 59, 88], "io": [56, 59, 75, 81], "keras_cv": [56, 59], "bounding_box": [56, 59, 88], "detectron": [56, 59, 88], "detectron2": [56, 59, 88], "readthedoc": [56, 59], "en": [56, 59], "latest": [56, 59], "visual": [56, 57, 59, 76, 77, 83, 91, 93, 95], "draw_box": [56, 59], "mmdetect": [56, 59, 88], "swap": [56, 58, 68, 72], "penal": [56, 58], "concern": [56, 58, 73, 77], "issues_from_scor": [57, 58, 66, 67, 68, 70, 71, 72, 88, 92, 95], "compute_overlooked_box_scor": [57, 58], "compute_badloc_box_scor": [57, 58], "compute_swap_box_scor": [57, 58], "pool_box_scores_per_imag": [57, 58], "object_counts_per_imag": [57, 59, 88], "bounding_box_size_distribut": [57, 59, 88], "class_label_distribut": [57, 59, 88], "get_sorted_bbox_count_idx": [57, 59], "plot_class_size_distribut": [57, 59], "plot_class_distribut": [57, 59], "get_average_per_class_confusion_matrix": [57, 59], "calculate_per_class_metr": [57, 59], "aggregation_weight": 58, "imperfect": [58, 82], "chose": [58, 86, 88], "imperfectli": [58, 88], "dirti": [58, 61, 64, 91], "subtyp": 58, "badloc": 58, "nonneg": 58, "high_probability_threshold": 58, "auxiliary_input": [58, 59], "vari": [58, 77], "iou": [58, 59], "heavili": 58, "auxiliarytypesdict": 58, "pred_label": [58, 94], "pred_label_prob": 58, "pred_bbox": 58, "lab_label": 58, "lab_bbox": 58, "similarity_matrix": 58, "min_possible_similar": 58, "scores_overlook": 58, "low_probability_threshold": 58, "scores_badloc": 58, "accident": [58, 79, 80, 82, 94], "scores_swap": 58, "box_scor": 58, "image_scor": [58, 67, 92], "discov": [59, 77, 95], "auxiliari": [59, 89, 92], "_get_valid_inputs_for_compute_scor": 59, "object_count": 59, "down": 59, "bbox_siz": 59, "class_distribut": 59, "plot": [59, 76, 77, 84, 87, 89, 91, 92], "sorted_idx": [59, 89], "class_to_show": 59, "hidden": [59, 89], "max_class_to_show": 59, "prediction_threshold": 59, "overlai": [59, 88], "figsiz": [59, 76, 77, 83, 84, 87, 89], "save_path": [59, 88], "blue": [59, 81, 84, 88], "overlaid": 59, "side": [59, 81, 88], "figur": [59, 84, 87, 89, 91], "extens": [59, 84, 86], "png": [59, 88], "pdf": [59, 60], "svg": 59, "matplotlib": [59, 76, 77, 83, 84, 87, 88, 89, 91], "num_proc": [59, 83], "intersect": [59, 82], "tp": 59, "fp": 59, "ground": [59, 81, 84, 86, 91], "truth": [59, 84, 86, 91], "bias": 59, "avg_metr": 59, "distionari": 59, "95": [59, 69, 71, 79, 81, 83, 84, 91, 92], "per_class_metr": 59, "Of": 60, "li": 60, "smaller": [60, 87, 88], "find_top_issu": [60, 61, 89], "reli": [60, 75, 76, 77, 80, 88, 89, 91, 94], "dist_metr": 60, "dim": [60, 83, 92], "subtract": [60, 61], "renorm": [60, 61, 82], "least_confid": 60, "sum_": 60, "log": [60, 61, 74], "softmax": [60, 67, 71, 83], "literatur": 60, "gen": 60, "liu": 60, "lochman": 60, "zach": 60, "openaccess": 60, "thecvf": 60, "content": [60, 75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "cvpr2023": 60, "liu_gen_pushing_the_limits_of_softmax": 60, "based_out": 60, "distribution_detection_cvpr_2023_pap": 60, "fit_scor": [60, 89], "ood_predictions_scor": 60, "pretrain": [60, 75, 80, 89, 94], "adjust_confident_threshold": 60, "probabilist": [60, 75, 76, 77, 79, 80, 89, 90, 93], "order_label_issu": [61, 74], "whichev": [61, 90], "argsort": [61, 80, 83, 84, 88, 89, 91, 94], "max_": 61, "get_label_quality_ensemble_scor": [61, 82, 84], "weight_ensemble_members_bi": 61, "custom_weight": 61, "log_loss_search_t_valu": 61, "0001": [61, 81], "scheme": 61, "log_loss_search": 61, "log_loss": [61, 80], "1e0": 61, "1e1": 61, "1e2": 61, "2e2": 61, "quality_scor": [61, 89], "forth": 61, "top_issue_indic": 61, "rank_bi": [61, 74], "weird": [61, 72], "minu": 61, "prob_label": 61, "max_prob_not_label": 61, "idea": [61, 88], "AND": [61, 80], "get_epistemic_uncertainti": [62, 63], "get_aleatoric_uncertainti": [62, 63], "corrupt": [63, 91], "linearregress": [63, 82, 91], "y_with_nois": 63, "n_boot": [63, 82], "include_aleatoric_uncertainti": [63, 82], "sole": [63, 76, 86, 89, 93], "bootstrap": [63, 82, 91], "resampl": [63, 75, 82], "epistem": [63, 82, 89, 91], "aleator": [63, 82, 91], "model_final_kwarg": 63, "coars": 63, "thorough": [63, 82], "fine": [63, 75, 80, 89, 94], "grain": 63, "grid": 63, "varianc": [63, 84], "epistemic_uncertainti": 63, "residu": [63, 64, 82], "deviat": [63, 88, 91], "ie": 63, "aleatoric_uncertainti": 63, "outr": 64, "contin": 64, "raw": [64, 73, 74, 77, 81, 83, 86, 88, 89, 91], "aka": [64, 75, 84, 88, 91, 95], "00323821": 64, "33692597": 64, "00191686": 64, "semant": [65, 67, 68, 85], "pixel": [65, 67, 68, 89, 92], "h": [65, 67, 68, 92], "height": [65, 67, 68, 92], "w": [65, 67, 68, 92], "width": [65, 67, 68, 92], "labels_one_hot": [65, 68, 92], "stream": [65, 89, 95], "downsampl": [65, 67, 92], "shrink": [65, 67], "divis": [65, 67, 76], "display_issu": [66, 67, 68, 69, 70, 71, 72, 92, 95], "common_label_issu": [66, 68, 70, 72, 92, 95], "filter_by_class": [66, 68, 92], "segmant": [67, 68], "num_pixel_issu": [67, 92], "product": [67, 82, 83], "pixel_scor": [67, 92], "highlight": [68, 72, 76, 77, 79, 92], "enter": 68, "legend": [68, 76, 77, 87, 88, 91, 92], "colormap": 68, "background": 68, "person": [68, 82, 88, 92, 95], "ambigu": [68, 72, 75, 80, 81, 84, 94, 95], "systemat": [68, 72, 86], "misunderstood": [68, 72], "issues_df": [68, 83], "class_index": 68, "issues_subset": [68, 72], "filter_by_token": [70, 72, 95], "token_score_method": 71, "sentence_score_method": 71, "sentence_score_kwarg": 71, "compris": [71, 72], "token_scor": [71, 95], "converg": 71, "toward": 71, "_softmin_sentence_scor": 71, "sentence_scor": [71, 95], "token_info": 71, "70": [71, 79, 83, 92], "02": [71, 76, 77, 83, 84, 88, 89, 92, 95], "03": [71, 79, 81, 84, 88, 92, 95], "04": [71, 79, 83, 88, 92], "08": [71, 84, 88, 91, 92, 95], "commonli": [72, 74, 76, 77, 87, 95], "But": [72, 80, 84, 91, 95], "restrict": [72, 82], "reliabl": [73, 75, 82, 86, 92, 93], "thousand": 73, "imagenet": [73, 81], "popular": [73, 86, 88], "centric": [73, 79, 80, 83, 85], "capabl": 73, "minut": [73, 75, 79, 80, 81, 86, 87, 88, 91, 92, 93, 94, 95], "conda": 73, "feature_embed": [73, 89], "Then": [73, 82, 83, 93, 94], "your_dataset": [73, 75, 76, 77, 79, 80, 82, 83], "column_name_of_label": [73, 75, 76, 77, 79, 80, 83], "plagu": [73, 77], "untrain": 73, "\u30c4": 73, "label_issues_info": [73, 77], "sklearn_compatible_model": 73, "framework": [73, 87, 88], "complianc": 73, "tag": [73, 87, 95], "sequenc": 73, "recognit": [73, 75, 82, 95], "train_data": [73, 89, 91, 93, 94], "gotten": 73, "test_data": [73, 84, 87, 89, 91, 93, 94], "deal": [73, 77], "tutori": [73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "feel": [73, 75, 77, 82], "free": [73, 75, 77, 79, 80, 82, 83, 84], "ask": [73, 82], "slack": [73, 82], "project": [73, 91], "welcom": 73, "commun": [73, 82], "guidelin": [73, 88], "piec": 73, "studio": [73, 77, 79, 80, 82, 83], "platform": [73, 79, 80, 82, 83], "automl": [73, 82], "foundat": 73, "smart": [73, 79, 80, 82, 83], "edit": [73, 82], "easier": [73, 84], "unreli": [73, 75, 79, 80, 93], "link": [73, 75, 81, 88], "older": 74, "outlin": 74, "substitut": 74, "v2": [74, 79, 93], "get_noise_indic": 74, "psx": 74, "sorted_index_method": 74, "order_label_error": 74, "label_errors_bool": 74, "latent_estim": 74, "num_label_error": 74, "learningwithnoisylabel": 74, "neatli": 74, "organ": [74, 79, 81, 93, 95], "reorgan": 74, "baseline_method": 74, "incorpor": [74, 84], "research": [74, 84], "polyplex": 74, "terminologi": 74, "label_error": 74, "quickstart": [75, 76, 77, 79, 80, 81, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "spoken": 75, "500": [75, 89, 95], "english": [75, 81], "pronunci": 75, "wav": 75, "huggingfac": [75, 76, 77, 83], "voxceleb": 75, "speech": [75, 95], "your_pred_prob": [75, 76, 77, 79, 80], "tensorflow_io": 75, "huggingface_hub": 75, "branch": [75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94], "reproduc": [75, 79, 84, 86], "command": 75, "wget": [75, 88, 92, 95], "navig": 75, "browser": 75, "jakobovski": 75, "archiv": [75, 95], "v1": 75, "tar": [75, 89], "gz": [75, 89], "mkdir": [75, 95], "spoken_digit": 75, "xf": 75, "6_nicolas_32": 75, "data_path": 75, "listdir": 75, "nondeterminist": 75, "file_nam": 75, "endswith": 75, "file_path": 75, "join": [75, 82, 83], "39": [75, 76, 80, 81, 82, 83, 88, 89, 91, 92, 94, 95], "7_george_26": 75, "0_nicolas_24": 75, "0_nicolas_6": 75, "listen": 75, "display_exampl": 75, "click": [75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "expand": [75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "pulldown": [75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "colab": [75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 95], "tfio": 75, "pathlib": 75, "ipython": 75, "load_wav_16k_mono": 75, "filenam": 75, "khz": 75, "file_cont": 75, "read_fil": 75, "sample_r": 75, "decode_wav": 75, "desired_channel": 75, "squeez": 75, "rate_in": 75, "rate_out": 75, "16000": 75, "wav_file_nam": 75, "audio_r": 75, "wav_file_exampl": 75, "plai": [75, 81, 82], "button": 75, "wav_file_name_exampl": 75, "7_jackson_43": 75, "hear": 75, "extractor": 75, "encoderclassifi": 75, "spkrec": 75, "xvect": 75, "feature_extractor": 75, "from_hparam": 75, "run_opt": 75, "uncom": 75, "ffmpeg": 75, "system": [75, 79, 80, 83, 92], "backend": 75, "wav_audio_file_path": 75, "head": [75, 77, 79, 80, 81, 83, 84, 86, 91, 93, 94], "torchaudio": 75, "extract_audio_embed": 75, "emb": [75, 83], "signal": 75, "encode_batch": 75, "embeddings_list": [75, 83], "embeddings_arrai": 75, "opt": [75, 77, 80, 94], "hostedtoolcach": [75, 77, 80, 94], "x64": [75, 77, 80, 94], "lib": [75, 77, 80, 94], "python3": [75, 77, 80, 94], "site": [75, 77, 80, 94], "650": 75, "userwarn": [75, 76, 77, 80, 94], "stft": 75, "return_complex": 75, "view_as_r": 75, "recov": 75, "trigger": 75, "aten": 75, "src": 75, "nativ": 75, "spectralop": 75, "cpp": 75, "863": [75, 94], "_vf": 75, "n_fft": 75, "hop_length": 75, "win_length": 75, "attr": 75, "512": [75, 83], "14": [75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "196311": 75, "319459": 75, "478975": 75, "2890875": 75, "8170238": 75, "89265": 75, "24": [75, 81, 84, 86, 88, 91, 92], "898056": 75, "256195": 75, "559641": 75, "559721": 75, "62067": 75, "285245": 75, "21": [75, 76, 81, 82, 83, 84, 88, 89, 91, 92, 95], "709627": 75, "5033693": 75, "913803": 75, "819831": 75, "1831515": 75, "208763": 75, "084257": 75, "3210397": 75, "005453": 75, "216152": 75, "478235": 75, "6821785": 75, "053807": 75, "242471": 75, "091424": 75, "78334856": 75, "03954": 75, "23": [75, 81, 83, 84, 88, 91, 92], "569176": 75, "19": [75, 80, 81, 82, 83, 84, 88, 89, 91, 92, 94], "761097": 75, "1258295": 75, "753237": 75, "3508866": 75, "598274": 75, "23712": 75, "2500": 75, "leverag": [75, 80, 82, 84, 86, 94], "tune": [75, 80, 81, 89, 94], "computation": [75, 80, 94], "intens": [75, 80, 94], "held": [75, 79, 80, 81, 88, 89, 90, 93], "straightforward": [75, 79, 93], "benefit": [75, 90, 92, 93], "tol": 75, "num_crossval_fold": [75, 79, 86, 93], "decreas": [75, 82], "never": [75, 84, 87, 89, 90], "accuracy_scor": [75, 80, 84, 93, 94], "cv_accuraci": 75, "9708": 75, "probabilit": [75, 94], "9976": 75, "986": 75, "002161": 75, "176": [75, 81, 84, 87], "002483": 75, "2318": 75, "004411": 75, "1005": 75, "004857": 75, "1871": 75, "007494": 75, "investig": 75, "040587": 75, "999207": 75, "999377": 75, "975220": 75, "999367": 75, "18": [75, 80, 81, 82, 83, 84, 88, 89, 91, 92, 94], "identified_label_issu": [75, 80], "lowest_quality_label": [75, 80, 84, 91, 94], "sort_valu": [75, 77, 79, 80, 82, 83, 84, 86, 87, 91], "516": 75, "1946": 75, "469": 75, "2132": 75, "worth": [75, 84], "iloc": [75, 79, 80, 91, 93, 94], "6_yweweler_25": 75, "7_nicolas_43": 75, "6_theo_27": 75, "6_yweweler_36": 75, "6_yweweler_14": 75, "6_yweweler_35": 75, "6_nicolas_8": 75, "sound": 75, "quit": [75, 89], "22": [75, 76, 81, 83, 84, 87, 88, 92, 95], "blindli": [75, 82, 91, 93, 94], "trust": [75, 82, 84, 86, 90, 91, 93, 94], "underneath": 76, "hood": 76, "alert": 76, "introduct": 76, "mayb": [76, 77, 80], "examin": [76, 77, 79, 88, 93], "your_feature_matrix": [76, 77], "toi": [76, 77, 81, 83, 84, 86], "train_test_split": [76, 77, 89, 93, 94], "inf": [76, 77], "mid": [76, 77], "bins_map": [76, 77], "create_data": [76, 77], "y_bin": [76, 77], "y_i": [76, 77], "y_bin_idx": [76, 77], "y_train": [76, 77, 84, 91], "y_test": [76, 77, 84, 91], "y_train_idx": [76, 77], "y_test_idx": [76, 77], "test_siz": [76, 77, 93, 94], "slide": [76, 77, 81], "decis": [76, 77, 93], "frame": [76, 77], "x_out": [76, 77], "tini": [76, 77], "concaten": [76, 77, 82, 90], "y_out": [76, 77], "y_out_bin": [76, 77], "y_out_bin_idx": [76, 77], "exact_duplicate_idx": [76, 77], "x_duplic": [76, 77], "y_duplic": [76, 77], "y_duplicate_idx": [76, 77], "noisy_labels_idx": [76, 77, 87], "scatter": [76, 77, 84, 87, 91], "black": [76, 77, 81, 91], "cyan": [76, 77], "pyplot": [76, 77, 83, 84, 87, 89, 91], "plt": [76, 77, 83, 84, 87, 89, 91], "plot_data": [76, 77, 84, 87, 91], "fig": [76, 77, 81, 83, 89, 91], "ax": [76, 77, 83, 89, 91], "subplot": [76, 77, 83, 89], "set_titl": [76, 77, 83, 89], "set_xlabel": [76, 77], "x_1": [76, 77], "fontsiz": [76, 77, 83, 84, 87], "set_ylabel": [76, 77], "x_2": [76, 77], "set_xlim": [76, 77], "set_ylim": [76, 77], "linestyl": [76, 77], "circl": [76, 77, 84, 87], "misclassifi": [76, 77], "zip": [76, 77, 83, 88, 95], "label_err": [76, 77], "180": [76, 77, 88], "marker": [76, 77], "facecolor": [76, 77], "edgecolor": [76, 77], "linewidth": [76, 77, 89], "dup": [76, 77], "first_legend": [76, 77], "align": [76, 77], "title_fontproperti": [76, 77], "semibold": [76, 77], "second_legend": [76, 77], "45": [76, 77, 81, 83, 84, 88, 92], "gca": [76, 77], "add_artist": [76, 77], "tight_layout": [76, 77], "ideal": [76, 77], "logist": [76, 77, 80, 86, 89, 94], "remaind": 76, "modal": [76, 77, 82, 86], "132": [76, 77, 84, 88, 95], "9318": 76, "77": [76, 77, 79, 88, 92, 93], "006940": 76, "007830": 76, "40": [76, 77, 80, 81, 83, 92], "014828": 76, "107": [76, 77, 84, 87], "021241": 76, "120": [76, 77, 93, 95], "026407": 76, "notic": [76, 84, 86, 88], "3558": [76, 77], "126": [76, 77, 84, 88], "006636": [76, 77], "130": [76, 77], "012571": [76, 77], "129": [76, 77], "127": [76, 77], "014909": [76, 77], "128": [76, 77, 83], "017443": [76, 77], "6160": [76, 77], "is_near_duplicate_issu": [76, 77, 79, 80, 82, 83, 84], "131": [76, 77, 92], "000000e": [76, 77], "00": [76, 77, 79, 81, 83, 89, 92, 93], "000002": [76, 77], "463180e": [76, 77], "07": [76, 77, 79, 83, 84, 88, 89, 91, 92], "51": [76, 77, 79, 81, 83, 84, 88, 92, 95], "161148": [76, 77], "859087e": [76, 77], "30": [76, 77, 81, 82, 83, 87, 92, 95], "3453": 76, "029542": 76, "031182": 76, "057961": 76, "058244": 76, "home": [76, 77, 80, 81, 94], "runner": [76, 77, 80, 94], "329": [76, 83, 88], "359": 76, "338": 76, "34": [76, 81, 84, 86, 88, 92, 95], "54": [76, 81, 83, 84, 88, 92, 95], "039122": 76, "53": [76, 77, 79, 81, 87, 88, 92, 93], "044598": 76, "105": [76, 88], "105196": 76, "133654": 76, "43": [76, 81, 84, 88, 92], "168033": 76, "125": 76, "101107": 76, "37": [76, 81, 83, 92], "183382": 76, "109": [76, 81, 88], "209259": 76, "211042": 76, "221316": 76, "average_ood_scor": 76, "34530442089193386": 76, "52": [76, 81, 83, 88, 89, 92, 95], "169820": 76, "087324e": 76, "89": [76, 79, 88, 91, 92, 94], "92": [76, 83, 84, 88, 92, 93, 95], "259024": 76, "583757e": 76, "91": [76, 88, 89, 92], "346458": 76, "341292e": 76, "specfi": 76, "new_lab": 76, "scoring_funct": 76, "div": 76, "rem": 76, "inv_scal": 76, "49": [76, 81, 83, 84, 88, 92], "superstitionissuemanag": 76, "unlucki": 76, "superstit": 76, "to_seri": 76, "issues_mask": 76, "summary_scor": 76, "9242": 76, "is_superstition_issu": 76, "superstition_scor": 76, "26": [76, 81, 83, 84, 86, 88, 92], "047581": 76, "090635": 76, "129591": 76, "65": [76, 83, 88, 89, 92, 93], "164840": 76, "demo": [77, 79, 87, 93], "lurk": [77, 83, 84], "_split": 77, "737": 77, "thoroughli": 77, "preprocess": [77, 79, 89, 91, 93, 94], "904": 77, "review": [77, 79, 80, 81, 82, 84, 88, 91, 92, 93, 94, 95], "8561": 77, "001908": 77, "58": [77, 79, 81, 83, 84, 88, 89, 92, 93], "003564": 77, "007331": 77, "008963": 77, "009664": 77, "0227": 77, "is_class_imbalance_issu": 77, "022727": 77, "86": [77, 79, 83, 84, 88, 91, 92, 93], "87": [77, 83, 88, 91, 92, 94], "auto": [77, 81, 82, 91, 93, 94], "conceptu": 77, "856061": 77, "355772": 77, "616034": 77, "821750": 77, "901562": 77, "betweeen": 77, "is_null_issu": 77, "is_non_iid_issu": [77, 79, 80, 84], "is_underperforming_group_issu": 77, "859131": 77, "417707": 77, "664083": 77, "970324": 77, "816953": 77, "375317": 77, "641516": 77, "890575": 77, "531021": 77, "460593": 77, "601188": 77, "826147": 77, "752808": 77, "321635": 77, "562539": 77, "948362": 77, "090243": 77, "472909": 77, "746763": 77, "878267": 77, "examples_w_issu": [77, 82], "013445": 77, "025184": 77, "026376": 77, "inde": [77, 80], "miscellan": [77, 95], "428571": 77, "111111": 77, "571429": 77, "407407": 77, "592593": 77, "337838": 77, "092593": 77, "662162": 77, "333333": [77, 81], "952381": 77, "666667": 77, "portion": 77, "huge": [77, 84], "worri": [77, 80], "critic": 77, "highli": [77, 83], "sql": [79, 93], "databas": [79, 93], "excel": [79, 93], "parquet": [79, 93], "student": [79, 91, 93, 95], "grade": [79, 91, 93], "900": [79, 91, 93], "exam": [79, 91, 93], "letter": [79, 93, 95], "hundr": [79, 93], "histgradientboostingclassifi": 79, "standardscal": [79, 89, 93], "grades_data": [79, 93], "read_csv": [79, 80, 91, 93, 94], "stud_id": [79, 93], "exam_1": [79, 91, 93], "exam_2": [79, 91, 93], "exam_3": [79, 91, 93], "letter_grad": [79, 93], "f48f73": [79, 93], "0bd4e7": [79, 93], "81": [79, 80, 88, 91, 92, 93, 95], "great": [79, 81, 93], "particip": [79, 93], "cb9d7a": [79, 93], "61": [79, 83, 84, 88, 91, 92, 93], "94": [79, 81, 84, 88, 91, 92, 93], "78": [79, 81, 84, 88, 89, 91, 92, 93], "9acca4": [79, 93], "48": [79, 81, 84, 88, 92, 93], "x_raw": [79, 93], "cat_featur": 79, "x_encod": [79, 93], "get_dummi": [79, 91, 93], "drop_first": [79, 93], "numeric_featur": [79, 93], "scaler": [79, 89, 93], "x_process": [79, 93], "fit_transform": [79, 93], "bring": [79, 80, 83, 86, 91, 93, 94], "byod": [79, 80, 83, 86, 91, 93, 94], "boost": [79, 82, 86, 91], "xgboost": [79, 82, 91], "think": [79, 80, 82, 87, 92, 95], "carefulli": [79, 80, 83, 93], "nonzero": 79, "suspici": [79, 93], "tabl": [79, 81, 86, 93], "358": 79, "294": [79, 88], "46": [79, 81, 83, 84, 88, 89, 92], "941": 79, "7109": 79, "000005": [79, 80, 91], "886": 79, "000059": 79, "709": 79, "000104": 79, "723": 79, "000169": 79, "689": 79, "000181": 79, "3590": 79, "051882e": 79, "683133e": 79, "536582e": 79, "406589e": 79, "324246e": 79, "6165": 79, "582": 79, "185": [79, 81, 88, 95], "187": [79, 81], "27": [79, 81, 84, 88, 89, 92, 95], "898": 79, "637": [79, 93], "0014": [79, 81], "595": 79, "702427": 79, "147": [79, 84, 88], "711186": 79, "157": [79, 84], "721394": 79, "771": 79, "731979": 79, "740335": 79, "0014153602099278074": 79, "issue_result": 79, "000842": 79, "555944": 79, "004374": 79, "sorted_issu": 79, "73": [79, 81, 87, 88, 91, 92], "deserv": 79, "outlier_result": 79, "sorted_outli": 79, "56": [79, 81, 83, 91, 92], "96": [79, 81, 84, 87, 88, 91, 92], "lt": [79, 80, 81, 83, 86, 89, 92], "style": [79, 92], "font": 79, "18px": 79, "ff00ff": 79, "bac": 79, "unintend": [79, 80], "mistak": [79, 80, 83, 93, 94], "duplicate_result": 79, "690": 79, "246": [79, 88, 95], "perhap": [79, 84, 86], "twice": 79, "67": [79, 81, 88, 91, 92], "wari": [79, 80, 82], "super": [79, 80, 83], "intent": [80, 94], "servic": [80, 82, 94], "onlin": [80, 94], "bank": [80, 81, 94], "banking77": [80, 94], "oo": [80, 94], "000": [80, 81, 83, 94, 95], "categori": [80, 83, 94], "scope": [80, 94], "dive": 80, "your_featur": 80, "sentence_transform": [80, 94], "sentencetransform": [80, 94], "payment": [80, 94], "cancel_transf": [80, 94], "transfer": [80, 94], "fund": [80, 94], "cancel": [80, 94], "transact": [80, 94], "my": [80, 94], "revert": [80, 94], "morn": [80, 94], "realis": [80, 94], "yesterdai": [80, 94], "rent": [80, 94], "realli": [80, 86, 92, 94], "tomorrow": [80, 94], "raw_text": [80, 94], "supported_cards_and_curr": [80, 94], "visa_or_mastercard": [80, 94], "getting_spare_card": [80, 94], "card_about_to_expir": [80, 94], "lost_or_stolen_phon": [80, 94], "beneficiary_not_allow": [80, 94], "card_payment_fee_charg": [80, 94], "apple_pay_or_google_pai": [80, 94], "change_pin": [80, 94], "utter": [80, 94], "suit": [80, 81, 82, 94], "electra": [80, 94], "discrimin": [80, 94], "googl": [80, 94], "text_embed": 80, "No": [80, 82, 94], "google_electra": [80, 94], "pool": [80, 82, 89, 94], "_util": [80, 94], "831": [80, 94], "typedstorag": [80, 94], "untypedstorag": [80, 94], "untyped_storag": [80, 94], "fget": [80, 94], "__get__": [80, 94], "owner": [80, 94], "400": [80, 94], "data_dict": [80, 84, 86], "85": [80, 88, 92], "38": [80, 81, 83, 88, 92], "9710": 80, "981": 80, "974": 80, "000146": 80, "982": [80, 81], "000224": 80, "971": 80, "000507": 80, "980": [80, 81], "000960": 80, "3584": 80, "994": 80, "009642": 80, "999": 80, "013067": 80, "013841": 80, "433": 80, "014722": 80, "989": 80, "018224": 80, "6070": 80, "160": [80, 91], "095724": 80, "148": 80, "006237": 80, "546": 80, "099341": 80, "514": 80, "006485": 80, "481": 80, "123418": 80, "008165": 80, "0000": [80, 81, 84], "313": [80, 88], "564102": 80, "572258": 80, "28": [80, 81, 83, 84, 86, 92, 95], "574915": 80, "31": [80, 81, 84, 86, 88, 92], "575507": 80, "575874": 80, "792090": 80, "257611": 80, "698710": 80, "182121": 80, "771619": 80, "to_numpi": [80, 82, 91, 94], "data_with_suggested_label": 80, "suggested_label": 80, "charg": [80, 94], "cash": [80, 94], "holidai": [80, 94], "sent": [80, 94, 95], "card": [80, 81, 94], "mine": [80, 94], "expir": [80, 94], "me": [80, 94], "withdraw": 80, "monei": 80, "whoever": [80, 94], "outlier_issu": [80, 83], "lowest_quality_outli": 80, "OR": 80, "636c65616e6c616220697320617765736f6d6521": 80, "phone": [80, 81], "gone": 80, "gt": [80, 86, 95], "samp": 80, "br": 80, "press": [80, 95], "nonsens": 80, "sens": 80, "detriment": 80, "duplicate_issu": 80, "fee": 80, "pai": 80, "go": [80, 81, 84], "strongli": 80, "p_valu": 80, "benign": 80, "shortlist": [80, 91, 94], "curat": [80, 85], "mnist_test_set": 81, "imagenet_val_set": 81, "tench": 81, "goldfish": 81, "white": [81, 95], "shark": 81, "tiger": 81, "hammerhead": 81, "electr": 81, "rai": 81, "stingrai": 81, "cock": 81, "hen": 81, "ostrich": 81, "brambl": 81, "goldfinch": 81, "hous": 81, "finch": 81, "junco": 81, "indigo": 81, "bunt": 81, "american": [81, 95], "robin": 81, "bulbul": 81, "jai": 81, "magpi": 81, "chickade": 81, "dipper": 81, "kite": 81, "bald": 81, "eagl": 81, "vultur": 81, "grei": 81, "owl": 81, "salamand": 81, "smooth": 81, "newt": 81, "spot": [81, 88], "axolotl": 81, "bullfrog": 81, "tree": 81, "frog": [81, 89], "tail": 81, "loggerhead": 81, "sea": 81, "turtl": 81, "leatherback": 81, "mud": 81, "terrapin": 81, "band": 81, "gecko": 81, "green": [81, 95], "iguana": 81, "carolina": 81, "anol": 81, "desert": 81, "grassland": 81, "whiptail": 81, "lizard": 81, "agama": 81, "frill": 81, "neck": 81, "allig": 81, "gila": 81, "monster": 81, "european": 81, "chameleon": 81, "komodo": 81, "dragon": 81, "nile": 81, "crocodil": 81, "triceratop": 81, "worm": 81, "snake": 81, "ring": 81, "eastern": 81, "hog": 81, "nose": 81, "kingsnak": 81, "garter": 81, "water": 81, "vine": 81, "night": 81, "boa": 81, "constrictor": 81, "african": 81, "rock": 81, "indian": 81, "cobra": 81, "mamba": 81, "saharan": 81, "horn": 81, "viper": 81, "diamondback": 81, "rattlesnak": 81, "sidewind": 81, "trilobit": 81, "harvestman": 81, "scorpion": 81, "yellow": 81, "garden": 81, "spider": 81, "barn": 81, "southern": 81, "widow": 81, "tarantula": 81, "wolf": 81, "tick": 81, "centiped": 81, "grous": 81, "ptarmigan": 81, "ruf": 81, "prairi": 81, "peacock": 81, "quail": 81, "partridg": 81, "parrot": 81, "macaw": 81, "sulphur": 81, "crest": 81, "cockatoo": 81, "lorikeet": 81, "coucal": 81, "bee": 81, "eater": 81, "hornbil": 81, "hummingbird": 81, "jacamar": 81, "toucan": 81, "duck": [81, 94], "breast": 81, "mergans": 81, "goos": 81, "swan": 81, "tusker": 81, "echidna": 81, "platypu": 81, "wallabi": 81, "koala": 81, "wombat": 81, "jellyfish": 81, "anemon": 81, "brain": 81, "coral": 81, "flatworm": 81, "nematod": 81, "conch": 81, "snail": 81, "slug": 81, "chiton": 81, "chamber": 81, "nautilu": 81, "dung": 81, "crab": 81, "fiddler": 81, "king": 81, "lobster": 81, "spini": 81, "crayfish": 81, "hermit": 81, "isopod": 81, "stork": 81, "spoonbil": 81, "flamingo": 81, "heron": 81, "egret": 81, "bittern": 81, "crane": 81, "bird": [81, 89], "limpkin": 81, "gallinul": 81, "coot": 81, "bustard": 81, "ruddi": 81, "turnston": 81, "dunlin": 81, "redshank": 81, "dowitch": 81, "oystercatch": 81, "pelican": 81, "penguin": 81, "albatross": 81, "whale": 81, "killer": 81, "dugong": 81, "lion": 81, "chihuahua": 81, "japanes": 81, "chin": 81, "maltes": 81, "pekinges": 81, "shih": 81, "tzu": 81, "charl": 81, "spaniel": 81, "papillon": 81, "terrier": 81, "rhodesian": 81, "ridgeback": 81, "afghan": [81, 95], "hound": 81, "basset": 81, "beagl": 81, "bloodhound": 81, "bluetick": 81, "coonhound": 81, "tan": 81, "walker": 81, "foxhound": 81, "redbon": 81, "borzoi": 81, "irish": 81, "wolfhound": 81, "italian": 81, "greyhound": 81, "whippet": 81, "ibizan": 81, "norwegian": 81, "elkhound": 81, "otterhound": 81, "saluki": 81, "scottish": 81, "deerhound": 81, "weimaran": 81, "staffordshir": 81, "bull": 81, "bedlington": 81, "border": 81, "kerri": 81, "norfolk": 81, "norwich": 81, "yorkshir": 81, "wire": 81, "fox": 81, "lakeland": 81, "sealyham": 81, "airedal": 81, "cairn": 81, "australian": 81, "dandi": 81, "dinmont": 81, "boston": 81, "miniatur": 81, "schnauzer": 81, "giant": 81, "tibetan": 81, "silki": 81, "coat": [81, 83], "wheaten": 81, "west": 81, "highland": 81, "lhasa": 81, "apso": 81, "flat": 81, "retriev": 81, "curli": 81, "golden": 81, "labrador": 81, "chesapeak": 81, "bai": 81, "german": [81, 95], "shorthair": 81, "pointer": 81, "vizsla": 81, "setter": 81, "gordon": 81, "brittani": 81, "clumber": 81, "springer": 81, "welsh": 81, "cocker": 81, "sussex": 81, "kuvasz": 81, "schipperk": 81, "groenendael": 81, "malinoi": 81, "briard": 81, "kelpi": 81, "komondor": 81, "sheepdog": 81, "shetland": 81, "colli": 81, "bouvier": 81, "de": 81, "flandr": 81, "rottweil": 81, "shepherd": 81, "dobermann": 81, "pinscher": 81, "swiss": [81, 95], "mountain": 81, "bernes": 81, "appenzel": 81, "sennenhund": 81, "entlebuch": 81, "boxer": 81, "bullmastiff": 81, "mastiff": 81, "french": 81, "bulldog": 81, "dane": 81, "st": 81, "bernard": 81, "huski": 81, "alaskan": 81, "malamut": 81, "siberian": 81, "dalmatian": 81, "affenpinsch": 81, "basenji": 81, "pug": 81, "leonberg": 81, "newfoundland": 81, "pyrenean": 81, "samoi": 81, "pomeranian": 81, "chow": 81, "keeshond": 81, "griffon": 81, "bruxelloi": 81, "pembrok": 81, "corgi": 81, "cardigan": 81, "poodl": 81, "mexican": 81, "hairless": 81, "tundra": 81, "coyot": 81, "dingo": 81, "dhole": 81, "wild": 81, "hyena": 81, "kit": 81, "arctic": 81, "tabbi": 81, "persian": 81, "siames": 81, "egyptian": 81, "mau": 81, "cougar": 81, "lynx": 81, "leopard": 81, "snow": 81, "jaguar": 81, "cheetah": 81, "brown": [81, 92], "bear": 81, "polar": 81, "sloth": 81, "mongoos": 81, "meerkat": 81, "beetl": 81, "ladybug": 81, "longhorn": 81, "leaf": 81, "rhinocero": 81, "weevil": 81, "fly": 81, "ant": 81, "grasshopp": 81, "cricket": 81, "stick": 81, "insect": 81, "cockroach": 81, "manti": 81, "cicada": 81, "leafhopp": 81, "lacew": 81, "dragonfli": 81, "damselfli": 81, "admir": 81, "ringlet": 81, "monarch": 81, "butterfli": 81, "gossam": 81, "wing": 81, "starfish": 81, "urchin": 81, "cucumb": 81, "cottontail": 81, "rabbit": 81, "hare": 81, "angora": 81, "hamster": 81, "porcupin": 81, "squirrel": 81, "marmot": 81, "beaver": 81, "guinea": 81, "pig": 81, "sorrel": 81, "zebra": 81, "boar": 81, "warthog": 81, "hippopotamu": 81, "ox": 81, "buffalo": 81, "bison": 81, "bighorn": 81, "sheep": 81, "alpin": 81, "ibex": 81, "hartebeest": 81, "impala": 81, "gazel": 81, "dromedari": 81, "llama": 81, "weasel": 81, "mink": 81, "polecat": 81, "foot": 81, "ferret": 81, "otter": 81, "skunk": 81, "badger": 81, "armadillo": 81, "toed": 81, "orangutan": 81, "gorilla": 81, "chimpanze": 81, "gibbon": 81, "siamang": 81, "guenon": 81, "pata": 81, "monkei": 81, "baboon": 81, "macaqu": 81, "langur": 81, "colobu": 81, "probosci": 81, "marmoset": 81, "capuchin": 81, "howler": 81, "titi": 81, "geoffroi": 81, "lemur": 81, "indri": 81, "asian": 81, "eleph": 81, "bush": 81, "snoek": 81, "eel": 81, "coho": 81, "salmon": 81, "beauti": 81, "clownfish": 81, "sturgeon": 81, "garfish": 81, "lionfish": 81, "pufferfish": 81, "abacu": 81, "abaya": 81, "academ": 81, "gown": 81, "accordion": 81, "acoust": 81, "guitar": 81, "aircraft": 81, "carrier": 81, "airlin": 81, "airship": 81, "altar": 81, "ambul": 81, "amphibi": 81, "clock": [81, 95], "apiari": 81, "apron": 81, "wast": 81, "assault": 81, "rifl": 81, "backpack": 81, "bakeri": 81, "balanc": 81, "beam": 81, "balloon": 81, "ballpoint": 81, "pen": 81, "aid": 81, "banjo": 81, "balust": 81, "barbel": 81, "barber": 81, "chair": [81, 88], "barbershop": 81, "baromet": 81, "barrel": 81, "wheelbarrow": 81, "basebal": 81, "basketbal": 81, "bassinet": 81, "bassoon": 81, "swim": 81, "cap": 81, "bath": 81, "towel": 81, "bathtub": 81, "station": 81, "wagon": 81, "lighthous": 81, "beaker": 81, "militari": 81, "beer": 81, "bottl": 81, "glass": 81, "bell": 81, "cot": 81, "bib": 81, "bicycl": [81, 92], "bikini": 81, "binder": 81, "binocular": 81, "birdhous": 81, "boathous": 81, "bobsleigh": 81, "bolo": 81, "tie": 81, "poke": 81, "bonnet": 81, "bookcas": 81, "bookstor": 81, "bow": 81, "brass": 81, "bra": 81, "breakwat": 81, "breastplat": 81, "broom": 81, "bucket": 81, "buckl": 81, "bulletproof": 81, "vest": 81, "butcher": 81, "shop": 81, "taxicab": 81, "cauldron": 81, "candl": 81, "cannon": 81, "cano": 81, "mirror": [81, 88], "carousel": 81, "tool": [81, 84, 86], "carton": 81, "wheel": 81, "teller": 81, "cassett": 81, "player": 81, "castl": 81, "catamaran": 81, "cd": 81, "cello": 81, "mobil": [81, 95], "chain": 81, "fenc": [81, 92], "mail": 81, "chainsaw": 81, "chest": 81, "chiffoni": 81, "chime": 81, "china": 81, "cabinet": 81, "christma": 81, "stock": 81, "church": 81, "movi": 81, "theater": 81, "cleaver": 81, "cliff": 81, "dwell": 81, "cloak": 81, "clog": 81, "cocktail": 81, "shaker": 81, "coffe": 81, "mug": 81, "coffeemak": 81, "coil": 81, "lock": 81, "keyboard": 81, "confectioneri": 81, "ship": [81, 89], "corkscrew": 81, "cornet": 81, "cowboi": 81, "boot": 81, "hat": 81, "cradl": 81, "crash": 81, "helmet": 81, "crate": 81, "infant": 81, "bed": 81, "crock": 81, "pot": 81, "croquet": 81, "crutch": 81, "cuirass": 81, "dam": 81, "desk": 81, "desktop": 81, "rotari": 81, "dial": 81, "telephon": 81, "diaper": 81, "watch": 81, "dine": 81, "dishcloth": 81, "dishwash": 81, "disc": 81, "brake": 81, "dock": 81, "sled": 81, "dome": 81, "doormat": 81, "drill": 81, "rig": 81, "drum": 81, "drumstick": 81, "dumbbel": 81, "dutch": 81, "oven": 81, "fan": 81, "locomot": 81, "entertain": 81, "center": 81, "envelop": 81, "espresso": 81, "powder": 81, "feather": 81, "fireboat": 81, "engin": [81, 92], "screen": 81, "sheet": 81, "flagpol": 81, "flute": 81, "footbal": 81, "forklift": 81, "fountain": 81, "poster": 81, "freight": 81, "fry": 81, "pan": 81, "fur": 81, "garbag": 81, "ga": 81, "pump": 81, "goblet": 81, "kart": 81, "golf": 81, "cart": 81, "gondola": 81, "gong": 81, "grand": 81, "piano": 81, "greenhous": 81, "grill": 81, "groceri": 81, "guillotin": 81, "barrett": 81, "hair": 81, "sprai": 81, "hammer": 81, "dryer": 81, "hand": [81, 84], "handkerchief": 81, "drive": 81, "harmonica": 81, "harp": 81, "harvest": 81, "hatchet": 81, "holster": 81, "honeycomb": 81, "hoop": 81, "skirt": 81, "horizont": 81, "bar": 81, "hors": [81, 89, 94], "drawn": 81, "hourglass": 81, "ipod": 81, "cloth": 81, "iron": 81, "jack": 81, "lantern": 81, "jean": 81, "jeep": 81, "shirt": [81, 83], "jigsaw": 81, "puzzl": 81, "pull": 81, "rickshaw": 81, "joystick": 81, "kimono": 81, "knee": 81, "pad": 81, "knot": 81, "ladl": 81, "lampshad": 81, "laptop": 81, "lawn": 81, "mower": 81, "knife": 81, "lifeboat": 81, "lighter": 81, "limousin": 81, "ocean": 81, "liner": 81, "lipstick": 81, "slip": 81, "shoe": 81, "lotion": 81, "speaker": 81, "loup": 81, "sawmil": 81, "magnet": 81, "compass": 81, "bag": [81, 83, 89, 90], "mailbox": 81, "tight": 81, "tank": 81, "manhol": 81, "maraca": 81, "marimba": 81, "maypol": 81, "maze": 81, "cup": [81, 88], "medicin": 81, "megalith": 81, "microphon": 81, "microwav": 81, "milk": 81, "minibu": 81, "miniskirt": 81, "minivan": 81, "missil": 81, "mitten": 81, "mix": 81, "bowl": 81, "modem": 81, "monasteri": 81, "monitor": 81, "mope": 81, "mortar": 81, "mosqu": 81, "mosquito": 81, "scooter": 81, "bike": 81, "tent": 81, "mous": [81, 82], "mousetrap": 81, "van": 81, "muzzl": 81, "nail": 81, "brace": 81, "necklac": 81, "nippl": 81, "obelisk": 81, "obo": 81, "ocarina": 81, "odomet": 81, "oil": 81, "oscilloscop": 81, "overskirt": 81, "bullock": 81, "oxygen": 81, "packet": 81, "paddl": 81, "padlock": 81, "paintbrush": 81, "pajama": 81, "palac": [81, 95], "parachut": 81, "park": 81, "bench": 81, "meter": 81, "passeng": 81, "patio": 81, "payphon": 81, "pedest": 81, "pencil": 81, "perfum": 81, "petri": 81, "dish": 81, "photocopi": 81, "plectrum": 81, "pickelhaub": 81, "picket": 81, "pickup": 81, "pier": 81, "piggi": 81, "pill": 81, "pillow": 81, "ping": 81, "pong": 81, "pinwheel": 81, "pirat": 81, "pitcher": 81, "plane": 81, "planetarium": 81, "plastic": 81, "plate": 81, "rack": 81, "plow": 81, "plunger": 81, "polaroid": 81, "camera": 81, "pole": [81, 92], "polic": 81, "poncho": 81, "billiard": 81, "soda": 81, "potter": 81, "prayer": 81, "rug": 81, "printer": 81, "prison": 81, "projectil": 81, "projector": 81, "hockei": 81, "puck": 81, "punch": 81, "purs": 81, "quill": 81, "quilt": 81, "race": 81, "racket": 81, "radiat": 81, "radio": 81, "telescop": 81, "rain": 81, "recreat": 81, "reel": 81, "reflex": 81, "refriger": 81, "remot": 81, "restaur": 81, "revolv": 81, "rotisseri": 81, "eras": 81, "rugbi": 81, "ruler": 81, "safe": 81, "safeti": 81, "salt": 81, "sandal": [81, 83], "sarong": 81, "saxophon": 81, "scabbard": 81, "school": 81, "bu": [81, 92], "schooner": 81, "scoreboard": 81, "crt": 81, "screw": 81, "screwdriv": 81, "seat": 81, "belt": 81, "sew": 81, "shield": 81, "shoji": 81, "basket": 81, "shovel": 81, "shower": 81, "curtain": 81, "ski": 81, "sleep": 81, "door": 81, "slot": 81, "snorkel": 81, "snowmobil": 81, "snowplow": 81, "soap": 81, "dispens": 81, "soccer": [81, 95], "sock": 81, "solar": 81, "thermal": 81, "collector": 81, "sombrero": 81, "soup": 81, "heater": 81, "shuttl": 81, "spatula": 81, "motorboat": 81, "web": 81, "spindl": 81, "sport": [81, 95], "spotlight": 81, "stage": 81, "steam": 81, "arch": 81, "bridg": 81, "steel": 81, "stethoscop": 81, "scarf": 81, "stone": 81, "wall": [81, 92], "stopwatch": 81, "stove": 81, "strainer": 81, "tram": 81, "stretcher": 81, "couch": 81, "stupa": 81, "submarin": 81, "sundial": 81, "sunglass": 81, "sunscreen": 81, "suspens": 81, "mop": 81, "sweatshirt": 81, "swimsuit": 81, "swing": 81, "switch": 81, "syring": 81, "lamp": 81, "tape": 81, "teapot": 81, "teddi": 81, "televis": [81, 95], "tenni": 81, "thatch": 81, "roof": 81, "front": 81, "thimbl": 81, "thresh": 81, "throne": 81, "tile": 81, "toaster": 81, "tobacco": 81, "toilet": 81, "totem": 81, "tow": 81, "tractor": 81, "semi": 81, "trailer": 81, "trai": 81, "trench": 81, "tricycl": 81, "trimaran": 81, "tripod": 81, "triumphal": 81, "trolleybu": 81, "trombon": 81, "tub": 81, "turnstil": 81, "typewrit": 81, "umbrella": 81, "unicycl": 81, "upright": 81, "vacuum": 81, "cleaner": 81, "vase": 81, "vault": 81, "velvet": 81, "vend": 81, "vestment": 81, "viaduct": 81, "violin": 81, "volleybal": 81, "waffl": 81, "wallet": 81, "wardrob": 81, "sink": 81, "wash": 81, "jug": 81, "tower": 81, "whiskei": 81, "whistl": 81, "wig": 81, "shade": [81, 92], "windsor": 81, "wine": 81, "wok": 81, "wooden": 81, "spoon": 81, "wool": 81, "rail": 81, "shipwreck": 81, "yawl": 81, "yurt": 81, "websit": 81, "comic": 81, "book": 81, "crossword": 81, "traffic": [81, 88, 92], "sign": [81, 92, 95], "dust": 81, "jacket": [81, 88], "menu": 81, "guacamol": 81, "consomm": 81, "trifl": 81, "ic": 81, "cream": 81, "pop": 81, "baguett": 81, "bagel": 81, "pretzel": 81, "cheeseburg": 81, "mash": 81, "potato": 81, "cabbag": 81, "broccoli": 81, "cauliflow": 81, "zucchini": 81, "spaghetti": 81, "squash": 81, "acorn": 81, "butternut": 81, "artichok": 81, "pepper": 81, "cardoon": 81, "mushroom": 81, "granni": 81, "smith": 81, "strawberri": 81, "orang": 81, "lemon": 81, "pineappl": 81, "banana": 81, "jackfruit": 81, "custard": 81, "appl": 81, "pomegran": 81, "hai": 81, "carbonara": 81, "chocol": 81, "syrup": 81, "dough": 81, "meatloaf": 81, "pizza": 81, "pie": 81, "burrito": 81, "eggnog": 81, "alp": 81, "bubbl": 81, "reef": 81, "geyser": 81, "lakeshor": 81, "promontori": 81, "shoal": 81, "seashor": 81, "vallei": 81, "volcano": 81, "bridegroom": 81, "scuba": 81, "diver": 81, "rapese": 81, "daisi": 81, "ladi": 81, "slipper": 81, "corn": 81, "rose": 81, "hip": 81, "chestnut": 81, "fungu": 81, "agar": 81, "gyromitra": 81, "stinkhorn": 81, "earth": 81, "star": 81, "wood": 81, "bolet": 81, "ear": 81, "cifar10_test_set": 81, "airplan": [81, 89], "automobil": [81, 89], "deer": [81, 89], "cifar100_test_set": 81, "aquarium_fish": 81, "babi": 81, "boi": 81, "camel": 81, "caterpillar": 81, "cattl": [81, 95], "cloud": 81, "dinosaur": 81, "dolphin": 81, "flatfish": 81, "forest": 81, "girl": 81, "kangaroo": 81, "lawn_mow": 81, "man": 81, "maple_tre": 81, "motorcycl": [81, 92], "oak_tre": 81, "orchid": 81, "palm_tre": 81, "pear": 81, "pickup_truck": 81, "pine_tre": 81, "plain": 81, "poppi": 81, "possum": 81, "raccoon": 81, "road": [81, 92], "rocket": 81, "seal": 81, "shrew": 81, "skyscrap": 81, "streetcar": 81, "sunflow": 81, "sweet_pepp": 81, "trout": 81, "tulip": 81, "willow_tre": 81, "woman": [81, 88], "caltech256": 81, "ak47": 81, "bat": 81, "glove": 81, "birdbath": 81, "blimp": 81, "bonsai": 81, "boom": 81, "breadmak": 81, "buddha": 81, "bulldoz": 81, "cactu": 81, "cake": 81, "tire": 81, "cartman": 81, "cereal": 81, "chandeli": 81, "chess": 81, "board": 81, "chimp": 81, "chopstick": 81, "coffin": 81, "coin": 81, "comet": 81, "cormor": 81, "globe": 81, "diamond": 81, "dice": 81, "doorknob": 81, "drink": 81, "straw": 81, "dumb": 81, "eiffel": 81, "elk": 81, "ewer": 81, "eyeglass": 81, "fern": 81, "fighter": 81, "jet": [81, 91], "extinguish": 81, "hydrant": 81, "firework": 81, "flashlight": 81, "floppi": 81, "fri": 81, "frisbe": 81, "galaxi": 81, "giraff": 81, "goat": 81, "gate": 81, "grape": 81, "pick": [81, 82], "hamburg": 81, "hammock": 81, "harpsichord": 81, "hawksbil": 81, "helicopt": 81, "hibiscu": 81, "homer": 81, "simpson": 81, "horsesho": 81, "air": 81, "skeleton": 81, "ibi": 81, "cone": 81, "iri": 81, "jesu": 81, "christ": 81, "joi": 81, "kayak": 81, "ketch": 81, "ladder": 81, "lath": 81, "licens": 81, "lightbulb": 81, "lightn": 81, "mandolin": 81, "mar": 81, "mattress": 81, "megaphon": 81, "menorah": 81, "microscop": 81, "minaret": 81, "minotaur": 81, "motorbik": 81, "mussel": 81, "neckti": 81, "octopu": 81, "palm": 81, "pilot": 81, "paperclip": 81, "shredder": 81, "pci": 81, "peopl": [81, 88], "pez": 81, "picnic": 81, "pram": 81, "prai": 81, "pyramid": 81, "rainbow": 81, "roulett": 81, "saddl": 81, "saturn": 81, "segwai": 81, "propel": 81, "sextant": 81, "music": 81, "skateboard": 81, "smokestack": 81, "sneaker": 81, "boat": 81, "stain": 81, "steer": 81, "stirrup": 81, "superman": 81, "sushi": 81, "armi": [81, 95], "sword": 81, "tambourin": 81, "teepe": 81, "court": 81, "theodolit": 81, "tomato": 81, "tombston": 81, "tour": 81, "pisa": 81, "treadmil": 81, "fork": 81, "tweezer": 81, "unicorn": 81, "vcr": 81, "waterfal": 81, "watermelon": 81, "weld": 81, "windmil": 81, "xylophon": 81, "yarmulk": 81, "yo": 81, "toad": 81, "twenty_news_test_set": 81, "alt": 81, "atheism": 81, "comp": 81, "graphic": [81, 92], "misc": [81, 95], "sy": 81, "ibm": 81, "pc": 81, "hardwar": 81, "mac": 81, "forsal": 81, "rec": 81, "sci": 81, "crypt": 81, "electron": 81, "med": 81, "soc": 81, "religion": 81, "christian": [81, 95], "talk": [81, 95], "polit": 81, "gun": 81, "mideast": 81, "amazon": 81, "neutral": 81, "imdb_test_set": 81, "all_class": 81, "20news_test_set": 81, "_load_classes_predprobs_label": 81, "dataset_nam": 81, "labelerror": 81, "url_bas": 81, "5392f6c71473055060be3044becdde1cbc18284d": 81, "url_label": 81, "original_test_label": 81, "_original_label": 81, "url_prob": 81, "cross_validated_predicted_prob": 81, "_pyx": 81, "num_part": 81, "datatset": 81, "bytesio": 81, "allow_pickl": 81, "pred_probs_part": 81, "url": 81, "_of_": 81, "nload": 81, "imdb": 81, "ve": [81, 82, 84, 86, 88], "interpret": [81, 82, 84, 87, 91], "capit": 81, "29780": 81, "256": [81, 82, 88], "780": 81, "medic": [81, 95], "doctor": 81, "254": [81, 88], "359223": 81, "640777": 81, "184": [81, 84], "258427": 81, "341176": 81, "263158": 81, "658824": 81, "337349": 81, "246575": 81, "662651": 81, "248": 81, "330000": 81, "355769": 81, "670000": 81, "251": [81, 88], "167": [81, 84, 88], "252": 81, "112": 81, "253": [81, 88], "022989": 81, "255": [81, 83], "049505": 81, "190": [81, 84, 88], "66": [81, 83, 92], "002216": 81, "000974": 81, "59": [81, 83, 88, 92], "88": [81, 82, 83, 84, 87, 88, 91, 92], "000873": 81, "000739": 81, "79": [81, 88, 92, 93], "32635": 81, "32636": 81, "47": [81, 83, 88, 92], "32637": 81, "32638": 81, "32639": 81, "32640": 81, "051": 81, "93": [81, 88, 91, 92, 93, 95], "002242": 81, "997758": 81, "002088": 81, "001045": 81, "997912": 81, "002053": 81, "997947": 81, "001980": 81, "000991": 81, "998020": 81, "001946": 81, "002915": 81, "998054": 81, "001938": 81, "002904": 81, "998062": 81, "001020": 81, "998980": 81, "001018": 81, "002035": 81, "998982": 81, "999009": 81, "0003": 81, "0002": 81, "36": [81, 83, 92, 95], "41": [81, 83, 88, 91, 92], "44": [81, 87, 88, 92, 94, 95], "71": [81, 84, 88, 89, 91, 92], "071": 81, "067269": 81, "929": 81, "046": 81, "058243": 81, "954": 81, "035": 81, "032096": 81, "965": 81, "031": 81, "012232": 81, "969": 81, "022": 81, "025896": 81, "978": 81, "020": [81, 84], "013092": 81, "018": 81, "013065": 81, "016": 81, "030542": 81, "984": 81, "013": 81, "020833": 81, "987": 81, "012": 81, "010020": 81, "988": 81, "0073": 81, "0020": 81, "0016": 81, "0015": 81, "0013": 81, "0012": 81, "0010": 81, "0008": 81, "0007": 81, "0006": 81, "0005": 81, "0004": 81, "244": [81, 88], "98": [81, 82, 91, 92], "452381": 81, "459770": 81, "72": [81, 83, 84, 87, 91, 92], "523364": 81, "460784": 81, "446602": 81, "57": [81, 83, 84, 92], "68": [81, 84, 88, 92, 93], "103774": 81, "030612": 81, "97": [81, 82, 84, 88, 89, 91, 92, 93, 95], "110092": 81, "049020": 81, "99": [81, 84, 92, 93], "0034": 81, "0032": 81, "0026": 81, "0025": 81, "4945": 81, "4946": 81, "4947": 81, "4948": 81, "4949": 81, "4950": 81, "846": 81, "82": [81, 84, 88, 91, 92, 95], "7532": 81, "532": 81, "034483": 81, "009646": 81, "965517": 81, "030457": 81, "020513": 81, "969543": 81, "028061": 81, "035443": 81, "971939": 81, "025316": 81, "005168": 81, "974684": 81, "049751": 81, "979487": 81, "019920": 81, "042802": 81, "980080": 81, "017677": 81, "005115": 81, "982323": 81, "012987": 81, "005236": 81, "987013": 81, "012723": 81, "025126": 81, "987277": 81, "010989": 81, "008264": 81, "989011": 81, "010283": 81, "027778": 81, "989717": 81, "009677": 81, "990323": 81, "007614": 81, "010127": 81, "992386": 81, "005051": 81, "994949": 81, "005025": 81, "994975": 81, "005013": 81, "994987": 81, "001859": 81, "001328": 81, "000929": 81, "000664": 81, "186": [81, 84], "188": [81, 84, 87], "189": [81, 84], "snippet": 82, "nlp": [82, 95], "mind": [82, 84], "number_of_class": 82, "total_number_of_data_point": 82, "drop": [82, 86, 91, 94], "feed": 82, "alphabet": 82, "labels_proper_format": 82, "your_classifi": 82, "issues_datafram": 82, "class_predicted_for_flagged_exampl": 82, "class_predicted_for_all_exampl": 82, "grant": 82, "datataset": 82, "fair": [82, 84], "game": 82, "speedup": [82, 89], "flexibl": 82, "tempfil": 82, "mkdtemp": 82, "sped": 82, "anywai": 82, "pred_probs_merg": 82, "merge_rare_class": 82, "count_threshold": 82, "class_mapping_orig2new": 82, "heath_summari": 82, "num_examples_per_class": 82, "rare_class": 82, "num_classes_merg": 82, "other_class": 82, "labels_merg": 82, "new_c": 82, "merged_prob": 82, "hstack": [82, 83, 84, 86], "new_class": 82, "original_class": 82, "num_check": 82, "ones_array_ref": 82, "isclos": 82, "though": [82, 84, 95], "successfulli": 82, "meaning": [82, 89], "virtuou": [82, 86], "cycl": [82, 86], "jointli": 82, "junk": 82, "clutter": 82, "unknown": 82, "caltech": 82, "combined_boolean_mask": 82, "mask1": 82, "mask2": 82, "gradientboostingclassifi": [82, 84], "true_error": [82, 84, 87], "101": [82, 88], "102": [82, 87, 88], "104": [82, 84, 88], "model_to_find_error": 82, "model_to_return": 82, "cl0": 82, "randomizedsearchcv": 82, "expens": 82, "param_distribut": 82, "learning_r": [82, 84], "max_depth": [82, 84], "magnitud": 82, "coeffici": [82, 91], "optin": 82, "environ": [82, 84], "rerun": [82, 84], "cell": [82, 84], "On": [82, 84, 88], "unabl": [82, 84], "render": [82, 84], "nbviewer": [82, 84], "nbsp": [82, 84], "cleanlearninginot": [82, 84], "fittedcleanlearn": [82, 84], "linearregressionlinearregress": 82, "n_init": 82, "fit_predict": 82, "continuous_column": 82, "categorical_column": 82, "data_df": 82, "feature_a": 82, "feature_b": 82, "unexpectedli": 82, "emphas": 82, "especi": [82, 83, 91, 93, 94], "crucial": 82, "merge_duplicate_set": 82, "merge_kei": 82, "construct_group_kei": 82, "merged_set": 82, "consolidate_set": 82, "tolist": [82, 87], "issubset": 82, "frozenset": 82, "sets_list": 82, "mutabl": 82, "new_set": 82, "current_set": 82, "intersecting_set": 82, "lowest_score_strategi": 82, "sub_df": 82, "idxmin": 82, "filter_near_dupl": 82, "strategy_fn": 82, "strategy_kwarg": 82, "duplicate_row": 82, "group_kei": 82, "to_keep_indic": 82, "groupbi": 82, "explod": 82, "to_remov": 82, "isin": [82, 89], "kept": 82, "near_duplicate_issu": [82, 83], "ids_to_remove_seri": 82, "tmp": 82, "ipykernel_5744": 82, "1995098996": 82, "deprecationwarn": 82, "dataframegroupbi": 82, "include_group": 82, "silenc": 82, "assist": 82, "streamlin": 82, "ux": 82, "agpl": 82, "compani": 82, "commerci": 82, "alter": 82, "email": 82, "discuss": 82, "anywher": 82, "profession": 82, "expert": 82, "60": [83, 84, 91, 92, 95], "excess": 83, "torchvis": [83, 89], "tensordataset": 83, "stratifiedkfold": [83, 87], "tqdm": 83, "fashion_mnist": 83, "num_row": 83, "60000": 83, "pil": 83, "transformed_dataset": 83, "with_format": 83, "unsqueez": 83, "cpu_count": 83, "torch_dataset": 83, "quick": [83, 87], "relu": 83, "batchnorm2d": 83, "maxpool2d": 83, "lazylinear": 83, "flatten": 83, "get_test_accuraci": 83, "testload": [83, 89], "energi": 83, "trainload": [83, 89], "n_epoch": 83, "patienc": 83, "criterion": 83, "crossentropyloss": 83, "adamw": 83, "best_test_accuraci": 83, "start_epoch": 83, "running_loss": 83, "best_epoch": 83, "end_epoch": 83, "3f": [83, 91], "acc": [83, 84], "time_taken": 83, "compute_embed": 83, "compute_pred_prob": 83, "train_batch_s": 83, "num_work": 83, "worker": [83, 95], "train_id_list": 83, "test_id_list": 83, "train_id": 83, "test_id": 83, "embeddings_model": 83, "ntrain": 83, "trainset": 83, "testset": 83, "pin_memori": 83, "fold_embed": 83, "fold_pred_prob": 83, "finish": 83, "482": 83, "720": 83, "837": 83, "195": 83, "654": 83, "stderr": [83, 89, 92], "sphinxverbatim": [83, 89, 92, 95], "69it": [83, 92], "28it": [83, 92], "51it": [83, 92], "40it": [83, 92], "37it": [83, 92], "72it": [83, 92], "92it": 83, "03it": [83, 92], "02it": [83, 92], "77it": [83, 92], "36it": [83, 92], "94it": [83, 92], "62": [83, 84, 88, 91, 92], "46it": [83, 92], "41it": [83, 92], "493": 83, "060": 83, "838": [83, 91], "330": [83, 88], "505": 83, "593": 83, "96it": [83, 92], "01it": [83, 92], "30it": [83, 92], "12it": [83, 92], "70it": [83, 92], "74it": [83, 92], "88it": [83, 92], "93it": [83, 92], "84it": [83, 89, 92], "65it": [83, 92], "476": 83, "340": 83, "818": 83, "328": [83, 88], "310": 83, "580": 83, "32it": [83, 92], "08it": [83, 89, 92], "20it": [83, 89, 92], "66it": [83, 92], "04it": 83, "81it": [83, 92], "16it": [83, 89, 92], "82it": [83, 89, 92], "63it": [83, 89, 92], "45it": [83, 92], "43it": 83, "reorder": 83, "vision": 83, "grayscal": 83, "exce": 83, "max_preval": 83, "7714": 83, "3772": 83, "3585": 83, "166": 83, "3651": 83, "27080": 83, "873833e": 83, "40378": 83, "915575e": 83, "25316": 83, "390277e": 83, "06": [83, 84, 88, 92, 95], "2090": 83, "751164e": 83, "14999": 83, "881301e": 83, "9569": 83, "11262": 83, "000003": 83, "19228": 83, "000010": 83, "dress": 83, "32657": 83, "000013": 83, "21282": 83, "000016": 83, "53564": 83, "000018": 83, "pullov": 83, "6321": 83, "30968": 83, "001267": 83, "30659": 83, "000022": [83, 95], "47824": 83, "001454": 83, "3370": 83, "000026": 83, "54565": 83, "001854": 83, "9762": 83, "258": 83, "47139": 83, "000033": 83, "166980": 83, "986195": 83, "997205": 83, "948781": 83, "999358": 83, "54078": 83, "17371": 83, "000025": 83, "plot_label_issue_exampl": 83, "ncol": [83, 89], "nrow": [83, 89], "ceil": 83, "axes_list": 83, "label_issue_indic": 83, "gl": 83, "sl": 83, "fontdict": 83, "imshow": [83, 89], "cmap": [83, 91], "grai": 83, "subplots_adjust": 83, "hspace": 83, "outsiz": 83, "outlier_issues_df": 83, "depict": [83, 87, 88, 89, 90, 92], "plot_outlier_issues_exampl": 83, "n_comparison_imag": 83, "sample_from_class": 83, "number_of_sampl": 83, "non_outlier_indic": 83, "isnul": 83, "non_outlier_indices_excluding_curr": 83, "sampled_indic": 83, "label_scores_of_sampl": 83, "top_score_indic": 83, "top_label_indic": 83, "sampled_imag": 83, "get_image_given_label_and_sampl": 83, "image_from_dataset": 83, "corresponding_label": 83, "comparison_imag": 83, "images_to_plot": 83, "idlist": 83, "iterrow": 83, "closest": 83, "counterpart": 83, "near_duplicate_issues_df": 83, "plot_near_duplicate_issue_exampl": 83, "seen_id_pair": 83, "get_image_and_given_label_and_predicted_label": 83, "duplicate_imag": 83, "nd_set": 83, "challeng": 83, "dark_issu": 83, "reveal": [83, 88, 92], "dark_scor": 83, "dark_issues_df": 83, "is_dark_issu": 83, "34848": 83, "203922": 83, "50270": 83, "204588": 83, "3936": 83, "213098": 83, "733": 83, "217686": 83, "8094": 83, "230118": 83, "plot_image_issue_exampl": 83, "difficult": 83, "disproportion": 83, "lowinfo_issu": 83, "low_information_scor": 83, "lowinfo_issues_df": 83, "is_low_information_issu": 83, "53050": 83, "067975": 83, "40875": 83, "089929": 83, "9594": 83, "092601": 83, "34825": 83, "107744": 83, "37530": 83, "108516": 83, "lot": 83, "depth": 84, "survei": [84, 95], "focus": [84, 86, 87, 91], "scienc": 84, "multivariate_norm": [84, 86, 87], "make_data": [84, 86], "cov": [84, 86, 87], "avg_trac": [84, 87], "test_label": [84, 87, 89, 94], "py_tru": 84, "noise_matrix_tru": 84, "noise_marix": 84, "s_test": 84, "noisy_test_label": 84, "purpl": 84, "val": 84, "namespac": 84, "exec": 84, "markerfacecolor": [84, 87], "markeredgecolor": [84, 87, 91], "markers": [84, 87, 91], "markeredgewidth": [84, 87, 91], "realist": 84, "7560": 84, "637318e": 84, "896262e": 84, "548391e": 84, "923417e": 84, "375075e": 84, "3454": 84, "014051": 84, "020451": 84, "249": [84, 88], "042594": 84, "043859": 84, "045954": 84, "6120": 84, "023714": 84, "007136": 84, "119": [84, 88], "107266": 84, "103": [84, 88], "033738": 84, "238": [84, 88], "119505": 84, "236": [84, 88], "037843": 84, "222": 84, "614915": 84, "122": [84, 88], "624422": 84, "625965": 84, "626079": 84, "118": 84, "627675": 84, "695223": 84, "323529": 84, "523015": 84, "013720": 84, "675727": 84, "646521": 84, "anyth": 84, "enhanc": [84, 86, 88], "magic": 84, "83": [84, 88, 91, 92, 93, 95], "liter": 84, "identif": 84, "x27": 84, "logisticregressionlogisticregress": 84, "ever": 84, "092": 84, "040": 84, "024": 84, "004": 84, "surpris": 84, "1705": 84, "01936": 84, "ton": 84, "yourfavoritemodel1": 84, "merged_label": 84, "merged_test_label": 84, "newli": [84, 86], "yourfavoritemodel2": 84, "yourfavoritemodel3": 84, "cl3": 84, "takeawai": 84, "That": [84, 87], "randomli": 84, "my_test_pred_prob": 84, "my_test_pr": 84, "issues_test": 84, "corrected_test_label": 84, "pretend": 84, "cl_test_pr": 84, "69": [84, 91, 92], "fairli": 84, "label_acc": 84, "percentag": 84, "offset": 84, "nquestion": 84, "overestim": 84, "answer": 84, "experienc": 84, "76": [84, 87, 88, 91, 92, 93], "knowledg": 84, "quantiti": [84, 91], "prioiri": 84, "known": 84, "versatil": 84, "label_issues_indic": 84, "213": [84, 88], "212": [84, 93], "218": [84, 88], "152": 84, "197": [84, 88], "196": [84, 88], "170": 84, "214": 84, "164": [84, 87], "198": [84, 88], "191": [84, 88], "63": [84, 88, 91, 92], "121": [84, 94], "117": [84, 91], "206": [84, 88], "115": [84, 88], "193": 84, "194": 84, "201": [84, 88], "174": 84, "163": 84, "150": [84, 86, 88], "169": 84, "151": [84, 88], "168": 84, "precision_scor": 84, "recall_scor": 84, "f1_score": 84, "true_label_issu": 84, "filter_by_list": 84, "718750": [84, 86], "807018": 84, "912": 84, "733333": 84, "800000": 84, "721311": 84, "792793": 84, "908": 84, "676923": 84, "765217": 84, "892": 84, "567901": 84, "702290": 84, "844": 84, "gaug": 84, "label_issues_count": 84, "155": [84, 88], "156": 84, "172": [84, 87], "easiest": 84, "modular": 84, "penalti": 84, "l2": 84, "model3": 84, "n_estim": 84, "cv_pred_probs_1": 84, "cv_pred_probs_2": 84, "cv_pred_probs_3": 84, "label_quality_scores_best": 84, "cv_pred_probs_ensembl": 84, "label_quality_scores_bett": 84, "superior": [84, 90], "workflow": [85, 91], "speechbrain": 85, "timm": 85, "glad": 86, "multiannotator_label": 86, "300": [86, 95], "noisier": 86, "111": [86, 91], "local_data": [86, 87], "true_labels_train": [86, 87], "noise_matrix_bett": 86, "noise_matrix_wors": 86, "transpos": [86, 89], "dropna": 86, "zfill": 86, "row_na_check": 86, "notna": 86, "reset_index": 86, "a0001": 86, "a0002": 86, "a0003": 86, "a0004": 86, "a0005": 86, "a0006": 86, "a0007": 86, "a0008": 86, "a0009": 86, "a0010": 86, "a0041": 86, "a0042": 86, "a0043": 86, "a0044": 86, "a0045": 86, "a0046": 86, "a0047": 86, "a0048": 86, "a0049": 86, "a0050": 86, "na": 86, "60856743": 86, "41693214": 86, "40908785": 86, "87147629": 86, "64941785": 86, "10774851": 86, "0524466": 86, "71853246": 86, "37169848": 86, "66031048": 86, "multiannotator_util": 86, "crude": 86, "straight": 86, "majority_vote_label": 86, "736118": 86, "757751": 86, "782232": 86, "715565": 86, "824256": 86, "quality_annotator_a0001": 86, "quality_annotator_a0002": 86, "quality_annotator_a0003": 86, "quality_annotator_a0004": 86, "quality_annotator_a0005": 86, "quality_annotator_a0006": 86, "quality_annotator_a0007": 86, "quality_annotator_a0008": 86, "quality_annotator_a0009": 86, "quality_annotator_a0010": 86, "quality_annotator_a0041": 86, "quality_annotator_a0042": 86, "quality_annotator_a0043": 86, "quality_annotator_a0044": 86, "quality_annotator_a0045": 86, "quality_annotator_a0046": 86, "quality_annotator_a0047": 86, "quality_annotator_a0048": 86, "quality_annotator_a0049": 86, "quality_annotator_a0050": 86, "070564": 86, "216078": 86, "119188": 86, "alongisd": 86, "244981": 86, "208333": 86, "295979": 86, "294118": 86, "324197": 86, "310345": 86, "355316": 86, "346154": 86, "439732": 86, "480000": 86, "a0031": 86, "523205": 86, "580645": 86, "a0034": 86, "535313": 86, "607143": 86, "a0021": 86, "606999": 86, "a0015": 86, "609526": 86, "678571": 86, "a0011": 86, "621103": 86, "692308": 86, "wors": 86, "improved_consensus_label": 86, "majority_vote_accuraci": 86, "cleanlab_label_accuraci": 86, "8581081081081081": 86, "9797297297297297": 86, "besid": 86, "sorted_consensus_quality_scor": 86, "worst_qual": 86, "better_qu": 86, "worst_quality_accuraci": 86, "better_quality_accuraci": 86, "9893238434163701": 86, "improved_pred_prob": 86, "treat": [86, 87, 91, 95], "analzi": 86, "copyright": 87, "advertis": 87, "violenc": 87, "nsfw": 87, "suppli": [87, 88, 91], "celeba": 87, "make_multilabel_data": 87, "boxes_coordin": 87, "box_multilabel": 87, "make_multi": 87, "bx1": 87, "by1": 87, "bx2": 87, "by2": 87, "label_list": 87, "ur": 87, "upper": 87, "inidx": 87, "logical_and": 87, "inv_d": 87, "labels_idx": 87, "true_labels_test": 87, "dict_unique_label": 87, "get_color_arrai": 87, "dcolor": 87, "aa4400": 87, "55227f": 87, "55a100": 87, "00ff00": 87, "007f7f": 87, "386b55": 87, "0000ff": 87, "simplic": 87, "advis": 87, "y_onehot": 87, "single_class_label": 87, "stratifi": [87, 90], "kf": 87, "train_index": 87, "test_index": 87, "clf_cv": 87, "x_train_cv": 87, "x_test_cv": 87, "y_train_cv": 87, "y_test_cv": 87, "y_pred_cv": 87, "saw": 87, "num_to_displai": 87, "09": [87, 88, 91, 92], "275": 87, "267": 87, "225": 87, "171": 87, "234": 87, "165": 87, "227": [87, 88], "262": [87, 88], "263": [87, 88], "266": [87, 88], "139": 87, "143": [87, 88], "216": [87, 88], "265": 87, "159": [87, 88], "despit": [87, 95], "suspect": 87, "888": 87, "8224": 87, "9632": 87, "968": 87, "6512": 87, "0444": 87, "774": 87, "labels_binary_format": 87, "labels_list_format": 87, "surround": 88, "scene": 88, "coco": 88, "everydai": 88, "has_label_issu": 88, "insal": 88, "nc": [88, 92, 95], "s3": [88, 92, 95], "amazonaw": [88, 92, 95], "objectdetectionbenchmark": 88, "tutorial_obj": 88, "pkl": 88, "example_imag": 88, "unzip": [88, 95], "_separate_label": 88, "_separate_predict": 88, "begin": 88, "image_path": 88, "rb": 88, "image_to_visu": 88, "seg_map": 88, "334": 88, "float32": 88, "bboxes_ignor": 88, "290": 88, "286": 88, "285": 88, "224": 88, "231": [88, 95], "293": 88, "235": 88, "289": 88, "282": 88, "74": [88, 91, 92, 93], "281": 88, "271": 88, "280": 88, "277": 88, "279": 88, "287": 88, "299": 88, "276": 88, "307": 88, "321": 88, "326": 88, "333": 88, "261": 88, "319": 88, "257": 88, "295": 88, "283": 88, "243": 88, "303": 88, "316": 88, "247": 88, "323": 88, "327": 88, "226": 88, "228": 88, "232": 88, "219": 88, "239": 88, "240": 88, "209": [88, 95], "242": 88, "202": 88, "230": 88, "215": 88, "220": 88, "229": 88, "217": [88, 95], "237": 88, "207": 88, "204": 88, "84": [88, 89, 91, 92], "205": 88, "223": 88, "153": 88, "149": 88, "140": 88, "124": 88, "268": 88, "273": 88, "108": 88, "284": 88, "110": 88, "136": 88, "145": 88, "173": 88, "297": 88, "317": 88, "192": 88, "332": 88, "324": 88, "203": 88, "320": 88, "314": 88, "199": 88, "291": 88, "000000481413": 88, "jpg": 88, "42398": 88, "44503": 88, "337": [88, 94], "29968": 88, "336": 88, "21005": 88, "9978472": 88, "forgot": 88, "drew": 88, "label_issue_idx": 88, "num_examples_to_show": 88, "138": [88, 95], "candid": 88, "97489622": 88, "70610878": 88, "98764951": 88, "88899237": 88, "99085805": 88, "issue_idx": 88, "95569726e": 88, "03354841e": 88, "57510169e": 88, "58447666e": 88, "39755858e": 88, "issue_to_visu": 88, "000000009483": 88, "95569726168054e": 88, "addition": [88, 92], "visibl": 88, "missmatch": 88, "likelei": 88, "agnost": 88, "vaidat": 88, "inconsist": 88, "000000395701": 88, "033548411774308e": 88, "armchair": 88, "tv": 88, "000000154004": 88, "38300759625496356": 88, "foreground": 88, "000000448410": 88, "0008575101690203273": 88, "crowd": 88, "alon": 88, "explor": [88, 89], "resembl": [88, 89], "000000499768": 88, "9748962231208227": 88, "000000521141": 88, "8889923658893665": 88, "000000143931": 88, "9876495074395956": 88, "bonu": 88, "uncov": 88, "irregular": 88, "anomali": 88, "unusu": [88, 89], "object_detection_util": 88, "calculate_bounding_box_area": 88, "num_imgs_to_show": 88, "lab_object_count": 88, "pred_object_count": 88, "000000430073": 88, "000000183709": 88, "000000189475": 88, "studi": 88, "label_norm": 88, "pred_norm": 88, "area": [88, 92], "assess": 88, "lab_area": 88, "pred_area": 88, "lab_area_mean": 88, "lab_area_std": 88, "max_deviation_valu": 88, "max_deviation_class": 88, "deviation_valu": 88, "deviation_class": 88, "mean_area": 88, "std_area": 88, "class_area": 88, "deviations_awai": 88, "max_deviation_index": 88, "num_imgs_to_show_per_class": 88, "class_num": 88, "sorted_indic": 88, "000000422886": 88, "000000341828": 88, "000000461009": 88, "train_feature_embed": 89, "ood_train_feature_scor": 89, "test_feature_embed": 89, "ood_test_feature_scor": 89, "ood_train_predictions_scor": 89, "train_pred_prob": 89, "ood_test_predictions_scor": 89, "test_pred_prob": 89, "pylab": 89, "rcparam": 89, "baggingclassifi": 89, "therebi": 89, "rescal": 89, "transform_norm": 89, "totensor": 89, "root": 89, "animal_class": 89, "non_animal_class": 89, "animal_idx": 89, "test_idx": 89, "toronto": 89, "edu": 89, "kriz": 89, "170498071": 89, "2326528": 89, "23219298": 89, "71it": [89, 92], "13303808": 89, "73844881": 89, "24674304": 89, "91964167": 89, "23it": [89, 92], "34963456": 89, "96191879": 89, "75it": [89, 92], "45383680": 89, "99000165": 89, "56393728": 89, "102767412": 89, "67141632": 89, "104252034": 89, "77856768": 89, "105125468": 89, "88899584": 89, "106705587": 89, "58it": [89, 92], "99581952": 89, "105304746": 89, "110395392": 89, "106104853": 89, "34it": [89, 92], "121634816": 89, "107947015": 89, "29it": [89, 92], "132677632": 89, "108681810": 89, "143818752": 89, "109445329": 89, "99it": [89, 92], "154927104": 89, "109907364": 89, "09it": [89, 92], "166035456": 89, "110199660": 89, "91it": [89, 92], "103483721": 89, "5000": 89, "plot_imag": 89, "visualize_outli": 89, "txt_class": 89, "img": [89, 91], "npimg": 89, "show_label": 89, "data_subset": 89, "resnet50": 89, "corpu": 89, "2048": 89, "embed_imag": 89, "create_model": 89, "strang": 89, "odd": 89, "train_ood_features_scor": 89, "top_train_ood_features_idx": 89, "fun": 89, "negat": 89, "homogen": 89, "bottom_train_ood_features_idx": 89, "test_ood_features_scor": 89, "top_ood_features_idx": 89, "inevit": 89, "trade": 89, "5th": 89, "percentil": 89, "fifth_percentil": 89, "plt_rang": 89, "hist": 89, "train_outlier_scor": 89, "ylabel": 89, "axvlin": 89, "test_outlier_scor": 89, "ood_features_indic": 89, "revisit": 89, "return_invers": 89, "train_feature_embeddings_sc": 89, "test_feature_embeddings_sc": 89, "train_pred_label": 89, "9702": 89, "train_ood_predictions_scor": 89, "test_ood_predictions_scor": 89, "mainli": [89, 95], "lost": 89, "unsuit": 90, "ok": [90, 95], "convention": 90, "aforement": 90, "hypothet": 90, "contrast": 90, "tradit": 90, "disjoint": 90, "out_of_sample_pred_probs_for_a": 90, "out_of_sample_pred_probs_for_b": 90, "out_of_sample_pred_probs_for_c": 90, "out_of_sample_pred_prob": 90, "price": 91, "incom": 91, "ag": 91, "sensor": 91, "histgradientboostingregressor": 91, "r2_score": 91, "student_grades_r": 91, "final_scor": 91, "true_final_scor": 91, "homework": 91, "3d": 91, "hue": 91, "mpl_toolkit": 91, "mplot3d": 91, "axes3d": 91, "errors_idx": 91, "add_subplot": 91, "z": 91, "colorbar": 91, "errors_mask": 91, "feature_column": 91, "predicted_column": 91, "x_train_raw": 91, "x_test_raw": 91, "categorical_featur": [91, 93], "randomforestregressor": 91, "636197": 91, "499503": 91, "843478": 91, "776647": 91, "350358": 91, "170547": 91, "706969": 91, "984759": 91, "812515": 91, "795928": 91, "identified_issu": [91, 94], "141": 91, "659": 91, "367": 91, "318": 91, "305": 91, "560": 91, "657": 91, "688": 91, "view_datapoint": 91, "concat": 91, "consum": [91, 94], "baseline_model": [91, 94], "preds_og": 91, "r2_og": 91, "robustli": [91, 93, 94], "acceler": [91, 94], "found_label_issu": 91, "preds_cl": 91, "r2_cl": 91, "926": 91, "effort": [91, 93, 94], "favorit": 91, "968627e": 91, "228799": 91, "646674e": 91, "402962": 91, "323818e": 91, "952758": 91, "422144e": 91, "456908": 91, "465815e": 91, "753968": 91, "110719": 91, "000044": 91, "670640": 91, "000060": 91, "749976": 91, "000066": 91, "947007": 91, "000314": 91, "648396": 91, "plu": 91, "synthia": 92, "imagesegment": 92, "given_mask": 92, "predicted_mask": 92, "set_printopt": [92, 95], "sky": 92, "sidewalk": 92, "veget": 92, "terrain": 92, "rider": 92, "pred_probs_filepath": 92, "1088": 92, "1920": 92, "label_filepath": 92, "synthia_class": 92, "maunal": 92, "100000": 92, "244800": 92, "leftmost": 92, "middl": [92, 95], "infact": 92, "rightmost": 92, "discrep": 92, "4997817": 92, "15242": 92, "152406": 92, "30489": 92, "152436": 92, "45744": 92, "152481": 92, "60993": 92, "151806": 92, "76175": 92, "151395": 92, "78it": 92, "91323": 92, "151421": 92, "106466": 92, "151281": 92, "22it": 92, "121595": 92, "146607": 92, "57it": 92, "136284": 92, "144508": 92, "49it": 92, "151665": 92, "147302": 92, "13it": 92, "167038": 92, "149228": 92, "182466": 92, "150743": 92, "53it": 92, "197954": 92, "151982": 92, "213323": 92, "152492": 92, "14it": 92, "228641": 92, "152694": 92, "243993": 92, "152938": 92, "07it": 92, "259491": 92, "153547": 92, "274849": 92, "153404": 92, "290192": 92, "153075": 92, "305566": 92, "153271": 92, "97it": 92, "321135": 92, "153992": 92, "336698": 92, "154478": 92, "90it": 92, "352313": 92, "154975": 92, "367876": 92, "155168": 92, "383394": 92, "155077": 92, "398965": 92, "155263": 92, "414492": 92, "155043": 92, "00it": 92, "430010": 92, "155081": 92, "445535": 92, "155130": 92, "17it": 92, "461061": 92, "155166": 92, "476592": 92, "155206": 92, "80it": 92, "492212": 92, "155500": 92, "25it": 92, "507763": 92, "155454": 92, "98it": 92, "523309": 92, "155405": 92, "538850": 92, "155387": 92, "554484": 92, "155668": 92, "87it": 92, "570055": 92, "155677": 92, "585623": 92, "155314": 92, "68it": 92, "601157": 92, "155319": 92, "64it": 92, "616690": 92, "155095": 92, "56it": 92, "632200": 92, "154675": 92, "647728": 92, "154851": 92, "79it": 92, "663259": 92, "154984": 92, "67it": 92, "678785": 92, "155065": 92, "694326": 92, "155165": 92, "709847": 92, "155176": 92, "24it": 92, "725382": 92, "155225": 92, "06it": 92, "740905": 92, "155073": 92, "756413": 92, "154986": 92, "772046": 92, "787585": 92, "95it": 92, "803295": 92, "155851": 92, "818903": 92, "155917": 92, "61it": 92, "834504": 92, "155940": 92, "850099": 92, "155867": 92, "44it": 92, "865773": 92, "156125": 92, "42it": 92, "881399": 92, "156162": 92, "897053": 92, "156272": 92, "912767": 92, "156528": 92, "928420": 92, "156049": 92, "47it": 92, "944026": 92, "155540": 92, "959667": 92, "155796": 92, "975248": 92, "155662": 92, "15it": 92, "990815": 92, "155532": 92, "50it": 92, "1006369": 92, "155139": 92, "1021963": 92, "155348": 92, "1037616": 92, "155699": 92, "1053288": 92, "156000": 92, "1068998": 92, "156326": 92, "1084631": 92, "156080": 92, "1100248": 92, "156103": 92, "33it": 92, "1115868": 92, "156130": 92, "1131502": 92, "156189": 92, "39it": 92, "1147133": 92, "156223": 92, "1162756": 92, "156176": 92, "59it": 92, "1178374": 92, "155958": 92, "1193970": 92, "155667": 92, "1209566": 92, "155750": 92, "1225182": 92, "155870": 92, "1240771": 92, "155871": 92, "1256359": 92, "155587": 92, "1271995": 92, "155816": 92, "1287648": 92, "156026": 92, "05it": 92, "1303353": 92, "156329": 92, "1318987": 92, "156114": 92, "83it": 92, "1334661": 92, "156298": 92, "1350362": 92, "156508": 92, "1366059": 92, "156644": 92, "85it": 92, "1381734": 92, "156672": 92, "73it": 92, "1397441": 92, "156790": 92, "1413121": 92, "156732": 92, "1428795": 92, "156728": 92, "1444468": 92, "156303": 92, "1460162": 92, "156492": 92, "1475847": 92, "156596": 92, "1491541": 92, "156698": 92, "1507211": 92, "156694": 92, "1522881": 92, "156531": 92, "1538535": 92, "156505": 92, "1554223": 92, "156613": 92, "1569885": 92, "156472": 92, "1585533": 92, "156384": 92, "1601172": 92, "155887": 92, "1616779": 92, "155938": 92, "1632374": 92, "155856": 92, "1647960": 92, "155758": 92, "60it": 92, "1663536": 92, "1679096": 92, "155556": 92, "1694652": 92, "155379": 92, "1710217": 92, "155456": 92, "1725798": 92, "155558": 92, "1741468": 92, "155897": 92, "1757095": 92, "156007": 92, "1772698": 92, "156012": 92, "1788312": 92, "156047": 92, "1803941": 92, "156118": 92, "1819553": 92, "155999": 92, "1835153": 92, "155841": 92, "1850767": 92, "155929": 92, "1866361": 92, "155780": 92, "1881940": 92, "155737": 92, "1897538": 92, "155807": 92, "48it": 92, "1913150": 92, "155898": 92, "1928750": 92, "155925": 92, "1944372": 92, "156011": 92, "1959974": 92, "155950": 92, "35it": 92, "1975637": 92, "156151": 92, "18it": 92, "1991253": 92, "155813": 92, "2006836": 92, "155817": 92, "2022418": 92, "155781": 92, "2038039": 92, "155906": 92, "2053733": 92, "156213": 92, "2069428": 92, "156432": 92, "2085120": 92, "156576": 92, "2100778": 92, "155681": 92, "2116348": 92, "155555": 92, "2131974": 92, "155762": 92, "2147551": 92, "155373": 92, "2163089": 92, "155018": 92, "2178592": 92, "152370": 92, "2194084": 92, "153120": 92, "2209572": 92, "153640": 92, "2225046": 92, "153966": 92, "2240545": 92, "154268": 92, "62it": 92, "2256134": 92, "154751": 92, "2271612": 92, "154713": 92, "2287086": 92, "153875": 92, "2302518": 92, "154005": 92, "2318001": 92, "154249": 92, "2333428": 92, "152824": 92, "2348875": 92, "153312": 92, "2364533": 92, "154283": 92, "21it": 92, "2380077": 92, "154626": 92, "11it": 92, "2395542": 92, "154287": 92, "2411211": 92, "155003": 92, "2426880": 92, "155506": 92, "2442432": 92, "155483": 92, "38it": 92, "2457982": 92, "154776": 92, "55it": 92, "2473626": 92, "155270": 92, "2489155": 92, "152945": 92, "2504608": 92, "153411": 92, "2520150": 92, "154007": 92, "10it": 92, "2535722": 92, "154515": 92, "2551303": 92, "154898": 92, "2566916": 92, "155265": 92, "2582456": 92, "155303": 92, "2597988": 92, "154255": 92, "2613531": 92, "154604": 92, "2629103": 92, "154935": 92, "2644659": 92, "155119": 92, "2660264": 92, "155395": 92, "2675970": 92, "155890": 92, "19it": 92, "2691560": 92, "155582": 92, "2707140": 92, "155643": 92, "2722760": 92, "155806": 92, "54it": 92, "2738442": 92, "156108": 92, "2754054": 92, "155832": 92, "2769638": 92, "155801": 92, "2785236": 92, "155853": 92, "2800883": 92, "156035": 92, "2816487": 92, "149243": 92, "2832047": 92, "151087": 92, "2847658": 92, "152557": 92, "2863262": 92, "153584": 92, "2878803": 92, "154124": 92, "2894313": 92, "154411": 92, "2909874": 92, "154765": 92, "2925374": 92, "154833": 92, "2940865": 92, "154727": 92, "2956389": 92, "154877": 92, "89it": 92, "2971910": 92, "154973": 92, "2987427": 92, "155029": 92, "31it": 92, "3003022": 92, "3018554": 92, "155228": 92, "3034188": 92, "155560": 92, "3049758": 92, "155599": 92, "3065389": 92, "155808": 92, "3080975": 92, "155821": 92, "3096561": 92, "155829": 92, "3112145": 92, "155467": 92, "3127693": 92, "76it": 92, "3143257": 92, "155032": 92, "3158761": 92, "155009": 92, "3174327": 92, "155201": 92, "3189921": 92, "155420": 92, "3205500": 92, "155529": 92, "3221054": 92, "155453": 92, "3236600": 92, "155244": 92, "3252125": 92, "155055": 92, "3267656": 92, "155128": 92, "3283190": 92, "155188": 92, "3298734": 92, "155260": 92, "3314261": 92, "155153": 92, "3329777": 92, "155078": 92, "3345292": 92, "155098": 92, "3360830": 92, "155180": 92, "3376404": 92, "155345": 92, "3391944": 92, "155360": 92, "3407558": 92, "155591": 92, "3423135": 92, "3438700": 92, "155415": 92, "3454382": 92, "155834": 92, "3469966": 92, "155761": 92, "3485570": 92, "155842": 92, "3501173": 92, "155895": 92, "3516763": 92, "154652": 92, "3532339": 92, "154980": 92, "3548111": 92, "155795": 92, "3563847": 92, "156262": 92, "3579545": 92, "156474": 92, "3595198": 92, "156488": 92, "3610848": 92, "151443": 92, "3626500": 92, "152929": 92, "3642039": 92, "153652": 92, "3657709": 92, "154553": 92, "3673302": 92, "154961": 92, "3688944": 92, "155393": 92, "3704553": 92, "155600": 92, "3720119": 92, "155607": 92, "3735684": 92, "155573": 92, "3751245": 92, "155474": 92, "3766828": 92, "155578": 92, "3782415": 92, "155663": 92, "3798032": 92, "155812": 92, "3813654": 92, "155931": 92, "3829267": 92, "155987": 92, "3844880": 92, "156027": 92, "3860491": 92, "156048": 92, "3876097": 92, "155836": 92, "3891690": 92, "155861": 92, "3907277": 92, "155790": 92, "3922857": 92, "151816": 92, "3938612": 92, "153502": 92, "3954052": 92, "153766": 92, "3969617": 92, "154322": 92, "3985128": 92, "154555": 92, "4000591": 92, "154473": 92, "4016123": 92, "154724": 92, "4031599": 92, "154450": 92, "4047047": 92, "154087": 92, "4062458": 92, "154022": 92, "4077862": 92, "147260": 92, "4093304": 92, "149335": 92, "4108555": 92, "150261": 92, "4123944": 92, "151330": 92, "4139383": 92, "152235": 92, "4154671": 92, "152424": 92, "4170003": 92, "152689": 92, "4185376": 92, "152997": 92, "4200712": 92, "153104": 92, "4216098": 92, "153328": 92, "4231495": 92, "153517": 92, "4247243": 92, "154701": 92, "4262871": 92, "155171": 92, "4278523": 92, "155571": 92, "4294172": 92, "155845": 92, "4309805": 92, "4325405": 92, "155881": 92, "4340994": 92, "155414": 92, "4356660": 92, "155783": 92, "4372239": 92, "155768": 92, "4387936": 92, "156126": 92, "26it": 92, "4403549": 92, "156121": 92, "4419162": 92, "155988": 92, "4434857": 92, "156274": 92, "4450485": 92, "155907": 92, "4466107": 92, "155998": 92, "4481761": 92, "156157": 92, "4497377": 92, "155952": 92, "4512994": 92, "156015": 92, "4528766": 92, "156525": 92, "4544419": 92, "156444": 92, "4560064": 92, "149698": 92, "4575663": 92, "151524": 92, "4591244": 92, "152778": 92, "4606883": 92, "153844": 92, "4622390": 92, "154206": 92, "4637939": 92, "154586": 92, "4653434": 92, "154693": 92, "4668958": 92, "154854": 92, "4684546": 92, "155159": 92, "4700166": 92, "155468": 92, "4715717": 92, "155407": 92, "4731292": 92, "4746845": 92, "155216": 92, "4762368": 92, "155057": 92, "4777875": 92, "155058": 92, "4793382": 92, "155035": 92, "4808887": 92, "154846": 92, "4824372": 92, "154837": 92, "4839995": 92, "155251": 92, "4855563": 92, "155377": 92, "4871109": 92, "155400": 92, "4886656": 92, "155417": 92, "4902254": 92, "155583": 92, "4917813": 92, "4933371": 92, "155508": 92, "4948922": 92, "155476": 92, "4964470": 92, "155300": 92, "4980009": 92, "155323": 92, "4995682": 92, "155742": 92, "154929": 92, "3263230": 92, "783379": 92, "275110": 92, "255792": 92, "78225": 92, "55990": 92, "54427": 92, "33591": 92, "24645": 92, "21308": 92, "15045": 92, "14171": 92, "13832": 92, "13498": 92, "11490": 92, "9164": 92, "8769": 92, "6999": 92, "6031": 92, "5011": 92, "mistakenli": 92, "class_issu": 92, "aim": [92, 95], "domin": 92, "extratreesclassifi": 93, "extratre": 93, "ranked_label_issu": [93, 94], "labelencod": [93, 94], "labels_raw": 93, "interg": [93, 94], "tress": 93, "827": 93, "cheat": 93, "0pt": 93, "233": 93, "labels_train": 93, "labels_test": 93, "acc_og": [93, 94], "783068783068783": 93, "acc_cl": [93, 94], "8095238095238095": 93, "earlier": [94, 95], "raw_label": 94, "raw_train_text": 94, "raw_test_text": 94, "raw_train_label": 94, "raw_test_label": 94, "encond": 94, "train_text": 94, "test_text": 94, "858371": 94, "547274": 94, "826228": 94, "966008": 94, "792449": 94, "646": 94, "390": 94, "628": 94, "702": 94, "135": 94, "735": 94, "print_as_df": 94, "inverse_transform": 94, "fight": 94, "bunch": 95, "conll": 95, "2003": 95, "love": 95, "n_i": 95, "optional_list_of_ordered_class_nam": 95, "deepai": 95, "conll2003": 95, "rm": 95, "tokenclassif": 95, "2024": 95, "2400": 95, "52e0": 95, "1a00": 95, "1069": 95, "connect": 95, "443": 95, "await": 95, "982975": 95, "960k": 95, "kb": 95, "959": 95, "94k": 95, "mb": 95, "directori": 95, "inflat": 95, "17045998": 95, "16m": 95, "octet": 95, "25m": 95, "3mb": 95, "26m": 95, "7mb": 95, "bert": 95, "read_npz": 95, "filepath": 95, "corrsespond": 95, "iob2": 95, "given_ent": 95, "entity_map": 95, "readfil": 95, "sep": 95, "startswith": 95, "docstart": 95, "isalpha": 95, "isupp": 95, "indices_to_preview": 95, "nsentenc": 95, "eu": 95, "reject": 95, "boycott": 95, "british": 95, "lamb": 95, "00030412": 95, "00023826": 95, "99936208": 95, "00007009": 95, "00002545": 95, "99998795": 95, "00000401": 95, "00000218": 95, "00000455": 95, "00000131": 95, "00000749": 95, "99996115": 95, "00001371": 95, "0000087": 95, "00000895": 95, "99998936": 95, "00000382": 95, "00000178": 95, "00000366": 95, "00000137": 95, "99999101": 95, "00000266": 95, "00000174": 95, "0000035": 95, "00000109": 95, "99998768": 95, "00000482": 95, "00000202": 95, "00000438": 95, "0000011": 95, "00000465": 95, "99996392": 95, "00001105": 95, "0000116": 95, "00000878": 95, "99998671": 95, "00000364": 95, "00000213": 95, "00000472": 95, "00000281": 95, "99999073": 95, "00000211": 95, "00000159": 95, "00000442": 95, "00000115": 95, "peter": 95, "blackburn": 95, "00000358": 95, "00000529": 95, "99995623": 95, "0000129": 95, "0000024": 95, "00001812": 95, "99994141": 95, "00001645": 95, "00002162": 95, "brussel": 95, "1996": 95, "00001172": 95, "00000821": 95, "00004661": 95, "0000618": 95, "99987167": 95, "99999061": 95, "00000201": 95, "00000195": 95, "00000408": 95, "00000135": 95, "2254": 95, "2907": 95, "19392": 95, "9962": 95, "8904": 95, "19303": 95, "12918": 95, "9256": 95, "11855": 95, "18392": 95, "20426": 95, "19402": 95, "14744": 95, "19371": 95, "4645": 95, "10331": 95, "9430": 95, "6143": 95, "18367": 95, "12914": 95, "todai": 95, "weather": 95, "march": 95, "scalfaro": 95, "northern": 95, "himself": 95, "said": 95, "germani": 95, "nastja": 95, "rysich": 95, "north": 95, "spla": 95, "fought": 95, "khartoum": 95, "govern": 95, "south": 95, "1983": 95, "autonomi": 95, "animist": 95, "region": 95, "moslem": 95, "arabis": 95, "mayor": 95, "antonio": 95, "gonzalez": 95, "garcia": 95, "revolutionari": 95, "parti": 95, "wednesdai": 95, "troop": 95, "raid": 95, "farm": 95, "stole": 95, "rape": 95, "women": 95, "spring": 95, "chg": 95, "hrw": 95, "12pct": 95, "princ": 95, "photo": 95, "moment": 95, "spokeswoman": 95, "rainier": 95, "told": 95, "reuter": 95, "danila": 95, "carib": 95, "w224": 95, "equip": 95, "radiomet": 95, "earn": 95, "19996": 95, "london": 95, "denom": 95, "sale": 95, "uk": 95, "jp": 95, "fr": 95, "maccabi": 95, "hapoel": 95, "haifa": 95, "tel": 95, "aviv": 95, "hospit": 95, "rever": 95, "roman": 95, "cathol": 95, "nun": 95, "admit": 95, "calcutta": 95, "week": 95, "ago": 95, "fever": 95, "vomit": 95, "allianc": 95, "embattl": 95, "kabul": 95, "salang": 95, "highwai": 95, "mondai": 95, "tuesdai": 95, "suprem": 95, "council": 95, "led": 95, "jumbish": 95, "milli": 95, "movement": 95, "warlord": 95, "abdul": 95, "rashid": 95, "dostum": 95, "dollar": 95, "exchang": 95, "3570": 95, "12049": 95, "born": 95, "1937": 95, "provinc": 95, "anhui": 95, "dai": 95, "came": 95, "shanghai": 95, "citi": 95, "prolif": 95, "author": 95, "teacher": 95, "chines": 95, "16764": 95, "1990": 95, "historian": 95, "alan": 95, "john": 95, "percival": 95, "taylor": 95, "di": 95, "20446": 95, "pace": 95, "bowler": 95, "ian": 95, "harvei": 95, "claim": 95, "victoria": 95, "15514": 95, "cotti": 95, "osc": 95, "foreign": 95, "minist": 95, "7525": 95, "sultan": 95, "specter": 95, "met": 95, "crown": 95, "abdullah": 95, "defenc": 95, "aviat": 95, "jeddah": 95, "saudi": 95, "agenc": 95, "2288": 95, "hi": 95, "customari": 95, "outfit": 95, "champion": 95, "damp": 95, "scalp": 95, "canada": 95, "reign": 95, "olymp": 95, "donovan": 95, "bailei": 95, "1992": 95, "linford": 95, "christi": 95, "britain": 95, "1984": 95, "1988": 95, "carl": 95, "lewi": 95, "ambigi": 95, "punctuat": 95, "chicago": 95, "digest": 95, "philadelphia": 95, "usda": 95, "york": 95, "token_issu": 95, "471": 95, "kean": 95, "year": 95, "contract": 95, "manchest": 95, "19072": 95, "societi": 95, "million": 95, "bite": 95, "deliv": 95, "19910": 95, "father": 95, "clarenc": 95, "woolmer": 95, "renam": 95, "uttar": 95, "pradesh": 95, "india": 95, "ranji": 95, "trophi": 95, "nation": 95, "championship": 95, "captain": 95, "1949": 95, "15658": 95, "19879": 95, "iii": 95, "brian": 95, "shimer": 95, "randi": 95, "jone": 95, "19104": 95}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [31, 0, 0, "-", "dataset"], [34, 0, 0, "-", "experimental"], [37, 0, 0, "-", "filter"], [38, 0, 0, "-", "internal"], [49, 0, 0, "-", "models"], [51, 0, 0, "-", "multiannotator"], [54, 0, 0, "-", "multilabel_classification"], [57, 0, 0, "-", "object_detection"], [60, 0, 0, "-", "outlier"], [61, 0, 0, "-", "rank"], [62, 0, 0, "-", "regression"], [66, 0, 0, "-", "segmentation"], [70, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [28, 0, 0, "-", "report"], [29, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"], [10, 2, 1, "", "MultiClass"], [10, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [22, 0, 0, "-", "noniid"], [23, 0, 0, "-", "null"], [24, 0, 0, "-", "outlier"], [27, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, 2, 1, "", "NonIIDIssueManager"], [22, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[23, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[24, 6, 1, "", "DEFAULT_THRESHOLDS"], [24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 6, 1, "", "ood"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, 2, 1, "", "RegressionLabelIssueManager"], [26, 1, 1, "", "find_issues_with_features"], [26, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[27, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [27, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "filter_cluster_ids"], [27, 3, 1, "", "find_issues"], [27, 3, 1, "", "get_worst_cluster"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "perform_clustering"], [27, 3, 1, "", "report"], [27, 3, 1, "", "set_knn_graph"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[28, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[28, 3, 1, "", "get_report"], [28, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[29, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[29, 6, 1, "", "CLASSIFICATION"], [29, 6, 1, "", "MULTILABEL"], [29, 6, 1, "", "REGRESSION"], [29, 3, 1, "", "__contains__"], [29, 3, 1, "", "__getitem__"], [29, 3, 1, "", "__iter__"], [29, 3, 1, "", "__len__"], [29, 3, 1, "", "from_str"], [29, 4, 1, "", "is_classification"], [29, 4, 1, "", "is_multilabel"], [29, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[31, 1, 1, "", "find_overlapping_classes"], [31, 1, 1, "", "health_summary"], [31, 1, 1, "", "overall_label_health_score"], [31, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[32, 0, 0, "-", "cifar_cnn"], [33, 0, 0, "-", "coteaching"], [35, 0, 0, "-", "label_issues_batched"], [36, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[32, 2, 1, "", "CNN"], [32, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[32, 6, 1, "", "T_destination"], [32, 3, 1, "", "__call__"], [32, 3, 1, "", "add_module"], [32, 3, 1, "", "apply"], [32, 3, 1, "", "bfloat16"], [32, 3, 1, "", "buffers"], [32, 6, 1, "", "call_super_init"], [32, 3, 1, "", "children"], [32, 3, 1, "", "compile"], [32, 3, 1, "", "cpu"], [32, 3, 1, "", "cuda"], [32, 3, 1, "", "double"], [32, 6, 1, "", "dump_patches"], [32, 3, 1, "", "eval"], [32, 3, 1, "", "extra_repr"], [32, 3, 1, "", "float"], [32, 3, 1, "id0", "forward"], [32, 3, 1, "", "get_buffer"], [32, 3, 1, "", "get_extra_state"], [32, 3, 1, "", "get_parameter"], [32, 3, 1, "", "get_submodule"], [32, 3, 1, "", "half"], [32, 3, 1, "", "ipu"], [32, 3, 1, "", "load_state_dict"], [32, 3, 1, "", "modules"], [32, 3, 1, "", "named_buffers"], [32, 3, 1, "", "named_children"], [32, 3, 1, "", "named_modules"], [32, 3, 1, "", "named_parameters"], [32, 3, 1, "", "parameters"], [32, 3, 1, "", "register_backward_hook"], [32, 3, 1, "", "register_buffer"], [32, 3, 1, "", "register_forward_hook"], [32, 3, 1, "", "register_forward_pre_hook"], [32, 3, 1, "", "register_full_backward_hook"], [32, 3, 1, "", "register_full_backward_pre_hook"], [32, 3, 1, "", "register_load_state_dict_post_hook"], [32, 3, 1, "", "register_module"], [32, 3, 1, "", "register_parameter"], [32, 3, 1, "", "register_state_dict_pre_hook"], [32, 3, 1, "", "requires_grad_"], [32, 3, 1, "", "set_extra_state"], [32, 3, 1, "", "share_memory"], [32, 3, 1, "", "state_dict"], [32, 3, 1, "", "to"], [32, 3, 1, "", "to_empty"], [32, 3, 1, "", "train"], [32, 6, 1, "", "training"], [32, 3, 1, "", "type"], [32, 3, 1, "", "xpu"], [32, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[33, 1, 1, "", "adjust_learning_rate"], [33, 1, 1, "", "evaluate"], [33, 1, 1, "", "forget_rate_scheduler"], [33, 1, 1, "", "initialize_lr_scheduler"], [33, 1, 1, "", "loss_coteaching"], [33, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[35, 2, 1, "", "LabelInspector"], [35, 7, 1, "", "adj_confident_thresholds_shared"], [35, 1, 1, "", "find_label_issues_batched"], [35, 7, 1, "", "labels_shared"], [35, 7, 1, "", "pred_probs_shared"], [35, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[35, 3, 1, "", "get_confident_thresholds"], [35, 3, 1, "", "get_label_issues"], [35, 3, 1, "", "get_num_issues"], [35, 3, 1, "", "get_quality_scores"], [35, 3, 1, "", "score_label_quality"], [35, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[36, 2, 1, "", "CNN"], [36, 2, 1, "", "SimpleNet"], [36, 1, 1, "", "get_mnist_dataset"], [36, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[36, 3, 1, "", "__init_subclass__"], [36, 6, 1, "", "batch_size"], [36, 6, 1, "", "dataset"], [36, 6, 1, "", "epochs"], [36, 3, 1, "id0", "fit"], [36, 3, 1, "", "get_metadata_routing"], [36, 3, 1, "", "get_params"], [36, 6, 1, "", "loader"], [36, 6, 1, "", "log_interval"], [36, 6, 1, "", "lr"], [36, 6, 1, "", "momentum"], [36, 6, 1, "", "no_cuda"], [36, 3, 1, "id1", "predict"], [36, 3, 1, "id4", "predict_proba"], [36, 6, 1, "", "seed"], [36, 3, 1, "", "set_fit_request"], [36, 3, 1, "", "set_params"], [36, 3, 1, "", "set_predict_proba_request"], [36, 3, 1, "", "set_predict_request"], [36, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[36, 6, 1, "", "T_destination"], [36, 3, 1, "", "__call__"], [36, 3, 1, "", "add_module"], [36, 3, 1, "", "apply"], [36, 3, 1, "", "bfloat16"], [36, 3, 1, "", "buffers"], [36, 6, 1, "", "call_super_init"], [36, 3, 1, "", "children"], [36, 3, 1, "", "compile"], [36, 3, 1, "", "cpu"], [36, 3, 1, "", "cuda"], [36, 3, 1, "", "double"], [36, 6, 1, "", "dump_patches"], [36, 3, 1, "", "eval"], [36, 3, 1, "", "extra_repr"], [36, 3, 1, "", "float"], [36, 3, 1, "", "forward"], [36, 3, 1, "", "get_buffer"], [36, 3, 1, "", "get_extra_state"], [36, 3, 1, "", "get_parameter"], [36, 3, 1, "", "get_submodule"], [36, 3, 1, "", "half"], [36, 3, 1, "", "ipu"], [36, 3, 1, "", "load_state_dict"], [36, 3, 1, "", "modules"], [36, 3, 1, "", "named_buffers"], [36, 3, 1, "", "named_children"], [36, 3, 1, "", "named_modules"], [36, 3, 1, "", "named_parameters"], [36, 3, 1, "", "parameters"], [36, 3, 1, "", "register_backward_hook"], [36, 3, 1, "", "register_buffer"], [36, 3, 1, "", "register_forward_hook"], [36, 3, 1, "", "register_forward_pre_hook"], [36, 3, 1, "", "register_full_backward_hook"], [36, 3, 1, "", "register_full_backward_pre_hook"], [36, 3, 1, "", "register_load_state_dict_post_hook"], [36, 3, 1, "", "register_module"], [36, 3, 1, "", "register_parameter"], [36, 3, 1, "", "register_state_dict_pre_hook"], [36, 3, 1, "", "requires_grad_"], [36, 3, 1, "", "set_extra_state"], [36, 3, 1, "", "share_memory"], [36, 3, 1, "", "state_dict"], [36, 3, 1, "", "to"], [36, 3, 1, "", "to_empty"], [36, 3, 1, "", "train"], [36, 6, 1, "", "training"], [36, 3, 1, "", "type"], [36, 3, 1, "", "xpu"], [36, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[37, 1, 1, "", "find_label_issues"], [37, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [37, 1, 1, "", "find_predicted_neq_given"], [37, 7, 1, "", "pred_probs_by_class"], [37, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[39, 0, 0, "-", "label_quality_utils"], [40, 0, 0, "-", "latent_algebra"], [41, 0, 0, "-", "multiannotator_utils"], [42, 0, 0, "-", "multilabel_scorer"], [43, 0, 0, "-", "multilabel_utils"], [44, 0, 0, "-", "outlier"], [45, 0, 0, "-", "token_classification_utils"], [46, 0, 0, "-", "util"], [47, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[39, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[40, 1, 1, "", "compute_inv_noise_matrix"], [40, 1, 1, "", "compute_noise_matrix_from_inverse"], [40, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [40, 1, 1, "", "compute_py"], [40, 1, 1, "", "compute_py_inv_noise_matrix"], [40, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[41, 1, 1, "", "assert_valid_inputs_multiannotator"], [41, 1, 1, "", "assert_valid_pred_probs"], [41, 1, 1, "", "check_consensus_label_classes"], [41, 1, 1, "", "compute_soft_cross_entropy"], [41, 1, 1, "", "find_best_temp_scaler"], [41, 1, 1, "", "format_multiannotator_labels"], [41, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[42, 2, 1, "", "Aggregator"], [42, 2, 1, "", "ClassLabelScorer"], [42, 2, 1, "", "MultilabelScorer"], [42, 1, 1, "", "exponential_moving_average"], [42, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [42, 1, 1, "", "get_label_quality_scores"], [42, 1, 1, "", "multilabel_py"], [42, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[42, 3, 1, "", "__call__"], [42, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[42, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [42, 6, 1, "", "NORMALIZED_MARGIN"], [42, 6, 1, "", "SELF_CONFIDENCE"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "__contains__"], [42, 3, 1, "", "__getitem__"], [42, 3, 1, "", "__iter__"], [42, 3, 1, "", "__len__"], [42, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[42, 3, 1, "", "__call__"], [42, 3, 1, "", "aggregate"], [42, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[43, 1, 1, "", "get_onehot_num_classes"], [43, 1, 1, "", "int2onehot"], [43, 1, 1, "", "onehot2int"], [43, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[44, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[45, 1, 1, "", "color_sentence"], [45, 1, 1, "", "filter_sentence"], [45, 1, 1, "", "get_sentence"], [45, 1, 1, "", "mapping"], [45, 1, 1, "", "merge_probs"], [45, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[46, 1, 1, "", "append_extra_datapoint"], [46, 1, 1, "", "clip_noise_rates"], [46, 1, 1, "", "clip_values"], [46, 1, 1, "", "compress_int_array"], [46, 1, 1, "", "confusion_matrix"], [46, 1, 1, "", "csr_vstack"], [46, 1, 1, "", "estimate_pu_f1"], [46, 1, 1, "", "extract_indices_tf"], [46, 1, 1, "", "force_two_dimensions"], [46, 1, 1, "", "format_labels"], [46, 1, 1, "", "get_missing_classes"], [46, 1, 1, "", "get_num_classes"], [46, 1, 1, "", "get_unique_classes"], [46, 1, 1, "", "is_tensorflow_dataset"], [46, 1, 1, "", "is_torch_dataset"], [46, 1, 1, "", "num_unique_classes"], [46, 1, 1, "", "print_inverse_noise_matrix"], [46, 1, 1, "", "print_joint_matrix"], [46, 1, 1, "", "print_noise_matrix"], [46, 1, 1, "", "print_square_matrix"], [46, 1, 1, "", "remove_noise_from_class"], [46, 1, 1, "", "round_preserving_row_totals"], [46, 1, 1, "", "round_preserving_sum"], [46, 1, 1, "", "smart_display_dataframe"], [46, 1, 1, "", "subset_X_y"], [46, 1, 1, "", "subset_data"], [46, 1, 1, "", "subset_labels"], [46, 1, 1, "", "train_val_split"], [46, 1, 1, "", "unshuffle_tensorflow_dataset"], [46, 1, 1, "", "value_counts"], [46, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[47, 1, 1, "", "assert_indexing_works"], [47, 1, 1, "", "assert_nonempty_input"], [47, 1, 1, "", "assert_valid_class_labels"], [47, 1, 1, "", "assert_valid_inputs"], [47, 1, 1, "", "labels_to_array"], [47, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[50, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[50, 2, 1, "", "KerasWrapperModel"], [50, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[50, 3, 1, "", "fit"], [50, 3, 1, "", "get_params"], [50, 3, 1, "", "predict"], [50, 3, 1, "", "predict_proba"], [50, 3, 1, "", "set_params"], [50, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[50, 3, 1, "", "fit"], [50, 3, 1, "", "get_params"], [50, 3, 1, "", "predict"], [50, 3, 1, "", "predict_proba"], [50, 3, 1, "", "set_params"], [50, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[51, 1, 1, "", "convert_long_to_wide_dataset"], [51, 1, 1, "", "get_active_learning_scores"], [51, 1, 1, "", "get_active_learning_scores_ensemble"], [51, 1, 1, "", "get_label_quality_multiannotator"], [51, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [51, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[52, 0, 0, "-", "dataset"], [53, 0, 0, "-", "filter"], [55, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[52, 1, 1, "", "common_multilabel_issues"], [52, 1, 1, "", "multilabel_health_summary"], [52, 1, 1, "", "overall_multilabel_health_score"], [52, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[53, 1, 1, "", "find_label_issues"], [53, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[55, 1, 1, "", "get_label_quality_scores"], [55, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[56, 0, 0, "-", "filter"], [58, 0, 0, "-", "rank"], [59, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[56, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[58, 1, 1, "", "compute_badloc_box_scores"], [58, 1, 1, "", "compute_overlooked_box_scores"], [58, 1, 1, "", "compute_swap_box_scores"], [58, 1, 1, "", "get_label_quality_scores"], [58, 1, 1, "", "issues_from_scores"], [58, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[59, 1, 1, "", "bounding_box_size_distribution"], [59, 1, 1, "", "calculate_per_class_metrics"], [59, 1, 1, "", "class_label_distribution"], [59, 1, 1, "", "get_average_per_class_confusion_matrix"], [59, 1, 1, "", "get_sorted_bbox_count_idxs"], [59, 1, 1, "", "object_counts_per_image"], [59, 1, 1, "", "plot_class_distribution"], [59, 1, 1, "", "plot_class_size_distributions"], [59, 1, 1, "", "visualize"]], "cleanlab.outlier": [[60, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "fit_score"], [60, 3, 1, "", "score"]], "cleanlab.rank": [[61, 1, 1, "", "find_top_issues"], [61, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [61, 1, 1, "", "get_label_quality_ensemble_scores"], [61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "get_normalized_margin_for_each_label"], [61, 1, 1, "", "get_self_confidence_for_each_label"], [61, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[63, 0, 0, "-", "learn"], [64, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[63, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[63, 3, 1, "", "__init_subclass__"], [63, 3, 1, "", "find_label_issues"], [63, 3, 1, "", "fit"], [63, 3, 1, "", "get_aleatoric_uncertainty"], [63, 3, 1, "", "get_epistemic_uncertainty"], [63, 3, 1, "", "get_label_issues"], [63, 3, 1, "", "get_metadata_routing"], [63, 3, 1, "", "get_params"], [63, 3, 1, "", "predict"], [63, 3, 1, "", "save_space"], [63, 3, 1, "", "score"], [63, 3, 1, "", "set_fit_request"], [63, 3, 1, "", "set_params"], [63, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[64, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[65, 0, 0, "-", "filter"], [67, 0, 0, "-", "rank"], [68, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[65, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[68, 1, 1, "", "common_label_issues"], [68, 1, 1, "", "display_issues"], [68, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[69, 0, 0, "-", "filter"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[69, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[72, 1, 1, "", "common_label_issues"], [72, 1, 1, "", "display_issues"], [72, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 75, 79, 80, 82, 83, 84, 87, 93, 94, 95], "count": [3, 84], "datalab": [4, 5, 7, 8, 9, 76, 77, 78, 79, 80, 84, 87], "creat": [5, 76, 77, 84, 86], "your": [5, 73, 76, 77, 80, 82, 84], "own": 5, "issu": [5, 7, 8, 19, 26, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 92, 93, 95], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 76], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 76], "us": [5, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "gener": 6, "cluster": [6, 82], "id": 6, "guid": [7, 9], "type": [7, 8, 84], "custom": [7, 76], "can": [8, 77, 81, 82, 84, 86], "detect": [8, 77, 79, 80, 82, 84, 88, 89], "estim": [8, 84, 86, 87], "each": 8, "label": [8, 21, 26, 73, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95], "outlier": [8, 24, 44, 60, 79, 80, 83, 87, 89], "Near": [8, 77, 79, 80, 83], "duplic": [8, 17, 77, 79, 80, 82, 83, 87], "non": [8, 80], "iid": [8, 80], "class": [8, 74, 84, 92], "imbal": [8, 18], "imag": [8, 83, 89], "specif": [8, 19, 92], "underperform": [8, 82], "group": [8, 82], "null": [8, 23], "data": [8, 10, 73, 75, 76, 77, 79, 80, 81, 82, 84, 86, 87, 88, 89, 91, 92, 93, 95], "valuat": 8, "option": 8, "paramet": [8, 84], "get": [9, 76, 77, 86, 87, 88, 92, 95], "start": [9, 81], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 38], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 82, 84], "task": [19, 29], "noniid": 22, "regress": [25, 62, 63, 64, 82, 91], "prioriti": 26, "order": 26, "find": [26, 73, 75, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "underperforming_group": 27, "report": [28, 83], "dataset": [31, 52, 73, 77, 80, 81, 82, 83, 84, 87, 88, 89, 91, 92, 94, 95], "cifar_cnn": 32, "coteach": 33, "experiment": 34, "label_issues_batch": 35, "mnist_pytorch": 36, "filter": [37, 53, 56, 65, 69, 84], "label_quality_util": 39, "latent_algebra": 40, "multiannotator_util": 41, "multilabel_scor": 42, "multilabel_util": 43, "token_classification_util": 45, "util": 46, "valid": [47, 83, 90], "fasttext": 48, "model": [49, 73, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "kera": 50, "multiannot": [51, 86], "multilabel_classif": 54, "rank": [55, 58, 61, 64, 67, 71, 84], "object_detect": 57, "summari": [59, 68, 72], "learn": [63, 77, 82, 84, 93], "segment": [66, 92], "token_classif": [70, 95], "cleanlab": [73, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "open": [73, 82], "sourc": [73, 82], "document": 73, "quickstart": 73, "1": [73, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "instal": [73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "2": [73, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "common": [73, 74, 95], "3": [73, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "handl": [73, 82], "error": [73, 82, 83, 84, 86, 87, 88, 91, 92, 94, 95], "train": [73, 75, 82, 89, 91, 93, 94], "robust": [73, 84, 91, 93, 94], "noisi": [73, 84, 91, 93, 94], "4": [73, 75, 76, 77, 79, 80, 83, 84, 86, 88, 89, 91, 93, 94], "curat": [73, 81], "fix": [73, 82], "level": [73, 81, 84, 95], "5": [73, 75, 77, 79, 83, 84, 86, 91, 93], "improv": [73, 86], "via": [73, 84, 86], "mani": [73, 84], "other": [73, 86, 88, 91], "techniqu": 73, "contribut": 73, "easi": [73, 79, 80, 83], "mode": [73, 79, 80, 83], "how": [74, 82, 84, 86, 87, 95], "migrat": 74, "version": 74, "0": 74, "from": [74, 76, 77, 84, 91, 93, 94], "pre": [74, 75, 82, 89], "function": [74, 76], "name": 74, "chang": 74, "modul": [74, 84], "new": 74, "remov": 74, "argument": [74, 76], "variabl": 74, "audio": 75, "speechbrain": 75, "depend": [75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "import": [75, 76, 77, 81, 83, 84, 86], "them": [75, 81, 84], "load": [75, 76, 77, 79, 80, 91, 93, 94], "featur": [75, 83, 89], "fit": 75, "linear": 75, "comput": [75, 79, 80, 82, 83, 86, 90, 93], "out": [75, 76, 77, 79, 80, 83, 86, 90, 93], "sampl": [75, 76, 77, 79, 80, 83, 86, 90, 93], "predict": [75, 76, 77, 79, 80, 83, 86, 87, 88, 90, 93], "probabl": [75, 76, 77, 79, 80, 83, 86, 90, 93], "workflow": [76, 84], "audit": [76, 77], "requir": [76, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "classifi": [76, 77], "instanti": 76, "object": [76, 88], "increment": 76, "search": 76, "specifi": [76, 82], "nondefault": 76, "save": 76, "ad": 76, "A": 77, "unifi": 77, "all": [77, 84], "kind": [77, 88], "skip": [77, 81, 84, 86], "detail": [77, 81, 84, 86], "more": [77, 84, 91, 93, 94], "about": 77, "addit": 77, "inform": [77, 83], "tutori": [78, 81, 85], "tabular": [79, 93], "numer": 79, "categor": 79, "column": 79, "process": [79, 89, 91, 93], "select": [79, 93], "construct": 79, "k": [79, 83, 90], "nearest": 79, "neighbour": 79, "graph": 79, "text": [80, 94, 95], "format": [80, 82, 87, 88, 94], "defin": [80, 83, 91, 94], "drift": [80, 87], "fetch": [81, 83], "evalu": 81, "health": [81, 84], "8": [81, 84], "popular": 81, "faq": 82, "what": [82, 84, 90], "do": [82, 84], "i": [82, 84, 90], "infer": 82, "correct": 82, "exampl": [82, 83, 84, 89], "ha": 82, "flag": 82, "should": 82, "v": 82, "test": [82, 84, 89], "big": 82, "limit": 82, "memori": 82, "why": 82, "isn": 82, "t": 82, "cleanlearn": [82, 84], "work": [82, 84, 86, 95], "me": 82, "differ": [82, 88], "clean": [82, 84], "final": 82, "hyperparamet": 82, "tune": 82, "onli": 82, "one": [82, 84, 87, 92], "doe": [82, 86, 95], "take": 82, "so": 82, "long": 82, "slice": 82, "when": [82, 84], "identifi": [82, 88], "run": 82, "licens": 82, "under": 82, "an": 82, "answer": 82, "question": 82, "pytorch": [83, 89], "normal": 83, "fashion": 83, "mnist": 83, "prepar": 83, "fold": [83, 90], "cross": [83, 90], "embed": [83, 89], "7": [83, 84], "view": 83, "most": [83, 95], "like": 83, "sever": 83, "set": [83, 84], "dark": 83, "top": [83, 92], "low": 83, "The": 84, "centric": 84, "ai": 84, "machin": 84, "find_label_issu": 84, "line": 84, "code": 84, "visual": [84, 88, 89, 92], "twenti": 84, "lowest": 84, "qualiti": [84, 86, 87, 88, 92, 95], "see": 84, "now": 84, "let": 84, "": 84, "happen": 84, "we": 84, "merg": 84, "seafoam": 84, "green": 84, "yellow": 84, "too": 84, "you": 84, "re": 84, "6": 84, "One": 84, "score": [84, 86, 87, 88, 92, 95], "rule": 84, "overal": [84, 92], "accur": 84, "thi": 84, "directli": 84, "fulli": 84, "character": 84, "nois": 84, "matrix": [84, 87], "joint": 84, "prior": 84, "true": 84, "distribut": 84, "flip": 84, "rate": 84, "ani": 84, "again": 84, "support": 84, "lot": 84, "method": 84, "filter_bi": 84, "automat": 84, "everi": 84, "uniqu": 84, "num_label_issu": 84, "threshold": 84, "found": 84, "Not": 84, "sure": 84, "ensembl": 84, "multipl": [84, 86], "predictor": 84, "consensu": 86, "annot": 86, "initi": 86, "major": 86, "vote": 86, "better": 86, "statist": 86, "compar": 86, "inspect": 86, "potenti": [86, 91, 94], "retrain": 86, "further": 86, "multi": 87, "beyond": 87, "mislabel": [87, 92, 95], "given": 87, "hot": 87, "binari": 87, "without": 87, "applic": 87, "real": 87, "download": [88, 92, 95], "objectlab": 88, "exploratori": 88, "analysi": 88, "timm": 89, "cifar10": 89, "some": 89, "pred_prob": [89, 92, 95], "wai": 91, "semant": 92, "which": 92, "ar": 92, "commonli": 92, "focus": 92, "scikit": 93, "token": 95, "word": 95, "sentenc": 95, "contain": 95, "particular": 95}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "datalab": [[4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[5, "creating-your-own-issues-manager"]], "Prerequisites": [[5, "prerequisites"]], "Implementing IssueManagers": [[5, "implementing-issuemanagers"]], "Basic Issue Check": [[5, "basic-issue-check"]], "Intermediate Issue Check": [[5, "intermediate-issue-check"]], "Advanced Issue Check": [[5, "advanced-issue-check"]], "Use with Datalab": [[5, "use-with-datalab"]], "Generating Cluster IDs": [[6, "generating-cluster-ids"]], "Datalab guides": [[7, "datalab-guides"]], "Types of issues": [[7, "types-of-issues"]], "Customizing issue types": [[7, "customizing-issue-types"]], "Datalab Issue Types": [[8, "datalab-issue-types"]], "Types of issues Datalab can detect": [[8, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[8, "estimates-for-each-issue-type"]], "Label Issue": [[8, "label-issue"]], "Outlier Issue": [[8, "outlier-issue"]], "(Near) Duplicate Issue": [[8, "near-duplicate-issue"]], "Non-IID Issue": [[8, "non-iid-issue"]], "Class Imbalance Issue": [[8, "class-imbalance-issue"]], "Image-specific Issues": [[8, "image-specific-issues"]], "Underperforming Group Issue": [[8, "underperforming-group-issue"]], "Null Issue": [[8, "null-issue"]], "Data Valuation Issue": [[8, "data-valuation-issue"]], "Optional Issue Parameters": [[8, "optional-issue-parameters"]], "Label Issue Parameters": [[8, "label-issue-parameters"]], "Outlier Issue Parameters": [[8, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[8, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[8, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[8, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[8, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[8, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[8, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[8, "image-issue-parameters"]], "Getting Started": [[9, "getting-started"]], "Guides": [[9, "guides"]], "API Reference": [[9, "api-reference"]], "data": [[10, "module-cleanlab.datalab.internal.data"]], "data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[13, "internal"], [38, "internal"]], "issue_finder": [[14, "issue-finder"]], "data_valuation": [[16, "data-valuation"]], "duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[19, "issue-manager"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[19, "registered-issue-managers"]], "Unregistered issue managers": [[19, "unregistered-issue-managers"]], "ML task-specific issue managers": [[19, "ml-task-specific-issue-managers"]], "label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[23, "null"]], "outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [44, "module-cleanlab.internal.outlier"], [60, "module-cleanlab.outlier"]], "regression": [[25, "regression"], [62, "regression"]], "Priority Order for finding issues:": [[26, null]], "underperforming_group": [[27, "underperforming-group"]], "report": [[28, "report"]], "task": [[29, "task"]], "dataset": [[31, "module-cleanlab.dataset"], [52, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[32, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[33, "module-cleanlab.experimental.coteaching"]], "experimental": [[34, "experimental"]], "label_issues_batched": [[35, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[36, "module-cleanlab.experimental.mnist_pytorch"]], "filter": [[37, "module-cleanlab.filter"], [53, "module-cleanlab.multilabel_classification.filter"], [56, "filter"], [65, "filter"], [69, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[39, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[40, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[41, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[42, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[43, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[45, "module-cleanlab.internal.token_classification_utils"]], "util": [[46, "module-cleanlab.internal.util"]], "validation": [[47, "module-cleanlab.internal.validation"]], "fasttext": [[48, "fasttext"]], "models": [[49, "models"]], "keras": [[50, "module-cleanlab.models.keras"]], "multiannotator": [[51, "module-cleanlab.multiannotator"]], "multilabel_classification": [[54, "multilabel-classification"]], "rank": [[55, "module-cleanlab.multilabel_classification.rank"], [58, "module-cleanlab.object_detection.rank"], [61, "module-cleanlab.rank"], [67, "module-cleanlab.segmentation.rank"], [71, "module-cleanlab.token_classification.rank"]], "object_detection": [[57, "object-detection"]], "summary": [[59, "summary"], [68, "module-cleanlab.segmentation.summary"], [72, "module-cleanlab.token_classification.summary"]], "regression.learn": [[63, "module-cleanlab.regression.learn"]], "regression.rank": [[64, "module-cleanlab.regression.rank"]], "segmentation": [[66, "segmentation"]], "token_classification": [[70, "token-classification"]], "cleanlab open-source documentation": [[73, "cleanlab-open-source-documentation"]], "Quickstart": [[73, "quickstart"]], "1. Install cleanlab": [[73, "install-cleanlab"]], "2. Find common issues in your data": [[73, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[73, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[73, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[73, "improve-your-data-via-many-other-techniques"]], "Contributing": [[73, "contributing"]], "Easy Mode": [[73, "easy-mode"], [79, "Easy-Mode"], [80, "Easy-Mode"], [83, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[74, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[74, "function-and-class-name-changes"]], "Module name changes": [[74, "module-name-changes"]], "New modules": [[74, "new-modules"]], "Removed modules": [[74, "removed-modules"]], "Common argument and variable name changes": [[74, "common-argument-and-variable-name-changes"]], "Audio Classification with SpeechBrain and Cleanlab": [[75, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[75, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[75, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[75, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[75, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[75, "5.-Use-cleanlab-to-find-label-issues"], [79, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[76, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[76, "Install-and-import-required-dependencies"]], "Create and load the data": [[76, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[76, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[76, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[76, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[76, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[76, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[76, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[77, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[77, "1.-Install-and-import-required-dependencies"], [83, "1.-Install-and-import-required-dependencies"], [86, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[77, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[77, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[77, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[77, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[77, "Get-additional-information"]], "Near duplicate issues": [[77, "Near-duplicate-issues"], [83, "Near-duplicate-issues"]], "Datalab Tutorials": [[78, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[79, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "1. Install required dependencies": [[79, "1.-Install-required-dependencies"], [80, "1.-Install-required-dependencies"], [91, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"]], "2. Load and process the data": [[79, "2.-Load-and-process-the-data"], [91, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[79, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Construct K nearest neighbours graph": [[79, "4.-Construct-K-nearest-neighbours-graph"]], "Label issues": [[79, "Label-issues"], [80, "Label-issues"], [83, "Label-issues"]], "Outlier issues": [[79, "Outlier-issues"], [80, "Outlier-issues"], [83, "Outlier-issues"]], "Near-duplicate issues": [[79, "Near-duplicate-issues"], [80, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[80, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "2. Load and format the text dataset": [[80, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[80, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[80, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[80, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[81, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[81, "Install-dependencies-and-import-them"], [84, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[81, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[81, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[82, "FAQ"]], "What data can cleanlab detect issues in?": [[82, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[82, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[82, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[82, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[82, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[82, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[82, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[82, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[82, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[82, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[82, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[82, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[82, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[82, "Can't-find-an-answer-to-your-question?"]], "Image Classification with PyTorch and Cleanlab": [[83, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[83, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[83, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[83, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[83, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[83, "7.-Use-cleanlab-to-find-issues"]], "View report": [[83, "View-report"]], "View most likely examples with label errors": [[83, "View-most-likely-examples-with-label-errors"]], "View most severe outliers": [[83, "View-most-severe-outliers"]], "View sets of near duplicate images": [[83, "View-sets-of-near-duplicate-images"]], "Dark images": [[83, "Dark-images"]], "View top examples of dark images": [[83, "View-top-examples-of-dark-images"]], "Low information images": [[83, "Low-information-images"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[84, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[84, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[84, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[84, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[84, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[84, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[84, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[84, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[84, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[84, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[84, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[84, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[84, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[84, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[84, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[84, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[84, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[84, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[84, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[84, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[84, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[84, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[85, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[86, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[86, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[86, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[86, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[86, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[86, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[86, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[86, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[86, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[87, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[87, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[87, "2.-Format-data,-labels,-and-model-predictions"], [88, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[87, "3.-Use-cleanlab-to-find-label-issues"], [88, "3.-Use-cleanlab-to-find-label-issues"], [92, "3.-Use-cleanlab-to-find-label-issues"], [95, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[87, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[87, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[87, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[87, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[87, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[88, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[88, "1.-Install-required-dependencies-and-download-data"], [92, "1.-Install-required-dependencies-and-download-data"], [95, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[88, "Get-label-quality-scores"], [92, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[88, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[88, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[88, "Other-uses-of-visualize"]], "Exploratory data analysis": [[88, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[89, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[89, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[89, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[89, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[89, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[89, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[90, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[90, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[90, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[91, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[91, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[91, "4.-Train-a-more-robust-model-from-noisy-labels"], [94, "4.-Train-a-more-robust-model-from-noisy-labels"]], "5. Other ways to find noisy labels in regression datasets": [[91, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[92, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[92, "2.-Get-data,-labels,-and-pred_probs"], [95, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[92, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[92, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[92, "Focusing-on-one-specific-class"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[93, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "4. Use cleanlab to find label issues": [[93, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[93, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[94, "Text-Classification-with-Noisy-Labels"]], "3. Define a classification model and use cleanlab to find potential label errors": [[94, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "Find Label Errors in Token Classification (Text) Datasets": [[95, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[95, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[95, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[95, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[95, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"], [10, "module-cleanlab.datalab.internal.data"], [11, "module-cleanlab.datalab.internal.data_issues"], [12, "module-cleanlab.datalab.internal.issue_manager_factory"], [13, "module-cleanlab.datalab.internal"], [14, "module-cleanlab.datalab.internal.issue_finder"], [16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [17, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [18, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [21, "module-cleanlab.datalab.internal.issue_manager.label"], [22, "module-cleanlab.datalab.internal.issue_manager.noniid"], [23, "module-cleanlab.datalab.internal.issue_manager.null"], [24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [28, "module-cleanlab.datalab.internal.report"], [29, "module-cleanlab.datalab.internal.task"], [31, "module-cleanlab.dataset"], [32, "module-cleanlab.experimental.cifar_cnn"], [33, "module-cleanlab.experimental.coteaching"], [34, "module-cleanlab.experimental"], [35, "module-cleanlab.experimental.label_issues_batched"], [36, "module-cleanlab.experimental.mnist_pytorch"], [37, "module-cleanlab.filter"], [38, "module-cleanlab.internal"], [39, "module-cleanlab.internal.label_quality_utils"], [40, "module-cleanlab.internal.latent_algebra"], [41, "module-cleanlab.internal.multiannotator_utils"], [42, "module-cleanlab.internal.multilabel_scorer"], [43, "module-cleanlab.internal.multilabel_utils"], [44, "module-cleanlab.internal.outlier"], [45, "module-cleanlab.internal.token_classification_utils"], [46, "module-cleanlab.internal.util"], [47, "module-cleanlab.internal.validation"], [49, "module-cleanlab.models"], [50, "module-cleanlab.models.keras"], [51, "module-cleanlab.multiannotator"], [52, "module-cleanlab.multilabel_classification.dataset"], [53, "module-cleanlab.multilabel_classification.filter"], [54, "module-cleanlab.multilabel_classification"], [55, "module-cleanlab.multilabel_classification.rank"], [56, "module-cleanlab.object_detection.filter"], [57, "module-cleanlab.object_detection"], [58, "module-cleanlab.object_detection.rank"], [59, "module-cleanlab.object_detection.summary"], [60, "module-cleanlab.outlier"], [61, "module-cleanlab.rank"], [62, "module-cleanlab.regression"], [63, "module-cleanlab.regression.learn"], [64, "module-cleanlab.regression.rank"], [65, "module-cleanlab.segmentation.filter"], [66, "module-cleanlab.segmentation"], [67, "module-cleanlab.segmentation.rank"], [68, "module-cleanlab.segmentation.summary"], [69, "module-cleanlab.token_classification.filter"], [70, "module-cleanlab.token_classification"], [71, "module-cleanlab.token_classification.rank"], [72, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "datalab (class in cleanlab.datalab.datalab)": [[4, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[4, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[4, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[9, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[10, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[10, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[10, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[10, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[10, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[13, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[14, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[23, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "reporter (class in cleanlab.datalab.internal.report)": [[28, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[28, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[29, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[29, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[29, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[29, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[29, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[29, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[29, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[29, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[31, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[32, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[32, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[32, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.forward"], [32, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[33, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[34, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[35, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[36, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [36, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [36, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [36, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.filter": [[37, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[37, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[37, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[37, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[37, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[37, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[38, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[39, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[39, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[40, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[41, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[42, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[42, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[42, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[43, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[44, "module-cleanlab.internal.outlier"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[44, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[45, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[46, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[47, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[49, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[50, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[50, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[50, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[51, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[52, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[53, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[53, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[53, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[54, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[55, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[55, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[55, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[56, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[56, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[57, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[58, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[59, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[60, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[60, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[60, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[60, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[60, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[61, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[61, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[61, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[62, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[63, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[63, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[63, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[64, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[64, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[65, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[65, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[66, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[67, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[67, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[67, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[68, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[68, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[68, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[68, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[69, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[69, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[70, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[71, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[71, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[71, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[72, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[72, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[72, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[72, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index 64ebad8c9..9c36d4bcd 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1275,7 +1275,7 @@

    5. Use cleanlab to find label issues -{"state": {"2621d2aed03e4367bda27a91ec6fbb06": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a5ea93c710d4701ad3a7d8452f8945b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "db4fcef588964927bbbf2169e884619a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2621d2aed03e4367bda27a91ec6fbb06", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8a5ea93c710d4701ad3a7d8452f8945b", "tabbable": null, "tooltip": null, "value": 2041.0}}, "8b651c138b4b4d4591df10b419cc7e06": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3a68141b29d429d941a74de58878bf5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9c4509f4b1eb42e2a347aea1413c0eeb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8b651c138b4b4d4591df10b419cc7e06", "placeholder": "\u200b", "style": "IPY_MODEL_e3a68141b29d429d941a74de58878bf5", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "001e83da078f4bf19a3d91d6e6a70a1d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1a2f90ff8e634acb8ed7d94c0744fd11": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5c0a56cccefe49788cf82170df08c3a0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_001e83da078f4bf19a3d91d6e6a70a1d", "placeholder": "\u200b", "style": "IPY_MODEL_1a2f90ff8e634acb8ed7d94c0744fd11", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007504kB/s]"}}, "9c4e5316d8784884a95bb29af49a783a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7f041f2d561450293a7cc461b488d51": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9c4509f4b1eb42e2a347aea1413c0eeb", "IPY_MODEL_db4fcef588964927bbbf2169e884619a", "IPY_MODEL_5c0a56cccefe49788cf82170df08c3a0"], "layout": "IPY_MODEL_9c4e5316d8784884a95bb29af49a783a", "tabbable": null, "tooltip": null}}, "bf48e7b85fab4a3e93547bdee5338018": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5525a017ede84f428bf7f45d1147fb3b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9494d1977f8c4083b8c696eb9c14c001": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bf48e7b85fab4a3e93547bdee5338018", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5525a017ede84f428bf7f45d1147fb3b", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "968b051f27ae482da0d0eb52a5004350": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "31b5600f6c4f422c979dcf6e2325b76b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ef5c54c9a1fa446980e307f305b7cd3c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_968b051f27ae482da0d0eb52a5004350", "placeholder": "\u200b", "style": "IPY_MODEL_31b5600f6c4f422c979dcf6e2325b76b", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "78bd0fcd31c247a59abd326f73336dac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7063e4e324ef4ab7a3c4e807a5f39015": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "342e6bc75d9f474ab74087676a47653f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_78bd0fcd31c247a59abd326f73336dac", "placeholder": "\u200b", "style": "IPY_MODEL_7063e4e324ef4ab7a3c4e807a5f39015", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007187MB/s]"}}, "28b6c2a5152445b490b69c9e340c733d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4cf371c5814e46f7b4cc9548e2391a6b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ef5c54c9a1fa446980e307f305b7cd3c", "IPY_MODEL_9494d1977f8c4083b8c696eb9c14c001", "IPY_MODEL_342e6bc75d9f474ab74087676a47653f"], "layout": "IPY_MODEL_28b6c2a5152445b490b69c9e340c733d", "tabbable": null, "tooltip": null}}, "99b645179cb94583af8a258674dc4938": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0410dd5ca7ec46a4966c31adc3c97af5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3c14b13b82b945a4874e25fc1504d179": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_99b645179cb94583af8a258674dc4938", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0410dd5ca7ec46a4966c31adc3c97af5", "tabbable": null, "tooltip": null, "value": 3201.0}}, "8d4fd428ed2c44c4bc2dc83852e30bd2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c1c4d8a3de93446194b61b2bd815bb5d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a8ca7cd793cb48f5bce0523ab1d6fe68": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8d4fd428ed2c44c4bc2dc83852e30bd2", "placeholder": "\u200b", "style": "IPY_MODEL_c1c4d8a3de93446194b61b2bd815bb5d", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "c454bf88a9c542edb57e871f86a544cc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cb9825499aad45e6900cd931b3cc2c3f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eede1b7827a9460d9c2ba21649816641": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c454bf88a9c542edb57e871f86a544cc", "placeholder": "\u200b", "style": "IPY_MODEL_cb9825499aad45e6900cd931b3cc2c3f", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007800kB/s]"}}, "035af14f39804e5b92c508d7a1338b0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b09471ffcb2b42709157d1bdc24fb410": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a8ca7cd793cb48f5bce0523ab1d6fe68", "IPY_MODEL_3c14b13b82b945a4874e25fc1504d179", "IPY_MODEL_eede1b7827a9460d9c2ba21649816641"], "layout": "IPY_MODEL_035af14f39804e5b92c508d7a1338b0e", "tabbable": null, "tooltip": null}}, "0a3fc519c9bf47ec83f09f465ff20fa1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fdcb988a102d44ac9bb53034b1d7bd8c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1863f605ad4f49cbaac699a7aeab73ad": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0a3fc519c9bf47ec83f09f465ff20fa1", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fdcb988a102d44ac9bb53034b1d7bd8c", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "0480ddcfbadc499ca47ee91ccaf01a03": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "42aac5f72a664a21ae62de20438f35d6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "020dc0c28a754b28b4680233ca766dd9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0480ddcfbadc499ca47ee91ccaf01a03", "placeholder": "\u200b", "style": "IPY_MODEL_42aac5f72a664a21ae62de20438f35d6", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "f3cf6ec7dc98496ba80a420d216406df": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f55a1315e8b64d85b772a2d95806d9d6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "55458f3a3cc746899cb2e74f20b6b9c6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3cf6ec7dc98496ba80a420d216406df", "placeholder": "\u200b", "style": "IPY_MODEL_f55a1315e8b64d85b772a2d95806d9d6", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007214MB/s]"}}, "f305014c039c457da29cff64d0d5e430": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9b6e3e877073483dad4641b84d19aa9e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_020dc0c28a754b28b4680233ca766dd9", "IPY_MODEL_1863f605ad4f49cbaac699a7aeab73ad", "IPY_MODEL_55458f3a3cc746899cb2e74f20b6b9c6"], "layout": "IPY_MODEL_f305014c039c457da29cff64d0d5e430", "tabbable": null, "tooltip": null}}, "c95e758e6ad34bf891aac7b599574786": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7915bde6fa894bd9a7ba8334ae02c4cd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "af39310ede14474988e9fca89abae367": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c95e758e6ad34bf891aac7b599574786", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7915bde6fa894bd9a7ba8334ae02c4cd", "tabbable": null, "tooltip": null, "value": 128619.0}}, "2f8e66dc42cc42889587f956bb90f7a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a2f350579c3d4912bbfebd66817481d2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0b55f868d1d444f080751ec81fa41f96": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2f8e66dc42cc42889587f956bb90f7a8", "placeholder": "\u200b", "style": "IPY_MODEL_a2f350579c3d4912bbfebd66817481d2", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "ce238c07860c4bccb293afd2c9537e65": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ab4aec7c2f8402eb234d2fe70e1ea9b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d304028bfdf847ee86bfef0ece9ac7ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ce238c07860c4bccb293afd2c9537e65", "placeholder": "\u200b", "style": "IPY_MODEL_8ab4aec7c2f8402eb234d2fe70e1ea9b", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200718.5MB/s]"}}, "6af83527206c48828e7b72f194802c4d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9645c93fd6bd4b098b2b9006a6f79c6b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0b55f868d1d444f080751ec81fa41f96", "IPY_MODEL_af39310ede14474988e9fca89abae367", "IPY_MODEL_d304028bfdf847ee86bfef0ece9ac7ea"], "layout": "IPY_MODEL_6af83527206c48828e7b72f194802c4d", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"4a408b2b5a6142bb8f9a67b966e56a41": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dc82cedf68ec4517b84b7616fe1bc102": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "422286c2aa5b4e0f99826dc62350ced4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a408b2b5a6142bb8f9a67b966e56a41", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_dc82cedf68ec4517b84b7616fe1bc102", "tabbable": null, "tooltip": null, "value": 2041.0}}, "85996a265784496ab3cdc4926b785d1d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d9eaa9d5c0f34c9aa2c9731e6a308660": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "31f5596511b3431cbe6eee38ba8a5b0f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_85996a265784496ab3cdc4926b785d1d", "placeholder": "\u200b", "style": "IPY_MODEL_d9eaa9d5c0f34c9aa2c9731e6a308660", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "e023a95dcc524455bfcfa0eced3c39fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fea07b234178452cb66773734463ce62": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7bed9c7c8dab4d67bc2fc60dc6bfcc5f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e023a95dcc524455bfcfa0eced3c39fb", "placeholder": "\u200b", "style": "IPY_MODEL_fea07b234178452cb66773734463ce62", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007479kB/s]"}}, "df0433b8aee044b7bdf70adb91488edb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b23fae84d94d436cafaed27cda4b45bb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_31f5596511b3431cbe6eee38ba8a5b0f", "IPY_MODEL_422286c2aa5b4e0f99826dc62350ced4", "IPY_MODEL_7bed9c7c8dab4d67bc2fc60dc6bfcc5f"], "layout": "IPY_MODEL_df0433b8aee044b7bdf70adb91488edb", "tabbable": null, "tooltip": null}}, "3ab07e52d49e46cd8e00408a0ae05cb7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "377dd93516f84b55943e5d97ff4ea1ae": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f8cf3e9b9c1f4da09d5618ab654b7927": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3ab07e52d49e46cd8e00408a0ae05cb7", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_377dd93516f84b55943e5d97ff4ea1ae", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "35bab748e2aa473fb5f8aa8641a2c0ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "75e1a6f24e7b425f891ee56e4f51e25d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "815545eed9624bfebd736e02f3fcc196": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_35bab748e2aa473fb5f8aa8641a2c0ea", "placeholder": "\u200b", "style": "IPY_MODEL_75e1a6f24e7b425f891ee56e4f51e25d", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "3baf97707f8b44a5abc86cc98da2a43e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48af091802554bdbb3bb72ff89a31f2f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5cfea7316a794136b4b1560a108d665d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3baf97707f8b44a5abc86cc98da2a43e", "placeholder": "\u200b", "style": "IPY_MODEL_48af091802554bdbb3bb72ff89a31f2f", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200748.9MB/s]"}}, "d9352b1a712f4790ae32f2f23c63c3c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "473cbff88ed24be59e1b55b60f1c449e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_815545eed9624bfebd736e02f3fcc196", "IPY_MODEL_f8cf3e9b9c1f4da09d5618ab654b7927", "IPY_MODEL_5cfea7316a794136b4b1560a108d665d"], "layout": "IPY_MODEL_d9352b1a712f4790ae32f2f23c63c3c3", "tabbable": null, "tooltip": null}}, "a5455a32958a4416afb759d177d22401": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e72be719baf5498b9adf1f4769189ce3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "303537b97852431fb0397328c4ef8d7c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a5455a32958a4416afb759d177d22401", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e72be719baf5498b9adf1f4769189ce3", "tabbable": null, "tooltip": null, "value": 3201.0}}, "3699b9a120cd45299c6b88a4f74d8dff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64743651b531459e8c769e235b68fc06": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ab36324f16c8429992a634770316a113": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3699b9a120cd45299c6b88a4f74d8dff", "placeholder": "\u200b", "style": "IPY_MODEL_64743651b531459e8c769e235b68fc06", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "353206e1e7194d8c93f97c84712cf196": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eaedde480ae74dd991402fe27937920c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7df3a18a542a422fa0fc7759a1e5717a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_353206e1e7194d8c93f97c84712cf196", "placeholder": "\u200b", "style": "IPY_MODEL_eaedde480ae74dd991402fe27937920c", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007614kB/s]"}}, "645f51157420436eb1aac1945d39e952": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "12c8b57e64ba40fa86458b4658da7261": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ab36324f16c8429992a634770316a113", "IPY_MODEL_303537b97852431fb0397328c4ef8d7c", "IPY_MODEL_7df3a18a542a422fa0fc7759a1e5717a"], "layout": "IPY_MODEL_645f51157420436eb1aac1945d39e952", "tabbable": null, "tooltip": null}}, "fcedf327529f4decbdb0341c31a59ba2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b6e31b9df52a4d3baea8d6fa026d0f59": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "df3e9fc0765b4ab8bac405b7f03ce7c2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fcedf327529f4decbdb0341c31a59ba2", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b6e31b9df52a4d3baea8d6fa026d0f59", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "8c0df3727a24422a9b337343d29c9a47": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e608f55053694f13abf5bf73d8b95bee": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3bbfa67519a343ada980750fce80d36b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c0df3727a24422a9b337343d29c9a47", "placeholder": "\u200b", "style": "IPY_MODEL_e608f55053694f13abf5bf73d8b95bee", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "b90a1b20cf034632a8de8aba6c59ac40": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d0bb43fbe5814f70aa1d15503d28b02d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cdb43b56c345427f84baec6205f6e246": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b90a1b20cf034632a8de8aba6c59ac40", "placeholder": "\u200b", "style": "IPY_MODEL_d0bb43fbe5814f70aa1d15503d28b02d", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007132MB/s]"}}, "16ab3df434044f04bfaf86eedd0c316b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "827f44bd18424432bc0e7119ac8f76a6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3bbfa67519a343ada980750fce80d36b", "IPY_MODEL_df3e9fc0765b4ab8bac405b7f03ce7c2", "IPY_MODEL_cdb43b56c345427f84baec6205f6e246"], "layout": "IPY_MODEL_16ab3df434044f04bfaf86eedd0c316b", "tabbable": null, "tooltip": null}}, "8fc6c9dc77864d2da436ad77773357f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b41171273a344b4a33f131cdce49265": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "046b3993a61145dab1c1836d5b0f693b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8fc6c9dc77864d2da436ad77773357f6", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2b41171273a344b4a33f131cdce49265", "tabbable": null, "tooltip": null, "value": 128619.0}}, "156587b7abd4483e8303bc2176eb3b47": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2e49babcdab04cfeb9734af959489fe7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "80f4f2742dec481cbd7e07db4942b725": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_156587b7abd4483e8303bc2176eb3b47", "placeholder": "\u200b", "style": "IPY_MODEL_2e49babcdab04cfeb9734af959489fe7", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "5c2b4686c75348e8b0de30f3b1a9a5fa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "abefd5f90dc34b22979254d926687ad4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "93b495a815e044c0a07c10bf511f5fce": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5c2b4686c75348e8b0de30f3b1a9a5fa", "placeholder": "\u200b", "style": "IPY_MODEL_abefd5f90dc34b22979254d926687ad4", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200720.6MB/s]"}}, "b9b52b35089944d186e1b5f67a600123": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0dc125380e9a4c1fb3ee1647c9398fb0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_80f4f2742dec481cbd7e07db4942b725", "IPY_MODEL_046b3993a61145dab1c1836d5b0f693b", "IPY_MODEL_93b495a815e044c0a07c10bf511f5fce"], "layout": "IPY_MODEL_b9b52b35089944d186e1b5f67a600123", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0}

    diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index 689113d37..2694b2d34 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:31:37.224478Z", - "iopub.status.busy": "2024-02-13T00:31:37.224129Z", - "iopub.status.idle": "2024-02-13T00:31:41.940534Z", - "shell.execute_reply": "2024-02-13T00:31:41.939994Z" + "iopub.execute_input": "2024-02-13T00:56:39.860413Z", + "iopub.status.busy": "2024-02-13T00:56:39.860233Z", + "iopub.status.idle": "2024-02-13T00:56:44.841725Z", + "shell.execute_reply": "2024-02-13T00:56:44.841150Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5408abe9bf41d8c765c17e338a0745474e55460a\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1ed51aa35af86c70d2f0f30ffc087f4972a8cdf8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:31:41.943221Z", - "iopub.status.busy": "2024-02-13T00:31:41.942735Z", - "iopub.status.idle": "2024-02-13T00:31:41.946336Z", - "shell.execute_reply": "2024-02-13T00:31:41.945907Z" + "iopub.execute_input": "2024-02-13T00:56:44.844367Z", + "iopub.status.busy": "2024-02-13T00:56:44.843991Z", + "iopub.status.idle": "2024-02-13T00:56:44.847404Z", + "shell.execute_reply": "2024-02-13T00:56:44.846906Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:31:41.948296Z", - "iopub.status.busy": "2024-02-13T00:31:41.947971Z", - "iopub.status.idle": "2024-02-13T00:31:41.952648Z", - "shell.execute_reply": "2024-02-13T00:31:41.952243Z" + "iopub.execute_input": "2024-02-13T00:56:44.849416Z", + "iopub.status.busy": "2024-02-13T00:56:44.849066Z", + "iopub.status.idle": "2024-02-13T00:56:44.853654Z", + "shell.execute_reply": "2024-02-13T00:56:44.853228Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-13T00:31:41.954653Z", - "iopub.status.busy": "2024-02-13T00:31:41.954323Z", - "iopub.status.idle": "2024-02-13T00:31:42.732996Z", - "shell.execute_reply": "2024-02-13T00:31:42.732216Z" + "iopub.execute_input": "2024-02-13T00:56:44.855852Z", + "iopub.status.busy": "2024-02-13T00:56:44.855448Z", + "iopub.status.idle": "2024-02-13T00:56:46.523185Z", + "shell.execute_reply": "2024-02-13T00:56:46.522402Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-13T00:31:42.735948Z", - "iopub.status.busy": "2024-02-13T00:31:42.735408Z", - "iopub.status.idle": "2024-02-13T00:31:42.745825Z", - "shell.execute_reply": "2024-02-13T00:31:42.745309Z" + "iopub.execute_input": "2024-02-13T00:56:46.526190Z", + "iopub.status.busy": "2024-02-13T00:56:46.525734Z", + "iopub.status.idle": "2024-02-13T00:56:46.536366Z", + "shell.execute_reply": "2024-02-13T00:56:46.535798Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:31:42.776336Z", - "iopub.status.busy": "2024-02-13T00:31:42.775971Z", - "iopub.status.idle": "2024-02-13T00:31:42.781528Z", - "shell.execute_reply": "2024-02-13T00:31:42.780973Z" + "iopub.execute_input": "2024-02-13T00:56:46.567729Z", + "iopub.status.busy": "2024-02-13T00:56:46.567277Z", + "iopub.status.idle": "2024-02-13T00:56:46.573208Z", + "shell.execute_reply": "2024-02-13T00:56:46.572615Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-13T00:31:42.783618Z", - "iopub.status.busy": "2024-02-13T00:31:42.783324Z", - "iopub.status.idle": "2024-02-13T00:31:43.229412Z", - "shell.execute_reply": "2024-02-13T00:31:43.228845Z" + "iopub.execute_input": "2024-02-13T00:56:46.575280Z", + "iopub.status.busy": "2024-02-13T00:56:46.574957Z", + "iopub.status.idle": "2024-02-13T00:56:47.004687Z", + "shell.execute_reply": "2024-02-13T00:56:47.004191Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:31:43.231493Z", - "iopub.status.busy": "2024-02-13T00:31:43.231303Z", - "iopub.status.idle": "2024-02-13T00:31:43.832329Z", - "shell.execute_reply": "2024-02-13T00:31:43.831716Z" + "iopub.execute_input": "2024-02-13T00:56:47.006892Z", + "iopub.status.busy": "2024-02-13T00:56:47.006531Z", + "iopub.status.idle": "2024-02-13T00:56:48.255788Z", + "shell.execute_reply": "2024-02-13T00:56:48.255169Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-02-13T00:31:43.834985Z", - "iopub.status.busy": "2024-02-13T00:31:43.834608Z", - "iopub.status.idle": "2024-02-13T00:31:43.853277Z", - "shell.execute_reply": "2024-02-13T00:31:43.852836Z" + "iopub.execute_input": "2024-02-13T00:56:48.258090Z", + "iopub.status.busy": "2024-02-13T00:56:48.257904Z", + "iopub.status.idle": "2024-02-13T00:56:48.276092Z", + "shell.execute_reply": "2024-02-13T00:56:48.275602Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:31:43.855282Z", - "iopub.status.busy": "2024-02-13T00:31:43.854958Z", - "iopub.status.idle": "2024-02-13T00:31:43.857860Z", - "shell.execute_reply": "2024-02-13T00:31:43.857428Z" + "iopub.execute_input": "2024-02-13T00:56:48.278041Z", + "iopub.status.busy": "2024-02-13T00:56:48.277855Z", + "iopub.status.idle": "2024-02-13T00:56:48.281057Z", + "shell.execute_reply": "2024-02-13T00:56:48.280605Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:31:43.859803Z", - "iopub.status.busy": "2024-02-13T00:31:43.859489Z", - "iopub.status.idle": "2024-02-13T00:31:58.344838Z", - "shell.execute_reply": "2024-02-13T00:31:58.344217Z" + "iopub.execute_input": "2024-02-13T00:56:48.282879Z", + "iopub.status.busy": "2024-02-13T00:56:48.282708Z", + "iopub.status.idle": "2024-02-13T00:57:03.173417Z", + "shell.execute_reply": "2024-02-13T00:57:03.172870Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-13T00:31:58.347814Z", - "iopub.status.busy": "2024-02-13T00:31:58.347260Z", - "iopub.status.idle": "2024-02-13T00:31:58.351067Z", - "shell.execute_reply": "2024-02-13T00:31:58.350527Z" + "iopub.execute_input": "2024-02-13T00:57:03.176136Z", + "iopub.status.busy": "2024-02-13T00:57:03.175732Z", + "iopub.status.idle": "2024-02-13T00:57:03.179562Z", + "shell.execute_reply": "2024-02-13T00:57:03.178981Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:31:58.353104Z", - "iopub.status.busy": "2024-02-13T00:31:58.352773Z", - "iopub.status.idle": "2024-02-13T00:31:59.056503Z", - "shell.execute_reply": "2024-02-13T00:31:59.055939Z" + "iopub.execute_input": "2024-02-13T00:57:03.181656Z", + "iopub.status.busy": "2024-02-13T00:57:03.181345Z", + "iopub.status.idle": "2024-02-13T00:57:03.901799Z", + "shell.execute_reply": "2024-02-13T00:57:03.901207Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-13T00:31:59.060398Z", - "iopub.status.busy": "2024-02-13T00:31:59.059515Z", - "iopub.status.idle": "2024-02-13T00:31:59.064558Z", - "shell.execute_reply": "2024-02-13T00:31:59.064081Z" + "iopub.execute_input": "2024-02-13T00:57:03.904668Z", + "iopub.status.busy": "2024-02-13T00:57:03.904310Z", + "iopub.status.idle": "2024-02-13T00:57:03.908902Z", + "shell.execute_reply": "2024-02-13T00:57:03.908437Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:31:59.066923Z", - "iopub.status.busy": "2024-02-13T00:31:59.066545Z", - "iopub.status.idle": "2024-02-13T00:31:59.168146Z", - "shell.execute_reply": "2024-02-13T00:31:59.167536Z" + "iopub.execute_input": "2024-02-13T00:57:03.911225Z", + "iopub.status.busy": "2024-02-13T00:57:03.910881Z", + "iopub.status.idle": "2024-02-13T00:57:04.018459Z", + "shell.execute_reply": "2024-02-13T00:57:04.017846Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:31:59.170397Z", - "iopub.status.busy": "2024-02-13T00:31:59.170034Z", - "iopub.status.idle": "2024-02-13T00:31:59.179303Z", - "shell.execute_reply": "2024-02-13T00:31:59.178838Z" + "iopub.execute_input": "2024-02-13T00:57:04.020783Z", + "iopub.status.busy": "2024-02-13T00:57:04.020409Z", + "iopub.status.idle": "2024-02-13T00:57:04.031952Z", + "shell.execute_reply": "2024-02-13T00:57:04.031493Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:31:59.181348Z", - "iopub.status.busy": "2024-02-13T00:31:59.180916Z", - "iopub.status.idle": "2024-02-13T00:31:59.188413Z", - "shell.execute_reply": "2024-02-13T00:31:59.187970Z" + "iopub.execute_input": "2024-02-13T00:57:04.033922Z", + "iopub.status.busy": "2024-02-13T00:57:04.033600Z", + "iopub.status.idle": "2024-02-13T00:57:04.041089Z", + "shell.execute_reply": "2024-02-13T00:57:04.040598Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:31:59.190478Z", - "iopub.status.busy": "2024-02-13T00:31:59.190076Z", - "iopub.status.idle": "2024-02-13T00:31:59.194467Z", - "shell.execute_reply": "2024-02-13T00:31:59.193998Z" + "iopub.execute_input": "2024-02-13T00:57:04.043160Z", + "iopub.status.busy": "2024-02-13T00:57:04.042841Z", + "iopub.status.idle": "2024-02-13T00:57:04.046799Z", + "shell.execute_reply": "2024-02-13T00:57:04.046256Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-02-13T00:31:59.196419Z", - "iopub.status.busy": "2024-02-13T00:31:59.196084Z", - "iopub.status.idle": "2024-02-13T00:31:59.201508Z", - "shell.execute_reply": "2024-02-13T00:31:59.201021Z" + "iopub.execute_input": "2024-02-13T00:57:04.048954Z", + "iopub.status.busy": "2024-02-13T00:57:04.048606Z", + "iopub.status.idle": "2024-02-13T00:57:04.054760Z", + "shell.execute_reply": "2024-02-13T00:57:04.054191Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-13T00:31:59.203535Z", - "iopub.status.busy": "2024-02-13T00:31:59.203222Z", - "iopub.status.idle": "2024-02-13T00:31:59.313703Z", - "shell.execute_reply": "2024-02-13T00:31:59.313137Z" + "iopub.execute_input": "2024-02-13T00:57:04.056634Z", + "iopub.status.busy": "2024-02-13T00:57:04.056457Z", + "iopub.status.idle": "2024-02-13T00:57:04.166018Z", + "shell.execute_reply": "2024-02-13T00:57:04.165525Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-13T00:31:59.315878Z", - "iopub.status.busy": "2024-02-13T00:31:59.315570Z", - "iopub.status.idle": "2024-02-13T00:31:59.421451Z", - "shell.execute_reply": "2024-02-13T00:31:59.420907Z" + "iopub.execute_input": "2024-02-13T00:57:04.168161Z", + "iopub.status.busy": "2024-02-13T00:57:04.167771Z", + "iopub.status.idle": "2024-02-13T00:57:04.273388Z", + "shell.execute_reply": "2024-02-13T00:57:04.272889Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-13T00:31:59.423525Z", - "iopub.status.busy": "2024-02-13T00:31:59.423317Z", - "iopub.status.idle": "2024-02-13T00:31:59.526631Z", - "shell.execute_reply": "2024-02-13T00:31:59.526137Z" + "iopub.execute_input": "2024-02-13T00:57:04.275387Z", + "iopub.status.busy": "2024-02-13T00:57:04.275160Z", + "iopub.status.idle": "2024-02-13T00:57:04.379463Z", + "shell.execute_reply": "2024-02-13T00:57:04.378873Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:31:59.528778Z", - "iopub.status.busy": "2024-02-13T00:31:59.528426Z", - "iopub.status.idle": "2024-02-13T00:31:59.632073Z", - "shell.execute_reply": "2024-02-13T00:31:59.631581Z" + "iopub.execute_input": "2024-02-13T00:57:04.381629Z", + "iopub.status.busy": "2024-02-13T00:57:04.381304Z", + "iopub.status.idle": "2024-02-13T00:57:04.484087Z", + "shell.execute_reply": "2024-02-13T00:57:04.483475Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T00:31:59.634143Z", - "iopub.status.busy": "2024-02-13T00:31:59.633873Z", - "iopub.status.idle": "2024-02-13T00:31:59.637230Z", - "shell.execute_reply": "2024-02-13T00:31:59.636674Z" + "iopub.execute_input": "2024-02-13T00:57:04.486228Z", + "iopub.status.busy": "2024-02-13T00:57:04.485912Z", + "iopub.status.idle": "2024-02-13T00:57:04.489258Z", + "shell.execute_reply": "2024-02-13T00:57:04.488692Z" }, "nbsphinx": "hidden" }, @@ -1397,7 +1397,81 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "001e83da078f4bf19a3d91d6e6a70a1d": { + "046b3993a61145dab1c1836d5b0f693b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8fc6c9dc77864d2da436ad77773357f6", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b41171273a344b4a33f131cdce49265", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "0dc125380e9a4c1fb3ee1647c9398fb0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_80f4f2742dec481cbd7e07db4942b725", + "IPY_MODEL_046b3993a61145dab1c1836d5b0f693b", + "IPY_MODEL_93b495a815e044c0a07c10bf511f5fce" + ], + "layout": "IPY_MODEL_b9b52b35089944d186e1b5f67a600123", + "tabbable": null, + "tooltip": null + } + }, + "12c8b57e64ba40fa86458b4658da7261": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ab36324f16c8429992a634770316a113", + "IPY_MODEL_303537b97852431fb0397328c4ef8d7c", + "IPY_MODEL_7df3a18a542a422fa0fc7759a1e5717a" + ], + "layout": "IPY_MODEL_645f51157420436eb1aac1945d39e952", + "tabbable": null, + "tooltip": null + } + }, + "156587b7abd4483e8303bc2176eb3b47": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1450,30 +1524,7 @@ "width": null } }, - "020dc0c28a754b28b4680233ca766dd9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0480ddcfbadc499ca47ee91ccaf01a03", - "placeholder": "​", - "style": "IPY_MODEL_42aac5f72a664a21ae62de20438f35d6", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "035af14f39804e5b92c508d7a1338b0e": { + "16ab3df434044f04bfaf86eedd0c316b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1526,7 +1577,7 @@ "width": null } }, - "0410dd5ca7ec46a4966c31adc3c97af5": { + "2b41171273a344b4a33f131cdce49265": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1542,7 +1593,74 @@ "description_width": "" } }, - "0480ddcfbadc499ca47ee91ccaf01a03": { + "2e49babcdab04cfeb9734af959489fe7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "303537b97852431fb0397328c4ef8d7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a5455a32958a4416afb759d177d22401", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e72be719baf5498b9adf1f4769189ce3", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "31f5596511b3431cbe6eee38ba8a5b0f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_85996a265784496ab3cdc4926b785d1d", + "placeholder": "​", + "style": "IPY_MODEL_d9eaa9d5c0f34c9aa2c9731e6a308660", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "353206e1e7194d8c93f97c84712cf196": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1595,7 +1713,7 @@ "width": null } }, - "0a3fc519c9bf47ec83f09f465ff20fa1": { + "35bab748e2aa473fb5f8aa8641a2c0ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1648,74 +1766,7 @@ "width": null } }, - "0b55f868d1d444f080751ec81fa41f96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f8e66dc42cc42889587f956bb90f7a8", - "placeholder": "​", - "style": "IPY_MODEL_a2f350579c3d4912bbfebd66817481d2", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "1863f605ad4f49cbaac699a7aeab73ad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0a3fc519c9bf47ec83f09f465ff20fa1", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fdcb988a102d44ac9bb53034b1d7bd8c", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "1a2f90ff8e634acb8ed7d94c0744fd11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2621d2aed03e4367bda27a91ec6fbb06": { + "3699b9a120cd45299c6b88a4f74d8dff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1768,7 +1819,23 @@ "width": null } }, - "28b6c2a5152445b490b69c9e340c733d": { + "377dd93516f84b55943e5d97ff4ea1ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3ab07e52d49e46cd8e00408a0ae05cb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1821,7 +1888,7 @@ "width": null } }, - "2f8e66dc42cc42889587f956bb90f7a8": { + "3baf97707f8b44a5abc86cc98da2a43e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1874,25 +1941,7 @@ "width": null } }, - "31b5600f6c4f422c979dcf6e2325b76b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "342e6bc75d9f474ab74087676a47653f": { + "3bbfa67519a343ada980750fce80d36b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1907,15 +1956,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_78bd0fcd31c247a59abd326f73336dac", + "layout": "IPY_MODEL_8c0df3727a24422a9b337343d29c9a47", "placeholder": "​", - "style": "IPY_MODEL_7063e4e324ef4ab7a3c4e807a5f39015", + "style": "IPY_MODEL_e608f55053694f13abf5bf73d8b95bee", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 187MB/s]" + "value": "classifier.ckpt: 100%" } }, - "3c14b13b82b945a4874e25fc1504d179": { + "422286c2aa5b4e0f99826dc62350ced4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1931,35 +1980,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_99b645179cb94583af8a258674dc4938", - "max": 3201.0, + "layout": "IPY_MODEL_4a408b2b5a6142bb8f9a67b966e56a41", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0410dd5ca7ec46a4966c31adc3c97af5", + "style": "IPY_MODEL_dc82cedf68ec4517b84b7616fe1bc102", "tabbable": null, "tooltip": null, - "value": 3201.0 - } - }, - "42aac5f72a664a21ae62de20438f35d6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 2041.0 } }, - "4cf371c5814e46f7b4cc9548e2391a6b": { + "473cbff88ed24be59e1b55b60f1c449e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1974,78 +2005,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ef5c54c9a1fa446980e307f305b7cd3c", - "IPY_MODEL_9494d1977f8c4083b8c696eb9c14c001", - "IPY_MODEL_342e6bc75d9f474ab74087676a47653f" + "IPY_MODEL_815545eed9624bfebd736e02f3fcc196", + "IPY_MODEL_f8cf3e9b9c1f4da09d5618ab654b7927", + "IPY_MODEL_5cfea7316a794136b4b1560a108d665d" ], - "layout": "IPY_MODEL_28b6c2a5152445b490b69c9e340c733d", + "layout": "IPY_MODEL_d9352b1a712f4790ae32f2f23c63c3c3", "tabbable": null, "tooltip": null } }, - "5525a017ede84f428bf7f45d1147fb3b": { + "48af091802554bdbb3bb72ff89a31f2f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "55458f3a3cc746899cb2e74f20b6b9c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3cf6ec7dc98496ba80a420d216406df", - "placeholder": "​", - "style": "IPY_MODEL_f55a1315e8b64d85b772a2d95806d9d6", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 214MB/s]" - } - }, - "5c0a56cccefe49788cf82170df08c3a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_001e83da078f4bf19a3d91d6e6a70a1d", - "placeholder": "​", - "style": "IPY_MODEL_1a2f90ff8e634acb8ed7d94c0744fd11", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 504kB/s]" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6af83527206c48828e7b72f194802c4d": { + "4a408b2b5a6142bb8f9a67b966e56a41": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2098,25 +2085,7 @@ "width": null } }, - "7063e4e324ef4ab7a3c4e807a5f39015": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "78bd0fcd31c247a59abd326f73336dac": { + "5c2b4686c75348e8b0de30f3b1a9a5fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2169,57 +2138,30 @@ "width": null } }, - "7915bde6fa894bd9a7ba8334ae02c4cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8a5ea93c710d4701ad3a7d8452f8945b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8ab4aec7c2f8402eb234d2fe70e1ea9b": { + "5cfea7316a794136b4b1560a108d665d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3baf97707f8b44a5abc86cc98da2a43e", + "placeholder": "​", + "style": "IPY_MODEL_48af091802554bdbb3bb72ff89a31f2f", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 48.9MB/s]" } }, - "8b651c138b4b4d4591df10b419cc7e06": { + "645f51157420436eb1aac1945d39e952": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2272,7 +2214,159 @@ "width": null } }, - "8d4fd428ed2c44c4bc2dc83852e30bd2": { + "64743651b531459e8c769e235b68fc06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "75e1a6f24e7b425f891ee56e4f51e25d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7bed9c7c8dab4d67bc2fc60dc6bfcc5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e023a95dcc524455bfcfa0eced3c39fb", + "placeholder": "​", + "style": "IPY_MODEL_fea07b234178452cb66773734463ce62", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 479kB/s]" + } + }, + "7df3a18a542a422fa0fc7759a1e5717a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_353206e1e7194d8c93f97c84712cf196", + "placeholder": "​", + "style": "IPY_MODEL_eaedde480ae74dd991402fe27937920c", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 614kB/s]" + } + }, + "80f4f2742dec481cbd7e07db4942b725": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_156587b7abd4483e8303bc2176eb3b47", + "placeholder": "​", + "style": "IPY_MODEL_2e49babcdab04cfeb9734af959489fe7", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "815545eed9624bfebd736e02f3fcc196": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_35bab748e2aa473fb5f8aa8641a2c0ea", + "placeholder": "​", + "style": "IPY_MODEL_75e1a6f24e7b425f891ee56e4f51e25d", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "827f44bd18424432bc0e7119ac8f76a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3bbfa67519a343ada980750fce80d36b", + "IPY_MODEL_df3e9fc0765b4ab8bac405b7f03ce7c2", + "IPY_MODEL_cdb43b56c345427f84baec6205f6e246" + ], + "layout": "IPY_MODEL_16ab3df434044f04bfaf86eedd0c316b", + "tabbable": null, + "tooltip": null + } + }, + "85996a265784496ab3cdc4926b785d1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2325,57 +2419,7 @@ "width": null } }, - "9494d1977f8c4083b8c696eb9c14c001": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf48e7b85fab4a3e93547bdee5338018", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5525a017ede84f428bf7f45d1147fb3b", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "9645c93fd6bd4b098b2b9006a6f79c6b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0b55f868d1d444f080751ec81fa41f96", - "IPY_MODEL_af39310ede14474988e9fca89abae367", - "IPY_MODEL_d304028bfdf847ee86bfef0ece9ac7ea" - ], - "layout": "IPY_MODEL_6af83527206c48828e7b72f194802c4d", - "tabbable": null, - "tooltip": null - } - }, - "968b051f27ae482da0d0eb52a5004350": { + "8c0df3727a24422a9b337343d29c9a47": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2428,7 +2472,7 @@ "width": null } }, - "99b645179cb94583af8a258674dc4938": { + "8fc6c9dc77864d2da436ad77773357f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2481,31 +2525,7 @@ "width": null } }, - "9b6e3e877073483dad4641b84d19aa9e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_020dc0c28a754b28b4680233ca766dd9", - "IPY_MODEL_1863f605ad4f49cbaac699a7aeab73ad", - "IPY_MODEL_55458f3a3cc746899cb2e74f20b6b9c6" - ], - "layout": "IPY_MODEL_f305014c039c457da29cff64d0d5e430", - "tabbable": null, - "tooltip": null - } - }, - "9c4509f4b1eb42e2a347aea1413c0eeb": { + "93b495a815e044c0a07c10bf511f5fce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2520,15 +2540,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8b651c138b4b4d4591df10b419cc7e06", + "layout": "IPY_MODEL_5c2b4686c75348e8b0de30f3b1a9a5fa", "placeholder": "​", - "style": "IPY_MODEL_e3a68141b29d429d941a74de58878bf5", + "style": "IPY_MODEL_abefd5f90dc34b22979254d926687ad4", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 129k/129k [00:00<00:00, 20.6MB/s]" } }, - "9c4e5316d8784884a95bb29af49a783a": { + "a5455a32958a4416afb759d177d22401": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2581,25 +2601,7 @@ "width": null } }, - "a2f350579c3d4912bbfebd66817481d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a8ca7cd793cb48f5bce0523ab1d6fe68": { + "ab36324f16c8429992a634770316a113": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2614,41 +2616,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8d4fd428ed2c44c4bc2dc83852e30bd2", + "layout": "IPY_MODEL_3699b9a120cd45299c6b88a4f74d8dff", "placeholder": "​", - "style": "IPY_MODEL_c1c4d8a3de93446194b61b2bd815bb5d", + "style": "IPY_MODEL_64743651b531459e8c769e235b68fc06", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt: 100%" } }, - "af39310ede14474988e9fca89abae367": { + "abefd5f90dc34b22979254d926687ad4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c95e758e6ad34bf891aac7b599574786", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7915bde6fa894bd9a7ba8334ae02c4cd", - "tabbable": null, - "tooltip": null, - "value": 128619.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b09471ffcb2b42709157d1bdc24fb410": { + "b23fae84d94d436cafaed27cda4b45bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2663,16 +2657,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a8ca7cd793cb48f5bce0523ab1d6fe68", - "IPY_MODEL_3c14b13b82b945a4874e25fc1504d179", - "IPY_MODEL_eede1b7827a9460d9c2ba21649816641" + "IPY_MODEL_31f5596511b3431cbe6eee38ba8a5b0f", + "IPY_MODEL_422286c2aa5b4e0f99826dc62350ced4", + "IPY_MODEL_7bed9c7c8dab4d67bc2fc60dc6bfcc5f" ], - "layout": "IPY_MODEL_035af14f39804e5b92c508d7a1338b0e", + "layout": "IPY_MODEL_df0433b8aee044b7bdf70adb91488edb", "tabbable": null, "tooltip": null } }, - "bf48e7b85fab4a3e93547bdee5338018": { + "b6e31b9df52a4d3baea8d6fa026d0f59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b90a1b20cf034632a8de8aba6c59ac40": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2725,25 +2735,7 @@ "width": null } }, - "c1c4d8a3de93446194b61b2bd815bb5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c454bf88a9c542edb57e871f86a544cc": { + "b9b52b35089944d186e1b5f67a600123": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2796,7 +2788,48 @@ "width": null } }, - "c95e758e6ad34bf891aac7b599574786": { + "cdb43b56c345427f84baec6205f6e246": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b90a1b20cf034632a8de8aba6c59ac40", + "placeholder": "​", + "style": "IPY_MODEL_d0bb43fbe5814f70aa1d15503d28b02d", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 132MB/s]" + } + }, + "d0bb43fbe5814f70aa1d15503d28b02d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d9352b1a712f4790ae32f2f23c63c3c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2849,7 +2882,7 @@ "width": null } }, - "cb9825499aad45e6900cd931b3cc2c3f": { + "d9eaa9d5c0f34c9aa2c9731e6a308660": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2867,7 +2900,23 @@ "text_color": null } }, - "ce238c07860c4bccb293afd2c9537e65": { + "dc82cedf68ec4517b84b7616fe1bc102": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "df0433b8aee044b7bdf70adb91488edb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2920,30 +2969,7 @@ "width": null } }, - "d304028bfdf847ee86bfef0ece9ac7ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ce238c07860c4bccb293afd2c9537e65", - "placeholder": "​", - "style": "IPY_MODEL_8ab4aec7c2f8402eb234d2fe70e1ea9b", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 18.5MB/s]" - } - }, - "db4fcef588964927bbbf2169e884619a": { + "df3e9fc0765b4ab8bac405b7f03ce7c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2959,105 +2985,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2621d2aed03e4367bda27a91ec6fbb06", - "max": 2041.0, + "layout": "IPY_MODEL_fcedf327529f4decbdb0341c31a59ba2", + "max": 15856877.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8a5ea93c710d4701ad3a7d8452f8945b", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "e3a68141b29d429d941a74de58878bf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e7f041f2d561450293a7cc461b488d51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9c4509f4b1eb42e2a347aea1413c0eeb", - "IPY_MODEL_db4fcef588964927bbbf2169e884619a", - "IPY_MODEL_5c0a56cccefe49788cf82170df08c3a0" - ], - "layout": "IPY_MODEL_9c4e5316d8784884a95bb29af49a783a", - "tabbable": null, - "tooltip": null - } - }, - "eede1b7827a9460d9c2ba21649816641": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c454bf88a9c542edb57e871f86a544cc", - "placeholder": "​", - "style": "IPY_MODEL_cb9825499aad45e6900cd931b3cc2c3f", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 800kB/s]" - } - }, - "ef5c54c9a1fa446980e307f305b7cd3c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_968b051f27ae482da0d0eb52a5004350", - "placeholder": "​", - "style": "IPY_MODEL_31b5600f6c4f422c979dcf6e2325b76b", + "style": "IPY_MODEL_b6e31b9df52a4d3baea8d6fa026d0f59", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": 15856877.0 } }, - "f305014c039c457da29cff64d0d5e430": { + "e023a95dcc524455bfcfa0eced3c39fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3110,7 +3048,85 @@ "width": null } }, - "f3cf6ec7dc98496ba80a420d216406df": { + "e608f55053694f13abf5bf73d8b95bee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e72be719baf5498b9adf1f4769189ce3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "eaedde480ae74dd991402fe27937920c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f8cf3e9b9c1f4da09d5618ab654b7927": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3ab07e52d49e46cd8e00408a0ae05cb7", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_377dd93516f84b55943e5d97ff4ea1ae", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "fcedf327529f4decbdb0341c31a59ba2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3163,7 +3179,7 @@ "width": null } }, - "f55a1315e8b64d85b772a2d95806d9d6": { + "fea07b234178452cb66773734463ce62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3180,22 +3196,6 @@ "font_size": null, "text_color": null } - }, - "fdcb988a102d44ac9bb53034b1d7bd8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 0a6ac5535..d75e2fe1e 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1209,7 +1209,7 @@

    Functionality 3: Save and load Datalab objects