From ebf507787a92dd964a884b98e59009d2eed0b7d1 Mon Sep 17 00:00:00 2001 From: elisno Date: Fri, 12 Jan 2024 22:33:22 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3315 -> 3315 bytes .../benchmarking/noise_generation.doctree | Bin 83507 -> 83507 bytes .../.doctrees/cleanlab/classification.doctree | Bin 297397 -> 297397 bytes master/.doctrees/cleanlab/count.doctree | Bin 297132 -> 297132 bytes .../cleanlab/datalab/datalab.doctree | Bin 181018 -> 181018 bytes .../guide/custom_issue_manager.doctree | Bin 29123 -> 29123 bytes .../guide/generating_cluster_ids.doctree | Bin 6256 -> 6256 bytes .../cleanlab/datalab/guide/index.doctree | Bin 5915 -> 5915 bytes .../guide/issue_type_description.doctree | Bin 97079 -> 97079 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5502 -> 5502 bytes .../cleanlab/datalab/internal/data.doctree | Bin 75965 -> 75965 bytes .../datalab/internal/data_issues.doctree | Bin 76753 -> 76753 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 43724 -> 43724 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4562 -> 4562 bytes .../datalab/internal/issue_finder.doctree | Bin 46509 -> 46509 bytes .../_notices/not_registered.doctree | Bin 3377 -> 3377 bytes .../internal/issue_manager/duplicate.doctree | Bin 73748 -> 73748 bytes .../internal/issue_manager/imbalance.doctree | Bin 71607 -> 71607 bytes .../internal/issue_manager/index.doctree | Bin 5820 -> 5820 bytes .../issue_manager/issue_manager.doctree | Bin 82549 -> 82549 bytes .../internal/issue_manager/label.doctree | Bin 87552 -> 87552 bytes .../internal/issue_manager/noniid.doctree | Bin 90234 -> 90234 bytes .../internal/issue_manager/null.doctree | Bin 64142 -> 64142 bytes .../internal/issue_manager/outlier.doctree | Bin 75773 -> 75773 bytes .../issue_manager/regression/index.doctree | Bin 3622 -> 3622 bytes .../issue_manager/regression/label.doctree | Bin 107652 -> 107652 bytes .../underperforming_group.doctree | Bin 121020 -> 121020 bytes .../cleanlab/datalab/internal/report.doctree | Bin 32315 -> 32315 bytes .../datalab/optional_dependencies.doctree | Bin 3389 -> 3389 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 102668 -> 102668 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 346504 -> 346504 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48181 -> 48181 bytes .../cleanlab/experimental/index.doctree | Bin 5382 -> 5382 bytes .../experimental/label_issues_batched.doctree | Bin 161811 -> 161811 bytes .../experimental/mnist_pytorch.doctree | Bin 492589 -> 492589 bytes master/.doctrees/cleanlab/filter.doctree | Bin 98823 -> 98823 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4550 -> 4550 bytes .../internal/label_quality_utils.doctree | Bin 19742 -> 19742 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 88865 -> 88865 bytes .../internal/multiannotator_utils.doctree | Bin 45614 -> 45614 bytes .../internal/multilabel_scorer.doctree | Bin 162776 -> 162776 bytes .../internal/multilabel_utils.doctree | Bin 33914 -> 33914 bytes .../cleanlab/internal/outlier.doctree | Bin 16196 -> 16196 bytes .../token_classification_utils.doctree | Bin 66017 -> 66017 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 208122 -> 208122 bytes .../cleanlab/internal/validation.doctree | Bin 33814 -> 33814 bytes .../cleanlab/models/fasttext.doctree | Bin 2403 -> 2403 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5060 -> 5060 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 103797 -> 103797 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 171038 -> 171038 bytes .../multilabel_classification/dataset.doctree | Bin 67565 -> 67565 bytes .../multilabel_classification/filter.doctree | Bin 89621 -> 89621 bytes .../multilabel_classification/index.doctree | Bin 5009 -> 5009 bytes .../multilabel_classification/rank.doctree | Bin 46224 -> 46224 bytes .../cleanlab/object_detection/filter.doctree | Bin 36016 -> 36016 bytes .../cleanlab/object_detection/index.doctree | Bin 3927 -> 3927 bytes .../cleanlab/object_detection/rank.doctree | Bin 151195 -> 151195 bytes .../cleanlab/object_detection/summary.doctree | Bin 157619 -> 157619 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 102110 -> 102110 bytes master/.doctrees/cleanlab/rank.doctree | Bin 117415 -> 117415 bytes .../cleanlab/regression/index.doctree | Bin 3801 -> 3801 bytes .../cleanlab/regression/learn.doctree | Bin 220237 -> 220237 bytes .../cleanlab/regression/rank.doctree | Bin 19619 -> 19619 bytes .../cleanlab/segmentation/filter.doctree | Bin 29078 -> 29078 bytes .../cleanlab/segmentation/index.doctree | Bin 3855 -> 3855 bytes .../cleanlab/segmentation/rank.doctree | Bin 53242 -> 53242 bytes .../cleanlab/segmentation/summary.doctree | Bin 67310 -> 67310 bytes .../token_classification/filter.doctree | Bin 29360 -> 29360 bytes .../token_classification/index.doctree | Bin 4017 -> 4017 bytes .../token_classification/rank.doctree | Bin 66747 -> 66747 bytes .../token_classification/summary.doctree | Bin 84588 -> 84588 bytes master/.doctrees/environment.pickle | Bin 1796869 -> 1796869 bytes master/.doctrees/index.doctree | Bin 41848 -> 41848 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28054 -> 28054 bytes .../.doctrees/nbsphinx/tutorials/audio.ipynb | 1258 +++++------ .../tutorials/datalab/datalab_advanced.ipynb | 354 +-- .../datalab/datalab_quickstart.ipynb | 130 +- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 1704 +++++++-------- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 604 +++--- .../.doctrees/nbsphinx/tutorials/image.ipynb | 1912 ++++++++--------- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 90 +- .../nbsphinx/tutorials/object_detection.ipynb | 146 +- .../nbsphinx/tutorials/outliers.ipynb | 308 +-- .../nbsphinx/tutorials/regression.ipynb | 162 +- .../nbsphinx/tutorials/segmentation.ipynb | 1362 ++++++------ .../nbsphinx/tutorials/tabular.ipynb | 130 +- .../.doctrees/nbsphinx/tutorials/text.ipynb | 164 +- .../tutorials/token_classification.ipynb | 186 +- master/.doctrees/tutorials/audio.doctree | Bin 327061 -> 327061 bytes .../datalab/datalab_advanced.doctree | Bin 198979 -> 198979 bytes .../datalab/datalab_quickstart.doctree | Bin 150645 -> 150645 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3058 -> 3058 bytes .../tutorials/datalab/tabular.doctree | Bin 121277 -> 121277 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 308691 -> 308691 bytes .../tutorials/dataset_health.doctree | Bin 330828 -> 330828 bytes master/.doctrees/tutorials/faq.doctree | Bin 175069 -> 175069 bytes master/.doctrees/tutorials/image.doctree | Bin 488553 -> 488641 bytes .../tutorials/indepth_overview.doctree | Bin 212787 -> 212787 bytes master/.doctrees/tutorials/index.doctree | Bin 3170 -> 3170 bytes .../tutorials/multiannotator.doctree | Bin 137341 -> 137341 bytes .../multilabel_classification.doctree | Bin 57571 -> 57571 bytes .../tutorials/object_detection.doctree | Bin 110970 -> 110970 bytes master/.doctrees/tutorials/outliers.doctree | Bin 106815 -> 106815 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17248 -> 17248 bytes master/.doctrees/tutorials/regression.doctree | Bin 80921 -> 80921 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 3077855 -> 3080909 bytes master/.doctrees/tutorials/tabular.doctree | Bin 59757 -> 59757 bytes master/.doctrees/tutorials/text.doctree | Bin 90061 -> 90061 bytes .../tutorials/token_classification.doctree | Bin 187373 -> 196590 bytes master/_sources/tutorials/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- master/_sources/tutorials/tabular.ipynb | 2 +- master/_sources/tutorials/text.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/audio.html | 2 +- master/tutorials/audio.ipynb | 1258 +++++------ .../tutorials/datalab/datalab_advanced.html | 6 +- .../tutorials/datalab/datalab_advanced.ipynb | 354 +-- .../datalab/datalab_quickstart.ipynb | 130 +- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 18 +- master/tutorials/datalab/text.ipynb | 1704 +++++++-------- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 604 +++--- master/tutorials/image.html | 254 +-- master/tutorials/image.ipynb | 1912 ++++++++--------- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 90 +- master/tutorials/object_detection.ipynb | 146 +- master/tutorials/outliers.html | 4 +- master/tutorials/outliers.ipynb | 308 +-- master/tutorials/regression.ipynb | 162 +- master/tutorials/segmentation.html | 1765 +++++++-------- master/tutorials/segmentation.ipynb | 1362 ++++++------ master/tutorials/tabular.ipynb | 130 +- master/tutorials/text.html | 2 +- master/tutorials/text.ipynb | 164 +- master/tutorials/token_classification.html | 109 +- master/tutorials/token_classification.ipynb | 186 +- versioning.js | 2 +- 159 files changed, 10207 insertions(+), 10073 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 278c68cc7..3bfa821e6 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: c1f0863980e8370a7afca0a268b5ef38 +config: 58430c1c2a08e58cceab4c4266bb57b6 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index c9fc5e393a4b8d6010906632866f2450cbef0ec1..32e6079f582a6a62d9269337fd2c658b7705e9c8 100644 GIT binary patch delta 175 zcmew?`B`#9IHO@oRcVDuNp7;fv2n6xl1XZsWul>(Ws53 zg-NPWqN!=3W!mNmjI3m6o9^hsn7mn&c?vV>R)X~APL5{ZK(5x69EId*jhmdnC$@P% zrvN(z`X}$_6rNACR3`9iV1x&bCyh#2r~ZVw>mmKail*44suXT*)^>XY>B|)#S&AuFmBB?^!qh j`q?W>t{d{rHMiSKF!FFwVgR!;Bd;Rq25biw;hz`*@c-xE delta 1655 zcmdno!@9YLbwfO(p=p+7MRHR)X~APL5{ZK(5x69EId*jhmdnC$@P% zrvN(z`X}$_6rNACR3`9iV1x&bCyh#2r~ZVw>mmKail*44suXT*)^>XY>B|)#S&AuFmBB?^!qh j`q?W>t{d{rHMiSKF!FFwVgR!;Bd;Rq25biw;hz`*Z~Wpl diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index d8f6df2ef478e247a5e289f809d88d7ad011c9be..85a7aabaa2763d6a4f22fa76b94eb42fcbbcf5d3 100644 GIT binary patch delta 4244 zcmbuDT}YEr7{@v1ywf!I;Re&nixOj$rCXb$WvQdO5y_953YxY}CDN(rRxL}?>;sfo zywC~4GAz1@TAb{;i9Rl*+in79-W5icB2h%%*qJNu-=~XR{{FxJd3evWcbihpQ>r=M zL>z7BB4=IUP_WqP40-~t_70EV;r0ZaB@VZ{&FOTzJ@%k8;MnVG-{UVS@q0SdF*1Xo zywM82+^6WoELAYpzr0DbDz|I#ev>*--;ctNh)}~4!=Y-Z!NT8}iB5cPVri(1qaqsM zR_&d?qIzYtNZqH5TNQA@s}v!^e3GQX%e9O_MeG(V+cXyl#` z(cK%ZR|f|&RWXa8`L^w(UEKN5pRV1UWKW4lA7d23dUujeF*9F)csx^HzEFelu5}(> zoI|s}m$T5FCw>UDcj;FPn*F>ohPV}La|Qz;lZY#kf~y$0hHVW!X+(!M8#j^G4F+Wg*3CeUV+m6W2*^EspoZC>0=4xr7`d1Ml8W?RW8w0St6bR*0l zH_#J=6o`!&5t|3(rhSXN{dGKENpujilkrW69WPH>2QuMesdgCrSIC)5+PUQ3IR?iw z>8J|_SF7dA={$az>iC0PX5uj)^+BSX)*xrNmIpGg%!n^!fb%{&gm?{0jw9K?0He(` zfo;HBI%zt5?V|J83aNy~FnzNHH-%b$;yTUdp%rR@S25aX`LCF=RhkCz`?L`G%2dtc zxkTaiRhkXGD|EktYmj7K_7~!-{X~hnJ%K;eSs#{4Q?hnWjF6~AP NK>n}?`NzPt^$&OO@Jj#y delta 4244 zcmbuDT}V@57{__v_e|5=hZ{^QFG>t4OV7}`oh)@!HzK9hRM50-PD-81)M{9gW*?x$ z;y`Z@mSNFN)Z%2%P4sag-F6c=^R6(m6p148#@@N|{ybgm^7sG!--q))JKMBsomQ=} zCgN~*DCYvc@aZDiUs9qt6*?OMFwq7K&gq3|PGs9~AmP&L$G>L~uVkP*PyW!*-sN8{X!i5!IO0~U&lyaFOd+mB60TE{xA=Qx~5 zr(-2J_^4X3lFDO;sewPpW)>dxQZK|SXbp0P>vQkyhbyjca`p!aBY$?AYu+0u?fv4X1r-+^GN=o;M4T8;*GhAe=A@%Sj=KF;`kc@ zTm;zRWe#h~z}MIVuXnMhh^?Ba0pc9p=_t7aUX-!{#8wtw2N!HEOz&gQO#0>g#vv&T z8C7g4fP)9%?ql||UqAe>x((9uq%VkXz>NSd0?cqGUuwk;fQtc`;cBTAN8BF}BV68# O7=ZX;58{u38T%h3Ea2k+ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 8dd690d2a96e2f08e6967ca91b88d4953427f2c0..241b0e8e916dc69b8150611f392dcf5f803c9d70 100644 GIT binary patch delta 3738 zcmZ28QE1IXp$(plhACC06(%LQ$@<2|$(BhbscDvphGv#Y#-@g5W+}$TW@eTK$;L^B z7AC1iiKeEBmT8l#826H)t5Cvt^K2$2ax5&Au-nYTVj@D8ts6<#HT_`&qyFT2J>|_y zCHHZWuU}*HYn6#)co=5C#%31v4kk+M7t!KoAyfb6dcA6j>~1m)rAU9gNj*jS)6B0? z6!u3fLnyL;fz1kX!ycISG&Wyw{K8CT+=2D`xXq=={e_;pDRTc7zcz~8e<)}UMfN`n zKTnbUwlP~M(qEbIg`)KLHK~E3`1_k`OOgIV87UO`e_hTi3gS;-Ge^;79`e(_z-I6I zn_=YXH<*0?iqz)$*S2s{qW|0j18*|)8)`FKY){u=+(eG$V9iZtjP90X*bJ=oytlg+ zFlGyou6a99^BgzQ^?|B7x9wk!Gj6daLo>*`(-WAOIJQf&Fl{9#wIEEe7i3~GA zlTj*wQ^aor6W63}384CBl(5~Nn#SU; F1OQjkd|Lnj delta 3738 zcmbuB&1(};6vdhMrV_PkjIkzlAzC%TN;4rdoeVXRf=wxrQl!;|iuszTZIPr4Q46MI zq0(I#a6l^+Q7jTfo!EzpEfmq67Ayr#UG8`LCv4e6#A5i|0Qxz0{IZ;F1-_O(-s=r@q1jWyt%b@muJp3KepVM%Rd~Af@ zzte~pJ{^bgg0{5KY)mdz)?@hhpM^Mp54O@UJA06O1~IqbVmsHZ0G!RQUYvF1xFM%~ zn3?cI%s#jJsf)4NJFe0JfLGVm6NEUJmnY95*RrN?cq<_yY=#akdSst|ahz^vU%NI*5U_q(mIgh{StTXH$~p2V1dy=~X!btY0{Gd|tuRe^KRf+`^n&Y{yhnC3 z=`Be&0~Yu<2QM&z1bgYGu_pWO%uHY!l3aai-E1$Q=ZgG}o69uK9G%n!iLoyC_ZV9G z=se^>u=-rNMR&2$ak>-mDp(i6OocdRi~m9ynxYq4?RR6%qRpf?v%Up-avMTGHw7A) z?;9+VdN*rZO)t}{n0)@U{P4Pi4*<5R&%;(^UR{R}&`p5`R*mvaKKm+K-VAkTuDOouu3560A6bwD)w+%@yEmH|61ih3(Fb|6?w5_Nm0{LOhM5|b znQ@E>H7t_QQWOqxL@)#|GPJs=pbMjmg1X4iAft=0S^Eq6%^&c*&+mQDnfFX@huGU8 zj+YAs!KQN;3LEMIc1a4j{e_{hyV~J&`=ug>(;1W`r_-Guko*o;VW^{%7(r17)oV>m97`hKy(@PL{gbGDbWDqHa2Q?88Mvs z(!M5PDD|Zo+3eOAXmAau{l}A8&h|g~cml1&5s;1zzNM-W&F_iW*frlV?7qd0-NqXH zAp(cDu}G*(kNsxNNj>%(wJy-kJQ1{SmVG)1TGuANvHrZCo^u-d_1F(I?$Kl45^axz zu1k=%R3)>r<~eM`DQv9m6V|uFc3f@3dRAER^)PBJ?u??=L${uw*1NYKqSkjkaVUCL ztwYgh?>?Ycw%oT9yNC*#7$^sf+T*UUfd|jfK7S3qMp55T9`-^gEO)dGweB7tM$uN* zi3P4?-4jL-r5egIr$({g5HFn!imYO06J}q-X~m3ztvtViCRm*_GxDld5B~Gb@H%Ke zds)UpOCpBSj0G#(_9c53!};`>-~rXD#)`asQgEeXa&_vxAksS%Dg5wT;TyJ6yj&~t z5QK&&Lp2n*eC6d6!&%&Y!oI=HK!Ni-t3rE3o;93DG1(WmDL=phIS2fnc z7cFEe3zNqRn7DlxnbwiOq-q7s{IW!r((o8Y{-cbnfLAcqhmk7>Nj#Q7ruKU_bv{Z; z`Tj7mV4Huf2wyxwyjExovYLH~WU8hxDds6nq#K)s%(W^33zWc1mmV9q&_(jF|I~l{ nP!B1^J_cFcJVFw*ePrdWk4P@IQ)I3cN#6hspoEW1lT+j`GD3r| delta 4421 zcmbuB-Afcv7>AkTuDP!3u3560A6bwD)vm4E&fIKfNaT*CL?7hMx?eW7eJEnBWSFT@ znHk5JP{Se#Ek)rFM+8IgB15Z-3c4`5D5#4J4Jx__o3+27-~0j3`~2SboO#dmc9?rR z%;V+4PIs+zK3H9^IGll^BFQZ|gP}sV=#02Mk|!jE!_|@MfXgE~MKRzCOCD*LgH|Ty z(0hYPbWnIw_}@5P?ki#Q#3F#GY}lKKp;R{5=vwnxh%TevXgaf{BpYDd&PHvb5yP23 z<4X#LQh$b#&2D~<2G?-fe>|1tZT;iK6KExlfOLHDEme(Zes9#yuKJH*_bq^Evo>akz16+t`mM$x`m?wJs1U7h&)x^sGZ&THt`V?WTiM~{6|tUUp` zE+N`dmCDMR=dcZ@u(7s}Sl(Ws(WsERW delta 67 zcmbQOH(PH*G^3GemSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ XMUru(Ws4LpwQim-e4h~j;D|Ne delta 175 zcmeyT^-pVqFQcJpmSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ jMUru4LpwQim-e4h~jg_<=m diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index d3edc8a4862d749ece5055728678b52ee4358a1a..62e770eefdb0971e5356b935cfb3940d647ac639 100644 GIT binary patch delta 3706 zcmbtX-%C?*6z9(Uu(oU0*s?Ko+~38;mGu8CV1fQBXz? z9>Rwpg0iSyg5$V|j3LUv2Zb?EBUUdVDfL#QiP*h2(|YvWKj8D@d_L!Vxi??Z=S%u` zA;!~p^ZJ0l|8nxU&zB4){Hb(M^a#O(kM{^dpU)=qv?z9OL2yMG)B(zOi1Ss=l?| zs-hUqMqswF0furlxKJOZQ#f({&^6NB*$B=y(&kppJMq)uQPO%Sa2JcVqh$j%Iu{EL zw-IkQam3kG2M+fuGQ80Y6}Jgv-fq(Bs1cf>h5tp3KsM0ATX9i1PfT%`V{yFMLab0h z_nfXJ=BJ=nTbqe{Kg?O+*%=eWyc~Ww>n0YUusjK`)AIiVwql??MvNck;udsuw`zg^ z?9mYmP}T28m$ayFUJMbVSJa^)Q45{?5nvP3v<|je7KAWPB#+T%iQ?5vp?dcYP|Wty z!tceleu;Q?c<08w6T3GHvRQaM79k-cP$^mRd5W680(UMRq#5rTaTpi_a4QC!`Pj9G6#X_w zHH>~)(m;XS3R9y2FON|NuUFf&P@G&>&q4iqd%nigO4&+8=EBUz71~YgaLDIr$HC1M z?Lq#ZM|z}VLbOHwhiJKYN_uHxBD7a|he&$BGE*iEb&WI~V5~4-=A`d7Ca0w=NoJba SOR*yV`gQ2{Nq1dLpz1eQ<$MwV delta 3706 zcmbtX?@JSL80Y4GSlih-8_Xy-l0|Q_^T%y>p;SW6p=mO(fh=~L8>}E`^}--Xh=MYD z;Y0W$h@dR0H^JjLM8*(f;0uK@P$O1vLQ?8oktSkymubE9xj*3Zr-;Z0mLU>S#wXV2W)d`o@9h@|$)e2WOeDo5j&m`BBFJnKUpp^TRo}R7 zR!|IQ!Z7QpgW+ryF4RWo6!kcN=o)G6Oc-Z9w7GTj_4w)V7->B;xQ|8G(UOH4osR`C zZ^c^;9C3EtftPLsm?9-$rDgkRJMR0C~-6BqsGi7Ae7EKamKh!tw+ zzSGsj{514xdnq#OJ!6At6Newp^27o(mdBxWTK<2)P82(%#Q0$@=0IO>yAk-$ zJ`=G3UHx8U$%y*q#UL?yO&#ju)zB>*0XF`Q*1I=%-l)OhtebeUTNG~WoCwiU`|Dyqij%cg zLxZ?+Z7N1Bpj`M$RL663KZvT3&)czBnx>|&!Rr?f(v0_vdM%6vxD^Y|eC*jnihi4; z62`tP8K6LJg{d-tSI4MWd+MQzhCnS7{iLD7OX$QT64 z##*_Q5lOmGi;FBG9$^-WSQ3a7Tns1ysie4aQx}3R3Zi#f`~i9W0nd5PdG9@U#%j5& zmg~g@7Rk)c+>G9s)&^u*Q_|6FPEjLqB`wDy@pwj-<8kGfCZ{7OqS@nWET$?sy2l&< zW<2a?D(!RLcXY0_*$ka@&u_!nNq%Y1wa!sql*V~8*iE;5%T5fZW-#OeP)nQTHQi5- z_MSt`mZsA}_%&drqO{)wG+dOXNI5(NTnv%&6n{6gn~om&bpSI9d>kORLiSPXY_ki( zbxNGqkdZB|K*^CN6107^AIGYgRi}Z8x4;5&+geeb07{lNh+g4({vtZ(hs$Bq`gr<1 zY7Jcd14Oi$?(%hT)&ftC_>B$5LbN_p16F=hKU}CGc@?ERPwd)GWj*m9I4|qnd_LSo zPwyT?2H5JtOWD#QvdI7NrMXcz@DA8`s^T+J0p{a7zV=gl;Tu?oQk6HrH%>gEdEQs| z@^;m2EO|s5RGz{8#(&!D)) mhG2WlwwHazHYjP_>0!O5SVfL?pEN~*wLs_5o8lk!l;bZY$c9e< delta 2904 zcmbuB%WD%+6oWd+MQzhCnLO-6@PVKP8G|6% zSSyz@B1so&agjyDBg{e(O9Ckc7XwN_Dk-kq)P$0AudszlRDCZlH6)Ic;AiN#U_86~Qmp!>`L zV8)|frqTiD14sKxn@!V6_xuiwo#B`EU2Pxb1!;mef}M2Bx9r4lY6L?r0JXH+ysG=@ z@&0p&+0t}c2)_Z$RFDpOfQAdwEGb8afr}whp5^a{_tNoWzYbw$flmPBcE~Zd=Q$6F|w*hR`cq%Uwk0{4fBoUzBD)H2HpW1PnLZ~GQfO%*VkTZEqnv(P_q0M_{NDRG{<{t zUf!y>jU|t0qf`v>x#BpTezA$3i>ODf%5*oFNKY+DKkIAgaoYHu)z^N|{yiI{FKZ*{ z>^A;sUEU4aCubz8Z>*wr8$a{ol^3%ci%xdLch%Ko*emyl>+US2^R8XXg6%>pDZ&; zV6$Vxelj9zvtf%4FIl#hO}=0tJXxnfbhFMRHFErI*a9|UGtZ2v0%W)VQVMWw4qREy F2mnZ}ZIA!} delta 1212 zcmX?emFdh?rVYM~hNfAT70HQ3nfeAvCMK4qmIlcwhNczh%Ko*emyl>+US2^R8XXg6%>pDZ&; zV6$Vxelj9zvtf%4FIl#hO}=0tJXxnfbhFMRHFErI*a9|UGtZ2v0%W)VQVMWw4qREy F2mp|UX$SxS diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index a33f28aa629824623068a38448feaf652e8ef7fc..426ae007458c0b97ae501f580ce8d5a6bce21278 100644 GIT binary patch delta 185 zcmcbld`WqOKcitvRcVDuNp7;fv2n6xl1XZsWul>(Ws(Wsoho$&WOi&9h?NImt^hn-`?#bCIWY@&^;4%@2xV`N`A1`A^dY z4l=cN_pBhZke}S$BeT#k)CeehRsf1=2oki8-0o%;W{>?33j-a&Mlu zsfmn8+Z?!eD>)@g;NIz*&mFwPLwb;HzIbj88QLaaJU4N({T+Ta(rpA4gWGwT8SBVQ pTGKypF>-DX=3%TNGl5Ol7i8qxK23=6D;Y5abbZNoVAJafBLINZ2TA|{ delta 2566 zcmbPofMv=7mJNZ7wx(H@70HQ3nfeAvCMK4qmIlcwhNczoho$&WOi&9h?NImt^hn-`?#bCIWY@&^;4%@2xV`N`A1`A^dY z4l=cN_pBhZke}S$BeT#k)CeehRsf1=2oki8-0o%;W{>?33j-a&Mlu zsfmn8+Z?!eD>)@g;NIz*&mFwPLwb;HzIbj88QLaaJU4N({T+Ta(rpA4gWGwT8SBVQ pTGKypF>-DX=3%TNGl5Ol7i8qxK23=6D;Y5abbZNoVAJafBLD)a{kH%B diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 102ae3cb85c2b2c7a6e906af47bae538b35d11c0..852021431c457c8a18051f8a84597d67e2a22af4 100644 GIT binary patch delta 2528 zcmbuBO)ErU6vw;VnJ|OKTV9uPD#lp;;A#VwnP|9jj$gL-hB32{| z)QOvojM69@3u#iL+M$jpc2QJh zufyLbdjv`LicUe2e4;2xa+M-_g&K#y+T(P3_TDgX{9j(l#)~d@S@bC#dCNBNQ-XXn#c8beqpqb`sKS3)?^xWC7 zlMF?+Pm#tAY|cbo%>!7!MB6PftY4z3_I}hFa@_+~x^_RH#?`J{z-U~xL~T8r*kIP_ z#3NuAhsJt$&Frh%M8`wjY0yS#Y+lWxr>UGw5Px5=(nTPG?X$)b_~4>y!R)jZY{F94 z*jCU+#~V^QW;T+y(dpg{mijPjC@i4Zk$}bagR|IC7QLKYSfK`fOVr<3X(U|yj}laW n6EB5Mpi%r|7<;M{dvDV1Jm<%L37YOs;~ufmsk-qsy5qh9Ng*f@ delta 2528 zcmbuBODjZS7{@!DnJ|OKE!U+eY0emPd5c)E5n(i?SeVNpw}c@U%4$+fPQ7Uqu_9TZ zo;caaC{Z>R(xgVoZDX=mgEM>re;?rY{NCsPJiYI$?u+Wac+e@-+lJVT&oeP-mb|sK z%*G_2-(qu0{Wb@4_?aww`aNE&!znqPUaQO;%x?CN`6kViV^b48nP0oDJR-bW{#->P z1H3IYf|21^zL3q&#Bm5;<{?8a>Gc;PhEvGEbRZfuJ*R@n{=519zKc3txNy0ciP`TJ0;jDXr{TkPteMfJ$E&3 zr$UkKQM73tn=?^&%OKV-(N=35>z8P{V*s^AT=#&LuH6r)ai#kfFltvVQG4$OHkdU! z_E@lsL*acpdj3_Tqod)T3}~YiJ|D=Tr|GE8J z@XfG^j@Ip&m|08SL?^qmSn4CZvABrhhZZchADqVzbLi#x+z2)BTcY8{NTU~}|0qEX nH;HoS1PUcSMzE(kx%WENEDAFAOHfpIhVY1uE}&{(qdVank`Ern diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 22e3732440b2a699c6413590da22f7f0ba0f7bb5..de6a430a819b7daf35bb012b297ea02d52852c78 100644 GIT binary patch delta 62 zcmdm^yGM6JB%@(URcVDuNp7;fv2n6xl1XZsWul>(Ws53 zg-NPWqN!=3W!mO0Mk6w`O%7j=K$gzV$?yEcHmkE$v5>7@cyk`N z1S@&kH#-PsvXiHEvV$P&<_t-7^1`|ktldxgq9OUVPrm0HMxO4?@BGeD5a5&j6IeI* zg*1@s^>=>4U?U!ctzsh21He=RF(M|ahf-JUia9}nD>nNl^it}AbxG$aZ~-_d{nCyx zlNFR*lMnQ8Pqr%%-uyPJo4hmuHe$0~K?ix^0CR!F<|RdBh6BQgfU*=yT`{TR0C};2 zaD_pQ9;L3ZsoO!RD=szGkRPD}n{xjG%KbnxvLAG|G&0@32)?U9*c(eE7 z7kuQ|zWLpzQ1Ttlx|w-TD0!7p*W}#?I5*22`bnPlS(_i6m_UZs%?r=5@Q@i)3Ag`} zo5B)q3vSkYsKZO9%>wT)kz3vgycgWO?(-fp{XDtuAIElGM#d|Y=s&{8*rZLC&ub=M NXW`$@WX)L24ghh*PGbN7 delta 2596 zcmey`!uqv^bwebhp=p+7MRH%7j=K$gzV$?yEcHmkE$v5>7@cyk`N z1S@&kH#-PsvXiHEvV$P&<_t-7^1`|ktldxgq9OUVPrm0HMxO4?@BGeD5a5&j6IeI* zg*1@s^>=>4U?U!ctzsh21He=RF(M|ahf-JUia9}nD>nNl^it}AbxG$aZ~-_d{nCyx zlNFR*lMnQ8Pqr%%-uyPJo4hmuHe$0~K?ix^0CR!F<|RdBh6BQgfU*=yT`{TR0C};2 zaD_pQ9;L3ZsoO!RD=szGkRPD}n{xjG%KbnxvLAG|G&0@32)?U9*c(eE7 z7kuQ|zWLpzQ1Ttlx|w-TD0!7p*W}#?I5*22`bnPlS(_i6m_UZs%?r=5@Q@i)3Ag`} zo5B)q3vSkYsKZO9%>wT)kz3vgycgWO?(-fp{XDtuAIElGM#d|Y=s&{8*rZLC&ub=M NXW`$@WX)L24giHHMHv79 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 90836a46dcb52575d6778307396e59f20cdc3348..da63bf29371519551523b72a470580fd9bf687cb 100644 GIT binary patch delta 2852 zcmZoz!`iThb%Q6PVM53 zg-NPWqN!=3W!mN{MkzA1OTV!Q=fuqyS>ss9(mHkXS1ut| zvb5H1-X^e@mprYLmE@n0r*rdG1qW&Jv`*ftAUs(*!rtn*eo1Zt2$P&PfYCH@^FiB9 z{w(A$@QQ~)lqV<&6zNxgD%p?Phcb?5Js-AO@mDcMfKX}1DS-+WWb9W0T7nw#( z=oQ%<-mkzh}=H5G;xa(ffUiR2 z1z-B+Uq7z%kQH$to29q6urW$eqCZfW@un(S_Sa3fwP0l5{=kw^m)vy!;04?ELr#pQ fWTu_z|J)e4wr}uYJW5{Nf!e72+Z96??=u1b3SNkz delta 2852 zcmZoz!`iThb%Q6Pp=p+7MRHTV!Q=fuqyS>ss9(mHkXS1ut| zvb5H1-X^e@mprYLmE@n0r*rdG1qW&Jv`*ftAUs(*!rtn*eo1Zt2$P&PfYCH@^FiB9 z{w(A$@QQ~)lqV<&6zNxgD%p?Phcb?5Js-AO@mDcMfKX}1DS-+WWb9W0T7nw#( z=oQ%<-mkzh}=H5G;xa(ffUiR2 z1z-B+Uq7z%kQH$to29q6urW$eqCZfW@un(S_Sa3fwP0l5{=kw^m)vy!;04?ELr#pQ fWTu_z|J)e4wr}uYJW5{Nf!e72+Z96??=u1b537DP diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 9ed0562e6f9351992740efdc97265f656a0fc1d5..fb5a83ecfc5f13bf274cc0e5428937679a1fa861 100644 GIT binary patch delta 2906 zcmex$fc4h_)(zf_hACC06(%LQ$@<2|$(BhbscDvphGv#Y#-@g5W+}$TW@eTK$;L^B z7AC1iiKeEBmT8-77-h-OHo5VB-ee2rqoi91);Wizfjpg?ce8$AAy4b%-K@fs8%kL= zCvrD4lVwEyqK(=;{%{ie=35KJaMC$nzMP57Fn}51P~AhRE2h<+rqmVMjVma1#oXqjl)6Hv zeHnQfx@mI%a_-F&x>u2x9>CfsPw0k3s=&l@^1=eunApi@$O{itWByM|rG{&)X6~hi zYtGKmqlRlP&f7{2*TgJpATz=@_b-3RK~~OfnmpkP+vJ2Q*3D)c#kt5cV$&X3e)4o~ zzHmB~ojk3RFPs+G{Nr*2H|g3pH{PE}UL7}i^R;K}yrkO*EZ>_pPxul@UI1rI4hWW- z{)&;2Z}X!6isTh32s5^~Ff*>^ADXr~m)} delta 2906 zcmex$fc4h_)(zf_hNfAT70HQ3nfeAvCMK4qmIlcwhNczqK(=;{%{ie=35KJaMC$nzMP57Fn}51P~AhRE2h<+rqmVMjVma1#oXqjl)6Hv zeHnQfx@mI%a_-F&x>u2x9>CfsPw0k3s=&l@^1=eunApi@$O{itWByM|rG{&)X6~hi zYtGKmqlRlP&f7{2*TgJpATz=@_b-3RK~~OfnmpkP+vJ2Q*3D)c#kt5cV$&X3e)4o~ zzHmB~ojk3RFPs+G{Nr*2H|g3pH{PE}UL7}i^R;K}yrkO*EZ>_pPxul@UI1rI4hWW- z{)&;2Z}X!6isTh32s5^~Ff*>^A53 zg-NPWqN!=3Wt#qEM`n}B26n8QH!()A8j`Gka-mb!WE(D_$=liIkg59}$7V8h+Hf_H zrL%hSObg-7)!aNRWNVk$>@6TeUU*e+78YaYAk*e~3LKly$*C}sr+xE0g>*6XKCt$CMm?0+u4lTR zOxrilv^YSC&9c@z$+Q{l?^$-sm`M+|&4o@s$cyV)lP`p_ZnpHuCeP0h?Im7h`Wd4A zuWuqHw(A9unbIJ(&kW8X)Ar35Lbs6@*ASb-BGt)@wD!%Wac{^e+Y;~AZa$wb!9{us z1J*z_lk*FNHZLoZoo+sD8WZQiEnFqP4>cX3Sya4@6TeUU*e+78YaYAk*e~3LKly$*C}sr+xE0g>*6XKCt$CMm?0+u4lTR zOxrilv^YSC&9c@z$+Q{l?^$-sm`M+|&4o@s$cyV)lP`p_ZnpHuCeP0h?Im7h`Wd4A zuWuqHw(A9unbIJ(&kW8X)Ar35Lbs6@*ASb-BGt)@wD!%Wac{^e+Y;~AZa$wb!9{us z1J*z_lk*FNHZLoZoo+sD8WZQiEnFqP4>cX3Sya3ci2bKT; diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index eacaa933ea41214fb6b61b08521304664667f185..24120e07bdd45a7e99ff28f1a233fd399037b9c1 100644 GIT binary patch delta 2831 zcmex+p5^a(mJPm)hACC06(%LQ$@<2|$(BhbscDvphGv#Y#-@g5W+}$TW@eTK$;L^B z7AC1iiKeEBmT8;o7!}CSHrbG+bg~Qc9?~rY>ij^4E zGOT22@7ydc$izjK)}GC`q}j*_JBVzZ9PT{3M32irAs8%k`yZ+V(b z+c(GC?qeo1!pVvNM*RQGan!vJQ)R!?%{e=^L7c;947 zT`}ALFqyFda>Zu(U@}XN7Pu$uLU&W(0$`*{Y`zrHNJISl3S|%Tu$hUdNdm^t!hRwhR*7SdzjO^Q2ax+?UkY~W; k2?yD>&lh2ICNuh{>&P;4ZeJk9c#gbStluuD#(19*0DIe7k^lez delta 2831 zcmex+p5^a(mJPm)hNfAT70HQ3nfeAvCMK4qmIlcwhNczij^4E zGOT22@7ydc$izjK)}GC`q}j*_JBVzZ9PT{3M32irAs8%k`yZ+V(b z+c(GC?qeo1!pVvNM*RQGan!vJQ)R!?%{e=^L7c;947 zT`}ALFqyFda>Zu(U@}XN7Pu$uLU&W(0$`*{Y`zrHNJISl3S|%Tu$hUdNdm^t!hRwhR*7SdzjO^Q2ax+?UkY~W; k2?yD>&lh2ICNuh{>&P;4ZeJk9c#gbStluuD#(19*09~9=U;qFB diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 0423a98e6df7a5d3e610ea79d690ccc751f05a30..4b24852d300faf17fcc4ec191c8b494c5062c72a 100644 GIT binary patch delta 62 zcmZ1`vrJ|~Fr#5gRcVDuNp7;fv2n6xl1XZsWul>(Ws53 zg-NPWqN!=3W!mN{Mr$&(O%GIKY?>}Vi;;D5F7qDJt%d97pZuDokWBrX`Pu%kkg0bv zKb!F8i`-Sr4)F1S3Alv%_ zK|d&p_V=MZL~=>`yQKMv?sim3kD}Us(N)T>Cfc*Iyz#?%p@? zZobzN!AV~Ev0(E2V9w0~{h3_k>7PIO{&bfbzflaBzI zdMC>j@N7PMxPa`u2huNiB7~Pb`xi_;AJ4bhX+1p0CHqzTL%uv6{?=$NcU6 zW{lI>NO$)1jg5>`rYE>D3T*#v%ea7?3;;4=JJ1A8a&iF7dhY3w;fx^^xSxA_Z3N>s zA@WR^vn_|wkxakOnU=%Ix?Q-0(TALr2lW5E>3WTfL8Lo;J5cX#ankjHI~m)7os?8A E0Nxe$_5c6? delta 3362 zcmZoU$<}g`ZG$JHp=p+7MRH}Vi;;D5F7qDJt%d97pZuDokWBrX`Pu%kkg0bv zKb!F8i`-Sr4)F1S3Alv%_ zK|d&p_V=MZL~=>`yQKMv?sim3kD}Us(N)T>Cfc*Iyz#?%p@? zZobzN!AV~Ev0(E2V9w0~{h3_k>7PIO{&bfbzflaBzI zdMC>j@N7PMxPa`u2huNiB7~Pb`xi_;AJ4bhX+1p0CHqzTL%uv6{?=$NcU6 zW{lI>NO$)1jg5>`rYE>D3T*#v%ea7?3;;4=JJ1A8a&iF7dhY3w;fx^^xSxA_Z3N>s zA@WR^vn_|wkxakOnU=%Ix?Q-0(TALr2lW5E>3WTfL8Lo;J5cX#ankjHI~m)7os?8A E0JV1N^Z)<= diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 750838d917a97e01a8d86404c05adce7383a668f..3f90a92945e23e6600437af67e0197a055fcbfd8 100644 GIT binary patch delta 3933 zcmbuC-D^@|9LIT@dD?v0Qd1d=MXVuAwz;F0A+9CNVv&OeE$YITy_lhks1}1ng359c z@KMJ%7OG`TV}Wmm@Bhh2^qP zI!zp7GZ!v7&nKciq8Rl=oZ}Oou*2<%h%SfQJtm57x2HEMMjZQ`<9%V5E9{w|b7UQ$ za>iNeRU7C?g9Oq~RI4EARi`0Rq6yK=N|YbIlnS zS8)l_Ro1O;x4nefU65kDdeVEHRu>VqPB!f#!PG2adNXu^&6Rfa1YaJ57svCWH!VaO;Ap z4t9U?I-0+R_r&+&0XkSLnZ@n9*w3>M(Oa(-KRfh zTIL_uVoEZfxY4V`p1p@b%90G(%NMzotSu~o7ll0#LWkG zxJdN`uM849xOR13A0$I9SO=)jC(zHMjXV${&#}vyrc--b`Rg;pkF8Lh&&#}l zf14sz?D97sDc&SnUb;-W6+FV_NBTRlZt|5fDPn(OBzY2QKJb{_1CN0}TP1(Z{{iDz B#fks` delta 3933 zcmbuC-D{Fj9LG7$w9S_-HI=bggbiV`Y0l{r;#$Hi7CC6pqAt|U%^AAbMT;Pjpt4+q zoJbf5b`x75=nm~bZPn7VIJ#fkcr#KKl>8&mZtPpWpZQ@`$Td)oN8$ znI=wmLbx~{nVs%+MEm*#x8N9`aJs#YNw-JvObD@9WHJ(UdAtsj8BL9^8L!BZV_>?hAGp?E0WNi!}TQ-zC4aO*;8 zE4x2+9nIgsdlMc!fR)8lIo!UF{XG8=z4b=%i*r|TyO{mb5imOorMGrqLt~v+-hfux z$o%74Tu$cGHym>8xm)O+OU2i3o8{Oocbsyv58rK-V?Vp_Qi07}%&uX&Qob3){eCse zK3HkNaMrQ%yA?y}zvC9BelexNa5nO;8!VbuHg>bbr??6*d!N}g%*JR*4s~`z*;QXzTn8D-)k+txT?ZjrlI$tQ+iILZOh#mYv+nFqt*TNLKQAk{ AL;wH) diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 982690183acc20e64b7bc0dedc1b10f4b3c20a86..f99eefbb4ae9325eef1866f8582847f18b021845 100644 GIT binary patch delta 1137 zcmdn}hjI5G#tq(#hACC06(%LQ$@<2|$(BhbscDvphGv#Y#-@g5W+}$TW@eTK$;L^B z7AC1iiKeEBmT8-781J!>u5I!L&hW|md3Yzk=a@jc?#&xGJ;`t@)Kc!rJ>08Fw-lu5I!L&hW|md3Yzk=a@jc?#&xGJ;`t@)Kc!rJ>08Fw-l(Ws53 zg-NPWqN!=3W!mIA#=~Uj`XFYsc?pvn3z=Gd*_Serr**O~JIC~fen$4mDO`nQ8Iim> zlY0UySz0qTPZCri&*2%H{Y47M(7O49*gJBf^@CW(=5on;GHjd-(%LVxi(FeD$+?ni z>jA~* zlY0UySz0qTPZCri&*2%H{Y47M(7O49*gJBf^@CW(=5on;GHjd-(%LVxi(FeD$+?ni z>jA~*0B1y~8@J!wA)=AU4H{g^@)eDi8rd#jso4hY^%!a087{#Kh7RWpNqt zXsyv&6=Q2%ZtbTMT3fB!+K|$y6{S&A<6135YbCYXGZ&S#|K^<^{CwZ%+s=2++)!&X z*4m5*v)I_Vl}ndLmzP>1qM|Huh0#UDab{C&TwzpU)R8(wiT%;wc&@?)_XrwtN z#vE51F?XS*ETU}T(j}H6n^_659bhL-4!a0tp87-@%^a7iW+hZ{TqcNfY)1D*kTO$s z@%U86q&621gYBmhMNRjIwy) zs}>Kr;|WU7zZD5gh|OflRaZv__+eDr>PQ3sA(17-Z;L1|U1a}re7;SVdA1XNUh0tX zld&+Ys%PF5EP1Q?IKKoNHLLoxU<67%J$(U6ZJ(8aQd{Pv094gvF=9u_s{U4-2N1ZHX;u4;SPHz+Y;*(fwmxgratc2`b7sTWohpwx3K(*Y_E ziD#wi;Z;vi?1cBn0$6Q;Lu#W?YWHe0O8uig381Rx#sdIROQB?Z$YWY z&))>7YWu}YC^7Z&WPqq`!-&rPD7E4$a=U5Nsn@rm)b%$KfLv8}(}2F458Z)?A@_!( z#5)frAUT@5Mxn%*M{q9~oKm5`x%Nlp8gGwV>L%L2M6N=eA&$jB*cz zvbRz0uGiTdl>2cQ+l+EAzR4yb-1f3k`g#P5M!D-ESSrG`pZ&6tEFaYt$FPm4mXBu0 zdzi#8ZS*lgo5r##;2PoPSuBr7<}+8?p2TvTb6AyjqA&XaSVR~xV z#7dE~V0R$l&<+fb9Y2FE?_|Y52S|uBe8IN!b;p<&O(u2{*z;QFNI0~BIcIX8@0gp` zc3Z}{Sn7Y0mBVoet5!4)%4oy3u&8||7h-qH`I$}kM!OJvgLzW?byfsUUM2~LP9%Hn z8hLh)dDFW4tOD5{=Etm{uZ10t*i@i}BwW%AK>36&i(B=QH^q5KhX69SJCJaw0g|T> zgM_?dxzJ6cdHtj|q-Wh}QZ5}IETsY4g4@Mhh&^dTsH6`7O0GH7jgfr&x?V9_YCwY_ zVHKlyJPs0Z>;<8P6rLg7gp*%XEO~3m^A+im7hjYvrICk4x{jP)t(n3wZK&fV&=xQc zZj{{nT2Wgk1tM|SHyH`5W5`5m;%Qu}MEaqL^R`M~qU)3D_eo=b)7x7IB31c-c%C^@cA?H&(qZ(~q&aZmpr?=r(tUqt0^!RQ*^7$@ zMJnB9vO7A7y-5kLXZ`+lXk-WI zHlRN=c+fDNHy2-*efi!{T_AlJs{03B0wlbS0-sBX#prr~(ux0UpG|8Lb#!!{1(z9=nX}|4%Kjh>8|9fudIcMKV zmD5z^G#$!d@s|14rFPrmqG)se@ZnaA)oh;=V~H~tT4JrSbF2jgwnAI}u-G_rTwMOJ z0&A>wMD(16_R{Fmh3_o37dUN7g!3S4igDXTD6`ckQXF$%s@jxD#eJC|<~dEiiy&pX z>gD&Tj7gnden#g{MT(jla76+vV(b~tMt^T-g~_O%47MOqys%I!OpQq8gj{XxHNYDR zK1(g^-|i1e&%b2`Cd3(I&r(;LLxVA@bG6yXe@I|sMsANTD_-RKbAP^L>~ozbgAHo` zv6HYc9IAizWGs1y`Z%Wu8#RaeG zsdT6pik_o+mN=%N)Oib&QR>7JBv-Yi^c$2Iy(AXRQ!dXysSlQoN2wQ9r-fUIbKD%Qa+2IZBPHH=)wYyI^X^UYJ_HA3ib54?ILGtUr{9mg&wBcqv`` zf}_;XV{1|A=!P?>wEnAXw8EQCet=SsHJwMP15d*ao6z1-ayf=aWV)&Np9`1x)?=9*c`lvoF$Myj=>yCj7ho1Cf3Y({M|7+_1 zZCWR@QJ&SbiIu@|2&+ak4oYjrwy>yuIu~MJ%KVv44?w#ReuMeb$m^^CoV;`r4sA&G z+BNd*E(@Ub_gFcyJ#3FzZg&e?AF-)G3rV=77=iK$T?TjPr2w+}NrwS4cR7%7s05Oy z2&06&V!6;wqq#k#W~65iQlu<8(N9VNwgq>Ixe)u)#z;vY3Y1)Ps2(K+b$7iyPFjlw zL&D0UcRvmiaqI)3`7}69x(O%0s89;flIJT@B?DiSDy5L0UAm5(UagtJFlB)ICD0Zy z53iMcyIWCJErlU*xHcIHtK-N-YT{{JT88vP6K8LezC_n2)$Er>0jIaCd_o*bGY?BU zBf$nx#RaJu**x0iA;fxW{Y6?H2;zDAP}z&xZb?VbSCi(zg@c|V?o0PVJPCv^Rb&Gf z4~k^E&17G661$QTUegR7MblxF{m337d%^wDsw-@2!#oJY#Bbk{-lcVeiL>FIiHed$UTw4_>UDmoF&gd z&df`f5N&7DqXlv+@coOsY)Is_D;$`Mmoa!#MVj9p#}Rc|?L8!CAtU>$JbdRFIgGEXlV?)rDY=hFVUh5<;90Yt-Hw0 z;n0^}yCeJ^_k9E%8$ON=OTd3Q|DaA`Kj!VG7^j-gM>{F9^7pQZ-s@E;me zLUkL_9~!*pKwSVAUzdaUzDQjdeHf|x2VDXryp92%ONm)@oj~ctf40x2H3_*k5xjYMLxyC9>Jh(2s+>b(S6T5~tg4K^kt;5IXc26B;QWANnpiQ=2z#_N$` zD=4To&rkfuPNvNXnc|xbvW&>Ic```*-)u8ZGHqX1%)WVF=}&Tl4W!+vF;It0+hf;o ZP2QR)yxC;k18y>mn8=>EdD*UhMgXT85X=Ao delta 1771 zcmdn`gK6szrVYW2wx(H@70HQ3nfeAvCMK4qmIlcwhNcz*k5xjYMLxyC9>Jh(2s+>b(S6T5~tg4K^kt;5IXc26B;QWANnpiQ=2z#_N$` zD=4To&rkfuPNvNXnc|xbvW&>Ic```*-)u8ZGHqX1%)WVF=}&Tl4W!+vF;It0+hf;o ZP2QR)yxC;k18y>mn8=>EdD*UhMgW&{3UmMf diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 7bd5530570feff9f256673ecba7a32852a522337..8057f9618b6835ffc5cc027a74cc56e0dc35f192 100644 GIT binary patch delta 175 zcmZqEYSY>f&S;oYRa#+ElAEk=Y@BSFWRjX@nP_NcnPhBgXl9mTY;0y`X^?E3WN2ZM gYLsYdnrNA}xr5Pwopf!JUvk_bOPAMX2d-mW0RECRjsO4v delta 175 zcmZqEYSY>f&S+?wWm%D&Sd^)6kYr+FX=-VZoMLEdVUT8OZfTxknVOoImY8I0Zed_y gkz|}|X>Mt@xr5Pwopf!JUvk_bOPAMX2d-mW0HXFY-~a#s diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 9f009ba37fb1100dec5061ede4f591273d31f707..651967d8d7a98c80d5899131f664cf1ba4e592fa 100644 GIT binary patch delta 3415 zcmbuC&1(}u7>9W$U!>|G*AU8 zqAYgADvDI&q0rz64te!t1gJF_w8{N|j$ zVu0Lr`P{|W*%P^_qU5w}EML%cS=F*iTvpXCMNw64Yfj0^iCDf}kH>Yb!0y9R1ZK+N z0!z6rxEfEiQ8VT8u!Fu4p8!526>;g8*mzKPqmp~sbO>;%y{v!L6;I=-Ob&-IW%Zh2 zcDA*%;HHrndG%)XfrD%r+8 z>`Y5*iS-dEMi%p65~7j-Kf4=#V@J@=@6UigjnAjCK{$-VX=WUfT&HjkbH`hEfGya; zryj$3n6>7iQc9S36MuE zxE->)NVGdbTIsDSEaB-eDPm8Ht>Tty*CJ$>Oq{Ier?!!+ei1==C)tSmf->ms4iex! ehsZ9W$U!OC4ZC8?XADr!p}b!Iaf% zy3yITn}v70!W1@f*4Z|UC~Vlto7q$Gkl*=wEu58vLeZ*U|#`YDAOeyujh)L9jWmW=J6@1gpZjGpR@bCPMb4all2 z{&lbJJh46k#n@^dPC;C7!7m`LH&3Fll14v)iDSAt9hZn_dYn}l_)1b1J zZpQ79)kUDaG15YBS78m$L`e~QS}YYeRR>lfyJRJ@jh~mvwV)e8c|U2zeL?B;P6r9` fz7ymTc2nwtiPK~@gjmAA|0Tw#(7?C!lI74}7!Vmn diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 356cb344cbf282b629ca353eb1f099d8c7b3a152..e331cdddc6cc0e33a1e9061248946289039be396 100644 GIT binary patch delta 15184 zcmbtbYfx0z9iMYwOHdwRA(&urtwzTXhrq(>S}Ot>1kn);7)Y~3c?pauL?z-@5h#sl zp5sPOstM6NL_@>2sVQR`W3?J0x;^*aT4(xge|}(wFTcnC zasKDrbMNkIiQUx_+fm38O1-spNz0!oiFZ0n+{H;{TDlNY(mee2mUfJ$`~Z1UPvJyQM`B5J|I^j0-Vg4M%(RY6Z;XkWeEuCKUb zu>!-R_4?2_Fm$0lN}nCx4u-DR+kY!V##i%S<+4!yKy(p?Z_;~X+*r^}`o4SffPnQ> z$D=9~Y?bbskcbtyN|)n~2SKVH-(Mo4eI0IvFV9iKbzf2)X2ImqJKUX!jmG9;{l~Ol zBFX~lJ2&e)Aa(;;mbDK?+Id|LOPSUlzx;_B<1g@0*4SKYGsdf(%9K!f`X=#}EhsOpi@)v)T~xv1**mB?Z?WBuonov7i|no<;+v&@gi`crKs zsv5d716B2V;aEfK^HJ5%h72@Te^V}?sy8@JPJ+TQHjQy^>z!Y zx@uPx3Z32ot5)lhBH5k9UaMBV0r0!6x)pIrrph+2Xu+Wun@Gi zdt=$NsNWyPvUKcP#!FvMV40}yXOq~cC^lm<+YaQ|c;q1-&mKl~Hzu+IRQKg1R*mZJ zp2A*6b^q;VkD|IiO=rodZvPCHkLvcPvRNp$=OOk6ioGY3p@(FOoz2h_20b*Ftpe6Q zUCd!U0FDdXYG1EMrJ8)!2qfzk!J7rF5V#D#MbJ^ikXHu=K^65DvjJdsnP4u!D$S{2 zep}!dvj#&6ovLBu5%BvjvOGS#l7;Y%b?k3|x?%|$v#DCbjmGut;J zaAgwUKO@Z|a77fvSs8GJ&W&90YwawA{5#kRq}dGy5)3DS7ax{<(Ox!^Dmz&XnDRUl z3`1dor<`}47WF!Lh@X@%hmNyP0A&)&{YbV2&O?*_ z&dNi9Y@3}Dd6{|PHnU%4-vZ&9^N64Fu#nCzQX4WA62?gR{Q4bI5cS%mHl$nz0||x? zB7n>Za0%a(EoIO%_e!;ZJPC$xkigBFZJr?2qBY|J989f~q_2>|nexMl(gLJe4KNqr zFgoXwq9cL4n+${Vq)7flffCM7+awnaWJ@im8xmZ}BT*yk7fKPlWuh<=;}p$wk4HL> zR)qwY9EBPgS}BZ(cKolAbx+-f5yADy_`r=&W2@ASL@#h2>f0uLh_)ji{hk;DG3^p^ zCN(!a5)57F0OhdbND=*SZ2S}Rx3t4;DH;MtA@`1g*$bIgTV4}$in7X3-X+JOZb(EnA80)@6!IUJk^5gO4+0!bDJSHGXjN$PuncWQ zX8r^?wliPpjsbgu+D0qmfJU@3S1?w237O%Bb@EPBehw{rqm>0Xlyc*gLa^!!_~vxw zPU{d#wtv-+W6=>i3j(o$f*A8tm-wtc&0D<)E;Eg35GQ^zh9jK#LZ2x zdq7=+oRds&{wXybR?a-5B42TmP@VxhK5$Nb3Oudqr)4V;&q*mm;&&?9352)U#;9I$Jg5V>&D3@rs80q{;&SNz;&z z>n-q@VC^krX znxlx31gBQQ3NCfu$KE^NF<=?~ae04F)a3yG9G O;(}}x?D5(r2mc4ht4L)4 delta 15184 zcmbtbYfx0z9iMYwOHdwRA(&urtwzTZhxcQx6@d(b=m-W3q*-a4bePY4KX3!;D2namKK{Dsge?7f*7@?ri^Kf)oO^V^xS)EoyoWT`GFa}{2u?u z`JZ#oy}P?TdUtztR|$(xu5~t+FKMWWjVnt^awa?D$}8fN)8eXi?P;>x^_6!m zRbY6e-V_`IhAz~{>2pIn!O-<4`>$ol_!|C;0v4j3hJ3j7jRHB0uAmlpjXSLqpC+M*1)Pu=cB6M)F6x5jP+m3cAMKxa{_;^Y*6&x; zpsK;EvQgDhHymqlQxU2f+?X+(KRn9X|)nEN)A*$N^+pDPR#8;m}RWn};L7~1ko=2g{J8RHbbKh!5 zRafthK%q0cVAVPuR*l^Yube6SE~6Rl{U9Gr)4>DiXwv`mhaISDcyAL5{pp9FqR;~$ z!Q0J&zRjrW=&?`Gx;Fg{?&0^2pF~wtKl7rou0MGlRgL{(C#u?d_B^U;|MHips`IOP zsA}BsepHozjqh~dyp5_3UP?z}?Y+DgRej(ZtQszJ!qOF) zDabvEIA7B1HWr3@UL44_qSzflY$A$n2xX%vc6>NX0n1A_BG?vGH}hWhJfKS~iUpyy z-51TCMg4v|k!4}mGH&`}3d=!tKc2=uLb2J?*$yDb#v>2$SoScgyD5Pcqq;9Au{u2y7tjDX*Jkri^^Di*{yHL|}0>IMM`f;tTY7ty6=HXrF6pOZTy{RMXAs!IT%0 zU>FJUKjpmVjHuVC!|ZcljGJICz+)+=kG+LNZ^}0wXGc(ZI(&kC2q=?K9z?P&a4wqm z4^|ZnWZUeN@GHy>x0(GK`w9rxoJah$iv@LWmAuGQh@T)8@f&wZ0n~4kyhynW1`-VK zhXI)r;Bvk>Ps*le?w3{o@+26(L;^Q!wq=U60<9Sr;6Un_CVh?+&Xo5hNQ;nWHNaee zL+E^p6d4ZW-DDVEAcga9i~}^MFZQV572hx3ak56wUY8Dm$E8AUG7K^KC^C(2d9d^0!z`QHBV;?$i3SY`BWXck8LTMIJs{tM z*TTqT+f;c^+|GJfG~M zn|1P!fcleQ(2*t3vrew2S6b!Ez_T3*@b4V{=a>t#EBAv4^tPVTA7PoQOQw6XvPQ$dVU0# zsia0h-f3Is3PDqb^n>Z)%yK1&@*9*f=x#`YA>%!?gWi8TvW(Ns|81y7UYi}sXC(71=P=Gb6W~vQ6jL{Xlia(RFajFd5*I6CAev;Y- zr+nj7^%eLzplYTXY|Wo*DQYAQr>Nhd1AqkA`$!7Rd){|))EeY5WcyNe3GG^-hTQ`+ zy#QBGewFF~7CQ;>rdmw2&iLp#i3bj-$f*AKoa#2ec&1MW)IMa=35K<_a8OMJ;^rpU zIixN_&PgV?=(L&zE9ab5k*_#OD9?f&A3U!<27`|bt8?LS4_#0Hw^~;gX8H zptt(tlPfCnR?`CSyQ((BF%OTZ4ah7tJ9ErU^&Fb8?hXz4n9d4$vZ5hBsj|R-)->ef zdJ8-uPhxtpeDnuvU8x&7vdAmP;=#*D8PP ze;v&j1i?J=c4+CDI6*EK4npb8v)U}+=I*wQO(WXu_&c@1g^hP9>p|N};3Q{wA(4_t OQXm_}d)>C_f&T>;e-Nnv diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index b0053af0343eba008143719436e26695f7de0f82..184f2d23a7f9dfd5d6da96936748d3cf703dc3a2 100644 GIT binary patch delta 1210 zcmZo~VQX(;+u+S;m{L_*VN#NttZ!_bY?)+|nr4}3Xl9vYY-(s`mSSvdW@c%SY@B3h zVUlW;Xlj~hnKrqG@cEVq$4(X^@;^Xlh}QW@>I}o?@ArnwXZDWNdC> zU}2GDoN8%qX*Rir@c(Ws%ZSn%Pn91*1Stn~TzaiaHsBVGDn_1SAt-FDAotqc1y<{O> t8_>CJn;m#|lc%+K^L)W%ZSn%Pn91*1Stn~TzaiaHsBVGDn_1SAt-FDAotqc1y<{O> t8_>CJn;m#|lc%+K^L)W zTzH5KTY(uddb9t^1?ptk9J9IRq8|^LTEp-0+K{JpdY>{Q`}QAFjGP?g8L%B_K#?iw Ldba~h_YaH!ryLI% delta 1740 zcmZ3ujdkHR)(z2&hNfAT70HQ3nfeAvCMK4qmIlcwhNcz zTzH5KTY(uddb9t^1?ptk9J9IRq8|^LTEp-0+K{JpdY>{Q`}QAFjGP?g8L%B_K#?iw Ldba~h_YaH!?)C_W diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 7eda4eb91571323bbfd0ef68a6f764b71ba5d353..5963015e604155184f70ccc6e78cb4c4d5a14d41 100644 GIT binary patch delta 1973 zcmZ4YglXLqrVZ(ghACC06(%LQ$@<2|$(BhbscDvphGv#Y#-@g5W+}$TW@eTK$;L^B z7AC1iiKeEBmT8-3FtU=NZE~St++-c*`=nb4);Wu1KiN73CjVe9AWQd@&ARMD9As&o zxtUYIoQ!bVTqx+yOoojIRc3B(5}ibbjgvuI?};B~BGcAv>Cfb9)sR0%uGSq&H^}ho z=7TD}hD*uS>TK%5N=8yB6l~mVX|2FRrdDo`S{Aaj z=1i9J=iO}N>rY1H0E?EK&2s+j++^7tKRF;$ZgX(-1M-3kqWxjw8zC}nZ%~lkTvb}m zMuGNuHD%;FeqM+C3nWbddyxDR7 fAu_a0cAQ_idF@g!F0vdOH+dEd|K_P1W-Cfb9)sR0%uGSq&H^}ho z=7TD}hD*uS>TK%5N=8yB6l~mVX|2FRrdDo`S{Aaj z=1i9J=iO}N>rY1H0E?EK&2s+j++^7tKRF;$ZgX(-1M-3kqWxjw8zC}nZ%~lkTvb}m zMuGNuHD%;FeqM+C3nWbddyxDR7 fAu_a0cAQ_idF@g!F0vdOH+dEd|K_P1W-#hw4Z6_1 zcDbd?OWBPGrTwrA3QGxt=wc6HU=KwRg=OHw&`Wh@q(FO`&p+Vzt#5sM?R7S%KWOL= z8ah3+sB(A1uH5Zgyf%l!>#oT4Rk=N?%U$7csxDWh!{Ktd?OsQPIzQK!<8eAY?kZbl zz*}#t4>WA^`dFVio%PT&HDVQwEETCy`Glb?BgVvrqi@4>Gep*k{Mc$8ga*Wl#B!|L zfG9GSD3MncedYoH(~f4VkSV87^mFQ*=*Z2oy5c>eE3Fktx32hr(9hV3q+3_qBGmL! zq}LF-FmokZ)tz+@ta|n8T#yv&?PVzHbF`wZ-f<>GK@-s;YTbHlB5GLYa-B$C@&m{9 zqP<`u)^n)3g%|ClI6gd`rm{234nhHhbT&cc9@dp+6upIwz+Dt|#Zl;(%v#fpq8HX3 z#nNsOZ%TflRS#`^fDLC28}ggPVA*saVQt%maW+_HVXN&r@yh!S>wUCLplUys!)Te# znrmQFV#wbc4-IUMSl!eIqRe<=vgkkj1jQG73?lDb2f8XWoaLR<34URp0qnh_y%9bC zj`jrc;(E@+$SVu=;WebH`f!KX+qGa`6U3_T_w^VqP6zXnBS$60(bJg7 zIj(WlvcgRDKvE;H-$Gd?urk-+M80??6=DKjX-%gbV8Ml~d$|UO_mljYNdv%U8Bw`x zr9! z$i&Niq>}@s^aWdXBPvo;xdaUKC>wg-yr1IOt)PXUw9pEvtERWW7W!XvEuN2=cbp`v z_V!7VyqWF-XZ6=kSZS(^K19*L;Ez%1IYPI_uaa?`zK!G1%u>r{HgNyOG{eqP?YLBI z2gx9>w32l^&G3*4cNS2JY-ppKnfT0DW%pyUV;}$Ub+Ss{OHGqN2an#9DxZI#WoQ~< zftMd?!Zgf*^v5W#u!qYAuCbHlCzEo13Rax2vMEMsu`97?`(Xj0Dsd^81GaB|7T2aR gL$)nd%%F>qh}^tf8L$H;w0~jR4=tnYYgA&DKlO0+%m4rY delta 5019 zcmbuD+e=hY6vkOcM`ui(nZ^v7jBcixHD|KXIYlOjl~z)8!HSe|9B~q6GU*~+)F6xQ zwaXn=FR5LKP}&c>psQcE!R;M z^wvA-gFCi+eQdy*&U)#IGinu`EE5xB3JF75Mx2FxkG%oYO%Pct3gc@G5E>LKk}9xn zgQCQ|L5aSq7_b%rn0_?dgiJY!q8}#CiH+VYt1I0rdM39b>DHAV5XKq1kaX)xn}svI z4CytDF3MbqR@Jg@gH_wx=YphIua={zFQ*l4^`K3H}$XxhRde|3G3S~g0tar8(Xa!M8Een*86CgV09yw!)Tdq ze<#?K_!{UN2Mw%Wtll#KqRf0eO$;7-gyQ)glPEabg{}%6X9Z^sg17BAfxUNiG@$3- z)sZNkU74R6eP!Xi*NIeh-rFhm^(>qheMNolH?mWqM6v429V3Q|Q=x+K(W81 z9M`!TS!tzuAgK{JV52MxSeff^63?GW#h8Fs+S6%1u;9YhysG(QD7W!XvEuN2+cby=+ z{`N_hyoqiBXZ6QUL}{vwZJ}6T@c&WiJxtffu99(#K9AwhtWwWrHgNy`X@;Gl+A*m( z4w6Y;ZYBFzn&Dv;?kb`bx#K)t%fx5KE+0N175n%{u9IEzKH4)0ba4L-Ipx#0vS(Q?TNEl|wO0o2ta4?MDQJQ%Oj{9I*ZFEUr&u hhCIJiv4SqbB67=eWk>}~=>Nj>A6jNP(4fRCzX6$F!St(xX+u1tVM53 zg-NPWqN!=3W!mHkj6ccHrDz{ES%8^bofBC0lWFG!7J!#V z*FO0joABlu-a>LhTG1Zt0MQeZNNn jWM~DY`50NQ&A|!mWcYJ3O#7SES{brz58M2qsf!T+GWCm> delta 1312 zcmey>!St(xX+u1tp=p+7MRH!#V z*FO0joABlu-a>LhTG1Zt0MQeZNNn jWM~DY`50NQ&A|!mWcYJ3O#7SES{brz58M2qsf!T+CqRbP diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index ff0243c83d14cffd61d71863dc567c5489af2c11..7a9d093c63b028125d4dd7db1383c5245da5d50b 100644 GIT binary patch delta 534 zcmX?7ccgBEFQZ{fRcVDuNp7;fv2n6xl1XZsWul>(Ws53 zg-NPWqN!=3Wtx6UesZyXaeir0a_VHqyLyxFG2S&K*%YA8tjS@_ugTPThh;z6It3=X zu@#V|JA1N%F3;o*3c{NU+4a~cGD3WF9A70Pg+@#hn94+v5fYnU3pZ2d3W?2nVjYya zqD<1CQdhJ}Cs68&rExMK4LgG7i+x$h}QLJi?ig& zwE2uI$L88eie%b68Km85in0uuwks&}Z06mlM6T^1?bkP@X^>@m&E(h4s+;-mFp^>W SX2-j6N@UrZwbhDoIU@jobVD=% delta 1864 zcmaFZ%<{0AWkWHet!b8JMRHxMK4LgG7i+x$h}QLJi?ig& zwE2uI$L88eie%b68Km85in0uuwks&}Z06mlM6T^1?bkP@X^>@m&E(h4s+;-mFp^>W SX2-j6N@UrZwbhDoIU@j`i#(zL diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index eb73dcf41f090627bd93becd70519e41df318859..6a110f0512a071002ba3b06e910d67ee1daca686 100644 GIT binary patch delta 8004 zcmbuE{Zmv`7{}+FWo5$!cG=y)fMgh%m@Hsj*jNL0$And0WGP>2FcfeJn4ox(Hz6^L zal&xyQpXV;G=q%HvRfTBM~m6X6m_PeADAMvnW8CWoL-R-I`=YBzwXyR;QRf2pXWa3 zIcMfhjp(OF^zXTebxX_ErsVpn(nOoB)KQY`EprrG?T!*#iq&r4Vzb%pj-*msi8VFZ zyR0}RrPxs>HIc6YRZVP$e1;YvKp~Y{1I}Skp)^RRwa-H83fZ^7ZG@y%@>>ykShZDh z_dR(OqE^f8(W4l(TAp6K5}?X8u|AYIyks3flxkwD<ga)`IVsYB{Yw5v2w-)}ysXH&>w4xYpw+wf4C#fGS&e!~-(*F)+C^ z3zd#`JcZR+DUa>y2>@Sdi@H{!)agA1DD`^xs~ELfj$s{WhcoxzLaCz%o z((9Ed)zLSAQlEblrgjb-MX6sNbD*^jy!#s}O_OU-Y3@hx47Z;wLaA*Z_voObzFzM2 zEeXV=Qm;=d=U?hHL2{>bF3KnuUUgvGVoq-Pp~L{wwUTRgA&YPkgB-Z%P`98#dsJNS5QhU0ACvGM;urXBiOz3sI&r7t}FuGXGHnNy6Zy;O26kHe# zV{j)c+DlBlaW`qi;7%?K-nbiTzf&4>8`z{zOdmT+mI8w#zM*QuR~#ocAOyQMMKamU zAPMDDKGLf9zl{Gm{QU*FZbls@ei9j;9w&O_7${Y6;c#OCh?h2QFtdtr63%G8Y|WD%S&kx5?gWL!r`@G|GySf@mJERPWt^16K`sD z=faa#QqNuf=inm807%Z~-#khqfzGK*YjsN)Z+e_I--*7ih?W2gN98ANk7CXHsD(Gw z(IY?y{x#u!P4sGz|DB)L8(*NNg_xe{yJ#5OwvU?lsXg>CScU4szwM?G8Z3r%xzoZ$ zFFyeTsQR-9=`{BKce1y8sh-;p(+M!ZoWY@fngC8C&p1Yhfvv9$0TbFte((dD0l<|9 z;3F*NGqJfhou+xf9H|amIK%>YHGk+uYGy+o@roK5qC3zoC@%cFuc!rxG1rB*Yt+Q9 zc!+_&G(xunIp$g+YyyA`>Ukc0Cz#LtNEvXE&FjM^Xbtd|Rqg^8%bTGQOg~E}{Xfa` r2H_v>*5sfS^qeyD!a$84?VzInMX$LS?tcNIgUX-iP;QIUoDcj5Me~EN delta 8004 zcmbuE{Zmv`7{}+FWo5$!c3CzsAQ?s`CJS~0++729$And0WGP>2FcfeJn4oxx7lp(u zrU}EbOC3ja&r=2_3M891HRwS_j&Gf zo^xjIlwUvP*T3f`*7RyeOL=L1Rf?r7EzObcu#|7HrrRwQ={ARLi^J_TSD1=Y zvQdtDh$g+lzOe_Rg79I$Fokf!`b_8qSVp-kE2w7-wBjz zdA%B?I{F7u>T_?x)ULrJDD}&u4z$+6cYi~r8FC#e&Ho6V;f@m}D7F3LULADQ*UNpr zCBc|f>ho#k!i!xdNbZ!*#v0|~D-LX1%*o9^lo?>UR&vcQWYI2Skc0p9Vf|BLXl2*z zEi)E_jonR*{EV3#2l-qW9FE7~ddYB~nVt6#Gf#36E0{tlLv`XmuOb85z~k^w*N_*0 zCBcMl9lz)y--iVb6?d~s>c}+kl+ENiHioL63B8W@dx;hsMi-0UMi%qsP2?Fc1s4V* z7~IK9_7D?q-bI=*xRVQmH|~Vm@07;e1~%yv)5ngGrNH2bZ>XB^6~{;_5Q1HuBH3(a zh=lVgA8FGEUdI0%{{Dhoi$onJei9j;94C6@7${Y6;c$Hch?h2Qh-6jcB#FIzgZy@-ek7ccUshKx5 z(8E9n{x#wKE%ZuA;GLh>8=t49g_xe{yJ-a5wwIdt$=&o2ScU4szwM#X8Z3r%smsho zFFyeTsQNPp=rs2Jce1zpsGcu7L?^%ia|Q>&pJlAmq|a?G_t*aQI?)bl+0PAH%Gkuu;So7YE7&^q8PtK0=HRxm@OnSPc|27Z#~ r4Wd5WrO87p=sg+9i-R?Kw1bNN7ro{}RNw`O4k~}5!+C0==3MYU#`tDC diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 41ac93e527c0706772e88c46976c6fe4291f796e..c896e1893aa65542a63da8a9273d5163cac16f55 100644 GIT binary patch delta 1562 zcmbQ%!8EOdX+tohZAw*Xg-J53 zg-NPWqN!=3Wtx6UesZyXaeir0a_VHpAi2rw821{IYzk1P*W_nR7s=F_!zwV@iDf<6 zx*N#S88rEVoc!iKwuh`_YggVZ%6pB80__t8CX=sSW%Fs_OiHxh7AvDf`wvMaMzZ~` zviYEN51F=az982{rdD8_t88Xe3Zg{&FBN(6lMK)16mf&;-KmpX?FA;=M{sPe^b2Pu-2s~!gJzItbI|0uDZ-oeBVKcpZY!`@ u3)(z4MVdUDy(iDl6WQ#Mb(;+T0&Vu*JU=f(m@G$oP0nHE-#oFYl@R~}>C|!n delta 1562 zcmbQ%!8EOdX+toht!b8JMRHmf&;-KmpX?FA;=M{sPe^b2Pu-2s~!gJzItbI|0uDZ-oeBVKcpZY!`@ u3)(z4MVdUDy(iDl6WQ#Mb(;+T0&Vu*JU=f(m@G$oP0nHE-#oFYl@S2G+|I}V diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index 323feb4b40492471063b1d5024de81ec5967c748..9c7574b511be53dfc90f7c6aa5e54cea549d5483 100644 GIT binary patch delta 62 zcmaDX^jK(vAERMPRcVDuNp7;fv2n6xl1XZsWul>(Ws;QYL6GZ?3 delta 62 zcmaDX^jK(vAETjZmSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ RMUru;P(76AJ(U diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index fb57092d474f52a39b70efe574750614fd12efbb..1dbae21436349b092b1232e3a7bf6c7662fd7934 100644 GIT binary patch delta 175 zcmX@2enfqPH=|)nRcVDuNp7;fv2n6xl1XZsWul>(Ws06xmSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ gMUruB8UO$Q diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index a31bc130ea2017e5d5e9aa46cdd2fee7e769e050..c9735df05005fbf6e3b0dc1eeb15593c2f7855df 100644 GIT binary patch delta 4036 zcmbuC-Aj{U7{=t>#YL9!2r^x;saEh8|Eh$ItU z=-nWef^^_f@l+4%s8;kL{l=tO$Am+H9d{R6J+cRkPj-1p6so7Cne zwRc=(4fOX$Y~eHhor2(Z`fTk%r`PIm`UJbx;RpzV!{M~}1)sIX*1pSYw|kvIv7crD zmG{&hmMFTb!KBj2DCt>Rx33DhuZMLuCD%jL`+#aZ*(|2IDy4}sDq~Mi4Fh{+0+sen zER;imy=*bj4a{OTo~$c@h#uB4y&D^89=7dm2$}x*$JP1XAk7Za7P0=rLnwH`f?b{4 zuls+wba5TEFn8u2aMcB^=*|?gYd;PFt@TfT;%5TbVt@70*b4GtXYbp4ZYm)`E%wKe(4(!x7Rh(u>FA z0j@hhEvO5ZU33-bAwu1xlLk7dL|jbt@cA~S>X%VP7=w6nx{U|JGzUB+ qrLb}i1D}b|Szxs(4jTrku-rbQ2gw`ohD$Vy>~#4f&E?;4R`VMwbmP_l delta 4036 zcmbuC-%FEG7{_@`_e=X>X)Q`B!>9~;$6VW+6%vt6L|2nhT_l@xn1y50mKDL$h)6Qw zK(B*X3etsF#;FeLsx0~;q-BIRrFD^B^h*eZZlw41rMm9>{sG_b=X=g`p6B7r4VvZ# zO+#LCxSHkmhG6{UPAODYCc9**A?$E@q=?HcyTfv0V=xj7Io%$~;|Vz%Ww*SGou_d? z6+E?vXR_{QV^XENhb(-`yssG7FK4OkZIHZ%`8=!m?a~yMUX$DTn3P-s)9rk^>`N9V z=RVIS3ncaPxr$>}NE+bps#ap>4e*wl;q?&pKA`F!u4QAfB4r?-^7+%#T}X{p4?Y%) zBHg6pi}}aaHl)6PHJ7~0F@>N z<_n;}LB5cQ1GAX-4_D+u!~ky^-Hna30N?gDicEj)akad+Dia;Fg;jod2nAoX;MXSi zoBv;~Tv|td?wh^`T=k-s`KELD^&f|T*7~PE@iPN#vA=qyZv}<0v&V$G%pL$$*Wd|3 zYp4VmX}b88ojQSmCRB0?hCVK$qX1M-{AeS|FuAXo?!e@4C4_7)J+`!!&cNjAQbM+t z__Tv&U}#h#2hdUCjgxAD0*S*engK?%9I17RW+hasUp50_tgLyoUPRhx5_m{@ qVbvT~G2TvRfz_rvZ0MlH<@Omph-M(FF4F|E)76i(P=CWS*}nlqXw@75 diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index e2aeae83bfb717039d42500be1576f5e892ac164..2b97dc49d1eb926796ee056101e31a82fd95a2f2 100644 GIT binary patch delta 1773 zcmbQYgKORnt_{(QhACC06(%LQ$@<2|$(BhbscDvphGv#Y#-@g5W+}$TW@eTK$;L^B z7AC1iiKeEBmT8lF7;liF>!OnD)ahKjOjTm`G#x<8nQ`-4E-0C{I?g*Vp_`x06yvvO#lD@ delta 1773 zcmbQYgKORnt_{(QhNfAT70HQ3nfeAvCMK4qmIlcwhNcz!OnD)ahKjOjTm`G#x<8nQ`-4E-0C{I?g*Vp_`x0H0$Cy8r+H diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index d1e67843b19f96d1adf2f3d11dc33774a3a8d61d..e6d88f7d93690b4f92d0a9d74e3d39f0be3c66aa 100644 GIT binary patch delta 1250 zcmaFc&+@jPWrHuHVM53 zg-NPWqN!=3W!mOCMnN*PO-@uw+pNa?o{4lDL0TuTVcSo(PJzin90g?Qp0wGOGl-2W zt(woc#tPvSMXwr-U9K(4Ks^2f=rb#tQ9ZdS4) zrhfAojYbYKwf;49b|hWv=EC9&yrgTJTv*(5~r}RN4G-i#ZQ@+BY9K mXv9aJ*2(AY%WYn9p^r@Mo6p_MnN*PO-@uw+pNa?o{4lDL0TuTVcSo(PJzin90g?Qp0wGOGl-2W zt(woc#tPvSMXwr-U9K(4Ks^2f=rb#tQ9ZdS4) zrhfAojYbYKwf;49b|hWv=EC9&yrgTJTv*(5~r}RN4G-i#ZQ@+BY9K mXv9aJ*2(AY%WYn9p^r@Mo6p_6)(zf_hACC06(%LQ$@<2|$(BhbscDvphGv#Y#-@g5W+}$TW@eTK$;L^B z7AC1iiKeEBmT8-782QN1HhCg@=4KV<7fhtv2-I3Kc_Z6;vUENnL)XPCS(^noy;#Z9 zI$3~IezJfl%Vr7w+2jNi&~~^Hg@RAX2{5P;n*~H=*~s)n!Cl_XSEX-CQlLG|jK7&I f?OmG{b~Q+mu66UpE0*n~YXhdQ;_d5V7}FU68VvMS delta 791 zcmbQbhjr>6)(zf_hNfAT70HQ3nfeAvCMK4qmIlcwhNcz(Ws?8MXt{)n@t4g^U1{y5@EO delta 778 zcmbR6l4-(ArVZ|lhNfAT70HQ3nfeAvCMK4qmIlcwhNcz?8MXt{)n@t4g^U1%Pve9D diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 6bc5e983bb14aedbb9926e5a392755f000115050..220d6849dd208e53fea000c28532566c2c0e3fdc 100644 GIT binary patch delta 540 zcmdlmlW7AGc{3WORFzhkl;kGs8yhEECYhwBStc5qStc2q8k(7<7#o|JSsEl8CmC9p zq#7lfnkHJNO|D_wNQSOBrY~ga3g3K-xq=*L#xW&Le#*L@EK5@+YqIB&r88)PW-majT0|0dzo`L`X delta 540 zcmdlmlW7AGc{3WCW?5DwCl+Pu8zh;SSejZIB&QgfS{S66np>KuSf-{XrX?mBn_C!I zSR@&zTAEv$O|D_wNQSOBrY~ga3g3K-xq=*L#xW&Le#*L@EK5@+YqIB&r88)PW-majT0|4MdoOl2L diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 14e4307b877e8b982c6d6078eccbfe983e061c6a..636fefb0d3eed5eae31b39dd5b958f692c49577b 100644 GIT binary patch delta 185 zcmcaEcU^8nJfmSsRcVDuNp7;fv2n6xl1XZsWul>(WswvP~<|j;@fGEeae!Q{-=*`(i{ARpVsb0UwKY#skqoVy z4=77BlNB%Zo4eJM$*^(q0pXXKycE!wvP~<|j;@fGEeae!Q{-=*`(i{ARpVsb0UwKY#skqoVy z4=77BlNB%Zo4eJM$*^(q0pXXKycE!*M{9$$9KTlTR>BBv1F|d(6klaW2GSfyq{E>&dei=NM#hCyxu@~^E{64oRpa%zS&c_pFID=-66iYNAxHYW$uvJ%qIDPLU%}PUM;LZGSW3T!tirrzOT}!b$@^qI_;*QPh4J0Vh56mhOn`?|y zDK=x889T*h1X;eN*o-eW2Pifp(_s(AX54c2W~Ct8Z$9KH$wi6&ijV|9^7L zNVj~tV*+Es_5w4;3Jx+gPX}ri-#)>f@fw-d7jEZ>WaMBc-TLi7w|fbZt`8Vjq0`?L zFmi8~DQ0{rNQnW{S{WMy$TZ-AC?m`C30D|ZwjaI5xP{y%0>Tvahm1$<$#P5B^bJ}} b^3&VR7zMU3Qe*M{9$$9KTlTR>BBv1F|d(6klaW2GSfyq{E>&dei=NM#hCyxu@~^E{64oRpa%zS&c_pFID=-66iYNAxHYW$uvJ%qIDPLU%}PUM;LZGSW3T!tirrzOT}!b$@^qI_;*QPh4J0Vh56mhOn`?|y zDK=x889T*h1X;eN*o-eW2Pifp(_s(AX54c2W~Ct8Z$9KH$wi6&ijV|9^7L zNVj~tV*+Es_5w4;3Jx+gPX}ri-#)>f@fw-d7jEZ>WaMBc-TLi7w|fbZt`8Vjq0`?L zFmi8~DQ0{rNQnW{S{WMy$TZ-AC?m`C30D|ZwjaI5xP{y%0>Tvahm1$<$#P5B^bJ}} b^3&VR7zMU3Qe%}bb?$*~Zqb+R0Xz~)&jip=EM4AkC0mQI(+eZ0b( z)i^(sXR*uXK3)Y@vTXL;tRZ}ojV!G`oAaas$P4K3$!nyzHV4QkOeD+Z`K0UGT)6Hz z3+dV>7p_a39I%^p^ZU&=$?+;od;GR!CJJni+?h(I?VAI3CsJaw$G#$VvK;QW+45K> z7nxcWFP^p`UF-Bl2}a-TS$vGoI7!#M9jKYtjC6g#6ymy_#h-B>dBNnm-6EWEwJ90) NLW`^IVZDqUi~tswtG56E delta 1385 zcmcaNm+jtMwhg|FhNfAT70HQ3nfeAvCMK4qmIlcwhNcz%}bb?$*~Zqb+R0Xz~)&jip=EM4AkC0mQI(+eZ0b( z)i^(sXR*uXK3)Y@vTXL;tRZ}ojV!G`oAaas$P4K3$!nyzHV4QkOeD+Z`K0UGT)6Hz z3+dV>7p_a39I%^p^ZU&=$?+;od;GR!CJJni+?h(I?VAI3CsJaw$G#$VvK;QW+45K> z7nxcWFP^p`UF-Bl2}a-TS$vGoI7!#M9jKYtjC6g#6ymy_#h-B>dBNnm-6EWEwJ90) NLW`^IVZDqUi~#e|rhxze diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 71400def1e072038830611c9a19b42c3fa1d3ac2..bcecc8afc75f9570c92a49d25f5ad834b9a15572 100644 GIT binary patch delta 2023 zcmZ2Jm3{eC_6_cghACC06(%LQ$@<2|$(BhbscDvphGv#Y#-@g5W+}$TW@eTK$;L^B z7AC1iiKeEBmT8kK7!YR4WC01*%~P0yS;*GTvDt?`U4U%u&1C6}*eoOYo{cQ6 zv72WqWRVlbA1z}yPgGjXM5e8$RA-QD>j(8fa&0}YwT4`+oO&hXrHa_i+{P*7`t`5L zMsgi&W6?r}t(!kuN->ier!#GP$gpuTC?##S|3I!k4V@WT$#Sskx{cI!SN-|vmHY9E}BgeLO#soRiLt*>GrHqbbWS;3jeF@u>S2LQ* Ul5Qz5zk}*o{_QL$85c7G0KbE8`2YX_ delta 2023 zcmZ2Jm3{eC_6_cghNfAT70HQ3nfeAvCMK4qmIlcwhNcz!YR4WC01*%~P0yS;*GTvDt?`U4U%u&1C6}*eoOYo{cQ6 zv72WqWRVlbA1z}yPgGjXM5e8$RA-QD>j(8fa&0}YwT4`+oO&hXrHa_i+{P*7`t`5L zMsgi&W6?r}t(!kuN->ier!#GP$gpuTC?##S|3I!k4V@WT$#Sskx{cI!SN-|vmHY9E}BgeLO#soRiLt*>GrHqbbWS;3jeF@u>S2LQ* Ul5Qz5zk}*o{_QL$85c7G07i;ve*gdg diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index c156caa5d3b2274e99aa2ea6a227699055d31f07..ca6787a6140298ca89060d1ed985c1f93d544fde 100644 GIT binary patch delta 183 zcmca9dsB8pFr#5gRcVDuNp7;fv2n6xl1XZsWul>(Ws2O3)iGl#p6` z#6xewus0GyI>Zr+NTLYL3Jo%d97q@8MHfN@6?C2OyxAAY;)M{-tL}I)t|I$95k(L9Me7ZlQac zIr;%DxcgB6wRVoR0#<=$uM9{9K!hcXViM^={?kX`}r=^df`PoYVCiy8?`pP z8bqz^%?xTypXxxZ`R@(_R(|b$9y+I!^UDPOK4TEqCv=|{{Hemx*&ANQl#P<8>y#9qG214V-*de+O_;S=fb;F{= zPuBwL7ZU!sQh(K&G$=MU)3?BdnShyu^Tdr->Ne@u3u~A@1nyiWxf-$W5>?ImrCQlO zwVW=|qT3_YX0ULZiO!7UNiXn{{i}k`cVJ? delta 4150 zcmbuC?MqWp9LG6l&WF`>ni6J|Xk}reEjM>>5fzm%T_u{cMr2bb&cMjj9zfstLJ6t0 zD;|0hMvo+fbciDskwg)g6*I^nav;43U-UwVpn}dFLa*=FKj8EI{Lb&3-#PbAk6Wk5 ztz!+u>26ccHw8Pw+Z>H9m+Dp>P0dcX;%ISuR8O-S3I$t&jb$Fip(u@IA=RUnYZ3Al zpq$?Qe4Z8{LWydDtu}3NLk1sAIaY$%WkerD*6@?|za|h(IOAprt>-(G*EZuQcX}tV zCI@(Tl|9wCkxd4uj~CV`rN&v!=?!S}Jq-XEi-!4^UQarNw)4mRqZCB{Tsn=Smdin8 zb7IkUZi%!2RvwFf2QW=HZW*pj0b7)FqaU>@BkPf2(+mC?t46Kg?i@y~GY@W}dzv}= z0WG-aQ2@1ekF^0-p3N6g(Qt8Q0uMdJ5lSo7agc|;N>pV+Wcw= zwX!#H)S5okiCPQZ9RRHS>ic|jPQ5cWqyDMeB|80d zEwFwe;g2hgSFKAM#KuPx# diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 0731e7aabf16cfac04e0577e5fb5d764080fba9b..42ebab67b83b702403eed8278e256cbdf35f5e00 100644 GIT binary patch delta 522 zcmZ2HlX3A(#tpHIhACC06(%LQ$@<2|$(BhbscDvphGv#Y#-@g5W+}$TW@eTK$;L^B z7AC1iiKeEBmT8mw7;lrItANja^FyW{ax5(13)=jF#h;TbTMv=0Ym!Lb=8OFQm`T^U mNkoT*bX}7~qBrl5h$bUwKsx73sTz=O=i~yuz|C&nv5WxzlbfFa delta 522 zcmZ2HlX3A(#tpHIhNfAT70HQ3nfeAvCMK4qmIlcwhNcz^Ya(0B@o+3lnL!SK2 jzuC94kgj#}Lmn%3(zQ)~$P=@9g-9hInOfH=zwiYBRxF^C delta 524 zcmbRCm~q-;#tq(#hNfAT70HQ3nfeAvCMK4qmIlcwhNcz^Ya(0B@o+3lnL!SK2 jzuC94kgj#}Lmn%3(zQ)~$P=@9g-9hInOfH=zwiYB-#wm* diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 119b17fcf4cb9a56361796ea9679cbb25455bac3..9db0aed630b146e5ed72c590131eb1d6f170c854 100644 GIT binary patch delta 185 zcmeB|>zCUQ&S;oYRa#+ElAEk=Y@BSFWRjX@nP_NcnPhBgXl9mTY;0y`X^?E3WN2ZM mYLsYdnrNA}xr4Em(THSi`jZ7&#U}eQA0=O_@#bEZCN2QZ6E#2p delta 185 zcmeB|>zCUQ&S+?wWm%D&Sd^)6kYr+FX=-VZoMLEdVUT8OZfTxknVOoImY8I0Zed_y mkz|}|X>Mt@xr4Em(THSi`jZ7&#U}eQA0=O_@#bEZCN2PM%`}n# diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index fe7c648d1ff0aee66407af621fbdf58669c4a210..9c25338e6c948490dc3e830b70a67d9d45c87a17 100644 GIT binary patch delta 769 zcmex0pZV8(<_+$QhACC06(%LQ$@<2|$(BhbscDvphGv#Y#-@g5W+}$TW@eTK$;L^B z7AC1iiKeEBmT8kK7$1_MYXPhG=BrF8Y-H?M3z?f$>;cmHv822 YlILiMcIEb0Ze-ZLfHidUY-H?M3z?f$>;cmHv822 YlILiMcIEb0Ze-ZLfHidU53 zg-NPWqN!=3W!mIA##dzMddM2M`4v+aITk)-jhW2Ix}Gdc&yc0dXRAp#An$F@3VMM{loXWh`U_ E0Ag=D!TAp#An$F@3VMM{loXWh`U_ E0I}3J=l}o! diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 6144fd830801f89a5f654c1f61025a449658772e..f2223dc1ec6053bf82ee28975cdcdea94a05338f 100644 GIT binary patch delta 542 zcmdn+lyL(Pc{3WORFzhkl;kGs8yhEECYhwBStc5qStc2q8k(7<7#o|JSsEl8CmC9p zq#7lfnkHJNO|D`5Plm30LQ#_)3RyREGnbKLDMY)#W*JshX0mM;n0$w$fGpiPn_qG^ rvXG~B@=H$P%~Jf6$#D1PdqVt7q}#e#PIP)S>Dnd(19`JUVF4om=53@< delta 542 zcmdn+lyL(Pc{3WCW?5DwCl+Pu8zh;SSejZIB&QgfS{S66np>KuSf-{XrX?mBn_C!I zSR@&zTAEv$O|D`5Plm30LQ#_)3RyREGnbKLDMY)#W*JshX0mM;n0$w$fGpiPn_qG^ rvXG~B@=H$P%~Jf6$#D1PdqVt7q}#e#PIP)S>Dnd(19`JUVF4omV;7=E diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 30f7876bf1f616a75ae4941c4a135cc5ed790b86..6fe7218af11c5c4c0f5a1e58a8b7186da08b7601 100644 GIT binary patch delta 185 zcmdlezfpceI-_AqRcVDuNp7;fv2n6xl1XZsWul>(Ws53 zg-NPWqN!=3W!mHl#-C*9suK#^{DY~M91B5O|FD=clV|JXKP&>1PjD2FrMqeKYtCt` zWNB^NY#|`ZM7q|^bwcXod9{6Wte83n={8QT6UyJLB7cIsxXIt#qu5tXmaXBFeMN*e dZ<%XPp3M;Lz4LXG$+A5RlrpvlGBai|0stu#>plPg delta 783 zcmdnp$+EkXWrI7Tp=p+7MRH1PjD2FrMqeKYtCt` zWNB^NY#|`ZM7q|^bwcXod9{6Wte83n={8QT6UyJLB7cIsxXIt#qu5tXmaXBFeMN*e dZ<%XPp3M;Lz4LXG$+A5RlrpvlGBai|0ssnQ=u7|r diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index a933f159d8a8852f556a58326aac11bb2da7f6d2..4ee437c9e1cd5d7fe610c3cd5c233fbf25ca5954 100644 GIT binary patch delta 1079 zcmaDeh4sx8)(yUlhACC06(%LQ$@<2|$(BhbscDvphGv#Y#-@g5W+}$TW@eTK$;L^B z7AC1iiKeEBmT8;o7@5e?wvp*O8QLaqWJ;WD#kz}hcS3b?PoBtDK$h;9$qq97o9D9U zvy!iU@?3V|&AWMzkmqx-3&2L`2`pry&=qyUU6i_FyJ!ccu6QRQNPch%Zk{XmpO5Tt z5Zr8~_bZk>?UQ=MHec^4CNl&?UQ=MHec^4CNl&k@j+IkdX@g~!X_J*hTB!}D|L@x8-itK6fAwC!S3UiFWQ}K!Ywx}GUi+Ri_w?Ag zr^k9^%gdWB@pveB_|%D$n`MkmYTUGGQrNI&$s@uNgG0lHH4O<44ISRJX=rFzP*T%j z!7Z94H%SZ$NemmY(Of1U6~XGB~VdaC2LH zGrugS>TgbeS)Mi_ZDM*-^6=5=%knxj&KNt6|NriE8V^rPn$XzxU9(}ozmB%N5Pxdl zN-k~NajBfNjCT4d4QYMpk{Zy4 zH}wX#h~|N|*INbH9&cWSUiVfix#iWRgX`StmR*+Tm6Vd4n3|F}tZ`D>#MF#sd97)@ z#l5xrvb+cy|Djui?RrWj+oaG6wwzWKY}G@XWo%7a1WUDO zNdvc9-plezx)MxJOdVs}*1EMVsfE8(j(k4X%OP1`Tku?8z(5+G;2sDhfUe)t18mpY zRFSHX&l&eB;8mikr93Mk@3Q2*QmRlfb$IgRWqGACCT66ik4{XP(0H`TsZOVExm8Dl zM6_0`mdo>Yt~v!UW= z+t8vaWnY)8*@7q3mnztp;#jBR~}hi%39dXx|&X<&v>;u~%uK&sJBlB(I>Xjzs5-E~g6I*niD zQN^}*lxjm|**+WvMh1Sg^DEg8 zO?%24O}nF2HCt5kDw1hYFgl;2j?73LHZdhJ-Bu7$6Nb!|fX7A0lz}Z3>5WJne{V~> zOhYvd;hrXO3=g-ws%&AEDCmyp7-w&pCWA~|hR7CTi)dX>GEK5H21QZ68Of6~mXS{@ zxvuT2l!`nOe12wSY~+%oYuB~$w{2_@Xq%m0NAyd@ys~3Qk4#U@7@az@v56(eXEs@u zXIddDd5={mP8>cuZ5ai$Rx8`8jjiKbx~Lp!6EjjqC#O$XmS>J>RKTx4fdU>T_>4V({3qTL($zI73?I9Aa6PCkr8^^;i6zvqbSSjvkvhGFh}p8J>*r ztQahS73oxnXBqNp;;Eo}nn>o5gTNftw!{`y#0+B2FiXeRaZCz4bJ4Z_iZ5O32W!Fj zvyB<6(}L@A1-CqNUJstH%Qm zL`R(&mHK?Mi(W>57Ztv9uo2;+hHSZPD*X|oi;J?~xNQt_QhPd%S!48eQN2A&8Rapf!jl?2~su`{d?s@6U*~V;_?9{G&qld=>S!Uz!c`G8t80r$fwP34} z;G*8wju@FvYOi}-u(7~JX(6MGPDRvvb&OOORsQYPMx2Z4c=5WCu%NOy`?IGH8$DgZ_eRe(vR%~Y-&HgExu{zkRvQH_ z>h5sKXzQf*1sHveJQo#MX`<22MK%5GuCdrfg|2(g=wMP=qf+;U-E3jBcL`hO2OASz zRGXWpjNvY-b3zYel#A;6+BBn;i|RJ~L1ToA>J@m<=;NaLe^$kq%M_TYbSN=d-t8j7$7+5)N!5IHjBG4&Qgvqp zR5J`G)xbULK_kUUwQ2XnS!0QdYCrc!W4@DWd&sUDOPy3^Lpj*p=BU=84O^|(M^h~~_eKN{pV7od~8 z3$H1EelEOL{rS1@8u;huGX4+eV%zmbO*((X&D$2Vu*z?=0$#fRSecmIt(T;#KQ;PaE`YWC_2Kuj?GyrI$h}A%GEaH zx6Qq?7@b_cc~_;j6tq|BVLN%mU(7IE&`-a2Yi&Dxqm^hklsLUuiAi}KLp~-~`pcJl z+8-)+VJ)f2Z)^1V72O9H*}{Lid$V(Dk{hKOJikDl$ztsZK-@p&d!+BfkZnqwEAQt7|JWQ0zb7AnhU$wQy}^e`SpPs+mw-cW=7(9lC!~m`BmhN4S6gV!HU#jE0X2 z|C?<@^KQ5e`=#;pS8FJoqW(P_ijp6b8uGc%FRZhFnpyE7^WV~}{wuA;hwy*#)}qx| zr(DN%uIcK((p(&+_>-Ee<8G<`Z=2kI!^HLb+Kjfgb{j@VcDPlt{b|FJBRYS)<$O;f zs{Ct?lUNr2j?FjX758DqkJ?-(SU+>II0p86+RvK;4gWNtx;v zA|haau_6EGwk(BwEBT4Q$*<3&d?(<3^A**4hY@c z>6U8i`b@K5TQD=*yEXo$v)ccYEyv%fJNS;={qDep1=C0TZ;uYXqF`iZk7xyMD5i@U7kZz4PVhXQZOTBH{7AP41(q|14Im>h3S1cO##b zaC!2eR8q_ed=b;Ugn4A8)SAR;^+jxbZ98UEbKbiGoEOM}%;MbDP@NtqyhU z?^g4k8wp1hWR%?#8Q~gXQz}{-`Pz(me9c!(#qvg~mwSC%|9Re&aNWHu<=2oJk}b&n zL5}L$=Dj+YibAj}MOMvna>joo=1LT^2sZG*@9`3HB_ zfPYkH@lSOAhdOKjF1|t@=UztK&idO9G5#slU#8dk?RF2P|NNx*({c6>={o-1+y6w@ z)zg+oI**7?ZT6^1|Bw#kpDO-WI**-%lNq`vb7!NcZOSdwdlBh3WlH{A>A` zzq=Fphrxf=xTmX&Oe~5M||gAhyLS^_FvT_`!{BB zeiPDvxxe{WeUxpHtI+dq?oCMirc}iGi_STI$L{L)_k6Q6?jwkQhEWud`Q@Xle^~d2 z@=IJg(zrJ~svwHPFTuKR2=@&^y#MT#!*Rj9*hP{5&a}es()?SR%p+|)V(Hh;`hVh${*krk z|731y>VY>f|CVb-e@)}zSFiqMjHmD09zlh^9=~}fbKijOy{7ixnSJ za-~N#8fTF!Qe;i3T+!vk`}XwTwhGIdEBf=?_xt8{ zkGb(D5bm4XeRKQ&|5oMSKhVVMzFX7QcRdQEG1TU)$5NF)qjBH(?i=6#h4CTm#@}0E zbMv|BkwWj?^7xwO-SkK!&zm0URPqB)jaq->ae+#m2lfN2RJq~t1&zGrF_8+u^DGcw zXh8yb(A@=TSgCzw^-T?|kPWNh*J`<*#JUjkV?O&QQmAKe@@T-)$E$-}|28 zul>I7FL)3KYviv0u{F*!tueBUyj3#jY8iQkThpd=*;l?x`#-||Afv2&i!S-fS>*o_ zO#ADy^0$;yR<@}&E-sbC=}LN&_bR; zm7B}c$fG3;d{uLKx)ek~Au!=)&E)BH`63LratnC^E&dc(O@6R(2n6w;dMXqW0`jS5 zNawK-c`jL7%9W+*)Vh@%EM=G=(gfp85KU>V`B^G0WSqm|rL>Pl+3{HoNSg4@g0 zXvRd`tnqCvM^d}qa&>AoN%p7ZO!n;x^4r#OEYcU6scq!G6x|lwgz0i4DjNYMYk!cF zBCxXTXThBac`ywa4s1rGoJbox0K;SD$TtegZw!)a(9|fo7rod9f~!&T0Qz7cuyOmL zlGPR}!9ziQ(OveXZ<&0=06D0gJdhq61kL8FM35+H9KF;7*zPZo z)T%BJoQ(i^r;FU54h#l1xhqsM<2PomYw~ikay)hK25fAMJd~F9 z1%?Xtr6v7g_=XdK9WY`mh|wlP_wk5jq& z0Fc|*T+oXZXf2aTY%cYJlqwW35ae@7AU_LMD$_b9kH>%%1@#>SGA9A#z!0Sp*_f=x zZ7qsn84R)ycWO|3r5t55c|6Mb>@6nGvMmf8g8qzWJO5w^D)>Ejpm<{RP^c7gYn~X2 zb?TXRz~bZOZ2F#i_OY=_B(+U|N;tRwBMF!S+Vuq1ZGqCCRwY94IFFV)iRj*-_Q0}- z$q&*)T=UjRm}B~JS>8{=V4jPWPV49|-A!(SXTDlo=h zB{gbR#AigsCrOPa%$&x|2*$cG){U`H#s)ApjNvBbc$#jJ08m zzs+fMWsJYeX~Z$sl0Rc>Bs0n%(1gjjPW-$ zjS$At7;6h`VxC6^zV*Ir#W4gQt9)|k_`ONSC5IpVo z!6MV@qUK9s8S-iRcB>Lf=RK4#nmJKUriAAeM=olne3-~nNo9X!I3<@*YS4?5z_VYG zQ`u=LL;4iC6V1JfMIv*Gd>B5=g<4QgYlC%k|5S*or9)JI8lG|6FNe~O1#%esHJS9v zez}JI`{{CdiBTVWwVCob2l`N!+{J<3$(F}E(Ci#J!-2|k`RE_)3Ol+Y!I4<@v-0cG zcv|03@wcb#mg~6Ddo9rV@QHn>{2mnK;V@Xq>^-oO>(fxof+KPZ_LD2p$-R)Kpi zv+#XTY2FmZ1>boHNzL%s_5I+z&<;aJ7_;!A!w=%IMeQMd?4Z0uO1BSq0ps%z)`UBN8>(~y+|&F(xFmB zCrhDBU5`R#Ph->qzI!|s1cB%FGI;wWHI14dmy-&E9m(1E9hYlJAWPFXC*=2~So`a* z$mwqXPEBl)mwf3;6WwBe>Lkotq+RWG`2(cw_J$nlCKz4bl0O2Y(P_Dr8FP)F`!w@YR2w^=LDc^uvU>It6yy^P<;V7?I+ePJ zGHlgR!f6*FNc+-hx7ZR5rpRk}qVeYtyl;iSU1SQw?;=s`4u&ib#iK1RL8G`% z?3+@`4yhwO;;nrC$L!{NdcQnMjScZ2db9%a+f)Ymb*Tp)cE!V~bbauKl>_hS%TA*a z`{O5kQ3mhVos)a{@=&o(M#aP~G`<3)y{Djr$16avxTVA9v3pLV0j-dxtrAK;&)(io ziTZT1CHAVk}Mf9b}8p>5V{xRA`?7z3wL=MY7K@OE_ zA^-5HaI0`2FqqV7;JsEGyq+b|_F^8bP#4O6UTCa2bsZ~X7>%3Z zeByivO5NVRBvh&NhnwBg%d>)6V&4|XCZHv(K-kFOFyw!wB@Ezb7z9)1qi4jyhEFR9 zVsp_8Gg?8=d9Txy4~0WeVIKs+ts&^Tf=fIEb82oI2&%3`RlaGX?4TPf6(9RE5lXc` zT<9uM%2zZs*zDypw4|*PP2HOy{o8Gk@mJ@a;}7K>LI*FPL_6C<@b+1`GVNG~V;UUE z1d(q?6l=qKa1L`iDs3cblKo(`@)^U;os|U)L%J$$_D@ueU$xwzmC^2i!9$fjoXORAWrRC<9Ko>jz99GF zL!?M@AFgzgMv~70xw<`VxKdY=M%q^|(9_en6avkep{#bGL0L)zH|CbLkDH~02(+}_ zK3fTQpz=H=%z?(_DvKnlD>=t9j?C7Pk>`sfHT7bKVoeZ9yd3N1+$>{kQsbsglfs5IOCAxH7#tcltZ7Ja zXz1{!O+!P&f|8mJ3vSUYxk+M3NMhKC#>27MZag7vVtP_Cjc@E(g&M9_UZ;UaoU<)X z{RYy}HORI0QQk?eRq9EM`qlq&XGTexZJ_&VDj zXOXSx;cY12*S_cg@9kVZpgx51h1j!qDE%CC!NY0`d%%-iNS525c}h9v6wOf;`|@X$ zSceED8|FY!s4)&LQJ&JzDLovb@y{#RUW&9(v}+R4^UhZ5zF(O`@q5r1`j-FM{IJi%}ue|C&Z67GB9BAYPC0C*@hnyA1;cqxi_z0!1bQrb&;3JF& zMt$g3lp1MI{zOSKY5SQ^l@$&&=QAFWtYvTb1zV0l?_N^2InaGq*eC?I{Fe&0yCOwl zKaXEinmI&QuPYWeQzT5O-Zz-x&8LRkP=0hgC3 z#luX?-u(`Sv6(DeAboUK`G68K<%Y|@RcmO=8#*r(M7@pi*-BDpQ`aw?&4Cl}Sju)& zJCW}tG{fi|nAe&VB zR_YFE0>O1CV}GlaI`fb0wdb@^zoAQR&cyeRz_zYKBpUmGJEnr2kt%EtsE-}Cx7LAf zYNwudpo==FUpmof71M&yt=?I+JJ3sA)Glr&w_|rT&%ynuhnnL+Gh%u^_t{c^@ ziluGJ5OqG?sfq+^3{^210`;NT1!}bY*?1L$LC{FGt$j?Q8t0%z(j}ABswQoZ7_R!b z2~~UI2sPWm{c5CI=s;JFR_{pUbIfVFh{ANGUMZ-{xnnThy(w(EKz;1D$FgM#bak4F z(@TL?9#0CjP2;k? zSlQX42>FE4ff*>p!YWEld&8M(U5Qc0^u9Vv?P=0>tU+)KSY+RuqrTuk3+AZX9cauv zZucj4!jDJz$VzF?VpihgF1upoW(8f^-e&=qmr**uRc&q$%i|Um^zr^!Kh7>vYdBPW z^3}x-bZ3FO)PeS0s?Kmc5IJ0JVE108V!gWYxm=~NP`xO1H$5g#QtL?|;@2r1?9*1D z5+E*Tt5Nn655f{bJik$yWY<=!{Xy6h*QlGB31`8V-19se*n6x~ab)`b5>y5uucp*} z1Da^aDrb#$Z$SD?m!@&+lxFt252;uN1&wOSbY-W~#D4T)b+*a0580$1a>xswQDl4A zW2#l6yQ^V+h@(Z*)%^ac>i;VL}OQ8$nras%La z8vqB}065YHz+pB3@qi@aYoIu|2EdUuq|IS9P#jYO;D8zcN7Dc}lm@_YGyo2w0VHv_ z29V=t0Q_At01li1aMTQdLuLRRF9YCU830Gh060trz%eoa4v+zGbPRw)V*nf%1DIk0 z4v2x`Xcz!OVOb105C*_eFaQpL0dV{afP-HE9Qgv^uonQwyZ|`h1;D{B0FHD4aF`2# zV_X0n-~!<2766B~064DIRTDw2tgea(X#sFN3tSFnb+sUpB~&?z)m0ZEEC7yQp|?1A z)wPs}Ty-ri!d6|&i)QhU_$?YVPUJh~AiWAGN7PSB@o?OAR5ET zDiEzwL>;POs`JP!Fpdmkqu4k(6*kraVWmYBTPagKlN1PZWh%=g*>H=5Y`9GE#8MzE zxQJp?E~0J*n-tGB1;%#{N`$se*6p9O?%vDFGS%FgnCaZ}r2KQ1<>xHVpR>Gv&hq&= ztE|b&GUM=ODa!v`tu%4u$PDlaqmqDV0+*Flvsg$tcR z`_32Ccu9&NpO@4LCJ3ZQUQ+u?aWwvr+JI^wQahV?7QppG>J+IRT{x^(qeX|+SQF2- zh{e84UQLSHYN=( z@2WKlLp9ZRd40zocvNtY3=GFTJs)@=FP?S|umn?qWXY4p5guzp*W4|deYl(DSH6N)5rDd9R@S&hV7R7#ipk=+}#U2nf9qeE#H)< zFkSPqPtUXraF;sKZbhp?>vAk53a46XOR3c06Ql{cBt>Rh%GyUwwUoC=arW#S%l6t* zjy-6zWtN*4&&|AcKFxKlNT+sMD$+Y!EY+oCJK9x~q=9DH&L6aBG;X`a%O1YXGS6LF zX!a`DUiND{E!#Y3%210JEy}TA$8pe7mLi`=J>J=6`AnCF*$*DHWVlJQXzy(lNhEdc zC5uYQFIk?YxXVbQ{vpd5cWHoKK4#Ipq!@dtw=EalEbIfK0Xov1GnNi2`+(dI`xLDr zz5A}EggxzDOGQ;`ZihK-beHO44AnUi+?Cd_s{{q@um*Ez2p1axYlCc710_bw}_c?Y5=6)Xt8&PV~S*iq_S0xxd4(@|w^=53MeF zTT1Ho=Or!LU0O^q`2bpU+oI#*ho(>yS=%giAhbXL-IldI_}USAwwE-~?x|`6C26>Q zghhKpqRF4DUKFisR~241P|*|%Dmo^-Y*`xRsWp~H5L!Ke7MAs^Xg}$x^_HYQ=1>8r z9Br@Sr`m^>)ZUTAihx$;>sSDM7Yl$LR{(Zg0eI2?V8<1J?_L40;|jozE5K9}@O>*# zysiMS;|jozD*!vL04XM5#}(9ke-pCj3X(5X0kGo=kVdCUX+4F{W)<5htJqEDip`W& z?4_(?D`gdPg;n@-Rxwjph5u$1yC|#JL|Mfi$|}4stGLBz6&on4xV>l<+b64Vj;vzu zWEEQ{s}aK6BdgdsS;fZ5D*Pg=*fv?kuE{DkO;)jIvWfv~6+0%Y*f3dz=VTSzC9Bvi zS;c0_DqJC}*eO}XM#(DnNmj8<$`!jLD>g~kPvweDl2z=HtYV8~6+0xW@O7+We`FQg zBdgdQS;gkaDjXWC*cw^IB|)p$7g@!&$SQV4RAWhl6;HVA@6WwmhtcgkvESfyH&)1m;T zmeV?^5v=`YPr5!`^P@_ysWmOe^?naLP{+W^>8r&;E!kJ=3b4~x>kpun*ZKh@l-FXI zSzhaJCh>XC!Uag7UIi^o5oul~?}}O&1)bJBXj28v%T)WaC!Jgbz31LktJ3iWq!%2% zBt!;Y@i(0oir zI{jE(3ulH#-D+wjP3}Z9ZKH-(+Z1j8RK>@=s>8Ut(4LxFJE==yEv*NLp0!|UU1)tR z44^J_v6j};Okuv+jxn{hmf$a}twpPYxN3`I=;RDk?OJUtK7%N*4yq#r%UoFo(2hD< z9g|BYm%=r_!Zfe)rAMcZNL%I@Q{u4)O@(fCwYEquzb*#oAi7jn8v@X|o;D0%OFbuOnNHw>b! z4Y1bsrn?QaJ^+0hVi@;Z*%{r=8CM4ypIV+G(`x>Fx z(@1KJwwy*WjZy4rw5_q00^k>fEJA5)kTw$FtspHEpj)suMG56BJ~k_UK3GdO85d1P zLKAJ2$@s!#oNf+Rg1uJ?YO0k%8tt2ElL7WN)ux$>Uz>`t%}{ZX_RSc&++J(RPt~Wu z5cGN|)d|tYnd-Mq^+s(R>B1}afqe z2APajCZldBigh5Mlpme@o+Fhl&?-?RMQ8>zu~(6}+0YRaQc zdA)9?ycX?<)GSD0cchjEP&Z0|l~GuFL~&w!nTyG))_N_6iH1|JwlMQ>+S*n#lyI&E zu3d18i(Jq9S}M@?UhomG_0dY0@&r@9zMVF}WF(mkG+|v557e$`sYGe*QB08_+(J(9 z#kN`$tsjhT2&YfmWBdqVN-w&WgBk6$#u&)il`Mf2^Ft{w+TTG_%%{_6U!>N`Oc*68 zZ*tSkG-EnyeNDzhy4KC9cBdnZC>%c#(}tVEX{L5wG$yiedN0~p)maWcVfDcL=tJwP zVINV@39T4HD?4dpRX)Qua(kIec3@|%3j||2ql1KCv8xntuxq2z*>x;3ec1<7pO7yx z<-)p!yr{cFXkQns{2|o1tCk9|wku37guJ^6kkbuz9zvJ8!Jb7*o6M9_x?>#U(eBO? zY%%%uSE2?zdua8gXqwhT8vyWD46;jBIKY5jux#<{QS({0iNauuF9r72%Bn(gychMXr!}DS4JXt#9$9$Sz1RjDGB+O)}L!Hr4X`ipRg~i%u4ge_`@7`eD$9(JTGX>S5HTzc#@X ze{G6k&W_Z_cGJq5qMNih1~w(~6gCw`OX5%ik?d{rIW$SE$+&AWVCIg5ibkt=z>Q9g zLaUca%HfqBa%aPNHU2W^=_`na^z;rlp&VHYTHSk~Z07M460-x?3hW7tPreHC$VVbS@0n z76GIsYk2^-leHxPi$@3$I8rMBwR5Dl5TNxaZ85+J6AT)y%>{K~v^Lw!B-zXa?UxGv zRl`}lF(!Zg3=FW}*F9rtL-{ z>|=cbU85y|(#FDxOrX7Ev2jSCy9_cZDphNza{SCF=uOgG4EV@IOG(#LnRGlAe!Eau zN!KT6&8c^qR?cLsHYmhrLK9 zeF4f;-bUv#wB{v}#!YnEc_w9z*E&Jz=y_~@OlSy~eMW&r6Xgy4=!<0V-WhxwL@pc+VCS9I@X)=@AWC&1@A#y#F zp+$pPbt3jonKW^tDDT0E@Tx?1=Xz6OAc_)6uA*dWzGfyD%tq>&iG}d|7_7lNGBNpN z(zBUx*)pl*BvH1(leB@R{uM4%Bz-y7q81g(bFwzT%;;|r8tKsv|x;q7Xwr!Kq zLW`H`74Fq)YHEqy=bC9wtvgF~i^Ka_Kq*;TS2N=Xak6}mfe@xz0aSF`bCTdKRpS}K*w!IGXzvvRN=r_vWW zT8b*38xTwRG3ekD(=64)og8V=H<=4!nZ4xAe)rZD~?2;ZG!@uO?A zEq>0&g+`jGv6y%BuS|p?UCYH`vvVNFQTut=fD6ruG%gQ*-3Rlua;jiVc64>A`C0^W z?KxkIGX*n+1!B3+gHL&NzE%>_+wvr?8^q?Isb z+hVC|5c)Gd1GXYcnXm|>D2`GViNs!Bq;V)DaIr{p`eJRcne$$=r33PvEqx%C)^0{Z z-!H}zRKjNQEY^iDI_i}#3VJ0UOSq`OF&fVe9kk4%drcfMB00UNS9cU(a~nrxmtdC| zN7I*J-yj}&E0!9CAfv8i=|nx3VmT1(cU&oHv}vhm=x3H{38wHI&036X2HP-)3hfJ~ z_6IAA=ASq^Wy4^KqXx^gI8*Bjx-b>Kg=m)J%QW5OUNLRKe>vL%HC&F#FOFs{*Ls`f zyZN>yGAaM`Zh5EUnv*vVXD0(%3o8#?j0|Oq@b~*I^J}7UJ9ltxnECB2(2BaM$t( zhc`mgVlvK=)*6cbE41z=-^=9BS%DM0ING-Yr#W%tvl3g4I7(b8>bGa5V3v9i>k*g_ zVz!N=9S^cf;VP}KS&}w=TvK=ez4i!P+^rRyM&00ESP)(UF>TDS~+;l}7s$; z=L}3ktlDQiru~65b3OLK106FE^J5;tK`25z^=Z)tSd|cA>S56io=yjE&{~+>bd$Sn z1Ey=CHqm6Xc*;znB1LS}ET(9(DGJ&H(fXa3-tsp(6QAZtd?V_)kj`(!dB;L7PmamQ zj2LY)=9-KH55c)vNF^V}K1?VsH2K&G>h$tMh<=?rtou9G9HFq-R6xz@Q2Y_SJOw?1 zovaWoafv#ZjAbSRlXL@V4!!pX*5WzTa1#dM99ptT8?DUYvTZQ!3mX)ygO9>y=1|(B zS^~hyM=@c{p+=9v<(@-}9)m@SCw7?We)E{t9Q+24YeP-`E;FTRyjk4-xE87k?cIHN zA@QTFN3eu?Z`SJJnO2*%!2l~ZYeP+?7y8h)mQY%=-_n&1JOS@#4vl#NQ zF(mB$3{L;fAFu>EO>_?VZ^1#t9Ln2*!`oqWY76QxjH+&h$ql0!TLtxs2`X>HvGOb$ zuni-87H!>zfijkEZ^I^^Z)_QtT`gFq@Gv@d`{AO=WGwC6jzW(muN_!Zg!&Crz2HgB zRDb1dy`*F1A4>;zpz+31m7Q7(bpR)Rw~y(3-+2rb*m2BK**TpGsT*D23A5a4*DBD- zGrCMO&$tpBK$mx-Y6B?vNv(q-)ICjgWF2KPyiCT}r}6x?;}+NP-vA1D3Lg9b8v7KM zRPk(iQ}ygqS|gKD>7Kk>Apw(H*_C2bJig&+__G7(%F}4M0TlI&pcVm`$_-3qxI$&P zZZhe+aFimlYix>I?b7O*j3y={YnRp#Np0PwwKw@KOg?rY6{zIvmNL!`9zbpE=pm6< z8&e0(6ohBb+0lUmsNu6Xpo7n9olNEK_axZhElU~du^R(bq!Z&3H8B~n zCIf}4K-y`GSFz6NX9{8Pj@mW&NU!J^l_I$TrUGV*3N+?9L?;Ayu*u!nG`>v&mvlZu(*Iq0Sb17jj)-|Cut1pf5#h^pvxk|}KBSvR9 zm+HB6cQ2L=p)|iQZL983qBi?93$4Zt4h~Cgf|%U0{UIZx44>Ar$H}Z=hvJT zy`T*-g-@EoaVIg&c)f@?RC8+mA_lv7@>x^3^+l{ied)rBI0foUQ7>WU=}S9b!s%9D zs&WX^cwa8YQBzrLsNek@hmJvKv9Fp!rw(cTl_{+88qGSQwV;^Kak=3OoH;E%j3Nrj z>-=mLdhSzf#~PQzWAo_jVHmiT0*+t;veNV;IGy9Wp~iVL8@Hoa{svQnqu8_#X8uK! zzp4=`vi7J}LFId2#-+YAt{QgT1Fu@jm2!4RRrfNGX>1JEltJ^ zlYw_@M>f-^m#SlLv>nG($8 zRW01)2AbTRuWA*Q0xlwci+mO%zTRsXYqyW1s|rYe4Krf_^?MCly8>GC8jc1E=+oCQ z)wQLvClPMso4Q7GGbLDB3zN~3mYhYWpE!xRLuj-%HQY|2Yui$TQ*iLwQr0Qhxe#|W z#iGKuPN6#lx3kIZ_B!H!c{KWUEd;lj*1e9y8om*1^yx>ZQngBCd{wcUYqQmk8ohye zvmMQR1C7v*PP~C*1fibLk9Klo_hk_uDt~lZb#iuqdx6u{b>Y|h1TSIQ#j9&tW8Q%W*?}vXXSM_O+EsAZo!}-C7T@T{e z${X*i4D|8zajXME;ZaiotB6hmf2`zZj{8v*b{6#=MR{j209w(BvncNf@_Y}I!3a)w zxA_8EA1kFY7)*H#deUYF*>n_OkeI?{*mqIC-6%@HoVklhEf@xlu^{Hr zX2qnni==rJ`7!coM?)Dbrs)hi(1Q%x)3X4B#0;~nSORm45)iY*+G5gWMbc5+>`xSv zt}2qYqM%QZ&j{+lppQM}6V1a77lOuL#EAj!1zpreFZ zV9@8A;Jh+|YG1`BF@kch3g)$|i1I|xpf3e;&zD-VrG zMZs6KuGFO>&Y>b`_BHXurE9n&lTUT7V};A7-q+#c2+}rr~X%%-}7n8 zS2!rhr~O~yxqPbqHL}R3+^-Q)&!UQc>9qYjZ4A=%`yS0So#uTH zFL*k=Z-Qn&ARL-OD}O*7ErTlFMsYJ})NL&T;QiYOBxO+2j|gjJ(77MAIZWL_=Vs7* zcZ6pByI77hXwh9XK?a?@t1VFCQR+P3<=yr2%X9QzQvC8a^++j_%1L@{x4f#f#G+Re z?*{{KjHE|;F86R;=QJW|tE7(rzpR@+TbfBL-1L#s%tCiPS>fBtdDSS&UB_!9-SugZ z>K^)hfTbRKGQhVU`Z$2mvOWdiBUv90&{xrCnU9vEw6%D_>sN}N0)D)z=Ky@D>S+MI zE&2k0_bvK7Q@H}gZ^G~Eb2L2_{Og*&7$95M^8iYE>Z?tyS~Sa3uT7^t^-19OC?S$O zRRYh9r^u3eQ-F+;dMkh(CH07R#)5I~o*XuU4< zWLbR_fL}S}Fo@=r(>nsZQVyvMqA*{iGKjYO>eB%ll-DN!tS^rWVfn0pmK;P&O;Dnu zo(*bIMST`PsY-eQ!1_x1LVyN-dKSPIKk-}*e{@7|TJEp6(RlS86>RKIq@I=aBsqP` zGNU)OuZ#xhP4>#@Kj3= zsHHyw(5AMaF4WdngPK`Ke-NNzT|w=ttFI{$%0ti%i!}bw`5t;>TrZIH!Unnrt*)o@ zwVk)?p#1#lp z3DQ@U7{{5_;LK|DqJwpdGV4X>`sfy@m1&}{^%83JSdIVCP7mFeyjMyU_`PBk@Vhdl zsXoY)uhOIG%MF9ZUG*LfjUH;M`$27gQ#~J`XEU7uE;iF&f)}$TM32+>LJgj+HH`Lm zM3vG#Rz8=m31{1c&bQR((wUxmNjwtNTwlfhPjfVS6pd|xnnzKoFnzhFcp{3Q zK$yFq9>gj2rTxuynP;ykYTZ&_0o~Ir_0=VWZWq?=;;6e&w${?UpyCsbR*ItS;V5eq zMYq>CXB}fGwQ`GpdWwe7g&Z5<=s;3QFmw z=X-{5`#!|kJ;d1sQ+9nxq5Yk7yiPkU?Nz0(6@GMeIgV(yBji#_#40258)Emg{OLm(>_F%+oGxk zC-6GA)qRk6LJPfwDL=~cqntO&7OVHc!*9i64vwZFeRM0p#Xe}fXiD#^&%`y9>wWcZ zd>f@7+9ZsQ^h4K$QG9>&OBmhkk0BODwm5yQr|^R>a@rR;ZM>E|PLJ_UOB=q-e1q*5 zEc${CD4W_eg2{!^z=3GJF#38REH8}m2MMaqV02^{JwF)D5k}pH2X$| zkzO0BCjbP+qdBr@U%Vb$iv4WZ`caIN`OET_QsO9m60IMm`?)VOvgnxveJ3}Oi{XM=ldNw6)n$af8Q{hUeG847gcH?GBQXhOQOqce z{VcjQ3S%FyVIQrJ5jQmQ%2AZ6m!qnNo>*$OS)wn@65)h=n|lPEH1y%PyAd)*KLBuZ zjJ_XWSBicJVES17I6$XV{dEApG@s9S03*i>&^TQ`4C-dOeh}c<2^jLT zX-0;iA|~q3gZg2jz8m0~OhJvGr0)UMXtExG%|_~EOwv7Q`(!;Hpwtw7G{BT8`dEOA zQy@#AI#czA0R5)IJQC=MshGeM=#ELnPJ?MC(CTUWQ0!HHn5MS@XgOUU3_#N{XJzsT zu<>Of8(p2N$58hf7;Bl-e+HJ(OtQ^DhMDx^41Kt%x{g)XQLh}R?wP5VfbiH%JrSUO z7Md%Q3bOPhfNxA{KsL&qNxQRQ1esK67FOO&nlVcsWv2EVr}i8joP*RNb94p5=p3x8 znY1lOBMj!3k^T#?1(xkBaRxgz^c^YqarMBUDD7PyRY zccI>sO3c^!{z2vWB7yny^%S!l7g-6HRJm3?az(8M#ga9bJM|egQRK3ZHBNJ-QSP zxqws~I%xqJHavhAR@(GvjrX+}u#YCu;O!`X!3wyO(H(VfI^q0n7LJ!3+gmF24g9z{ z%k&W3I(TjwW~Wr@upHiFDji&o2{M(U3NeAD(y>C!=BdtFy4@r|mZ^u{@t#pM8bcGu|o>uR07V{c&uTj)eXANF^QkStF z#F6h#QRlfkMV-Ii35Pk3Mm{Mz=G`YT+T*CrQ$l6yQy5EeRN-mSh|G5FS78cFfutKeq3UD z;#lqjo_QOv3Zn6*%5Ka~Fqz$$`Qzw<393Ga{X!hkbE0j%pBJ*2=S3^L^t?X9%&I-7 z)4mT+N3pbik6savJhun4J)-Y>^!flb_hKc;q13(D7v<2tz3^Oe$g&TPbPf&Jhiyv^ z9o&cgQ4((m{KO;L3hjOEM)Nz?3qO4j;hg3h(GVhyo6zSthu3 z5FIm+j2AHC2hyi6U=A8cU0=kEG>~?_h^|;jRbE1-3n}d-Skgke@sd8nQ^d39avkQ< z+GCi{)*sPZ(Ps#VL*wQlSl&XKdKgx@kbXFflo!&ZBLaMV1f4vG1|HSBXnX*M$zbDf zy6}n~TX;+_4M~|}cxnzUI|he!4wZiyKIZ>x>%QZoDBeGSdyrgmnUF#*y^zp*l@6hU zD1p!-)sTb)vZRp^IvgNKJF3743S$4NsMt6=#V#OCuz(anKss0vgx~YbC;I@e*DrtE zv-6(W+1b9gx0y9J%AV(mJ+J$J8#IVYh6Ojy%*@FuD9FrQWzE$|J8281pR0EUO$|1s zU*poR4btJi@)zknLGARO4+8@$QPF9;f-KbdHkWyue&(U(cm5`*rQWtXNa=pNO*680 z(+Zob5ACK+bFS|7t*L+ex3t&I)gAWGF>kKkwTIU5T-{?YZRd0K+k5HqZm#aQj}~CI zes&+Nylj1bA8o|h`r-YwOJ(a_`{`tnty>;2VZ#AB@6Xm(4+OQMQ1?4pF0=Kr@2Ji~ z9e9vV_=P(6AT6^(ec~W}p)Axnhk`uH{H}eCTYim~MV#Kew=z8kbttG=P+?X{Nq*6o zRaT)M`8|CNEYyd;r)62FNBlq+nM3u2>qG1x1qY^XOsFGq59FF!Gx2K(#AAYe|J%#{4<7@f(6 z>ITP6opX-U^(Zy%xEZ0z30fr7-V;HC(X=#fTAJQ=gqp@b9#^u4>h`~wdRF~nDnI*6 z&`27k=Sefe&zz*Zbp7wipbivTpQ1^n(~Ut|LFwB0E6sPhE73uFh4b`wglgxgq4V_AbF}l#)5j5do~LUH8t*)9 zH1rek1!^`un}YD&1=`D7>lzp7(yz77yh!7<)}LRbb6;!S`Vy6Ft=Cnu)=B!4=wF2kYRgbkZKI*I%VG`C#4P8lCe8>$k7b(P4_N z{d-Uk3I)H@_CH0R`JK)sQ}l#CsJV~nJ%7-#{4t&SCrxOfe&x@gE)*{ONgLooZT&@; z6ASg9f6+m3g#Is>`YTQQJE$%VPyCzaXM{fXH|;0=blrbwh4s_Z|DlC5OCS1&4r{Y? z=yj@bmY#N!w_6FS;$klS>u$)Fo^bg;}=Jy3Oa zEML7!HKNZQihmtc4mGHfwOm^c)mN?F($sMu{}FuPQ2i-CxRPo|KmPTqr0P&8uB3WX zc)yYwOd+(g>PBH;W!00yy2>hp!qv)Z2!#jzR5pdz{8R_}HITk{C2RT$n?l14{T2V> zH{D-#qVSPFjnz#@IMqlB7pxwGM^4m7KNZd zRYqYZ!nHs(noON`=0OH^kjkf&L#ffIbQ)JW4V8vnp`ZIM`nf_XS>5!0 zrPArfdW~S!kwR9m%A~M8Shc6y?6iVAP-s_0jiT^m6FmiBr>RT`nazEzbLOr9PUL5;}M>myW|-WIIVx>Z*S zO(Rt?g^iJF5`~y3T2Oll0SZG{rGGC|)h3uqvLmi!u6WyqZd3Xaddh z82wIy>Pw+=BF)bj`ma>=iX)%?|CC0^*DohgUcUY(NzJ7&qZ&;pU*D*vesuCb%zNos z;0ey2IyuD@4!vK|rBR9+?&zq8RadJhT&}LNo%~Pr-nzQeR44sYN)4LJj{1)p>iGcU z?R)8M4ODymQ%$viGIDCEH5j3urk-5u>w2}7mwZcY^(BRwb<_?DUFxc%)Z1!uJ++I% z#d>OtYaCCcL9@nsfkpgq`A65p`e9&mI5u3xfE`vE9x5me$||Y&)-j*$PAuhiY{tN8^R3z zW=q-++UVp~Y7vE3ThTIagGu#lt-8~2`V(q^{<$?Rx;DCh8+DsQTeX^ksadsCO=!4% zJM{E}RQPt6FIw~(pbfAvjogH;!i*v_BIs?y0U& za(XX14pDN$1L`Uzm-kjqPU;8M^AtKfL}98v@sOIWxDy7ti2G;^-9t_8uj2KBKB|$6 z_1-OFn$uWQedM&WnO>WwN&w09sH{rXP5P=bKy%&noU?^K+*hp)GNbfr*|FpPt)pS8R?O9XxmUKE=Pvy0ekL(8e>Q!e$y{^9+N>1y(u1*-B zTF`L%098nV)>bKnW&>3@g_j1Z5q6u}-*l$v`h)1WJ5|pfM0?d#til_EXqQgad4tsl z6jCx&hLgLWxU&lD>0KGLT2gh~!^(%eR@94UKx-W`L_JOZ`Ve)T!m^?2XGf~9aF_~l zP@Fzo#c*6bLWMg5OqCgZb-$4+Lsx!;R#d8Q?<1-jm$;It6h(b=l=_I0?`J7`U2LlF zlWaAfW7E-eK*My0>1A~ShU>sQb&4`B=F!qY20d%oC}5ax^;ng_qr8=`UgjD{jH8X4 zLIJJvRNc2wy-OXK`4y>_6xtQ3S&qs2!y@%9g+;|`xNGvgt2nxZ4tUM4lYO(s zt2Pd&Dbh_Z?-kHpS1MD>0u0pXrVGnd4gFym9ZHS#(U%?!NYgJ)P%lsweah8y6t0xh zF<`PTny5Z;EYXc7Q6rb=?bO|7Ibbvm8xEc&k%I+9sDQl1W+NgEHnG=ax_aVG5qmX2Pj=pMO; zPQjKg@z7$nbfZ~ni__xiM(d~Y>3{DXvuQaO=qa=5P*b22=FnlIK#!ZF9;a}74z;O3 zuYZ(QT!FUcs&f$?w81wZ< zUbWw`QZHMgR)(&mQE5+&$~Sj$)AcjU>6p}aDV>j3@)9Z0zb{qY{kfD^pLi{xmd;v6 zhsKq>XqHhJwOlQwaCtecq?LO03N@PoEvhG|cg@W!)k_qHJWk6p4M)#QkE=G$w0m1y zU5{HuRi^QQdb3`%n$EUqdgp4jA;1)D+)_Kds;S<%hR%i~b-1RoBlRpzmrf&5X~YwB zP#wvK{EP3*&-SO(L>+QJy{z-# zGSyFe*V7s<)<@PWUw|pqs;3^YfzCyHH>lZ8BMExsJ9Lhj@HDOLVtwIh^%mZX$4}}! zw#v#GMHfl@=+4+?l*;9lJgP%5)&`Sp*(vK2j9nnG9Z)3j8K6YqOF-!;k3EfVAQQNV z`5~X50HTRbvcXJrik-6dA$yv@cYqlJ-vc}XKLKV7{M?T^W}#_3Dsmh}<_Vkx%ojKf zSSautV6ngjz!HJWfMo*wi~>z|1%U@M`zPdaDe@0sHN!GmBi2p86E>K|vCd9ew~_sn zKqY!MfTpoQz#p(tAdtbc%6e8rp~&+BA%GVJ!U6via06Zuhz4vDhy%PXkOH|I$Xax9JpebOhKns9pyGSd@rvhyOp9}C~8MI8l z6zBx_T7aL(pb|R;dH{9{JOJ2J0rXzNhamf;NMFDKf&PGl4BW4qb%=&&GC$g2HipA? z$~uDVV*E-c$_hqys6ZGXf`K0wvD|=Y8%zbUcFKxFcA|hM36dgG z9Z*Z4HlUtBeLy3D#(-u5%>gY1S^?S$v;%bXh@?Wg2y_MX5a9O`tEJzrX;% zV1W$4P#ZkfFvv(-tVaM@0@;9EhVi_RhhlpiYlB(HmYuT3p?r}*F`!hS3@|Z^j=y+o z>PS>Mg^O?xKBmfPcFG!s>=^<%0JHeGyp;!-EhX{+j|vn3<_Q!NcxdyRFH(vk3kAvn ziv=bFmIzD(EEAXsSRpVQ@VLNSz-k7MY5aVMmLiJ)YZ)rK1~NO&Q#P38v%yYTD^Px; zz$(DA0vhnVz&ZmS>qU|EDDppnjeu7Ko&#(WcoFcrz{`Nm0-FGD3A_P#2f*k5w;)@j z$h&~|82E7_iy!8t74@MFX6`?>Q`Sew-YT#auw7sW;8TIm0iT-*&c8p|VyZl1r>vtG;i$j~ zz;S_7fL{d808R;<1DqDP2smql$GQSJXN&ba;DW$kfJ*|`0apZW027V^Xa?=n&v<+rnV>#t9`EkfkwDYYbK#D+hKrIII z*i;itqpl66%KCQ7JhMepY$(tYSaKzBeJfnI=i z0{nOvjnY9N4Uh`p{XZSjS&9q;d}l!mC1$80cjzrapeZ=?Jofh_>9!25uu3?5VE zN08-GWGi5$zz)DF0e*0fTCqlepOhnbLSQFgoxrz%rv&!($M??-BHy9NMh5v`5vuh$ z8_dkUV5h9ZDF2ecQNYUrCjhSsoC3TC;Qf!E!=q`uAw~GbxB_@r;CFye z;4i@Y0@nc_3fyF%^WVoJw^3xPKqY!=i5jwBJ7|dDa~sU!_>xoRizNT=3}t^~ zgUQ}yr>r1ke=AUB0L?#*uva7uMfM9s0KOB50vr;E1^gh80QgCu8sLaPb-+=x|CyH8 zf*hA3bpgK!Gyt3uXbdvfgdQeexo6py9+j$#c|0_S#791U;kbaX^$GN38Vu4 z5aF-llN~2e4oDD~3`k-a#T^q< zFIi@s6iCIDXAL`L%|do9fky##1Rev_6Icjnz+fIiTmoopgK2eBN_mjK9Qn=deDg#m z&F1|AYfz$GH!|Ct5!F(h4zYy%7s_!KZm;0r*8z}J8w0=odi1oi+%2<-Pj z9uYYR7$xunAY0%tV6*@~VM=q8CvXBVR^SxC65!`eX_SH--u}!2I0q?`A{PNA0#^W~ z0>1+$2>b<@C~zGxS>PsMs(|MGSq`(gVPqfHkNUXq7K)k>SK%&4Y zKsA9gfE0mqfEoh)^fN89S`|R&KYsF=q>dE%9Z*l;FF*r<>wrcAHvvrqZUdSLRHA1* zX(}xQ{0(@lmLh>D(po?P+6sgK+6#mOItsV}odozXYnpBsfjB@n0H6Q(S!*iNLy9B= zdI|88)>NXmKyAQ70{o~ol}Hod2dfGC2{Zxp7ii8v-+u;*v_z4?0&M^f3$zCe6-WgP z7w7^QDZo!=Q$sQZdI7Q+=9uIELy*x%{3?$Bd3MU`i|nxi{Q;K1AV7h@!+;`zVSo~b z96$OPPear!&jee{NoOLbaydU6BTTWuWKXkGRxYw{;^WUatrz>@+? z0qX@;0G<|D1$c(RJU-67GSI?)-UidG7dhoI`A;JMe|EmL0q}~zGk{G3{QNpq`MSVM zfXxE00NxVdhuCS9cLX*M!uPK&BK!UXd<6JJU@Ksozz)C;fzJV- z5qPkGzJh!qMRo$d68IMI4MVmcee4J9w!tjZJ$A}Ei0pj=KL8F09A=>X|DecG6#1TE zwjX``0{F=WGmRs5%K8=AM;Qva{BM90Hkk4!?UZ!^*}n>09)#=9Ga~#bKCOV?1pWk^ z7x)KoQQ!vPGJ|=@{x;y64W<=;*eR;6i5aH3Df`t3)BXL2-E|F2{Z&$6=(u*GkDAr zYYvH$A}s+i0&M_s0__0_0;zx`fi8e#f$o6n0=))f|EnqTAd1u$;QvaXMO0TH9Z+9j zAfTZ@2B5LPP(V|G5rF0d9`hz9>Zs04rX?3i_p3MqwYF1M4zk+{*eQ$ubArYm zBrp?@AuyYPrawevE{Y5jm=72sun6#oz!JbHf#rZ~fyV)(1=axa44D0IEo7_|c?w_& zJPjxicotB^(3%$q_q{{&JKhGfILhpl^)j-{1vUXZlSJNtOc8hsFiqfHzzl)+Dk@tf3*QU@e1(#nkX5Cl_-5PZ(i?4JLb|ow9yL_Ok-V0namx;0j)#A)3Jd zY%mqPVyCP#D8Grp(~n1Z4I^x3VK5`S#i?1GeHkOXYlF%5*(vK9vfmf@6Y!zHKY)(~ zZUDCC^7Xfw#x2NpDdM32*r1vClp%v#@fi&fd})Je#n*Pq3Pkyx0t&EOAOx^SAUp%d zzkMQZ6geOe4LB$e2l!qf5%8lxGT<=7a&CA{z)>4a!;d4y^Ir$~zu5U!eZVP!Mu5`- zO#x>ay7Dx*2Ps-O=WQ_4xM-)W*2umr&<=3bBhnG_yFh2ap90+ge+%>kTo>pKxWVA% zX5FMAYSwKVOtTz$l+%r~`)A<#!_O9z@3d3YfuI>ZP~c%ekialNumJz}5KS>eU=$!s zAO}#@fI0r{L5tX=Ha6SO@6JFq$jiuE(f?9yXW?df6%K84vP%i#!i_NZ=(v8pBwwlKU&8 zD${K+RSvLI*6YX~#L%A052hh1Kg0%8ei*0n_{EIY7K|{mLU8cQv{Tmm$j%b@2#~`t zh$pZOkY|ILz*swFeTr;L;0r(jgU8hHHKd4T5?5JFL)7L{8%&iG?37iG?8yRC0Mi9# z0A>ly2Fw+hXTW1E5Lt*KUV$ZmSLr0$I z*MMC%n2COCr>s55-Y;+fa7f^Lz)u2)8R+`&sK_xC`9b*X{W4S$bL}ZAwb^>p!x3y86ZUl0x|?11`HDz4tPW$ z6Ob*C1IQB?1F#qtaKpzL@K{B*n3k8=DQmpRw=oDt z_)g#;;0J*p0Y?OW1{^nFu76HIPDznp0cQn%16&Ze2)H6}74V0^pMZY^t^;lg{6|B) z|J^s%USbX!BJg8KJ@jBuR=?15_8N z0jMod2T)(20idx!6F_r;7Jya)tqpjrb|URjBvqgjpsPSPKu>{QfCmL00`wK=2N)nQ z5Rd`j?;j6ChDnj(fJX!}0oe>?yk2quc{Z5!GL}=5IXfTO1vZ%MB0FUjBfFG>2P2e0 zCQ6Y>fT;r005b(VfH?w>0v;2X4_G9y7_d}e*;su4Sjn=4TmCqTtg*qg{0Tc{twr`z z0_y=A1)c#sFYp53e*!N9HZkC_wbvk0&o$lv+_J&ccpv@OC}-3D@1Q|G=u`+DbO3<@ zE~R%<{z8}R>E9qgpl5&4}3x&XQh^Z+~{&>PT4APtbtFp?+QA27%Uvn(=@ zGRGg}53}>F;eba3G6C5FIe>1U28cVG@u zx%%qQ%58p2q{{f`F$(+(76txciUR-6L4j}XQ{Wr$6!<l6x#8#oD})n3kCjiK!Go{ zDe&bn1->k#z?U`@_)JQH&zKbW^h3cy-~%wF_>f3}k7E@0KtX}`WD2}*QQ*yge5s>A?p;Bs#xmd3$!q#F}`-+jwg)wQPTe#cdmu5wHT zyGGw@ZP*I#vB(x}GMhFop$@sI3hSOMy_AdR-EFb@qhreD8hfvuIY!+!#Rc14L@%(a6mQFZH#gE=?ja)z9ovf}Go>a

|Wc-cD}+2wBwYD(-+y!-EFm8zuldT)x%@a=F|6ZWb@{CHiZlKWa)?EFvi(?d0Y(m z%sss3SLLQ&9U^~KbzCE2uvM!^$YyQtOyc2tvh?ycsB7rmoaAnHXM~)4a`g3I zX-0?KYl*G>%{DaZZcf&jr)leZl1DMjkrGAMf(Vd;IY$e_Y~^m-%BIe{AB9?fkKuKi=Yx1^jUz*Rr&bPvfgNJ&!;B z;E%ug<4gWHz#qTx$9n$wkUtjlM`a%Q6CT>jA20I98~hQ>86F;5!5`o7$9ev6amEoI z`jI}CXL|!i7v$v^zLS83|DW_58U&H#w(jCGer!8!@4LLUCz+RzX>lysYt!^Gl`_Wz*qY zmz<+MXHxZ&bE*!yeo4}^I#72ix5|{0D&(Vxx1N4;vZ_ZFS~~bVmE%LZmwH^8qvFup z3B3;QVW(Rco>zfRKEzWKnk`icG(I2csfU)7H7c6MAF1Czuj0{@M@>EZN$Lmc)_IlW z;nUHKRpvG&1wPtS;Mt?VvqXVULlk&kDDY{B0-uH`@cD-Vx0M1P%qVapDe#Gh0=J3+ zH-`eBcqs6RXU3{>Z_BWv?6Q)v`9+g6C*_Z(UINQj@!5rIz|GZ;Jj9d6Z4qvgwbHlu zf_kGTy%l6ui{J#mhspHz=D{^FbftN46DOOuj=r)hpbqu!%c*j2ZT;psS8dSo^AiHA_!0s`u2iL$c~prHNlxHPHg8C7*@XPUtO>c9R&jn2b*^fZUS~M8 zN_4e~RH&3Gpn_7UnNB_u+>BPC8Ku777Vm24$HV$qY)Dh5(HeT&&fpqOl+k_TLgL{u zdbe=%{qT_hT8`3>%LRLXmcH`3AlHyWol*vzC5EA7y`LWtd zul{pC7lzbD(PX{-ctA>HQ-e3yE?bs0F&DMov4Y|(>YAPFEZ6-L zUGcu0MIl)&?thTL8cYA{i+|!DZx4C>xUyA7z5ac&vU3ZNDEB7m*%t$nd{Li-?CFre z7r5RCF5A1TtUR}@@tt-K*Nz(@3G|AIq#GeMoTgx+K5;1^DZu5i*04K|7)jX5# zYUo>295$x0AAjA@C!P$e;p8E2vUao#bnB2lRBKxwE$i=V`tfzUuC^nrfs==*cfbCf z=mmx8H$p>@wRuNaGO}m^WVzz~xmdXlZ$vLvPVO8S?hE)Vtac~vvc7V73xED9LmfV) z1y*0ZK0Fj%?YGb;`UIxvPb!DI?}3{GxS!QWb%B+A zU0 z1rx?*mX#M4X7MXgM)}^J9v%}`i@#iXD|hSLmpV@8K}Ca&^NLF+WtGwn$5c*hA}cen znlE%o_`&Mt-R^Wsczs1stluKa)|qdF$540a$(zFyYA|^HCzNL87tvjHP6Xyo%ql3S zBNNi}B_VuDV2W?n=J1!6L>F<15VL#sE-EX@&7pG~^`ov+Q>!+nj?N2HtJXBHgr_(7 z^q)f;N9RXfVSs7?dbfKBpgzCxy@9{!gkAsFp=#}_rgB$VNkRUE%&bzb*VnI8)xX=C zcRPFI^uBqngdsz?1+Iblg(U^KeRH|{YKCxuJBz|(U_qI|0JEU@6{03-mfKyOU~ijJ zH745RgmA&T`>q|LFHfl&>Cc(vYd#OC?Q1f%YKvFRtDxz$e0hJ>7&;`+pD#AYqjPo~7x9U!@?nJ-2 zrirocq`Exh4Ja$ln^4HxiAe@^88fCdcTASq0*pj-(c59F# z$u|nTQ93!SN>n4 zl+pZd|12=p*P^Zac8z|8TyH2{7f#46%`Bsna&A!$?Er?Wl#~|d`0GCzegf${ELvzk1NkZ}$s5 zBTF@eh7@JWTorO>+XaEz9r=iMNPC-@WCpJ z=9{@(Z~VYj&9~*cdv8-ezDuS5s}q?_9ag_uKe7geJ@q3KC|sx?SsU5U)QwD(A-Ded z=fJ=Kb9;+gv;Amb6s>Nqh7PEds$PkDn}4c7WL@(PWjZ91Me8@}MfwA30_?XF2cqID z^&+dwP%N#giZjZ*`I!wPeVGlTz8P&^AWYvo`cI8a*8NsQDe5D8_=>0$3Nuzj)%R=7 zb24jbR6GjO+WM3_x^L|}zalEIvw5K~?P5nx2iB-$(MyK+N7aVWG38oNgxK>cGeQWoKO>!*v)$bAeY##N6z5CVJx-ngO5_C8!8cmy5NoKye z)Llg{?yIsXHrBjImln>xb79qK3SD*oO|cDV%o&?vTROV>-rf{@ZCxDS#QcB1>2x#S zbo@9UUvawOD~T=iD{N2Z&OHz;3Uj!uhet96SRbs$W zf-+ik+x_UY($C-J?`xA6cYjSs4`1P;xReIey)~~Xf4+BGzUD_)qVJn`<4W65m)6f% z@o_PuiRI9nJq3F&-D33>UyAGD4&ZyNW!{>)|9^2cea9-r&uhwkTKnmh@5V(r@_e2a i@hPpT<7%!diEq8$T~);ao0%`>pQ#yNOW(5M1O5+UMKfOj delta 81456 zcmeEP30zgx*6#r4oO=!`;H;qFJS(V-DuM&fa-DFNNgNI+s34#ssHj{;MX$0lbI8i9 z92>l5j+L{PHmBuKy)<*IG%M5ZzxTfPBCp>2dcNxQdiwjx8qXfr9@bv_o-_OXakJka z=awfgdt|ZOlL3K7XjWqU#IY^>6I!2J1IH`s8`_>8ndL6BWfj&|*Yd~5f zxA7yBvaIbVG?%=si^D3@y)(V)YNMX&so-Q1V4?-n9A^ zS+?#qe7!uK35|?TkDrv3Zrz$1K;_%W4P6SGTl>7-+`1>UrsPLnXC*%*Sc4bN^Rk-? zq9L8%;o(DDqfdr&=MMq^fl8d#S2~(t9h-TncN` zj4xekTR&;*W6ep^tvi#eT8qMJNLA>@4%aG3gx97jop9AFSNnbgGEvR!?8+f%6?P*}-Xn{lZllTs$N;6+$kSaICg(G%m-$BrM}LSRX; zlUuUF&L|_*M6o=#$-dUxZN07i!YWbPW0GvW-Y(2qXMAhxnl`F+iP6Fu*S@axPWzUU zFFkQU@Qtc)(KPzm<3w6L7B!ilLFsHE7Aj%3|6I;duof6$mEePg$zrG*YNywB#|N@;BGXKSCZnl$qhKpR|;`+Q^NVc~|(^ z_;K`1#H4DHXjbctvA(S5#5h!$%`Pnz25Ws{j5qJFh}Y%Xlr~WDw!R(Ig3h&7{ai{J zX+~-zNmxD%LJSsbkr811G_@H;PIvQn*fbxZ6}(D{oF1Q$krHno*4Ek~9VKB`p6J^9 zv@kVnPOfL&H>nY=eN%2EIvB=9e(h8r>uVEglrmhT!Ay>dYRM`a&dlz-?rTCZD7eu( z2DyK`hMqsOCA4A%ZjIc^0~Wehwl)v;v(64`U9N0N;YP(zu$~X@;214Z$*f>KAJR|~ z!viUZk;A9BQnQGdqo5#0WBF3OJ$79D=p?Hzniuw%YU%b4t>8v9i@hC8WdSxt>4xlXcq8&9LaNp=7Bj4{SR z`3-t!gpux~MmBoMh$x{>_BN(CspQe?jnO64vm=chCp9U5uaV-Uri{)u2Ds(gYwtJZ z`blGgQ#enSjVLEYFC8#4oz&W-QAWIz+M2u3NOV#=zC3UAcT%r*nPTKQsrRo0?}qM1?-J^`zmedi z8chi@%uZ^MpN|pkq!PBYH3oso<$Yf(F{70+(u9XMySvs1YnYL5v$V{~%}n@oQ@!06+OtG2i4LXe9#!^po0Bc^*0tes8GxFJ;rng)pmHNFvH@Ya%ZgV5@hsqkokGf?=mu+ z)C_N%F~mX5={q9XnD3zGNiS%|cn4Kj{*xv~PY1QKe8vHzhm)$%ZJN=?K|Nt@u*gu-HNJ^ zRLixKq3)9N?BqE&gO8M#)Mn$u}dm+IEyzXe&>pJq0`uMBfGjz#`~$c|0_e_(cOefa~kV++_Hm>pXo|G?~)JV15_j?|-^ z7hN9MUf4R1D$)}tq)xOhNJ^r~=Ut3nZK=iU&n(-$i+1;p)bNKrqybg(ABBnJDopTa2UtQ7H!B@d!o-clHf zAMqO%-|G5t@*iLNDgUhW6y)XB${KZctbKa^yZQ2dEBw`^w_R}Yq_|?K_P^2#F$-LV z{fe#_{a30?&Y!0;)|h+4X>wPW#J?LT)j#iT-SUBtb9H0`=2v!A%3r#61OC#roA8&e zUDVHOXN94YUk?`_>*U#DC;6| zD?o~(ZxW=Y)>5BU zw`RLs=U~bEt=eSrCQn+k*`=cO9~(@}SLp12vWNf2lLq|f$r9v%qOL?f9Dte_BQpKwOFr*Eha_$ON(0gU#7)ASm5GQ;(7h@lJ}b# zTK6DQ=l)}ye>Cy`p$)j`uhoF))1DM}-lekG zdHvf>S!EB-eQ15ruY6`8kM%qacTT(_aMKyY5qA{HsN8*BDh2UbpCuWn>9aJ z%f^(ETX5IvpG>F!4TekSHo-G3TI5oLE;f=3c1ZYpv~u+C+{#or!qxkCnImGNT>^i8 z2>uIe*sq%?{-E|A^xxm!bU>HuTgR_2iU0iB8-3=Vuh9qAML^%r4bimA`EGw7U@LK? z_(siX>Ay$I`)JF&9EYp%A0+=?^Gw{sF0jW)oesz!G~*=y5iL(W`?}#wDh>Bie&v~z z*bhGVFrdi+F7?UdlFNV3G?c}9f@0!b#+MG)|3C2&dcKStiQ7E`=~wS<_^SKo>JzG* zhV;9&lv%)2W-yAFz?|nF*{l-omy&vW} zg1WSGDIIQ_^{|irJZsKB=%e-z`{+;KM@0|&=+E6pxIoT+?!j*3#y57WN8`u2+AjpN z3z!tt)HPCUo!>9IFTlbh=p`qCxV>(D=TN7AeoXy$?l^Zr*mV=WxfT1TIWHhW%CEh$ z@c$R{r4+u|=U4V)PPU^48>Q;pkEe4uJ*VRJZV4hZ!2JSt3FRLg?DH8!+@Qj;>bO!W zjyfkVb`7L0_3_)#_G_EdhU>0DG%Cs^fG&r*wWJS^;%8&*h=%XJ|Ec@=Of_j39c=14 zmc@A6Q1}^1T->4y+gw6v=hGm?&kZ)!{W}+f*o6ajA($plLvVuK2&SSnZu6Y+?k4CZ z_A{LSsa~RM6{d(g4p?mq0g|H`goKeYbObRB-P>PcIYU41BGCBhq??_uk1 zF6*ZK%7Lgn>1zMs?Eky*|8=90D%)K9m!3!e%tP|R)1G9$?ONTs;>tgD3)oNR|ELb8 zBZ#{eO>?bDB~ex8#y#xnf8zN4|FiF}?P~U3goj=2{58Kg75r2p*8t#RsZ3E{GWGU z{s&F#>=jfGJN_4b4*k!!ZfQr{s?nAsu9Y76@PFMY*O3%>NE*U_v;0eU1$nUMH!=f~ z-*OxE|AlYZ3&gL51ESWju%mv+zpbCy7l8f9QZf=k^eEH zVXwMGsX;0dF$gL6;&2%fv-$CTOg!l^q z$zR&X{Lf83zn>kk7i$02?Wpp0ybg%HYKk5j6Rz_8e#XS!$L=sD>*hT?_9tBh>-t=lD7YCpPKK~ACY@7=uU z&F|fG%BUnKF|vqy|KK)XW#6dzudrQ{woGz_7*6h!`u_6$^M|{-(r@bem9g31X;6zDvnf5@O?hsm|27;4u>4#4~G zIhZWK5&_~VwT(PNVc(fEGU%N)aw`dWww2$cwVm;S#GDMdCRJ`H;|)J!LAJ@1eP|gY zy$682-A?XDcL&OKDK%W~Pe&uci<>4lr;6>N(sdZf%=Q?lr@I5Y+g=_DQZKnO-Dc$Rksyb5 zl!s8;SYYnm<*IbOBLu?}Kpr|MS0SSl$n|4D<{k$5IU}F!53);Vc_^KU5STZe>kL6~ zKain+!v`#5qCh@70^}=EsMZf%fcbYp(GK1Rhx9|MB@PDGpn_6?KJN#?Ri<~UB0jvC z*dJtd*4@1Nry044wLPy#-vJH!l?L=NqslN#X&;03@5ow{s~w7gKw&-GWFX4j zpP2?!%G2(F5R~OT)=8;EL4!b^=m9D3woQzz%PfE^*BK1*3@a#lu_~=%Gc_>J~D3C(}mFi?=WK1N6LPU)0MW$gOm#{J7&x(=9 z$N{Vv{MqjqIg=G~$Z+&$F-zs_a8z&)OP)V5b_7&TvmQG(LQbQZalm3@v9|4IoxgsZ z5*!As z@z@YH3Z{*e`;bozu?lc{o9{1)qZqrEFK)p25SoglUfK<8eE`8l9miX1WPd` zSzbtI*(k1&f(dLfE69r}@}vAatVT{%%uVbYtVS`z*!NeBCmF`Ry=rV>SPa8?fj8qW!`Nrn4EJjI!@hoIRAm_Ztg2D38oq^Tfi{($yDPphOy73 z8qY9{eJa&>iDB$Bsm4Bru}`Gt8gDX`eIM00%`ki$^%3JD!+J67Cd1e#Q4N>s_`^Pj zYIrb=eG1j^VHo=is?msH>=UR)5W~z2>&P(n=~KhZF!tF~V>rXu7f%g?VR1a;Oop;g zof`QJW1l%S7Bg%C!&Whjecse~o?-0Mrp9)LvCoJ{D?RU>MsJ8{aaFZFLQ)#v_lk=U)gl z$^qqH2Q|DI#y$*cG-Me2D5w$0F!n)EqXV#vLbr5$-F|7#(uT$~o9hJGS0Z&Prp2g< z@=k0mTqnsN{p(-7r#)U+VcJ~KDpP2>{63BSP#(|rCZj0qBc!cPmJiUvOf`u7o{~e@ zE@dQL&Q`r>OQ!r0eNsgk&$cQRNY9qL(lb?+x->Z(Pn@f-q_Uk$McOk3g6A7R&}1qE z-FC@Av}K+g%62o8sp@XIuI-0uautc8UbfoP=(p;DeH+pazA1J=;$PRlXA39_~VUAx$o~`G})g^{{QS5yAU1>74 zE`0Fj^RUS#GE2IbZQKHRpgrC97Rnz>lWi|7lAE~D^J~;pwmYju{>ZPs+XQ==)E}8FqB|Iyu{pUVO%hPI}gf-hEDnrxCM z+R@FM7g>E7N`WuSN2Ddi+vGzJXu&pg zL7Y9Y8QbNP(h^$JO!2X$z9Khtp)^6Qc+7JihRgbW@)jw= zHuyD+$Oo(mp(eW3Kh#9y-;h71L!YAPdHb=&*n1lV=GliIK=%C;v5`7=U2aTiU&!U? z-s8|KIw%u)u0r{H9D)iZW88ulN_mH|l^Ze1-U;M#1k#3;@dO`=!AG&5{-&~0*S7np zTvuYK7kzU~J|hjVy?tDs=<@GWh4RAi-T5mmb(8JI6Rg8|>b2gM&mnb}cjO=!!Rhv% z{5d$y-^qPC%RB?=d$%1@zO&tX7SgrfL)!El zq_1^!G#lU9W}k<2K__JXxAW-x{)7s2wytTTP(pvDBHjE{F8H@vFKw*kM^`_SKcVLJ zV5X?>P`XtQ*=_$D3Ul;x%+_#+>X63;lw;}NP|B$nAo!aGWq3!!Xrm707GHw*=`z)B zF?e zL|#N&aU+5|l|b%aLNM|=8ltzY(hYgU0}p}~{`g$b!LL#6=iE>nIA^t~^|#1+x{NZd z`4(A|I|T66yy@Ca2$IS`F!UA#jcPf}11`ZZx?2kZkJ}K8y6Gq^_jQMSkH>;|TKX;0YS%`&48lU>W4l&c(I2pIl_{dGa+R{@qN{niHq}GU z{R+@=)$1eY`JX_*z3RjUOmGH*w;Di@dacwPTD1|R5!WHjZv<&dMbw0+ccd`{;gwL6 zpe7LPY+-LCHHSI#UhrxI zX=-&8JEsk#wkwWe?{5pi?5lVzpdAG5&N_=d95ZV{IHaa?kbWDEvWME9Zm+a_;Ih|@ zRKBJUP9tk{aRpl3LFqzIe2m2JbYNxL>#z)zcsS+ngJ5eX2zoq!!?OFtCSWWAI8(5EmjIbZtdQB>+g zI0i%K<;oU%sy*tYJf<9z+65Y+S&8uz$F}fKXx%zAFw{SBWI$ku|ER#=(BP4wNlEde z;uBg0hxmttB(zEj4Gs-zF%q74i%F>&6BCnYLJRkr)a-HPZF=olOuRV%8$yRxBCoyA zsqidUDUBua+W-eAZM8B>p!8Fo>Te5tg0(sq9b2pHwWF(^Qml5Z5tEe=+thVRWjp=D zHpS2O`ZHKt_)|1)yHeX0@~qO;PMeFBMz&X2btM|E^qts zkh0c}Za$*ywxhYn*f`({1Kwn9&(Q`aFx?6C%ah6hJG$>3#luB#KYdTRYUh6XfpW%< zzWtH%sU1CVS~+b;U;IRQ(~ertvhl*Rh&azi(d#uF6~{4fTblG4Nqwq4V#jPOvRVlNa`#)bOil~WAJ{I z=c2-Qe%sNHmt9mC1L*R$rfw?61xHWHDrOgsdYjZ}J338Q7upqk%BZL8T$6|TlAZge zr}~|p`#}YDyPf+)B~@}2iM>=+oo-j?Z)=1aC;{`b!Sq%M zY+XlGi1QY7R zdZ916T5>_gHT$Vyk~H5oxWD=`gB~&JbAS}T5_A0VfogxotUXxW#Nf#xYN!i6^$qF} zF@YAr$A+K*Jd zT)3(&ew3PL=YBm}Ew-b}$FeSSJLp)d5O?W8eNxn}Qctm7?Mi`>g5bryHxAVYvF|pz zX?3bP4uq}j1htO~VC*DyCLm47f$(OAx?Dm4N4hNI?aS;86j7WNRC^-ovolNehs<^* zTV2WE{Hbb@L`M%`EkkT4i1y~7?M}Ss*he&-u3{1gU7oPWw6;B-t40gjhLvWs9o;=s z#Z=^!*Cd*Qojdlti(xmIdl%L(5{$Whh~3 zP;6?UI?qn?Mm@bit!r2HT%=;h!Jpbv#KtX0`!7+a+aExyH?w&zRk1WZ`IEyO5uNHy ztBX;!DR+^zJF!{;wJ%LmA7!=T^qo94z*gol*rA}0u2n|cw8vE(wlcYG!b%krBv*~L zDhjz4x;M4;Uabz7D0Cbe5z((!)awc4bw+HkBL{b3861UPr|3#=v_9rBV|*+rl;wy94_JZRTL;t@Ll7On$eu{r=2r~_b8 zx*jSI(Sc&|xgM@OIM<^hkIeOO<6$|-SWFIp1>^uC1YnUkP%I4BL&V@fu>c&v02Z{u z^DOoTk_FxXSkw)Gh1>vGybXW_+W=Uk4S+u<@ems*7GFc!EVu@WMb-dVSPg*1)BspO z4S+?{09YsuU=R!10J10=K%4+9d?NP%H`tz(QaEEdB++f?ohE@&&-c zUH~lQ1;FB604&%Az#?4$EX)PKVq5?$zy-jfTRk)$+RE*r@W2)Ti)w+(LRvjch-YzC z7R&0P^FS5=i(;X-SO}|!2ajL%D9?jeJ*x1?71Cy5D`>Kq71Cq@DASzHyk0VPkj-$YUuaKBT3xu80*P8 zV13E{e1$(rMg%o|Rjn@#pnk8afz6rCAeBW8SSrjA*drGkLi-Z?bD90Qia$v_qDqH; zl$$o=-N^I~Hi7go{v`2kW31Pkg0-LhIfy?=hCv=X)heA>=P>cu=8z=gPZIAF#tLfz zR$KNb9DkB{e=vSof3Q5*A20k#GQ!B%slFh!p&GkXAFR+}yVQw%Y!>la<1QO-g(6=4 z5{gxyQARs3QE!%_PL!hFE=9e|s9a<(60KhU{w!ikQLJ-WL0MlH@y=xw>+B-l%Ow=+ z?h=aidkM9xk)Q_g=k{LZDdOhJ zs9ZrZ!z~dq!(|kkSc

mr%@4`f?~5xk@3Bq;sI{Ky7P0^z57|YLd~V6NawyM z<)5=mKWDlBoK^1UEU%xlDhgJvh{lUjRQb7D^`En9{G8?Yb5@<7v%>8xky!+%V1I(_ zP)gXT6cts9>RO8GUW)2jit1g8GMA$I3M$v0eg9Izm{QcBQq+)A)UZ<2h*H$dV9}{; znJF@6m!b;nl!p+`cL;4;UsGcxX)$@dp-vLOkDh)*9Uz%$!hW?WHQ29q6L>Dbjs0r2 zlt$+dsI_Uq0kxmN^GtlPuTWTzA~%}q+ZG*EuS>YoV@3+Vc1NJt)g^!>^wD{> zi&S8%^{F~grBGcfN7_bHd5ZW{twbj-tE%m#FV*iMI04kD9g;EOPfpEI+ zYSL^YT}<0G6Prho(ga)GGNvk;6lH5$$<$kyGHvsHO)qFtye+(uX@N;fv>gjDk#4dt zoO!n7wx+>lq+HwnuBNxVq`{Or8LffRdy)T8lVUqM#I!~#$F^TcoNd3bw$YjMY7JZQ zFwHMOxv9eCQXv!M8VGO zGvUV(n@#0xZ8w?bxJt>QKfx|%yS~-5$xX^4r0h%JRHTSkQG*Y+nJ((m0^7cQrgRsn zGwr$~#2Q_H!=zHu8>a2jBwNk>rY~HjSvL8wNh>F{w|RVEy5M4B`##h=i0*!5>a4PT zAFKXuMXN@qPMONsQcszxsZs|UOlYmE6kG98knaiT`Mub8}wub32CblLPWqAxIyngpgNO}b)gf=-8J`P#s+x=LMa zeQ%gH%PQMB+WVoJt=4y@lM)r2HZh3VRl3R@shy%ZCwm)y2uMH=I-wU7b{4ed+wD|%P6op9IsO439^7jjM|+Fa9H zwT&pNeJJs{A8pI7UjeYYR{(5_3c$9g0Bm{yU|UoGcGn7Ep#W@)3W{B^0$}&60N4rw zFhl^hMFllp0JcR1#kQybeS8F*Dge7g1uom70t};*9$GZtomsf!WZ`~O0e71$+-tIM zr^&)+1qSeIpBZjVyeRWZ{mHh5JPo?iN}2 zrpLm4A`5qkEc`;Dg*!wA+#j;Q9fIdnz}+DW_l7Lo8M5$OgBHH4v2ahw!W|(C_k%3l z4YKg9i-kKu7Jezv!aX1hcYrMXBA|u4KNjx&SooI3!hIhLcYQ3(^T|c+*#^bJ9Ulw# zdo0}TvGC1_g*!bK?(8piqf@|*sDRs0 z0XHEFx1d%9+{r2622{XZoC0n>7Vh8_@H=<~+`B2@mQw)3i7v0jVzJp=UW>wFbE~{I z2q3zGHUeN%1#PSvi5eMiMAO!0S_KNIs11c+K}9VM;BG}N6zfq)B`p$QN+qqU%G`D1 z-DtWoP4lMeZ>jZ6#*LUq9%*P`jjXKogIZE$tp~u?%Gy8xt%?={5LZPrGiDWSph)7& z=;C=up>b6$RN-k}CeLbGDEYsyxzW0+S~;P1Et*a&fZmRG)mpUXfLeyGzptrC$-Np+ za9A~-%S+X?=2A9&R!wUI;9FhmuCN0I!-cjq(<;)Lk2IYYRM&h2R~FnYYr#EUU8^U! zCc!P^tu+t~cfsi8t#uQOa`xxEwGM)Tn@lYEGCo=-WZTC_>o53K?20Ud9p0J;?fOXd za5PjlUGs6Ih)^L*pl=PW7Jh}1UPEgOu(gI3rNpq}H=v>h5EqQYBJNvLt1q~X1vj>) z7AP3aoQ&FZqNY|saQ!L3S8Gi*e6f7QP*Y#6i{Rrj6-#u1uNEvAp^Q1777cK_4h*1x%yqSR@lYyltOGl`URU!HjEVG99jz^6XwTwm)ABDy{-t$^0l#{epz3-z^Vk-}Wj zj^+kh82IxWXkFAXtZEC*bRq{;yWRkc&lvJ+i0W{`QfHRFw56feP;g0bsjcQ+oLa6* z`LW|ir7pFPDgM}FLZN3Ptpk!<)CdD~41Lu|8xGK|v6cX^p|O?-;Mqi*D9W(GOtF2m zrYu2Pc?}!Cy+4-IR54J;(2XWqywH2W-gEP=s5PkQhFa0l4P$6yQ!KRUbg!w_AE19T z4C8cqzL}P+q_bMSCM?&#xzDFEL7$RdZv`D>#A-t*Tc1N02gvK4-9{&P|Ba{*eCU|bN4xR%-&!MG$C?+0s* z_|}yCTWJ-LMyFO<7Qn7n+Ek(VjZo~@8Wrbh-!jwXPFfgystNf8qSte%VW5^K)b9xO z=Hd2qvE?lX1&<(YvQTiLeZjEIH9_e66gnNGjREKstYrf14A!P7DXfh=gjSyrZIob? z7Yr1m5!)%(Bfn6TH-%b!MRKq_5=##+PQN~4F8vT@=~UVsp|ueSqa;-XccMts9Hk8qj10Qo)1h`Z z3Pu!#-yUfrg>b6SF6@GdEQ&tv;;8BjJD;$6V1D$XHMQY76m>-_X43Mm+BlV+RvQI< z#FFjTP3sOpayN7k7c6v^q7ivEK&A5CQ>|2?X3+4 zc&|5-h^O#q%p>uv7Ox0ZSW9DyGs8|x3KLI0X3P`uWHG}8X3sWSQX)heo7aWLISP@5#g-v}|x*`E5io?1mAx?l2Q2XM~ z*Vx~Y*8r^rMYK0HrDOgu#5{Uxh?c8xrLrOkOv{a!MhI^NA@UTWTtkSO-PgN$jclg8I@F# z%bN&!bQ~teJlYherK_AD&{qtgw((fmb7@w*HU;2ryk=3Dr(?7c&#g_+CJIKlV6;fo zvZ%!{O~wwHH{O%IOqq^_GnXPqYO9gX`H|WJfYcT%>1ULpj?MG-b#g0XbAce8oERk`N$Op|h9{j6@X5orBY~cB?$-y{#JX!O_Y01uH zt+P6q6@Ox1x>8?jLUGx;N+*VzJj>d56Pziw zYrb?WMRQl#F^iGYS8Um|;imeuDj$lRoo8>w)K^dl+c+;j=b#Cv)N$BLhSRQb@E^kI z9s~IlIbQ3i=Cc%w`jRvo<31wZRMz=aJ{=v8?K@XkPB$iL!PGZZt0WkYiwa|6sluMZ zK06hMQExqizF1AYneMl#T6tumrfJ;(`lM++0am5KCCR5tphP;G=uEm6TqZFs!(s0E zlsiG|3Z+96wCQN3#hc1e^h69oUa}pcAk!ym0eEK1MC@+z>E1-1 zX}3vQZ=rR77GT*N@V*E@0NmfD4sR85z91`!cY( z;@O?)OYwdvN(4EJGFhuEGC40ADS9&2!*j`4inmP09F$MnCu8T9Ph~TC*@k6mLxlbn zR;UQNHqNA$6v{nI8!WQ=rY{X&g2^CmJdQ~GicMOH((74TtWf&CFWu;g^6ZE+Vb^NX z=twF~lX@?~%#cs>vUw%WWNR@(+oj)qrANA+^w9*IzU57U4e{#X22D}67DR(4-rrCk zPr=4JpPEhO6__?vixS#i{pflcwC_#TJR$d-##?>JGF|( zB?Nx<2iK%yJ)DvQ!{+*R`cXg_JR%IEM$#fWk^?JYkzAuOO~?h`f4UYa7|jG@+Q%^U z5wp=1o|!nR@?D}=DI@mQ{4sx_)$CPh-OGmSwkZoOv~Y=D^?t2ZLW?`0E2lcN?k>?y z_D#?tO3BrFh>Syp@>?Gw$MSM&{&+$^+C3RYgxo68_?af%G52sOE+4XX z-TX8PRdcph8z<+Hv$Z}7i>RC<${AVquJ)L#wMVYebG1Q2Fr8ZSHX@(p6tEQeoSJWPFK3^;kQfkZtNmwfxbavFWfCUdp%y7)54ES-=xJ zvOr_855I*x&1nm@VIt>UqNRNoIa+#eKU(!168d2wmY_0LlY6NyeBEBJMZBO_7GWvp z6*x>2SVQ|SHRJP;Z6AX8V0UV`mC zXMgBSNuza3ctgLuM2i!`Gc;o%vKeN@9LlxN3+=PZOXeRlowQ;wnW^bgZIIBqMCYeq zkHMSe=u%A=+$+Kse3mg=pk~W3`N0)lru7x&yY;gctzL|ohiChJKU%#9Wxur2)WR{% znrV75CQdHDXE%sz#W+4etCM4p$W-f5?Ai(mXEG2rWBQPJsY-^@1k1>_v71{t%lJNe{DcqOddKx?3 zja3~+-SmE0^g5G!NmcHwfIG$u7(!{!W52O-A*vg<*5pRTk83_6?Kb^ID;!y&)uGGl zP4+WBGr6zS;!&1yE4i^9UWxORX!?F7hHf;4uEP0JH07@1)Sgw?GDNfKV<1gfjk)F2 zF-#84R%_wVNm;G6k_OS5)!2T_q)%6)J7+RgOhZhy{~ApDaWs7m+~GL;48-{6r*R&N z$W9Yl@C2-ii!k*t(H1tH4tqii5!{J_yXgr`*IX?_FhX7wDO98OYc-P)WeJi0PKefQ z#q_pltt0WN_Qcnsp2>7>Esi~sS$Sp(K4!!&f-ze#_CATtO)`~z3ho$JoGY#jz+ z7A;<&~JD>tT`ni7g`CZ`W(V z;5U6%8zK1HL`qYc&$#(nElB0suk>dNi8pOLh$YnXIju3CY4e;m4B*k{v=Kt-wf?jz z3`#5an0nCO=dt_AqU7f>HSr`4i40>8BVo^%aR_*BugTA0qFLm#0p}4}RJZ|WxC`jy z2Gn5z)!GP?TR=G*Idxos8k=ys+?fV%!U*q78#iH~OrkrR;Oq0Z8eDd^V1?oX=-AB% zN+y#@v~@EIJ&DR~!J5L=ZwmFI7c`-M`~$tLedV7-d$*wRCQ;3;T8KJ}we!9HV)K1> zJu0x}u&IV)I^|Lqy0H~zxzVOor4t|NGEM);nb<74ycJcOMFB5pofWR`F4U2Aq+pa2 zjBzjF`Rhkb&QriyHgxyxSlF!L8v;u@xSF;w9{7 zXVI0H&~mdV@?}mf01(Peg)+866SC? zx-Y?|@0lu4?^iHTc{&L6v*t!#Ed`^WV4zS{NqgT^u2kp52q6sKUc08B>DBC`k|#G< zC}6gzO36DAq~P3Pg8Re{t)9v*{TXos#JTcwf789`-VS&ooSi82u-j}ewWo2fqN6x} ztl*!16?+NJND&OoJb{9dDj2ytwW|2-;-fpY0EGpVjVwBM01?#Fr%W{+tyoCqc42ua zq_|yJ*SOY<0hC-BgAQTmnq`}h8k_D|stf7fE-V{dY3=~pRL8DF;kz{xJ&r#@Ht&Af z$Dd$)U)hZ%g+I4o0Ndhw)4a3y?N$q^!yfE%3u*ZtocR~x_v@Njs4pMDV-q{}X!wzE z(@H8W+=~^zkXG*1`U{QK1H?SCdoNUi_h}xGcG-t1r~~EhLz8u26@OMV2%kT@@2^yg zu78T%p#N*=cP`)HY*L+uz6Q^)11)$>8!m(|2w~a@Of%(PM>whjwR;_dojEwQGpu%o- z8gJ2zgIWlgzr>w}OE`L3cmPG@lDFBjHEG8eaK~Cy!ecY&^Z^+7T=G4L31}`&JBUL% zb{W(-C$e!lgynA>H9Z8U6}Ln2vJb&u(Hs?7bx5nKvWs5ER|6=mHoWd3S51{X99?TM&4r@UQ=X@FIv7&iq2>yA#l4#Ob1+HJvwdxdcS5xlx%!4Vip&FiM} zj`73QeiUlsj=;cUY2y+2v79eaz)6fkObt3UIf|fD7wUNwL!Dh_HB3T?*qu%rzcz)? zPe;*2T;wi9HIHc>1*4o`@Y0RDX2N;vO?c6(j=?d(S@tmmmiTiOg&JS`%iP4h7nUS6 za*tz*>_W$n<7kg7))0y~R)U$lskIecKf&GlrdCbq%8G~|AfLvFZ~PX<+MT25s;;EJ zg_*G{#k>XAt}Cs43r7Q8>5I28)df?<6Nownvj>AkO0cvL!3d+pr_t%hPGIif8tsIJ z%Sm)?Ff~1i4PG$io`juqag-4A3V(MJ-NCut1h?ng2m^Mcv2SaExW2UdZ5-C5v0VGd z(8=*ybuzxLR@>=prBU;DFmI;O^mot*X>{xz93yb`IK(kofcJTpL2KxmGQ5nIdg??V$8LELHKd*~~kN(!BP2WOqvs%X{l%=PzR!fDj&ebgt7 z*1V5cGS|wwKZSEFfZVH^R!*caRiwbVi$2gQ;lZar&_Zz6o-=lvc(!sqwai!dd?yF z6nbwC^*)7@*g5RMr<@Ps*vbUMhnZRh@;jr|8#;|Ww+;88#srKBu%s`YvDCPUBVl7l zEQ|X`GU<*|(lP^`QXblWvy`+;i8PzmoY86^OuU7)|rB#QeK`OKo}478`m83>{s3>4Cb07Lnb zxo*JyndgjfX3p2hou#BjB~rc$9xEkXQ6il|=FgDNTpG{7I4WeopywEfr9%Ki`4le0 zzDxS;W=R5K<}M{QVHnuQ0-r})my$Lpk#?kr&yi0WjbLCDO=F-hJ;p#=+72+3&oE0% zB`~`r0X|EtDkWW7BAv&Y{rOVT6(v&Ktoa-A38dZ(Othu^O>=X>y`TvfaAJV#K^L^K z2xnBg2$wRFMqNbw9Oq^i5qgQFpU#rQ zoNOw-fwd@`zPQ1!<23mi^LsXBe~p8JY})fRp39~N-yn-@D)2~2V@bP!p z+{IAa+geOHesQKPCLn|Tp&4cL%Edow%_!n~O>>*H)QF+$x3xrfuGWF6b)XaF^=b|s zS>bmE;xoh5uo*th>8xS-8HJjYSay*n4+(Q!#rPKGcdCEu_Qeov~z4R)}X6k*U zk;~rIBc#bxNzxm*FRO094_sJ_7Mt{HmBx=u%4$Aw5_bQS@z|IELybpG*Ywsavsa0E zRH&1lot8AIS?Z`}V<%0@NJ6D2(?&@jg#;_Q=(D8Z^r(wIS{h#LswXMz4s&5`igeZS zQb|{RDx|ubJ{Mq#o1O%4+f7dc7%S`90H4YF1b_jGK0`cOiBebL^{-zmdJ6clsy-9o zQ&mp|=xfsF0eoW8=LqGh6uS;@%bKa_m_<@F(u)vCZ{1r^XJ z1$e);J`|vPMYLl9y--mf1K?c=IgFt>mGmfpV@TjgA0j#O6&j)Dgt>*%4@aE6e^+A`U(=s1DTw{wh zOyHGximst2$`iAf8tK%j1{xrpY&Fo^>C~nsIwhTU*Mv<)(7l>^M-R4$pg}!LtDRkBsoiv4d`{_9V$NW%^DKw}SlFFgewRAH;)7ttHfIYSK zCjjE>=xYF6>gwwNo~^4t3(&6~m))$VuLbpJef?>G@CKYZ-#~vH)bxh>V*u3}acWy5 zePtPbU&sZ^yy4P^&h^$?(7BB+dT~?TjUI2Tv->|EG)4(hs9_V`3b3;Y5=^1krpPRX zq-Odv0M9n#%%08lCqZ3rj$)+{wcu16e|;sWkNou&Wm3=s4rrX_KZLVyoua|?0S6ejD1lrsdWt~7>+UZlUPkXJM-W9+-97YgD3&Zur0DkRZ zs8O`Fy0MzB znN+@;z8qjfH_nXg&NV;ij-q5zS`SVsJ@rNInXG-EWZ6B*vJ0^KUsPyMSG^0R2I#U7 zuVdnMxQ(Od2y4ismwKVXnbf(r-VIk{7WGD(#M6hpF+k&KP&B5rc)Ad+F966eqdf75 zAaLfRebD{!)UdB^ap$|-{VeVMRHK9LZ}mSS)8qY-bzF#EMu-nF@gbIV0Oj@5`{UX7 z`e9~{r{Vo|3&4f`Xu5csI6$9{i!3(==snqemKd~1A{~rD$0btiK=eu?-5Q9ol}Oe> z`YLz6g}%VjzQEGhB25~B>9Ie(HA0UA@Q+1n;4R6qdOr`gMTeyy!T`a< zvxMTu=$W)8LHBlDYUI(&ar#zhj*i#208~xTw*kDBz?m}=^%p?39;v?!aA_o`Rwn5i zKy@FbKL>Dg6sOjX);EGOkHLt~qwmIG#OKk9v3fGU*-==DB2~Q-)iU&Wk6cllOQJYW zSf9Ako=zD0NL={{OxE`T+)CE>0BlRq_XA8Drym9AI$nPpz&lmnOL>Vn{5_Yd?*?Oa zntl*q^aKuCOwvoK{3rp;M;EPzM0J{BN5TOS8-Ase!AYB)u21`sm^1`>Zz^mv zoF1R5kAS1|<5WEyAZ(gG41lI#y5g~TE4y%HrK_`bGxf^BSj(q@ImkYrtU1UqpMJ{G zM+()|Om#K&nF-aM)AceC9-gkp12oA+qvcakuAT_+t)K?yq1^fON*>H0pQ_KmI-E~A zGxRYcwH++A9keeWsYT4x6$rb`#44Lln`ZJvJ!f$$a~4+8eEMt_FHNs}4s7{6(Wlq`0!CZA?5!UiRuE-vDa^(sOuEuu|Du$4u0tq3VE zqL{^~<Rr7z_L&3SNS}+9G;p2^w+{saAB-A~LLapf^2l)w^iSDaMd}CXt41M)`{# z)vHmLDBY8eIeyQDvnji8Odj82f0w^h55$#)9ZNAkB~a&O*i|ObzGavp6DYD6Q&<8W zF2-!0Kv9J0IDtMU>@E^$%%hkg6X^D%m@g7&&T`B%3FP}2CYS_7N3r!upoS|@1v4#L zp+{-V<3_;_CsO=k6wL2QJ&4_0aHE{rIBYgk=f|;XnQ8Ci=x;MMUWr

G73%raSl5 zvseovHu!=*f~Kv~bqMFK!sZaS5LTf{5Px3{BQVq1)%?LeYxIfY!FlY#d9-M&KEjh< zXX42%VB7`d2dDW__(yeF7t*5;8DBXsqvBSWKdzwGrWF5x8nU=59vqgDcVyZ7u++w{ZYlH}z`i!m# zk&TILER~UZ0*~%vA7G}Rp3$?A#N_p8Q!`y%&)aG2v%Dl{p2arQOtH`L0)6xxdd*CO zpT|zpOrJcj&jv``fTi0^*Eet#VZ=(Vxv47~U`GZPoaZ>|TVKa%}o&QIR@Krw(n|rVrB7CMJy>n+Si*OntWN z6GS47m_noeY|!&8+^UXFN{>y8pBO)m^#N?xXv$O&$`>lHV0MDZyrQ#fGUo-TwFBOR znP>-ZThCXy%={{Eg*RT+b3|61SUR2hv+1ZGt=Xwp!y`L(Vzx)#_>i>e&K9+RK4J;gG6 ziu$~%_lKrundY&viSa2Z|JT-i$461Te*ia-TymLIa_NPH-h1f1MLGebLkJ;(ENLVJ z0|-Yzq#aFx5fsFRUlkP_XQ$W&qzM*~A_zzaD}wNQp7~@S;Pv|Dk9&6BGdnxm_cnX8 z85yhSfRMC{wqW{S_pZPhL8kO;T>7;kI{a5U@{QXY*jDfTFd(236`i>|&_a!GbD6j4 ze?-*$&ff&4>g{_1l^(FiG-Lc8T481S@E+PU%XHeerv4q@(q31l+wY}gUYXv#m)3BZ z?y--y^D_PRKDxjw(;fEH0$i$}+fOTRslKqEHsYmv*a6z5mg?OH=wz`}ryew6!$CUl z_t4i42DYS7=Q~<1J@oSLsLm1{aEMO$B|7^MEwd7R@(_K!EYVqq1KrB}Q~Wx&{5mg- zIK3~TGCf3fIIwA8er8coZo$M=R*4?-J$(Z#(MP_gWm%#}|3H_S^YqI<1oA(0fBJ#G z9M99KKL!q^;Q5j6UC@7df279HKfiyXt!JKI`%~ZuW&XVyPPYiHaJn5xOK{-Z&M3<4 ze}qnJ^YoS@boDY%`yDmaj6NDTf>K+L1`ekX`ZH~B^K{YACiOK!wPS$~5tbdJjcK0# z`dA?UlRNRanS9}KQ}V0hbS9gp>z^=n&OJd_q|~$%W`xEkX^~KSPX<1OruE~d_0!vr zQq%Z9&y}osy4^3Po>jk?%Fq20IEF^)dCJW2v!^Jplm7QqV0#L!PSd11(OpGaL7lYY zSDNomx&YzuuQZ39bn7#LZG2Yf;xjbD3jM~Jz@~Hq_T(8lPqx(2X9LsdK5WKWTBIJm z;%wj`W&R^OlN&Wt_dgfdJNVvXhevlmN6W;cUpz+(ivIU|j*f#Ko%I{F(4%)CR6S1( z_2?PrY3K9k69_#o&@}~(cY!t<`v3ApYPLsDLHO<>?d4r{^-FZ=*Hvd+qVc-w&o9xr zud8l#nM!um>n_s_cGZq6bg9r)=Ukz!v#Z{9g|L~Fh9D($YVbq4+;YA54?32Y>yCfY zgcj&m{tWCw;o_gP0WQ$iUvxRKK>zs{9R&0Be?ipGX}`Y%>(KDDziEE*_3^)HKe2S3 ze`tkS`jLNV;biE;|IlGALxu*tG({#*#G_PrT>3?)`OVhr$X-7`evu{&nY5MwYT4HH> z_#Hadq|seHI#{Ny9;`b1Jh*z5YDk|u75{5d`KTdkHTAvu0RLGJ>P#QizY@g{d{jE+ z2USvS=|6{Ql~ipCg_Tq<3h!4^4^arMth!McTv_#`u&%NiO5s{%HJn0kUp1b>Yrd*I z{VS2ac_nN54x2*54g3`UyYLY|)rrDKel%8*j&P_k6s9;7|7Y-^LuIHUJ|&Hzo7wck zpG>FfuQy+EMo{K6{>q{d7@$fh%tp8#pe9gim{U!r@TpT3P-qrtPzS19O8F=?0hP|= zN@t?du&eaH!b`r+kV;mOKA_YuDjX1%+2bR2GHMP%7D57lo>k^nbuzp|mI;(~dBeK_Mqh zO{DN`7?pfXHw#yj=pTGfg;Sl2_0e!uM4?|5YEB!yp$d)AM&GVN%O+Kii=alN>h%#c z`>8tIMI}@9To)~qVtvV_x>9HosR}74<-#o7}^Rkzi9qG&<4)%BxQO$zDJ zsw0IJ(P}h>OVR2{2Y3GA>9D4sqoe*hM$IBli&aliI2Ehh6tdz}I||Rl(G)xAz<9NY z!m4=ME;{IA@oENz5eYQE9rQa1sy~IwiPXdn^vhQDicc^44J(b%OTU~%dA;;MN$ODw zv#QdBdg+^0)sGJT(Y=QrB%bP^dpRklaA*rfmqsaSluvg(vYJ{&;Yu|%-qD?l*3q42 zaChU?X)e3#KdP%2{EfFu)7$H-cKW9pY9VE0)l_RRLS0={?x?5h)>0nwt+mvb6lT{} zJ1KOjqmEH8tjTrNZVH#`s)Zkv!qWtxm#GFtEVI!`X;h-9nYu|Kueo}T0xgwCDcl*Ts1N-X zsu>MmXhE9@{Vr{gO3?+Wv@I0sH&ba>7^ah3s>KvuZApuL7$()TmFiBz1D{lb^v|tm z=?&BAt<@b4ZPaQCre@VvHKyTqZPi!`cFoj{NL$(rhw0#UDvtt9B}qToj^<;TKHrWe zwM>_`S3?}!FM_AWnyRXn{9xsql3=wNZaOYdZ(MJ zOW{&S)sI5EPUKXc*84Y#nGR!3^wBeprh08ZRRl<;M{QNIZrop$0GjD0 z=N--Uk^X9Jpcy4CwNb-vx=SSv$9-u#g&#E0S|qf`vX)uUCokH4vMXn#Fmj2fydkEIng*t>76 zs>&sdZ4?pejrMRfEVsdbS$=QGkfXNqd=<1j_K=@n`I-F2lBwcOu8^=>-9L{--xmeA4E zNMC)qw|_sqX{vgWs_0v)o~LlNl#Y2Lb-^_C33V9S@L_7?68-(dYO-SqPnm8uKc#Bw z{4%wkTuoQ+QP{Vf4uml?Xp>%|N6ny(bjg~T>I}W#^z2OaIE5LH&pCYU@#Tp29=()n!K?u7P&Q`KqU0{ur$> z>LYXkZJmAes0B1mAAMs1T^01vqZg{pKIz)Ih)x&j`cXRYQJ~}B0!KR6aQD!+6wp_1 zpGymH)Dqgn($}n0lXRAct}@c~M;>*6-i*0?sd_w=drhG|H7eKK%B63vE9jWie;J*R zXYvv$(!VcL-Tk1MK4}WC){kkYqi?oZwfX_)jl58 zL~mR}C&XMGuBmLUo}=mNDHoMSJV^)DTs|a!NFivg`rRj&X7?MP(R$Z9wTVLUQ*@m$ z8uQcVY1P+n^xgT{@id(!Mq^cb*3;@8t&gr(UVl@hCH-q-1D%WZZBXS7BMExUJ9L7X z`V6h<(fZ;u>MguWk00}SjBdV+FxRH6q9Xc`*?`~VvT0vOz@tmi}&io75Y0@x%F4)~vd3-F3S zG+?tp9N=|$I*RP$0w(~c1Wp6an*GmIc@A&IILQx^SPtYnZ7?&Y?35LR>`;L)Km-FnMq;@D z(KeV0V(pX_hwMZFcM>E;q#B^6KrKLBfqH<30*wGo1)2d;1zG~y2($%saEo+=bP?zZ z=poP(&`Y2xt3Rogg23RUE6R=!hHejVdIp7I_M**uD+@|phAX4X{ICC*V_o&jFvC z4ahuC`~~IFG`{8{cs7YryErw2SHNy$@3p}+VZWWS_MyIm0tW$y1P%kfXD|;J9busJ z?@zXvDv#PJ>lj8jCU6pPLf|yu7lE^Y(*oxKX9O+*&e`C$u0qb+V*L)dDDW5HvcL_% zRe@W8>jHNGe+clCRJ1(*Vla;}IRNe(wwSrUX{RhF^8XVE0^AV@1^Cc|6R5HZpt3+D zz)v6s;4cvGhB!r%07@VQ5G=sYY0<2N3e*OK3-HrfR3d_bAIGv>G(-?>gPGS@PPt8f z9P$(Gd@Bi%B2W!blfgVT)fm&LV}q%(o}Dt!Y|#`O2&AHXBZ1Zi+*T8jb|}(Jpd+A# z06*77wYC)K4rncq252k5k9W~1?FIS)Is$nA9|-9zMFs=9GMERlh5>rmU}iSWPFW+7 z-AiB$ppU>fKtF*jzyP;M4kTS57cf{L5AcvcAz+w5F<^v1DPWX98DNYJZfhna!xoF5 zKBFa;DNqi`VlWSk%?ISzU>3(DJ4IbYnF=g{C4fAEWq^Y5eEv06u7ngxkyU_V0S%Zc zunsUyU_GErU?X6L06*zQv-XIuL_(7yawR?kDtV&X}lpt`1w16 zHw7*M-WIqDcvs+efLGuz!21F>03Qn6VxaTi$0B!7WSc-GdTNOpvV&m=A4qr75W(j* zn8ooWr}(Kp^TQj;{>BEAz1vP%fvE0Vf#5+j|1`orkuVfFAP@ogP9O?!SRfYggFph{ zCxNPfqXN|c$ISj`T3!=!LWWDmmr7a}qVMZyFo1FA5X9SD``lLD#u?o-`PS#ywGQ(zvTw!mY6x&n&;^%=}Vh)V&DY%r~E zLMb=$S0KNcop13InKYX%1l9mr3akaR7I+%aR)8PXq&nIQJO}6~@M6XO*IDF$DAHBn zRX}%v*8x2R-UK`-@D8B2fEUnLfFJv$mi5o#^PgEjA43L8k?nv%0-pkg2z&t;D)2R6 zxWI0}NP)e8(EmCavS$W8QRG<*xeoUkovQVHDuvnlB;1QS!SjI5fmpgh*`A;GLe|EmL0q}~z zvw+P4{QNpq`MSVMfGq;A0NxVdhuCS9cLcT!!S}DNBK!UXd<6JJ zU>jh&z)rwUfzJV-5xB8{zJh!qMRozc68IMI4TE%qK~3FbgIT6~?UZ#0<@XEx05~Xc zgn{<|Ln6mer5zVz`6;3pf*G>+OS>sMqSV<_SBzX49#V9KAeQ`SXf|0-~02(CZR zitwZOG*`a~{0X=q@DJdUz)ipv2J?{p9l&)POe_AdQ&uH!}f-2v4E(jLP8S3{&XiqsO| zUnS5Ysv|HEP)}empnfF=T?0nG^9=50>Y%bl4_Di`VGTX6 z0kjjy1#}R|19TE71ax6oL6fk$(h%=|J!~=CX&R?ma{hyyPcQ1S!DRR2l!vp+P~Sis zO!goZvjIZ|${A?-!$lrNk&yxm0HXyK1I7w01&k9|0T?gv1Ym-|8bFQ# zv;VDyOp+o`11y1O0C@t>0SXwp^5Wo*duV>A*kBe%iJh`uMs}&dW`O%)kvAaI1>OS8 z6nGafOW?hVN*G#mE4YIoYQQ`RpHUE z7x)wKp};?Yj|FZ5wq^76x0%Lm$POvuL%-OdnfR0;ja%^<4H0~4gK5RrcFGDs`CS4E zuty*SuvZ{_D2{*oMO-LyP#_v`NFWaIy+9)1M}cI(5rzl3;WYrqY%mQ!ffUbwZRG!A z=Uepvrv(}U&ImLCoMULk)8Ou>XyIJ2!A#?low8aX`-(tYz%{o>2gvUNodJIebOZb? z&=YV&pcmjKLpN^LEgGU`-Lb(m%O{6&ia0xcD6T(zZ87-{J4L+@n$ZIUh5-TvMgoEa z_}4=;#SnpUfG~k9KotY#_?H85Ns(MYlt3OJMxYQ7Cr}JX5GVyC36uen1^72feEm^P zWHyS_V94PGG#60Y2D5zX+9_*3vgh-z$XgDKzCPFWt5Z_d!3%eQc2gjTkg z5!!I7H|KMwWK>^!8%%abJ7sBPcNSO&=*sXISHS(2Q3XA0FcqZPDeGA`@_UKA0O%v| z5}+T$Vy==qJEJNG+F+_2WT&jxkv)W=4VQn2hN%2-8%+6;oJ!@FJ6c;Y!k7xd!7sy3 zS??n|Q{W>&7DF*lU^^hk1~Y+4cFOt`*_OZ;fIJ4bso`r#0ZUu1vXF+T&BZpDDyP~h zs}$K~0@DGH2+RV^5hw>dDlp%G+gd2H2t_;sO93kcRsvQrbl`Tb20UqlY3DjSWj%%L z4Fb;qo)d6C57{L065thqR{^gx^x}!W0eH&>GtqbKl=UvM-xGKr@R7jBfbA6AsB#D7 zGb!>p;46miJkhTKyKOKN{nk!ddy#!W;2_|z!1sWk1dcG!_1`g(<0$frz$w5PfwO?~ z0v7<68OCxuuK=#wVA}bIowEK!_CGebts9VAwpjlG9-yB;p-LYbqK(m4zz+~0-~+kmYCUcd(oi+FK-2>8SXvpBZfDQgF3)BgXN$mcAptgi&V z2J9Bt1K209AMl;PA;1p;KLU;l{0ul@z+C^Fgq)TlzXHw){06uva0zf#;2Pi$fjjA~lD))yXo$dupkFzY{hCG2H zYiuwrf6`7_Ymxo5z+O!O@~Wxb8;tpZ-a z2Lc}gJ`vak*eUQS;0u8-0q$=^c0s;n=*!DuFW`U;rdi+FDeDlje-QW)a8%%DzzKnq zfYSoMR;0IMYz-=2$jStXIMmd}I ze;*p;gHDCeK?e{Z-~XvK&l@?M}$WamLv2> z7>_UzVF1E#UzeHuTqODbvecN#`r6OR<>r5AQHuXhMS=hAL7@`@-;bvh-*%_Kx7R7~ zZDk64UzY;kdZoa(ODXVuQVM*xlLFteq>zEYHw!7nx85l5-7yN?D&~-HJ5iEvu2A56 zCKUKq2nD|5L4ogEP~dwF6!;bb1-ezhfxoR&;P2=Z_$x34{!&VTza~=PZ($VpTMq^P zE<<4$Kj=x3ue>Sn)iMRXN~FM7Iu!WCN`cRZ6!>gJp#Xu8$CTnDBn3XKQQ+eS1>UhK z@UBLI_l7a6N=r*Uj@YqFJFhgbe#HvFw>5$(#)QAW_j0N~uOMEO+amlL=pRoi zRUr*nYUt2kR8Z)#icxqiuAnZ?eNL%(*F8(>XFFdvJw*+eLE|`ox!<<19ly^ao3+en zYA>4;_hspXQ&jxaz1Glq`rc$Uo#*lk;MqKRKW{swl=EVR_0>M7Rh+)W_S?Ny(|PXR zWUPMhG)?gA{Wdwq&n(FE_j9{=@R|F0R4n+yeZ1yZ<)YpmB7ar2okL@=P139K&ZtD4 z&(u~(%g-{-x{W3;bh*+$vWc_a>9? zZmlEk_vZGR%DUGR^~RQH?wI>HvU#(+>vs5kS$ailj4|qd{@^UFfwA}7#j`5R{b4?x z+y3Q`|M+7ae>_k?AMf(eGX8LKay}1z#veQQ<2Zj*<_tFveaRnh@y93pv4=l2fBecH z&-2G-{&<-`&hbYmkGm?LPwjtj`Z9m~%^wcVImknE`Qu0a_=Z20@JA5mUgM$l{IQ8Y zHuA?W{P7-t?BkC&_~R&lT;Pv|{Bf8+R?^3c@gDyPc{#ax+4|pe%0k~#k$Pp4incqC zT3Meq?QJzxNC1x3o_d<79;Ntb?WwBwr>Y1Y(o6*r@l77;orEZXdIMdi8=qG-6ZrV; ziI`eCwXirhGq0p^PUe(Gxkb|p#?vuf7oDe0Xa?)0=T&X=1(T%bw5R@6ZkH$rRmjH; zPhI_HnW{?_7U-Z0RF04D9_oT+u8KqVC-i>3VGfthzn}sfe4M8yG+m|=Xna20QTE9XCDgODhk{j3VimVz-OOXt4ckoVFly)tW!{y@o?@0>N&7v z6`xehom3tX_s+PHxc|aaxB7bbT~u%Mq}PnhX&#i|%hynPN3)mf3Y9W>R8R^v)yYSLn$jvXqtw&eA{lX69v% zZ&aLJR9H-nGWp31L!uleKURC_J>s!uILt1~{W<1VylQ0EqL4Z$nyh!6@K0%EYVZWv zWlJ)rWuw-+mRFcb9kz3wr8+&)8Sl+n9Fp0*1z)>blj!%q_+kGPd&uLd%fq_x-;k;p+VXEmv_D&^r=~8ymzyNP~eCW_LU%m#{J2FG#9Xv#}Tx#sB z?Z?BVdS4@FU2l3;=;I9>d~r^hJC=pU=_bvc!SsrW@D-sAeP($(tq5Hl?8xK%S~}bj z5T~oQp++014H)1bKphn3X)4-CU#%SA^p4#S`fD@aDKwHU-xr$T;2~N@zVfG1IJ@9wNhFER+e8Cu_$iLQA+fs$^7j&5b!S+82M;G9;txi5}-KcVSbM7GDm%14}*)O2l>hchcy&lXa3#y_o#h*TCMISCH!F0I+268@Wyc$#XC{Wn`EhQkUOCxW-TQH3 z`1-Nb1^%cIfca!XBN{A$5cvdA~PePsyB3L_@Qd%W$|=McztDHtnYHl)){Yv$50pQ z$y>q`sxx@}rWR-B7SKa0oCwICmYG*dM<%38Jvw}PK#F(HmhhLBM)MatPl(w)dli%v zWoOYjj`~*D9XnQOM4g}KcdSywyknl;1e89PHjd8ooMC{f0D4(`2%sLnLcYGA>6l&r z*S<=vDyDL0Nl{+z)QrqxuGc%DQd)vlb6|0<#M9i%RLNQA8`+h`K9fMBb;%B0lJBUcyYPvg*o+XgX0$ z=1~*$l&+C{<~J$YhyRXDr0Go7+un~zp`NHuz8{f5;Wh<7E>fzmy-V-<+xUXhQ1q)L|=aNSC_}SlIrk~$G@a7XKFrgB_rS#P*eP=*5@1RDm9fAHmh)QUFcYGEQ>uuh~b*K6OzU$x#rK`fJ*~J+p zbV|-H$fC{PaBxv^VODlYNygN|$=Njb2L12$KFy=5{Osb1wDO7z$5YSgCAxf!E7Fe( zmg?<4(y?pb=K*ovugAC!mr@7K8xOjo>+lT@kIKr+Ez01%jbDLfD9EHTvIoYkSddd% zl3Q4iL02ZlxwJja(<{Dn#rg6``s6-W6sADkYp-_2C02}9rKp$|A+BTY8PVsED;6V8 z+3$*IXQmriQaZkbt`~-9(B^9-xI)YpV9%VYzzOC|KTqdTRhV*uF7!H+P;HX~E*FLd z9&p7*U;hFh8}iB#hd&p1*Q2Jr3JZDO0zSv@-jlKK(#&T_dvxJpR}$5+?651|yiL25HmoTJ0;0TM9CnSYMjc|O+;AnEcOujK zSdRY?5LL-b6Vons z^h`kYN*2Ad_&`)G7#<2S(^^`=bKKcInrz1jN!3<2!wHl%zKY$J#kvCPl~6R|3xA3(EA%0ZHE6fibJ*QBT;n z5609quj8d-d6(VJI1I<}%YGAl`F5f9IS`XV1($pmlN8P1aZbxEDb38wok2$l1GV(Z z?J>1z+9nmR_q`v(NBcBy(4m-53eCHH`5bT~CQ>JNi{;n)UhW>7z`bqvh)wc&&|9xZ z>~lHPJNBMeW9!7U;z`iqs9*wZUPT%9JMvoT;LWkI=DobMaQ2@Mt4333rPDXZ)~7LN zZH`U#Y2|%;bL{nXaYbCi|Mxwo$b8T7<$Qd>DZ&>V1N;TYydampL%sQ(v#vcH=;N%z zoniAgA3rWxs*AqxPw@WoU|h>Y?ho6yatSTF9lms48Q|yi^R~{3Yf-~zkT-vETuOcF z?wVJXAKyPMUGt+e(fiH2amB5vi|c2t__!FppDM@R@zb&U(rs36;pMmjp z)BlUB;XPg{etr|`+}f=ARIj^vd`c_o$eQa(;(M?6)>Cn~X66g|XKTdQ)VHm8|NjH0 C?l{~4 diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index 393d6fc13f71ee3c0dded5bea9dac76f3850fa9f..a7615c83de3025b03fc5b4f7e0a382ff89bb0049 100644 GIT binary patch delta 64 zcmexyjOoWQrVTBOhACC06(%LQ$@<2|$(BhbscDvphGv#Y#-@g5W+}$TW@eTK$;L^B U7AC1iiKeEBmT8-}G9F$C0PS)WzyJUM delta 64 zcmexyjOoWQrVTBOhNfAT70HQ3nfeAvCMK4qmIlcwhNczQqwFG4b3c*j7<&A%uq%VLX%#0M20*D*ylh delta 64 zcmbPsn{nE0#tn-Z4NbEwE0Pn7GW89TOiV0IEe(=W3{5Qz(oD@Q%~LE>Qxnq?lZ?$R U3@j{?j8iSmEzLGxVLX%#0KE?s@c;k- diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb index 26b787814..bd2ccf415 100644 --- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:18.668950Z", - "iopub.status.busy": "2024-01-10T14:58:18.668761Z", - "iopub.status.idle": "2024-01-10T14:58:21.901115Z", - "shell.execute_reply": "2024-01-10T14:58:21.900497Z" + "iopub.execute_input": "2024-01-12T22:19:38.476345Z", + "iopub.status.busy": "2024-01-12T22:19:38.476151Z", + "iopub.status.idle": "2024-01-12T22:19:41.756738Z", + "shell.execute_reply": "2024-01-12T22:19:41.756170Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:21.904331Z", - "iopub.status.busy": "2024-01-10T14:58:21.903708Z", - "iopub.status.idle": "2024-01-10T14:58:21.907185Z", - "shell.execute_reply": "2024-01-10T14:58:21.906573Z" + "iopub.execute_input": "2024-01-12T22:19:41.759669Z", + "iopub.status.busy": "2024-01-12T22:19:41.759301Z", + "iopub.status.idle": "2024-01-12T22:19:41.763749Z", + "shell.execute_reply": "2024-01-12T22:19:41.763112Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:21.909522Z", - "iopub.status.busy": "2024-01-10T14:58:21.909178Z", - "iopub.status.idle": "2024-01-10T14:58:21.913887Z", - "shell.execute_reply": "2024-01-10T14:58:21.913417Z" + "iopub.execute_input": "2024-01-12T22:19:41.766396Z", + "iopub.status.busy": "2024-01-12T22:19:41.765896Z", + "iopub.status.idle": "2024-01-12T22:19:41.770937Z", + "shell.execute_reply": "2024-01-12T22:19:41.770454Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:21.916187Z", - "iopub.status.busy": "2024-01-10T14:58:21.915888Z", - "iopub.status.idle": "2024-01-10T14:58:23.515233Z", - "shell.execute_reply": "2024-01-10T14:58:23.514352Z" + "iopub.execute_input": "2024-01-12T22:19:41.773298Z", + "iopub.status.busy": "2024-01-12T22:19:41.773095Z", + "iopub.status.idle": "2024-01-12T22:19:43.673530Z", + "shell.execute_reply": "2024-01-12T22:19:43.672802Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:23.518555Z", - "iopub.status.busy": "2024-01-10T14:58:23.518070Z", - "iopub.status.idle": "2024-01-10T14:58:23.530275Z", - "shell.execute_reply": "2024-01-10T14:58:23.529672Z" + "iopub.execute_input": "2024-01-12T22:19:43.676660Z", + "iopub.status.busy": "2024-01-12T22:19:43.676231Z", + "iopub.status.idle": "2024-01-12T22:19:43.688817Z", + "shell.execute_reply": "2024-01-12T22:19:43.688188Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:23.562754Z", - "iopub.status.busy": "2024-01-10T14:58:23.562321Z", - "iopub.status.idle": "2024-01-10T14:58:23.568030Z", - "shell.execute_reply": "2024-01-10T14:58:23.567462Z" + "iopub.execute_input": "2024-01-12T22:19:43.722721Z", + "iopub.status.busy": "2024-01-12T22:19:43.722140Z", + "iopub.status.idle": "2024-01-12T22:19:43.728135Z", + "shell.execute_reply": "2024-01-12T22:19:43.727637Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:23.570490Z", - "iopub.status.busy": "2024-01-10T14:58:23.570110Z", - "iopub.status.idle": "2024-01-10T14:58:24.284389Z", - "shell.execute_reply": "2024-01-10T14:58:24.283694Z" + "iopub.execute_input": "2024-01-12T22:19:43.730647Z", + "iopub.status.busy": "2024-01-12T22:19:43.730263Z", + "iopub.status.idle": "2024-01-12T22:19:44.455584Z", + "shell.execute_reply": "2024-01-12T22:19:44.454889Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:24.287313Z", - "iopub.status.busy": "2024-01-10T14:58:24.286844Z", - "iopub.status.idle": "2024-01-10T14:58:24.969714Z", - "shell.execute_reply": "2024-01-10T14:58:24.969125Z" + "iopub.execute_input": "2024-01-12T22:19:44.458444Z", + "iopub.status.busy": "2024-01-12T22:19:44.457928Z", + "iopub.status.idle": "2024-01-12T22:19:45.932946Z", + "shell.execute_reply": "2024-01-12T22:19:45.932363Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:24.972731Z", - "iopub.status.busy": "2024-01-10T14:58:24.972359Z", - "iopub.status.idle": "2024-01-10T14:58:24.995317Z", - "shell.execute_reply": "2024-01-10T14:58:24.994716Z" + "iopub.execute_input": "2024-01-12T22:19:45.936026Z", + "iopub.status.busy": "2024-01-12T22:19:45.935550Z", + "iopub.status.idle": "2024-01-12T22:19:45.959318Z", + "shell.execute_reply": "2024-01-12T22:19:45.958754Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:24.997904Z", - "iopub.status.busy": "2024-01-10T14:58:24.997492Z", - "iopub.status.idle": "2024-01-10T14:58:25.000793Z", - "shell.execute_reply": "2024-01-10T14:58:25.000227Z" + "iopub.execute_input": "2024-01-12T22:19:45.961752Z", + "iopub.status.busy": "2024-01-12T22:19:45.961510Z", + "iopub.status.idle": "2024-01-12T22:19:45.964941Z", + "shell.execute_reply": "2024-01-12T22:19:45.964345Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:25.003088Z", - "iopub.status.busy": "2024-01-10T14:58:25.002801Z", - "iopub.status.idle": "2024-01-10T14:58:43.774968Z", - "shell.execute_reply": "2024-01-10T14:58:43.774333Z" + "iopub.execute_input": "2024-01-12T22:19:45.967366Z", + "iopub.status.busy": "2024-01-12T22:19:45.966941Z", + "iopub.status.idle": "2024-01-12T22:20:05.161858Z", + "shell.execute_reply": "2024-01-12T22:20:05.161146Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:43.777939Z", - "iopub.status.busy": "2024-01-10T14:58:43.777521Z", - "iopub.status.idle": "2024-01-10T14:58:43.781566Z", - "shell.execute_reply": "2024-01-10T14:58:43.780933Z" + "iopub.execute_input": "2024-01-12T22:20:05.165017Z", + "iopub.status.busy": "2024-01-12T22:20:05.164646Z", + "iopub.status.idle": "2024-01-12T22:20:05.169096Z", + "shell.execute_reply": "2024-01-12T22:20:05.168489Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:43.784229Z", - "iopub.status.busy": "2024-01-10T14:58:43.783774Z", - "iopub.status.idle": "2024-01-10T14:58:49.268183Z", - "shell.execute_reply": "2024-01-10T14:58:49.267513Z" + "iopub.execute_input": "2024-01-12T22:20:05.171504Z", + "iopub.status.busy": "2024-01-12T22:20:05.171161Z", + "iopub.status.idle": "2024-01-12T22:20:10.710042Z", + "shell.execute_reply": "2024-01-12T22:20:10.709346Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.271363Z", - "iopub.status.busy": "2024-01-10T14:58:49.270946Z", - "iopub.status.idle": "2024-01-10T14:58:49.276508Z", - "shell.execute_reply": "2024-01-10T14:58:49.275890Z" + "iopub.execute_input": "2024-01-12T22:20:10.713585Z", + "iopub.status.busy": "2024-01-12T22:20:10.713158Z", + "iopub.status.idle": "2024-01-12T22:20:10.718483Z", + "shell.execute_reply": "2024-01-12T22:20:10.717887Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.279388Z", - "iopub.status.busy": "2024-01-10T14:58:49.278949Z", - "iopub.status.idle": "2024-01-10T14:58:49.393691Z", - "shell.execute_reply": "2024-01-10T14:58:49.392953Z" + "iopub.execute_input": "2024-01-12T22:20:10.721444Z", + "iopub.status.busy": "2024-01-12T22:20:10.721027Z", + "iopub.status.idle": "2024-01-12T22:20:10.828365Z", + "shell.execute_reply": "2024-01-12T22:20:10.827611Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.396661Z", - "iopub.status.busy": "2024-01-10T14:58:49.396256Z", - "iopub.status.idle": "2024-01-10T14:58:49.406585Z", - "shell.execute_reply": "2024-01-10T14:58:49.406016Z" + "iopub.execute_input": "2024-01-12T22:20:10.831315Z", + "iopub.status.busy": "2024-01-12T22:20:10.830811Z", + "iopub.status.idle": "2024-01-12T22:20:10.840816Z", + "shell.execute_reply": "2024-01-12T22:20:10.840266Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.409138Z", - "iopub.status.busy": "2024-01-10T14:58:49.408770Z", - "iopub.status.idle": "2024-01-10T14:58:49.417093Z", - "shell.execute_reply": "2024-01-10T14:58:49.416454Z" + "iopub.execute_input": "2024-01-12T22:20:10.843394Z", + "iopub.status.busy": "2024-01-12T22:20:10.842919Z", + "iopub.status.idle": "2024-01-12T22:20:10.851532Z", + "shell.execute_reply": "2024-01-12T22:20:10.850976Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.419692Z", - "iopub.status.busy": "2024-01-10T14:58:49.419308Z", - "iopub.status.idle": "2024-01-10T14:58:49.423888Z", - "shell.execute_reply": "2024-01-10T14:58:49.423233Z" + "iopub.execute_input": "2024-01-12T22:20:10.854315Z", + "iopub.status.busy": "2024-01-12T22:20:10.853806Z", + "iopub.status.idle": "2024-01-12T22:20:10.858826Z", + "shell.execute_reply": "2024-01-12T22:20:10.858189Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.426320Z", - "iopub.status.busy": "2024-01-10T14:58:49.426003Z", - "iopub.status.idle": "2024-01-10T14:58:49.432389Z", - "shell.execute_reply": "2024-01-10T14:58:49.431778Z" + "iopub.execute_input": "2024-01-12T22:20:10.861153Z", + "iopub.status.busy": "2024-01-12T22:20:10.860809Z", + "iopub.status.idle": "2024-01-12T22:20:10.867086Z", + "shell.execute_reply": "2024-01-12T22:20:10.866525Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.434787Z", - "iopub.status.busy": "2024-01-10T14:58:49.434428Z", - "iopub.status.idle": "2024-01-10T14:58:49.548812Z", - "shell.execute_reply": "2024-01-10T14:58:49.548145Z" + "iopub.execute_input": "2024-01-12T22:20:10.869806Z", + "iopub.status.busy": "2024-01-12T22:20:10.869234Z", + "iopub.status.idle": "2024-01-12T22:20:10.984221Z", + "shell.execute_reply": "2024-01-12T22:20:10.983624Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.551386Z", - "iopub.status.busy": "2024-01-10T14:58:49.551035Z", - "iopub.status.idle": "2024-01-10T14:58:49.660719Z", - "shell.execute_reply": "2024-01-10T14:58:49.660055Z" + "iopub.execute_input": "2024-01-12T22:20:10.986690Z", + "iopub.status.busy": "2024-01-12T22:20:10.986434Z", + "iopub.status.idle": "2024-01-12T22:20:11.096252Z", + "shell.execute_reply": "2024-01-12T22:20:11.095544Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.663182Z", - "iopub.status.busy": "2024-01-10T14:58:49.662969Z", - "iopub.status.idle": "2024-01-10T14:58:49.770975Z", - "shell.execute_reply": "2024-01-10T14:58:49.770314Z" + "iopub.execute_input": "2024-01-12T22:20:11.098840Z", + "iopub.status.busy": "2024-01-12T22:20:11.098619Z", + "iopub.status.idle": "2024-01-12T22:20:11.207920Z", + "shell.execute_reply": "2024-01-12T22:20:11.207253Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.773379Z", - "iopub.status.busy": "2024-01-10T14:58:49.773175Z", - "iopub.status.idle": "2024-01-10T14:58:49.882826Z", - "shell.execute_reply": "2024-01-10T14:58:49.882220Z" + "iopub.execute_input": "2024-01-12T22:20:11.210261Z", + "iopub.status.busy": "2024-01-12T22:20:11.210053Z", + "iopub.status.idle": "2024-01-12T22:20:11.319438Z", + "shell.execute_reply": "2024-01-12T22:20:11.318753Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.885292Z", - "iopub.status.busy": "2024-01-10T14:58:49.885088Z", - "iopub.status.idle": "2024-01-10T14:58:49.888620Z", - "shell.execute_reply": "2024-01-10T14:58:49.888080Z" + "iopub.execute_input": "2024-01-12T22:20:11.322288Z", + "iopub.status.busy": "2024-01-12T22:20:11.321803Z", + "iopub.status.idle": "2024-01-12T22:20:11.325352Z", + "shell.execute_reply": "2024-01-12T22:20:11.324825Z" }, "nbsphinx": "hidden" }, @@ -1377,44 +1377,31 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0074814fbf264ac4a04bdeb51abcaab2": { + "035334dc14174951a0745a114df30727": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "02d54a93c71f4717b776780ee1334673": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_df30265328c142b1849ba3ca47b68fe7", - "IPY_MODEL_6bbd465e2f4046028edaa5e0082d76af", - "IPY_MODEL_e2aba32a91bf4f9dabd9e25f75f60e37" - ], - "layout": "IPY_MODEL_bdf1d068064c4e37bf3b0a036bd0710a" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ee9e7d53f4ac4b35862cf767c503a1d0", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ee27f82ca0e94b48bb316a6ee7a93321", + "value": 16887676.0 } }, - "05a419d84fc2472b8d03ecb51099197a": { + "0d83a87857564035bf89eff9437ba503": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1466,7 +1453,7 @@ "width": null } }, - "1881dfe59f184d4ab3ce997d6b71097d": { + "10cd452fc0224d87aa95495b1694e66b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1518,121 +1505,7 @@ "width": null } }, - "2177d9eef2d14179bdab4a9fd9c1b915": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "284824c022eb47e9a33898e1ecf7dda3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c5a3fe8fa0d848ec9ec188729948a377", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3454223caf744f1fbf4c19967e38db8f", - "value": 16887676.0 - } - }, - "294a8ffab7f44974b28a07ffbb94882f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f781d9e0307c483fb140677b5258e2d6", - "placeholder": "​", - "style": "IPY_MODEL_460394fe32074436800a43db6ccac64e", - "value": " 2.04k/2.04k [00:00<00:00, 324kB/s]" - } - }, - "2c5bb790c5544dc296857be6357fbe27": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b7b112df9d2e4aec93edbbc0d3c2d932", - "IPY_MODEL_6ea830a76c164f35aa74845442e1a10d", - "IPY_MODEL_fc5e50b0328147c4ab04b99bb3f04a3b" - ], - "layout": "IPY_MODEL_1881dfe59f184d4ab3ce997d6b71097d" - } - }, - "3454223caf744f1fbf4c19967e38db8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "34b1268d4de040f2a5a31699ef1ede5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3c821907cbd14c19a78c25554493358d": { + "12b3babc4cb141eca006d05d54fa5016": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1648,76 +1521,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_df669b30fcd04ee4974fd952553f376e", - "max": 2041.0, + "layout": "IPY_MODEL_f3de8d045cb241708ce6ce62c53309b3", + "max": 15856877.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9b2afdf832394f58976ee58105fc9ac4", - "value": 2041.0 - } - }, - "41828383ccc742919bc29139a2ba5bd6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "447ff7ecb3fc411ea934e0d55e5af3d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "460394fe32074436800a43db6ccac64e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "48fb5229f100484292916171f30a77b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_91ecec965208419592c33e507fb1808a", + "value": 15856877.0 } }, - "4ec51dfd68c34f43aec5b39ee7b3b771": { + "159baf4147354e8a90c974e85efc737d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1769,85 +1581,7 @@ "width": null } }, - "541e0c9185044d10b9df997de483919d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9b85abadb14148da809553593daf41d5", - "placeholder": "​", - "style": "IPY_MODEL_a82707d6cf75449fa0bcd2b98e10b3a2", - "value": "classifier.ckpt: 100%" - } - }, - "5d6a6ab20b864187a3b7662c9dc5a7ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8e622334e195432cbba4e4d65e702507", - "placeholder": "​", - "style": "IPY_MODEL_41828383ccc742919bc29139a2ba5bd6", - "value": " 15.9M/15.9M [00:00<00:00, 296MB/s]" - } - }, - "65d244fefe2e4b09a600a1d3a970a2e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "68fc1f991eb44edba2fc5bfe6e6edfd6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c2ce8e57fdb04b0798a6c4c16ae3467f", - "placeholder": "​", - "style": "IPY_MODEL_34b1268d4de040f2a5a31699ef1ede5c", - "value": "embedding_model.ckpt: 100%" - } - }, - "6902ffa71e7d475d9583c90ce2b2f911": { + "17b4a941971a48a28e88b41f17c5e874": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1862,38 +1596,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_68fc1f991eb44edba2fc5bfe6e6edfd6", - "IPY_MODEL_284824c022eb47e9a33898e1ecf7dda3", - "IPY_MODEL_93ffb5dd7879400f9e7f477b93c509d0" + "IPY_MODEL_b7cabc8fbe5f407b81d1cdfafdee1b83", + "IPY_MODEL_35bd810acf6c4390b4cc6b76f763f60b", + "IPY_MODEL_1f6b4eb00fd942efabd02628b8b2d48e" ], - "layout": "IPY_MODEL_d905e22f02584b999d73cc80ffee0110" - } - }, - "6bbd465e2f4046028edaa5e0082d76af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c0dfa3473ed64fa7a0044c0f437a6ff5", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2177d9eef2d14179bdab4a9fd9c1b915", - "value": 3201.0 + "layout": "IPY_MODEL_29cadfc6685a4cffa972165a546b169a" } }, - "6c17a0abb12f4f9a9c6a52271fe66768": { + "1cfb727f9d0a4bbdba9c8151f01a1a94": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1945,61 +1655,86 @@ "width": null } }, - "6ea830a76c164f35aa74845442e1a10d": { + "1e7b002ac84343ff9b77542504709d50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1f6b4eb00fd942efabd02628b8b2d48e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4ec51dfd68c34f43aec5b39ee7b3b771", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e2059403b3c141c78b7dea525b593b9c", - "value": 128619.0 + "layout": "IPY_MODEL_816780cb4a104b5b8ee5216d5209ec5c", + "placeholder": "​", + "style": "IPY_MODEL_821bb83a80a140fa8416e133429db485", + "value": " 129k/129k [00:00<00:00, 1.01MB/s]" } }, - "8626655c6a774bc6a315f1cad23adca2": { + "20a1a705aad44d118f1bcdee7855d77d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4c6506596aeb4ab0b9e37f553689a226", + "IPY_MODEL_6bb7fcdd480a4734903ad89419996fb9", + "IPY_MODEL_26d8444792ab4438a1d1d418b9b01d4b" + ], + "layout": "IPY_MODEL_2c0fa2081c0c45e5bf7e343f5b4641d0" } }, - "8c44830cf4a14c1bbbf2a49980b485d8": { + "26d8444792ab4438a1d1d418b9b01d4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f579eebdcd8345bf960d51d8b2ea0858", + "placeholder": "​", + "style": "IPY_MODEL_5270ec9156e84d4c827bb862f33db97c", + "value": " 2.04k/2.04k [00:00<00:00, 334kB/s]" } }, - "8e622334e195432cbba4e4d65e702507": { + "29cadfc6685a4cffa972165a546b169a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2051,7 +1786,23 @@ "width": null } }, - "920a9387b971454687a4403592f0c76e": { + "2abde805421e4766921b671184db9b26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2c0fa2081c0c45e5bf7e343f5b4641d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2103,7 +1854,31 @@ "width": null } }, - "938e795c39e94f739123942e85645be6": { + "35bd810acf6c4390b4cc6b76f763f60b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_159baf4147354e8a90c974e85efc737d", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_798a53aae6624e4e8b8d5f231f109408", + "value": 128619.0 + } + }, + "35d74e603f7b4cb88edc9359fc779d99": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2155,7 +1930,7 @@ "width": null } }, - "93ffb5dd7879400f9e7f477b93c509d0": { + "4c6506596aeb4ab0b9e37f553689a226": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2170,29 +1945,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e454c1f736c9495aa3bedadf94b43954", + "layout": "IPY_MODEL_35d74e603f7b4cb88edc9359fc779d99", "placeholder": "​", - "style": "IPY_MODEL_48fb5229f100484292916171f30a77b5", - "value": " 16.9M/16.9M [00:00<00:00, 177MB/s]" - } - }, - "9b2afdf832394f58976ee58105fc9ac4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_87bdb1cc51494cfb8bc16daa995b7453", + "value": "hyperparams.yaml: 100%" } }, - "9b85abadb14148da809553593daf41d5": { + "524e032ac4f8417b8458770675ee231e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2244,7 +2003,164 @@ "width": null } }, - "a452c26c8935444495eef8eccd537821": { + "5270ec9156e84d4c827bb862f33db97c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5ab4c1604bd54006a36c4aff77146414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "620167207b134a83b2b9e597cb0a5fff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78c060008586417980d4c5393d3200ab", + "IPY_MODEL_12b3babc4cb141eca006d05d54fa5016", + "IPY_MODEL_67a42ef13bea4e148b327853cfc01e41" + ], + "layout": "IPY_MODEL_9ae81de44f27409c81494f2f4017996e" + } + }, + "67a42ef13bea4e148b327853cfc01e41": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d8c70d1532d54f6ab00895ad550b00e6", + "placeholder": "​", + "style": "IPY_MODEL_dc81fad73f2340c1a3c9bf624ef96d86", + "value": " 15.9M/15.9M [00:00<00:00, 110MB/s]" + } + }, + "6b6b5633bcc2485ea5cc6ad9ff21dea5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6bb7fcdd480a4734903ad89419996fb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b64ae0afcdff4d81a6c062074065250d", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c770eb6e9f66460bba9fd25fa560674f", + "value": 2041.0 + } + }, + "775a47d263344a85b5e379e8fe78b5c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_79140c91f4e94395b2dbf482a603003e", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2abde805421e4766921b671184db9b26", + "value": 3201.0 + } + }, + "78c060008586417980d4c5393d3200ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_10cd452fc0224d87aa95495b1694e66b", + "placeholder": "​", + "style": "IPY_MODEL_1e7b002ac84343ff9b77542504709d50", + "value": "classifier.ckpt: 100%" + } + }, + "79140c91f4e94395b2dbf482a603003e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2296,22 +2212,44 @@ "width": null } }, - "a82707d6cf75449fa0bcd2b98e10b3a2": { + "798a53aae6624e4e8b8d5f231f109408": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "ab34cc856bad403f9cdba111f873a306": { + "7d1388831138442ca2a1da74cc560028": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_524e032ac4f8417b8458770675ee231e", + "placeholder": "​", + "style": "IPY_MODEL_c58ec96ca0554e9998b24473d19312b0", + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "816780cb4a104b5b8ee5216d5209ec5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2363,7 +2301,22 @@ "width": null } }, - "b7b112df9d2e4aec93edbbc0d3c2d932": { + "821bb83a80a140fa8416e133429db485": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "875137c6f0b141c5a8a81c4752c4e9b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2378,13 +2331,44 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ab34cc856bad403f9cdba111f873a306", + "layout": "IPY_MODEL_bba771be3d0c4c8ba5a69982a86e75de", "placeholder": "​", - "style": "IPY_MODEL_8626655c6a774bc6a315f1cad23adca2", - "value": "label_encoder.txt: 100%" + "style": "IPY_MODEL_cfba467cdf3d4eb5b61b4a322fc68575", + "value": "embedding_model.ckpt: 100%" + } + }, + "87bdb1cc51494cfb8bc16daa995b7453": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "91ecec965208419592c33e507fb1808a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "bdf1d068064c4e37bf3b0a036bd0710a": { + "9418aa7557134003914e6f325071b232": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2436,7 +2420,7 @@ "width": null } }, - "c0dfa3473ed64fa7a0044c0f437a6ff5": { + "9ae81de44f27409c81494f2f4017996e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2488,7 +2472,7 @@ "width": null } }, - "c0f64d3aebb64bf3bb3d4db1e1c95af2": { + "9d47dd54fe4c4c8a9ce5600b0a196dec": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2540,7 +2524,7 @@ "width": null } }, - "c17f3317dc9f4e41b15f0c9f0afcb7f9": { + "a18df4fafd7d490cbb269e92d49ea1e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2555,66 +2539,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fb7be2fc3b524b408dacb3a4ba1dfb8f", - "IPY_MODEL_3c821907cbd14c19a78c25554493358d", - "IPY_MODEL_294a8ffab7f44974b28a07ffbb94882f" + "IPY_MODEL_875137c6f0b141c5a8a81c4752c4e9b3", + "IPY_MODEL_035334dc14174951a0745a114df30727", + "IPY_MODEL_af160d6287e843b9be729ffabf1dd839" ], - "layout": "IPY_MODEL_920a9387b971454687a4403592f0c76e" + "layout": "IPY_MODEL_fdfdbd53e1fc433c9816dc4c5d3d13a9" } }, - "c2ce8e57fdb04b0798a6c4c16ae3467f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "a31158172c8b452d91c14ad03e1d336e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d1388831138442ca2a1da74cc560028", + "IPY_MODEL_775a47d263344a85b5e379e8fe78b5c5", + "IPY_MODEL_d2e8a9e295c64e7893605dfe9efe417e" + ], + "layout": "IPY_MODEL_1cfb727f9d0a4bbdba9c8151f01a1a94" + } + }, + "af160d6287e843b9be729ffabf1dd839": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9418aa7557134003914e6f325071b232", + "placeholder": "​", + "style": "IPY_MODEL_f7ad0df847634bf3a51600cea4f5d0a3", + "value": " 16.9M/16.9M [00:00<00:00, 117MB/s]" } }, - "c5a3fe8fa0d848ec9ec188729948a377": { + "b64ae0afcdff4d81a6c062074065250d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2666,29 +2641,28 @@ "width": null } }, - "cadb95e2bbdd4166b848cf44e71b2139": { + "b7cabc8fbe5f407b81d1cdfafdee1b83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_541e0c9185044d10b9df997de483919d", - "IPY_MODEL_f234f92a2ce2467bbaad67f8d5d7ec2b", - "IPY_MODEL_5d6a6ab20b864187a3b7662c9dc5a7ff" - ], - "layout": "IPY_MODEL_05a419d84fc2472b8d03ecb51099197a" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0d83a87857564035bf89eff9437ba503", + "placeholder": "​", + "style": "IPY_MODEL_5ab4c1604bd54006a36c4aff77146414", + "value": "label_encoder.txt: 100%" } }, - "d905e22f02584b999d73cc80ffee0110": { + "bba771be3d0c4c8ba5a69982a86e75de": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2740,7 +2714,53 @@ "width": null } }, - "df30265328c142b1849ba3ca47b68fe7": { + "c58ec96ca0554e9998b24473d19312b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c770eb6e9f66460bba9fd25fa560674f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cfba467cdf3d4eb5b61b4a322fc68575": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d2e8a9e295c64e7893605dfe9efe417e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2755,13 +2775,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a452c26c8935444495eef8eccd537821", + "layout": "IPY_MODEL_9d47dd54fe4c4c8a9ce5600b0a196dec", "placeholder": "​", - "style": "IPY_MODEL_0074814fbf264ac4a04bdeb51abcaab2", - "value": "mean_var_norm_emb.ckpt: 100%" + "style": "IPY_MODEL_6b6b5633bcc2485ea5cc6ad9ff21dea5", + "value": " 3.20k/3.20k [00:00<00:00, 519kB/s]" } }, - "df669b30fcd04ee4974fd952553f376e": { + "d8c70d1532d54f6ab00895ad550b00e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2813,44 +2833,38 @@ "width": null } }, - "e2059403b3c141c78b7dea525b593b9c": { + "dc81fad73f2340c1a3c9bf624ef96d86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "e2aba32a91bf4f9dabd9e25f75f60e37": { + "ee27f82ca0e94b48bb316a6ee7a93321": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6c17a0abb12f4f9a9c6a52271fe66768", - "placeholder": "​", - "style": "IPY_MODEL_fb2c0bd27a2c4c5ba243a7e72cb1d8aa", - "value": " 3.20k/3.20k [00:00<00:00, 575kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e454c1f736c9495aa3bedadf94b43954": { + "ee9e7d53f4ac4b35862cf767c503a1d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2902,31 +2916,7 @@ "width": null } }, - "f234f92a2ce2467bbaad67f8d5d7ec2b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_938e795c39e94f739123942e85645be6", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_447ff7ecb3fc411ea934e0d55e5af3d8", - "value": 15856877.0 - } - }, - "f3bc5d140a7b4411a598d2ef76421a6a": { + "f3de8d045cb241708ce6ce62c53309b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2978,7 +2968,7 @@ "width": null } }, - "f781d9e0307c483fb140677b5258e2d6": { + "f579eebdcd8345bf960d51d8b2ea0858": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3030,7 +3020,7 @@ "width": null } }, - "fb2c0bd27a2c4c5ba243a7e72cb1d8aa": { + "f7ad0df847634bf3a51600cea4f5d0a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3045,46 +3035,56 @@ "description_width": "" } }, - "fb7be2fc3b524b408dacb3a4ba1dfb8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f3bc5d140a7b4411a598d2ef76421a6a", - "placeholder": "​", - "style": "IPY_MODEL_8c44830cf4a14c1bbbf2a49980b485d8", - "value": "hyperparams.yaml: 100%" - } - }, - "fc5e50b0328147c4ab04b99bb3f04a3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "fdfdbd53e1fc433c9816dc4c5d3d13a9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c0f64d3aebb64bf3bb3d4db1e1c95af2", - "placeholder": "​", - "style": "IPY_MODEL_65d244fefe2e4b09a600a1d3a970a2e6", - "value": " 129k/129k [00:00<00:00, 7.08MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 02c5ba811..67311d6c9 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:54.767356Z", - "iopub.status.busy": "2024-01-10T14:58:54.767167Z", - "iopub.status.idle": "2024-01-10T14:58:55.838400Z", - "shell.execute_reply": "2024-01-10T14:58:55.837772Z" + "iopub.execute_input": "2024-01-12T22:20:16.712476Z", + "iopub.status.busy": "2024-01-12T22:20:16.712282Z", + "iopub.status.idle": "2024-01-12T22:20:17.807972Z", + "shell.execute_reply": "2024-01-12T22:20:17.807340Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:55.841278Z", - "iopub.status.busy": "2024-01-10T14:58:55.840800Z", - "iopub.status.idle": "2024-01-10T14:58:55.843995Z", - "shell.execute_reply": "2024-01-10T14:58:55.843493Z" + "iopub.execute_input": "2024-01-12T22:20:17.811007Z", + "iopub.status.busy": "2024-01-12T22:20:17.810681Z", + "iopub.status.idle": "2024-01-12T22:20:17.814090Z", + "shell.execute_reply": "2024-01-12T22:20:17.813446Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:55.846449Z", - "iopub.status.busy": "2024-01-10T14:58:55.846072Z", - "iopub.status.idle": "2024-01-10T14:58:55.855516Z", - "shell.execute_reply": "2024-01-10T14:58:55.854990Z" + "iopub.execute_input": "2024-01-12T22:20:17.816803Z", + "iopub.status.busy": "2024-01-12T22:20:17.816339Z", + "iopub.status.idle": "2024-01-12T22:20:17.825831Z", + "shell.execute_reply": "2024-01-12T22:20:17.825194Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:55.857837Z", - "iopub.status.busy": "2024-01-10T14:58:55.857473Z", - "iopub.status.idle": "2024-01-10T14:58:55.862243Z", - "shell.execute_reply": "2024-01-10T14:58:55.861728Z" + "iopub.execute_input": "2024-01-12T22:20:17.828596Z", + "iopub.status.busy": "2024-01-12T22:20:17.828220Z", + "iopub.status.idle": "2024-01-12T22:20:17.833344Z", + "shell.execute_reply": "2024-01-12T22:20:17.832827Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:55.864825Z", - "iopub.status.busy": "2024-01-10T14:58:55.864431Z", - "iopub.status.idle": "2024-01-10T14:58:56.142843Z", - "shell.execute_reply": "2024-01-10T14:58:56.142195Z" + "iopub.execute_input": "2024-01-12T22:20:17.835908Z", + "iopub.status.busy": "2024-01-12T22:20:17.835529Z", + "iopub.status.idle": "2024-01-12T22:20:18.119631Z", + "shell.execute_reply": "2024-01-12T22:20:18.119048Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:56.145686Z", - "iopub.status.busy": "2024-01-10T14:58:56.145335Z", - "iopub.status.idle": "2024-01-10T14:58:56.519923Z", - "shell.execute_reply": "2024-01-10T14:58:56.519255Z" + "iopub.execute_input": "2024-01-12T22:20:18.122520Z", + "iopub.status.busy": "2024-01-12T22:20:18.122123Z", + "iopub.status.idle": "2024-01-12T22:20:18.493995Z", + "shell.execute_reply": "2024-01-12T22:20:18.493313Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:56.522457Z", - "iopub.status.busy": "2024-01-10T14:58:56.522228Z", - "iopub.status.idle": "2024-01-10T14:58:56.547157Z", - "shell.execute_reply": "2024-01-10T14:58:56.546599Z" + "iopub.execute_input": "2024-01-12T22:20:18.496670Z", + "iopub.status.busy": "2024-01-12T22:20:18.496356Z", + "iopub.status.idle": "2024-01-12T22:20:18.520932Z", + "shell.execute_reply": "2024-01-12T22:20:18.520326Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:56.549825Z", - "iopub.status.busy": "2024-01-10T14:58:56.549607Z", - "iopub.status.idle": "2024-01-10T14:58:56.561436Z", - "shell.execute_reply": "2024-01-10T14:58:56.560895Z" + "iopub.execute_input": "2024-01-12T22:20:18.523574Z", + "iopub.status.busy": "2024-01-12T22:20:18.523224Z", + "iopub.status.idle": "2024-01-12T22:20:18.534850Z", + "shell.execute_reply": "2024-01-12T22:20:18.534250Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:56.564157Z", - "iopub.status.busy": "2024-01-10T14:58:56.563818Z", - "iopub.status.idle": "2024-01-10T14:58:57.836813Z", - "shell.execute_reply": "2024-01-10T14:58:57.836183Z" + "iopub.execute_input": "2024-01-12T22:20:18.537255Z", + "iopub.status.busy": "2024-01-12T22:20:18.536905Z", + "iopub.status.idle": "2024-01-12T22:20:19.845634Z", + "shell.execute_reply": "2024-01-12T22:20:19.844997Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:57.839904Z", - "iopub.status.busy": "2024-01-10T14:58:57.839426Z", - "iopub.status.idle": "2024-01-10T14:58:57.861805Z", - "shell.execute_reply": "2024-01-10T14:58:57.861265Z" + "iopub.execute_input": "2024-01-12T22:20:19.848641Z", + "iopub.status.busy": "2024-01-12T22:20:19.848087Z", + "iopub.status.idle": "2024-01-12T22:20:19.871079Z", + "shell.execute_reply": "2024-01-12T22:20:19.870529Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:57.864465Z", - "iopub.status.busy": "2024-01-10T14:58:57.864101Z", - "iopub.status.idle": "2024-01-10T14:58:57.885138Z", - "shell.execute_reply": "2024-01-10T14:58:57.884495Z" + "iopub.execute_input": "2024-01-12T22:20:19.873672Z", + "iopub.status.busy": "2024-01-12T22:20:19.873295Z", + "iopub.status.idle": "2024-01-12T22:20:19.894536Z", + "shell.execute_reply": "2024-01-12T22:20:19.893818Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:330: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:57.887770Z", - "iopub.status.busy": "2024-01-10T14:58:57.887374Z", - "iopub.status.idle": "2024-01-10T14:58:57.901817Z", - "shell.execute_reply": "2024-01-10T14:58:57.901299Z" + "iopub.execute_input": "2024-01-12T22:20:19.896989Z", + "iopub.status.busy": "2024-01-12T22:20:19.896608Z", + "iopub.status.idle": "2024-01-12T22:20:19.911348Z", + "shell.execute_reply": "2024-01-12T22:20:19.910830Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:57.904415Z", - "iopub.status.busy": "2024-01-10T14:58:57.904050Z", - "iopub.status.idle": "2024-01-10T14:58:57.926963Z", - "shell.execute_reply": "2024-01-10T14:58:57.926322Z" + "iopub.execute_input": "2024-01-12T22:20:19.913994Z", + "iopub.status.busy": "2024-01-12T22:20:19.913590Z", + "iopub.status.idle": "2024-01-12T22:20:19.935829Z", + "shell.execute_reply": "2024-01-12T22:20:19.935214Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "72fad40a86864766b299b987b88cfd8a", + "model_id": "7179dbc628344416b95d5aefc8afec5e", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:57.931079Z", - "iopub.status.busy": "2024-01-10T14:58:57.930776Z", - "iopub.status.idle": "2024-01-10T14:58:57.945658Z", - "shell.execute_reply": "2024-01-10T14:58:57.945144Z" + "iopub.execute_input": "2024-01-12T22:20:19.938266Z", + "iopub.status.busy": "2024-01-12T22:20:19.937894Z", + "iopub.status.idle": "2024-01-12T22:20:19.953582Z", + "shell.execute_reply": "2024-01-12T22:20:19.952975Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:57.948048Z", - "iopub.status.busy": "2024-01-10T14:58:57.947845Z", - "iopub.status.idle": "2024-01-10T14:58:57.954175Z", - "shell.execute_reply": "2024-01-10T14:58:57.953612Z" + "iopub.execute_input": "2024-01-12T22:20:19.956123Z", + "iopub.status.busy": "2024-01-12T22:20:19.955677Z", + "iopub.status.idle": "2024-01-12T22:20:19.962082Z", + "shell.execute_reply": "2024-01-12T22:20:19.961451Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:57.956636Z", - "iopub.status.busy": "2024-01-10T14:58:57.956195Z", - "iopub.status.idle": "2024-01-10T14:58:57.975702Z", - "shell.execute_reply": "2024-01-10T14:58:57.975158Z" + "iopub.execute_input": "2024-01-12T22:20:19.964457Z", + "iopub.status.busy": "2024-01-12T22:20:19.964159Z", + "iopub.status.idle": "2024-01-12T22:20:19.983731Z", + "shell.execute_reply": "2024-01-12T22:20:19.983213Z" } }, "outputs": [ @@ -1430,7 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1dd56a26d69048f6a3cafad4385d2b8a": { + "112cf9cbc01f402aa52d0c8846e810d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1445,81 +1445,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8443c9e833384832ac73d9d1c16736c9", + "layout": "IPY_MODEL_bef440a9af08456d9f366eba9f745035", "placeholder": "​", - "style": "IPY_MODEL_2cd88230aa32404fa9f821d2f7e73ee1", - "value": " 132/132 [00:00<00:00, 10218.87 examples/s]" + "style": "IPY_MODEL_8a26d0dded474d3ca4e3479c709a297c", + "value": " 132/132 [00:00<00:00, 11139.80 examples/s]" } }, - "2cd88230aa32404fa9f821d2f7e73ee1": { + "466ba721c0424954b1cbcb7c62fd0766": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4cb5a201e40a4148abe3078a636afcdd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6e69f1518dbd4f5f98b28e61ae5741e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "72fad40a86864766b299b987b88cfd8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eb0687177d3042cf8f0901f75f604e85", - "IPY_MODEL_a4e15f916f304af6a621a3edd208fbde", - "IPY_MODEL_1dd56a26d69048f6a3cafad4385d2b8a" - ], - "layout": "IPY_MODEL_761d6c7068ef43eab994d1e5d21d994c" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b8bb4bda2dcf426b8187e3ec19cda1f6", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9d2ae6f29c434c38882202147d60296b", + "value": 132.0 } }, - "761d6c7068ef43eab994d1e5d21d994c": { + "5240ff8529c04c07b08da892f665edf9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1571,7 +1527,7 @@ "width": null } }, - "7bcc3f1d4e8f4561af6fefcdbfa57573": { + "55eb28764db24e7dac8f1420bea68c38": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1623,7 +1579,96 @@ "width": null } }, - "8443c9e833384832ac73d9d1c16736c9": { + "5c6b23aa735b4ae2a3083f4ca7c81647": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7179dbc628344416b95d5aefc8afec5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_83bbf55c7d3f464d8048ad4c7bdbfa42", + "IPY_MODEL_466ba721c0424954b1cbcb7c62fd0766", + "IPY_MODEL_112cf9cbc01f402aa52d0c8846e810d6" + ], + "layout": "IPY_MODEL_55eb28764db24e7dac8f1420bea68c38" + } + }, + "83bbf55c7d3f464d8048ad4c7bdbfa42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5240ff8529c04c07b08da892f665edf9", + "placeholder": "​", + "style": "IPY_MODEL_5c6b23aa735b4ae2a3083f4ca7c81647", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "8a26d0dded474d3ca4e3479c709a297c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9d2ae6f29c434c38882202147d60296b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b8bb4bda2dcf426b8187e3ec19cda1f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1675,31 +1720,7 @@ "width": null } }, - "a4e15f916f304af6a621a3edd208fbde": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7bcc3f1d4e8f4561af6fefcdbfa57573", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6e69f1518dbd4f5f98b28e61ae5741e7", - "value": 132.0 - } - }, - "cc4cc2f72a704431ba1a4a0b3aefb072": { + "bef440a9af08456d9f366eba9f745035": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1750,27 +1771,6 @@ "visibility": null, "width": null } - }, - "eb0687177d3042cf8f0901f75f604e85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cc4cc2f72a704431ba1a4a0b3aefb072", - "placeholder": "​", - "style": "IPY_MODEL_4cb5a201e40a4148abe3078a636afcdd", - "value": "Saving the dataset (1/1 shards): 100%" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index a87b1fc5a..50770bdf4 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:03.000059Z", - "iopub.status.busy": "2024-01-10T14:59:02.999862Z", - "iopub.status.idle": "2024-01-10T14:59:04.078943Z", - "shell.execute_reply": "2024-01-10T14:59:04.078330Z" + "iopub.execute_input": "2024-01-12T22:20:24.712347Z", + "iopub.status.busy": "2024-01-12T22:20:24.711729Z", + "iopub.status.idle": "2024-01-12T22:20:25.815229Z", + "shell.execute_reply": "2024-01-12T22:20:25.814651Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.081752Z", - "iopub.status.busy": "2024-01-10T14:59:04.081300Z", - "iopub.status.idle": "2024-01-10T14:59:04.084518Z", - "shell.execute_reply": "2024-01-10T14:59:04.083930Z" + "iopub.execute_input": "2024-01-12T22:20:25.818309Z", + "iopub.status.busy": "2024-01-12T22:20:25.817758Z", + "iopub.status.idle": "2024-01-12T22:20:25.821102Z", + "shell.execute_reply": "2024-01-12T22:20:25.820506Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.087061Z", - "iopub.status.busy": "2024-01-10T14:59:04.086706Z", - "iopub.status.idle": "2024-01-10T14:59:04.096607Z", - "shell.execute_reply": "2024-01-10T14:59:04.096118Z" + "iopub.execute_input": "2024-01-12T22:20:25.823631Z", + "iopub.status.busy": "2024-01-12T22:20:25.823270Z", + "iopub.status.idle": "2024-01-12T22:20:25.833005Z", + "shell.execute_reply": "2024-01-12T22:20:25.832444Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.098985Z", - "iopub.status.busy": "2024-01-10T14:59:04.098491Z", - "iopub.status.idle": "2024-01-10T14:59:04.103421Z", - "shell.execute_reply": "2024-01-10T14:59:04.102829Z" + "iopub.execute_input": "2024-01-12T22:20:25.835388Z", + "iopub.status.busy": "2024-01-12T22:20:25.835020Z", + "iopub.status.idle": "2024-01-12T22:20:25.839867Z", + "shell.execute_reply": "2024-01-12T22:20:25.839242Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.105879Z", - "iopub.status.busy": "2024-01-10T14:59:04.105439Z", - "iopub.status.idle": "2024-01-10T14:59:04.393020Z", - "shell.execute_reply": "2024-01-10T14:59:04.392350Z" + "iopub.execute_input": "2024-01-12T22:20:25.842646Z", + "iopub.status.busy": "2024-01-12T22:20:25.842188Z", + "iopub.status.idle": "2024-01-12T22:20:26.133735Z", + "shell.execute_reply": "2024-01-12T22:20:26.133090Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.395826Z", - "iopub.status.busy": "2024-01-10T14:59:04.395600Z", - "iopub.status.idle": "2024-01-10T14:59:04.765815Z", - "shell.execute_reply": "2024-01-10T14:59:04.765164Z" + "iopub.execute_input": "2024-01-12T22:20:26.136859Z", + "iopub.status.busy": "2024-01-12T22:20:26.136498Z", + "iopub.status.idle": "2024-01-12T22:20:26.451976Z", + "shell.execute_reply": "2024-01-12T22:20:26.451335Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.768430Z", - "iopub.status.busy": "2024-01-10T14:59:04.767972Z", - "iopub.status.idle": "2024-01-10T14:59:04.770856Z", - "shell.execute_reply": "2024-01-10T14:59:04.770335Z" + "iopub.execute_input": "2024-01-12T22:20:26.454613Z", + "iopub.status.busy": "2024-01-12T22:20:26.454207Z", + "iopub.status.idle": "2024-01-12T22:20:26.457836Z", + "shell.execute_reply": "2024-01-12T22:20:26.457338Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.773132Z", - "iopub.status.busy": "2024-01-10T14:59:04.772933Z", - "iopub.status.idle": "2024-01-10T14:59:04.811324Z", - "shell.execute_reply": "2024-01-10T14:59:04.810695Z" + "iopub.execute_input": "2024-01-12T22:20:26.460356Z", + "iopub.status.busy": "2024-01-12T22:20:26.460035Z", + "iopub.status.idle": "2024-01-12T22:20:26.498993Z", + "shell.execute_reply": "2024-01-12T22:20:26.498237Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.813573Z", - "iopub.status.busy": "2024-01-10T14:59:04.813373Z", - "iopub.status.idle": "2024-01-10T14:59:06.133380Z", - "shell.execute_reply": "2024-01-10T14:59:06.132660Z" + "iopub.execute_input": "2024-01-12T22:20:26.501608Z", + "iopub.status.busy": "2024-01-12T22:20:26.501208Z", + "iopub.status.idle": "2024-01-12T22:20:27.852356Z", + "shell.execute_reply": "2024-01-12T22:20:27.851587Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:06.136341Z", - "iopub.status.busy": "2024-01-10T14:59:06.135744Z", - "iopub.status.idle": "2024-01-10T14:59:06.161385Z", - "shell.execute_reply": "2024-01-10T14:59:06.160754Z" + "iopub.execute_input": "2024-01-12T22:20:27.855341Z", + "iopub.status.busy": "2024-01-12T22:20:27.854687Z", + "iopub.status.idle": "2024-01-12T22:20:27.880045Z", + "shell.execute_reply": "2024-01-12T22:20:27.879403Z" } }, "outputs": [ @@ -878,10 +878,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:06.164094Z", - "iopub.status.busy": "2024-01-10T14:59:06.163709Z", - "iopub.status.idle": "2024-01-10T14:59:06.170693Z", - "shell.execute_reply": "2024-01-10T14:59:06.170040Z" + "iopub.execute_input": "2024-01-12T22:20:27.882386Z", + "iopub.status.busy": "2024-01-12T22:20:27.882170Z", + "iopub.status.idle": "2024-01-12T22:20:27.889199Z", + "shell.execute_reply": "2024-01-12T22:20:27.888564Z" } }, "outputs": [ @@ -985,10 +985,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:06.173531Z", - "iopub.status.busy": "2024-01-10T14:59:06.172899Z", - "iopub.status.idle": "2024-01-10T14:59:06.179680Z", - "shell.execute_reply": "2024-01-10T14:59:06.179158Z" + "iopub.execute_input": "2024-01-12T22:20:27.891668Z", + "iopub.status.busy": "2024-01-12T22:20:27.891301Z", + "iopub.status.idle": "2024-01-12T22:20:27.898193Z", + "shell.execute_reply": "2024-01-12T22:20:27.897660Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:06.182064Z", - "iopub.status.busy": "2024-01-10T14:59:06.181860Z", - "iopub.status.idle": "2024-01-10T14:59:06.192735Z", - "shell.execute_reply": "2024-01-10T14:59:06.192198Z" + "iopub.execute_input": "2024-01-12T22:20:27.900639Z", + "iopub.status.busy": "2024-01-12T22:20:27.900285Z", + "iopub.status.idle": "2024-01-12T22:20:27.910859Z", + "shell.execute_reply": "2024-01-12T22:20:27.910204Z" } }, "outputs": [ @@ -1231,10 +1231,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:06.195091Z", - "iopub.status.busy": "2024-01-10T14:59:06.194847Z", - "iopub.status.idle": "2024-01-10T14:59:06.205008Z", - "shell.execute_reply": "2024-01-10T14:59:06.204451Z" + "iopub.execute_input": "2024-01-12T22:20:27.913245Z", + "iopub.status.busy": "2024-01-12T22:20:27.912884Z", + "iopub.status.idle": "2024-01-12T22:20:27.922090Z", + "shell.execute_reply": "2024-01-12T22:20:27.921478Z" } }, "outputs": [ @@ -1350,10 +1350,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:06.207787Z", - "iopub.status.busy": "2024-01-10T14:59:06.207584Z", - "iopub.status.idle": "2024-01-10T14:59:06.215303Z", - "shell.execute_reply": "2024-01-10T14:59:06.214681Z" + "iopub.execute_input": "2024-01-12T22:20:27.924492Z", + "iopub.status.busy": "2024-01-12T22:20:27.924121Z", + "iopub.status.idle": "2024-01-12T22:20:27.932005Z", + "shell.execute_reply": "2024-01-12T22:20:27.931333Z" }, "scrolled": true }, @@ -1478,10 +1478,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:06.217692Z", - "iopub.status.busy": "2024-01-10T14:59:06.217484Z", - "iopub.status.idle": "2024-01-10T14:59:06.227879Z", - "shell.execute_reply": "2024-01-10T14:59:06.227251Z" + "iopub.execute_input": "2024-01-12T22:20:27.934446Z", + "iopub.status.busy": "2024-01-12T22:20:27.934072Z", + "iopub.status.idle": "2024-01-12T22:20:27.944035Z", + "shell.execute_reply": "2024-01-12T22:20:27.943389Z" } }, "outputs": [ diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index ababc3071..89420f29e 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:10.981665Z", - "iopub.status.busy": "2024-01-10T14:59:10.981463Z", - "iopub.status.idle": "2024-01-10T14:59:12.008038Z", - "shell.execute_reply": "2024-01-10T14:59:12.007342Z" + "iopub.execute_input": "2024-01-12T22:20:32.791485Z", + "iopub.status.busy": "2024-01-12T22:20:32.791290Z", + "iopub.status.idle": "2024-01-12T22:20:33.850285Z", + "shell.execute_reply": "2024-01-12T22:20:33.849662Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:12.010994Z", - "iopub.status.busy": "2024-01-10T14:59:12.010677Z", - "iopub.status.idle": "2024-01-10T14:59:12.027240Z", - "shell.execute_reply": "2024-01-10T14:59:12.026590Z" + "iopub.execute_input": "2024-01-12T22:20:33.853413Z", + "iopub.status.busy": "2024-01-12T22:20:33.852882Z", + "iopub.status.idle": "2024-01-12T22:20:33.869678Z", + "shell.execute_reply": "2024-01-12T22:20:33.869128Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:12.030319Z", - "iopub.status.busy": "2024-01-10T14:59:12.029725Z", - "iopub.status.idle": "2024-01-10T14:59:12.179406Z", - "shell.execute_reply": "2024-01-10T14:59:12.178766Z" + "iopub.execute_input": "2024-01-12T22:20:33.872351Z", + "iopub.status.busy": "2024-01-12T22:20:33.872035Z", + "iopub.status.idle": "2024-01-12T22:20:34.198063Z", + "shell.execute_reply": "2024-01-12T22:20:34.197354Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:12.182187Z", - "iopub.status.busy": "2024-01-10T14:59:12.181713Z", - "iopub.status.idle": "2024-01-10T14:59:12.185520Z", - "shell.execute_reply": "2024-01-10T14:59:12.184931Z" + "iopub.execute_input": "2024-01-12T22:20:34.200686Z", + "iopub.status.busy": "2024-01-12T22:20:34.200316Z", + "iopub.status.idle": "2024-01-12T22:20:34.204184Z", + "shell.execute_reply": "2024-01-12T22:20:34.203672Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:12.187959Z", - "iopub.status.busy": "2024-01-10T14:59:12.187588Z", - "iopub.status.idle": "2024-01-10T14:59:12.195249Z", - "shell.execute_reply": "2024-01-10T14:59:12.194761Z" + "iopub.execute_input": "2024-01-12T22:20:34.206528Z", + "iopub.status.busy": "2024-01-12T22:20:34.206140Z", + "iopub.status.idle": "2024-01-12T22:20:34.214315Z", + "shell.execute_reply": "2024-01-12T22:20:34.213685Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:12.197697Z", - "iopub.status.busy": "2024-01-10T14:59:12.197262Z", - "iopub.status.idle": "2024-01-10T14:59:12.199985Z", - "shell.execute_reply": "2024-01-10T14:59:12.199461Z" + "iopub.execute_input": "2024-01-12T22:20:34.216994Z", + "iopub.status.busy": "2024-01-12T22:20:34.216621Z", + "iopub.status.idle": "2024-01-12T22:20:34.219321Z", + "shell.execute_reply": "2024-01-12T22:20:34.218773Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:12.202218Z", - "iopub.status.busy": "2024-01-10T14:59:12.202019Z", - "iopub.status.idle": "2024-01-10T14:59:15.789515Z", - "shell.execute_reply": "2024-01-10T14:59:15.788880Z" + "iopub.execute_input": "2024-01-12T22:20:34.221734Z", + "iopub.status.busy": "2024-01-12T22:20:34.221344Z", + "iopub.status.idle": "2024-01-12T22:20:37.794584Z", + "shell.execute_reply": "2024-01-12T22:20:37.793842Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:15.792602Z", - "iopub.status.busy": "2024-01-10T14:59:15.792171Z", - "iopub.status.idle": "2024-01-10T14:59:15.802081Z", - "shell.execute_reply": "2024-01-10T14:59:15.801589Z" + "iopub.execute_input": "2024-01-12T22:20:37.797717Z", + "iopub.status.busy": "2024-01-12T22:20:37.797499Z", + "iopub.status.idle": "2024-01-12T22:20:37.807009Z", + "shell.execute_reply": "2024-01-12T22:20:37.806388Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:15.804589Z", - "iopub.status.busy": "2024-01-10T14:59:15.804228Z", - "iopub.status.idle": "2024-01-10T14:59:17.180350Z", - "shell.execute_reply": "2024-01-10T14:59:17.179602Z" + "iopub.execute_input": "2024-01-12T22:20:37.809595Z", + "iopub.status.busy": "2024-01-12T22:20:37.809224Z", + "iopub.status.idle": "2024-01-12T22:20:39.184349Z", + "shell.execute_reply": "2024-01-12T22:20:39.183625Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.184988Z", - "iopub.status.busy": "2024-01-10T14:59:17.183614Z", - "iopub.status.idle": "2024-01-10T14:59:17.212346Z", - "shell.execute_reply": "2024-01-10T14:59:17.211645Z" + "iopub.execute_input": "2024-01-12T22:20:39.188954Z", + "iopub.status.busy": "2024-01-12T22:20:39.187610Z", + "iopub.status.idle": "2024-01-12T22:20:39.215687Z", + "shell.execute_reply": "2024-01-12T22:20:39.215075Z" }, "scrolled": true }, @@ -624,10 +624,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.216992Z", - "iopub.status.busy": "2024-01-10T14:59:17.215793Z", - "iopub.status.idle": "2024-01-10T14:59:17.229530Z", - "shell.execute_reply": "2024-01-10T14:59:17.228867Z" + "iopub.execute_input": "2024-01-12T22:20:39.220141Z", + "iopub.status.busy": "2024-01-12T22:20:39.218984Z", + "iopub.status.idle": "2024-01-12T22:20:39.232137Z", + "shell.execute_reply": "2024-01-12T22:20:39.231533Z" } }, "outputs": [ @@ -731,10 +731,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.234257Z", - "iopub.status.busy": "2024-01-10T14:59:17.233091Z", - "iopub.status.idle": "2024-01-10T14:59:17.248521Z", - "shell.execute_reply": "2024-01-10T14:59:17.247893Z" + "iopub.execute_input": "2024-01-12T22:20:39.236394Z", + "iopub.status.busy": "2024-01-12T22:20:39.235298Z", + "iopub.status.idle": "2024-01-12T22:20:39.249751Z", + "shell.execute_reply": "2024-01-12T22:20:39.249159Z" } }, "outputs": [ @@ -863,10 +863,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.253033Z", - "iopub.status.busy": "2024-01-10T14:59:17.251892Z", - "iopub.status.idle": "2024-01-10T14:59:17.264947Z", - "shell.execute_reply": "2024-01-10T14:59:17.264349Z" + "iopub.execute_input": "2024-01-12T22:20:39.253911Z", + "iopub.status.busy": "2024-01-12T22:20:39.252833Z", + "iopub.status.idle": "2024-01-12T22:20:39.265289Z", + "shell.execute_reply": "2024-01-12T22:20:39.264708Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.269322Z", - "iopub.status.busy": "2024-01-10T14:59:17.268190Z", - "iopub.status.idle": "2024-01-10T14:59:17.279638Z", - "shell.execute_reply": "2024-01-10T14:59:17.279028Z" + "iopub.execute_input": "2024-01-12T22:20:39.269419Z", + "iopub.status.busy": "2024-01-12T22:20:39.268343Z", + "iopub.status.idle": "2024-01-12T22:20:39.281369Z", + "shell.execute_reply": "2024-01-12T22:20:39.280863Z" } }, "outputs": [ @@ -1094,10 +1094,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.282394Z", - "iopub.status.busy": "2024-01-10T14:59:17.281813Z", - "iopub.status.idle": "2024-01-10T14:59:17.288968Z", - "shell.execute_reply": "2024-01-10T14:59:17.288435Z" + "iopub.execute_input": "2024-01-12T22:20:39.283870Z", + "iopub.status.busy": "2024-01-12T22:20:39.283514Z", + "iopub.status.idle": "2024-01-12T22:20:39.290112Z", + "shell.execute_reply": "2024-01-12T22:20:39.289654Z" } }, "outputs": [ @@ -1181,10 +1181,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.291408Z", - "iopub.status.busy": "2024-01-10T14:59:17.291060Z", - "iopub.status.idle": "2024-01-10T14:59:17.297989Z", - "shell.execute_reply": "2024-01-10T14:59:17.297472Z" + "iopub.execute_input": "2024-01-12T22:20:39.292529Z", + "iopub.status.busy": "2024-01-12T22:20:39.292114Z", + "iopub.status.idle": "2024-01-12T22:20:39.300446Z", + "shell.execute_reply": "2024-01-12T22:20:39.299794Z" } }, "outputs": [ @@ -1277,10 +1277,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.300419Z", - "iopub.status.busy": "2024-01-10T14:59:17.300054Z", - "iopub.status.idle": "2024-01-10T14:59:17.306917Z", - "shell.execute_reply": "2024-01-10T14:59:17.306349Z" + "iopub.execute_input": "2024-01-12T22:20:39.302992Z", + "iopub.status.busy": "2024-01-12T22:20:39.302629Z", + "iopub.status.idle": "2024-01-12T22:20:39.310059Z", + "shell.execute_reply": "2024-01-12T22:20:39.309557Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index ca326d89b..aba851f99 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:22.092445Z", - "iopub.status.busy": "2024-01-10T14:59:22.092236Z", - "iopub.status.idle": "2024-01-10T14:59:24.403879Z", - "shell.execute_reply": "2024-01-10T14:59:24.403193Z" + "iopub.execute_input": "2024-01-12T22:20:43.805215Z", + "iopub.status.busy": "2024-01-12T22:20:43.805027Z", + "iopub.status.idle": "2024-01-12T22:20:46.519232Z", + "shell.execute_reply": "2024-01-12T22:20:46.518620Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "862dcffe2cde478e97ab974c75c6ea32", + "model_id": "846ddec3eae540f8a5d8c5e007a27eed", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:24.407066Z", - "iopub.status.busy": "2024-01-10T14:59:24.406465Z", - "iopub.status.idle": "2024-01-10T14:59:24.410103Z", - "shell.execute_reply": "2024-01-10T14:59:24.409519Z" + "iopub.execute_input": "2024-01-12T22:20:46.522443Z", + "iopub.status.busy": "2024-01-12T22:20:46.521821Z", + "iopub.status.idle": "2024-01-12T22:20:46.525483Z", + "shell.execute_reply": "2024-01-12T22:20:46.524957Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:24.412607Z", - "iopub.status.busy": "2024-01-10T14:59:24.412258Z", - "iopub.status.idle": "2024-01-10T14:59:24.415950Z", - "shell.execute_reply": "2024-01-10T14:59:24.415466Z" + "iopub.execute_input": "2024-01-12T22:20:46.527879Z", + "iopub.status.busy": "2024-01-12T22:20:46.527426Z", + "iopub.status.idle": "2024-01-12T22:20:46.530888Z", + "shell.execute_reply": "2024-01-12T22:20:46.530327Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:24.418446Z", - "iopub.status.busy": "2024-01-10T14:59:24.417979Z", - "iopub.status.idle": "2024-01-10T14:59:24.476477Z", - "shell.execute_reply": "2024-01-10T14:59:24.475884Z" + "iopub.execute_input": "2024-01-12T22:20:46.533194Z", + "iopub.status.busy": "2024-01-12T22:20:46.532823Z", + "iopub.status.idle": "2024-01-12T22:20:46.683364Z", + "shell.execute_reply": "2024-01-12T22:20:46.682701Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:24.479032Z", - "iopub.status.busy": "2024-01-10T14:59:24.478651Z", - "iopub.status.idle": "2024-01-10T14:59:24.482763Z", - "shell.execute_reply": "2024-01-10T14:59:24.482154Z" + "iopub.execute_input": "2024-01-12T22:20:46.685936Z", + "iopub.status.busy": "2024-01-12T22:20:46.685564Z", + "iopub.status.idle": "2024-01-12T22:20:46.689590Z", + "shell.execute_reply": "2024-01-12T22:20:46.688964Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'getting_spare_card', 'card_payment_fee_charged', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'change_pin', 'supported_cards_and_currencies'}\n" + "Classes: {'lost_or_stolen_phone', 'change_pin', 'getting_spare_card', 'card_about_to_expire', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'cancel_transfer', 'visa_or_mastercard', 'beneficiary_not_allowed'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:24.485240Z", - "iopub.status.busy": "2024-01-10T14:59:24.484873Z", - "iopub.status.idle": "2024-01-10T14:59:24.488318Z", - "shell.execute_reply": "2024-01-10T14:59:24.487706Z" + "iopub.execute_input": "2024-01-12T22:20:46.692041Z", + "iopub.status.busy": "2024-01-12T22:20:46.691680Z", + "iopub.status.idle": "2024-01-12T22:20:46.695014Z", + "shell.execute_reply": "2024-01-12T22:20:46.694402Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:24.490800Z", - "iopub.status.busy": "2024-01-10T14:59:24.490451Z", - "iopub.status.idle": "2024-01-10T14:59:33.672418Z", - "shell.execute_reply": "2024-01-10T14:59:33.671786Z" + "iopub.execute_input": "2024-01-12T22:20:46.697508Z", + "iopub.status.busy": "2024-01-12T22:20:46.697154Z", + "iopub.status.idle": "2024-01-12T22:20:56.868983Z", + "shell.execute_reply": "2024-01-12T22:20:56.868325Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f2e849e51c874b17a848ea3fa7185a74", + "model_id": "5c6a5887aac9455e90e4632979756830", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "94c85eae08a741ef81e270f9647311bf", + "model_id": "a035c53190064c67a6538f2c632014d7", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f8fc9626652544dba8ec78fd1f4ae9d7", + "model_id": "ae4e7edf8f6343b4ac661fee40ce9dd0", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84f0c6c7b270459db0855f5d976763e0", + "model_id": "ec81a6b6f26846f89c761ec702fb7d3b", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8935bc181d264ffc8db415b422beb496", + "model_id": "1c231cb8abd74ec9b30915df91481bd6", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bc2109a4e2f84d67bbb8ab6cba21fab9", + "model_id": "ab7bf1923bad44e39d653545bddc6d0d", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9b94f541e59245eda011ea6c11772a07", + "model_id": "2139190be04b4440b72b7a812b5ba39a", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:33.675731Z", - "iopub.status.busy": "2024-01-10T14:59:33.675246Z", - "iopub.status.idle": "2024-01-10T14:59:34.841910Z", - "shell.execute_reply": "2024-01-10T14:59:34.841238Z" + "iopub.execute_input": "2024-01-12T22:20:56.872312Z", + "iopub.status.busy": "2024-01-12T22:20:56.871905Z", + "iopub.status.idle": "2024-01-12T22:20:58.042533Z", + "shell.execute_reply": "2024-01-12T22:20:58.041828Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:34.845385Z", - "iopub.status.busy": "2024-01-10T14:59:34.844983Z", - "iopub.status.idle": "2024-01-10T14:59:34.848001Z", - "shell.execute_reply": "2024-01-10T14:59:34.847447Z" + "iopub.execute_input": "2024-01-12T22:20:58.046185Z", + "iopub.status.busy": "2024-01-12T22:20:58.045755Z", + "iopub.status.idle": "2024-01-12T22:20:58.048874Z", + "shell.execute_reply": "2024-01-12T22:20:58.048312Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:34.850802Z", - "iopub.status.busy": "2024-01-10T14:59:34.850433Z", - "iopub.status.idle": "2024-01-10T14:59:36.210865Z", - "shell.execute_reply": "2024-01-10T14:59:36.209994Z" + "iopub.execute_input": "2024-01-12T22:20:58.052708Z", + "iopub.status.busy": "2024-01-12T22:20:58.051556Z", + "iopub.status.idle": "2024-01-12T22:20:59.412023Z", + "shell.execute_reply": "2024-01-12T22:20:59.411171Z" }, "scrolled": true }, @@ -640,10 +640,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.214452Z", - "iopub.status.busy": "2024-01-10T14:59:36.213504Z", - "iopub.status.idle": "2024-01-10T14:59:36.247942Z", - "shell.execute_reply": "2024-01-10T14:59:36.247228Z" + "iopub.execute_input": "2024-01-12T22:20:59.416786Z", + "iopub.status.busy": "2024-01-12T22:20:59.415218Z", + "iopub.status.idle": "2024-01-12T22:20:59.453256Z", + "shell.execute_reply": "2024-01-12T22:20:59.452620Z" }, "scrolled": true }, @@ -808,10 +808,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.251096Z", - "iopub.status.busy": "2024-01-10T14:59:36.250420Z", - "iopub.status.idle": "2024-01-10T14:59:36.261728Z", - "shell.execute_reply": "2024-01-10T14:59:36.261092Z" + "iopub.execute_input": "2024-01-12T22:20:59.457788Z", + "iopub.status.busy": "2024-01-12T22:20:59.456651Z", + "iopub.status.idle": "2024-01-12T22:20:59.469545Z", + "shell.execute_reply": "2024-01-12T22:20:59.469047Z" }, "scrolled": true }, @@ -921,10 +921,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.264768Z", - "iopub.status.busy": "2024-01-10T14:59:36.264298Z", - "iopub.status.idle": "2024-01-10T14:59:36.269449Z", - "shell.execute_reply": "2024-01-10T14:59:36.268960Z" + "iopub.execute_input": "2024-01-12T22:20:59.472173Z", + "iopub.status.busy": "2024-01-12T22:20:59.471788Z", + "iopub.status.idle": "2024-01-12T22:20:59.476911Z", + "shell.execute_reply": "2024-01-12T22:20:59.476397Z" } }, "outputs": [ @@ -962,10 +962,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.272221Z", - "iopub.status.busy": "2024-01-10T14:59:36.271614Z", - "iopub.status.idle": "2024-01-10T14:59:36.279936Z", - "shell.execute_reply": "2024-01-10T14:59:36.279356Z" + "iopub.execute_input": "2024-01-12T22:20:59.479282Z", + "iopub.status.busy": "2024-01-12T22:20:59.478916Z", + "iopub.status.idle": "2024-01-12T22:20:59.485874Z", + "shell.execute_reply": "2024-01-12T22:20:59.485228Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.282599Z", - "iopub.status.busy": "2024-01-10T14:59:36.282081Z", - "iopub.status.idle": "2024-01-10T14:59:36.289576Z", - "shell.execute_reply": "2024-01-10T14:59:36.288966Z" + "iopub.execute_input": "2024-01-12T22:20:59.488309Z", + "iopub.status.busy": "2024-01-12T22:20:59.487955Z", + "iopub.status.idle": "2024-01-12T22:20:59.495012Z", + "shell.execute_reply": "2024-01-12T22:20:59.494455Z" } }, "outputs": [ @@ -1168,10 +1168,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.291990Z", - "iopub.status.busy": "2024-01-10T14:59:36.291624Z", - "iopub.status.idle": "2024-01-10T14:59:36.297899Z", - "shell.execute_reply": "2024-01-10T14:59:36.297301Z" + "iopub.execute_input": "2024-01-12T22:20:59.497497Z", + "iopub.status.busy": "2024-01-12T22:20:59.497044Z", + "iopub.status.idle": "2024-01-12T22:20:59.503936Z", + "shell.execute_reply": "2024-01-12T22:20:59.503298Z" } }, "outputs": [ @@ -1279,10 +1279,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.300330Z", - "iopub.status.busy": "2024-01-10T14:59:36.299984Z", - "iopub.status.idle": "2024-01-10T14:59:36.309346Z", - "shell.execute_reply": "2024-01-10T14:59:36.308790Z" + "iopub.execute_input": "2024-01-12T22:20:59.506347Z", + "iopub.status.busy": "2024-01-12T22:20:59.505975Z", + "iopub.status.idle": "2024-01-12T22:20:59.515095Z", + "shell.execute_reply": "2024-01-12T22:20:59.514552Z" } }, "outputs": [ @@ -1393,10 +1393,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.311803Z", - "iopub.status.busy": "2024-01-10T14:59:36.311415Z", - "iopub.status.idle": "2024-01-10T14:59:36.317270Z", - "shell.execute_reply": "2024-01-10T14:59:36.316743Z" + "iopub.execute_input": "2024-01-12T22:20:59.517449Z", + "iopub.status.busy": "2024-01-12T22:20:59.517081Z", + "iopub.status.idle": "2024-01-12T22:20:59.523186Z", + "shell.execute_reply": "2024-01-12T22:20:59.522612Z" } }, "outputs": [ @@ -1464,10 +1464,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.319529Z", - "iopub.status.busy": "2024-01-10T14:59:36.319327Z", - "iopub.status.idle": "2024-01-10T14:59:36.325099Z", - "shell.execute_reply": "2024-01-10T14:59:36.324498Z" + "iopub.execute_input": "2024-01-12T22:20:59.525397Z", + "iopub.status.busy": "2024-01-12T22:20:59.525049Z", + "iopub.status.idle": "2024-01-12T22:20:59.701901Z", + "shell.execute_reply": "2024-01-12T22:20:59.701202Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.327483Z", - "iopub.status.busy": "2024-01-10T14:59:36.327281Z", - "iopub.status.idle": "2024-01-10T14:59:36.331149Z", - "shell.execute_reply": "2024-01-10T14:59:36.330531Z" + "iopub.execute_input": "2024-01-12T22:20:59.704522Z", + "iopub.status.busy": "2024-01-12T22:20:59.704309Z", + "iopub.status.idle": "2024-01-12T22:20:59.708453Z", + "shell.execute_reply": "2024-01-12T22:20:59.707933Z" } }, "outputs": [ @@ -1597,10 +1597,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.333455Z", - "iopub.status.busy": "2024-01-10T14:59:36.333256Z", - "iopub.status.idle": "2024-01-10T14:59:36.517964Z", - "shell.execute_reply": "2024-01-10T14:59:36.517303Z" + "iopub.execute_input": "2024-01-12T22:20:59.710997Z", + "iopub.status.busy": "2024-01-12T22:20:59.710529Z", + "iopub.status.idle": "2024-01-12T22:20:59.716424Z", + "shell.execute_reply": "2024-01-12T22:20:59.715800Z" }, "nbsphinx": "hidden" }, @@ -1650,7 +1650,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00917c17081843f6a5a5d44b91e6acd9": { + "0322834af2834f9d97f01a725184781a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1665,13 +1665,52 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fd69eddaeade4dfbbc190d9d0f7cef92", + "layout": "IPY_MODEL_23ee96a37e004ba59782cb7e09041e5c", "placeholder": "​", - "style": "IPY_MODEL_fae8a5b5019e44ecad743866c942cf00", - "value": " 54.2M/54.2M [00:00<00:00, 266MB/s]" + "style": "IPY_MODEL_2bbb6a32485a4ca9b11c3eb1c9caae5f", + "value": " 232k/232k [00:00<00:00, 3.73MB/s]" } }, - "01554e29f7bb4ab3bf4b0b53e7e8f147": { + "12eb465219a34bb5ba7f5af661bb649a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aeddbd3a4a45466daffd3ff06403bd57", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9cebcba8e14342fa8a5a848de8bb429d", + "value": 665.0 + } + }, + "1561ff17da854bef9eb416e5e78e97ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1919964b16a04d6dbffc66196571f046": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1687,7 +1726,53 @@ "description_width": "" } }, - "06c7f99c4f4d4c98b56c80428fe227a9": { + "1bba83bf60de41f6874de6087910f2d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_511c81474873413aa31b938110670cd9", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1919964b16a04d6dbffc66196571f046", + "value": 231508.0 + } + }, + "1c231cb8abd74ec9b30915df91481bd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b880377f15b04d36bdeaa258c5f13655", + "IPY_MODEL_7ab36a6563af44f8a1075e8a4a018146", + "IPY_MODEL_412d5a26af48477e815fc635f1f228df" + ], + "layout": "IPY_MODEL_9b40a54e98ad425ea571f2235b45cfa7" + } + }, + "2060bd2b52044a43ad81a559d41c5608": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1736,10 +1821,47 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "075c0a2ff8984472a2407cb65c1af308": { + "2139190be04b4440b72b7a812b5ba39a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f7e41c8fe75d40dbb8de60651dc3b6ac", + "IPY_MODEL_1bba83bf60de41f6874de6087910f2d9", + "IPY_MODEL_0322834af2834f9d97f01a725184781a" + ], + "layout": "IPY_MODEL_29a1e8790daf4ab3959ecf25137f94e4" + } + }, + "22cf5aef29254450b9844e018c703f82": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "23ee96a37e004ba59782cb7e09041e5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1791,7 +1913,52 @@ "width": null } }, - "0a601d68ed194795a8e3e30f9636b988": { + "24b5a6f6757048468a4f92c9d975a221": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a37a3237c77a4bae9ca555ce7b7c587a", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bc1c6eb59ac64b90bc0f665cf6263991", + "value": 29.0 + } + }, + "271eb78573ed4449a9ef6a620d23aace": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b4d5012b0f464b5d9c0d3a003b48f644", + "placeholder": "​", + "style": "IPY_MODEL_56b2591801f940e7adfcccd3d00ddb7e", + "value": "" + } + }, + "289fbd27555449f3bf0b4ab45b920987": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1843,43 +2010,7 @@ "width": null } }, - "0dd83adc06cc448dbb45c8d5b083b1b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d88203f29b6041b9b084fcbe564b744c", - "placeholder": "​", - "style": "IPY_MODEL_97e3a9449c1045cf96051bf240fb3d86", - "value": " 232k/232k [00:00<00:00, 26.2MB/s]" - } - }, - "0f07dbed86ee4dedb4230e294d563b70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "12cb6377a008434fb126f7a20059d295": { + "29a1e8790daf4ab3959ecf25137f94e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1931,201 +2062,7 @@ "width": null } }, - "1d0bb365cef642bf9aa028dfaf2da8bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_06c7f99c4f4d4c98b56c80428fe227a9", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a321f57989f746d79202da624285ed2c", - "value": 0.0 - } - }, - "2042be878078403c96190c096097d90d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c76748ec8a42450ba7223d8b626ba091", - "placeholder": "​", - "style": "IPY_MODEL_4274375b0fc249138d9065f3d789e378", - "value": " 2.21k/2.21k [00:00<00:00, 298kB/s]" - } - }, - "2459388b6cbd42c2a4d43684c4b9afdf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9eee4112141543a9a4224b8b25ab2e5d", - "placeholder": "​", - "style": "IPY_MODEL_bb4e1551497a4ce4be301f4368f81676", - "value": " 466k/466k [00:00<00:00, 13.9MB/s]" - } - }, - "2886de46d9fd4702ab6e1c5b72e49072": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f7f728bec002499ab7823a03e95a2bf5", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2b0612da6bf14497ab00ac2fcd669247", - "value": 665.0 - } - }, - "2b0612da6bf14497ab00ac2fcd669247": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2c57a2dce6844d669534d4a56c9b289e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "31cbafcf7296451f8eafa376459fce42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c3a89d32580e43a5abcb986b0342b26b", - "placeholder": "​", - "style": "IPY_MODEL_5d198168a65943669c64ed11ea145d06", - "value": " 391/391 [00:00<00:00, 51.0kB/s]" - } - }, - "33b12887dbb64274a7777cd6a46751fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3f6a155e08b14f70bd139c25bbfc97ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_54b1991278ba46e2b8bbd15c62221efa", - "placeholder": "​", - "style": "IPY_MODEL_469e1113de45470581ebc31ed32169a1", - "value": "tokenizer.json: 100%" - } - }, - "4274375b0fc249138d9065f3d789e378": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "43604c5ccc2f48e084d21528eff3c15d": { + "2a3a3604b9ff4689be5d1d9fbcb42d4f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2177,7 +2114,7 @@ "width": null } }, - "469e1113de45470581ebc31ed32169a1": { + "2bbb6a32485a4ca9b11c3eb1c9caae5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2192,7 +2129,7 @@ "description_width": "" } }, - "4791eeb7baf64c8d9fac236bf5132592": { + "2f5f514688db4862a6d0bdf20fa0860b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2208,15 +2145,36 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9faaecaae1734c61ae18e834186c1666", - "max": 2211.0, + "layout": "IPY_MODEL_ac722767e0684b048aa1a3d833202e61", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_01554e29f7bb4ab3bf4b0b53e7e8f147", - "value": 2211.0 + "style": "IPY_MODEL_46efc5e6cb2041939478bd923d60060f", + "value": 391.0 } }, - "4880191d3d0547f39e1ae04216c88b71": { + "34a361b4e50a4b5bb7bcefa076be8425": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c36c9d6b85fb4e7d96da6fb72da31e55", + "placeholder": "​", + "style": "IPY_MODEL_45197ef3a63b45feb18fbef221d0d07e", + "value": "pytorch_model.bin: 100%" + } + }, + "3d5668abd9214ea2a1b2300c3f11a473": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2268,28 +2226,59 @@ "width": null } }, - "4abeacb8c56a488785fb5b9d0945caed": { + "412d5a26af48477e815fc635f1f228df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { - "_dom_classes": [], + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7856c3cf206d440ea9e61ddcf8b3c4f3", + "placeholder": "​", + "style": "IPY_MODEL_f3697a9009484745857bbb563251edd4", + "value": " 466k/466k [00:00<00:00, 3.88MB/s]" + } + }, + "45197ef3a63b45feb18fbef221d0d07e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "46efc5e6cb2041939478bd923d60060f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_52125d88b94b46f69d248404f8994683", - "placeholder": "​", - "style": "IPY_MODEL_6fe3adcc4a4041eabca98b1d60af84fd", - "value": " 665/665 [00:00<00:00, 81.4kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "52125d88b94b46f69d248404f8994683": { + "4abb8c9fc4494f2480b9ce1aefc62a3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2341,7 +2330,47 @@ "width": null } }, - "54b1991278ba46e2b8bbd15c62221efa": { + "4ba0243e3698401493004ff369dfffd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4c1af2e421ec4880a3ccc14f47169455": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cb64c1704bfd47a2b0d1a0cbb4eda118", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a9acb004614247faab6822522e529fdf", + "value": 0.0 + } + }, + "4e06396e3f13439aa47321a72b4a75e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2393,7 +2422,7 @@ "width": null } }, - "56636f85cdc9488bbcde50e0f31e8e05": { + "5019c2eb7d2c451ea914b819689be45f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2408,7 +2437,49 @@ "description_width": "" } }, - "583b1f186cc546f4a39bdfdd40349e0d": { + "505f0bf137644f538e88d321d7059c2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8a90681af46149cd99c3dfb8f61493fb", + "placeholder": "​", + "style": "IPY_MODEL_adaca57a88d44f9faa38907e2c0e9b68", + "value": ".gitattributes: 100%" + } + }, + "50ce9ad6e67d47af916bd2dddeabdf5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4e06396e3f13439aa47321a72b4a75e4", + "placeholder": "​", + "style": "IPY_MODEL_1561ff17da854bef9eb416e5e78e97ac", + "value": " 2.21k/2.21k [00:00<00:00, 285kB/s]" + } + }, + "511c81474873413aa31b938110670cd9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2460,7 +2531,23 @@ "width": null } }, - "5986e501975345c18931a5f0b9321683": { + "517ee44c1b0a4edd9bcc596b8382f777": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5289f324b7b84ed29fad7302410fc558": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2475,13 +2562,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bad367d7aefa4a2b986452a5deea268f", + "layout": "IPY_MODEL_cdaaa357098d46e79c0adae4cb1dfa7f", "placeholder": "​", - "style": "IPY_MODEL_56636f85cdc9488bbcde50e0f31e8e05", - "value": ".gitattributes: 100%" + "style": "IPY_MODEL_a961453567e146a090edb21c1f8328fc", + "value": "README.md: 100%" } }, - "5d198168a65943669c64ed11ea145d06": { + "56b2591801f940e7adfcccd3d00ddb7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2496,23 +2583,22 @@ "description_width": "" } }, - "5eb8c83858cd483bafc5a9248fad2a68": { + "5b4266ca4b764b27b32b47710666f5ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "609217f73fbb420caa14bc522c18b15d": { + "5bc63fd6d1914111bc85b5107d68dd1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2564,7 +2650,69 @@ "width": null } }, - "614552c5e5f3422a9e39ded35cce6f7e": { + "5c6a5887aac9455e90e4632979756830": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_505f0bf137644f538e88d321d7059c2e", + "IPY_MODEL_2f5f514688db4862a6d0bdf20fa0860b", + "IPY_MODEL_dc2f535ef125497aa7f485e4cc122ba2" + ], + "layout": "IPY_MODEL_af851b86760d454a81a2edf6605cb7e2" + } + }, + "6461b8d33d394ed49fef9ad35315dc12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6ce2d0c11d344a89983ff35576635c8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2a3a3604b9ff4689be5d1d9fbcb42d4f", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4ba0243e3698401493004ff369dfffd3", + "value": 54245363.0 + } + }, + "6f6929f78a4f469ba161d40664174088": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2616,71 +2764,22 @@ "width": null } }, - "623fe1d3ad6e46fdb758928ae51160b2": { + "72500022d46e4fc4b4c4967d61c937e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "692cd1c543c44d1f9a54e10a308abc35": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ea99b5f99229433c84ef7bc51a9c130f", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fcdce2bba18d4262a99e80746cd7ed8b", - "value": 391.0 - } - }, - "699ecc7a765d443aa11b0205425189a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0a601d68ed194795a8e3e30f9636b988", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5eb8c83858cd483bafc5a9248fad2a68", - "value": 29.0 - } - }, - "6a41a8086ed2471099f0596d310b417b": { + "7371921d43624293b95a7d1d04822637": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2695,7 +2794,59 @@ "description_width": "" } }, - "6befdc46f5d241a995ca903cc10cef7b": { + "7416e63643774d6196fbb3ef783b2eb6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7856c3cf206d440ea9e61ddcf8b3c4f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2747,22 +2898,59 @@ "width": null } }, - "6fe3adcc4a4041eabca98b1d60af84fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "79a21b08f308471dab6566409e64c074": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7a6f92e7c9954a008ddc389e56a80eb1": { + "7ab36a6563af44f8a1075e8a4a018146": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2778,15 +2966,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7b994861070847fea1d4a823b3a35d09", - "max": 231508.0, + "layout": "IPY_MODEL_ace290c9613747ffb6fac8dd2d2f8165", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_623fe1d3ad6e46fdb758928ae51160b2", - "value": 231508.0 + "style": "IPY_MODEL_6461b8d33d394ed49fef9ad35315dc12", + "value": 466062.0 } }, - "7b994861070847fea1d4a823b3a35d09": { + "7b699d78d8f4432cbf2055fc6120002a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2838,90 +3026,28 @@ "width": null } }, - "81591ea42d154551991b09bc36ec0ace": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "84f0c6c7b270459db0855f5d976763e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f67b595c6d6840bb837ed3c0bac5d0c8", - "IPY_MODEL_ddea88fc65ed4f6dae2c94fb28fe25d2", - "IPY_MODEL_00917c17081843f6a5a5d44b91e6acd9" - ], - "layout": "IPY_MODEL_6befdc46f5d241a995ca903cc10cef7b" - } - }, - "862dcffe2cde478e97ab974c75c6ea32": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_996f676633b94db4ab7ceea5a92391f5", - "IPY_MODEL_1d0bb365cef642bf9aa028dfaf2da8bf", - "IPY_MODEL_d318a49900f244a4acf9106cb605f223" - ], - "layout": "IPY_MODEL_614552c5e5f3422a9e39ded35cce6f7e" - } - }, - "890f4eb716014024a5979fa13eb74d7c": { + "7c9a692f8204465ba1b8adbd9e9bd3c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e6580715c12f4b788ec83b2fb386a5ee", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_33b12887dbb64274a7777cd6a46751fd", - "value": 466062.0 + "layout": "IPY_MODEL_ed202d16509b42c1bb176126e4e05c3c", + "placeholder": "​", + "style": "IPY_MODEL_8b8c7928fea64b0aae6e79b080caf631", + "value": "config.json: 100%" } }, - "8935bc181d264ffc8db415b422beb496": { + "846ddec3eae540f8a5d8c5e007a27eed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2936,14 +3062,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3f6a155e08b14f70bd139c25bbfc97ee", - "IPY_MODEL_890f4eb716014024a5979fa13eb74d7c", - "IPY_MODEL_2459388b6cbd42c2a4d43684c4b9afdf" + "IPY_MODEL_271eb78573ed4449a9ef6a620d23aace", + "IPY_MODEL_4c1af2e421ec4880a3ccc14f47169455", + "IPY_MODEL_f624a1ace7c44e04a3b4ebc9951dfa75" ], - "layout": "IPY_MODEL_c31984e520ca42ca88ae7a5abd092a51" + "layout": "IPY_MODEL_f7c8c0016ca5445fb7fe61c46cca6c41" } }, - "926b0337f538498182c5aa19264b1a8d": { + "8a90681af46149cd99c3dfb8f61493fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2995,29 +3121,7 @@ "width": null } }, - "94c85eae08a741ef81e270f9647311bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_be2b666b3d804f36913f6c87815b978c", - "IPY_MODEL_4791eeb7baf64c8d9fac236bf5132592", - "IPY_MODEL_2042be878078403c96190c096097d90d" - ], - "layout": "IPY_MODEL_583b1f186cc546f4a39bdfdd40349e0d" - } - }, - "97e3a9449c1045cf96051bf240fb3d86": { + "8b8c7928fea64b0aae6e79b080caf631": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3032,50 +3136,22 @@ "description_width": "" } }, - "996f676633b94db4ab7ceea5a92391f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_075c0a2ff8984472a2407cb65c1af308", - "placeholder": "​", - "style": "IPY_MODEL_aa56e96131494666bf4ac89b82a1e4e5", - "value": "" - } - }, - "9b94f541e59245eda011ea6c11772a07": { + "998aa4af95474db69ca88e9ba3a881bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ffd34fdfbd9448afb84dbd6818b15c8d", - "IPY_MODEL_7a6f92e7c9954a008ddc389e56a80eb1", - "IPY_MODEL_0dd83adc06cc448dbb45c8d5b083b1b3" - ], - "layout": "IPY_MODEL_12cb6377a008434fb126f7a20059d295" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "9eee4112141543a9a4224b8b25ab2e5d": { + "9b40a54e98ad425ea571f2235b45cfa7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3127,7 +3203,45 @@ "width": null } }, - "9faaecaae1734c61ae18e834186c1666": { + "9cebcba8e14342fa8a5a848de8bb429d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a035c53190064c67a6538f2c632014d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5289f324b7b84ed29fad7302410fc558", + "IPY_MODEL_cd0831c021964b7f91d2d7242010d303", + "IPY_MODEL_50ce9ad6e67d47af916bd2dddeabdf5f" + ], + "layout": "IPY_MODEL_ba76b9ac99af432e9998c5ab79d4ecbc" + } + }, + "a37a3237c77a4bae9ca555ce7b7c587a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3179,23 +3293,7 @@ "width": null } }, - "a321f57989f746d79202da624285ed2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a6b4b7c9957e4b819305afab73204cf6": { + "a961453567e146a090edb21c1f8328fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3210,7 +3308,7 @@ "description_width": "" } }, - "a956344db7a545cd957824d3ff7a2138": { + "a9acb004614247faab6822522e529fdf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3226,22 +3324,29 @@ "description_width": "" } }, - "aa56e96131494666bf4ac89b82a1e4e5": { + "ab7bf1923bad44e39d653545bddc6d0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_df95051a1dd64ddfa89451d600af8091", + "IPY_MODEL_24b5a6f6757048468a4f92c9d975a221", + "IPY_MODEL_f778bd7afe684f9aa4f9bf18daf37759" + ], + "layout": "IPY_MODEL_d3e98926c2e74442a0e4ef1739a07b8e" } }, - "b2c45c794eca4d8ea4aab4e4a2858c77": { + "ac722767e0684b048aa1a3d833202e61": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3293,7 +3398,7 @@ "width": null } }, - "bad367d7aefa4a2b986452a5deea268f": { + "ace290c9613747ffb6fac8dd2d2f8165": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3345,7 +3450,7 @@ "width": null } }, - "bb4e1551497a4ce4be301f4368f81676": { + "adaca57a88d44f9faa38907e2c0e9b68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3360,7 +3465,7 @@ "description_width": "" } }, - "bc2109a4e2f84d67bbb8ab6cba21fab9": { + "ae4e7edf8f6343b4ac661fee40ce9dd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3375,14 +3480,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c75aeff00b944db28a3423a3e33e24b4", - "IPY_MODEL_699ecc7a765d443aa11b0205425189a3", - "IPY_MODEL_f7f48121963b4ec7b6aa45f44f292c52" + "IPY_MODEL_7c9a692f8204465ba1b8adbd9e9bd3c4", + "IPY_MODEL_12eb465219a34bb5ba7f5af661bb649a", + "IPY_MODEL_e3208e4c06df4603a460602b0a19c97f" ], - "layout": "IPY_MODEL_e1baa1f8f2054d8eab2aa13d0120b795" + "layout": "IPY_MODEL_c3f737dcaee34393ad7d3e54c83cc76e" } }, - "bded0c71aa4d4ae0923501e8367e757e": { + "aeddbd3a4a45466daffd3ff06403bd57": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3426,36 +3531,15 @@ "order": null, "overflow": null, "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "be2b666b3d804f36913f6c87815b978c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d83d11da89f7403db61c0c0c22942732", - "placeholder": "​", - "style": "IPY_MODEL_2c57a2dce6844d669534d4a56c9b289e", - "value": "README.md: 100%" + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c31984e520ca42ca88ae7a5abd092a51": { + "af851b86760d454a81a2edf6605cb7e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3507,7 +3591,7 @@ "width": null } }, - "c3a89d32580e43a5abcb986b0342b26b": { + "b4d5012b0f464b5d9c0d3a003b48f644": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3559,7 +3643,22 @@ "width": null } }, - "c75aeff00b944db28a3423a3e33e24b4": { + "b86a66dd6b43465b9de0018bef50709b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b880377f15b04d36bdeaa258c5f13655": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3574,13 +3673,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_926b0337f538498182c5aa19264b1a8d", + "layout": "IPY_MODEL_6f6929f78a4f469ba161d40664174088", "placeholder": "​", - "style": "IPY_MODEL_fbb188a1c26343dba4a64537799f492c", - "value": "tokenizer_config.json: 100%" + "style": "IPY_MODEL_7371921d43624293b95a7d1d04822637", + "value": "tokenizer.json: 100%" } }, - "c76748ec8a42450ba7223d8b626ba091": { + "ba76b9ac99af432e9998c5ab79d4ecbc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3632,7 +3731,23 @@ "width": null } }, - "d318a49900f244a4acf9106cb605f223": { + "bc1c6eb59ac64b90bc0f665cf6263991": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bf8b40ed0f1248229ede46c72b01a704": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3647,28 +3762,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_dd4c5afca32949129c9e6f43b9b1413e", + "layout": "IPY_MODEL_2060bd2b52044a43ad81a559d41c5608", "placeholder": "​", - "style": "IPY_MODEL_81591ea42d154551991b09bc36ec0ace", - "value": " 0/0 [00:00<?, ?it/s]" - } - }, - "d4a4587430474d8fb2e2e40550998d40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_5b4266ca4b764b27b32b47710666f5ce", + "value": " 54.2M/54.2M [00:00<00:00, 304MB/s]" } }, - "d83d11da89f7403db61c0c0c22942732": { + "c36c9d6b85fb4e7d96da6fb72da31e55": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3720,7 +3820,7 @@ "width": null } }, - "d88203f29b6041b9b084fcbe564b744c": { + "c3f737dcaee34393ad7d3e54c83cc76e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3772,28 +3872,7 @@ "width": null } }, - "dc47d97b3b07452a9c03cbe07c75252c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_43604c5ccc2f48e084d21528eff3c15d", - "placeholder": "​", - "style": "IPY_MODEL_0f07dbed86ee4dedb4230e294d563b70", - "value": "config.json: 100%" - } - }, - "dd4c5afca32949129c9e6f43b9b1413e": { + "c3f7fdc25dd64c9d98cd2f0b2e291eb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3845,31 +3924,7 @@ "width": null } }, - "ddea88fc65ed4f6dae2c94fb28fe25d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_609217f73fbb420caa14bc522c18b15d", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a956344db7a545cd957824d3ff7a2138", - "value": 54245363.0 - } - }, - "e1baa1f8f2054d8eab2aa13d0120b795": { + "cb64c1704bfd47a2b0d1a0cbb4eda118": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3918,10 +3973,34 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" + } + }, + "cd0831c021964b7f91d2d7242010d303": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5bc63fd6d1914111bc85b5107d68dd1a", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_517ee44c1b0a4edd9bcc596b8382f777", + "value": 2211.0 } }, - "e6580715c12f4b788ec83b2fb386a5ee": { + "cdaaa357098d46e79c0adae4cb1dfa7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3973,7 +4052,7 @@ "width": null } }, - "ea99b5f99229433c84ef7bc51a9c130f": { + "d3e98926c2e74442a0e4ef1739a07b8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4025,29 +4104,28 @@ "width": null } }, - "f2e849e51c874b17a848ea3fa7185a74": { + "dc2f535ef125497aa7f485e4cc122ba2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5986e501975345c18931a5f0b9321683", - "IPY_MODEL_692cd1c543c44d1f9a54e10a308abc35", - "IPY_MODEL_31cbafcf7296451f8eafa376459fce42" - ], - "layout": "IPY_MODEL_bded0c71aa4d4ae0923501e8367e757e" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_289fbd27555449f3bf0b4ab45b920987", + "placeholder": "​", + "style": "IPY_MODEL_22cf5aef29254450b9844e018c703f82", + "value": " 391/391 [00:00<00:00, 50.4kB/s]" } }, - "f67b595c6d6840bb837ed3c0bac5d0c8": { + "df95051a1dd64ddfa89451d600af8091": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4062,13 +4140,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b2c45c794eca4d8ea4aab4e4a2858c77", + "layout": "IPY_MODEL_3d5668abd9214ea2a1b2300c3f11a473", "placeholder": "​", - "style": "IPY_MODEL_6a41a8086ed2471099f0596d310b417b", - "value": "pytorch_model.bin: 100%" + "style": "IPY_MODEL_72500022d46e4fc4b4c4967d61c937e9", + "value": "tokenizer_config.json: 100%" } }, - "f7f48121963b4ec7b6aa45f44f292c52": { + "e3208e4c06df4603a460602b0a19c97f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4083,65 +4161,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f9e7c4cce0aa4b9aaff09fc9b622d605", + "layout": "IPY_MODEL_79a21b08f308471dab6566409e64c074", "placeholder": "​", - "style": "IPY_MODEL_a6b4b7c9957e4b819305afab73204cf6", - "value": " 29.0/29.0 [00:00<00:00, 3.64kB/s]" + "style": "IPY_MODEL_b86a66dd6b43465b9de0018bef50709b", + "value": " 665/665 [00:00<00:00, 82.4kB/s]" } }, - "f7f728bec002499ab7823a03e95a2bf5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f8fc9626652544dba8ec78fd1f4ae9d7": { + "ec81a6b6f26846f89c761ec702fb7d3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4156,14 +4182,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_dc47d97b3b07452a9c03cbe07c75252c", - "IPY_MODEL_2886de46d9fd4702ab6e1c5b72e49072", - "IPY_MODEL_4abeacb8c56a488785fb5b9d0945caed" + "IPY_MODEL_34a361b4e50a4b5bb7bcefa076be8425", + "IPY_MODEL_6ce2d0c11d344a89983ff35576635c8c", + "IPY_MODEL_bf8b40ed0f1248229ede46c72b01a704" ], - "layout": "IPY_MODEL_4880191d3d0547f39e1ae04216c88b71" + "layout": "IPY_MODEL_4abb8c9fc4494f2480b9ce1aefc62a3c" } }, - "f9e7c4cce0aa4b9aaff09fc9b622d605": { + "ed202d16509b42c1bb176126e4e05c3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4215,7 +4241,7 @@ "width": null } }, - "fae8a5b5019e44ecad743866c942cf00": { + "f3697a9009484745857bbb563251edd4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4230,7 +4256,7 @@ "description_width": "" } }, - "fbb188a1c26343dba4a64537799f492c": { + "f45adf84fd9942c080fdcac3a252d83e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4245,75 +4271,49 @@ "description_width": "" } }, - "fbd8f018fee147b9a856a836508c2d32": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "f624a1ace7c44e04a3b4ebc9951dfa75": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7416e63643774d6196fbb3ef783b2eb6", + "placeholder": "​", + "style": "IPY_MODEL_f45adf84fd9942c080fdcac3a252d83e", + "value": " 0/0 [00:00<?, ?it/s]" } }, - "fcdce2bba18d4262a99e80746cd7ed8b": { + "f778bd7afe684f9aa4f9bf18daf37759": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7b699d78d8f4432cbf2055fc6120002a", + "placeholder": "​", + "style": "IPY_MODEL_5019c2eb7d2c451ea914b819689be45f", + "value": " 29.0/29.0 [00:00<00:00, 3.59kB/s]" } }, - "fd69eddaeade4dfbbc190d9d0f7cef92": { + "f7c8c0016ca5445fb7fe61c46cca6c41": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4365,7 +4365,7 @@ "width": null } }, - "ffd34fdfbd9448afb84dbd6818b15c8d": { + "f7e41c8fe75d40dbb8de60651dc3b6ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4380,9 +4380,9 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fbd8f018fee147b9a856a836508c2d32", + "layout": "IPY_MODEL_c3f7fdc25dd64c9d98cd2f0b2e291eb7", "placeholder": "​", - "style": "IPY_MODEL_d4a4587430474d8fb2e2e40550998d40", + "style": "IPY_MODEL_998aa4af95474db69ca88e9ba3a881bb", "value": "vocab.txt: 100%" } } diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 44bd6d80e..3d7b8a9cd 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:41.334420Z", - "iopub.status.busy": "2024-01-10T14:59:41.333949Z", - "iopub.status.idle": "2024-01-10T14:59:42.355922Z", - "shell.execute_reply": "2024-01-10T14:59:42.355241Z" + "iopub.execute_input": "2024-01-12T22:21:05.267117Z", + "iopub.status.busy": "2024-01-12T22:21:05.266923Z", + "iopub.status.idle": "2024-01-12T22:21:06.327278Z", + "shell.execute_reply": "2024-01-12T22:21:06.326549Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:42.359064Z", - "iopub.status.busy": "2024-01-10T14:59:42.358534Z", - "iopub.status.idle": "2024-01-10T14:59:42.361625Z", - "shell.execute_reply": "2024-01-10T14:59:42.361111Z" + "iopub.execute_input": "2024-01-12T22:21:06.330638Z", + "iopub.status.busy": "2024-01-12T22:21:06.329933Z", + "iopub.status.idle": "2024-01-12T22:21:06.333209Z", + "shell.execute_reply": "2024-01-12T22:21:06.332578Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:42.364150Z", - "iopub.status.busy": "2024-01-10T14:59:42.363702Z", - "iopub.status.idle": "2024-01-10T14:59:42.376325Z", - "shell.execute_reply": "2024-01-10T14:59:42.375739Z" + "iopub.execute_input": "2024-01-12T22:21:06.335613Z", + "iopub.status.busy": "2024-01-12T22:21:06.335367Z", + "iopub.status.idle": "2024-01-12T22:21:06.348260Z", + "shell.execute_reply": "2024-01-12T22:21:06.347628Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:42.378959Z", - "iopub.status.busy": "2024-01-10T14:59:42.378603Z", - "iopub.status.idle": "2024-01-10T14:59:46.491752Z", - "shell.execute_reply": "2024-01-10T14:59:46.491163Z" + "iopub.execute_input": "2024-01-12T22:21:06.350862Z", + "iopub.status.busy": "2024-01-12T22:21:06.350429Z", + "iopub.status.idle": "2024-01-12T22:21:13.391938Z", + "shell.execute_reply": "2024-01-12T22:21:13.391352Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 5bfa51262..1acddaaa3 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:50.893165Z", - "iopub.status.busy": "2024-01-10T14:59:50.892970Z", - "iopub.status.idle": "2024-01-10T14:59:51.939588Z", - "shell.execute_reply": "2024-01-10T14:59:51.938934Z" + "iopub.execute_input": "2024-01-12T22:21:17.870948Z", + "iopub.status.busy": "2024-01-12T22:21:17.870487Z", + "iopub.status.idle": "2024-01-12T22:21:18.914700Z", + "shell.execute_reply": "2024-01-12T22:21:18.914095Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:51.943002Z", - "iopub.status.busy": "2024-01-10T14:59:51.942447Z", - "iopub.status.idle": "2024-01-10T14:59:51.946140Z", - "shell.execute_reply": "2024-01-10T14:59:51.945634Z" + "iopub.execute_input": "2024-01-12T22:21:18.918012Z", + "iopub.status.busy": "2024-01-12T22:21:18.917434Z", + "iopub.status.idle": "2024-01-12T22:21:18.921220Z", + "shell.execute_reply": "2024-01-12T22:21:18.920699Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:51.948844Z", - "iopub.status.busy": "2024-01-10T14:59:51.948364Z", - "iopub.status.idle": "2024-01-10T14:59:53.958972Z", - "shell.execute_reply": "2024-01-10T14:59:53.958235Z" + "iopub.execute_input": "2024-01-12T22:21:18.923551Z", + "iopub.status.busy": "2024-01-12T22:21:18.923345Z", + "iopub.status.idle": "2024-01-12T22:21:20.975597Z", + "shell.execute_reply": "2024-01-12T22:21:20.974757Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:53.962418Z", - "iopub.status.busy": "2024-01-10T14:59:53.961685Z", - "iopub.status.idle": "2024-01-10T14:59:53.998347Z", - "shell.execute_reply": "2024-01-10T14:59:53.997661Z" + "iopub.execute_input": "2024-01-12T22:21:20.979409Z", + "iopub.status.busy": "2024-01-12T22:21:20.978602Z", + "iopub.status.idle": "2024-01-12T22:21:21.023142Z", + "shell.execute_reply": "2024-01-12T22:21:21.022301Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.001353Z", - "iopub.status.busy": "2024-01-10T14:59:54.000979Z", - "iopub.status.idle": "2024-01-10T14:59:54.037345Z", - "shell.execute_reply": "2024-01-10T14:59:54.036554Z" + "iopub.execute_input": "2024-01-12T22:21:21.026586Z", + "iopub.status.busy": "2024-01-12T22:21:21.025994Z", + "iopub.status.idle": "2024-01-12T22:21:21.064181Z", + "shell.execute_reply": "2024-01-12T22:21:21.063388Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.040406Z", - "iopub.status.busy": "2024-01-10T14:59:54.040062Z", - "iopub.status.idle": "2024-01-10T14:59:54.043268Z", - "shell.execute_reply": "2024-01-10T14:59:54.042728Z" + "iopub.execute_input": "2024-01-12T22:21:21.067267Z", + "iopub.status.busy": "2024-01-12T22:21:21.066984Z", + "iopub.status.idle": "2024-01-12T22:21:21.070919Z", + "shell.execute_reply": "2024-01-12T22:21:21.070402Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.045714Z", - "iopub.status.busy": "2024-01-10T14:59:54.045356Z", - "iopub.status.idle": "2024-01-10T14:59:54.048133Z", - "shell.execute_reply": "2024-01-10T14:59:54.047607Z" + "iopub.execute_input": "2024-01-12T22:21:21.073609Z", + "iopub.status.busy": "2024-01-12T22:21:21.073040Z", + "iopub.status.idle": "2024-01-12T22:21:21.076100Z", + "shell.execute_reply": "2024-01-12T22:21:21.075588Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.050733Z", - "iopub.status.busy": "2024-01-10T14:59:54.050248Z", - "iopub.status.idle": "2024-01-10T14:59:54.078354Z", - "shell.execute_reply": "2024-01-10T14:59:54.077694Z" + "iopub.execute_input": "2024-01-12T22:21:21.078818Z", + "iopub.status.busy": "2024-01-12T22:21:21.078291Z", + "iopub.status.idle": "2024-01-12T22:21:21.108337Z", + "shell.execute_reply": "2024-01-12T22:21:21.107645Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "075f00108c9143bb95de45ad3e1b32a1", + "model_id": "bc7c2a7fb64e434a9f2221f9f0c1ae1b", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "187b0fc246824442903879754666f9fb", + "model_id": "ec253b0c443b41678acb72f3ca953975", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.085049Z", - "iopub.status.busy": "2024-01-10T14:59:54.084695Z", - "iopub.status.idle": "2024-01-10T14:59:54.092109Z", - "shell.execute_reply": "2024-01-10T14:59:54.091490Z" + "iopub.execute_input": "2024-01-12T22:21:21.116544Z", + "iopub.status.busy": "2024-01-12T22:21:21.116140Z", + "iopub.status.idle": "2024-01-12T22:21:21.123480Z", + "shell.execute_reply": "2024-01-12T22:21:21.122874Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.094651Z", - "iopub.status.busy": "2024-01-10T14:59:54.094271Z", - "iopub.status.idle": "2024-01-10T14:59:54.098035Z", - "shell.execute_reply": "2024-01-10T14:59:54.097434Z" + "iopub.execute_input": "2024-01-12T22:21:21.126112Z", + "iopub.status.busy": "2024-01-12T22:21:21.125650Z", + "iopub.status.idle": "2024-01-12T22:21:21.129526Z", + "shell.execute_reply": "2024-01-12T22:21:21.128893Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.100245Z", - "iopub.status.busy": "2024-01-10T14:59:54.099912Z", - "iopub.status.idle": "2024-01-10T14:59:54.106735Z", - "shell.execute_reply": "2024-01-10T14:59:54.106126Z" + "iopub.execute_input": "2024-01-12T22:21:21.131934Z", + "iopub.status.busy": "2024-01-12T22:21:21.131490Z", + "iopub.status.idle": "2024-01-12T22:21:21.138541Z", + "shell.execute_reply": "2024-01-12T22:21:21.137892Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.108937Z", - "iopub.status.busy": "2024-01-10T14:59:54.108729Z", - "iopub.status.idle": "2024-01-10T14:59:54.146363Z", - "shell.execute_reply": "2024-01-10T14:59:54.145668Z" + "iopub.execute_input": "2024-01-12T22:21:21.141040Z", + "iopub.status.busy": "2024-01-12T22:21:21.140554Z", + "iopub.status.idle": "2024-01-12T22:21:21.181071Z", + "shell.execute_reply": "2024-01-12T22:21:21.180350Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.149318Z", - "iopub.status.busy": "2024-01-10T14:59:54.148912Z", - "iopub.status.idle": "2024-01-10T14:59:54.185413Z", - "shell.execute_reply": "2024-01-10T14:59:54.184745Z" + "iopub.execute_input": "2024-01-12T22:21:21.184559Z", + "iopub.status.busy": "2024-01-12T22:21:21.183997Z", + "iopub.status.idle": "2024-01-12T22:21:21.224816Z", + "shell.execute_reply": "2024-01-12T22:21:21.224130Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.188595Z", - "iopub.status.busy": "2024-01-10T14:59:54.188185Z", - "iopub.status.idle": "2024-01-10T14:59:54.302578Z", - "shell.execute_reply": "2024-01-10T14:59:54.301896Z" + "iopub.execute_input": "2024-01-12T22:21:21.228188Z", + "iopub.status.busy": "2024-01-12T22:21:21.227787Z", + "iopub.status.idle": "2024-01-12T22:21:21.349153Z", + "shell.execute_reply": "2024-01-12T22:21:21.348494Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.305610Z", - "iopub.status.busy": "2024-01-10T14:59:54.305065Z", - "iopub.status.idle": "2024-01-10T14:59:56.793121Z", - "shell.execute_reply": "2024-01-10T14:59:56.792360Z" + "iopub.execute_input": "2024-01-12T22:21:21.352200Z", + "iopub.status.busy": "2024-01-12T22:21:21.351716Z", + "iopub.status.idle": "2024-01-12T22:21:23.859555Z", + "shell.execute_reply": "2024-01-12T22:21:23.858823Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:56.796100Z", - "iopub.status.busy": "2024-01-10T14:59:56.795869Z", - "iopub.status.idle": "2024-01-10T14:59:56.854518Z", - "shell.execute_reply": "2024-01-10T14:59:56.853835Z" + "iopub.execute_input": "2024-01-12T22:21:23.862291Z", + "iopub.status.busy": "2024-01-12T22:21:23.861904Z", + "iopub.status.idle": "2024-01-12T22:21:23.924949Z", + "shell.execute_reply": "2024-01-12T22:21:23.924265Z" } }, "outputs": [ @@ -802,7 +802,7 @@ }, { "cell_type": "markdown", - "id": "79abd091", + "id": "f5d43f49", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -810,7 +810,7 @@ }, { "cell_type": "markdown", - "id": "6d19c12e", + "id": "c9cc22ef", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -823,13 +823,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "8e189dcb", + "id": "f558bd91", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:56.857079Z", - "iopub.status.busy": "2024-01-10T14:59:56.856723Z", - "iopub.status.idle": "2024-01-10T14:59:56.966714Z", - "shell.execute_reply": "2024-01-10T14:59:56.965883Z" + "iopub.execute_input": "2024-01-12T22:21:23.927634Z", + "iopub.status.busy": "2024-01-12T22:21:23.927268Z", + "iopub.status.idle": "2024-01-12T22:21:24.036086Z", + "shell.execute_reply": "2024-01-12T22:21:24.035291Z" } }, "outputs": [ @@ -870,7 +870,7 @@ }, { "cell_type": "markdown", - "id": "96869909", + "id": "2eb59e69", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -879,13 +879,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "79a16416", + "id": "5ebf62a8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:56.970421Z", - "iopub.status.busy": "2024-01-10T14:59:56.969410Z", - "iopub.status.idle": "2024-01-10T14:59:57.046615Z", - "shell.execute_reply": "2024-01-10T14:59:57.045885Z" + "iopub.execute_input": "2024-01-12T22:21:24.039961Z", + "iopub.status.busy": "2024-01-12T22:21:24.038741Z", + "iopub.status.idle": "2024-01-12T22:21:24.113220Z", + "shell.execute_reply": "2024-01-12T22:21:24.112528Z" } }, "outputs": [ @@ -921,7 +921,7 @@ }, { "cell_type": "markdown", - "id": "3d459566", + "id": "0e43ba14", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -932,13 +932,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "afc2b0b9", + "id": "3cd1af11", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:57.049298Z", - "iopub.status.busy": "2024-01-10T14:59:57.048916Z", - "iopub.status.idle": "2024-01-10T14:59:57.057177Z", - "shell.execute_reply": "2024-01-10T14:59:57.056582Z" + "iopub.execute_input": "2024-01-12T22:21:24.116273Z", + "iopub.status.busy": "2024-01-12T22:21:24.115681Z", + "iopub.status.idle": "2024-01-12T22:21:24.124494Z", + "shell.execute_reply": "2024-01-12T22:21:24.124021Z" } }, "outputs": [], @@ -1040,7 +1040,7 @@ }, { "cell_type": "markdown", - "id": "82dbd54f", + "id": "6731a955", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1055,13 +1055,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "4a747a25", + "id": "8f23f491", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:57.059676Z", - "iopub.status.busy": "2024-01-10T14:59:57.059243Z", - "iopub.status.idle": "2024-01-10T14:59:57.079299Z", - "shell.execute_reply": "2024-01-10T14:59:57.078739Z" + "iopub.execute_input": "2024-01-12T22:21:24.127678Z", + "iopub.status.busy": "2024-01-12T22:21:24.126568Z", + "iopub.status.idle": "2024-01-12T22:21:24.146270Z", + "shell.execute_reply": "2024-01-12T22:21:24.145592Z" } }, "outputs": [ @@ -1104,13 +1104,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "cc8f3506", + "id": "319d73d5", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:57.081812Z", - "iopub.status.busy": "2024-01-10T14:59:57.081393Z", - "iopub.status.idle": "2024-01-10T14:59:57.085818Z", - "shell.execute_reply": "2024-01-10T14:59:57.085202Z" + "iopub.execute_input": "2024-01-12T22:21:24.148898Z", + "iopub.status.busy": "2024-01-12T22:21:24.148512Z", + "iopub.status.idle": "2024-01-12T22:21:24.152405Z", + "shell.execute_reply": "2024-01-12T22:21:24.151793Z" } }, "outputs": [ @@ -1205,88 +1205,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "075f00108c9143bb95de45ad3e1b32a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_19c69f8250174c15836a73a9013c308f", - "IPY_MODEL_f2b1f15303b14f7280a65bf9226d7ae6", - "IPY_MODEL_180f325c4b8f41009bec369623aca77c" - ], - "layout": "IPY_MODEL_19738babb8c6474796f43941b0b5da8d" - } - }, - "1557598dc31c495a9d7519e96caf3ae6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "180f325c4b8f41009bec369623aca77c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_18d28aa507ef43beac8a8d3a63d2ea79", - "placeholder": "​", - "style": "IPY_MODEL_2cd086b6d25b4143bc2ae32f4459db0b", - "value": " 10000/? [00:00<00:00, 935894.32it/s]" - } - }, - "187b0fc246824442903879754666f9fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f59299d4afbb4249a61046c3a5e522aa", - "IPY_MODEL_f54e0ed2cc28430f8285ca5079656137", - "IPY_MODEL_c8b1b9260a22401c90b72c62787c2226" - ], - "layout": "IPY_MODEL_31070f1577a7498799ff2eec91b6441d" - } - }, - "18d28aa507ef43beac8a8d3a63d2ea79": { + "06778bdb873a48b59c8fe75781569b3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1338,7 +1257,23 @@ "width": null } }, - "19738babb8c6474796f43941b0b5da8d": { + "0b7e34d2d24c4329840ad6174cd552b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0ced4a0f60c14b3bae96ac968dde7008": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1390,28 +1325,62 @@ "width": null } }, - "19c69f8250174c15836a73a9013c308f": { + "271c0ffa611c45669a1213d83acb243b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "289473725ba143dc844cc847bb573710": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5392a91b17f24f4fafec60b72df4c12e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_637100a896df4d849534b2f362654c96", - "placeholder": "​", - "style": "IPY_MODEL_ec80fece88d644bfa5c589b0ba25b5c0", - "value": "number of examples processed for estimating thresholds: " + "layout": "IPY_MODEL_06778bdb873a48b59c8fe75781569b3f", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_271c0ffa611c45669a1213d83acb243b", + "value": 50.0 } }, - "2cd086b6d25b4143bc2ae32f4459db0b": { + "58a1e554ea4c4a1d8f66b9a6ed0938af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1426,7 +1395,7 @@ "description_width": "" } }, - "31070f1577a7498799ff2eec91b6441d": { + "6996d4b1107640fe868ce57360d3dc9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1478,7 +1447,7 @@ "width": null } }, - "52b366eb36b54b419859bfa0171b9e16": { + "848de2054b404ac9b17628e5c82a47ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1530,7 +1499,7 @@ "width": null } }, - "637100a896df4d849534b2f362654c96": { + "8a406d6e15f145948b9ff0c2c76bf624": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1582,37 +1551,7 @@ "width": null } }, - "76f8f56743414c94bc06877a3304fa61": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7dafcc1ce8304bc6bce2f0a04f82ebd9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a152270654af43649f1664b7ece96dc4": { + "9ab6a97590064194bf5d7b8e19978ef8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1664,7 +1603,31 @@ "width": null } }, - "a45ae2e5caff44cdb39d49840213da69": { + "a174658f1f924400bba00fc527fef349": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9ab6a97590064194bf5d7b8e19978ef8", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0b7e34d2d24c4329840ad6174cd552b0", + "value": 50.0 + } + }, + "afa6cc2b96df424e9c0f8a5eaf73e863": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1716,23 +1679,107 @@ "width": null } }, - "aa30ead3d6c2441584d3767f851fb6f0": { + "b3c242d811304cd99b1b619a3a9e6a40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f096bdb3e142457781a2f7d04da80785", + "placeholder": "​", + "style": "IPY_MODEL_58a1e554ea4c4a1d8f66b9a6ed0938af", + "value": " 10000/? [00:00<00:00, 1089457.91it/s]" + } + }, + "bc7c2a7fb64e434a9f2221f9f0c1ae1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c7603d666ff44e3583ae6af613998bb1", + "IPY_MODEL_5392a91b17f24f4fafec60b72df4c12e", + "IPY_MODEL_e50911ae02734303a2d4ef3549ad019c" + ], + "layout": "IPY_MODEL_afa6cc2b96df424e9c0f8a5eaf73e863" + } + }, + "c7603d666ff44e3583ae6af613998bb1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6996d4b1107640fe868ce57360d3dc9e", + "placeholder": "​", + "style": "IPY_MODEL_fd8da9fb6e9e4b3a941a24a95debb741", + "value": "number of examples processed for estimating thresholds: " + } + }, + "d0825b5cd5dc425396f81b6dea73a47c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8a406d6e15f145948b9ff0c2c76bf624", + "placeholder": "​", + "style": "IPY_MODEL_d570448d94114ae086752d09e77df93b", + "value": "number of examples processed for checking labels: " + } + }, + "d570448d94114ae086752d09e77df93b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "c8b1b9260a22401c90b72c62787c2226": { + "e50911ae02734303a2d4ef3549ad019c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1747,13 +1794,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e28a697de62c4e99a866def110006b3b", + "layout": "IPY_MODEL_848de2054b404ac9b17628e5c82a47ba", "placeholder": "​", - "style": "IPY_MODEL_76f8f56743414c94bc06877a3304fa61", - "value": " 10000/? [00:00<00:00, 1136729.36it/s]" + "style": "IPY_MODEL_289473725ba143dc844cc847bb573710", + "value": " 10000/? [00:00<00:00, 899659.81it/s]" + } + }, + "ec253b0c443b41678acb72f3ca953975": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d0825b5cd5dc425396f81b6dea73a47c", + "IPY_MODEL_a174658f1f924400bba00fc527fef349", + "IPY_MODEL_b3c242d811304cd99b1b619a3a9e6a40" + ], + "layout": "IPY_MODEL_0ced4a0f60c14b3bae96ac968dde7008" } }, - "e28a697de62c4e99a866def110006b3b": { + "f096bdb3e142457781a2f7d04da80785": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1805,7 +1874,7 @@ "width": null } }, - "ec80fece88d644bfa5c589b0ba25b5c0": { + "fd8da9fb6e9e4b3a941a24a95debb741": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1819,75 +1888,6 @@ "_view_name": "StyleView", "description_width": "" } - }, - "f2b1f15303b14f7280a65bf9226d7ae6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a152270654af43649f1664b7ece96dc4", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1557598dc31c495a9d7519e96caf3ae6", - "value": 50.0 - } - }, - "f54e0ed2cc28430f8285ca5079656137": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a45ae2e5caff44cdb39d49840213da69", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_aa30ead3d6c2441584d3767f851fb6f0", - "value": 50.0 - } - }, - "f59299d4afbb4249a61046c3a5e522aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_52b366eb36b54b419859bfa0171b9e16", - "placeholder": "​", - "style": "IPY_MODEL_7dafcc1ce8304bc6bce2f0a04f82ebd9", - "value": "number of examples processed for checking labels: " - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb index a7f7a4707..a9781d457 100644 --- a/master/.doctrees/nbsphinx/tutorials/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:02.259860Z", - "iopub.status.busy": "2024-01-10T15:00:02.259344Z", - "iopub.status.idle": "2024-01-10T15:00:04.424050Z", - "shell.execute_reply": "2024-01-10T15:00:04.423416Z" + "iopub.execute_input": "2024-01-12T22:21:29.286036Z", + "iopub.status.busy": "2024-01-12T22:21:29.285841Z", + "iopub.status.idle": "2024-01-12T22:21:31.484172Z", + "shell.execute_reply": "2024-01-12T22:21:31.483556Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:04.427155Z", - "iopub.status.busy": "2024-01-10T15:00:04.426599Z", - "iopub.status.idle": "2024-01-10T15:00:04.430600Z", - "shell.execute_reply": "2024-01-10T15:00:04.430047Z" + "iopub.execute_input": "2024-01-12T22:21:31.487143Z", + "iopub.status.busy": "2024-01-12T22:21:31.486699Z", + "iopub.status.idle": "2024-01-12T22:21:31.490537Z", + "shell.execute_reply": "2024-01-12T22:21:31.489980Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:04.433104Z", - "iopub.status.busy": "2024-01-10T15:00:04.432703Z", - "iopub.status.idle": "2024-01-10T15:00:06.135847Z", - "shell.execute_reply": "2024-01-10T15:00:06.135301Z" + "iopub.execute_input": "2024-01-12T22:21:31.492979Z", + "iopub.status.busy": "2024-01-12T22:21:31.492687Z", + "iopub.status.idle": "2024-01-12T22:21:34.986130Z", + "shell.execute_reply": "2024-01-12T22:21:34.985484Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b9f8b67a42cd4066aaa973e62b8ca794", + "model_id": "beb18ee3e6cc44ea814cbed0d7a11c03", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f290500824dc4995bf9dfe5f9f2b3425", + "model_id": "7a4945c889ae4ce189cb297e3fca221e", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ca3a18d2bf4b4fa68ed448ca06ccc823", + "model_id": "dbaddfd25414492ab26f1c94a8aae733", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f0d31b197fe7409d990c55b1452c3705", + "model_id": "591ffc03095349849ab863c8762af005", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:06.138494Z", - "iopub.status.busy": "2024-01-10T15:00:06.138100Z", - "iopub.status.idle": "2024-01-10T15:00:06.142256Z", - "shell.execute_reply": "2024-01-10T15:00:06.141635Z" + "iopub.execute_input": "2024-01-12T22:21:34.988771Z", + "iopub.status.busy": "2024-01-12T22:21:34.988513Z", + "iopub.status.idle": "2024-01-12T22:21:34.992568Z", + "shell.execute_reply": "2024-01-12T22:21:34.992060Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:06.144792Z", - "iopub.status.busy": "2024-01-10T15:00:06.144285Z", - "iopub.status.idle": "2024-01-10T15:00:18.301514Z", - "shell.execute_reply": "2024-01-10T15:00:18.300790Z" + "iopub.execute_input": "2024-01-12T22:21:34.995069Z", + "iopub.status.busy": "2024-01-12T22:21:34.994632Z", + "iopub.status.idle": "2024-01-12T22:21:47.432616Z", + "shell.execute_reply": "2024-01-12T22:21:47.432008Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8a7ea3a7486345b3b0576e7ea7232743", + "model_id": "26afb7fd852444ca822dd811ca348408", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:18.305070Z", - "iopub.status.busy": "2024-01-10T15:00:18.304465Z", - "iopub.status.idle": "2024-01-10T15:00:39.413459Z", - "shell.execute_reply": "2024-01-10T15:00:39.412837Z" + "iopub.execute_input": "2024-01-12T22:21:47.435795Z", + "iopub.status.busy": "2024-01-12T22:21:47.435457Z", + "iopub.status.idle": "2024-01-12T22:22:09.476571Z", + "shell.execute_reply": "2024-01-12T22:22:09.475917Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:39.416560Z", - "iopub.status.busy": "2024-01-10T15:00:39.416130Z", - "iopub.status.idle": "2024-01-10T15:00:39.422080Z", - "shell.execute_reply": "2024-01-10T15:00:39.421556Z" + "iopub.execute_input": "2024-01-12T22:22:09.479840Z", + "iopub.status.busy": "2024-01-12T22:22:09.479404Z", + "iopub.status.idle": "2024-01-12T22:22:09.485326Z", + "shell.execute_reply": "2024-01-12T22:22:09.484779Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:39.424414Z", - "iopub.status.busy": "2024-01-10T15:00:39.424051Z", - "iopub.status.idle": "2024-01-10T15:00:39.428093Z", - "shell.execute_reply": "2024-01-10T15:00:39.427614Z" + "iopub.execute_input": "2024-01-12T22:22:09.487659Z", + "iopub.status.busy": "2024-01-12T22:22:09.487296Z", + "iopub.status.idle": "2024-01-12T22:22:09.491643Z", + "shell.execute_reply": "2024-01-12T22:22:09.491000Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:39.430452Z", - "iopub.status.busy": "2024-01-10T15:00:39.430093Z", - "iopub.status.idle": "2024-01-10T15:00:39.439781Z", - "shell.execute_reply": "2024-01-10T15:00:39.439252Z" + "iopub.execute_input": "2024-01-12T22:22:09.494306Z", + "iopub.status.busy": "2024-01-12T22:22:09.493795Z", + "iopub.status.idle": "2024-01-12T22:22:09.503849Z", + "shell.execute_reply": "2024-01-12T22:22:09.503222Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:39.442271Z", - "iopub.status.busy": "2024-01-10T15:00:39.441782Z", - "iopub.status.idle": "2024-01-10T15:00:39.469753Z", - "shell.execute_reply": "2024-01-10T15:00:39.469234Z" + "iopub.execute_input": "2024-01-12T22:22:09.506325Z", + "iopub.status.busy": "2024-01-12T22:22:09.505936Z", + "iopub.status.idle": "2024-01-12T22:22:09.535784Z", + "shell.execute_reply": "2024-01-12T22:22:09.535198Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:39.472447Z", - "iopub.status.busy": "2024-01-10T15:00:39.472049Z", - "iopub.status.idle": "2024-01-10T15:01:10.318115Z", - "shell.execute_reply": "2024-01-10T15:01:10.317294Z" + "iopub.execute_input": "2024-01-12T22:22:09.538640Z", + "iopub.status.busy": "2024-01-12T22:22:09.538147Z", + "iopub.status.idle": "2024-01-12T22:22:41.093293Z", + "shell.execute_reply": "2024-01-12T22:22:41.092443Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.674\n" + "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.947\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.384\n", + "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.570\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.84it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.23it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 45.55it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 46.75it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.60it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 59.12it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 61.59it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 65.12it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 65.91it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 68.51it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 61.51it/s]" + "100%|██████████| 40/40 [00:00<00:00, 62.98it/s]" ] }, { @@ -820,7 +820,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.92it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.98it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 50.75it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 49.04it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 60.96it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 60.98it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 65.98it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 66.34it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 69.76it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 66.94it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.52it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.75it/s]" ] }, { @@ -882,14 +882,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.606\n" + "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.617\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.416\n", + "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.532\n", "Computing feature embeddings ...\n" ] }, @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.40it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.49it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 51.06it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.29it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 61.57it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.62it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 66.56it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 63.01it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 70.17it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 60.37it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.92it/s]" ] }, { @@ -976,7 +976,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.72it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.94it/s]" ] }, { @@ -984,7 +984,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.03it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 46.79it/s]" ] }, { @@ -992,7 +992,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 59.40it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 58.06it/s]" ] }, { @@ -1000,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 66.19it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 64.43it/s]" ] }, { @@ -1008,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 70.35it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 69.34it/s]" ] }, { @@ -1016,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 63.14it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.31it/s]" ] }, { @@ -1038,14 +1038,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.563\n" + "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.673\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.317\n", + "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.412\n", "Computing feature embeddings ...\n" ] }, @@ -1062,7 +1062,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.06it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.84it/s]" ] }, { @@ -1070,7 +1070,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.03it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 48.25it/s]" ] }, { @@ -1078,7 +1078,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.50it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 60.57it/s]" ] }, { @@ -1086,7 +1086,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.48it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 65.86it/s]" ] }, { @@ -1094,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 68.14it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 69.99it/s]" ] }, { @@ -1102,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.80it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.41it/s]" ] }, { @@ -1132,7 +1132,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.53it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 25.97it/s]" ] }, { @@ -1140,7 +1140,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 45.64it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 52.49it/s]" ] }, { @@ -1148,7 +1148,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 53.87it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 61.45it/s]" ] }, { @@ -1156,7 +1156,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▊ | 23/40 [00:00<00:00, 59.73it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 66.80it/s]" ] }, { @@ -1164,7 +1164,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 65.87it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 65.61it/s]" ] }, { @@ -1172,7 +1172,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.44it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.36it/s]" ] }, { @@ -1249,10 +1249,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:01:10.320887Z", - "iopub.status.busy": "2024-01-10T15:01:10.320635Z", - "iopub.status.idle": "2024-01-10T15:01:10.336127Z", - "shell.execute_reply": "2024-01-10T15:01:10.335651Z" + "iopub.execute_input": "2024-01-12T22:22:41.096299Z", + "iopub.status.busy": "2024-01-12T22:22:41.095908Z", + "iopub.status.idle": "2024-01-12T22:22:41.111844Z", + "shell.execute_reply": "2024-01-12T22:22:41.111347Z" } }, "outputs": [], @@ -1277,10 +1277,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:01:10.338583Z", - "iopub.status.busy": "2024-01-10T15:01:10.338209Z", - "iopub.status.idle": "2024-01-10T15:01:10.777774Z", - "shell.execute_reply": "2024-01-10T15:01:10.777077Z" + "iopub.execute_input": "2024-01-12T22:22:41.114439Z", + "iopub.status.busy": "2024-01-12T22:22:41.113927Z", + "iopub.status.idle": "2024-01-12T22:22:41.568793Z", + "shell.execute_reply": "2024-01-12T22:22:41.568066Z" } }, "outputs": [], @@ -1300,10 +1300,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:01:10.780594Z", - "iopub.status.busy": "2024-01-10T15:01:10.780378Z", - "iopub.status.idle": "2024-01-10T15:04:30.975742Z", - "shell.execute_reply": "2024-01-10T15:04:30.975036Z" + "iopub.execute_input": "2024-01-12T22:22:41.571736Z", + "iopub.status.busy": "2024-01-12T22:22:41.571508Z", + "iopub.status.idle": "2024-01-12T22:26:03.443135Z", + "shell.execute_reply": "2024-01-12T22:26:03.442506Z" } }, "outputs": [ @@ -1342,7 +1342,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eb174494cec7449c80000967dbef9224", + "model_id": "a1d74e51f5cd4d1083255ced81c6493f", "version_major": 2, "version_minor": 0 }, @@ -1381,10 +1381,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:30.978426Z", - "iopub.status.busy": "2024-01-10T15:04:30.977955Z", - "iopub.status.idle": "2024-01-10T15:04:31.496719Z", - "shell.execute_reply": "2024-01-10T15:04:31.496061Z" + "iopub.execute_input": "2024-01-12T22:26:03.446011Z", + "iopub.status.busy": "2024-01-12T22:26:03.445415Z", + "iopub.status.idle": "2024-01-12T22:26:03.971532Z", + "shell.execute_reply": "2024-01-12T22:26:03.970787Z" } }, "outputs": [ @@ -1596,10 +1596,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:31.499862Z", - "iopub.status.busy": "2024-01-10T15:04:31.499425Z", - "iopub.status.idle": "2024-01-10T15:04:31.562545Z", - "shell.execute_reply": "2024-01-10T15:04:31.561969Z" + "iopub.execute_input": "2024-01-12T22:26:03.974890Z", + "iopub.status.busy": "2024-01-12T22:26:03.974335Z", + "iopub.status.idle": "2024-01-12T22:26:04.014180Z", + "shell.execute_reply": "2024-01-12T22:26:04.013178Z" } }, "outputs": [ @@ -1703,10 +1703,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:31.565111Z", - "iopub.status.busy": "2024-01-10T15:04:31.564641Z", - "iopub.status.idle": "2024-01-10T15:04:31.573832Z", - "shell.execute_reply": "2024-01-10T15:04:31.573204Z" + "iopub.execute_input": "2024-01-12T22:26:04.016916Z", + "iopub.status.busy": "2024-01-12T22:26:04.016708Z", + "iopub.status.idle": "2024-01-12T22:26:04.026329Z", + "shell.execute_reply": "2024-01-12T22:26:04.025636Z" } }, "outputs": [ @@ -1836,10 +1836,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:31.576230Z", - "iopub.status.busy": "2024-01-10T15:04:31.575858Z", - "iopub.status.idle": "2024-01-10T15:04:31.580823Z", - "shell.execute_reply": "2024-01-10T15:04:31.580322Z" + "iopub.execute_input": "2024-01-12T22:26:04.028790Z", + "iopub.status.busy": "2024-01-12T22:26:04.028587Z", + "iopub.status.idle": "2024-01-12T22:26:04.033793Z", + "shell.execute_reply": "2024-01-12T22:26:04.033038Z" }, "nbsphinx": "hidden" }, @@ -1885,10 +1885,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:31.583353Z", - "iopub.status.busy": "2024-01-10T15:04:31.582863Z", - "iopub.status.idle": "2024-01-10T15:04:32.078729Z", - "shell.execute_reply": "2024-01-10T15:04:32.077999Z" + "iopub.execute_input": "2024-01-12T22:26:04.036289Z", + "iopub.status.busy": "2024-01-12T22:26:04.036085Z", + "iopub.status.idle": "2024-01-12T22:26:04.530778Z", + "shell.execute_reply": "2024-01-12T22:26:04.530026Z" } }, "outputs": [ @@ -1923,10 +1923,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:32.081461Z", - "iopub.status.busy": "2024-01-10T15:04:32.081063Z", - "iopub.status.idle": "2024-01-10T15:04:32.089988Z", - "shell.execute_reply": "2024-01-10T15:04:32.089379Z" + "iopub.execute_input": "2024-01-12T22:26:04.533388Z", + "iopub.status.busy": "2024-01-12T22:26:04.533138Z", + "iopub.status.idle": "2024-01-12T22:26:04.542324Z", + "shell.execute_reply": "2024-01-12T22:26:04.541683Z" } }, "outputs": [ @@ -2093,10 +2093,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:32.092549Z", - "iopub.status.busy": "2024-01-10T15:04:32.092192Z", - "iopub.status.idle": "2024-01-10T15:04:32.099974Z", - "shell.execute_reply": "2024-01-10T15:04:32.099484Z" + "iopub.execute_input": "2024-01-12T22:26:04.544691Z", + "iopub.status.busy": "2024-01-12T22:26:04.544487Z", + "iopub.status.idle": "2024-01-12T22:26:04.552495Z", + "shell.execute_reply": "2024-01-12T22:26:04.551946Z" }, "nbsphinx": "hidden" }, @@ -2172,10 +2172,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:32.102387Z", - "iopub.status.busy": "2024-01-10T15:04:32.101960Z", - "iopub.status.idle": "2024-01-10T15:04:32.570065Z", - "shell.execute_reply": "2024-01-10T15:04:32.569399Z" + "iopub.execute_input": "2024-01-12T22:26:04.554711Z", + "iopub.status.busy": "2024-01-12T22:26:04.554511Z", + "iopub.status.idle": "2024-01-12T22:26:05.026949Z", + "shell.execute_reply": "2024-01-12T22:26:05.026216Z" } }, "outputs": [ @@ -2212,10 +2212,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:32.572742Z", - "iopub.status.busy": "2024-01-10T15:04:32.572268Z", - "iopub.status.idle": "2024-01-10T15:04:32.588234Z", - "shell.execute_reply": "2024-01-10T15:04:32.587703Z" + "iopub.execute_input": "2024-01-12T22:26:05.029594Z", + "iopub.status.busy": "2024-01-12T22:26:05.029367Z", + "iopub.status.idle": "2024-01-12T22:26:05.045994Z", + "shell.execute_reply": "2024-01-12T22:26:05.045425Z" } }, "outputs": [ @@ -2372,10 +2372,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:32.590676Z", - "iopub.status.busy": "2024-01-10T15:04:32.590298Z", - "iopub.status.idle": "2024-01-10T15:04:32.596305Z", - "shell.execute_reply": "2024-01-10T15:04:32.595803Z" + "iopub.execute_input": "2024-01-12T22:26:05.048398Z", + "iopub.status.busy": "2024-01-12T22:26:05.048191Z", + "iopub.status.idle": "2024-01-12T22:26:05.054145Z", + "shell.execute_reply": "2024-01-12T22:26:05.053598Z" }, "nbsphinx": "hidden" }, @@ -2420,10 +2420,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:32.598706Z", - "iopub.status.busy": "2024-01-10T15:04:32.598338Z", - "iopub.status.idle": "2024-01-10T15:04:33.262834Z", - "shell.execute_reply": "2024-01-10T15:04:33.262161Z" + "iopub.execute_input": "2024-01-12T22:26:05.056257Z", + "iopub.status.busy": "2024-01-12T22:26:05.056056Z", + "iopub.status.idle": "2024-01-12T22:26:05.737979Z", + "shell.execute_reply": "2024-01-12T22:26:05.737311Z" } }, "outputs": [ @@ -2505,10 +2505,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:33.265775Z", - "iopub.status.busy": "2024-01-10T15:04:33.265530Z", - "iopub.status.idle": "2024-01-10T15:04:33.276077Z", - "shell.execute_reply": "2024-01-10T15:04:33.275421Z" + "iopub.execute_input": "2024-01-12T22:26:05.741483Z", + "iopub.status.busy": "2024-01-12T22:26:05.741003Z", + "iopub.status.idle": "2024-01-12T22:26:05.750003Z", + "shell.execute_reply": "2024-01-12T22:26:05.749376Z" } }, "outputs": [ @@ -2533,47 +2533,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2636,10 +2636,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:33.278895Z", - "iopub.status.busy": "2024-01-10T15:04:33.278657Z", - "iopub.status.idle": "2024-01-10T15:04:33.285169Z", - "shell.execute_reply": "2024-01-10T15:04:33.284523Z" + "iopub.execute_input": "2024-01-12T22:26:05.752712Z", + "iopub.status.busy": "2024-01-12T22:26:05.752467Z", + "iopub.status.idle": "2024-01-12T22:26:05.757733Z", + "shell.execute_reply": "2024-01-12T22:26:05.757110Z" }, "nbsphinx": "hidden" }, @@ -2676,10 +2676,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:33.287965Z", - "iopub.status.busy": "2024-01-10T15:04:33.287730Z", - "iopub.status.idle": "2024-01-10T15:04:33.487758Z", - "shell.execute_reply": "2024-01-10T15:04:33.487083Z" + "iopub.execute_input": "2024-01-12T22:26:05.760065Z", + "iopub.status.busy": "2024-01-12T22:26:05.759865Z", + "iopub.status.idle": "2024-01-12T22:26:05.935019Z", + "shell.execute_reply": "2024-01-12T22:26:05.934306Z" } }, "outputs": [ @@ -2721,10 +2721,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:33.490235Z", - "iopub.status.busy": "2024-01-10T15:04:33.490031Z", - "iopub.status.idle": "2024-01-10T15:04:33.498679Z", - "shell.execute_reply": "2024-01-10T15:04:33.498144Z" + "iopub.execute_input": "2024-01-12T22:26:05.937897Z", + "iopub.status.busy": "2024-01-12T22:26:05.937441Z", + "iopub.status.idle": "2024-01-12T22:26:05.946682Z", + "shell.execute_reply": "2024-01-12T22:26:05.946014Z" } }, "outputs": [ @@ -2810,10 +2810,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:33.501115Z", - "iopub.status.busy": "2024-01-10T15:04:33.500732Z", - "iopub.status.idle": "2024-01-10T15:04:33.699560Z", - "shell.execute_reply": "2024-01-10T15:04:33.698929Z" + "iopub.execute_input": "2024-01-12T22:26:05.949173Z", + "iopub.status.busy": "2024-01-12T22:26:05.948729Z", + "iopub.status.idle": "2024-01-12T22:26:06.149396Z", + "shell.execute_reply": "2024-01-12T22:26:06.148707Z" } }, "outputs": [ @@ -2853,10 +2853,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:33.702317Z", - "iopub.status.busy": "2024-01-10T15:04:33.701919Z", - "iopub.status.idle": "2024-01-10T15:04:33.706633Z", - "shell.execute_reply": "2024-01-10T15:04:33.706092Z" + "iopub.execute_input": "2024-01-12T22:26:06.152086Z", + "iopub.status.busy": "2024-01-12T22:26:06.151704Z", + "iopub.status.idle": "2024-01-12T22:26:06.156614Z", + "shell.execute_reply": "2024-01-12T22:26:06.155980Z" }, "nbsphinx": "hidden" }, @@ -2893,44 +2893,46 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04e4ae2e9732443b82af37f831ad18a1": { + "0277fa09311b4ba8abb2b2a2986ca3e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7f9b991821c64269abde879721f087c1", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0dcae8976c0144608e6b016600914d3f", + "value": 2.0 } }, - "112b9edaa54c411fa05ff60e3db9703c": { + "059caf43ca0b479094eee597880b5773": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4119165ce1a0454396504339dc2936a3", - "placeholder": "​", - "style": "IPY_MODEL_81f0fab4dcf943af9f8f853b13f0b4a4", - "value": " 5.18M/5.18M [00:00<00:00, 15.8MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "1b00bb94c97b48db81ef550d08db758e": { + "0a465b21fe394e56a8c191a1874926e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2982,59 +2984,38 @@ "width": null } }, - "20d56237eaae4fc6b1a35901cd2d7a70": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "0d6c837ee2c84f7da5571f0992e59117": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" + } + }, + "0dcae8976c0144608e6b016600914d3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "22fd5c8feced44949969236ff8c8f8c5": { + "10d0ca1880914ad29a9fc83bdd4bed41": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3086,7 +3067,43 @@ "width": null } }, - "241cbe4a6e3e4d4d9d6e9d22f4f3385b": { + "10e2d75b34f84a2bb286ea6f9568a8c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fcd1b1ee39a6475590c5bed00e741e19", + "placeholder": "​", + "style": "IPY_MODEL_193232f98f2b4b9890673fb08d5ed904", + "value": "Downloading data: 100%" + } + }, + "152379befccc4b0e9d6776d6d9d609b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "15fbc4eabff74c15a90161729735cc67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3102,7 +3119,22 @@ "description_width": "" } }, - "2a3b1109435a4736b03db0b1724a1442": { + "193232f98f2b4b9890673fb08d5ed904": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "198931c457ec4e31a2aca764bd52ae23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3117,101 +3149,69 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c86e818f0a9148bd95537441fe27026c", + "layout": "IPY_MODEL_67b337bd5ae94b3e8cef2d2fce252d75", "placeholder": "​", - "style": "IPY_MODEL_fa46b30146734cf0a97ec7dff997556d", + "style": "IPY_MODEL_6ffe9986f4ef4746980894ce46958263", "value": "Downloading data: 100%" } }, - "2f2d629210df44a1954ce512820b9974": { + "19e7f1cbbbe24f5f8fff5b952e0c2009": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6cd5b6a6a0d34bbebe021beb8ff9a555", - "placeholder": "​", - "style": "IPY_MODEL_fbc7b405c321481196b289cba2b9602a", - "value": " 2/2 [00:00<00:00, 326.20it/s]" + "layout": "IPY_MODEL_68820473b0ca4dceaf4a69bff0912b8a", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_15fbc4eabff74c15a90161729735cc67", + "value": 30931277.0 } }, - "30d262d335e4455cb26fa6ae8786ea57": { + "1fcf45ca9611468d8c64283bdf504709": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "31e88f00396f4838aa6fbf279617afea": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "23cc135027cd48b6b6c93df4ca1c4e2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "20px" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "32a4eedc1f8b44299bda1cb0f6abd26d": { + "264131c15a6c4afa92e1dbfe0622e190": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3263,75 +3263,69 @@ "width": null } }, - "3863766608144d4bbae2dc8c00366428": { + "26afb7fd852444ca822dd811ca348408": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3bc56116a03d4c4f98eee114a1f67c8c", + "IPY_MODEL_bf03084a87d54d6fa43ad2afd1e28051", + "IPY_MODEL_dacd7adcb1a04dbba89dcd96a3441f61" + ], + "layout": "IPY_MODEL_690724de97354c6c9fe08c3a1e9033dc" } }, - "3ccfadc694714dd88df84fa423c2c545": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "274a8dfa651c462c836db97848e117d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c21489c3af5448e88867e25c6c122f43", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2a6feda604d740c3bda3dc746ae590e1", + "value": 1.0 + } + }, + "2a6feda604d740c3bda3dc746ae590e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "40f90b8814ba414e817c21d71281dd99": { + "2db6b684acbb4466ae9ead1b1b69b3b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3347,67 +3341,78 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c5f12e66dcc34cd894aa2fb362979871", - "max": 2.0, + "layout": "IPY_MODEL_cfeb4789c49f449aaa6303dfb0d8930c", + "max": 5175617.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b312b11fc08244acb5c89f76e88653ff", - "value": 2.0 + "style": "IPY_MODEL_49ce59a94a8b4c0fba43aa2a420a8261", + "value": 5175617.0 } }, - "4119165ce1a0454396504339dc2936a3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "35d25ec4f29f4c9e81f1371c23d46605": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_68042234a4d44870a300f1966fcea9a9", + "placeholder": "​", + "style": "IPY_MODEL_6e7649dac77e46089a1ca133cad59c0e", + "value": " 30.9M/30.9M [00:00<00:00, 34.1MB/s]" + } + }, + "37a16bb8effa41d5b8e60e8d79029891": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4187cba4e1f0443884828017e35d8d1b", + "placeholder": "​", + "style": "IPY_MODEL_059caf43ca0b479094eee597880b5773", + "value": "Computing checksums: 100%" + } + }, + "3bc56116a03d4c4f98eee114a1f67c8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d873bb825c914966842e4d80c59ec145", + "placeholder": "​", + "style": "IPY_MODEL_0d6c837ee2c84f7da5571f0992e59117", + "value": "Map (num_proc=4): 100%" } }, - "44e342404a6a44a69061b8bb99059003": { + "4187cba4e1f0443884828017e35d8d1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3459,7 +3464,7 @@ "width": null } }, - "45ab4026e1ff4814b9f2f20c4ffefbdb": { + "435714b268834d29bcc630232d317994": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3511,7 +3516,7 @@ "width": null } }, - "4b348afa95f54ad58600dc4f73a66315": { + "4785aff2eabd4a9eb0c61ec747db13a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3563,7 +3568,7 @@ "width": null } }, - "4f710dcf1dd545e5b2a12c8b5d0ebb77": { + "49ce59a94a8b4c0fba43aa2a420a8261": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3579,7 +3584,7 @@ "description_width": "" } }, - "531306c3d4224ff59e7d053b01e9d583": { + "53604f9355574015ac5ef41bc96926c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3594,28 +3599,7 @@ "description_width": "" } }, - "53fade93864d442b9cdba0679cd70a5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c273ef269f6b4139b28b78dd748d40a9", - "placeholder": "​", - "style": "IPY_MODEL_6e64b79aae00417680bd46c4ae245378", - "value": " 60000/0 [00:00<00:00, 908159.42 examples/s]" - } - }, - "55665cf5f5644591876a1ab6b8cf98a9": { + "542279a789c245369b34f95364f3d6c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3630,28 +3614,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_57cf6506fa2242dc96fcb0b457a2206a", + "layout": "IPY_MODEL_b14c5c990ede4ca386a8fbf6763f7b76", "placeholder": "​", - "style": "IPY_MODEL_62d37e620d8b4d3d8e23a6f9446c0f30", - "value": " 30.9M/30.9M [00:00<00:00, 84.4MB/s]" - } - }, - "56c95b5861374f539f8547df31e62298": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_6897de4f11744901909ec621232899c3", + "value": "Generating train split: " } }, - "57cf6506fa2242dc96fcb0b457a2206a": { + "580ac6fac1e347a4bd6638adc0c71e53": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3700,10 +3669,10 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "58b405bc9cc348dc929d12e142bb0650": { + "58b43775e0664e1a9788273c2ddef21b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3755,22 +3724,29 @@ "width": null } }, - "62d37e620d8b4d3d8e23a6f9446c0f30": { + "591ffc03095349849ab863c8762af005": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8db28047a44a42cba790da4b4f5e46d2", + "IPY_MODEL_5dad286aaf894c17ad4b0e59834c21fe", + "IPY_MODEL_ae1b90977d554ea1a0e786c7f5fbdc52" + ], + "layout": "IPY_MODEL_10d0ca1880914ad29a9fc83bdd4bed41" } }, - "642e927f44e546abb691317a37cb9c45": { + "5b7068e1773f4f2694005757556af4c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3785,7 +3761,31 @@ "description_width": "" } }, - "6cd5b6a6a0d34bbebe021beb8ff9a555": { + "5dad286aaf894c17ad4b0e59834c21fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_580ac6fac1e347a4bd6638adc0c71e53", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_691d020987a34762b98b26af640e3d05", + "value": 1.0 + } + }, + "5f9ca9b6a49643e390762f3d1034b0e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3837,44 +3837,111 @@ "width": null } }, - "6e64b79aae00417680bd46c4ae245378": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "6182da0bd4b949f58df515e805682009": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6eb966bbd7c140f893c9852a659a12b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "67b337bd5ae94b3e8cef2d2fce252d75": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_def7d8c7aa354f3087d6be14e2d005af", - "IPY_MODEL_40f90b8814ba414e817c21d71281dd99", - "IPY_MODEL_2f2d629210df44a1954ce512820b9974" - ], - "layout": "IPY_MODEL_7fe60cd2bb9944088c770c6054b969f0" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "73224719d91b43aea20d1947b20b9fae": { + "68042234a4d44870a300f1966fcea9a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3926,55 +3993,74 @@ "width": null } }, - "747917059fd846f3bab65dc46259cdd9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "68820473b0ca4dceaf4a69bff0912b8a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f936491928e643d991be5593f5ce8e2e", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3863766608144d4bbae2dc8c00366428", - "value": 60000.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7aabea0e51b14aa0a344f519dace41d4": { + "6897de4f11744901909ec621232899c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fc957e7fcc8a4257b589cb24f6c097ed", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_241cbe4a6e3e4d4d9d6e9d22f4f3385b", - "value": 1.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "7fe60cd2bb9944088c770c6054b969f0": { + "690724de97354c6c9fe08c3a1e9033dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4026,28 +4112,23 @@ "width": null } }, - "8166aa3799774caf8b87e0123a21d7a8": { + "691d020987a34762b98b26af640e3d05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_32a4eedc1f8b44299bda1cb0f6abd26d", - "placeholder": "​", - "style": "IPY_MODEL_f479288994bb480f93a2890ac8b9689a", - "value": " 60000/60000 [00:12<00:00, 3528.13 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "81f0fab4dcf943af9f8f853b13f0b4a4": { + "6e7649dac77e46089a1ca133cad59c0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4062,31 +4143,43 @@ "description_width": "" } }, - "84bcdef9932046f0930340bd8f083f61": { + "6ffe9986f4ef4746980894ce46958263": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "747f0924622449f793d4166db4e457c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_df11331f35ed4acab017a87d9c99f632", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_04e4ae2e9732443b82af37f831ad18a1", - "value": 60000.0 + "layout": "IPY_MODEL_923444db73754beaa24a52465c8379ad", + "placeholder": "​", + "style": "IPY_MODEL_152379befccc4b0e9d6776d6d9d609b8", + "value": " 60000/60000 [00:34<00:00, 1731.83it/s]" } }, - "8a7ea3a7486345b3b0576e7ea7232743": { + "7a4945c889ae4ce189cb297e3fca221e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4101,14 +4194,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f6c40051e8f24228bbec72cf3feba8a2", - "IPY_MODEL_747917059fd846f3bab65dc46259cdd9", - "IPY_MODEL_8166aa3799774caf8b87e0123a21d7a8" + "IPY_MODEL_10e2d75b34f84a2bb286ea6f9568a8c7", + "IPY_MODEL_2db6b684acbb4466ae9ead1b1b69b3b2", + "IPY_MODEL_b3f332501701433882c8a4afebcb2e9a" ], - "layout": "IPY_MODEL_94105893d93745368f80f8601af838d5" + "layout": "IPY_MODEL_ac5ee35065f542abbd55dfc99643962a" } }, - "8f6b26b7119741c5b0e69e2bb959c0d0": { + "7f9b991821c64269abde879721f087c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4160,23 +4253,7 @@ "width": null } }, - "8fefc0d74ba54974b442c6b71acfca3f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "94105893d93745368f80f8601af838d5": { + "81211fbd3e75481abc683649d58e350a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4228,49 +4305,7 @@ "width": null } }, - "975d8ea39a014452958aa146cb2be35e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4b348afa95f54ad58600dc4f73a66315", - "placeholder": "​", - "style": "IPY_MODEL_642e927f44e546abb691317a37cb9c45", - "value": " 10000/0 [00:00<00:00, 533266.88 examples/s]" - } - }, - "99030e7333314a1aab3d9d361a77c853": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8f6b26b7119741c5b0e69e2bb959c0d0", - "placeholder": "​", - "style": "IPY_MODEL_f6c6eedc2b8040ef8b8f49905f4d1693", - "value": "100%" - } - }, - "9bb84796b7394d3785201ca53696b02a": { + "8db28047a44a42cba790da4b4f5e46d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4285,28 +4320,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_58b405bc9cc348dc929d12e142bb0650", + "layout": "IPY_MODEL_e6521175db914d47826af9253641d8ce", "placeholder": "​", - "style": "IPY_MODEL_56c95b5861374f539f8547df31e62298", - "value": " 60000/60000 [00:34<00:00, 1701.51it/s]" + "style": "IPY_MODEL_53604f9355574015ac5ef41bc96926c0", + "value": "Generating test split: " } }, - "a43ef6625dea4b75a7bd60e2ad355251": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "923444db73754beaa24a52465c8379ad": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "af56049c25a04736a48db4358cc9df58": { + "92dfa78182154aa3a11f26b92b425272": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4321,45 +4393,28 @@ "description_width": "" } }, - "b312b11fc08244acb5c89f76e88653ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b9f8b67a42cd4066aaa973e62b8ca794": { + "9407635ecef3426bba623ef006fa8b6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d92c2abcd7884d97888881358b3cd238", - "IPY_MODEL_db44e5262c4c49de8c97bca5ac255894", - "IPY_MODEL_55665cf5f5644591876a1ab6b8cf98a9" - ], - "layout": "IPY_MODEL_3ccfadc694714dd88df84fa423c2c545" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5f9ca9b6a49643e390762f3d1034b0e5", + "placeholder": "​", + "style": "IPY_MODEL_b226c4a245fb424ea6a3b85838cda370", + "value": " 60000/0 [00:00<00:00, 856854.75 examples/s]" } }, - "bbc89641d4084f42bd9460c0e97e2df2": { + "9b9fbb15ac114dd89f1ee2378938e258": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4411,28 +4466,7 @@ "width": null } }, - "bee57b4377fb4ff8b1a8962934c0ad90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_73224719d91b43aea20d1947b20b9fae", - "placeholder": "​", - "style": "IPY_MODEL_af56049c25a04736a48db4358cc9df58", - "value": "Generating train split: " - } - }, - "bf53f28b041a4ed9a94303a3b2af0104": { + "9e8541cae8744f248e36b3f70adb785f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4484,7 +4518,44 @@ "width": null } }, - "c273ef269f6b4139b28b78dd748d40a9": { + "9fce2b8405f94190b8b6e8db84f9dbca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a1d74e51f5cd4d1083255ced81c6493f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_de1399aca2c04609bcf6897853430931", + "IPY_MODEL_cf586cb08e57418eb66962d1f91eb50c", + "IPY_MODEL_747f0924622449f793d4166db4e457c8" + ], + "layout": "IPY_MODEL_264131c15a6c4afa92e1dbfe0622e190" + } + }, + "ac5ee35065f542abbd55dfc99643962a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4536,31 +4607,43 @@ "width": null } }, - "c5d6f7de1ab84a849a8e3bc128b311f1": { + "ae1b90977d554ea1a0e786c7f5fbdc52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_31e88f00396f4838aa6fbf279617afea", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d614f19d9865459793b1f30c2fa79913", - "value": 1.0 + "layout": "IPY_MODEL_435714b268834d29bcc630232d317994", + "placeholder": "​", + "style": "IPY_MODEL_9fce2b8405f94190b8b6e8db84f9dbca", + "value": " 10000/0 [00:00<00:00, 448507.12 examples/s]" + } + }, + "af2ef72856104d7a95aff73dc31a1917": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "c5f12e66dcc34cd894aa2fb362979871": { + "b14c5c990ede4ca386a8fbf6763f7b76": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4612,7 +4695,110 @@ "width": null } }, - "c86e818f0a9148bd95537441fe27026c": { + "b226c4a245fb424ea6a3b85838cda370": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b3f332501701433882c8a4afebcb2e9a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_81211fbd3e75481abc683649d58e350a", + "placeholder": "​", + "style": "IPY_MODEL_5b7068e1773f4f2694005757556af4c0", + "value": " 5.18M/5.18M [00:00<00:00, 37.8MB/s]" + } + }, + "b6c5fca45d4e4cc999c65c941e5b964b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ebdfa117ca9a4f02989bee1b4df47eaf", + "placeholder": "​", + "style": "IPY_MODEL_d82a049740a94d3cbdb3e396272db695", + "value": " 2/2 [00:00<00:00, 353.38it/s]" + } + }, + "beb18ee3e6cc44ea814cbed0d7a11c03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_198931c457ec4e31a2aca764bd52ae23", + "IPY_MODEL_19e7f1cbbbe24f5f8fff5b952e0c2009", + "IPY_MODEL_35d25ec4f29f4c9e81f1371c23d46605" + ], + "layout": "IPY_MODEL_c936fc7cdfac40e3b9bfa64a390ece8d" + } + }, + "bf03084a87d54d6fa43ad2afd1e28051": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a465b21fe394e56a8c191a1874926e6", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1fcf45ca9611468d8c64283bdf504709", + "value": 60000.0 + } + }, + "c21489c3af5448e88867e25c6c122f43": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4661,63 +4847,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "ca3a18d2bf4b4fa68ed448ca06ccc823": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bee57b4377fb4ff8b1a8962934c0ad90", - "IPY_MODEL_c5d6f7de1ab84a849a8e3bc128b311f1", - "IPY_MODEL_53fade93864d442b9cdba0679cd70a5b" - ], - "layout": "IPY_MODEL_45ab4026e1ff4814b9f2f20c4ffefbdb" - } - }, - "cfe37b5719f04fd29e805d7127de5338": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d614f19d9865459793b1f30c2fa79913": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "width": "20px" } }, - "d7f3a96589a84783a117d707db05a5d7": { + "c936fc7cdfac40e3b9bfa64a390ece8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4769,28 +4902,7 @@ "width": null } }, - "d92c2abcd7884d97888881358b3cd238": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_44e342404a6a44a69061b8bb99059003", - "placeholder": "​", - "style": "IPY_MODEL_30d262d335e4455cb26fa6ae8786ea57", - "value": "Downloading data: 100%" - } - }, - "db44e5262c4c49de8c97bca5ac255894": { + "cf586cb08e57418eb66962d1f91eb50c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4806,36 +4918,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_22fd5c8feced44949969236ff8c8f8c5", - "max": 30931277.0, + "layout": "IPY_MODEL_58b43775e0664e1a9788273c2ddef21b", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4f710dcf1dd545e5b2a12c8b5d0ebb77", - "value": 30931277.0 - } - }, - "def7d8c7aa354f3087d6be14e2d005af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1b00bb94c97b48db81ef550d08db758e", - "placeholder": "​", - "style": "IPY_MODEL_531306c3d4224ff59e7d053b01e9d583", - "value": "Computing checksums: 100%" + "style": "IPY_MODEL_23cc135027cd48b6b6c93df4ca1c4e2d", + "value": 60000.0 } }, - "df11331f35ed4acab017a87d9c99f632": { + "cfeb4789c49f449aaa6303dfb0d8930c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4887,52 +4978,22 @@ "width": null } }, - "dfcc60c7ce4d427d9db728d1111175d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bf53f28b041a4ed9a94303a3b2af0104", - "placeholder": "​", - "style": "IPY_MODEL_a43ef6625dea4b75a7bd60e2ad355251", - "value": "Generating test split: " - } - }, - "e36ce1e2b4ac46b89919510d19d88e00": { + "d82a049740a94d3cbdb3e396272db695": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_20d56237eaae4fc6b1a35901cd2d7a70", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8fefc0d74ba54974b442c6b71acfca3f", - "value": 5175617.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e3a451c639764ba4a7e218a0a80bb64f": { + "d873bb825c914966842e4d80c59ec145": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4984,29 +5045,28 @@ "width": null } }, - "eb174494cec7449c80000967dbef9224": { + "dacd7adcb1a04dbba89dcd96a3441f61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_99030e7333314a1aab3d9d361a77c853", - "IPY_MODEL_84bcdef9932046f0930340bd8f083f61", - "IPY_MODEL_9bb84796b7394d3785201ca53696b02a" - ], - "layout": "IPY_MODEL_bbc89641d4084f42bd9460c0e97e2df2" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4785aff2eabd4a9eb0c61ec747db13a8", + "placeholder": "​", + "style": "IPY_MODEL_92dfa78182154aa3a11f26b92b425272", + "value": " 60000/60000 [00:12<00:00, 6400.17 examples/s]" } }, - "f0d31b197fe7409d990c55b1452c3705": { + "dbaddfd25414492ab26f1c94a8aae733": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -5021,36 +5081,35 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_dfcc60c7ce4d427d9db728d1111175d5", - "IPY_MODEL_7aabea0e51b14aa0a344f519dace41d4", - "IPY_MODEL_975d8ea39a014452958aa146cb2be35e" + "IPY_MODEL_542279a789c245369b34f95364f3d6c6", + "IPY_MODEL_274a8dfa651c462c836db97848e117d7", + "IPY_MODEL_9407635ecef3426bba623ef006fa8b6e" ], - "layout": "IPY_MODEL_e3a451c639764ba4a7e218a0a80bb64f" + "layout": "IPY_MODEL_9b9fbb15ac114dd89f1ee2378938e258" } }, - "f290500824dc4995bf9dfe5f9f2b3425": { + "de1399aca2c04609bcf6897853430931": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2a3b1109435a4736b03db0b1724a1442", - "IPY_MODEL_e36ce1e2b4ac46b89919510d19d88e00", - "IPY_MODEL_112b9edaa54c411fa05ff60e3db9703c" - ], - "layout": "IPY_MODEL_f46d4bf4f0a14643be3fbdc4e3420fc1" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6182da0bd4b949f58df515e805682009", + "placeholder": "​", + "style": "IPY_MODEL_af2ef72856104d7a95aff73dc31a1917", + "value": "100%" } }, - "f46d4bf4f0a14643be3fbdc4e3420fc1": { + "e6521175db914d47826af9253641d8ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5102,58 +5161,29 @@ "width": null } }, - "f479288994bb480f93a2890ac8b9689a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f6c40051e8f24228bbec72cf3feba8a2": { + "e83b2278127f42909cb667dbc45451b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d7f3a96589a84783a117d707db05a5d7", - "placeholder": "​", - "style": "IPY_MODEL_cfe37b5719f04fd29e805d7127de5338", - "value": "Map (num_proc=4): 100%" - } - }, - "f6c6eedc2b8040ef8b8f49905f4d1693": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_37a16bb8effa41d5b8e60e8d79029891", + "IPY_MODEL_0277fa09311b4ba8abb2b2a2986ca3e4", + "IPY_MODEL_b6c5fca45d4e4cc999c65c941e5b964b" + ], + "layout": "IPY_MODEL_9e8541cae8744f248e36b3f70adb785f" } }, - "f936491928e643d991be5593f5ce8e2e": { + "ebdfa117ca9a4f02989bee1b4df47eaf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5205,37 +5235,7 @@ "width": null } }, - "fa46b30146734cf0a97ec7dff997556d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fbc7b405c321481196b289cba2b9602a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fc957e7fcc8a4257b589cb24f6c097ed": { + "fcd1b1ee39a6475590c5bed00e741e19": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5284,7 +5284,7 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index e4512dc87..02807fe19 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:39.321427Z", - "iopub.status.busy": "2024-01-10T15:04:39.321210Z", - "iopub.status.idle": "2024-01-10T15:04:40.398173Z", - "shell.execute_reply": "2024-01-10T15:04:40.397563Z" + "iopub.execute_input": "2024-01-12T22:26:12.500632Z", + "iopub.status.busy": "2024-01-12T22:26:12.500089Z", + "iopub.status.idle": "2024-01-12T22:26:13.596015Z", + "shell.execute_reply": "2024-01-12T22:26:13.595396Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:40.401187Z", - "iopub.status.busy": "2024-01-10T15:04:40.400737Z", - "iopub.status.idle": "2024-01-10T15:04:40.669725Z", - "shell.execute_reply": "2024-01-10T15:04:40.669115Z" + "iopub.execute_input": "2024-01-12T22:26:13.598854Z", + "iopub.status.busy": "2024-01-12T22:26:13.598578Z", + "iopub.status.idle": "2024-01-12T22:26:13.882337Z", + "shell.execute_reply": "2024-01-12T22:26:13.881763Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:40.672962Z", - "iopub.status.busy": "2024-01-10T15:04:40.672388Z", - "iopub.status.idle": "2024-01-10T15:04:40.684649Z", - "shell.execute_reply": "2024-01-10T15:04:40.684028Z" + "iopub.execute_input": "2024-01-12T22:26:13.885416Z", + "iopub.status.busy": "2024-01-12T22:26:13.885002Z", + "iopub.status.idle": "2024-01-12T22:26:13.897407Z", + "shell.execute_reply": "2024-01-12T22:26:13.896774Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:40.687271Z", - "iopub.status.busy": "2024-01-10T15:04:40.686818Z", - "iopub.status.idle": "2024-01-10T15:04:40.921516Z", - "shell.execute_reply": "2024-01-10T15:04:40.920869Z" + "iopub.execute_input": "2024-01-12T22:26:13.899929Z", + "iopub.status.busy": "2024-01-12T22:26:13.899559Z", + "iopub.status.idle": "2024-01-12T22:26:14.104593Z", + "shell.execute_reply": "2024-01-12T22:26:14.103863Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:40.924511Z", - "iopub.status.busy": "2024-01-10T15:04:40.924050Z", - "iopub.status.idle": "2024-01-10T15:04:40.951356Z", - "shell.execute_reply": "2024-01-10T15:04:40.950828Z" + "iopub.execute_input": "2024-01-12T22:26:14.107407Z", + "iopub.status.busy": "2024-01-12T22:26:14.106978Z", + "iopub.status.idle": "2024-01-12T22:26:14.133899Z", + "shell.execute_reply": "2024-01-12T22:26:14.133368Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:40.953852Z", - "iopub.status.busy": "2024-01-10T15:04:40.953477Z", - "iopub.status.idle": "2024-01-10T15:04:42.309859Z", - "shell.execute_reply": "2024-01-10T15:04:42.309107Z" + "iopub.execute_input": "2024-01-12T22:26:14.136628Z", + "iopub.status.busy": "2024-01-12T22:26:14.136080Z", + "iopub.status.idle": "2024-01-12T22:26:15.475987Z", + "shell.execute_reply": "2024-01-12T22:26:15.475209Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:42.312942Z", - "iopub.status.busy": "2024-01-10T15:04:42.312275Z", - "iopub.status.idle": "2024-01-10T15:04:42.337983Z", - "shell.execute_reply": "2024-01-10T15:04:42.337407Z" + "iopub.execute_input": "2024-01-12T22:26:15.479029Z", + "iopub.status.busy": "2024-01-12T22:26:15.478376Z", + "iopub.status.idle": "2024-01-12T22:26:15.504352Z", + "shell.execute_reply": "2024-01-12T22:26:15.503726Z" }, "scrolled": true }, @@ -641,10 +641,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:42.340434Z", - "iopub.status.busy": "2024-01-10T15:04:42.340211Z", - "iopub.status.idle": "2024-01-10T15:04:43.216594Z", - "shell.execute_reply": "2024-01-10T15:04:43.215893Z" + "iopub.execute_input": "2024-01-12T22:26:15.507005Z", + "iopub.status.busy": "2024-01-12T22:26:15.506589Z", + "iopub.status.idle": "2024-01-12T22:26:16.413465Z", + "shell.execute_reply": "2024-01-12T22:26:16.412785Z" }, "id": "AaHC5MRKjruT" }, @@ -763,10 +763,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.219465Z", - "iopub.status.busy": "2024-01-10T15:04:43.219248Z", - "iopub.status.idle": "2024-01-10T15:04:43.234139Z", - "shell.execute_reply": "2024-01-10T15:04:43.233465Z" + "iopub.execute_input": "2024-01-12T22:26:16.416094Z", + "iopub.status.busy": "2024-01-12T22:26:16.415833Z", + "iopub.status.idle": "2024-01-12T22:26:16.430481Z", + "shell.execute_reply": "2024-01-12T22:26:16.429813Z" }, "id": "Wy27rvyhjruU" }, @@ -815,10 +815,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.236729Z", - "iopub.status.busy": "2024-01-10T15:04:43.236367Z", - "iopub.status.idle": "2024-01-10T15:04:43.322460Z", - "shell.execute_reply": "2024-01-10T15:04:43.321810Z" + "iopub.execute_input": "2024-01-12T22:26:16.432951Z", + "iopub.status.busy": "2024-01-12T22:26:16.432454Z", + "iopub.status.idle": "2024-01-12T22:26:16.520331Z", + "shell.execute_reply": "2024-01-12T22:26:16.519586Z" }, "id": "Db8YHnyVjruU" }, @@ -925,10 +925,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.324966Z", - "iopub.status.busy": "2024-01-10T15:04:43.324713Z", - "iopub.status.idle": "2024-01-10T15:04:43.529247Z", - "shell.execute_reply": "2024-01-10T15:04:43.528571Z" + "iopub.execute_input": "2024-01-12T22:26:16.523423Z", + "iopub.status.busy": "2024-01-12T22:26:16.522925Z", + "iopub.status.idle": "2024-01-12T22:26:16.726834Z", + "shell.execute_reply": "2024-01-12T22:26:16.726120Z" }, "id": "iJqAHuS2jruV" }, @@ -965,10 +965,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.532132Z", - "iopub.status.busy": "2024-01-10T15:04:43.531690Z", - "iopub.status.idle": "2024-01-10T15:04:43.549245Z", - "shell.execute_reply": "2024-01-10T15:04:43.548725Z" + "iopub.execute_input": "2024-01-12T22:26:16.729769Z", + "iopub.status.busy": "2024-01-12T22:26:16.729276Z", + "iopub.status.idle": "2024-01-12T22:26:16.746903Z", + "shell.execute_reply": "2024-01-12T22:26:16.746395Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1030,10 +1030,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.551560Z", - "iopub.status.busy": "2024-01-10T15:04:43.551356Z", - "iopub.status.idle": "2024-01-10T15:04:43.561686Z", - "shell.execute_reply": "2024-01-10T15:04:43.561157Z" + "iopub.execute_input": "2024-01-12T22:26:16.749305Z", + "iopub.status.busy": "2024-01-12T22:26:16.749098Z", + "iopub.status.idle": "2024-01-12T22:26:16.759430Z", + "shell.execute_reply": "2024-01-12T22:26:16.758822Z" }, "id": "0lonvOYvjruV" }, @@ -1180,10 +1180,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.563888Z", - "iopub.status.busy": "2024-01-10T15:04:43.563685Z", - "iopub.status.idle": "2024-01-10T15:04:43.660140Z", - "shell.execute_reply": "2024-01-10T15:04:43.659441Z" + "iopub.execute_input": "2024-01-12T22:26:16.761920Z", + "iopub.status.busy": "2024-01-12T22:26:16.761561Z", + "iopub.status.idle": "2024-01-12T22:26:16.865861Z", + "shell.execute_reply": "2024-01-12T22:26:16.865250Z" }, "id": "MfqTCa3kjruV" }, @@ -1264,10 +1264,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.662836Z", - "iopub.status.busy": "2024-01-10T15:04:43.662578Z", - "iopub.status.idle": "2024-01-10T15:04:43.805417Z", - "shell.execute_reply": "2024-01-10T15:04:43.804781Z" + "iopub.execute_input": "2024-01-12T22:26:16.869026Z", + "iopub.status.busy": "2024-01-12T22:26:16.868478Z", + "iopub.status.idle": "2024-01-12T22:26:17.014671Z", + "shell.execute_reply": "2024-01-12T22:26:17.013932Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1327,10 +1327,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.808245Z", - "iopub.status.busy": "2024-01-10T15:04:43.807852Z", - "iopub.status.idle": "2024-01-10T15:04:43.812212Z", - "shell.execute_reply": "2024-01-10T15:04:43.811667Z" + "iopub.execute_input": "2024-01-12T22:26:17.017203Z", + "iopub.status.busy": "2024-01-12T22:26:17.016947Z", + "iopub.status.idle": "2024-01-12T22:26:17.021175Z", + "shell.execute_reply": "2024-01-12T22:26:17.020559Z" }, "id": "0rXP3ZPWjruW" }, @@ -1368,10 +1368,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.814450Z", - "iopub.status.busy": "2024-01-10T15:04:43.814232Z", - "iopub.status.idle": "2024-01-10T15:04:43.818838Z", - "shell.execute_reply": "2024-01-10T15:04:43.818307Z" + "iopub.execute_input": "2024-01-12T22:26:17.023690Z", + "iopub.status.busy": "2024-01-12T22:26:17.023208Z", + "iopub.status.idle": "2024-01-12T22:26:17.027942Z", + "shell.execute_reply": "2024-01-12T22:26:17.027325Z" }, "id": "-iRPe8KXjruW" }, @@ -1426,10 +1426,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.821246Z", - "iopub.status.busy": "2024-01-10T15:04:43.820961Z", - "iopub.status.idle": "2024-01-10T15:04:43.860597Z", - "shell.execute_reply": "2024-01-10T15:04:43.860082Z" + "iopub.execute_input": "2024-01-12T22:26:17.030445Z", + "iopub.status.busy": "2024-01-12T22:26:17.030063Z", + "iopub.status.idle": "2024-01-12T22:26:17.070098Z", + "shell.execute_reply": "2024-01-12T22:26:17.069440Z" }, "id": "ZpipUliyjruW" }, @@ -1480,10 +1480,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.863024Z", - "iopub.status.busy": "2024-01-10T15:04:43.862665Z", - "iopub.status.idle": "2024-01-10T15:04:43.907937Z", - "shell.execute_reply": "2024-01-10T15:04:43.907422Z" + "iopub.execute_input": "2024-01-12T22:26:17.072849Z", + "iopub.status.busy": "2024-01-12T22:26:17.072390Z", + "iopub.status.idle": "2024-01-12T22:26:17.121304Z", + "shell.execute_reply": "2024-01-12T22:26:17.120629Z" }, "id": "SLq-3q4xjruX" }, @@ -1552,10 +1552,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.910314Z", - "iopub.status.busy": "2024-01-10T15:04:43.910006Z", - "iopub.status.idle": "2024-01-10T15:04:44.013322Z", - "shell.execute_reply": "2024-01-10T15:04:44.012666Z" + "iopub.execute_input": "2024-01-12T22:26:17.124124Z", + "iopub.status.busy": "2024-01-12T22:26:17.123710Z", + "iopub.status.idle": "2024-01-12T22:26:17.232377Z", + "shell.execute_reply": "2024-01-12T22:26:17.231583Z" }, "id": "g5LHhhuqFbXK" }, @@ -1587,10 +1587,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:44.016380Z", - "iopub.status.busy": "2024-01-10T15:04:44.015987Z", - "iopub.status.idle": "2024-01-10T15:04:44.118865Z", - "shell.execute_reply": "2024-01-10T15:04:44.118170Z" + "iopub.execute_input": "2024-01-12T22:26:17.235572Z", + "iopub.status.busy": "2024-01-12T22:26:17.235265Z", + "iopub.status.idle": "2024-01-12T22:26:17.342330Z", + "shell.execute_reply": "2024-01-12T22:26:17.341663Z" }, "id": "p7w8F8ezBcet" }, @@ -1647,10 +1647,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:44.121545Z", - "iopub.status.busy": "2024-01-10T15:04:44.121287Z", - "iopub.status.idle": "2024-01-10T15:04:44.325172Z", - "shell.execute_reply": "2024-01-10T15:04:44.324514Z" + "iopub.execute_input": "2024-01-12T22:26:17.345153Z", + "iopub.status.busy": "2024-01-12T22:26:17.344753Z", + "iopub.status.idle": "2024-01-12T22:26:17.551312Z", + "shell.execute_reply": "2024-01-12T22:26:17.550605Z" }, "id": "WETRL74tE_sU" }, @@ -1685,10 +1685,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:44.327830Z", - "iopub.status.busy": "2024-01-10T15:04:44.327618Z", - "iopub.status.idle": "2024-01-10T15:04:44.538647Z", - "shell.execute_reply": "2024-01-10T15:04:44.537948Z" + "iopub.execute_input": "2024-01-12T22:26:17.554001Z", + "iopub.status.busy": "2024-01-12T22:26:17.553528Z", + "iopub.status.idle": "2024-01-12T22:26:17.791520Z", + "shell.execute_reply": "2024-01-12T22:26:17.790797Z" }, "id": "kCfdx2gOLmXS" }, @@ -1850,10 +1850,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:44.541174Z", - "iopub.status.busy": "2024-01-10T15:04:44.540920Z", - "iopub.status.idle": "2024-01-10T15:04:44.547632Z", - "shell.execute_reply": "2024-01-10T15:04:44.547125Z" + "iopub.execute_input": "2024-01-12T22:26:17.794510Z", + "iopub.status.busy": "2024-01-12T22:26:17.793901Z", + "iopub.status.idle": "2024-01-12T22:26:17.800695Z", + "shell.execute_reply": "2024-01-12T22:26:17.800091Z" }, "id": "-uogYRWFYnuu" }, @@ -1907,10 +1907,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:44.550054Z", - "iopub.status.busy": "2024-01-10T15:04:44.549609Z", - "iopub.status.idle": "2024-01-10T15:04:44.759728Z", - "shell.execute_reply": "2024-01-10T15:04:44.759057Z" + "iopub.execute_input": "2024-01-12T22:26:17.803282Z", + "iopub.status.busy": "2024-01-12T22:26:17.802738Z", + "iopub.status.idle": "2024-01-12T22:26:18.024036Z", + "shell.execute_reply": "2024-01-12T22:26:18.023304Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1957,10 +1957,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:44.762443Z", - "iopub.status.busy": "2024-01-10T15:04:44.762199Z", - "iopub.status.idle": "2024-01-10T15:04:45.836039Z", - "shell.execute_reply": "2024-01-10T15:04:45.835321Z" + "iopub.execute_input": "2024-01-12T22:26:18.026874Z", + "iopub.status.busy": "2024-01-12T22:26:18.026431Z", + "iopub.status.idle": "2024-01-12T22:26:19.102961Z", + "shell.execute_reply": "2024-01-12T22:26:19.102314Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 8180291e1..5cc2d0c9d 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:50.783329Z", - "iopub.status.busy": "2024-01-10T15:04:50.783126Z", - "iopub.status.idle": "2024-01-10T15:04:51.826636Z", - "shell.execute_reply": "2024-01-10T15:04:51.825904Z" + "iopub.execute_input": "2024-01-12T22:26:24.696731Z", + "iopub.status.busy": "2024-01-12T22:26:24.696265Z", + "iopub.status.idle": "2024-01-12T22:26:25.730024Z", + "shell.execute_reply": "2024-01-12T22:26:25.729401Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.829702Z", - "iopub.status.busy": "2024-01-10T15:04:51.829194Z", - "iopub.status.idle": "2024-01-10T15:04:51.832552Z", - "shell.execute_reply": "2024-01-10T15:04:51.832031Z" + "iopub.execute_input": "2024-01-12T22:26:25.733099Z", + "iopub.status.busy": "2024-01-12T22:26:25.732644Z", + "iopub.status.idle": "2024-01-12T22:26:25.735980Z", + "shell.execute_reply": "2024-01-12T22:26:25.735447Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.835101Z", - "iopub.status.busy": "2024-01-10T15:04:51.834739Z", - "iopub.status.idle": "2024-01-10T15:04:51.843086Z", - "shell.execute_reply": "2024-01-10T15:04:51.842467Z" + "iopub.execute_input": "2024-01-12T22:26:25.738573Z", + "iopub.status.busy": "2024-01-12T22:26:25.738208Z", + "iopub.status.idle": "2024-01-12T22:26:25.746731Z", + "shell.execute_reply": "2024-01-12T22:26:25.746182Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.845548Z", - "iopub.status.busy": "2024-01-10T15:04:51.845151Z", - "iopub.status.idle": "2024-01-10T15:04:51.893885Z", - "shell.execute_reply": "2024-01-10T15:04:51.893321Z" + "iopub.execute_input": "2024-01-12T22:26:25.748824Z", + "iopub.status.busy": "2024-01-12T22:26:25.748629Z", + "iopub.status.idle": "2024-01-12T22:26:25.797345Z", + "shell.execute_reply": "2024-01-12T22:26:25.796788Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.896881Z", - "iopub.status.busy": "2024-01-10T15:04:51.896499Z", - "iopub.status.idle": "2024-01-10T15:04:51.916606Z", - "shell.execute_reply": "2024-01-10T15:04:51.915938Z" + "iopub.execute_input": "2024-01-12T22:26:25.800002Z", + "iopub.status.busy": "2024-01-12T22:26:25.799789Z", + "iopub.status.idle": "2024-01-12T22:26:25.820034Z", + "shell.execute_reply": "2024-01-12T22:26:25.819486Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.919078Z", - "iopub.status.busy": "2024-01-10T15:04:51.918771Z", - "iopub.status.idle": "2024-01-10T15:04:51.922997Z", - "shell.execute_reply": "2024-01-10T15:04:51.922404Z" + "iopub.execute_input": "2024-01-12T22:26:25.822476Z", + "iopub.status.busy": "2024-01-12T22:26:25.822138Z", + "iopub.status.idle": "2024-01-12T22:26:25.826466Z", + "shell.execute_reply": "2024-01-12T22:26:25.825941Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.925555Z", - "iopub.status.busy": "2024-01-10T15:04:51.925142Z", - "iopub.status.idle": "2024-01-10T15:04:51.952755Z", - "shell.execute_reply": "2024-01-10T15:04:51.952205Z" + "iopub.execute_input": "2024-01-12T22:26:25.828976Z", + "iopub.status.busy": "2024-01-12T22:26:25.828608Z", + "iopub.status.idle": "2024-01-12T22:26:25.856288Z", + "shell.execute_reply": "2024-01-12T22:26:25.855748Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.955378Z", - "iopub.status.busy": "2024-01-10T15:04:51.955021Z", - "iopub.status.idle": "2024-01-10T15:04:51.982908Z", - "shell.execute_reply": "2024-01-10T15:04:51.982212Z" + "iopub.execute_input": "2024-01-12T22:26:25.858978Z", + "iopub.status.busy": "2024-01-12T22:26:25.858525Z", + "iopub.status.idle": "2024-01-12T22:26:25.887484Z", + "shell.execute_reply": "2024-01-12T22:26:25.886785Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.985756Z", - "iopub.status.busy": "2024-01-10T15:04:51.985347Z", - "iopub.status.idle": "2024-01-10T15:04:53.313475Z", - "shell.execute_reply": "2024-01-10T15:04:53.312740Z" + "iopub.execute_input": "2024-01-12T22:26:25.890652Z", + "iopub.status.busy": "2024-01-12T22:26:25.890207Z", + "iopub.status.idle": "2024-01-12T22:26:27.230492Z", + "shell.execute_reply": "2024-01-12T22:26:27.229814Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.316625Z", - "iopub.status.busy": "2024-01-10T15:04:53.316007Z", - "iopub.status.idle": "2024-01-10T15:04:53.323561Z", - "shell.execute_reply": "2024-01-10T15:04:53.322982Z" + "iopub.execute_input": "2024-01-12T22:26:27.233592Z", + "iopub.status.busy": "2024-01-12T22:26:27.233081Z", + "iopub.status.idle": "2024-01-12T22:26:27.240466Z", + "shell.execute_reply": "2024-01-12T22:26:27.239917Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.325875Z", - "iopub.status.busy": "2024-01-10T15:04:53.325667Z", - "iopub.status.idle": "2024-01-10T15:04:53.340152Z", - "shell.execute_reply": "2024-01-10T15:04:53.339548Z" + "iopub.execute_input": "2024-01-12T22:26:27.242811Z", + "iopub.status.busy": "2024-01-12T22:26:27.242440Z", + "iopub.status.idle": "2024-01-12T22:26:27.256471Z", + "shell.execute_reply": "2024-01-12T22:26:27.255950Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.342762Z", - "iopub.status.busy": "2024-01-10T15:04:53.342417Z", - "iopub.status.idle": "2024-01-10T15:04:53.349564Z", - "shell.execute_reply": "2024-01-10T15:04:53.349025Z" + "iopub.execute_input": "2024-01-12T22:26:27.258897Z", + "iopub.status.busy": "2024-01-12T22:26:27.258476Z", + "iopub.status.idle": "2024-01-12T22:26:27.265267Z", + "shell.execute_reply": "2024-01-12T22:26:27.264774Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.352271Z", - "iopub.status.busy": "2024-01-10T15:04:53.351762Z", - "iopub.status.idle": "2024-01-10T15:04:53.355076Z", - "shell.execute_reply": "2024-01-10T15:04:53.354457Z" + "iopub.execute_input": "2024-01-12T22:26:27.267825Z", + "iopub.status.busy": "2024-01-12T22:26:27.267457Z", + "iopub.status.idle": "2024-01-12T22:26:27.270257Z", + "shell.execute_reply": "2024-01-12T22:26:27.269726Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.357254Z", - "iopub.status.busy": "2024-01-10T15:04:53.357058Z", - "iopub.status.idle": "2024-01-10T15:04:53.361396Z", - "shell.execute_reply": "2024-01-10T15:04:53.360858Z" + "iopub.execute_input": "2024-01-12T22:26:27.272867Z", + "iopub.status.busy": "2024-01-12T22:26:27.272278Z", + "iopub.status.idle": "2024-01-12T22:26:27.276751Z", + "shell.execute_reply": "2024-01-12T22:26:27.276123Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.363765Z", - "iopub.status.busy": "2024-01-10T15:04:53.363566Z", - "iopub.status.idle": "2024-01-10T15:04:53.366344Z", - "shell.execute_reply": "2024-01-10T15:04:53.365793Z" + "iopub.execute_input": "2024-01-12T22:26:27.279202Z", + "iopub.status.busy": "2024-01-12T22:26:27.278738Z", + "iopub.status.idle": "2024-01-12T22:26:27.281708Z", + "shell.execute_reply": "2024-01-12T22:26:27.281065Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.368515Z", - "iopub.status.busy": "2024-01-10T15:04:53.368321Z", - "iopub.status.idle": "2024-01-10T15:04:53.373186Z", - "shell.execute_reply": "2024-01-10T15:04:53.372649Z" + "iopub.execute_input": "2024-01-12T22:26:27.284000Z", + "iopub.status.busy": "2024-01-12T22:26:27.283652Z", + "iopub.status.idle": "2024-01-12T22:26:27.288488Z", + "shell.execute_reply": "2024-01-12T22:26:27.287854Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.375385Z", - "iopub.status.busy": "2024-01-10T15:04:53.375190Z", - "iopub.status.idle": "2024-01-10T15:04:53.408376Z", - "shell.execute_reply": "2024-01-10T15:04:53.407826Z" + "iopub.execute_input": "2024-01-12T22:26:27.290844Z", + "iopub.status.busy": "2024-01-12T22:26:27.290538Z", + "iopub.status.idle": "2024-01-12T22:26:27.324390Z", + "shell.execute_reply": "2024-01-12T22:26:27.323886Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.410874Z", - "iopub.status.busy": "2024-01-10T15:04:53.410653Z", - "iopub.status.idle": "2024-01-10T15:04:53.415959Z", - "shell.execute_reply": "2024-01-10T15:04:53.415316Z" + "iopub.execute_input": "2024-01-12T22:26:27.326700Z", + "iopub.status.busy": "2024-01-12T22:26:27.326498Z", + "iopub.status.idle": "2024-01-12T22:26:27.331677Z", + "shell.execute_reply": "2024-01-12T22:26:27.331146Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 883facccf..10c82165d 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:57.995421Z", - "iopub.status.busy": "2024-01-10T15:04:57.994869Z", - "iopub.status.idle": "2024-01-10T15:04:59.063658Z", - "shell.execute_reply": "2024-01-10T15:04:59.063044Z" + "iopub.execute_input": "2024-01-12T22:26:31.996924Z", + "iopub.status.busy": "2024-01-12T22:26:31.996721Z", + "iopub.status.idle": "2024-01-12T22:26:33.108827Z", + "shell.execute_reply": "2024-01-12T22:26:33.108120Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:59.066519Z", - "iopub.status.busy": "2024-01-10T15:04:59.066032Z", - "iopub.status.idle": "2024-01-10T15:04:59.351331Z", - "shell.execute_reply": "2024-01-10T15:04:59.350714Z" + "iopub.execute_input": "2024-01-12T22:26:33.111854Z", + "iopub.status.busy": "2024-01-12T22:26:33.111548Z", + "iopub.status.idle": "2024-01-12T22:26:33.404676Z", + "shell.execute_reply": "2024-01-12T22:26:33.404041Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:59.354669Z", - "iopub.status.busy": "2024-01-10T15:04:59.353939Z", - "iopub.status.idle": "2024-01-10T15:04:59.368315Z", - "shell.execute_reply": "2024-01-10T15:04:59.367767Z" + "iopub.execute_input": "2024-01-12T22:26:33.407588Z", + "iopub.status.busy": "2024-01-12T22:26:33.407343Z", + "iopub.status.idle": "2024-01-12T22:26:33.421536Z", + "shell.execute_reply": "2024-01-12T22:26:33.420990Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:59.371031Z", - "iopub.status.busy": "2024-01-10T15:04:59.370527Z", - "iopub.status.idle": "2024-01-10T15:05:02.017065Z", - "shell.execute_reply": "2024-01-10T15:05:02.016392Z" + "iopub.execute_input": "2024-01-12T22:26:33.423834Z", + "iopub.status.busy": "2024-01-12T22:26:33.423621Z", + "iopub.status.idle": "2024-01-12T22:26:36.106536Z", + "shell.execute_reply": "2024-01-12T22:26:36.105816Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:02.019842Z", - "iopub.status.busy": "2024-01-10T15:05:02.019353Z", - "iopub.status.idle": "2024-01-10T15:05:03.569470Z", - "shell.execute_reply": "2024-01-10T15:05:03.568744Z" + "iopub.execute_input": "2024-01-12T22:26:36.109176Z", + "iopub.status.busy": "2024-01-12T22:26:36.108778Z", + "iopub.status.idle": "2024-01-12T22:26:37.681247Z", + "shell.execute_reply": "2024-01-12T22:26:37.680610Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:03.572548Z", - "iopub.status.busy": "2024-01-10T15:05:03.572275Z", - "iopub.status.idle": "2024-01-10T15:05:03.577674Z", - "shell.execute_reply": "2024-01-10T15:05:03.577121Z" + "iopub.execute_input": "2024-01-12T22:26:37.684165Z", + "iopub.status.busy": "2024-01-12T22:26:37.683743Z", + "iopub.status.idle": "2024-01-12T22:26:37.688588Z", + "shell.execute_reply": "2024-01-12T22:26:37.687958Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:03.579952Z", - "iopub.status.busy": "2024-01-10T15:05:03.579756Z", - "iopub.status.idle": "2024-01-10T15:05:04.913128Z", - "shell.execute_reply": "2024-01-10T15:05:04.912391Z" + "iopub.execute_input": "2024-01-12T22:26:37.691096Z", + "iopub.status.busy": "2024-01-12T22:26:37.690562Z", + "iopub.status.idle": "2024-01-12T22:26:39.068124Z", + "shell.execute_reply": "2024-01-12T22:26:39.067441Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:04.916164Z", - "iopub.status.busy": "2024-01-10T15:05:04.915585Z", - "iopub.status.idle": "2024-01-10T15:05:07.716474Z", - "shell.execute_reply": "2024-01-10T15:05:07.715777Z" + "iopub.execute_input": "2024-01-12T22:26:39.071215Z", + "iopub.status.busy": "2024-01-12T22:26:39.070585Z", + "iopub.status.idle": "2024-01-12T22:26:41.908906Z", + "shell.execute_reply": "2024-01-12T22:26:41.908230Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:07.719265Z", - "iopub.status.busy": "2024-01-10T15:05:07.718870Z", - "iopub.status.idle": "2024-01-10T15:05:07.723863Z", - "shell.execute_reply": "2024-01-10T15:05:07.723278Z" + "iopub.execute_input": "2024-01-12T22:26:41.911597Z", + "iopub.status.busy": "2024-01-12T22:26:41.911348Z", + "iopub.status.idle": "2024-01-12T22:26:41.917025Z", + "shell.execute_reply": "2024-01-12T22:26:41.916387Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:07.726393Z", - "iopub.status.busy": "2024-01-10T15:05:07.725965Z", - "iopub.status.idle": "2024-01-10T15:05:07.730416Z", - "shell.execute_reply": "2024-01-10T15:05:07.729818Z" + "iopub.execute_input": "2024-01-12T22:26:41.919637Z", + "iopub.status.busy": "2024-01-12T22:26:41.919186Z", + "iopub.status.idle": "2024-01-12T22:26:41.923358Z", + "shell.execute_reply": "2024-01-12T22:26:41.922749Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:07.733070Z", - "iopub.status.busy": "2024-01-10T15:05:07.732646Z", - "iopub.status.idle": "2024-01-10T15:05:07.736463Z", - "shell.execute_reply": "2024-01-10T15:05:07.735937Z" + "iopub.execute_input": "2024-01-12T22:26:41.925642Z", + "iopub.status.busy": "2024-01-12T22:26:41.925433Z", + "iopub.status.idle": "2024-01-12T22:26:41.928835Z", + "shell.execute_reply": "2024-01-12T22:26:41.928290Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 0edcfe438..bf051b256 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:12.798585Z", - "iopub.status.busy": "2024-01-10T15:05:12.798073Z", - "iopub.status.idle": "2024-01-10T15:05:13.866039Z", - "shell.execute_reply": "2024-01-10T15:05:13.865443Z" + "iopub.execute_input": "2024-01-12T22:26:46.778608Z", + "iopub.status.busy": "2024-01-12T22:26:46.778410Z", + "iopub.status.idle": "2024-01-12T22:26:47.875993Z", + "shell.execute_reply": "2024-01-12T22:26:47.875377Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:13.868940Z", - "iopub.status.busy": "2024-01-10T15:05:13.868454Z", - "iopub.status.idle": "2024-01-10T15:05:14.949563Z", - "shell.execute_reply": "2024-01-10T15:05:14.948721Z" + "iopub.execute_input": "2024-01-12T22:26:47.878803Z", + "iopub.status.busy": "2024-01-12T22:26:47.878528Z", + "iopub.status.idle": "2024-01-12T22:26:50.611927Z", + "shell.execute_reply": "2024-01-12T22:26:50.611077Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:14.952677Z", - "iopub.status.busy": "2024-01-10T15:05:14.952191Z", - "iopub.status.idle": "2024-01-10T15:05:14.955616Z", - "shell.execute_reply": "2024-01-10T15:05:14.955008Z" + "iopub.execute_input": "2024-01-12T22:26:50.615182Z", + "iopub.status.busy": "2024-01-12T22:26:50.614742Z", + "iopub.status.idle": "2024-01-12T22:26:50.618018Z", + "shell.execute_reply": "2024-01-12T22:26:50.617450Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:14.957997Z", - "iopub.status.busy": "2024-01-10T15:05:14.957548Z", - "iopub.status.idle": "2024-01-10T15:05:14.963154Z", - "shell.execute_reply": "2024-01-10T15:05:14.962555Z" + "iopub.execute_input": "2024-01-12T22:26:50.620410Z", + "iopub.status.busy": "2024-01-12T22:26:50.620044Z", + "iopub.status.idle": "2024-01-12T22:26:50.625461Z", + "shell.execute_reply": "2024-01-12T22:26:50.624962Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:14.965462Z", - "iopub.status.busy": "2024-01-10T15:05:14.965123Z", - "iopub.status.idle": "2024-01-10T15:05:15.556137Z", - "shell.execute_reply": "2024-01-10T15:05:15.555454Z" + "iopub.execute_input": "2024-01-12T22:26:50.627792Z", + "iopub.status.busy": "2024-01-12T22:26:50.627426Z", + "iopub.status.idle": "2024-01-12T22:26:51.226513Z", + "shell.execute_reply": "2024-01-12T22:26:51.225806Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:15.558867Z", - "iopub.status.busy": "2024-01-10T15:05:15.558399Z", - "iopub.status.idle": "2024-01-10T15:05:15.564398Z", - "shell.execute_reply": "2024-01-10T15:05:15.563798Z" + "iopub.execute_input": "2024-01-12T22:26:51.229785Z", + "iopub.status.busy": "2024-01-12T22:26:51.229455Z", + "iopub.status.idle": "2024-01-12T22:26:51.235617Z", + "shell.execute_reply": "2024-01-12T22:26:51.235070Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:15.566741Z", - "iopub.status.busy": "2024-01-10T15:05:15.566311Z", - "iopub.status.idle": "2024-01-10T15:05:15.570332Z", - "shell.execute_reply": "2024-01-10T15:05:15.569792Z" + "iopub.execute_input": "2024-01-12T22:26:51.238161Z", + "iopub.status.busy": "2024-01-12T22:26:51.237662Z", + "iopub.status.idle": "2024-01-12T22:26:51.242194Z", + "shell.execute_reply": "2024-01-12T22:26:51.241687Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:15.572792Z", - "iopub.status.busy": "2024-01-10T15:05:15.572353Z", - "iopub.status.idle": "2024-01-10T15:05:16.202060Z", - "shell.execute_reply": "2024-01-10T15:05:16.201337Z" + "iopub.execute_input": "2024-01-12T22:26:51.244736Z", + "iopub.status.busy": "2024-01-12T22:26:51.244401Z", + "iopub.status.idle": "2024-01-12T22:26:51.879645Z", + "shell.execute_reply": "2024-01-12T22:26:51.878886Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:16.204642Z", - "iopub.status.busy": "2024-01-10T15:05:16.204383Z", - "iopub.status.idle": "2024-01-10T15:05:16.306469Z", - "shell.execute_reply": "2024-01-10T15:05:16.305762Z" + "iopub.execute_input": "2024-01-12T22:26:51.882470Z", + "iopub.status.busy": "2024-01-12T22:26:51.882236Z", + "iopub.status.idle": "2024-01-12T22:26:51.983527Z", + "shell.execute_reply": "2024-01-12T22:26:51.982951Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:16.309130Z", - "iopub.status.busy": "2024-01-10T15:05:16.308732Z", - "iopub.status.idle": "2024-01-10T15:05:16.313357Z", - "shell.execute_reply": "2024-01-10T15:05:16.312853Z" + "iopub.execute_input": "2024-01-12T22:26:51.985877Z", + "iopub.status.busy": "2024-01-12T22:26:51.985670Z", + "iopub.status.idle": "2024-01-12T22:26:51.990500Z", + "shell.execute_reply": "2024-01-12T22:26:51.989949Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:16.315806Z", - "iopub.status.busy": "2024-01-10T15:05:16.315435Z", - "iopub.status.idle": "2024-01-10T15:05:16.693878Z", - "shell.execute_reply": "2024-01-10T15:05:16.693255Z" + "iopub.execute_input": "2024-01-12T22:26:51.992690Z", + "iopub.status.busy": "2024-01-12T22:26:51.992492Z", + "iopub.status.idle": "2024-01-12T22:26:52.369737Z", + "shell.execute_reply": "2024-01-12T22:26:52.369052Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:16.696815Z", - "iopub.status.busy": "2024-01-10T15:05:16.696424Z", - "iopub.status.idle": "2024-01-10T15:05:17.035024Z", - "shell.execute_reply": "2024-01-10T15:05:17.034337Z" + "iopub.execute_input": "2024-01-12T22:26:52.373197Z", + "iopub.status.busy": "2024-01-12T22:26:52.372741Z", + "iopub.status.idle": "2024-01-12T22:26:52.710267Z", + "shell.execute_reply": "2024-01-12T22:26:52.709571Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:17.037837Z", - "iopub.status.busy": "2024-01-10T15:05:17.037417Z", - "iopub.status.idle": "2024-01-10T15:05:17.422882Z", - "shell.execute_reply": "2024-01-10T15:05:17.422145Z" + "iopub.execute_input": "2024-01-12T22:26:52.713055Z", + "iopub.status.busy": "2024-01-12T22:26:52.712586Z", + "iopub.status.idle": "2024-01-12T22:26:53.098757Z", + "shell.execute_reply": "2024-01-12T22:26:53.098009Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:17.426253Z", - "iopub.status.busy": "2024-01-10T15:05:17.426038Z", - "iopub.status.idle": "2024-01-10T15:05:17.886876Z", - "shell.execute_reply": "2024-01-10T15:05:17.886152Z" + "iopub.execute_input": "2024-01-12T22:26:53.102518Z", + "iopub.status.busy": "2024-01-12T22:26:53.102059Z", + "iopub.status.idle": "2024-01-12T22:26:53.567899Z", + "shell.execute_reply": "2024-01-12T22:26:53.567190Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:17.891350Z", - "iopub.status.busy": "2024-01-10T15:05:17.890881Z", - "iopub.status.idle": "2024-01-10T15:05:18.343030Z", - "shell.execute_reply": "2024-01-10T15:05:18.342340Z" + "iopub.execute_input": "2024-01-12T22:26:53.572081Z", + "iopub.status.busy": "2024-01-12T22:26:53.571677Z", + "iopub.status.idle": "2024-01-12T22:26:54.020390Z", + "shell.execute_reply": "2024-01-12T22:26:54.019694Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:18.346622Z", - "iopub.status.busy": "2024-01-10T15:05:18.346403Z", - "iopub.status.idle": "2024-01-10T15:05:18.651727Z", - "shell.execute_reply": "2024-01-10T15:05:18.651095Z" + "iopub.execute_input": "2024-01-12T22:26:54.024230Z", + "iopub.status.busy": "2024-01-12T22:26:54.023833Z", + "iopub.status.idle": "2024-01-12T22:26:54.374247Z", + "shell.execute_reply": "2024-01-12T22:26:54.373594Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:18.654753Z", - "iopub.status.busy": "2024-01-10T15:05:18.654541Z", - "iopub.status.idle": "2024-01-10T15:05:18.834710Z", - "shell.execute_reply": "2024-01-10T15:05:18.834079Z" + "iopub.execute_input": "2024-01-12T22:26:54.377322Z", + "iopub.status.busy": "2024-01-12T22:26:54.376919Z", + "iopub.status.idle": "2024-01-12T22:26:54.577187Z", + "shell.execute_reply": "2024-01-12T22:26:54.576461Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:18.837502Z", - "iopub.status.busy": "2024-01-10T15:05:18.837116Z", - "iopub.status.idle": "2024-01-10T15:05:18.840846Z", - "shell.execute_reply": "2024-01-10T15:05:18.840288Z" + "iopub.execute_input": "2024-01-12T22:26:54.580000Z", + "iopub.status.busy": "2024-01-12T22:26:54.579593Z", + "iopub.status.idle": "2024-01-12T22:26:54.583455Z", + "shell.execute_reply": "2024-01-12T22:26:54.582883Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index b7951f2ed..4752dc194 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:21.209538Z", - "iopub.status.busy": "2024-01-10T15:05:21.209083Z", - "iopub.status.idle": "2024-01-10T15:05:23.168339Z", - "shell.execute_reply": "2024-01-10T15:05:23.167738Z" + "iopub.execute_input": "2024-01-12T22:26:56.972951Z", + "iopub.status.busy": "2024-01-12T22:26:56.972755Z", + "iopub.status.idle": "2024-01-12T22:26:58.956206Z", + "shell.execute_reply": "2024-01-12T22:26:58.955566Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:23.171269Z", - "iopub.status.busy": "2024-01-10T15:05:23.170786Z", - "iopub.status.idle": "2024-01-10T15:05:23.484028Z", - "shell.execute_reply": "2024-01-10T15:05:23.483358Z" + "iopub.execute_input": "2024-01-12T22:26:58.959304Z", + "iopub.status.busy": "2024-01-12T22:26:58.958784Z", + "iopub.status.idle": "2024-01-12T22:26:59.279272Z", + "shell.execute_reply": "2024-01-12T22:26:59.278641Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:23.486930Z", - "iopub.status.busy": "2024-01-10T15:05:23.486490Z", - "iopub.status.idle": "2024-01-10T15:05:23.490918Z", - "shell.execute_reply": "2024-01-10T15:05:23.490318Z" + "iopub.execute_input": "2024-01-12T22:26:59.282202Z", + "iopub.status.busy": "2024-01-12T22:26:59.281857Z", + "iopub.status.idle": "2024-01-12T22:26:59.286175Z", + "shell.execute_reply": "2024-01-12T22:26:59.285672Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:23.493502Z", - "iopub.status.busy": "2024-01-10T15:05:23.493138Z", - "iopub.status.idle": "2024-01-10T15:05:28.442075Z", - "shell.execute_reply": "2024-01-10T15:05:28.441402Z" + "iopub.execute_input": "2024-01-12T22:26:59.288725Z", + "iopub.status.busy": "2024-01-12T22:26:59.288278Z", + "iopub.status.idle": "2024-01-12T22:27:06.824546Z", + "shell.execute_reply": "2024-01-12T22:27:06.823834Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "12b5dc69acf9453bb2a2322dbaea9e6c", + "model_id": "f44a46f0f8e241259b2a8e67ee76270a", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:28.444744Z", - "iopub.status.busy": "2024-01-10T15:05:28.444438Z", - "iopub.status.idle": "2024-01-10T15:05:28.449732Z", - "shell.execute_reply": "2024-01-10T15:05:28.449104Z" + "iopub.execute_input": "2024-01-12T22:27:06.827255Z", + "iopub.status.busy": "2024-01-12T22:27:06.826992Z", + "iopub.status.idle": "2024-01-12T22:27:06.832365Z", + "shell.execute_reply": "2024-01-12T22:27:06.831726Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:28.451896Z", - "iopub.status.busy": "2024-01-10T15:05:28.451699Z", - "iopub.status.idle": "2024-01-10T15:05:28.992331Z", - "shell.execute_reply": "2024-01-10T15:05:28.991675Z" + "iopub.execute_input": "2024-01-12T22:27:06.834708Z", + "iopub.status.busy": "2024-01-12T22:27:06.834339Z", + "iopub.status.idle": "2024-01-12T22:27:07.387420Z", + "shell.execute_reply": "2024-01-12T22:27:07.386752Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:28.994883Z", - "iopub.status.busy": "2024-01-10T15:05:28.994563Z", - "iopub.status.idle": "2024-01-10T15:05:29.632591Z", - "shell.execute_reply": "2024-01-10T15:05:29.631923Z" + "iopub.execute_input": "2024-01-12T22:27:07.389983Z", + "iopub.status.busy": "2024-01-12T22:27:07.389612Z", + "iopub.status.idle": "2024-01-12T22:27:08.043781Z", + "shell.execute_reply": "2024-01-12T22:27:08.043128Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:29.635020Z", - "iopub.status.busy": "2024-01-10T15:05:29.634812Z", - "iopub.status.idle": "2024-01-10T15:05:29.638498Z", - "shell.execute_reply": "2024-01-10T15:05:29.637971Z" + "iopub.execute_input": "2024-01-12T22:27:08.046496Z", + "iopub.status.busy": "2024-01-12T22:27:08.046114Z", + "iopub.status.idle": "2024-01-12T22:27:08.049863Z", + "shell.execute_reply": "2024-01-12T22:27:08.049243Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:29.640771Z", - "iopub.status.busy": "2024-01-10T15:05:29.640568Z", - "iopub.status.idle": "2024-01-10T15:05:41.708773Z", - "shell.execute_reply": "2024-01-10T15:05:41.708043Z" + "iopub.execute_input": "2024-01-12T22:27:08.052090Z", + "iopub.status.busy": "2024-01-12T22:27:08.051882Z", + "iopub.status.idle": "2024-01-12T22:27:21.017754Z", + "shell.execute_reply": "2024-01-12T22:27:21.017025Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:41.711626Z", - "iopub.status.busy": "2024-01-10T15:05:41.711383Z", - "iopub.status.idle": "2024-01-10T15:05:43.253756Z", - "shell.execute_reply": "2024-01-10T15:05:43.253067Z" + "iopub.execute_input": "2024-01-12T22:27:21.020804Z", + "iopub.status.busy": "2024-01-12T22:27:21.020354Z", + "iopub.status.idle": "2024-01-12T22:27:22.620563Z", + "shell.execute_reply": "2024-01-12T22:27:22.619803Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:43.256773Z", - "iopub.status.busy": "2024-01-10T15:05:43.256277Z", - "iopub.status.idle": "2024-01-10T15:05:43.490070Z", - "shell.execute_reply": "2024-01-10T15:05:43.489306Z" + "iopub.execute_input": "2024-01-12T22:27:22.623961Z", + "iopub.status.busy": "2024-01-12T22:27:22.623633Z", + "iopub.status.idle": "2024-01-12T22:27:22.887748Z", + "shell.execute_reply": "2024-01-12T22:27:22.887028Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:43.492964Z", - "iopub.status.busy": "2024-01-10T15:05:43.492754Z", - "iopub.status.idle": "2024-01-10T15:05:44.153715Z", - "shell.execute_reply": "2024-01-10T15:05:44.153035Z" + "iopub.execute_input": "2024-01-12T22:27:22.890757Z", + "iopub.status.busy": "2024-01-12T22:27:22.890452Z", + "iopub.status.idle": "2024-01-12T22:27:23.551935Z", + "shell.execute_reply": "2024-01-12T22:27:23.551187Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:44.156860Z", - "iopub.status.busy": "2024-01-10T15:05:44.156265Z", - "iopub.status.idle": "2024-01-10T15:05:44.600989Z", - "shell.execute_reply": "2024-01-10T15:05:44.600344Z" + "iopub.execute_input": "2024-01-12T22:27:23.554791Z", + "iopub.status.busy": "2024-01-12T22:27:23.554577Z", + "iopub.status.idle": "2024-01-12T22:27:24.026139Z", + "shell.execute_reply": "2024-01-12T22:27:24.025445Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:44.603532Z", - "iopub.status.busy": "2024-01-10T15:05:44.603285Z", - "iopub.status.idle": "2024-01-10T15:05:44.834017Z", - "shell.execute_reply": "2024-01-10T15:05:44.833363Z" + "iopub.execute_input": "2024-01-12T22:27:24.028903Z", + "iopub.status.busy": "2024-01-12T22:27:24.028501Z", + "iopub.status.idle": "2024-01-12T22:27:24.264660Z", + "shell.execute_reply": "2024-01-12T22:27:24.263863Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:44.836783Z", - "iopub.status.busy": "2024-01-10T15:05:44.836577Z", - "iopub.status.idle": "2024-01-10T15:05:44.906830Z", - "shell.execute_reply": "2024-01-10T15:05:44.906100Z" + "iopub.execute_input": "2024-01-12T22:27:24.267825Z", + "iopub.status.busy": "2024-01-12T22:27:24.267457Z", + "iopub.status.idle": "2024-01-12T22:27:24.344252Z", + "shell.execute_reply": "2024-01-12T22:27:24.343524Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:44.909479Z", - "iopub.status.busy": "2024-01-10T15:05:44.909272Z", - "iopub.status.idle": "2024-01-10T15:06:22.582521Z", - "shell.execute_reply": "2024-01-10T15:06:22.581741Z" + "iopub.execute_input": "2024-01-12T22:27:24.347320Z", + "iopub.status.busy": "2024-01-12T22:27:24.346843Z", + "iopub.status.idle": "2024-01-12T22:28:03.270541Z", + "shell.execute_reply": "2024-01-12T22:28:03.269821Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:22.585549Z", - "iopub.status.busy": "2024-01-10T15:06:22.585031Z", - "iopub.status.idle": "2024-01-10T15:06:23.781983Z", - "shell.execute_reply": "2024-01-10T15:06:23.781235Z" + "iopub.execute_input": "2024-01-12T22:28:03.273332Z", + "iopub.status.busy": "2024-01-12T22:28:03.272988Z", + "iopub.status.idle": "2024-01-12T22:28:04.486448Z", + "shell.execute_reply": "2024-01-12T22:28:04.485753Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:23.785275Z", - "iopub.status.busy": "2024-01-10T15:06:23.784715Z", - "iopub.status.idle": "2024-01-10T15:06:23.971240Z", - "shell.execute_reply": "2024-01-10T15:06:23.970521Z" + "iopub.execute_input": "2024-01-12T22:28:04.489816Z", + "iopub.status.busy": "2024-01-12T22:28:04.489094Z", + "iopub.status.idle": "2024-01-12T22:28:04.685781Z", + "shell.execute_reply": "2024-01-12T22:28:04.685155Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:23.974385Z", - "iopub.status.busy": "2024-01-10T15:06:23.973877Z", - "iopub.status.idle": "2024-01-10T15:06:23.977333Z", - "shell.execute_reply": "2024-01-10T15:06:23.976741Z" + "iopub.execute_input": "2024-01-12T22:28:04.688646Z", + "iopub.status.busy": "2024-01-12T22:28:04.688391Z", + "iopub.status.idle": "2024-01-12T22:28:04.691771Z", + "shell.execute_reply": "2024-01-12T22:28:04.691272Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:23.980026Z", - "iopub.status.busy": "2024-01-10T15:06:23.979554Z", - "iopub.status.idle": "2024-01-10T15:06:23.988254Z", - "shell.execute_reply": "2024-01-10T15:06:23.987626Z" + "iopub.execute_input": "2024-01-12T22:28:04.693983Z", + "iopub.status.busy": "2024-01-12T22:28:04.693781Z", + "iopub.status.idle": "2024-01-12T22:28:04.702594Z", + "shell.execute_reply": "2024-01-12T22:28:04.702066Z" }, "nbsphinx": "hidden" }, @@ -1017,29 +1017,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "12b5dc69acf9453bb2a2322dbaea9e6c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_63007a6fc93b49709da9d544e853c969", - "IPY_MODEL_d7964db947004dd4847db06986c2782f", - "IPY_MODEL_7c7aa399fdf6477b9c5cd4ed997af3de" - ], - "layout": "IPY_MODEL_4c40bcb3b3dc4ef3b2ae47f5a41e9edb" - } - }, - "3c990076fa7e41c9b75fb0558cd2796a": { + "38025219d69b488f91347198f4ee1f67": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1091,7 +1069,7 @@ "width": null } }, - "4c40bcb3b3dc4ef3b2ae47f5a41e9edb": { + "460e005343e7486db613c428567f8c9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1143,7 +1121,7 @@ "width": null } }, - "57ce946020574bf0a08e97d7b957ddcc": { + "4eedab35b30847afaaf5f23b53750787": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1158,28 +1136,7 @@ "description_width": "" } }, - "63007a6fc93b49709da9d544e853c969": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_74345e7936394989952187bbc936b1ea", - "placeholder": "​", - "style": "IPY_MODEL_57ce946020574bf0a08e97d7b957ddcc", - "value": "100%" - } - }, - "74345e7936394989952187bbc936b1ea": { + "521a5b9435ae494b9b5c3e24a2081c0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1231,7 +1188,7 @@ "width": null } }, - "7c7aa399fdf6477b9c5cd4ed997af3de": { + "83d5c84e76204ba7b06d4ddf3ac499c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1246,13 +1203,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_80ec456e29c04104985c3f1eb9345bbb", + "layout": "IPY_MODEL_521a5b9435ae494b9b5c3e24a2081c0c", "placeholder": "​", - "style": "IPY_MODEL_c5920de7f42947c2b7985c7a2976cf6d", - "value": " 170498071/170498071 [00:02<00:00, 77009113.30it/s]" + "style": "IPY_MODEL_d369346fdf8746a9bb477623d89a5c87", + "value": " 170498071/170498071 [00:04<00:00, 43769849.67it/s]" } }, - "80ec456e29c04104985c3f1eb9345bbb": { + "b92c4f861cf44068b0a7c4b18ceabf90": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1304,23 +1261,31 @@ "width": null } }, - "acf564a6e0f34550a5d77cb082e2e4a5": { + "d22342034888404da26944061756f6a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_460e005343e7486db613c428567f8c9b", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f78504894ce34f438eb4430af53237f7", + "value": 170498071.0 } }, - "c5920de7f42947c2b7985c7a2976cf6d": { + "d369346fdf8746a9bb477623d89a5c87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1335,28 +1300,63 @@ "description_width": "" } }, - "d7964db947004dd4847db06986c2782f": { + "de365542f4504bdba041f5aa1805e62a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3c990076fa7e41c9b75fb0558cd2796a", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_acf564a6e0f34550a5d77cb082e2e4a5", - "value": 170498071.0 + "layout": "IPY_MODEL_b92c4f861cf44068b0a7c4b18ceabf90", + "placeholder": "​", + "style": "IPY_MODEL_4eedab35b30847afaaf5f23b53750787", + "value": "100%" + } + }, + "f44a46f0f8e241259b2a8e67ee76270a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_de365542f4504bdba041f5aa1805e62a", + "IPY_MODEL_d22342034888404da26944061756f6a6", + "IPY_MODEL_83d5c84e76204ba7b06d4ddf3ac499c2" + ], + "layout": "IPY_MODEL_38025219d69b488f91347198f4ee1f67" + } + }, + "f78504894ce34f438eb4430af53237f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 4a2dadcf3..177f8eeb8 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:29.103769Z", - "iopub.status.busy": "2024-01-10T15:06:29.103575Z", - "iopub.status.idle": "2024-01-10T15:06:30.201917Z", - "shell.execute_reply": "2024-01-10T15:06:30.201295Z" + "iopub.execute_input": "2024-01-12T22:28:09.858968Z", + "iopub.status.busy": "2024-01-12T22:28:09.858768Z", + "iopub.status.idle": "2024-01-12T22:28:10.960793Z", + "shell.execute_reply": "2024-01-12T22:28:10.960172Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.204907Z", - "iopub.status.busy": "2024-01-10T15:06:30.204366Z", - "iopub.status.idle": "2024-01-10T15:06:30.220770Z", - "shell.execute_reply": "2024-01-10T15:06:30.220132Z" + "iopub.execute_input": "2024-01-12T22:28:10.964159Z", + "iopub.status.busy": "2024-01-12T22:28:10.963485Z", + "iopub.status.idle": "2024-01-12T22:28:10.979451Z", + "shell.execute_reply": "2024-01-12T22:28:10.978955Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.223523Z", - "iopub.status.busy": "2024-01-10T15:06:30.223104Z", - "iopub.status.idle": "2024-01-10T15:06:30.226245Z", - "shell.execute_reply": "2024-01-10T15:06:30.225690Z" + "iopub.execute_input": "2024-01-12T22:28:10.981840Z", + "iopub.status.busy": "2024-01-12T22:28:10.981470Z", + "iopub.status.idle": "2024-01-12T22:28:10.984692Z", + "shell.execute_reply": "2024-01-12T22:28:10.984070Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.228543Z", - "iopub.status.busy": "2024-01-10T15:06:30.228257Z", - "iopub.status.idle": "2024-01-10T15:06:30.317626Z", - "shell.execute_reply": "2024-01-10T15:06:30.316982Z" + "iopub.execute_input": "2024-01-12T22:28:10.987075Z", + "iopub.status.busy": "2024-01-12T22:28:10.986718Z", + "iopub.status.idle": "2024-01-12T22:28:11.195828Z", + "shell.execute_reply": "2024-01-12T22:28:11.195165Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.320512Z", - "iopub.status.busy": "2024-01-10T15:06:30.319930Z", - "iopub.status.idle": "2024-01-10T15:06:30.587833Z", - "shell.execute_reply": "2024-01-10T15:06:30.587097Z" + "iopub.execute_input": "2024-01-12T22:28:11.198504Z", + "iopub.status.busy": "2024-01-12T22:28:11.198111Z", + "iopub.status.idle": "2024-01-12T22:28:11.480862Z", + "shell.execute_reply": "2024-01-12T22:28:11.480233Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.590520Z", - "iopub.status.busy": "2024-01-10T15:06:30.590253Z", - "iopub.status.idle": "2024-01-10T15:06:30.846918Z", - "shell.execute_reply": "2024-01-10T15:06:30.846204Z" + "iopub.execute_input": "2024-01-12T22:28:11.484003Z", + "iopub.status.busy": "2024-01-12T22:28:11.483611Z", + "iopub.status.idle": "2024-01-12T22:28:11.703988Z", + "shell.execute_reply": "2024-01-12T22:28:11.703284Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.849576Z", - "iopub.status.busy": "2024-01-10T15:06:30.849180Z", - "iopub.status.idle": "2024-01-10T15:06:30.854014Z", - "shell.execute_reply": "2024-01-10T15:06:30.853474Z" + "iopub.execute_input": "2024-01-12T22:28:11.706546Z", + "iopub.status.busy": "2024-01-12T22:28:11.706141Z", + "iopub.status.idle": "2024-01-12T22:28:11.710966Z", + "shell.execute_reply": "2024-01-12T22:28:11.710442Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.856453Z", - "iopub.status.busy": "2024-01-10T15:06:30.856086Z", - "iopub.status.idle": "2024-01-10T15:06:30.862321Z", - "shell.execute_reply": "2024-01-10T15:06:30.861851Z" + "iopub.execute_input": "2024-01-12T22:28:11.713410Z", + "iopub.status.busy": "2024-01-12T22:28:11.713012Z", + "iopub.status.idle": "2024-01-12T22:28:11.719438Z", + "shell.execute_reply": "2024-01-12T22:28:11.718843Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.864795Z", - "iopub.status.busy": "2024-01-10T15:06:30.864430Z", - "iopub.status.idle": "2024-01-10T15:06:30.867161Z", - "shell.execute_reply": "2024-01-10T15:06:30.866611Z" + "iopub.execute_input": "2024-01-12T22:28:11.722129Z", + "iopub.status.busy": "2024-01-12T22:28:11.721760Z", + "iopub.status.idle": "2024-01-12T22:28:11.724699Z", + "shell.execute_reply": "2024-01-12T22:28:11.724084Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.869425Z", - "iopub.status.busy": "2024-01-10T15:06:30.869055Z", - "iopub.status.idle": "2024-01-10T15:06:41.017037Z", - "shell.execute_reply": "2024-01-10T15:06:41.016307Z" + "iopub.execute_input": "2024-01-12T22:28:11.727294Z", + "iopub.status.busy": "2024-01-12T22:28:11.726782Z", + "iopub.status.idle": "2024-01-12T22:28:21.986297Z", + "shell.execute_reply": "2024-01-12T22:28:21.985579Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.020063Z", - "iopub.status.busy": "2024-01-10T15:06:41.019675Z", - "iopub.status.idle": "2024-01-10T15:06:41.027115Z", - "shell.execute_reply": "2024-01-10T15:06:41.026544Z" + "iopub.execute_input": "2024-01-12T22:28:21.989713Z", + "iopub.status.busy": "2024-01-12T22:28:21.989120Z", + "iopub.status.idle": "2024-01-12T22:28:21.996915Z", + "shell.execute_reply": "2024-01-12T22:28:21.996276Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.029405Z", - "iopub.status.busy": "2024-01-10T15:06:41.029205Z", - "iopub.status.idle": "2024-01-10T15:06:41.033215Z", - "shell.execute_reply": "2024-01-10T15:06:41.032594Z" + "iopub.execute_input": "2024-01-12T22:28:21.999469Z", + "iopub.status.busy": "2024-01-12T22:28:21.999247Z", + "iopub.status.idle": "2024-01-12T22:28:22.003498Z", + "shell.execute_reply": "2024-01-12T22:28:22.002950Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.035823Z", - "iopub.status.busy": "2024-01-10T15:06:41.035383Z", - "iopub.status.idle": "2024-01-10T15:06:41.039101Z", - "shell.execute_reply": "2024-01-10T15:06:41.038455Z" + "iopub.execute_input": "2024-01-12T22:28:22.005720Z", + "iopub.status.busy": "2024-01-12T22:28:22.005516Z", + "iopub.status.idle": "2024-01-12T22:28:22.009682Z", + "shell.execute_reply": "2024-01-12T22:28:22.009132Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.041445Z", - "iopub.status.busy": "2024-01-10T15:06:41.041078Z", - "iopub.status.idle": "2024-01-10T15:06:41.044279Z", - "shell.execute_reply": "2024-01-10T15:06:41.043724Z" + "iopub.execute_input": "2024-01-12T22:28:22.012135Z", + "iopub.status.busy": "2024-01-12T22:28:22.011931Z", + "iopub.status.idle": "2024-01-12T22:28:22.015285Z", + "shell.execute_reply": "2024-01-12T22:28:22.014700Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.046671Z", - "iopub.status.busy": "2024-01-10T15:06:41.046309Z", - "iopub.status.idle": "2024-01-10T15:06:41.054894Z", - "shell.execute_reply": "2024-01-10T15:06:41.054326Z" + "iopub.execute_input": "2024-01-12T22:28:22.017435Z", + "iopub.status.busy": "2024-01-12T22:28:22.017234Z", + "iopub.status.idle": "2024-01-12T22:28:22.026819Z", + "shell.execute_reply": "2024-01-12T22:28:22.026260Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.057327Z", - "iopub.status.busy": "2024-01-10T15:06:41.056960Z", - "iopub.status.idle": "2024-01-10T15:06:41.205394Z", - "shell.execute_reply": "2024-01-10T15:06:41.204692Z" + "iopub.execute_input": "2024-01-12T22:28:22.029276Z", + "iopub.status.busy": "2024-01-12T22:28:22.028911Z", + "iopub.status.idle": "2024-01-12T22:28:22.181214Z", + "shell.execute_reply": "2024-01-12T22:28:22.180517Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.208175Z", - "iopub.status.busy": "2024-01-10T15:06:41.207750Z", - "iopub.status.idle": "2024-01-10T15:06:41.341273Z", - "shell.execute_reply": "2024-01-10T15:06:41.340668Z" + "iopub.execute_input": "2024-01-12T22:28:22.184239Z", + "iopub.status.busy": "2024-01-12T22:28:22.183688Z", + "iopub.status.idle": "2024-01-12T22:28:22.316301Z", + "shell.execute_reply": "2024-01-12T22:28:22.315546Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.344029Z", - "iopub.status.busy": "2024-01-10T15:06:41.343669Z", - "iopub.status.idle": "2024-01-10T15:06:41.924486Z", - "shell.execute_reply": "2024-01-10T15:06:41.923868Z" + "iopub.execute_input": "2024-01-12T22:28:22.319353Z", + "iopub.status.busy": "2024-01-12T22:28:22.318878Z", + "iopub.status.idle": "2024-01-12T22:28:22.918408Z", + "shell.execute_reply": "2024-01-12T22:28:22.917749Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.927461Z", - "iopub.status.busy": "2024-01-10T15:06:41.927030Z", - "iopub.status.idle": "2024-01-10T15:06:42.019961Z", - "shell.execute_reply": "2024-01-10T15:06:42.019298Z" + "iopub.execute_input": "2024-01-12T22:28:22.921720Z", + "iopub.status.busy": "2024-01-12T22:28:22.921236Z", + "iopub.status.idle": "2024-01-12T22:28:23.017364Z", + "shell.execute_reply": "2024-01-12T22:28:23.016704Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:42.023210Z", - "iopub.status.busy": "2024-01-10T15:06:42.022968Z", - "iopub.status.idle": "2024-01-10T15:06:42.033293Z", - "shell.execute_reply": "2024-01-10T15:06:42.032670Z" + "iopub.execute_input": "2024-01-12T22:28:23.020510Z", + "iopub.status.busy": "2024-01-12T22:28:23.020022Z", + "iopub.status.idle": "2024-01-12T22:28:23.030227Z", + "shell.execute_reply": "2024-01-12T22:28:23.029702Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index eece6be9f..0c8050cbe 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:47.292158Z", - "iopub.status.busy": "2024-01-10T15:06:47.291962Z", - "iopub.status.idle": "2024-01-10T15:06:48.758411Z", - "shell.execute_reply": "2024-01-10T15:06:48.757602Z" + "iopub.execute_input": "2024-01-12T22:28:28.049195Z", + "iopub.status.busy": "2024-01-12T22:28:28.048677Z", + "iopub.status.idle": "2024-01-12T22:28:30.560405Z", + "shell.execute_reply": "2024-01-12T22:28:30.559585Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:48.761354Z", - "iopub.status.busy": "2024-01-10T15:06:48.761148Z", - "iopub.status.idle": "2024-01-10T15:07:46.996636Z", - "shell.execute_reply": "2024-01-10T15:07:46.995933Z" + "iopub.execute_input": "2024-01-12T22:28:30.563434Z", + "iopub.status.busy": "2024-01-12T22:28:30.563214Z", + "iopub.status.idle": "2024-01-12T22:29:33.642702Z", + "shell.execute_reply": "2024-01-12T22:29:33.641880Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:07:46.999673Z", - "iopub.status.busy": "2024-01-10T15:07:46.999269Z", - "iopub.status.idle": "2024-01-10T15:07:48.026262Z", - "shell.execute_reply": "2024-01-10T15:07:48.025653Z" + "iopub.execute_input": "2024-01-12T22:29:33.646001Z", + "iopub.status.busy": "2024-01-12T22:29:33.645577Z", + "iopub.status.idle": "2024-01-12T22:29:34.697524Z", + "shell.execute_reply": "2024-01-12T22:29:34.696881Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:07:48.029294Z", - "iopub.status.busy": "2024-01-10T15:07:48.028808Z", - "iopub.status.idle": "2024-01-10T15:07:48.032207Z", - "shell.execute_reply": "2024-01-10T15:07:48.031670Z" + "iopub.execute_input": "2024-01-12T22:29:34.700499Z", + "iopub.status.busy": "2024-01-12T22:29:34.700039Z", + "iopub.status.idle": "2024-01-12T22:29:34.703673Z", + "shell.execute_reply": "2024-01-12T22:29:34.703136Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:07:48.034648Z", - "iopub.status.busy": "2024-01-10T15:07:48.034350Z", - "iopub.status.idle": "2024-01-10T15:07:48.038691Z", - "shell.execute_reply": "2024-01-10T15:07:48.038183Z" + "iopub.execute_input": "2024-01-12T22:29:34.706228Z", + "iopub.status.busy": "2024-01-12T22:29:34.705851Z", + "iopub.status.idle": "2024-01-12T22:29:34.710119Z", + "shell.execute_reply": "2024-01-12T22:29:34.709595Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:07:48.041106Z", - "iopub.status.busy": "2024-01-10T15:07:48.040752Z", - "iopub.status.idle": "2024-01-10T15:07:48.044635Z", - "shell.execute_reply": "2024-01-10T15:07:48.044122Z" + "iopub.execute_input": "2024-01-12T22:29:34.712373Z", + "iopub.status.busy": "2024-01-12T22:29:34.712072Z", + "iopub.status.idle": "2024-01-12T22:29:34.715809Z", + "shell.execute_reply": "2024-01-12T22:29:34.715302Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:07:48.047132Z", - "iopub.status.busy": "2024-01-10T15:07:48.046640Z", - "iopub.status.idle": "2024-01-10T15:07:48.049918Z", - "shell.execute_reply": "2024-01-10T15:07:48.049426Z" + "iopub.execute_input": "2024-01-12T22:29:34.718197Z", + "iopub.status.busy": "2024-01-12T22:29:34.717835Z", + "iopub.status.idle": "2024-01-12T22:29:34.720838Z", + "shell.execute_reply": "2024-01-12T22:29:34.720291Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:07:48.052275Z", - "iopub.status.busy": "2024-01-10T15:07:48.051926Z", - "iopub.status.idle": "2024-01-10T15:09:13.774763Z", - "shell.execute_reply": "2024-01-10T15:09:13.774061Z" + "iopub.execute_input": "2024-01-12T22:29:34.723149Z", + "iopub.status.busy": "2024-01-12T22:29:34.722788Z", + "iopub.status.idle": "2024-01-12T22:30:59.605276Z", + "shell.execute_reply": "2024-01-12T22:30:59.604581Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f6f7d2e0db9b4e23bd565eeb1ebe8323", + "model_id": "24e1cccf99014e9691effff931a51ace", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ea68cf0375d04b00803fe43e815130fb", + "model_id": "b2844702aa05437896745da9ce2f19f1", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:13.777691Z", - "iopub.status.busy": "2024-01-10T15:09:13.777270Z", - "iopub.status.idle": "2024-01-10T15:09:14.581171Z", - "shell.execute_reply": "2024-01-10T15:09:14.580511Z" + "iopub.execute_input": "2024-01-12T22:30:59.608357Z", + "iopub.status.busy": "2024-01-12T22:30:59.608101Z", + "iopub.status.idle": "2024-01-12T22:31:00.373355Z", + "shell.execute_reply": "2024-01-12T22:31:00.372750Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:14.583844Z", - "iopub.status.busy": "2024-01-10T15:09:14.583393Z", - "iopub.status.idle": "2024-01-10T15:09:16.702396Z", - "shell.execute_reply": "2024-01-10T15:09:16.701727Z" + "iopub.execute_input": "2024-01-12T22:31:00.376146Z", + "iopub.status.busy": "2024-01-12T22:31:00.375532Z", + "iopub.status.idle": "2024-01-12T22:31:02.473685Z", + "shell.execute_reply": "2024-01-12T22:31:02.472992Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:16.705033Z", - "iopub.status.busy": "2024-01-10T15:09:16.704641Z", - "iopub.status.idle": "2024-01-10T15:09:45.984596Z", - "shell.execute_reply": "2024-01-10T15:09:45.984026Z" + "iopub.execute_input": "2024-01-12T22:31:02.476370Z", + "iopub.status.busy": "2024-01-12T22:31:02.475871Z", + "iopub.status.idle": "2024-01-12T22:31:31.836798Z", + "shell.execute_reply": "2024-01-12T22:31:31.836137Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 17030/4997817 [00:00<00:29, 170283.11it/s]" + " 0%| | 16189/4997817 [00:00<00:30, 161877.03it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 34264/4997817 [00:00<00:28, 171485.88it/s]" + " 1%| | 33029/4997817 [00:00<00:29, 165708.23it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 51459/4997817 [00:00<00:28, 171690.77it/s]" + " 1%| | 49888/4997817 [00:00<00:29, 167015.95it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 68798/4997817 [00:00<00:28, 172355.31it/s]" + " 1%|▏ | 66952/4997817 [00:00<00:29, 168441.28it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 86035/4997817 [00:00<00:28, 172354.29it/s]" + " 2%|▏ | 83891/4997817 [00:00<00:29, 168780.39it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 103290/4997817 [00:00<00:28, 172417.11it/s]" + " 2%|▏ | 100770/4997817 [00:00<00:29, 168702.89it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 120703/4997817 [00:00<00:28, 172972.80it/s]" + " 2%|▏ | 118039/4997817 [00:00<00:28, 170001.33it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 138001/4997817 [00:00<00:28, 172728.16it/s]" + " 3%|▎ | 135252/4997817 [00:00<00:28, 170676.15it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 155274/4997817 [00:00<00:28, 172330.12it/s]" + " 3%|▎ | 152439/4997817 [00:00<00:28, 171045.14it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 172583/4997817 [00:01<00:27, 172560.55it/s]" + " 3%|▎ | 169622/4997817 [00:01<00:28, 171284.43it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 189950/4997817 [00:01<00:27, 172896.33it/s]" + " 4%|▎ | 186846/4997817 [00:01<00:28, 171573.65it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 207377/4997817 [00:01<00:27, 173308.14it/s]" + " 4%|▍ | 204004/4997817 [00:01<00:27, 171428.93it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 224727/4997817 [00:01<00:27, 173361.26it/s]" + " 4%|▍ | 221325/4997817 [00:01<00:27, 171964.32it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 242162/4997817 [00:01<00:27, 173656.66it/s]" + " 5%|▍ | 238636/4997817 [00:01<00:27, 172304.18it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 259598/4997817 [00:01<00:27, 173865.50it/s]" + " 5%|▌ | 255867/4997817 [00:01<00:27, 172233.47it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 277065/4997817 [00:01<00:27, 174102.51it/s]" + " 5%|▌ | 273426/4997817 [00:01<00:27, 173240.31it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 294502/4997817 [00:01<00:27, 174179.23it/s]" + " 6%|▌ | 291001/4997817 [00:01<00:27, 173991.36it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 311920/4997817 [00:01<00:27, 173530.42it/s]" + " 6%|▌ | 308542/4997817 [00:01<00:26, 174415.45it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 329316/4997817 [00:01<00:26, 173655.30it/s]" + " 7%|▋ | 326045/4997817 [00:01<00:26, 174596.79it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 346687/4997817 [00:02<00:26, 173667.15it/s]" + " 7%|▋ | 343576/4997817 [00:02<00:26, 174806.93it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 364055/4997817 [00:02<00:26, 173627.62it/s]" + " 7%|▋ | 361057/4997817 [00:02<00:26, 174198.36it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 381423/4997817 [00:02<00:26, 173638.78it/s]" + " 8%|▊ | 378495/4997817 [00:02<00:26, 174250.05it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 398834/4997817 [00:02<00:26, 173775.03it/s]" + " 8%|▊ | 395921/4997817 [00:02<00:26, 174021.17it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 416212/4997817 [00:02<00:26, 173771.72it/s]" + " 8%|▊ | 413363/4997817 [00:02<00:26, 174135.91it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 433590/4997817 [00:02<00:26, 173442.63it/s]" + " 9%|▊ | 430821/4997817 [00:02<00:26, 174265.51it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 451024/4997817 [00:02<00:26, 173705.52it/s]" + " 9%|▉ | 448248/4997817 [00:02<00:26, 174223.58it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 468446/4997817 [00:02<00:26, 173855.02it/s]" + " 9%|▉ | 465671/4997817 [00:02<00:26, 173660.39it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 485832/4997817 [00:02<00:25, 173762.18it/s]" + " 10%|▉ | 483038/4997817 [00:02<00:26, 173128.18it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 503243/4997817 [00:02<00:25, 173861.88it/s]" + " 10%|█ | 500503/4997817 [00:02<00:25, 173579.78it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 520727/4997817 [00:03<00:25, 174151.56it/s]" + " 10%|█ | 518016/4997817 [00:03<00:25, 174040.42it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 538143/4997817 [00:03<00:25, 173998.03it/s]" + " 11%|█ | 535433/4997817 [00:03<00:25, 174075.41it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 555543/4997817 [00:03<00:25, 173843.76it/s]" + " 11%|█ | 552919/4997817 [00:03<00:25, 174307.13it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 572928/4997817 [00:03<00:25, 173780.39it/s]" + " 11%|█▏ | 570351/4997817 [00:03<00:25, 174176.26it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 590307/4997817 [00:03<00:25, 173705.63it/s]" + " 12%|█▏ | 587769/4997817 [00:03<00:25, 173786.75it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 607678/4997817 [00:03<00:25, 173383.06it/s]" + " 12%|█▏ | 605148/4997817 [00:03<00:25, 173355.73it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 625113/4997817 [00:03<00:25, 173668.62it/s]" + " 12%|█▏ | 622484/4997817 [00:03<00:25, 173151.44it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 642500/4997817 [00:03<00:25, 173724.53it/s]" + " 13%|█▎ | 639867/4997817 [00:03<00:25, 173350.31it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 659873/4997817 [00:03<00:25, 173457.40it/s]" + " 13%|█▎ | 657203/4997817 [00:03<00:25, 173280.80it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 677219/4997817 [00:03<00:24, 172924.88it/s]" + " 13%|█▎ | 674532/4997817 [00:03<00:25, 172580.11it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 694526/4997817 [00:04<00:24, 172965.24it/s]" + " 14%|█▍ | 691805/4997817 [00:04<00:24, 172621.86it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 711823/4997817 [00:04<00:24, 172894.79it/s]" + " 14%|█▍ | 709172/4997817 [00:04<00:24, 172932.10it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 729176/4997817 [00:04<00:24, 173080.82it/s]" + " 15%|█▍ | 726466/4997817 [00:04<00:24, 172541.77it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 746485/4997817 [00:04<00:24, 173034.68it/s]" + " 15%|█▍ | 743745/4997817 [00:04<00:24, 172613.85it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 763789/4997817 [00:04<00:24, 172857.88it/s]" + " 15%|█▌ | 761122/4997817 [00:04<00:24, 172954.57it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 781271/4997817 [00:04<00:24, 173443.18it/s]" + " 16%|█▌ | 778552/4997817 [00:04<00:24, 173352.43it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 798719/4997817 [00:04<00:24, 173750.95it/s]" + " 16%|█▌ | 795954/4997817 [00:04<00:24, 173549.44it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 816121/4997817 [00:04<00:24, 173827.43it/s]" + " 16%|█▋ | 813455/4997817 [00:04<00:24, 173984.83it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 833504/4997817 [00:04<00:24, 173400.72it/s]" + " 17%|█▋ | 830888/4997817 [00:04<00:23, 174084.89it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 850845/4997817 [00:04<00:24, 167499.61it/s]" + " 17%|█▋ | 848402/4997817 [00:04<00:23, 174399.35it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 868055/4997817 [00:05<00:24, 168840.64it/s]" + " 17%|█▋ | 865900/4997817 [00:05<00:23, 174568.43it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 885319/4997817 [00:05<00:24, 169955.77it/s]" + " 18%|█▊ | 883357/4997817 [00:05<00:23, 174329.22it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 902466/4997817 [00:05<00:24, 170400.94it/s]" + " 18%|█▊ | 900791/4997817 [00:05<00:23, 171262.50it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 919525/4997817 [00:05<00:24, 169551.46it/s]" + " 18%|█▊ | 918219/4997817 [00:05<00:23, 172152.84it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 936548/4997817 [00:05<00:23, 169750.27it/s]" + " 19%|█▊ | 935654/4997817 [00:05<00:23, 172802.62it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 953712/4997817 [00:05<00:23, 170310.11it/s]" + " 19%|█▉ | 953012/4997817 [00:05<00:23, 173031.41it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 970942/4997817 [00:05<00:23, 170900.53it/s]" + " 19%|█▉ | 970321/4997817 [00:05<00:23, 172399.52it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 988152/4997817 [00:05<00:23, 171255.63it/s]" + " 20%|█▉ | 987638/4997817 [00:05<00:23, 172626.78it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1005330/4997817 [00:05<00:23, 171410.52it/s]" + " 20%|██ | 1004904/4997817 [00:05<00:23, 172474.58it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1022474/4997817 [00:05<00:23, 171375.10it/s]" + " 20%|██ | 1022154/4997817 [00:05<00:23, 171681.74it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1039638/4997817 [00:06<00:23, 171449.37it/s]" + " 21%|██ | 1039376/4997817 [00:06<00:23, 171839.04it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1056785/4997817 [00:06<00:23, 170869.67it/s]" + " 21%|██ | 1056759/4997817 [00:06<00:22, 172430.29it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1073989/4997817 [00:06<00:22, 171215.58it/s]" + " 21%|██▏ | 1074004/4997817 [00:06<00:22, 171778.93it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1091214/4997817 [00:06<00:22, 171520.75it/s]" + " 22%|██▏ | 1091577/4997817 [00:06<00:22, 172954.10it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1108873/4997817 [00:06<00:22, 173035.02it/s]" + " 22%|██▏ | 1109070/4997817 [00:06<00:22, 173541.63it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1126178/4997817 [00:06<00:22, 173017.19it/s]" + " 23%|██▎ | 1126616/4997817 [00:06<00:22, 174112.14it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1143481/4997817 [00:06<00:22, 172777.34it/s]" + " 23%|██▎ | 1144169/4997817 [00:06<00:22, 174533.86it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1160760/4997817 [00:06<00:22, 172497.49it/s]" + " 23%|██▎ | 1161733/4997817 [00:06<00:21, 174862.87it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1178011/4997817 [00:06<00:22, 172168.93it/s]" + " 24%|██▎ | 1179220/4997817 [00:06<00:21, 174416.81it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1195229/4997817 [00:06<00:22, 171842.38it/s]" + " 24%|██▍ | 1196663/4997817 [00:06<00:21, 173928.97it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1212414/4997817 [00:07<00:22, 171680.48it/s]" + " 24%|██▍ | 1214075/4997817 [00:07<00:21, 173979.92it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1229583/4997817 [00:07<00:21, 171672.23it/s]" + " 25%|██▍ | 1231479/4997817 [00:07<00:21, 173993.48it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1246751/4997817 [00:07<00:21, 171577.38it/s]" + " 25%|██▍ | 1248879/4997817 [00:07<00:21, 173820.38it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1263909/4997817 [00:07<00:21, 170978.78it/s]" + " 25%|██▌ | 1266262/4997817 [00:07<00:21, 173714.06it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1281008/4997817 [00:07<00:21, 170704.98it/s]" + " 26%|██▌ | 1283634/4997817 [00:07<00:21, 173379.44it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1298079/4997817 [00:07<00:21, 170500.85it/s]" + " 26%|██▌ | 1300973/4997817 [00:07<00:21, 173158.20it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1315214/4997817 [00:07<00:21, 170750.49it/s]" + " 26%|██▋ | 1318289/4997817 [00:07<00:21, 172363.34it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1332308/4997817 [00:07<00:21, 170803.96it/s]" + " 27%|██▋ | 1335527/4997817 [00:07<00:21, 171954.17it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1349517/4997817 [00:07<00:21, 171186.09it/s]" + " 27%|██▋ | 1352723/4997817 [00:07<00:21, 171370.72it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1366636/4997817 [00:07<00:21, 166974.62it/s]" + " 27%|██▋ | 1369861/4997817 [00:07<00:21, 170869.18it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1383357/4997817 [00:08<00:21, 165352.54it/s]" + " 28%|██▊ | 1387142/4997817 [00:08<00:21, 171443.77it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1400601/4997817 [00:08<00:21, 167432.22it/s]" + " 28%|██▊ | 1404406/4997817 [00:08<00:20, 171796.08it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1417755/4997817 [00:08<00:21, 168644.72it/s]" + " 28%|██▊ | 1421587/4997817 [00:08<00:20, 171442.86it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1434981/4997817 [00:08<00:20, 169716.13it/s]" + " 29%|██▉ | 1438732/4997817 [00:08<00:20, 171120.78it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1452216/4997817 [00:08<00:20, 170497.47it/s]" + " 29%|██▉ | 1456010/4997817 [00:08<00:20, 171612.75it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1469393/4997817 [00:08<00:20, 170873.77it/s]" + " 29%|██▉ | 1473172/4997817 [00:08<00:20, 171568.34it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1486659/4997817 [00:08<00:20, 171405.04it/s]" + " 30%|██▉ | 1490330/4997817 [00:08<00:20, 171562.94it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1503878/4997817 [00:08<00:20, 171636.21it/s]" + " 30%|███ | 1507626/4997817 [00:08<00:20, 171978.28it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1521101/4997817 [00:08<00:20, 171810.78it/s]" + " 31%|███ | 1524858/4997817 [00:08<00:20, 172079.01it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1538285/4997817 [00:08<00:20, 171554.86it/s]" + " 31%|███ | 1542067/4997817 [00:08<00:20, 171862.73it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1555442/4997817 [00:09<00:20, 171482.32it/s]" + " 31%|███ | 1559254/4997817 [00:09<00:20, 171254.72it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1572592/4997817 [00:09<00:19, 171358.69it/s]" + " 32%|███▏ | 1576380/4997817 [00:09<00:20, 171010.62it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1589729/4997817 [00:09<00:19, 171312.10it/s]" + " 32%|███▏ | 1593482/4997817 [00:09<00:19, 170789.72it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1606861/4997817 [00:09<00:19, 171261.67it/s]" + " 32%|███▏ | 1610562/4997817 [00:09<00:19, 170689.53it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1623988/4997817 [00:09<00:19, 170981.92it/s]" + " 33%|███▎ | 1627726/4997817 [00:09<00:19, 170970.89it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1641087/4997817 [00:09<00:19, 170445.03it/s]" + " 33%|███▎ | 1644824/4997817 [00:09<00:19, 170676.74it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1658133/4997817 [00:09<00:19, 170120.99it/s]" + " 33%|███▎ | 1661892/4997817 [00:09<00:19, 169213.92it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1675146/4997817 [00:09<00:19, 170047.88it/s]" + " 34%|███▎ | 1678929/4997817 [00:09<00:19, 169555.43it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1692384/4997817 [00:09<00:19, 170742.41it/s]" + " 34%|███▍ | 1696085/4997817 [00:09<00:19, 170150.16it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1709536/4997817 [00:09<00:19, 170970.11it/s]" + " 34%|███▍ | 1713243/4997817 [00:09<00:19, 170573.37it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1726634/4997817 [00:10<00:19, 167250.12it/s]" + " 35%|███▍ | 1730335/4997817 [00:10<00:19, 170675.30it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1743827/4997817 [00:10<00:19, 168626.61it/s]" + " 35%|███▍ | 1747404/4997817 [00:10<00:19, 170542.54it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1761126/4997817 [00:10<00:19, 169916.59it/s]" + " 35%|███▌ | 1764459/4997817 [00:10<00:19, 170051.22it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1778432/4997817 [00:10<00:18, 170847.39it/s]" + " 36%|███▌ | 1781479/4997817 [00:10<00:18, 170090.90it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1795743/4997817 [00:10<00:18, 171517.21it/s]" + " 36%|███▌ | 1798489/4997817 [00:10<00:18, 169783.89it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1813098/4997817 [00:10<00:18, 172119.98it/s]" + " 36%|███▋ | 1815547/4997817 [00:10<00:18, 170019.28it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1830442/4997817 [00:10<00:18, 172511.96it/s]" + " 37%|███▋ | 1832660/4997817 [00:10<00:18, 170348.94it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1847697/4997817 [00:10<00:18, 172177.79it/s]" + " 37%|███▋ | 1849696/4997817 [00:10<00:18, 169577.77it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1864918/4997817 [00:10<00:18, 171675.77it/s]" + " 37%|███▋ | 1866737/4997817 [00:10<00:18, 169825.23it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1882375/4997817 [00:10<00:18, 172536.76it/s]" + " 38%|███▊ | 1884232/4997817 [00:10<00:18, 171353.52it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1899650/4997817 [00:11<00:17, 172598.14it/s]" + " 38%|███▊ | 1901620/4997817 [00:11<00:17, 172106.00it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1916965/4997817 [00:11<00:17, 172759.47it/s]" + " 38%|███▊ | 1918993/4997817 [00:11<00:17, 172590.80it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1934403/4997817 [00:11<00:17, 173239.67it/s]" + " 39%|███▊ | 1936537/4997817 [00:11<00:17, 173440.88it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1951857/4997817 [00:11<00:17, 173625.82it/s]" + " 39%|███▉ | 1953974/4997817 [00:11<00:17, 173715.86it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1969233/4997817 [00:11<00:17, 173662.00it/s]" + " 39%|███▉ | 1971386/4997817 [00:11<00:17, 173833.48it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1986600/4997817 [00:11<00:17, 173510.89it/s]" + " 40%|███▉ | 1988770/4997817 [00:11<00:17, 173488.17it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2003989/4997817 [00:11<00:17, 173620.71it/s]" + " 40%|████ | 2006120/4997817 [00:11<00:17, 172896.45it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2021352/4997817 [00:11<00:17, 172889.28it/s]" + " 40%|████ | 2023518/4997817 [00:11<00:17, 173217.07it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2038726/4997817 [00:11<00:17, 173140.08it/s]" + " 41%|████ | 2040841/4997817 [00:11<00:17, 173166.13it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2056041/4997817 [00:11<00:16, 173049.75it/s]" + " 41%|████ | 2058158/4997817 [00:11<00:16, 173111.49it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2073347/4997817 [00:12<00:16, 172756.93it/s]" + " 42%|████▏ | 2075553/4997817 [00:12<00:16, 173357.85it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2090709/4997817 [00:12<00:16, 173011.88it/s]" + " 42%|████▏ | 2092890/4997817 [00:12<00:16, 173175.09it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2108068/4997817 [00:12<00:16, 173181.70it/s]" + " 42%|████▏ | 2110208/4997817 [00:12<00:16, 173030.80it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2125387/4997817 [00:12<00:16, 172719.24it/s]" + " 43%|████▎ | 2127526/4997817 [00:12<00:16, 173071.09it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2142660/4997817 [00:12<00:16, 172428.08it/s]" + " 43%|████▎ | 2144834/4997817 [00:12<00:16, 172965.44it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2159948/4997817 [00:12<00:16, 172559.96it/s]" + " 43%|████▎ | 2162131/4997817 [00:12<00:16, 172767.29it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2177205/4997817 [00:12<00:16, 172309.45it/s]" + " 44%|████▎ | 2179408/4997817 [00:12<00:16, 172627.63it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2194525/4997817 [00:12<00:16, 172572.65it/s]" + " 44%|████▍ | 2196671/4997817 [00:12<00:16, 172009.65it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2211921/4997817 [00:12<00:16, 172984.81it/s]" + " 44%|████▍ | 2213873/4997817 [00:12<00:16, 171856.53it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2229384/4997817 [00:12<00:15, 173474.18it/s]" + " 45%|████▍ | 2231266/4997817 [00:12<00:16, 172472.78it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2246736/4997817 [00:13<00:15, 173484.62it/s]" + " 45%|████▍ | 2248661/4997817 [00:13<00:15, 172911.28it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2264085/4997817 [00:13<00:15, 173437.68it/s]" + " 45%|████▌ | 2265953/4997817 [00:13<00:15, 172668.94it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2281429/4997817 [00:13<00:15, 173352.81it/s]" + " 46%|████▌ | 2283239/4997817 [00:13<00:15, 172721.87it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2298765/4997817 [00:13<00:15, 173188.91it/s]" + " 46%|████▌ | 2300512/4997817 [00:13<00:15, 169663.96it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2316084/4997817 [00:13<00:15, 172913.95it/s]" + " 46%|████▋ | 2317491/4997817 [00:13<00:16, 166427.04it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2333554/4997817 [00:13<00:15, 173444.79it/s]" + " 47%|████▋ | 2334740/4997817 [00:13<00:15, 168201.30it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2351018/4997817 [00:13<00:15, 173801.16it/s]" + " 47%|████▋ | 2352108/4997817 [00:13<00:15, 169816.85it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2368666/4997817 [00:13<00:15, 174599.08it/s]" + " 47%|████▋ | 2369227/4997817 [00:13<00:15, 170221.73it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2386153/4997817 [00:13<00:14, 174676.73it/s]" + " 48%|████▊ | 2386573/4997817 [00:13<00:15, 171180.84it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2403645/4997817 [00:13<00:14, 174745.85it/s]" + " 48%|████▊ | 2403941/4997817 [00:13<00:15, 171923.46it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2421181/4997817 [00:14<00:14, 174925.70it/s]" + " 48%|████▊ | 2421140/4997817 [00:14<00:14, 171864.05it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2438674/4997817 [00:14<00:14, 174394.81it/s]" + " 49%|████▉ | 2438350/4997817 [00:14<00:14, 171930.74it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2456114/4997817 [00:14<00:14, 174173.81it/s]" + " 49%|████▉ | 2455727/4997817 [00:14<00:14, 172477.67it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2473532/4997817 [00:14<00:14, 174114.97it/s]" + " 49%|████▉ | 2473150/4997817 [00:14<00:14, 172998.15it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2490944/4997817 [00:14<00:14, 173861.74it/s]" + " 50%|████▉ | 2490452/4997817 [00:14<00:14, 172643.71it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2508369/4997817 [00:14<00:14, 173973.76it/s]" + " 50%|█████ | 2507718/4997817 [00:14<00:14, 172543.35it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2525845/4997817 [00:14<00:14, 174206.42it/s]" + " 51%|█████ | 2524974/4997817 [00:14<00:14, 172176.23it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2543266/4997817 [00:14<00:14, 174161.75it/s]" + " 51%|█████ | 2542193/4997817 [00:14<00:14, 171800.08it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2560683/4997817 [00:14<00:14, 174022.77it/s]" + " 51%|█████ | 2559374/4997817 [00:14<00:14, 171579.93it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2578111/4997817 [00:14<00:13, 174097.16it/s]" + " 52%|█████▏ | 2576661/4997817 [00:14<00:14, 171963.10it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2595521/4997817 [00:15<00:13, 173869.07it/s]" + " 52%|█████▏ | 2593942/4997817 [00:15<00:13, 172210.22it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2612909/4997817 [00:15<00:13, 173294.82it/s]" + " 52%|█████▏ | 2611219/4997817 [00:15<00:13, 172376.44it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2630242/4997817 [00:15<00:13, 173299.46it/s]" + " 53%|█████▎ | 2628457/4997817 [00:15<00:13, 171486.91it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2647637/4997817 [00:15<00:13, 173488.50it/s]" + " 53%|█████▎ | 2645642/4997817 [00:15<00:13, 171591.61it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2664987/4997817 [00:15<00:13, 173398.27it/s]" + " 53%|█████▎ | 2662803/4997817 [00:15<00:14, 164162.66it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2682372/4997817 [00:15<00:13, 173528.92it/s]" + " 54%|█████▎ | 2679891/4997817 [00:15<00:13, 166106.58it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2699726/4997817 [00:15<00:13, 173257.12it/s]" + " 54%|█████▍ | 2697075/4997817 [00:15<00:13, 167781.34it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2717059/4997817 [00:15<00:13, 173274.78it/s]" + " 54%|█████▍ | 2714306/4997817 [00:15<00:13, 169115.53it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2734428/4997817 [00:15<00:13, 173396.38it/s]" + " 55%|█████▍ | 2731781/4997817 [00:15<00:13, 170784.44it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2751845/4997817 [00:15<00:12, 173625.32it/s]" + " 55%|█████▌ | 2749160/4997817 [00:15<00:13, 171675.54it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2769208/4997817 [00:16<00:12, 173567.59it/s]" + " 55%|█████▌ | 2766389/4997817 [00:16<00:12, 171854.59it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2786565/4997817 [00:16<00:12, 173300.07it/s]" + " 56%|█████▌ | 2783587/4997817 [00:16<00:12, 171876.44it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2803896/4997817 [00:16<00:12, 173040.50it/s]" + " 56%|█████▌ | 2800902/4997817 [00:16<00:12, 172253.77it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2821321/4997817 [00:16<00:12, 173399.89it/s]" + " 56%|█████▋ | 2818324/4997817 [00:16<00:12, 172839.53it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2838662/4997817 [00:16<00:12, 172859.42it/s]" + " 57%|█████▋ | 2835735/4997817 [00:16<00:12, 173216.09it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2855949/4997817 [00:16<00:12, 172569.83it/s]" + " 57%|█████▋ | 2853182/4997817 [00:16<00:12, 173589.82it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2873207/4997817 [00:16<00:12, 172224.29it/s]" + " 57%|█████▋ | 2870746/4997817 [00:16<00:12, 174201.24it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2890430/4997817 [00:16<00:12, 172181.39it/s]" + " 58%|█████▊ | 2888168/4997817 [00:16<00:12, 173871.31it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2907649/4997817 [00:16<00:12, 171902.40it/s]" + " 58%|█████▊ | 2905557/4997817 [00:16<00:12, 173528.41it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2924840/4997817 [00:16<00:12, 171671.79it/s]" + " 58%|█████▊ | 2922948/4997817 [00:16<00:11, 173640.16it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2942008/4997817 [00:17<00:11, 171384.08it/s]" + " 59%|█████▉ | 2940313/4997817 [00:17<00:11, 173147.70it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2959147/4997817 [00:17<00:11, 170767.52it/s]" + " 59%|█████▉ | 2957629/4997817 [00:17<00:11, 172809.18it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2976284/4997817 [00:17<00:11, 170944.14it/s]" + " 60%|█████▉ | 2974912/4997817 [00:17<00:11, 172811.02it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2993383/4997817 [00:17<00:11, 170955.10it/s]" + " 60%|█████▉ | 2992194/4997817 [00:17<00:11, 172710.63it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3010479/4997817 [00:17<00:11, 170751.69it/s]" + " 60%|██████ | 3009466/4997817 [00:17<00:12, 165245.66it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3027555/4997817 [00:17<00:11, 169701.03it/s]" + " 61%|██████ | 3026801/4997817 [00:17<00:11, 167597.44it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3044709/4997817 [00:17<00:11, 170245.53it/s]" + " 61%|██████ | 3044003/4997817 [00:17<00:11, 168890.74it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3061914/4997817 [00:17<00:11, 170780.70it/s]" + " 61%|██████▏ | 3061475/4997817 [00:17<00:11, 170609.80it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3079054/4997817 [00:17<00:11, 170963.30it/s]" + " 62%|██████▏ | 3078986/4997817 [00:17<00:11, 171941.00it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3096212/4997817 [00:17<00:11, 171145.64it/s]" + " 62%|██████▏ | 3096272/4997817 [00:17<00:11, 172211.14it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3113415/4997817 [00:18<00:10, 171405.70it/s]" + " 62%|██████▏ | 3113510/4997817 [00:18<00:10, 171974.97it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3130557/4997817 [00:18<00:11, 163730.19it/s]" + " 63%|██████▎ | 3130805/4997817 [00:18<00:10, 172262.36it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3147711/4997817 [00:18<00:11, 165993.75it/s]" + " 63%|██████▎ | 3148251/4997817 [00:18<00:10, 172917.49it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3164858/4997817 [00:18<00:10, 167595.36it/s]" + " 63%|██████▎ | 3165695/4997817 [00:18<00:10, 173369.56it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3182091/4997817 [00:18<00:10, 168989.18it/s]" + " 64%|██████▎ | 3183236/4997817 [00:18<00:10, 173976.18it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3199280/4997817 [00:18<00:10, 169848.21it/s]" + " 64%|██████▍ | 3200637/4997817 [00:18<00:10, 166819.94it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3216488/4997817 [00:18<00:10, 170509.03it/s]" + " 64%|██████▍ | 3217766/4997817 [00:18<00:10, 168117.07it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3233615/4997817 [00:18<00:10, 170733.77it/s]" + " 65%|██████▍ | 3235051/4997817 [00:18<00:10, 169502.67it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3250701/4997817 [00:18<00:10, 170719.85it/s]" + " 65%|██████▌ | 3252168/4997817 [00:18<00:10, 169989.67it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3267782/4997817 [00:18<00:10, 170590.66it/s]" + " 65%|██████▌ | 3269267/4997817 [00:19<00:10, 170282.67it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3284892/4997817 [00:19<00:10, 170740.17it/s]" + " 66%|██████▌ | 3286504/4997817 [00:19<00:10, 170900.26it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3301991/4997817 [00:19<00:09, 170812.71it/s]" + " 66%|██████▌ | 3303692/4997817 [00:19<00:09, 171187.09it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3319326/4997817 [00:19<00:09, 171568.86it/s]" + " 66%|██████▋ | 3320858/4997817 [00:19<00:09, 171324.83it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3336579/4997817 [00:19<00:09, 171854.27it/s]" + " 67%|██████▋ | 3338125/4997817 [00:19<00:09, 171723.21it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3353840/4997817 [00:19<00:09, 172075.47it/s]" + " 67%|██████▋ | 3355304/4997817 [00:19<00:09, 171741.05it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3371135/4997817 [00:19<00:09, 172332.57it/s]" + " 67%|██████▋ | 3372561/4997817 [00:19<00:09, 171984.92it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3388521/4997817 [00:19<00:09, 172784.75it/s]" + " 68%|██████▊ | 3389762/4997817 [00:19<00:09, 171430.20it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3405882/4997817 [00:19<00:09, 173027.35it/s]" + " 68%|██████▊ | 3406908/4997817 [00:19<00:09, 171426.45it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3423271/4997817 [00:19<00:09, 173281.06it/s]" + " 69%|██████▊ | 3424053/4997817 [00:19<00:09, 170738.92it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3440656/4997817 [00:19<00:08, 173448.16it/s]" + " 69%|██████▉ | 3441129/4997817 [00:20<00:09, 170439.63it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3458002/4997817 [00:20<00:08, 173131.70it/s]" + " 69%|██████▉ | 3458175/4997817 [00:20<00:09, 169950.59it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3475316/4997817 [00:20<00:08, 173016.71it/s]" + " 70%|██████▉ | 3475171/4997817 [00:20<00:08, 169692.12it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3492618/4997817 [00:20<00:09, 165765.34it/s]" + " 70%|██████▉ | 3492236/4997817 [00:20<00:08, 169974.94it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3509821/4997817 [00:20<00:08, 167583.58it/s]" + " 70%|███████ | 3509235/4997817 [00:20<00:08, 169582.81it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3527050/4997817 [00:20<00:08, 168961.35it/s]" + " 71%|███████ | 3526194/4997817 [00:20<00:08, 169482.85it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3544520/4997817 [00:20<00:08, 170652.18it/s]" + " 71%|███████ | 3543143/4997817 [00:20<00:08, 166798.94it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3561999/4997817 [00:20<00:08, 171875.08it/s]" + " 71%|███████ | 3560313/4997817 [00:20<00:08, 168245.53it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3579426/4997817 [00:20<00:08, 172585.21it/s]" + " 72%|███████▏ | 3577540/4997817 [00:20<00:08, 169439.42it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3596925/4997817 [00:20<00:08, 173300.62it/s]" + " 72%|███████▏ | 3594553/4997817 [00:20<00:08, 169641.05it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3614455/4997817 [00:21<00:07, 173894.52it/s]" + " 72%|███████▏ | 3611768/4997817 [00:21<00:08, 170386.65it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3632081/4997817 [00:21<00:07, 174596.73it/s]" + " 73%|███████▎ | 3628884/4997817 [00:21<00:08, 170615.63it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3649547/4997817 [00:21<00:07, 174498.75it/s]" + " 73%|███████▎ | 3646088/4997817 [00:21<00:07, 171040.30it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3667092/4997817 [00:21<00:07, 174781.42it/s]" + " 73%|███████▎ | 3663264/4997817 [00:21<00:07, 171253.22it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3684574/4997817 [00:21<00:07, 174323.55it/s]" + " 74%|███████▎ | 3680485/4997817 [00:21<00:07, 171536.54it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3702009/4997817 [00:21<00:07, 174312.24it/s]" + " 74%|███████▍ | 3697640/4997817 [00:21<00:07, 171259.85it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3719522/4997817 [00:21<00:07, 174553.76it/s]" + " 74%|███████▍ | 3714767/4997817 [00:21<00:07, 170289.24it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3736979/4997817 [00:21<00:07, 174483.40it/s]" + " 75%|███████▍ | 3732116/4997817 [00:21<00:07, 171240.88it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3754510/4997817 [00:21<00:07, 174726.49it/s]" + " 75%|███████▌ | 3749326/4997817 [00:21<00:07, 171495.52it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3772090/4997817 [00:21<00:07, 175044.92it/s]" + " 75%|███████▌ | 3766621/4997817 [00:21<00:07, 171929.08it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3789595/4997817 [00:22<00:06, 174949.83it/s]" + " 76%|███████▌ | 3783902/4997817 [00:22<00:07, 172191.33it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3807095/4997817 [00:22<00:06, 174961.17it/s]" + " 76%|███████▌ | 3801122/4997817 [00:22<00:06, 172005.61it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3824592/4997817 [00:22<00:06, 174435.55it/s]" + " 76%|███████▋ | 3818365/4997817 [00:22<00:06, 172128.59it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3842037/4997817 [00:22<00:06, 166864.23it/s]" + " 77%|███████▋ | 3835579/4997817 [00:22<00:06, 171914.67it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3859405/4997817 [00:22<00:06, 168839.77it/s]" + " 77%|███████▋ | 3852833/4997817 [00:22<00:06, 172099.05it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3876822/4997817 [00:22<00:06, 170399.10it/s]" + " 77%|███████▋ | 3870059/4997817 [00:22<00:06, 172144.74it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3894424/4997817 [00:22<00:06, 172056.34it/s]" + " 78%|███████▊ | 3887319/4997817 [00:22<00:06, 172276.57it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3911949/4997817 [00:22<00:06, 172999.62it/s]" + " 78%|███████▊ | 3904615/4997817 [00:22<00:06, 172476.96it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3929356/4997817 [00:22<00:06, 173315.74it/s]" + " 78%|███████▊ | 3922007/4997817 [00:22<00:06, 172904.17it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3946836/4997817 [00:22<00:06, 173753.24it/s]" + " 79%|███████▉ | 3939387/4997817 [00:22<00:06, 173170.77it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3964224/4997817 [00:23<00:05, 173621.71it/s]" + " 79%|███████▉ | 3956846/4997817 [00:23<00:05, 173593.75it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3981595/4997817 [00:23<00:05, 173277.02it/s]" + " 80%|███████▉ | 3974368/4997817 [00:23<00:05, 174078.35it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 3998970/4997817 [00:23<00:05, 173415.32it/s]" + " 80%|███████▉ | 3991776/4997817 [00:23<00:05, 173588.28it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4016316/4997817 [00:23<00:05, 172667.73it/s]" + " 80%|████████ | 4009136/4997817 [00:23<00:05, 173547.37it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4033587/4997817 [00:23<00:05, 172523.73it/s]" + " 81%|████████ | 4026541/4997817 [00:23<00:05, 173693.13it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4050842/4997817 [00:23<00:05, 172384.77it/s]" + " 81%|████████ | 4043911/4997817 [00:23<00:05, 173453.72it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4068083/4997817 [00:23<00:05, 171361.88it/s]" + " 81%|████████▏ | 4061350/4997817 [00:23<00:05, 173730.80it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4085389/4997817 [00:23<00:05, 171865.91it/s]" + " 82%|████████▏ | 4078781/4997817 [00:23<00:05, 173898.92it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4102681/4997817 [00:23<00:05, 172176.42it/s]" + " 82%|████████▏ | 4096172/4997817 [00:23<00:05, 173753.67it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4120022/4997817 [00:23<00:05, 172542.13it/s]" + " 82%|████████▏ | 4113549/4997817 [00:23<00:05, 173755.01it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4137278/4997817 [00:24<00:04, 172439.36it/s]" + " 83%|████████▎ | 4130971/4997817 [00:24<00:04, 173892.07it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4154574/4997817 [00:24<00:04, 172592.57it/s]" + " 83%|████████▎ | 4148398/4997817 [00:24<00:04, 174002.57it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4171871/4997817 [00:24<00:04, 172702.85it/s]" + " 83%|████████▎ | 4165799/4997817 [00:24<00:04, 174000.74it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4189189/4997817 [00:24<00:04, 172841.82it/s]" + " 84%|████████▎ | 4183281/4997817 [00:24<00:04, 174242.88it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4206509/4997817 [00:24<00:04, 172945.78it/s]" + " 84%|████████▍ | 4200706/4997817 [00:24<00:04, 174106.00it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4223872/4997817 [00:24<00:04, 173149.38it/s]" + " 84%|████████▍ | 4218117/4997817 [00:24<00:04, 173940.78it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4241236/4997817 [00:24<00:04, 173293.34it/s]" + " 85%|████████▍ | 4235512/4997817 [00:24<00:04, 173443.00it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4258566/4997817 [00:24<00:04, 172867.69it/s]" + " 85%|████████▌ | 4252857/4997817 [00:24<00:04, 170649.20it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4275854/4997817 [00:24<00:04, 172857.11it/s]" + " 85%|████████▌ | 4270099/4997817 [00:24<00:04, 171171.60it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4293140/4997817 [00:24<00:04, 172477.24it/s]" + " 86%|████████▌ | 4287535/4997817 [00:24<00:04, 172116.89it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4310389/4997817 [00:25<00:03, 172149.13it/s]" + " 86%|████████▌ | 4304753/4997817 [00:25<00:04, 171652.64it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4327605/4997817 [00:25<00:03, 172139.17it/s]" + " 86%|████████▋ | 4321923/4997817 [00:25<00:03, 171133.83it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4344830/4997817 [00:25<00:03, 172169.08it/s]" + " 87%|████████▋ | 4339088/4997817 [00:25<00:03, 171280.50it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4362076/4997817 [00:25<00:03, 172251.35it/s]" + " 87%|████████▋ | 4356310/4997817 [00:25<00:03, 171556.65it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4379302/4997817 [00:25<00:03, 171900.04it/s]" + " 88%|████████▊ | 4373468/4997817 [00:25<00:03, 171134.15it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4396523/4997817 [00:25<00:03, 171990.54it/s]" + " 88%|████████▊ | 4390583/4997817 [00:25<00:03, 170421.14it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4413723/4997817 [00:25<00:03, 171969.84it/s]" + " 88%|████████▊ | 4407627/4997817 [00:25<00:03, 170280.06it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4430938/4997817 [00:25<00:03, 172020.80it/s]" + " 89%|████████▊ | 4424754/4997817 [00:25<00:03, 170570.84it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4448169/4997817 [00:25<00:03, 172104.71it/s]" + " 89%|████████▉ | 4441812/4997817 [00:25<00:03, 170547.12it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4465473/4997817 [00:25<00:03, 172382.22it/s]" + " 89%|████████▉ | 4459092/4997817 [00:25<00:03, 171217.73it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4482712/4997817 [00:26<00:02, 172378.44it/s]" + " 90%|████████▉ | 4476226/4997817 [00:26<00:03, 171253.18it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4499970/4997817 [00:26<00:02, 172434.62it/s]" + " 90%|████████▉ | 4493352/4997817 [00:26<00:02, 170524.58it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4517217/4997817 [00:26<00:02, 172442.45it/s]" + " 90%|█████████ | 4510483/4997817 [00:26<00:02, 170755.34it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4534462/4997817 [00:26<00:02, 172125.34it/s]" + " 91%|█████████ | 4527595/4997817 [00:26<00:02, 170861.32it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4551698/4997817 [00:26<00:02, 172191.75it/s]" + " 91%|█████████ | 4544870/4997817 [00:26<00:02, 171424.08it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4568918/4997817 [00:26<00:02, 172049.70it/s]" + " 91%|█████████▏| 4562041/4997817 [00:26<00:02, 171505.13it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4586146/4997817 [00:26<00:02, 172115.18it/s]" + " 92%|█████████▏| 4579192/4997817 [00:26<00:02, 171383.07it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4603359/4997817 [00:26<00:02, 172117.83it/s]" + " 92%|█████████▏| 4596361/4997817 [00:26<00:02, 171473.01it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4620571/4997817 [00:26<00:02, 172059.99it/s]" + " 92%|█████████▏| 4613605/4997817 [00:26<00:02, 171760.21it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4637778/4997817 [00:26<00:02, 171793.76it/s]" + " 93%|█████████▎| 4630782/4997817 [00:26<00:02, 171355.67it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4654966/4997817 [00:27<00:01, 171816.57it/s]" + " 93%|█████████▎| 4647918/4997817 [00:27<00:02, 170602.77it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4672149/4997817 [00:27<00:01, 171816.10it/s]" + " 93%|█████████▎| 4664980/4997817 [00:27<00:01, 170578.45it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4689331/4997817 [00:27<00:01, 171560.20it/s]" + " 94%|█████████▎| 4682039/4997817 [00:27<00:01, 170360.79it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4706520/4997817 [00:27<00:01, 171657.19it/s]" + " 94%|█████████▍| 4699140/4997817 [00:27<00:01, 170549.75it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4723686/4997817 [00:27<00:01, 167919.96it/s]" + " 94%|█████████▍| 4716353/4997817 [00:27<00:01, 171017.18it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4740781/4997817 [00:27<00:01, 168811.86it/s]" + " 95%|█████████▍| 4733542/4997817 [00:27<00:01, 171276.33it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4757868/4997817 [00:27<00:01, 169418.38it/s]" + " 95%|█████████▌| 4750670/4997817 [00:27<00:01, 170340.40it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4774923/4997817 [00:27<00:01, 169750.75it/s]" + " 95%|█████████▌| 4767706/4997817 [00:27<00:01, 163127.11it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4791930/4997817 [00:27<00:01, 169843.37it/s]" + " 96%|█████████▌| 4785073/4997817 [00:27<00:01, 166182.71it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4809039/4997817 [00:27<00:01, 170212.17it/s]" + " 96%|█████████▌| 4802335/4997817 [00:27<00:01, 168064.55it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4826135/4997817 [00:28<00:01, 170433.15it/s]" + " 96%|█████████▋| 4819387/4997817 [00:28<00:01, 168784.98it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4843326/4997817 [00:28<00:00, 170871.60it/s]" + " 97%|█████████▋| 4836515/4997817 [00:28<00:00, 169520.47it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4860458/4997817 [00:28<00:00, 171002.81it/s]" + " 97%|█████████▋| 4853724/4997817 [00:28<00:00, 170280.81it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4877647/4997817 [00:28<00:00, 171266.30it/s]" + " 97%|█████████▋| 4871150/4997817 [00:28<00:00, 171463.19it/s]" ] }, { @@ -2802,7 +2802,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4894775/4997817 [00:28<00:00, 170862.07it/s]" + " 98%|█████████▊| 4888309/4997817 [00:28<00:00, 171188.95it/s]" ] }, { @@ -2810,7 +2810,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4911923/4997817 [00:28<00:00, 171043.44it/s]" + " 98%|█████████▊| 4905437/4997817 [00:28<00:00, 170805.34it/s]" ] }, { @@ -2818,7 +2818,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4929176/4997817 [00:28<00:00, 171486.81it/s]" + " 98%|█████████▊| 4922524/4997817 [00:28<00:00, 170649.37it/s]" ] }, { @@ -2826,7 +2826,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4946356/4997817 [00:28<00:00, 171577.53it/s]" + " 99%|█████████▉| 4939729/4997817 [00:28<00:00, 171065.77it/s]" ] }, { @@ -2834,7 +2834,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4963515/4997817 [00:28<00:00, 171205.67it/s]" + " 99%|█████████▉| 4956839/4997817 [00:28<00:00, 164371.72it/s]" ] }, { @@ -2842,7 +2842,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4980923/4997817 [00:28<00:00, 172063.53it/s]" + "100%|█████████▉| 4973835/4997817 [00:28<00:00, 165997.03it/s]" ] }, { @@ -2850,14 +2850,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:29<00:00, 172102.99it/s]" + "100%|█████████▉| 4991073/4997817 [00:29<00:00, 167868.43it/s]" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\n" + "\r", + "100%|██████████| 4997817/4997817 [00:29<00:00, 171653.36it/s]" ] }, { @@ -2886,6 +2887,13 @@ "Class 'traffic sign' is potentially mislabeled as class for 'building' 5011 pixels in the dataset\n" ] }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, { "data": { "text/html": [ @@ -3089,10 +3097,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:45.987247Z", - "iopub.status.busy": "2024-01-10T15:09:45.986790Z", - "iopub.status.idle": "2024-01-10T15:09:53.045750Z", - "shell.execute_reply": "2024-01-10T15:09:53.045106Z" + "iopub.execute_input": "2024-01-12T22:31:31.839399Z", + "iopub.status.busy": "2024-01-12T22:31:31.839015Z", + "iopub.status.idle": "2024-01-12T22:31:38.993020Z", + "shell.execute_reply": "2024-01-12T22:31:38.992371Z" } }, "outputs": [], @@ -3106,10 +3114,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:53.048843Z", - "iopub.status.busy": "2024-01-10T15:09:53.048334Z", - "iopub.status.idle": "2024-01-10T15:09:56.152244Z", - "shell.execute_reply": "2024-01-10T15:09:56.151592Z" + "iopub.execute_input": "2024-01-12T22:31:38.995992Z", + "iopub.status.busy": "2024-01-12T22:31:38.995562Z", + "iopub.status.idle": "2024-01-12T22:31:42.127775Z", + "shell.execute_reply": "2024-01-12T22:31:42.127121Z" } }, "outputs": [ @@ -3178,17 +3186,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:56.155042Z", - "iopub.status.busy": "2024-01-10T15:09:56.154624Z", - "iopub.status.idle": "2024-01-10T15:09:57.461482Z", - "shell.execute_reply": "2024-01-10T15:09:57.460863Z" + "iopub.execute_input": "2024-01-12T22:31:42.130539Z", + "iopub.status.busy": "2024-01-12T22:31:42.130105Z", + "iopub.status.idle": "2024-01-12T22:31:43.447000Z", + "shell.execute_reply": "2024-01-12T22:31:43.446326Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "10262fae8e7241aaa83534e155136cc8", + "model_id": "144b86e8024a4f8aaf8ba767aa7d31bb", "version_major": 2, "version_minor": 0 }, @@ -3218,10 +3226,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:57.464475Z", - "iopub.status.busy": "2024-01-10T15:09:57.464040Z", - "iopub.status.idle": "2024-01-10T15:09:57.681100Z", - "shell.execute_reply": "2024-01-10T15:09:57.680532Z" + "iopub.execute_input": "2024-01-12T22:31:43.449996Z", + "iopub.status.busy": "2024-01-12T22:31:43.449630Z", + "iopub.status.idle": "2024-01-12T22:31:43.666744Z", + "shell.execute_reply": "2024-01-12T22:31:43.666004Z" } }, "outputs": [], @@ -3235,10 +3243,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:57.684107Z", - "iopub.status.busy": "2024-01-10T15:09:57.683636Z", - "iopub.status.idle": "2024-01-10T15:10:02.403620Z", - "shell.execute_reply": "2024-01-10T15:10:02.403082Z" + "iopub.execute_input": "2024-01-12T22:31:43.669578Z", + "iopub.status.busy": "2024-01-12T22:31:43.669360Z", + "iopub.status.idle": "2024-01-12T22:31:48.406278Z", + "shell.execute_reply": "2024-01-12T22:31:48.405576Z" } }, "outputs": [ @@ -3311,10 +3319,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:02.406244Z", - "iopub.status.busy": "2024-01-10T15:10:02.405893Z", - "iopub.status.idle": "2024-01-10T15:10:02.462753Z", - "shell.execute_reply": "2024-01-10T15:10:02.462023Z" + "iopub.execute_input": "2024-01-12T22:31:48.408942Z", + "iopub.status.busy": "2024-01-12T22:31:48.408472Z", + "iopub.status.idle": "2024-01-12T22:31:48.465646Z", + "shell.execute_reply": "2024-01-12T22:31:48.464945Z" }, "nbsphinx": "hidden" }, @@ -3358,59 +3366,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0cabd023fdf0459dade56fdbdab8a722": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "043d4ebd410247d3905ea63d2b44b11d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f200285f93f44e796901c1d15fe97a0", + "placeholder": "​", + "style": "IPY_MODEL_0446738058a94468b9333c4e7cd813bb", + "value": "number of examples processed for checking labels: 100%" + } + }, + "0446738058a94468b9333c4e7cd813bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "10262fae8e7241aaa83534e155136cc8": { + "144b86e8024a4f8aaf8ba767aa7d31bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3425,87 +3417,100 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_20604eb91f914901b8cd049fe40aed0c", - "IPY_MODEL_a4ad64cf3b8e42cbbd156ea3ad023cf0", - "IPY_MODEL_c021c3820ba740b698720b87aaae46aa" + "IPY_MODEL_a2f821925cfc4be69ac2b8572f5c3cbd", + "IPY_MODEL_1f270dd1aaf34b9ca81bcd90f7863097", + "IPY_MODEL_ab36431ece774a4da2d582101cd80e72" ], - "layout": "IPY_MODEL_7884f1c305fa4100a3bb6774296775e3" + "layout": "IPY_MODEL_d5e96f2faedd4e4bb85343a3b37ec13b" } }, - "20604eb91f914901b8cd049fe40aed0c": { + "1f270dd1aaf34b9ca81bcd90f7863097": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0cabd023fdf0459dade56fdbdab8a722", - "placeholder": "​", - "style": "IPY_MODEL_a398413dd01349efb0e6af391f0dd506", - "value": "images processed using softmin: 100%" + "layout": "IPY_MODEL_da12bbddb62044408f73473e520879f8", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6d71db28b3924000b459303be3f854fe", + "value": 30.0 } }, - "327d4e33d6c34e26aa9b7dc644a5a780": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "24e1cccf99014e9691effff931a51ace": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_368b604cdb6f4085b9abd73ffd1a45bc", + "IPY_MODEL_ca92df195fee43ed9998d70c83dbd0c9", + "IPY_MODEL_4a55bbc2769e4dc18e208d291fd5c942" + ], + "layout": "IPY_MODEL_6918345b4e494c38ba558c064f628664" + } + }, + "33073e468a604a24a68f9541225f7124": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_440468c39f1843edb328131f83dd3ba9", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_35c48d7b09fc4cc5bbb1530c969e77f3", + "value": 30.0 + } + }, + "35c48d7b09fc4cc5bbb1530c969e77f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3b176614773d47b69402c245a311bef1": { + "368b604cdb6f4085b9abd73ffd1a45bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3520,13 +3525,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5ba9455423fc49b9afd09dd55a76d451", + "layout": "IPY_MODEL_6ed5013c50894cd89b91261bbeec4d16", "placeholder": "​", - "style": "IPY_MODEL_ea9c235a65204d95915e6252ce4849a9", - "value": " 30/30 [00:00<00:00, 405.15it/s]" + "style": "IPY_MODEL_5ef179f330424686a58df23ba2223516", + "value": "number of examples processed for estimating thresholds: 100%" } }, - "41785dfc20e04971b132df33fa7c9385": { + "3cdb6a5dcb90477185e9eb315326e0f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3578,7 +3583,7 @@ "width": null } }, - "59d122979e00418d9d2b44a0649e9c99": { + "440468c39f1843edb328131f83dd3ba9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3630,7 +3635,7 @@ "width": null } }, - "5b31e79b52f449bbb8406036a81145c5": { + "4a55bbc2769e4dc18e208d291fd5c942": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3645,37 +3650,43 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_327d4e33d6c34e26aa9b7dc644a5a780", + "layout": "IPY_MODEL_c1dc95af3caa41ee83d931451be13669", "placeholder": "​", - "style": "IPY_MODEL_e9ce6ea46e8e4c9fabad8b42c3aeb9f3", - "value": " 30/30 [00:36<00:00, 1.25s/it]" + "style": "IPY_MODEL_f0d5c92857de46d3b3b21c22a182dd91", + "value": " 30/30 [00:00<00:00, 406.95it/s]" } }, - "5b945b8979b1403c81a800af34b66e03": { + "5ef179f330424686a58df23ba2223516": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d4f8b63ff55f44d0806b2c2907aefec4", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c6113d8dbfe84dd9b62fdc3abc1bb77f", - "value": 30.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "684fe6cf6638487ea077b635c95edc83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "5ba9455423fc49b9afd09dd55a76d451": { + "6918345b4e494c38ba558c064f628664": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3727,7 +3738,23 @@ "width": null } }, - "7884f1c305fa4100a3bb6774296775e3": { + "6d71db28b3924000b459303be3f854fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6ed5013c50894cd89b91261bbeec4d16": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3779,28 +3806,7 @@ "width": null } }, - "79d27e5270204d64987b0e80dd9182ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a63ee572a83d4d56897761721e4b9463", - "placeholder": "​", - "style": "IPY_MODEL_da1005f0226e4c098b0ba80da39e5dde", - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "7a602a978fd545f79286c9665c899a5f": { + "8b216df6a82549028cf380b5c944f427": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3852,7 +3858,7 @@ "width": null } }, - "7c23cb9954844791b103ca64e83fc5b3": { + "8f200285f93f44e796901c1d15fe97a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3904,7 +3910,7 @@ "width": null } }, - "85e8dd09ec894b74b87290c37be9fa4d": { + "97a05aaa1cea4629a5f6e404503fe1fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3920,92 +3926,159 @@ "description_width": "" } }, - "8745eabd766a4561977991454dbae104": { + "a2f821925cfc4be69ac2b8572f5c3cbd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c74ae2a09f8546d09f15d8ba1826b0c1", + "placeholder": "​", + "style": "IPY_MODEL_a62476500ac941f18293589ffaf31a1a", + "value": "images processed using softmin: 100%" } }, - "9eaf86d2100845cf89b90fbec4d83ff0": { + "a62476500ac941f18293589ffaf31a1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "9f5aabf00d6c4045899a995a8dbacb97": { + "ab36431ece774a4da2d582101cd80e72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ca0d8508e61b4e5b9edfe0d6c3735dfa", + "placeholder": "​", + "style": "IPY_MODEL_684fe6cf6638487ea077b635c95edc83", + "value": " 30/30 [00:01<00:00, 23.38it/s]" + } + }, + "af9471211efa4b2ebdf22397c84c02a4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a398413dd01349efb0e6af391f0dd506": { + "b21bee2487dc4cc9ba714bb85dfd5796": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_af9471211efa4b2ebdf22397c84c02a4", + "placeholder": "​", + "style": "IPY_MODEL_e3d16be8f12c4866b2b540f90f059eb1", + "value": " 30/30 [00:36<00:00, 1.27s/it]" } }, - "a4ad64cf3b8e42cbbd156ea3ad023cf0": { + "b2844702aa05437896745da9ce2f19f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7a602a978fd545f79286c9665c899a5f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_85e8dd09ec894b74b87290c37be9fa4d", - "value": 30.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_043d4ebd410247d3905ea63d2b44b11d", + "IPY_MODEL_33073e468a604a24a68f9541225f7124", + "IPY_MODEL_b21bee2487dc4cc9ba714bb85dfd5796" + ], + "layout": "IPY_MODEL_3cdb6a5dcb90477185e9eb315326e0f0" } }, - "a63ee572a83d4d56897761721e4b9463": { + "c1dc95af3caa41ee83d931451be13669": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4057,7 +4130,7 @@ "width": null } }, - "b9a8cc73eed24f51a6f043294d33fa58": { + "c74ae2a09f8546d09f15d8ba1826b0c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4109,49 +4182,59 @@ "width": null } }, - "c021c3820ba740b698720b87aaae46aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d805351f37ea4bda8b93d3028d6b823b", - "placeholder": "​", - "style": "IPY_MODEL_8745eabd766a4561977991454dbae104", - "value": " 30/30 [00:01<00:00, 23.52it/s]" - } - }, - "c1b440b00f9f47e78b555fe6d71caf22": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "ca0d8508e61b4e5b9edfe0d6c3735dfa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7c23cb9954844791b103ca64e83fc5b3", - "placeholder": "​", - "style": "IPY_MODEL_9f5aabf00d6c4045899a995a8dbacb97", - "value": "number of examples processed for checking labels: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c369934d7c86476eb48d4583e720e228": { + "ca92df195fee43ed9998d70c83dbd0c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4167,31 +4250,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_59d122979e00418d9d2b44a0649e9c99", + "layout": "IPY_MODEL_8b216df6a82549028cf380b5c944f427", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9eaf86d2100845cf89b90fbec4d83ff0", + "style": "IPY_MODEL_97a05aaa1cea4629a5f6e404503fe1fb", "value": 30.0 } }, - "c6113d8dbfe84dd9b62fdc3abc1bb77f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d4f8b63ff55f44d0806b2c2907aefec4": { + "d5e96f2faedd4e4bb85343a3b37ec13b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4243,7 +4310,7 @@ "width": null } }, - "d805351f37ea4bda8b93d3028d6b823b": { + "da12bbddb62044408f73473e520879f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4295,7 +4362,7 @@ "width": null } }, - "da1005f0226e4c098b0ba80da39e5dde": { + "e3d16be8f12c4866b2b540f90f059eb1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4310,7 +4377,7 @@ "description_width": "" } }, - "e9ce6ea46e8e4c9fabad8b42c3aeb9f3": { + "f0d5c92857de46d3b3b21c22a182dd91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4324,65 +4391,6 @@ "_view_name": "StyleView", "description_width": "" } - }, - "ea68cf0375d04b00803fe43e815130fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c1b440b00f9f47e78b555fe6d71caf22", - "IPY_MODEL_c369934d7c86476eb48d4583e720e228", - "IPY_MODEL_5b31e79b52f449bbb8406036a81145c5" - ], - "layout": "IPY_MODEL_41785dfc20e04971b132df33fa7c9385" - } - }, - "ea9c235a65204d95915e6252ce4849a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f6f7d2e0db9b4e23bd565eeb1ebe8323": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_79d27e5270204d64987b0e80dd9182ed", - "IPY_MODEL_5b945b8979b1403c81a800af34b66e03", - "IPY_MODEL_3b176614773d47b69402c245a311bef1" - ], - "layout": "IPY_MODEL_b9a8cc73eed24f51a6f043294d33fa58" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index cc587dc77..204929795 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:06.731555Z", - "iopub.status.busy": "2024-01-10T15:10:06.731098Z", - "iopub.status.idle": "2024-01-10T15:10:07.811523Z", - "shell.execute_reply": "2024-01-10T15:10:07.810902Z" + "iopub.execute_input": "2024-01-12T22:31:52.849291Z", + "iopub.status.busy": "2024-01-12T22:31:52.848757Z", + "iopub.status.idle": "2024-01-12T22:31:53.954870Z", + "shell.execute_reply": "2024-01-12T22:31:53.954210Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:07.814997Z", - "iopub.status.busy": "2024-01-10T15:10:07.814188Z", - "iopub.status.idle": "2024-01-10T15:10:07.833169Z", - "shell.execute_reply": "2024-01-10T15:10:07.832624Z" + "iopub.execute_input": "2024-01-12T22:31:53.957967Z", + "iopub.status.busy": "2024-01-12T22:31:53.957423Z", + "iopub.status.idle": "2024-01-12T22:31:53.975358Z", + "shell.execute_reply": "2024-01-12T22:31:53.974686Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:07.836050Z", - "iopub.status.busy": "2024-01-10T15:10:07.835668Z", - "iopub.status.idle": "2024-01-10T15:10:07.885520Z", - "shell.execute_reply": "2024-01-10T15:10:07.884971Z" + "iopub.execute_input": "2024-01-12T22:31:53.978200Z", + "iopub.status.busy": "2024-01-12T22:31:53.977803Z", + "iopub.status.idle": "2024-01-12T22:31:54.119053Z", + "shell.execute_reply": "2024-01-12T22:31:54.118406Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:07.888062Z", - "iopub.status.busy": "2024-01-10T15:10:07.887689Z", - "iopub.status.idle": "2024-01-10T15:10:07.891398Z", - "shell.execute_reply": "2024-01-10T15:10:07.890891Z" + "iopub.execute_input": "2024-01-12T22:31:54.121569Z", + "iopub.status.busy": "2024-01-12T22:31:54.121242Z", + "iopub.status.idle": "2024-01-12T22:31:54.125213Z", + "shell.execute_reply": "2024-01-12T22:31:54.124580Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:07.893720Z", - "iopub.status.busy": "2024-01-10T15:10:07.893356Z", - "iopub.status.idle": "2024-01-10T15:10:07.902385Z", - "shell.execute_reply": "2024-01-10T15:10:07.901725Z" + "iopub.execute_input": "2024-01-12T22:31:54.127676Z", + "iopub.status.busy": "2024-01-12T22:31:54.127223Z", + "iopub.status.idle": "2024-01-12T22:31:54.136065Z", + "shell.execute_reply": "2024-01-12T22:31:54.135566Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:07.904892Z", - "iopub.status.busy": "2024-01-10T15:10:07.904653Z", - "iopub.status.idle": "2024-01-10T15:10:07.907458Z", - "shell.execute_reply": "2024-01-10T15:10:07.906901Z" + "iopub.execute_input": "2024-01-12T22:31:54.138515Z", + "iopub.status.busy": "2024-01-12T22:31:54.138121Z", + "iopub.status.idle": "2024-01-12T22:31:54.140970Z", + "shell.execute_reply": "2024-01-12T22:31:54.140426Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:07.909680Z", - "iopub.status.busy": "2024-01-10T15:10:07.909473Z", - "iopub.status.idle": "2024-01-10T15:10:08.495611Z", - "shell.execute_reply": "2024-01-10T15:10:08.494992Z" + "iopub.execute_input": "2024-01-12T22:31:54.143137Z", + "iopub.status.busy": "2024-01-12T22:31:54.142933Z", + "iopub.status.idle": "2024-01-12T22:31:54.730894Z", + "shell.execute_reply": "2024-01-12T22:31:54.730154Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:08.498344Z", - "iopub.status.busy": "2024-01-10T15:10:08.498125Z", - "iopub.status.idle": "2024-01-10T15:10:09.775405Z", - "shell.execute_reply": "2024-01-10T15:10:09.774608Z" + "iopub.execute_input": "2024-01-12T22:31:54.734006Z", + "iopub.status.busy": "2024-01-12T22:31:54.733737Z", + "iopub.status.idle": "2024-01-12T22:31:55.999256Z", + "shell.execute_reply": "2024-01-12T22:31:55.998481Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:09.778762Z", - "iopub.status.busy": "2024-01-10T15:10:09.778133Z", - "iopub.status.idle": "2024-01-10T15:10:09.788828Z", - "shell.execute_reply": "2024-01-10T15:10:09.788286Z" + "iopub.execute_input": "2024-01-12T22:31:56.002167Z", + "iopub.status.busy": "2024-01-12T22:31:56.001588Z", + "iopub.status.idle": "2024-01-12T22:31:56.012440Z", + "shell.execute_reply": "2024-01-12T22:31:56.011902Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:09.791421Z", - "iopub.status.busy": "2024-01-10T15:10:09.791212Z", - "iopub.status.idle": "2024-01-10T15:10:09.795823Z", - "shell.execute_reply": "2024-01-10T15:10:09.795276Z" + "iopub.execute_input": "2024-01-12T22:31:56.015023Z", + "iopub.status.busy": "2024-01-12T22:31:56.014653Z", + "iopub.status.idle": "2024-01-12T22:31:56.018958Z", + "shell.execute_reply": "2024-01-12T22:31:56.018414Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:09.798077Z", - "iopub.status.busy": "2024-01-10T15:10:09.797879Z", - "iopub.status.idle": "2024-01-10T15:10:09.805698Z", - "shell.execute_reply": "2024-01-10T15:10:09.805152Z" + "iopub.execute_input": "2024-01-12T22:31:56.021391Z", + "iopub.status.busy": "2024-01-12T22:31:56.020989Z", + "iopub.status.idle": "2024-01-12T22:31:56.028908Z", + "shell.execute_reply": "2024-01-12T22:31:56.028396Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:09.808315Z", - "iopub.status.busy": "2024-01-10T15:10:09.807943Z", - "iopub.status.idle": "2024-01-10T15:10:09.933595Z", - "shell.execute_reply": "2024-01-10T15:10:09.932999Z" + "iopub.execute_input": "2024-01-12T22:31:56.031325Z", + "iopub.status.busy": "2024-01-12T22:31:56.030950Z", + "iopub.status.idle": "2024-01-12T22:31:56.155935Z", + "shell.execute_reply": "2024-01-12T22:31:56.155243Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:09.936259Z", - "iopub.status.busy": "2024-01-10T15:10:09.935880Z", - "iopub.status.idle": "2024-01-10T15:10:09.938920Z", - "shell.execute_reply": "2024-01-10T15:10:09.938378Z" + "iopub.execute_input": "2024-01-12T22:31:56.158640Z", + "iopub.status.busy": "2024-01-12T22:31:56.158164Z", + "iopub.status.idle": "2024-01-12T22:31:56.161380Z", + "shell.execute_reply": "2024-01-12T22:31:56.160726Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:09.941355Z", - "iopub.status.busy": "2024-01-10T15:10:09.940977Z", - "iopub.status.idle": "2024-01-10T15:10:11.374923Z", - "shell.execute_reply": "2024-01-10T15:10:11.374140Z" + "iopub.execute_input": "2024-01-12T22:31:56.164019Z", + "iopub.status.busy": "2024-01-12T22:31:56.163561Z", + "iopub.status.idle": "2024-01-12T22:31:57.621299Z", + "shell.execute_reply": "2024-01-12T22:31:57.620437Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:11.377786Z", - "iopub.status.busy": "2024-01-10T15:10:11.377568Z", - "iopub.status.idle": "2024-01-10T15:10:11.391936Z", - "shell.execute_reply": "2024-01-10T15:10:11.391279Z" + "iopub.execute_input": "2024-01-12T22:31:57.624850Z", + "iopub.status.busy": "2024-01-12T22:31:57.624278Z", + "iopub.status.idle": "2024-01-12T22:31:57.639623Z", + "shell.execute_reply": "2024-01-12T22:31:57.638963Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:11.394770Z", - "iopub.status.busy": "2024-01-10T15:10:11.394348Z", - "iopub.status.idle": "2024-01-10T15:10:11.437897Z", - "shell.execute_reply": "2024-01-10T15:10:11.437359Z" + "iopub.execute_input": "2024-01-12T22:31:57.642345Z", + "iopub.status.busy": "2024-01-12T22:31:57.641825Z", + "iopub.status.idle": "2024-01-12T22:31:57.733258Z", + "shell.execute_reply": "2024-01-12T22:31:57.732556Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index 806779347..02a6fb457 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:16.790552Z", - "iopub.status.busy": "2024-01-10T15:10:16.790082Z", - "iopub.status.idle": "2024-01-10T15:10:18.889335Z", - "shell.execute_reply": "2024-01-10T15:10:18.888712Z" + "iopub.execute_input": "2024-01-12T22:32:03.125938Z", + "iopub.status.busy": "2024-01-12T22:32:03.125476Z", + "iopub.status.idle": "2024-01-12T22:32:05.262019Z", + "shell.execute_reply": "2024-01-12T22:32:05.261300Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.892121Z", - "iopub.status.busy": "2024-01-10T15:10:18.891795Z", - "iopub.status.idle": "2024-01-10T15:10:18.895297Z", - "shell.execute_reply": "2024-01-10T15:10:18.894789Z" + "iopub.execute_input": "2024-01-12T22:32:05.265357Z", + "iopub.status.busy": "2024-01-12T22:32:05.264833Z", + "iopub.status.idle": "2024-01-12T22:32:05.268390Z", + "shell.execute_reply": "2024-01-12T22:32:05.267853Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.897631Z", - "iopub.status.busy": "2024-01-10T15:10:18.897294Z", - "iopub.status.idle": "2024-01-10T15:10:18.900472Z", - "shell.execute_reply": "2024-01-10T15:10:18.899942Z" + "iopub.execute_input": "2024-01-12T22:32:05.270734Z", + "iopub.status.busy": "2024-01-12T22:32:05.270322Z", + "iopub.status.idle": "2024-01-12T22:32:05.273625Z", + "shell.execute_reply": "2024-01-12T22:32:05.273112Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.902850Z", - "iopub.status.busy": "2024-01-10T15:10:18.902503Z", - "iopub.status.idle": "2024-01-10T15:10:18.950825Z", - "shell.execute_reply": "2024-01-10T15:10:18.950198Z" + "iopub.execute_input": "2024-01-12T22:32:05.275972Z", + "iopub.status.busy": "2024-01-12T22:32:05.275605Z", + "iopub.status.idle": "2024-01-12T22:32:05.380038Z", + "shell.execute_reply": "2024-01-12T22:32:05.379416Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.953409Z", - "iopub.status.busy": "2024-01-10T15:10:18.953034Z", - "iopub.status.idle": "2024-01-10T15:10:18.956975Z", - "shell.execute_reply": "2024-01-10T15:10:18.956461Z" + "iopub.execute_input": "2024-01-12T22:32:05.382624Z", + "iopub.status.busy": "2024-01-12T22:32:05.382228Z", + "iopub.status.idle": "2024-01-12T22:32:05.386071Z", + "shell.execute_reply": "2024-01-12T22:32:05.385554Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.959537Z", - "iopub.status.busy": "2024-01-10T15:10:18.959163Z", - "iopub.status.idle": "2024-01-10T15:10:18.962874Z", - "shell.execute_reply": "2024-01-10T15:10:18.962229Z" + "iopub.execute_input": "2024-01-12T22:32:05.388461Z", + "iopub.status.busy": "2024-01-12T22:32:05.388166Z", + "iopub.status.idle": "2024-01-12T22:32:05.391790Z", + "shell.execute_reply": "2024-01-12T22:32:05.391199Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}\n" + "Classes: {'cancel_transfer', 'visa_or_mastercard', 'lost_or_stolen_phone', 'change_pin', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'card_about_to_expire', 'getting_spare_card'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.965276Z", - "iopub.status.busy": "2024-01-10T15:10:18.964930Z", - "iopub.status.idle": "2024-01-10T15:10:18.968315Z", - "shell.execute_reply": "2024-01-10T15:10:18.967709Z" + "iopub.execute_input": "2024-01-12T22:32:05.394218Z", + "iopub.status.busy": "2024-01-12T22:32:05.393853Z", + "iopub.status.idle": "2024-01-12T22:32:05.397331Z", + "shell.execute_reply": "2024-01-12T22:32:05.396710Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.970723Z", - "iopub.status.busy": "2024-01-10T15:10:18.970346Z", - "iopub.status.idle": "2024-01-10T15:10:18.973815Z", - "shell.execute_reply": "2024-01-10T15:10:18.973276Z" + "iopub.execute_input": "2024-01-12T22:32:05.399833Z", + "iopub.status.busy": "2024-01-12T22:32:05.399463Z", + "iopub.status.idle": "2024-01-12T22:32:05.402993Z", + "shell.execute_reply": "2024-01-12T22:32:05.402454Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.976281Z", - "iopub.status.busy": "2024-01-10T15:10:18.975813Z", - "iopub.status.idle": "2024-01-10T15:10:27.589830Z", - "shell.execute_reply": "2024-01-10T15:10:27.589082Z" + "iopub.execute_input": "2024-01-12T22:32:05.405436Z", + "iopub.status.busy": "2024-01-12T22:32:05.405066Z", + "iopub.status.idle": "2024-01-12T22:32:14.483571Z", + "shell.execute_reply": "2024-01-12T22:32:14.482917Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:27.593536Z", - "iopub.status.busy": "2024-01-10T15:10:27.592977Z", - "iopub.status.idle": "2024-01-10T15:10:27.596244Z", - "shell.execute_reply": "2024-01-10T15:10:27.595606Z" + "iopub.execute_input": "2024-01-12T22:32:14.486956Z", + "iopub.status.busy": "2024-01-12T22:32:14.486492Z", + "iopub.status.idle": "2024-01-12T22:32:14.489845Z", + "shell.execute_reply": "2024-01-12T22:32:14.489310Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:27.598714Z", - "iopub.status.busy": "2024-01-10T15:10:27.598260Z", - "iopub.status.idle": "2024-01-10T15:10:27.601298Z", - "shell.execute_reply": "2024-01-10T15:10:27.600678Z" + "iopub.execute_input": "2024-01-12T22:32:14.492198Z", + "iopub.status.busy": "2024-01-12T22:32:14.491991Z", + "iopub.status.idle": "2024-01-12T22:32:14.494825Z", + "shell.execute_reply": "2024-01-12T22:32:14.494298Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:27.603699Z", - "iopub.status.busy": "2024-01-10T15:10:27.603332Z", - "iopub.status.idle": "2024-01-10T15:10:29.839909Z", - "shell.execute_reply": "2024-01-10T15:10:29.839076Z" + "iopub.execute_input": "2024-01-12T22:32:14.497079Z", + "iopub.status.busy": "2024-01-12T22:32:14.496705Z", + "iopub.status.idle": "2024-01-12T22:32:16.752632Z", + "shell.execute_reply": "2024-01-12T22:32:16.751900Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:29.843986Z", - "iopub.status.busy": "2024-01-10T15:10:29.842887Z", - "iopub.status.idle": "2024-01-10T15:10:29.851253Z", - "shell.execute_reply": "2024-01-10T15:10:29.850730Z" + "iopub.execute_input": "2024-01-12T22:32:16.756365Z", + "iopub.status.busy": "2024-01-12T22:32:16.755617Z", + "iopub.status.idle": "2024-01-12T22:32:16.763658Z", + "shell.execute_reply": "2024-01-12T22:32:16.763133Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:29.853752Z", - "iopub.status.busy": "2024-01-10T15:10:29.853315Z", - "iopub.status.idle": "2024-01-10T15:10:29.857532Z", - "shell.execute_reply": "2024-01-10T15:10:29.856980Z" + "iopub.execute_input": "2024-01-12T22:32:16.766021Z", + "iopub.status.busy": "2024-01-12T22:32:16.765676Z", + "iopub.status.idle": "2024-01-12T22:32:16.770004Z", + "shell.execute_reply": "2024-01-12T22:32:16.769501Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:29.859922Z", - "iopub.status.busy": "2024-01-10T15:10:29.859552Z", - "iopub.status.idle": "2024-01-10T15:10:29.862975Z", - "shell.execute_reply": "2024-01-10T15:10:29.862318Z" + "iopub.execute_input": "2024-01-12T22:32:16.772493Z", + "iopub.status.busy": "2024-01-12T22:32:16.772030Z", + "iopub.status.idle": "2024-01-12T22:32:16.775785Z", + "shell.execute_reply": "2024-01-12T22:32:16.775152Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:29.865590Z", - "iopub.status.busy": "2024-01-10T15:10:29.865060Z", - "iopub.status.idle": "2024-01-10T15:10:29.868486Z", - "shell.execute_reply": "2024-01-10T15:10:29.867944Z" + "iopub.execute_input": "2024-01-12T22:32:16.778273Z", + "iopub.status.busy": "2024-01-12T22:32:16.777760Z", + "iopub.status.idle": "2024-01-12T22:32:16.781400Z", + "shell.execute_reply": "2024-01-12T22:32:16.780771Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:29.870591Z", - "iopub.status.busy": "2024-01-10T15:10:29.870397Z", - "iopub.status.idle": "2024-01-10T15:10:29.877780Z", - "shell.execute_reply": "2024-01-10T15:10:29.877252Z" + "iopub.execute_input": "2024-01-12T22:32:16.783785Z", + "iopub.status.busy": "2024-01-12T22:32:16.783292Z", + "iopub.status.idle": "2024-01-12T22:32:16.790506Z", + "shell.execute_reply": "2024-01-12T22:32:16.789871Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:29.880219Z", - "iopub.status.busy": "2024-01-10T15:10:29.880022Z", - "iopub.status.idle": "2024-01-10T15:10:30.144805Z", - "shell.execute_reply": "2024-01-10T15:10:30.144168Z" + "iopub.execute_input": "2024-01-12T22:32:16.793116Z", + "iopub.status.busy": "2024-01-12T22:32:16.792748Z", + "iopub.status.idle": "2024-01-12T22:32:17.035850Z", + "shell.execute_reply": "2024-01-12T22:32:17.035140Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:30.148970Z", - "iopub.status.busy": "2024-01-10T15:10:30.147638Z", - "iopub.status.idle": "2024-01-10T15:10:30.428192Z", - "shell.execute_reply": "2024-01-10T15:10:30.427509Z" + "iopub.execute_input": "2024-01-12T22:32:17.038958Z", + "iopub.status.busy": "2024-01-12T22:32:17.038492Z", + "iopub.status.idle": "2024-01-12T22:32:17.341386Z", + "shell.execute_reply": "2024-01-12T22:32:17.340621Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:30.432036Z", - "iopub.status.busy": "2024-01-10T15:10:30.431584Z", - "iopub.status.idle": "2024-01-10T15:10:30.437238Z", - "shell.execute_reply": "2024-01-10T15:10:30.436640Z" + "iopub.execute_input": "2024-01-12T22:32:17.345641Z", + "iopub.status.busy": "2024-01-12T22:32:17.344506Z", + "iopub.status.idle": "2024-01-12T22:32:17.350149Z", + "shell.execute_reply": "2024-01-12T22:32:17.349555Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index c750e759e..b21cd34ba 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:35.984210Z", - "iopub.status.busy": "2024-01-10T15:10:35.984011Z", - "iopub.status.idle": "2024-01-10T15:10:37.320142Z", - "shell.execute_reply": "2024-01-10T15:10:37.319429Z" + "iopub.execute_input": "2024-01-12T22:32:21.984835Z", + "iopub.status.busy": "2024-01-12T22:32:21.984375Z", + "iopub.status.idle": "2024-01-12T22:32:24.053745Z", + "shell.execute_reply": "2024-01-12T22:32:24.052952Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-01-10 15:10:36-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-01-12 22:32:22-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,15 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.247, 2400:52e0:1a00::1069:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n", + "143.244.50.89, 2400:52e0:1a01::984:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|143.244.50.89|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -123,9 +116,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 6.19MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.37MB/s in 0.2s \r\n", "\r\n", - "2024-01-10 15:10:36 (6.19 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-01-12 22:32:22 (5.37 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -137,24 +130,30 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt " + " inflating: data/train.txt \r\n", + " inflating: data/valid.txt \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r\n", - " inflating: data/valid.txt \r\n" + "--2024-01-12 22:32:22-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.72.220, 3.5.16.189, 52.216.217.249, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.72.220|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-01-10 15:10:36-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.241.84, 3.5.25.164, 3.5.25.202, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.241.84|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -175,9 +174,34 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", + "pred_probs.npz 0%[ ] 117.32K 555KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 6%[> ] 1.06M 2.51MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 44%[=======> ] 7.24M 11.4MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 98%[==================> ] 15.98M 18.9MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 19.1MB/s in 0.8s \r\n", "\r\n", - "2024-01-10 15:10:37 (115 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-01-12 22:32:23 (19.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -194,10 +218,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:37.323300Z", - "iopub.status.busy": "2024-01-10T15:10:37.322818Z", - "iopub.status.idle": "2024-01-10T15:10:38.382549Z", - "shell.execute_reply": "2024-01-10T15:10:38.381846Z" + "iopub.execute_input": "2024-01-12T22:32:24.056757Z", + "iopub.status.busy": "2024-01-12T22:32:24.056541Z", + "iopub.status.idle": "2024-01-12T22:32:25.105146Z", + "shell.execute_reply": "2024-01-12T22:32:25.104432Z" }, "nbsphinx": "hidden" }, @@ -208,7 +232,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -234,10 +258,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:38.385611Z", - "iopub.status.busy": "2024-01-10T15:10:38.385072Z", - "iopub.status.idle": "2024-01-10T15:10:38.388744Z", - "shell.execute_reply": "2024-01-10T15:10:38.388204Z" + "iopub.execute_input": "2024-01-12T22:32:25.108187Z", + "iopub.status.busy": "2024-01-12T22:32:25.107828Z", + "iopub.status.idle": "2024-01-12T22:32:25.111576Z", + "shell.execute_reply": "2024-01-12T22:32:25.110971Z" } }, "outputs": [], @@ -287,10 +311,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:38.391232Z", - "iopub.status.busy": "2024-01-10T15:10:38.390763Z", - "iopub.status.idle": "2024-01-10T15:10:38.394013Z", - "shell.execute_reply": "2024-01-10T15:10:38.393407Z" + "iopub.execute_input": "2024-01-12T22:32:25.114230Z", + "iopub.status.busy": "2024-01-12T22:32:25.113733Z", + "iopub.status.idle": "2024-01-12T22:32:25.117018Z", + "shell.execute_reply": "2024-01-12T22:32:25.116418Z" }, "nbsphinx": "hidden" }, @@ -308,10 +332,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:38.396403Z", - "iopub.status.busy": "2024-01-10T15:10:38.395914Z", - "iopub.status.idle": "2024-01-10T15:10:46.275104Z", - "shell.execute_reply": "2024-01-10T15:10:46.274509Z" + "iopub.execute_input": "2024-01-12T22:32:25.119239Z", + "iopub.status.busy": "2024-01-12T22:32:25.118903Z", + "iopub.status.idle": "2024-01-12T22:32:33.162345Z", + "shell.execute_reply": "2024-01-12T22:32:33.161708Z" } }, "outputs": [], @@ -385,10 +409,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:46.278341Z", - "iopub.status.busy": "2024-01-10T15:10:46.277773Z", - "iopub.status.idle": "2024-01-10T15:10:46.283971Z", - "shell.execute_reply": "2024-01-10T15:10:46.283371Z" + "iopub.execute_input": "2024-01-12T22:32:33.165403Z", + "iopub.status.busy": "2024-01-12T22:32:33.165000Z", + "iopub.status.idle": "2024-01-12T22:32:33.171134Z", + "shell.execute_reply": "2024-01-12T22:32:33.170505Z" }, "nbsphinx": "hidden" }, @@ -428,10 +452,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:46.286389Z", - "iopub.status.busy": "2024-01-10T15:10:46.286016Z", - "iopub.status.idle": "2024-01-10T15:10:46.716858Z", - "shell.execute_reply": "2024-01-10T15:10:46.716253Z" + "iopub.execute_input": "2024-01-12T22:32:33.173650Z", + "iopub.status.busy": "2024-01-12T22:32:33.173290Z", + "iopub.status.idle": "2024-01-12T22:32:33.607193Z", + "shell.execute_reply": "2024-01-12T22:32:33.606441Z" } }, "outputs": [], @@ -468,10 +492,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:46.719903Z", - "iopub.status.busy": "2024-01-10T15:10:46.719490Z", - "iopub.status.idle": "2024-01-10T15:10:46.725601Z", - "shell.execute_reply": "2024-01-10T15:10:46.724970Z" + "iopub.execute_input": "2024-01-12T22:32:33.610036Z", + "iopub.status.busy": "2024-01-12T22:32:33.609802Z", + "iopub.status.idle": "2024-01-12T22:32:33.616543Z", + "shell.execute_reply": "2024-01-12T22:32:33.616018Z" } }, "outputs": [ @@ -543,10 +567,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:46.728384Z", - "iopub.status.busy": "2024-01-10T15:10:46.727907Z", - "iopub.status.idle": "2024-01-10T15:10:48.714011Z", - "shell.execute_reply": "2024-01-10T15:10:48.713188Z" + "iopub.execute_input": "2024-01-12T22:32:33.618855Z", + "iopub.status.busy": "2024-01-12T22:32:33.618518Z", + "iopub.status.idle": "2024-01-12T22:32:35.612472Z", + "shell.execute_reply": "2024-01-12T22:32:35.611516Z" } }, "outputs": [], @@ -568,10 +592,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:48.717702Z", - "iopub.status.busy": "2024-01-10T15:10:48.716931Z", - "iopub.status.idle": "2024-01-10T15:10:48.724053Z", - "shell.execute_reply": "2024-01-10T15:10:48.723390Z" + "iopub.execute_input": "2024-01-12T22:32:35.616361Z", + "iopub.status.busy": "2024-01-12T22:32:35.615480Z", + "iopub.status.idle": "2024-01-12T22:32:35.623046Z", + "shell.execute_reply": "2024-01-12T22:32:35.622356Z" } }, "outputs": [ @@ -607,10 +631,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:48.726479Z", - "iopub.status.busy": "2024-01-10T15:10:48.726260Z", - "iopub.status.idle": "2024-01-10T15:10:48.744195Z", - "shell.execute_reply": "2024-01-10T15:10:48.743625Z" + "iopub.execute_input": "2024-01-12T22:32:35.625516Z", + "iopub.status.busy": "2024-01-12T22:32:35.625160Z", + "iopub.status.idle": "2024-01-12T22:32:35.650112Z", + "shell.execute_reply": "2024-01-12T22:32:35.649451Z" } }, "outputs": [ @@ -788,10 +812,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:48.746569Z", - "iopub.status.busy": "2024-01-10T15:10:48.746363Z", - "iopub.status.idle": "2024-01-10T15:10:48.779493Z", - "shell.execute_reply": "2024-01-10T15:10:48.778801Z" + "iopub.execute_input": "2024-01-12T22:32:35.652717Z", + "iopub.status.busy": "2024-01-12T22:32:35.652265Z", + "iopub.status.idle": "2024-01-12T22:32:35.688213Z", + "shell.execute_reply": "2024-01-12T22:32:35.687549Z" } }, "outputs": [ @@ -893,10 +917,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:48.782066Z", - "iopub.status.busy": "2024-01-10T15:10:48.781813Z", - "iopub.status.idle": "2024-01-10T15:10:48.790722Z", - "shell.execute_reply": "2024-01-10T15:10:48.790178Z" + "iopub.execute_input": "2024-01-12T22:32:35.691019Z", + "iopub.status.busy": "2024-01-12T22:32:35.690516Z", + "iopub.status.idle": "2024-01-12T22:32:35.701492Z", + "shell.execute_reply": "2024-01-12T22:32:35.700875Z" } }, "outputs": [ @@ -970,10 +994,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:48.793202Z", - "iopub.status.busy": "2024-01-10T15:10:48.792863Z", - "iopub.status.idle": "2024-01-10T15:10:50.628648Z", - "shell.execute_reply": "2024-01-10T15:10:50.628005Z" + "iopub.execute_input": "2024-01-12T22:32:35.703937Z", + "iopub.status.busy": "2024-01-12T22:32:35.703589Z", + "iopub.status.idle": "2024-01-12T22:32:37.625067Z", + "shell.execute_reply": "2024-01-12T22:32:37.624355Z" } }, "outputs": [ @@ -1145,10 +1169,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:50.631396Z", - "iopub.status.busy": "2024-01-10T15:10:50.630923Z", - "iopub.status.idle": "2024-01-10T15:10:50.635324Z", - "shell.execute_reply": "2024-01-10T15:10:50.634741Z" + "iopub.execute_input": "2024-01-12T22:32:37.627694Z", + "iopub.status.busy": "2024-01-12T22:32:37.627341Z", + "iopub.status.idle": "2024-01-12T22:32:37.631680Z", + "shell.execute_reply": "2024-01-12T22:32:37.631069Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index b1794ab7fa0a4ef0677a6a5f802151de6db61655..7c3a305e6659a0ea5c7469eded4c4d770b17d78e 100644 GIT binary patch delta 8946 zcmeHLO{m;g6=$6P=DCx^1ZjCQ1O+WG$vyX;b3c$8l_nq<+bRkQrQFYr2!cvQs8w9} z)kTYxe^-JF6~(46pgtnfg)7@l>BdC@f^^fZ?n*cQX8!ZqnPA`Dx)?~vdt{h%&OPV% zan1|xoO|J&bH~3wpz^)%e3!rdjeOOZ91_{$TNDS>q_YQu1 z?_h?%A2_*pFn{)!hskoRDz;o&<_i#IH(1*?is@k!UHyo_)BX?}jw8qsJ?4kWgEE}Xq~ zDS4}#F(n0;r`D_sS!i24GrOQ;Vm3Zfp~B=-ND4oUw?BlMU#`P%XN$8F@KY__*w_9x zKe}xA>z}>)ttT!${q)iDlFq6{tvqFwSt@FC)v#%j*fJG0rMsTGg;tTGQxaogE=0aj z%B5E41$}noZH;u7Z_R%;d#2Z-O9=hB$G-aH%|{=({`n_6BN}!;-FdZi>4~H9V>gEj zH+r>AFHmc!u83(IGXt;aRc_9@EC9;x3oL8Zu6doKs(};xlnmKu@dPm#qiGv=%7`&s zGBG(0LJ>fgNW`TX<@ET2x92;!>*n#vr-m=}Gr0BC@W2v;;2foD3c8woiV|%IUPo`M zlTx?3x&+oDqgH!^bwQ8PITrPz$Ld<6jg^` zgGPEOtkKsE{?gs~!0;x2kMWIM-^j0~G=3-H$d3M%tY9@k!mC7}8 zlcM4lj~vE^|0-5{2dEl=t~woBi>Xm5ethnAaN<-^C!E1-_5II=^tEQ(2h6=g>+8wrm(5HlTW4QezA%Gy{#^8B~yD zsa^?ds_3o_nv!*(AqKJHIkv#JbWR|4MO#3Sqn9L*h){h4StZHSP;aYVH<3@jI6SuK zW$^Ng!^Nd&uF7bz38s)-@+=;DZJmHV4DHmE#X~GC2t@=>0E{LLK|u3^A)Pk#JE?`k zM0oEF;U8v@kOnjua@OpnM#5SJgqXWppJNtE4oLF#?gRCzFVG zqyPK*K;5{n{%$zBOkqp+2+ZR^<^i0*3DyI3c@k=hAaa4%sZPklgNrAp!J{m?1Olal zV}RL}uUohC6nUK%`CTmahIIGSy$3r*-t}H-6Y{|J)fdH*F>&OS&(-3O&QL8iQ8}vm z0;uPZYF-Vgz$U;oO3>Mu3hr&NvkKPZHq6i3Yc4UeCdGs~S?NQ?SSwr5R!mP6MH57~ zVb{sRjMwf!^upO0#PR6-@W6spE@)88N^96>2k$5l-UJ&Cxv-O)n*1|WmjIcV!TT^f zEhO}Up(pHAD6$JX4;QW!Y@UZBa=|OOIx)c%qZI_@)T9A+oea|C(z?NKKRA4RS$uY? zkQlvsJqw$we2`c~06kSVY&VrtFuE-kXPSmSW{Rs7q*?F~oNDo#&rasqy2!dVG6|Ac z2_D917&w#hZs1kg;I12f#UP7L;PLOT4M$gq)Ry9fSUt#qxoIpmE6~C3H{Dp_ZNmho zb1N?mI?)&zhXp7>_Mk54wz3%G*!xqKFi0MTy@tNd{pvTlm1y&Q|19{KR4kck> zR53RT9}yI`t!$ICFtVmub%G&%3-ft)=rUfrJ3PMZMD^qG-Qgn(g;gkeOpX)F@DQna zP^ziV|A#9iPa8(=$X-e|7iiQ;f=LJaI8~>P}uHGK5Bdtn@ z{xNnZP@=5_o1sI&MzEuC)GRImfNLvZ1v=OVrQtWR+`_o|Q;j=2xa7^E+6(-d8^b5A z&=o~nXwxCb0wWJ6AF)-p7#zxyC~Q}}cmnQzd|1MyFf@;XqsTsLUp=%AQ-&p|dbe)S zDbP9%y3breO-Wk1G44%KoTw-|6fA?X7eC+aFcl|CF;os_c&{ S?|=3B|2V3g;HdJ)5B?XNX&2}K delta 8908 zcmeHMONgXb6{f6z)9z%(h-8>52NxPUnfo~RagbzGoPgk%hbSn7aL;`};zo24H!+If zGspx9e^x>k3I;Qo2BjF0EL@qm2ySOU2-#$-yO53FUsdCDMW^mwilL`z`tSdod(QbD z_tcB;pLy~9GuK}^((Y;gUQXY6>Y@@NcC2#IE~@4Nhr+d{mc)jrVia3Bu>aAmqo3S5 zn&In1t6N9&=YM^^H1AogYPl$?l{io zmO16|6R!+sS63e&elc6x9F1lbvJ_2Oa|$uzWe)jS>tY#y_}=`?c=2n)J*$6Qo4-C= z?oYti@z2-ik1RVG(0KCo;bY5YB|F4bDWD))C&#gv+JYyelTYj5tE=w}4-MxtQM4*I zN>iR9(o7=eh*CyZ#vi;lKfC(&>%;eFizY#;Y1xW1B&1?VS!^Onx-^O73vUe{U0tuk zZ)b~M{C{2^^kRSHIR5^|{J!%cYIIOpR1$eM!J&Kz$iT&F%6Re-RQ&oo^9P3oc{O#V zTB8Dy^--xrwusL;Wl!S^*YN1(B!(%)hM@=z{Rku`CKXx}VT#e5KFR+0eoW^Ewd{nh zEDnz?2jV=#>3CmX_MIyX(VsEsi;r-q(3-K0%mVjrrFWixYI z#4QY7W+*FTs!*t$tc@J2uDOL$()jm3&d;6(TsMu+J~MoE*-4;{*Pa>fU1XDMtS+=7 zibMsD$!BEhQ?=y7G*H_y#S29n9}AVLNC9l9hW5<0=~}AGo6~RR)W?=}W7aqk)glS# zbJD8EztXnT|JsDOWhVp7$~36m;IH1C-@m9RI^qWFGlNc3vQkSbje&a0ZUvfqY*zsHH$1OQahNchacBxU zNC+N=tyXQ<1UixTR_S^T+C`BU**Bpd(8XTKZe#9p?`&IZ(536}L_98HbR zlaspRUI_jpR2Zt3;n*r_K~)v!s!Ppoec0MsE}F4ur@;hN191^asrb-haRo0hs}nQ4 zI|JqJjqS%vHz04cKWrS2&kpy(bw-C-DsW$#VEdwC_+rPlq(-{j;f{xfMKnQ$;vu?| z*M-PSE=DFHRxpb@P;;a!?2L{MR8;VLhQ`3LS2#V^Tvjjtc=*$7(F?vtTI$6;IX8T2 z8LNkzKxH*MvH*=F_^JX13y=o2V?9Vm6D_zu=KyunEE)e>PDYZGt@y5ycHR{aS1m?K z^!T#?!3^G;%mpSRj91@+%ZD-k&8(lmbeKgi^k3f`jvp}WPbr*oiBPggEgK3(Vo?^; zda@e5kU)>xwD2ENo=JTKZtBlPS?XW@lU+bI01_hsv_0|lVd)#4zGJ&nX nznDJWo<0gcY*6mHzBz1Awx5M}mkjG+`aj*Etgu1(!-xM3D&HzP diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index d1de850df70f792a9fcc5d97860bb171e8eeae09..379f8c543f96cef67ad186cb99c0b6da7656e53f 100644 GIT binary patch delta 2202 zcmeHGIcruy6lDfc)L6J+p+%mbODuw!<<4edAu0$iu}C2pK4;ZHf|}1j5(yge1Jo3m zLJ&JEL9lpO2ud2u6b2zGZrDZ?vC)7}VnnfcBG{$9bMKsU?mcIEvTb^@?e5HK8b*hP z;o^Yr;@letF&Rsxaa>R-1Lsm2;<=+5BC|qRlP1ub60Je|d-6($HsH=8?`xth<%K31 z!GDzAqjFV18_@Q1Ll^t|;^3)f%by#J9i2r-U+Yx!XSJ`@8p`7X=tjPk(7ODjhZ2ivJK!FkCv2LLLa5kc6P zytXNN5%ay5XrivE?0JQr&J|8O2QF9^d;%t&rdmZFJvBa9nq>LnIqqIjn80k5i5U+Z zJl9$?Mi>PZBw;Fp?Z`MGy!b`c;$ji7Fap*3ExNUHK6&#XH1Ja z$fdIM*;&!SUk1sl@`zzl1i<2IH!QJR` z-MtzWi^JU~n@5iyIC!L4YuVqrY0V}Zy`A~$0^Yo=vRoVj<>|cE6N>db30g>se?aBn z8G>kQ3WA19Ly)*MIuwx@YSC&CZ6$R?d&A*Yv)kp|-#OpU@B90GXC|9wCYv75ZpZl* zHEeag)`<*bDp$xloJ$mPp@dW3>!1x45=m*OS3>a#u%iGwz=@u?#en^=J&VVy;6QP$ z3P#|DqmQ82=D;3sxYp>c4h~)Kulag!wbp11`L_0~?dM6u4%XxN0Js+)1h6YUGoYhb zxD47rRF}Y`|G51y-G*7M@k4ZjW_4AvNRsbBT+Q3~9+FXM%G>lrl;R zBc%;a>iA>kS~U|d{!1NX&m?_qPiu?!Ez zJ9Dt9n4N}qK`BQZpMmE}G2++<*qm9*tR+DZEf8ZA8;v#7$WZNrL4vIJ#H`6RLD(lN z8D>%&Pmz$CQ?8Q(u6XfjmCPH&rNBbC)Dy8m2BZ)UA`cuT*YaZIGkgk4MdS2Kh_W)x zsbwfLnV_xml2R&}q(oamopRV>E-1HZou61IC80=bN*H26s~`z>sc|o;_jr|m60|s% zb4|G83Ne{RLT!qZV^rpj7^&Cs%QV;U%OvCOSMaDp1j`O7GC!;buJ-#zXQQt&I@+F9 z1jmkBk^J<5QLl|s%weBEuuGqIt+6AbWWOuNvYVCI{S_YkZH=CPf!*L%*{~{!;!O92 zYS;Obr_NSO*46)6jZ2)Y^tH#^E3mn>tj%Oba${-{w8o3`u&;FYH#1l^*3At5iv4B= O|2>0E#mWjiz4JRmQqwFG4b3c*j7<&A%uF%>ug0FKxdng9R* delta 72 zcmex5gY)YQ&J9;M4NbEwE0Pn7GW89TOiV0IEe(=W3{5Qz(oD@Q%~LE>Qxnq?lZ?$R c3@j{?j8iSmEzO!)x!PH|7`L->F%>ug0DHC-U;qFB diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 9086c755440b503f11a04d6a24e649671edf22c1..d842e89c40c836f77740ac84bf58889d27f8e331 100644 GIT binary patch delta 62 zcmew){z-g8BBNnSRcVDuNp7;fv2n6xl1XZsWul>(WsQqwFG4b3c*j7<&A%uQxnq?lZ?$R Y3@j{?j8iSmEzO$Wb8dgn$$0KO03b#eF#rGn diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index c39250611d3a133013cee1b85731d16eadd525a2..3df020c0461bc11732fc60fb1dc178e1b63a8394 100644 GIT binary patch delta 14943 zcmeHOTa2A$70sD*5+DKrEG-Q%=g*X+V5jYOzmPz{0LDb1t)yB3hwnPnmO?KOH9=A^ zF>+DsG5w9H#DHKl1~4@_3OrCXzIdZSUyM;mykO7=H2R?Nvi|d*na&V6Uwq)fdkb=fQfBvUOBh&m~nVa;}smfqQC1 zVopkD^YK5P@!YQZ@CBVUgPY@-gD2wJ!B@kE!F;@M@V#)!;JLVA@UJjGcsQ;f{65SM z7UM;OU&rhIw_o^h{%L*A2RiG{+c;ls47a;|i|LkyyLRuxkAqE%{d(~|opT3QEp8Z` zbNgHuOX?G}bK#oNVz)1(y|*kJI^gyl%;~^jVez8+$jQ$70locWZ^Jj&51zUEjKRs> z4-EdY=YmVxt&VrPaWNe_w0qy;!oj=TfwU0Zf!OS@KKzr;n%?OD+z&e!4ElRE44&Up z4L0sQckMm954wdr4=mi_4jxJemVd+jsIzWx^&a(h$2cDMZk?@UP)-`7oeNe-nJh^{ zab~sEQW;JL^w|C7Mf;yR|M*89di}InN4N}B`1%q zJI=oFo6{#fMxQG# z!si~i;f3K1FLdUA*$*CXNi{y0qtK3d5~(A>gFvFAw7zSGnYW0cN@zLA9*n6^572=EfnYCTAV{&MnR-SBbZgem$s7i_}!L=4q zQLD1|JY{XTXUW$mZe2Q9KMRSo7?Gp3f(2qoj==@)@NCiWA-4PZPCqLq9Cab-fJ7z2 z;fj(E)=C<)(?h)0vz@9CR*lY6idb)dzB}K~I+#ERRl!LiB!HTeqCuz-oC;#NeOGr! zZ&s)nQ{c%ZDM&U>MiXQr1evN+s;@q~w`N$K=swuFukb3POMLIPT?^OWc+Iu%TR_fF zN>15a`Ki@~%aL=p&ey-avb*-$!l7vUcrIwhw9<)yt~?RO;pREs0z}G^YL33WR|%Ce z&Z>fEL{Q7E(8fn_NmL+Uatdk>AtkfSk_u%^L}n}IKrTLJMzSMDk$V4CxTh9th2XUQ z%J*k(C5(hY*T;c$1@u%W^DG6X(^G4 zHgk_n2omlE@jL~UFnr~j-lLuS3NP~pcop)|uZCCQve**5u5*(Q#M)y^4@r`viWCK# zQtE?|UQ(i?G7;6Sea%WzFo*yVc;Zm(qV*w2tGwZcWv%scDFePjBnFazFc7T(Q&}2W z)J#D5prDZ9;eEYVJ5?!g{mnmhZ|oQ19{t_S1yzU+D3Kb;7r_G>bqkq{^zkD$2C^QX z!P8mb3|R&y0rnk%zKfpGK(pb@ZX5E^1DgpacXXhbZx& z_EN|(o(duBV}I+;^#KaStx6n77SJV5Xn@#3tq7-OT2Xc@Dk1zb)zKL#JWNaSO=*)! zn*`h}pP>$CqpGr!r$6-e?3tbcn*1JSH8={X$5*eGlkX`nL#cG4F@pdX z9*Rjg@CR(9%Q^C#q5mPFqSV8~{|1H31}FvZ46=|5mL1BpGs47VAS0P=t28v>L!F93 zoCqa>BgchrWUB_Hf|96*5VdaTKGpq02mWAk-1^b8dN=H}ljFwbYL*nCQgW;bfdIlH zRg%CZGr-?dxCN$QNx+MI^p+rd<3Z~dFiH-PC(fk?haU1NV86UZkzOKu9jsH9WrISE z!+8hNb+|W+@)q$ysLW?O{X*ROTaWc1*p4Xv<_y4CHi#3YQ9RViUwX z(JS!P2mL!dTvQ%!gT2`Z^+XMjCJE@JRR(R%N{}B0979w@K__^11)Tx$?5GV^k1Xf~;jD0~)Z&ae?zn;pvl&-!tWPr12vHJ{qEU?a9yuwz18wuf6_f`&x8<;6 zIpfEefy^3ZXia0j9_q}hkXR&v(#QoWKllo`7KEkP^&?w)@2?7> z`O&St3;Thq0E_Dlt9a=m}?qq*kZQor2MjIiWF?k(3Ntk3_Q4 zZgF@K(1S=4bsCI;G8PhaEf_f&!N$&{5L&k7YjRYb>OEV#@9Hz8J*tbB4W6AqCPFz$ z39hF>LQOAuVq~Jk`zTl#6j!hW)1IToX-$bzD$CHAt3hWr8xKnv3Dlr~UA8Hr5d#z8 z35p_V`JpOAHSGxs0aN`S-QBc>6LI}19SA84GP4=Z&WemJK)HrQp=1NB!ZPC(8YC@M zv}UXDCU3A$lXKC8)zI>jZ%Ztduxm@l8kaBt0i93i7Ov5;$mkNe03FC82%D<54RPD2 zdsjAQ6U2>HX@u8;wYRzHp+=6DmyCh7n*GH`dXIE2_8hD#6^9xSaHY_eG8t4!Fe??U z`Cf8c6Qj%evp4p(S88%(c63{BeP3nN7z>B*&_h9E7u{VN1rkkAEr?l>l@)jtO(*;* zhpT6ndn=s=p}=Y~rnnvpLyxWu`Ujaxn9#_fsFFih0LlisP02B`3USAISqfS2-qzjN zN7qE5#KM>=ctMiTI>8}gz?1VJa!X(>$2Y8|;V+35sBuD~-{K({&}@_x>Y%N0qrx>S zD2viDh1bARoeY)8Y>rcaPt5RVJG;+yilLug+oe?@sHp$(!R}>S`4(eVzzZ^hpoftx zioRen!Rt1GIiM;-(>rP1W1(R%Rr#_a5D<2Xl*N`Mn$U+k0Mbpl!o)c zQ>rG_Ekj8`!`d;{E*%4_5WK$g_U`pJ6=KuoewGv>vtxnCBg9nG`~`$Watv~gq0pj| zQwk@uB1tRFBq4;ML_+}Zsu+Jl9d;}TW~S)X-( zZ_~WAEBqIPpf#2$>{O%W${Z#c=&fjYO9EHBN*hjYxvy*)PJ9-${8yu=keqK=jSj-Z z8(XSk*AYX6DpeZYYF?CTP4ZaSX--O^1S_8-TWO^cfG{bcY*C zBIC+5c48im4V^CZhLWIJ8T65pB1T)Z1sJ|Ka$@LKOblEfKGNH<3yqdZVMjEy3^PQQ*`~=p_LpE*6jy)<7Z8zS0lh?cD~M);fy}apxes}Y zvjliHEm0aHWKVM@1*~E8snAVm^RyJU%~NRRNnw3`%jdgu72_#c<$!i*aqpzn24KTa z7G2u}2{>Z^ilKO66~vcxA~@@DuNzwhlm<=Xc1JF} z$!e6rj!#U>)vHU_wS=;&a4b<@^o^dWFMq82q3J|yH1C^E#0o>7=|pV8xNtfVn@+^0 z6S0*ez4iP&@^Hl2t~Ct`0piJMNurW3L0L~J?{d#gFzbRyQy52q8c=|pTg z5gY%--swc_t;TWFiCAGeHSW~o9}G+K&25VErfE<=2lacKGyp|v<6}!CbYDmXa%h6NlR;aiO~(+SrVxXG!5AoM%t7U&RpO7v*q}ee2qqFS$VWfq1C2WN-RHLFHtAU=n)q|tG`Wv` z_FQw#Ip!F1&c6KS`7ghD{^1wSq4GBS<>2nxwSjmcth6LVDh7*Pv0VB<4UJ5RoP&v8Q0WC@ zK6znPbGSj_p(A%Zd+ynl4~!D)L}J;9sI>RqIIn_ti~>V;!Oh}B&A~o7T77n9y%kyF z`lV$;rsxQz$*Dl8*36Oi)`}0|bq{PgI@)ryv-XvW;MTIWL1Ym{u*ORj3=z!a#F%z= zbm#ZF*YxYZKizxp9LJ$i0*uXCsHiO?EIP&TFwVm2V<&pcN56Tv|4?Tx67RW^A!Q|) z&(=A@Ow2Ch1IE|e-olgL?Dc-zDcY}(KhfQM!*t7Ger+}XCAa6EG=D`!){}eh#rH(Z zKpe~2SR(|khY6yC$DydpoS4zRfA+TZ=bTi@D$1#_LMi2uf5BL9n4?Lg`pR`U>2nAB zU+oO6RT$&q|3o^ zW`(892AfnCIE<%)@_PR>-Q}ahFZMR}S5aw^7J{K@3n{6!)D!CiS1FMC(Pz3VT92y8 zsd2(uLNXJ=!Sie>62dDYGh=*o{KnpoJ5|AQT5xG#rdf5N-u7Z|?Lbi+hy|Hs=75v4 ziQAYWmm$CzJ>kSau^2LvFvKLZ0m}d`S_E9LLK$PD6W#t}o%;$wS-8kgY~8+N^K~EJ zbnOm0Juh=}?WdkDUC;b2YwJI4?5)^T@G7+dOwL*_fi;EzavqFGS^FTVvw?Cl0w}ii z2RX!$nD>sFD44<(*<=Xt7NSnk)cYPmLcaD|_rcCUSzHbcQt*HhN`W#d5+x4F?GWuY zcUzPdZ0GvBKksg-3buW{?4|CCfp?KB9kojtDZ{)qN=W8p1Q?hyV?QK-qOy^2#|r2K zk2p$_Nai$|L?(b$NxT8SqgG2U08dm_>SQL~0`|&`)39W>rf+p=RWK{-M}E~^GYH%n z8##lfNrD5yJ~VE4f~53JwU>Oy@4FlObCFtuLpUW7G^K1%BE_caB9kMjkKM9ZA1Y2! z)^o_3ffOapVB74t#@9B7B-j{D1>1fBO_iK(SJi{xbw9X{t|z;%+Hm(RZGw3qi3ClZ zLn#MSqb}iAlR>nSmSb?itB>}Jyx*YfaiD8@V3xwAkdCK8v2JgP}UY&?S2Ggp@K42svN z*C?o_W$n*@yZTV{G|cP3xYF%U?5e9cN&Bejfdv*uHJBaZ^fuh zMYtunmY(Fmz-t_rOcdxLY6EuAX7tDJcMo(1kR(3g)I=NH3$!CeS3;~JO-DlFBDkhm zC6=}xluXvk-tMklXUzn*q~V_CCYexgLA#DyA2XN{CBr7zZ{t!Bz^(A9j`hCLxvvnH z1x<5`i%N;O6pE~HTPK;T9uwFzyIiKZ*LE+gjdYi+Q4GqY6Ec zBpT8t1dsuDl2Ilj7}g4p%v3fq0f-3b zUMO0y=R#&yDktt@2#|RM4Fnj^LG070h(l|VV*|7OojKIQ*Hi+HHL(nLW6&*U*@lfEvs~3(&|TkwRx~6N)(!nxbkMuWNcc%5$4- zg)XwKK?OK}Xhm7At}Mq9L@q%jJ_@eF!m1e`_%WFliwM!reP zg~nxIk$X+&tfBg#vaAFsMdUey7*IuPg#Ch6C_=y|XV6P4v}q!%=%A|6NP;P#uVq|B zTFG$z@cRA@l`9xNxS@Z^z_WluX)8doX=e$Uei$Rt4XAM4LeouiO(*M&ZKYD|{Gqm+J2pPqVM$n%rjRdC9WyDkNhuPNFJlz0$V zBT2Yt*&|X;rdBDnN(7BP1@KYoJ*E~~IE_CbE+>?Ro{tld!t{q^0bxiLp#rSvB*viG zQI4O9s9RMv?!Bg;Ak~jv*WXr^j33TJPH0TT@|hoCKu|;|lbw4r4LK1YBU~zgSvi+X1Rx!oe_*(N3Uo@`)3S z1-UX9Ix1Z4$(CyXWobD`0V4}E%YikG51tbN=yC|y!knoESIKze2pvo}t?G9^)BDhR z%GcWoaN%k(VM?+o)i?wytxG7%&Vw}37Pox0FqoN}K35#UGc;X=z@(*cDJ0_Qyf*#9 z@*=pdE;u!&D&mm-sLSYxEflK66qh4fm*YCfJw{+93MAaCByaYJA0cyB@2d|n_L_lGCS6U77YsF zTxZEKKS#|*zk_4o#{i!*i%K7?KoMyg7-$%M8W;|pKGzx~CO{Dwh92ltkbW4GfD53` zz}3t+Oc=PsCGmvZ7i01&*&J8?=_W&c)1AHbgKU!y0`oM2IRIebU>*Yqi_VKd?M;ex zsC1OX06NfsnW2^wOc){WIU0zNPa^GWojJ&302gruLNI1mc(=?#WQG}(TpVo_Ov~1d zf>l+Ydw>7(wQ5olCh8FasJ$i=8ad$^zK1}hjCgG)d@4@d#|%~q%u$MWX%8W96eUm)(8HKKq0>hL=8;EGKnoN4t^G8ErGPWV62cKyQA4o{JF<1Yle)D8}#zPe#KhQ7E(!qbry7 zQTsrppgOd|&{~khD2+s7U4~@@BnalYr`W6_5d#?XXqdobpo^uG#|KQrXrviF_{BMB z!ESxovL3ApW>x*hcfe#!t!EQVMj1x`C}B-T2wW%R5Qg%O5vcOWCSf)xESV-duTp51 zf~Sz0bm`NjD_ewGRd7w#tA5Zo^%YO_K3m*KHHkUfh|M-)XWqrlHe$1l*lZ)#nQg?T zFKA~QvBD;9wh^0c#7=E0Pa9>-HezR3$IUikvyIr9{$J%}UpCu_%{F4BD(v898?o6& zY_<`bZN$#7jGJx57T0{Ujo54>Hrt4u+|w={)6X_y6N|XnMr^hbo4%}E3ZDPdMr?$Q I*yug~2G8E9V*mgE diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index f01281abd27bb6bbb8d5047161dcd26345abe8f4..e320b4c1888774f406acdd5d37032fd14e069523 100644 GIT binary patch delta 84 zcmX>zL*&d1kqvt|4O6O0D@;mqll6^_lP!}>QqwFG4b3c*j7<&A%uu@i&Q%;O delta 84 zcmX>zL*&d1kqvt|4NbEwE0Pn7GW89TOiV0IEe(=W3{5Qz(oD@Q%~LE>Qxnq?lZ?$R j3@j{?j8iSmEzO$Wa<;$aWCUU+AZ7+)mhEpjS>u@ixO*G( diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 70fd685c8ff8b1a12a9edc6ac975e64fe1799cf2..573bd4e637f56fb6482c4577ca68c679c0e41ea3 100644 GIT binary patch delta 3703 zcmeHIzl+>O6lcGrFaZ%k)0z9am{UTy%$s@hW}cOZ8bXYoU=!qs^X3Pn5CkLWg)D%l^JVXbqx7lKM*w1|C^XusTsiXU+?tXs~ z%I>G1;f;^-1?Msg*2W2l#d#nq&JnT6P9S2n$@|3Z;L$TL-g|WN^N&Z#A=?z15LR@k zzgcUcaWffG1v%K?z1=-@&)xj}sj+73otTX11c5?KS%PgYC-#nmfBaXyLtj3)Gk1y`a|bc=2VSBK|* zIx~DdIjfhji9sMViw#?9HIvaRmWCN@oxVEWoX+;g;idV**M?sv-5bn)eSNqxb}k^Z zjp=ZDgP95nfC+@A)krZ{9~_zDO6IyGGqw_oN+49ZqPWBe$*L&6RFQx%Ke{;VPsSX` zxI#p&Ay(&=Y^Br)9CH+b`8St_pC==AKxglq8%!5-c6e^MJVuPATH{gBU{aSsARDXC z(IyO%Rs?Kh3@%tN2~e3u#H=4dM9Bs)D+1LU2KAS*!J#uQ*`ls>9yt{QoL2;Tpi2Th z%vpPXcp0NUhUcva*Kb_-WM{g!cYd5EwN1`eRGWqtE31=Y@-?;KR3f*sSSKTMwbQ>M>gK<|LFfk!%bhFiP_!NUXpd zVr_B3`@Itz5~{;ui^Yu2azv8~LBL$Rw_@fGUr^p>lYT=!HZ2W{XpBfQre$wKQ%RBk z5vv~hGFBSQ|3qKJ>iIDyG*qa9Z-Ab)C%9>KSrtPXSzIYtd@!gE);s~K?IHzli{TnV zX}m0n`5zaDFD7F#QQhm6W67w6#?&GRm6{ek6#lYi2Y6}C4z4V+wRP~rSI=%Pg=vOK zE6-I>J9_OujeiTpU`f%0=vOK8F+uenYf@zrl-P)b6IG?;Vrr|DiOUvki2%;1Xsn?X z0#4d1S{Gzeae%z6*@BxajEN~)&z%fWBEo3pzg3_IN=S=qERCF?Ew_W@mR d*?P;?TejY^&Va7B?8*55k1d;jcsT4m{U_>x2@wDQ delta 3684 zcmeH}KZ~7J5XQML7A7EKVY*~rFS<$yn{&?0nRCWUL=8)frmzuN;+gXYVkK&!8RD917Q(S`rA+#3)cXFdaO4_Jw!NO?C;*{KDq}t{(O4F#vrC;hZG$mIyMls0FOk}xE*}6dwcA>k=qaM zEFavN-TH1!);kvrc}xv~keek!2{l)yl5zPH3|F5Tt@pumEE#N8>xoP7mi0+a4N|4$ z!?VNT?4{y7G(PULUS>)fXG{ z;migEYfOq-cEb|2N!^G&!kR6H|9F7DAMkeD;yWNOE3$Hp`<+!~SfvoQYd> z-q?UyV+KkA5*rH{Ol-@qw}+o+BXvX<@0=gZ*wb7bo*yo2XvM{pya`pKkeYH#u|Ogy zuBN~%0~;JpsKD6ygTg{5X7CI=~}u>5L! z_(e^26j#-E1ZC0Q8(u~RZ6j`hyZ+h5Pj}{fdl$yJ@{r zlP3$|pHy|^S5)=XkEwco^iF`N>W_HTf#c{|sZlJfaJ45`g_2s%R=EO$l1XxP%_M_b zZI!|kR?V|x?L}%L=#UdxgOnlps(UD<39FvyYA}16$5?G0{P^W_o2yi+;zhcuE4hr7 zIYpvUn^imv3CJ{#fm&>y0)pa|S=|_lAtX>|O$(l^l60)RbHR4^$A;_ Su<6t4|2|>M4-bdEXZ`|RRQR0$ diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree index c23e7b26506e5223c8ec9a16ec33803ec22b7757..f9145841747d12bd5116cfccb801506230c38fa9 100644 GIT binary patch delta 19028 zcmeHOdAJ=#m8a_7*V!N>WDnupn}85_$xScS)m7O82?@bq0ysg*La&BB5CR#pU?M83 z3NNu(TtIPDlr0h4Wq|O_hnj&eKtw=MS!aY16f`ra3?K8W>U&?_Bly~xKk$!vfqb{C z>U5u4&iS2RovOU@@?j6Ya@gIs4{(x8*REq1of}W_yjVso&1C3s8F{|LdE$ATOFQ-= zN3hfleLs}hj%Nm}o!p+HDowqV$1!7RC>$0?X<{cq=s2<6>74M1depm&w_~W7*uNfx zOfo+fLWU`eQ%A@+a%GTuSsc2qlXiyZY$+ESDn{%WGKcoBB~h3pS>pQ4VNAMVaV?W!Y}*Ped%ObYE2MEEXaEDnY1CW*j=g&q^k7UpxMLi%%~&;5s$70H6m3m#c$e(!(eN&TzB zAJW4*uUs@)opBmHr1OK1jP4w?dytWE=G8jI?rV(Hw5{Y&G)~Zk9sM3XgI4^&R!f%C zcJ<$%CzCqw*fXkg`Qrn7)DBV~Uq%OX4&3ult9nc4xAz?0Doj_mTulaaKJe3PS~czJ zxf@As|8JqTsur)L19tr4i8~Id%7*Ky3#QXdy>kKWpeT&Lg9!ZYIPK+sq($@igXmes z(~`B6>$dg3?cZ#>YCG|D&Hb-&i*Pk%2|2TK#ok7RH-gU3?wziGckJGK88sD)-&|cq zg|CK;rPD~T{ZE67`k{Z3MsU$zcD9k~w!!3bsB_$+U$YLUK1E^jkH~COonJ!8C$xH0 z&N-4^tQ%MFA~TD|?^Vem&Bmce(^+WD5AH|$TWXx5LDld2?0qO!P*kt(A@fXq?hhs> zQ}vijeN*mS^5$`B@XgdWV$+@^#}#55hLRVEI{%B5nTDI6CdU>HPYu(0_I{PlpuVF! ze@hz|4Lm-58(m2Jy#Jx(6sj)%I-RE5-D>EtNA3L~mB7XBnCz6h$ zS%r(}g5sTp9pt1johyHHM1OBmy)L`H4@>yKzAD&*+f~Z1o2SQc=Urq%SDk`=Wcy06 z5xc9De`f&()Vbod@m*C4CNrh0l)t%9Pui~Ukp|Y!W@d!if=sFNb9<+mhkVehy<*-Nx;%p~AS_ zW*PQ1t9Z=sT0u^QAzVuv%{G|Xn&u-cZAMe<^^m+o)Uy-mY_{_O##x^=X=tdkt5#et^k z+nwZEEe155iQjzvR-%#AbGwjqQIArAplXvMfY3r}i>lv1fT2aHz)7GSvuG?$b&pEG3hM=#QOw(UdjIx321kzeCmdrDU=ZTKoVR zWT_jM69;emL7|bYK!;56>=giC{ghwuBW4%_>?x@HYjim?c7G+S_ z2;Vf0PP6dcmQ4eHwHg!wzsFLW=RY`{eu5HFSo5@9#6zVH@3VE|TSrm^cOwt1onfBx zlM&`EOdo3!8H2K>Xi!!^<(q8!X+4+BGZStA)`%E@H6jmtbYvk?psT4ohSOuMHZGeG zeoIw9s;6$FCm^Z-m7^K-Dq2*Ukn~?)r_!`29n*^!^B>NpW12!Y-A<1$-kfk8y|+R= z!xORsO;Ipt>N)vi^Xca(TD!~x$m*%h6UjmVDB9f<>15rmEn^{m^E(#N*#jyZ99u)_ z>r3fqWiQ2A@<2^rN}tj#Jpk1=vKmM8)95v(S<})UZ|0x;2n}h4fnT-AX@}}qj!*Ag zK?nAzH{iOvRrR&jLlaVGu7HZJ&j3=}-|I7)ndV@oa}H^;1JR6T-S`Nqy73Xg^6Wyo zmi8<7iztE`?E3IFQ`0&7w_ew`@+;TUD(xzEry=;xBbQKaRYb#8&Jyx5Lt#+hmqvAS}f;iFU-zOK&qZby(UUNc12RGxn?J!#A& z@qrC5eEzC>>(7R|H-*{t(`|dIZ6A5gMbq?yGpX+S4Ozsu%bfqsE8XMfHUEby0Wy934U1^f6(Lt&3(OS4i zkILUM3i8Rnq$ks{E8Sv(_v??NZmp7GMpRqpSig6{j{W+97t9j$_T_x#v-AZrhW(Xc z7JWEozfborUkvZt&tta7UBSA|cK4p>8Gmpj9a-fLJWiwFxM^jw4K3^UnC#Mb+RQuo zk6y-Px5upeWWTFBAk9O`2+DjzGRKulPJUNcBNrc@;B$nCNA!MMoyR>+|Jr zpzHamzr(CouHiz>sgsfYw0&==yDGezj%?$+A#6jnE3@89V1yCqF}?38M>$t-Y^THW ztNxQ7ODiA4w}#$KM|CNC<6$yP%Z%SnkFU&luh!xFYnp+`(pDM0-$#t1$Nxn4kjnIT zcUmiYk50d*Tvw+jy+!Y;4%l`;lhCSX-k}TB$OFj{+ZI=TrMdew1SoEzhN14VD1x~! zFi-hXS}BNov!%t`b-D-dfwmuC2;SaSDOkHGT0q)$>W4e|LH#QTPM}uJaB6n9C=`5* z=RZ8Kg21HPy8=@o-Q3=KJU?tm#cXf!Rzb>me#0S^kIt-zP7<)xcQQXtSmM~ibA3Nf zk$Q|dlU`=>j-^7#JLbEVR0iESpo{veC*G-?rY<_Xy5!zZRe$n3wd(iPQEF3IwbV(! zuMSsleYHA8-Kn2eA5|Tx8h@+~QO|T#$EtJw*s2@-dQmq!MZN3`|Jm%UM4M&5tz$K*fRTfKzV&RnxH2`@Z*<(X^NtWE26 z^SmZL|H5>j&g%;G#>Xnd2HOqS_N40$^lcZ(R$X_Hu4BFs13igFyDqB^AA~9g`DQUt z)8(K#@<3e?aKQ%(TdM1v>WKcR@odKt>g_kHhyC4@KmDibw^W^1tL=Kc%eoJK*~<50 z^vKSPQ)m38D*m3mFo~dbZ&g>m&+C9(LSY2WJjyi>HCgBTYm39Xx>1lzaLZFpLndHi zXFVO6-|=?Up#!!pZWM_Eb={!0G3w2Csxv#U*fqY>K7Hi9Yumnce2ohMHwe7QjzgBj zX_&DPM^IU2OUI26NvJhE-+5EpjB3sCvna-S6B+{+J2;QB9qt4;F!KC3=6T(-zD(+l zOaq+yL{XHwEb}vwWtksI-%ahO#LeQ=_1z@M?`~L2s&$@asg#0eIA&u3<5Ji{;?N6EzHqsx?rB)Va{J3| zoAelj^qiRaL5cx;PUwbl7;pw1ZkW1W?tIhwKE}|yVqcA4U^%riy}zDi9gXR*nd^EC zYrvQY?9j9A%#oa96rl`dj@~V<)_96u$Rvz|03F8wLY!YYI6Vv#U&gj_UTquR9E0cM zAP(KnT$!<0rozb_FK}YlOBm<2-x@=S;$jTFt4-Af3#<+#L>kVbW078*uyNz0`h*y; zn#Dn!WMRzg)QezMA!nf{?KDnBe(T$9ORDX?A5^OGi`z!zJ3Fka$Yo`VG66bISp1Qd zi#{}W-UnBfnPE@qvdNmTe3II}&KfnZ_c0~Sk!NYd0vx6?Og+vm!;pKnmt>Khz^?3A zFD8aAay92ltmULXTUV31n?yX~f`xD^hSh_ir(xnm zPNYwZBR7BkV(Vp6D^aUnUTU3OXT7U+)JIRV#@4e~e;$X-5=$2NJ`SRNea3930drEP zX^(Ie&-L6)ip-5z1h27?X~H-~;-`tkc}{nyvQv1YA9*apNZcrL1y4hsNuP^Q#6i;_ z%QUN@H?`U2inUkOgyT9+7A0O9_)Iuq6m#Ke2l7Sg`F3}3^P|A#B6R}vA3nn+!x3|U z|9qSqvslep)$*+N$jdyCINJ$qhj|_VG!`KXG5a_@Pu1pEtP%NLw^;u~>LvO^Jr<|d zyJqYV&eYBoG(|xxy$(MIZy$$!rnCIlKohW+!o&3K{Si zOQiubkD1 zo!YxXFVk~!ad^(!bi&lS+prB#G6x-o_owJOW3VSCTmkFC`X&NySYUtM2ExM>f%P`f zMcR_3DF7r8!j62HZ8u-5dAJI~qe!G#7BVOC@x<*^BzO(Ok_EODHd?0L_*<<+xq5uF zHMy2Xz!C7v9)A|9am*~z4*eFr!t5sK7M@;dt(-UUj zUDz6eC$6+;O9~jUfdM=?%o$NSi2~sl<63-_HM3e1Kw~$6-v=3Uu|{#kd60lM`OL>e zUoxt!8OvOUA(D9^a0UYxLht~*D(11{y0AuV zob#*dx8Jo6YzLU9Nyu%69k0H)l!RUqgKC8^Q#xyL((6DC`C@)KTAMzNh0dLuf;^$-IPv9T$|bOmjiE%Je?; z6|1A>XTSp)aopho=)-wz+>C-U$M#rcrv>e8hdJ^X;g*5CGZ*Zghh8Ln;fWZ_qwe_- zf|Vh?HAFm&ACxi8JRoWmh1~U0+_d5u7z!`qM1dJ4s{O**dRMLQJPqzQT%GqVYuHo) z4&XCf7^tV~!gE)jldkEak%0Luim=;=9Y8h+R0dk&dYEWWz!24~ukQnu-tV8~_8+V- zk;}?fs;4`-C6?M#x?~R1ea_eWs6^p>zOcg>(;qvj#}LP(gmX`XNo>af;IGU1wpoMf zTsn#EB6$(uLK`drYz+7B!i;O~oq+F;_b~dJpM(jBR~Tk`_u~X%qK(Cu!ecRFr&(q7 z@LSf%@4jW-PwHhoP|w_Geejer-FlMV?Sm=zLCyjnevfqpUDlnIuJ#xw5pj;K%#vyi zMH_zP`MwWK(N^GN`{qQk=MiwHlf%nC2rw?wGzE* z^JdFy?^UU-9{LyfpXUb-!xRflUE<0JTVT%yG$fuANSvG(J2t7ep%E?^!e^J*fXC*odzbjE0s*gNk9W@nb z?%M$_#O?2Lj-4PI;DA_QX<#ncq-22TD1oh{2`ji&>HW-RtSeiVo(@!Eo@r0%vT5sb zw~`S#g}d1y<9-A$0GJ|Wi=YrY(!oRoxXsGbR#kP;wv=7cf>ZP(3}F5A#EY zqwusS!`)TvbOaWaCGcWw?-E>HO`H^Vic<~j@49(fnR4~(|F#y_%XF)g-nK^95`lzH zBoL;tfJh<;=B6wW*ux=!Ik@CyG9otOlJEkcX$)%&5?nD3KtZK+fd_ESZiKS#MX`_J z@(}x2hNObT1!RP37CMNUG2Hdm7r?@5z3Xkpg;Kr$`jT~YI}pJSv&==lDPf^Zk)YyE z3OWHg<#_7B3Idnml6C2VNq}=6QHiC#i;k8|p`)Gdg)4Qgr1w#^LR`eWAn;S0 zbL@aZy`OOdFUI9;Wbs;?pPK8%v4j1ti+mCTgo5QtWK=-jKp<0BA(_-lmc*G4=tK@8 zMaaNKc`$J7D-tJ@P8#{hzL*50T79Hd9oL)Y!r@93C&uCG9LASmUj~4bNc#BTw!Y)1 zaC46IDj>lGgL(*a&Tt+LSJEUol-j}rtT0lHK$`9zS4&dIlM;DHH@2~JMSRIL9~HO^ zk0T1NyQP+CFD$iG`D1PUM%5&ekPMy?cu1Kh!$7HM3Bl-yyG^~&IW%>KE{JkD8^kw<=k%)1uzAS%VmLF$; zeOdnIL0Vsyzx%mDUzWcw%iovf@5}P{W%<*-EdO6QDe24dPp!93+DfwReOdm#EdTz8 qP<>hck`so$EPr2?A2%ZVviyBn{(WZ*eOdkq{~xpbIkNnJUhzLFH9+u+-1KtXkuWv>rOq+(Q3A;Bl zH(-J>}m6>*WFLY zY1SgMS|>cVZ)=ao_pnrFUZbTRzhX~tY&dJs=^M@(eudw9ar5D=`yL-+7&Z-h;!Ilc z6xSr~daZh!KiPUQ%_?ayRz>!Dv>(P`;wE#Er3r?P4D*84_O zRJYPMFC(AOjg|C}*1}h-RkZL{*Q?SNHZ6Yj)0C*|R?(&U`JuF~&sjxXTcV0@TK$LJ zsb$kI97m@1G(Y&dtXD<15PH!fvY~=f>x*zF7xa*z0 z3c~Qe1eSBbUw&94WaD1sa~MG~(^aOI97F|0W%1>7R!x}p`~pHgYbJr#@KE|GL%rcD zI-^a!r%Fb&sm???3)Fn?L1gzjy-eyk7m(4rH}UtGrpxt#dyz3!r&|PeBsybP^pS?X z^!%yk;e?7)+9jLqCZE0+If+(M%*VNbjvmw=NN;(CjI2r1QESoLM^&cpiay%X`wV3G zZl1l%e)3C)la~mcR?N81K%?H@(XQBv`Q*PFiJj52E+7F;FK~)2f2pV1xR4x;qY3h^ z{mIEx-~Uge>ag-L`BJIdMO|>~=Dt z;$u>ahC-(Q^L8?^ikhn@ew#?*>lNF`$oxn1$Wc^(|GVVSf;ML;=6~=Vo$85q5Z+<^ z?J?w+L@&LI98$1edl&IKw8M@k@6_~`d&tx(>-MdzXL{Mao$6QbB}Z67KH($?f}Z*S znL=3W#J7*uUq`X{X6plFTEX=3f4~{)?GKX41?Av}a0;g1{GUHYhSc>ZA0ZCvfhJ5;N36PZB|desL~Ys(<`sajZ(e_avE%)-A_i2XFW!nM?JTp28d;0Llom z9{Ds8wx&;bnjG2TeDxp6R-!-k3~>wE?az=o9oqaAW&_{-4VhMxLANjUHAm31^i9tb z)viDHJegk<^Q9M>JzV`#4{i8tI#0j%5|M3Q^)i{)=6ztb*~%9NRaDh>d($gqZkyD& zm~5(4I7H3LhY`FgYOcO{K0V%+^3CfZdA4YmwfuE56BEAeb#ej~Za(!ANM7;Dx&`!@ z;*(o1C36N-CIR*n^f@iEuYTbgvIiRUv}?()2!QFX>Nq{MMUtYtk40wvy%xE04<Qka%^S!VTH%iD*nr8JX>#C>mOpP9r7zLs zkxt8c{fq0#L7iG*4)pXdkt;e)#vU|w>SXiQq4_CaCZk5Qmi+E;%Gb; z_NePiE~CuY0Jp&N!g8R}u^euYultG7mu*+l?lz;fAK>ZO5Agi>QKKvWJ%KU`f;Ay% z-S07@Co?q_6|Wo9A4+blqTuR%ucvcuDWCUC)A<*NK}8J3%2M|Y?GNS*Cr1@**FJ6f ze?m~#_H^?|a%4exS_1pvVF+eX%Cg{@kxFr{4o-e`p>cC^BP8@{lhY+2rY-Kd6bw5nkn&)-IF z*;}(KX^q}Ev9<2eF@rZ&cO$!*KRx_yGV$)S=#_(ks8$_&xgfsVc0qhMe|QL8O{wo1 zDO+xSjf@q}2B^OqN{3kL4i^NihYzEwPMK#`w4o}ynFrCDfrfngK6EWb0qa;{7$8v7 zP5aqn>E5PY8$q&PtU2T}MRR`wx3=NF|yf-HUi!zeru zONaQ(u%&z@e33c^aoW=PoTh$JwGw0q`HhTzf!ap9u}tEE1lbJ zKJqAfcZE2G!wB%4O&xBaa{+$yZS(2X6a_n5z~&KV+S}X$q-N`xyO|q3rONHRuOfW;o0GSBvQtdxE|LJl8I!hj%{D zZ#k8Q@RuD}{K8+Jq>n!x-M?@K9kQd@0Oq$&qmOi2Zs`=-Sb4@76uxt(ljU2xcGZai z%ug?&Y6P6;x~BJ%vpTLcWPQ;|)j_G947usq5*`f?CM6A?Kg@9GzA-m?wI>)u?p9 zQLy|gm(%sM&0}#9vK>@wq#PBInvqYA(I(@#*?IryRzOl!vz zwH5fG(y+YyB!!`a4|k&`Uwh4txEv-hj&e+}!FH3SO9Hx*je3rsESTkw~ zMnX)%pq_E^!Sea%DeQu^qn2Xf&r-I&h#|&a!r398dFi@Kd;T$jjER{XJ?BX>rY5{@ zRTz%3LI13iEo+~srsRvF^L+cOSj7P$XQzF@OtAhc83~zD);t}6n}GgVrx?~gGr=dj zmG_>DKVrA`mmj#$VkVQ{*L~R+cJBEVf5MJeE)%}KW*8Z%Z+eGTt0p?t>z<$^^*Myp zsb2_EWkx?tBYdyV+WO-~hxt8kVSg(rdPJl;s@JeD9!W>m1e|DNEfK5knq#!(=rf|> zM6|l=zVh0;*u=`T_piW=w~O9BfU}rcp8SXH`!e)IMDOqfKP) zbu+4a-~F5F&;F#RyjdNkuc}n*df1!Qee{FlYu);sH>;!d^>0>3==%<;P0^=rL-mjC zYPbH*w(3az)V4PDx;Ice?2QiZ1KZKvKeej|=-FphoB8+NsGdgtj|W=VT^*k{->P0f z*CgS}PcAtxK4)dxY%V=-iLEX@@4Qv%5RWUa3;?rkmwDJsQ*Qr#bR`%BbA4tS3HQe7ansQrGGK0Hg3%oPabjZ%5>(C zg0uPeUc{{SxJ^4p-}^9&*hi~(t6#VKf7*@%IL)5GX-ocIN8k!}>9_mM`wLnF3(<6mp6SvstoU7y$xew<0c zFeBJpH;Dt8#SxN-!bbxF%RATC7F8Q&`abf4EKw0pyhNq07s@Q)T*fT(@-5HQt|d(& zq!e)`G9j_hz)`*ooiLKfCT4*O12g-3!PftfVKM!ZA(?*knEE87p}P5kBav(wf6+yg zo8!GW&cY;?0rwrABuXWjLi&)qUhKw#_m-}*w5BwD^3Pp_S-uYS39o~hos zCMh|j@tDZ53r}6L;3ISAov@@#Jo|E&ZQ=OSCu=^mK4xCYN=30BI4~hy99)x>Di0xCpF8))pJ(V#x`T9igHxO!ocAwN&+D~xQ$Mh!jo}j zoRhce3#$zrwT$3xaOrzIHrzhk%OuN!z{l3=J437&nszauAoL=~fs^8iko%sDn3q8C z9pB}lgSEGXwQS%*SWCuDwAD54IDrEVNu3a07xw}v9{0Q;iCy?xp*}F%aT-p>kg`WI z9ZKefNTUNC1!nAJP|mOoYQ;(%$BlwC32|;QhR8xDvP`lR>j`}3VQ<#f??c=Aq?|Mpf+Y-PU#L9XT06Nq4&i`|y@bPD zWSIz3KVgtd=A=Oao-MgC1WB6tiHiLYXu~s)DL;`>ieYh@YIUn2ynct& z6W7QXM-^`5B(MKzgk}%U4ljgmAt|@GKIi0;X?VTW(P^ur??J_UGj}I~2}na2 za|e!1WTY<(jXEx>c7<@Z7_LuT0h2Y7LPin?4UX*1nq*X@T@d7AY#Bmf*w z-ZGcP*y9v-@cVDoVf{+pv*nOOSih1Z+R2`k2&~gr6U#QOM-xld6BUY;#ewisKf`N0 zxYrOYgj$Gfc!q!gPFD_3>zL}KUYh7~Cyr7CN~xFP*peWTFc}EQU?4n&Lo1>=*o-I* z8DKVYU{G1;ah?fiK^UjpNqR?flS<~0?5u`(!qxvA^w+*zAKl2XRS;5$VaU@Y2;qP+ z58k31X3Swged}t59AYh{E0Q#Xl)I9O#+JhSOCl>o@2tC zx+-zZpDz+)n?~n%oKm}mG^3KS3z01u+R@`4u21U1vrC0%p8>)#9>O+DhF}_@Edn>` zIlU}mLvl9_Tpu=vF&wvZ~jB8;#&E^nwshHr`JL0vHUh4@VET zPv`@`fVJH82Y^V~_|__xj4bq>kJS&GEMPp!vEj^{YlJ!4us@b#kg{1@Qo1U%j*YGnhL{9iBd9dQmmn5+)%@~jnY5Z zYtWEUj(h0x^QSX5jj_p1Pq@f~dwRvgwUJ%iVK^j686s}sNd%&BFC}v@H&0pkYTqH0 zy^L;Kxw2F0t2us&boS*g+r5sS9Ub()s`mX!k~xm&!DAG-tqkK3aSo0E5FQ8cXFLd$ zwFQjBu%!S|I8Gb^u!5=Zd~A;sCP1UY78G8l;<(*IhAZ%pd65|lU|TqR9eB0M%VaMv zvspHHp=%{$J4V;`Z76tOuDQ*@D|i?|5wTPTxW$R^-wNQ?r&l1+!0|{U(fE%57-y*w zzzo;4xK!YYBZDHuYoNhnDN+#F9)w1)+7OV$lTPUSv4SDUdW>4h*vyLRDJ8@9agoP6 zj2%)SA+AOd%SCZuqHu-#OE*XmmOF3@BPQ_{b;k{tknmaHr$`5a3`2`M6~S>i1aDrt zZqOS^x`GHn0K$sM_X1pa`iP`(YZgNM(bf(U3tzcp0>$c@rDJy#aX-e)qvu{RU=-oT zKpNkN;Vu*FN&*gdf^nTAWkVlv^kVhEEBkbz`Br%Xj7|0{^&R`7W5eD)I#VvK& gRsKL8VIYsteQqwFG4b3c*j7<&A%uQxnq?lZ?$R e3@j{?j8iSmEzO!ga<+fuWCUWS?H@UrolF4;ycwhb diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 0de3f89acd614944f797f287cc3caf0eaa6f343e..6ed4e4784897d0f65d64416a5d298d035d6b5773 100644 GIT binary patch delta 62 zcmaDP@knArAfsVQRcVDuNp7;fv2n6xl1XZsWul>(WsQqwFG4b3c*j7<&A%uVE_OC delta 72 zcmeynf#dH6jtzS_4NbEwE0Pn7GW89TOiV0IEe(=W3{5Qz(oD@Q%~LE>Qxnq?lZ?$R c3@j{?j8iSmEzO$Wa<;$aWZeFilW77U0GQqwFG4b3c*j7<&A%ukVgLXD delta 80 zcmaESkooaJ<_(uPZB4T*E0Pn7GW89TOiV0IEe(=W3{5Qz(oD@Q%~LE>Qxnq?lZ?$R k3@j{?j8iSmEzR^(@{^18i}Op1l2a!aGHY$NQqwFG4b3c*j7<&A%uQxnq?lZ?$R Y3@j{?j8iSmEzO!ga&G^~$=JCZ09R!fpa1{> diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 2db8a7393fc60a42110a8c47eecd881896858591..7178af5219abf540de57ebe69d974e563600d86a 100644 GIT binary patch delta 1991 zcmeH|J!_Rg5QSNhKy0Jf2zj}nHqp%P%+BscY(xt|iGrXOAT;Hh%f9)acmsOr{nQ;Z_&nP zJomdJh5}%busHIZBWp}#yk%E?n`uqYs)^0#>f+I^I&Xn|pj415p)ZjLL8?WAuDZXa z!($KBM>S~-k^v;|JppAg9EgCmvs_tt*lyiX{mp+oQn&j1!jd}G#b6Ru&pI`AfPDmU ziJEq)NUQ<&flw(~n#d8slane9p&E=9odxIjKpwtQFI1NcvbAI?HTIaJ0O@K)vrfYXE3)plf!78?Vhl|q4Hh&EwczZmd3 zLE6Wckpnh=Y ztvY*&&MYop0GI)o>IfYNPvJbfh2`m`xe+jWFs)OL_Cb5mh z>F~rO^-)c?PcaK40btG;kg|a1;FFag9qulmJ*tf)Kvy0EIwbcC&`LTtTd*jdm2EBy_$QPJkL3qD!{wBHXw| z53 Tg-NPWqN!=3W!mO!#;=Y5u;Ua= delta 64 zcmaFR#`vI(af213p=p+7MRHQqwFG4b3c*j7<&A%uQxnq?lZ?$R Y3@j{?j8iSmEzO#ra&CXh$!KB(04k{#7ytkO diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index f0380a59ffdceadb049fcc32b029f0fb99d8bf55..8f8653f3fd831f4970981e05c115bd28d8443c64 100644 GIT binary patch delta 86601 zcma%k2bfjW)%G{-4o!*-eQupw2N-TIHoz!YK*dj^VgnUnKm;r?Vq+4cF(N{uZYxUs z6itw#(H)~GMq?ooz-TbU0!pG$X_lyn@V{&Av-dgoo;&&BdG7NJ>s{;Jd+pxO``e$X zS@*MNYgYcgYwCizm;X3>+064tWHRTM&dW}@urxW9FP)dkrSka;GMRk7lsrFkUaFX# zlAfH)O)g#d(|>op@!wr*@T<*bqSo8E@rcZWP0-CWG+`8%Ni5pl+`n5UIV_OEe+vaM=M`_exZ|Hj9Bmo@K(pY+;H}q=7FAuY^hi*Qb8Edo#RqSrgCj1G5Mp&R7!&04h3bd z6mpaXUI(cBBv5Re)6!Qy_)7Et)>=4)UB+Is!G9E`L?4HON(zhpzbA!?vz@wjs2{Cu z{-DM|S{`MjhK_PI<5BCHyL;;MrCi#P9;kAuwzSw?6P+sF{%dnz8&7h2DZE$~;UiL! zt3SBoR!8|odt|Yy7+F^Gj5nJvM2#WPP9!VHlrM0Uh;C|bvhgxwan7dZU?-S-a8vVF zs27^J-0<1IHwQYwp4!|z1eKy#N;%V@P)xRE#ON)}b31{yZb4Lxl}DwFs5#cxUzWBu z{}A9!(yHdS1?y}8N2R)V3mZ9_Xbe-9EYsZGl;xp#Z>)Y^Jr zNoN+aq3H7o%K6$|&HZe=%vk*6`{rN+5i8>|P#(Lx`9C$CSl)i9H_)l!BVQmB8&bt& zhMTr#PcoTIAp<*_QHbGYUkBExunha?ki*?%N~GGnedV@2$UzH2st(e0ql+k@@UF>$ z89Me%MS*M_bg6yFzA7f{QZT_vTgWyfRkZ((=CMwbBZL*<81?9wHO-P=M zG0}3ltkH|iV!84}QE_`Tx0|=04QUf`^8jzqq9PM5m)~~tB6kdxmWxjZnV`$`Pd~`p z?5R&@tvsnuC9^pZIK(?$v^IJVZpay=k&w1jmYfLM23jnyZz3O9ol};HUdV;U2zbzB z5pmF(2rh(d14FcN0C`}Dw46M!!gaF9%HQpSXr6I1qdg2_k2UTy>};&MaEr_Kz! z#JoK{eHJ(x@KiBh%!);~8NYLdOk1AI;DC`?YVNCRCsiu2cCM_G_-|HLOqG?)wt3H} zJ=n#M&{N(fE45T~s2mSEJbPBv_$d8!rx7|lixEc^Ka^d0lsZ!0k83)MQmWG+4y&G0 z)k4^kq3V)NCbMF9z}sAx%BIBw2L+~!>0`Zp8^67AIz>~J+jY^)8Jr1Sn z!um+BL0X>+)-%VU!YCUjc1X$_)LbMtTxT5N-CtvKX}P$16bhjULW|`Kqu@hbDw7ry zF7|posZu_RR(R3P{;A|elR+94k`|v0_xc;sX>Fn9a{E~L!0Jopcn8;$y4W%zI7YyM zenzg<#i1!QL5ha-wOk%@JSx0f9kCD8bD(9~ca5j|o+;)LWt4kyQqb$E%OF2G4sC50 zN1lSpUJiNywxx>Vnp4166_S5C1y#L)FwXPA%opsAxxueaLsr;;=6d}!YJH8qC6))D zj+*V3i(wO~@pY-snMfItE9OPVSY$*xoykz6^$;>*@ML6!Mj91T5T{P|23=Bl-(>DR ziunRny}@;$5i7T1P(R}W>N>RC!}JC5e;1(Ht(3}7F5rHnQn`LAijYhB*s0#G9x->4 z_u%?M1~q^(;*LX+59w@D%=&9{JH@|mIpzV@mPwHhfpVmQ5qa6g-cxGDuJcikh%_&j zj3Q^ixaDun>`apb&~)%7=nz|6FU;|7s}buiL=R?jX%qMqaEL9Fz-7n+bblCLEIGvM zZ77v!Y_jDzWX9ULXy^^%VI(hxUksX3rC5%?igH7V$pL7Kc^|~bh#}V^H;i1fTs;Tz zw^*QViRInbQg*ns-?`Kd)1m$CJgO7PVlK;lVAnkLftVqnC$Dd5r}!V-kTGx%1Gk~C zfA>b@M|Dg_eokE=gWLr=3Y$i^i;j|u zRBpV5>P#N>9gWvO%hOybFBZ*(r*m&Zwb7szBEYsnN!+por0J@d{Qfp-$OuDI)33Yo zg6-5;`OgCFnTE@0-}yf{$+TozhRNgZq=v1!-C;|0bli52-c3Gcas@HrJFmAsTTG%d z928*p`qpPP&`3aADMPLWjk=b~x0X;rgfiN+rQShx&=xQJJ~URqo2CY0QGhlOa0PRl zO0f(*L`Bgh7w`a+E0=o5Qtn-nIk9R9YE(8=D(ZUFx}16!3u#nHUS&+aQY;@^PI*G& znupN2khZEvSFNJX#gZEq&Ie{8buE^AR#6tXv^n+N+GqTZ>QSMXEs4>~De~!DvMs5G z^qXIy7EMEq3d)JYpFuvl#PVm)P>(|L9H+jf;#xEG&&U89GhFkZqqfZ0Xt{jjIqFv2 zfcR_;wPbFC)C}=Wp;_>#D7vQxa8upk95e+5aiPzp+Yod zi|K5UOHzFnLlH6Od4Ib&6XiX?w}f>015*&f(!(&C*8b{ znj|K(!dGOU?M97o%Vqj=su6BLjQi4r?j(|nzT_H_FK~^(TCufqG?n~7eb7Jy0VU-` zzCtQjf5&x!bV1%M79H;!D-d;511+m(bB?w$Cq)*@Zu_|clxuQ)D>d6|d>D#kk{M2P zZyjc{YINJTi?3gWd|Ve_q+BF#@8X+*hM&w4`d~K4VD_vE(cbTR&fmLAn}4vFOx5U-|QX zzSC=nawNfg7p7woR;}VPcqkS}nu(&mc{CAcrK)RGFshDSy1?s+No$yzOBIX9c#0yA9 ztUnYnH&RUB3S#Rfl&Sb(C{wlAN*Q&pufLc#+SlO8Dl(pEe{_Vee;L}S(2NL<^tDt) zmQEY#D`zw|a3)k{gQ1#^$Oof+z0et8Bal4u)ne>bGZx!9*B;{=V2c~Df{2OFv&ZCcSym5o32 zol#p)Ok(uCzJ8Po9!B@C_m2^;o{j`42Q_2;8HiUoWV4=qhVSE=3RD|TKhxJz0ojIs zJd<)FmqL$5eqjwYhlY#G);Z@PE(Y;1k`ecwhiDin#@Xn@AI4VF*XQ{rqF!J{v}2mD zxfbFL*P~MZeu{6Pkv0%{MtnKN7cnx@WPeNVG&rW6Q`jy(=wy__%z?12J!4< zG(2ha#aR{gR4zqr(%p%v0#WbpfIJLkDef(9vD`GvhpG0VQ_%bV56 zCk8kmO$R^1Zm}GGsSmU5;4~9EqSH2TNJqgTmcP85%2%dD3l3bqGU!iu>EMJ}aK#3Y z4ZLnJe-?OLV)@F|zIJqW;1P??^bJAwSnCCkT!PFra?P^s5@cqjRC?$6zCpjINwo5D zm!lk2O65;};`5^br<3B(Z9ZQ^8kAfARHJs!&QU^p#p5pH-?wM6)(nuz4sgzuL2Nj^9m!JSCGqfCo zG%9#pO6gw>q#URsm*3w-g{aTvCcrXE%8F`M=iQ6Us7J4x6N6UzytPV6aX_YYH!XuzmM=W=Kd4L2b-i=i6+(p);;VSQj-zAj|+|!r$2!_Q2Hcppa7EMwkMDSwiL=t zvi%9Ps1CWMz2`|2rbW%#CqG5aXg-_ItH|fDAB|>|)-HEEi?lb0hmnF9wi;<~q! z1)DLLFv41d$tCf|}jwgw%SV&W0qz>lcaVH1MT9i&C7#y><{^pUTJ1JGRe zeT0_ZEf;_Iw+Whfw0i9))b{7FsPjlSzYh+VbO*eA7utRepacTQiqCdYXKra*LRr|2 zfgDR$_4W_3IJnpC@+C?RsS}_%j`|V>r$Q)i`4R)UN~!qGf2`mf_VV-pPz#yKV${LO zUc$~OrjwNHi@&D=UxEDNdz$cRVI9;(>TL|;3j4Ucqt>8}9MYg@D9vyG#*gw|F3;5X zqefSDha_z6eA3nTYnJlBRf#QY<`Qz@03 zj__ZKNjQ=0>p;s>AoE8e2P&lkQ4hHpc?-1}pxs1mywk#~q2l}T1^I35M4wwM<43jY3L!>#@XkHw~DeQ=?^1Uehn zrsCZb{E;$CjmYSUaHcB69(6(}Z=OJIjf?$*70_odO4Xt>sZv;S!?W&8suX3~FAz=iEb5#zVAM0` zP_=NY-+Ye0x2Gm4MomE*iX~H;iu2l9Y>Izih5Ujk{%E;Ku9)J#s1~xC8U7)(;)-=? zT2t#ly|AR3^x0|tSh+|xwEMrSDVK@R3=V_%EK50khChgXM9fcA3RB~G>&;lZA8-kE z*_OO94S5^JNvB>y9dViV3n!!JUwMiDOpJ5^aFrr;(d$;M-ORb%Kgh@p&108S-(RN9 zG@c*%KSAej0Y<&=kF8K`a#o-5W7OBW0*-l1INjgeSU|nRI+I#qZoCeSriQv$P*EIx z9kNP`8(6HCmLIr|8Xh1;%LQ-=URIv`6Er*qpg9`?!6wE}P-~5tCT)4e^q-$lvttlr zQ1>$wP9t_0ocS{pllp84tHCN0vY0XO2Fk8G{g|8?q%jSIHc&>~h05!e%b(8o�|~ zJ{NNwW*~L7eKP)DctIu%8Kz&{OKnf3SiWo(Jr<;j%3f2 z%HT$V+mJ>6Cy@4?fb!CZQDvET!yEo4vF1_q=|sEcJDjyS{3-uH%hI48i*@c({zxa7 zeEm^W<#JMO_Q`LlBEgMHLYY~Ho}xBa5_7&lPli=yF>(u*ap2luEv0qtHgvD>C{`hp zGoJ9ztgXq3KE42&OEO>iAx_x9g&~#{g+iGl>hTJheCa9w-kJ)bKxCvtZ%SY2l>?ss*SS}-mtntTOQrW%+(XE5B*t#CYhjj%; zJ!8bk7f}Q?ph>QN(I2lA%2!`RoGYc`<3IUhl|q?$8H0|x9NjxX>S9kEr^nQ)%qM^M z5ACwC(ajTO$z1I@GoXjyFj_CKCl5(&j9idFjbv?<(52InAs;Vq!WBup8#r+Wm-wx<=_DFQ={d?fnZ>;xT;U!AcI$0 zU)mHv_U7|6rZWC!O4xkZ_#ylq91jen)4&>6^n|yS3gXOoAkrx+mkgooWm7wQm8n`+ zyk=+shny9;orRkG*`a}Gr|46D%3s4>9xZqs>jaZCf|S2m+OVE*WT4rTDdCU;?w-&| zXEpfq_&J&V$w70i&B-6${J|ho2beE=C<0=wYL9utX<_uR1X> zM2yHeA%sLwQLf4bF2Ye~5aQw@T+uc-hBHPyaB`rBxOr%xM-_#4P7XAST}PK;hP8Jo z@Es05yI4mZ6Nov)M*pfq14A)*Dk`r$nPQsGw>;4V`mjptVA@ zJD%t(-#8L=tsYd$AEkWK(SgafO!I3O4zeMo&P1s(s9TlD5yu2tD`l*G?=f7LFf*{q zRw0$eQ9(X03>OC1W6GeQ#tcJwarKE*R4c`D?TK7!0Z_+*qWHX+C`y?ZiB zmrE=Y|H~CcGa2>K$Dn1HaUQZR?>4&aRH`JId@4Ml@BW*Ezg z`R##d6}f!lEOLeQl`D#ihx*Ge3JkVvlrI+7_KQ$NR2WXVOidzZ43`Oe!g)wVmss9= zULfGX#5Y;Oe!Frcl`CSUiucpt$UrC9m|+mhJng7>4l51F&Fz61s3*iHf<=sIwFS4| zaAr_75Y9xa$Yp6}U=Qktn+@JzYT%N~|C@zesVkys=4zjY!(!1F{uyF?JF5MpA5rzN zK+L4`nKon}d>Jg3JE3~E8y&}v&*wklYLdpaK}u$YZ0+AVM!=Vz;`JL)I@3-(ilVya0}wz zpMt4UDnI!tl`|H@88xovGpWzrfcj$On&kT%P+cme^4J@xfK`gcoI5BBE5-76H=!ZM zEw%#AKXTMFg(S^{sV_m)2RR@QLs$p>DVS^vODsQMh!z+(^sw!Vf;FTzQ^4VF|5$;z zBLTEnlOXO$fC{Oca2wiNmzd-3lFDcA;9*WNk7J8x1-x}d9O>c9GBfT&h&c41vzNJWj(M3u8VJD=HVGbET8lj7 zlNO;r1UcHqX^jK0)H(iD)IVDrXz++< zw$bpVSilJw%7BIxh8@ zBX~Zd$Ij&P8o*J8G#$}nXKXPhu+XO?dg=G6YOp?sKmbnX9dpM{)DvaE5wdvL4O?vU zEc$?|gyGTQ!T}6?C^m*2!8Xb7w*`9RNI-^8z_0_@7gN35eV+!fjc))CZJ42lV+U+8 zmgRBsih8$0KBHo#5DtS7?%nq7pgO`#?1II_F4$t5>8_nru53gH&6!|}ZG-yH1AROV zr6eB0P=zXo=`to6v_13NhTuVBBK+~HANA1 z^bZapfX}V6AGX}0VJ~c{p?SI`h-zX3mO4k@mKybNG>D$Bl*an!)?qEmjtC!tmh57=@7XqGWJzZ8|6JeiZ$V}0k)pRz3Q4@)r1OPbvlR|ibW@&yz3P5lu_d;wzr5G>*Pm~ugw)O_O1ZqZrW+VM0H5+ zJB>UoXVqr#)QXM?(1PU5iPZGnIuj)!UBKoi71jRY^@upF{1BR5HS@SVa4|_WGfrdI_5Fr>1)vr zX`qW?qr7yB<(TVGMBQ@EM7LNz*+F?&EMY&A3Z=?JyaI*W5!MONYi|$s7AGwT_OP|I zU#yi8FWesV{#On8?aza=uo6h2a84#i1sfW5C|n=c-;BI0SAeTl0KMlUH#-64IrD@2 zusB%8ZJW+pfc)$Pl8 z{pubR;Rd`Hfcpd8;mWc;ZiYp;2?l54|MVfPB~*(L^%qgRr13OQ*_5Ni?Igom3W*1)-H=euCVp zf`~1DG;t^kN%ngRMYgVhdy4B;1abBT4?E&eoSM^+NA);+qAv>4%! zuL5+^{%alg6q?qK3EcAj7rRq8P%SI+rc2wlAibwnN}`Y874M$gQ1EOF51i{(4D&(h0cvVuo*?pC6+rjQ-O2IMelb_(2fw~+3#}akj2OW zUJOBtT`1DNIiKl<8_o4ajiJS5tVC|0#dXQ$l5N}v5P&cS8ZthY&2He}dL?-O=3pxw zXt(4h6zTbxTYU`}wqEbT@oEN_e?q?Ga@el3awJ8kWqIlhS9*)yU!#Z^9JxYxk=*fC zV8~6vIE4*?peG070R?|sM#msoDxM;XC#igtq{;t|#JJws^1 z4CGNnck~LO{i>A8d~FDIzEUh^_X(l-tQ5O)9>JZPKOWeJC4XrfGq7vKO^6%9z; zH-SL+pl13ixS@dlkm?1XBBs0i2<*iJLl`n>1Y|(y0oYXoLFSgrnn59C1_PECM8yxk za%SWWWVkpxs>tPq&6FW-1C=G!EZ*`_rexDtb%i5d+{wwPW2n!M3=PKdZiC>A5nhBy zi>+y7t}SK*J`Yau>3}J;J9f~YvQog!ahB|q?>l?HGrl)^|-cElZW z+&-n_s(csr2gnh_WDLlO>IV5Ss2O#6SBdd9`V1F0XROA6}={gaPSe&8e_X;$%UbghMY@$+*G8QEv|#M+D7^1L~52;pCXRE zEYPSS|Lo~#U6l<%I)qiz(Y)GXo9gScsbw-$T0c0`1kFifg1&H42%`>+-4Sha0Y_l@ zL`u6r;$tz)064} z;QIW6kgpb9A3yqb;sR=&jJyGRirF0bf>NoKl~Atj;A%ipFc0!zKOf5Kg*P~YnxG-v zicmc80ac+=EJyr|>q4bmApTac6o6)ti*MxGki&WeXGJ+%NkR@f)Jgy zB<57?Ql(g){$gkj#^#fig{7;aUa2ed zuZ1wPNF~w6oQrrj;4=$q|t$p#|D9sBwtf^Bm!nR{dCwl1<{6B3V z z<1Zp1#3DhwhuP{%xb)B+h;^kVB5eg{o6F_9P*kv?n8KyF-cO=S!(tlWZ{ftYDz$sXYI?(Eb_+iKWa*?Na{R_mt8l zw80c>FJ2eH$w9hwaZ^3g-N^A4Nue!|PnOiT40TCmprHjx&B}-!R_IAt^#_4|Elpxx zx0dcUtho;D(lX2?U3znu76+BqUC~X4O95C?xvyIbB9GY{Cpn6EvShs@F8=OoY38%p z7DmfVZMYBV^S30N@;b=n(FeC&M(4nx%kft{{OTp*@3#@s7L)q5j3^h$mHk@k90WSB z{b4&WBIdwa211Avyjb`}iX)Q6TwZVLA=da7iiU8(i=YfedZ=40XZtDHSsm;+sIHiJ z(*W_t5dsWr5e$Kb>*f$r-6dZ7j}VgGB^L0&3fV~_Pl&XjuxCV8~H z$VsIwn5u8GWhWi$)>O*mx^d;9mzms$`!@LZ7H&+NjxwPsbg?$Cwd%* zqUI7WJ?l8Q;u4E_<8ADPGM`T5eH6z6~xX- zEv;4La?mMUVMt#&qPTd>J?H|IGsUICx46!_pk-(k`O@o8qY9&`Owb!HG(kIQvW?9VxEijjAovn1oNaOv zkWP6Ja60&3HI}|P2f1lND7S|5Wf64o%dwYH8RhLI%32(zNMpgf&uw%8a4u?^LAo$P zJ82`YLTPu)<)W*|R|Y7dZ3A9zYrht~Q5A66wWw)s`O>}D!Y#L41Uhu+Wr4_99pngB z_^{Q^j+Ba+^YP?k?_4;RGY~Dg(xoyi$XHwT{+4(KIu&S=aKqp)-V6;Iqf!wEEM*^{_=O-t+alF)It z(-22PjS9jl@9jt&Bd#a0I)%3Tc5;Ui1cT4;5W>gMp1u?LVgSRm_f8t&Pyn_*pJzMk zF7m`6#$fh6I_L_6_4l+4pzFO>Tb{zpY-j{|M11!OYCVeh+L{6z6^OCz3aYejKz4nw zOcoh8=UtzmhC|s9XvoGrLG6Ycke5B&Qe%@D{WVY8fjf!hM~}3`Jar|k zKu~_*^BdR!c<(suuEP(%k>fKPcuN`2tHFt3E~!kdBoBy0dBDnQB@rG33}R>y{oyXD zy!Q!;yQVS9h`S0?MO?*1_Ij!%?y1FE>*Uvv;P{3O-JIf2yCLS7PNi@Wt_*u`1xm6l z#t4i|a@bpLxfJ^WNwI4^rM@EK!6xF4rx}^Zi5>q$%P@!75WTdfrPf9C{F5eB;xNjE z7b)H8p-C105~i}&QKU~^L&|FesXz!GMOcee&{E_R8ZAD0v}kS1d3aC&L@JJoh)d5I z>yY*uF+}&SL)vSpgJ|!%mfd(nz#=m0y*F6l61_ux)&{D{xdLhvdw{1TXqLh2Zt%d1 zr${wMuR{PUkPm1Wj2vfWu|@X6Q@G>)^d_pyjIbLP8xIBG2HGZr88$eArpd@1Y~g=U zeKv@(fG;|H_Qnohyh|0Dj;$zXO8DRaZnV&s0uR}S?9d1XfQ014b=#0El~TEJ8&w1n zD=!oc7p6x)LS|^h(0uk0GNV!|5Br!ZLZw(t`os#8$Tfvr@d=frEHe%JPd6`}3 z;GL~s>_cCl+ zk6B2a__1*W9)1H1{$SNa1BM5l40DT@&aVw)VB*q-4_2ru_9`-Re|8>XI(~U9YgA(5iR%tGDo zPcNh?8m-L9UMZAU3=79;<%Dk0ad%e2gu{9;Wag-_AIGvahK8B2r1)%ncqpCA)&SaO z%s2SOkWHEJ`LzB4I!Yde@S7onCxrdlNTr;`cJ74mFel((JEjo+oUhI+HWPvS$ApJj z5wk<#@SiV*>B4ylo9v55g)x7}AW@%~f;;$vRweZ5cnZE`1TJ>~FESwO=^#Vo3JvBTD8pQA*Pug5k zxoQF`vr9}K48`jfnqHI0_$lESZrv5L*kvFW>hWkf76a)cDDO^0$+8iA+YPUCFuu*^2G`FB4|m8NeBYiE-i-@*Zj)Y< z?I=(Va-=y5vnNxIUTn2s`z66{8 z0PxE5gfPzM5h2!Wc`;e$>Z>B0!zJv{6_wAna+s1eJCuOCiZNbQ`0;FSgO{ln=G zpw-r9z-+=551`$2AWp)+|BBi=Luebpt>L!ZX>!sXRJrhM7hbA^OE{~T!l4lBiVK|b z;bezFG2v$vUqHPNgl@T9cpsHU1#m`LbljK1DSTLxgJPF78C+_sB9}EwsQgtifICA? zyqr|>#}6Wh>QZ=%4+YPQtuOwdD^Jsh|0ay#xP>$-BrBFlWca!Fp*-TUr?S$ReDycv z48&aO@bZ>oD&z*l`n71s-E#TyYRVaUOL1OX1Pi_N>bKf~h7$n;)X~=nx4slkmPusp zPvIY7e1p$qi;j^IydwaunswNn;CN%%)dD=si}&j&+P0YV<-@Or8!96zsQDVf|BI43>+*_y#2GKOP zzJ+>FDV1B_qViHH79;;jb-;=X=q(a?`rFh-;TSfq&NoGTcyJGIA50gBI=|4j zcf1gk#V23=oN@yzeL3;MOJQ21;&Y&M@Zy?pks}7dRw0m**z1W5!#g6{z!J-Wdr+2m z#c<7AVSM-_C9eBbV615E7QxV(77|IUIc9Z>P;o4m%A3ANIWiPlcg6nj@JiwDB8YQ_ z9`r?=eK_4oE1mRW38L)BX+VuM5Q00m9tuti=_+5aCtg^Z)EJ>rJj>q-<2E|;^tlyZ z3qZ6{{59fXBrOna6n`zn2Wu^&jol(BMFy~lmLuXiE}*y7k2xrU9xYkG+9jfor>C(M zKvNOAS--t6(#t^j_#8o5mFVa;EfX9%#_qw!lQI0gvx%Hg$XghdGLkwIw@@hQaUFwg zfEX@He23h@)pa2G;kNJ(M*11C!(iUv$N+4L(rW%1WJDca8d2Z6Ih$Kh1EA{Tqq8Y- zQ7|&hR=1>bO)!F5K*~k&0;Lqu@V9aA4#Nc-&@}Id;eksmQ;`VjfJ-iJ%|?deIJV)} z;XV?hVuVvvSn#7_g!kaAr;ZVQlza_fGC*GuL*$3zRC0w_e$y5~BdVmF&A9f!PaY%k zexnb>lT$p1{je%>*`AJ|88t*&9kItmf#YJ6$Sv6jF2&9bM4B70M}Uo4r2jzmE?y>& zg=4;f2RE>)p;7C7IiPd_kG!dF%9rFu9Tvf{uyHALghap@V?Az2{8$LsO`qseKH3`P zVJJ^+)Db@pWYx$B?s$*Sq7So`$|>MI=6xmxl?JncGu92x^qRbUIp zp*1jK6*iN7K8~xA%V5-5@P*=}h#VH}CsK=mM;|aQcs#;yhFeb=!4HhuHGmVWIHQsh z&2Xau>nxT&z3EL)9LYz2NM(`bf zPT_Jg>2MdFMKuXysP zT3cNBVgzf8Bo9o-*Jqx&FcQ>a&2q=oNSl^9D9)RT^w)B&D^~s}G7MM$oWva9-`lAO z(Q1nCaTK9+0ZTc2ya`bc7&&(D=?MgUllXizVYsxc)U{X+nuC;Q?bK9su1Z^-Z$iui z%7P$mfw&KMOXV*vL&6&#txS<0?vl!yD0xwe;{N?LD3Ufo87L=QOYO2kk=;$*9j2=K5A8syvK7kA#q16g(oR76#|~<% zJ3-0a7H7mM^fGc;x}Hj09$%#-&oL`3 zx#7{sS9lrNqOf%D`)wp;WVUY2GE`NJ9s(j}E+o`_)D z#}t!a1{*WrjQ%mvqs7b@QF8DC20Qr9!dgtL$oMpNR_uNp6eS$DRO+-I4Y^#fCi3Ij8Z5uQ7{OEN zM8S_p&v+4IC?&Nt#i|!0nR1bAcq!7TjkVhFmm}#4wRtaNpo4Ed;#(3&MVsqVcyV&W zhuF43JOemVfC~uNuOcBE!W*gtS?Q0jPM4d=(w&&5 z`bSY!@Bv@W3V4aprn#u4yi6Gs{V$`qY2!s~+;VxNH+nhk#DlKmJB%VMHa;*y?qNm4 zfQ_0At|e_7EtdNN(Rv4$ma{+Ac;uBWqbUr)no9F z<3}6LiS`$ZCqx^u$l%N_%SpUfX8IWO9`M~doF zA*li=_t_$Gs~OiF8r^InRX%neL;2cCKqe*r8^iSDDX;T69P%|Ofp2PH07V}WKjU0# zXmFy?31jI5+v9mL@nqD(s*qfHGF3#zoSw0vnz+nA6~)&m9Ar6WF%LOE+NOgg`*K*u zen?fbGvgCa*U_qC`s>rFlA`;;p6ZoR-0Lb*bHiOTd=1$M4yOPqk(0x5-r87La{0}< z@URv=!>UuG{lwyHqK)_xFP1*&rW<_2+9hmkP}9M)WSN!bn{_^Xs)h*ogSFFYZ1R&S z(FC^f@dgtP?~*%M7stRH2WQ*Gnde3a(7JOM2kv1!BR;tZy@YLsPiLX$pign0G&6bu zHRVKDa}63CMaWxo&9kE+2c)^+QOp?*nc0M|%#MD6y?jHct=_-H#Gu^Z$V;g_7E{Wxs$U z%7Oq*^xJFD8kVawPp@mKju}9!&$`8gYv@`37xT!2Tn1G}dB9T|oEmHwpI#Zo;<$l4 z1%hyO`bL!4N~zp%Bh?`mQvg`Qp{Wrc8-xdF`zZwFfTDo|BP@1@SdP7!YKu!7@wWnX zD*y2osvqeb&PQ0_)oqf#i5 zqlk~wRzq^$CX`UdMt>A-;?%>a5r?ID?;cL#6ZbGAkR!`r8{UM0k7({VKo=;#-i#94 zi6OjHk#U<{@-CdL#SDAIzNpuON0sP9VBGp8wnbYs(5Qg4_`_~$h;o)bJ+_n<9ZlZ8 z^6hQW3-MV(j4o?p_z(igH$IN8=d&-V^&(i|rU@frAH*=R5_@_#!mSX>UY|#=K%3z`_BgaQKF!(NtIonW=PpFM`GYGyDZboa(aSo|c%U2TNS zOtIcEj9ZL_4*7_Kb;uR^zdo3Jz`k3CeZW(+xYS_XMTHj_8*2z_{RCyjaXn&azg%+p z@t_!nE-a@&G!>U2_6bLb`T9I z#{N@dh_wFpQ)0>L`gb1^JGw#aI@aIN`<($b|8wbilW(v6pPK)ne`3Nid@S^kQL&%l z%Yhg)C^vBe7UN#NbptoUHiYI=4SaW=5F3G`-Nr@(a_8vS6*wJ8T%2jjKrFf_Hb$&J z3iZiA+C*G@G9{Vf;%u=3kry2u^EkMS!H!exz{?Ci9gF;m;u=SBL>5gYI;y~#$>bsF zRP>_D4#gkIA}>8ti-QPHUrj8=_G zrGAc*EFC@o=A3-#WTfE%sR|@(>VP!m4^E8@^+eJ*UXuN<37y9UEgq5WJu}u4KOlV? zqut*gOU4dRTP{9}3LI&R;El0+fHTohje_RwICg7M9arEILb1Cv80 zQOWDXZt*NMn+7YhyZgM@aCAyZMCSDqV)R@*nhw73OexTiHAo{Nbm1AkV(_mGv{-)K zPF}J6gp<+tX!VVW*wNy;bE!RdgK#MAwvm_3Bxl^}@WTq)8HD^|7BzZ!jx)xekZa7x9+i&OWxqh zIaau>6M*oir6FZ7T>K_1OYWp>6WlDv=|esNIQ4!iS1=HBE`loz@Bu)$62>hR3ou0R zgf`Bd>ddq4*Ho@FVASCS?VY>S&wq$~z|L`A*A4r*${x$8snHM;grK5W@pLR9<}HhL zabt4DGH$!bhN>W{2eO*qth{AKETRll-L%NsR>xW$WKK*DTgh#fCNmLO{(M;k%4~l7 zI2v-C3#W>uidYugh_~L1s}s+@ObwPnaKosC@m!kx!DgqC*Fi3}?(jCr0e^^HNN3N9 zOL;?F?@x#wBSx;J2FoCZ3+|*Ga+~Y6)tC=B5Mu#nbm$a@ZP9m4YzW?&!Z$Hf> z(_#xYO24i&pxQ}*L(I=}#XSf&E06xz|KuVnZW(>RaNlRagWv>sYZKmZD_=9t1 zmNs{jJGaGJ+|YZQP=bi4+(gd*C$-I$VsXx9v}aY+yMG+(<`Jv6#0HBkJ7SG=3LVdA zA-`~BB84-r))EbTX|7bj&0kW$ZR9smGb^k$D5vg>Vd1U&rq~cxsiy!$Y7-heGFMAA z+qaQ(iwu+h?ljna$jRwA|iA%lgFp6eY?^QPM zMYCaJDD8w5M6aDlc3Y0+X`IvHCkNK=rRt`j_fL#dbz{0!J>t_GV#BoHb2J*Zy3O?D zxHxK>jTnobUzxBe0NXR=9FUabi7T zjJSV)8D=;+XKWh>=ib3_Jdhcvjq7+SFRZw5{#3QQ${RpS`-8o~(=oNAvHj-!58SWNf=r))Qc<0xnfQa-VXKtUTLP8=K$IWR-FBNk6N zIWz+M zzs88(*T6RCO&DE|NW-Igf~=N-5Ps?E`)oXH1BMIUB$)WJG>vw*V0i>xEa39me|j9!+!kYn93PC?jokZq9F<3fAar~|6bRqw z>UlQ2u>sAr|3s8UTWm8;If+|7jukO!gX>N<{ztBPGvW5%)Uz2-bFD#dKtkZKmb2VMe^c$)^D^Vy20JlSp1aGamM+U`lj) zioL>X!g$-<`uvFPm#u)5B88&z%Pp5%E{o5qb<$FxnwIZu+wLiIj+Lfm_uO)M_K)NH zYAR_>WZ1_lR`1NEij*v+XjG$0AP!9P_oU!l5NTv%Aj3@-9Lw9%fdq5QW$`DJV+ydG zA_HpKj~35g;h?iTQgrA33>juy>0soOKcftD1LFM~P54eCnf*CAlg{UGV~U*d;Oq*$ z8^X`2ZC`+9!NwXDmJti@1(_|Ub1?Y8)+RIz58O%>NiZv! zM{TGv!w}wcc{HA}#q}gs2lapWn|M2}h!YpNQ3r&ct3Fo5AB#t9xgnbKSUhWs9YlYB zEdC81tky)v;HwonWR*-Nx-$0h&TXZ=rqv#m3KHtJS=PkHX1%x}9Dsox#H{?wfKn#By zuDFTh^>3qo)Z)SAf#*0si#ONNZJ}Pb zMW+kIIZ_Gi`YfKWl%4cNyh)z3Jw6S)OP~?EKERj>Ec9JGJ}XKQw;}3`0O3B*ho}+8 zg2QF1t-Io1)8|1gDh9s&Jf1HXN$94qMumAZRxuHA3evjx)Gi+V4DGs&QJDPRAd)=o zkmGC*yyc17%X{E}1?~O-6~Ut8Jzw&`ff+h-!6A3h9lH-sI3Q#4{pThI6pU^1FbiXq}GY5kb$c8 z(S6+#fl3%>q&Vc20~2kPm?2)$JyGK#)~Hx_P-0l8rs19m^d(7L-Lf3zFFvWyN4?*a zh}uwN*7_LKuzm?@LM;m|mN)cET#0>v0y>saiNRV-7pQ(9;8_HxH(lVWfr+fkM0OpN z=u(9Veqb=*B9ZflB(Pr4)|9|%I~~Rsb3zF(u47Rt)EO4S0+zw>3TRR!`XzD>eU|Z) z;`>4gEEQ}XkO*7wglJ+g!-0W`iz;Qy2PX2BGN$Q>Ca^lNeXxlY(O_E}u_{uQq;!l7 zJ)6}h5@>|6-h=Oxgc9`Wf(#lj{$S#Y5s8S6;FC{4l49?O1eQj%z9p4EOeW~c35idN zCWdHb&WyiAkgYDLBZFM6l*+$n5{*@O?u+X{9qjU~Je8$%5seDB1j&4sHbZpe{bJ$a ziAEc5R5-gZtP@N=cX%RSE0T*t^?kk5`cF?CQ}aKUpLe@gPo%q#O5_wH)g{BI{R}v0 z%M{@4@J=v!+-MZPDx`4Q8BHgjT=xSigZtXhGQdep+%VEt?IA7tE^HV&Lm>M&1)LzB z(8YTScy0%|$lOklESGqO_LC!zrxH126iTGxrJxBN)ph7G0@=xKYEzDv=GA^WLBspU z6R3!`{QyPO<~32$?p8HDdIE|m)`@a->gh9DGN1>d)dBcjr=haj5H1J;Dv85SPo&*q zDNaX8wd9EUV2g=AhuQ0dMAQLkrimvcGH$UPd=|>8TQ1%^$plORSS<3sa}wCrPSOR_ z-A^V4@@r-Vx^#_!9QIV(#l$IzmQL`)$QPWOwru&iGRrnA_fMg^$6%jjiGF3o+>O0I zjoMW*cHu9a3D*=cVdca>X{X9)49h^VddM``RM~(TzsPt)hWL}^Q)U?RH z;bnkLyXQw#BKMu`h$zu&OXQ>-Ap&g6Yp$dMiG3ODPR_bJffrD5$8yyq+&x)y35uf) z(1QtWnC%>NDP^J2x5RS&JZ?DYp!3$3(T!nSg4MZ2S@Bb9IbGPEpHkCVDV8T+&uwR= zTwHqtHJ+7X`PL0o9&>p-fiYnooJr;IK@jxH4Xx8eVqPL_L)dyJD91k7V#`A27oa0n z;?(u%b1Wi0tj!*97*1&NqD0nZAfH}D?VwRMp>q66{SB)0xg+x z?7zL6IxdYMGlAs9V~-#M3YB7c|2;H}fSA*tZWj{|NB+9SiI_pqPAQ(Xi!p}K`dTVO z_tO}nQY=nblEC2GA~(tpEkVasm&D;uv;`PO{{$qZF&_DX`aG}+GQnYJw>gs0v60j-~l?OQ+KRR zd>YNLjhUeCej1IHTP{C;ni^s^Abigv%iVH$`Lihc4cG#})RUa?By(7S<~Q&0R{RFE z2D6?K*riPotTP)>Y>JhN$y z)sDZRW$Mi8-PfpiVf-nA_n>0qd*lTaBU*O4<2}@jY$Y=8J>hOW$lNRtHW2BByPu+w_<0CGZ zvLgQUXgz(f7`+DP4K5IAgs!u;Vf|?QduZT{lwJ^9^)t*(<$DRtO<9fz@ylZCug8gG zL_TVZH3{+|V@nOmAs-|#D>Woq8*#US)YKg0>TMKt6n9+xI;?eI*9@IH;PYC1jeEm4 z7?O>A6Q5`@Dm{z}-K_S0i){Tb3bNN{C}%;k&X*q=%=7t1O(r(}3+MKB?np!<|6g6K zu@=Q4I}@1$QHNP}B97Esyby78@p zFq_582K`%)6=&>Cv}hYb3|Y5sty$Z^L3K&DRxF_!Dr2yqM=K`W6e;3y7<|>E6@wmp z+z)4x$Q4hrn5P3ZyrTU;-&V}I4c4fzG#;jFMU&~0%dt(Z)MPTC!U37sG6L64ZVk6a z9f+aY9B$22k;}CMTB(^dRL0<(my$LS{{CrK|cx z#rFgDr&{qLdyRN3rg7=kye-A;dyD9)bn6~`L8nsv&8!ZX=xz1GbFF@~gC)!jsH$U> zR-}~&UN)U^Eb<>Kd=`dpk`q=Ce>fKT@0QEk4{M!^HxEdk>$k1a zcavjhwtidV04#Mlp~EdxUw(FL0OM;cd|5>ct*W(Ka^?lCaTgN21Z6a%^=X44r}jzu zPeJ8ib*o%45tpk;m!qDsjT2gSIVy*dI+*UChT376P^yTjAXZOr#kd?1B@%~vbOvfi zLl#B4DE7~39l$TB(R)|)Ekv#(a3t250{P>>_;oinR%a#_T+%wdHpJxRgNOnTBIvO; zrOoFk$kFisUm5Wt=MRLIPfrZ^5wbLLAiSJP*#jnC{9|fZuoPGntL|#0F$9vAuOCyA z*#Nq29AU`j#BVM@|7i5JSpMfaG%5`wPYVA|Y8gpg%?v3`91!j*G1Ft0Bi(HaODwPZ zX=_&}lU7IOXRD}tZfI@wh*5J|8)|VUZsDh``0f#^&7!&JoesUbHB<&Q07BB=bayMB z#B!Km_Z;$)y!e*Z%WDnNyt5ULEwBYIc%8JcwWSQS%*1^Q9eiY^`MzG*T3?m#-Um9d zxc2|Gci-_*6zv1RxeX+A0-+PgCA1{FNv;=qmtGa5bJY-f6{I8~^xkBU9y*2=ARGuP zMNv=?1W`arEGVKt5J74Fp4oYlyCDO4Kfk|y|9E9~_dCzdGqZD>y}jKfFhRoI?DSqm z>=5{xPQ6VAS_9v&*jlY7c@3QR1Xh!`{W_Qw`RY{=oE{5zX@$;>g$ts33q3jg zDi+>)t=GZD|J3@igGj>_vGC<}?izTS7_6bE)zA?5_B!8kU%#!fa9?V@)zEyp7T)lZ z2A_?zI(_5V*5nkwA{c9f=9u8w@Oc22`+muYrN07S99v7UmaJY!C&_$h=uSG(!$-u8#`LepyUwtsj?o#|mFr9&%NXN2!N;E4@; z;8j=9h$s?zEEYZpaCHbX~;4Bj*?WPR7DT(|bo@B*7~dbmZEWSa?4>{GD9pkMN|t))eut zglEmdyO80sd~S0B)~Qh61#ZN@cs3TUoW>rAjifCuLSK*oS8W;}gg+2+eQx7mO3S|z zng?@Q-g1A%{V&AAwbMhN!&$$7bzYsh4Gj$Fw>K}+Iof81b2>Pb;LXr*tlaGfUp`km z3sZF7@(@@KA9#9_bQX@Ie2aaJuF)x)E;q6k>w>W^XoV?oIgD}>Q7h|oS3MEW ztt=1ZAaZnBepCc7`GkmU$)mT+rroAUzjZEQ;yELL}ZuRgUQ{^bFrQB@g6 z?b$~#`&i+{EjnmUb@(}_`l2!V3Ieq~d252zHFmXI{M+MF-?B&<2Ib?Tavipgwh8`H zf!hIpi@=UiYf_iPPc-ANeLCKq(5n;ToL#}DGoGR)_2`UaP{v@)D?(+8QVm$)_DcfAVy0xqUZ3V4JofY8n77S3hy!9G^Hq@mLzt3F**LY}E zCIYQ61+MVdMk1QX~PJI9y$_yh)&uRF^JFx!cFtIm`=8KXkcbM-Ko6A>_!2j)fdv14zfc7IvWH?P*gPuDsD*;MNk>ru-{>l{(Ww2aoeKutBG@ zm~;QEZ10BVytrnC8wN_=Lb|)>YDAUyE$BfzOI@yx2fAW}DdIJ9=`9#<{^igNsNYI< z_R6g$Z*#St%Dw4u^KTCye{_F#B#Ad)+ZP5Ky}R8=_Z}X;2}6RucUip(sqTN?x}vzw zKvue8=;kdCg5^Z_P4x=C5RW>Q(aPvf!IVsEV>i~S%}|ZH%3qn<5dR8)Z3`3Ci7cb)m~6?v z*mrH1JP~e_r?p{o)as7v;hD81Cdst|s#DkJ)mLT|%=LbkyWE#F3dU!^ilVp!Mv{{( z!!Pgi_KvI0rx`2%BB^WZ+VyaH#$RW!=RQh8eO9a0W}$yrtABaqHTi#MkcjC2F^16> z{f<1A?N<@ikaNj0ymJkALH&!xpC-W;YMT7Z;R*5T&KrIECdpy>D$ZLSkSq~ymm()= z$l$l-7;-mNev@n*BAdy;G&z;@8Y;IW36tb1#5Z0p1uw{gTYK?A(vYe)@K!9kz(T$l zFL$qkg@L0JM)h4fZE5P#NlT;Q9;PD6L~n?;1xLZZHOVCPP;@1-Fgv`pR5h7sdekw6 zJd1=i6=6-Qx^YF-LRhkfXqrTflj4)fx#+r$L;j_kge8+juh)r@ppp?SqT@m|w8rO? zNyJFmLU$7G*oEC;52%JLzLvLlp`&EIy1~nKv12mHXEH)RXr!YljQ|@Az^fOds(zuSaC60*|E|~G9w$3v)#32 zq>@o2ySsL};fcZoGi>!86cWO@HIxk6d#FciASvYy)inJkr&PP6<3D{Nur zCOM_FbTt{Ci!C<_X{jzuCXwBu4VwMr-YGenbbb(CiPpO|K}jH;+t(>h#!m~c&%*b` z@TF2%_~I#Qcrv_ycnNYeRgRbHz!KPp5D%@nW(sLOMcyP?Q%GudbQ3i-uneMACau%t zNJ*PQa!$#0Y0MI&)KIyk1T_i*YsQk{S@OW3p(z^D_*uzjnn5J=fn00JjoKB15@A_( z?{K4U!G8Htm}WK!{Z)=7XWxvf5Ry!HVnzyCHw1>~=MYGmss@ZMJ3IyMnoF#kG{0D( zLaaJzst|_-3B=-ph@zrx+VA5NC~OxaiSUKGu)QTX{6R_St;KRcA{mf zrcfg6e`0iEOk!+@k-q7_%in3F?x|$J9oZ)JW1B8ns4YyFeR)TY4(gt&S>mW)8Gbz~ zTczRr2JhUJTjk*?{JQvi@)U|mphKuI&6;xG`ijZFI|2vb&VhP=f#7 zd@S3^+2!G(B>cWyO>>AGeJGb-k`k?x4y2N@59FG(ucfS1I^HTT39VC#T)Qvd)Lfw3 zwUy4P+bBUFLToi_upx}H@?^5MRAdljfTTYNZyx$WDyG7($>sW_#$R%^Ak7puvZUt$ z;hqG9yYZKNL#jH3tcz0GNR_70eNuvgK+$+XPawqAk>T+#jWv(Pl1XT%>dmAUQ`DnJ z)0BLrQ4W)O|Hym75~siuo9Kw_7o?8JUQl!TxNy7FV+uP&7A7dAq^48Uqk|?a{jr>{ zLCXSy%)%hkS&%oLLXaIV1X-IKWL030>8}p5HXz6u4DtmFGW=f%a{q-OKjj9=4h-_e ztAlI}2ojb?n$}g|#I39%lk3mrMP!bo>b#8asSmlCezEuCOvr z8d-D6nHn|7kA;<%(ttF2EU{y!FT@Bqc6`31A_}~$V5qu@DdZp>#C_Aq_7LU1lmcN} z*HK8Bze4SKUSlx&qPFfqx$Up$>eA zp&n#qUkLVPO*(xxWFtQU4mtSP3JRa9&elYh}~ zaleSe9d3KEZ}0l9R8fK?>Ecv!qnc7rx;9lE&Fb_H%Q}WDm4Yr#r6aByNefrB(mnqM zk+33n#0_zb8l-iM(gut;#wrtapi0xYdQ+<_9hz?3bENV{>g|bt5H62BpsJu%&-)f7!4rT#MusEoCJ!kxGrA zVYvYZ2Lv1#5b#cEvOVm#7s7m>8|G4A7;x&z z7Iwvp2Uk7P!l-0OMQ5mITOo~WvFTql$F?NnP0E{En-gBV;PzS^@NyUvJjlo9@)~VA zr`csUnY<>0)t6&ZIv1{Cw>orYhr^+Fc^oEq1)am}wRlWAlUZl7k3WOn+>PFFtA6c~~; zJ+J5rj7YAXQsPOIR!XGSrFXmRW{214ayU$Sj|XyQhsU3q^-d4m&|$IrB0DKv3fIuN zp?By{cHAD5#cgyNp$lCGg9E-M=28zPYW@te?Uh~nxtr>;H}^`_-VG& zK<1VL~YZ#Xa5eJTC{B6-&Mefso1K3 zW|>&y;f-xD%v?shS8t<-gOmO~(Wv)A*Fw)Z?09$?%`OuhCQhB*>oU1q&}mM1ydNAc z&~b3pPcxVuUUM`NFmkO%=y#g~2B-s0N-Q?79e(c*mngk(n=H$wdU!4 z9oY-NET>18%?m%`gCPf9;We2&R@g6{9tMsc4s&{ZvSvi+OePCl0E0W{9WZ@BFTu^E zMi*=k2c+KUB4kJ89m@%9ln^$ju zez91b1}8jU*K5~#;n_wWXh+^5riEhFTb_^B|>@5y2r@>}2 z!AocyFp0ypS)1KrHJRNGyUSyMshX^7uT&)S$0#MqY`fBv+_fMkIr_m0N zGSumuCU~rj&gk?Qz3>uvugB-GD{C}bz1LvXxnZ`4$=KwyyBs#X)8&T#hijGa6%gD? z@Bb7lC^GvLD=4sfoJF{-CWpu1fN22s#^Q$m>dkJLF=1-AICU;I@Yr1Gu)uKxFT&9| zU?$hY^kT5X6H@G6FYL13p?AZQ~`$t>=`|!(85E1 zydI0oYq1z@aQJu}I;+(Q_t?NkpvMj83#h4Dr5RoiAuT&vhA1I-+(H8Il=7xjH;x%|39yd%`>cMR^86EJ!YxTJF zzJ)WDu7x8C_zTbnQ{Ng*azVYpA0h>fLVoK45|#JKRp-_1F*@OZg3oP|(3`>l|D7Y&c=eguf9HrVJ30OD9Pz(%#Q)9_|2s!4 z=(O~|b42U^`y8<(x&A~cCPmEff1?r74lh0?JXJ<$e7^LjO1GdAgJx(7%`NR2Ida%Y za`ay%EUR4H$sno4401InZkg0z1{qU0u8q_zl^iJ?XAJ2DUog$B;U&Eb!!`0G(+pCr zNL+k!3#emO(k!VE{Qt)x^#2>EOFo8g!e=ElgKv{(B~dvG1pNP)#42zTN77FCcVg?L zUGSfze(=(nq}}vibD@@`O!}{5P*c(#`ma?b;9q;yWl&?%KKd{E#cWa*{a0U2n(t(h zxRV;`5?p0n9k0_|B)SrDEu~+e@hjrvpqNuE&P0Y5jnjr+00Ea^n}!yGuPu_knL+e_ z#%D-DGgT-Rno0B};#x>$XEIrcEUFY|);uFem&aGjwbRRTRzVvB|4oi-sX-beqFs?F5m1qXK8QpxuZz3++acT~U#=JupzTpmLH02tty<2n#Fo3VixNm9oh)usFAOS23F;4JG8CQ_C(uSWOr8M z>}a$jW|8!{&|IV=MD)*aj;=fsYT_Liz8k{|W_Bh%LXpf8RqzKO5Mf*G2XJ~&H z*<)JHR-Vn$TwyjDu>_hsoApoyqEYf?IV6gsO_4U5&3dR4+D0PVz9wgr(7uIs9NM=; zc2Oy@mEWk$s-P*}`*Ko;7n>p3BW;dDf5-P4eZrxt_CeXk*dV zM;j}$GYy>Wjv#?MRW`-GH-e(5^(g9qmey{i`8oKSTQo+HcT)BC_=wbM_wEKhQo$`-jLT zH{ooR`7F;B=d(Q5ozMEHBFTO|U!Ff{%GqXU8>8)vwz0?-YtGq0XcN(nN1G_J9b0gA zDcVJ7*P~q|vP)WW_CvHEp#1{v2O|4jE6(0T`y<*1Xnz#h>a96jW&z7{$ptLW)fccl zmn5mqe0g@Z;j9g<8Eq@HW|7^}ma`7D{m>3W+fQVFZ^zl$XlI~Zj&_E~>N{|DFWTK` zkD}czvST}P_ItFK(Ef(@lE@zF#MvV70S_nplC+TJIcy=zvqZWK%$MgvT{s($Rz}+Z ztt_%FyK=S%+Sk!~(7rCRv%7IN1??oX^U+Qc*{@#b>^8KU(fZJC7TNOMIr}x*uh8B= z`<2M{?7`V5X#YlAY!S=z-y*x_P0rR@#QG?55$huZ+DMW!HeVn8*pssz(6&X}8*N*W zjqc6av1mu3or-pp$PVel*|lg_q1}OYmB{Yt%h}J-ev0-Y+D}FHQ9sV+puL0kU$l2b zw!r|-R$a{UTxl`ObM#`?N0rFYN%``e>fmg1v`x@VVa7TL}o&VGdU5ZW)%!ad;m+xxDUv%jGI3GH8Ke-hctZ*ews3CnY-B`nW1 zmasgRB91xv@*FXcvv#x=w6CFs_wwYo?j+7S(e_6>9BqG*-8P7`bI{I2`ySevB70{r zXZNAaM0*TvrpOwHa`r0P%V=+-y)3fhhH*A{Da&)vQkLiPOVvC}P;Rm!-t@u+nGc6^ zI03POxFKRF3$Qej!*3#f1F;t|lm+;;Q5;T1JQ?u<#84LCxuZG!KH@Ei4kBF;t(WdW}EHiw@g{s(dKcUiWfEWo|Tak%!oYFBBZNakv|=4M12^{&XS8_(H} zXxlN{2W>l{{rQ~$yQys6i>lf0!QRHIMzgA>VO67rRmDyWs47ERhjulyJJGHd+F_G8 zdlKylX1_&yLTL9*=Inj6cbP4;jHUgq(EgLm*=oyJ+AEVT8IblEw3U~M(%vYQvn|jz zWwtBYrb3%Gg|kD@CNVn!ZIaM_p2pc_XqPa%5$zJ8Ej5j^AEQ0Y>}j-zg|_Q-&i;z_ zXJ#Lw{aI+q49=D%EYGD$&H>1C1YvztnuzlJ{Y=i*Lkl-2QQI1=RcIq;bJm4+0J9^| z4iH-J9L~-~JB!&BXlDs+#$3*3q20smakP7c_TD_sUPF6@+27G#5nA&C&W0>!c`i(j zehj&)u$<+&@N!X}-&x369ojf%8=;L8+K(4;wkO)|%)W)TyU-S1!r3WklbKzJHd$!f zEahwl+O5nUM7vdJ=fBI@3uwc%xsDGSe_pXZRO>ht@9r1qngBV z8v4kDw&r`HKI;1(XFH*7&um|`?S*#z3eJv0JBHcmXvYZcFDp5lj&=>RyU?x?T4gn7 zPoe#c+3(PPCbT2gaQ08M_n6hJV0peLwENd`Hhcxka}}b$0C|o@TV;hP&rjBIwk6tT z%yvWDOlX^|=j>3lgP5I&c976c+rU|Z7EU4PK5s(1RA^6a?Q^70YvxRiZpwcXL*cHlEqWXyb);VkT#Mq3ywJBHA88dvp(H)6k|c zy9jNH&<5}0>~^%lej>Er_&8g4 zHS42Vr0GNGBQx4st3`cO^&n?EqwT?E{bgd}Q-9P7S1GIK#+oH7# z?aGs!^`Lb!I|{8+Xm6b2?0mFym|cZ-j?mWrlCwUv`|(U3LVNr?XLq1|pV>ob-xu1V-*EOK+Vjl*g!a79cDTsdf6+c=wp2RH^HZT+ z{4Hmr(^((YCXo@)M;5fT(?xys?RT8*g0>^G{n2(5+VIPqeFyE^%+5snw$M7RaCQUQ zbT_?1gzvt|iXiqYG8SP1-y?vFlf1$n4Y|wg^=lepdyUy7f>sg+wk)sOaSwUNE zy(rIPZgBQBv@Mu@18obT{UDpO!_f|5b~4%_Li_IzoP7`NGG@1+T_&_Ge&Xygv>!8j zR<-dOA)WOzM{gtjmC=7N?5{$5<|b#$Z=h+0-`*J^$x$0v2bJ9*N^;n*oNTB{ou(eM z?a3!hQSYL?CbWa^aJKkHHj+b#z9}TR@mQxa zKD@`-K4^O~n}oKf(AK}t*=cB}FuMfp6roM|le0U~W-xnrBT3!)vgUsJfTQ0cy};cGQEp?|Ds>ueHr(9*v-+ZAmm zW(RB{U9zCDLVD>Rj!r;2j?q~dcAU`Gc*5C@n@H0G&{%bc_n=G{O4n0Pp2n!Bn7xAb zl+bQ{#@UBx|75oCW)gY$WsUvgIY%QlvmA$$^fw^KahqBHgl`t**Z}X+47i`THQJWU zc1PP%Xy4Xwb_Cj?%qF89Dzt|s&aOa9nBBUWt!ss~+dqikk72)jf zn@RSk(6?%$9;3V^lyibPSz!xHayin}1xc>Cg(bP%7EzMVhH$nK+WO44-$IU_gvJVK zg<>3i3#psYF&Ne@w7rURcHtJ1`6V<~-QhJT=LzN75}Z7UQTH?Z8QT3q`%_8I{($y6 zv-h@;MQ2~u*qG8BEwPp5xF{)`1Uas`c_TUO_bjV zI{%!bCQL1&{JFO*lRa&i+!UC-=ZwCjad8_wA?Xun|gdno?=vc`IZlG|CX zijkbf@hvq~N$3hlaxv0)Mf{6DRgx1pX+~*a5}s;Lr9mWz>p0mDWp5@2Guc}tv-F&t zff61^NB8z!CZ~$zV*@95qujydM@;Sz$;Kv5UP1{!{Gu^`Ve+C#PBjNgjkFB@vef*m zIw^FAItrmENbN}r2W1MS=pF2SB|DR}EVzTFw2h;$tF+4w64@Poaf1?y0@=;Z$w{hw zhXpM&X9qml&FM(21b4)|8#jPBmdD3Puu@RZ@_Jl7o7H+Y;Lh*EU4XKHUaim3uT=Ua z(yK_JETB;hIr_Is|AOxA1MS|)j(8{vRc+Tg0y+ zeiJd21vsY(heshEjyM%Dlm*z*jKixCzqgYdb@`hNMS-2roU@;zJ%)kLV_+x?@R1fA zzJvHS;-`qAEWkxtak$bhmhAGoSh8#HVm$?A0dD&mhnpa7xQi@Gf+nMdqQEX_&Dnuy zy%_jy#84LC3vD>O81Vwc>kva(fUC6Q@FBzp5T8U0WdZKjp2I&O&fY~FBm7N>cVgg=5kpykpLXN$WyIei{uMEl1-R)O91hB4$u5-1l3g~FB^$~D zJiR-I6~r;{U;3+Gv``e-FM4qH4YXY`unRGi1vs=PhbJSRfOsxqC=2i#y*RuD@kYd1 zh@mXND|&PIEaKCd?3cf2p(wD|`*8Ljv=1?G$R3t!C<|~c_&IpM)s(0`tfM0Ku#VCp zhOz(;?9btLh+8A>i5SWPymJ7DMb4J&1Q9K7ts^0(@{3hp!<14)HC-P!{0lqd8nSi)CAr#j;&4i)96Mi22n(^y^AL(?$uQPsK@au|SH~bF3uRDG{@H-H{ zp7^!k*9*Vi`1QfBFMj>->yO_6`ANste~${BRXD3SB{MZOWpa6PZfYhwc}l*JpE`AN zdg|n*t&KKe-Kgk~#XBon53JG{sDqqw!H}PxcI)(J z{CX@rDD^*)O9STLrGfN*c;!h?w*I@Wiqj7D+^1W8`vc{Qr(64Z8grRKPE2a?dYf{k ze0xdE`D^PmapLo>J#56oNJ-rEJlKqW1Eiuyw?t3*{`0NJ*DK)3KHmNoQIDJbhl_hw z!ecfeB%z2ZT}@ZHnl5Xn|ZK;8szOgmv7Rv`VwtiLT zmWvnv-WqU=pWW0tz|&YrW%KNv2Oi|wGh+Cb*12x!)-4Fp=r)qBSpBTOrz~%6J+WRP z6n)LIYgg=W@t^k*dp2@HgFk2u*-{79l^?WzSZ5=e>V|*mpoztyzvW-8T|AB13`z)P zPeUe`7E9M9XNrqIL%2rX40(|nn1y><15GKHTz>ai>$G~MPa!bRxW6VxiZwf1d)acs z^N;UagBB0zYq>mfSL=W3-1@g2?A5_ms6X;=q<>Q;MJ*x4zcEuTX2kq;p&8^rPY2RW zNP8)zJg_aaT)w#nWyms6i9}TEACHe9A6guUHWBQEqEfL^LCD}iy^p@}Or^ z-XN%(*;IQvLoNhu11*+UwU7s_P640*le$>+BI*KsXtAhN;1(5}2-zlvYC|9L!BA*dQp^=eB5~S zEQ)EvIPHTCX(rAGmsma;_M#-YPQX(t7uvH~@!&|W-zjf^Tx{6W+EX6h?me>pz#AQ{ufdh)4k*4kIVv z3mPmVW_>1_aj16(Ml#j4u|vN)35_7zy71Re zLNeEc=aP(_-^AUVl@@7dmlMJD z=!M|sfu5|5c^J!3_5~a!mRLrvrEW;6QyHnxXT_GVZzMU^Q}b})v3THB(4nt+&cA^= zA)7}B3r}>g4i>rLMpU4NGRF8zk4GDkx(11wE#&iJ(cHEfV(zWTstT}~z;+B5Zd{5= znW?}UfQcT@23us;+bF9D+;tM#h`of9e+FJ zQ*FaT9@ep`Vffsg)QT4hXd{-Pf@KQ@%+uai?x6+L0Af+VusKhz1&z9v%D0wM69MI- zSkT$mzloIv4-?=~OB3-Z$Yb%q8;tv_q%!m%H4)Wf0S_?Ws8(L^FlA3Jl^2sa<+bK<+TPx%e?Kc#doBYM2WkrbrZG1KLV#gf_&X%05j&XP`<)kaE`u0@?W=Uq zb^sjo@YN_ijipkS2Fq}xSj@L$0>e!i+(6*f5P8v5t`^JF{zL_c#aw`xNDSYIaVDI= zc%OI((Ls<87LP+LfBk1FKrU@^poVtGH>ig!WH5-Q=+~j>pE>YsftVkNX5PpVX1X2Y zoX_5*VyLwnAQc<#kN1>EyhS501}H9|SukzjD2jMbO=HE8X%2atiaybh)Ta66+o;1f zphI1Z9QlSEvU$PZ{WHY%TaoZa?t#3$kQIN}3Yu!E?D`(1JBx|E ziIr8l|KkIsyFoNf%ZG@3wN#G(kdnPxEH3y+hspk{n8@coqUlK+}O~n)qOt|76 z^exS?4CG-bBkukj`DcskizzXCWvoSh^*M^Z1yB$K-1K5>q_|-(O|Y1UgSL3K@1l{3 z5gVSvzCgiu06N^!Uz%_=J%_vWOKLSsIXJMCYHtbce#&^zVvuHqC@HFO_Vxxxvo9300zd zI{TtkA~yfJv+pC!a-HUjyXo)@A*-I!&DYh_kVOGP>)F?GpoE!&wS4;T7GJO0aCa z_`2|#5IUsoL7%q?tLvyJJjH^Cypm%<9)=2HNH1TI)@v%o^5l>Y)tuyF(iOh`82u3w z=03D24zGIEz!voNh1_EKNW_P#?xuRbzYoKc>JVhdIF&VYDOqx%wK-cZmrNJ&bUQ+J zV>{XrvP&#WLwwUwS<*Q%?q=VBCMHr%RdWXUq5+Q;!te}|wn`|k&G>esqEvF+FdX4! zwa~JcpX9ifA(Euv;vfkMzx~Zvc&0Fx@vmJn??(k>c&6eSM9{W7)Ti_C>0N^0d*uZ|bV0V(u}h zCYsW+m%l&8=kqj`v2Vl0ytOfl)>?IC=bqr}?LZJ^bQS2#9zVg?Rzog#pWvH;sVZ#& zp_~uko~5A5$e&Jz^9JDt9z>0&!1rpY9CM2AYs^$NjaHs{s;|u@l~0{Y$z3cUl_|Ng zGJ|EevCkxCh|?z{NCRLU1Y28}$u60UFpXI0FFFD3=kCeA@%3mmF@BitYi&~6TugpD z73p3Dd^r`#u4VPK)JGg+&hmXyXT%oA_~}S?m+Di~eS4b3l1r!|$*0q*f?^n5DCuGJ zp_d~0Z4BcX!w=6Z7;mA)#e z9Q;!sX4iFB_*z_;IOqywgUjNV7g8z8W%8+%l@CR953_xk%CH+Yf>M;pwPOm&Zn)+0 z)k{%|EUMuVUq6pBQ00icaA1av{HP(9-uWm?H2`*_hFo581(m0Asi-p~moH-8%s1EeH}!6v9D{im`Rt1%>;YA7)jm*i<_VEqQRUuO<9Lj8!Ku7yAyc7oR@p>&U^@qfcBh+}FFaGiKD= zHx5hZCNQ~H@j6s0qXE_bsZi}`R8^o|@ASP{SEu5t=~|6Wd#RFcsO6Q`tY$lZiSGcc zUgoi=+HZx=*NBBZw9>SAjMVI716a{)Me>ic6o<--q9a|5~P@iO(N z%u@F#mi4ATgaV=g4+A;zzYihfwXgv~#q#|_)Zl2jR_^pDS{yC3l_x*y>qcurC9HQL z=3cC$V+ePvcZS%z98HZ4VBtO2j>WA*R-mPEiRCpbsD>)}+J`W2VRga#j3+;h3Ti`| z>DH%FKV4$E`Dv=2F1gtAj0u(Ic*Ka9&)j|!9M`|pTxssDxprH=)?ufL34gPaSThdT28h{8BoD zH3OCOISd)C>DKSwN7=Wr<}70+@!k6;LFL9Tf75|8Vh7XH*_w$d75#>;PJyd%mZ_uK^78v0#|Pt~i1;Ql-B1vVlEi zaW9o3MmX|HomQ)E``X{v1{x@UaUWsyJi5-`wMx!RH`e)4jH;RLXz*JB6FsxA_7@F) zB!4!a%IQLsqH{Ie`rOpXk9wdXlp%sL;`L5`R0J(w0{Kq!{3zsR; z<0ve8e%#gH*N8n9OSqdqVuY;A3tyLYL+p)QD_`H;kGZgun3dn_?nf2Kr%E^!geowg zL!pQvLObT(ST39{Zt3L5icJj^9<UIt09-a_xjN$l~ULbn7Gj2hsO_vQYn{0OUQlkxnab>;9aP z#^mm>e`b9fft6#Z{2_V(rGw$l`cE-`-|!F6&WXmjKk|b#<(Rnto4OyQDrP4A;UAP=>HdHRnAX+Vym)wD3P0|hbpj?AO z>|5vOm}3O4q%`7ghp&istV$-|T!NBaB@~D+Iu;y&Vp7Xo9(*rKcLVJpk9*1Ar#VZD zGFWriItsg=Tb@FiXUiJwVu87GJ5HhX`Zp7N5X{ioFvs6A+E zWXk(q#o1aoIG_S+)|7BBUV$hprhM~R|Mt2H(3ruwFb-T6-Qlt2!Oy|J#%vjLVtD9n z%A{!*Rh=Ms2}R!^9!5%Hz$$;tC6zN)`DbAsfJ0)de@hhx%A)Q&93TAA%Tx$0IhqWj zFNsTE_QzdP`KOot-(ez9t^DyH{4tkQX8-7K^VDM!cI-=jUsFCqQy4y*y6x{MBB?S> z!wB*)lotaxp>(*!a?V=+x!9jTu|;n5YeaLE5-YX_Mv1YT{e95ff<{5j1hu0!E!^yn z)&k`E_5Sa%Sy8RO^DpqVS}G6zt3O0%9F-E)9GTa9zi^_)4_{)O+>!EnR20~5nPEhrEw9-5u8ORf4l|x z(U8Xeh4P2a$J4?8X=2a6{r#FU1r2#p1eL|XU;3kNv0U&GWe6!#hG0dDiFi%!wB7#x zmIYy0T~bU-cKc&BHfm3(I_N}^kl5;H?xC8TDi%_f2e~q@_?s*!7!2172($9QEtiYx0<-EB z7sa$mQQ4WGOxOvFiSxiEmOC2*-__Yf9!tA>b0FrD%2S&IR3}oj=Yu>zr74KnFZs_A zUAhG@V$kwt$V=_ztT?(GSd6%l#G)>VbBvF63m^j+;pnrz8hp&^5g1@29*gPm9)Y+m zZ7@U~4h$d*43Sn31OxrWB|QRNZOFFyX-fe4kk4eS7PW+vGg;N5_KyepdT4lVVc5h4 zRuZSi1CbhXxpV-sp#kbvs|s~->=7tP^9Ba6I!#23G^Z`17Y7ESHRR9wkqd^$Xv2+| zODfL}QZ8h2XvY@C0)0AXxLYq^g*s=v=x^g)95{Ot+YcrmjZ>jw;<^!mmX5|y3@s_2 za1)1uCA5+je#Q5L$qs|4i0#J^E=JIE)kft{+XF$`<3^9PdV0XyoG#!_j6Otr@Yq0C zG3>BFml_I}jzs|&l6PW_WUP+SuFeN0z)_-2-5S7sGXQ*o_MYPc-NX$8wHbjPE6B~q z1qO(nM>rw2r@KJ%NEw$BeI2gS6GcUF-31AqR=Z1s(bnR4E1Eb4B z^EBtMK(bOKUpg!>8`HWX&7*G(^luLCk3!;?!oE@=s9j4WMH*Y!ve7?8(TZLJgb$J%Q?d8rN7YH?W?9 zRc%i8qi3MvXG#Wa#tkiiC9!Y@l}|Sy|1yCp3mc$1VB)9PhL><{am6`-KH7*t!}i%Z zfoLs2rYBMzF>J93W4ip=_61!m5DmpyX>3*s=bB`8@XbO9b8Aw3T&ggU~w4(xI$ac zDg=lAZ_ZQAv1-mxx@esP6LRVn;Y(LB@glV2c^aURr$`#Y%j8afv8*O0-@Ax1hi$CP zVNUKJ;ZHa5`qhChIA=wqRt70jcr`$DpQ{6OVsiLg$|JYUq)U-UF0p+4Qf{WPt{EU`k9+1kmGQ^MZnjPE)~Si(=n}r2mNe0ZcG*0 z(Ez}Ks7orpxFv87PFa8im!Qy0HL*6vVL0=P=+n?eLz)QD#|WxgEXUm%_!dVjs^u#B zF0p)ZF{OW@kS$R94`?o6nT)nCc^l>IyO9S5>tJCS@%Y`y1h-u7xtnr<0i<+aoO}nF zIzIl!eaHiY*i>DYA`{$ldCF4C1p}CP&0Y+z3r22;%mt1!GEoBu0#{G^KH_9oI+Ll~N&xBM!!ueh#ohL4oWGhK0tei2=2N7y1Ln zDi)^vAtSYk2Y*nX*o+{X4-Ul~fRk^*pDUj(>e1KR5Ss=U4dt@Zv;+5azriS=Up^M-%ipD5>uUo1To8{VJ4 ziAK8$x5FR&7FulwIawQ2Ui?;IN8Ns5vGjw=m{l5ou#qZX25S|&o(*7y81p0X&(2Dxk-*Ku>YVTb!8`0kUwA-LZoTqitithc8iw++ouAMW6?cSQHBR zGP&cc$05>r58^(=V@<)XV#U`eLN38H-HRX!E$WL2nw7cx1)-PMa5c$b> z;1D{j`4^*?g+mxxYjIPy(2l|eSI~%73gtnbAeuauPI?bfRH{5e=!ST@5JVme8bo5N z%R4#-(b!c<#gltcJO0r(*afRrRR)b+f}K2K@9scnQs~;4PNV%smU!#YKm<1g&K8e1 z1^Z&bQp<4yg%$xng$oWTX>ZvWXpzVD4C2JzO&yF4k{hQYunf)<1bBkQB_<=lA{z}? z98yE}WbfdcxVPCk*vEl-I08s!%PA|)L}v_J`vpXC;ze}6 z4tWzE&cJx+JAV*kC!?*T@~A)%gB~TG^Ic#7k=*xcV5IQ31^YSV7RhOCND*7xB6+ke zi1ALfSgh`ALL_QSxg{FJXeUp%gSHL|dhtd}M%0Z&JN1GeA>x#|1>i{+tY~CZylpYw zl7U!`8yq|r<7QG`lnT;IFW7MGog5*2ZAg5jPJm|Nh}&X|Wko9ZJqF5}MM=f_3<_P9 zP!7ljJA3NTxQ;;L;@JQkLr3&`cS)CdQ6rnDL&`K2Xc$R1DJ!+SPOWmqfzcY;T`RQZ z#Djvz*Vm^fI7#7JPcdF4w*)&jYnknqt#bwRfY`h|EbA|O(Ehe%Rl@m_*q@0 z&nDnLwI~m-bloT$#vcs}wxLbLYaZpw;-p}Fzo`7zQ79_a)W&w_P!lZ|u{>c6 zIi12#2}g@iW;$8tOA3VL@3cv)9ofGi$ zP7wTVt%k9IqS)bfq8e1T%-!u|l!0p87zf6~Zx!*XfZ6!6@j;yEKjSB;*coibU}eR2 zKSiUnCu4ybLb-1%SapgNu3cKqgnh7`Y=7CDDB$GPx3JFudn341SIdu!2_`&c6xSTnX8Rn{Ps)ZpdKA zVauRkAMH^Qn-F;Bip%u;+t4lVM*%J;_JheDi&35#yd@QEp-!&30lZ>$8ndf?52ElC z%0z2Wj}_{$hmcRTF?rD)D9)9n+HA!m7}D&=?8CdbAG;IQ2YcdKFkC;)h|~9CDo~MpT7Z8JChSmdL~BPVEan5V;teQRT0132x0vjvzCk3;m` zV!8AKDq^hOJrU~fv9!5>u>)ln#tyi|((^GDFPApQ->rS&Hm)idM{)eIwV5vKO(uBI zU3A}#(va0Sw#o^|0j&>^sg;;zD}TEyhB`K$lc{ zzY1cv&!s$cH&v@D3b}B15PNo?$D6G!93%q+^~^GAUI*kKG@Pa>k+@<+0bb;lcsBxtF8(S zXrNcy_!U3IzqQfGJ&+R*qMxv(tj%xuJyZy7r)jh1(fWvgyq12iGG#=8)DeAeLlKLo zSj9e3JTNp=vgIDgX%QRIk2j@_x+Rv!4WkTT@#?EWbeRj z&_Xicsq@@1TnR`%=~z?(OfS`Be%P@nKdeu3yyD3$3ywwcF;doMns<-oTA*pP`mW=2 zpoW~)kNF8Df4YQSwgbk8yiJ7+y#UP{k?;VWoJKGg29gm+O+yCctHtt)@yGyd!{Q#r zu_25onTF31&YlSxGGIj0JUJ8bsg}x*PD9!o7Ofkcg`(rqJ#k_PqgWcpXF2M)=ARKm zpNh;7h`5?FC;<2TGwnEnz%jS=EwQ|FS_q>FCFisup4Iu#C^7ytlq4I_JQQ`eSnit{ z!f3*+PO*23<+-z{+!P9k7$tlI-UJfeKWm*K{1+g-j2xo_oRBDsxeG#GG2{XiCj-@E z^Lqi78szUUppwIKa)9K+reF=^x}Rw#5^JWdSA~3H-ONyDTJT5c+JvcMKc~`Ts zt5E)35Zu7nfSAa@W*Yhn^1uK(I`F^>xKe%DHC+B_iNdv#{yJ^HnW`c zONzXaTiS@b4peiq_8)HzVK|Mwk4%A+z8=l;?7rcdV%{SN$(G|nL#iDoD1Lnxcx-V4 z#A3rr96If^B!uNeh3vW~G@z06)n)4S_s}?qgCL|yG4;5YhCxPJuZhmPH-xoA8?e+D zEHwcWiBW%NDYyM8tRUR`NXT1OV~^K=ZRHJjCVR=yqg?n& zjGS$0F3{>cZgR}NJ2^^l?3E3HT`W)$vJ*CFESdJ2$GIYC+Dc3IXMdLeSr*#UL~H23 zK|*G;G&T8z`!!s1f5|_i;Yh@^66;;Wv#;fB#V&zcs~%~vVX3!84tq9qxY`~tAq?Hg zeI8hN39xZwj`jsA;6611ff_ahD%4CUk3AQ{dlAm4QXsXWI-k)3XRL)x;nu9eU=DGI;WR&9JhfolG9I|v_cm5S)+-m8=+x{A=!PD(; zCQzGQp7u8kS8%5Z%ehqins8wrr&jn@aCsa4#*nrWx@;S0Y-v53@KyKYfxF*srlen|$uO?jNn#yS8!KmT`M8z!rGZrH+b5E)or`21}N zryOUN@ve9~o;N@Fz%~>jHlQ#VSbYobC&2}Om3(5awjos_=6JbR8;XzN(1Gp?+kqNx zHYoIMLj}Oo#c4`@Up<}}SlSg^XNW$UQ7y(gS$io>aUWPMl(YSm_N)qOj67JC3l1Xg z<+U2HJFpuK598ASc>2!u(CrE2$%>L*( zlG#Jre3AdIOiz?_IjSwlVF&-KzKTiDRNIcaA4oobwB^_jCBHgD1)xyGM#P3AP-Jmy z#~cymbPNnd-7z?x+aNrnQm{5ASCy$qu+7BLZG4@`Iw?xYgg25YG(rp;r-{wx#2y~_ zBa{rc342=GMBX#BZ3yaR3X?(0sVu#itP2M|EuJ%v?4>R$Y z0M4|C`$i*q3~uP)&>*+?;R#2<7q>Qiu>z++G>Kd{nwl59YFuVF=;SCKGNtPI>xsxJ zoXOV^p4`J}SX9v+6H(J^0J7ilTusS9g<%cop0a_VAl?sQze1Z2_k$BH>_@BQGGo@YN^w z3lBZ!=(sICUbbg0x&;HEpwh|SvKV>^%CAc-7hOWmu$*!Tm4^=k^N#wA%h9PB$S^&A zIqHo|{P1^|!v~jG1QzIUiC>e*^A>QuNujY-)gQOx&^Pd+D?GqwVsIW$VR+G$umZV& z;fYHwpSzap4e3)D*i1{|h#!5P2Oi*3FI%Y4Ehe~tagj^@aCjkA8BJsYh7USmCyf+0 zkrP-uQ4KRX^)hbi(Af0o+uFP~&`bagPH(;qiBYA`qtjit(ZGTc3c;fc)bRAV+mQ_h zGF;!?j%+Yu6*hBCxPt~51~CS+@6v&DDsg1lVBKA9edu`Gx+B{9sdr+~{9}pxR*X@X zEN`RZo!CVsRJ{{JXgf~YzPr4Qb}lW!WsrUkv`wxD>*=H0)LS@3W=(I!aH-?d zNFKH%w32o7(`~eY3f3x1X1(g6wp}zAb=$3aM#rX>-R?)=Bc5{OmaUH!*CPJJZ6x;6 zYd|YH0O>vwoE&5zhaKNY8omNPGKwT^QLi>)_(JQZ+#bNsfPpJ{;pSiiRr5anG`uuu zr6K%O5uzZg4gJry^~E~_SO9qqy-%);wO4DJdgpRfDs0MGShK>gQLr3k+bzfLciT_# zyg*v)Tu0?mG4VtdPWdbg!VD8U!nBb?aLVN?tJ>-flhKA7I@}8F;>&F@x^;-p5WpA-T)vIsT}Cg+iO&tlg4b}7?S{Q=2a42sbo03XX~AgOaR3szy>2hM*eb9Apjf}e z-y%DHLDid#C@9q^4f`I?Yv3iN7N;49Zk^36M=qvN|;2yh>%cKglFGpYC+0-{o%TO9?R#-;( z`-Ra)xa9K4E@3#qatZ@qqrywpTf>;+9oZU2+hh>Kw6HZyOIj2H$I1%f;olqpA6(+a zeiN=!TgDC~AF^2bv3y8VDN>_J_<&)ThETEz%99Hic2$ezoPOj1%asRErw2pW0}Q&z zKm~2_zyS=ps>Kigvla1oi4lJ*P$!2R>kngAPG^m=ugLvFDw9F{d83~5z{Z+$jNu6y z$^%=DnGwAfKwI^XM#B@aTgG(C34(aDp0mM53>jyGEq9Q$B*QzfWoF2<31@{Zc3509 zDBKryB8>(L&h+Wbum9w5Ra*}uXAKMcadt;5sF!t=LP2aF6CQ}Am)fX&H5>jZ$~Kw8 zvljLA4w3**&dMa4VK@FQptZ9q=6yQK2Taqz&1HO)Pg6&x96*Bml_d>H*q z7EkHijOe27VaU%91a2N5_8U2=V|}wACQJ_xa!KXSPYs`sT{gUoh$}3d%$7Pg!`Gi3 z#%D;~;JUNJgKNm;C#Q$&YO)~5(4vw=3rZzASxDO%)!7LvLJk^v`?=%< z?s;k_u+fWs4Q|ZFT!;!`AgsI)ROHN{BS4mkmdlSXBqx-dolsPKW`r}tvfm5msxp;x0&*>am}>DA#~ zIK5-IjKz-I!fhNe2WXr1y^fk?T=Kzbb#A3HI8VZ#tc61X8$b=gbJsXce8}BsiE&U> zTj1L?xI?}XFH29qC4446puqrV3tOnu#53u~$jY;a>Xyd4Us>IKstV z;K4lokkH^?Q#H{L6;(hb@wh|=pK*7%Bd$?bgYr+m=DNaiq&pTov1Nq^T}Fsa&xiX| zm|4|@IsGq$!}|kec^TIk&1oWX#tN!4)nd6~1?mizZ)h|JpZcgLfbgk2JQhcn3GaRd zO_&XWjQWvy)DGVe7_JL(wDzDT)>sY@Nn?{Kso0HYNGdN zx^9gfr)pmL@k(mv@Zn0F&TEh0`wB&U2poQ*LTR8L=gGFd5>8c0`0V$nKX64N&83|p z_~v|3@WF5P2gj5wIS&7~qdc=Cwv@D)<+(p`{n6Sae|?P(PxG>7>dz>1c;dAn?)xU} zL-&XGFln69^<9k4i}=8+0g>;(b&=1i>a5NOR#UW3An^HPUpJ`tD4Q3>G4_Wt$ zh8(^9X4h(Y24OilQ zN_NAg^@o0lx?!Y7`@RpueX#SE&SK0*PT=*SvN}u#7kZ2Cv!adSjP2njhYDtsWja^3 za63w&ZE1<+mhDt2EIH={7>7?mm-74$R0kW-Jo|Q_BDlnI+)kNTK}D^OSS4v67Vqw zVJ|*Jjn5M|jG*{y0H3gK#~u~pjme6U*5l(Y ztDp7vl()A;sPMBkV%~%YU%|sW3Y_AW2_O$cWr4^K)=cCp#EPn8-w2g`O{Mky{VAKZ z)K;J0KZ3$vPUUdui&7uQM{)X)E|r{ymJ>T48}()78pbAs@}C6=p#5tMmLPB9`P zzE*N)7-hx=G|#(Xc;FJtbR>c@?~;r4!y{-oTyptH3^{<0W97uESI|`A>2wro9+ty_ zfB`%Vq{KfDjts&XCQIFt%CFn0$tKUNUD;92iIt@ka$v{DxXY5eK-X)eZGE{n8 z+K4<(Bvp&$mRtl6EesqL!OGbEXl0fkjH?;giB5^tuOKT5I7P(!Q{7IC^sc3W=jgCv zQWoALBW?c=E>nj@@LjL(Pmc6*X_2?gqDtG*qa%H4>FAJd8664#Ke${vH1b)U*n4UX zj}Ve(88)Ftd~I9?52IR@p$FakPesrmW8V;aM7Zd5VgxfS1JF19Xpac~W3sE&>oFc% z8cVjw1xHe?V)>j2k$$-QPwHxi2#yAA2p7{86Z~tp#kdM@QGGF*YL$y>=meAk6(0)0 z)}JvpLPPpA&M(3Pdi#vWAiQ)3Col%l5S~3FC__%5g)wp}q!>A`#67g+PT*`X(qMMPi?{f& z&xu3R^qs29XGi=f<`#rk{Rqm58_$ejSYk=>1|XJ!`C7xSGsy!0IgTi=6Zm_6Dig340|&TqfCFfr@zNFN z4;&x}U;aLm8aJ0*_M3wS0#9|}`tj%py>5tSp!jibIDpL5faZY*NYQGky#4~T4u(Z5 zlLLcYQd#%22&TDdx_g{Hk&+*;Ia+UKQ1bT{{>vgAZJeIZ16~&2UxpUWm}#*bcR97s zB*(D}6c$|aAUf`21};E3vLW2@V5Zp%P>x(;`TGUbLc8STMjJ=Ujmh#=RHN~D7M6FP zitr0l*r3**n*RKHBw`J4*6qlRj2n>G-9XtvZ*kQ<8o{O6a*^271^&D40vQ=GMz2Mw zkha`Kjf6`s_uNF8;*yKNBIJroEaxnWBs}!tVak+7tT^S>hXvpRj3Z;aM+T_ziCRV7_=f{JP1!2Xt7d# z?w-g1d4cilnNvC(S~GdD7F7sq`69I_W_TCedto3d8TSUyg*Dh{lStqM7k*BweM=G;cf` z`I0^(YH8!!cnCBl+W&~*u1&)1tbgQlXzA;*K0}>WQyK-p`jQZ0AJ%eQCxARBc0C1_ za)CZ0ZmY|iRz-eZFH+NxXV?KG0zNB@cttM z!R};UEPoyG%i%dJE(zBlsH_&_BTx{h#DcX*+A5*kxHfVTK5&3Xpx!}mg9{MEz$F0@ z4B|jIXc)ui78K2%^(aqOLV3)FNRy#4sz_F}HZBVJ+Fz+moulqET!j)PJs^nb! z4tZ4z62IFLN!3JTkFAj;+Qniz?eGpKU+5h-K5#pK6B0IO6s$KOSs^caz(?D-0+Z7| zj$DXFhVBv#j`p&ihlHKlGJ}VqMxtf3!ctrhCyikRB;WZo(rA-bVB}=`ekkQBpOc&T zZedBB(Hd<NX=idPn;i z3v2@%A#VH{&4j_|t|HjPhObe-jnu(a_=YODLA3suZ;{JJ>d=4kTNHbY0@0en4R1Z} zc-Gw=m?`c%Algst*c9o2 z{k6bf2cqpYEBMySNKYYXNIic9s%$d!;qMVJW(j-+f8EtY%nP^5!O%PCjdYtYDx+sKVKwU7m*i6tgQHuSgb@Y0HF$kI<5@V0WrAIpBeE{KTDy5rH~gli~^&PraoOIlu=~=`Jll zVhh(oH86NK7;D+a2=9?%K*pD9J4}Rg%4E)D6hck6XfiU04JyQNDP@ZtJoCed1rbheWvEedKsgNtU-i)LCc&n0gs2{ETc5t9rqAbyimD|pt_Qe=kVmWM9 z^a4!RSdMULS+qoNR*n#@v#DJ(faZZGF=rTLq{-y$XoHhX+q`?e3EQcj`6;*1dCWP< z4=g#;x+eCUXNXTPjs~#JU?Es{22vDruK`cCS}d=f%dInM6TQX5o6V134=0obhinl& zb{VzJ+Q6ch`!3_Axk@a~yU~Q|;E;3YbHhyQaa5qtk>hj{zY+Y&#pqmc8_zWW zgR)W)V5}$(zMZOtHgS;MdplPPjhNs$FKi-*MgO~~ewXNIj`9VM4C!HV$K`0bviKlq z6*z7=#u^SeJ|RR#c{%ZZ$`aP6_+nuIYg2rh?2reMAqK$bh&YrrPeq4lBITe(wDCd8 z5TmaH5c?iRhPcG?xJQs74S5VR)}caRE`dTH+>045JO~*%nk0O|7_TZXM}J$XJZBbi z;)|MtH4Tg6 zXM5X~;-U+=0reE#d(&Nh;sYA*S{S0mn5f%_-tE|p=s}Bl z4Pqk=pz8MD{vdi*eLbGQ-MTy4&t{zTQFNMH`sqi}w3a$a#(o_As!jto$@1M%9OFW; zOzt#Tvn@&=4#M26`)g5rbs~@B$de8pI8(rhU{e`y&ng7palp+mv<%PfLXFl^rN5yI z_B;Y#Ao>hE`FfPT{|cfWLkEr&+rLCkkO9f@?FOdF33xEX;?5>oWS~B12oL%j6T%GHCH1kiHn4f#t&brSEFPnaJg@^M7TaKaQ>;I> z60!O?E*ryLq%uvRsBJ#7UksZ?8o(|j4k~BGkzHa~C#lfpHgZLm7zU02ups>rx)$c) z*7?!{Vr@2n={oV`MQ3jejaiieQ^mT+Fm^PE4*AdnW0(w72Eh9FA4neHqBMDcxBSpF zWWWi*^jct$CtZ?#bSrm*Z&MFaN*G+V5^jaWaXwo>n! zL5~p|4v6&^!?NKfv9l0swA>+9XYeu^`%7K@Xtz_OSlg-nC_7m*gJZ4Ok;Iz~R{G&+ ze_lPnc*yWr8y2)R)B#VBmh!aj^X@URAvl)pM&#wW80`t*EUs!MwFMu>U3qvcjKz8v zc=~a%6dn_B0rJ~ojP?gy2Jak?ic!m8?m@8=n!4Xs|37vAL;o(jb$aia|Lh|coR~OT zB!|U*fd|MkdEK?q2`207K=2fwvepIfruX0#OUfG0PHW15-%Md z3!;!}#4y3LOqD(py>cA6-Vb{0-_Guh|o#Bjrf$oT5ytTSTx=&?ZzS+`lSv_tM7Yn_O$ z!vPtSo6a-g+ktTScTMK{mB%cQvjm?%rf=!-B0hVA4_R4Qv%>NM-eBXYS}Z@B!IcZ! zPOFz9KS*0mO~?@(h_(Pj13$3kRwb2FW^tve5({{MZMQ0^eE+=IAUe2<(x_sOYaaTl z(UOa(I%}vo#}Ll)Q&tp=+@s|3(4WPAPQ4$PR0=^|ogMSejYVw0@Nh0D9x~88FU*ZK zJ9vyb=YU)Npvz)|Q6uo0tK|Sbdxjdp$v=8gtW|WsD%QcqaqW?CJgjmRvcQ;Wu@qM! z3zS?%O3~ql>Ikv!))+n|XXpsmcH(!}#4@&-7R#1vkr!^cIP`iQx|2oz>iSsHgBP)J z-UR2ZsDkI{qYKsxL~tkM1aaXLYgXIuiDjE?3ng5AKXya+EkaMO4JaIiy}L9v(=xDy zXWt*oxrEGe>22u2-7KH}uL;&>VS{glst~x~q+H17X<3_BOqC1jGpYolei2v@JMQ5c zVcBT09CiyrHUw2*xdD0Y#ZLJd?c!BSjn2M&wbthFo5-GS=iIGX`)+ zhpt>vv6BCOiCn=GNx0EO1qqAzICI38LD&%+@eqP5wf8)Splz`-;4fF4@hbHo3Zg(1 z#5X|(uR#xDBbv**GL~_O9bErhLmi0Q;_jDB=ynhs`l)MGb-~8yn9*_62%LvC$6zOH zr7B-4)3zz0xLi)CIOa_*;gwSP(3@z2(Z*wYaToO;bh4Ju!EXM526{xph-O*4F_tyz zmQc36jrO-%D#mQ$uBO6X-oJ_3UNreCat%3jyt7~R&J>6?_Z-G0%y+PzF!oIhD@)jl zu?!GH%(Qq%;ehvOC;~)BkSxTw7?!r)MdS^FC z%{hknqsuq$qu~k}5n_kb-WAa^atGNnhs3|aEYWST>;N6SBMkmP^9%K;4Vczo8jkG3 z7bZ(3yzpyX(B=HXnQaTi=M5OdNfP9kZG;aZLasJX`*ez<0K$Zd6TD$$;@J2oar3@d zh|Yy8#O8uG7=2Y5@ILIVUE?T#8nF%F3`Srz40?8tqX4c<#RH9a{|E13Y>D|iDLT?` z9a=mmjiO|rW(B3h8R0ko6d8 zIS9R}1P|(>nS}qUB#4p0$BgjNL z79Y?+s~$TK!2ve-61L?Yiw2G$Rz}?t%Z2%PlY>QT!v`$+xwJc%;y8@{#>rS~*>Y&S z1CFmEZQ%)yU*lxLg4eJPcG)TM)+*2gkY0tDJvyGKg4k}u5`Rzev!U@bJKk1j&DO=P zTu?g#9`|84;KUPh4X8^J%D9mYn>s zm~a992(kQUhKXIYnC_j498pXTvHWT#DwkU>{Ig8JPW20B#ls%4bAG%D?~34<7EZ2^ zCw#<`Z(zcYRyU4^VE78=`UUa!3PTH!>o16(SI>5I_Y1sY*b`_l=;S8fzg+e+)FBGi z32WA|zldW~(>BwjV}2grTen}Ub=SnPr|PzPeJ(ZW=>qMlz&HMK5iMe(;n2=CJK$!# z%z-sBl#)gc^y!%b~b|4)7!rRE1JYLO1 zcaJQ>c>vzs<`)3i9UH@rJYhxUjxEQIJhsYtg!Azdaz{ZbB!Vzn8Y#~BCDO)53>mv) z%N=A>?<03?$e6G@w%lRz!ToU`P6VW|L&V;sab69xqFvh()5R^1#v?X_3qAyu#6KU6 zXKgVai^p_-Y@p;}aLTg3Ch8#ZO}Pej*;TA;UH4iFnQyJGfqZBK|d=lha(r z;KSuQa84~d@X;&KKI2pimR{MD<}_~n(le5ao{is7OaAyP@r*-`%XV1nd<&ar%Vc~y znk8nUKnxSN)R#XWkJbXye~M=va+@ywLVPz~G;q_6S!p6b!PpkRSxE!(bPD?neu?bK zr1A0{KUy?HytX0U)}RskL=F&KFMkE2Ok<$M(({M-&u|R3SJ^dbYblz7Zr@WV#5 zjes8+r-=sSb$^O`D#$bZt*gp`~Z{s`Z@byBPI;xhZ~T)-ikLnxr_z7QN!SZx6xQP6mdRe)%G~v z{>CG4>frT|cjHkbZzegNyT0_@c-BajHlMow*Sl0ZK!ZKn_o%70^tn{|b|N?MeufKt zAN9kC9c(k+r}|+K!}i%1$P1guVX^%~svuZN!ccSdc51jVLC3V58!osKabOL=#Fp*x zfvC*uPOa z8n7)Wo_sfsd%{@URR?4#@VmpJIJ>4dfvAQvC;^AbIE!`5RAN2VrovwvzFa zAy@ZG%)l-o0Ag1FKUD%RqRK)A%lt^czKL9wI`eewm-rf+f)za1$914KH!Ck3kidGu z=j{nBO3_zC#H3Jy?j4~fD-Z4)k_bB>+}HtB65EF$1*>HB^RHK@8PBxKs7^!&3iP6M|b;9@Kgm-^-ZycK#RE=52@5hlj_>^x3 zEff2Or^Vsh)+s1(b5R17nT_L}W8gXEpe@EjRY(w8B{(saK;2gec~*}*`R84Xv+=fL zHmKRyFPlM*~U?V z2``gVgZ6{TWj{(3>U-Wc(3)XSPmW1@u_c}!CC(U=DB+|Pg{B%i6&hCO4=1Oi4$OoE zhX*@CB0G)AgN7$M&~ZnLPs;^-&eY(ND}S88s=|mTD$t`$m=W4dvFO^y`nrY9n36geO(+KR9Lj6|ju zAn!jWfn}`EPc!kWFuUjMM7pL~WLyHHgL0NW0;F;=hj}MXLrh8BK*d1I(Y290ryR27 z=-P@!wMHOLrZTA@3LLjNnTjv|DTmx(zZr?F4u^~!eEla-sdSs%eKsY5Eq9pQeL7lm z+}fq#=gspHtr#4krNCGR!_VpBsHsSt8X)p0jTIG_mE18kfdP*Kj=4I4$Wa5b^iaGX z0)L_o1fxR=NG!N0(M}}}vsBwm$3mVzBY{DW8xY7IbOjs%3db0Hbv6~cbqlFsEEcf( zOHLsc82j)&hxs?6)Y%B^F#5s9#M&FFVXU&?eTiv5P2iO3CAUy}$~c9G*pr<)$9?aW z@XW>x=e8@USu{2(7RiDrOW(m68BWw z?o8m8bQQAX5hP+!OL08}Z#8Y0gO#>>@1l_e0ZX?gu<{G}zDN8c#Ci85Vn&PyO6XOl z;NuAluq$+#BXlo~BD5S&mOwct4qckSHlLH2l^hrZx~#ZXtn6LL4zAn+?cKa;6`5S+7#D6 z4kxr2YuAVo`+&_B%iPxOx*Tba2{^_;4kzdxA?3vL&%lYAFr3Js3$L(50H{w7Av4Z< z7KIA0dKB3YmQVU)VwCv%W8fnz%RdeYZlGRhp-u9|b0|%Q1h>c$t(@rgVj^RNw(^B9 zk|+2O50)Y3C%m}ZnGy5Wg=UJt%ZZ3B$A$zx6o?C)vtCBsGU{3^Uws)(u#yL_O5k}Q zI-R}HH&Pt%CPr{)JeRP-AW$2L@o%EvuZ_v0UPT*RMYwf&yr=l=Zy1N|$7tFL9utq#j;&G*b4QgFA_2I?H!X%I5vQ7u|P11 zMW$TV`n=C{k?6k>PhG3jhx$QfegjO&ai_5ztvF%-LF>4>yks{W%#JGc#7^Ps>Q++B7+2JRuW*Y?; z7NIZ^)!x*=&5CZNZlqZs~~>td!63BzubOJ&{$Fa=v;nvL%T@2?Lb(OvINM z=7p0{TaHRg4^-yFnlR#1sm?rW`Xn(RF@VuOCWgE-Vy0*PG5wRY%7o?u>m|qxjE2f| zEe59ur;Bd_$*=ulI4wI2&6uZK8j+l#(Y1vk%Lyw}uJPc$N-i%yDLI$kafAHaF-go( z6c?{ykSjK1sK^tyST>)U?C4-J>g0wMBML#w?0$1IiDx@DbLdryyX1 zco->&JEtJrYN`Cs6skllMk3*zHlisA9=IHPA@U;Y!tTBhS>Y1PdDE#9xwM~{se^U! zOV8Pq2YEV;e$hJ)NlHE(oaV`X$@iB!^i{* z*g6nJPB&dy0yGb2f=evVyAq|y!K2lY3p!W_ zi~P?ol1Y!~{&2FiH*5%(>H($1+&jT%i*a%P|Ju9n zz$l9L58&Jd5;}xl0!gSLdkJ^BPVa(JMFCODRWK+W6s3j^0YS=81PL8MiU_Bo0_v+` zK~My{U>7U|MFa(Z-`(fA({`m?IaZhs;um zMs@V{ecEBZQ|r$3rqNu+o^XLvcBVUGmlu|JWl8$)c%(39A7kC34Fx+=kjU7Psmm~G z@o%>FO~q+$!w(Df&N+(#8ntSoSZ7+4Zq+lD(r=4r37sVn^F~gu(FZN#r)E|<%BVc! zR7b5aYQfN|cw?1Upi&sLiY|@}S+9>-F-1kUM`i4a<&p0;q~oU1*`w(xw0F4ajOnA_ z!xggIi%CTA`q}$M-2*sj3RWcOEA-dTW*@-Ne$(Pe&+X~BSy|^fT(cM}>z~5V5;exj zpYnQo!P^p{O zMS4B2pH_thMvY#Tn-@n;A2P;f4|++j31)+|d2olwxHc$vLjMTIeATorf!2A%z!NCy z=H-z#uNniizJ2m3T&n5Y(>ETdOtX?kLHde00F&5I*%ylxE7(Q*nmKV6VFwwOrI zWBM_7;xk+xyYap-vHNqJLteL2pJC7V>B?W{^>gT^b=@wYyu!r^M4XX>C-fuk+Ry2Y zBZ5SC=`Rv;Uv0wd8F+r{Xkp$bvo|S7pUkS-j|QzBqmR^ zw8-nH^$#AL9CrQmPQv_*9*6$LjqzE^*7n!*Yx=B&Tv!3f#|L-8(!$MO&ripfgnO%Kjqy;E{`f*E zt(GwxoEtMcqf5TVuy&!8hG8wb)|l4KSeuC}<`(f9#x~`;Nd2q&;dZ{X)&x&xVJ?UX zS`A||J;wAW=fxUYTES|$?AA3kr+QUn+u!;V+?Ybfdp@a z>Zf6{CJ*LG##e0m%UblhmO{;W9j4>a*IA8v#w<7Eu6atIX4NBG<24+51cvs|aNT2+ zW&8o8S1o2$JQt-`D`v5YOKM(L!*N$wQgm~@CNYbnn;$H%;kw6Vb>MgLs6~AKG9wF}P`Es%$mGTv zzIXYlz1AqU$O5>#mu8P$5hJ%YMVH{i0bkwWG}3=x@4-XdV_K$<5IwtTjc~0NU4<#j zunM>6*K|YY7B0sR-;L$&$c;=5f7BS@{_RzdQodle*?3W`*8YPbx*BjETPFpe#Zjm9lNbWqcn+BX7Yf9D7s{D&UA+foHY!72-x)t+DxHe{sBRlX}8B zF}YHtPdn`hp47a#2y{<$U-Yb8LS%6Vtz5jAAJ9_7kqoV5yf@3MKP`sJ)iYyy!wnTM zO=GK|*5IbK@eYqmKP?spwdS{48M)F;!$8+^n3gJSLgy71V4PRShG`9Ny~+B4n)Q}z zBh!0m81g>5uSgZ7B}BlQNJ4MDTOBU_$$h=%aZVhmqw8aYN7XUv6|BII`Z4FY zU9U8To}!B*qx$36U&DVC;(6!ln<$&|PQ>v+H#zTpmjjMre!T z@Ix~`#q`<3^nKSmW5gu1VBs3v&%ngOn9E|6=DK-t{-9^6DC1IKB#RYjehR**R+LnMEK_PtpQT%gq!7iVHz#}_VH(R({!i`is3G?Apk=Qq_mS~ZqZ4}dH zCt*6YekqmAWg3Wc{Zbw<)e)xo8lJpq->{~+<}@**lctH$Lz2oyt}fKdC7N*Icu1=% zmV8*hMX3fT%^K;yPBT|Bb<&qN6MMVWs~O*nR&3a%O|NLWOJC78zJsw$w4Vc<(!O4b zDTDG1)&E_SmX98oR8REo-lVJ;d|12PJg|Wn)hDU7II${8GcBOJy|0(I#m${&67Byf z-(Y3e1~pC7#6FuPJ@WDq?dz(ht@>8!;>3Uk)#C$t#!Y&bs$#m=62J08EzPu{AZwY# z?A&Rl5)+0u&0bulL&`_zV}86t5us^h9}NiK7rUeGHQOO%M&oljzR=S*~W z>NM1Mr?AD!oY4-IHvK`Hw!5vqH=#sB6!qJ*NUgJ)w~RSqI(17OUb^~6ZBJ=)O=D@A z=oLt+5$`Zo#WdT+!U~kk{tTJ(rzX`for>A@leFvJU{XrLRoZniG?>&vOkb8<(bO~Y z;cwayllhM6!qmTs!_+r2;<8r7WDXj!rP>|XLEm&!iQ(GtxZ!ETo8kGXev!j}Xdjv4 z#!fda^R=ucs$J8P&5ukMGp=gZvRGJRf`52oZgpY1qE)ZBeD?Ag%cm?)Low0qyI$4Y z=3Ls|Ja)R+e^u)u7q-4|<*;j7j=oZ)E=}ra-di+F9Z~5|t!@P=iSTtuvX>s9w-okV zw4124N-R=^!3{-z=?ZRf=ij(^JTqPFO|x{2JB5w)!)V#r#x=|*k*SkbYgy$c6-3SJ z+IQxQ)5Sm6wQg}g(^gvC$M}cd*!reRZ{TWOPnP$4QpcjnhI6vJ{?Y22>fswcty5f` z8HKrUxaa?^HCa*Ha@OS1S634$=@wU z(w*i(GxSs8IWaoUa-hnr8Kx5B^n-hFoN;hZoFQhkva~Rdn<4V*SsZbLkYmWeq)fAK zy0BHWbkzU9{NEbh_SCCh2lEy#aw8YHFdju7D^lbkF7i1pa$}Jqi?++mhQysmF-P9t5~5FnrKR~gm;HS)W#@9)&2y+NEIHH`Ln~Oyh_}jHb|v;LlAtps z=#XQyhZz8)Vl^?kb8>35O)3{TidKkO6)g{&`ibimEkX0-9Q_QUGiDMBk2z!3MmANl zUt6DPSR^{N9nJu zxp8`6(?upr^El+7)1yeTy$$tobegH9I9bl(GJ9qk1GvBdURHcr*D@v6?EEwm@iSEgkBj$Bjf;pEG zj_TX5nHd?HVzHadyNx|)oA3rL6`!VB_LyJh-O@++gm-xj(r1|j?b4EMNy%oUDBPu~ zyi5A1UiuL4lJEtSJe7+y?+1};cxS9R?$S&;Sf+PLN;O}@&SA8!i-j~=mrNNoHYH}P zzBE&8Xkuw)E%BOY~5?yP4&ndGIVc)b6FNw7A>w593h7rp8Eot3&MvPUhE;Y#}F` z7n^K$OtPjH%U<(lPL>x$E&mWpa^% zM{>aFSx4EFY#{G9`(hP)|Q>-MstkoqtXo<8ACUXn?>8MnRup+Wk5>M5%&09 z_Hfwg3_Bb_tHmKu=_KUyZ3lAV71M8c0BvU>e^h}s_T*nF5L)EBlp{4Q4r&nW~g z)gs9|ET>Gx?t&O{o25tbdoX>crFyc@WeibZ}npzgFd@A4f9e!M94+k7xztiC_xN1@5o!+1=D+^~r$ZEwGQb8P0euu+n#jzCf2E38>LoIzurg%fXu*Vg|U*Pyz zuQL$#py#b&KTg4*2dAgC=oyw0u;X3Nc1O@1z$7kiSIF=1;OOw!ap_?VWo3CHGv->p zN3Z^ScCUVR^-L}^M|e0 zpex|eZ(e)7K0qHv5Fd(g^T~zL!{M;{t=6zN>~M$N9zR|!77n?BZdStG`sO(EhOh+R(rq01!)j>zdZpVJ&LM_YX^LhR5V8DeA!ujU0Mo%_xAmj@9 z94=hiIRf6W&+iL*{EjRPfg!(F>>*5$V6)?}6KHr$nmN@n-!!ebPLfZa;torB>*87~ zda89Pu3l7ox6ftG@_F5!a1cM{47>4i99IAjs5k@q0q6{K?LE$rCx}5cgvAcO+u_Hr z?!4B3-R%#dYaPLx&NZLIhoL_Zw)@fjSpmO4XmjFlu=|2moDyLxpKHaXr%$qCv+E~Y ziZ$T#>!pW-7%FiR`+^~-D;)F(eSVM6jZ?$;U{1!T6@F}KM{V%REpI4{&n6c>WxcjA zKB1h}$ms5t$4$w&*JyR%K(&SOnm4c2=Jy29?_PAd)fWm{BdI;{8CGmcIwp(B=n`pv zSllT=kJX8Lvthd%XAO4RjR>*;KmQSkUl2Qdc#pD#nZdlSR&a9Zv zFSp0z2xAX$z2I|T@bKCFe!L9Ek>$mIouSx~PyeO+zy1jrb7mFOEdlvlDefSYw+g^bwb?_lc7FDJa|!(SaDx8d0mhQU_{MvF_F#O!J3o6OzTcXk zt(P-@!tmO%3r0nDRzn&whdc+^{3nJ^F-=U zR9H#xuOrc6OoK!xaN3~K?yf7@CG$jL06)brlCEdDNGX3ylH~K8^&r_d*dA0`PkqUL z#r8|G7w3um@U1F4C0U~7=2IJ&7J12Nr`q$WjZ4p0wec${l6A1fTkdt+fvrtx6BTQZ#0)|%0kg+D*86jfi})$S#P1LkvrNX*$q|bopEA10* z$=1lFrm8CTwMR2I%Ebd_sBW&RmCt!3+Lmc6qCIk{Z(AvClNOR4o-6VfqHm3)6Iq6o zazsl>F6FF?$v(+;vC{5sCD|9)M##RID^5OktIA$(Ezz%;o+X;kY0oOtwrDHa@{6dA z%ZNU`(8hHZQA3qkq-x}8?Ii1Di#KQKwj(Pm}$g?P;a`sEcIHi>Z|IR#leSpZKmKl#y^C!hvVOLGly=+glAXf#5wZ)}KBBZg z-67enY&Vg8mhC2`we^tfdu-n!`#IZply+iI$^OaqGTHdYsI4w5?V(;Vc9-cf>Y@7L zXaLRJoN4{XRLxwXPYm5@zMbuDWCyUlO=&ydDcNysN0XhwcC^wi=quSL*sdn~6x-EG z``%qqo46;lpt`RR{ebB!N?NU7lp250{K9E3ko}wO1*N^GzhrAJp=PcomS&@w8!w?A zs&?R`r7x?i&M*v=-qlI?7zEfyM zPxdXg&nxYyDN(!h+rm13Mf5kOUn%LcQ=?R`v#Fx!y*a~XDkl>2(9%gOsHMxTP_^{c zX%cl4br9{$)S;wpW=M1>(LqEBh!zR^v*f4)Le3d2nP8uYOP+?OSNOl_A$!r&qMX0dhg_7OQb_?5sWDzRt z&fKUqT`R2Y@s;B2wP46hU{>ZHy5s z@FPnk+?{bZ#se86R^Y=+B|Jfh8K&ko{0zeQ24E)Ju}WKVnPk^<;!wv2l- zMy$YtR!evU*P0uVRc?foE@$@P5X786RbgSb^W#EaA@>f6VwiW5fzvX{&@wt)bR7uc6kix`tXC zu>#+MFzv{9#1G9T~S{+=nq@1+MeFgdbphKjTLj zBUa!cFGzR=8P8+9nlWMp?(nLF zpJlv{@hglGEAZUcB>Xw!PZ(cdj97u+`JaU2*Hdf9t*6$mww_uWu>vQ)A>rnXEsR?; zMy$a7-jwhF#&>=P3hX^8 z;fENHXFQuRVg;W1zJxaz*k)q8o9#NKef0y$9^=HXGd{x@u_AHl4<&qw@vn?aY|tA! z6FZ`?Jx)uu?gnb>S{taXn;AC4j97smKO^BzjN3E5lQCiiKJ$@;A7q@(_)*4)6*%b= z39n?ljPYhnpt1*5R$AYul0D4!MYiv9V#JEXTR)TV4;w`OKHP+1`v==^mG;8tl1pz5+6iYR8(=$>?HEpsSdsXJa}v&FJfHCz z#)uX8pRXi*fblboUuBF~fjfO8;V&3}%J`=|k@w=QsyzQ&$tG;1wl2Am+PeBiYHP%b z#K*sruyvzYdKjI|whh}1rLFpdWbfg`{TL5pj98I)z>gBnVLXlTl8s`_tEjQkt~)Q; zoou(WeV!8|RwVxFf`m^oKFRni#)uWT>CY0r&iESRa+|2F5i9Tmzeu>rChDk$o2a84 zn?(D!P~}Z3yYE-Y_F~(e?I2E!SdsXTixPeq8^4QAW;=)N1f^|xNwRsIcs=7ij1emm zPybEAZ!vy@@kg6P;>lap_vpuQ^F$|k6=6*=nSf?v>#uUtYEvG?G{dqSdqB?UlKmDS)BX?oy_() z+n1C!@V8`tBJuX?60Wj^+PcyfYU`9OV&502@fMZ+`G#a$vh}d-wuL$w zu_AF+34QLAf@h9{jD3v9GDfVx51Ayqi17l(YZ)U};1|sjKFD}KMH+a5~0 zzp`W}apH-L=Q2jDNc?A_gf}vNlJVYcBL6CCthBAGO7?BGZ?gTE6C+k6&Z#Eh-x=pK zHgBiqLae}VRF`nQ?bOzFwo_Ycj1env`I-{$!nh;jySA@5ibvLzv`;OGj$--%(cN3AbYGWqdnh#0vatvV=p7{fx&kMy$Y&R0%I;ypZt| zJA|(ys;sn=8b~(6_F1<7D+V;~Go0%v03X@lR1(*L;fF z8nGgA*CrCqV%(f@JK*Z5vC=MTD%pG44q$sfCq}GD{C=8*XEC0^_;JRF6}V=)gr8>o z6yrmT5i9V0nuJd?{($i}PYF}ft*V@7k?cQg|7KfZC$%+VMdI%=B%HQW8DC-?w~N{uu>#L>O1S7C&502!5?Ay{c=Rr@)PhcCJC*H&O54{f+0~qQCE@DZc43Azzi)U={D^PG!-Gp0 z{}V?`SEwsSZO$xh#&(JwTGc`-^c61jFz?ZcU1E&&RxR;)OUYhf`vcpnTpPrS#0^@< zVpBD7a#N$B5`B*70j94rJ)okGc9iHjqF*rmmFX8MdZd#?%Zj|G zaG)iKY1NaiTzscw?oO>!s67fJ3^%G!5G@(jsSB)=tjN+}0-mt+ai{yFUJb&?fD zp95&y>q@z)ha{UB(%fW^anzgKL=h@Zm>+sd^iHC^m<}b1P(d?#OY~8q4>O%l6rqBS z?IY36MDv(FLlmKcM(&j8yF}k&`YBO_3i@|niT*+KH>M>;{wruA=B@OB2>`24@eY~ z(w{>!-C$Zt*uFpuBUI3#4@xwhXw&`FIUb@26?Dr;iS{Mho2ic|LIpiPN}`jAPGY)% zC_)8oK1QNjh;C%MpD02F9Y0p0$BDkp^fRIe74-RW61_t7cc!Jp$qQ&VYbO#2f>sG##6lIU2XqnP5=4f+lvRM2-HmgridtC;Q} zicmqTJR;H8h#qD7K2d}U+W%3B{!H{d)4zx!RM00TOSFbqdKoQT^#HYSBawFrbw$Xu z&GpQr=o}l%r%1Fd(N;`*5JjldjM{TCKS{|4?jIRi-s5~~Zv41W6UGKY%ZE49-(SEp pemp!?DsVUz7&;*Ko0_*XO{4-5^1j?-ZeF(xQ@rqGin)33{{y!|HRu2U diff --git a/master/.doctrees/tutorials/tabular.doctree b/master/.doctrees/tutorials/tabular.doctree index c0ce8123b57a3c872747dcead0054e98e8d50124..6300b3b9ff5140081c592a0cea8aba227f12c4a9 100644 GIT binary patch delta 64 zcmaERiTUj%<_+sO4O6O0D@;mqll6^_lP!}>QqwFG4b3c*j7<&A%usN=j^)=0QvqFF#rGn delta 64 zcmaERiTUj%<_+sO4NbEwE0Pn7GW89TOiV0IEe(=W3{5Qz(oD@Q%~LE>Qxnq?lZ?$R U3@j{?j8iSmEzLIH=j^)=0O+h0_W%F@ diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree index b0cbcfbe518c43e5d510c7ba54ccc20fe00b9b19..da1697659737e80bc26e2abb252c1ca91c0dfdf4 100644 GIT binary patch delta 451 zcmX@RpY`m1)(tB-4O6O0D@;mqll6^_lP!}>QqwFG4b3c*j7<&A%usN28! z)12I2C&LU9SgFV;J^4T_%jEKU>B&cGMVVr1CoBGxnS8P?hB8AAZjhhs)zCWGq)~nP zM-4_1K9Kzo=YU)@S*}Tb^2aK<$@3d!m~<2-zi*VCZm7yAA_h{Ho?23pnU@}4T##6l W8lRk4lrni&qXm_W+I+X^!yN$jJELI$ delta 473 zcmX@RpY`m1)(tB-4NbEwE0Pn7GW89TOiV0IEe(=W3{5Qz(oD@Q%~LE>Qxnq?lZ?$R z3@j{?j8iSmEzLIHCL* zuhN;j)M-w>SSvlfUXD?kSv{t9vf@vf$tUY#C^qNd2KmWe4Xt1w zNP*mto?23pnU@}4T##6l8V?M;6tK$_q=7D5-y}2nL!%}i#AP6df#iUpAqR2(M-4`i U$rV6FyBp1^YvSg6P4Djj0I2z&KL7v# diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 9cdd0b2d21bae0ade57f125be96bc1a98f9c5a9f..4d28d4f441558e45e2d03d86ab36ffd6f9065544 100644 GIT binary patch delta 12675 zcmcIq33yahvgTBh?xZ_Qcb4u>2&6+26G+lYC!LiwY$73$$QqGA5(1$o5J-Sg5doJ$ zAVSCqTxAiM4;N4rY%zc+n~Z{hBI1aO$lx+AgXoO%bUq)i>fGC%o6aJR^YVSreXHtJ z)v3R#PThO^A1(T;H}rl>{nq)z9=~G&_UZR5xXUqrc4b;-W@TQ5qiRN8xjj3tA~VaL zojpA>Gdnvky)v`Hp6jT}D9_3&&zs@;DIg?UmtoDw$j{8k&&c3qgU9o)2I+a-pvd;* z=h~9$r7>5ThIb#F*OvZq+spBM;}EkK$z>dx1-*Cnn_E{kKxcPk+A%dd^{=etK~f4>?dAAV~E`#Ucmks7PE za+AKCT3ikdzhm`eUN$;_N8MJCySCcotn=;GZ9zq~zW1``#m!08ehr)dv-tGuQ>~rS zTy6YM*AL?pMh?N5D5k;mCqzIJU*)2K>5tx3;|N)B*VROI&*%6!Dxs4%{} z%*uC-x!)B$_A&#bA3xG7#Sr4xty^_cb?@pvh5JxY&r`?W4SoE$F~;Gy8wt1Y%j4q= z@vTxsjCF-iFfkb5CmDZX12ly%5RK2B80Q~Df}{p7%mJ;dNVf(r7gRWP{QSfZn1Sz} zv>nQX6Uizkj-uclvY-_|++nWPP`Hwu34B*+E!4~Yy^ON8-u@A>hOfNiRah?EOX5pM zn*3f7RF#K!kcUQ}>wx6J4)3^_b~W_m}v?jjUbV(XXCr*ht}`ejxxt}l!04njeKQ~24kn5GH7 z>TO@bZAbE5vvS?rHa9u*T6g{kY0dtki=98zMFJ4SIo$S#=-;@vEo4>mC0gC6;Yl@( zY?s*F*F@kQVE3gcimOsd3Y(34v^JHP;G{+_iS&|C$(qXa+J+`^n()iDf8e*&hVnJ@ zEt+;DqyC|0>Z@q!a}Cy!=?DCFMdQ_R|H8`)Quw;LPDPQ9UtJI(4m)V*h}RRY%lT(6 zywQ=qhj{56x2^!bc%eUQOWCqe2U;yJ5LIE!> z91KOFym9Sper5I?>!ecFt($y~rlxj)6<@sc$@m;wPKGTbBR$2MY0I+Nvu$=dXtR)p z-!tqvc>Lz^{)?vgy9N1k!%hERs#9-`G+uU}UOgi$UOJ3_ zc<;=c^L*fvidN6Bj))_uwCumHIEDAX<{C?WM@<@qasT}h$Jooz+?(&f(ZgnImQU^f zl6r%;dR|;NlJ({r>waPBB8N2dYwcz^e=2L|%&DrJUp3vP>z788nc_=BJ3c=-zs#IN zN!p_Is+~enJB>wpDRT{T7fl;tPae3iz|p_M)w)(6+{RTTzGdM^%@DDWZ>`JZz5aNd zjS#ySf7cvsgF|irvG-)FzNhog7ELgZp+&L&UcSy2z8+mNSgCFIb%S|)hw_Ph*{DQ* zZL~j=za@{+x#mAGfU#-hgvkmBan25d zsS0qzBYa+Cn$eDhm6=h9$97g$R^i~ZdVZsMoCtS6OFN#DYJBO#_MYvT@`;gzzU&I1 ziB=siiCo+fAjZzl;2H);18~~S^e^Hh{b~S@-P9|zbu^L5F9-08m3PB?0dx!u)UG2@ zq+u8Xl#zFbxJpokQ&@jewysmhpoV|mU=M1u6&^FmCSCgg{Ctv}1p9!fHf#!!yW$3O z`y*Wk;ztn()l^-ynf(2}vp~pGHBa1_t=T|=T5jDGXHx zI!a3@)A4OX2fzrOd+JW@^{WZmhzV-aW+zO(W#;_8eBM}dh~1W+U4)~yEz4e{q-wB1 zjpq>WB^IwGZs^(xcJ~%+-FGAIJ0;brYCbQ}&Kh)GXES?(;-z_xWVaDw>Qolg$90s- zY(IsJTNkEkcatnqRmt2St_oDiER3&^jkir^Jc_2@IdyJbZAHCp&fI%w6sN!JI};`k zp!fx<_sFf2Qq_4L@8^;0ENGPPX20xiin=aBc7Z~cq7KWfLMG=uyDB2Kmqfqv z&U``rLY?{NMQGHSFO00fDYX5q0ZJ)%pEp?t5jKY-VRC=@kLp2& zR{nnqe$Z%&rD3<*9G#a&M9y#1qOO*RzQ1v8YryLD-p9dd3Q4WL>jHv@MWFqQPLTA2 zdhg>vkeBJjaj;1*9|v!eDAH6FR4cBgt13uXuaT|aOa(a{SV2nc2Xqy9@0yCsy6L5@ zY1lwzX3BFou+DDAD6MRb^+6G9^@($iLb9*3SS!zQ&MKjPn}kod3$-Ah6lC|gvrmLo zU46n(jlSdRGvR~Fo8ON-+hakRbAQXS)-YUGYV^EPqwk9vH3o_r4GwIr(LRBqMn9%~ zCkBcdjSmzx8XU+=_&C;tM@j_b7oH|p68{@vjea$Nfv zIbIRS53EmT^F7or6e8j7mN{LlE9O_5QJ9Uq8!xpxwn z-3N4tq*%jQa~Qw((OzA_*hpnciBVh?Vd_{HN<{Ft9!-d8kDa<^A9wG(??1W%a%tB< zuG)~x|F>Dg>t`glMYFndsA$c|4M|ZYU5O0piv8(^A?!uB|N3j>|L#EQ>rJaiu%m8< z_IsH@IH@5O^3MiRXIH~_jo@Pqs>Q7%CMOc-?Rm9K)A3f!2liD5kc~ zIs^Zy&Oy}Xc(y<66s!2R7OjpHizP$(ksT(U`jjoGtvosd2T4AYd|9^ZTl{d!5{bAiA)0^kVl4dNVVu~L?`Fil&>OVD z9%CU#d;VK>~W}A*zGYQSP6*6I%8H%l{$JT{OLOrp@IZcD0;N~^4>n$WR=C2&LzP@ zmBmz<=W2dQ1Mnxo=*bOzefg{V`e^N{g|I&f)~gogD?Hq@cODG}e8ba6PUIi=N5fuR zMv44Fu$;)x2U8*^@cjoW;7qWb$8QRr$YXG}@ZDD|@H}q5E?j#FU*I^ELfhtn zR1ag^;Yyj20|Pz8#3M08B&}mfYdEUg6w4cr`++fp8&5~Mjvragph{j)9>P~18x8nD z>VG_z1Ai0@U3rLtVKP5^G?~}jqL+noV1*Ef_Xq@~&abxCSIwDUHK(%5rpkO&N?wd3 zFQ&Bd!rF6yf06L6G{|-F_;CiiWCsqv-UIf^p6v>eO7fY-%^CSd4|v_p;g7#@!p)#1 z7u*b567G-ocA@+Ayzd(+@U@%AC!HKki^!)5o_NP|?VFE*zX4+&!CT(UVnNd7Nag^Y zfybR%K_4iunMCsVzN0%!1RsOTczP*gnX+J-fxmI43GjmiOGz-g66sog1 zDkW5BJ5@^N$~;%XyD$2~0l{dkv-zrpRA(nu3!4>Q2X(edRcBcrN5hx6jOy%jgIs4< z4Dx|-{o{OJ!@3APKGVlP@qP%5a@pMwqRR2{wSkTgxMJw6?!24ZUOxWQub{V)7kpO0 z?9#G01h=R6h3e3=*XjIneo@4y*Qb>le|?DH#&jP?(8Y@eE|srAF)= zu7JPy0C+&z!&1RhT1SnvCmAz)x{>bH(>m!Fr^!eS>@teyU^_`?Bv;^jvsTAQ1GD#=Wt8p#w>DX95D3RrgLZxX27EdqPwk701rJ(AHLY0n`ATvJO2@jXbg4yu)!czZmg!&b?S5iYb8zCEwky&qfSVJQ)+_)7A<7E$ZjfssTDn-me z5xXta)6j>9QbTX4Fte{1Xv4&T;S(kY&nHX-FVaIbN3ofpP?J5>s|uCW=aBjvZPbef zCd?90?T^v^KGNuDb{|B5bZt2Fl)i~(Q=k&H2fUV?PewSLe?q|>%m^kMyzcKG19qS7|zWeRvx$M`aVlYT&lUR4i443^%510K)4Hv^n z3-8UgGZ+;v_sQD?S8*>ZT#VVN(zYlFlP)H+9w58r4a;mYRs##e#S@Hrq1i%>rUhT> z9|TwvE}Bd|x!VxllAg{Ieb`pX@CzHHU8E4VWU?oK?IvPx`Th9=fvLc5~0=S3^5ptk0;InX%-4}6>bSYTT((-&33)elYOZn_& zH)~&CJgWmD+^bCeu+!oy$~=)?-94;B{aA*3RY-pnOZBi8^k;D@R-km02m?L*=mE@1 zd`h&&&H-Jo0+bCzKxae;n2)e$1wP*5Bh z9YeWQhH^)QfbvP9R6t3;&j@U}HXgoDfTIxt&nL;-LlG^OSuF1sIEVhwORp?nnfllo zwk83t2&!^Gye6~60dX)w91v)s%>mIdnqymLzr?Bm3?_l*kNXfli%H;OFv(~tto!yO ztB+t=3?`-9GxbP`f)wgWex924&Yd#p+u;x+tvtZWVKl0GBHd7ks_55M${pl%DfMM` z1MW1*bvT1`6`DkU@RF?Y6a7Kd;dciSw!2Mo9WF$_>29~)B;)3Kg?+=I$t2g|8o^cS zaFIy>hmry~G(`6XUWV=_Lp5;FB!Js5w5ot>KEj^v0q0EuxFzK8JEoS#OYBf^z`7T| z7Xwqb7W~D<;b8b2JtQCxDN+-EVT*%XF6!aFVE9q+6gY3l0s_vr5E(4c{p(Lal&3V& zQ#$RvJRPW!wsnW6AE0jB}&>ikK%TO*c%TV5H zmZ7YPg$)cgnq?>-6A8W?5~P=8$n1EB~d@hQeIi&Q=udbnAeMne%y zb+cNmV?f72#-g3B!Xk^GEoBaG-@YaG+NNhnH7}q*W)N$~)t)uRn>oKEy|!q_&-e*)Swh zATubk4Kl~2;y2-QD2bGEPr)oGjiiT2(wnECz*2&e;#pLiwpkJ>uy~#P9TZ7e7`#-T zmYzKgYuWLZ0cYSMz@EsK9%tb*A6OYF`JRXV+6nlKt08R`e|dYFk8?_xbkBK+hyIb$ z*7J}EC1&Zwc}M}fMY?_-`f0P!iH7KUY2yiq_Ho`HDV4ql1xr>Ub%m1@tw0U*e}6$K z!Kz;2v}5wEaMH>ZxB~xQP#uZCzIOf#zgLfN{(v9iMTGN5`bH11oY(0a4O!0rp>Ncw zoIlYwN`B|h^o`=~{5O3Y#3Eaw{t71;#6)4ZY`!LEbd+@F0~iXaQG_Yo>Eg4z9`sXO z!E3kxL#&@RXzFVh)KykBSNC2}o#>2;66`7B2aC?`QPQ^;;2F5ht#Y`ca$*N6k%uZX zZO$R6qrtak)|{&5qD`!01HSSLZMT6sw}D#4z|sy3Ag{fFmQDOJH3QpARQnifh?VUgOCM~&?I4zfGkP^AxQ&a3Alhjf--E8 z1S(hpq5&CYh8c`D+A0XcPaRptG3Y}USzS;>HpS;SicD4A?&hXR(Dz3Epzl3fef6C> zr>ZVox#f4+;isxot=|bRtKRlaOtob`GNo*8b%LclB_%U8(=ughVrqtET55V``qa#d zin3{C<;m$8mW+(@n-?`lSE(ARe;YwL z3fL}!T+IB&5L(X=WVN+OML8%ka=4ycvwi`aN!g|uB)@11`K8WZ8YribJX@GRHs0$; za_c1znSt1fi%i>Cj8mQydxVtb#WL3-!JX@^6t8)cvRTojX|*ZDx}zh}BefL&C~cYxaZ3ioq@Hj}HxOKDCPrjQYv0@3<9p8{G`bc+>IF-}G5UP>jcMQ>uE zYF(aHwU4Nsj01pxR_iU+skJqx8L(Cg{lBdV52R)fH zF%?dcz)d62dR8zVrwLWsQQ6HK1`mQx*JXls($3}V){D8 z^tsi0Y_+WEsU+nGK}yiH%-f_)alLR-e&7+cw>(H$S83`9X%hKqQYKkj8P<`q^J$>3 zME37WkpS2*Dv7MBYQhj%HLgL_frzJi~?UW zdvPA53X@Q>Z+fVEZ1LvTysVjTd~A}RkU5KEh-IM(`V-5Nn~*O6Y^tllaVyBVxd!E# z;+MHEnA6w+A~8NACDxoApBkT(8lRYU`G^Fr%ic>%q)t7cF;{t#Q9|T(ZWhu{S-Q12BcJ3w!@%^#C@q_YZHvEV0+kvp>1q3t$0RyP~b@ z?M<<0A)obYB2hNiuK3{k!Q{i0X;LlM9rp2PEJd~U0jq2v&F9(!KD=+kN^)d%->$d! zKsl^k4m*$N8_u(l_s|?NVoWF*{^TMhf@M6;t@a4mzD%aBNrS~?)0${ydsuA$U`-G} z9XZ<=?dv=!+!7f46{9aBIZd%*_Z=xlys)B(^jw<;%SCfpB`PO$-3h6Q553rzZ?~i$ zxsSF^MK!Uv_J?9Jr`bTlc6TL{Uk(b3i;Iu5<|owhJ)*kCY>7{-b#;gmrD4RUb>vP< zxq_qFNH6;GW|-B?N9}AQ+S2hxlx~hrOiU${_hga}Um4w}-8Mb$&ef?fUuN$bTGFY7 zc2@?uYM1V6k&kZ);L=kZ_#3{YahC-T%c7^9BDM&EZ|_J&!tzyLk~{fPJnQS+zC)yq z+?t6!dj3-+{IyUhBIX7oS^HY#-S{phN46MAUq|Gxas9o_^|N>5ddXe6KI5ov&vRv` zEY`d}nQXReg50MeC;w+08N~dCPw0qFJ@elvATb-#{8~6pNyGakIsf!f4Atlcs?i>sfKF`+Z>~3UoiH797ZNlA02#S6med{g;eu6%$GSqZYX(=0 zh!ct_|G3H&_WR!N1`x>VRhEsKPSg=TV6_T4w+E>torm-$fG> zTpt@j{44|XS&Uv)?S0A5q~cn3Jwgvwl2GgY}HWYgF$yJHVwirxXF?#qLU5Edct z(QycdgDYxD_b+2H-yI?AVlfZIv8oi5U%a>h9}HlW8_9;RQ*mkl(S4Qz0Yr6aC6>wN z5;va|Am|$(An5b|rV?< zh{P3vd{Kqfu`uitq^{wPMO7Clcl3?IkonRa6(sQ(d_`1uKDAkVYBWU+-EhBhZhM_` z+a2g&8&)3TN#~S~Ij8itb4s{7kj|;agwEQ-V<^5cc?Zegm>|f}rhytC>>fmO^?1D6 z7!o8tTR{*#KL(UtEFlXEJiFK_e4!5@P7jiKtPK)`PY>#h@aZhLD?7`CG50mZz##T3 zNI&l+J3bU3&h|* z+%Xy~aK9_Y8IKt8^hzwm)76RKC!2)PU5OBm*WBKkBXT7IU{dZ7DBRP(U{R?TrbMW^bklRH(EPVD;h=|M0XhX{*8Rts{IO3*pC z{V1Js+jnTiw(mKVibf5A_i!dd$eX>F84$%)ZknRW^4y_0m=s-OTmwIx1pXnUI zB@pF>Kj_?Drms^`KMMYcCLg>L_9gka!fCUaR@0C zqMT&kxhfK=fBfFBEOA$}Arucdv#&b8zSzH91A$oU#Uy@j>B2k7-8eJrkW59lO)=qNb~ zRS1=|EECN1_%T+Ov-CWD_f+aT+X$S-laDjwdSQ%}Y&O|wV84Q3N!4j>1gLnw=|N|l zfHM4}o;Mu>zte4H!zu1`dKz>RZlRrpXSHVJ@wV#4oyNoP9`?^htk&8-VF_!~D-!m; zUQXB{y<_$%&>>zF+CsdbmlO6O8^4CdTtDBZ1Rm5x9UX+dIG$nqK{|cc3i-GSbHwa#t2+$5M6YE zK~4)(@k7yfozwWEistsmM?CwC-kGg0`(r)sG`P2j9fo$Fs!`5bCFQ_*ri7HF`P zD_DKWLOC@FMp0iZuCl%u7||X*z_ifl3f$ny>MbX$*DA0G*3gKF5WCLbTW4EsY{%*g zjwRF3qQ+;8^yL{i0k(0=l!#}TmDqDN?1O0Syo$1^@yg5AGYlVF28(C1*slo>7Qlfu zr~&pM*1>i@pVdZ@9*;3!;_1nzM`qzYaGL(@K`_W)b50uNYC6W~WM6X}WHt^%_+M@@ z48JqVDLTuLi4-v_aX?;elvCs}$Zk1BW|N$v?j~gm%rwa<+Rs6znVcmcEn?;q>u~I1@I~ z>&KjlqNa9-Ncz!Kjg!(Q+hocbF>~o9;0i% z!L=~YVZMx~5q&}&x31zBUU=R_FMNjsq`$InRSgN%Wb@kzUbbCYI`Ibf#%2>;dIO_y zyMgYwfw8#4NKf3r{!#-2*br7r7k!0cUbYh^n*BZIEjiDmD{VZ`N*00t-7F;AS!u1b ztzg+(Y2%(NnFsrOepM*@Zyz>m2%GFs+i>n jafRRP48PMOJd?BVDSb9FcW3CLZP0OSFAaV67LNE22y<_Z diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb index d9ab1c6c3..baa909f6a 100644 --- a/master/_sources/tutorials/audio.ipynb +++ b/master/_sources/tutorials/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index e115c5ace..75ae2441d 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 556c44fbc..beaae4afc 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 0e79f0d34..d5ffa9601 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 6c795d6bb..7dc77d4e3 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index a3b02f334..1a4a14427 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 8ee2a8950..fc9db5400 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index fc1d97f22..706c81957 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 23450f927..721516ba7 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -72,7 +72,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 5467949e5..e808acb06 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 8233fda47..50c822a57 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 4b914bd5f..1d2aa0a6f 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -103,7 +103,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index ce974e38c..92592d9c4 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index 71b3bb363..8f86f675b 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index 8b5988838..eb6d8d903 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index cb1b95cae..6bdbb2cd2 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index 34bb1f0e1..95830c4da 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 57, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 17, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 22, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 81, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 57, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 22, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 80, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 57, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 57, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 22, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 57, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 82, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 80, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 22, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 4, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 57, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 57, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 78, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 4, 5, 10, 38, 40, 42, 44, 57, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 80, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 8, 21, 43, 57, 61, 67, 69, 79, 80, 82, 86, 90], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 8, 29, 50, 57], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 22, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 22, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 57, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 78, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 4, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 22, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 80, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 80, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 4, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 22, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 57, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 78, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 77, 78, 81, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 57, 82], "els": [2, 57, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 80, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 77, 78, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 80, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 14, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": [2, 57], "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 22, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 80, 91, 92], "like": [2, 3, 4, 5, 8, 12, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 80, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 8, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 22, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75, 78], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 80, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 30, 34, 48, 57, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 22, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 57, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 57, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 57, 63, 65, 67, 73, 74, 80, 84, 88, 92], "caus": [2, 35, 40, 74, 75, 80], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 22, 27, 29, 33, 35, 51, 54, 57, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 4, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 78, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 4, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 80, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69, 80], "row": [2, 3, 4, 8, 11, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 57, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 80, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 8, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 22, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 22, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 57, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 8, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53, 80], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 14, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 22, 30, 34, 49, 58, 61, 77, 78, 80, 81, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 14, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 4, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 22, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 57, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 57, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 8, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 57, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 78, 80, 81, 82, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 57, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 57, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 57, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 4, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 77, 78, 80, 81, 87, 90, 93], "deploi": [2, 61, 77, 78, 80, 81], "care": [2, 8, 30, 34, 61, 78, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 80, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 77, 78, 81, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 80, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 57, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61, 80], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 80, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69, 80], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 80, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 57, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 77, 78, 81, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 8, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 77, 78, 80, 81, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 4, 12, 14, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 4, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 80, 81, 82, 84, 89, 91, 92], "fashion": [3, 4, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 57, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 57, 67, 79], "again": [3, 48, 80, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 22, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 80, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 78, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 78, 79, 80, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 4, 30, 34, 57, 81, 90, 93], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 77, 78, 81, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 57, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 57, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 80, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 78, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 77, 78, 80, 81, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 17, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 80, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 78, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 57, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 80, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 44, 61, 79, 89], "csr": 4, "evenli": 4, "omit": [4, 56, 57, 81, 86], "itself": [4, 30, 34, 86], "three": [4, 8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "indptr": 4, "wise": 4, "start": [4, 5, 8, 30, 31, 34, 71, 77, 85, 93], "th": [4, 39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "ascend": [4, 29, 42, 50, 81, 82], "segment": [4, 63, 65, 66, 83], "reflect": [4, 77, 78, 84, 86, 87, 89, 91, 92], "maintain": 4, "posit": [4, 30, 34, 44, 57, 79, 87], "nearestneighbor": [4, 8, 58, 77, 87], "kneighbors_graph": [4, 77], "illustr": 4, "todens": 4, "second": [4, 40, 42, 44, 57, 59, 74, 80, 82, 93], "duplic": [4, 7, 18, 19, 30, 34, 71, 74, 82], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 86], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 80, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 57, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "mode": [4, 30, 33, 34, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 78, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 80, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75, 78], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74, 78], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 78, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44, 78], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75, 81, 90, 93], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 80, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 8, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75, 78], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 57, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": [7, 80], "iid": [7, 21, 75, 77, 81, 82], "imbal": [7, 18, 53, 58, 59, 75], "null": [7, 18, 75, 78, 81, 82], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 80, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 77, 78, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 57, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 80, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": [8, 78], "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 77, 78, 80, 81, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34, 78], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 57, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 90, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 77, 78, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": [8, 75, 77, 78, 81, 82], "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 80, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 77, 78, 79, 81, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "miss": [8, 22, 30, 34, 44, 54, 56, 75, 77, 78, 80, 81, 82, 86, 89], "pattern": 8, "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 80, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 75, 77, 78, 81, 83], "nullissuemanag": [8, 22], "codeblock": 8, "demonstr": [8, 33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "howev": [8, 30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 79, 81, 84, 86, 90], "fewer": [8, 35, 44, 86], "vice": [8, 50], "versa": [8, 50], "light": [8, 79, 81, 86, 90], "29": [8, 79, 81, 84, 85, 86, 90, 93], "low_inform": [8, 81], "odd_aspect_ratio": [8, 81], "35": [8, 74, 79, 84, 85, 86, 90], "odd_siz": [8, 81], "10": [8, 16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "doc": [8, 30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40, 80], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 80, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34, 57], "At": [14, 57, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 80, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 80, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "median_nn_dist": 16, "near_duplicate_scor": [16, 74, 75, 77, 78, 80, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 80, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 90, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "null_track": 22, "extend": [22, 41, 81, 87, 93], "superclass": 22, "arbitrari": [22, 29, 65, 69, 74, 87, 89], "prompt": 22, "address": [22, 74, 75, 78, 80, 92], "enabl": [22, 34], "null_scor": [22, 75, 78, 81, 82], "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 57, 92, 93], "50": [26, 34, 80, 81, 82, 84, 86, 87, 90], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 57, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73, 80], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 57, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34, 57], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34, 78], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 81, 86, 90], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 80, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 81, 85, 89, 90, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 90, 91], "log_interv": 34, "01": [34, 59, 61, 73, 82, 85, 86, 89, 90, 93], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 84, 85, 86, 89, 90, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 80, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 81, 86, 90, 93], "452": [40, 78], "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 80, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 86, 89, 90], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 81, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 57, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 80, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 80, 84], "crowdlab": [49, 84], "unlabel": [49, 77, 78, 81, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 57, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": [49, 80], "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": [56, 57], "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 80, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "get_average_per_class_confusion_matrix": 57, "num_proc": [57, 81], "intersect": [57, 80], "tp": 57, "fp": 57, "ground": [57, 79, 82, 84, 89], "truth": [57, 82, 84, 89], "strength": 57, "bias": 57, "avg_metr": 57, "distionari": 57, "95": [57, 67, 69, 75, 77, 79, 82, 89, 90], "calculate_per_class_metr": 57, "per_class_metr": 57, "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 78, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 81, 89, 90], "02": [69, 74, 75, 81, 82, 86, 89, 90], "03": [69, 79, 82, 86, 90, 93], "04": [69, 81, 86, 89, 90], "08": [69, 78, 82, 86, 90, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 78, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 77, 78, 81, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 80, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 77, 78, 80, 81, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 77, 78, 80, 81], "platform": [71, 77, 78, 80, 81], "automl": [71, 80], "foundat": 71, "smart": [71, 77, 78, 80, 81], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86, 90], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 81, 82, 84, 86, 90], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 79, 80, 82, 86, 90, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86, 90], "56918": 73, "19": [73, 78, 79, 80, 81, 82, 87, 89, 90, 92, 93], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 81, 82, 86, 87, 89, 90, 92], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 80, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 90, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 81, 82, 86, 90], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": 74, "77": [74, 75, 77, 86, 90, 91], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81, 90], "014826": 74, "107": [74, 75, 82, 85], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "6160": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 80, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "000002": [74, 75], "463180e": [74, 75], "07": [74, 75, 82, 86, 90], "51": [74, 75, 77, 79, 82, 86, 90], "161148": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "300": [74, 84, 93], "userwarn": [74, 75], "330": [74, 81, 86], "309": 74, "34": [74, 79, 81, 82, 84, 86, 87, 90, 93], "54": [74, 79, 82, 86, 90], "039117": 74, "53": [74, 75, 77, 79, 81, 85, 86, 90, 91], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 82, 86, 90, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79, 90, 93], "169462": 74, "109": [74, 79, 86], "194566": 74, "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 86, 90, 93], "169820": 74, "087324e": 74, "89": [74, 77, 86, 89, 90], "92": [74, 82, 86, 90, 91], "259024": 74, "583757e": 74, "91": [74, 86, 90, 92], "346458": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 82, 86, 90], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 90, 91], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 81, 82, 86, 90, 91], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 90, 91], "87": [75, 81, 86, 89, 90, 92], "0000": [75, 78, 79, 81, 82], "is_null_issu": [75, 78, 81, 82], "96": [75, 77, 79, 82, 85, 86, 89, 90], "94": [75, 77, 79, 82, 86, 89, 90, 91], "93": [75, 79, 86, 89, 90, 91, 93], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "522080": 75, "616034": 75, "821750": 75, "betweeen": 75, "859109": 75, "586131": 75, "664083": 75, "970324": 75, "816965": 75, "548979": 75, "641516": 75, "890575": 75, "530924": 75, "622256": 75, "601188": 75, "752776": 75, "499498": 75, "562539": 75, "948362": 75, "090224": 75, "632385": 75, "746763": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": [75, 78], "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 90, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 81, 82, 86, 90, 91], "78": [77, 79, 81, 82, 86, 89, 90, 91], "9acca4": [77, 91], "48": [77, 79, 82, 86, 90, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 78, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 81, 82, 86, 90], "941": 77, "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "6165": 77, "582": 77, "185": [77, 79, 86, 93], "187": [77, 79], "27": [77, 79, 82, 86, 90, 93], "898": 77, "637": [77, 91], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "393": 77, "156217": 77, "391": 77, "806": 77, "805": 77, "156": [77, 82], "na": [77, 78, 81, 82, 84], "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 85, 86, 89, 90], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 89, 90], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "690": 77, "246": [77, 86], "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 86, 89, 90], "wari": [77, 78, 80], "super": [77, 78, 81], "system": [77, 78, 81, 90], "intent": [78, 92], "servic": [78, 80, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "getting_spare_card": [78, 92], "card_payment_fee_charg": [78, 92], "visa_or_mastercard": [78, 92], "apple_pay_or_google_pai": [78, 92], "card_about_to_expir": [78, 92], "lost_or_stolen_phon": [78, 92], "beneficiary_not_allow": [78, 92], "change_pin": [78, 92], "supported_cards_and_curr": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 80, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86, 90, 93], "41": [78, 79, 86, 89, 90], "38": [78, 79, 86, 90], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "6070": 78, "160": [78, 82], "095724": 78, "148": 78, "006237": 78, "546": 78, "099340": 78, "514": 78, "006485": 78, "481": 78, "123416": 78, "008165": 78, "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 81, 82, 84, 86, 90], "575507": 78, "575874": 78, "658": 78, "659": [78, 89], "660": 78, "661": 78, "0800": 78, "454": 78, "453": 78, "455": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "strongli": 78, "p_valu": 78, "benign": 78, "shortlist": [78, 89, 92], "curat": [78, 83], "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": [79, 80], "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 80, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": [79, 81, 90], "002216": 79, "000974": 79, "59": [79, 81, 86, 90], "88": [79, 81, 82, 85, 86, 89, 90], "000873": 79, "000739": 79, "79": [79, 86, 90, 91], "32635": 79, "32636": 79, "47": [79, 81, 86, 90], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 90, 93], "44": [79, 85, 86, 90], "71": [79, 82, 86, 90], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86], "98": [79, 80, 89, 90], "452381": 79, "459770": 79, "72": [79, 82, 85, 89, 90], "523364": 79, "460784": 79, "446602": 79, "57": [79, 81, 82, 90], "68": [79, 81, 82, 86, 90, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 90, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 90, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 81, 82, 86, 90], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "unexpectedli": 80, "emphas": 80, "especi": [80, 81, 89, 91, 92], "crucial": 80, "merge_duplicate_set": 80, "merge_kei": 80, "construct_group_kei": 80, "merged_set": 80, "consolidate_set": 80, "tolist": [80, 85], "issubset": 80, "frozenset": 80, "sets_list": 80, "mutabl": 80, "new_set": 80, "current_set": 80, "intersecting_set": 80, "lowest_score_strategi": 80, "sub_df": 80, "idxmin": 80, "filter_near_dupl": 80, "strategy_fn": 80, "strategy_kwarg": 80, "duplicate_row": 80, "group_kei": 80, "to_keep_indic": 80, "groupbi": 80, "explod": 80, "to_remov": 80, "isin": [80, 87], "kept": 80, "near_duplicate_issu": [80, 81], "ids_to_remove_seri": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "profession": 80, "expert": 80, "60": [81, 82, 90], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "674": 81, "331": 81, "310": 81, "384": 81, "stderr": [81, 90], "sphinxverbatim": [81, 90, 93], "84it": [81, 90], "55it": [81, 90], "60it": [81, 90], "59it": [81, 90], "91it": [81, 90], "51it": [81, 90], "92it": [81, 90], "75it": [81, 90], "96it": [81, 90], "98it": [81, 90], "85": [81, 86, 89, 90], "69": [81, 82, 89, 90], "76it": [81, 90], "52it": [81, 90], "492": 81, "085": 81, "606": 81, "290": [81, 86], "416": 81, "40it": [81, 90], "46it": [81, 90], "29it": [81, 90], "62": [81, 82, 86, 89, 90], "63": [81, 82, 86, 90], "62it": [81, 90], "01it": 81, "37it": [81, 90], "72it": [81, 90], "03it": [81, 90], "19it": [81, 90], "35it": [81, 90], "14it": [81, 90], "476": 81, "305": [81, 89], "563": 81, "328": [81, 86], "335": 81, "317": [81, 86], "06it": [81, 90], "50it": [81, 90], "48it": [81, 90], "80it": [81, 90], "53it": [81, 90], "64it": [81, 90], "87it": 81, "73it": [81, 90], "44it": [81, 90], "reorder": 81, "vision": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "6294": 81, "30659": 81, "000798": 81, "30968": 81, "000015": 81, "258": 81, "000907": 81, "9762": 81, "54565": 81, "47139": 81, "000017": 81, "001423": 81, "000026": 81, "39992": 81, "39993": 81, "39994": 81, "39995": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "13732": 81, "13733": 81, "13734": 81, "47635": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86], "109420": 82, "111687": 82, "115403": 82, "6120": 82, "023714": 82, "007136": 82, "119": [82, 86], "107266": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "119505": 82, "236": [82, 86], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "158": 82, "159": [82, 85, 86], "161": 82, "1960": 82, "196": [82, 86], "223": [82, 86], "221": 82, "219": [82, 86], "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 90, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 90, 93], "76": [82, 85, 86, 89, 90, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "170": 82, "214": 82, "164": [82, 85, 93], "198": [82, 86], "191": [82, 86], "121": [82, 92], "117": [82, 89], "206": [82, 86], "115": [82, 86, 93], "193": 82, "194": 82, "201": [82, 86], "174": 82, "163": 82, "150": [82, 84, 86], "169": 82, "151": [82, 86], "168": 82, "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "172": [82, 85], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86, 90], "275": 85, "267": 85, "171": 85, "234": 85, "165": 85, "227": [85, 86], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86], "216": [85, 86, 93], "265": 85, "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": 86, "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 90, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": [86, 93], "323": 86, "327": 86, "226": 86, "228": 86, "232": 86, "239": 86, "240": 86, "209": 86, "242": 86, "202": [86, 93], "230": 86, "215": 86, "220": 86, "229": 86, "217": 86, "237": 86, "207": 86, "204": 86, "205": 86, "153": 86, "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "297": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": 86, "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "367": 89, "560": 89, "318": 89, "688": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997817": 90, "17030": 90, "170283": 90, "11it": 90, "34264": 90, "171485": 90, "88it": 90, "51459": 90, "171690": 90, "77it": 90, "68798": 90, "172355": 90, "31it": 90, "86035": 90, "172354": 90, "103290": 90, "172417": 90, "120703": 90, "172972": 90, "138001": 90, "172728": 90, "16it": 90, "155274": 90, "172330": 90, "12it": 90, "172583": 90, "172560": 90, "189950": 90, "172896": 90, "33it": 90, "207377": 90, "173308": 90, "224727": 90, "173361": 90, "26it": 90, "242162": 90, "173656": 90, "66it": 90, "259598": 90, "173865": 90, "277065": 90, "174102": 90, "294502": 90, "174179": 90, "23it": 90, "311920": 90, "173530": 90, "42it": 90, "329316": 90, "173655": 90, "30it": 90, "346687": 90, "173667": 90, "15it": 90, "364055": 90, "173627": 90, "381423": 90, "173638": 90, "78it": 90, "398834": 90, "173775": 90, "416212": 90, "173771": 90, "433590": 90, "173442": 90, "63it": 90, "451024": 90, "173705": 90, "468446": 90, "173855": 90, "02it": 90, "485832": 90, "173762": 90, "18it": 90, "503243": 90, "173861": 90, "520727": 90, "174151": 90, "56it": 90, "538143": 90, "173998": 90, "555543": 90, "173843": 90, "572928": 90, "173780": 90, "39it": 90, "590307": 90, "607678": 90, "173383": 90, "625113": 90, "173668": 90, "642500": 90, "173724": 90, "659873": 90, "173457": 90, "677219": 90, "172924": 90, "694526": 90, "172965": 90, "24it": 90, "711823": 90, "172894": 90, "79it": 90, "729176": 90, "173080": 90, "82it": 90, "746485": 90, "173034": 90, "68it": 90, "763789": 90, "172857": 90, "781271": 90, "173443": 90, "798719": 90, "173750": 90, "95it": 90, "816121": 90, "173827": 90, "43it": 90, "833504": 90, "173400": 90, "850845": 90, "167499": 90, "61it": 90, "868055": 90, "168840": 90, "885319": 90, "169955": 90, "902466": 90, "170400": 90, "94it": 90, "919525": 90, "169551": 90, "936548": 90, "169750": 90, "27it": 90, "953712": 90, "170310": 90, "970942": 90, "170900": 90, "988152": 90, "171255": 90, "1005330": 90, "171410": 90, "1022474": 90, "171375": 90, "10it": 90, "1039638": 90, "171449": 90, "1056785": 90, "170869": 90, "67it": 90, "1073989": 90, "171215": 90, "58it": 90, "1091214": 90, "171520": 90, "1108873": 90, "173035": 90, "1126178": 90, "173017": 90, "1143481": 90, "172777": 90, "34it": 90, "1160760": 90, "172497": 90, "49it": 90, "1178011": 90, "172168": 90, "93it": 90, "1195229": 90, "171842": 90, "38it": 90, "1212414": 90, "171680": 90, "1229583": 90, "171672": 90, "1246751": 90, "171577": 90, "1263909": 90, "170978": 90, "1281008": 90, "170704": 90, "1298079": 90, "170500": 90, "85it": 90, "1315214": 90, "170750": 90, "1332308": 90, "170803": 90, "1349517": 90, "171186": 90, "09it": 90, "1366636": 90, "166974": 90, "1383357": 90, "165352": 90, "54it": 90, "1400601": 90, "167432": 90, "22it": 90, "1417755": 90, "168644": 90, "1434981": 90, "169716": 90, "13it": 90, "1452216": 90, "170497": 90, "47it": 90, "1469393": 90, "170873": 90, "1486659": 90, "171405": 90, "04it": 90, "1503878": 90, "171636": 90, "21it": 90, "1521101": 90, "171810": 90, "1538285": 90, "171554": 90, "86it": 90, "1555442": 90, "171482": 90, "32it": 90, "1572592": 90, "171358": 90, "69it": 90, "1589729": 90, "171312": 90, "1606861": 90, "171261": 90, "1623988": 90, "170981": 90, "1641087": 90, "170445": 90, "1658133": 90, "170120": 90, "99it": 90, "1675146": 90, "170047": 90, "1692384": 90, "170742": 90, "41it": 90, "1709536": 90, "170970": 90, "1726634": 90, "167250": 90, "1743827": 90, "168626": 90, "1761126": 90, "169916": 90, "1778432": 90, "170847": 90, "1795743": 90, "171517": 90, "1813098": 90, "172119": 90, "1830442": 90, "172511": 90, "1847697": 90, "172177": 90, "1864918": 90, "171675": 90, "1882375": 90, "172536": 90, "1899650": 90, "172598": 90, "1916965": 90, "172759": 90, "1934403": 90, "173239": 90, "1951857": 90, "173625": 90, "1969233": 90, "173662": 90, "00it": 90, "1986600": 90, "173510": 90, "89it": 90, "2003989": 90, "173620": 90, "71it": 90, "2021352": 90, "172889": 90, "28it": 90, "2038726": 90, "173140": 90, "08it": 90, "2056041": 90, "173049": 90, "2073347": 90, "172756": 90, "2090709": 90, "173011": 90, "2108068": 90, "173181": 90, "70it": 90, "2125387": 90, "172719": 90, "2142660": 90, "172428": 90, "2159948": 90, "172559": 90, "2177205": 90, "172309": 90, "45it": 90, "2194525": 90, "172572": 90, "65it": 90, "2211921": 90, "172984": 90, "81it": 90, "2229384": 90, "173474": 90, "2246736": 90, "173484": 90, "2264085": 90, "173437": 90, "2281429": 90, "173352": 90, "2298765": 90, "173188": 90, "2316084": 90, "172913": 90, "2333554": 90, "173444": 90, "2351018": 90, "173801": 90, "2368666": 90, "174599": 90, "2386153": 90, "174676": 90, "2403645": 90, "174745": 90, "2421181": 90, "174925": 90, "2438674": 90, "174394": 90, "2456114": 90, "174173": 90, "2473532": 90, "174114": 90, "97it": 90, "2490944": 90, "74it": 90, "2508369": 90, "173973": 90, "2525845": 90, "174206": 90, "2543266": 90, "174161": 90, "2560683": 90, "174022": 90, "2578111": 90, "174097": 90, "2595521": 90, "173869": 90, "07it": 90, "2612909": 90, "173294": 90, "2630242": 90, "173299": 90, "2647637": 90, "173488": 90, "2664987": 90, "173398": 90, "2682372": 90, "173528": 90, "2699726": 90, "173257": 90, "2717059": 90, "173274": 90, "2734428": 90, "173396": 90, "2751845": 90, "2769208": 90, "173567": 90, "2786565": 90, "173300": 90, "2803896": 90, "173040": 90, "2821321": 90, "173399": 90, "2838662": 90, "172859": 90, "2855949": 90, "172569": 90, "83it": 90, "2873207": 90, "172224": 90, "2890430": 90, "172181": 90, "2907649": 90, "171902": 90, "2924840": 90, "171671": 90, "2942008": 90, "171384": 90, "2959147": 90, "170767": 90, "2976284": 90, "170944": 90, "2993383": 90, "170955": 90, "3010479": 90, "170751": 90, "3027555": 90, "169701": 90, "3044709": 90, "170245": 90, "3061914": 90, "170780": 90, "3079054": 90, "170963": 90, "3096212": 90, "171145": 90, "3113415": 90, "3130557": 90, "163730": 90, "3147711": 90, "165993": 90, "3164858": 90, "167595": 90, "36it": 90, "3182091": 90, "168989": 90, "3199280": 90, "169848": 90, "3216488": 90, "170509": 90, "3233615": 90, "170733": 90, "3250701": 90, "170719": 90, "3267782": 90, "170590": 90, "3284892": 90, "170740": 90, "17it": 90, "3301991": 90, "170812": 90, "3319326": 90, "171568": 90, "3336579": 90, "171854": 90, "3353840": 90, "172075": 90, "3371135": 90, "172332": 90, "57it": 90, "3388521": 90, "172784": 90, "3405882": 90, "173027": 90, "3423271": 90, "173281": 90, "3440656": 90, "173448": 90, "3458002": 90, "173131": 90, "3475316": 90, "173016": 90, "3492618": 90, "165765": 90, "3509821": 90, "167583": 90, "3527050": 90, "168961": 90, "3544520": 90, "170652": 90, "3561999": 90, "171875": 90, "3579426": 90, "172585": 90, "3596925": 90, "3614455": 90, "173894": 90, "3632081": 90, "174596": 90, "3649547": 90, "174498": 90, "3667092": 90, "174781": 90, "3684574": 90, "174323": 90, "3702009": 90, "174312": 90, "3719522": 90, "174553": 90, "3736979": 90, "174483": 90, "3754510": 90, "174726": 90, "3772090": 90, "175044": 90, "3789595": 90, "174949": 90, "3807095": 90, "174961": 90, "3824592": 90, "174435": 90, "3842037": 90, "166864": 90, "3859405": 90, "168839": 90, "3876822": 90, "170399": 90, "3894424": 90, "172056": 90, "3911949": 90, "172999": 90, "3929356": 90, "173315": 90, "3946836": 90, "173753": 90, "3964224": 90, "173621": 90, "3981595": 90, "173277": 90, "3998970": 90, "173415": 90, "4016316": 90, "172667": 90, "4033587": 90, "172523": 90, "4050842": 90, "172384": 90, "4068083": 90, "171361": 90, "4085389": 90, "171865": 90, "4102681": 90, "172176": 90, "4120022": 90, "172542": 90, "4137278": 90, "172439": 90, "4154574": 90, "172592": 90, "4171871": 90, "172702": 90, "4189189": 90, "172841": 90, "4206509": 90, "172945": 90, "4223872": 90, "173149": 90, "4241236": 90, "173293": 90, "4258566": 90, "172867": 90, "4275854": 90, "4293140": 90, "172477": 90, "4310389": 90, "172149": 90, "4327605": 90, "172139": 90, "4344830": 90, "172169": 90, "4362076": 90, "172251": 90, "4379302": 90, "171900": 90, "4396523": 90, "171990": 90, "4413723": 90, "171969": 90, "4430938": 90, "172020": 90, "4448169": 90, "172104": 90, "4465473": 90, "172382": 90, "4482712": 90, "172378": 90, "4499970": 90, "172434": 90, "4517217": 90, "172442": 90, "4534462": 90, "172125": 90, "4551698": 90, "172191": 90, "4568918": 90, "172049": 90, "4586146": 90, "172115": 90, "4603359": 90, "172117": 90, "4620571": 90, "172059": 90, "4637778": 90, "171793": 90, "4654966": 90, "171816": 90, "4672149": 90, "4689331": 90, "171560": 90, "20it": 90, "4706520": 90, "171657": 90, "4723686": 90, "167919": 90, "4740781": 90, "168811": 90, "4757868": 90, "169418": 90, "4774923": 90, "4791930": 90, "169843": 90, "4809039": 90, "170212": 90, "4826135": 90, "170433": 90, "4843326": 90, "170871": 90, "4860458": 90, "171002": 90, "4877647": 90, "171266": 90, "4894775": 90, "170862": 90, "4911923": 90, "171043": 90, "4929176": 90, "171486": 90, "4946356": 90, "4963515": 90, "171205": 90, "4980923": 90, "172063": 90, "172102": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54427": 90, "33591": 90, "24645": 90, "21308": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9164": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2024": 93, "2400": 93, "52e0": 93, "1a00": 93, "1069": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "kb": 93, "959": 93, "94k": 93, "19mb": 93, "mb": 93, "directori": 93, "inflat": 93, "241": 93, "17045998": 93, "16m": 93, "octet": 93, "26m": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "calculate_per_class_metrics"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_average_per_class_confusion_matrix"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 80, 81], "non": [8, 78], "iid": [8, 78], "class": [8, 72, 82, 90], "imbal": [8, 17], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "null": [8, 22], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 78, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": [71, 77, 78, 81], "mode": [71, 77, 78, 81], "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "drift": 78, "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "identifi": [80, 86], "run": 80, "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 57, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 17, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 22, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 81, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 57, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 22, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 80, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 57, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 57, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 22, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 57, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 82, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 80, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 22, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 4, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 57, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 57, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 78, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 4, 5, 10, 38, 40, 42, 44, 57, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 80, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 8, 21, 43, 57, 61, 67, 69, 79, 80, 82, 86, 90], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 8, 29, 50, 57], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 22, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 22, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 57, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 78, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 4, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 22, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 80, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 80, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 4, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 22, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 57, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 78, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 77, 78, 81, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 57, 82], "els": [2, 57, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 80, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 77, 78, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 80, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 14, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": [2, 57], "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 22, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 80, 91, 92], "like": [2, 3, 4, 5, 8, 12, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 80, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 8, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 22, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75, 78], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 80, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 30, 34, 48, 57, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 22, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 57, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 57, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 57, 63, 65, 67, 73, 74, 80, 84, 88, 92], "caus": [2, 35, 40, 74, 75, 80], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 22, 27, 29, 33, 35, 51, 54, 57, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 4, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 78, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 4, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 80, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69, 80], "row": [2, 3, 4, 8, 11, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 57, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 80, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 8, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 22, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 22, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 57, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 8, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53, 80], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 14, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 22, 30, 34, 49, 58, 61, 77, 78, 80, 81, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 14, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 4, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 22, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 57, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 57, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 8, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 57, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 78, 80, 81, 82, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 57, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 57, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 57, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 4, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 77, 78, 80, 81, 87, 90, 93], "deploi": [2, 61, 77, 78, 80, 81], "care": [2, 8, 30, 34, 61, 78, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 80, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 77, 78, 81, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 80, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 57, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61, 80], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 80, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69, 80], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 80, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 57, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 77, 78, 81, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 8, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 77, 78, 80, 81, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 4, 12, 14, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 4, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 80, 81, 82, 84, 89, 91, 92], "fashion": [3, 4, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 57, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 57, 67, 79], "again": [3, 48, 80, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 22, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 80, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 78, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 78, 79, 80, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 4, 30, 34, 57, 81, 90, 93], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 77, 78, 81, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 57, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 57, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 80, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 78, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 77, 78, 80, 81, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 17, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 80, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 78, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 57, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 80, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 44, 61, 79, 89], "csr": 4, "evenli": 4, "omit": [4, 56, 57, 81, 86], "itself": [4, 30, 34, 86], "three": [4, 8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "indptr": 4, "wise": 4, "start": [4, 5, 8, 30, 31, 34, 71, 77, 85, 93], "th": [4, 39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "ascend": [4, 29, 42, 50, 81, 82], "segment": [4, 63, 65, 66, 83], "reflect": [4, 77, 78, 84, 86, 87, 89, 91, 92], "maintain": 4, "posit": [4, 30, 34, 44, 57, 79, 87], "nearestneighbor": [4, 8, 58, 77, 87], "kneighbors_graph": [4, 77], "illustr": 4, "todens": 4, "second": [4, 40, 42, 44, 57, 59, 74, 80, 82, 93], "duplic": [4, 7, 18, 19, 30, 34, 71, 74, 82], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 86], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 80, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 57, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "mode": [4, 30, 33, 34, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 78, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 80, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75, 78], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74, 78], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 78, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44, 78], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75, 81, 90, 93], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 80, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 8, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75, 78], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 57, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": [7, 80], "iid": [7, 21, 75, 77, 81, 82], "imbal": [7, 18, 53, 58, 59, 75], "null": [7, 18, 75, 78, 81, 82], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 80, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 77, 78, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 57, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 80, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": [8, 78], "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 77, 78, 80, 81, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34, 78], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 57, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 90, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 77, 78, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": [8, 75, 77, 78, 81, 82], "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 80, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 77, 78, 79, 81, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "miss": [8, 22, 30, 34, 44, 54, 56, 75, 77, 78, 80, 81, 82, 86, 89], "pattern": 8, "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 80, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 75, 77, 78, 81, 83], "nullissuemanag": [8, 22], "codeblock": 8, "demonstr": [8, 33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "howev": [8, 30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 79, 81, 84, 86, 90, 93], "fewer": [8, 35, 44, 86], "vice": [8, 50], "versa": [8, 50], "light": [8, 79, 81, 86, 90], "29": [8, 79, 81, 84, 85, 86, 90, 93], "low_inform": [8, 81], "odd_aspect_ratio": [8, 81], "35": [8, 74, 79, 84, 85, 86, 90], "odd_siz": [8, 81], "10": [8, 16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "doc": [8, 30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40, 80], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 80, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34, 57], "At": [14, 57, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 80, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 80, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "median_nn_dist": 16, "near_duplicate_scor": [16, 74, 75, 77, 78, 80, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 80, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 90, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "null_track": 22, "extend": [22, 41, 81, 87, 93], "superclass": 22, "arbitrari": [22, 29, 65, 69, 74, 87, 89], "prompt": 22, "address": [22, 74, 75, 78, 80, 92], "enabl": [22, 34], "null_scor": [22, 75, 78, 81, 82], "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 57, 92, 93], "50": [26, 34, 80, 82, 84, 86, 87, 90, 93], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 57, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73, 80], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 57, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34, 57], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34, 78], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 81, 86, 90], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 80, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 81, 85, 89, 90, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 90, 91], "log_interv": 34, "01": [34, 59, 61, 73, 81, 82, 85, 86, 89, 90, 93], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 84, 85, 86, 89, 90, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 80, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 81, 86, 90, 93], "452": [40, 78], "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 80, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 86, 89, 90], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 81, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 57, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 80, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 80, 84], "crowdlab": [49, 84], "unlabel": [49, 77, 78, 81, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 57, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": [49, 80], "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": [56, 57], "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 80, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "get_average_per_class_confusion_matrix": 57, "num_proc": [57, 81], "intersect": [57, 80], "tp": 57, "fp": 57, "ground": [57, 79, 82, 84, 89], "truth": [57, 82, 84, 89], "strength": 57, "bias": 57, "avg_metr": 57, "distionari": 57, "95": [57, 67, 69, 75, 77, 79, 82, 89, 90], "calculate_per_class_metr": 57, "per_class_metr": 57, "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 78, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 81, 89, 90], "02": [69, 74, 75, 81, 82, 86, 89, 90], "03": [69, 79, 81, 82, 86, 90, 93], "04": [69, 81, 86, 89, 90], "08": [69, 78, 82, 86, 90, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 78, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 77, 78, 81, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 80, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 77, 78, 80, 81, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 77, 78, 80, 81], "platform": [71, 77, 78, 80, 81], "automl": [71, 80], "foundat": 71, "smart": [71, 77, 78, 80, 81], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86, 90], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 82, 84, 86, 90], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 79, 80, 82, 86, 90, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86, 90, 93], "56918": 73, "19": [73, 78, 79, 80, 81, 82, 87, 89, 90, 92, 93], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 81, 82, 86, 87, 89, 90, 92, 93], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 80, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 90, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 81, 82, 86, 90], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": 74, "77": [74, 75, 77, 86, 90, 91], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81, 90], "014826": 74, "107": [74, 75, 82, 85], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "6160": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 80, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "000002": [74, 75], "463180e": [74, 75], "07": [74, 75, 82, 86, 90], "51": [74, 75, 77, 79, 81, 82, 86, 90], "161148": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "300": [74, 84, 93], "userwarn": [74, 75], "330": [74, 81, 86], "309": 74, "34": [74, 79, 81, 82, 84, 86, 87, 90, 93], "54": [74, 79, 82, 86, 90], "039117": 74, "53": [74, 75, 77, 79, 85, 86, 90, 91], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 82, 86, 90, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79, 90, 93], "169462": 74, "109": [74, 79, 86], "194566": 74, "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 81, 86, 90, 93], "169820": 74, "087324e": 74, "89": [74, 77, 86, 89, 90, 93], "92": [74, 82, 86, 90, 91], "259024": 74, "583757e": 74, "91": [74, 86, 90, 92], "346458": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 81, 82, 86, 90], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 90, 91], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 81, 82, 86, 90, 91], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 90, 91], "87": [75, 81, 86, 89, 90, 92], "0000": [75, 78, 79, 81, 82], "is_null_issu": [75, 78, 81, 82], "96": [75, 77, 79, 82, 85, 86, 89, 90], "94": [75, 77, 79, 82, 86, 89, 90, 91], "93": [75, 79, 86, 89, 90, 91], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "522080": 75, "616034": 75, "821750": 75, "betweeen": 75, "859109": 75, "586131": 75, "664083": 75, "970324": 75, "816965": 75, "548979": 75, "641516": 75, "890575": 75, "530924": 75, "622256": 75, "601188": 75, "752776": 75, "499498": 75, "562539": 75, "948362": 75, "090224": 75, "632385": 75, "746763": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": [75, 78], "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 90, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 81, 82, 86, 90, 91], "78": [77, 79, 82, 86, 89, 90, 91], "9acca4": [77, 91], "48": [77, 79, 81, 82, 86, 90, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 78, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 81, 82, 86, 90], "941": 77, "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "6165": 77, "582": 77, "185": [77, 79, 86], "187": [77, 79], "27": [77, 79, 81, 82, 86, 90, 93], "898": 77, "637": [77, 91], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "393": 77, "156217": 77, "391": 77, "806": 77, "805": 77, "156": [77, 82], "na": [77, 78, 81, 82, 84], "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 85, 86, 89, 90], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 89, 90], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "690": 77, "246": [77, 86], "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 86, 89, 90], "wari": [77, 78, 80], "super": [77, 78, 81], "system": [77, 78, 81, 90], "intent": [78, 92], "servic": [78, 80, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "lost_or_stolen_phon": [78, 92], "change_pin": [78, 92], "getting_spare_card": [78, 92], "card_about_to_expir": [78, 92], "card_payment_fee_charg": [78, 92], "supported_cards_and_curr": [78, 92], "apple_pay_or_google_pai": [78, 92], "visa_or_mastercard": [78, 92], "beneficiary_not_allow": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 80, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86, 90], "41": [78, 79, 86, 89, 90], "38": [78, 79, 86, 90], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "6070": 78, "160": [78, 82], "095724": 78, "148": 78, "006237": 78, "546": 78, "099340": 78, "514": 78, "006485": 78, "481": 78, "123416": 78, "008165": 78, "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 82, 84, 86, 90], "575507": 78, "575874": 78, "658": 78, "659": [78, 89], "660": 78, "661": 78, "0800": 78, "454": 78, "453": 78, "455": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "strongli": 78, "p_valu": 78, "benign": 78, "shortlist": [78, 89, 92], "curat": [78, 83], "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": [79, 80], "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 80, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": [79, 81, 90], "002216": 79, "000974": 79, "59": [79, 81, 86, 90], "88": [79, 81, 82, 85, 86, 89, 90], "000873": 79, "000739": 79, "79": [79, 86, 90, 91], "32635": 79, "32636": 79, "47": [79, 86, 90], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 90, 93], "44": [79, 85, 86, 90, 93], "71": [79, 82, 86, 90], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": [79, 93], "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86, 93], "98": [79, 80, 89, 90, 93], "452381": 79, "459770": 79, "72": [79, 82, 85, 89, 90, 93], "523364": 79, "460784": 79, "446602": 79, "57": [79, 82, 90], "68": [79, 81, 82, 86, 90, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 90, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 90, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 81, 82, 86, 90], "7532": 79, "532": [79, 81], "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82, 93], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "unexpectedli": 80, "emphas": 80, "especi": [80, 81, 89, 91, 92], "crucial": 80, "merge_duplicate_set": 80, "merge_kei": 80, "construct_group_kei": 80, "merged_set": 80, "consolidate_set": 80, "tolist": [80, 85], "issubset": 80, "frozenset": 80, "sets_list": 80, "mutabl": 80, "new_set": 80, "current_set": 80, "intersecting_set": 80, "lowest_score_strategi": 80, "sub_df": 80, "idxmin": 80, "filter_near_dupl": 80, "strategy_fn": 80, "strategy_kwarg": 80, "duplicate_row": 80, "group_kei": 80, "to_keep_indic": 80, "groupbi": 80, "explod": 80, "to_remov": 80, "isin": [80, 87], "kept": 80, "near_duplicate_issu": [80, 81], "ids_to_remove_seri": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "profession": 80, "expert": 80, "60": [81, 82, 90], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "947": 81, "331": 81, "310": 81, "570": 81, "stderr": [81, 90], "sphinxverbatim": [81, 90, 93], "23it": [81, 90], "75it": [81, 90], "12it": [81, 90], "62": [81, 82, 86, 89, 90], "51it": [81, 90], "98it": [81, 90], "04it": [81, 90], "34it": [81, 90], "94it": [81, 90], "63": [81, 82, 86, 90], "492": 81, "085": 81, "617": 81, "290": [81, 86], "49it": [81, 90], "06it": [81, 90], "57it": [81, 90], "56it": [81, 90], "85": [81, 86, 89, 90], "17it": [81, 90], "92it": [81, 90], "79it": [81, 90], "43it": [81, 90], "69": [81, 82, 89, 90], "31it": [81, 90], "476": 81, "305": [81, 89], "673": 81, "328": [81, 86], "335": 81, "412": 81, "84it": [81, 90], "25it": 81, "86it": [81, 90], "99it": 81, "41it": [81, 90], "97it": [81, 90], "45it": [81, 90], "80it": [81, 90], "61it": [81, 90], "36it": [81, 90], "reorder": 81, "vision": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "6294": 81, "30659": 81, "000798": 81, "30968": 81, "000015": 81, "258": 81, "000907": 81, "9762": 81, "54565": 81, "47139": 81, "000017": 81, "001423": 81, "000026": 81, "39992": 81, "39993": 81, "39994": 81, "39995": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "13732": 81, "13733": 81, "13734": 81, "47635": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86, 93], "109420": 82, "111687": 82, "115403": 82, "6120": 82, "023714": 82, "007136": 82, "119": [82, 86], "107266": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "119505": 82, "236": [82, 86], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "158": 82, "159": [82, 85, 86], "161": 82, "1960": 82, "196": [82, 86], "223": [82, 86], "221": 82, "219": [82, 86], "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 90, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 90, 93], "76": [82, 85, 86, 89, 90, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "170": 82, "214": 82, "164": [82, 85], "198": [82, 86], "191": [82, 86], "121": [82, 92], "117": [82, 89, 93], "206": [82, 86], "115": [82, 86], "193": 82, "194": 82, "201": [82, 86], "174": 82, "163": 82, "150": [82, 84, 86], "169": 82, "151": [82, 86], "168": 82, "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "172": [82, 85], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86, 90], "275": 85, "267": 85, "171": 85, "234": 85, "165": 85, "227": [85, 86], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86, 93], "216": [85, 86, 93], "265": 85, "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": 86, "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 90, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": 86, "323": 86, "327": 86, "226": 86, "228": 86, "232": 86, "239": 86, "240": 86, "209": 86, "242": 86, "202": 86, "230": 86, "215": 86, "220": [86, 93], "229": 86, "217": [86, 93], "237": 86, "207": 86, "204": 86, "205": 86, "153": 86, "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "297": 86, "317": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": 86, "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "367": 89, "560": 89, "318": 89, "688": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997817": 90, "16189": 90, "161877": 90, "03it": 90, "33029": 90, "165708": 90, "49888": 90, "167015": 90, "95it": 90, "66952": 90, "168441": 90, "28it": 90, "83891": 90, "168780": 90, "39it": 90, "100770": 90, "168702": 90, "89it": 90, "118039": 90, "170001": 90, "33it": 90, "135252": 90, "170676": 90, "15it": 90, "152439": 90, "171045": 90, "14it": 90, "169622": 90, "171284": 90, "186846": 90, "171573": 90, "65it": 90, "204004": 90, "171428": 90, "93it": 90, "221325": 90, "171964": 90, "32it": 90, "238636": 90, "172304": 90, "18it": 90, "255867": 90, "172233": 90, "47it": 90, "273426": 90, "173240": 90, "291001": 90, "173991": 90, "308542": 90, "174415": 90, "326045": 90, "174596": 90, "343576": 90, "174806": 90, "361057": 90, "174198": 90, "378495": 90, "174250": 90, "05it": 90, "395921": 90, "174021": 90, "413363": 90, "174135": 90, "91it": 90, "430821": 90, "174265": 90, "448248": 90, "174223": 90, "58it": 90, "465671": 90, "173660": 90, "483038": 90, "173128": 90, "500503": 90, "173579": 90, "78it": 90, "518016": 90, "174040": 90, "42it": 90, "535433": 90, "174075": 90, "552919": 90, "174307": 90, "13it": 90, "570351": 90, "174176": 90, "26it": 90, "587769": 90, "173786": 90, "605148": 90, "173355": 90, "73it": 90, "622484": 90, "173151": 90, "44it": 90, "639867": 90, "173350": 90, "657203": 90, "173280": 90, "674532": 90, "172580": 90, "11it": 90, "691805": 90, "172621": 90, "709172": 90, "172932": 90, "10it": 90, "726466": 90, "172541": 90, "77it": 90, "743745": 90, "172613": 90, "85it": 90, "761122": 90, "172954": 90, "778552": 90, "173352": 90, "795954": 90, "173549": 90, "813455": 90, "173984": 90, "83it": 90, "830888": 90, "174084": 90, "848402": 90, "174399": 90, "35it": 90, "865900": 90, "174568": 90, "883357": 90, "174329": 90, "22it": 90, "900791": 90, "171262": 90, "50it": 90, "918219": 90, "172152": 90, "935654": 90, "172802": 90, "62it": 90, "953012": 90, "173031": 90, "970321": 90, "172399": 90, "52it": 90, "987638": 90, "172626": 90, "1004904": 90, "172474": 90, "1022154": 90, "171681": 90, "74it": 90, "1039376": 90, "171839": 90, "1056759": 90, "172430": 90, "29it": 90, "1074004": 90, "171778": 90, "1091577": 90, "1109070": 90, "173541": 90, "63it": 90, "1126616": 90, "174112": 90, "1144169": 90, "174533": 90, "1161733": 90, "174862": 90, "87it": 90, "1179220": 90, "174416": 90, "81it": 90, "1196663": 90, "173928": 90, "1214075": 90, "173979": 90, "1231479": 90, "173993": 90, "48it": 90, "1248879": 90, "173820": 90, "38it": 90, "1266262": 90, "173714": 90, "1283634": 90, "173379": 90, "1300973": 90, "173158": 90, "20it": 90, "1318289": 90, "172363": 90, "1335527": 90, "171954": 90, "1352723": 90, "171370": 90, "72it": 90, "1369861": 90, "170869": 90, "1387142": 90, "171443": 90, "1404406": 90, "171796": 90, "08it": 90, "1421587": 90, "171442": 90, "1438732": 90, "171120": 90, "1456010": 90, "171612": 90, "1473172": 90, "171568": 90, "1490330": 90, "171562": 90, "1507626": 90, "171978": 90, "1524858": 90, "172079": 90, "01it": 90, "1542067": 90, "171862": 90, "1559254": 90, "171254": 90, "1576380": 90, "171010": 90, "1593482": 90, "170789": 90, "1610562": 90, "170689": 90, "53it": 90, "1627726": 90, "170970": 90, "1644824": 90, "1661892": 90, "169213": 90, "1678929": 90, "169555": 90, "1696085": 90, "170150": 90, "16it": 90, "1713243": 90, "170573": 90, "37it": 90, "1730335": 90, "170675": 90, "30it": 90, "1747404": 90, "170542": 90, "54it": 90, "1764459": 90, "170051": 90, "1781479": 90, "170090": 90, "90it": 90, "1798489": 90, "169783": 90, "1815547": 90, "170019": 90, "1832660": 90, "170348": 90, "1849696": 90, "169577": 90, "1866737": 90, "169825": 90, "1884232": 90, "171353": 90, "1901620": 90, "172106": 90, "00it": 90, "1918993": 90, "172590": 90, "1936537": 90, "173440": 90, "88it": 90, "1953974": 90, "173715": 90, "1971386": 90, "173833": 90, "1988770": 90, "173488": 90, "2006120": 90, "172896": 90, "2023518": 90, "173217": 90, "07it": 90, "2040841": 90, "173166": 90, "2058158": 90, "173111": 90, "2075553": 90, "173357": 90, "2092890": 90, "173175": 90, "09it": 90, "2110208": 90, "173030": 90, "2127526": 90, "173071": 90, "2144834": 90, "172965": 90, "2162131": 90, "172767": 90, "2179408": 90, "172627": 90, "2196671": 90, "172009": 90, "2213873": 90, "171856": 90, "2231266": 90, "172472": 90, "2248661": 90, "172911": 90, "2265953": 90, "172668": 90, "2283239": 90, "172721": 90, "2300512": 90, "169663": 90, "96it": 90, "2317491": 90, "166427": 90, "2334740": 90, "168201": 90, "2352108": 90, "169816": 90, "2369227": 90, "170221": 90, "2386573": 90, "171180": 90, "2403941": 90, "171923": 90, "46it": 90, "2421140": 90, "171864": 90, "2438350": 90, "171930": 90, "2455727": 90, "172477": 90, "67it": 90, "2473150": 90, "172998": 90, "2490452": 90, "172643": 90, "71it": 90, "2507718": 90, "172543": 90, "2524974": 90, "172176": 90, "2542193": 90, "171800": 90, "2559374": 90, "171579": 90, "2576661": 90, "171963": 90, "2593942": 90, "172210": 90, "2611219": 90, "172376": 90, "2628457": 90, "171486": 90, "2645642": 90, "171591": 90, "2662803": 90, "164162": 90, "66it": 90, "2679891": 90, "166106": 90, "2697075": 90, "167781": 90, "2714306": 90, "169115": 90, "2731781": 90, "170784": 90, "2749160": 90, "171675": 90, "2766389": 90, "171854": 90, "59it": 90, "2783587": 90, "171876": 90, "2800902": 90, "172253": 90, "2818324": 90, "172839": 90, "2835735": 90, "173216": 90, "2853182": 90, "173589": 90, "82it": 90, "2870746": 90, "174201": 90, "24it": 90, "2888168": 90, "173871": 90, "2905557": 90, "173528": 90, "2922948": 90, "173640": 90, "2940313": 90, "173147": 90, "70it": 90, "2957629": 90, "172809": 90, "2974912": 90, "172811": 90, "02it": 90, "2992194": 90, "172710": 90, "3009466": 90, "165245": 90, "3026801": 90, "167597": 90, "3044003": 90, "168890": 90, "3061475": 90, "170609": 90, "3078986": 90, "171941": 90, "3096272": 90, "172211": 90, "3113510": 90, "171974": 90, "3130805": 90, "172262": 90, "3148251": 90, "172917": 90, "3165695": 90, "173369": 90, "3183236": 90, "173976": 90, "3200637": 90, "166819": 90, "3217766": 90, "168117": 90, "3235051": 90, "169502": 90, "3252168": 90, "169989": 90, "3269267": 90, "170282": 90, "3286504": 90, "170900": 90, "3303692": 90, "171187": 90, "3320858": 90, "171324": 90, "3338125": 90, "171723": 90, "21it": 90, "3355304": 90, "171741": 90, "3372561": 90, "171984": 90, "3389762": 90, "171430": 90, "3406908": 90, "171426": 90, "3424053": 90, "170738": 90, "3441129": 90, "170439": 90, "3458175": 90, "169950": 90, "3475171": 90, "169692": 90, "3492236": 90, "169974": 90, "3509235": 90, "169582": 90, "3526194": 90, "169482": 90, "3543143": 90, "166798": 90, "3560313": 90, "168245": 90, "3577540": 90, "169439": 90, "3594553": 90, "169641": 90, "3611768": 90, "170386": 90, "3628884": 90, "170615": 90, "3646088": 90, "171040": 90, "3663264": 90, "171253": 90, "3680485": 90, "171536": 90, "3697640": 90, "171259": 90, "3714767": 90, "170289": 90, "3732116": 90, "171240": 90, "3749326": 90, "171495": 90, "3766621": 90, "171929": 90, "3783902": 90, "172191": 90, "3801122": 90, "172005": 90, "3818365": 90, "172128": 90, "3835579": 90, "171914": 90, "3852833": 90, "172099": 90, "3870059": 90, "172144": 90, "3887319": 90, "172276": 90, "3904615": 90, "172476": 90, "3922007": 90, "172904": 90, "3939387": 90, "173170": 90, "3956846": 90, "173593": 90, "3974368": 90, "174078": 90, "3991776": 90, "173588": 90, "4009136": 90, "173547": 90, "4026541": 90, "173693": 90, "4043911": 90, "173453": 90, "4061350": 90, "173730": 90, "4078781": 90, "173898": 90, "4096172": 90, "173753": 90, "4113549": 90, "173755": 90, "4130971": 90, "173892": 90, "4148398": 90, "174002": 90, "4165799": 90, "174000": 90, "4183281": 90, "174242": 90, "4200706": 90, "174106": 90, "4218117": 90, "173940": 90, "4235512": 90, "173443": 90, "4252857": 90, "170649": 90, "4270099": 90, "171171": 90, "60it": 90, "4287535": 90, "172116": 90, "4304753": 90, "171652": 90, "64it": 90, "4321923": 90, "171133": 90, "4339088": 90, "171280": 90, "4356310": 90, "171556": 90, "4373468": 90, "171134": 90, "4390583": 90, "170421": 90, "4407627": 90, "170280": 90, "4424754": 90, "170570": 90, "4441812": 90, "170547": 90, "4459092": 90, "171217": 90, "4476226": 90, "4493352": 90, "170524": 90, "4510483": 90, "170755": 90, "4527595": 90, "170861": 90, "4544870": 90, "171424": 90, "4562041": 90, "171505": 90, "4579192": 90, "171383": 90, "4596361": 90, "171473": 90, "4613605": 90, "171760": 90, "4630782": 90, "171355": 90, "4647918": 90, "170602": 90, "4664980": 90, "170578": 90, "4682039": 90, "170360": 90, "4699140": 90, "170549": 90, "4716353": 90, "171017": 90, "4733542": 90, "171276": 90, "4750670": 90, "170340": 90, "40it": 90, "4767706": 90, "163127": 90, "4785073": 90, "166182": 90, "4802335": 90, "168064": 90, "55it": 90, "4819387": 90, "168784": 90, "4836515": 90, "169520": 90, "4853724": 90, "4871150": 90, "171463": 90, "19it": 90, "4888309": 90, "171188": 90, "4905437": 90, "170805": 90, "4922524": 90, "4939729": 90, "171065": 90, "4956839": 90, "164371": 90, "4973835": 90, "165997": 90, "4991073": 90, "167868": 90, "171653": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54427": 90, "33591": 90, "24645": 90, "21308": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9164": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2024": 93, "2400": 93, "52e0": 93, "1a01": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "kb": 93, "959": 93, "94k": 93, "37mb": 93, "mb": 93, "directori": 93, "inflat": 93, "17045998": 93, "16m": 93, "octet": 93, "32k": 93, "555kb": 93, "06m": 93, "51mb": 93, "24m": 93, "4mb": 93, "98m": 93, "9mb": 93, "26m": 93, "1mb": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "calculate_per_class_metrics"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_average_per_class_confusion_matrix"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 80, 81], "non": [8, 78], "iid": [8, 78], "class": [8, 72, 82, 90], "imbal": [8, 17], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "null": [8, 22], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 78, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": [71, 77, 78, 81], "mode": [71, 77, 78, 81], "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "drift": 78, "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "identifi": [80, 86], "run": 80, "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index bf1e91e57..b3126ea64 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1495,7 +1495,7 @@

5. Use cleanlab to find label issues -{"state": {"df669b30fcd04ee4974fd952553f376e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9b2afdf832394f58976ee58105fc9ac4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3c821907cbd14c19a78c25554493358d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_df669b30fcd04ee4974fd952553f376e", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9b2afdf832394f58976ee58105fc9ac4", "value": 2041.0}}, "f3bc5d140a7b4411a598d2ef76421a6a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8c44830cf4a14c1bbbf2a49980b485d8": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "fb7be2fc3b524b408dacb3a4ba1dfb8f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f3bc5d140a7b4411a598d2ef76421a6a", "placeholder": "\u200b", "style": "IPY_MODEL_8c44830cf4a14c1bbbf2a49980b485d8", "value": "hyperparams.yaml: 100%"}}, "f781d9e0307c483fb140677b5258e2d6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "460394fe32074436800a43db6ccac64e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "294a8ffab7f44974b28a07ffbb94882f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f781d9e0307c483fb140677b5258e2d6", "placeholder": "\u200b", "style": "IPY_MODEL_460394fe32074436800a43db6ccac64e", "value": " 2.04k/2.04k [00:00<00:00, 324kB/s]"}}, "920a9387b971454687a4403592f0c76e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c17f3317dc9f4e41b15f0c9f0afcb7f9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fb7be2fc3b524b408dacb3a4ba1dfb8f", "IPY_MODEL_3c821907cbd14c19a78c25554493358d", "IPY_MODEL_294a8ffab7f44974b28a07ffbb94882f"], "layout": "IPY_MODEL_920a9387b971454687a4403592f0c76e"}}, "c5a3fe8fa0d848ec9ec188729948a377": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3454223caf744f1fbf4c19967e38db8f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "284824c022eb47e9a33898e1ecf7dda3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c5a3fe8fa0d848ec9ec188729948a377", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3454223caf744f1fbf4c19967e38db8f", "value": 16887676.0}}, "c2ce8e57fdb04b0798a6c4c16ae3467f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "34b1268d4de040f2a5a31699ef1ede5c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "68fc1f991eb44edba2fc5bfe6e6edfd6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c2ce8e57fdb04b0798a6c4c16ae3467f", "placeholder": "\u200b", "style": "IPY_MODEL_34b1268d4de040f2a5a31699ef1ede5c", "value": "embedding_model.ckpt: 100%"}}, "e454c1f736c9495aa3bedadf94b43954": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48fb5229f100484292916171f30a77b5": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "93ffb5dd7879400f9e7f477b93c509d0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e454c1f736c9495aa3bedadf94b43954", "placeholder": "\u200b", "style": "IPY_MODEL_48fb5229f100484292916171f30a77b5", "value": " 16.9M/16.9M [00:00<00:00, 177MB/s]"}}, "d905e22f02584b999d73cc80ffee0110": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6902ffa71e7d475d9583c90ce2b2f911": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_68fc1f991eb44edba2fc5bfe6e6edfd6", "IPY_MODEL_284824c022eb47e9a33898e1ecf7dda3", "IPY_MODEL_93ffb5dd7879400f9e7f477b93c509d0"], "layout": "IPY_MODEL_d905e22f02584b999d73cc80ffee0110"}}, "c0dfa3473ed64fa7a0044c0f437a6ff5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2177d9eef2d14179bdab4a9fd9c1b915": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6bbd465e2f4046028edaa5e0082d76af": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c0dfa3473ed64fa7a0044c0f437a6ff5", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2177d9eef2d14179bdab4a9fd9c1b915", "value": 3201.0}}, "a452c26c8935444495eef8eccd537821": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0074814fbf264ac4a04bdeb51abcaab2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "df30265328c142b1849ba3ca47b68fe7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a452c26c8935444495eef8eccd537821", "placeholder": "\u200b", "style": "IPY_MODEL_0074814fbf264ac4a04bdeb51abcaab2", "value": "mean_var_norm_emb.ckpt: 100%"}}, "6c17a0abb12f4f9a9c6a52271fe66768": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb2c0bd27a2c4c5ba243a7e72cb1d8aa": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e2aba32a91bf4f9dabd9e25f75f60e37": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6c17a0abb12f4f9a9c6a52271fe66768", "placeholder": "\u200b", "style": "IPY_MODEL_fb2c0bd27a2c4c5ba243a7e72cb1d8aa", "value": " 3.20k/3.20k [00:00<00:00, 575kB/s]"}}, "bdf1d068064c4e37bf3b0a036bd0710a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "02d54a93c71f4717b776780ee1334673": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_df30265328c142b1849ba3ca47b68fe7", "IPY_MODEL_6bbd465e2f4046028edaa5e0082d76af", "IPY_MODEL_e2aba32a91bf4f9dabd9e25f75f60e37"], "layout": "IPY_MODEL_bdf1d068064c4e37bf3b0a036bd0710a"}}, "938e795c39e94f739123942e85645be6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "447ff7ecb3fc411ea934e0d55e5af3d8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f234f92a2ce2467bbaad67f8d5d7ec2b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_938e795c39e94f739123942e85645be6", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_447ff7ecb3fc411ea934e0d55e5af3d8", "value": 15856877.0}}, "9b85abadb14148da809553593daf41d5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a82707d6cf75449fa0bcd2b98e10b3a2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "541e0c9185044d10b9df997de483919d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9b85abadb14148da809553593daf41d5", "placeholder": "\u200b", "style": "IPY_MODEL_a82707d6cf75449fa0bcd2b98e10b3a2", "value": "classifier.ckpt: 100%"}}, "8e622334e195432cbba4e4d65e702507": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "41828383ccc742919bc29139a2ba5bd6": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "5d6a6ab20b864187a3b7662c9dc5a7ff": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8e622334e195432cbba4e4d65e702507", "placeholder": "\u200b", "style": "IPY_MODEL_41828383ccc742919bc29139a2ba5bd6", "value": " 15.9M/15.9M [00:00<00:00, 296MB/s]"}}, "05a419d84fc2472b8d03ecb51099197a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cadb95e2bbdd4166b848cf44e71b2139": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_541e0c9185044d10b9df997de483919d", "IPY_MODEL_f234f92a2ce2467bbaad67f8d5d7ec2b", "IPY_MODEL_5d6a6ab20b864187a3b7662c9dc5a7ff"], "layout": "IPY_MODEL_05a419d84fc2472b8d03ecb51099197a"}}, "4ec51dfd68c34f43aec5b39ee7b3b771": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2059403b3c141c78b7dea525b593b9c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6ea830a76c164f35aa74845442e1a10d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4ec51dfd68c34f43aec5b39ee7b3b771", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e2059403b3c141c78b7dea525b593b9c", "value": 128619.0}}, "ab34cc856bad403f9cdba111f873a306": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8626655c6a774bc6a315f1cad23adca2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b7b112df9d2e4aec93edbbc0d3c2d932": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ab34cc856bad403f9cdba111f873a306", "placeholder": "\u200b", "style": "IPY_MODEL_8626655c6a774bc6a315f1cad23adca2", "value": "label_encoder.txt: 100%"}}, "c0f64d3aebb64bf3bb3d4db1e1c95af2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65d244fefe2e4b09a600a1d3a970a2e6": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "fc5e50b0328147c4ab04b99bb3f04a3b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c0f64d3aebb64bf3bb3d4db1e1c95af2", "placeholder": "\u200b", "style": "IPY_MODEL_65d244fefe2e4b09a600a1d3a970a2e6", "value": " 129k/129k [00:00<00:00, 7.08MB/s]"}}, "1881dfe59f184d4ab3ce997d6b71097d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2c5bb790c5544dc296857be6357fbe27": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b7b112df9d2e4aec93edbbc0d3c2d932", "IPY_MODEL_6ea830a76c164f35aa74845442e1a10d", "IPY_MODEL_fc5e50b0328147c4ab04b99bb3f04a3b"], "layout": "IPY_MODEL_1881dfe59f184d4ab3ce997d6b71097d"}}}, "version_major": 2, "version_minor": 0} +{"state": {"b64ae0afcdff4d81a6c062074065250d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c770eb6e9f66460bba9fd25fa560674f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6bb7fcdd480a4734903ad89419996fb9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b64ae0afcdff4d81a6c062074065250d", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c770eb6e9f66460bba9fd25fa560674f", "value": 2041.0}}, "35d74e603f7b4cb88edc9359fc779d99": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "87bdb1cc51494cfb8bc16daa995b7453": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "4c6506596aeb4ab0b9e37f553689a226": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_35d74e603f7b4cb88edc9359fc779d99", "placeholder": "\u200b", "style": "IPY_MODEL_87bdb1cc51494cfb8bc16daa995b7453", "value": "hyperparams.yaml: 100%"}}, "f579eebdcd8345bf960d51d8b2ea0858": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5270ec9156e84d4c827bb862f33db97c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "26d8444792ab4438a1d1d418b9b01d4b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f579eebdcd8345bf960d51d8b2ea0858", "placeholder": "\u200b", "style": "IPY_MODEL_5270ec9156e84d4c827bb862f33db97c", "value": " 2.04k/2.04k [00:00<00:00, 334kB/s]"}}, "2c0fa2081c0c45e5bf7e343f5b4641d0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "20a1a705aad44d118f1bcdee7855d77d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4c6506596aeb4ab0b9e37f553689a226", "IPY_MODEL_6bb7fcdd480a4734903ad89419996fb9", "IPY_MODEL_26d8444792ab4438a1d1d418b9b01d4b"], "layout": "IPY_MODEL_2c0fa2081c0c45e5bf7e343f5b4641d0"}}, "ee9e7d53f4ac4b35862cf767c503a1d0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee27f82ca0e94b48bb316a6ee7a93321": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "035334dc14174951a0745a114df30727": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ee9e7d53f4ac4b35862cf767c503a1d0", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ee27f82ca0e94b48bb316a6ee7a93321", "value": 16887676.0}}, "bba771be3d0c4c8ba5a69982a86e75de": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cfba467cdf3d4eb5b61b4a322fc68575": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "875137c6f0b141c5a8a81c4752c4e9b3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bba771be3d0c4c8ba5a69982a86e75de", "placeholder": "\u200b", "style": "IPY_MODEL_cfba467cdf3d4eb5b61b4a322fc68575", "value": "embedding_model.ckpt: 100%"}}, "9418aa7557134003914e6f325071b232": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f7ad0df847634bf3a51600cea4f5d0a3": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "af160d6287e843b9be729ffabf1dd839": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9418aa7557134003914e6f325071b232", "placeholder": "\u200b", "style": "IPY_MODEL_f7ad0df847634bf3a51600cea4f5d0a3", "value": " 16.9M/16.9M [00:00<00:00, 117MB/s]"}}, "fdfdbd53e1fc433c9816dc4c5d3d13a9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a18df4fafd7d490cbb269e92d49ea1e0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_875137c6f0b141c5a8a81c4752c4e9b3", "IPY_MODEL_035334dc14174951a0745a114df30727", "IPY_MODEL_af160d6287e843b9be729ffabf1dd839"], "layout": "IPY_MODEL_fdfdbd53e1fc433c9816dc4c5d3d13a9"}}, "79140c91f4e94395b2dbf482a603003e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2abde805421e4766921b671184db9b26": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "775a47d263344a85b5e379e8fe78b5c5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_79140c91f4e94395b2dbf482a603003e", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2abde805421e4766921b671184db9b26", "value": 3201.0}}, "524e032ac4f8417b8458770675ee231e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c58ec96ca0554e9998b24473d19312b0": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7d1388831138442ca2a1da74cc560028": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_524e032ac4f8417b8458770675ee231e", "placeholder": "\u200b", "style": "IPY_MODEL_c58ec96ca0554e9998b24473d19312b0", "value": "mean_var_norm_emb.ckpt: 100%"}}, "9d47dd54fe4c4c8a9ce5600b0a196dec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b6b5633bcc2485ea5cc6ad9ff21dea5": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "d2e8a9e295c64e7893605dfe9efe417e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9d47dd54fe4c4c8a9ce5600b0a196dec", "placeholder": "\u200b", "style": "IPY_MODEL_6b6b5633bcc2485ea5cc6ad9ff21dea5", "value": " 3.20k/3.20k [00:00<00:00, 519kB/s]"}}, "1cfb727f9d0a4bbdba9c8151f01a1a94": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a31158172c8b452d91c14ad03e1d336e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7d1388831138442ca2a1da74cc560028", "IPY_MODEL_775a47d263344a85b5e379e8fe78b5c5", "IPY_MODEL_d2e8a9e295c64e7893605dfe9efe417e"], "layout": "IPY_MODEL_1cfb727f9d0a4bbdba9c8151f01a1a94"}}, "f3de8d045cb241708ce6ce62c53309b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "91ecec965208419592c33e507fb1808a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "12b3babc4cb141eca006d05d54fa5016": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f3de8d045cb241708ce6ce62c53309b3", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_91ecec965208419592c33e507fb1808a", "value": 15856877.0}}, "10cd452fc0224d87aa95495b1694e66b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1e7b002ac84343ff9b77542504709d50": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "78c060008586417980d4c5393d3200ab": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_10cd452fc0224d87aa95495b1694e66b", "placeholder": "\u200b", "style": "IPY_MODEL_1e7b002ac84343ff9b77542504709d50", "value": "classifier.ckpt: 100%"}}, "d8c70d1532d54f6ab00895ad550b00e6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dc81fad73f2340c1a3c9bf624ef96d86": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "67a42ef13bea4e148b327853cfc01e41": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d8c70d1532d54f6ab00895ad550b00e6", "placeholder": "\u200b", "style": "IPY_MODEL_dc81fad73f2340c1a3c9bf624ef96d86", "value": " 15.9M/15.9M [00:00<00:00, 110MB/s]"}}, "9ae81de44f27409c81494f2f4017996e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "620167207b134a83b2b9e597cb0a5fff": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_78c060008586417980d4c5393d3200ab", "IPY_MODEL_12b3babc4cb141eca006d05d54fa5016", "IPY_MODEL_67a42ef13bea4e148b327853cfc01e41"], "layout": "IPY_MODEL_9ae81de44f27409c81494f2f4017996e"}}, "159baf4147354e8a90c974e85efc737d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "798a53aae6624e4e8b8d5f231f109408": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "35bd810acf6c4390b4cc6b76f763f60b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_159baf4147354e8a90c974e85efc737d", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_798a53aae6624e4e8b8d5f231f109408", "value": 128619.0}}, "0d83a87857564035bf89eff9437ba503": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5ab4c1604bd54006a36c4aff77146414": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b7cabc8fbe5f407b81d1cdfafdee1b83": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0d83a87857564035bf89eff9437ba503", "placeholder": "\u200b", "style": "IPY_MODEL_5ab4c1604bd54006a36c4aff77146414", "value": "label_encoder.txt: 100%"}}, "816780cb4a104b5b8ee5216d5209ec5c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "821bb83a80a140fa8416e133429db485": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "1f6b4eb00fd942efabd02628b8b2d48e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_816780cb4a104b5b8ee5216d5209ec5c", "placeholder": "\u200b", "style": "IPY_MODEL_821bb83a80a140fa8416e133429db485", "value": " 129k/129k [00:00<00:00, 1.01MB/s]"}}, "29cadfc6685a4cffa972165a546b169a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "17b4a941971a48a28e88b41f17c5e874": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b7cabc8fbe5f407b81d1cdfafdee1b83", "IPY_MODEL_35bd810acf6c4390b4cc6b76f763f60b", "IPY_MODEL_1f6b4eb00fd942efabd02628b8b2d48e"], "layout": "IPY_MODEL_29cadfc6685a4cffa972165a546b169a"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index 26b787814..bd2ccf415 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:18.668950Z", - "iopub.status.busy": "2024-01-10T14:58:18.668761Z", - "iopub.status.idle": "2024-01-10T14:58:21.901115Z", - "shell.execute_reply": "2024-01-10T14:58:21.900497Z" + "iopub.execute_input": "2024-01-12T22:19:38.476345Z", + "iopub.status.busy": "2024-01-12T22:19:38.476151Z", + "iopub.status.idle": "2024-01-12T22:19:41.756738Z", + "shell.execute_reply": "2024-01-12T22:19:41.756170Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:21.904331Z", - "iopub.status.busy": "2024-01-10T14:58:21.903708Z", - "iopub.status.idle": "2024-01-10T14:58:21.907185Z", - "shell.execute_reply": "2024-01-10T14:58:21.906573Z" + "iopub.execute_input": "2024-01-12T22:19:41.759669Z", + "iopub.status.busy": "2024-01-12T22:19:41.759301Z", + "iopub.status.idle": "2024-01-12T22:19:41.763749Z", + "shell.execute_reply": "2024-01-12T22:19:41.763112Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:21.909522Z", - "iopub.status.busy": "2024-01-10T14:58:21.909178Z", - "iopub.status.idle": "2024-01-10T14:58:21.913887Z", - "shell.execute_reply": "2024-01-10T14:58:21.913417Z" + "iopub.execute_input": "2024-01-12T22:19:41.766396Z", + "iopub.status.busy": "2024-01-12T22:19:41.765896Z", + "iopub.status.idle": "2024-01-12T22:19:41.770937Z", + "shell.execute_reply": "2024-01-12T22:19:41.770454Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:21.916187Z", - "iopub.status.busy": "2024-01-10T14:58:21.915888Z", - "iopub.status.idle": "2024-01-10T14:58:23.515233Z", - "shell.execute_reply": "2024-01-10T14:58:23.514352Z" + "iopub.execute_input": "2024-01-12T22:19:41.773298Z", + "iopub.status.busy": "2024-01-12T22:19:41.773095Z", + "iopub.status.idle": "2024-01-12T22:19:43.673530Z", + "shell.execute_reply": "2024-01-12T22:19:43.672802Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:23.518555Z", - "iopub.status.busy": "2024-01-10T14:58:23.518070Z", - "iopub.status.idle": "2024-01-10T14:58:23.530275Z", - "shell.execute_reply": "2024-01-10T14:58:23.529672Z" + "iopub.execute_input": "2024-01-12T22:19:43.676660Z", + "iopub.status.busy": "2024-01-12T22:19:43.676231Z", + "iopub.status.idle": "2024-01-12T22:19:43.688817Z", + "shell.execute_reply": "2024-01-12T22:19:43.688188Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:23.562754Z", - "iopub.status.busy": "2024-01-10T14:58:23.562321Z", - "iopub.status.idle": "2024-01-10T14:58:23.568030Z", - "shell.execute_reply": "2024-01-10T14:58:23.567462Z" + "iopub.execute_input": "2024-01-12T22:19:43.722721Z", + "iopub.status.busy": "2024-01-12T22:19:43.722140Z", + "iopub.status.idle": "2024-01-12T22:19:43.728135Z", + "shell.execute_reply": "2024-01-12T22:19:43.727637Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:23.570490Z", - "iopub.status.busy": "2024-01-10T14:58:23.570110Z", - "iopub.status.idle": "2024-01-10T14:58:24.284389Z", - "shell.execute_reply": "2024-01-10T14:58:24.283694Z" + "iopub.execute_input": "2024-01-12T22:19:43.730647Z", + "iopub.status.busy": "2024-01-12T22:19:43.730263Z", + "iopub.status.idle": "2024-01-12T22:19:44.455584Z", + "shell.execute_reply": "2024-01-12T22:19:44.454889Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:24.287313Z", - "iopub.status.busy": "2024-01-10T14:58:24.286844Z", - "iopub.status.idle": "2024-01-10T14:58:24.969714Z", - "shell.execute_reply": "2024-01-10T14:58:24.969125Z" + "iopub.execute_input": "2024-01-12T22:19:44.458444Z", + "iopub.status.busy": "2024-01-12T22:19:44.457928Z", + "iopub.status.idle": "2024-01-12T22:19:45.932946Z", + "shell.execute_reply": "2024-01-12T22:19:45.932363Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:24.972731Z", - "iopub.status.busy": "2024-01-10T14:58:24.972359Z", - "iopub.status.idle": "2024-01-10T14:58:24.995317Z", - "shell.execute_reply": "2024-01-10T14:58:24.994716Z" + "iopub.execute_input": "2024-01-12T22:19:45.936026Z", + "iopub.status.busy": "2024-01-12T22:19:45.935550Z", + "iopub.status.idle": "2024-01-12T22:19:45.959318Z", + "shell.execute_reply": "2024-01-12T22:19:45.958754Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:24.997904Z", - "iopub.status.busy": "2024-01-10T14:58:24.997492Z", - "iopub.status.idle": "2024-01-10T14:58:25.000793Z", - "shell.execute_reply": "2024-01-10T14:58:25.000227Z" + "iopub.execute_input": "2024-01-12T22:19:45.961752Z", + "iopub.status.busy": "2024-01-12T22:19:45.961510Z", + "iopub.status.idle": "2024-01-12T22:19:45.964941Z", + "shell.execute_reply": "2024-01-12T22:19:45.964345Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:25.003088Z", - "iopub.status.busy": "2024-01-10T14:58:25.002801Z", - "iopub.status.idle": "2024-01-10T14:58:43.774968Z", - "shell.execute_reply": "2024-01-10T14:58:43.774333Z" + "iopub.execute_input": "2024-01-12T22:19:45.967366Z", + "iopub.status.busy": "2024-01-12T22:19:45.966941Z", + "iopub.status.idle": "2024-01-12T22:20:05.161858Z", + "shell.execute_reply": "2024-01-12T22:20:05.161146Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:43.777939Z", - "iopub.status.busy": "2024-01-10T14:58:43.777521Z", - "iopub.status.idle": "2024-01-10T14:58:43.781566Z", - "shell.execute_reply": "2024-01-10T14:58:43.780933Z" + "iopub.execute_input": "2024-01-12T22:20:05.165017Z", + "iopub.status.busy": "2024-01-12T22:20:05.164646Z", + "iopub.status.idle": "2024-01-12T22:20:05.169096Z", + "shell.execute_reply": "2024-01-12T22:20:05.168489Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:43.784229Z", - "iopub.status.busy": "2024-01-10T14:58:43.783774Z", - "iopub.status.idle": "2024-01-10T14:58:49.268183Z", - "shell.execute_reply": "2024-01-10T14:58:49.267513Z" + "iopub.execute_input": "2024-01-12T22:20:05.171504Z", + "iopub.status.busy": "2024-01-12T22:20:05.171161Z", + "iopub.status.idle": "2024-01-12T22:20:10.710042Z", + "shell.execute_reply": "2024-01-12T22:20:10.709346Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.271363Z", - "iopub.status.busy": "2024-01-10T14:58:49.270946Z", - "iopub.status.idle": "2024-01-10T14:58:49.276508Z", - "shell.execute_reply": "2024-01-10T14:58:49.275890Z" + "iopub.execute_input": "2024-01-12T22:20:10.713585Z", + "iopub.status.busy": "2024-01-12T22:20:10.713158Z", + "iopub.status.idle": "2024-01-12T22:20:10.718483Z", + "shell.execute_reply": "2024-01-12T22:20:10.717887Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.279388Z", - "iopub.status.busy": "2024-01-10T14:58:49.278949Z", - "iopub.status.idle": "2024-01-10T14:58:49.393691Z", - "shell.execute_reply": "2024-01-10T14:58:49.392953Z" + "iopub.execute_input": "2024-01-12T22:20:10.721444Z", + "iopub.status.busy": "2024-01-12T22:20:10.721027Z", + "iopub.status.idle": "2024-01-12T22:20:10.828365Z", + "shell.execute_reply": "2024-01-12T22:20:10.827611Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.396661Z", - "iopub.status.busy": "2024-01-10T14:58:49.396256Z", - "iopub.status.idle": "2024-01-10T14:58:49.406585Z", - "shell.execute_reply": "2024-01-10T14:58:49.406016Z" + "iopub.execute_input": "2024-01-12T22:20:10.831315Z", + "iopub.status.busy": "2024-01-12T22:20:10.830811Z", + "iopub.status.idle": "2024-01-12T22:20:10.840816Z", + "shell.execute_reply": "2024-01-12T22:20:10.840266Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.409138Z", - "iopub.status.busy": "2024-01-10T14:58:49.408770Z", - "iopub.status.idle": "2024-01-10T14:58:49.417093Z", - "shell.execute_reply": "2024-01-10T14:58:49.416454Z" + "iopub.execute_input": "2024-01-12T22:20:10.843394Z", + "iopub.status.busy": "2024-01-12T22:20:10.842919Z", + "iopub.status.idle": "2024-01-12T22:20:10.851532Z", + "shell.execute_reply": "2024-01-12T22:20:10.850976Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.419692Z", - "iopub.status.busy": "2024-01-10T14:58:49.419308Z", - "iopub.status.idle": "2024-01-10T14:58:49.423888Z", - "shell.execute_reply": "2024-01-10T14:58:49.423233Z" + "iopub.execute_input": "2024-01-12T22:20:10.854315Z", + "iopub.status.busy": "2024-01-12T22:20:10.853806Z", + "iopub.status.idle": "2024-01-12T22:20:10.858826Z", + "shell.execute_reply": "2024-01-12T22:20:10.858189Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.426320Z", - "iopub.status.busy": "2024-01-10T14:58:49.426003Z", - "iopub.status.idle": "2024-01-10T14:58:49.432389Z", - "shell.execute_reply": "2024-01-10T14:58:49.431778Z" + "iopub.execute_input": "2024-01-12T22:20:10.861153Z", + "iopub.status.busy": "2024-01-12T22:20:10.860809Z", + "iopub.status.idle": "2024-01-12T22:20:10.867086Z", + "shell.execute_reply": "2024-01-12T22:20:10.866525Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.434787Z", - "iopub.status.busy": "2024-01-10T14:58:49.434428Z", - "iopub.status.idle": "2024-01-10T14:58:49.548812Z", - "shell.execute_reply": "2024-01-10T14:58:49.548145Z" + "iopub.execute_input": "2024-01-12T22:20:10.869806Z", + "iopub.status.busy": "2024-01-12T22:20:10.869234Z", + "iopub.status.idle": "2024-01-12T22:20:10.984221Z", + "shell.execute_reply": "2024-01-12T22:20:10.983624Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.551386Z", - "iopub.status.busy": "2024-01-10T14:58:49.551035Z", - "iopub.status.idle": "2024-01-10T14:58:49.660719Z", - "shell.execute_reply": "2024-01-10T14:58:49.660055Z" + "iopub.execute_input": "2024-01-12T22:20:10.986690Z", + "iopub.status.busy": "2024-01-12T22:20:10.986434Z", + "iopub.status.idle": "2024-01-12T22:20:11.096252Z", + "shell.execute_reply": "2024-01-12T22:20:11.095544Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.663182Z", - "iopub.status.busy": "2024-01-10T14:58:49.662969Z", - "iopub.status.idle": "2024-01-10T14:58:49.770975Z", - "shell.execute_reply": "2024-01-10T14:58:49.770314Z" + "iopub.execute_input": "2024-01-12T22:20:11.098840Z", + "iopub.status.busy": "2024-01-12T22:20:11.098619Z", + "iopub.status.idle": "2024-01-12T22:20:11.207920Z", + "shell.execute_reply": "2024-01-12T22:20:11.207253Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.773379Z", - "iopub.status.busy": "2024-01-10T14:58:49.773175Z", - "iopub.status.idle": "2024-01-10T14:58:49.882826Z", - "shell.execute_reply": "2024-01-10T14:58:49.882220Z" + "iopub.execute_input": "2024-01-12T22:20:11.210261Z", + "iopub.status.busy": "2024-01-12T22:20:11.210053Z", + "iopub.status.idle": "2024-01-12T22:20:11.319438Z", + "shell.execute_reply": "2024-01-12T22:20:11.318753Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:49.885292Z", - "iopub.status.busy": "2024-01-10T14:58:49.885088Z", - "iopub.status.idle": "2024-01-10T14:58:49.888620Z", - "shell.execute_reply": "2024-01-10T14:58:49.888080Z" + "iopub.execute_input": "2024-01-12T22:20:11.322288Z", + "iopub.status.busy": "2024-01-12T22:20:11.321803Z", + "iopub.status.idle": "2024-01-12T22:20:11.325352Z", + "shell.execute_reply": "2024-01-12T22:20:11.324825Z" }, "nbsphinx": "hidden" }, @@ -1377,44 +1377,31 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0074814fbf264ac4a04bdeb51abcaab2": { + "035334dc14174951a0745a114df30727": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "02d54a93c71f4717b776780ee1334673": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_df30265328c142b1849ba3ca47b68fe7", - "IPY_MODEL_6bbd465e2f4046028edaa5e0082d76af", - "IPY_MODEL_e2aba32a91bf4f9dabd9e25f75f60e37" - ], - "layout": "IPY_MODEL_bdf1d068064c4e37bf3b0a036bd0710a" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ee9e7d53f4ac4b35862cf767c503a1d0", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ee27f82ca0e94b48bb316a6ee7a93321", + "value": 16887676.0 } }, - "05a419d84fc2472b8d03ecb51099197a": { + "0d83a87857564035bf89eff9437ba503": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1466,7 +1453,7 @@ "width": null } }, - "1881dfe59f184d4ab3ce997d6b71097d": { + "10cd452fc0224d87aa95495b1694e66b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1518,121 +1505,7 @@ "width": null } }, - "2177d9eef2d14179bdab4a9fd9c1b915": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "284824c022eb47e9a33898e1ecf7dda3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c5a3fe8fa0d848ec9ec188729948a377", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3454223caf744f1fbf4c19967e38db8f", - "value": 16887676.0 - } - }, - "294a8ffab7f44974b28a07ffbb94882f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f781d9e0307c483fb140677b5258e2d6", - "placeholder": "​", - "style": "IPY_MODEL_460394fe32074436800a43db6ccac64e", - "value": " 2.04k/2.04k [00:00<00:00, 324kB/s]" - } - }, - "2c5bb790c5544dc296857be6357fbe27": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b7b112df9d2e4aec93edbbc0d3c2d932", - "IPY_MODEL_6ea830a76c164f35aa74845442e1a10d", - "IPY_MODEL_fc5e50b0328147c4ab04b99bb3f04a3b" - ], - "layout": "IPY_MODEL_1881dfe59f184d4ab3ce997d6b71097d" - } - }, - "3454223caf744f1fbf4c19967e38db8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "34b1268d4de040f2a5a31699ef1ede5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3c821907cbd14c19a78c25554493358d": { + "12b3babc4cb141eca006d05d54fa5016": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1648,76 +1521,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_df669b30fcd04ee4974fd952553f376e", - "max": 2041.0, + "layout": "IPY_MODEL_f3de8d045cb241708ce6ce62c53309b3", + "max": 15856877.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9b2afdf832394f58976ee58105fc9ac4", - "value": 2041.0 - } - }, - "41828383ccc742919bc29139a2ba5bd6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "447ff7ecb3fc411ea934e0d55e5af3d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "460394fe32074436800a43db6ccac64e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "48fb5229f100484292916171f30a77b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_91ecec965208419592c33e507fb1808a", + "value": 15856877.0 } }, - "4ec51dfd68c34f43aec5b39ee7b3b771": { + "159baf4147354e8a90c974e85efc737d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1769,85 +1581,7 @@ "width": null } }, - "541e0c9185044d10b9df997de483919d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9b85abadb14148da809553593daf41d5", - "placeholder": "​", - "style": "IPY_MODEL_a82707d6cf75449fa0bcd2b98e10b3a2", - "value": "classifier.ckpt: 100%" - } - }, - "5d6a6ab20b864187a3b7662c9dc5a7ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8e622334e195432cbba4e4d65e702507", - "placeholder": "​", - "style": "IPY_MODEL_41828383ccc742919bc29139a2ba5bd6", - "value": " 15.9M/15.9M [00:00<00:00, 296MB/s]" - } - }, - "65d244fefe2e4b09a600a1d3a970a2e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "68fc1f991eb44edba2fc5bfe6e6edfd6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c2ce8e57fdb04b0798a6c4c16ae3467f", - "placeholder": "​", - "style": "IPY_MODEL_34b1268d4de040f2a5a31699ef1ede5c", - "value": "embedding_model.ckpt: 100%" - } - }, - "6902ffa71e7d475d9583c90ce2b2f911": { + "17b4a941971a48a28e88b41f17c5e874": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1862,38 +1596,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_68fc1f991eb44edba2fc5bfe6e6edfd6", - "IPY_MODEL_284824c022eb47e9a33898e1ecf7dda3", - "IPY_MODEL_93ffb5dd7879400f9e7f477b93c509d0" + "IPY_MODEL_b7cabc8fbe5f407b81d1cdfafdee1b83", + "IPY_MODEL_35bd810acf6c4390b4cc6b76f763f60b", + "IPY_MODEL_1f6b4eb00fd942efabd02628b8b2d48e" ], - "layout": "IPY_MODEL_d905e22f02584b999d73cc80ffee0110" - } - }, - "6bbd465e2f4046028edaa5e0082d76af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c0dfa3473ed64fa7a0044c0f437a6ff5", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2177d9eef2d14179bdab4a9fd9c1b915", - "value": 3201.0 + "layout": "IPY_MODEL_29cadfc6685a4cffa972165a546b169a" } }, - "6c17a0abb12f4f9a9c6a52271fe66768": { + "1cfb727f9d0a4bbdba9c8151f01a1a94": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1945,61 +1655,86 @@ "width": null } }, - "6ea830a76c164f35aa74845442e1a10d": { + "1e7b002ac84343ff9b77542504709d50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1f6b4eb00fd942efabd02628b8b2d48e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4ec51dfd68c34f43aec5b39ee7b3b771", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e2059403b3c141c78b7dea525b593b9c", - "value": 128619.0 + "layout": "IPY_MODEL_816780cb4a104b5b8ee5216d5209ec5c", + "placeholder": "​", + "style": "IPY_MODEL_821bb83a80a140fa8416e133429db485", + "value": " 129k/129k [00:00<00:00, 1.01MB/s]" } }, - "8626655c6a774bc6a315f1cad23adca2": { + "20a1a705aad44d118f1bcdee7855d77d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4c6506596aeb4ab0b9e37f553689a226", + "IPY_MODEL_6bb7fcdd480a4734903ad89419996fb9", + "IPY_MODEL_26d8444792ab4438a1d1d418b9b01d4b" + ], + "layout": "IPY_MODEL_2c0fa2081c0c45e5bf7e343f5b4641d0" } }, - "8c44830cf4a14c1bbbf2a49980b485d8": { + "26d8444792ab4438a1d1d418b9b01d4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f579eebdcd8345bf960d51d8b2ea0858", + "placeholder": "​", + "style": "IPY_MODEL_5270ec9156e84d4c827bb862f33db97c", + "value": " 2.04k/2.04k [00:00<00:00, 334kB/s]" } }, - "8e622334e195432cbba4e4d65e702507": { + "29cadfc6685a4cffa972165a546b169a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2051,7 +1786,23 @@ "width": null } }, - "920a9387b971454687a4403592f0c76e": { + "2abde805421e4766921b671184db9b26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2c0fa2081c0c45e5bf7e343f5b4641d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2103,7 +1854,31 @@ "width": null } }, - "938e795c39e94f739123942e85645be6": { + "35bd810acf6c4390b4cc6b76f763f60b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_159baf4147354e8a90c974e85efc737d", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_798a53aae6624e4e8b8d5f231f109408", + "value": 128619.0 + } + }, + "35d74e603f7b4cb88edc9359fc779d99": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2155,7 +1930,7 @@ "width": null } }, - "93ffb5dd7879400f9e7f477b93c509d0": { + "4c6506596aeb4ab0b9e37f553689a226": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2170,29 +1945,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e454c1f736c9495aa3bedadf94b43954", + "layout": "IPY_MODEL_35d74e603f7b4cb88edc9359fc779d99", "placeholder": "​", - "style": "IPY_MODEL_48fb5229f100484292916171f30a77b5", - "value": " 16.9M/16.9M [00:00<00:00, 177MB/s]" - } - }, - "9b2afdf832394f58976ee58105fc9ac4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_87bdb1cc51494cfb8bc16daa995b7453", + "value": "hyperparams.yaml: 100%" } }, - "9b85abadb14148da809553593daf41d5": { + "524e032ac4f8417b8458770675ee231e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2244,7 +2003,164 @@ "width": null } }, - "a452c26c8935444495eef8eccd537821": { + "5270ec9156e84d4c827bb862f33db97c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5ab4c1604bd54006a36c4aff77146414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "620167207b134a83b2b9e597cb0a5fff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78c060008586417980d4c5393d3200ab", + "IPY_MODEL_12b3babc4cb141eca006d05d54fa5016", + "IPY_MODEL_67a42ef13bea4e148b327853cfc01e41" + ], + "layout": "IPY_MODEL_9ae81de44f27409c81494f2f4017996e" + } + }, + "67a42ef13bea4e148b327853cfc01e41": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d8c70d1532d54f6ab00895ad550b00e6", + "placeholder": "​", + "style": "IPY_MODEL_dc81fad73f2340c1a3c9bf624ef96d86", + "value": " 15.9M/15.9M [00:00<00:00, 110MB/s]" + } + }, + "6b6b5633bcc2485ea5cc6ad9ff21dea5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6bb7fcdd480a4734903ad89419996fb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b64ae0afcdff4d81a6c062074065250d", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c770eb6e9f66460bba9fd25fa560674f", + "value": 2041.0 + } + }, + "775a47d263344a85b5e379e8fe78b5c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_79140c91f4e94395b2dbf482a603003e", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2abde805421e4766921b671184db9b26", + "value": 3201.0 + } + }, + "78c060008586417980d4c5393d3200ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_10cd452fc0224d87aa95495b1694e66b", + "placeholder": "​", + "style": "IPY_MODEL_1e7b002ac84343ff9b77542504709d50", + "value": "classifier.ckpt: 100%" + } + }, + "79140c91f4e94395b2dbf482a603003e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2296,22 +2212,44 @@ "width": null } }, - "a82707d6cf75449fa0bcd2b98e10b3a2": { + "798a53aae6624e4e8b8d5f231f109408": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "ab34cc856bad403f9cdba111f873a306": { + "7d1388831138442ca2a1da74cc560028": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_524e032ac4f8417b8458770675ee231e", + "placeholder": "​", + "style": "IPY_MODEL_c58ec96ca0554e9998b24473d19312b0", + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "816780cb4a104b5b8ee5216d5209ec5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2363,7 +2301,22 @@ "width": null } }, - "b7b112df9d2e4aec93edbbc0d3c2d932": { + "821bb83a80a140fa8416e133429db485": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "875137c6f0b141c5a8a81c4752c4e9b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2378,13 +2331,44 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ab34cc856bad403f9cdba111f873a306", + "layout": "IPY_MODEL_bba771be3d0c4c8ba5a69982a86e75de", "placeholder": "​", - "style": "IPY_MODEL_8626655c6a774bc6a315f1cad23adca2", - "value": "label_encoder.txt: 100%" + "style": "IPY_MODEL_cfba467cdf3d4eb5b61b4a322fc68575", + "value": "embedding_model.ckpt: 100%" + } + }, + "87bdb1cc51494cfb8bc16daa995b7453": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "91ecec965208419592c33e507fb1808a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "bdf1d068064c4e37bf3b0a036bd0710a": { + "9418aa7557134003914e6f325071b232": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2436,7 +2420,7 @@ "width": null } }, - "c0dfa3473ed64fa7a0044c0f437a6ff5": { + "9ae81de44f27409c81494f2f4017996e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2488,7 +2472,7 @@ "width": null } }, - "c0f64d3aebb64bf3bb3d4db1e1c95af2": { + "9d47dd54fe4c4c8a9ce5600b0a196dec": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2540,7 +2524,7 @@ "width": null } }, - "c17f3317dc9f4e41b15f0c9f0afcb7f9": { + "a18df4fafd7d490cbb269e92d49ea1e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2555,66 +2539,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fb7be2fc3b524b408dacb3a4ba1dfb8f", - "IPY_MODEL_3c821907cbd14c19a78c25554493358d", - "IPY_MODEL_294a8ffab7f44974b28a07ffbb94882f" + "IPY_MODEL_875137c6f0b141c5a8a81c4752c4e9b3", + "IPY_MODEL_035334dc14174951a0745a114df30727", + "IPY_MODEL_af160d6287e843b9be729ffabf1dd839" ], - "layout": "IPY_MODEL_920a9387b971454687a4403592f0c76e" + "layout": "IPY_MODEL_fdfdbd53e1fc433c9816dc4c5d3d13a9" } }, - "c2ce8e57fdb04b0798a6c4c16ae3467f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "a31158172c8b452d91c14ad03e1d336e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d1388831138442ca2a1da74cc560028", + "IPY_MODEL_775a47d263344a85b5e379e8fe78b5c5", + "IPY_MODEL_d2e8a9e295c64e7893605dfe9efe417e" + ], + "layout": "IPY_MODEL_1cfb727f9d0a4bbdba9c8151f01a1a94" + } + }, + "af160d6287e843b9be729ffabf1dd839": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9418aa7557134003914e6f325071b232", + "placeholder": "​", + "style": "IPY_MODEL_f7ad0df847634bf3a51600cea4f5d0a3", + "value": " 16.9M/16.9M [00:00<00:00, 117MB/s]" } }, - "c5a3fe8fa0d848ec9ec188729948a377": { + "b64ae0afcdff4d81a6c062074065250d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2666,29 +2641,28 @@ "width": null } }, - "cadb95e2bbdd4166b848cf44e71b2139": { + "b7cabc8fbe5f407b81d1cdfafdee1b83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_541e0c9185044d10b9df997de483919d", - "IPY_MODEL_f234f92a2ce2467bbaad67f8d5d7ec2b", - "IPY_MODEL_5d6a6ab20b864187a3b7662c9dc5a7ff" - ], - "layout": "IPY_MODEL_05a419d84fc2472b8d03ecb51099197a" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0d83a87857564035bf89eff9437ba503", + "placeholder": "​", + "style": "IPY_MODEL_5ab4c1604bd54006a36c4aff77146414", + "value": "label_encoder.txt: 100%" } }, - "d905e22f02584b999d73cc80ffee0110": { + "bba771be3d0c4c8ba5a69982a86e75de": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2740,7 +2714,53 @@ "width": null } }, - "df30265328c142b1849ba3ca47b68fe7": { + "c58ec96ca0554e9998b24473d19312b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c770eb6e9f66460bba9fd25fa560674f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cfba467cdf3d4eb5b61b4a322fc68575": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d2e8a9e295c64e7893605dfe9efe417e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2755,13 +2775,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a452c26c8935444495eef8eccd537821", + "layout": "IPY_MODEL_9d47dd54fe4c4c8a9ce5600b0a196dec", "placeholder": "​", - "style": "IPY_MODEL_0074814fbf264ac4a04bdeb51abcaab2", - "value": "mean_var_norm_emb.ckpt: 100%" + "style": "IPY_MODEL_6b6b5633bcc2485ea5cc6ad9ff21dea5", + "value": " 3.20k/3.20k [00:00<00:00, 519kB/s]" } }, - "df669b30fcd04ee4974fd952553f376e": { + "d8c70d1532d54f6ab00895ad550b00e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2813,44 +2833,38 @@ "width": null } }, - "e2059403b3c141c78b7dea525b593b9c": { + "dc81fad73f2340c1a3c9bf624ef96d86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "e2aba32a91bf4f9dabd9e25f75f60e37": { + "ee27f82ca0e94b48bb316a6ee7a93321": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6c17a0abb12f4f9a9c6a52271fe66768", - "placeholder": "​", - "style": "IPY_MODEL_fb2c0bd27a2c4c5ba243a7e72cb1d8aa", - "value": " 3.20k/3.20k [00:00<00:00, 575kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e454c1f736c9495aa3bedadf94b43954": { + "ee9e7d53f4ac4b35862cf767c503a1d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2902,31 +2916,7 @@ "width": null } }, - "f234f92a2ce2467bbaad67f8d5d7ec2b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_938e795c39e94f739123942e85645be6", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_447ff7ecb3fc411ea934e0d55e5af3d8", - "value": 15856877.0 - } - }, - "f3bc5d140a7b4411a598d2ef76421a6a": { + "f3de8d045cb241708ce6ce62c53309b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2978,7 +2968,7 @@ "width": null } }, - "f781d9e0307c483fb140677b5258e2d6": { + "f579eebdcd8345bf960d51d8b2ea0858": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3030,7 +3020,7 @@ "width": null } }, - "fb2c0bd27a2c4c5ba243a7e72cb1d8aa": { + "f7ad0df847634bf3a51600cea4f5d0a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3045,46 +3035,56 @@ "description_width": "" } }, - "fb7be2fc3b524b408dacb3a4ba1dfb8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f3bc5d140a7b4411a598d2ef76421a6a", - "placeholder": "​", - "style": "IPY_MODEL_8c44830cf4a14c1bbbf2a49980b485d8", - "value": "hyperparams.yaml: 100%" - } - }, - "fc5e50b0328147c4ab04b99bb3f04a3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "fdfdbd53e1fc433c9816dc4c5d3d13a9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c0f64d3aebb64bf3bb3d4db1e1c95af2", - "placeholder": "​", - "style": "IPY_MODEL_65d244fefe2e4b09a600a1d3a970a2e6", - "value": " 129k/129k [00:00<00:00, 7.08MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index cbd5cc50a..636735254 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1313,7 +1313,7 @@

Functionality 2: Specifying nondefault arguments
-
+
@@ -1709,7 +1709,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"7bcc3f1d4e8f4561af6fefcdbfa57573": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6e69f1518dbd4f5f98b28e61ae5741e7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a4e15f916f304af6a621a3edd208fbde": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7bcc3f1d4e8f4561af6fefcdbfa57573", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6e69f1518dbd4f5f98b28e61ae5741e7", "value": 132.0}}, "cc4cc2f72a704431ba1a4a0b3aefb072": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4cb5a201e40a4148abe3078a636afcdd": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "eb0687177d3042cf8f0901f75f604e85": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cc4cc2f72a704431ba1a4a0b3aefb072", "placeholder": "\u200b", "style": "IPY_MODEL_4cb5a201e40a4148abe3078a636afcdd", "value": "Saving the dataset (1/1 shards): 100%"}}, "8443c9e833384832ac73d9d1c16736c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2cd88230aa32404fa9f821d2f7e73ee1": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "1dd56a26d69048f6a3cafad4385d2b8a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8443c9e833384832ac73d9d1c16736c9", "placeholder": "\u200b", "style": "IPY_MODEL_2cd88230aa32404fa9f821d2f7e73ee1", "value": " 132/132 [00:00<00:00, 10218.87 examples/s]"}}, "761d6c7068ef43eab994d1e5d21d994c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "72fad40a86864766b299b987b88cfd8a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_eb0687177d3042cf8f0901f75f604e85", "IPY_MODEL_a4e15f916f304af6a621a3edd208fbde", "IPY_MODEL_1dd56a26d69048f6a3cafad4385d2b8a"], "layout": "IPY_MODEL_761d6c7068ef43eab994d1e5d21d994c"}}}, "version_major": 2, "version_minor": 0} +{"state": {"b8bb4bda2dcf426b8187e3ec19cda1f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d2ae6f29c434c38882202147d60296b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "466ba721c0424954b1cbcb7c62fd0766": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b8bb4bda2dcf426b8187e3ec19cda1f6", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9d2ae6f29c434c38882202147d60296b", "value": 132.0}}, "5240ff8529c04c07b08da892f665edf9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c6b23aa735b4ae2a3083f4ca7c81647": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "83bbf55c7d3f464d8048ad4c7bdbfa42": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5240ff8529c04c07b08da892f665edf9", "placeholder": "\u200b", "style": "IPY_MODEL_5c6b23aa735b4ae2a3083f4ca7c81647", "value": "Saving the dataset (1/1 shards): 100%"}}, "bef440a9af08456d9f366eba9f745035": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a26d0dded474d3ca4e3479c709a297c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "112cf9cbc01f402aa52d0c8846e810d6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bef440a9af08456d9f366eba9f745035", "placeholder": "\u200b", "style": "IPY_MODEL_8a26d0dded474d3ca4e3479c709a297c", "value": " 132/132 [00:00<00:00, 11139.80 examples/s]"}}, "55eb28764db24e7dac8f1420bea68c38": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7179dbc628344416b95d5aefc8afec5e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_83bbf55c7d3f464d8048ad4c7bdbfa42", "IPY_MODEL_466ba721c0424954b1cbcb7c62fd0766", "IPY_MODEL_112cf9cbc01f402aa52d0c8846e810d6"], "layout": "IPY_MODEL_55eb28764db24e7dac8f1420bea68c38"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 02c5ba811..67311d6c9 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:54.767356Z", - "iopub.status.busy": "2024-01-10T14:58:54.767167Z", - "iopub.status.idle": "2024-01-10T14:58:55.838400Z", - "shell.execute_reply": "2024-01-10T14:58:55.837772Z" + "iopub.execute_input": "2024-01-12T22:20:16.712476Z", + "iopub.status.busy": "2024-01-12T22:20:16.712282Z", + "iopub.status.idle": "2024-01-12T22:20:17.807972Z", + "shell.execute_reply": "2024-01-12T22:20:17.807340Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:55.841278Z", - "iopub.status.busy": "2024-01-10T14:58:55.840800Z", - "iopub.status.idle": "2024-01-10T14:58:55.843995Z", - "shell.execute_reply": "2024-01-10T14:58:55.843493Z" + "iopub.execute_input": "2024-01-12T22:20:17.811007Z", + "iopub.status.busy": "2024-01-12T22:20:17.810681Z", + "iopub.status.idle": "2024-01-12T22:20:17.814090Z", + "shell.execute_reply": "2024-01-12T22:20:17.813446Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:55.846449Z", - "iopub.status.busy": "2024-01-10T14:58:55.846072Z", - "iopub.status.idle": "2024-01-10T14:58:55.855516Z", - "shell.execute_reply": "2024-01-10T14:58:55.854990Z" + "iopub.execute_input": "2024-01-12T22:20:17.816803Z", + "iopub.status.busy": "2024-01-12T22:20:17.816339Z", + "iopub.status.idle": "2024-01-12T22:20:17.825831Z", + "shell.execute_reply": "2024-01-12T22:20:17.825194Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:55.857837Z", - "iopub.status.busy": "2024-01-10T14:58:55.857473Z", - "iopub.status.idle": "2024-01-10T14:58:55.862243Z", - "shell.execute_reply": "2024-01-10T14:58:55.861728Z" + "iopub.execute_input": "2024-01-12T22:20:17.828596Z", + "iopub.status.busy": "2024-01-12T22:20:17.828220Z", + "iopub.status.idle": "2024-01-12T22:20:17.833344Z", + "shell.execute_reply": "2024-01-12T22:20:17.832827Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:55.864825Z", - "iopub.status.busy": "2024-01-10T14:58:55.864431Z", - "iopub.status.idle": "2024-01-10T14:58:56.142843Z", - "shell.execute_reply": "2024-01-10T14:58:56.142195Z" + "iopub.execute_input": "2024-01-12T22:20:17.835908Z", + "iopub.status.busy": "2024-01-12T22:20:17.835529Z", + "iopub.status.idle": "2024-01-12T22:20:18.119631Z", + "shell.execute_reply": "2024-01-12T22:20:18.119048Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:56.145686Z", - "iopub.status.busy": "2024-01-10T14:58:56.145335Z", - "iopub.status.idle": "2024-01-10T14:58:56.519923Z", - "shell.execute_reply": "2024-01-10T14:58:56.519255Z" + "iopub.execute_input": "2024-01-12T22:20:18.122520Z", + "iopub.status.busy": "2024-01-12T22:20:18.122123Z", + "iopub.status.idle": "2024-01-12T22:20:18.493995Z", + "shell.execute_reply": "2024-01-12T22:20:18.493313Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:56.522457Z", - "iopub.status.busy": "2024-01-10T14:58:56.522228Z", - "iopub.status.idle": "2024-01-10T14:58:56.547157Z", - "shell.execute_reply": "2024-01-10T14:58:56.546599Z" + "iopub.execute_input": "2024-01-12T22:20:18.496670Z", + "iopub.status.busy": "2024-01-12T22:20:18.496356Z", + "iopub.status.idle": "2024-01-12T22:20:18.520932Z", + "shell.execute_reply": "2024-01-12T22:20:18.520326Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:56.549825Z", - "iopub.status.busy": "2024-01-10T14:58:56.549607Z", - "iopub.status.idle": "2024-01-10T14:58:56.561436Z", - "shell.execute_reply": "2024-01-10T14:58:56.560895Z" + "iopub.execute_input": "2024-01-12T22:20:18.523574Z", + "iopub.status.busy": "2024-01-12T22:20:18.523224Z", + "iopub.status.idle": "2024-01-12T22:20:18.534850Z", + "shell.execute_reply": "2024-01-12T22:20:18.534250Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:56.564157Z", - "iopub.status.busy": "2024-01-10T14:58:56.563818Z", - "iopub.status.idle": "2024-01-10T14:58:57.836813Z", - "shell.execute_reply": "2024-01-10T14:58:57.836183Z" + "iopub.execute_input": "2024-01-12T22:20:18.537255Z", + "iopub.status.busy": "2024-01-12T22:20:18.536905Z", + "iopub.status.idle": "2024-01-12T22:20:19.845634Z", + "shell.execute_reply": "2024-01-12T22:20:19.844997Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:57.839904Z", - "iopub.status.busy": "2024-01-10T14:58:57.839426Z", - "iopub.status.idle": "2024-01-10T14:58:57.861805Z", - "shell.execute_reply": "2024-01-10T14:58:57.861265Z" + "iopub.execute_input": "2024-01-12T22:20:19.848641Z", + "iopub.status.busy": "2024-01-12T22:20:19.848087Z", + "iopub.status.idle": "2024-01-12T22:20:19.871079Z", + "shell.execute_reply": "2024-01-12T22:20:19.870529Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:57.864465Z", - "iopub.status.busy": "2024-01-10T14:58:57.864101Z", - "iopub.status.idle": "2024-01-10T14:58:57.885138Z", - "shell.execute_reply": "2024-01-10T14:58:57.884495Z" + "iopub.execute_input": "2024-01-12T22:20:19.873672Z", + "iopub.status.busy": "2024-01-12T22:20:19.873295Z", + "iopub.status.idle": "2024-01-12T22:20:19.894536Z", + "shell.execute_reply": "2024-01-12T22:20:19.893818Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:330: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:57.887770Z", - "iopub.status.busy": "2024-01-10T14:58:57.887374Z", - "iopub.status.idle": "2024-01-10T14:58:57.901817Z", - "shell.execute_reply": "2024-01-10T14:58:57.901299Z" + "iopub.execute_input": "2024-01-12T22:20:19.896989Z", + "iopub.status.busy": "2024-01-12T22:20:19.896608Z", + "iopub.status.idle": "2024-01-12T22:20:19.911348Z", + "shell.execute_reply": "2024-01-12T22:20:19.910830Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:57.904415Z", - "iopub.status.busy": "2024-01-10T14:58:57.904050Z", - "iopub.status.idle": "2024-01-10T14:58:57.926963Z", - "shell.execute_reply": "2024-01-10T14:58:57.926322Z" + "iopub.execute_input": "2024-01-12T22:20:19.913994Z", + "iopub.status.busy": "2024-01-12T22:20:19.913590Z", + "iopub.status.idle": "2024-01-12T22:20:19.935829Z", + "shell.execute_reply": "2024-01-12T22:20:19.935214Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "72fad40a86864766b299b987b88cfd8a", + "model_id": "7179dbc628344416b95d5aefc8afec5e", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:57.931079Z", - "iopub.status.busy": "2024-01-10T14:58:57.930776Z", - "iopub.status.idle": "2024-01-10T14:58:57.945658Z", - "shell.execute_reply": "2024-01-10T14:58:57.945144Z" + "iopub.execute_input": "2024-01-12T22:20:19.938266Z", + "iopub.status.busy": "2024-01-12T22:20:19.937894Z", + "iopub.status.idle": "2024-01-12T22:20:19.953582Z", + "shell.execute_reply": "2024-01-12T22:20:19.952975Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:57.948048Z", - "iopub.status.busy": "2024-01-10T14:58:57.947845Z", - "iopub.status.idle": "2024-01-10T14:58:57.954175Z", - "shell.execute_reply": "2024-01-10T14:58:57.953612Z" + "iopub.execute_input": "2024-01-12T22:20:19.956123Z", + "iopub.status.busy": "2024-01-12T22:20:19.955677Z", + "iopub.status.idle": "2024-01-12T22:20:19.962082Z", + "shell.execute_reply": "2024-01-12T22:20:19.961451Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:58:57.956636Z", - "iopub.status.busy": "2024-01-10T14:58:57.956195Z", - "iopub.status.idle": "2024-01-10T14:58:57.975702Z", - "shell.execute_reply": "2024-01-10T14:58:57.975158Z" + "iopub.execute_input": "2024-01-12T22:20:19.964457Z", + "iopub.status.busy": "2024-01-12T22:20:19.964159Z", + "iopub.status.idle": "2024-01-12T22:20:19.983731Z", + "shell.execute_reply": "2024-01-12T22:20:19.983213Z" } }, "outputs": [ @@ -1430,7 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1dd56a26d69048f6a3cafad4385d2b8a": { + "112cf9cbc01f402aa52d0c8846e810d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1445,81 +1445,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8443c9e833384832ac73d9d1c16736c9", + "layout": "IPY_MODEL_bef440a9af08456d9f366eba9f745035", "placeholder": "​", - "style": "IPY_MODEL_2cd88230aa32404fa9f821d2f7e73ee1", - "value": " 132/132 [00:00<00:00, 10218.87 examples/s]" + "style": "IPY_MODEL_8a26d0dded474d3ca4e3479c709a297c", + "value": " 132/132 [00:00<00:00, 11139.80 examples/s]" } }, - "2cd88230aa32404fa9f821d2f7e73ee1": { + "466ba721c0424954b1cbcb7c62fd0766": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4cb5a201e40a4148abe3078a636afcdd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6e69f1518dbd4f5f98b28e61ae5741e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "72fad40a86864766b299b987b88cfd8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eb0687177d3042cf8f0901f75f604e85", - "IPY_MODEL_a4e15f916f304af6a621a3edd208fbde", - "IPY_MODEL_1dd56a26d69048f6a3cafad4385d2b8a" - ], - "layout": "IPY_MODEL_761d6c7068ef43eab994d1e5d21d994c" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b8bb4bda2dcf426b8187e3ec19cda1f6", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9d2ae6f29c434c38882202147d60296b", + "value": 132.0 } }, - "761d6c7068ef43eab994d1e5d21d994c": { + "5240ff8529c04c07b08da892f665edf9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1571,7 +1527,7 @@ "width": null } }, - "7bcc3f1d4e8f4561af6fefcdbfa57573": { + "55eb28764db24e7dac8f1420bea68c38": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1623,7 +1579,96 @@ "width": null } }, - "8443c9e833384832ac73d9d1c16736c9": { + "5c6b23aa735b4ae2a3083f4ca7c81647": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7179dbc628344416b95d5aefc8afec5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_83bbf55c7d3f464d8048ad4c7bdbfa42", + "IPY_MODEL_466ba721c0424954b1cbcb7c62fd0766", + "IPY_MODEL_112cf9cbc01f402aa52d0c8846e810d6" + ], + "layout": "IPY_MODEL_55eb28764db24e7dac8f1420bea68c38" + } + }, + "83bbf55c7d3f464d8048ad4c7bdbfa42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5240ff8529c04c07b08da892f665edf9", + "placeholder": "​", + "style": "IPY_MODEL_5c6b23aa735b4ae2a3083f4ca7c81647", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "8a26d0dded474d3ca4e3479c709a297c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9d2ae6f29c434c38882202147d60296b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b8bb4bda2dcf426b8187e3ec19cda1f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1675,31 +1720,7 @@ "width": null } }, - "a4e15f916f304af6a621a3edd208fbde": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7bcc3f1d4e8f4561af6fefcdbfa57573", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6e69f1518dbd4f5f98b28e61ae5741e7", - "value": 132.0 - } - }, - "cc4cc2f72a704431ba1a4a0b3aefb072": { + "bef440a9af08456d9f366eba9f745035": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1750,27 +1771,6 @@ "visibility": null, "width": null } - }, - "eb0687177d3042cf8f0901f75f604e85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cc4cc2f72a704431ba1a4a0b3aefb072", - "placeholder": "​", - "style": "IPY_MODEL_4cb5a201e40a4148abe3078a636afcdd", - "value": "Saving the dataset (1/1 shards): 100%" - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index a87b1fc5a..50770bdf4 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:03.000059Z", - "iopub.status.busy": "2024-01-10T14:59:02.999862Z", - "iopub.status.idle": "2024-01-10T14:59:04.078943Z", - "shell.execute_reply": "2024-01-10T14:59:04.078330Z" + "iopub.execute_input": "2024-01-12T22:20:24.712347Z", + "iopub.status.busy": "2024-01-12T22:20:24.711729Z", + "iopub.status.idle": "2024-01-12T22:20:25.815229Z", + "shell.execute_reply": "2024-01-12T22:20:25.814651Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.081752Z", - "iopub.status.busy": "2024-01-10T14:59:04.081300Z", - "iopub.status.idle": "2024-01-10T14:59:04.084518Z", - "shell.execute_reply": "2024-01-10T14:59:04.083930Z" + "iopub.execute_input": "2024-01-12T22:20:25.818309Z", + "iopub.status.busy": "2024-01-12T22:20:25.817758Z", + "iopub.status.idle": "2024-01-12T22:20:25.821102Z", + "shell.execute_reply": "2024-01-12T22:20:25.820506Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.087061Z", - "iopub.status.busy": "2024-01-10T14:59:04.086706Z", - "iopub.status.idle": "2024-01-10T14:59:04.096607Z", - "shell.execute_reply": "2024-01-10T14:59:04.096118Z" + "iopub.execute_input": "2024-01-12T22:20:25.823631Z", + "iopub.status.busy": "2024-01-12T22:20:25.823270Z", + "iopub.status.idle": "2024-01-12T22:20:25.833005Z", + "shell.execute_reply": "2024-01-12T22:20:25.832444Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.098985Z", - "iopub.status.busy": "2024-01-10T14:59:04.098491Z", - "iopub.status.idle": "2024-01-10T14:59:04.103421Z", - "shell.execute_reply": "2024-01-10T14:59:04.102829Z" + "iopub.execute_input": "2024-01-12T22:20:25.835388Z", + "iopub.status.busy": "2024-01-12T22:20:25.835020Z", + "iopub.status.idle": "2024-01-12T22:20:25.839867Z", + "shell.execute_reply": "2024-01-12T22:20:25.839242Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.105879Z", - "iopub.status.busy": "2024-01-10T14:59:04.105439Z", - "iopub.status.idle": "2024-01-10T14:59:04.393020Z", - "shell.execute_reply": "2024-01-10T14:59:04.392350Z" + "iopub.execute_input": "2024-01-12T22:20:25.842646Z", + "iopub.status.busy": "2024-01-12T22:20:25.842188Z", + "iopub.status.idle": "2024-01-12T22:20:26.133735Z", + "shell.execute_reply": "2024-01-12T22:20:26.133090Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.395826Z", - "iopub.status.busy": "2024-01-10T14:59:04.395600Z", - "iopub.status.idle": "2024-01-10T14:59:04.765815Z", - "shell.execute_reply": "2024-01-10T14:59:04.765164Z" + "iopub.execute_input": "2024-01-12T22:20:26.136859Z", + "iopub.status.busy": "2024-01-12T22:20:26.136498Z", + "iopub.status.idle": "2024-01-12T22:20:26.451976Z", + "shell.execute_reply": "2024-01-12T22:20:26.451335Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.768430Z", - "iopub.status.busy": "2024-01-10T14:59:04.767972Z", - "iopub.status.idle": "2024-01-10T14:59:04.770856Z", - "shell.execute_reply": "2024-01-10T14:59:04.770335Z" + "iopub.execute_input": "2024-01-12T22:20:26.454613Z", + "iopub.status.busy": "2024-01-12T22:20:26.454207Z", + "iopub.status.idle": "2024-01-12T22:20:26.457836Z", + "shell.execute_reply": "2024-01-12T22:20:26.457338Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.773132Z", - "iopub.status.busy": "2024-01-10T14:59:04.772933Z", - "iopub.status.idle": "2024-01-10T14:59:04.811324Z", - "shell.execute_reply": "2024-01-10T14:59:04.810695Z" + "iopub.execute_input": "2024-01-12T22:20:26.460356Z", + "iopub.status.busy": "2024-01-12T22:20:26.460035Z", + "iopub.status.idle": "2024-01-12T22:20:26.498993Z", + "shell.execute_reply": "2024-01-12T22:20:26.498237Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:04.813573Z", - "iopub.status.busy": "2024-01-10T14:59:04.813373Z", - "iopub.status.idle": "2024-01-10T14:59:06.133380Z", - "shell.execute_reply": "2024-01-10T14:59:06.132660Z" + "iopub.execute_input": "2024-01-12T22:20:26.501608Z", + "iopub.status.busy": "2024-01-12T22:20:26.501208Z", + "iopub.status.idle": "2024-01-12T22:20:27.852356Z", + "shell.execute_reply": "2024-01-12T22:20:27.851587Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:06.136341Z", - "iopub.status.busy": "2024-01-10T14:59:06.135744Z", - "iopub.status.idle": "2024-01-10T14:59:06.161385Z", - "shell.execute_reply": "2024-01-10T14:59:06.160754Z" + "iopub.execute_input": "2024-01-12T22:20:27.855341Z", + "iopub.status.busy": "2024-01-12T22:20:27.854687Z", + "iopub.status.idle": "2024-01-12T22:20:27.880045Z", + "shell.execute_reply": "2024-01-12T22:20:27.879403Z" } }, "outputs": [ @@ -878,10 +878,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:06.164094Z", - "iopub.status.busy": "2024-01-10T14:59:06.163709Z", - "iopub.status.idle": "2024-01-10T14:59:06.170693Z", - "shell.execute_reply": "2024-01-10T14:59:06.170040Z" + "iopub.execute_input": "2024-01-12T22:20:27.882386Z", + "iopub.status.busy": "2024-01-12T22:20:27.882170Z", + "iopub.status.idle": "2024-01-12T22:20:27.889199Z", + "shell.execute_reply": "2024-01-12T22:20:27.888564Z" } }, "outputs": [ @@ -985,10 +985,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:06.173531Z", - "iopub.status.busy": "2024-01-10T14:59:06.172899Z", - "iopub.status.idle": "2024-01-10T14:59:06.179680Z", - "shell.execute_reply": "2024-01-10T14:59:06.179158Z" + "iopub.execute_input": "2024-01-12T22:20:27.891668Z", + "iopub.status.busy": "2024-01-12T22:20:27.891301Z", + "iopub.status.idle": "2024-01-12T22:20:27.898193Z", + "shell.execute_reply": "2024-01-12T22:20:27.897660Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:06.182064Z", - "iopub.status.busy": "2024-01-10T14:59:06.181860Z", - "iopub.status.idle": "2024-01-10T14:59:06.192735Z", - "shell.execute_reply": "2024-01-10T14:59:06.192198Z" + "iopub.execute_input": "2024-01-12T22:20:27.900639Z", + "iopub.status.busy": "2024-01-12T22:20:27.900285Z", + "iopub.status.idle": "2024-01-12T22:20:27.910859Z", + "shell.execute_reply": "2024-01-12T22:20:27.910204Z" } }, "outputs": [ @@ -1231,10 +1231,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:06.195091Z", - "iopub.status.busy": "2024-01-10T14:59:06.194847Z", - "iopub.status.idle": "2024-01-10T14:59:06.205008Z", - "shell.execute_reply": "2024-01-10T14:59:06.204451Z" + "iopub.execute_input": "2024-01-12T22:20:27.913245Z", + "iopub.status.busy": "2024-01-12T22:20:27.912884Z", + "iopub.status.idle": "2024-01-12T22:20:27.922090Z", + "shell.execute_reply": "2024-01-12T22:20:27.921478Z" } }, "outputs": [ @@ -1350,10 +1350,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:06.207787Z", - "iopub.status.busy": "2024-01-10T14:59:06.207584Z", - "iopub.status.idle": "2024-01-10T14:59:06.215303Z", - "shell.execute_reply": "2024-01-10T14:59:06.214681Z" + "iopub.execute_input": "2024-01-12T22:20:27.924492Z", + "iopub.status.busy": "2024-01-12T22:20:27.924121Z", + "iopub.status.idle": "2024-01-12T22:20:27.932005Z", + "shell.execute_reply": "2024-01-12T22:20:27.931333Z" }, "scrolled": true }, @@ -1478,10 +1478,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:06.217692Z", - "iopub.status.busy": "2024-01-10T14:59:06.217484Z", - "iopub.status.idle": "2024-01-10T14:59:06.227879Z", - "shell.execute_reply": "2024-01-10T14:59:06.227251Z" + "iopub.execute_input": "2024-01-12T22:20:27.934446Z", + "iopub.status.busy": "2024-01-12T22:20:27.934072Z", + "iopub.status.idle": "2024-01-12T22:20:27.944035Z", + "shell.execute_reply": "2024-01-12T22:20:27.943389Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index ababc3071..89420f29e 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:10.981665Z", - "iopub.status.busy": "2024-01-10T14:59:10.981463Z", - "iopub.status.idle": "2024-01-10T14:59:12.008038Z", - "shell.execute_reply": "2024-01-10T14:59:12.007342Z" + "iopub.execute_input": "2024-01-12T22:20:32.791485Z", + "iopub.status.busy": "2024-01-12T22:20:32.791290Z", + "iopub.status.idle": "2024-01-12T22:20:33.850285Z", + "shell.execute_reply": "2024-01-12T22:20:33.849662Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:12.010994Z", - "iopub.status.busy": "2024-01-10T14:59:12.010677Z", - "iopub.status.idle": "2024-01-10T14:59:12.027240Z", - "shell.execute_reply": "2024-01-10T14:59:12.026590Z" + "iopub.execute_input": "2024-01-12T22:20:33.853413Z", + "iopub.status.busy": "2024-01-12T22:20:33.852882Z", + "iopub.status.idle": "2024-01-12T22:20:33.869678Z", + "shell.execute_reply": "2024-01-12T22:20:33.869128Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:12.030319Z", - "iopub.status.busy": "2024-01-10T14:59:12.029725Z", - "iopub.status.idle": "2024-01-10T14:59:12.179406Z", - "shell.execute_reply": "2024-01-10T14:59:12.178766Z" + "iopub.execute_input": "2024-01-12T22:20:33.872351Z", + "iopub.status.busy": "2024-01-12T22:20:33.872035Z", + "iopub.status.idle": "2024-01-12T22:20:34.198063Z", + "shell.execute_reply": "2024-01-12T22:20:34.197354Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:12.182187Z", - "iopub.status.busy": "2024-01-10T14:59:12.181713Z", - "iopub.status.idle": "2024-01-10T14:59:12.185520Z", - "shell.execute_reply": "2024-01-10T14:59:12.184931Z" + "iopub.execute_input": "2024-01-12T22:20:34.200686Z", + "iopub.status.busy": "2024-01-12T22:20:34.200316Z", + "iopub.status.idle": "2024-01-12T22:20:34.204184Z", + "shell.execute_reply": "2024-01-12T22:20:34.203672Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:12.187959Z", - "iopub.status.busy": "2024-01-10T14:59:12.187588Z", - "iopub.status.idle": "2024-01-10T14:59:12.195249Z", - "shell.execute_reply": "2024-01-10T14:59:12.194761Z" + "iopub.execute_input": "2024-01-12T22:20:34.206528Z", + "iopub.status.busy": "2024-01-12T22:20:34.206140Z", + "iopub.status.idle": "2024-01-12T22:20:34.214315Z", + "shell.execute_reply": "2024-01-12T22:20:34.213685Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:12.197697Z", - "iopub.status.busy": "2024-01-10T14:59:12.197262Z", - "iopub.status.idle": "2024-01-10T14:59:12.199985Z", - "shell.execute_reply": "2024-01-10T14:59:12.199461Z" + "iopub.execute_input": "2024-01-12T22:20:34.216994Z", + "iopub.status.busy": "2024-01-12T22:20:34.216621Z", + "iopub.status.idle": "2024-01-12T22:20:34.219321Z", + "shell.execute_reply": "2024-01-12T22:20:34.218773Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:12.202218Z", - "iopub.status.busy": "2024-01-10T14:59:12.202019Z", - "iopub.status.idle": "2024-01-10T14:59:15.789515Z", - "shell.execute_reply": "2024-01-10T14:59:15.788880Z" + "iopub.execute_input": "2024-01-12T22:20:34.221734Z", + "iopub.status.busy": "2024-01-12T22:20:34.221344Z", + "iopub.status.idle": "2024-01-12T22:20:37.794584Z", + "shell.execute_reply": "2024-01-12T22:20:37.793842Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:15.792602Z", - "iopub.status.busy": "2024-01-10T14:59:15.792171Z", - "iopub.status.idle": "2024-01-10T14:59:15.802081Z", - "shell.execute_reply": "2024-01-10T14:59:15.801589Z" + "iopub.execute_input": "2024-01-12T22:20:37.797717Z", + "iopub.status.busy": "2024-01-12T22:20:37.797499Z", + "iopub.status.idle": "2024-01-12T22:20:37.807009Z", + "shell.execute_reply": "2024-01-12T22:20:37.806388Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:15.804589Z", - "iopub.status.busy": "2024-01-10T14:59:15.804228Z", - "iopub.status.idle": "2024-01-10T14:59:17.180350Z", - "shell.execute_reply": "2024-01-10T14:59:17.179602Z" + "iopub.execute_input": "2024-01-12T22:20:37.809595Z", + "iopub.status.busy": "2024-01-12T22:20:37.809224Z", + "iopub.status.idle": "2024-01-12T22:20:39.184349Z", + "shell.execute_reply": "2024-01-12T22:20:39.183625Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.184988Z", - "iopub.status.busy": "2024-01-10T14:59:17.183614Z", - "iopub.status.idle": "2024-01-10T14:59:17.212346Z", - "shell.execute_reply": "2024-01-10T14:59:17.211645Z" + "iopub.execute_input": "2024-01-12T22:20:39.188954Z", + "iopub.status.busy": "2024-01-12T22:20:39.187610Z", + "iopub.status.idle": "2024-01-12T22:20:39.215687Z", + "shell.execute_reply": "2024-01-12T22:20:39.215075Z" }, "scrolled": true }, @@ -624,10 +624,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.216992Z", - "iopub.status.busy": "2024-01-10T14:59:17.215793Z", - "iopub.status.idle": "2024-01-10T14:59:17.229530Z", - "shell.execute_reply": "2024-01-10T14:59:17.228867Z" + "iopub.execute_input": "2024-01-12T22:20:39.220141Z", + "iopub.status.busy": "2024-01-12T22:20:39.218984Z", + "iopub.status.idle": "2024-01-12T22:20:39.232137Z", + "shell.execute_reply": "2024-01-12T22:20:39.231533Z" } }, "outputs": [ @@ -731,10 +731,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.234257Z", - "iopub.status.busy": "2024-01-10T14:59:17.233091Z", - "iopub.status.idle": "2024-01-10T14:59:17.248521Z", - "shell.execute_reply": "2024-01-10T14:59:17.247893Z" + "iopub.execute_input": "2024-01-12T22:20:39.236394Z", + "iopub.status.busy": "2024-01-12T22:20:39.235298Z", + "iopub.status.idle": "2024-01-12T22:20:39.249751Z", + "shell.execute_reply": "2024-01-12T22:20:39.249159Z" } }, "outputs": [ @@ -863,10 +863,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.253033Z", - "iopub.status.busy": "2024-01-10T14:59:17.251892Z", - "iopub.status.idle": "2024-01-10T14:59:17.264947Z", - "shell.execute_reply": "2024-01-10T14:59:17.264349Z" + "iopub.execute_input": "2024-01-12T22:20:39.253911Z", + "iopub.status.busy": "2024-01-12T22:20:39.252833Z", + "iopub.status.idle": "2024-01-12T22:20:39.265289Z", + "shell.execute_reply": "2024-01-12T22:20:39.264708Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.269322Z", - "iopub.status.busy": "2024-01-10T14:59:17.268190Z", - "iopub.status.idle": "2024-01-10T14:59:17.279638Z", - "shell.execute_reply": "2024-01-10T14:59:17.279028Z" + "iopub.execute_input": "2024-01-12T22:20:39.269419Z", + "iopub.status.busy": "2024-01-12T22:20:39.268343Z", + "iopub.status.idle": "2024-01-12T22:20:39.281369Z", + "shell.execute_reply": "2024-01-12T22:20:39.280863Z" } }, "outputs": [ @@ -1094,10 +1094,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.282394Z", - "iopub.status.busy": "2024-01-10T14:59:17.281813Z", - "iopub.status.idle": "2024-01-10T14:59:17.288968Z", - "shell.execute_reply": "2024-01-10T14:59:17.288435Z" + "iopub.execute_input": "2024-01-12T22:20:39.283870Z", + "iopub.status.busy": "2024-01-12T22:20:39.283514Z", + "iopub.status.idle": "2024-01-12T22:20:39.290112Z", + "shell.execute_reply": "2024-01-12T22:20:39.289654Z" } }, "outputs": [ @@ -1181,10 +1181,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.291408Z", - "iopub.status.busy": "2024-01-10T14:59:17.291060Z", - "iopub.status.idle": "2024-01-10T14:59:17.297989Z", - "shell.execute_reply": "2024-01-10T14:59:17.297472Z" + "iopub.execute_input": "2024-01-12T22:20:39.292529Z", + "iopub.status.busy": "2024-01-12T22:20:39.292114Z", + "iopub.status.idle": "2024-01-12T22:20:39.300446Z", + "shell.execute_reply": "2024-01-12T22:20:39.299794Z" } }, "outputs": [ @@ -1277,10 +1277,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:17.300419Z", - "iopub.status.busy": "2024-01-10T14:59:17.300054Z", - "iopub.status.idle": "2024-01-10T14:59:17.306917Z", - "shell.execute_reply": "2024-01-10T14:59:17.306349Z" + "iopub.execute_input": "2024-01-12T22:20:39.302992Z", + "iopub.status.busy": "2024-01-12T22:20:39.302629Z", + "iopub.status.idle": "2024-01-12T22:20:39.310059Z", + "shell.execute_reply": "2024-01-12T22:20:39.309557Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 6391a9df2..6fe0f5783 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -943,7 +943,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'getting_spare_card', 'card_payment_fee_charged', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'change_pin', 'supported_cards_and_currencies'}
+Classes: {'lost_or_stolen_phone', 'change_pin', 'getting_spare_card', 'card_about_to_expire', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'cancel_transfer', 'visa_or_mastercard', 'beneficiary_not_allowed'}
 

Let’s view the i-th example in the dataset:

@@ -990,43 +990,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1789,7 +1789,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index ca326d89b..aba851f99 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:22.092445Z", - "iopub.status.busy": "2024-01-10T14:59:22.092236Z", - "iopub.status.idle": "2024-01-10T14:59:24.403879Z", - "shell.execute_reply": "2024-01-10T14:59:24.403193Z" + "iopub.execute_input": "2024-01-12T22:20:43.805215Z", + "iopub.status.busy": "2024-01-12T22:20:43.805027Z", + "iopub.status.idle": "2024-01-12T22:20:46.519232Z", + "shell.execute_reply": "2024-01-12T22:20:46.518620Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "862dcffe2cde478e97ab974c75c6ea32", + "model_id": "846ddec3eae540f8a5d8c5e007a27eed", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:24.407066Z", - "iopub.status.busy": "2024-01-10T14:59:24.406465Z", - "iopub.status.idle": "2024-01-10T14:59:24.410103Z", - "shell.execute_reply": "2024-01-10T14:59:24.409519Z" + "iopub.execute_input": "2024-01-12T22:20:46.522443Z", + "iopub.status.busy": "2024-01-12T22:20:46.521821Z", + "iopub.status.idle": "2024-01-12T22:20:46.525483Z", + "shell.execute_reply": "2024-01-12T22:20:46.524957Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:24.412607Z", - "iopub.status.busy": "2024-01-10T14:59:24.412258Z", - "iopub.status.idle": "2024-01-10T14:59:24.415950Z", - "shell.execute_reply": "2024-01-10T14:59:24.415466Z" + "iopub.execute_input": "2024-01-12T22:20:46.527879Z", + "iopub.status.busy": "2024-01-12T22:20:46.527426Z", + "iopub.status.idle": "2024-01-12T22:20:46.530888Z", + "shell.execute_reply": "2024-01-12T22:20:46.530327Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:24.418446Z", - "iopub.status.busy": "2024-01-10T14:59:24.417979Z", - "iopub.status.idle": "2024-01-10T14:59:24.476477Z", - "shell.execute_reply": "2024-01-10T14:59:24.475884Z" + "iopub.execute_input": "2024-01-12T22:20:46.533194Z", + "iopub.status.busy": "2024-01-12T22:20:46.532823Z", + "iopub.status.idle": "2024-01-12T22:20:46.683364Z", + "shell.execute_reply": "2024-01-12T22:20:46.682701Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:24.479032Z", - "iopub.status.busy": "2024-01-10T14:59:24.478651Z", - "iopub.status.idle": "2024-01-10T14:59:24.482763Z", - "shell.execute_reply": "2024-01-10T14:59:24.482154Z" + "iopub.execute_input": "2024-01-12T22:20:46.685936Z", + "iopub.status.busy": "2024-01-12T22:20:46.685564Z", + "iopub.status.idle": "2024-01-12T22:20:46.689590Z", + "shell.execute_reply": "2024-01-12T22:20:46.688964Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'getting_spare_card', 'card_payment_fee_charged', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'change_pin', 'supported_cards_and_currencies'}\n" + "Classes: {'lost_or_stolen_phone', 'change_pin', 'getting_spare_card', 'card_about_to_expire', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'cancel_transfer', 'visa_or_mastercard', 'beneficiary_not_allowed'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:24.485240Z", - "iopub.status.busy": "2024-01-10T14:59:24.484873Z", - "iopub.status.idle": "2024-01-10T14:59:24.488318Z", - "shell.execute_reply": "2024-01-10T14:59:24.487706Z" + "iopub.execute_input": "2024-01-12T22:20:46.692041Z", + "iopub.status.busy": "2024-01-12T22:20:46.691680Z", + "iopub.status.idle": "2024-01-12T22:20:46.695014Z", + "shell.execute_reply": "2024-01-12T22:20:46.694402Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:24.490800Z", - "iopub.status.busy": "2024-01-10T14:59:24.490451Z", - "iopub.status.idle": "2024-01-10T14:59:33.672418Z", - "shell.execute_reply": "2024-01-10T14:59:33.671786Z" + "iopub.execute_input": "2024-01-12T22:20:46.697508Z", + "iopub.status.busy": "2024-01-12T22:20:46.697154Z", + "iopub.status.idle": "2024-01-12T22:20:56.868983Z", + "shell.execute_reply": "2024-01-12T22:20:56.868325Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f2e849e51c874b17a848ea3fa7185a74", + "model_id": "5c6a5887aac9455e90e4632979756830", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "94c85eae08a741ef81e270f9647311bf", + "model_id": "a035c53190064c67a6538f2c632014d7", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f8fc9626652544dba8ec78fd1f4ae9d7", + "model_id": "ae4e7edf8f6343b4ac661fee40ce9dd0", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84f0c6c7b270459db0855f5d976763e0", + "model_id": "ec81a6b6f26846f89c761ec702fb7d3b", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8935bc181d264ffc8db415b422beb496", + "model_id": "1c231cb8abd74ec9b30915df91481bd6", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bc2109a4e2f84d67bbb8ab6cba21fab9", + "model_id": "ab7bf1923bad44e39d653545bddc6d0d", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9b94f541e59245eda011ea6c11772a07", + "model_id": "2139190be04b4440b72b7a812b5ba39a", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:33.675731Z", - "iopub.status.busy": "2024-01-10T14:59:33.675246Z", - "iopub.status.idle": "2024-01-10T14:59:34.841910Z", - "shell.execute_reply": "2024-01-10T14:59:34.841238Z" + "iopub.execute_input": "2024-01-12T22:20:56.872312Z", + "iopub.status.busy": "2024-01-12T22:20:56.871905Z", + "iopub.status.idle": "2024-01-12T22:20:58.042533Z", + "shell.execute_reply": "2024-01-12T22:20:58.041828Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:34.845385Z", - "iopub.status.busy": "2024-01-10T14:59:34.844983Z", - "iopub.status.idle": "2024-01-10T14:59:34.848001Z", - "shell.execute_reply": "2024-01-10T14:59:34.847447Z" + "iopub.execute_input": "2024-01-12T22:20:58.046185Z", + "iopub.status.busy": "2024-01-12T22:20:58.045755Z", + "iopub.status.idle": "2024-01-12T22:20:58.048874Z", + "shell.execute_reply": "2024-01-12T22:20:58.048312Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:34.850802Z", - "iopub.status.busy": "2024-01-10T14:59:34.850433Z", - "iopub.status.idle": "2024-01-10T14:59:36.210865Z", - "shell.execute_reply": "2024-01-10T14:59:36.209994Z" + "iopub.execute_input": "2024-01-12T22:20:58.052708Z", + "iopub.status.busy": "2024-01-12T22:20:58.051556Z", + "iopub.status.idle": "2024-01-12T22:20:59.412023Z", + "shell.execute_reply": "2024-01-12T22:20:59.411171Z" }, "scrolled": true }, @@ -640,10 +640,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.214452Z", - "iopub.status.busy": "2024-01-10T14:59:36.213504Z", - "iopub.status.idle": "2024-01-10T14:59:36.247942Z", - "shell.execute_reply": "2024-01-10T14:59:36.247228Z" + "iopub.execute_input": "2024-01-12T22:20:59.416786Z", + "iopub.status.busy": "2024-01-12T22:20:59.415218Z", + "iopub.status.idle": "2024-01-12T22:20:59.453256Z", + "shell.execute_reply": "2024-01-12T22:20:59.452620Z" }, "scrolled": true }, @@ -808,10 +808,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.251096Z", - "iopub.status.busy": "2024-01-10T14:59:36.250420Z", - "iopub.status.idle": "2024-01-10T14:59:36.261728Z", - "shell.execute_reply": "2024-01-10T14:59:36.261092Z" + "iopub.execute_input": "2024-01-12T22:20:59.457788Z", + "iopub.status.busy": "2024-01-12T22:20:59.456651Z", + "iopub.status.idle": "2024-01-12T22:20:59.469545Z", + "shell.execute_reply": "2024-01-12T22:20:59.469047Z" }, "scrolled": true }, @@ -921,10 +921,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.264768Z", - "iopub.status.busy": "2024-01-10T14:59:36.264298Z", - "iopub.status.idle": "2024-01-10T14:59:36.269449Z", - "shell.execute_reply": "2024-01-10T14:59:36.268960Z" + "iopub.execute_input": "2024-01-12T22:20:59.472173Z", + "iopub.status.busy": "2024-01-12T22:20:59.471788Z", + "iopub.status.idle": "2024-01-12T22:20:59.476911Z", + "shell.execute_reply": "2024-01-12T22:20:59.476397Z" } }, "outputs": [ @@ -962,10 +962,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.272221Z", - "iopub.status.busy": "2024-01-10T14:59:36.271614Z", - "iopub.status.idle": "2024-01-10T14:59:36.279936Z", - "shell.execute_reply": "2024-01-10T14:59:36.279356Z" + "iopub.execute_input": "2024-01-12T22:20:59.479282Z", + "iopub.status.busy": "2024-01-12T22:20:59.478916Z", + "iopub.status.idle": "2024-01-12T22:20:59.485874Z", + "shell.execute_reply": "2024-01-12T22:20:59.485228Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.282599Z", - "iopub.status.busy": "2024-01-10T14:59:36.282081Z", - "iopub.status.idle": "2024-01-10T14:59:36.289576Z", - "shell.execute_reply": "2024-01-10T14:59:36.288966Z" + "iopub.execute_input": "2024-01-12T22:20:59.488309Z", + "iopub.status.busy": "2024-01-12T22:20:59.487955Z", + "iopub.status.idle": "2024-01-12T22:20:59.495012Z", + "shell.execute_reply": "2024-01-12T22:20:59.494455Z" } }, "outputs": [ @@ -1168,10 +1168,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.291990Z", - "iopub.status.busy": "2024-01-10T14:59:36.291624Z", - "iopub.status.idle": "2024-01-10T14:59:36.297899Z", - "shell.execute_reply": "2024-01-10T14:59:36.297301Z" + "iopub.execute_input": "2024-01-12T22:20:59.497497Z", + "iopub.status.busy": "2024-01-12T22:20:59.497044Z", + "iopub.status.idle": "2024-01-12T22:20:59.503936Z", + "shell.execute_reply": "2024-01-12T22:20:59.503298Z" } }, "outputs": [ @@ -1279,10 +1279,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.300330Z", - "iopub.status.busy": "2024-01-10T14:59:36.299984Z", - "iopub.status.idle": "2024-01-10T14:59:36.309346Z", - "shell.execute_reply": "2024-01-10T14:59:36.308790Z" + "iopub.execute_input": "2024-01-12T22:20:59.506347Z", + "iopub.status.busy": "2024-01-12T22:20:59.505975Z", + "iopub.status.idle": "2024-01-12T22:20:59.515095Z", + "shell.execute_reply": "2024-01-12T22:20:59.514552Z" } }, "outputs": [ @@ -1393,10 +1393,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.311803Z", - "iopub.status.busy": "2024-01-10T14:59:36.311415Z", - "iopub.status.idle": "2024-01-10T14:59:36.317270Z", - "shell.execute_reply": "2024-01-10T14:59:36.316743Z" + "iopub.execute_input": "2024-01-12T22:20:59.517449Z", + "iopub.status.busy": "2024-01-12T22:20:59.517081Z", + "iopub.status.idle": "2024-01-12T22:20:59.523186Z", + "shell.execute_reply": "2024-01-12T22:20:59.522612Z" } }, "outputs": [ @@ -1464,10 +1464,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.319529Z", - "iopub.status.busy": "2024-01-10T14:59:36.319327Z", - "iopub.status.idle": "2024-01-10T14:59:36.325099Z", - "shell.execute_reply": "2024-01-10T14:59:36.324498Z" + "iopub.execute_input": "2024-01-12T22:20:59.525397Z", + "iopub.status.busy": "2024-01-12T22:20:59.525049Z", + "iopub.status.idle": "2024-01-12T22:20:59.701901Z", + "shell.execute_reply": "2024-01-12T22:20:59.701202Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.327483Z", - "iopub.status.busy": "2024-01-10T14:59:36.327281Z", - "iopub.status.idle": "2024-01-10T14:59:36.331149Z", - "shell.execute_reply": "2024-01-10T14:59:36.330531Z" + "iopub.execute_input": "2024-01-12T22:20:59.704522Z", + "iopub.status.busy": "2024-01-12T22:20:59.704309Z", + "iopub.status.idle": "2024-01-12T22:20:59.708453Z", + "shell.execute_reply": "2024-01-12T22:20:59.707933Z" } }, "outputs": [ @@ -1597,10 +1597,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:36.333455Z", - "iopub.status.busy": "2024-01-10T14:59:36.333256Z", - "iopub.status.idle": "2024-01-10T14:59:36.517964Z", - "shell.execute_reply": "2024-01-10T14:59:36.517303Z" + "iopub.execute_input": "2024-01-12T22:20:59.710997Z", + "iopub.status.busy": "2024-01-12T22:20:59.710529Z", + "iopub.status.idle": "2024-01-12T22:20:59.716424Z", + "shell.execute_reply": "2024-01-12T22:20:59.715800Z" }, "nbsphinx": "hidden" }, @@ -1650,7 +1650,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00917c17081843f6a5a5d44b91e6acd9": { + "0322834af2834f9d97f01a725184781a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1665,13 +1665,52 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fd69eddaeade4dfbbc190d9d0f7cef92", + "layout": "IPY_MODEL_23ee96a37e004ba59782cb7e09041e5c", "placeholder": "​", - "style": "IPY_MODEL_fae8a5b5019e44ecad743866c942cf00", - "value": " 54.2M/54.2M [00:00<00:00, 266MB/s]" + "style": "IPY_MODEL_2bbb6a32485a4ca9b11c3eb1c9caae5f", + "value": " 232k/232k [00:00<00:00, 3.73MB/s]" } }, - "01554e29f7bb4ab3bf4b0b53e7e8f147": { + "12eb465219a34bb5ba7f5af661bb649a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aeddbd3a4a45466daffd3ff06403bd57", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9cebcba8e14342fa8a5a848de8bb429d", + "value": 665.0 + } + }, + "1561ff17da854bef9eb416e5e78e97ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1919964b16a04d6dbffc66196571f046": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1687,7 +1726,53 @@ "description_width": "" } }, - "06c7f99c4f4d4c98b56c80428fe227a9": { + "1bba83bf60de41f6874de6087910f2d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_511c81474873413aa31b938110670cd9", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1919964b16a04d6dbffc66196571f046", + "value": 231508.0 + } + }, + "1c231cb8abd74ec9b30915df91481bd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b880377f15b04d36bdeaa258c5f13655", + "IPY_MODEL_7ab36a6563af44f8a1075e8a4a018146", + "IPY_MODEL_412d5a26af48477e815fc635f1f228df" + ], + "layout": "IPY_MODEL_9b40a54e98ad425ea571f2235b45cfa7" + } + }, + "2060bd2b52044a43ad81a559d41c5608": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1736,10 +1821,47 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "075c0a2ff8984472a2407cb65c1af308": { + "2139190be04b4440b72b7a812b5ba39a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f7e41c8fe75d40dbb8de60651dc3b6ac", + "IPY_MODEL_1bba83bf60de41f6874de6087910f2d9", + "IPY_MODEL_0322834af2834f9d97f01a725184781a" + ], + "layout": "IPY_MODEL_29a1e8790daf4ab3959ecf25137f94e4" + } + }, + "22cf5aef29254450b9844e018c703f82": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "23ee96a37e004ba59782cb7e09041e5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1791,7 +1913,52 @@ "width": null } }, - "0a601d68ed194795a8e3e30f9636b988": { + "24b5a6f6757048468a4f92c9d975a221": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a37a3237c77a4bae9ca555ce7b7c587a", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bc1c6eb59ac64b90bc0f665cf6263991", + "value": 29.0 + } + }, + "271eb78573ed4449a9ef6a620d23aace": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b4d5012b0f464b5d9c0d3a003b48f644", + "placeholder": "​", + "style": "IPY_MODEL_56b2591801f940e7adfcccd3d00ddb7e", + "value": "" + } + }, + "289fbd27555449f3bf0b4ab45b920987": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1843,43 +2010,7 @@ "width": null } }, - "0dd83adc06cc448dbb45c8d5b083b1b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d88203f29b6041b9b084fcbe564b744c", - "placeholder": "​", - "style": "IPY_MODEL_97e3a9449c1045cf96051bf240fb3d86", - "value": " 232k/232k [00:00<00:00, 26.2MB/s]" - } - }, - "0f07dbed86ee4dedb4230e294d563b70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "12cb6377a008434fb126f7a20059d295": { + "29a1e8790daf4ab3959ecf25137f94e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1931,201 +2062,7 @@ "width": null } }, - "1d0bb365cef642bf9aa028dfaf2da8bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_06c7f99c4f4d4c98b56c80428fe227a9", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a321f57989f746d79202da624285ed2c", - "value": 0.0 - } - }, - "2042be878078403c96190c096097d90d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c76748ec8a42450ba7223d8b626ba091", - "placeholder": "​", - "style": "IPY_MODEL_4274375b0fc249138d9065f3d789e378", - "value": " 2.21k/2.21k [00:00<00:00, 298kB/s]" - } - }, - "2459388b6cbd42c2a4d43684c4b9afdf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9eee4112141543a9a4224b8b25ab2e5d", - "placeholder": "​", - "style": "IPY_MODEL_bb4e1551497a4ce4be301f4368f81676", - "value": " 466k/466k [00:00<00:00, 13.9MB/s]" - } - }, - "2886de46d9fd4702ab6e1c5b72e49072": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f7f728bec002499ab7823a03e95a2bf5", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2b0612da6bf14497ab00ac2fcd669247", - "value": 665.0 - } - }, - "2b0612da6bf14497ab00ac2fcd669247": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2c57a2dce6844d669534d4a56c9b289e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "31cbafcf7296451f8eafa376459fce42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c3a89d32580e43a5abcb986b0342b26b", - "placeholder": "​", - "style": "IPY_MODEL_5d198168a65943669c64ed11ea145d06", - "value": " 391/391 [00:00<00:00, 51.0kB/s]" - } - }, - "33b12887dbb64274a7777cd6a46751fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3f6a155e08b14f70bd139c25bbfc97ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_54b1991278ba46e2b8bbd15c62221efa", - "placeholder": "​", - "style": "IPY_MODEL_469e1113de45470581ebc31ed32169a1", - "value": "tokenizer.json: 100%" - } - }, - "4274375b0fc249138d9065f3d789e378": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "43604c5ccc2f48e084d21528eff3c15d": { + "2a3a3604b9ff4689be5d1d9fbcb42d4f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2177,7 +2114,7 @@ "width": null } }, - "469e1113de45470581ebc31ed32169a1": { + "2bbb6a32485a4ca9b11c3eb1c9caae5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2192,7 +2129,7 @@ "description_width": "" } }, - "4791eeb7baf64c8d9fac236bf5132592": { + "2f5f514688db4862a6d0bdf20fa0860b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2208,15 +2145,36 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9faaecaae1734c61ae18e834186c1666", - "max": 2211.0, + "layout": "IPY_MODEL_ac722767e0684b048aa1a3d833202e61", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_01554e29f7bb4ab3bf4b0b53e7e8f147", - "value": 2211.0 + "style": "IPY_MODEL_46efc5e6cb2041939478bd923d60060f", + "value": 391.0 } }, - "4880191d3d0547f39e1ae04216c88b71": { + "34a361b4e50a4b5bb7bcefa076be8425": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c36c9d6b85fb4e7d96da6fb72da31e55", + "placeholder": "​", + "style": "IPY_MODEL_45197ef3a63b45feb18fbef221d0d07e", + "value": "pytorch_model.bin: 100%" + } + }, + "3d5668abd9214ea2a1b2300c3f11a473": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2268,28 +2226,59 @@ "width": null } }, - "4abeacb8c56a488785fb5b9d0945caed": { + "412d5a26af48477e815fc635f1f228df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { - "_dom_classes": [], + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7856c3cf206d440ea9e61ddcf8b3c4f3", + "placeholder": "​", + "style": "IPY_MODEL_f3697a9009484745857bbb563251edd4", + "value": " 466k/466k [00:00<00:00, 3.88MB/s]" + } + }, + "45197ef3a63b45feb18fbef221d0d07e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "46efc5e6cb2041939478bd923d60060f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_52125d88b94b46f69d248404f8994683", - "placeholder": "​", - "style": "IPY_MODEL_6fe3adcc4a4041eabca98b1d60af84fd", - "value": " 665/665 [00:00<00:00, 81.4kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "52125d88b94b46f69d248404f8994683": { + "4abb8c9fc4494f2480b9ce1aefc62a3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2341,7 +2330,47 @@ "width": null } }, - "54b1991278ba46e2b8bbd15c62221efa": { + "4ba0243e3698401493004ff369dfffd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4c1af2e421ec4880a3ccc14f47169455": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cb64c1704bfd47a2b0d1a0cbb4eda118", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a9acb004614247faab6822522e529fdf", + "value": 0.0 + } + }, + "4e06396e3f13439aa47321a72b4a75e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2393,7 +2422,7 @@ "width": null } }, - "56636f85cdc9488bbcde50e0f31e8e05": { + "5019c2eb7d2c451ea914b819689be45f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2408,7 +2437,49 @@ "description_width": "" } }, - "583b1f186cc546f4a39bdfdd40349e0d": { + "505f0bf137644f538e88d321d7059c2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8a90681af46149cd99c3dfb8f61493fb", + "placeholder": "​", + "style": "IPY_MODEL_adaca57a88d44f9faa38907e2c0e9b68", + "value": ".gitattributes: 100%" + } + }, + "50ce9ad6e67d47af916bd2dddeabdf5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4e06396e3f13439aa47321a72b4a75e4", + "placeholder": "​", + "style": "IPY_MODEL_1561ff17da854bef9eb416e5e78e97ac", + "value": " 2.21k/2.21k [00:00<00:00, 285kB/s]" + } + }, + "511c81474873413aa31b938110670cd9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2460,7 +2531,23 @@ "width": null } }, - "5986e501975345c18931a5f0b9321683": { + "517ee44c1b0a4edd9bcc596b8382f777": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5289f324b7b84ed29fad7302410fc558": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2475,13 +2562,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bad367d7aefa4a2b986452a5deea268f", + "layout": "IPY_MODEL_cdaaa357098d46e79c0adae4cb1dfa7f", "placeholder": "​", - "style": "IPY_MODEL_56636f85cdc9488bbcde50e0f31e8e05", - "value": ".gitattributes: 100%" + "style": "IPY_MODEL_a961453567e146a090edb21c1f8328fc", + "value": "README.md: 100%" } }, - "5d198168a65943669c64ed11ea145d06": { + "56b2591801f940e7adfcccd3d00ddb7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2496,23 +2583,22 @@ "description_width": "" } }, - "5eb8c83858cd483bafc5a9248fad2a68": { + "5b4266ca4b764b27b32b47710666f5ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "609217f73fbb420caa14bc522c18b15d": { + "5bc63fd6d1914111bc85b5107d68dd1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2564,7 +2650,69 @@ "width": null } }, - "614552c5e5f3422a9e39ded35cce6f7e": { + "5c6a5887aac9455e90e4632979756830": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_505f0bf137644f538e88d321d7059c2e", + "IPY_MODEL_2f5f514688db4862a6d0bdf20fa0860b", + "IPY_MODEL_dc2f535ef125497aa7f485e4cc122ba2" + ], + "layout": "IPY_MODEL_af851b86760d454a81a2edf6605cb7e2" + } + }, + "6461b8d33d394ed49fef9ad35315dc12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6ce2d0c11d344a89983ff35576635c8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2a3a3604b9ff4689be5d1d9fbcb42d4f", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4ba0243e3698401493004ff369dfffd3", + "value": 54245363.0 + } + }, + "6f6929f78a4f469ba161d40664174088": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2616,71 +2764,22 @@ "width": null } }, - "623fe1d3ad6e46fdb758928ae51160b2": { + "72500022d46e4fc4b4c4967d61c937e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "692cd1c543c44d1f9a54e10a308abc35": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ea99b5f99229433c84ef7bc51a9c130f", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fcdce2bba18d4262a99e80746cd7ed8b", - "value": 391.0 - } - }, - "699ecc7a765d443aa11b0205425189a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0a601d68ed194795a8e3e30f9636b988", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5eb8c83858cd483bafc5a9248fad2a68", - "value": 29.0 - } - }, - "6a41a8086ed2471099f0596d310b417b": { + "7371921d43624293b95a7d1d04822637": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2695,7 +2794,59 @@ "description_width": "" } }, - "6befdc46f5d241a995ca903cc10cef7b": { + "7416e63643774d6196fbb3ef783b2eb6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7856c3cf206d440ea9e61ddcf8b3c4f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2747,22 +2898,59 @@ "width": null } }, - "6fe3adcc4a4041eabca98b1d60af84fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "79a21b08f308471dab6566409e64c074": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7a6f92e7c9954a008ddc389e56a80eb1": { + "7ab36a6563af44f8a1075e8a4a018146": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2778,15 +2966,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7b994861070847fea1d4a823b3a35d09", - "max": 231508.0, + "layout": "IPY_MODEL_ace290c9613747ffb6fac8dd2d2f8165", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_623fe1d3ad6e46fdb758928ae51160b2", - "value": 231508.0 + "style": "IPY_MODEL_6461b8d33d394ed49fef9ad35315dc12", + "value": 466062.0 } }, - "7b994861070847fea1d4a823b3a35d09": { + "7b699d78d8f4432cbf2055fc6120002a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2838,90 +3026,28 @@ "width": null } }, - "81591ea42d154551991b09bc36ec0ace": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "84f0c6c7b270459db0855f5d976763e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f67b595c6d6840bb837ed3c0bac5d0c8", - "IPY_MODEL_ddea88fc65ed4f6dae2c94fb28fe25d2", - "IPY_MODEL_00917c17081843f6a5a5d44b91e6acd9" - ], - "layout": "IPY_MODEL_6befdc46f5d241a995ca903cc10cef7b" - } - }, - "862dcffe2cde478e97ab974c75c6ea32": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_996f676633b94db4ab7ceea5a92391f5", - "IPY_MODEL_1d0bb365cef642bf9aa028dfaf2da8bf", - "IPY_MODEL_d318a49900f244a4acf9106cb605f223" - ], - "layout": "IPY_MODEL_614552c5e5f3422a9e39ded35cce6f7e" - } - }, - "890f4eb716014024a5979fa13eb74d7c": { + "7c9a692f8204465ba1b8adbd9e9bd3c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e6580715c12f4b788ec83b2fb386a5ee", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_33b12887dbb64274a7777cd6a46751fd", - "value": 466062.0 + "layout": "IPY_MODEL_ed202d16509b42c1bb176126e4e05c3c", + "placeholder": "​", + "style": "IPY_MODEL_8b8c7928fea64b0aae6e79b080caf631", + "value": "config.json: 100%" } }, - "8935bc181d264ffc8db415b422beb496": { + "846ddec3eae540f8a5d8c5e007a27eed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2936,14 +3062,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3f6a155e08b14f70bd139c25bbfc97ee", - "IPY_MODEL_890f4eb716014024a5979fa13eb74d7c", - "IPY_MODEL_2459388b6cbd42c2a4d43684c4b9afdf" + "IPY_MODEL_271eb78573ed4449a9ef6a620d23aace", + "IPY_MODEL_4c1af2e421ec4880a3ccc14f47169455", + "IPY_MODEL_f624a1ace7c44e04a3b4ebc9951dfa75" ], - "layout": "IPY_MODEL_c31984e520ca42ca88ae7a5abd092a51" + "layout": "IPY_MODEL_f7c8c0016ca5445fb7fe61c46cca6c41" } }, - "926b0337f538498182c5aa19264b1a8d": { + "8a90681af46149cd99c3dfb8f61493fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2995,29 +3121,7 @@ "width": null } }, - "94c85eae08a741ef81e270f9647311bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_be2b666b3d804f36913f6c87815b978c", - "IPY_MODEL_4791eeb7baf64c8d9fac236bf5132592", - "IPY_MODEL_2042be878078403c96190c096097d90d" - ], - "layout": "IPY_MODEL_583b1f186cc546f4a39bdfdd40349e0d" - } - }, - "97e3a9449c1045cf96051bf240fb3d86": { + "8b8c7928fea64b0aae6e79b080caf631": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3032,50 +3136,22 @@ "description_width": "" } }, - "996f676633b94db4ab7ceea5a92391f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_075c0a2ff8984472a2407cb65c1af308", - "placeholder": "​", - "style": "IPY_MODEL_aa56e96131494666bf4ac89b82a1e4e5", - "value": "" - } - }, - "9b94f541e59245eda011ea6c11772a07": { + "998aa4af95474db69ca88e9ba3a881bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ffd34fdfbd9448afb84dbd6818b15c8d", - "IPY_MODEL_7a6f92e7c9954a008ddc389e56a80eb1", - "IPY_MODEL_0dd83adc06cc448dbb45c8d5b083b1b3" - ], - "layout": "IPY_MODEL_12cb6377a008434fb126f7a20059d295" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "9eee4112141543a9a4224b8b25ab2e5d": { + "9b40a54e98ad425ea571f2235b45cfa7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3127,7 +3203,45 @@ "width": null } }, - "9faaecaae1734c61ae18e834186c1666": { + "9cebcba8e14342fa8a5a848de8bb429d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a035c53190064c67a6538f2c632014d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5289f324b7b84ed29fad7302410fc558", + "IPY_MODEL_cd0831c021964b7f91d2d7242010d303", + "IPY_MODEL_50ce9ad6e67d47af916bd2dddeabdf5f" + ], + "layout": "IPY_MODEL_ba76b9ac99af432e9998c5ab79d4ecbc" + } + }, + "a37a3237c77a4bae9ca555ce7b7c587a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3179,23 +3293,7 @@ "width": null } }, - "a321f57989f746d79202da624285ed2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a6b4b7c9957e4b819305afab73204cf6": { + "a961453567e146a090edb21c1f8328fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3210,7 +3308,7 @@ "description_width": "" } }, - "a956344db7a545cd957824d3ff7a2138": { + "a9acb004614247faab6822522e529fdf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3226,22 +3324,29 @@ "description_width": "" } }, - "aa56e96131494666bf4ac89b82a1e4e5": { + "ab7bf1923bad44e39d653545bddc6d0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_df95051a1dd64ddfa89451d600af8091", + "IPY_MODEL_24b5a6f6757048468a4f92c9d975a221", + "IPY_MODEL_f778bd7afe684f9aa4f9bf18daf37759" + ], + "layout": "IPY_MODEL_d3e98926c2e74442a0e4ef1739a07b8e" } }, - "b2c45c794eca4d8ea4aab4e4a2858c77": { + "ac722767e0684b048aa1a3d833202e61": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3293,7 +3398,7 @@ "width": null } }, - "bad367d7aefa4a2b986452a5deea268f": { + "ace290c9613747ffb6fac8dd2d2f8165": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3345,7 +3450,7 @@ "width": null } }, - "bb4e1551497a4ce4be301f4368f81676": { + "adaca57a88d44f9faa38907e2c0e9b68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3360,7 +3465,7 @@ "description_width": "" } }, - "bc2109a4e2f84d67bbb8ab6cba21fab9": { + "ae4e7edf8f6343b4ac661fee40ce9dd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3375,14 +3480,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c75aeff00b944db28a3423a3e33e24b4", - "IPY_MODEL_699ecc7a765d443aa11b0205425189a3", - "IPY_MODEL_f7f48121963b4ec7b6aa45f44f292c52" + "IPY_MODEL_7c9a692f8204465ba1b8adbd9e9bd3c4", + "IPY_MODEL_12eb465219a34bb5ba7f5af661bb649a", + "IPY_MODEL_e3208e4c06df4603a460602b0a19c97f" ], - "layout": "IPY_MODEL_e1baa1f8f2054d8eab2aa13d0120b795" + "layout": "IPY_MODEL_c3f737dcaee34393ad7d3e54c83cc76e" } }, - "bded0c71aa4d4ae0923501e8367e757e": { + "aeddbd3a4a45466daffd3ff06403bd57": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3426,36 +3531,15 @@ "order": null, "overflow": null, "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "be2b666b3d804f36913f6c87815b978c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d83d11da89f7403db61c0c0c22942732", - "placeholder": "​", - "style": "IPY_MODEL_2c57a2dce6844d669534d4a56c9b289e", - "value": "README.md: 100%" + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c31984e520ca42ca88ae7a5abd092a51": { + "af851b86760d454a81a2edf6605cb7e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3507,7 +3591,7 @@ "width": null } }, - "c3a89d32580e43a5abcb986b0342b26b": { + "b4d5012b0f464b5d9c0d3a003b48f644": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3559,7 +3643,22 @@ "width": null } }, - "c75aeff00b944db28a3423a3e33e24b4": { + "b86a66dd6b43465b9de0018bef50709b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b880377f15b04d36bdeaa258c5f13655": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3574,13 +3673,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_926b0337f538498182c5aa19264b1a8d", + "layout": "IPY_MODEL_6f6929f78a4f469ba161d40664174088", "placeholder": "​", - "style": "IPY_MODEL_fbb188a1c26343dba4a64537799f492c", - "value": "tokenizer_config.json: 100%" + "style": "IPY_MODEL_7371921d43624293b95a7d1d04822637", + "value": "tokenizer.json: 100%" } }, - "c76748ec8a42450ba7223d8b626ba091": { + "ba76b9ac99af432e9998c5ab79d4ecbc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3632,7 +3731,23 @@ "width": null } }, - "d318a49900f244a4acf9106cb605f223": { + "bc1c6eb59ac64b90bc0f665cf6263991": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bf8b40ed0f1248229ede46c72b01a704": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3647,28 +3762,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_dd4c5afca32949129c9e6f43b9b1413e", + "layout": "IPY_MODEL_2060bd2b52044a43ad81a559d41c5608", "placeholder": "​", - "style": "IPY_MODEL_81591ea42d154551991b09bc36ec0ace", - "value": " 0/0 [00:00<?, ?it/s]" - } - }, - "d4a4587430474d8fb2e2e40550998d40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_5b4266ca4b764b27b32b47710666f5ce", + "value": " 54.2M/54.2M [00:00<00:00, 304MB/s]" } }, - "d83d11da89f7403db61c0c0c22942732": { + "c36c9d6b85fb4e7d96da6fb72da31e55": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3720,7 +3820,7 @@ "width": null } }, - "d88203f29b6041b9b084fcbe564b744c": { + "c3f737dcaee34393ad7d3e54c83cc76e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3772,28 +3872,7 @@ "width": null } }, - "dc47d97b3b07452a9c03cbe07c75252c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_43604c5ccc2f48e084d21528eff3c15d", - "placeholder": "​", - "style": "IPY_MODEL_0f07dbed86ee4dedb4230e294d563b70", - "value": "config.json: 100%" - } - }, - "dd4c5afca32949129c9e6f43b9b1413e": { + "c3f7fdc25dd64c9d98cd2f0b2e291eb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3845,31 +3924,7 @@ "width": null } }, - "ddea88fc65ed4f6dae2c94fb28fe25d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_609217f73fbb420caa14bc522c18b15d", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a956344db7a545cd957824d3ff7a2138", - "value": 54245363.0 - } - }, - "e1baa1f8f2054d8eab2aa13d0120b795": { + "cb64c1704bfd47a2b0d1a0cbb4eda118": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3918,10 +3973,34 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" + } + }, + "cd0831c021964b7f91d2d7242010d303": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5bc63fd6d1914111bc85b5107d68dd1a", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_517ee44c1b0a4edd9bcc596b8382f777", + "value": 2211.0 } }, - "e6580715c12f4b788ec83b2fb386a5ee": { + "cdaaa357098d46e79c0adae4cb1dfa7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3973,7 +4052,7 @@ "width": null } }, - "ea99b5f99229433c84ef7bc51a9c130f": { + "d3e98926c2e74442a0e4ef1739a07b8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4025,29 +4104,28 @@ "width": null } }, - "f2e849e51c874b17a848ea3fa7185a74": { + "dc2f535ef125497aa7f485e4cc122ba2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5986e501975345c18931a5f0b9321683", - "IPY_MODEL_692cd1c543c44d1f9a54e10a308abc35", - "IPY_MODEL_31cbafcf7296451f8eafa376459fce42" - ], - "layout": "IPY_MODEL_bded0c71aa4d4ae0923501e8367e757e" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_289fbd27555449f3bf0b4ab45b920987", + "placeholder": "​", + "style": "IPY_MODEL_22cf5aef29254450b9844e018c703f82", + "value": " 391/391 [00:00<00:00, 50.4kB/s]" } }, - "f67b595c6d6840bb837ed3c0bac5d0c8": { + "df95051a1dd64ddfa89451d600af8091": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4062,13 +4140,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b2c45c794eca4d8ea4aab4e4a2858c77", + "layout": "IPY_MODEL_3d5668abd9214ea2a1b2300c3f11a473", "placeholder": "​", - "style": "IPY_MODEL_6a41a8086ed2471099f0596d310b417b", - "value": "pytorch_model.bin: 100%" + "style": "IPY_MODEL_72500022d46e4fc4b4c4967d61c937e9", + "value": "tokenizer_config.json: 100%" } }, - "f7f48121963b4ec7b6aa45f44f292c52": { + "e3208e4c06df4603a460602b0a19c97f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4083,65 +4161,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f9e7c4cce0aa4b9aaff09fc9b622d605", + "layout": "IPY_MODEL_79a21b08f308471dab6566409e64c074", "placeholder": "​", - "style": "IPY_MODEL_a6b4b7c9957e4b819305afab73204cf6", - "value": " 29.0/29.0 [00:00<00:00, 3.64kB/s]" + "style": "IPY_MODEL_b86a66dd6b43465b9de0018bef50709b", + "value": " 665/665 [00:00<00:00, 82.4kB/s]" } }, - "f7f728bec002499ab7823a03e95a2bf5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f8fc9626652544dba8ec78fd1f4ae9d7": { + "ec81a6b6f26846f89c761ec702fb7d3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4156,14 +4182,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_dc47d97b3b07452a9c03cbe07c75252c", - "IPY_MODEL_2886de46d9fd4702ab6e1c5b72e49072", - "IPY_MODEL_4abeacb8c56a488785fb5b9d0945caed" + "IPY_MODEL_34a361b4e50a4b5bb7bcefa076be8425", + "IPY_MODEL_6ce2d0c11d344a89983ff35576635c8c", + "IPY_MODEL_bf8b40ed0f1248229ede46c72b01a704" ], - "layout": "IPY_MODEL_4880191d3d0547f39e1ae04216c88b71" + "layout": "IPY_MODEL_4abb8c9fc4494f2480b9ce1aefc62a3c" } }, - "f9e7c4cce0aa4b9aaff09fc9b622d605": { + "ed202d16509b42c1bb176126e4e05c3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4215,7 +4241,7 @@ "width": null } }, - "fae8a5b5019e44ecad743866c942cf00": { + "f3697a9009484745857bbb563251edd4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4230,7 +4256,7 @@ "description_width": "" } }, - "fbb188a1c26343dba4a64537799f492c": { + "f45adf84fd9942c080fdcac3a252d83e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4245,75 +4271,49 @@ "description_width": "" } }, - "fbd8f018fee147b9a856a836508c2d32": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "f624a1ace7c44e04a3b4ebc9951dfa75": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7416e63643774d6196fbb3ef783b2eb6", + "placeholder": "​", + "style": "IPY_MODEL_f45adf84fd9942c080fdcac3a252d83e", + "value": " 0/0 [00:00<?, ?it/s]" } }, - "fcdce2bba18d4262a99e80746cd7ed8b": { + "f778bd7afe684f9aa4f9bf18daf37759": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7b699d78d8f4432cbf2055fc6120002a", + "placeholder": "​", + "style": "IPY_MODEL_5019c2eb7d2c451ea914b819689be45f", + "value": " 29.0/29.0 [00:00<00:00, 3.59kB/s]" } }, - "fd69eddaeade4dfbbc190d9d0f7cef92": { + "f7c8c0016ca5445fb7fe61c46cca6c41": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4365,7 +4365,7 @@ "width": null } }, - "ffd34fdfbd9448afb84dbd6818b15c8d": { + "f7e41c8fe75d40dbb8de60651dc3b6ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4380,9 +4380,9 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fbd8f018fee147b9a856a836508c2d32", + "layout": "IPY_MODEL_c3f7fdc25dd64c9d98cd2f0b2e291eb7", "placeholder": "​", - "style": "IPY_MODEL_d4a4587430474d8fb2e2e40550998d40", + "style": "IPY_MODEL_998aa4af95474db69ca88e9ba3a881bb", "value": "vocab.txt: 100%" } } diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 44bd6d80e..3d7b8a9cd 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:41.334420Z", - "iopub.status.busy": "2024-01-10T14:59:41.333949Z", - "iopub.status.idle": "2024-01-10T14:59:42.355922Z", - "shell.execute_reply": "2024-01-10T14:59:42.355241Z" + "iopub.execute_input": "2024-01-12T22:21:05.267117Z", + "iopub.status.busy": "2024-01-12T22:21:05.266923Z", + "iopub.status.idle": "2024-01-12T22:21:06.327278Z", + "shell.execute_reply": "2024-01-12T22:21:06.326549Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:42.359064Z", - "iopub.status.busy": "2024-01-10T14:59:42.358534Z", - "iopub.status.idle": "2024-01-10T14:59:42.361625Z", - "shell.execute_reply": "2024-01-10T14:59:42.361111Z" + "iopub.execute_input": "2024-01-12T22:21:06.330638Z", + "iopub.status.busy": "2024-01-12T22:21:06.329933Z", + "iopub.status.idle": "2024-01-12T22:21:06.333209Z", + "shell.execute_reply": "2024-01-12T22:21:06.332578Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:42.364150Z", - "iopub.status.busy": "2024-01-10T14:59:42.363702Z", - "iopub.status.idle": "2024-01-10T14:59:42.376325Z", - "shell.execute_reply": "2024-01-10T14:59:42.375739Z" + "iopub.execute_input": "2024-01-12T22:21:06.335613Z", + "iopub.status.busy": "2024-01-12T22:21:06.335367Z", + "iopub.status.idle": "2024-01-12T22:21:06.348260Z", + "shell.execute_reply": "2024-01-12T22:21:06.347628Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:42.378959Z", - "iopub.status.busy": "2024-01-10T14:59:42.378603Z", - "iopub.status.idle": "2024-01-10T14:59:46.491752Z", - "shell.execute_reply": "2024-01-10T14:59:46.491163Z" + "iopub.execute_input": "2024-01-12T22:21:06.350862Z", + "iopub.status.busy": "2024-01-12T22:21:06.350429Z", + "iopub.status.idle": "2024-01-12T22:21:13.391938Z", + "shell.execute_reply": "2024-01-12T22:21:13.391352Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 630a7f0d3..84331716e 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -937,13 +937,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1444,7 +1444,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: info@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 5bfa51262..1acddaaa3 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:50.893165Z", - "iopub.status.busy": "2024-01-10T14:59:50.892970Z", - "iopub.status.idle": "2024-01-10T14:59:51.939588Z", - "shell.execute_reply": "2024-01-10T14:59:51.938934Z" + "iopub.execute_input": "2024-01-12T22:21:17.870948Z", + "iopub.status.busy": "2024-01-12T22:21:17.870487Z", + "iopub.status.idle": "2024-01-12T22:21:18.914700Z", + "shell.execute_reply": "2024-01-12T22:21:18.914095Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:51.943002Z", - "iopub.status.busy": "2024-01-10T14:59:51.942447Z", - "iopub.status.idle": "2024-01-10T14:59:51.946140Z", - "shell.execute_reply": "2024-01-10T14:59:51.945634Z" + "iopub.execute_input": "2024-01-12T22:21:18.918012Z", + "iopub.status.busy": "2024-01-12T22:21:18.917434Z", + "iopub.status.idle": "2024-01-12T22:21:18.921220Z", + "shell.execute_reply": "2024-01-12T22:21:18.920699Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:51.948844Z", - "iopub.status.busy": "2024-01-10T14:59:51.948364Z", - "iopub.status.idle": "2024-01-10T14:59:53.958972Z", - "shell.execute_reply": "2024-01-10T14:59:53.958235Z" + "iopub.execute_input": "2024-01-12T22:21:18.923551Z", + "iopub.status.busy": "2024-01-12T22:21:18.923345Z", + "iopub.status.idle": "2024-01-12T22:21:20.975597Z", + "shell.execute_reply": "2024-01-12T22:21:20.974757Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:53.962418Z", - "iopub.status.busy": "2024-01-10T14:59:53.961685Z", - "iopub.status.idle": "2024-01-10T14:59:53.998347Z", - "shell.execute_reply": "2024-01-10T14:59:53.997661Z" + "iopub.execute_input": "2024-01-12T22:21:20.979409Z", + "iopub.status.busy": "2024-01-12T22:21:20.978602Z", + "iopub.status.idle": "2024-01-12T22:21:21.023142Z", + "shell.execute_reply": "2024-01-12T22:21:21.022301Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.001353Z", - "iopub.status.busy": "2024-01-10T14:59:54.000979Z", - "iopub.status.idle": "2024-01-10T14:59:54.037345Z", - "shell.execute_reply": "2024-01-10T14:59:54.036554Z" + "iopub.execute_input": "2024-01-12T22:21:21.026586Z", + "iopub.status.busy": "2024-01-12T22:21:21.025994Z", + "iopub.status.idle": "2024-01-12T22:21:21.064181Z", + "shell.execute_reply": "2024-01-12T22:21:21.063388Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.040406Z", - "iopub.status.busy": "2024-01-10T14:59:54.040062Z", - "iopub.status.idle": "2024-01-10T14:59:54.043268Z", - "shell.execute_reply": "2024-01-10T14:59:54.042728Z" + "iopub.execute_input": "2024-01-12T22:21:21.067267Z", + "iopub.status.busy": "2024-01-12T22:21:21.066984Z", + "iopub.status.idle": "2024-01-12T22:21:21.070919Z", + "shell.execute_reply": "2024-01-12T22:21:21.070402Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.045714Z", - "iopub.status.busy": "2024-01-10T14:59:54.045356Z", - "iopub.status.idle": "2024-01-10T14:59:54.048133Z", - "shell.execute_reply": "2024-01-10T14:59:54.047607Z" + "iopub.execute_input": "2024-01-12T22:21:21.073609Z", + "iopub.status.busy": "2024-01-12T22:21:21.073040Z", + "iopub.status.idle": "2024-01-12T22:21:21.076100Z", + "shell.execute_reply": "2024-01-12T22:21:21.075588Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.050733Z", - "iopub.status.busy": "2024-01-10T14:59:54.050248Z", - "iopub.status.idle": "2024-01-10T14:59:54.078354Z", - "shell.execute_reply": "2024-01-10T14:59:54.077694Z" + "iopub.execute_input": "2024-01-12T22:21:21.078818Z", + "iopub.status.busy": "2024-01-12T22:21:21.078291Z", + "iopub.status.idle": "2024-01-12T22:21:21.108337Z", + "shell.execute_reply": "2024-01-12T22:21:21.107645Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "075f00108c9143bb95de45ad3e1b32a1", + "model_id": "bc7c2a7fb64e434a9f2221f9f0c1ae1b", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "187b0fc246824442903879754666f9fb", + "model_id": "ec253b0c443b41678acb72f3ca953975", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.085049Z", - "iopub.status.busy": "2024-01-10T14:59:54.084695Z", - "iopub.status.idle": "2024-01-10T14:59:54.092109Z", - "shell.execute_reply": "2024-01-10T14:59:54.091490Z" + "iopub.execute_input": "2024-01-12T22:21:21.116544Z", + "iopub.status.busy": "2024-01-12T22:21:21.116140Z", + "iopub.status.idle": "2024-01-12T22:21:21.123480Z", + "shell.execute_reply": "2024-01-12T22:21:21.122874Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.094651Z", - "iopub.status.busy": "2024-01-10T14:59:54.094271Z", - "iopub.status.idle": "2024-01-10T14:59:54.098035Z", - "shell.execute_reply": "2024-01-10T14:59:54.097434Z" + "iopub.execute_input": "2024-01-12T22:21:21.126112Z", + "iopub.status.busy": "2024-01-12T22:21:21.125650Z", + "iopub.status.idle": "2024-01-12T22:21:21.129526Z", + "shell.execute_reply": "2024-01-12T22:21:21.128893Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.100245Z", - "iopub.status.busy": "2024-01-10T14:59:54.099912Z", - "iopub.status.idle": "2024-01-10T14:59:54.106735Z", - "shell.execute_reply": "2024-01-10T14:59:54.106126Z" + "iopub.execute_input": "2024-01-12T22:21:21.131934Z", + "iopub.status.busy": "2024-01-12T22:21:21.131490Z", + "iopub.status.idle": "2024-01-12T22:21:21.138541Z", + "shell.execute_reply": "2024-01-12T22:21:21.137892Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.108937Z", - "iopub.status.busy": "2024-01-10T14:59:54.108729Z", - "iopub.status.idle": "2024-01-10T14:59:54.146363Z", - "shell.execute_reply": "2024-01-10T14:59:54.145668Z" + "iopub.execute_input": "2024-01-12T22:21:21.141040Z", + "iopub.status.busy": "2024-01-12T22:21:21.140554Z", + "iopub.status.idle": "2024-01-12T22:21:21.181071Z", + "shell.execute_reply": "2024-01-12T22:21:21.180350Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.149318Z", - "iopub.status.busy": "2024-01-10T14:59:54.148912Z", - "iopub.status.idle": "2024-01-10T14:59:54.185413Z", - "shell.execute_reply": "2024-01-10T14:59:54.184745Z" + "iopub.execute_input": "2024-01-12T22:21:21.184559Z", + "iopub.status.busy": "2024-01-12T22:21:21.183997Z", + "iopub.status.idle": "2024-01-12T22:21:21.224816Z", + "shell.execute_reply": "2024-01-12T22:21:21.224130Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.188595Z", - "iopub.status.busy": "2024-01-10T14:59:54.188185Z", - "iopub.status.idle": "2024-01-10T14:59:54.302578Z", - "shell.execute_reply": "2024-01-10T14:59:54.301896Z" + "iopub.execute_input": "2024-01-12T22:21:21.228188Z", + "iopub.status.busy": "2024-01-12T22:21:21.227787Z", + "iopub.status.idle": "2024-01-12T22:21:21.349153Z", + "shell.execute_reply": "2024-01-12T22:21:21.348494Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:54.305610Z", - "iopub.status.busy": "2024-01-10T14:59:54.305065Z", - "iopub.status.idle": "2024-01-10T14:59:56.793121Z", - "shell.execute_reply": "2024-01-10T14:59:56.792360Z" + "iopub.execute_input": "2024-01-12T22:21:21.352200Z", + "iopub.status.busy": "2024-01-12T22:21:21.351716Z", + "iopub.status.idle": "2024-01-12T22:21:23.859555Z", + "shell.execute_reply": "2024-01-12T22:21:23.858823Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:56.796100Z", - "iopub.status.busy": "2024-01-10T14:59:56.795869Z", - "iopub.status.idle": "2024-01-10T14:59:56.854518Z", - "shell.execute_reply": "2024-01-10T14:59:56.853835Z" + "iopub.execute_input": "2024-01-12T22:21:23.862291Z", + "iopub.status.busy": "2024-01-12T22:21:23.861904Z", + "iopub.status.idle": "2024-01-12T22:21:23.924949Z", + "shell.execute_reply": "2024-01-12T22:21:23.924265Z" } }, "outputs": [ @@ -802,7 +802,7 @@ }, { "cell_type": "markdown", - "id": "79abd091", + "id": "f5d43f49", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -810,7 +810,7 @@ }, { "cell_type": "markdown", - "id": "6d19c12e", + "id": "c9cc22ef", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -823,13 +823,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "8e189dcb", + "id": "f558bd91", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:56.857079Z", - "iopub.status.busy": "2024-01-10T14:59:56.856723Z", - "iopub.status.idle": "2024-01-10T14:59:56.966714Z", - "shell.execute_reply": "2024-01-10T14:59:56.965883Z" + "iopub.execute_input": "2024-01-12T22:21:23.927634Z", + "iopub.status.busy": "2024-01-12T22:21:23.927268Z", + "iopub.status.idle": "2024-01-12T22:21:24.036086Z", + "shell.execute_reply": "2024-01-12T22:21:24.035291Z" } }, "outputs": [ @@ -870,7 +870,7 @@ }, { "cell_type": "markdown", - "id": "96869909", + "id": "2eb59e69", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -879,13 +879,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "79a16416", + "id": "5ebf62a8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:56.970421Z", - "iopub.status.busy": "2024-01-10T14:59:56.969410Z", - "iopub.status.idle": "2024-01-10T14:59:57.046615Z", - "shell.execute_reply": "2024-01-10T14:59:57.045885Z" + "iopub.execute_input": "2024-01-12T22:21:24.039961Z", + "iopub.status.busy": "2024-01-12T22:21:24.038741Z", + "iopub.status.idle": "2024-01-12T22:21:24.113220Z", + "shell.execute_reply": "2024-01-12T22:21:24.112528Z" } }, "outputs": [ @@ -921,7 +921,7 @@ }, { "cell_type": "markdown", - "id": "3d459566", + "id": "0e43ba14", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -932,13 +932,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "afc2b0b9", + "id": "3cd1af11", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:57.049298Z", - "iopub.status.busy": "2024-01-10T14:59:57.048916Z", - "iopub.status.idle": "2024-01-10T14:59:57.057177Z", - "shell.execute_reply": "2024-01-10T14:59:57.056582Z" + "iopub.execute_input": "2024-01-12T22:21:24.116273Z", + "iopub.status.busy": "2024-01-12T22:21:24.115681Z", + "iopub.status.idle": "2024-01-12T22:21:24.124494Z", + "shell.execute_reply": "2024-01-12T22:21:24.124021Z" } }, "outputs": [], @@ -1040,7 +1040,7 @@ }, { "cell_type": "markdown", - "id": "82dbd54f", + "id": "6731a955", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1055,13 +1055,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "4a747a25", + "id": "8f23f491", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:57.059676Z", - "iopub.status.busy": "2024-01-10T14:59:57.059243Z", - "iopub.status.idle": "2024-01-10T14:59:57.079299Z", - "shell.execute_reply": "2024-01-10T14:59:57.078739Z" + "iopub.execute_input": "2024-01-12T22:21:24.127678Z", + "iopub.status.busy": "2024-01-12T22:21:24.126568Z", + "iopub.status.idle": "2024-01-12T22:21:24.146270Z", + "shell.execute_reply": "2024-01-12T22:21:24.145592Z" } }, "outputs": [ @@ -1104,13 +1104,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "cc8f3506", + "id": "319d73d5", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:59:57.081812Z", - "iopub.status.busy": "2024-01-10T14:59:57.081393Z", - "iopub.status.idle": "2024-01-10T14:59:57.085818Z", - "shell.execute_reply": "2024-01-10T14:59:57.085202Z" + "iopub.execute_input": "2024-01-12T22:21:24.148898Z", + "iopub.status.busy": "2024-01-12T22:21:24.148512Z", + "iopub.status.idle": "2024-01-12T22:21:24.152405Z", + "shell.execute_reply": "2024-01-12T22:21:24.151793Z" } }, "outputs": [ @@ -1205,88 +1205,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "075f00108c9143bb95de45ad3e1b32a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_19c69f8250174c15836a73a9013c308f", - "IPY_MODEL_f2b1f15303b14f7280a65bf9226d7ae6", - "IPY_MODEL_180f325c4b8f41009bec369623aca77c" - ], - "layout": "IPY_MODEL_19738babb8c6474796f43941b0b5da8d" - } - }, - "1557598dc31c495a9d7519e96caf3ae6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "180f325c4b8f41009bec369623aca77c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_18d28aa507ef43beac8a8d3a63d2ea79", - "placeholder": "​", - "style": "IPY_MODEL_2cd086b6d25b4143bc2ae32f4459db0b", - "value": " 10000/? [00:00<00:00, 935894.32it/s]" - } - }, - "187b0fc246824442903879754666f9fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f59299d4afbb4249a61046c3a5e522aa", - "IPY_MODEL_f54e0ed2cc28430f8285ca5079656137", - "IPY_MODEL_c8b1b9260a22401c90b72c62787c2226" - ], - "layout": "IPY_MODEL_31070f1577a7498799ff2eec91b6441d" - } - }, - "18d28aa507ef43beac8a8d3a63d2ea79": { + "06778bdb873a48b59c8fe75781569b3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1338,7 +1257,23 @@ "width": null } }, - "19738babb8c6474796f43941b0b5da8d": { + "0b7e34d2d24c4329840ad6174cd552b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0ced4a0f60c14b3bae96ac968dde7008": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1390,28 +1325,62 @@ "width": null } }, - "19c69f8250174c15836a73a9013c308f": { + "271c0ffa611c45669a1213d83acb243b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "289473725ba143dc844cc847bb573710": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5392a91b17f24f4fafec60b72df4c12e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_637100a896df4d849534b2f362654c96", - "placeholder": "​", - "style": "IPY_MODEL_ec80fece88d644bfa5c589b0ba25b5c0", - "value": "number of examples processed for estimating thresholds: " + "layout": "IPY_MODEL_06778bdb873a48b59c8fe75781569b3f", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_271c0ffa611c45669a1213d83acb243b", + "value": 50.0 } }, - "2cd086b6d25b4143bc2ae32f4459db0b": { + "58a1e554ea4c4a1d8f66b9a6ed0938af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1426,7 +1395,7 @@ "description_width": "" } }, - "31070f1577a7498799ff2eec91b6441d": { + "6996d4b1107640fe868ce57360d3dc9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1478,7 +1447,7 @@ "width": null } }, - "52b366eb36b54b419859bfa0171b9e16": { + "848de2054b404ac9b17628e5c82a47ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1530,7 +1499,7 @@ "width": null } }, - "637100a896df4d849534b2f362654c96": { + "8a406d6e15f145948b9ff0c2c76bf624": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1582,37 +1551,7 @@ "width": null } }, - "76f8f56743414c94bc06877a3304fa61": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7dafcc1ce8304bc6bce2f0a04f82ebd9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a152270654af43649f1664b7ece96dc4": { + "9ab6a97590064194bf5d7b8e19978ef8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1664,7 +1603,31 @@ "width": null } }, - "a45ae2e5caff44cdb39d49840213da69": { + "a174658f1f924400bba00fc527fef349": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9ab6a97590064194bf5d7b8e19978ef8", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0b7e34d2d24c4329840ad6174cd552b0", + "value": 50.0 + } + }, + "afa6cc2b96df424e9c0f8a5eaf73e863": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1716,23 +1679,107 @@ "width": null } }, - "aa30ead3d6c2441584d3767f851fb6f0": { + "b3c242d811304cd99b1b619a3a9e6a40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f096bdb3e142457781a2f7d04da80785", + "placeholder": "​", + "style": "IPY_MODEL_58a1e554ea4c4a1d8f66b9a6ed0938af", + "value": " 10000/? [00:00<00:00, 1089457.91it/s]" + } + }, + "bc7c2a7fb64e434a9f2221f9f0c1ae1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c7603d666ff44e3583ae6af613998bb1", + "IPY_MODEL_5392a91b17f24f4fafec60b72df4c12e", + "IPY_MODEL_e50911ae02734303a2d4ef3549ad019c" + ], + "layout": "IPY_MODEL_afa6cc2b96df424e9c0f8a5eaf73e863" + } + }, + "c7603d666ff44e3583ae6af613998bb1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6996d4b1107640fe868ce57360d3dc9e", + "placeholder": "​", + "style": "IPY_MODEL_fd8da9fb6e9e4b3a941a24a95debb741", + "value": "number of examples processed for estimating thresholds: " + } + }, + "d0825b5cd5dc425396f81b6dea73a47c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8a406d6e15f145948b9ff0c2c76bf624", + "placeholder": "​", + "style": "IPY_MODEL_d570448d94114ae086752d09e77df93b", + "value": "number of examples processed for checking labels: " + } + }, + "d570448d94114ae086752d09e77df93b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "c8b1b9260a22401c90b72c62787c2226": { + "e50911ae02734303a2d4ef3549ad019c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1747,13 +1794,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e28a697de62c4e99a866def110006b3b", + "layout": "IPY_MODEL_848de2054b404ac9b17628e5c82a47ba", "placeholder": "​", - "style": "IPY_MODEL_76f8f56743414c94bc06877a3304fa61", - "value": " 10000/? [00:00<00:00, 1136729.36it/s]" + "style": "IPY_MODEL_289473725ba143dc844cc847bb573710", + "value": " 10000/? [00:00<00:00, 899659.81it/s]" + } + }, + "ec253b0c443b41678acb72f3ca953975": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d0825b5cd5dc425396f81b6dea73a47c", + "IPY_MODEL_a174658f1f924400bba00fc527fef349", + "IPY_MODEL_b3c242d811304cd99b1b619a3a9e6a40" + ], + "layout": "IPY_MODEL_0ced4a0f60c14b3bae96ac968dde7008" } }, - "e28a697de62c4e99a866def110006b3b": { + "f096bdb3e142457781a2f7d04da80785": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1805,7 +1874,7 @@ "width": null } }, - "ec80fece88d644bfa5c589b0ba25b5c0": { + "fd8da9fb6e9e4b3a941a24a95debb741": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1819,75 +1888,6 @@ "_view_name": "StyleView", "description_width": "" } - }, - "f2b1f15303b14f7280a65bf9226d7ae6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a152270654af43649f1664b7ece96dc4", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1557598dc31c495a9d7519e96caf3ae6", - "value": 50.0 - } - }, - "f54e0ed2cc28430f8285ca5079656137": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a45ae2e5caff44cdb39d49840213da69", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_aa30ead3d6c2441584d3767f851fb6f0", - "value": 50.0 - } - }, - "f59299d4afbb4249a61046c3a5e522aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_52b366eb36b54b419859bfa0171b9e16", - "placeholder": "​", - "style": "IPY_MODEL_7dafcc1ce8304bc6bce2f0a04f82ebd9", - "value": "number of examples processed for checking labels: " - } } }, "version_major": 2, diff --git a/master/tutorials/image.html b/master/tutorials/image.html index a7449b7fe..250f7c11c 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -879,25 +879,25 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1260,16 +1260,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
2%|▎ | 1/40 [00:00&lt;00:04, 8.84it/s]
+
2%|▎ | 1/40 [00:00&lt;00:04, 9.23it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 8.84it/s]
+
2%|▎ | 1/40 [00:00<00:04, 9.23it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 8.84it/s]

+

2%|▎ | 1/40 [00:00<00:04, 9.23it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 45.55it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 46.75it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 45.55it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 46.75it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 45.55it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 46.75it/s]

-
42%|████▎ | 17/40 [00:00&lt;00:00, 58.60it/s]
+
42%|████▎ | 17/40 [00:00&lt;00:00, 59.12it/s]

</pre>

-
42%|████▎ | 17/40 [00:00<00:00, 58.60it/s]
+
42%|████▎ | 17/40 [00:00<00:00, 59.12it/s]

end{sphinxVerbatim}

-

42%|████▎ | 17/40 [00:00<00:00, 58.60it/s]

+

42%|████▎ | 17/40 [00:00<00:00, 59.12it/s]

-
60%|██████ | 24/40 [00:00&lt;00:00, 61.59it/s]
+
62%|██████▎ | 25/40 [00:00&lt;00:00, 65.12it/s]

</pre>

-
60%|██████ | 24/40 [00:00<00:00, 61.59it/s]
+
62%|██████▎ | 25/40 [00:00<00:00, 65.12it/s]

end{sphinxVerbatim}

-

60%|██████ | 24/40 [00:00<00:00, 61.59it/s]

+

62%|██████▎ | 25/40 [00:00<00:00, 65.12it/s]

-
80%|████████ | 32/40 [00:00&lt;00:00, 65.91it/s]
+
82%|████████▎ | 33/40 [00:00&lt;00:00, 68.51it/s]

</pre>

-
80%|████████ | 32/40 [00:00<00:00, 65.91it/s]
+
82%|████████▎ | 33/40 [00:00<00:00, 68.51it/s]

end{sphinxVerbatim}

-

80%|████████ | 32/40 [00:00<00:00, 65.91it/s]

+

82%|████████▎ | 33/40 [00:00<00:00, 68.51it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 61.51it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 62.98it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 61.51it/s]
+
100%|██████████| 40/40 [00:00<00:00, 62.98it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 61.51it/s]

+

100%|██████████| 40/40 [00:00<00:00, 62.98it/s]

-
5%|▌ | 2/40 [00:00&lt;00:02, 17.92it/s]
+
2%|▎ | 1/40 [00:00&lt;00:03, 9.98it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:02, 17.92it/s]
+
2%|▎ | 1/40 [00:00<00:03, 9.98it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:02, 17.92it/s]

+

2%|▎ | 1/40 [00:00<00:03, 9.98it/s]

-
25%|██▌ | 10/40 [00:00&lt;00:00, 50.75it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 49.04it/s]

</pre>

-
25%|██▌ | 10/40 [00:00<00:00, 50.75it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 49.04it/s]

end{sphinxVerbatim}

-

25%|██▌ | 10/40 [00:00<00:00, 50.75it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 49.04it/s]

-
45%|████▌ | 18/40 [00:00&lt;00:00, 60.96it/s]
+
42%|████▎ | 17/40 [00:00&lt;00:00, 60.98it/s]

</pre>

-
45%|████▌ | 18/40 [00:00<00:00, 60.96it/s]
+
42%|████▎ | 17/40 [00:00<00:00, 60.98it/s]

end{sphinxVerbatim}

-

45%|████▌ | 18/40 [00:00<00:00, 60.96it/s]

+

42%|████▎ | 17/40 [00:00<00:00, 60.98it/s]

-
65%|██████▌ | 26/40 [00:00&lt;00:00, 65.98it/s]
+
62%|██████▎ | 25/40 [00:00&lt;00:00, 66.34it/s]

</pre>

-
65%|██████▌ | 26/40 [00:00<00:00, 65.98it/s]
+
62%|██████▎ | 25/40 [00:00<00:00, 66.34it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 26/40 [00:00<00:00, 65.98it/s]

+

62%|██████▎ | 25/40 [00:00<00:00, 66.34it/s]

-
85%|████████▌ | 34/40 [00:00&lt;00:00, 69.76it/s]
+
80%|████████ | 32/40 [00:00&lt;00:00, 66.94it/s]

</pre>

-
85%|████████▌ | 34/40 [00:00<00:00, 69.76it/s]
+
80%|████████ | 32/40 [00:00<00:00, 66.94it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 34/40 [00:00<00:00, 69.76it/s]

+

80%|████████ | 32/40 [00:00<00:00, 66.94it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 64.52it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 63.75it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 64.52it/s]
+
100%|██████████| 40/40 [00:00<00:00, 63.75it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 64.52it/s]

+

100%|██████████| 40/40 [00:00<00:00, 63.75it/s]

@@ -1656,16 +1656,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
2%|▎ | 1/40 [00:00&lt;00:04, 9.40it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 18.49it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 9.40it/s]
+
5%|▌ | 2/40 [00:00<00:02, 18.49it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 9.40it/s]

+

5%|▌ | 2/40 [00:00<00:02, 18.49it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 47.46it/s]
+
25%|██▌ | 10/40 [00:00&lt;00:00, 51.06it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]
+
25%|██▌ | 10/40 [00:00<00:00, 51.06it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]

+

25%|██▌ | 10/40 [00:00<00:00, 51.06it/s]

-
42%|████▎ | 17/40 [00:00&lt;00:00, 58.29it/s]
+
45%|████▌ | 18/40 [00:00&lt;00:00, 61.57it/s]

</pre>

-
42%|████▎ | 17/40 [00:00<00:00, 58.29it/s]
+
45%|████▌ | 18/40 [00:00<00:00, 61.57it/s]

end{sphinxVerbatim}

-

42%|████▎ | 17/40 [00:00<00:00, 58.29it/s]

+

45%|████▌ | 18/40 [00:00<00:00, 61.57it/s]

-
62%|██████▎ | 25/40 [00:00&lt;00:00, 63.62it/s]
+
65%|██████▌ | 26/40 [00:00&lt;00:00, 66.56it/s]

</pre>

-
62%|██████▎ | 25/40 [00:00<00:00, 63.62it/s]
+
65%|██████▌ | 26/40 [00:00<00:00, 66.56it/s]

end{sphinxVerbatim}

-

62%|██████▎ | 25/40 [00:00<00:00, 63.62it/s]

+

65%|██████▌ | 26/40 [00:00<00:00, 66.56it/s]

-
80%|████████ | 32/40 [00:00&lt;00:00, 63.01it/s]
+
85%|████████▌ | 34/40 [00:00&lt;00:00, 70.17it/s]

</pre>

-
80%|████████ | 32/40 [00:00<00:00, 63.01it/s]
+
85%|████████▌ | 34/40 [00:00<00:00, 70.17it/s]

end{sphinxVerbatim}

-

80%|████████ | 32/40 [00:00<00:00, 63.01it/s]

+

85%|████████▌ | 34/40 [00:00<00:00, 70.17it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 60.37it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 64.92it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 60.37it/s]
+
100%|██████████| 40/40 [00:00<00:00, 64.92it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 60.37it/s]

+

100%|██████████| 40/40 [00:00<00:00, 64.92it/s]

-
2%|▎ | 1/40 [00:00&lt;00:04, 8.72it/s]
+
2%|▎ | 1/40 [00:00&lt;00:04, 8.94it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 8.72it/s]
+
2%|▎ | 1/40 [00:00<00:04, 8.94it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 8.72it/s]

+

2%|▎ | 1/40 [00:00<00:04, 8.94it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 46.03it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 46.79it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 46.03it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 46.79it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 46.03it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 46.79it/s]

-
42%|████▎ | 17/40 [00:00&lt;00:00, 59.40it/s]
+
42%|████▎ | 17/40 [00:00&lt;00:00, 58.06it/s]

</pre>

-
42%|████▎ | 17/40 [00:00<00:00, 59.40it/s]
+
42%|████▎ | 17/40 [00:00<00:00, 58.06it/s]

end{sphinxVerbatim}

-

42%|████▎ | 17/40 [00:00<00:00, 59.40it/s]

+

42%|████▎ | 17/40 [00:00<00:00, 58.06it/s]

-
62%|██████▎ | 25/40 [00:00&lt;00:00, 66.19it/s]
+
62%|██████▎ | 25/40 [00:00&lt;00:00, 64.43it/s]

</pre>

-
62%|██████▎ | 25/40 [00:00<00:00, 66.19it/s]
+
62%|██████▎ | 25/40 [00:00<00:00, 64.43it/s]

end{sphinxVerbatim}

-

62%|██████▎ | 25/40 [00:00<00:00, 66.19it/s]

+

62%|██████▎ | 25/40 [00:00<00:00, 64.43it/s]

-
82%|████████▎ | 33/40 [00:00&lt;00:00, 70.35it/s]
+
82%|████████▎ | 33/40 [00:00&lt;00:00, 69.34it/s]

</pre>

-
82%|████████▎ | 33/40 [00:00<00:00, 70.35it/s]
+
82%|████████▎ | 33/40 [00:00<00:00, 69.34it/s]

end{sphinxVerbatim}

-

82%|████████▎ | 33/40 [00:00<00:00, 70.35it/s]

+

82%|████████▎ | 33/40 [00:00<00:00, 69.34it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 63.14it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 63.31it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 63.14it/s]
+
100%|██████████| 40/40 [00:00<00:00, 63.31it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 63.14it/s]

+

100%|██████████| 40/40 [00:00<00:00, 63.31it/s]

@@ -2052,16 +2052,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
2%|▎ | 1/40 [00:00&lt;00:04, 9.06it/s]
+
2%|▎ | 1/40 [00:00&lt;00:03, 9.84it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 9.06it/s]
+
2%|▎ | 1/40 [00:00<00:03, 9.84it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 9.06it/s]

+

2%|▎ | 1/40 [00:00<00:03, 9.84it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 47.03it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 48.25it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 47.03it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 48.25it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 47.03it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 48.25it/s]

-
42%|████▎ | 17/40 [00:00&lt;00:00, 58.50it/s]
+
42%|████▎ | 17/40 [00:00&lt;00:00, 60.57it/s]

</pre>

-
42%|████▎ | 17/40 [00:00<00:00, 58.50it/s]
+
42%|████▎ | 17/40 [00:00<00:00, 60.57it/s]

end{sphinxVerbatim}

-

42%|████▎ | 17/40 [00:00<00:00, 58.50it/s]

+

42%|████▎ | 17/40 [00:00<00:00, 60.57it/s]

-
62%|██████▎ | 25/40 [00:00&lt;00:00, 63.48it/s]
+
62%|██████▎ | 25/40 [00:00&lt;00:00, 65.86it/s]

</pre>

-
62%|██████▎ | 25/40 [00:00<00:00, 63.48it/s]
+
62%|██████▎ | 25/40 [00:00<00:00, 65.86it/s]

end{sphinxVerbatim}

-

62%|██████▎ | 25/40 [00:00<00:00, 63.48it/s]

+

62%|██████▎ | 25/40 [00:00<00:00, 65.86it/s]

-
82%|████████▎ | 33/40 [00:00&lt;00:00, 68.14it/s]
+
82%|████████▎ | 33/40 [00:00&lt;00:00, 69.99it/s]

</pre>

-
82%|████████▎ | 33/40 [00:00<00:00, 68.14it/s]
+
82%|████████▎ | 33/40 [00:00<00:00, 69.99it/s]

end{sphinxVerbatim}

-

82%|████████▎ | 33/40 [00:00<00:00, 68.14it/s]

+

82%|████████▎ | 33/40 [00:00<00:00, 69.99it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 62.80it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 64.41it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 62.80it/s]
+
100%|██████████| 40/40 [00:00<00:00, 64.41it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 62.80it/s]

+

100%|██████████| 40/40 [00:00<00:00, 64.41it/s]

-
5%|▌ | 2/40 [00:00&lt;00:02, 18.53it/s]
+
8%|▊ | 3/40 [00:00&lt;00:01, 25.97it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:02, 18.53it/s]
+
8%|▊ | 3/40 [00:00<00:01, 25.97it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:02, 18.53it/s]

+

8%|▊ | 3/40 [00:00<00:01, 25.97it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 45.64it/s]
+
28%|██▊ | 11/40 [00:00&lt;00:00, 52.49it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 45.64it/s]
+
28%|██▊ | 11/40 [00:00<00:00, 52.49it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 45.64it/s]

+

28%|██▊ | 11/40 [00:00<00:00, 52.49it/s]

-
40%|████ | 16/40 [00:00&lt;00:00, 53.87it/s]
+
48%|████▊ | 19/40 [00:00&lt;00:00, 61.45it/s]

</pre>

-
40%|████ | 16/40 [00:00<00:00, 53.87it/s]
+
48%|████▊ | 19/40 [00:00<00:00, 61.45it/s]

end{sphinxVerbatim}

-

40%|████ | 16/40 [00:00<00:00, 53.87it/s]

+

48%|████▊ | 19/40 [00:00<00:00, 61.45it/s]

-
57%|█████▊ | 23/40 [00:00&lt;00:00, 59.73it/s]
+
68%|██████▊ | 27/40 [00:00&lt;00:00, 66.80it/s]

</pre>

-
57%|█████▊ | 23/40 [00:00<00:00, 59.73it/s]
+
68%|██████▊ | 27/40 [00:00<00:00, 66.80it/s]

end{sphinxVerbatim}

-

57%|█████▊ | 23/40 [00:00<00:00, 59.73it/s]

+

68%|██████▊ | 27/40 [00:00<00:00, 66.80it/s]

-
78%|███████▊ | 31/40 [00:00&lt;00:00, 65.87it/s]
+
85%|████████▌ | 34/40 [00:00&lt;00:00, 65.61it/s]

</pre>

-
78%|███████▊ | 31/40 [00:00<00:00, 65.87it/s]
+
85%|████████▌ | 34/40 [00:00<00:00, 65.61it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 31/40 [00:00<00:00, 65.87it/s]

+

85%|████████▌ | 34/40 [00:00<00:00, 65.61it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 62.44it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 63.36it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 62.44it/s]
+
100%|██████████| 40/40 [00:00<00:00, 63.36it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 62.44it/s]

+

100%|██████████| 40/40 [00:00<00:00, 63.36it/s]

-
+
@@ -3244,35 +3244,35 @@

Dark images - dark_score is_dark_issue + dark_score 34848 - 0.203922 True + 0.203922 50270 - 0.204588 True + 0.204588 3936 - 0.213098 True + 0.213098 733 - 0.217686 True + 0.217686 8094 - 0.230118 True + 0.230118 @@ -3422,7 +3422,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index a7f7a4707..a9781d457 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:02.259860Z", - "iopub.status.busy": "2024-01-10T15:00:02.259344Z", - "iopub.status.idle": "2024-01-10T15:00:04.424050Z", - "shell.execute_reply": "2024-01-10T15:00:04.423416Z" + "iopub.execute_input": "2024-01-12T22:21:29.286036Z", + "iopub.status.busy": "2024-01-12T22:21:29.285841Z", + "iopub.status.idle": "2024-01-12T22:21:31.484172Z", + "shell.execute_reply": "2024-01-12T22:21:31.483556Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:04.427155Z", - "iopub.status.busy": "2024-01-10T15:00:04.426599Z", - "iopub.status.idle": "2024-01-10T15:00:04.430600Z", - "shell.execute_reply": "2024-01-10T15:00:04.430047Z" + "iopub.execute_input": "2024-01-12T22:21:31.487143Z", + "iopub.status.busy": "2024-01-12T22:21:31.486699Z", + "iopub.status.idle": "2024-01-12T22:21:31.490537Z", + "shell.execute_reply": "2024-01-12T22:21:31.489980Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:04.433104Z", - "iopub.status.busy": "2024-01-10T15:00:04.432703Z", - "iopub.status.idle": "2024-01-10T15:00:06.135847Z", - "shell.execute_reply": "2024-01-10T15:00:06.135301Z" + "iopub.execute_input": "2024-01-12T22:21:31.492979Z", + "iopub.status.busy": "2024-01-12T22:21:31.492687Z", + "iopub.status.idle": "2024-01-12T22:21:34.986130Z", + "shell.execute_reply": "2024-01-12T22:21:34.985484Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b9f8b67a42cd4066aaa973e62b8ca794", + "model_id": "beb18ee3e6cc44ea814cbed0d7a11c03", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f290500824dc4995bf9dfe5f9f2b3425", + "model_id": "7a4945c889ae4ce189cb297e3fca221e", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ca3a18d2bf4b4fa68ed448ca06ccc823", + "model_id": "dbaddfd25414492ab26f1c94a8aae733", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f0d31b197fe7409d990c55b1452c3705", + "model_id": "591ffc03095349849ab863c8762af005", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:06.138494Z", - "iopub.status.busy": "2024-01-10T15:00:06.138100Z", - "iopub.status.idle": "2024-01-10T15:00:06.142256Z", - "shell.execute_reply": "2024-01-10T15:00:06.141635Z" + "iopub.execute_input": "2024-01-12T22:21:34.988771Z", + "iopub.status.busy": "2024-01-12T22:21:34.988513Z", + "iopub.status.idle": "2024-01-12T22:21:34.992568Z", + "shell.execute_reply": "2024-01-12T22:21:34.992060Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:06.144792Z", - "iopub.status.busy": "2024-01-10T15:00:06.144285Z", - "iopub.status.idle": "2024-01-10T15:00:18.301514Z", - "shell.execute_reply": "2024-01-10T15:00:18.300790Z" + "iopub.execute_input": "2024-01-12T22:21:34.995069Z", + "iopub.status.busy": "2024-01-12T22:21:34.994632Z", + "iopub.status.idle": "2024-01-12T22:21:47.432616Z", + "shell.execute_reply": "2024-01-12T22:21:47.432008Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8a7ea3a7486345b3b0576e7ea7232743", + "model_id": "26afb7fd852444ca822dd811ca348408", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:18.305070Z", - "iopub.status.busy": "2024-01-10T15:00:18.304465Z", - "iopub.status.idle": "2024-01-10T15:00:39.413459Z", - "shell.execute_reply": "2024-01-10T15:00:39.412837Z" + "iopub.execute_input": "2024-01-12T22:21:47.435795Z", + "iopub.status.busy": "2024-01-12T22:21:47.435457Z", + "iopub.status.idle": "2024-01-12T22:22:09.476571Z", + "shell.execute_reply": "2024-01-12T22:22:09.475917Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:39.416560Z", - "iopub.status.busy": "2024-01-10T15:00:39.416130Z", - "iopub.status.idle": "2024-01-10T15:00:39.422080Z", - "shell.execute_reply": "2024-01-10T15:00:39.421556Z" + "iopub.execute_input": "2024-01-12T22:22:09.479840Z", + "iopub.status.busy": "2024-01-12T22:22:09.479404Z", + "iopub.status.idle": "2024-01-12T22:22:09.485326Z", + "shell.execute_reply": "2024-01-12T22:22:09.484779Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:39.424414Z", - "iopub.status.busy": "2024-01-10T15:00:39.424051Z", - "iopub.status.idle": "2024-01-10T15:00:39.428093Z", - "shell.execute_reply": "2024-01-10T15:00:39.427614Z" + "iopub.execute_input": "2024-01-12T22:22:09.487659Z", + "iopub.status.busy": "2024-01-12T22:22:09.487296Z", + "iopub.status.idle": "2024-01-12T22:22:09.491643Z", + "shell.execute_reply": "2024-01-12T22:22:09.491000Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:39.430452Z", - "iopub.status.busy": "2024-01-10T15:00:39.430093Z", - "iopub.status.idle": "2024-01-10T15:00:39.439781Z", - "shell.execute_reply": "2024-01-10T15:00:39.439252Z" + "iopub.execute_input": "2024-01-12T22:22:09.494306Z", + "iopub.status.busy": "2024-01-12T22:22:09.493795Z", + "iopub.status.idle": "2024-01-12T22:22:09.503849Z", + "shell.execute_reply": "2024-01-12T22:22:09.503222Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:39.442271Z", - "iopub.status.busy": "2024-01-10T15:00:39.441782Z", - "iopub.status.idle": "2024-01-10T15:00:39.469753Z", - "shell.execute_reply": "2024-01-10T15:00:39.469234Z" + "iopub.execute_input": "2024-01-12T22:22:09.506325Z", + "iopub.status.busy": "2024-01-12T22:22:09.505936Z", + "iopub.status.idle": "2024-01-12T22:22:09.535784Z", + "shell.execute_reply": "2024-01-12T22:22:09.535198Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:00:39.472447Z", - "iopub.status.busy": "2024-01-10T15:00:39.472049Z", - "iopub.status.idle": "2024-01-10T15:01:10.318115Z", - "shell.execute_reply": "2024-01-10T15:01:10.317294Z" + "iopub.execute_input": "2024-01-12T22:22:09.538640Z", + "iopub.status.busy": "2024-01-12T22:22:09.538147Z", + "iopub.status.idle": "2024-01-12T22:22:41.093293Z", + "shell.execute_reply": "2024-01-12T22:22:41.092443Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.674\n" + "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.947\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.384\n", + "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.570\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.84it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.23it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 45.55it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 46.75it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.60it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 59.12it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 61.59it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 65.12it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 65.91it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 68.51it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 61.51it/s]" + "100%|██████████| 40/40 [00:00<00:00, 62.98it/s]" ] }, { @@ -820,7 +820,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.92it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.98it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 50.75it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 49.04it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 60.96it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 60.98it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 65.98it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 66.34it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 69.76it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 66.94it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.52it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.75it/s]" ] }, { @@ -882,14 +882,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.606\n" + "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.617\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.416\n", + "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.532\n", "Computing feature embeddings ...\n" ] }, @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.40it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.49it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 51.06it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.29it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 61.57it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.62it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 66.56it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 63.01it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 70.17it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 60.37it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.92it/s]" ] }, { @@ -976,7 +976,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.72it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.94it/s]" ] }, { @@ -984,7 +984,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.03it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 46.79it/s]" ] }, { @@ -992,7 +992,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 59.40it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 58.06it/s]" ] }, { @@ -1000,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 66.19it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 64.43it/s]" ] }, { @@ -1008,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 70.35it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 69.34it/s]" ] }, { @@ -1016,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 63.14it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.31it/s]" ] }, { @@ -1038,14 +1038,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.563\n" + "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.673\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.317\n", + "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.412\n", "Computing feature embeddings ...\n" ] }, @@ -1062,7 +1062,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.06it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.84it/s]" ] }, { @@ -1070,7 +1070,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.03it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 48.25it/s]" ] }, { @@ -1078,7 +1078,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.50it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 60.57it/s]" ] }, { @@ -1086,7 +1086,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.48it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 65.86it/s]" ] }, { @@ -1094,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 68.14it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 69.99it/s]" ] }, { @@ -1102,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.80it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.41it/s]" ] }, { @@ -1132,7 +1132,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.53it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 25.97it/s]" ] }, { @@ -1140,7 +1140,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 45.64it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 52.49it/s]" ] }, { @@ -1148,7 +1148,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 53.87it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 61.45it/s]" ] }, { @@ -1156,7 +1156,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▊ | 23/40 [00:00<00:00, 59.73it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 66.80it/s]" ] }, { @@ -1164,7 +1164,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 65.87it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 65.61it/s]" ] }, { @@ -1172,7 +1172,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.44it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.36it/s]" ] }, { @@ -1249,10 +1249,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:01:10.320887Z", - "iopub.status.busy": "2024-01-10T15:01:10.320635Z", - "iopub.status.idle": "2024-01-10T15:01:10.336127Z", - "shell.execute_reply": "2024-01-10T15:01:10.335651Z" + "iopub.execute_input": "2024-01-12T22:22:41.096299Z", + "iopub.status.busy": "2024-01-12T22:22:41.095908Z", + "iopub.status.idle": "2024-01-12T22:22:41.111844Z", + "shell.execute_reply": "2024-01-12T22:22:41.111347Z" } }, "outputs": [], @@ -1277,10 +1277,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:01:10.338583Z", - "iopub.status.busy": "2024-01-10T15:01:10.338209Z", - "iopub.status.idle": "2024-01-10T15:01:10.777774Z", - "shell.execute_reply": "2024-01-10T15:01:10.777077Z" + "iopub.execute_input": "2024-01-12T22:22:41.114439Z", + "iopub.status.busy": "2024-01-12T22:22:41.113927Z", + "iopub.status.idle": "2024-01-12T22:22:41.568793Z", + "shell.execute_reply": "2024-01-12T22:22:41.568066Z" } }, "outputs": [], @@ -1300,10 +1300,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:01:10.780594Z", - "iopub.status.busy": "2024-01-10T15:01:10.780378Z", - "iopub.status.idle": "2024-01-10T15:04:30.975742Z", - "shell.execute_reply": "2024-01-10T15:04:30.975036Z" + "iopub.execute_input": "2024-01-12T22:22:41.571736Z", + "iopub.status.busy": "2024-01-12T22:22:41.571508Z", + "iopub.status.idle": "2024-01-12T22:26:03.443135Z", + "shell.execute_reply": "2024-01-12T22:26:03.442506Z" } }, "outputs": [ @@ -1342,7 +1342,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eb174494cec7449c80000967dbef9224", + "model_id": "a1d74e51f5cd4d1083255ced81c6493f", "version_major": 2, "version_minor": 0 }, @@ -1381,10 +1381,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:30.978426Z", - "iopub.status.busy": "2024-01-10T15:04:30.977955Z", - "iopub.status.idle": "2024-01-10T15:04:31.496719Z", - "shell.execute_reply": "2024-01-10T15:04:31.496061Z" + "iopub.execute_input": "2024-01-12T22:26:03.446011Z", + "iopub.status.busy": "2024-01-12T22:26:03.445415Z", + "iopub.status.idle": "2024-01-12T22:26:03.971532Z", + "shell.execute_reply": "2024-01-12T22:26:03.970787Z" } }, "outputs": [ @@ -1596,10 +1596,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:31.499862Z", - "iopub.status.busy": "2024-01-10T15:04:31.499425Z", - "iopub.status.idle": "2024-01-10T15:04:31.562545Z", - "shell.execute_reply": "2024-01-10T15:04:31.561969Z" + "iopub.execute_input": "2024-01-12T22:26:03.974890Z", + "iopub.status.busy": "2024-01-12T22:26:03.974335Z", + "iopub.status.idle": "2024-01-12T22:26:04.014180Z", + "shell.execute_reply": "2024-01-12T22:26:04.013178Z" } }, "outputs": [ @@ -1703,10 +1703,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:31.565111Z", - "iopub.status.busy": "2024-01-10T15:04:31.564641Z", - "iopub.status.idle": "2024-01-10T15:04:31.573832Z", - "shell.execute_reply": "2024-01-10T15:04:31.573204Z" + "iopub.execute_input": "2024-01-12T22:26:04.016916Z", + "iopub.status.busy": "2024-01-12T22:26:04.016708Z", + "iopub.status.idle": "2024-01-12T22:26:04.026329Z", + "shell.execute_reply": "2024-01-12T22:26:04.025636Z" } }, "outputs": [ @@ -1836,10 +1836,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:31.576230Z", - "iopub.status.busy": "2024-01-10T15:04:31.575858Z", - "iopub.status.idle": "2024-01-10T15:04:31.580823Z", - "shell.execute_reply": "2024-01-10T15:04:31.580322Z" + "iopub.execute_input": "2024-01-12T22:26:04.028790Z", + "iopub.status.busy": "2024-01-12T22:26:04.028587Z", + "iopub.status.idle": "2024-01-12T22:26:04.033793Z", + "shell.execute_reply": "2024-01-12T22:26:04.033038Z" }, "nbsphinx": "hidden" }, @@ -1885,10 +1885,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:31.583353Z", - "iopub.status.busy": "2024-01-10T15:04:31.582863Z", - "iopub.status.idle": "2024-01-10T15:04:32.078729Z", - "shell.execute_reply": "2024-01-10T15:04:32.077999Z" + "iopub.execute_input": "2024-01-12T22:26:04.036289Z", + "iopub.status.busy": "2024-01-12T22:26:04.036085Z", + "iopub.status.idle": "2024-01-12T22:26:04.530778Z", + "shell.execute_reply": "2024-01-12T22:26:04.530026Z" } }, "outputs": [ @@ -1923,10 +1923,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:32.081461Z", - "iopub.status.busy": "2024-01-10T15:04:32.081063Z", - "iopub.status.idle": "2024-01-10T15:04:32.089988Z", - "shell.execute_reply": "2024-01-10T15:04:32.089379Z" + "iopub.execute_input": "2024-01-12T22:26:04.533388Z", + "iopub.status.busy": "2024-01-12T22:26:04.533138Z", + "iopub.status.idle": "2024-01-12T22:26:04.542324Z", + "shell.execute_reply": "2024-01-12T22:26:04.541683Z" } }, "outputs": [ @@ -2093,10 +2093,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:32.092549Z", - "iopub.status.busy": "2024-01-10T15:04:32.092192Z", - "iopub.status.idle": "2024-01-10T15:04:32.099974Z", - "shell.execute_reply": "2024-01-10T15:04:32.099484Z" + "iopub.execute_input": "2024-01-12T22:26:04.544691Z", + "iopub.status.busy": "2024-01-12T22:26:04.544487Z", + "iopub.status.idle": "2024-01-12T22:26:04.552495Z", + "shell.execute_reply": "2024-01-12T22:26:04.551946Z" }, "nbsphinx": "hidden" }, @@ -2172,10 +2172,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:32.102387Z", - "iopub.status.busy": "2024-01-10T15:04:32.101960Z", - "iopub.status.idle": "2024-01-10T15:04:32.570065Z", - "shell.execute_reply": "2024-01-10T15:04:32.569399Z" + "iopub.execute_input": "2024-01-12T22:26:04.554711Z", + "iopub.status.busy": "2024-01-12T22:26:04.554511Z", + "iopub.status.idle": "2024-01-12T22:26:05.026949Z", + "shell.execute_reply": "2024-01-12T22:26:05.026216Z" } }, "outputs": [ @@ -2212,10 +2212,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:32.572742Z", - "iopub.status.busy": "2024-01-10T15:04:32.572268Z", - "iopub.status.idle": "2024-01-10T15:04:32.588234Z", - "shell.execute_reply": "2024-01-10T15:04:32.587703Z" + "iopub.execute_input": "2024-01-12T22:26:05.029594Z", + "iopub.status.busy": "2024-01-12T22:26:05.029367Z", + "iopub.status.idle": "2024-01-12T22:26:05.045994Z", + "shell.execute_reply": "2024-01-12T22:26:05.045425Z" } }, "outputs": [ @@ -2372,10 +2372,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:32.590676Z", - "iopub.status.busy": "2024-01-10T15:04:32.590298Z", - "iopub.status.idle": "2024-01-10T15:04:32.596305Z", - "shell.execute_reply": "2024-01-10T15:04:32.595803Z" + "iopub.execute_input": "2024-01-12T22:26:05.048398Z", + "iopub.status.busy": "2024-01-12T22:26:05.048191Z", + "iopub.status.idle": "2024-01-12T22:26:05.054145Z", + "shell.execute_reply": "2024-01-12T22:26:05.053598Z" }, "nbsphinx": "hidden" }, @@ -2420,10 +2420,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:32.598706Z", - "iopub.status.busy": "2024-01-10T15:04:32.598338Z", - "iopub.status.idle": "2024-01-10T15:04:33.262834Z", - "shell.execute_reply": "2024-01-10T15:04:33.262161Z" + "iopub.execute_input": "2024-01-12T22:26:05.056257Z", + "iopub.status.busy": "2024-01-12T22:26:05.056056Z", + "iopub.status.idle": "2024-01-12T22:26:05.737979Z", + "shell.execute_reply": "2024-01-12T22:26:05.737311Z" } }, "outputs": [ @@ -2505,10 +2505,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:33.265775Z", - "iopub.status.busy": "2024-01-10T15:04:33.265530Z", - "iopub.status.idle": "2024-01-10T15:04:33.276077Z", - "shell.execute_reply": "2024-01-10T15:04:33.275421Z" + "iopub.execute_input": "2024-01-12T22:26:05.741483Z", + "iopub.status.busy": "2024-01-12T22:26:05.741003Z", + "iopub.status.idle": "2024-01-12T22:26:05.750003Z", + "shell.execute_reply": "2024-01-12T22:26:05.749376Z" } }, "outputs": [ @@ -2533,47 +2533,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2636,10 +2636,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:33.278895Z", - "iopub.status.busy": "2024-01-10T15:04:33.278657Z", - "iopub.status.idle": "2024-01-10T15:04:33.285169Z", - "shell.execute_reply": "2024-01-10T15:04:33.284523Z" + "iopub.execute_input": "2024-01-12T22:26:05.752712Z", + "iopub.status.busy": "2024-01-12T22:26:05.752467Z", + "iopub.status.idle": "2024-01-12T22:26:05.757733Z", + "shell.execute_reply": "2024-01-12T22:26:05.757110Z" }, "nbsphinx": "hidden" }, @@ -2676,10 +2676,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:33.287965Z", - "iopub.status.busy": "2024-01-10T15:04:33.287730Z", - "iopub.status.idle": "2024-01-10T15:04:33.487758Z", - "shell.execute_reply": "2024-01-10T15:04:33.487083Z" + "iopub.execute_input": "2024-01-12T22:26:05.760065Z", + "iopub.status.busy": "2024-01-12T22:26:05.759865Z", + "iopub.status.idle": "2024-01-12T22:26:05.935019Z", + "shell.execute_reply": "2024-01-12T22:26:05.934306Z" } }, "outputs": [ @@ -2721,10 +2721,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:33.490235Z", - "iopub.status.busy": "2024-01-10T15:04:33.490031Z", - "iopub.status.idle": "2024-01-10T15:04:33.498679Z", - "shell.execute_reply": "2024-01-10T15:04:33.498144Z" + "iopub.execute_input": "2024-01-12T22:26:05.937897Z", + "iopub.status.busy": "2024-01-12T22:26:05.937441Z", + "iopub.status.idle": "2024-01-12T22:26:05.946682Z", + "shell.execute_reply": "2024-01-12T22:26:05.946014Z" } }, "outputs": [ @@ -2810,10 +2810,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:33.501115Z", - "iopub.status.busy": "2024-01-10T15:04:33.500732Z", - "iopub.status.idle": "2024-01-10T15:04:33.699560Z", - "shell.execute_reply": "2024-01-10T15:04:33.698929Z" + "iopub.execute_input": "2024-01-12T22:26:05.949173Z", + "iopub.status.busy": "2024-01-12T22:26:05.948729Z", + "iopub.status.idle": "2024-01-12T22:26:06.149396Z", + "shell.execute_reply": "2024-01-12T22:26:06.148707Z" } }, "outputs": [ @@ -2853,10 +2853,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:33.702317Z", - "iopub.status.busy": "2024-01-10T15:04:33.701919Z", - "iopub.status.idle": "2024-01-10T15:04:33.706633Z", - "shell.execute_reply": "2024-01-10T15:04:33.706092Z" + "iopub.execute_input": "2024-01-12T22:26:06.152086Z", + "iopub.status.busy": "2024-01-12T22:26:06.151704Z", + "iopub.status.idle": "2024-01-12T22:26:06.156614Z", + "shell.execute_reply": "2024-01-12T22:26:06.155980Z" }, "nbsphinx": "hidden" }, @@ -2893,44 +2893,46 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04e4ae2e9732443b82af37f831ad18a1": { + "0277fa09311b4ba8abb2b2a2986ca3e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7f9b991821c64269abde879721f087c1", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0dcae8976c0144608e6b016600914d3f", + "value": 2.0 } }, - "112b9edaa54c411fa05ff60e3db9703c": { + "059caf43ca0b479094eee597880b5773": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4119165ce1a0454396504339dc2936a3", - "placeholder": "​", - "style": "IPY_MODEL_81f0fab4dcf943af9f8f853b13f0b4a4", - "value": " 5.18M/5.18M [00:00<00:00, 15.8MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "1b00bb94c97b48db81ef550d08db758e": { + "0a465b21fe394e56a8c191a1874926e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2982,59 +2984,38 @@ "width": null } }, - "20d56237eaae4fc6b1a35901cd2d7a70": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "0d6c837ee2c84f7da5571f0992e59117": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" + } + }, + "0dcae8976c0144608e6b016600914d3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "22fd5c8feced44949969236ff8c8f8c5": { + "10d0ca1880914ad29a9fc83bdd4bed41": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3086,7 +3067,43 @@ "width": null } }, - "241cbe4a6e3e4d4d9d6e9d22f4f3385b": { + "10e2d75b34f84a2bb286ea6f9568a8c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fcd1b1ee39a6475590c5bed00e741e19", + "placeholder": "​", + "style": "IPY_MODEL_193232f98f2b4b9890673fb08d5ed904", + "value": "Downloading data: 100%" + } + }, + "152379befccc4b0e9d6776d6d9d609b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "15fbc4eabff74c15a90161729735cc67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3102,7 +3119,22 @@ "description_width": "" } }, - "2a3b1109435a4736b03db0b1724a1442": { + "193232f98f2b4b9890673fb08d5ed904": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "198931c457ec4e31a2aca764bd52ae23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3117,101 +3149,69 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c86e818f0a9148bd95537441fe27026c", + "layout": "IPY_MODEL_67b337bd5ae94b3e8cef2d2fce252d75", "placeholder": "​", - "style": "IPY_MODEL_fa46b30146734cf0a97ec7dff997556d", + "style": "IPY_MODEL_6ffe9986f4ef4746980894ce46958263", "value": "Downloading data: 100%" } }, - "2f2d629210df44a1954ce512820b9974": { + "19e7f1cbbbe24f5f8fff5b952e0c2009": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6cd5b6a6a0d34bbebe021beb8ff9a555", - "placeholder": "​", - "style": "IPY_MODEL_fbc7b405c321481196b289cba2b9602a", - "value": " 2/2 [00:00<00:00, 326.20it/s]" + "layout": "IPY_MODEL_68820473b0ca4dceaf4a69bff0912b8a", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_15fbc4eabff74c15a90161729735cc67", + "value": 30931277.0 } }, - "30d262d335e4455cb26fa6ae8786ea57": { + "1fcf45ca9611468d8c64283bdf504709": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "31e88f00396f4838aa6fbf279617afea": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "23cc135027cd48b6b6c93df4ca1c4e2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "20px" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "32a4eedc1f8b44299bda1cb0f6abd26d": { + "264131c15a6c4afa92e1dbfe0622e190": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3263,75 +3263,69 @@ "width": null } }, - "3863766608144d4bbae2dc8c00366428": { + "26afb7fd852444ca822dd811ca348408": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3bc56116a03d4c4f98eee114a1f67c8c", + "IPY_MODEL_bf03084a87d54d6fa43ad2afd1e28051", + "IPY_MODEL_dacd7adcb1a04dbba89dcd96a3441f61" + ], + "layout": "IPY_MODEL_690724de97354c6c9fe08c3a1e9033dc" } }, - "3ccfadc694714dd88df84fa423c2c545": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "274a8dfa651c462c836db97848e117d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c21489c3af5448e88867e25c6c122f43", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2a6feda604d740c3bda3dc746ae590e1", + "value": 1.0 + } + }, + "2a6feda604d740c3bda3dc746ae590e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "40f90b8814ba414e817c21d71281dd99": { + "2db6b684acbb4466ae9ead1b1b69b3b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3347,67 +3341,78 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c5f12e66dcc34cd894aa2fb362979871", - "max": 2.0, + "layout": "IPY_MODEL_cfeb4789c49f449aaa6303dfb0d8930c", + "max": 5175617.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b312b11fc08244acb5c89f76e88653ff", - "value": 2.0 + "style": "IPY_MODEL_49ce59a94a8b4c0fba43aa2a420a8261", + "value": 5175617.0 } }, - "4119165ce1a0454396504339dc2936a3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "35d25ec4f29f4c9e81f1371c23d46605": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_68042234a4d44870a300f1966fcea9a9", + "placeholder": "​", + "style": "IPY_MODEL_6e7649dac77e46089a1ca133cad59c0e", + "value": " 30.9M/30.9M [00:00<00:00, 34.1MB/s]" + } + }, + "37a16bb8effa41d5b8e60e8d79029891": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4187cba4e1f0443884828017e35d8d1b", + "placeholder": "​", + "style": "IPY_MODEL_059caf43ca0b479094eee597880b5773", + "value": "Computing checksums: 100%" + } + }, + "3bc56116a03d4c4f98eee114a1f67c8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d873bb825c914966842e4d80c59ec145", + "placeholder": "​", + "style": "IPY_MODEL_0d6c837ee2c84f7da5571f0992e59117", + "value": "Map (num_proc=4): 100%" } }, - "44e342404a6a44a69061b8bb99059003": { + "4187cba4e1f0443884828017e35d8d1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3459,7 +3464,7 @@ "width": null } }, - "45ab4026e1ff4814b9f2f20c4ffefbdb": { + "435714b268834d29bcc630232d317994": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3511,7 +3516,7 @@ "width": null } }, - "4b348afa95f54ad58600dc4f73a66315": { + "4785aff2eabd4a9eb0c61ec747db13a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3563,7 +3568,7 @@ "width": null } }, - "4f710dcf1dd545e5b2a12c8b5d0ebb77": { + "49ce59a94a8b4c0fba43aa2a420a8261": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3579,7 +3584,7 @@ "description_width": "" } }, - "531306c3d4224ff59e7d053b01e9d583": { + "53604f9355574015ac5ef41bc96926c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3594,28 +3599,7 @@ "description_width": "" } }, - "53fade93864d442b9cdba0679cd70a5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c273ef269f6b4139b28b78dd748d40a9", - "placeholder": "​", - "style": "IPY_MODEL_6e64b79aae00417680bd46c4ae245378", - "value": " 60000/0 [00:00<00:00, 908159.42 examples/s]" - } - }, - "55665cf5f5644591876a1ab6b8cf98a9": { + "542279a789c245369b34f95364f3d6c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3630,28 +3614,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_57cf6506fa2242dc96fcb0b457a2206a", + "layout": "IPY_MODEL_b14c5c990ede4ca386a8fbf6763f7b76", "placeholder": "​", - "style": "IPY_MODEL_62d37e620d8b4d3d8e23a6f9446c0f30", - "value": " 30.9M/30.9M [00:00<00:00, 84.4MB/s]" - } - }, - "56c95b5861374f539f8547df31e62298": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_6897de4f11744901909ec621232899c3", + "value": "Generating train split: " } }, - "57cf6506fa2242dc96fcb0b457a2206a": { + "580ac6fac1e347a4bd6638adc0c71e53": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3700,10 +3669,10 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "58b405bc9cc348dc929d12e142bb0650": { + "58b43775e0664e1a9788273c2ddef21b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3755,22 +3724,29 @@ "width": null } }, - "62d37e620d8b4d3d8e23a6f9446c0f30": { + "591ffc03095349849ab863c8762af005": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8db28047a44a42cba790da4b4f5e46d2", + "IPY_MODEL_5dad286aaf894c17ad4b0e59834c21fe", + "IPY_MODEL_ae1b90977d554ea1a0e786c7f5fbdc52" + ], + "layout": "IPY_MODEL_10d0ca1880914ad29a9fc83bdd4bed41" } }, - "642e927f44e546abb691317a37cb9c45": { + "5b7068e1773f4f2694005757556af4c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3785,7 +3761,31 @@ "description_width": "" } }, - "6cd5b6a6a0d34bbebe021beb8ff9a555": { + "5dad286aaf894c17ad4b0e59834c21fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_580ac6fac1e347a4bd6638adc0c71e53", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_691d020987a34762b98b26af640e3d05", + "value": 1.0 + } + }, + "5f9ca9b6a49643e390762f3d1034b0e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3837,44 +3837,111 @@ "width": null } }, - "6e64b79aae00417680bd46c4ae245378": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "6182da0bd4b949f58df515e805682009": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6eb966bbd7c140f893c9852a659a12b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "67b337bd5ae94b3e8cef2d2fce252d75": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_def7d8c7aa354f3087d6be14e2d005af", - "IPY_MODEL_40f90b8814ba414e817c21d71281dd99", - "IPY_MODEL_2f2d629210df44a1954ce512820b9974" - ], - "layout": "IPY_MODEL_7fe60cd2bb9944088c770c6054b969f0" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "73224719d91b43aea20d1947b20b9fae": { + "68042234a4d44870a300f1966fcea9a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3926,55 +3993,74 @@ "width": null } }, - "747917059fd846f3bab65dc46259cdd9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "68820473b0ca4dceaf4a69bff0912b8a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f936491928e643d991be5593f5ce8e2e", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3863766608144d4bbae2dc8c00366428", - "value": 60000.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7aabea0e51b14aa0a344f519dace41d4": { + "6897de4f11744901909ec621232899c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fc957e7fcc8a4257b589cb24f6c097ed", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_241cbe4a6e3e4d4d9d6e9d22f4f3385b", - "value": 1.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "7fe60cd2bb9944088c770c6054b969f0": { + "690724de97354c6c9fe08c3a1e9033dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4026,28 +4112,23 @@ "width": null } }, - "8166aa3799774caf8b87e0123a21d7a8": { + "691d020987a34762b98b26af640e3d05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_32a4eedc1f8b44299bda1cb0f6abd26d", - "placeholder": "​", - "style": "IPY_MODEL_f479288994bb480f93a2890ac8b9689a", - "value": " 60000/60000 [00:12<00:00, 3528.13 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "81f0fab4dcf943af9f8f853b13f0b4a4": { + "6e7649dac77e46089a1ca133cad59c0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4062,31 +4143,43 @@ "description_width": "" } }, - "84bcdef9932046f0930340bd8f083f61": { + "6ffe9986f4ef4746980894ce46958263": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "747f0924622449f793d4166db4e457c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_df11331f35ed4acab017a87d9c99f632", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_04e4ae2e9732443b82af37f831ad18a1", - "value": 60000.0 + "layout": "IPY_MODEL_923444db73754beaa24a52465c8379ad", + "placeholder": "​", + "style": "IPY_MODEL_152379befccc4b0e9d6776d6d9d609b8", + "value": " 60000/60000 [00:34<00:00, 1731.83it/s]" } }, - "8a7ea3a7486345b3b0576e7ea7232743": { + "7a4945c889ae4ce189cb297e3fca221e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4101,14 +4194,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f6c40051e8f24228bbec72cf3feba8a2", - "IPY_MODEL_747917059fd846f3bab65dc46259cdd9", - "IPY_MODEL_8166aa3799774caf8b87e0123a21d7a8" + "IPY_MODEL_10e2d75b34f84a2bb286ea6f9568a8c7", + "IPY_MODEL_2db6b684acbb4466ae9ead1b1b69b3b2", + "IPY_MODEL_b3f332501701433882c8a4afebcb2e9a" ], - "layout": "IPY_MODEL_94105893d93745368f80f8601af838d5" + "layout": "IPY_MODEL_ac5ee35065f542abbd55dfc99643962a" } }, - "8f6b26b7119741c5b0e69e2bb959c0d0": { + "7f9b991821c64269abde879721f087c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4160,23 +4253,7 @@ "width": null } }, - "8fefc0d74ba54974b442c6b71acfca3f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "94105893d93745368f80f8601af838d5": { + "81211fbd3e75481abc683649d58e350a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4228,49 +4305,7 @@ "width": null } }, - "975d8ea39a014452958aa146cb2be35e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4b348afa95f54ad58600dc4f73a66315", - "placeholder": "​", - "style": "IPY_MODEL_642e927f44e546abb691317a37cb9c45", - "value": " 10000/0 [00:00<00:00, 533266.88 examples/s]" - } - }, - "99030e7333314a1aab3d9d361a77c853": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8f6b26b7119741c5b0e69e2bb959c0d0", - "placeholder": "​", - "style": "IPY_MODEL_f6c6eedc2b8040ef8b8f49905f4d1693", - "value": "100%" - } - }, - "9bb84796b7394d3785201ca53696b02a": { + "8db28047a44a42cba790da4b4f5e46d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4285,28 +4320,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_58b405bc9cc348dc929d12e142bb0650", + "layout": "IPY_MODEL_e6521175db914d47826af9253641d8ce", "placeholder": "​", - "style": "IPY_MODEL_56c95b5861374f539f8547df31e62298", - "value": " 60000/60000 [00:34<00:00, 1701.51it/s]" + "style": "IPY_MODEL_53604f9355574015ac5ef41bc96926c0", + "value": "Generating test split: " } }, - "a43ef6625dea4b75a7bd60e2ad355251": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "923444db73754beaa24a52465c8379ad": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "af56049c25a04736a48db4358cc9df58": { + "92dfa78182154aa3a11f26b92b425272": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4321,45 +4393,28 @@ "description_width": "" } }, - "b312b11fc08244acb5c89f76e88653ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b9f8b67a42cd4066aaa973e62b8ca794": { + "9407635ecef3426bba623ef006fa8b6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d92c2abcd7884d97888881358b3cd238", - "IPY_MODEL_db44e5262c4c49de8c97bca5ac255894", - "IPY_MODEL_55665cf5f5644591876a1ab6b8cf98a9" - ], - "layout": "IPY_MODEL_3ccfadc694714dd88df84fa423c2c545" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5f9ca9b6a49643e390762f3d1034b0e5", + "placeholder": "​", + "style": "IPY_MODEL_b226c4a245fb424ea6a3b85838cda370", + "value": " 60000/0 [00:00<00:00, 856854.75 examples/s]" } }, - "bbc89641d4084f42bd9460c0e97e2df2": { + "9b9fbb15ac114dd89f1ee2378938e258": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4411,28 +4466,7 @@ "width": null } }, - "bee57b4377fb4ff8b1a8962934c0ad90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_73224719d91b43aea20d1947b20b9fae", - "placeholder": "​", - "style": "IPY_MODEL_af56049c25a04736a48db4358cc9df58", - "value": "Generating train split: " - } - }, - "bf53f28b041a4ed9a94303a3b2af0104": { + "9e8541cae8744f248e36b3f70adb785f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4484,7 +4518,44 @@ "width": null } }, - "c273ef269f6b4139b28b78dd748d40a9": { + "9fce2b8405f94190b8b6e8db84f9dbca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a1d74e51f5cd4d1083255ced81c6493f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_de1399aca2c04609bcf6897853430931", + "IPY_MODEL_cf586cb08e57418eb66962d1f91eb50c", + "IPY_MODEL_747f0924622449f793d4166db4e457c8" + ], + "layout": "IPY_MODEL_264131c15a6c4afa92e1dbfe0622e190" + } + }, + "ac5ee35065f542abbd55dfc99643962a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4536,31 +4607,43 @@ "width": null } }, - "c5d6f7de1ab84a849a8e3bc128b311f1": { + "ae1b90977d554ea1a0e786c7f5fbdc52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_31e88f00396f4838aa6fbf279617afea", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d614f19d9865459793b1f30c2fa79913", - "value": 1.0 + "layout": "IPY_MODEL_435714b268834d29bcc630232d317994", + "placeholder": "​", + "style": "IPY_MODEL_9fce2b8405f94190b8b6e8db84f9dbca", + "value": " 10000/0 [00:00<00:00, 448507.12 examples/s]" + } + }, + "af2ef72856104d7a95aff73dc31a1917": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "c5f12e66dcc34cd894aa2fb362979871": { + "b14c5c990ede4ca386a8fbf6763f7b76": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4612,7 +4695,110 @@ "width": null } }, - "c86e818f0a9148bd95537441fe27026c": { + "b226c4a245fb424ea6a3b85838cda370": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b3f332501701433882c8a4afebcb2e9a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_81211fbd3e75481abc683649d58e350a", + "placeholder": "​", + "style": "IPY_MODEL_5b7068e1773f4f2694005757556af4c0", + "value": " 5.18M/5.18M [00:00<00:00, 37.8MB/s]" + } + }, + "b6c5fca45d4e4cc999c65c941e5b964b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ebdfa117ca9a4f02989bee1b4df47eaf", + "placeholder": "​", + "style": "IPY_MODEL_d82a049740a94d3cbdb3e396272db695", + "value": " 2/2 [00:00<00:00, 353.38it/s]" + } + }, + "beb18ee3e6cc44ea814cbed0d7a11c03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_198931c457ec4e31a2aca764bd52ae23", + "IPY_MODEL_19e7f1cbbbe24f5f8fff5b952e0c2009", + "IPY_MODEL_35d25ec4f29f4c9e81f1371c23d46605" + ], + "layout": "IPY_MODEL_c936fc7cdfac40e3b9bfa64a390ece8d" + } + }, + "bf03084a87d54d6fa43ad2afd1e28051": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a465b21fe394e56a8c191a1874926e6", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1fcf45ca9611468d8c64283bdf504709", + "value": 60000.0 + } + }, + "c21489c3af5448e88867e25c6c122f43": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4661,63 +4847,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "ca3a18d2bf4b4fa68ed448ca06ccc823": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bee57b4377fb4ff8b1a8962934c0ad90", - "IPY_MODEL_c5d6f7de1ab84a849a8e3bc128b311f1", - "IPY_MODEL_53fade93864d442b9cdba0679cd70a5b" - ], - "layout": "IPY_MODEL_45ab4026e1ff4814b9f2f20c4ffefbdb" - } - }, - "cfe37b5719f04fd29e805d7127de5338": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d614f19d9865459793b1f30c2fa79913": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "width": "20px" } }, - "d7f3a96589a84783a117d707db05a5d7": { + "c936fc7cdfac40e3b9bfa64a390ece8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4769,28 +4902,7 @@ "width": null } }, - "d92c2abcd7884d97888881358b3cd238": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_44e342404a6a44a69061b8bb99059003", - "placeholder": "​", - "style": "IPY_MODEL_30d262d335e4455cb26fa6ae8786ea57", - "value": "Downloading data: 100%" - } - }, - "db44e5262c4c49de8c97bca5ac255894": { + "cf586cb08e57418eb66962d1f91eb50c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4806,36 +4918,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_22fd5c8feced44949969236ff8c8f8c5", - "max": 30931277.0, + "layout": "IPY_MODEL_58b43775e0664e1a9788273c2ddef21b", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4f710dcf1dd545e5b2a12c8b5d0ebb77", - "value": 30931277.0 - } - }, - "def7d8c7aa354f3087d6be14e2d005af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1b00bb94c97b48db81ef550d08db758e", - "placeholder": "​", - "style": "IPY_MODEL_531306c3d4224ff59e7d053b01e9d583", - "value": "Computing checksums: 100%" + "style": "IPY_MODEL_23cc135027cd48b6b6c93df4ca1c4e2d", + "value": 60000.0 } }, - "df11331f35ed4acab017a87d9c99f632": { + "cfeb4789c49f449aaa6303dfb0d8930c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4887,52 +4978,22 @@ "width": null } }, - "dfcc60c7ce4d427d9db728d1111175d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bf53f28b041a4ed9a94303a3b2af0104", - "placeholder": "​", - "style": "IPY_MODEL_a43ef6625dea4b75a7bd60e2ad355251", - "value": "Generating test split: " - } - }, - "e36ce1e2b4ac46b89919510d19d88e00": { + "d82a049740a94d3cbdb3e396272db695": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_20d56237eaae4fc6b1a35901cd2d7a70", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8fefc0d74ba54974b442c6b71acfca3f", - "value": 5175617.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e3a451c639764ba4a7e218a0a80bb64f": { + "d873bb825c914966842e4d80c59ec145": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4984,29 +5045,28 @@ "width": null } }, - "eb174494cec7449c80000967dbef9224": { + "dacd7adcb1a04dbba89dcd96a3441f61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_99030e7333314a1aab3d9d361a77c853", - "IPY_MODEL_84bcdef9932046f0930340bd8f083f61", - "IPY_MODEL_9bb84796b7394d3785201ca53696b02a" - ], - "layout": "IPY_MODEL_bbc89641d4084f42bd9460c0e97e2df2" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4785aff2eabd4a9eb0c61ec747db13a8", + "placeholder": "​", + "style": "IPY_MODEL_92dfa78182154aa3a11f26b92b425272", + "value": " 60000/60000 [00:12<00:00, 6400.17 examples/s]" } }, - "f0d31b197fe7409d990c55b1452c3705": { + "dbaddfd25414492ab26f1c94a8aae733": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -5021,36 +5081,35 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_dfcc60c7ce4d427d9db728d1111175d5", - "IPY_MODEL_7aabea0e51b14aa0a344f519dace41d4", - "IPY_MODEL_975d8ea39a014452958aa146cb2be35e" + "IPY_MODEL_542279a789c245369b34f95364f3d6c6", + "IPY_MODEL_274a8dfa651c462c836db97848e117d7", + "IPY_MODEL_9407635ecef3426bba623ef006fa8b6e" ], - "layout": "IPY_MODEL_e3a451c639764ba4a7e218a0a80bb64f" + "layout": "IPY_MODEL_9b9fbb15ac114dd89f1ee2378938e258" } }, - "f290500824dc4995bf9dfe5f9f2b3425": { + "de1399aca2c04609bcf6897853430931": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2a3b1109435a4736b03db0b1724a1442", - "IPY_MODEL_e36ce1e2b4ac46b89919510d19d88e00", - "IPY_MODEL_112b9edaa54c411fa05ff60e3db9703c" - ], - "layout": "IPY_MODEL_f46d4bf4f0a14643be3fbdc4e3420fc1" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6182da0bd4b949f58df515e805682009", + "placeholder": "​", + "style": "IPY_MODEL_af2ef72856104d7a95aff73dc31a1917", + "value": "100%" } }, - "f46d4bf4f0a14643be3fbdc4e3420fc1": { + "e6521175db914d47826af9253641d8ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5102,58 +5161,29 @@ "width": null } }, - "f479288994bb480f93a2890ac8b9689a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f6c40051e8f24228bbec72cf3feba8a2": { + "e83b2278127f42909cb667dbc45451b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d7f3a96589a84783a117d707db05a5d7", - "placeholder": "​", - "style": "IPY_MODEL_cfe37b5719f04fd29e805d7127de5338", - "value": "Map (num_proc=4): 100%" - } - }, - "f6c6eedc2b8040ef8b8f49905f4d1693": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_37a16bb8effa41d5b8e60e8d79029891", + "IPY_MODEL_0277fa09311b4ba8abb2b2a2986ca3e4", + "IPY_MODEL_b6c5fca45d4e4cc999c65c941e5b964b" + ], + "layout": "IPY_MODEL_9e8541cae8744f248e36b3f70adb785f" } }, - "f936491928e643d991be5593f5ce8e2e": { + "ebdfa117ca9a4f02989bee1b4df47eaf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5205,37 +5235,7 @@ "width": null } }, - "fa46b30146734cf0a97ec7dff997556d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fbc7b405c321481196b289cba2b9602a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fc957e7fcc8a4257b589cb24f6c097ed": { + "fcd1b1ee39a6475590c5bed00e741e19": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5284,7 +5284,7 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } } }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index e4512dc87..02807fe19 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:39.321427Z", - "iopub.status.busy": "2024-01-10T15:04:39.321210Z", - "iopub.status.idle": "2024-01-10T15:04:40.398173Z", - "shell.execute_reply": "2024-01-10T15:04:40.397563Z" + "iopub.execute_input": "2024-01-12T22:26:12.500632Z", + "iopub.status.busy": "2024-01-12T22:26:12.500089Z", + "iopub.status.idle": "2024-01-12T22:26:13.596015Z", + "shell.execute_reply": "2024-01-12T22:26:13.595396Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:40.401187Z", - "iopub.status.busy": "2024-01-10T15:04:40.400737Z", - "iopub.status.idle": "2024-01-10T15:04:40.669725Z", - "shell.execute_reply": "2024-01-10T15:04:40.669115Z" + "iopub.execute_input": "2024-01-12T22:26:13.598854Z", + "iopub.status.busy": "2024-01-12T22:26:13.598578Z", + "iopub.status.idle": "2024-01-12T22:26:13.882337Z", + "shell.execute_reply": "2024-01-12T22:26:13.881763Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:40.672962Z", - "iopub.status.busy": "2024-01-10T15:04:40.672388Z", - "iopub.status.idle": "2024-01-10T15:04:40.684649Z", - "shell.execute_reply": "2024-01-10T15:04:40.684028Z" + "iopub.execute_input": "2024-01-12T22:26:13.885416Z", + "iopub.status.busy": "2024-01-12T22:26:13.885002Z", + "iopub.status.idle": "2024-01-12T22:26:13.897407Z", + "shell.execute_reply": "2024-01-12T22:26:13.896774Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:40.687271Z", - "iopub.status.busy": "2024-01-10T15:04:40.686818Z", - "iopub.status.idle": "2024-01-10T15:04:40.921516Z", - "shell.execute_reply": "2024-01-10T15:04:40.920869Z" + "iopub.execute_input": "2024-01-12T22:26:13.899929Z", + "iopub.status.busy": "2024-01-12T22:26:13.899559Z", + "iopub.status.idle": "2024-01-12T22:26:14.104593Z", + "shell.execute_reply": "2024-01-12T22:26:14.103863Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:40.924511Z", - "iopub.status.busy": "2024-01-10T15:04:40.924050Z", - "iopub.status.idle": "2024-01-10T15:04:40.951356Z", - "shell.execute_reply": "2024-01-10T15:04:40.950828Z" + "iopub.execute_input": "2024-01-12T22:26:14.107407Z", + "iopub.status.busy": "2024-01-12T22:26:14.106978Z", + "iopub.status.idle": "2024-01-12T22:26:14.133899Z", + "shell.execute_reply": "2024-01-12T22:26:14.133368Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:40.953852Z", - "iopub.status.busy": "2024-01-10T15:04:40.953477Z", - "iopub.status.idle": "2024-01-10T15:04:42.309859Z", - "shell.execute_reply": "2024-01-10T15:04:42.309107Z" + "iopub.execute_input": "2024-01-12T22:26:14.136628Z", + "iopub.status.busy": "2024-01-12T22:26:14.136080Z", + "iopub.status.idle": "2024-01-12T22:26:15.475987Z", + "shell.execute_reply": "2024-01-12T22:26:15.475209Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:42.312942Z", - "iopub.status.busy": "2024-01-10T15:04:42.312275Z", - "iopub.status.idle": "2024-01-10T15:04:42.337983Z", - "shell.execute_reply": "2024-01-10T15:04:42.337407Z" + "iopub.execute_input": "2024-01-12T22:26:15.479029Z", + "iopub.status.busy": "2024-01-12T22:26:15.478376Z", + "iopub.status.idle": "2024-01-12T22:26:15.504352Z", + "shell.execute_reply": "2024-01-12T22:26:15.503726Z" }, "scrolled": true }, @@ -641,10 +641,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:42.340434Z", - "iopub.status.busy": "2024-01-10T15:04:42.340211Z", - "iopub.status.idle": "2024-01-10T15:04:43.216594Z", - "shell.execute_reply": "2024-01-10T15:04:43.215893Z" + "iopub.execute_input": "2024-01-12T22:26:15.507005Z", + "iopub.status.busy": "2024-01-12T22:26:15.506589Z", + "iopub.status.idle": "2024-01-12T22:26:16.413465Z", + "shell.execute_reply": "2024-01-12T22:26:16.412785Z" }, "id": "AaHC5MRKjruT" }, @@ -763,10 +763,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.219465Z", - "iopub.status.busy": "2024-01-10T15:04:43.219248Z", - "iopub.status.idle": "2024-01-10T15:04:43.234139Z", - "shell.execute_reply": "2024-01-10T15:04:43.233465Z" + "iopub.execute_input": "2024-01-12T22:26:16.416094Z", + "iopub.status.busy": "2024-01-12T22:26:16.415833Z", + "iopub.status.idle": "2024-01-12T22:26:16.430481Z", + "shell.execute_reply": "2024-01-12T22:26:16.429813Z" }, "id": "Wy27rvyhjruU" }, @@ -815,10 +815,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.236729Z", - "iopub.status.busy": "2024-01-10T15:04:43.236367Z", - "iopub.status.idle": "2024-01-10T15:04:43.322460Z", - "shell.execute_reply": "2024-01-10T15:04:43.321810Z" + "iopub.execute_input": "2024-01-12T22:26:16.432951Z", + "iopub.status.busy": "2024-01-12T22:26:16.432454Z", + "iopub.status.idle": "2024-01-12T22:26:16.520331Z", + "shell.execute_reply": "2024-01-12T22:26:16.519586Z" }, "id": "Db8YHnyVjruU" }, @@ -925,10 +925,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.324966Z", - "iopub.status.busy": "2024-01-10T15:04:43.324713Z", - "iopub.status.idle": "2024-01-10T15:04:43.529247Z", - "shell.execute_reply": "2024-01-10T15:04:43.528571Z" + "iopub.execute_input": "2024-01-12T22:26:16.523423Z", + "iopub.status.busy": "2024-01-12T22:26:16.522925Z", + "iopub.status.idle": "2024-01-12T22:26:16.726834Z", + "shell.execute_reply": "2024-01-12T22:26:16.726120Z" }, "id": "iJqAHuS2jruV" }, @@ -965,10 +965,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.532132Z", - "iopub.status.busy": "2024-01-10T15:04:43.531690Z", - "iopub.status.idle": "2024-01-10T15:04:43.549245Z", - "shell.execute_reply": "2024-01-10T15:04:43.548725Z" + "iopub.execute_input": "2024-01-12T22:26:16.729769Z", + "iopub.status.busy": "2024-01-12T22:26:16.729276Z", + "iopub.status.idle": "2024-01-12T22:26:16.746903Z", + "shell.execute_reply": "2024-01-12T22:26:16.746395Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1030,10 +1030,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.551560Z", - "iopub.status.busy": "2024-01-10T15:04:43.551356Z", - "iopub.status.idle": "2024-01-10T15:04:43.561686Z", - "shell.execute_reply": "2024-01-10T15:04:43.561157Z" + "iopub.execute_input": "2024-01-12T22:26:16.749305Z", + "iopub.status.busy": "2024-01-12T22:26:16.749098Z", + "iopub.status.idle": "2024-01-12T22:26:16.759430Z", + "shell.execute_reply": "2024-01-12T22:26:16.758822Z" }, "id": "0lonvOYvjruV" }, @@ -1180,10 +1180,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.563888Z", - "iopub.status.busy": "2024-01-10T15:04:43.563685Z", - "iopub.status.idle": "2024-01-10T15:04:43.660140Z", - "shell.execute_reply": "2024-01-10T15:04:43.659441Z" + "iopub.execute_input": "2024-01-12T22:26:16.761920Z", + "iopub.status.busy": "2024-01-12T22:26:16.761561Z", + "iopub.status.idle": "2024-01-12T22:26:16.865861Z", + "shell.execute_reply": "2024-01-12T22:26:16.865250Z" }, "id": "MfqTCa3kjruV" }, @@ -1264,10 +1264,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.662836Z", - "iopub.status.busy": "2024-01-10T15:04:43.662578Z", - "iopub.status.idle": "2024-01-10T15:04:43.805417Z", - "shell.execute_reply": "2024-01-10T15:04:43.804781Z" + "iopub.execute_input": "2024-01-12T22:26:16.869026Z", + "iopub.status.busy": "2024-01-12T22:26:16.868478Z", + "iopub.status.idle": "2024-01-12T22:26:17.014671Z", + "shell.execute_reply": "2024-01-12T22:26:17.013932Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1327,10 +1327,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.808245Z", - "iopub.status.busy": "2024-01-10T15:04:43.807852Z", - "iopub.status.idle": "2024-01-10T15:04:43.812212Z", - "shell.execute_reply": "2024-01-10T15:04:43.811667Z" + "iopub.execute_input": "2024-01-12T22:26:17.017203Z", + "iopub.status.busy": "2024-01-12T22:26:17.016947Z", + "iopub.status.idle": "2024-01-12T22:26:17.021175Z", + "shell.execute_reply": "2024-01-12T22:26:17.020559Z" }, "id": "0rXP3ZPWjruW" }, @@ -1368,10 +1368,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.814450Z", - "iopub.status.busy": "2024-01-10T15:04:43.814232Z", - "iopub.status.idle": "2024-01-10T15:04:43.818838Z", - "shell.execute_reply": "2024-01-10T15:04:43.818307Z" + "iopub.execute_input": "2024-01-12T22:26:17.023690Z", + "iopub.status.busy": "2024-01-12T22:26:17.023208Z", + "iopub.status.idle": "2024-01-12T22:26:17.027942Z", + "shell.execute_reply": "2024-01-12T22:26:17.027325Z" }, "id": "-iRPe8KXjruW" }, @@ -1426,10 +1426,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.821246Z", - "iopub.status.busy": "2024-01-10T15:04:43.820961Z", - "iopub.status.idle": "2024-01-10T15:04:43.860597Z", - "shell.execute_reply": "2024-01-10T15:04:43.860082Z" + "iopub.execute_input": "2024-01-12T22:26:17.030445Z", + "iopub.status.busy": "2024-01-12T22:26:17.030063Z", + "iopub.status.idle": "2024-01-12T22:26:17.070098Z", + "shell.execute_reply": "2024-01-12T22:26:17.069440Z" }, "id": "ZpipUliyjruW" }, @@ -1480,10 +1480,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.863024Z", - "iopub.status.busy": "2024-01-10T15:04:43.862665Z", - "iopub.status.idle": "2024-01-10T15:04:43.907937Z", - "shell.execute_reply": "2024-01-10T15:04:43.907422Z" + "iopub.execute_input": "2024-01-12T22:26:17.072849Z", + "iopub.status.busy": "2024-01-12T22:26:17.072390Z", + "iopub.status.idle": "2024-01-12T22:26:17.121304Z", + "shell.execute_reply": "2024-01-12T22:26:17.120629Z" }, "id": "SLq-3q4xjruX" }, @@ -1552,10 +1552,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:43.910314Z", - "iopub.status.busy": "2024-01-10T15:04:43.910006Z", - "iopub.status.idle": "2024-01-10T15:04:44.013322Z", - "shell.execute_reply": "2024-01-10T15:04:44.012666Z" + "iopub.execute_input": "2024-01-12T22:26:17.124124Z", + "iopub.status.busy": "2024-01-12T22:26:17.123710Z", + "iopub.status.idle": "2024-01-12T22:26:17.232377Z", + "shell.execute_reply": "2024-01-12T22:26:17.231583Z" }, "id": "g5LHhhuqFbXK" }, @@ -1587,10 +1587,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:44.016380Z", - "iopub.status.busy": "2024-01-10T15:04:44.015987Z", - "iopub.status.idle": "2024-01-10T15:04:44.118865Z", - "shell.execute_reply": "2024-01-10T15:04:44.118170Z" + "iopub.execute_input": "2024-01-12T22:26:17.235572Z", + "iopub.status.busy": "2024-01-12T22:26:17.235265Z", + "iopub.status.idle": "2024-01-12T22:26:17.342330Z", + "shell.execute_reply": "2024-01-12T22:26:17.341663Z" }, "id": "p7w8F8ezBcet" }, @@ -1647,10 +1647,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:44.121545Z", - "iopub.status.busy": "2024-01-10T15:04:44.121287Z", - "iopub.status.idle": "2024-01-10T15:04:44.325172Z", - "shell.execute_reply": "2024-01-10T15:04:44.324514Z" + "iopub.execute_input": "2024-01-12T22:26:17.345153Z", + "iopub.status.busy": "2024-01-12T22:26:17.344753Z", + "iopub.status.idle": "2024-01-12T22:26:17.551312Z", + "shell.execute_reply": "2024-01-12T22:26:17.550605Z" }, "id": "WETRL74tE_sU" }, @@ -1685,10 +1685,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:44.327830Z", - "iopub.status.busy": "2024-01-10T15:04:44.327618Z", - "iopub.status.idle": "2024-01-10T15:04:44.538647Z", - "shell.execute_reply": "2024-01-10T15:04:44.537948Z" + "iopub.execute_input": "2024-01-12T22:26:17.554001Z", + "iopub.status.busy": "2024-01-12T22:26:17.553528Z", + "iopub.status.idle": "2024-01-12T22:26:17.791520Z", + "shell.execute_reply": "2024-01-12T22:26:17.790797Z" }, "id": "kCfdx2gOLmXS" }, @@ -1850,10 +1850,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:44.541174Z", - "iopub.status.busy": "2024-01-10T15:04:44.540920Z", - "iopub.status.idle": "2024-01-10T15:04:44.547632Z", - "shell.execute_reply": "2024-01-10T15:04:44.547125Z" + "iopub.execute_input": "2024-01-12T22:26:17.794510Z", + "iopub.status.busy": "2024-01-12T22:26:17.793901Z", + "iopub.status.idle": "2024-01-12T22:26:17.800695Z", + "shell.execute_reply": "2024-01-12T22:26:17.800091Z" }, "id": "-uogYRWFYnuu" }, @@ -1907,10 +1907,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:44.550054Z", - "iopub.status.busy": "2024-01-10T15:04:44.549609Z", - "iopub.status.idle": "2024-01-10T15:04:44.759728Z", - "shell.execute_reply": "2024-01-10T15:04:44.759057Z" + "iopub.execute_input": "2024-01-12T22:26:17.803282Z", + "iopub.status.busy": "2024-01-12T22:26:17.802738Z", + "iopub.status.idle": "2024-01-12T22:26:18.024036Z", + "shell.execute_reply": "2024-01-12T22:26:18.023304Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1957,10 +1957,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:44.762443Z", - "iopub.status.busy": "2024-01-10T15:04:44.762199Z", - "iopub.status.idle": "2024-01-10T15:04:45.836039Z", - "shell.execute_reply": "2024-01-10T15:04:45.835321Z" + "iopub.execute_input": "2024-01-12T22:26:18.026874Z", + "iopub.status.busy": "2024-01-12T22:26:18.026431Z", + "iopub.status.idle": "2024-01-12T22:26:19.102961Z", + "shell.execute_reply": "2024-01-12T22:26:19.102314Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 8180291e1..5cc2d0c9d 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:50.783329Z", - "iopub.status.busy": "2024-01-10T15:04:50.783126Z", - "iopub.status.idle": "2024-01-10T15:04:51.826636Z", - "shell.execute_reply": "2024-01-10T15:04:51.825904Z" + "iopub.execute_input": "2024-01-12T22:26:24.696731Z", + "iopub.status.busy": "2024-01-12T22:26:24.696265Z", + "iopub.status.idle": "2024-01-12T22:26:25.730024Z", + "shell.execute_reply": "2024-01-12T22:26:25.729401Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.829702Z", - "iopub.status.busy": "2024-01-10T15:04:51.829194Z", - "iopub.status.idle": "2024-01-10T15:04:51.832552Z", - "shell.execute_reply": "2024-01-10T15:04:51.832031Z" + "iopub.execute_input": "2024-01-12T22:26:25.733099Z", + "iopub.status.busy": "2024-01-12T22:26:25.732644Z", + "iopub.status.idle": "2024-01-12T22:26:25.735980Z", + "shell.execute_reply": "2024-01-12T22:26:25.735447Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.835101Z", - "iopub.status.busy": "2024-01-10T15:04:51.834739Z", - "iopub.status.idle": "2024-01-10T15:04:51.843086Z", - "shell.execute_reply": "2024-01-10T15:04:51.842467Z" + "iopub.execute_input": "2024-01-12T22:26:25.738573Z", + "iopub.status.busy": "2024-01-12T22:26:25.738208Z", + "iopub.status.idle": "2024-01-12T22:26:25.746731Z", + "shell.execute_reply": "2024-01-12T22:26:25.746182Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.845548Z", - "iopub.status.busy": "2024-01-10T15:04:51.845151Z", - "iopub.status.idle": "2024-01-10T15:04:51.893885Z", - "shell.execute_reply": "2024-01-10T15:04:51.893321Z" + "iopub.execute_input": "2024-01-12T22:26:25.748824Z", + "iopub.status.busy": "2024-01-12T22:26:25.748629Z", + "iopub.status.idle": "2024-01-12T22:26:25.797345Z", + "shell.execute_reply": "2024-01-12T22:26:25.796788Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.896881Z", - "iopub.status.busy": "2024-01-10T15:04:51.896499Z", - "iopub.status.idle": "2024-01-10T15:04:51.916606Z", - "shell.execute_reply": "2024-01-10T15:04:51.915938Z" + "iopub.execute_input": "2024-01-12T22:26:25.800002Z", + "iopub.status.busy": "2024-01-12T22:26:25.799789Z", + "iopub.status.idle": "2024-01-12T22:26:25.820034Z", + "shell.execute_reply": "2024-01-12T22:26:25.819486Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.919078Z", - "iopub.status.busy": "2024-01-10T15:04:51.918771Z", - "iopub.status.idle": "2024-01-10T15:04:51.922997Z", - "shell.execute_reply": "2024-01-10T15:04:51.922404Z" + "iopub.execute_input": "2024-01-12T22:26:25.822476Z", + "iopub.status.busy": "2024-01-12T22:26:25.822138Z", + "iopub.status.idle": "2024-01-12T22:26:25.826466Z", + "shell.execute_reply": "2024-01-12T22:26:25.825941Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.925555Z", - "iopub.status.busy": "2024-01-10T15:04:51.925142Z", - "iopub.status.idle": "2024-01-10T15:04:51.952755Z", - "shell.execute_reply": "2024-01-10T15:04:51.952205Z" + "iopub.execute_input": "2024-01-12T22:26:25.828976Z", + "iopub.status.busy": "2024-01-12T22:26:25.828608Z", + "iopub.status.idle": "2024-01-12T22:26:25.856288Z", + "shell.execute_reply": "2024-01-12T22:26:25.855748Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.955378Z", - "iopub.status.busy": "2024-01-10T15:04:51.955021Z", - "iopub.status.idle": "2024-01-10T15:04:51.982908Z", - "shell.execute_reply": "2024-01-10T15:04:51.982212Z" + "iopub.execute_input": "2024-01-12T22:26:25.858978Z", + "iopub.status.busy": "2024-01-12T22:26:25.858525Z", + "iopub.status.idle": "2024-01-12T22:26:25.887484Z", + "shell.execute_reply": "2024-01-12T22:26:25.886785Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:51.985756Z", - "iopub.status.busy": "2024-01-10T15:04:51.985347Z", - "iopub.status.idle": "2024-01-10T15:04:53.313475Z", - "shell.execute_reply": "2024-01-10T15:04:53.312740Z" + "iopub.execute_input": "2024-01-12T22:26:25.890652Z", + "iopub.status.busy": "2024-01-12T22:26:25.890207Z", + "iopub.status.idle": "2024-01-12T22:26:27.230492Z", + "shell.execute_reply": "2024-01-12T22:26:27.229814Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.316625Z", - "iopub.status.busy": "2024-01-10T15:04:53.316007Z", - "iopub.status.idle": "2024-01-10T15:04:53.323561Z", - "shell.execute_reply": "2024-01-10T15:04:53.322982Z" + "iopub.execute_input": "2024-01-12T22:26:27.233592Z", + "iopub.status.busy": "2024-01-12T22:26:27.233081Z", + "iopub.status.idle": "2024-01-12T22:26:27.240466Z", + "shell.execute_reply": "2024-01-12T22:26:27.239917Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.325875Z", - "iopub.status.busy": "2024-01-10T15:04:53.325667Z", - "iopub.status.idle": "2024-01-10T15:04:53.340152Z", - "shell.execute_reply": "2024-01-10T15:04:53.339548Z" + "iopub.execute_input": "2024-01-12T22:26:27.242811Z", + "iopub.status.busy": "2024-01-12T22:26:27.242440Z", + "iopub.status.idle": "2024-01-12T22:26:27.256471Z", + "shell.execute_reply": "2024-01-12T22:26:27.255950Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.342762Z", - "iopub.status.busy": "2024-01-10T15:04:53.342417Z", - "iopub.status.idle": "2024-01-10T15:04:53.349564Z", - "shell.execute_reply": "2024-01-10T15:04:53.349025Z" + "iopub.execute_input": "2024-01-12T22:26:27.258897Z", + "iopub.status.busy": "2024-01-12T22:26:27.258476Z", + "iopub.status.idle": "2024-01-12T22:26:27.265267Z", + "shell.execute_reply": "2024-01-12T22:26:27.264774Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.352271Z", - "iopub.status.busy": "2024-01-10T15:04:53.351762Z", - "iopub.status.idle": "2024-01-10T15:04:53.355076Z", - "shell.execute_reply": "2024-01-10T15:04:53.354457Z" + "iopub.execute_input": "2024-01-12T22:26:27.267825Z", + "iopub.status.busy": "2024-01-12T22:26:27.267457Z", + "iopub.status.idle": "2024-01-12T22:26:27.270257Z", + "shell.execute_reply": "2024-01-12T22:26:27.269726Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.357254Z", - "iopub.status.busy": "2024-01-10T15:04:53.357058Z", - "iopub.status.idle": "2024-01-10T15:04:53.361396Z", - "shell.execute_reply": "2024-01-10T15:04:53.360858Z" + "iopub.execute_input": "2024-01-12T22:26:27.272867Z", + "iopub.status.busy": "2024-01-12T22:26:27.272278Z", + "iopub.status.idle": "2024-01-12T22:26:27.276751Z", + "shell.execute_reply": "2024-01-12T22:26:27.276123Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.363765Z", - "iopub.status.busy": "2024-01-10T15:04:53.363566Z", - "iopub.status.idle": "2024-01-10T15:04:53.366344Z", - "shell.execute_reply": "2024-01-10T15:04:53.365793Z" + "iopub.execute_input": "2024-01-12T22:26:27.279202Z", + "iopub.status.busy": "2024-01-12T22:26:27.278738Z", + "iopub.status.idle": "2024-01-12T22:26:27.281708Z", + "shell.execute_reply": "2024-01-12T22:26:27.281065Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.368515Z", - "iopub.status.busy": "2024-01-10T15:04:53.368321Z", - "iopub.status.idle": "2024-01-10T15:04:53.373186Z", - "shell.execute_reply": "2024-01-10T15:04:53.372649Z" + "iopub.execute_input": "2024-01-12T22:26:27.284000Z", + "iopub.status.busy": "2024-01-12T22:26:27.283652Z", + "iopub.status.idle": "2024-01-12T22:26:27.288488Z", + "shell.execute_reply": "2024-01-12T22:26:27.287854Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.375385Z", - "iopub.status.busy": "2024-01-10T15:04:53.375190Z", - "iopub.status.idle": "2024-01-10T15:04:53.408376Z", - "shell.execute_reply": "2024-01-10T15:04:53.407826Z" + "iopub.execute_input": "2024-01-12T22:26:27.290844Z", + "iopub.status.busy": "2024-01-12T22:26:27.290538Z", + "iopub.status.idle": "2024-01-12T22:26:27.324390Z", + "shell.execute_reply": "2024-01-12T22:26:27.323886Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:53.410874Z", - "iopub.status.busy": "2024-01-10T15:04:53.410653Z", - "iopub.status.idle": "2024-01-10T15:04:53.415959Z", - "shell.execute_reply": "2024-01-10T15:04:53.415316Z" + "iopub.execute_input": "2024-01-12T22:26:27.326700Z", + "iopub.status.busy": "2024-01-12T22:26:27.326498Z", + "iopub.status.idle": "2024-01-12T22:26:27.331677Z", + "shell.execute_reply": "2024-01-12T22:26:27.331146Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 883facccf..10c82165d 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:57.995421Z", - "iopub.status.busy": "2024-01-10T15:04:57.994869Z", - "iopub.status.idle": "2024-01-10T15:04:59.063658Z", - "shell.execute_reply": "2024-01-10T15:04:59.063044Z" + "iopub.execute_input": "2024-01-12T22:26:31.996924Z", + "iopub.status.busy": "2024-01-12T22:26:31.996721Z", + "iopub.status.idle": "2024-01-12T22:26:33.108827Z", + "shell.execute_reply": "2024-01-12T22:26:33.108120Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:59.066519Z", - "iopub.status.busy": "2024-01-10T15:04:59.066032Z", - "iopub.status.idle": "2024-01-10T15:04:59.351331Z", - "shell.execute_reply": "2024-01-10T15:04:59.350714Z" + "iopub.execute_input": "2024-01-12T22:26:33.111854Z", + "iopub.status.busy": "2024-01-12T22:26:33.111548Z", + "iopub.status.idle": "2024-01-12T22:26:33.404676Z", + "shell.execute_reply": "2024-01-12T22:26:33.404041Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:59.354669Z", - "iopub.status.busy": "2024-01-10T15:04:59.353939Z", - "iopub.status.idle": "2024-01-10T15:04:59.368315Z", - "shell.execute_reply": "2024-01-10T15:04:59.367767Z" + "iopub.execute_input": "2024-01-12T22:26:33.407588Z", + "iopub.status.busy": "2024-01-12T22:26:33.407343Z", + "iopub.status.idle": "2024-01-12T22:26:33.421536Z", + "shell.execute_reply": "2024-01-12T22:26:33.420990Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:04:59.371031Z", - "iopub.status.busy": "2024-01-10T15:04:59.370527Z", - "iopub.status.idle": "2024-01-10T15:05:02.017065Z", - "shell.execute_reply": "2024-01-10T15:05:02.016392Z" + "iopub.execute_input": "2024-01-12T22:26:33.423834Z", + "iopub.status.busy": "2024-01-12T22:26:33.423621Z", + "iopub.status.idle": "2024-01-12T22:26:36.106536Z", + "shell.execute_reply": "2024-01-12T22:26:36.105816Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:02.019842Z", - "iopub.status.busy": "2024-01-10T15:05:02.019353Z", - "iopub.status.idle": "2024-01-10T15:05:03.569470Z", - "shell.execute_reply": "2024-01-10T15:05:03.568744Z" + "iopub.execute_input": "2024-01-12T22:26:36.109176Z", + "iopub.status.busy": "2024-01-12T22:26:36.108778Z", + "iopub.status.idle": "2024-01-12T22:26:37.681247Z", + "shell.execute_reply": "2024-01-12T22:26:37.680610Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:03.572548Z", - "iopub.status.busy": "2024-01-10T15:05:03.572275Z", - "iopub.status.idle": "2024-01-10T15:05:03.577674Z", - "shell.execute_reply": "2024-01-10T15:05:03.577121Z" + "iopub.execute_input": "2024-01-12T22:26:37.684165Z", + "iopub.status.busy": "2024-01-12T22:26:37.683743Z", + "iopub.status.idle": "2024-01-12T22:26:37.688588Z", + "shell.execute_reply": "2024-01-12T22:26:37.687958Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:03.579952Z", - "iopub.status.busy": "2024-01-10T15:05:03.579756Z", - "iopub.status.idle": "2024-01-10T15:05:04.913128Z", - "shell.execute_reply": "2024-01-10T15:05:04.912391Z" + "iopub.execute_input": "2024-01-12T22:26:37.691096Z", + "iopub.status.busy": "2024-01-12T22:26:37.690562Z", + "iopub.status.idle": "2024-01-12T22:26:39.068124Z", + "shell.execute_reply": "2024-01-12T22:26:39.067441Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:04.916164Z", - "iopub.status.busy": "2024-01-10T15:05:04.915585Z", - "iopub.status.idle": "2024-01-10T15:05:07.716474Z", - "shell.execute_reply": "2024-01-10T15:05:07.715777Z" + "iopub.execute_input": "2024-01-12T22:26:39.071215Z", + "iopub.status.busy": "2024-01-12T22:26:39.070585Z", + "iopub.status.idle": "2024-01-12T22:26:41.908906Z", + "shell.execute_reply": "2024-01-12T22:26:41.908230Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:07.719265Z", - "iopub.status.busy": "2024-01-10T15:05:07.718870Z", - "iopub.status.idle": "2024-01-10T15:05:07.723863Z", - "shell.execute_reply": "2024-01-10T15:05:07.723278Z" + "iopub.execute_input": "2024-01-12T22:26:41.911597Z", + "iopub.status.busy": "2024-01-12T22:26:41.911348Z", + "iopub.status.idle": "2024-01-12T22:26:41.917025Z", + "shell.execute_reply": "2024-01-12T22:26:41.916387Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:07.726393Z", - "iopub.status.busy": "2024-01-10T15:05:07.725965Z", - "iopub.status.idle": "2024-01-10T15:05:07.730416Z", - "shell.execute_reply": "2024-01-10T15:05:07.729818Z" + "iopub.execute_input": "2024-01-12T22:26:41.919637Z", + "iopub.status.busy": "2024-01-12T22:26:41.919186Z", + "iopub.status.idle": "2024-01-12T22:26:41.923358Z", + "shell.execute_reply": "2024-01-12T22:26:41.922749Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:07.733070Z", - "iopub.status.busy": "2024-01-10T15:05:07.732646Z", - "iopub.status.idle": "2024-01-10T15:05:07.736463Z", - "shell.execute_reply": "2024-01-10T15:05:07.735937Z" + "iopub.execute_input": "2024-01-12T22:26:41.925642Z", + "iopub.status.busy": "2024-01-12T22:26:41.925433Z", + "iopub.status.idle": "2024-01-12T22:26:41.928835Z", + "shell.execute_reply": "2024-01-12T22:26:41.928290Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 0edcfe438..bf051b256 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:12.798585Z", - "iopub.status.busy": "2024-01-10T15:05:12.798073Z", - "iopub.status.idle": "2024-01-10T15:05:13.866039Z", - "shell.execute_reply": "2024-01-10T15:05:13.865443Z" + "iopub.execute_input": "2024-01-12T22:26:46.778608Z", + "iopub.status.busy": "2024-01-12T22:26:46.778410Z", + "iopub.status.idle": "2024-01-12T22:26:47.875993Z", + "shell.execute_reply": "2024-01-12T22:26:47.875377Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:13.868940Z", - "iopub.status.busy": "2024-01-10T15:05:13.868454Z", - "iopub.status.idle": "2024-01-10T15:05:14.949563Z", - "shell.execute_reply": "2024-01-10T15:05:14.948721Z" + "iopub.execute_input": "2024-01-12T22:26:47.878803Z", + "iopub.status.busy": "2024-01-12T22:26:47.878528Z", + "iopub.status.idle": "2024-01-12T22:26:50.611927Z", + "shell.execute_reply": "2024-01-12T22:26:50.611077Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:14.952677Z", - "iopub.status.busy": "2024-01-10T15:05:14.952191Z", - "iopub.status.idle": "2024-01-10T15:05:14.955616Z", - "shell.execute_reply": "2024-01-10T15:05:14.955008Z" + "iopub.execute_input": "2024-01-12T22:26:50.615182Z", + "iopub.status.busy": "2024-01-12T22:26:50.614742Z", + "iopub.status.idle": "2024-01-12T22:26:50.618018Z", + "shell.execute_reply": "2024-01-12T22:26:50.617450Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:14.957997Z", - "iopub.status.busy": "2024-01-10T15:05:14.957548Z", - "iopub.status.idle": "2024-01-10T15:05:14.963154Z", - "shell.execute_reply": "2024-01-10T15:05:14.962555Z" + "iopub.execute_input": "2024-01-12T22:26:50.620410Z", + "iopub.status.busy": "2024-01-12T22:26:50.620044Z", + "iopub.status.idle": "2024-01-12T22:26:50.625461Z", + "shell.execute_reply": "2024-01-12T22:26:50.624962Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:14.965462Z", - "iopub.status.busy": "2024-01-10T15:05:14.965123Z", - "iopub.status.idle": "2024-01-10T15:05:15.556137Z", - "shell.execute_reply": "2024-01-10T15:05:15.555454Z" + "iopub.execute_input": "2024-01-12T22:26:50.627792Z", + "iopub.status.busy": "2024-01-12T22:26:50.627426Z", + "iopub.status.idle": "2024-01-12T22:26:51.226513Z", + "shell.execute_reply": "2024-01-12T22:26:51.225806Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:15.558867Z", - "iopub.status.busy": "2024-01-10T15:05:15.558399Z", - "iopub.status.idle": "2024-01-10T15:05:15.564398Z", - "shell.execute_reply": "2024-01-10T15:05:15.563798Z" + "iopub.execute_input": "2024-01-12T22:26:51.229785Z", + "iopub.status.busy": "2024-01-12T22:26:51.229455Z", + "iopub.status.idle": "2024-01-12T22:26:51.235617Z", + "shell.execute_reply": "2024-01-12T22:26:51.235070Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:15.566741Z", - "iopub.status.busy": "2024-01-10T15:05:15.566311Z", - "iopub.status.idle": "2024-01-10T15:05:15.570332Z", - "shell.execute_reply": "2024-01-10T15:05:15.569792Z" + "iopub.execute_input": "2024-01-12T22:26:51.238161Z", + "iopub.status.busy": "2024-01-12T22:26:51.237662Z", + "iopub.status.idle": "2024-01-12T22:26:51.242194Z", + "shell.execute_reply": "2024-01-12T22:26:51.241687Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:15.572792Z", - "iopub.status.busy": "2024-01-10T15:05:15.572353Z", - "iopub.status.idle": "2024-01-10T15:05:16.202060Z", - "shell.execute_reply": "2024-01-10T15:05:16.201337Z" + "iopub.execute_input": "2024-01-12T22:26:51.244736Z", + "iopub.status.busy": "2024-01-12T22:26:51.244401Z", + "iopub.status.idle": "2024-01-12T22:26:51.879645Z", + "shell.execute_reply": "2024-01-12T22:26:51.878886Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:16.204642Z", - "iopub.status.busy": "2024-01-10T15:05:16.204383Z", - "iopub.status.idle": "2024-01-10T15:05:16.306469Z", - "shell.execute_reply": "2024-01-10T15:05:16.305762Z" + "iopub.execute_input": "2024-01-12T22:26:51.882470Z", + "iopub.status.busy": "2024-01-12T22:26:51.882236Z", + "iopub.status.idle": "2024-01-12T22:26:51.983527Z", + "shell.execute_reply": "2024-01-12T22:26:51.982951Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:16.309130Z", - "iopub.status.busy": "2024-01-10T15:05:16.308732Z", - "iopub.status.idle": "2024-01-10T15:05:16.313357Z", - "shell.execute_reply": "2024-01-10T15:05:16.312853Z" + "iopub.execute_input": "2024-01-12T22:26:51.985877Z", + "iopub.status.busy": "2024-01-12T22:26:51.985670Z", + "iopub.status.idle": "2024-01-12T22:26:51.990500Z", + "shell.execute_reply": "2024-01-12T22:26:51.989949Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:16.315806Z", - "iopub.status.busy": "2024-01-10T15:05:16.315435Z", - "iopub.status.idle": "2024-01-10T15:05:16.693878Z", - "shell.execute_reply": "2024-01-10T15:05:16.693255Z" + "iopub.execute_input": "2024-01-12T22:26:51.992690Z", + "iopub.status.busy": "2024-01-12T22:26:51.992492Z", + "iopub.status.idle": "2024-01-12T22:26:52.369737Z", + "shell.execute_reply": "2024-01-12T22:26:52.369052Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:16.696815Z", - "iopub.status.busy": "2024-01-10T15:05:16.696424Z", - "iopub.status.idle": "2024-01-10T15:05:17.035024Z", - "shell.execute_reply": "2024-01-10T15:05:17.034337Z" + "iopub.execute_input": "2024-01-12T22:26:52.373197Z", + "iopub.status.busy": "2024-01-12T22:26:52.372741Z", + "iopub.status.idle": "2024-01-12T22:26:52.710267Z", + "shell.execute_reply": "2024-01-12T22:26:52.709571Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:17.037837Z", - "iopub.status.busy": "2024-01-10T15:05:17.037417Z", - "iopub.status.idle": "2024-01-10T15:05:17.422882Z", - "shell.execute_reply": "2024-01-10T15:05:17.422145Z" + "iopub.execute_input": "2024-01-12T22:26:52.713055Z", + "iopub.status.busy": "2024-01-12T22:26:52.712586Z", + "iopub.status.idle": "2024-01-12T22:26:53.098757Z", + "shell.execute_reply": "2024-01-12T22:26:53.098009Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:17.426253Z", - "iopub.status.busy": "2024-01-10T15:05:17.426038Z", - "iopub.status.idle": "2024-01-10T15:05:17.886876Z", - "shell.execute_reply": "2024-01-10T15:05:17.886152Z" + "iopub.execute_input": "2024-01-12T22:26:53.102518Z", + "iopub.status.busy": "2024-01-12T22:26:53.102059Z", + "iopub.status.idle": "2024-01-12T22:26:53.567899Z", + "shell.execute_reply": "2024-01-12T22:26:53.567190Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:17.891350Z", - "iopub.status.busy": "2024-01-10T15:05:17.890881Z", - "iopub.status.idle": "2024-01-10T15:05:18.343030Z", - "shell.execute_reply": "2024-01-10T15:05:18.342340Z" + "iopub.execute_input": "2024-01-12T22:26:53.572081Z", + "iopub.status.busy": "2024-01-12T22:26:53.571677Z", + "iopub.status.idle": "2024-01-12T22:26:54.020390Z", + "shell.execute_reply": "2024-01-12T22:26:54.019694Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:18.346622Z", - "iopub.status.busy": "2024-01-10T15:05:18.346403Z", - "iopub.status.idle": "2024-01-10T15:05:18.651727Z", - "shell.execute_reply": "2024-01-10T15:05:18.651095Z" + "iopub.execute_input": "2024-01-12T22:26:54.024230Z", + "iopub.status.busy": "2024-01-12T22:26:54.023833Z", + "iopub.status.idle": "2024-01-12T22:26:54.374247Z", + "shell.execute_reply": "2024-01-12T22:26:54.373594Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:18.654753Z", - "iopub.status.busy": "2024-01-10T15:05:18.654541Z", - "iopub.status.idle": "2024-01-10T15:05:18.834710Z", - "shell.execute_reply": "2024-01-10T15:05:18.834079Z" + "iopub.execute_input": "2024-01-12T22:26:54.377322Z", + "iopub.status.busy": "2024-01-12T22:26:54.376919Z", + "iopub.status.idle": "2024-01-12T22:26:54.577187Z", + "shell.execute_reply": "2024-01-12T22:26:54.576461Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:18.837502Z", - "iopub.status.busy": "2024-01-10T15:05:18.837116Z", - "iopub.status.idle": "2024-01-10T15:05:18.840846Z", - "shell.execute_reply": "2024-01-10T15:05:18.840288Z" + "iopub.execute_input": "2024-01-12T22:26:54.580000Z", + "iopub.status.busy": "2024-01-12T22:26:54.579593Z", + "iopub.status.idle": "2024-01-12T22:26:54.583455Z", + "shell.execute_reply": "2024-01-12T22:26:54.582883Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 8d8737607..e2f583e52 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -931,7 +931,7 @@

2. Pre-process the Cifar10 dataset

-
+
@@ -1297,7 +1297,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index b7951f2ed..4752dc194 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:21.209538Z", - "iopub.status.busy": "2024-01-10T15:05:21.209083Z", - "iopub.status.idle": "2024-01-10T15:05:23.168339Z", - "shell.execute_reply": "2024-01-10T15:05:23.167738Z" + "iopub.execute_input": "2024-01-12T22:26:56.972951Z", + "iopub.status.busy": "2024-01-12T22:26:56.972755Z", + "iopub.status.idle": "2024-01-12T22:26:58.956206Z", + "shell.execute_reply": "2024-01-12T22:26:58.955566Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:23.171269Z", - "iopub.status.busy": "2024-01-10T15:05:23.170786Z", - "iopub.status.idle": "2024-01-10T15:05:23.484028Z", - "shell.execute_reply": "2024-01-10T15:05:23.483358Z" + "iopub.execute_input": "2024-01-12T22:26:58.959304Z", + "iopub.status.busy": "2024-01-12T22:26:58.958784Z", + "iopub.status.idle": "2024-01-12T22:26:59.279272Z", + "shell.execute_reply": "2024-01-12T22:26:59.278641Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:23.486930Z", - "iopub.status.busy": "2024-01-10T15:05:23.486490Z", - "iopub.status.idle": "2024-01-10T15:05:23.490918Z", - "shell.execute_reply": "2024-01-10T15:05:23.490318Z" + "iopub.execute_input": "2024-01-12T22:26:59.282202Z", + "iopub.status.busy": "2024-01-12T22:26:59.281857Z", + "iopub.status.idle": "2024-01-12T22:26:59.286175Z", + "shell.execute_reply": "2024-01-12T22:26:59.285672Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:23.493502Z", - "iopub.status.busy": "2024-01-10T15:05:23.493138Z", - "iopub.status.idle": "2024-01-10T15:05:28.442075Z", - "shell.execute_reply": "2024-01-10T15:05:28.441402Z" + "iopub.execute_input": "2024-01-12T22:26:59.288725Z", + "iopub.status.busy": "2024-01-12T22:26:59.288278Z", + "iopub.status.idle": "2024-01-12T22:27:06.824546Z", + "shell.execute_reply": "2024-01-12T22:27:06.823834Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "12b5dc69acf9453bb2a2322dbaea9e6c", + "model_id": "f44a46f0f8e241259b2a8e67ee76270a", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:28.444744Z", - "iopub.status.busy": "2024-01-10T15:05:28.444438Z", - "iopub.status.idle": "2024-01-10T15:05:28.449732Z", - "shell.execute_reply": "2024-01-10T15:05:28.449104Z" + "iopub.execute_input": "2024-01-12T22:27:06.827255Z", + "iopub.status.busy": "2024-01-12T22:27:06.826992Z", + "iopub.status.idle": "2024-01-12T22:27:06.832365Z", + "shell.execute_reply": "2024-01-12T22:27:06.831726Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:28.451896Z", - "iopub.status.busy": "2024-01-10T15:05:28.451699Z", - "iopub.status.idle": "2024-01-10T15:05:28.992331Z", - "shell.execute_reply": "2024-01-10T15:05:28.991675Z" + "iopub.execute_input": "2024-01-12T22:27:06.834708Z", + "iopub.status.busy": "2024-01-12T22:27:06.834339Z", + "iopub.status.idle": "2024-01-12T22:27:07.387420Z", + "shell.execute_reply": "2024-01-12T22:27:07.386752Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:28.994883Z", - "iopub.status.busy": "2024-01-10T15:05:28.994563Z", - "iopub.status.idle": "2024-01-10T15:05:29.632591Z", - "shell.execute_reply": "2024-01-10T15:05:29.631923Z" + "iopub.execute_input": "2024-01-12T22:27:07.389983Z", + "iopub.status.busy": "2024-01-12T22:27:07.389612Z", + "iopub.status.idle": "2024-01-12T22:27:08.043781Z", + "shell.execute_reply": "2024-01-12T22:27:08.043128Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:29.635020Z", - "iopub.status.busy": "2024-01-10T15:05:29.634812Z", - "iopub.status.idle": "2024-01-10T15:05:29.638498Z", - "shell.execute_reply": "2024-01-10T15:05:29.637971Z" + "iopub.execute_input": "2024-01-12T22:27:08.046496Z", + "iopub.status.busy": "2024-01-12T22:27:08.046114Z", + "iopub.status.idle": "2024-01-12T22:27:08.049863Z", + "shell.execute_reply": "2024-01-12T22:27:08.049243Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:29.640771Z", - "iopub.status.busy": "2024-01-10T15:05:29.640568Z", - "iopub.status.idle": "2024-01-10T15:05:41.708773Z", - "shell.execute_reply": "2024-01-10T15:05:41.708043Z" + "iopub.execute_input": "2024-01-12T22:27:08.052090Z", + "iopub.status.busy": "2024-01-12T22:27:08.051882Z", + "iopub.status.idle": "2024-01-12T22:27:21.017754Z", + "shell.execute_reply": "2024-01-12T22:27:21.017025Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:41.711626Z", - "iopub.status.busy": "2024-01-10T15:05:41.711383Z", - "iopub.status.idle": "2024-01-10T15:05:43.253756Z", - "shell.execute_reply": "2024-01-10T15:05:43.253067Z" + "iopub.execute_input": "2024-01-12T22:27:21.020804Z", + "iopub.status.busy": "2024-01-12T22:27:21.020354Z", + "iopub.status.idle": "2024-01-12T22:27:22.620563Z", + "shell.execute_reply": "2024-01-12T22:27:22.619803Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:43.256773Z", - "iopub.status.busy": "2024-01-10T15:05:43.256277Z", - "iopub.status.idle": "2024-01-10T15:05:43.490070Z", - "shell.execute_reply": "2024-01-10T15:05:43.489306Z" + "iopub.execute_input": "2024-01-12T22:27:22.623961Z", + "iopub.status.busy": "2024-01-12T22:27:22.623633Z", + "iopub.status.idle": "2024-01-12T22:27:22.887748Z", + "shell.execute_reply": "2024-01-12T22:27:22.887028Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:43.492964Z", - "iopub.status.busy": "2024-01-10T15:05:43.492754Z", - "iopub.status.idle": "2024-01-10T15:05:44.153715Z", - "shell.execute_reply": "2024-01-10T15:05:44.153035Z" + "iopub.execute_input": "2024-01-12T22:27:22.890757Z", + "iopub.status.busy": "2024-01-12T22:27:22.890452Z", + "iopub.status.idle": "2024-01-12T22:27:23.551935Z", + "shell.execute_reply": "2024-01-12T22:27:23.551187Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:44.156860Z", - "iopub.status.busy": "2024-01-10T15:05:44.156265Z", - "iopub.status.idle": "2024-01-10T15:05:44.600989Z", - "shell.execute_reply": "2024-01-10T15:05:44.600344Z" + "iopub.execute_input": "2024-01-12T22:27:23.554791Z", + "iopub.status.busy": "2024-01-12T22:27:23.554577Z", + "iopub.status.idle": "2024-01-12T22:27:24.026139Z", + "shell.execute_reply": "2024-01-12T22:27:24.025445Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:44.603532Z", - "iopub.status.busy": "2024-01-10T15:05:44.603285Z", - "iopub.status.idle": "2024-01-10T15:05:44.834017Z", - "shell.execute_reply": "2024-01-10T15:05:44.833363Z" + "iopub.execute_input": "2024-01-12T22:27:24.028903Z", + "iopub.status.busy": "2024-01-12T22:27:24.028501Z", + "iopub.status.idle": "2024-01-12T22:27:24.264660Z", + "shell.execute_reply": "2024-01-12T22:27:24.263863Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:44.836783Z", - "iopub.status.busy": "2024-01-10T15:05:44.836577Z", - "iopub.status.idle": "2024-01-10T15:05:44.906830Z", - "shell.execute_reply": "2024-01-10T15:05:44.906100Z" + "iopub.execute_input": "2024-01-12T22:27:24.267825Z", + "iopub.status.busy": "2024-01-12T22:27:24.267457Z", + "iopub.status.idle": "2024-01-12T22:27:24.344252Z", + "shell.execute_reply": "2024-01-12T22:27:24.343524Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:05:44.909479Z", - "iopub.status.busy": "2024-01-10T15:05:44.909272Z", - "iopub.status.idle": "2024-01-10T15:06:22.582521Z", - "shell.execute_reply": "2024-01-10T15:06:22.581741Z" + "iopub.execute_input": "2024-01-12T22:27:24.347320Z", + "iopub.status.busy": "2024-01-12T22:27:24.346843Z", + "iopub.status.idle": "2024-01-12T22:28:03.270541Z", + "shell.execute_reply": "2024-01-12T22:28:03.269821Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:22.585549Z", - "iopub.status.busy": "2024-01-10T15:06:22.585031Z", - "iopub.status.idle": "2024-01-10T15:06:23.781983Z", - "shell.execute_reply": "2024-01-10T15:06:23.781235Z" + "iopub.execute_input": "2024-01-12T22:28:03.273332Z", + "iopub.status.busy": "2024-01-12T22:28:03.272988Z", + "iopub.status.idle": "2024-01-12T22:28:04.486448Z", + "shell.execute_reply": "2024-01-12T22:28:04.485753Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:23.785275Z", - "iopub.status.busy": "2024-01-10T15:06:23.784715Z", - "iopub.status.idle": "2024-01-10T15:06:23.971240Z", - "shell.execute_reply": "2024-01-10T15:06:23.970521Z" + "iopub.execute_input": "2024-01-12T22:28:04.489816Z", + "iopub.status.busy": "2024-01-12T22:28:04.489094Z", + "iopub.status.idle": "2024-01-12T22:28:04.685781Z", + "shell.execute_reply": "2024-01-12T22:28:04.685155Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:23.974385Z", - "iopub.status.busy": "2024-01-10T15:06:23.973877Z", - "iopub.status.idle": "2024-01-10T15:06:23.977333Z", - "shell.execute_reply": "2024-01-10T15:06:23.976741Z" + "iopub.execute_input": "2024-01-12T22:28:04.688646Z", + "iopub.status.busy": "2024-01-12T22:28:04.688391Z", + "iopub.status.idle": "2024-01-12T22:28:04.691771Z", + "shell.execute_reply": "2024-01-12T22:28:04.691272Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:23.980026Z", - "iopub.status.busy": "2024-01-10T15:06:23.979554Z", - "iopub.status.idle": "2024-01-10T15:06:23.988254Z", - "shell.execute_reply": "2024-01-10T15:06:23.987626Z" + "iopub.execute_input": "2024-01-12T22:28:04.693983Z", + "iopub.status.busy": "2024-01-12T22:28:04.693781Z", + "iopub.status.idle": "2024-01-12T22:28:04.702594Z", + "shell.execute_reply": "2024-01-12T22:28:04.702066Z" }, "nbsphinx": "hidden" }, @@ -1017,29 +1017,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "12b5dc69acf9453bb2a2322dbaea9e6c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_63007a6fc93b49709da9d544e853c969", - "IPY_MODEL_d7964db947004dd4847db06986c2782f", - "IPY_MODEL_7c7aa399fdf6477b9c5cd4ed997af3de" - ], - "layout": "IPY_MODEL_4c40bcb3b3dc4ef3b2ae47f5a41e9edb" - } - }, - "3c990076fa7e41c9b75fb0558cd2796a": { + "38025219d69b488f91347198f4ee1f67": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1091,7 +1069,7 @@ "width": null } }, - "4c40bcb3b3dc4ef3b2ae47f5a41e9edb": { + "460e005343e7486db613c428567f8c9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1143,7 +1121,7 @@ "width": null } }, - "57ce946020574bf0a08e97d7b957ddcc": { + "4eedab35b30847afaaf5f23b53750787": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1158,28 +1136,7 @@ "description_width": "" } }, - "63007a6fc93b49709da9d544e853c969": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_74345e7936394989952187bbc936b1ea", - "placeholder": "​", - "style": "IPY_MODEL_57ce946020574bf0a08e97d7b957ddcc", - "value": "100%" - } - }, - "74345e7936394989952187bbc936b1ea": { + "521a5b9435ae494b9b5c3e24a2081c0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1231,7 +1188,7 @@ "width": null } }, - "7c7aa399fdf6477b9c5cd4ed997af3de": { + "83d5c84e76204ba7b06d4ddf3ac499c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1246,13 +1203,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_80ec456e29c04104985c3f1eb9345bbb", + "layout": "IPY_MODEL_521a5b9435ae494b9b5c3e24a2081c0c", "placeholder": "​", - "style": "IPY_MODEL_c5920de7f42947c2b7985c7a2976cf6d", - "value": " 170498071/170498071 [00:02<00:00, 77009113.30it/s]" + "style": "IPY_MODEL_d369346fdf8746a9bb477623d89a5c87", + "value": " 170498071/170498071 [00:04<00:00, 43769849.67it/s]" } }, - "80ec456e29c04104985c3f1eb9345bbb": { + "b92c4f861cf44068b0a7c4b18ceabf90": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1304,23 +1261,31 @@ "width": null } }, - "acf564a6e0f34550a5d77cb082e2e4a5": { + "d22342034888404da26944061756f6a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_460e005343e7486db613c428567f8c9b", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f78504894ce34f438eb4430af53237f7", + "value": 170498071.0 } }, - "c5920de7f42947c2b7985c7a2976cf6d": { + "d369346fdf8746a9bb477623d89a5c87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1335,28 +1300,63 @@ "description_width": "" } }, - "d7964db947004dd4847db06986c2782f": { + "de365542f4504bdba041f5aa1805e62a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3c990076fa7e41c9b75fb0558cd2796a", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_acf564a6e0f34550a5d77cb082e2e4a5", - "value": 170498071.0 + "layout": "IPY_MODEL_b92c4f861cf44068b0a7c4b18ceabf90", + "placeholder": "​", + "style": "IPY_MODEL_4eedab35b30847afaaf5f23b53750787", + "value": "100%" + } + }, + "f44a46f0f8e241259b2a8e67ee76270a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_de365542f4504bdba041f5aa1805e62a", + "IPY_MODEL_d22342034888404da26944061756f6a6", + "IPY_MODEL_83d5c84e76204ba7b06d4ddf3ac499c2" + ], + "layout": "IPY_MODEL_38025219d69b488f91347198f4ee1f67" + } + }, + "f78504894ce34f438eb4430af53237f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 4a2dadcf3..177f8eeb8 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:29.103769Z", - "iopub.status.busy": "2024-01-10T15:06:29.103575Z", - "iopub.status.idle": "2024-01-10T15:06:30.201917Z", - "shell.execute_reply": "2024-01-10T15:06:30.201295Z" + "iopub.execute_input": "2024-01-12T22:28:09.858968Z", + "iopub.status.busy": "2024-01-12T22:28:09.858768Z", + "iopub.status.idle": "2024-01-12T22:28:10.960793Z", + "shell.execute_reply": "2024-01-12T22:28:10.960172Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.204907Z", - "iopub.status.busy": "2024-01-10T15:06:30.204366Z", - "iopub.status.idle": "2024-01-10T15:06:30.220770Z", - "shell.execute_reply": "2024-01-10T15:06:30.220132Z" + "iopub.execute_input": "2024-01-12T22:28:10.964159Z", + "iopub.status.busy": "2024-01-12T22:28:10.963485Z", + "iopub.status.idle": "2024-01-12T22:28:10.979451Z", + "shell.execute_reply": "2024-01-12T22:28:10.978955Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.223523Z", - "iopub.status.busy": "2024-01-10T15:06:30.223104Z", - "iopub.status.idle": "2024-01-10T15:06:30.226245Z", - "shell.execute_reply": "2024-01-10T15:06:30.225690Z" + "iopub.execute_input": "2024-01-12T22:28:10.981840Z", + "iopub.status.busy": "2024-01-12T22:28:10.981470Z", + "iopub.status.idle": "2024-01-12T22:28:10.984692Z", + "shell.execute_reply": "2024-01-12T22:28:10.984070Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.228543Z", - "iopub.status.busy": "2024-01-10T15:06:30.228257Z", - "iopub.status.idle": "2024-01-10T15:06:30.317626Z", - "shell.execute_reply": "2024-01-10T15:06:30.316982Z" + "iopub.execute_input": "2024-01-12T22:28:10.987075Z", + "iopub.status.busy": "2024-01-12T22:28:10.986718Z", + "iopub.status.idle": "2024-01-12T22:28:11.195828Z", + "shell.execute_reply": "2024-01-12T22:28:11.195165Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.320512Z", - "iopub.status.busy": "2024-01-10T15:06:30.319930Z", - "iopub.status.idle": "2024-01-10T15:06:30.587833Z", - "shell.execute_reply": "2024-01-10T15:06:30.587097Z" + "iopub.execute_input": "2024-01-12T22:28:11.198504Z", + "iopub.status.busy": "2024-01-12T22:28:11.198111Z", + "iopub.status.idle": "2024-01-12T22:28:11.480862Z", + "shell.execute_reply": "2024-01-12T22:28:11.480233Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.590520Z", - "iopub.status.busy": "2024-01-10T15:06:30.590253Z", - "iopub.status.idle": "2024-01-10T15:06:30.846918Z", - "shell.execute_reply": "2024-01-10T15:06:30.846204Z" + "iopub.execute_input": "2024-01-12T22:28:11.484003Z", + "iopub.status.busy": "2024-01-12T22:28:11.483611Z", + "iopub.status.idle": "2024-01-12T22:28:11.703988Z", + "shell.execute_reply": "2024-01-12T22:28:11.703284Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.849576Z", - "iopub.status.busy": "2024-01-10T15:06:30.849180Z", - "iopub.status.idle": "2024-01-10T15:06:30.854014Z", - "shell.execute_reply": "2024-01-10T15:06:30.853474Z" + "iopub.execute_input": "2024-01-12T22:28:11.706546Z", + "iopub.status.busy": "2024-01-12T22:28:11.706141Z", + "iopub.status.idle": "2024-01-12T22:28:11.710966Z", + "shell.execute_reply": "2024-01-12T22:28:11.710442Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.856453Z", - "iopub.status.busy": "2024-01-10T15:06:30.856086Z", - "iopub.status.idle": "2024-01-10T15:06:30.862321Z", - "shell.execute_reply": "2024-01-10T15:06:30.861851Z" + "iopub.execute_input": "2024-01-12T22:28:11.713410Z", + "iopub.status.busy": "2024-01-12T22:28:11.713012Z", + "iopub.status.idle": "2024-01-12T22:28:11.719438Z", + "shell.execute_reply": "2024-01-12T22:28:11.718843Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.864795Z", - "iopub.status.busy": "2024-01-10T15:06:30.864430Z", - "iopub.status.idle": "2024-01-10T15:06:30.867161Z", - "shell.execute_reply": "2024-01-10T15:06:30.866611Z" + "iopub.execute_input": "2024-01-12T22:28:11.722129Z", + "iopub.status.busy": "2024-01-12T22:28:11.721760Z", + "iopub.status.idle": "2024-01-12T22:28:11.724699Z", + "shell.execute_reply": "2024-01-12T22:28:11.724084Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:30.869425Z", - "iopub.status.busy": "2024-01-10T15:06:30.869055Z", - "iopub.status.idle": "2024-01-10T15:06:41.017037Z", - "shell.execute_reply": "2024-01-10T15:06:41.016307Z" + "iopub.execute_input": "2024-01-12T22:28:11.727294Z", + "iopub.status.busy": "2024-01-12T22:28:11.726782Z", + "iopub.status.idle": "2024-01-12T22:28:21.986297Z", + "shell.execute_reply": "2024-01-12T22:28:21.985579Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.020063Z", - "iopub.status.busy": "2024-01-10T15:06:41.019675Z", - "iopub.status.idle": "2024-01-10T15:06:41.027115Z", - "shell.execute_reply": "2024-01-10T15:06:41.026544Z" + "iopub.execute_input": "2024-01-12T22:28:21.989713Z", + "iopub.status.busy": "2024-01-12T22:28:21.989120Z", + "iopub.status.idle": "2024-01-12T22:28:21.996915Z", + "shell.execute_reply": "2024-01-12T22:28:21.996276Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.029405Z", - "iopub.status.busy": "2024-01-10T15:06:41.029205Z", - "iopub.status.idle": "2024-01-10T15:06:41.033215Z", - "shell.execute_reply": "2024-01-10T15:06:41.032594Z" + "iopub.execute_input": "2024-01-12T22:28:21.999469Z", + "iopub.status.busy": "2024-01-12T22:28:21.999247Z", + "iopub.status.idle": "2024-01-12T22:28:22.003498Z", + "shell.execute_reply": "2024-01-12T22:28:22.002950Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.035823Z", - "iopub.status.busy": "2024-01-10T15:06:41.035383Z", - "iopub.status.idle": "2024-01-10T15:06:41.039101Z", - "shell.execute_reply": "2024-01-10T15:06:41.038455Z" + "iopub.execute_input": "2024-01-12T22:28:22.005720Z", + "iopub.status.busy": "2024-01-12T22:28:22.005516Z", + "iopub.status.idle": "2024-01-12T22:28:22.009682Z", + "shell.execute_reply": "2024-01-12T22:28:22.009132Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.041445Z", - "iopub.status.busy": "2024-01-10T15:06:41.041078Z", - "iopub.status.idle": "2024-01-10T15:06:41.044279Z", - "shell.execute_reply": "2024-01-10T15:06:41.043724Z" + "iopub.execute_input": "2024-01-12T22:28:22.012135Z", + "iopub.status.busy": "2024-01-12T22:28:22.011931Z", + "iopub.status.idle": "2024-01-12T22:28:22.015285Z", + "shell.execute_reply": "2024-01-12T22:28:22.014700Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.046671Z", - "iopub.status.busy": "2024-01-10T15:06:41.046309Z", - "iopub.status.idle": "2024-01-10T15:06:41.054894Z", - "shell.execute_reply": "2024-01-10T15:06:41.054326Z" + "iopub.execute_input": "2024-01-12T22:28:22.017435Z", + "iopub.status.busy": "2024-01-12T22:28:22.017234Z", + "iopub.status.idle": "2024-01-12T22:28:22.026819Z", + "shell.execute_reply": "2024-01-12T22:28:22.026260Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.057327Z", - "iopub.status.busy": "2024-01-10T15:06:41.056960Z", - "iopub.status.idle": "2024-01-10T15:06:41.205394Z", - "shell.execute_reply": "2024-01-10T15:06:41.204692Z" + "iopub.execute_input": "2024-01-12T22:28:22.029276Z", + "iopub.status.busy": "2024-01-12T22:28:22.028911Z", + "iopub.status.idle": "2024-01-12T22:28:22.181214Z", + "shell.execute_reply": "2024-01-12T22:28:22.180517Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.208175Z", - "iopub.status.busy": "2024-01-10T15:06:41.207750Z", - "iopub.status.idle": "2024-01-10T15:06:41.341273Z", - "shell.execute_reply": "2024-01-10T15:06:41.340668Z" + "iopub.execute_input": "2024-01-12T22:28:22.184239Z", + "iopub.status.busy": "2024-01-12T22:28:22.183688Z", + "iopub.status.idle": "2024-01-12T22:28:22.316301Z", + "shell.execute_reply": "2024-01-12T22:28:22.315546Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.344029Z", - "iopub.status.busy": "2024-01-10T15:06:41.343669Z", - "iopub.status.idle": "2024-01-10T15:06:41.924486Z", - "shell.execute_reply": "2024-01-10T15:06:41.923868Z" + "iopub.execute_input": "2024-01-12T22:28:22.319353Z", + "iopub.status.busy": "2024-01-12T22:28:22.318878Z", + "iopub.status.idle": "2024-01-12T22:28:22.918408Z", + "shell.execute_reply": "2024-01-12T22:28:22.917749Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:41.927461Z", - "iopub.status.busy": "2024-01-10T15:06:41.927030Z", - "iopub.status.idle": "2024-01-10T15:06:42.019961Z", - "shell.execute_reply": "2024-01-10T15:06:42.019298Z" + "iopub.execute_input": "2024-01-12T22:28:22.921720Z", + "iopub.status.busy": "2024-01-12T22:28:22.921236Z", + "iopub.status.idle": "2024-01-12T22:28:23.017364Z", + "shell.execute_reply": "2024-01-12T22:28:23.016704Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:42.023210Z", - "iopub.status.busy": "2024-01-10T15:06:42.022968Z", - "iopub.status.idle": "2024-01-10T15:06:42.033293Z", - "shell.execute_reply": "2024-01-10T15:06:42.032670Z" + "iopub.execute_input": "2024-01-12T22:28:23.020510Z", + "iopub.status.busy": "2024-01-12T22:28:23.020022Z", + "iopub.status.idle": "2024-01-12T22:28:23.030227Z", + "shell.execute_reply": "2024-01-12T22:28:23.029702Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 14ba5b417..6121047c8 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -960,13 +960,13 @@

3. Use cleanlab to find label issues

-
+
-
+
-
0%| | 17030/4997817 [00:00&lt;00:29, 170283.11it/s]
+
0%| | 16189/4997817 [00:00&lt;00:30, 161877.03it/s]

</pre>

-
0%| | 17030/4997817 [00:00<00:29, 170283.11it/s]
+
0%| | 16189/4997817 [00:00<00:30, 161877.03it/s]

end{sphinxVerbatim}

-

0%| | 17030/4997817 [00:00<00:29, 170283.11it/s]

+

0%| | 16189/4997817 [00:00<00:30, 161877.03it/s]

-
1%| | 34264/4997817 [00:00&lt;00:28, 171485.88it/s]
+
1%| | 33029/4997817 [00:00&lt;00:29, 165708.23it/s]

</pre>

-
1%| | 34264/4997817 [00:00<00:28, 171485.88it/s]
+
1%| | 33029/4997817 [00:00<00:29, 165708.23it/s]

end{sphinxVerbatim}

-

1%| | 34264/4997817 [00:00<00:28, 171485.88it/s]

+

1%| | 33029/4997817 [00:00<00:29, 165708.23it/s]

-
1%| | 51459/4997817 [00:00&lt;00:28, 171690.77it/s]
+
1%| | 49888/4997817 [00:00&lt;00:29, 167015.95it/s]

</pre>

-
1%| | 51459/4997817 [00:00<00:28, 171690.77it/s]
+
1%| | 49888/4997817 [00:00<00:29, 167015.95it/s]

end{sphinxVerbatim}

-

1%| | 51459/4997817 [00:00<00:28, 171690.77it/s]

+

1%| | 49888/4997817 [00:00<00:29, 167015.95it/s]

-
1%|▏ | 68798/4997817 [00:00&lt;00:28, 172355.31it/s]
+
1%|▏ | 66952/4997817 [00:00&lt;00:29, 168441.28it/s]

</pre>

-
1%|▏ | 68798/4997817 [00:00<00:28, 172355.31it/s]
+
1%|▏ | 66952/4997817 [00:00<00:29, 168441.28it/s]

end{sphinxVerbatim}

-

1%|▏ | 68798/4997817 [00:00<00:28, 172355.31it/s]

+

1%|▏ | 66952/4997817 [00:00<00:29, 168441.28it/s]

-
2%|▏ | 86035/4997817 [00:00&lt;00:28, 172354.29it/s]
+
2%|▏ | 83891/4997817 [00:00&lt;00:29, 168780.39it/s]

</pre>

-
2%|▏ | 86035/4997817 [00:00<00:28, 172354.29it/s]
+
2%|▏ | 83891/4997817 [00:00<00:29, 168780.39it/s]

end{sphinxVerbatim}

-

2%|▏ | 86035/4997817 [00:00<00:28, 172354.29it/s]

+

2%|▏ | 83891/4997817 [00:00<00:29, 168780.39it/s]

-
2%|▏ | 103290/4997817 [00:00&lt;00:28, 172417.11it/s]
+
2%|▏ | 100770/4997817 [00:00&lt;00:29, 168702.89it/s]

</pre>

-
2%|▏ | 103290/4997817 [00:00<00:28, 172417.11it/s]
+
2%|▏ | 100770/4997817 [00:00<00:29, 168702.89it/s]

end{sphinxVerbatim}

-

2%|▏ | 103290/4997817 [00:00<00:28, 172417.11it/s]

+

2%|▏ | 100770/4997817 [00:00<00:29, 168702.89it/s]

-
2%|▏ | 120703/4997817 [00:00&lt;00:28, 172972.80it/s]
+
2%|▏ | 118039/4997817 [00:00&lt;00:28, 170001.33it/s]

</pre>

-
2%|▏ | 120703/4997817 [00:00<00:28, 172972.80it/s]
+
2%|▏ | 118039/4997817 [00:00<00:28, 170001.33it/s]

end{sphinxVerbatim}

-

2%|▏ | 120703/4997817 [00:00<00:28, 172972.80it/s]

+

2%|▏ | 118039/4997817 [00:00<00:28, 170001.33it/s]

-
3%|▎ | 138001/4997817 [00:00&lt;00:28, 172728.16it/s]
+
3%|▎ | 135252/4997817 [00:00&lt;00:28, 170676.15it/s]

</pre>

-
3%|▎ | 138001/4997817 [00:00<00:28, 172728.16it/s]
+
3%|▎ | 135252/4997817 [00:00<00:28, 170676.15it/s]

end{sphinxVerbatim}

-

3%|▎ | 138001/4997817 [00:00<00:28, 172728.16it/s]

+

3%|▎ | 135252/4997817 [00:00<00:28, 170676.15it/s]

-
3%|▎ | 155274/4997817 [00:00&lt;00:28, 172330.12it/s]
+
3%|▎ | 152439/4997817 [00:00&lt;00:28, 171045.14it/s]

</pre>

-
3%|▎ | 155274/4997817 [00:00<00:28, 172330.12it/s]
+
3%|▎ | 152439/4997817 [00:00<00:28, 171045.14it/s]

end{sphinxVerbatim}

-

3%|▎ | 155274/4997817 [00:00<00:28, 172330.12it/s]

+

3%|▎ | 152439/4997817 [00:00<00:28, 171045.14it/s]

-
3%|▎ | 172583/4997817 [00:01&lt;00:27, 172560.55it/s]
+
3%|▎ | 169622/4997817 [00:01&lt;00:28, 171284.43it/s]

</pre>

-
3%|▎ | 172583/4997817 [00:01<00:27, 172560.55it/s]
+
3%|▎ | 169622/4997817 [00:01<00:28, 171284.43it/s]

end{sphinxVerbatim}

-

3%|▎ | 172583/4997817 [00:01<00:27, 172560.55it/s]

+

3%|▎ | 169622/4997817 [00:01<00:28, 171284.43it/s]

-
4%|▍ | 189950/4997817 [00:01&lt;00:27, 172896.33it/s]
+
4%|▎ | 186846/4997817 [00:01&lt;00:28, 171573.65it/s]

</pre>

-
4%|▍ | 189950/4997817 [00:01<00:27, 172896.33it/s]
+
4%|▎ | 186846/4997817 [00:01<00:28, 171573.65it/s]

end{sphinxVerbatim}

-

4%|▍ | 189950/4997817 [00:01<00:27, 172896.33it/s]

+

4%|▎ | 186846/4997817 [00:01<00:28, 171573.65it/s]

-
4%|▍ | 207377/4997817 [00:01&lt;00:27, 173308.14it/s]
+
4%|▍ | 204004/4997817 [00:01&lt;00:27, 171428.93it/s]

</pre>

-
4%|▍ | 207377/4997817 [00:01<00:27, 173308.14it/s]
+
4%|▍ | 204004/4997817 [00:01<00:27, 171428.93it/s]

end{sphinxVerbatim}

-

4%|▍ | 207377/4997817 [00:01<00:27, 173308.14it/s]

+

4%|▍ | 204004/4997817 [00:01<00:27, 171428.93it/s]

-
4%|▍ | 224727/4997817 [00:01&lt;00:27, 173361.26it/s]
+
4%|▍ | 221325/4997817 [00:01&lt;00:27, 171964.32it/s]

</pre>

-
4%|▍ | 224727/4997817 [00:01<00:27, 173361.26it/s]
+
4%|▍ | 221325/4997817 [00:01<00:27, 171964.32it/s]

end{sphinxVerbatim}

-

4%|▍ | 224727/4997817 [00:01<00:27, 173361.26it/s]

+

4%|▍ | 221325/4997817 [00:01<00:27, 171964.32it/s]

-
5%|▍ | 242162/4997817 [00:01&lt;00:27, 173656.66it/s]
+
5%|▍ | 238636/4997817 [00:01&lt;00:27, 172304.18it/s]

</pre>

-
5%|▍ | 242162/4997817 [00:01<00:27, 173656.66it/s]
+
5%|▍ | 238636/4997817 [00:01<00:27, 172304.18it/s]

end{sphinxVerbatim}

-

5%|▍ | 242162/4997817 [00:01<00:27, 173656.66it/s]

+

5%|▍ | 238636/4997817 [00:01<00:27, 172304.18it/s]

-
5%|▌ | 259598/4997817 [00:01&lt;00:27, 173865.50it/s]
+
5%|▌ | 255867/4997817 [00:01&lt;00:27, 172233.47it/s]

</pre>

-
5%|▌ | 259598/4997817 [00:01<00:27, 173865.50it/s]
+
5%|▌ | 255867/4997817 [00:01<00:27, 172233.47it/s]

end{sphinxVerbatim}

-

5%|▌ | 259598/4997817 [00:01<00:27, 173865.50it/s]

+

5%|▌ | 255867/4997817 [00:01<00:27, 172233.47it/s]

-
6%|▌ | 277065/4997817 [00:01&lt;00:27, 174102.51it/s]
+
5%|▌ | 273426/4997817 [00:01&lt;00:27, 173240.31it/s]

</pre>

-
6%|▌ | 277065/4997817 [00:01<00:27, 174102.51it/s]
+
5%|▌ | 273426/4997817 [00:01<00:27, 173240.31it/s]

end{sphinxVerbatim}

-

6%|▌ | 277065/4997817 [00:01<00:27, 174102.51it/s]

+

5%|▌ | 273426/4997817 [00:01<00:27, 173240.31it/s]

-
6%|▌ | 294502/4997817 [00:01&lt;00:27, 174179.23it/s]
+
6%|▌ | 291001/4997817 [00:01&lt;00:27, 173991.36it/s]

</pre>

-
6%|▌ | 294502/4997817 [00:01<00:27, 174179.23it/s]
+
6%|▌ | 291001/4997817 [00:01<00:27, 173991.36it/s]

end{sphinxVerbatim}

-

6%|▌ | 294502/4997817 [00:01<00:27, 174179.23it/s]

+

6%|▌ | 291001/4997817 [00:01<00:27, 173991.36it/s]

-
6%|▌ | 311920/4997817 [00:01&lt;00:27, 173530.42it/s]
+
6%|▌ | 308542/4997817 [00:01&lt;00:26, 174415.45it/s]

</pre>

-
6%|▌ | 311920/4997817 [00:01<00:27, 173530.42it/s]
+
6%|▌ | 308542/4997817 [00:01<00:26, 174415.45it/s]

end{sphinxVerbatim}

-

6%|▌ | 311920/4997817 [00:01<00:27, 173530.42it/s]

+

6%|▌ | 308542/4997817 [00:01<00:26, 174415.45it/s]

-
7%|▋ | 329316/4997817 [00:01&lt;00:26, 173655.30it/s]
+
7%|▋ | 326045/4997817 [00:01&lt;00:26, 174596.79it/s]

</pre>

-
7%|▋ | 329316/4997817 [00:01<00:26, 173655.30it/s]
+
7%|▋ | 326045/4997817 [00:01<00:26, 174596.79it/s]

end{sphinxVerbatim}

-

7%|▋ | 329316/4997817 [00:01<00:26, 173655.30it/s]

+

7%|▋ | 326045/4997817 [00:01<00:26, 174596.79it/s]

-
7%|▋ | 346687/4997817 [00:02&lt;00:26, 173667.15it/s]
+
7%|▋ | 343576/4997817 [00:02&lt;00:26, 174806.93it/s]

</pre>

-
7%|▋ | 346687/4997817 [00:02<00:26, 173667.15it/s]
+
7%|▋ | 343576/4997817 [00:02<00:26, 174806.93it/s]

end{sphinxVerbatim}

-

7%|▋ | 346687/4997817 [00:02<00:26, 173667.15it/s]

+

7%|▋ | 343576/4997817 [00:02<00:26, 174806.93it/s]

-
7%|▋ | 364055/4997817 [00:02&lt;00:26, 173627.62it/s]
+
7%|▋ | 361057/4997817 [00:02&lt;00:26, 174198.36it/s]

</pre>

-
7%|▋ | 364055/4997817 [00:02<00:26, 173627.62it/s]
+
7%|▋ | 361057/4997817 [00:02<00:26, 174198.36it/s]

end{sphinxVerbatim}

-

7%|▋ | 364055/4997817 [00:02<00:26, 173627.62it/s]

+

7%|▋ | 361057/4997817 [00:02<00:26, 174198.36it/s]

-
8%|▊ | 381423/4997817 [00:02&lt;00:26, 173638.78it/s]
+
8%|▊ | 378495/4997817 [00:02&lt;00:26, 174250.05it/s]

</pre>

-
8%|▊ | 381423/4997817 [00:02<00:26, 173638.78it/s]
+
8%|▊ | 378495/4997817 [00:02<00:26, 174250.05it/s]

end{sphinxVerbatim}

-

8%|▊ | 381423/4997817 [00:02<00:26, 173638.78it/s]

+

8%|▊ | 378495/4997817 [00:02<00:26, 174250.05it/s]

-
8%|▊ | 398834/4997817 [00:02&lt;00:26, 173775.03it/s]
+
8%|▊ | 395921/4997817 [00:02&lt;00:26, 174021.17it/s]

</pre>

-
8%|▊ | 398834/4997817 [00:02<00:26, 173775.03it/s]
+
8%|▊ | 395921/4997817 [00:02<00:26, 174021.17it/s]

end{sphinxVerbatim}

-

8%|▊ | 398834/4997817 [00:02<00:26, 173775.03it/s]

+

8%|▊ | 395921/4997817 [00:02<00:26, 174021.17it/s]

-
8%|▊ | 416212/4997817 [00:02&lt;00:26, 173771.72it/s]
+
8%|▊ | 413363/4997817 [00:02&lt;00:26, 174135.91it/s]

</pre>

-
8%|▊ | 416212/4997817 [00:02<00:26, 173771.72it/s]
+
8%|▊ | 413363/4997817 [00:02<00:26, 174135.91it/s]

end{sphinxVerbatim}

-

8%|▊ | 416212/4997817 [00:02<00:26, 173771.72it/s]

+

8%|▊ | 413363/4997817 [00:02<00:26, 174135.91it/s]

-
9%|▊ | 433590/4997817 [00:02&lt;00:26, 173442.63it/s]
+
9%|▊ | 430821/4997817 [00:02&lt;00:26, 174265.51it/s]

</pre>

-
9%|▊ | 433590/4997817 [00:02<00:26, 173442.63it/s]
+
9%|▊ | 430821/4997817 [00:02<00:26, 174265.51it/s]

end{sphinxVerbatim}

-

9%|▊ | 433590/4997817 [00:02<00:26, 173442.63it/s]

+

9%|▊ | 430821/4997817 [00:02<00:26, 174265.51it/s]

-
9%|▉ | 451024/4997817 [00:02&lt;00:26, 173705.52it/s]
+
9%|▉ | 448248/4997817 [00:02&lt;00:26, 174223.58it/s]

</pre>

-
9%|▉ | 451024/4997817 [00:02<00:26, 173705.52it/s]
+
9%|▉ | 448248/4997817 [00:02<00:26, 174223.58it/s]

end{sphinxVerbatim}

-

9%|▉ | 451024/4997817 [00:02<00:26, 173705.52it/s]

+

9%|▉ | 448248/4997817 [00:02<00:26, 174223.58it/s]

-
9%|▉ | 468446/4997817 [00:02&lt;00:26, 173855.02it/s]
+
9%|▉ | 465671/4997817 [00:02&lt;00:26, 173660.39it/s]

</pre>

-
9%|▉ | 468446/4997817 [00:02<00:26, 173855.02it/s]
+
9%|▉ | 465671/4997817 [00:02<00:26, 173660.39it/s]

end{sphinxVerbatim}

-

9%|▉ | 468446/4997817 [00:02<00:26, 173855.02it/s]

+

9%|▉ | 465671/4997817 [00:02<00:26, 173660.39it/s]

-
10%|▉ | 485832/4997817 [00:02&lt;00:25, 173762.18it/s]
+
10%|▉ | 483038/4997817 [00:02&lt;00:26, 173128.18it/s]

</pre>

-
10%|▉ | 485832/4997817 [00:02<00:25, 173762.18it/s]
+
10%|▉ | 483038/4997817 [00:02<00:26, 173128.18it/s]

end{sphinxVerbatim}

-

10%|▉ | 485832/4997817 [00:02<00:25, 173762.18it/s]

+

10%|▉ | 483038/4997817 [00:02<00:26, 173128.18it/s]

-
10%|█ | 503243/4997817 [00:02&lt;00:25, 173861.88it/s]
+
10%|█ | 500503/4997817 [00:02&lt;00:25, 173579.78it/s]

</pre>

-
10%|█ | 503243/4997817 [00:02<00:25, 173861.88it/s]
+
10%|█ | 500503/4997817 [00:02<00:25, 173579.78it/s]

end{sphinxVerbatim}

-

10%|█ | 503243/4997817 [00:02<00:25, 173861.88it/s]

+

10%|█ | 500503/4997817 [00:02<00:25, 173579.78it/s]

-
10%|█ | 520727/4997817 [00:03&lt;00:25, 174151.56it/s]
+
10%|█ | 518016/4997817 [00:03&lt;00:25, 174040.42it/s]

</pre>

-
10%|█ | 520727/4997817 [00:03<00:25, 174151.56it/s]
+
10%|█ | 518016/4997817 [00:03<00:25, 174040.42it/s]

end{sphinxVerbatim}

-

10%|█ | 520727/4997817 [00:03<00:25, 174151.56it/s]

+

10%|█ | 518016/4997817 [00:03<00:25, 174040.42it/s]

-
11%|█ | 538143/4997817 [00:03&lt;00:25, 173998.03it/s]
+
11%|█ | 535433/4997817 [00:03&lt;00:25, 174075.41it/s]

</pre>

-
11%|█ | 538143/4997817 [00:03<00:25, 173998.03it/s]
+
11%|█ | 535433/4997817 [00:03<00:25, 174075.41it/s]

end{sphinxVerbatim}

-

11%|█ | 538143/4997817 [00:03<00:25, 173998.03it/s]

+

11%|█ | 535433/4997817 [00:03<00:25, 174075.41it/s]

-
11%|█ | 555543/4997817 [00:03&lt;00:25, 173843.76it/s]
+
11%|█ | 552919/4997817 [00:03&lt;00:25, 174307.13it/s]

</pre>

-
11%|█ | 555543/4997817 [00:03<00:25, 173843.76it/s]
+
11%|█ | 552919/4997817 [00:03<00:25, 174307.13it/s]

end{sphinxVerbatim}

-

11%|█ | 555543/4997817 [00:03<00:25, 173843.76it/s]

+

11%|█ | 552919/4997817 [00:03<00:25, 174307.13it/s]

-
11%|█▏ | 572928/4997817 [00:03&lt;00:25, 173780.39it/s]
+
11%|█▏ | 570351/4997817 [00:03&lt;00:25, 174176.26it/s]

</pre>

-
11%|█▏ | 572928/4997817 [00:03<00:25, 173780.39it/s]
+
11%|█▏ | 570351/4997817 [00:03<00:25, 174176.26it/s]

end{sphinxVerbatim}

-

11%|█▏ | 572928/4997817 [00:03<00:25, 173780.39it/s]

+

11%|█▏ | 570351/4997817 [00:03<00:25, 174176.26it/s]

-
12%|█▏ | 590307/4997817 [00:03&lt;00:25, 173705.63it/s]
+
12%|█▏ | 587769/4997817 [00:03&lt;00:25, 173786.75it/s]

</pre>

-
12%|█▏ | 590307/4997817 [00:03<00:25, 173705.63it/s]
+
12%|█▏ | 587769/4997817 [00:03<00:25, 173786.75it/s]

end{sphinxVerbatim}

-

12%|█▏ | 590307/4997817 [00:03<00:25, 173705.63it/s]

+

12%|█▏ | 587769/4997817 [00:03<00:25, 173786.75it/s]

-
12%|█▏ | 607678/4997817 [00:03&lt;00:25, 173383.06it/s]
+
12%|█▏ | 605148/4997817 [00:03&lt;00:25, 173355.73it/s]

</pre>

-
12%|█▏ | 607678/4997817 [00:03<00:25, 173383.06it/s]
+
12%|█▏ | 605148/4997817 [00:03<00:25, 173355.73it/s]

end{sphinxVerbatim}

-

12%|█▏ | 607678/4997817 [00:03<00:25, 173383.06it/s]

+

12%|█▏ | 605148/4997817 [00:03<00:25, 173355.73it/s]

-
13%|█▎ | 625113/4997817 [00:03&lt;00:25, 173668.62it/s]
+
12%|█▏ | 622484/4997817 [00:03&lt;00:25, 173151.44it/s]

</pre>

-
13%|█▎ | 625113/4997817 [00:03<00:25, 173668.62it/s]
+
12%|█▏ | 622484/4997817 [00:03<00:25, 173151.44it/s]

end{sphinxVerbatim}

-

13%|█▎ | 625113/4997817 [00:03<00:25, 173668.62it/s]

+

12%|█▏ | 622484/4997817 [00:03<00:25, 173151.44it/s]

-
13%|█▎ | 642500/4997817 [00:03&lt;00:25, 173724.53it/s]
+
13%|█▎ | 639867/4997817 [00:03&lt;00:25, 173350.31it/s]

</pre>

-
13%|█▎ | 642500/4997817 [00:03<00:25, 173724.53it/s]
+
13%|█▎ | 639867/4997817 [00:03<00:25, 173350.31it/s]

end{sphinxVerbatim}

-

13%|█▎ | 642500/4997817 [00:03<00:25, 173724.53it/s]

+

13%|█▎ | 639867/4997817 [00:03<00:25, 173350.31it/s]

-
13%|█▎ | 659873/4997817 [00:03&lt;00:25, 173457.40it/s]
+
13%|█▎ | 657203/4997817 [00:03&lt;00:25, 173280.80it/s]

</pre>

-
13%|█▎ | 659873/4997817 [00:03<00:25, 173457.40it/s]
+
13%|█▎ | 657203/4997817 [00:03<00:25, 173280.80it/s]

end{sphinxVerbatim}

-

13%|█▎ | 659873/4997817 [00:03<00:25, 173457.40it/s]

+

13%|█▎ | 657203/4997817 [00:03<00:25, 173280.80it/s]

-
14%|█▎ | 677219/4997817 [00:03&lt;00:24, 172924.88it/s]
+
13%|█▎ | 674532/4997817 [00:03&lt;00:25, 172580.11it/s]

</pre>

-
14%|█▎ | 677219/4997817 [00:03<00:24, 172924.88it/s]
+
13%|█▎ | 674532/4997817 [00:03<00:25, 172580.11it/s]

end{sphinxVerbatim}

-

14%|█▎ | 677219/4997817 [00:03<00:24, 172924.88it/s]

+

13%|█▎ | 674532/4997817 [00:03<00:25, 172580.11it/s]

-
14%|█▍ | 694526/4997817 [00:04&lt;00:24, 172965.24it/s]
+
14%|█▍ | 691805/4997817 [00:04&lt;00:24, 172621.86it/s]

</pre>

-
14%|█▍ | 694526/4997817 [00:04<00:24, 172965.24it/s]
+
14%|█▍ | 691805/4997817 [00:04<00:24, 172621.86it/s]

end{sphinxVerbatim}

-

14%|█▍ | 694526/4997817 [00:04<00:24, 172965.24it/s]

+

14%|█▍ | 691805/4997817 [00:04<00:24, 172621.86it/s]

-
14%|█▍ | 711823/4997817 [00:04&lt;00:24, 172894.79it/s]
+
14%|█▍ | 709172/4997817 [00:04&lt;00:24, 172932.10it/s]

</pre>

-
14%|█▍ | 711823/4997817 [00:04<00:24, 172894.79it/s]
+
14%|█▍ | 709172/4997817 [00:04<00:24, 172932.10it/s]

end{sphinxVerbatim}

-

14%|█▍ | 711823/4997817 [00:04<00:24, 172894.79it/s]

+

14%|█▍ | 709172/4997817 [00:04<00:24, 172932.10it/s]

-
15%|█▍ | 729176/4997817 [00:04&lt;00:24, 173080.82it/s]
+
15%|█▍ | 726466/4997817 [00:04&lt;00:24, 172541.77it/s]

</pre>

-
15%|█▍ | 729176/4997817 [00:04<00:24, 173080.82it/s]
+
15%|█▍ | 726466/4997817 [00:04<00:24, 172541.77it/s]

end{sphinxVerbatim}

-

15%|█▍ | 729176/4997817 [00:04<00:24, 173080.82it/s]

+

15%|█▍ | 726466/4997817 [00:04<00:24, 172541.77it/s]

-
15%|█▍ | 746485/4997817 [00:04&lt;00:24, 173034.68it/s]
+
15%|█▍ | 743745/4997817 [00:04&lt;00:24, 172613.85it/s]

</pre>

-
15%|█▍ | 746485/4997817 [00:04<00:24, 173034.68it/s]
+
15%|█▍ | 743745/4997817 [00:04<00:24, 172613.85it/s]

end{sphinxVerbatim}

-

15%|█▍ | 746485/4997817 [00:04<00:24, 173034.68it/s]

+

15%|█▍ | 743745/4997817 [00:04<00:24, 172613.85it/s]

-
15%|█▌ | 763789/4997817 [00:04&lt;00:24, 172857.88it/s]
+
15%|█▌ | 761122/4997817 [00:04&lt;00:24, 172954.57it/s]

</pre>

-
15%|█▌ | 763789/4997817 [00:04<00:24, 172857.88it/s]
+
15%|█▌ | 761122/4997817 [00:04<00:24, 172954.57it/s]

end{sphinxVerbatim}

-

15%|█▌ | 763789/4997817 [00:04<00:24, 172857.88it/s]

+

15%|█▌ | 761122/4997817 [00:04<00:24, 172954.57it/s]

-
16%|█▌ | 781271/4997817 [00:04&lt;00:24, 173443.18it/s]
+
16%|█▌ | 778552/4997817 [00:04&lt;00:24, 173352.43it/s]

</pre>

-
16%|█▌ | 781271/4997817 [00:04<00:24, 173443.18it/s]
+
16%|█▌ | 778552/4997817 [00:04<00:24, 173352.43it/s]

end{sphinxVerbatim}

-

16%|█▌ | 781271/4997817 [00:04<00:24, 173443.18it/s]

+

16%|█▌ | 778552/4997817 [00:04<00:24, 173352.43it/s]

-
16%|█▌ | 798719/4997817 [00:04&lt;00:24, 173750.95it/s]
+
16%|█▌ | 795954/4997817 [00:04&lt;00:24, 173549.44it/s]

</pre>

-
16%|█▌ | 798719/4997817 [00:04<00:24, 173750.95it/s]
+
16%|█▌ | 795954/4997817 [00:04<00:24, 173549.44it/s]

end{sphinxVerbatim}

-

16%|█▌ | 798719/4997817 [00:04<00:24, 173750.95it/s]

+

16%|█▌ | 795954/4997817 [00:04<00:24, 173549.44it/s]

-
16%|█▋ | 816121/4997817 [00:04&lt;00:24, 173827.43it/s]
+
16%|█▋ | 813455/4997817 [00:04&lt;00:24, 173984.83it/s]

</pre>

-
16%|█▋ | 816121/4997817 [00:04<00:24, 173827.43it/s]
+
16%|█▋ | 813455/4997817 [00:04<00:24, 173984.83it/s]

end{sphinxVerbatim}

-

16%|█▋ | 816121/4997817 [00:04<00:24, 173827.43it/s]

+

16%|█▋ | 813455/4997817 [00:04<00:24, 173984.83it/s]

-
17%|█▋ | 833504/4997817 [00:04&lt;00:24, 173400.72it/s]
+
17%|█▋ | 830888/4997817 [00:04&lt;00:23, 174084.89it/s]

</pre>

-
17%|█▋ | 833504/4997817 [00:04<00:24, 173400.72it/s]
+
17%|█▋ | 830888/4997817 [00:04<00:23, 174084.89it/s]

end{sphinxVerbatim}

-

17%|█▋ | 833504/4997817 [00:04<00:24, 173400.72it/s]

+

17%|█▋ | 830888/4997817 [00:04<00:23, 174084.89it/s]

-
17%|█▋ | 850845/4997817 [00:04&lt;00:24, 167499.61it/s]
+
17%|█▋ | 848402/4997817 [00:04&lt;00:23, 174399.35it/s]

</pre>

-
17%|█▋ | 850845/4997817 [00:04<00:24, 167499.61it/s]
+
17%|█▋ | 848402/4997817 [00:04<00:23, 174399.35it/s]

end{sphinxVerbatim}

-

17%|█▋ | 850845/4997817 [00:04<00:24, 167499.61it/s]

+

17%|█▋ | 848402/4997817 [00:04<00:23, 174399.35it/s]

-
17%|█▋ | 868055/4997817 [00:05&lt;00:24, 168840.64it/s]
+
17%|█▋ | 865900/4997817 [00:05&lt;00:23, 174568.43it/s]

</pre>

-
17%|█▋ | 868055/4997817 [00:05<00:24, 168840.64it/s]
+
17%|█▋ | 865900/4997817 [00:05<00:23, 174568.43it/s]

end{sphinxVerbatim}

-

17%|█▋ | 868055/4997817 [00:05<00:24, 168840.64it/s]

+

17%|█▋ | 865900/4997817 [00:05<00:23, 174568.43it/s]

-
18%|█▊ | 885319/4997817 [00:05&lt;00:24, 169955.77it/s]
+
18%|█▊ | 883357/4997817 [00:05&lt;00:23, 174329.22it/s]

</pre>

-
18%|█▊ | 885319/4997817 [00:05<00:24, 169955.77it/s]
+
18%|█▊ | 883357/4997817 [00:05<00:23, 174329.22it/s]

end{sphinxVerbatim}

-

18%|█▊ | 885319/4997817 [00:05<00:24, 169955.77it/s]

+

18%|█▊ | 883357/4997817 [00:05<00:23, 174329.22it/s]

-
18%|█▊ | 902466/4997817 [00:05&lt;00:24, 170400.94it/s]
+
18%|█▊ | 900791/4997817 [00:05&lt;00:23, 171262.50it/s]

</pre>

-
18%|█▊ | 902466/4997817 [00:05<00:24, 170400.94it/s]
+
18%|█▊ | 900791/4997817 [00:05<00:23, 171262.50it/s]

end{sphinxVerbatim}

-

18%|█▊ | 902466/4997817 [00:05<00:24, 170400.94it/s]

+

18%|█▊ | 900791/4997817 [00:05<00:23, 171262.50it/s]

-
18%|█▊ | 919525/4997817 [00:05&lt;00:24, 169551.46it/s]
+
18%|█▊ | 918219/4997817 [00:05&lt;00:23, 172152.84it/s]

</pre>

-
18%|█▊ | 919525/4997817 [00:05<00:24, 169551.46it/s]
+
18%|█▊ | 918219/4997817 [00:05<00:23, 172152.84it/s]

end{sphinxVerbatim}

-

18%|█▊ | 919525/4997817 [00:05<00:24, 169551.46it/s]

+

18%|█▊ | 918219/4997817 [00:05<00:23, 172152.84it/s]

-
19%|█▊ | 936548/4997817 [00:05&lt;00:23, 169750.27it/s]
+
19%|█▊ | 935654/4997817 [00:05&lt;00:23, 172802.62it/s]

</pre>

-
19%|█▊ | 936548/4997817 [00:05<00:23, 169750.27it/s]
+
19%|█▊ | 935654/4997817 [00:05<00:23, 172802.62it/s]

end{sphinxVerbatim}

-

19%|█▊ | 936548/4997817 [00:05<00:23, 169750.27it/s]

+

19%|█▊ | 935654/4997817 [00:05<00:23, 172802.62it/s]

-
19%|█▉ | 953712/4997817 [00:05&lt;00:23, 170310.11it/s]
+
19%|█▉ | 953012/4997817 [00:05&lt;00:23, 173031.41it/s]

</pre>

-
19%|█▉ | 953712/4997817 [00:05<00:23, 170310.11it/s]
+
19%|█▉ | 953012/4997817 [00:05<00:23, 173031.41it/s]

end{sphinxVerbatim}

-

19%|█▉ | 953712/4997817 [00:05<00:23, 170310.11it/s]

+

19%|█▉ | 953012/4997817 [00:05<00:23, 173031.41it/s]

-
19%|█▉ | 970942/4997817 [00:05&lt;00:23, 170900.53it/s]
+
19%|█▉ | 970321/4997817 [00:05&lt;00:23, 172399.52it/s]

</pre>

-
19%|█▉ | 970942/4997817 [00:05<00:23, 170900.53it/s]
+
19%|█▉ | 970321/4997817 [00:05<00:23, 172399.52it/s]

end{sphinxVerbatim}

-

19%|█▉ | 970942/4997817 [00:05<00:23, 170900.53it/s]

+

19%|█▉ | 970321/4997817 [00:05<00:23, 172399.52it/s]

-
20%|█▉ | 988152/4997817 [00:05&lt;00:23, 171255.63it/s]
+
20%|█▉ | 987638/4997817 [00:05&lt;00:23, 172626.78it/s]

</pre>

-
20%|█▉ | 988152/4997817 [00:05<00:23, 171255.63it/s]
+
20%|█▉ | 987638/4997817 [00:05<00:23, 172626.78it/s]

end{sphinxVerbatim}

-

20%|█▉ | 988152/4997817 [00:05<00:23, 171255.63it/s]

+

20%|█▉ | 987638/4997817 [00:05<00:23, 172626.78it/s]

-
20%|██ | 1005330/4997817 [00:05&lt;00:23, 171410.52it/s]
+
20%|██ | 1004904/4997817 [00:05&lt;00:23, 172474.58it/s]

</pre>

-
20%|██ | 1005330/4997817 [00:05<00:23, 171410.52it/s]
+
20%|██ | 1004904/4997817 [00:05<00:23, 172474.58it/s]

end{sphinxVerbatim}

-

20%|██ | 1005330/4997817 [00:05<00:23, 171410.52it/s]

+

20%|██ | 1004904/4997817 [00:05<00:23, 172474.58it/s]

-
20%|██ | 1022474/4997817 [00:05&lt;00:23, 171375.10it/s]
+
20%|██ | 1022154/4997817 [00:05&lt;00:23, 171681.74it/s]

</pre>

-
20%|██ | 1022474/4997817 [00:05<00:23, 171375.10it/s]
+
20%|██ | 1022154/4997817 [00:05<00:23, 171681.74it/s]

end{sphinxVerbatim}

-

20%|██ | 1022474/4997817 [00:05<00:23, 171375.10it/s]

+

20%|██ | 1022154/4997817 [00:05<00:23, 171681.74it/s]

-
21%|██ | 1039638/4997817 [00:06&lt;00:23, 171449.37it/s]
+
21%|██ | 1039376/4997817 [00:06&lt;00:23, 171839.04it/s]

</pre>

-
21%|██ | 1039638/4997817 [00:06<00:23, 171449.37it/s]
+
21%|██ | 1039376/4997817 [00:06<00:23, 171839.04it/s]

end{sphinxVerbatim}

-

21%|██ | 1039638/4997817 [00:06<00:23, 171449.37it/s]

+

21%|██ | 1039376/4997817 [00:06<00:23, 171839.04it/s]

-
21%|██ | 1056785/4997817 [00:06&lt;00:23, 170869.67it/s]
+
21%|██ | 1056759/4997817 [00:06&lt;00:22, 172430.29it/s]

</pre>

-
21%|██ | 1056785/4997817 [00:06<00:23, 170869.67it/s]
+
21%|██ | 1056759/4997817 [00:06<00:22, 172430.29it/s]

end{sphinxVerbatim}

-

21%|██ | 1056785/4997817 [00:06<00:23, 170869.67it/s]

+

21%|██ | 1056759/4997817 [00:06<00:22, 172430.29it/s]

-
21%|██▏ | 1073989/4997817 [00:06&lt;00:22, 171215.58it/s]
+
21%|██▏ | 1074004/4997817 [00:06&lt;00:22, 171778.93it/s]

</pre>

-
21%|██▏ | 1073989/4997817 [00:06<00:22, 171215.58it/s]
+
21%|██▏ | 1074004/4997817 [00:06<00:22, 171778.93it/s]

end{sphinxVerbatim}

-

21%|██▏ | 1073989/4997817 [00:06<00:22, 171215.58it/s]

+

21%|██▏ | 1074004/4997817 [00:06<00:22, 171778.93it/s]

-
22%|██▏ | 1091214/4997817 [00:06&lt;00:22, 171520.75it/s]
+
22%|██▏ | 1091577/4997817 [00:06&lt;00:22, 172954.10it/s]

</pre>

-
22%|██▏ | 1091214/4997817 [00:06<00:22, 171520.75it/s]
+
22%|██▏ | 1091577/4997817 [00:06<00:22, 172954.10it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1091214/4997817 [00:06<00:22, 171520.75it/s]

+

22%|██▏ | 1091577/4997817 [00:06<00:22, 172954.10it/s]

-
22%|██▏ | 1108873/4997817 [00:06&lt;00:22, 173035.02it/s]
+
22%|██▏ | 1109070/4997817 [00:06&lt;00:22, 173541.63it/s]

</pre>

-
22%|██▏ | 1108873/4997817 [00:06<00:22, 173035.02it/s]
+
22%|██▏ | 1109070/4997817 [00:06<00:22, 173541.63it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1108873/4997817 [00:06<00:22, 173035.02it/s]

+

22%|██▏ | 1109070/4997817 [00:06<00:22, 173541.63it/s]

-
23%|██▎ | 1126178/4997817 [00:06&lt;00:22, 173017.19it/s]
+
23%|██▎ | 1126616/4997817 [00:06&lt;00:22, 174112.14it/s]

</pre>

-
23%|██▎ | 1126178/4997817 [00:06<00:22, 173017.19it/s]
+
23%|██▎ | 1126616/4997817 [00:06<00:22, 174112.14it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1126178/4997817 [00:06<00:22, 173017.19it/s]

+

23%|██▎ | 1126616/4997817 [00:06<00:22, 174112.14it/s]

-
23%|██▎ | 1143481/4997817 [00:06&lt;00:22, 172777.34it/s]
+
23%|██▎ | 1144169/4997817 [00:06&lt;00:22, 174533.86it/s]

</pre>

-
23%|██▎ | 1143481/4997817 [00:06<00:22, 172777.34it/s]
+
23%|██▎ | 1144169/4997817 [00:06<00:22, 174533.86it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1143481/4997817 [00:06<00:22, 172777.34it/s]

+

23%|██▎ | 1144169/4997817 [00:06<00:22, 174533.86it/s]

-
23%|██▎ | 1160760/4997817 [00:06&lt;00:22, 172497.49it/s]
+
23%|██▎ | 1161733/4997817 [00:06&lt;00:21, 174862.87it/s]

</pre>

-
23%|██▎ | 1160760/4997817 [00:06<00:22, 172497.49it/s]
+
23%|██▎ | 1161733/4997817 [00:06<00:21, 174862.87it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1160760/4997817 [00:06<00:22, 172497.49it/s]

+

23%|██▎ | 1161733/4997817 [00:06<00:21, 174862.87it/s]

-
24%|██▎ | 1178011/4997817 [00:06&lt;00:22, 172168.93it/s]
+
24%|██▎ | 1179220/4997817 [00:06&lt;00:21, 174416.81it/s]

</pre>

-
24%|██▎ | 1178011/4997817 [00:06<00:22, 172168.93it/s]
+
24%|██▎ | 1179220/4997817 [00:06<00:21, 174416.81it/s]

end{sphinxVerbatim}

-

24%|██▎ | 1178011/4997817 [00:06<00:22, 172168.93it/s]

+

24%|██▎ | 1179220/4997817 [00:06<00:21, 174416.81it/s]

-
24%|██▍ | 1195229/4997817 [00:06&lt;00:22, 171842.38it/s]
+
24%|██▍ | 1196663/4997817 [00:06&lt;00:21, 173928.97it/s]

</pre>

-
24%|██▍ | 1195229/4997817 [00:06<00:22, 171842.38it/s]
+
24%|██▍ | 1196663/4997817 [00:06<00:21, 173928.97it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1195229/4997817 [00:06<00:22, 171842.38it/s]

+

24%|██▍ | 1196663/4997817 [00:06<00:21, 173928.97it/s]

-
24%|██▍ | 1212414/4997817 [00:07&lt;00:22, 171680.48it/s]
+
24%|██▍ | 1214075/4997817 [00:07&lt;00:21, 173979.92it/s]

</pre>

-
24%|██▍ | 1212414/4997817 [00:07<00:22, 171680.48it/s]
+
24%|██▍ | 1214075/4997817 [00:07<00:21, 173979.92it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1212414/4997817 [00:07<00:22, 171680.48it/s]

+

24%|██▍ | 1214075/4997817 [00:07<00:21, 173979.92it/s]

-
25%|██▍ | 1229583/4997817 [00:07&lt;00:21, 171672.23it/s]
+
25%|██▍ | 1231479/4997817 [00:07&lt;00:21, 173993.48it/s]

</pre>

-
25%|██▍ | 1229583/4997817 [00:07<00:21, 171672.23it/s]
+
25%|██▍ | 1231479/4997817 [00:07<00:21, 173993.48it/s]

end{sphinxVerbatim}

-

25%|██▍ | 1229583/4997817 [00:07<00:21, 171672.23it/s]

+

25%|██▍ | 1231479/4997817 [00:07<00:21, 173993.48it/s]

-
25%|██▍ | 1246751/4997817 [00:07&lt;00:21, 171577.38it/s]
+
25%|██▍ | 1248879/4997817 [00:07&lt;00:21, 173820.38it/s]

</pre>

-
25%|██▍ | 1246751/4997817 [00:07<00:21, 171577.38it/s]
+
25%|██▍ | 1248879/4997817 [00:07<00:21, 173820.38it/s]

end{sphinxVerbatim}

-

25%|██▍ | 1246751/4997817 [00:07<00:21, 171577.38it/s]

+

25%|██▍ | 1248879/4997817 [00:07<00:21, 173820.38it/s]

-
25%|██▌ | 1263909/4997817 [00:07&lt;00:21, 170978.78it/s]
+
25%|██▌ | 1266262/4997817 [00:07&lt;00:21, 173714.06it/s]

</pre>

-
25%|██▌ | 1263909/4997817 [00:07<00:21, 170978.78it/s]
+
25%|██▌ | 1266262/4997817 [00:07<00:21, 173714.06it/s]

end{sphinxVerbatim}

-

25%|██▌ | 1263909/4997817 [00:07<00:21, 170978.78it/s]

+

25%|██▌ | 1266262/4997817 [00:07<00:21, 173714.06it/s]

-
26%|██▌ | 1281008/4997817 [00:07&lt;00:21, 170704.98it/s]
+
26%|██▌ | 1283634/4997817 [00:07&lt;00:21, 173379.44it/s]

</pre>

-
26%|██▌ | 1281008/4997817 [00:07<00:21, 170704.98it/s]
+
26%|██▌ | 1283634/4997817 [00:07<00:21, 173379.44it/s]

end{sphinxVerbatim}

-

26%|██▌ | 1281008/4997817 [00:07<00:21, 170704.98it/s]

+

26%|██▌ | 1283634/4997817 [00:07<00:21, 173379.44it/s]

-
26%|██▌ | 1298079/4997817 [00:07&lt;00:21, 170500.85it/s]
+
26%|██▌ | 1300973/4997817 [00:07&lt;00:21, 173158.20it/s]

</pre>

-
26%|██▌ | 1298079/4997817 [00:07<00:21, 170500.85it/s]
+
26%|██▌ | 1300973/4997817 [00:07<00:21, 173158.20it/s]

end{sphinxVerbatim}

-

26%|██▌ | 1298079/4997817 [00:07<00:21, 170500.85it/s]

+

26%|██▌ | 1300973/4997817 [00:07<00:21, 173158.20it/s]

-
26%|██▋ | 1315214/4997817 [00:07&lt;00:21, 170750.49it/s]
+
26%|██▋ | 1318289/4997817 [00:07&lt;00:21, 172363.34it/s]

</pre>

-
26%|██▋ | 1315214/4997817 [00:07<00:21, 170750.49it/s]
+
26%|██▋ | 1318289/4997817 [00:07<00:21, 172363.34it/s]

end{sphinxVerbatim}

-

26%|██▋ | 1315214/4997817 [00:07<00:21, 170750.49it/s]

+

26%|██▋ | 1318289/4997817 [00:07<00:21, 172363.34it/s]

-
27%|██▋ | 1332308/4997817 [00:07&lt;00:21, 170803.96it/s]
+
27%|██▋ | 1335527/4997817 [00:07&lt;00:21, 171954.17it/s]

</pre>

-
27%|██▋ | 1332308/4997817 [00:07<00:21, 170803.96it/s]
+
27%|██▋ | 1335527/4997817 [00:07<00:21, 171954.17it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1332308/4997817 [00:07<00:21, 170803.96it/s]

+

27%|██▋ | 1335527/4997817 [00:07<00:21, 171954.17it/s]

-
27%|██▋ | 1349517/4997817 [00:07&lt;00:21, 171186.09it/s]
+
27%|██▋ | 1352723/4997817 [00:07&lt;00:21, 171370.72it/s]

</pre>

-
27%|██▋ | 1349517/4997817 [00:07<00:21, 171186.09it/s]
+
27%|██▋ | 1352723/4997817 [00:07<00:21, 171370.72it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1349517/4997817 [00:07<00:21, 171186.09it/s]

+

27%|██▋ | 1352723/4997817 [00:07<00:21, 171370.72it/s]

-
27%|██▋ | 1366636/4997817 [00:07&lt;00:21, 166974.62it/s]
+
27%|██▋ | 1369861/4997817 [00:07&lt;00:21, 170869.18it/s]

</pre>

-
27%|██▋ | 1366636/4997817 [00:07<00:21, 166974.62it/s]
+
27%|██▋ | 1369861/4997817 [00:07<00:21, 170869.18it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1366636/4997817 [00:07<00:21, 166974.62it/s]

+

27%|██▋ | 1369861/4997817 [00:07<00:21, 170869.18it/s]

-
28%|██▊ | 1383357/4997817 [00:08&lt;00:21, 165352.54it/s]
+
28%|██▊ | 1387142/4997817 [00:08&lt;00:21, 171443.77it/s]

</pre>

-
28%|██▊ | 1383357/4997817 [00:08<00:21, 165352.54it/s]
+
28%|██▊ | 1387142/4997817 [00:08<00:21, 171443.77it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1383357/4997817 [00:08<00:21, 165352.54it/s]

+

28%|██▊ | 1387142/4997817 [00:08<00:21, 171443.77it/s]

-
28%|██▊ | 1400601/4997817 [00:08&lt;00:21, 167432.22it/s]
+
28%|██▊ | 1404406/4997817 [00:08&lt;00:20, 171796.08it/s]

</pre>

-
28%|██▊ | 1400601/4997817 [00:08<00:21, 167432.22it/s]
+
28%|██▊ | 1404406/4997817 [00:08<00:20, 171796.08it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1400601/4997817 [00:08<00:21, 167432.22it/s]

+

28%|██▊ | 1404406/4997817 [00:08<00:20, 171796.08it/s]

-
28%|██▊ | 1417755/4997817 [00:08&lt;00:21, 168644.72it/s]
+
28%|██▊ | 1421587/4997817 [00:08&lt;00:20, 171442.86it/s]

</pre>

-
28%|██▊ | 1417755/4997817 [00:08<00:21, 168644.72it/s]
+
28%|██▊ | 1421587/4997817 [00:08<00:20, 171442.86it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1417755/4997817 [00:08<00:21, 168644.72it/s]

+

28%|██▊ | 1421587/4997817 [00:08<00:20, 171442.86it/s]

-
29%|██▊ | 1434981/4997817 [00:08&lt;00:20, 169716.13it/s]
+
29%|██▉ | 1438732/4997817 [00:08&lt;00:20, 171120.78it/s]

</pre>

-
29%|██▊ | 1434981/4997817 [00:08<00:20, 169716.13it/s]
+
29%|██▉ | 1438732/4997817 [00:08<00:20, 171120.78it/s]

end{sphinxVerbatim}

-

29%|██▊ | 1434981/4997817 [00:08<00:20, 169716.13it/s]

+

29%|██▉ | 1438732/4997817 [00:08<00:20, 171120.78it/s]

-
29%|██▉ | 1452216/4997817 [00:08&lt;00:20, 170497.47it/s]
+
29%|██▉ | 1456010/4997817 [00:08&lt;00:20, 171612.75it/s]

</pre>

-
29%|██▉ | 1452216/4997817 [00:08<00:20, 170497.47it/s]
+
29%|██▉ | 1456010/4997817 [00:08<00:20, 171612.75it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1452216/4997817 [00:08<00:20, 170497.47it/s]

+

29%|██▉ | 1456010/4997817 [00:08<00:20, 171612.75it/s]

-
29%|██▉ | 1469393/4997817 [00:08&lt;00:20, 170873.77it/s]
+
29%|██▉ | 1473172/4997817 [00:08&lt;00:20, 171568.34it/s]

</pre>

-
29%|██▉ | 1469393/4997817 [00:08<00:20, 170873.77it/s]
+
29%|██▉ | 1473172/4997817 [00:08<00:20, 171568.34it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1469393/4997817 [00:08<00:20, 170873.77it/s]

+

29%|██▉ | 1473172/4997817 [00:08<00:20, 171568.34it/s]

-
30%|██▉ | 1486659/4997817 [00:08&lt;00:20, 171405.04it/s]
+
30%|██▉ | 1490330/4997817 [00:08&lt;00:20, 171562.94it/s]

</pre>

-
30%|██▉ | 1486659/4997817 [00:08<00:20, 171405.04it/s]
+
30%|██▉ | 1490330/4997817 [00:08<00:20, 171562.94it/s]

end{sphinxVerbatim}

-

30%|██▉ | 1486659/4997817 [00:08<00:20, 171405.04it/s]

+

30%|██▉ | 1490330/4997817 [00:08<00:20, 171562.94it/s]

-
30%|███ | 1503878/4997817 [00:08&lt;00:20, 171636.21it/s]
+
30%|███ | 1507626/4997817 [00:08&lt;00:20, 171978.28it/s]

</pre>

-
30%|███ | 1503878/4997817 [00:08<00:20, 171636.21it/s]
+
30%|███ | 1507626/4997817 [00:08<00:20, 171978.28it/s]

end{sphinxVerbatim}

-

30%|███ | 1503878/4997817 [00:08<00:20, 171636.21it/s]

+

30%|███ | 1507626/4997817 [00:08<00:20, 171978.28it/s]

-
30%|███ | 1521101/4997817 [00:08&lt;00:20, 171810.78it/s]
+
31%|███ | 1524858/4997817 [00:08&lt;00:20, 172079.01it/s]

</pre>

-
30%|███ | 1521101/4997817 [00:08<00:20, 171810.78it/s]
+
31%|███ | 1524858/4997817 [00:08<00:20, 172079.01it/s]

end{sphinxVerbatim}

-

30%|███ | 1521101/4997817 [00:08<00:20, 171810.78it/s]

+

31%|███ | 1524858/4997817 [00:08<00:20, 172079.01it/s]

-
31%|███ | 1538285/4997817 [00:08&lt;00:20, 171554.86it/s]
+
31%|███ | 1542067/4997817 [00:08&lt;00:20, 171862.73it/s]

</pre>

-
31%|███ | 1538285/4997817 [00:08<00:20, 171554.86it/s]
+
31%|███ | 1542067/4997817 [00:08<00:20, 171862.73it/s]

end{sphinxVerbatim}

-

31%|███ | 1538285/4997817 [00:08<00:20, 171554.86it/s]

+

31%|███ | 1542067/4997817 [00:08<00:20, 171862.73it/s]

-
31%|███ | 1555442/4997817 [00:09&lt;00:20, 171482.32it/s]
+
31%|███ | 1559254/4997817 [00:09&lt;00:20, 171254.72it/s]

</pre>

-
31%|███ | 1555442/4997817 [00:09<00:20, 171482.32it/s]
+
31%|███ | 1559254/4997817 [00:09<00:20, 171254.72it/s]

end{sphinxVerbatim}

-

31%|███ | 1555442/4997817 [00:09<00:20, 171482.32it/s]

+

31%|███ | 1559254/4997817 [00:09<00:20, 171254.72it/s]

-
31%|███▏ | 1572592/4997817 [00:09&lt;00:19, 171358.69it/s]
+
32%|███▏ | 1576380/4997817 [00:09&lt;00:20, 171010.62it/s]

</pre>

-
31%|███▏ | 1572592/4997817 [00:09<00:19, 171358.69it/s]
+
32%|███▏ | 1576380/4997817 [00:09<00:20, 171010.62it/s]

end{sphinxVerbatim}

-

31%|███▏ | 1572592/4997817 [00:09<00:19, 171358.69it/s]

+

32%|███▏ | 1576380/4997817 [00:09<00:20, 171010.62it/s]

-
32%|███▏ | 1589729/4997817 [00:09&lt;00:19, 171312.10it/s]
+
32%|███▏ | 1593482/4997817 [00:09&lt;00:19, 170789.72it/s]

</pre>

-
32%|███▏ | 1589729/4997817 [00:09<00:19, 171312.10it/s]
+
32%|███▏ | 1593482/4997817 [00:09<00:19, 170789.72it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1589729/4997817 [00:09<00:19, 171312.10it/s]

+

32%|███▏ | 1593482/4997817 [00:09<00:19, 170789.72it/s]

-
32%|███▏ | 1606861/4997817 [00:09&lt;00:19, 171261.67it/s]
+
32%|███▏ | 1610562/4997817 [00:09&lt;00:19, 170689.53it/s]

</pre>

-
32%|███▏ | 1606861/4997817 [00:09<00:19, 171261.67it/s]
+
32%|███▏ | 1610562/4997817 [00:09<00:19, 170689.53it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1606861/4997817 [00:09<00:19, 171261.67it/s]

+

32%|███▏ | 1610562/4997817 [00:09<00:19, 170689.53it/s]

-
32%|███▏ | 1623988/4997817 [00:09&lt;00:19, 170981.92it/s]
+
33%|███▎ | 1627726/4997817 [00:09&lt;00:19, 170970.89it/s]

</pre>

-
32%|███▏ | 1623988/4997817 [00:09<00:19, 170981.92it/s]
+
33%|███▎ | 1627726/4997817 [00:09<00:19, 170970.89it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1623988/4997817 [00:09<00:19, 170981.92it/s]

+

33%|███▎ | 1627726/4997817 [00:09<00:19, 170970.89it/s]

-
33%|███▎ | 1641087/4997817 [00:09&lt;00:19, 170445.03it/s]
+
33%|███▎ | 1644824/4997817 [00:09&lt;00:19, 170676.74it/s]

</pre>

-
33%|███▎ | 1641087/4997817 [00:09<00:19, 170445.03it/s]
+
33%|███▎ | 1644824/4997817 [00:09<00:19, 170676.74it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1641087/4997817 [00:09<00:19, 170445.03it/s]

+

33%|███▎ | 1644824/4997817 [00:09<00:19, 170676.74it/s]

-
33%|███▎ | 1658133/4997817 [00:09&lt;00:19, 170120.99it/s]
+
33%|███▎ | 1661892/4997817 [00:09&lt;00:19, 169213.92it/s]

</pre>

-
33%|███▎ | 1658133/4997817 [00:09<00:19, 170120.99it/s]
+
33%|███▎ | 1661892/4997817 [00:09<00:19, 169213.92it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1658133/4997817 [00:09<00:19, 170120.99it/s]

+

33%|███▎ | 1661892/4997817 [00:09<00:19, 169213.92it/s]

-
34%|███▎ | 1675146/4997817 [00:09&lt;00:19, 170047.88it/s]
+
34%|███▎ | 1678929/4997817 [00:09&lt;00:19, 169555.43it/s]

</pre>

-
34%|███▎ | 1675146/4997817 [00:09<00:19, 170047.88it/s]
+
34%|███▎ | 1678929/4997817 [00:09<00:19, 169555.43it/s]

end{sphinxVerbatim}

-

34%|███▎ | 1675146/4997817 [00:09<00:19, 170047.88it/s]

+

34%|███▎ | 1678929/4997817 [00:09<00:19, 169555.43it/s]

-
34%|███▍ | 1692384/4997817 [00:09&lt;00:19, 170742.41it/s]
+
34%|███▍ | 1696085/4997817 [00:09&lt;00:19, 170150.16it/s]

</pre>

-
34%|███▍ | 1692384/4997817 [00:09<00:19, 170742.41it/s]
+
34%|███▍ | 1696085/4997817 [00:09<00:19, 170150.16it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1692384/4997817 [00:09<00:19, 170742.41it/s]

+

34%|███▍ | 1696085/4997817 [00:09<00:19, 170150.16it/s]

-
34%|███▍ | 1709536/4997817 [00:09&lt;00:19, 170970.11it/s]
+
34%|███▍ | 1713243/4997817 [00:09&lt;00:19, 170573.37it/s]

</pre>

-
34%|███▍ | 1709536/4997817 [00:09<00:19, 170970.11it/s]
+
34%|███▍ | 1713243/4997817 [00:09<00:19, 170573.37it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1709536/4997817 [00:09<00:19, 170970.11it/s]

+

34%|███▍ | 1713243/4997817 [00:09<00:19, 170573.37it/s]

-
35%|███▍ | 1726634/4997817 [00:10&lt;00:19, 167250.12it/s]
+
35%|███▍ | 1730335/4997817 [00:10&lt;00:19, 170675.30it/s]

</pre>

-
35%|███▍ | 1726634/4997817 [00:10<00:19, 167250.12it/s]
+
35%|███▍ | 1730335/4997817 [00:10<00:19, 170675.30it/s]

end{sphinxVerbatim}

-

35%|███▍ | 1726634/4997817 [00:10<00:19, 167250.12it/s]

+

35%|███▍ | 1730335/4997817 [00:10<00:19, 170675.30it/s]

-
35%|███▍ | 1743827/4997817 [00:10&lt;00:19, 168626.61it/s]
+
35%|███▍ | 1747404/4997817 [00:10&lt;00:19, 170542.54it/s]

</pre>

-
35%|███▍ | 1743827/4997817 [00:10<00:19, 168626.61it/s]
+
35%|███▍ | 1747404/4997817 [00:10<00:19, 170542.54it/s]

end{sphinxVerbatim}

-

35%|███▍ | 1743827/4997817 [00:10<00:19, 168626.61it/s]

+

35%|███▍ | 1747404/4997817 [00:10<00:19, 170542.54it/s]

-
35%|███▌ | 1761126/4997817 [00:10&lt;00:19, 169916.59it/s]
+
35%|███▌ | 1764459/4997817 [00:10&lt;00:19, 170051.22it/s]

</pre>

-
35%|███▌ | 1761126/4997817 [00:10<00:19, 169916.59it/s]
+
35%|███▌ | 1764459/4997817 [00:10<00:19, 170051.22it/s]

end{sphinxVerbatim}

-

35%|███▌ | 1761126/4997817 [00:10<00:19, 169916.59it/s]

+

35%|███▌ | 1764459/4997817 [00:10<00:19, 170051.22it/s]

-
36%|███▌ | 1778432/4997817 [00:10&lt;00:18, 170847.39it/s]
+
36%|███▌ | 1781479/4997817 [00:10&lt;00:18, 170090.90it/s]

</pre>

-
36%|███▌ | 1778432/4997817 [00:10<00:18, 170847.39it/s]
+
36%|███▌ | 1781479/4997817 [00:10<00:18, 170090.90it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1778432/4997817 [00:10<00:18, 170847.39it/s]

+

36%|███▌ | 1781479/4997817 [00:10<00:18, 170090.90it/s]

-
36%|███▌ | 1795743/4997817 [00:10&lt;00:18, 171517.21it/s]
+
36%|███▌ | 1798489/4997817 [00:10&lt;00:18, 169783.89it/s]

</pre>

-
36%|███▌ | 1795743/4997817 [00:10<00:18, 171517.21it/s]
+
36%|███▌ | 1798489/4997817 [00:10<00:18, 169783.89it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1795743/4997817 [00:10<00:18, 171517.21it/s]

+

36%|███▌ | 1798489/4997817 [00:10<00:18, 169783.89it/s]

-
36%|███▋ | 1813098/4997817 [00:10&lt;00:18, 172119.98it/s]
+
36%|███▋ | 1815547/4997817 [00:10&lt;00:18, 170019.28it/s]

</pre>

-
36%|███▋ | 1813098/4997817 [00:10<00:18, 172119.98it/s]
+
36%|███▋ | 1815547/4997817 [00:10<00:18, 170019.28it/s]

end{sphinxVerbatim}

-

36%|███▋ | 1813098/4997817 [00:10<00:18, 172119.98it/s]

+

36%|███▋ | 1815547/4997817 [00:10<00:18, 170019.28it/s]

-
37%|███▋ | 1830442/4997817 [00:10&lt;00:18, 172511.96it/s]
+
37%|███▋ | 1832660/4997817 [00:10&lt;00:18, 170348.94it/s]

</pre>

-
37%|███▋ | 1830442/4997817 [00:10<00:18, 172511.96it/s]
+
37%|███▋ | 1832660/4997817 [00:10<00:18, 170348.94it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1830442/4997817 [00:10<00:18, 172511.96it/s]

+

37%|███▋ | 1832660/4997817 [00:10<00:18, 170348.94it/s]

-
37%|███▋ | 1847697/4997817 [00:10&lt;00:18, 172177.79it/s]
+
37%|███▋ | 1849696/4997817 [00:10&lt;00:18, 169577.77it/s]

</pre>

-
37%|███▋ | 1847697/4997817 [00:10<00:18, 172177.79it/s]
+
37%|███▋ | 1849696/4997817 [00:10<00:18, 169577.77it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1847697/4997817 [00:10<00:18, 172177.79it/s]

+

37%|███▋ | 1849696/4997817 [00:10<00:18, 169577.77it/s]

-
37%|███▋ | 1864918/4997817 [00:10&lt;00:18, 171675.77it/s]
+
37%|███▋ | 1866737/4997817 [00:10&lt;00:18, 169825.23it/s]

</pre>

-
37%|███▋ | 1864918/4997817 [00:10<00:18, 171675.77it/s]
+
37%|███▋ | 1866737/4997817 [00:10<00:18, 169825.23it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1864918/4997817 [00:10<00:18, 171675.77it/s]

+

37%|███▋ | 1866737/4997817 [00:10<00:18, 169825.23it/s]

-
38%|███▊ | 1882375/4997817 [00:10&lt;00:18, 172536.76it/s]
+
38%|███▊ | 1884232/4997817 [00:10&lt;00:18, 171353.52it/s]

</pre>

-
38%|███▊ | 1882375/4997817 [00:10<00:18, 172536.76it/s]
+
38%|███▊ | 1884232/4997817 [00:10<00:18, 171353.52it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1882375/4997817 [00:10<00:18, 172536.76it/s]

+

38%|███▊ | 1884232/4997817 [00:10<00:18, 171353.52it/s]

-
38%|███▊ | 1899650/4997817 [00:11&lt;00:17, 172598.14it/s]
+
38%|███▊ | 1901620/4997817 [00:11&lt;00:17, 172106.00it/s]

</pre>

-
38%|███▊ | 1899650/4997817 [00:11<00:17, 172598.14it/s]
+
38%|███▊ | 1901620/4997817 [00:11<00:17, 172106.00it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1899650/4997817 [00:11<00:17, 172598.14it/s]

+

38%|███▊ | 1901620/4997817 [00:11<00:17, 172106.00it/s]

-
38%|███▊ | 1916965/4997817 [00:11&lt;00:17, 172759.47it/s]
+
38%|███▊ | 1918993/4997817 [00:11&lt;00:17, 172590.80it/s]

</pre>

-
38%|███▊ | 1916965/4997817 [00:11<00:17, 172759.47it/s]
+
38%|███▊ | 1918993/4997817 [00:11<00:17, 172590.80it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1916965/4997817 [00:11<00:17, 172759.47it/s]

+

38%|███▊ | 1918993/4997817 [00:11<00:17, 172590.80it/s]

-
39%|███▊ | 1934403/4997817 [00:11&lt;00:17, 173239.67it/s]
+
39%|███▊ | 1936537/4997817 [00:11&lt;00:17, 173440.88it/s]

</pre>

-
39%|███▊ | 1934403/4997817 [00:11<00:17, 173239.67it/s]
+
39%|███▊ | 1936537/4997817 [00:11<00:17, 173440.88it/s]

end{sphinxVerbatim}

-

39%|███▊ | 1934403/4997817 [00:11<00:17, 173239.67it/s]

+

39%|███▊ | 1936537/4997817 [00:11<00:17, 173440.88it/s]

-
39%|███▉ | 1951857/4997817 [00:11&lt;00:17, 173625.82it/s]
+
39%|███▉ | 1953974/4997817 [00:11&lt;00:17, 173715.86it/s]

</pre>

-
39%|███▉ | 1951857/4997817 [00:11<00:17, 173625.82it/s]
+
39%|███▉ | 1953974/4997817 [00:11<00:17, 173715.86it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1951857/4997817 [00:11<00:17, 173625.82it/s]

+

39%|███▉ | 1953974/4997817 [00:11<00:17, 173715.86it/s]

-
39%|███▉ | 1969233/4997817 [00:11&lt;00:17, 173662.00it/s]
+
39%|███▉ | 1971386/4997817 [00:11&lt;00:17, 173833.48it/s]

</pre>

-
39%|███▉ | 1969233/4997817 [00:11<00:17, 173662.00it/s]
+
39%|███▉ | 1971386/4997817 [00:11<00:17, 173833.48it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1969233/4997817 [00:11<00:17, 173662.00it/s]

+

39%|███▉ | 1971386/4997817 [00:11<00:17, 173833.48it/s]

-
40%|███▉ | 1986600/4997817 [00:11&lt;00:17, 173510.89it/s]
+
40%|███▉ | 1988770/4997817 [00:11&lt;00:17, 173488.17it/s]

</pre>

-
40%|███▉ | 1986600/4997817 [00:11<00:17, 173510.89it/s]
+
40%|███▉ | 1988770/4997817 [00:11<00:17, 173488.17it/s]

end{sphinxVerbatim}

-

40%|███▉ | 1986600/4997817 [00:11<00:17, 173510.89it/s]

+

40%|███▉ | 1988770/4997817 [00:11<00:17, 173488.17it/s]

-
40%|████ | 2003989/4997817 [00:11&lt;00:17, 173620.71it/s]
+
40%|████ | 2006120/4997817 [00:11&lt;00:17, 172896.45it/s]

</pre>

-
40%|████ | 2003989/4997817 [00:11<00:17, 173620.71it/s]
+
40%|████ | 2006120/4997817 [00:11<00:17, 172896.45it/s]

end{sphinxVerbatim}

-

40%|████ | 2003989/4997817 [00:11<00:17, 173620.71it/s]

+

40%|████ | 2006120/4997817 [00:11<00:17, 172896.45it/s]

-
40%|████ | 2021352/4997817 [00:11&lt;00:17, 172889.28it/s]
+
40%|████ | 2023518/4997817 [00:11&lt;00:17, 173217.07it/s]

</pre>

-
40%|████ | 2021352/4997817 [00:11<00:17, 172889.28it/s]
+
40%|████ | 2023518/4997817 [00:11<00:17, 173217.07it/s]

end{sphinxVerbatim}

-

40%|████ | 2021352/4997817 [00:11<00:17, 172889.28it/s]

+

40%|████ | 2023518/4997817 [00:11<00:17, 173217.07it/s]

-
41%|████ | 2038726/4997817 [00:11&lt;00:17, 173140.08it/s]
+
41%|████ | 2040841/4997817 [00:11&lt;00:17, 173166.13it/s]

</pre>

-
41%|████ | 2038726/4997817 [00:11<00:17, 173140.08it/s]
+
41%|████ | 2040841/4997817 [00:11<00:17, 173166.13it/s]

end{sphinxVerbatim}

-

41%|████ | 2038726/4997817 [00:11<00:17, 173140.08it/s]

+

41%|████ | 2040841/4997817 [00:11<00:17, 173166.13it/s]

-
41%|████ | 2056041/4997817 [00:11&lt;00:16, 173049.75it/s]
+
41%|████ | 2058158/4997817 [00:11&lt;00:16, 173111.49it/s]

</pre>

-
41%|████ | 2056041/4997817 [00:11<00:16, 173049.75it/s]
+
41%|████ | 2058158/4997817 [00:11<00:16, 173111.49it/s]

end{sphinxVerbatim}

-

41%|████ | 2056041/4997817 [00:11<00:16, 173049.75it/s]

+

41%|████ | 2058158/4997817 [00:11<00:16, 173111.49it/s]

-
41%|████▏ | 2073347/4997817 [00:12&lt;00:16, 172756.93it/s]
+
42%|████▏ | 2075553/4997817 [00:12&lt;00:16, 173357.85it/s]

</pre>

-
41%|████▏ | 2073347/4997817 [00:12<00:16, 172756.93it/s]
+
42%|████▏ | 2075553/4997817 [00:12<00:16, 173357.85it/s]

end{sphinxVerbatim}

-

41%|████▏ | 2073347/4997817 [00:12<00:16, 172756.93it/s]

+

42%|████▏ | 2075553/4997817 [00:12<00:16, 173357.85it/s]

-
42%|████▏ | 2090709/4997817 [00:12&lt;00:16, 173011.88it/s]
+
42%|████▏ | 2092890/4997817 [00:12&lt;00:16, 173175.09it/s]

</pre>

-
42%|████▏ | 2090709/4997817 [00:12<00:16, 173011.88it/s]
+
42%|████▏ | 2092890/4997817 [00:12<00:16, 173175.09it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2090709/4997817 [00:12<00:16, 173011.88it/s]

+

42%|████▏ | 2092890/4997817 [00:12<00:16, 173175.09it/s]

-
42%|████▏ | 2108068/4997817 [00:12&lt;00:16, 173181.70it/s]
+
42%|████▏ | 2110208/4997817 [00:12&lt;00:16, 173030.80it/s]

</pre>

-
42%|████▏ | 2108068/4997817 [00:12<00:16, 173181.70it/s]
+
42%|████▏ | 2110208/4997817 [00:12<00:16, 173030.80it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2108068/4997817 [00:12<00:16, 173181.70it/s]

+

42%|████▏ | 2110208/4997817 [00:12<00:16, 173030.80it/s]

-
43%|████▎ | 2125387/4997817 [00:12&lt;00:16, 172719.24it/s]
+
43%|████▎ | 2127526/4997817 [00:12&lt;00:16, 173071.09it/s]

</pre>

-
43%|████▎ | 2125387/4997817 [00:12<00:16, 172719.24it/s]
+
43%|████▎ | 2127526/4997817 [00:12<00:16, 173071.09it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2125387/4997817 [00:12<00:16, 172719.24it/s]

+

43%|████▎ | 2127526/4997817 [00:12<00:16, 173071.09it/s]

-
43%|████▎ | 2142660/4997817 [00:12&lt;00:16, 172428.08it/s]
+
43%|████▎ | 2144834/4997817 [00:12&lt;00:16, 172965.44it/s]

</pre>

-
43%|████▎ | 2142660/4997817 [00:12<00:16, 172428.08it/s]
+
43%|████▎ | 2144834/4997817 [00:12<00:16, 172965.44it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2142660/4997817 [00:12<00:16, 172428.08it/s]

+

43%|████▎ | 2144834/4997817 [00:12<00:16, 172965.44it/s]

-
43%|████▎ | 2159948/4997817 [00:12&lt;00:16, 172559.96it/s]
+
43%|████▎ | 2162131/4997817 [00:12&lt;00:16, 172767.29it/s]

</pre>

-
43%|████▎ | 2159948/4997817 [00:12<00:16, 172559.96it/s]
+
43%|████▎ | 2162131/4997817 [00:12<00:16, 172767.29it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2159948/4997817 [00:12<00:16, 172559.96it/s]

+

43%|████▎ | 2162131/4997817 [00:12<00:16, 172767.29it/s]

-
44%|████▎ | 2177205/4997817 [00:12&lt;00:16, 172309.45it/s]
+
44%|████▎ | 2179408/4997817 [00:12&lt;00:16, 172627.63it/s]

</pre>

-
44%|████▎ | 2177205/4997817 [00:12<00:16, 172309.45it/s]
+
44%|████▎ | 2179408/4997817 [00:12<00:16, 172627.63it/s]

end{sphinxVerbatim}

-

44%|████▎ | 2177205/4997817 [00:12<00:16, 172309.45it/s]

+

44%|████▎ | 2179408/4997817 [00:12<00:16, 172627.63it/s]

-
44%|████▍ | 2194525/4997817 [00:12&lt;00:16, 172572.65it/s]
+
44%|████▍ | 2196671/4997817 [00:12&lt;00:16, 172009.65it/s]

</pre>

-
44%|████▍ | 2194525/4997817 [00:12<00:16, 172572.65it/s]
+
44%|████▍ | 2196671/4997817 [00:12<00:16, 172009.65it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2194525/4997817 [00:12<00:16, 172572.65it/s]

+

44%|████▍ | 2196671/4997817 [00:12<00:16, 172009.65it/s]

-
44%|████▍ | 2211921/4997817 [00:12&lt;00:16, 172984.81it/s]
+
44%|████▍ | 2213873/4997817 [00:12&lt;00:16, 171856.53it/s]

</pre>

-
44%|████▍ | 2211921/4997817 [00:12<00:16, 172984.81it/s]
+
44%|████▍ | 2213873/4997817 [00:12<00:16, 171856.53it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2211921/4997817 [00:12<00:16, 172984.81it/s]

+

44%|████▍ | 2213873/4997817 [00:12<00:16, 171856.53it/s]

-
45%|████▍ | 2229384/4997817 [00:12&lt;00:15, 173474.18it/s]
+
45%|████▍ | 2231266/4997817 [00:12&lt;00:16, 172472.78it/s]

</pre>

-
45%|████▍ | 2229384/4997817 [00:12<00:15, 173474.18it/s]
+
45%|████▍ | 2231266/4997817 [00:12<00:16, 172472.78it/s]

end{sphinxVerbatim}

-

45%|████▍ | 2229384/4997817 [00:12<00:15, 173474.18it/s]

+

45%|████▍ | 2231266/4997817 [00:12<00:16, 172472.78it/s]

-
45%|████▍ | 2246736/4997817 [00:13&lt;00:15, 173484.62it/s]
+
45%|████▍ | 2248661/4997817 [00:13&lt;00:15, 172911.28it/s]

</pre>

-
45%|████▍ | 2246736/4997817 [00:13<00:15, 173484.62it/s]
+
45%|████▍ | 2248661/4997817 [00:13<00:15, 172911.28it/s]

end{sphinxVerbatim}

-

45%|████▍ | 2246736/4997817 [00:13<00:15, 173484.62it/s]

+

45%|████▍ | 2248661/4997817 [00:13<00:15, 172911.28it/s]

-
45%|████▌ | 2264085/4997817 [00:13&lt;00:15, 173437.68it/s]
+
45%|████▌ | 2265953/4997817 [00:13&lt;00:15, 172668.94it/s]

</pre>

-
45%|████▌ | 2264085/4997817 [00:13<00:15, 173437.68it/s]
+
45%|████▌ | 2265953/4997817 [00:13<00:15, 172668.94it/s]

end{sphinxVerbatim}

-

45%|████▌ | 2264085/4997817 [00:13<00:15, 173437.68it/s]

+

45%|████▌ | 2265953/4997817 [00:13<00:15, 172668.94it/s]

-
46%|████▌ | 2281429/4997817 [00:13&lt;00:15, 173352.81it/s]
+
46%|████▌ | 2283239/4997817 [00:13&lt;00:15, 172721.87it/s]

</pre>

-
46%|████▌ | 2281429/4997817 [00:13<00:15, 173352.81it/s]
+
46%|████▌ | 2283239/4997817 [00:13<00:15, 172721.87it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2281429/4997817 [00:13<00:15, 173352.81it/s]

+

46%|████▌ | 2283239/4997817 [00:13<00:15, 172721.87it/s]

-
46%|████▌ | 2298765/4997817 [00:13&lt;00:15, 173188.91it/s]
+
46%|████▌ | 2300512/4997817 [00:13&lt;00:15, 169663.96it/s]

</pre>

-
46%|████▌ | 2298765/4997817 [00:13<00:15, 173188.91it/s]
+
46%|████▌ | 2300512/4997817 [00:13<00:15, 169663.96it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2298765/4997817 [00:13<00:15, 173188.91it/s]

+

46%|████▌ | 2300512/4997817 [00:13<00:15, 169663.96it/s]

-
46%|████▋ | 2316084/4997817 [00:13&lt;00:15, 172913.95it/s]
+
46%|████▋ | 2317491/4997817 [00:13&lt;00:16, 166427.04it/s]

</pre>

-
46%|████▋ | 2316084/4997817 [00:13<00:15, 172913.95it/s]
+
46%|████▋ | 2317491/4997817 [00:13<00:16, 166427.04it/s]

end{sphinxVerbatim}

-

46%|████▋ | 2316084/4997817 [00:13<00:15, 172913.95it/s]

+

46%|████▋ | 2317491/4997817 [00:13<00:16, 166427.04it/s]

-
47%|████▋ | 2333554/4997817 [00:13&lt;00:15, 173444.79it/s]
+
47%|████▋ | 2334740/4997817 [00:13&lt;00:15, 168201.30it/s]

</pre>

-
47%|████▋ | 2333554/4997817 [00:13<00:15, 173444.79it/s]
+
47%|████▋ | 2334740/4997817 [00:13<00:15, 168201.30it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2333554/4997817 [00:13<00:15, 173444.79it/s]

+

47%|████▋ | 2334740/4997817 [00:13<00:15, 168201.30it/s]

-
47%|████▋ | 2351018/4997817 [00:13&lt;00:15, 173801.16it/s]
+
47%|████▋ | 2352108/4997817 [00:13&lt;00:15, 169816.85it/s]

</pre>

-
47%|████▋ | 2351018/4997817 [00:13<00:15, 173801.16it/s]
+
47%|████▋ | 2352108/4997817 [00:13<00:15, 169816.85it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2351018/4997817 [00:13<00:15, 173801.16it/s]

+

47%|████▋ | 2352108/4997817 [00:13<00:15, 169816.85it/s]

-
47%|████▋ | 2368666/4997817 [00:13&lt;00:15, 174599.08it/s]
+
47%|████▋ | 2369227/4997817 [00:13&lt;00:15, 170221.73it/s]

</pre>

-
47%|████▋ | 2368666/4997817 [00:13<00:15, 174599.08it/s]
+
47%|████▋ | 2369227/4997817 [00:13<00:15, 170221.73it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2368666/4997817 [00:13<00:15, 174599.08it/s]

+

47%|████▋ | 2369227/4997817 [00:13<00:15, 170221.73it/s]

-
48%|████▊ | 2386153/4997817 [00:13&lt;00:14, 174676.73it/s]
+
48%|████▊ | 2386573/4997817 [00:13&lt;00:15, 171180.84it/s]

</pre>

-
48%|████▊ | 2386153/4997817 [00:13<00:14, 174676.73it/s]
+
48%|████▊ | 2386573/4997817 [00:13<00:15, 171180.84it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2386153/4997817 [00:13<00:14, 174676.73it/s]

+

48%|████▊ | 2386573/4997817 [00:13<00:15, 171180.84it/s]

-
48%|████▊ | 2403645/4997817 [00:13&lt;00:14, 174745.85it/s]
+
48%|████▊ | 2403941/4997817 [00:13&lt;00:15, 171923.46it/s]

</pre>

-
48%|████▊ | 2403645/4997817 [00:13<00:14, 174745.85it/s]
+
48%|████▊ | 2403941/4997817 [00:13<00:15, 171923.46it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2403645/4997817 [00:13<00:14, 174745.85it/s]

+

48%|████▊ | 2403941/4997817 [00:13<00:15, 171923.46it/s]

-
48%|████▊ | 2421181/4997817 [00:14&lt;00:14, 174925.70it/s]
+
48%|████▊ | 2421140/4997817 [00:14&lt;00:14, 171864.05it/s]

</pre>

-
48%|████▊ | 2421181/4997817 [00:14<00:14, 174925.70it/s]
+
48%|████▊ | 2421140/4997817 [00:14<00:14, 171864.05it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2421181/4997817 [00:14<00:14, 174925.70it/s]

+

48%|████▊ | 2421140/4997817 [00:14<00:14, 171864.05it/s]

-
49%|████▉ | 2438674/4997817 [00:14&lt;00:14, 174394.81it/s]
+
49%|████▉ | 2438350/4997817 [00:14&lt;00:14, 171930.74it/s]

</pre>

-
49%|████▉ | 2438674/4997817 [00:14<00:14, 174394.81it/s]
+
49%|████▉ | 2438350/4997817 [00:14<00:14, 171930.74it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2438674/4997817 [00:14<00:14, 174394.81it/s]

+

49%|████▉ | 2438350/4997817 [00:14<00:14, 171930.74it/s]

-
49%|████▉ | 2456114/4997817 [00:14&lt;00:14, 174173.81it/s]
+
49%|████▉ | 2455727/4997817 [00:14&lt;00:14, 172477.67it/s]

</pre>

-
49%|████▉ | 2456114/4997817 [00:14<00:14, 174173.81it/s]
+
49%|████▉ | 2455727/4997817 [00:14<00:14, 172477.67it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2456114/4997817 [00:14<00:14, 174173.81it/s]

+

49%|████▉ | 2455727/4997817 [00:14<00:14, 172477.67it/s]

-
49%|████▉ | 2473532/4997817 [00:14&lt;00:14, 174114.97it/s]
+
49%|████▉ | 2473150/4997817 [00:14&lt;00:14, 172998.15it/s]

</pre>

-
49%|████▉ | 2473532/4997817 [00:14<00:14, 174114.97it/s]
+
49%|████▉ | 2473150/4997817 [00:14<00:14, 172998.15it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2473532/4997817 [00:14<00:14, 174114.97it/s]

+

49%|████▉ | 2473150/4997817 [00:14<00:14, 172998.15it/s]

-
50%|████▉ | 2490944/4997817 [00:14&lt;00:14, 173861.74it/s]
+
50%|████▉ | 2490452/4997817 [00:14&lt;00:14, 172643.71it/s]

</pre>

-
50%|████▉ | 2490944/4997817 [00:14<00:14, 173861.74it/s]
+
50%|████▉ | 2490452/4997817 [00:14<00:14, 172643.71it/s]

end{sphinxVerbatim}

-

50%|████▉ | 2490944/4997817 [00:14<00:14, 173861.74it/s]

+

50%|████▉ | 2490452/4997817 [00:14<00:14, 172643.71it/s]

-
50%|█████ | 2508369/4997817 [00:14&lt;00:14, 173973.76it/s]
+
50%|█████ | 2507718/4997817 [00:14&lt;00:14, 172543.35it/s]

</pre>

-
50%|█████ | 2508369/4997817 [00:14<00:14, 173973.76it/s]
+
50%|█████ | 2507718/4997817 [00:14<00:14, 172543.35it/s]

end{sphinxVerbatim}

-

50%|█████ | 2508369/4997817 [00:14<00:14, 173973.76it/s]

+

50%|█████ | 2507718/4997817 [00:14<00:14, 172543.35it/s]

-
51%|█████ | 2525845/4997817 [00:14&lt;00:14, 174206.42it/s]
+
51%|█████ | 2524974/4997817 [00:14&lt;00:14, 172176.23it/s]

</pre>

-
51%|█████ | 2525845/4997817 [00:14<00:14, 174206.42it/s]
+
51%|█████ | 2524974/4997817 [00:14<00:14, 172176.23it/s]

end{sphinxVerbatim}

-

51%|█████ | 2525845/4997817 [00:14<00:14, 174206.42it/s]

+

51%|█████ | 2524974/4997817 [00:14<00:14, 172176.23it/s]

-
51%|█████ | 2543266/4997817 [00:14&lt;00:14, 174161.75it/s]
+
51%|█████ | 2542193/4997817 [00:14&lt;00:14, 171800.08it/s]

</pre>

-
51%|█████ | 2543266/4997817 [00:14<00:14, 174161.75it/s]
+
51%|█████ | 2542193/4997817 [00:14<00:14, 171800.08it/s]

end{sphinxVerbatim}

-

51%|█████ | 2543266/4997817 [00:14<00:14, 174161.75it/s]

+

51%|█████ | 2542193/4997817 [00:14<00:14, 171800.08it/s]

-
51%|█████ | 2560683/4997817 [00:14&lt;00:14, 174022.77it/s]
+
51%|█████ | 2559374/4997817 [00:14&lt;00:14, 171579.93it/s]

</pre>

-
51%|█████ | 2560683/4997817 [00:14<00:14, 174022.77it/s]
+
51%|█████ | 2559374/4997817 [00:14<00:14, 171579.93it/s]

end{sphinxVerbatim}

-

51%|█████ | 2560683/4997817 [00:14<00:14, 174022.77it/s]

+

51%|█████ | 2559374/4997817 [00:14<00:14, 171579.93it/s]

-
52%|█████▏ | 2578111/4997817 [00:14&lt;00:13, 174097.16it/s]
+
52%|█████▏ | 2576661/4997817 [00:14&lt;00:14, 171963.10it/s]

</pre>

-
52%|█████▏ | 2578111/4997817 [00:14<00:13, 174097.16it/s]
+
52%|█████▏ | 2576661/4997817 [00:14<00:14, 171963.10it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2578111/4997817 [00:14<00:13, 174097.16it/s]

+

52%|█████▏ | 2576661/4997817 [00:14<00:14, 171963.10it/s]

-
52%|█████▏ | 2595521/4997817 [00:15&lt;00:13, 173869.07it/s]
+
52%|█████▏ | 2593942/4997817 [00:15&lt;00:13, 172210.22it/s]

</pre>

-
52%|█████▏ | 2595521/4997817 [00:15<00:13, 173869.07it/s]
+
52%|█████▏ | 2593942/4997817 [00:15<00:13, 172210.22it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2595521/4997817 [00:15<00:13, 173869.07it/s]

+

52%|█████▏ | 2593942/4997817 [00:15<00:13, 172210.22it/s]

-
52%|█████▏ | 2612909/4997817 [00:15&lt;00:13, 173294.82it/s]
+
52%|█████▏ | 2611219/4997817 [00:15&lt;00:13, 172376.44it/s]

</pre>

-
52%|█████▏ | 2612909/4997817 [00:15<00:13, 173294.82it/s]
+
52%|█████▏ | 2611219/4997817 [00:15<00:13, 172376.44it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2612909/4997817 [00:15<00:13, 173294.82it/s]

+

52%|█████▏ | 2611219/4997817 [00:15<00:13, 172376.44it/s]

-
53%|█████▎ | 2630242/4997817 [00:15&lt;00:13, 173299.46it/s]
+
53%|█████▎ | 2628457/4997817 [00:15&lt;00:13, 171486.91it/s]

</pre>

-
53%|█████▎ | 2630242/4997817 [00:15<00:13, 173299.46it/s]
+
53%|█████▎ | 2628457/4997817 [00:15<00:13, 171486.91it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2630242/4997817 [00:15<00:13, 173299.46it/s]

+

53%|█████▎ | 2628457/4997817 [00:15<00:13, 171486.91it/s]

-
53%|█████▎ | 2647637/4997817 [00:15&lt;00:13, 173488.50it/s]
+
53%|█████▎ | 2645642/4997817 [00:15&lt;00:13, 171591.61it/s]

</pre>

-
53%|█████▎ | 2647637/4997817 [00:15<00:13, 173488.50it/s]
+
53%|█████▎ | 2645642/4997817 [00:15<00:13, 171591.61it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2647637/4997817 [00:15<00:13, 173488.50it/s]

+

53%|█████▎ | 2645642/4997817 [00:15<00:13, 171591.61it/s]

-
53%|█████▎ | 2664987/4997817 [00:15&lt;00:13, 173398.27it/s]
+
53%|█████▎ | 2662803/4997817 [00:15&lt;00:14, 164162.66it/s]

</pre>

-
53%|█████▎ | 2664987/4997817 [00:15<00:13, 173398.27it/s]
+
53%|█████▎ | 2662803/4997817 [00:15<00:14, 164162.66it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2664987/4997817 [00:15<00:13, 173398.27it/s]

+

53%|█████▎ | 2662803/4997817 [00:15<00:14, 164162.66it/s]

-
54%|█████▎ | 2682372/4997817 [00:15&lt;00:13, 173528.92it/s]
+
54%|█████▎ | 2679891/4997817 [00:15&lt;00:13, 166106.58it/s]

</pre>

-
54%|█████▎ | 2682372/4997817 [00:15<00:13, 173528.92it/s]
+
54%|█████▎ | 2679891/4997817 [00:15<00:13, 166106.58it/s]

end{sphinxVerbatim}

-

54%|█████▎ | 2682372/4997817 [00:15<00:13, 173528.92it/s]

+

54%|█████▎ | 2679891/4997817 [00:15<00:13, 166106.58it/s]

-
54%|█████▍ | 2699726/4997817 [00:15&lt;00:13, 173257.12it/s]
+
54%|█████▍ | 2697075/4997817 [00:15&lt;00:13, 167781.34it/s]

</pre>

-
54%|█████▍ | 2699726/4997817 [00:15<00:13, 173257.12it/s]
+
54%|█████▍ | 2697075/4997817 [00:15<00:13, 167781.34it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2699726/4997817 [00:15<00:13, 173257.12it/s]

+

54%|█████▍ | 2697075/4997817 [00:15<00:13, 167781.34it/s]

-
54%|█████▍ | 2717059/4997817 [00:15&lt;00:13, 173274.78it/s]
+
54%|█████▍ | 2714306/4997817 [00:15&lt;00:13, 169115.53it/s]

</pre>

-
54%|█████▍ | 2717059/4997817 [00:15<00:13, 173274.78it/s]
+
54%|█████▍ | 2714306/4997817 [00:15<00:13, 169115.53it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2717059/4997817 [00:15<00:13, 173274.78it/s]

+

54%|█████▍ | 2714306/4997817 [00:15<00:13, 169115.53it/s]

-
55%|█████▍ | 2734428/4997817 [00:15&lt;00:13, 173396.38it/s]
+
55%|█████▍ | 2731781/4997817 [00:15&lt;00:13, 170784.44it/s]

</pre>

-
55%|█████▍ | 2734428/4997817 [00:15<00:13, 173396.38it/s]
+
55%|█████▍ | 2731781/4997817 [00:15<00:13, 170784.44it/s]

end{sphinxVerbatim}

-

55%|█████▍ | 2734428/4997817 [00:15<00:13, 173396.38it/s]

+

55%|█████▍ | 2731781/4997817 [00:15<00:13, 170784.44it/s]

-
55%|█████▌ | 2751845/4997817 [00:15&lt;00:12, 173625.32it/s]
+
55%|█████▌ | 2749160/4997817 [00:15&lt;00:13, 171675.54it/s]

</pre>

-
55%|█████▌ | 2751845/4997817 [00:15<00:12, 173625.32it/s]
+
55%|█████▌ | 2749160/4997817 [00:15<00:13, 171675.54it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 2751845/4997817 [00:15<00:12, 173625.32it/s]

+

55%|█████▌ | 2749160/4997817 [00:15<00:13, 171675.54it/s]

-
55%|█████▌ | 2769208/4997817 [00:16&lt;00:12, 173567.59it/s]
+
55%|█████▌ | 2766389/4997817 [00:16&lt;00:12, 171854.59it/s]

</pre>

-
55%|█████▌ | 2769208/4997817 [00:16<00:12, 173567.59it/s]
+
55%|█████▌ | 2766389/4997817 [00:16<00:12, 171854.59it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 2769208/4997817 [00:16<00:12, 173567.59it/s]

+

55%|█████▌ | 2766389/4997817 [00:16<00:12, 171854.59it/s]

-
56%|█████▌ | 2786565/4997817 [00:16&lt;00:12, 173300.07it/s]
+
56%|█████▌ | 2783587/4997817 [00:16&lt;00:12, 171876.44it/s]

</pre>

-
56%|█████▌ | 2786565/4997817 [00:16<00:12, 173300.07it/s]
+
56%|█████▌ | 2783587/4997817 [00:16<00:12, 171876.44it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2786565/4997817 [00:16<00:12, 173300.07it/s]

+

56%|█████▌ | 2783587/4997817 [00:16<00:12, 171876.44it/s]

-
56%|█████▌ | 2803896/4997817 [00:16&lt;00:12, 173040.50it/s]
+
56%|█████▌ | 2800902/4997817 [00:16&lt;00:12, 172253.77it/s]

</pre>

-
56%|█████▌ | 2803896/4997817 [00:16<00:12, 173040.50it/s]
+
56%|█████▌ | 2800902/4997817 [00:16<00:12, 172253.77it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2803896/4997817 [00:16<00:12, 173040.50it/s]

+

56%|█████▌ | 2800902/4997817 [00:16<00:12, 172253.77it/s]

-
56%|█████▋ | 2821321/4997817 [00:16&lt;00:12, 173399.89it/s]
+
56%|█████▋ | 2818324/4997817 [00:16&lt;00:12, 172839.53it/s]

</pre>

-
56%|█████▋ | 2821321/4997817 [00:16<00:12, 173399.89it/s]
+
56%|█████▋ | 2818324/4997817 [00:16<00:12, 172839.53it/s]

end{sphinxVerbatim}

-

56%|█████▋ | 2821321/4997817 [00:16<00:12, 173399.89it/s]

+

56%|█████▋ | 2818324/4997817 [00:16<00:12, 172839.53it/s]

-
57%|█████▋ | 2838662/4997817 [00:16&lt;00:12, 172859.42it/s]
+
57%|█████▋ | 2835735/4997817 [00:16&lt;00:12, 173216.09it/s]

</pre>

-
57%|█████▋ | 2838662/4997817 [00:16<00:12, 172859.42it/s]
+
57%|█████▋ | 2835735/4997817 [00:16<00:12, 173216.09it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2838662/4997817 [00:16<00:12, 172859.42it/s]

+

57%|█████▋ | 2835735/4997817 [00:16<00:12, 173216.09it/s]

-
57%|█████▋ | 2855949/4997817 [00:16&lt;00:12, 172569.83it/s]
+
57%|█████▋ | 2853182/4997817 [00:16&lt;00:12, 173589.82it/s]

</pre>

-
57%|█████▋ | 2855949/4997817 [00:16<00:12, 172569.83it/s]
+
57%|█████▋ | 2853182/4997817 [00:16<00:12, 173589.82it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2855949/4997817 [00:16<00:12, 172569.83it/s]

+

57%|█████▋ | 2853182/4997817 [00:16<00:12, 173589.82it/s]

-
57%|█████▋ | 2873207/4997817 [00:16&lt;00:12, 172224.29it/s]
+
57%|█████▋ | 2870746/4997817 [00:16&lt;00:12, 174201.24it/s]

</pre>

-
57%|█████▋ | 2873207/4997817 [00:16<00:12, 172224.29it/s]
+
57%|█████▋ | 2870746/4997817 [00:16<00:12, 174201.24it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2873207/4997817 [00:16<00:12, 172224.29it/s]

+

57%|█████▋ | 2870746/4997817 [00:16<00:12, 174201.24it/s]

-
58%|█████▊ | 2890430/4997817 [00:16&lt;00:12, 172181.39it/s]
+
58%|█████▊ | 2888168/4997817 [00:16&lt;00:12, 173871.31it/s]

</pre>

-
58%|█████▊ | 2890430/4997817 [00:16<00:12, 172181.39it/s]
+
58%|█████▊ | 2888168/4997817 [00:16<00:12, 173871.31it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2890430/4997817 [00:16<00:12, 172181.39it/s]

+

58%|█████▊ | 2888168/4997817 [00:16<00:12, 173871.31it/s]

-
58%|█████▊ | 2907649/4997817 [00:16&lt;00:12, 171902.40it/s]
+
58%|█████▊ | 2905557/4997817 [00:16&lt;00:12, 173528.41it/s]

</pre>

-
58%|█████▊ | 2907649/4997817 [00:16<00:12, 171902.40it/s]
+
58%|█████▊ | 2905557/4997817 [00:16<00:12, 173528.41it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2907649/4997817 [00:16<00:12, 171902.40it/s]

+

58%|█████▊ | 2905557/4997817 [00:16<00:12, 173528.41it/s]

-
59%|█████▊ | 2924840/4997817 [00:16&lt;00:12, 171671.79it/s]
+
58%|█████▊ | 2922948/4997817 [00:16&lt;00:11, 173640.16it/s]

</pre>

-
59%|█████▊ | 2924840/4997817 [00:16<00:12, 171671.79it/s]
+
58%|█████▊ | 2922948/4997817 [00:16<00:11, 173640.16it/s]

end{sphinxVerbatim}

-

59%|█████▊ | 2924840/4997817 [00:16<00:12, 171671.79it/s]

+

58%|█████▊ | 2922948/4997817 [00:16<00:11, 173640.16it/s]

-
59%|█████▉ | 2942008/4997817 [00:17&lt;00:11, 171384.08it/s]
+
59%|█████▉ | 2940313/4997817 [00:17&lt;00:11, 173147.70it/s]

</pre>

-
59%|█████▉ | 2942008/4997817 [00:17<00:11, 171384.08it/s]
+
59%|█████▉ | 2940313/4997817 [00:17<00:11, 173147.70it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2942008/4997817 [00:17<00:11, 171384.08it/s]

+

59%|█████▉ | 2940313/4997817 [00:17<00:11, 173147.70it/s]

-
59%|█████▉ | 2959147/4997817 [00:17&lt;00:11, 170767.52it/s]
+
59%|█████▉ | 2957629/4997817 [00:17&lt;00:11, 172809.18it/s]

</pre>

-
59%|█████▉ | 2959147/4997817 [00:17<00:11, 170767.52it/s]
+
59%|█████▉ | 2957629/4997817 [00:17<00:11, 172809.18it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2959147/4997817 [00:17<00:11, 170767.52it/s]

+

59%|█████▉ | 2957629/4997817 [00:17<00:11, 172809.18it/s]

-
60%|█████▉ | 2976284/4997817 [00:17&lt;00:11, 170944.14it/s]
+
60%|█████▉ | 2974912/4997817 [00:17&lt;00:11, 172811.02it/s]

</pre>

-
60%|█████▉ | 2976284/4997817 [00:17<00:11, 170944.14it/s]
+
60%|█████▉ | 2974912/4997817 [00:17<00:11, 172811.02it/s]

end{sphinxVerbatim}

-

60%|█████▉ | 2976284/4997817 [00:17<00:11, 170944.14it/s]

+

60%|█████▉ | 2974912/4997817 [00:17<00:11, 172811.02it/s]

-
60%|█████▉ | 2993383/4997817 [00:17&lt;00:11, 170955.10it/s]
+
60%|█████▉ | 2992194/4997817 [00:17&lt;00:11, 172710.63it/s]

</pre>

-
60%|█████▉ | 2993383/4997817 [00:17<00:11, 170955.10it/s]
+
60%|█████▉ | 2992194/4997817 [00:17<00:11, 172710.63it/s]

end{sphinxVerbatim}

-

60%|█████▉ | 2993383/4997817 [00:17<00:11, 170955.10it/s]

+

60%|█████▉ | 2992194/4997817 [00:17<00:11, 172710.63it/s]

-
60%|██████ | 3010479/4997817 [00:17&lt;00:11, 170751.69it/s]
+
60%|██████ | 3009466/4997817 [00:17&lt;00:12, 165245.66it/s]

</pre>

-
60%|██████ | 3010479/4997817 [00:17<00:11, 170751.69it/s]
+
60%|██████ | 3009466/4997817 [00:17<00:12, 165245.66it/s]

end{sphinxVerbatim}

-

60%|██████ | 3010479/4997817 [00:17<00:11, 170751.69it/s]

+

60%|██████ | 3009466/4997817 [00:17<00:12, 165245.66it/s]

-
61%|██████ | 3027555/4997817 [00:17&lt;00:11, 169701.03it/s]
+
61%|██████ | 3026801/4997817 [00:17&lt;00:11, 167597.44it/s]

</pre>

-
61%|██████ | 3027555/4997817 [00:17<00:11, 169701.03it/s]
+
61%|██████ | 3026801/4997817 [00:17<00:11, 167597.44it/s]

end{sphinxVerbatim}

-

61%|██████ | 3027555/4997817 [00:17<00:11, 169701.03it/s]

+

61%|██████ | 3026801/4997817 [00:17<00:11, 167597.44it/s]

-
61%|██████ | 3044709/4997817 [00:17&lt;00:11, 170245.53it/s]
+
61%|██████ | 3044003/4997817 [00:17&lt;00:11, 168890.74it/s]

</pre>

-
61%|██████ | 3044709/4997817 [00:17<00:11, 170245.53it/s]
+
61%|██████ | 3044003/4997817 [00:17<00:11, 168890.74it/s]

end{sphinxVerbatim}

-

61%|██████ | 3044709/4997817 [00:17<00:11, 170245.53it/s]

+

61%|██████ | 3044003/4997817 [00:17<00:11, 168890.74it/s]

-
61%|██████▏ | 3061914/4997817 [00:17&lt;00:11, 170780.70it/s]
+
61%|██████▏ | 3061475/4997817 [00:17&lt;00:11, 170609.80it/s]

</pre>

-
61%|██████▏ | 3061914/4997817 [00:17<00:11, 170780.70it/s]
+
61%|██████▏ | 3061475/4997817 [00:17<00:11, 170609.80it/s]

end{sphinxVerbatim}

-

61%|██████▏ | 3061914/4997817 [00:17<00:11, 170780.70it/s]

+

61%|██████▏ | 3061475/4997817 [00:17<00:11, 170609.80it/s]

-
62%|██████▏ | 3079054/4997817 [00:17&lt;00:11, 170963.30it/s]
+
62%|██████▏ | 3078986/4997817 [00:17&lt;00:11, 171941.00it/s]

</pre>

-
62%|██████▏ | 3079054/4997817 [00:17<00:11, 170963.30it/s]
+
62%|██████▏ | 3078986/4997817 [00:17<00:11, 171941.00it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3079054/4997817 [00:17<00:11, 170963.30it/s]

+

62%|██████▏ | 3078986/4997817 [00:17<00:11, 171941.00it/s]

-
62%|██████▏ | 3096212/4997817 [00:17&lt;00:11, 171145.64it/s]
+
62%|██████▏ | 3096272/4997817 [00:17&lt;00:11, 172211.14it/s]

</pre>

-
62%|██████▏ | 3096212/4997817 [00:17<00:11, 171145.64it/s]
+
62%|██████▏ | 3096272/4997817 [00:17<00:11, 172211.14it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3096212/4997817 [00:17<00:11, 171145.64it/s]

+

62%|██████▏ | 3096272/4997817 [00:17<00:11, 172211.14it/s]

-
62%|██████▏ | 3113415/4997817 [00:18&lt;00:10, 171405.70it/s]
+
62%|██████▏ | 3113510/4997817 [00:18&lt;00:10, 171974.97it/s]

</pre>

-
62%|██████▏ | 3113415/4997817 [00:18<00:10, 171405.70it/s]
+
62%|██████▏ | 3113510/4997817 [00:18<00:10, 171974.97it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3113415/4997817 [00:18<00:10, 171405.70it/s]

+

62%|██████▏ | 3113510/4997817 [00:18<00:10, 171974.97it/s]

-
63%|██████▎ | 3130557/4997817 [00:18&lt;00:11, 163730.19it/s]
+
63%|██████▎ | 3130805/4997817 [00:18&lt;00:10, 172262.36it/s]

</pre>

-
63%|██████▎ | 3130557/4997817 [00:18<00:11, 163730.19it/s]
+
63%|██████▎ | 3130805/4997817 [00:18<00:10, 172262.36it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3130557/4997817 [00:18<00:11, 163730.19it/s]

+

63%|██████▎ | 3130805/4997817 [00:18<00:10, 172262.36it/s]

-
63%|██████▎ | 3147711/4997817 [00:18&lt;00:11, 165993.75it/s]
+
63%|██████▎ | 3148251/4997817 [00:18&lt;00:10, 172917.49it/s]

</pre>

-
63%|██████▎ | 3147711/4997817 [00:18<00:11, 165993.75it/s]
+
63%|██████▎ | 3148251/4997817 [00:18<00:10, 172917.49it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3147711/4997817 [00:18<00:11, 165993.75it/s]

+

63%|██████▎ | 3148251/4997817 [00:18<00:10, 172917.49it/s]

-
63%|██████▎ | 3164858/4997817 [00:18&lt;00:10, 167595.36it/s]
+
63%|██████▎ | 3165695/4997817 [00:18&lt;00:10, 173369.56it/s]

</pre>

-
63%|██████▎ | 3164858/4997817 [00:18<00:10, 167595.36it/s]
+
63%|██████▎ | 3165695/4997817 [00:18<00:10, 173369.56it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3164858/4997817 [00:18<00:10, 167595.36it/s]

+

63%|██████▎ | 3165695/4997817 [00:18<00:10, 173369.56it/s]

-
64%|██████▎ | 3182091/4997817 [00:18&lt;00:10, 168989.18it/s]
+
64%|██████▎ | 3183236/4997817 [00:18&lt;00:10, 173976.18it/s]

</pre>

-
64%|██████▎ | 3182091/4997817 [00:18<00:10, 168989.18it/s]
+
64%|██████▎ | 3183236/4997817 [00:18<00:10, 173976.18it/s]

end{sphinxVerbatim}

-

64%|██████▎ | 3182091/4997817 [00:18<00:10, 168989.18it/s]

+

64%|██████▎ | 3183236/4997817 [00:18<00:10, 173976.18it/s]

-
64%|██████▍ | 3199280/4997817 [00:18&lt;00:10, 169848.21it/s]
+
64%|██████▍ | 3200637/4997817 [00:18&lt;00:10, 166819.94it/s]

</pre>

-
64%|██████▍ | 3199280/4997817 [00:18<00:10, 169848.21it/s]
+
64%|██████▍ | 3200637/4997817 [00:18<00:10, 166819.94it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3199280/4997817 [00:18<00:10, 169848.21it/s]

+

64%|██████▍ | 3200637/4997817 [00:18<00:10, 166819.94it/s]

-
64%|██████▍ | 3216488/4997817 [00:18&lt;00:10, 170509.03it/s]
+
64%|██████▍ | 3217766/4997817 [00:18&lt;00:10, 168117.07it/s]

</pre>

-
64%|██████▍ | 3216488/4997817 [00:18<00:10, 170509.03it/s]
+
64%|██████▍ | 3217766/4997817 [00:18<00:10, 168117.07it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3216488/4997817 [00:18<00:10, 170509.03it/s]

+

64%|██████▍ | 3217766/4997817 [00:18<00:10, 168117.07it/s]

-
65%|██████▍ | 3233615/4997817 [00:18&lt;00:10, 170733.77it/s]
+
65%|██████▍ | 3235051/4997817 [00:18&lt;00:10, 169502.67it/s]

</pre>

-
65%|██████▍ | 3233615/4997817 [00:18<00:10, 170733.77it/s]
+
65%|██████▍ | 3235051/4997817 [00:18<00:10, 169502.67it/s]

end{sphinxVerbatim}

-

65%|██████▍ | 3233615/4997817 [00:18<00:10, 170733.77it/s]

+

65%|██████▍ | 3235051/4997817 [00:18<00:10, 169502.67it/s]

-
65%|██████▌ | 3250701/4997817 [00:18&lt;00:10, 170719.85it/s]
+
65%|██████▌ | 3252168/4997817 [00:18&lt;00:10, 169989.67it/s]

</pre>

-
65%|██████▌ | 3250701/4997817 [00:18<00:10, 170719.85it/s]
+
65%|██████▌ | 3252168/4997817 [00:18<00:10, 169989.67it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 3250701/4997817 [00:18<00:10, 170719.85it/s]

+

65%|██████▌ | 3252168/4997817 [00:18<00:10, 169989.67it/s]

-
65%|██████▌ | 3267782/4997817 [00:18&lt;00:10, 170590.66it/s]
+
65%|██████▌ | 3269267/4997817 [00:19&lt;00:10, 170282.67it/s]

</pre>

-
65%|██████▌ | 3267782/4997817 [00:18<00:10, 170590.66it/s]
+
65%|██████▌ | 3269267/4997817 [00:19<00:10, 170282.67it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 3267782/4997817 [00:18<00:10, 170590.66it/s]

+

65%|██████▌ | 3269267/4997817 [00:19<00:10, 170282.67it/s]

-
66%|██████▌ | 3284892/4997817 [00:19&lt;00:10, 170740.17it/s]
+
66%|██████▌ | 3286504/4997817 [00:19&lt;00:10, 170900.26it/s]

</pre>

-
66%|██████▌ | 3284892/4997817 [00:19<00:10, 170740.17it/s]
+
66%|██████▌ | 3286504/4997817 [00:19<00:10, 170900.26it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3284892/4997817 [00:19<00:10, 170740.17it/s]

+

66%|██████▌ | 3286504/4997817 [00:19<00:10, 170900.26it/s]

-
66%|██████▌ | 3301991/4997817 [00:19&lt;00:09, 170812.71it/s]
+
66%|██████▌ | 3303692/4997817 [00:19&lt;00:09, 171187.09it/s]

</pre>

-
66%|██████▌ | 3301991/4997817 [00:19<00:09, 170812.71it/s]
+
66%|██████▌ | 3303692/4997817 [00:19<00:09, 171187.09it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3301991/4997817 [00:19<00:09, 170812.71it/s]

+

66%|██████▌ | 3303692/4997817 [00:19<00:09, 171187.09it/s]

-
66%|██████▋ | 3319326/4997817 [00:19&lt;00:09, 171568.86it/s]
+
66%|██████▋ | 3320858/4997817 [00:19&lt;00:09, 171324.83it/s]

</pre>

-
66%|██████▋ | 3319326/4997817 [00:19<00:09, 171568.86it/s]
+
66%|██████▋ | 3320858/4997817 [00:19<00:09, 171324.83it/s]

end{sphinxVerbatim}

-

66%|██████▋ | 3319326/4997817 [00:19<00:09, 171568.86it/s]

+

66%|██████▋ | 3320858/4997817 [00:19<00:09, 171324.83it/s]

-
67%|██████▋ | 3336579/4997817 [00:19&lt;00:09, 171854.27it/s]
+
67%|██████▋ | 3338125/4997817 [00:19&lt;00:09, 171723.21it/s]

</pre>

-
67%|██████▋ | 3336579/4997817 [00:19<00:09, 171854.27it/s]
+
67%|██████▋ | 3338125/4997817 [00:19<00:09, 171723.21it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3336579/4997817 [00:19<00:09, 171854.27it/s]

+

67%|██████▋ | 3338125/4997817 [00:19<00:09, 171723.21it/s]

-
67%|██████▋ | 3353840/4997817 [00:19&lt;00:09, 172075.47it/s]
+
67%|██████▋ | 3355304/4997817 [00:19&lt;00:09, 171741.05it/s]

</pre>

-
67%|██████▋ | 3353840/4997817 [00:19<00:09, 172075.47it/s]
+
67%|██████▋ | 3355304/4997817 [00:19<00:09, 171741.05it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3353840/4997817 [00:19<00:09, 172075.47it/s]

+

67%|██████▋ | 3355304/4997817 [00:19<00:09, 171741.05it/s]

-
67%|██████▋ | 3371135/4997817 [00:19&lt;00:09, 172332.57it/s]
+
67%|██████▋ | 3372561/4997817 [00:19&lt;00:09, 171984.92it/s]

</pre>

-
67%|██████▋ | 3371135/4997817 [00:19<00:09, 172332.57it/s]
+
67%|██████▋ | 3372561/4997817 [00:19<00:09, 171984.92it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3371135/4997817 [00:19<00:09, 172332.57it/s]

+

67%|██████▋ | 3372561/4997817 [00:19<00:09, 171984.92it/s]

-
68%|██████▊ | 3388521/4997817 [00:19&lt;00:09, 172784.75it/s]
+
68%|██████▊ | 3389762/4997817 [00:19&lt;00:09, 171430.20it/s]

</pre>

-
68%|██████▊ | 3388521/4997817 [00:19<00:09, 172784.75it/s]
+
68%|██████▊ | 3389762/4997817 [00:19<00:09, 171430.20it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3388521/4997817 [00:19<00:09, 172784.75it/s]

+

68%|██████▊ | 3389762/4997817 [00:19<00:09, 171430.20it/s]

-
68%|██████▊ | 3405882/4997817 [00:19&lt;00:09, 173027.35it/s]
+
68%|██████▊ | 3406908/4997817 [00:19&lt;00:09, 171426.45it/s]

</pre>

-
68%|██████▊ | 3405882/4997817 [00:19<00:09, 173027.35it/s]
+
68%|██████▊ | 3406908/4997817 [00:19<00:09, 171426.45it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3405882/4997817 [00:19<00:09, 173027.35it/s]

+

68%|██████▊ | 3406908/4997817 [00:19<00:09, 171426.45it/s]

-
68%|██████▊ | 3423271/4997817 [00:19&lt;00:09, 173281.06it/s]
+
69%|██████▊ | 3424053/4997817 [00:19&lt;00:09, 170738.92it/s]

</pre>

-
68%|██████▊ | 3423271/4997817 [00:19<00:09, 173281.06it/s]
+
69%|██████▊ | 3424053/4997817 [00:19<00:09, 170738.92it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3423271/4997817 [00:19<00:09, 173281.06it/s]

+

69%|██████▊ | 3424053/4997817 [00:19<00:09, 170738.92it/s]

-
69%|██████▉ | 3440656/4997817 [00:19&lt;00:08, 173448.16it/s]
+
69%|██████▉ | 3441129/4997817 [00:20&lt;00:09, 170439.63it/s]

</pre>

-
69%|██████▉ | 3440656/4997817 [00:19<00:08, 173448.16it/s]
+
69%|██████▉ | 3441129/4997817 [00:20<00:09, 170439.63it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3440656/4997817 [00:19<00:08, 173448.16it/s]

+

69%|██████▉ | 3441129/4997817 [00:20<00:09, 170439.63it/s]

-
69%|██████▉ | 3458002/4997817 [00:20&lt;00:08, 173131.70it/s]
+
69%|██████▉ | 3458175/4997817 [00:20&lt;00:09, 169950.59it/s]

</pre>

-
69%|██████▉ | 3458002/4997817 [00:20<00:08, 173131.70it/s]
+
69%|██████▉ | 3458175/4997817 [00:20<00:09, 169950.59it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3458002/4997817 [00:20<00:08, 173131.70it/s]

+

69%|██████▉ | 3458175/4997817 [00:20<00:09, 169950.59it/s]

-
70%|██████▉ | 3475316/4997817 [00:20&lt;00:08, 173016.71it/s]
+
70%|██████▉ | 3475171/4997817 [00:20&lt;00:08, 169692.12it/s]

</pre>

-
70%|██████▉ | 3475316/4997817 [00:20<00:08, 173016.71it/s]
+
70%|██████▉ | 3475171/4997817 [00:20<00:08, 169692.12it/s]

end{sphinxVerbatim}

-

70%|██████▉ | 3475316/4997817 [00:20<00:08, 173016.71it/s]

+

70%|██████▉ | 3475171/4997817 [00:20<00:08, 169692.12it/s]

-
70%|██████▉ | 3492618/4997817 [00:20&lt;00:09, 165765.34it/s]
+
70%|██████▉ | 3492236/4997817 [00:20&lt;00:08, 169974.94it/s]

</pre>

-
70%|██████▉ | 3492618/4997817 [00:20<00:09, 165765.34it/s]
+
70%|██████▉ | 3492236/4997817 [00:20<00:08, 169974.94it/s]

end{sphinxVerbatim}

-

70%|██████▉ | 3492618/4997817 [00:20<00:09, 165765.34it/s]

+

70%|██████▉ | 3492236/4997817 [00:20<00:08, 169974.94it/s]

-
70%|███████ | 3509821/4997817 [00:20&lt;00:08, 167583.58it/s]
+
70%|███████ | 3509235/4997817 [00:20&lt;00:08, 169582.81it/s]

</pre>

-
70%|███████ | 3509821/4997817 [00:20<00:08, 167583.58it/s]
+
70%|███████ | 3509235/4997817 [00:20<00:08, 169582.81it/s]

end{sphinxVerbatim}

-

70%|███████ | 3509821/4997817 [00:20<00:08, 167583.58it/s]

+

70%|███████ | 3509235/4997817 [00:20<00:08, 169582.81it/s]

-
71%|███████ | 3527050/4997817 [00:20&lt;00:08, 168961.35it/s]
+
71%|███████ | 3526194/4997817 [00:20&lt;00:08, 169482.85it/s]

</pre>

-
71%|███████ | 3527050/4997817 [00:20<00:08, 168961.35it/s]
+
71%|███████ | 3526194/4997817 [00:20<00:08, 169482.85it/s]

end{sphinxVerbatim}

-

71%|███████ | 3527050/4997817 [00:20<00:08, 168961.35it/s]

+

71%|███████ | 3526194/4997817 [00:20<00:08, 169482.85it/s]

-
71%|███████ | 3544520/4997817 [00:20&lt;00:08, 170652.18it/s]
+
71%|███████ | 3543143/4997817 [00:20&lt;00:08, 166798.94it/s]

</pre>

-
71%|███████ | 3544520/4997817 [00:20<00:08, 170652.18it/s]
+
71%|███████ | 3543143/4997817 [00:20<00:08, 166798.94it/s]

end{sphinxVerbatim}

-

71%|███████ | 3544520/4997817 [00:20<00:08, 170652.18it/s]

+

71%|███████ | 3543143/4997817 [00:20<00:08, 166798.94it/s]

-
71%|███████▏ | 3561999/4997817 [00:20&lt;00:08, 171875.08it/s]
+
71%|███████ | 3560313/4997817 [00:20&lt;00:08, 168245.53it/s]

</pre>

-
71%|███████▏ | 3561999/4997817 [00:20<00:08, 171875.08it/s]
+
71%|███████ | 3560313/4997817 [00:20<00:08, 168245.53it/s]

end{sphinxVerbatim}

-

71%|███████▏ | 3561999/4997817 [00:20<00:08, 171875.08it/s]

+

71%|███████ | 3560313/4997817 [00:20<00:08, 168245.53it/s]

-
72%|███████▏ | 3579426/4997817 [00:20&lt;00:08, 172585.21it/s]
+
72%|███████▏ | 3577540/4997817 [00:20&lt;00:08, 169439.42it/s]

</pre>

-
72%|███████▏ | 3579426/4997817 [00:20<00:08, 172585.21it/s]
+
72%|███████▏ | 3577540/4997817 [00:20<00:08, 169439.42it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3579426/4997817 [00:20<00:08, 172585.21it/s]

+

72%|███████▏ | 3577540/4997817 [00:20<00:08, 169439.42it/s]

-
72%|███████▏ | 3596925/4997817 [00:20&lt;00:08, 173300.62it/s]
+
72%|███████▏ | 3594553/4997817 [00:20&lt;00:08, 169641.05it/s]

</pre>

-
72%|███████▏ | 3596925/4997817 [00:20<00:08, 173300.62it/s]
+
72%|███████▏ | 3594553/4997817 [00:20<00:08, 169641.05it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3596925/4997817 [00:20<00:08, 173300.62it/s]

+

72%|███████▏ | 3594553/4997817 [00:20<00:08, 169641.05it/s]

-
72%|███████▏ | 3614455/4997817 [00:21&lt;00:07, 173894.52it/s]
+
72%|███████▏ | 3611768/4997817 [00:21&lt;00:08, 170386.65it/s]

</pre>

-
72%|███████▏ | 3614455/4997817 [00:21<00:07, 173894.52it/s]
+
72%|███████▏ | 3611768/4997817 [00:21<00:08, 170386.65it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3614455/4997817 [00:21<00:07, 173894.52it/s]

+

72%|███████▏ | 3611768/4997817 [00:21<00:08, 170386.65it/s]

-
73%|███████▎ | 3632081/4997817 [00:21&lt;00:07, 174596.73it/s]
+
73%|███████▎ | 3628884/4997817 [00:21&lt;00:08, 170615.63it/s]

</pre>

-
73%|███████▎ | 3632081/4997817 [00:21<00:07, 174596.73it/s]
+
73%|███████▎ | 3628884/4997817 [00:21<00:08, 170615.63it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3632081/4997817 [00:21<00:07, 174596.73it/s]

+

73%|███████▎ | 3628884/4997817 [00:21<00:08, 170615.63it/s]

-
73%|███████▎ | 3649547/4997817 [00:21&lt;00:07, 174498.75it/s]
+
73%|███████▎ | 3646088/4997817 [00:21&lt;00:07, 171040.30it/s]

</pre>

-
73%|███████▎ | 3649547/4997817 [00:21<00:07, 174498.75it/s]
+
73%|███████▎ | 3646088/4997817 [00:21<00:07, 171040.30it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3649547/4997817 [00:21<00:07, 174498.75it/s]

+

73%|███████▎ | 3646088/4997817 [00:21<00:07, 171040.30it/s]

-
73%|███████▎ | 3667092/4997817 [00:21&lt;00:07, 174781.42it/s]
+
73%|███████▎ | 3663264/4997817 [00:21&lt;00:07, 171253.22it/s]

</pre>

-
73%|███████▎ | 3667092/4997817 [00:21<00:07, 174781.42it/s]
+
73%|███████▎ | 3663264/4997817 [00:21<00:07, 171253.22it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3667092/4997817 [00:21<00:07, 174781.42it/s]

+

73%|███████▎ | 3663264/4997817 [00:21<00:07, 171253.22it/s]

-
74%|███████▎ | 3684574/4997817 [00:21&lt;00:07, 174323.55it/s]
+
74%|███████▎ | 3680485/4997817 [00:21&lt;00:07, 171536.54it/s]

</pre>

-
74%|███████▎ | 3684574/4997817 [00:21<00:07, 174323.55it/s]
+
74%|███████▎ | 3680485/4997817 [00:21<00:07, 171536.54it/s]

end{sphinxVerbatim}

-

74%|███████▎ | 3684574/4997817 [00:21<00:07, 174323.55it/s]

+

74%|███████▎ | 3680485/4997817 [00:21<00:07, 171536.54it/s]

-
74%|███████▍ | 3702009/4997817 [00:21&lt;00:07, 174312.24it/s]
+
74%|███████▍ | 3697640/4997817 [00:21&lt;00:07, 171259.85it/s]

</pre>

-
74%|███████▍ | 3702009/4997817 [00:21<00:07, 174312.24it/s]
+
74%|███████▍ | 3697640/4997817 [00:21<00:07, 171259.85it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3702009/4997817 [00:21<00:07, 174312.24it/s]

+

74%|███████▍ | 3697640/4997817 [00:21<00:07, 171259.85it/s]

-
74%|███████▍ | 3719522/4997817 [00:21&lt;00:07, 174553.76it/s]
+
74%|███████▍ | 3714767/4997817 [00:21&lt;00:07, 170289.24it/s]

</pre>

-
74%|███████▍ | 3719522/4997817 [00:21<00:07, 174553.76it/s]
+
74%|███████▍ | 3714767/4997817 [00:21<00:07, 170289.24it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3719522/4997817 [00:21<00:07, 174553.76it/s]

+

74%|███████▍ | 3714767/4997817 [00:21<00:07, 170289.24it/s]

-
75%|███████▍ | 3736979/4997817 [00:21&lt;00:07, 174483.40it/s]
+
75%|███████▍ | 3732116/4997817 [00:21&lt;00:07, 171240.88it/s]

</pre>

-
75%|███████▍ | 3736979/4997817 [00:21<00:07, 174483.40it/s]
+
75%|███████▍ | 3732116/4997817 [00:21<00:07, 171240.88it/s]

end{sphinxVerbatim}

-

75%|███████▍ | 3736979/4997817 [00:21<00:07, 174483.40it/s]

+

75%|███████▍ | 3732116/4997817 [00:21<00:07, 171240.88it/s]

-
75%|███████▌ | 3754510/4997817 [00:21&lt;00:07, 174726.49it/s]
+
75%|███████▌ | 3749326/4997817 [00:21&lt;00:07, 171495.52it/s]

</pre>

-
75%|███████▌ | 3754510/4997817 [00:21<00:07, 174726.49it/s]
+
75%|███████▌ | 3749326/4997817 [00:21<00:07, 171495.52it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 3754510/4997817 [00:21<00:07, 174726.49it/s]

+

75%|███████▌ | 3749326/4997817 [00:21<00:07, 171495.52it/s]

-
75%|███████▌ | 3772090/4997817 [00:21&lt;00:07, 175044.92it/s]
+
75%|███████▌ | 3766621/4997817 [00:21&lt;00:07, 171929.08it/s]

</pre>

-
75%|███████▌ | 3772090/4997817 [00:21<00:07, 175044.92it/s]
+
75%|███████▌ | 3766621/4997817 [00:21<00:07, 171929.08it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 3772090/4997817 [00:21<00:07, 175044.92it/s]

+

75%|███████▌ | 3766621/4997817 [00:21<00:07, 171929.08it/s]

-
76%|███████▌ | 3789595/4997817 [00:22&lt;00:06, 174949.83it/s]
+
76%|███████▌ | 3783902/4997817 [00:22&lt;00:07, 172191.33it/s]

</pre>

-
76%|███████▌ | 3789595/4997817 [00:22<00:06, 174949.83it/s]
+
76%|███████▌ | 3783902/4997817 [00:22<00:07, 172191.33it/s]

end{sphinxVerbatim}

-

76%|███████▌ | 3789595/4997817 [00:22<00:06, 174949.83it/s]

+

76%|███████▌ | 3783902/4997817 [00:22<00:07, 172191.33it/s]

-
76%|███████▌ | 3807095/4997817 [00:22&lt;00:06, 174961.17it/s]
+
76%|███████▌ | 3801122/4997817 [00:22&lt;00:06, 172005.61it/s]

</pre>

-
76%|███████▌ | 3807095/4997817 [00:22<00:06, 174961.17it/s]
+
76%|███████▌ | 3801122/4997817 [00:22<00:06, 172005.61it/s]

end{sphinxVerbatim}

-

76%|███████▌ | 3807095/4997817 [00:22<00:06, 174961.17it/s]

+

76%|███████▌ | 3801122/4997817 [00:22<00:06, 172005.61it/s]

-
77%|███████▋ | 3824592/4997817 [00:22&lt;00:06, 174435.55it/s]
+
76%|███████▋ | 3818365/4997817 [00:22&lt;00:06, 172128.59it/s]

</pre>

-
77%|███████▋ | 3824592/4997817 [00:22<00:06, 174435.55it/s]
+
76%|███████▋ | 3818365/4997817 [00:22<00:06, 172128.59it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3824592/4997817 [00:22<00:06, 174435.55it/s]

+

76%|███████▋ | 3818365/4997817 [00:22<00:06, 172128.59it/s]

-
77%|███████▋ | 3842037/4997817 [00:22&lt;00:06, 166864.23it/s]
+
77%|███████▋ | 3835579/4997817 [00:22&lt;00:06, 171914.67it/s]

</pre>

-
77%|███████▋ | 3842037/4997817 [00:22<00:06, 166864.23it/s]
+
77%|███████▋ | 3835579/4997817 [00:22<00:06, 171914.67it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3842037/4997817 [00:22<00:06, 166864.23it/s]

+

77%|███████▋ | 3835579/4997817 [00:22<00:06, 171914.67it/s]

-
77%|███████▋ | 3859405/4997817 [00:22&lt;00:06, 168839.77it/s]
+
77%|███████▋ | 3852833/4997817 [00:22&lt;00:06, 172099.05it/s]

</pre>

-
77%|███████▋ | 3859405/4997817 [00:22<00:06, 168839.77it/s]
+
77%|███████▋ | 3852833/4997817 [00:22<00:06, 172099.05it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3859405/4997817 [00:22<00:06, 168839.77it/s]

+

77%|███████▋ | 3852833/4997817 [00:22<00:06, 172099.05it/s]

-
78%|███████▊ | 3876822/4997817 [00:22&lt;00:06, 170399.10it/s]
+
77%|███████▋ | 3870059/4997817 [00:22&lt;00:06, 172144.74it/s]

</pre>

-
78%|███████▊ | 3876822/4997817 [00:22<00:06, 170399.10it/s]
+
77%|███████▋ | 3870059/4997817 [00:22<00:06, 172144.74it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3876822/4997817 [00:22<00:06, 170399.10it/s]

+

77%|███████▋ | 3870059/4997817 [00:22<00:06, 172144.74it/s]

-
78%|███████▊ | 3894424/4997817 [00:22&lt;00:06, 172056.34it/s]
+
78%|███████▊ | 3887319/4997817 [00:22&lt;00:06, 172276.57it/s]

</pre>

-
78%|███████▊ | 3894424/4997817 [00:22<00:06, 172056.34it/s]
+
78%|███████▊ | 3887319/4997817 [00:22<00:06, 172276.57it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3894424/4997817 [00:22<00:06, 172056.34it/s]

+

78%|███████▊ | 3887319/4997817 [00:22<00:06, 172276.57it/s]

-
78%|███████▊ | 3911949/4997817 [00:22&lt;00:06, 172999.62it/s]
+
78%|███████▊ | 3904615/4997817 [00:22&lt;00:06, 172476.96it/s]

</pre>

-
78%|███████▊ | 3911949/4997817 [00:22<00:06, 172999.62it/s]
+
78%|███████▊ | 3904615/4997817 [00:22<00:06, 172476.96it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3911949/4997817 [00:22<00:06, 172999.62it/s]

+

78%|███████▊ | 3904615/4997817 [00:22<00:06, 172476.96it/s]

-
79%|███████▊ | 3929356/4997817 [00:22&lt;00:06, 173315.74it/s]
+
78%|███████▊ | 3922007/4997817 [00:22&lt;00:06, 172904.17it/s]

</pre>

-
79%|███████▊ | 3929356/4997817 [00:22<00:06, 173315.74it/s]
+
78%|███████▊ | 3922007/4997817 [00:22<00:06, 172904.17it/s]

end{sphinxVerbatim}

-

79%|███████▊ | 3929356/4997817 [00:22<00:06, 173315.74it/s]

+

78%|███████▊ | 3922007/4997817 [00:22<00:06, 172904.17it/s]

-
79%|███████▉ | 3946836/4997817 [00:22&lt;00:06, 173753.24it/s]
+
79%|███████▉ | 3939387/4997817 [00:22&lt;00:06, 173170.77it/s]

</pre>

-
79%|███████▉ | 3946836/4997817 [00:22<00:06, 173753.24it/s]
+
79%|███████▉ | 3939387/4997817 [00:22<00:06, 173170.77it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3946836/4997817 [00:22<00:06, 173753.24it/s]

+

79%|███████▉ | 3939387/4997817 [00:22<00:06, 173170.77it/s]

-
79%|███████▉ | 3964224/4997817 [00:23&lt;00:05, 173621.71it/s]
+
79%|███████▉ | 3956846/4997817 [00:23&lt;00:05, 173593.75it/s]

</pre>

-
79%|███████▉ | 3964224/4997817 [00:23<00:05, 173621.71it/s]
+
79%|███████▉ | 3956846/4997817 [00:23<00:05, 173593.75it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3964224/4997817 [00:23<00:05, 173621.71it/s]

+

79%|███████▉ | 3956846/4997817 [00:23<00:05, 173593.75it/s]

-
80%|███████▉ | 3981595/4997817 [00:23&lt;00:05, 173277.02it/s]
+
80%|███████▉ | 3974368/4997817 [00:23&lt;00:05, 174078.35it/s]

</pre>

-
80%|███████▉ | 3981595/4997817 [00:23<00:05, 173277.02it/s]
+
80%|███████▉ | 3974368/4997817 [00:23<00:05, 174078.35it/s]

end{sphinxVerbatim}

-

80%|███████▉ | 3981595/4997817 [00:23<00:05, 173277.02it/s]

+

80%|███████▉ | 3974368/4997817 [00:23<00:05, 174078.35it/s]

-
80%|████████ | 3998970/4997817 [00:23&lt;00:05, 173415.32it/s]
+
80%|███████▉ | 3991776/4997817 [00:23&lt;00:05, 173588.28it/s]

</pre>

-
80%|████████ | 3998970/4997817 [00:23<00:05, 173415.32it/s]
+
80%|███████▉ | 3991776/4997817 [00:23<00:05, 173588.28it/s]

end{sphinxVerbatim}

-

80%|████████ | 3998970/4997817 [00:23<00:05, 173415.32it/s]

+

80%|███████▉ | 3991776/4997817 [00:23<00:05, 173588.28it/s]

-
80%|████████ | 4016316/4997817 [00:23&lt;00:05, 172667.73it/s]
+
80%|████████ | 4009136/4997817 [00:23&lt;00:05, 173547.37it/s]

</pre>

-
80%|████████ | 4016316/4997817 [00:23<00:05, 172667.73it/s]
+
80%|████████ | 4009136/4997817 [00:23<00:05, 173547.37it/s]

end{sphinxVerbatim}

-

80%|████████ | 4016316/4997817 [00:23<00:05, 172667.73it/s]

+

80%|████████ | 4009136/4997817 [00:23<00:05, 173547.37it/s]

-
81%|████████ | 4033587/4997817 [00:23&lt;00:05, 172523.73it/s]
+
81%|████████ | 4026541/4997817 [00:23&lt;00:05, 173693.13it/s]

</pre>

-
81%|████████ | 4033587/4997817 [00:23<00:05, 172523.73it/s]
+
81%|████████ | 4026541/4997817 [00:23<00:05, 173693.13it/s]

end{sphinxVerbatim}

-

81%|████████ | 4033587/4997817 [00:23<00:05, 172523.73it/s]

+

81%|████████ | 4026541/4997817 [00:23<00:05, 173693.13it/s]

-
81%|████████ | 4050842/4997817 [00:23&lt;00:05, 172384.77it/s]
+
81%|████████ | 4043911/4997817 [00:23&lt;00:05, 173453.72it/s]

</pre>

-
81%|████████ | 4050842/4997817 [00:23<00:05, 172384.77it/s]
+
81%|████████ | 4043911/4997817 [00:23<00:05, 173453.72it/s]

end{sphinxVerbatim}

-

81%|████████ | 4050842/4997817 [00:23<00:05, 172384.77it/s]

+

81%|████████ | 4043911/4997817 [00:23<00:05, 173453.72it/s]

-
81%|████████▏ | 4068083/4997817 [00:23&lt;00:05, 171361.88it/s]
+
81%|████████▏ | 4061350/4997817 [00:23&lt;00:05, 173730.80it/s]

</pre>

-
81%|████████▏ | 4068083/4997817 [00:23<00:05, 171361.88it/s]
+
81%|████████▏ | 4061350/4997817 [00:23<00:05, 173730.80it/s]

end{sphinxVerbatim}

-

81%|████████▏ | 4068083/4997817 [00:23<00:05, 171361.88it/s]

+

81%|████████▏ | 4061350/4997817 [00:23<00:05, 173730.80it/s]

-
82%|████████▏ | 4085389/4997817 [00:23&lt;00:05, 171865.91it/s]
+
82%|████████▏ | 4078781/4997817 [00:23&lt;00:05, 173898.92it/s]

</pre>

-
82%|████████▏ | 4085389/4997817 [00:23<00:05, 171865.91it/s]
+
82%|████████▏ | 4078781/4997817 [00:23<00:05, 173898.92it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4085389/4997817 [00:23<00:05, 171865.91it/s]

+

82%|████████▏ | 4078781/4997817 [00:23<00:05, 173898.92it/s]

-
82%|████████▏ | 4102681/4997817 [00:23&lt;00:05, 172176.42it/s]
+
82%|████████▏ | 4096172/4997817 [00:23&lt;00:05, 173753.67it/s]

</pre>

-
82%|████████▏ | 4102681/4997817 [00:23<00:05, 172176.42it/s]
+
82%|████████▏ | 4096172/4997817 [00:23<00:05, 173753.67it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4102681/4997817 [00:23<00:05, 172176.42it/s]

+

82%|████████▏ | 4096172/4997817 [00:23<00:05, 173753.67it/s]

-
82%|████████▏ | 4120022/4997817 [00:23&lt;00:05, 172542.13it/s]
+
82%|████████▏ | 4113549/4997817 [00:23&lt;00:05, 173755.01it/s]

</pre>

-
82%|████████▏ | 4120022/4997817 [00:23<00:05, 172542.13it/s]
+
82%|████████▏ | 4113549/4997817 [00:23<00:05, 173755.01it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4120022/4997817 [00:23<00:05, 172542.13it/s]

+

82%|████████▏ | 4113549/4997817 [00:23<00:05, 173755.01it/s]

-
83%|████████▎ | 4137278/4997817 [00:24&lt;00:04, 172439.36it/s]
+
83%|████████▎ | 4130971/4997817 [00:24&lt;00:04, 173892.07it/s]

</pre>

-
83%|████████▎ | 4137278/4997817 [00:24<00:04, 172439.36it/s]
+
83%|████████▎ | 4130971/4997817 [00:24<00:04, 173892.07it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4137278/4997817 [00:24<00:04, 172439.36it/s]

+

83%|████████▎ | 4130971/4997817 [00:24<00:04, 173892.07it/s]

-
83%|████████▎ | 4154574/4997817 [00:24&lt;00:04, 172592.57it/s]
+
83%|████████▎ | 4148398/4997817 [00:24&lt;00:04, 174002.57it/s]

</pre>

-
83%|████████▎ | 4154574/4997817 [00:24<00:04, 172592.57it/s]
+
83%|████████▎ | 4148398/4997817 [00:24<00:04, 174002.57it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4154574/4997817 [00:24<00:04, 172592.57it/s]

+

83%|████████▎ | 4148398/4997817 [00:24<00:04, 174002.57it/s]

-
83%|████████▎ | 4171871/4997817 [00:24&lt;00:04, 172702.85it/s]
+
83%|████████▎ | 4165799/4997817 [00:24&lt;00:04, 174000.74it/s]

</pre>

-
83%|████████▎ | 4171871/4997817 [00:24<00:04, 172702.85it/s]
+
83%|████████▎ | 4165799/4997817 [00:24<00:04, 174000.74it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4171871/4997817 [00:24<00:04, 172702.85it/s]

+

83%|████████▎ | 4165799/4997817 [00:24<00:04, 174000.74it/s]

-
84%|████████▍ | 4189189/4997817 [00:24&lt;00:04, 172841.82it/s]
+
84%|████████▎ | 4183281/4997817 [00:24&lt;00:04, 174242.88it/s]

</pre>

-
84%|████████▍ | 4189189/4997817 [00:24<00:04, 172841.82it/s]
+
84%|████████▎ | 4183281/4997817 [00:24<00:04, 174242.88it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4189189/4997817 [00:24<00:04, 172841.82it/s]

+

84%|████████▎ | 4183281/4997817 [00:24<00:04, 174242.88it/s]

-
84%|████████▍ | 4206509/4997817 [00:24&lt;00:04, 172945.78it/s]
+
84%|████████▍ | 4200706/4997817 [00:24&lt;00:04, 174106.00it/s]

</pre>

-
84%|████████▍ | 4206509/4997817 [00:24<00:04, 172945.78it/s]
+
84%|████████▍ | 4200706/4997817 [00:24<00:04, 174106.00it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4206509/4997817 [00:24<00:04, 172945.78it/s]

+

84%|████████▍ | 4200706/4997817 [00:24<00:04, 174106.00it/s]

-
85%|████████▍ | 4223872/4997817 [00:24&lt;00:04, 173149.38it/s]
+
84%|████████▍ | 4218117/4997817 [00:24&lt;00:04, 173940.78it/s]

</pre>

-
85%|████████▍ | 4223872/4997817 [00:24<00:04, 173149.38it/s]
+
84%|████████▍ | 4218117/4997817 [00:24<00:04, 173940.78it/s]

end{sphinxVerbatim}

-

85%|████████▍ | 4223872/4997817 [00:24<00:04, 173149.38it/s]

+

84%|████████▍ | 4218117/4997817 [00:24<00:04, 173940.78it/s]

-
85%|████████▍ | 4241236/4997817 [00:24&lt;00:04, 173293.34it/s]
+
85%|████████▍ | 4235512/4997817 [00:24&lt;00:04, 173443.00it/s]

</pre>

-
85%|████████▍ | 4241236/4997817 [00:24<00:04, 173293.34it/s]
+
85%|████████▍ | 4235512/4997817 [00:24<00:04, 173443.00it/s]

end{sphinxVerbatim}

-

85%|████████▍ | 4241236/4997817 [00:24<00:04, 173293.34it/s]

+

85%|████████▍ | 4235512/4997817 [00:24<00:04, 173443.00it/s]

-
85%|████████▌ | 4258566/4997817 [00:24&lt;00:04, 172867.69it/s]
+
85%|████████▌ | 4252857/4997817 [00:24&lt;00:04, 170649.20it/s]

</pre>

-
85%|████████▌ | 4258566/4997817 [00:24<00:04, 172867.69it/s]
+
85%|████████▌ | 4252857/4997817 [00:24<00:04, 170649.20it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 4258566/4997817 [00:24<00:04, 172867.69it/s]

+

85%|████████▌ | 4252857/4997817 [00:24<00:04, 170649.20it/s]

-
86%|████████▌ | 4275854/4997817 [00:24&lt;00:04, 172857.11it/s]
+
85%|████████▌ | 4270099/4997817 [00:24&lt;00:04, 171171.60it/s]

</pre>

-
86%|████████▌ | 4275854/4997817 [00:24<00:04, 172857.11it/s]
+
85%|████████▌ | 4270099/4997817 [00:24<00:04, 171171.60it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4275854/4997817 [00:24<00:04, 172857.11it/s]

+

85%|████████▌ | 4270099/4997817 [00:24<00:04, 171171.60it/s]

-
86%|████████▌ | 4293140/4997817 [00:24&lt;00:04, 172477.24it/s]
+
86%|████████▌ | 4287535/4997817 [00:24&lt;00:04, 172116.89it/s]

</pre>

-
86%|████████▌ | 4293140/4997817 [00:24<00:04, 172477.24it/s]
+
86%|████████▌ | 4287535/4997817 [00:24<00:04, 172116.89it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4293140/4997817 [00:24<00:04, 172477.24it/s]

+

86%|████████▌ | 4287535/4997817 [00:24<00:04, 172116.89it/s]

-
86%|████████▌ | 4310389/4997817 [00:25&lt;00:03, 172149.13it/s]
+
86%|████████▌ | 4304753/4997817 [00:25&lt;00:04, 171652.64it/s]

</pre>

-
86%|████████▌ | 4310389/4997817 [00:25<00:03, 172149.13it/s]
+
86%|████████▌ | 4304753/4997817 [00:25<00:04, 171652.64it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4310389/4997817 [00:25<00:03, 172149.13it/s]

+

86%|████████▌ | 4304753/4997817 [00:25<00:04, 171652.64it/s]

-
87%|████████▋ | 4327605/4997817 [00:25&lt;00:03, 172139.17it/s]
+
86%|████████▋ | 4321923/4997817 [00:25&lt;00:03, 171133.83it/s]

</pre>

-
87%|████████▋ | 4327605/4997817 [00:25<00:03, 172139.17it/s]
+
86%|████████▋ | 4321923/4997817 [00:25<00:03, 171133.83it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4327605/4997817 [00:25<00:03, 172139.17it/s]

+

86%|████████▋ | 4321923/4997817 [00:25<00:03, 171133.83it/s]

-
87%|████████▋ | 4344830/4997817 [00:25&lt;00:03, 172169.08it/s]
+
87%|████████▋ | 4339088/4997817 [00:25&lt;00:03, 171280.50it/s]

</pre>

-
87%|████████▋ | 4344830/4997817 [00:25<00:03, 172169.08it/s]
+
87%|████████▋ | 4339088/4997817 [00:25<00:03, 171280.50it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4344830/4997817 [00:25<00:03, 172169.08it/s]

+

87%|████████▋ | 4339088/4997817 [00:25<00:03, 171280.50it/s]

-
87%|████████▋ | 4362076/4997817 [00:25&lt;00:03, 172251.35it/s]
+
87%|████████▋ | 4356310/4997817 [00:25&lt;00:03, 171556.65it/s]

</pre>

-
87%|████████▋ | 4362076/4997817 [00:25<00:03, 172251.35it/s]
+
87%|████████▋ | 4356310/4997817 [00:25<00:03, 171556.65it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4362076/4997817 [00:25<00:03, 172251.35it/s]

+

87%|████████▋ | 4356310/4997817 [00:25<00:03, 171556.65it/s]

-
88%|████████▊ | 4379302/4997817 [00:25&lt;00:03, 171900.04it/s]
+
88%|████████▊ | 4373468/4997817 [00:25&lt;00:03, 171134.15it/s]

</pre>

-
88%|████████▊ | 4379302/4997817 [00:25<00:03, 171900.04it/s]
+
88%|████████▊ | 4373468/4997817 [00:25<00:03, 171134.15it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4379302/4997817 [00:25<00:03, 171900.04it/s]

+

88%|████████▊ | 4373468/4997817 [00:25<00:03, 171134.15it/s]

-
88%|████████▊ | 4396523/4997817 [00:25&lt;00:03, 171990.54it/s]
+
88%|████████▊ | 4390583/4997817 [00:25&lt;00:03, 170421.14it/s]

</pre>

-
88%|████████▊ | 4396523/4997817 [00:25<00:03, 171990.54it/s]
+
88%|████████▊ | 4390583/4997817 [00:25<00:03, 170421.14it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4396523/4997817 [00:25<00:03, 171990.54it/s]

+

88%|████████▊ | 4390583/4997817 [00:25<00:03, 170421.14it/s]

-
88%|████████▊ | 4413723/4997817 [00:25&lt;00:03, 171969.84it/s]
+
88%|████████▊ | 4407627/4997817 [00:25&lt;00:03, 170280.06it/s]

</pre>

-
88%|████████▊ | 4413723/4997817 [00:25<00:03, 171969.84it/s]
+
88%|████████▊ | 4407627/4997817 [00:25<00:03, 170280.06it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4413723/4997817 [00:25<00:03, 171969.84it/s]

+

88%|████████▊ | 4407627/4997817 [00:25<00:03, 170280.06it/s]

-
89%|████████▊ | 4430938/4997817 [00:25&lt;00:03, 172020.80it/s]
+
89%|████████▊ | 4424754/4997817 [00:25&lt;00:03, 170570.84it/s]

</pre>

-
89%|████████▊ | 4430938/4997817 [00:25<00:03, 172020.80it/s]
+
89%|████████▊ | 4424754/4997817 [00:25<00:03, 170570.84it/s]

end{sphinxVerbatim}

-

89%|████████▊ | 4430938/4997817 [00:25<00:03, 172020.80it/s]

+

89%|████████▊ | 4424754/4997817 [00:25<00:03, 170570.84it/s]

-
89%|████████▉ | 4448169/4997817 [00:25&lt;00:03, 172104.71it/s]
+
89%|████████▉ | 4441812/4997817 [00:25&lt;00:03, 170547.12it/s]

</pre>

-
89%|████████▉ | 4448169/4997817 [00:25<00:03, 172104.71it/s]
+
89%|████████▉ | 4441812/4997817 [00:25<00:03, 170547.12it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4448169/4997817 [00:25<00:03, 172104.71it/s]

+

89%|████████▉ | 4441812/4997817 [00:25<00:03, 170547.12it/s]

-
89%|████████▉ | 4465473/4997817 [00:25&lt;00:03, 172382.22it/s]
+
89%|████████▉ | 4459092/4997817 [00:25&lt;00:03, 171217.73it/s]

</pre>

-
89%|████████▉ | 4465473/4997817 [00:25<00:03, 172382.22it/s]
+
89%|████████▉ | 4459092/4997817 [00:25<00:03, 171217.73it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4465473/4997817 [00:25<00:03, 172382.22it/s]

+

89%|████████▉ | 4459092/4997817 [00:25<00:03, 171217.73it/s]

-
90%|████████▉ | 4482712/4997817 [00:26&lt;00:02, 172378.44it/s]
+
90%|████████▉ | 4476226/4997817 [00:26&lt;00:03, 171253.18it/s]

</pre>

-
90%|████████▉ | 4482712/4997817 [00:26<00:02, 172378.44it/s]
+
90%|████████▉ | 4476226/4997817 [00:26<00:03, 171253.18it/s]

end{sphinxVerbatim}

-

90%|████████▉ | 4482712/4997817 [00:26<00:02, 172378.44it/s]

+

90%|████████▉ | 4476226/4997817 [00:26<00:03, 171253.18it/s]

-
90%|█████████ | 4499970/4997817 [00:26&lt;00:02, 172434.62it/s]
+
90%|████████▉ | 4493352/4997817 [00:26&lt;00:02, 170524.58it/s]

</pre>

-
90%|█████████ | 4499970/4997817 [00:26<00:02, 172434.62it/s]
+
90%|████████▉ | 4493352/4997817 [00:26<00:02, 170524.58it/s]

end{sphinxVerbatim}

-

90%|█████████ | 4499970/4997817 [00:26<00:02, 172434.62it/s]

+

90%|████████▉ | 4493352/4997817 [00:26<00:02, 170524.58it/s]

-
90%|█████████ | 4517217/4997817 [00:26&lt;00:02, 172442.45it/s]
+
90%|█████████ | 4510483/4997817 [00:26&lt;00:02, 170755.34it/s]

</pre>

-
90%|█████████ | 4517217/4997817 [00:26<00:02, 172442.45it/s]
+
90%|█████████ | 4510483/4997817 [00:26<00:02, 170755.34it/s]

end{sphinxVerbatim}

-

90%|█████████ | 4517217/4997817 [00:26<00:02, 172442.45it/s]

+

90%|█████████ | 4510483/4997817 [00:26<00:02, 170755.34it/s]

-
91%|█████████ | 4534462/4997817 [00:26&lt;00:02, 172125.34it/s]
+
91%|█████████ | 4527595/4997817 [00:26&lt;00:02, 170861.32it/s]

</pre>

-
91%|█████████ | 4534462/4997817 [00:26<00:02, 172125.34it/s]
+
91%|█████████ | 4527595/4997817 [00:26<00:02, 170861.32it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4534462/4997817 [00:26<00:02, 172125.34it/s]

+

91%|█████████ | 4527595/4997817 [00:26<00:02, 170861.32it/s]

-
91%|█████████ | 4551698/4997817 [00:26&lt;00:02, 172191.75it/s]
+
91%|█████████ | 4544870/4997817 [00:26&lt;00:02, 171424.08it/s]

</pre>

-
91%|█████████ | 4551698/4997817 [00:26<00:02, 172191.75it/s]
+
91%|█████████ | 4544870/4997817 [00:26<00:02, 171424.08it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4551698/4997817 [00:26<00:02, 172191.75it/s]

+

91%|█████████ | 4544870/4997817 [00:26<00:02, 171424.08it/s]

-
91%|█████████▏| 4568918/4997817 [00:26&lt;00:02, 172049.70it/s]
+
91%|█████████▏| 4562041/4997817 [00:26&lt;00:02, 171505.13it/s]

</pre>

-
91%|█████████▏| 4568918/4997817 [00:26<00:02, 172049.70it/s]
+
91%|█████████▏| 4562041/4997817 [00:26<00:02, 171505.13it/s]

end{sphinxVerbatim}

-

91%|█████████▏| 4568918/4997817 [00:26<00:02, 172049.70it/s]

+

91%|█████████▏| 4562041/4997817 [00:26<00:02, 171505.13it/s]

-
92%|█████████▏| 4586146/4997817 [00:26&lt;00:02, 172115.18it/s]
+
92%|█████████▏| 4579192/4997817 [00:26&lt;00:02, 171383.07it/s]

</pre>

-
92%|█████████▏| 4586146/4997817 [00:26<00:02, 172115.18it/s]
+
92%|█████████▏| 4579192/4997817 [00:26<00:02, 171383.07it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4586146/4997817 [00:26<00:02, 172115.18it/s]

+

92%|█████████▏| 4579192/4997817 [00:26<00:02, 171383.07it/s]

-
92%|█████████▏| 4603359/4997817 [00:26&lt;00:02, 172117.83it/s]
+
92%|█████████▏| 4596361/4997817 [00:26&lt;00:02, 171473.01it/s]

</pre>

-
92%|█████████▏| 4603359/4997817 [00:26<00:02, 172117.83it/s]
+
92%|█████████▏| 4596361/4997817 [00:26<00:02, 171473.01it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4603359/4997817 [00:26<00:02, 172117.83it/s]

+

92%|█████████▏| 4596361/4997817 [00:26<00:02, 171473.01it/s]

-
92%|█████████▏| 4620571/4997817 [00:26&lt;00:02, 172059.99it/s]
+
92%|█████████▏| 4613605/4997817 [00:26&lt;00:02, 171760.21it/s]

</pre>

-
92%|█████████▏| 4620571/4997817 [00:26<00:02, 172059.99it/s]
+
92%|█████████▏| 4613605/4997817 [00:26<00:02, 171760.21it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4620571/4997817 [00:26<00:02, 172059.99it/s]

+

92%|█████████▏| 4613605/4997817 [00:26<00:02, 171760.21it/s]

-
93%|█████████▎| 4637778/4997817 [00:26&lt;00:02, 171793.76it/s]
+
93%|█████████▎| 4630782/4997817 [00:26&lt;00:02, 171355.67it/s]

</pre>

-
93%|█████████▎| 4637778/4997817 [00:26<00:02, 171793.76it/s]
+
93%|█████████▎| 4630782/4997817 [00:26<00:02, 171355.67it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4637778/4997817 [00:26<00:02, 171793.76it/s]

+

93%|█████████▎| 4630782/4997817 [00:26<00:02, 171355.67it/s]

-
93%|█████████▎| 4654966/4997817 [00:27&lt;00:01, 171816.57it/s]
+
93%|█████████▎| 4647918/4997817 [00:27&lt;00:02, 170602.77it/s]

</pre>

-
93%|█████████▎| 4654966/4997817 [00:27<00:01, 171816.57it/s]
+
93%|█████████▎| 4647918/4997817 [00:27<00:02, 170602.77it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4654966/4997817 [00:27<00:01, 171816.57it/s]

+

93%|█████████▎| 4647918/4997817 [00:27<00:02, 170602.77it/s]

-
93%|█████████▎| 4672149/4997817 [00:27&lt;00:01, 171816.10it/s]
+
93%|█████████▎| 4664980/4997817 [00:27&lt;00:01, 170578.45it/s]

</pre>

-
93%|█████████▎| 4672149/4997817 [00:27<00:01, 171816.10it/s]
+
93%|█████████▎| 4664980/4997817 [00:27<00:01, 170578.45it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4672149/4997817 [00:27<00:01, 171816.10it/s]

+

93%|█████████▎| 4664980/4997817 [00:27<00:01, 170578.45it/s]

-
94%|█████████▍| 4689331/4997817 [00:27&lt;00:01, 171560.20it/s]
+
94%|█████████▎| 4682039/4997817 [00:27&lt;00:01, 170360.79it/s]

</pre>

-
94%|█████████▍| 4689331/4997817 [00:27<00:01, 171560.20it/s]
+
94%|█████████▎| 4682039/4997817 [00:27<00:01, 170360.79it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4689331/4997817 [00:27<00:01, 171560.20it/s]

+

94%|█████████▎| 4682039/4997817 [00:27<00:01, 170360.79it/s]

-
94%|█████████▍| 4706520/4997817 [00:27&lt;00:01, 171657.19it/s]
+
94%|█████████▍| 4699140/4997817 [00:27&lt;00:01, 170549.75it/s]

</pre>

-
94%|█████████▍| 4706520/4997817 [00:27<00:01, 171657.19it/s]
+
94%|█████████▍| 4699140/4997817 [00:27<00:01, 170549.75it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4706520/4997817 [00:27<00:01, 171657.19it/s]

+

94%|█████████▍| 4699140/4997817 [00:27<00:01, 170549.75it/s]

-
95%|█████████▍| 4723686/4997817 [00:27&lt;00:01, 167919.96it/s]
+
94%|█████████▍| 4716353/4997817 [00:27&lt;00:01, 171017.18it/s]

</pre>

-
95%|█████████▍| 4723686/4997817 [00:27<00:01, 167919.96it/s]
+
94%|█████████▍| 4716353/4997817 [00:27<00:01, 171017.18it/s]

end{sphinxVerbatim}

-

95%|█████████▍| 4723686/4997817 [00:27<00:01, 167919.96it/s]

+

94%|█████████▍| 4716353/4997817 [00:27<00:01, 171017.18it/s]

-
95%|█████████▍| 4740781/4997817 [00:27&lt;00:01, 168811.86it/s]
+
95%|█████████▍| 4733542/4997817 [00:27&lt;00:01, 171276.33it/s]

</pre>

-
95%|█████████▍| 4740781/4997817 [00:27<00:01, 168811.86it/s]
+
95%|█████████▍| 4733542/4997817 [00:27<00:01, 171276.33it/s]

end{sphinxVerbatim}

-

95%|█████████▍| 4740781/4997817 [00:27<00:01, 168811.86it/s]

+

95%|█████████▍| 4733542/4997817 [00:27<00:01, 171276.33it/s]

-
95%|█████████▌| 4757868/4997817 [00:27&lt;00:01, 169418.38it/s]
+
95%|█████████▌| 4750670/4997817 [00:27&lt;00:01, 170340.40it/s]

</pre>

-
95%|█████████▌| 4757868/4997817 [00:27<00:01, 169418.38it/s]
+
95%|█████████▌| 4750670/4997817 [00:27<00:01, 170340.40it/s]

end{sphinxVerbatim}

-

95%|█████████▌| 4757868/4997817 [00:27<00:01, 169418.38it/s]

+

95%|█████████▌| 4750670/4997817 [00:27<00:01, 170340.40it/s]

-
96%|█████████▌| 4774923/4997817 [00:27&lt;00:01, 169750.75it/s]
+
95%|█████████▌| 4767706/4997817 [00:27&lt;00:01, 163127.11it/s]

</pre>

-
96%|█████████▌| 4774923/4997817 [00:27<00:01, 169750.75it/s]
+
95%|█████████▌| 4767706/4997817 [00:27<00:01, 163127.11it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4774923/4997817 [00:27<00:01, 169750.75it/s]

+

95%|█████████▌| 4767706/4997817 [00:27<00:01, 163127.11it/s]

-
96%|█████████▌| 4791930/4997817 [00:27&lt;00:01, 169843.37it/s]
+
96%|█████████▌| 4785073/4997817 [00:27&lt;00:01, 166182.71it/s]

</pre>

-
96%|█████████▌| 4791930/4997817 [00:27<00:01, 169843.37it/s]
+
96%|█████████▌| 4785073/4997817 [00:27<00:01, 166182.71it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4791930/4997817 [00:27<00:01, 169843.37it/s]

+

96%|█████████▌| 4785073/4997817 [00:27<00:01, 166182.71it/s]

-
96%|█████████▌| 4809039/4997817 [00:27&lt;00:01, 170212.17it/s]
+
96%|█████████▌| 4802335/4997817 [00:27&lt;00:01, 168064.55it/s]

</pre>

-
96%|█████████▌| 4809039/4997817 [00:27<00:01, 170212.17it/s]
+
96%|█████████▌| 4802335/4997817 [00:27<00:01, 168064.55it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4809039/4997817 [00:27<00:01, 170212.17it/s]

+

96%|█████████▌| 4802335/4997817 [00:27<00:01, 168064.55it/s]

-
97%|█████████▋| 4826135/4997817 [00:28&lt;00:01, 170433.15it/s]
+
96%|█████████▋| 4819387/4997817 [00:28&lt;00:01, 168784.98it/s]

</pre>

-
97%|█████████▋| 4826135/4997817 [00:28<00:01, 170433.15it/s]
+
96%|█████████▋| 4819387/4997817 [00:28<00:01, 168784.98it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4826135/4997817 [00:28<00:01, 170433.15it/s]

+

96%|█████████▋| 4819387/4997817 [00:28<00:01, 168784.98it/s]

-
97%|█████████▋| 4843326/4997817 [00:28&lt;00:00, 170871.60it/s]
+
97%|█████████▋| 4836515/4997817 [00:28&lt;00:00, 169520.47it/s]

</pre>

-
97%|█████████▋| 4843326/4997817 [00:28<00:00, 170871.60it/s]
+
97%|█████████▋| 4836515/4997817 [00:28<00:00, 169520.47it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4843326/4997817 [00:28<00:00, 170871.60it/s]

+

97%|█████████▋| 4836515/4997817 [00:28<00:00, 169520.47it/s]

-
97%|█████████▋| 4860458/4997817 [00:28&lt;00:00, 171002.81it/s]
+
97%|█████████▋| 4853724/4997817 [00:28&lt;00:00, 170280.81it/s]

</pre>

-
97%|█████████▋| 4860458/4997817 [00:28<00:00, 171002.81it/s]
+
97%|█████████▋| 4853724/4997817 [00:28<00:00, 170280.81it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4860458/4997817 [00:28<00:00, 171002.81it/s]

+

97%|█████████▋| 4853724/4997817 [00:28<00:00, 170280.81it/s]

-
98%|█████████▊| 4877647/4997817 [00:28&lt;00:00, 171266.30it/s]
+
97%|█████████▋| 4871150/4997817 [00:28&lt;00:00, 171463.19it/s]

</pre>

-
98%|█████████▊| 4877647/4997817 [00:28<00:00, 171266.30it/s]
+
97%|█████████▋| 4871150/4997817 [00:28<00:00, 171463.19it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4877647/4997817 [00:28<00:00, 171266.30it/s]

+

97%|█████████▋| 4871150/4997817 [00:28<00:00, 171463.19it/s]

-
98%|█████████▊| 4894775/4997817 [00:28&lt;00:00, 170862.07it/s]
+
98%|█████████▊| 4888309/4997817 [00:28&lt;00:00, 171188.95it/s]

</pre>

-
98%|█████████▊| 4894775/4997817 [00:28<00:00, 170862.07it/s]
+
98%|█████████▊| 4888309/4997817 [00:28<00:00, 171188.95it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4894775/4997817 [00:28<00:00, 170862.07it/s]

+

98%|█████████▊| 4888309/4997817 [00:28<00:00, 171188.95it/s]

-
98%|█████████▊| 4911923/4997817 [00:28&lt;00:00, 171043.44it/s]
+
98%|█████████▊| 4905437/4997817 [00:28&lt;00:00, 170805.34it/s]

</pre>

-
98%|█████████▊| 4911923/4997817 [00:28<00:00, 171043.44it/s]
+
98%|█████████▊| 4905437/4997817 [00:28<00:00, 170805.34it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4911923/4997817 [00:28<00:00, 171043.44it/s]

+

98%|█████████▊| 4905437/4997817 [00:28<00:00, 170805.34it/s]

-
99%|█████████▊| 4929176/4997817 [00:28&lt;00:00, 171486.81it/s]
+
98%|█████████▊| 4922524/4997817 [00:28&lt;00:00, 170649.37it/s]

</pre>

-
99%|█████████▊| 4929176/4997817 [00:28<00:00, 171486.81it/s]
+
98%|█████████▊| 4922524/4997817 [00:28<00:00, 170649.37it/s]

end{sphinxVerbatim}

-

99%|█████████▊| 4929176/4997817 [00:28<00:00, 171486.81it/s]

+

98%|█████████▊| 4922524/4997817 [00:28<00:00, 170649.37it/s]

-
99%|█████████▉| 4946356/4997817 [00:28&lt;00:00, 171577.53it/s]
+
99%|█████████▉| 4939729/4997817 [00:28&lt;00:00, 171065.77it/s]

</pre>

-
99%|█████████▉| 4946356/4997817 [00:28<00:00, 171577.53it/s]
+
99%|█████████▉| 4939729/4997817 [00:28<00:00, 171065.77it/s]

end{sphinxVerbatim}

-

99%|█████████▉| 4946356/4997817 [00:28<00:00, 171577.53it/s]

+

99%|█████████▉| 4939729/4997817 [00:28<00:00, 171065.77it/s]

-
99%|█████████▉| 4963515/4997817 [00:28&lt;00:00, 171205.67it/s]
+
99%|█████████▉| 4956839/4997817 [00:28&lt;00:00, 164371.72it/s]

</pre>

-
99%|█████████▉| 4963515/4997817 [00:28<00:00, 171205.67it/s]
+
99%|█████████▉| 4956839/4997817 [00:28<00:00, 164371.72it/s]

end{sphinxVerbatim}

-

99%|█████████▉| 4963515/4997817 [00:28<00:00, 171205.67it/s]

+

99%|█████████▉| 4956839/4997817 [00:28<00:00, 164371.72it/s]

-
100%|█████████▉| 4980923/4997817 [00:28&lt;00:00, 172063.53it/s]
+
100%|█████████▉| 4973835/4997817 [00:28&lt;00:00, 165997.03it/s]

</pre>

-
100%|█████████▉| 4980923/4997817 [00:28<00:00, 172063.53it/s]
+
100%|█████████▉| 4973835/4997817 [00:28<00:00, 165997.03it/s]

end{sphinxVerbatim}

-

100%|█████████▉| 4980923/4997817 [00:28<00:00, 172063.53it/s]

+

100%|█████████▉| 4973835/4997817 [00:28<00:00, 165997.03it/s]

-
100%|██████████| 4997817/4997817 [00:29&lt;00:00, 172102.99it/s]
+
100%|█████████▉| 4991073/4997817 [00:29&lt;00:00, 167868.43it/s]

</pre>

-
100%|██████████| 4997817/4997817 [00:29<00:00, 172102.99it/s]
+
100%|█████████▉| 4991073/4997817 [00:29<00:00, 167868.43it/s]

end{sphinxVerbatim}

-

100%|██████████| 4997817/4997817 [00:29<00:00, 172102.99it/s]

+

100%|█████████▉| 4991073/4997817 [00:29<00:00, 167868.43it/s]

-
-
-
+
+
+
100%|██████████| 4997817/4997817 [00:29&lt;00:00, 171653.36it/s]
+

</pre>

+
+
+
100%|██████████| 4997817/4997817 [00:29<00:00, 171653.36it/s]
+

end{sphinxVerbatim}

+
+
+
+

100%|██████████| 4997817/4997817 [00:29<00:00, 171653.36it/s]

-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -8880,7 +8897,7 @@

Get label quality scores -{"state": {"d4f8b63ff55f44d0806b2c2907aefec4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c6113d8dbfe84dd9b62fdc3abc1bb77f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5b945b8979b1403c81a800af34b66e03": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d4f8b63ff55f44d0806b2c2907aefec4", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c6113d8dbfe84dd9b62fdc3abc1bb77f", "value": 30.0}}, "a63ee572a83d4d56897761721e4b9463": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "da1005f0226e4c098b0ba80da39e5dde": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "79d27e5270204d64987b0e80dd9182ed": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a63ee572a83d4d56897761721e4b9463", "placeholder": "\u200b", "style": "IPY_MODEL_da1005f0226e4c098b0ba80da39e5dde", "value": "number of examples processed for estimating thresholds: 100%"}}, "5ba9455423fc49b9afd09dd55a76d451": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea9c235a65204d95915e6252ce4849a9": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "3b176614773d47b69402c245a311bef1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5ba9455423fc49b9afd09dd55a76d451", "placeholder": "\u200b", "style": "IPY_MODEL_ea9c235a65204d95915e6252ce4849a9", "value": " 30/30 [00:00<00:00, 405.15it/s]"}}, "b9a8cc73eed24f51a6f043294d33fa58": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f6f7d2e0db9b4e23bd565eeb1ebe8323": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_79d27e5270204d64987b0e80dd9182ed", "IPY_MODEL_5b945b8979b1403c81a800af34b66e03", "IPY_MODEL_3b176614773d47b69402c245a311bef1"], "layout": "IPY_MODEL_b9a8cc73eed24f51a6f043294d33fa58"}}, "59d122979e00418d9d2b44a0649e9c99": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9eaf86d2100845cf89b90fbec4d83ff0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c369934d7c86476eb48d4583e720e228": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_59d122979e00418d9d2b44a0649e9c99", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9eaf86d2100845cf89b90fbec4d83ff0", "value": 30.0}}, "7c23cb9954844791b103ca64e83fc5b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9f5aabf00d6c4045899a995a8dbacb97": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c1b440b00f9f47e78b555fe6d71caf22": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7c23cb9954844791b103ca64e83fc5b3", "placeholder": "\u200b", "style": "IPY_MODEL_9f5aabf00d6c4045899a995a8dbacb97", "value": "number of examples processed for checking labels: 100%"}}, "327d4e33d6c34e26aa9b7dc644a5a780": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9ce6ea46e8e4c9fabad8b42c3aeb9f3": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "5b31e79b52f449bbb8406036a81145c5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_327d4e33d6c34e26aa9b7dc644a5a780", "placeholder": "\u200b", "style": "IPY_MODEL_e9ce6ea46e8e4c9fabad8b42c3aeb9f3", "value": " 30/30 [00:36<00:00, 1.25s/it]"}}, "41785dfc20e04971b132df33fa7c9385": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea68cf0375d04b00803fe43e815130fb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c1b440b00f9f47e78b555fe6d71caf22", "IPY_MODEL_c369934d7c86476eb48d4583e720e228", "IPY_MODEL_5b31e79b52f449bbb8406036a81145c5"], "layout": "IPY_MODEL_41785dfc20e04971b132df33fa7c9385"}}, "7a602a978fd545f79286c9665c899a5f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85e8dd09ec894b74b87290c37be9fa4d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a4ad64cf3b8e42cbbd156ea3ad023cf0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7a602a978fd545f79286c9665c899a5f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_85e8dd09ec894b74b87290c37be9fa4d", "value": 30.0}}, "0cabd023fdf0459dade56fdbdab8a722": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a398413dd01349efb0e6af391f0dd506": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "20604eb91f914901b8cd049fe40aed0c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0cabd023fdf0459dade56fdbdab8a722", "placeholder": "\u200b", "style": "IPY_MODEL_a398413dd01349efb0e6af391f0dd506", "value": "images processed using softmin: 100%"}}, "d805351f37ea4bda8b93d3028d6b823b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8745eabd766a4561977991454dbae104": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c021c3820ba740b698720b87aaae46aa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d805351f37ea4bda8b93d3028d6b823b", "placeholder": "\u200b", "style": "IPY_MODEL_8745eabd766a4561977991454dbae104", "value": " 30/30 [00:01<00:00, 23.52it/s]"}}, "7884f1c305fa4100a3bb6774296775e3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "10262fae8e7241aaa83534e155136cc8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_20604eb91f914901b8cd049fe40aed0c", "IPY_MODEL_a4ad64cf3b8e42cbbd156ea3ad023cf0", "IPY_MODEL_c021c3820ba740b698720b87aaae46aa"], "layout": "IPY_MODEL_7884f1c305fa4100a3bb6774296775e3"}}}, "version_major": 2, "version_minor": 0} +{"state": {"8b216df6a82549028cf380b5c944f427": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "97a05aaa1cea4629a5f6e404503fe1fb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ca92df195fee43ed9998d70c83dbd0c9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8b216df6a82549028cf380b5c944f427", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_97a05aaa1cea4629a5f6e404503fe1fb", "value": 30.0}}, "6ed5013c50894cd89b91261bbeec4d16": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5ef179f330424686a58df23ba2223516": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "368b604cdb6f4085b9abd73ffd1a45bc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6ed5013c50894cd89b91261bbeec4d16", "placeholder": "\u200b", "style": "IPY_MODEL_5ef179f330424686a58df23ba2223516", "value": "number of examples processed for estimating thresholds: 100%"}}, "c1dc95af3caa41ee83d931451be13669": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0d5c92857de46d3b3b21c22a182dd91": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "4a55bbc2769e4dc18e208d291fd5c942": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c1dc95af3caa41ee83d931451be13669", "placeholder": "\u200b", "style": "IPY_MODEL_f0d5c92857de46d3b3b21c22a182dd91", "value": " 30/30 [00:00<00:00, 406.95it/s]"}}, "6918345b4e494c38ba558c064f628664": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "24e1cccf99014e9691effff931a51ace": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_368b604cdb6f4085b9abd73ffd1a45bc", "IPY_MODEL_ca92df195fee43ed9998d70c83dbd0c9", "IPY_MODEL_4a55bbc2769e4dc18e208d291fd5c942"], "layout": "IPY_MODEL_6918345b4e494c38ba558c064f628664"}}, "440468c39f1843edb328131f83dd3ba9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "35c48d7b09fc4cc5bbb1530c969e77f3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "33073e468a604a24a68f9541225f7124": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_440468c39f1843edb328131f83dd3ba9", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_35c48d7b09fc4cc5bbb1530c969e77f3", "value": 30.0}}, "8f200285f93f44e796901c1d15fe97a0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0446738058a94468b9333c4e7cd813bb": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "043d4ebd410247d3905ea63d2b44b11d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8f200285f93f44e796901c1d15fe97a0", "placeholder": "\u200b", "style": "IPY_MODEL_0446738058a94468b9333c4e7cd813bb", "value": "number of examples processed for checking labels: 100%"}}, "af9471211efa4b2ebdf22397c84c02a4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3d16be8f12c4866b2b540f90f059eb1": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b21bee2487dc4cc9ba714bb85dfd5796": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_af9471211efa4b2ebdf22397c84c02a4", "placeholder": "\u200b", "style": "IPY_MODEL_e3d16be8f12c4866b2b540f90f059eb1", "value": " 30/30 [00:36<00:00, 1.27s/it]"}}, "3cdb6a5dcb90477185e9eb315326e0f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b2844702aa05437896745da9ce2f19f1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_043d4ebd410247d3905ea63d2b44b11d", "IPY_MODEL_33073e468a604a24a68f9541225f7124", "IPY_MODEL_b21bee2487dc4cc9ba714bb85dfd5796"], "layout": "IPY_MODEL_3cdb6a5dcb90477185e9eb315326e0f0"}}, "da12bbddb62044408f73473e520879f8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d71db28b3924000b459303be3f854fe": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1f270dd1aaf34b9ca81bcd90f7863097": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_da12bbddb62044408f73473e520879f8", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6d71db28b3924000b459303be3f854fe", "value": 30.0}}, "c74ae2a09f8546d09f15d8ba1826b0c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a62476500ac941f18293589ffaf31a1a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a2f821925cfc4be69ac2b8572f5c3cbd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c74ae2a09f8546d09f15d8ba1826b0c1", "placeholder": "\u200b", "style": "IPY_MODEL_a62476500ac941f18293589ffaf31a1a", "value": "images processed using softmin: 100%"}}, "ca0d8508e61b4e5b9edfe0d6c3735dfa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "684fe6cf6638487ea077b635c95edc83": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ab36431ece774a4da2d582101cd80e72": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ca0d8508e61b4e5b9edfe0d6c3735dfa", "placeholder": "\u200b", "style": "IPY_MODEL_684fe6cf6638487ea077b635c95edc83", "value": " 30/30 [00:01<00:00, 23.38it/s]"}}, "d5e96f2faedd4e4bb85343a3b37ec13b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "144b86e8024a4f8aaf8ba767aa7d31bb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a2f821925cfc4be69ac2b8572f5c3cbd", "IPY_MODEL_1f270dd1aaf34b9ca81bcd90f7863097", "IPY_MODEL_ab36431ece774a4da2d582101cd80e72"], "layout": "IPY_MODEL_d5e96f2faedd4e4bb85343a3b37ec13b"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index eece6be9f..0c8050cbe 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:47.292158Z", - "iopub.status.busy": "2024-01-10T15:06:47.291962Z", - "iopub.status.idle": "2024-01-10T15:06:48.758411Z", - "shell.execute_reply": "2024-01-10T15:06:48.757602Z" + "iopub.execute_input": "2024-01-12T22:28:28.049195Z", + "iopub.status.busy": "2024-01-12T22:28:28.048677Z", + "iopub.status.idle": "2024-01-12T22:28:30.560405Z", + "shell.execute_reply": "2024-01-12T22:28:30.559585Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:06:48.761354Z", - "iopub.status.busy": "2024-01-10T15:06:48.761148Z", - "iopub.status.idle": "2024-01-10T15:07:46.996636Z", - "shell.execute_reply": "2024-01-10T15:07:46.995933Z" + "iopub.execute_input": "2024-01-12T22:28:30.563434Z", + "iopub.status.busy": "2024-01-12T22:28:30.563214Z", + "iopub.status.idle": "2024-01-12T22:29:33.642702Z", + "shell.execute_reply": "2024-01-12T22:29:33.641880Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:07:46.999673Z", - "iopub.status.busy": "2024-01-10T15:07:46.999269Z", - "iopub.status.idle": "2024-01-10T15:07:48.026262Z", - "shell.execute_reply": "2024-01-10T15:07:48.025653Z" + "iopub.execute_input": "2024-01-12T22:29:33.646001Z", + "iopub.status.busy": "2024-01-12T22:29:33.645577Z", + "iopub.status.idle": "2024-01-12T22:29:34.697524Z", + "shell.execute_reply": "2024-01-12T22:29:34.696881Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:07:48.029294Z", - "iopub.status.busy": "2024-01-10T15:07:48.028808Z", - "iopub.status.idle": "2024-01-10T15:07:48.032207Z", - "shell.execute_reply": "2024-01-10T15:07:48.031670Z" + "iopub.execute_input": "2024-01-12T22:29:34.700499Z", + "iopub.status.busy": "2024-01-12T22:29:34.700039Z", + "iopub.status.idle": "2024-01-12T22:29:34.703673Z", + "shell.execute_reply": "2024-01-12T22:29:34.703136Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:07:48.034648Z", - "iopub.status.busy": "2024-01-10T15:07:48.034350Z", - "iopub.status.idle": "2024-01-10T15:07:48.038691Z", - "shell.execute_reply": "2024-01-10T15:07:48.038183Z" + "iopub.execute_input": "2024-01-12T22:29:34.706228Z", + "iopub.status.busy": "2024-01-12T22:29:34.705851Z", + "iopub.status.idle": "2024-01-12T22:29:34.710119Z", + "shell.execute_reply": "2024-01-12T22:29:34.709595Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:07:48.041106Z", - "iopub.status.busy": "2024-01-10T15:07:48.040752Z", - "iopub.status.idle": "2024-01-10T15:07:48.044635Z", - "shell.execute_reply": "2024-01-10T15:07:48.044122Z" + "iopub.execute_input": "2024-01-12T22:29:34.712373Z", + "iopub.status.busy": "2024-01-12T22:29:34.712072Z", + "iopub.status.idle": "2024-01-12T22:29:34.715809Z", + "shell.execute_reply": "2024-01-12T22:29:34.715302Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:07:48.047132Z", - "iopub.status.busy": "2024-01-10T15:07:48.046640Z", - "iopub.status.idle": "2024-01-10T15:07:48.049918Z", - "shell.execute_reply": "2024-01-10T15:07:48.049426Z" + "iopub.execute_input": "2024-01-12T22:29:34.718197Z", + "iopub.status.busy": "2024-01-12T22:29:34.717835Z", + "iopub.status.idle": "2024-01-12T22:29:34.720838Z", + "shell.execute_reply": "2024-01-12T22:29:34.720291Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:07:48.052275Z", - "iopub.status.busy": "2024-01-10T15:07:48.051926Z", - "iopub.status.idle": "2024-01-10T15:09:13.774763Z", - "shell.execute_reply": "2024-01-10T15:09:13.774061Z" + "iopub.execute_input": "2024-01-12T22:29:34.723149Z", + "iopub.status.busy": "2024-01-12T22:29:34.722788Z", + "iopub.status.idle": "2024-01-12T22:30:59.605276Z", + "shell.execute_reply": "2024-01-12T22:30:59.604581Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f6f7d2e0db9b4e23bd565eeb1ebe8323", + "model_id": "24e1cccf99014e9691effff931a51ace", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ea68cf0375d04b00803fe43e815130fb", + "model_id": "b2844702aa05437896745da9ce2f19f1", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:13.777691Z", - "iopub.status.busy": "2024-01-10T15:09:13.777270Z", - "iopub.status.idle": "2024-01-10T15:09:14.581171Z", - "shell.execute_reply": "2024-01-10T15:09:14.580511Z" + "iopub.execute_input": "2024-01-12T22:30:59.608357Z", + "iopub.status.busy": "2024-01-12T22:30:59.608101Z", + "iopub.status.idle": "2024-01-12T22:31:00.373355Z", + "shell.execute_reply": "2024-01-12T22:31:00.372750Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:14.583844Z", - "iopub.status.busy": "2024-01-10T15:09:14.583393Z", - "iopub.status.idle": "2024-01-10T15:09:16.702396Z", - "shell.execute_reply": "2024-01-10T15:09:16.701727Z" + "iopub.execute_input": "2024-01-12T22:31:00.376146Z", + "iopub.status.busy": "2024-01-12T22:31:00.375532Z", + "iopub.status.idle": "2024-01-12T22:31:02.473685Z", + "shell.execute_reply": "2024-01-12T22:31:02.472992Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:16.705033Z", - "iopub.status.busy": "2024-01-10T15:09:16.704641Z", - "iopub.status.idle": "2024-01-10T15:09:45.984596Z", - "shell.execute_reply": "2024-01-10T15:09:45.984026Z" + "iopub.execute_input": "2024-01-12T22:31:02.476370Z", + "iopub.status.busy": "2024-01-12T22:31:02.475871Z", + "iopub.status.idle": "2024-01-12T22:31:31.836798Z", + "shell.execute_reply": "2024-01-12T22:31:31.836137Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 17030/4997817 [00:00<00:29, 170283.11it/s]" + " 0%| | 16189/4997817 [00:00<00:30, 161877.03it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 34264/4997817 [00:00<00:28, 171485.88it/s]" + " 1%| | 33029/4997817 [00:00<00:29, 165708.23it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 51459/4997817 [00:00<00:28, 171690.77it/s]" + " 1%| | 49888/4997817 [00:00<00:29, 167015.95it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 68798/4997817 [00:00<00:28, 172355.31it/s]" + " 1%|▏ | 66952/4997817 [00:00<00:29, 168441.28it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 86035/4997817 [00:00<00:28, 172354.29it/s]" + " 2%|▏ | 83891/4997817 [00:00<00:29, 168780.39it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 103290/4997817 [00:00<00:28, 172417.11it/s]" + " 2%|▏ | 100770/4997817 [00:00<00:29, 168702.89it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 120703/4997817 [00:00<00:28, 172972.80it/s]" + " 2%|▏ | 118039/4997817 [00:00<00:28, 170001.33it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 138001/4997817 [00:00<00:28, 172728.16it/s]" + " 3%|▎ | 135252/4997817 [00:00<00:28, 170676.15it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 155274/4997817 [00:00<00:28, 172330.12it/s]" + " 3%|▎ | 152439/4997817 [00:00<00:28, 171045.14it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 172583/4997817 [00:01<00:27, 172560.55it/s]" + " 3%|▎ | 169622/4997817 [00:01<00:28, 171284.43it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 189950/4997817 [00:01<00:27, 172896.33it/s]" + " 4%|▎ | 186846/4997817 [00:01<00:28, 171573.65it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 207377/4997817 [00:01<00:27, 173308.14it/s]" + " 4%|▍ | 204004/4997817 [00:01<00:27, 171428.93it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 224727/4997817 [00:01<00:27, 173361.26it/s]" + " 4%|▍ | 221325/4997817 [00:01<00:27, 171964.32it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 242162/4997817 [00:01<00:27, 173656.66it/s]" + " 5%|▍ | 238636/4997817 [00:01<00:27, 172304.18it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 259598/4997817 [00:01<00:27, 173865.50it/s]" + " 5%|▌ | 255867/4997817 [00:01<00:27, 172233.47it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 277065/4997817 [00:01<00:27, 174102.51it/s]" + " 5%|▌ | 273426/4997817 [00:01<00:27, 173240.31it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 294502/4997817 [00:01<00:27, 174179.23it/s]" + " 6%|▌ | 291001/4997817 [00:01<00:27, 173991.36it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 311920/4997817 [00:01<00:27, 173530.42it/s]" + " 6%|▌ | 308542/4997817 [00:01<00:26, 174415.45it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 329316/4997817 [00:01<00:26, 173655.30it/s]" + " 7%|▋ | 326045/4997817 [00:01<00:26, 174596.79it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 346687/4997817 [00:02<00:26, 173667.15it/s]" + " 7%|▋ | 343576/4997817 [00:02<00:26, 174806.93it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 364055/4997817 [00:02<00:26, 173627.62it/s]" + " 7%|▋ | 361057/4997817 [00:02<00:26, 174198.36it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 381423/4997817 [00:02<00:26, 173638.78it/s]" + " 8%|▊ | 378495/4997817 [00:02<00:26, 174250.05it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 398834/4997817 [00:02<00:26, 173775.03it/s]" + " 8%|▊ | 395921/4997817 [00:02<00:26, 174021.17it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 416212/4997817 [00:02<00:26, 173771.72it/s]" + " 8%|▊ | 413363/4997817 [00:02<00:26, 174135.91it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 433590/4997817 [00:02<00:26, 173442.63it/s]" + " 9%|▊ | 430821/4997817 [00:02<00:26, 174265.51it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 451024/4997817 [00:02<00:26, 173705.52it/s]" + " 9%|▉ | 448248/4997817 [00:02<00:26, 174223.58it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 468446/4997817 [00:02<00:26, 173855.02it/s]" + " 9%|▉ | 465671/4997817 [00:02<00:26, 173660.39it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 485832/4997817 [00:02<00:25, 173762.18it/s]" + " 10%|▉ | 483038/4997817 [00:02<00:26, 173128.18it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 503243/4997817 [00:02<00:25, 173861.88it/s]" + " 10%|█ | 500503/4997817 [00:02<00:25, 173579.78it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 520727/4997817 [00:03<00:25, 174151.56it/s]" + " 10%|█ | 518016/4997817 [00:03<00:25, 174040.42it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 538143/4997817 [00:03<00:25, 173998.03it/s]" + " 11%|█ | 535433/4997817 [00:03<00:25, 174075.41it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 555543/4997817 [00:03<00:25, 173843.76it/s]" + " 11%|█ | 552919/4997817 [00:03<00:25, 174307.13it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 572928/4997817 [00:03<00:25, 173780.39it/s]" + " 11%|█▏ | 570351/4997817 [00:03<00:25, 174176.26it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 590307/4997817 [00:03<00:25, 173705.63it/s]" + " 12%|█▏ | 587769/4997817 [00:03<00:25, 173786.75it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 607678/4997817 [00:03<00:25, 173383.06it/s]" + " 12%|█▏ | 605148/4997817 [00:03<00:25, 173355.73it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 625113/4997817 [00:03<00:25, 173668.62it/s]" + " 12%|█▏ | 622484/4997817 [00:03<00:25, 173151.44it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 642500/4997817 [00:03<00:25, 173724.53it/s]" + " 13%|█▎ | 639867/4997817 [00:03<00:25, 173350.31it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 659873/4997817 [00:03<00:25, 173457.40it/s]" + " 13%|█▎ | 657203/4997817 [00:03<00:25, 173280.80it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 677219/4997817 [00:03<00:24, 172924.88it/s]" + " 13%|█▎ | 674532/4997817 [00:03<00:25, 172580.11it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 694526/4997817 [00:04<00:24, 172965.24it/s]" + " 14%|█▍ | 691805/4997817 [00:04<00:24, 172621.86it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 711823/4997817 [00:04<00:24, 172894.79it/s]" + " 14%|█▍ | 709172/4997817 [00:04<00:24, 172932.10it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 729176/4997817 [00:04<00:24, 173080.82it/s]" + " 15%|█▍ | 726466/4997817 [00:04<00:24, 172541.77it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 746485/4997817 [00:04<00:24, 173034.68it/s]" + " 15%|█▍ | 743745/4997817 [00:04<00:24, 172613.85it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 763789/4997817 [00:04<00:24, 172857.88it/s]" + " 15%|█▌ | 761122/4997817 [00:04<00:24, 172954.57it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 781271/4997817 [00:04<00:24, 173443.18it/s]" + " 16%|█▌ | 778552/4997817 [00:04<00:24, 173352.43it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 798719/4997817 [00:04<00:24, 173750.95it/s]" + " 16%|█▌ | 795954/4997817 [00:04<00:24, 173549.44it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 816121/4997817 [00:04<00:24, 173827.43it/s]" + " 16%|█▋ | 813455/4997817 [00:04<00:24, 173984.83it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 833504/4997817 [00:04<00:24, 173400.72it/s]" + " 17%|█▋ | 830888/4997817 [00:04<00:23, 174084.89it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 850845/4997817 [00:04<00:24, 167499.61it/s]" + " 17%|█▋ | 848402/4997817 [00:04<00:23, 174399.35it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 868055/4997817 [00:05<00:24, 168840.64it/s]" + " 17%|█▋ | 865900/4997817 [00:05<00:23, 174568.43it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 885319/4997817 [00:05<00:24, 169955.77it/s]" + " 18%|█▊ | 883357/4997817 [00:05<00:23, 174329.22it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 902466/4997817 [00:05<00:24, 170400.94it/s]" + " 18%|█▊ | 900791/4997817 [00:05<00:23, 171262.50it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 919525/4997817 [00:05<00:24, 169551.46it/s]" + " 18%|█▊ | 918219/4997817 [00:05<00:23, 172152.84it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 936548/4997817 [00:05<00:23, 169750.27it/s]" + " 19%|█▊ | 935654/4997817 [00:05<00:23, 172802.62it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 953712/4997817 [00:05<00:23, 170310.11it/s]" + " 19%|█▉ | 953012/4997817 [00:05<00:23, 173031.41it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 970942/4997817 [00:05<00:23, 170900.53it/s]" + " 19%|█▉ | 970321/4997817 [00:05<00:23, 172399.52it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 988152/4997817 [00:05<00:23, 171255.63it/s]" + " 20%|█▉ | 987638/4997817 [00:05<00:23, 172626.78it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1005330/4997817 [00:05<00:23, 171410.52it/s]" + " 20%|██ | 1004904/4997817 [00:05<00:23, 172474.58it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1022474/4997817 [00:05<00:23, 171375.10it/s]" + " 20%|██ | 1022154/4997817 [00:05<00:23, 171681.74it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1039638/4997817 [00:06<00:23, 171449.37it/s]" + " 21%|██ | 1039376/4997817 [00:06<00:23, 171839.04it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1056785/4997817 [00:06<00:23, 170869.67it/s]" + " 21%|██ | 1056759/4997817 [00:06<00:22, 172430.29it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1073989/4997817 [00:06<00:22, 171215.58it/s]" + " 21%|██▏ | 1074004/4997817 [00:06<00:22, 171778.93it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1091214/4997817 [00:06<00:22, 171520.75it/s]" + " 22%|██▏ | 1091577/4997817 [00:06<00:22, 172954.10it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1108873/4997817 [00:06<00:22, 173035.02it/s]" + " 22%|██▏ | 1109070/4997817 [00:06<00:22, 173541.63it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1126178/4997817 [00:06<00:22, 173017.19it/s]" + " 23%|██▎ | 1126616/4997817 [00:06<00:22, 174112.14it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1143481/4997817 [00:06<00:22, 172777.34it/s]" + " 23%|██▎ | 1144169/4997817 [00:06<00:22, 174533.86it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1160760/4997817 [00:06<00:22, 172497.49it/s]" + " 23%|██▎ | 1161733/4997817 [00:06<00:21, 174862.87it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1178011/4997817 [00:06<00:22, 172168.93it/s]" + " 24%|██▎ | 1179220/4997817 [00:06<00:21, 174416.81it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1195229/4997817 [00:06<00:22, 171842.38it/s]" + " 24%|██▍ | 1196663/4997817 [00:06<00:21, 173928.97it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1212414/4997817 [00:07<00:22, 171680.48it/s]" + " 24%|██▍ | 1214075/4997817 [00:07<00:21, 173979.92it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1229583/4997817 [00:07<00:21, 171672.23it/s]" + " 25%|██▍ | 1231479/4997817 [00:07<00:21, 173993.48it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1246751/4997817 [00:07<00:21, 171577.38it/s]" + " 25%|██▍ | 1248879/4997817 [00:07<00:21, 173820.38it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1263909/4997817 [00:07<00:21, 170978.78it/s]" + " 25%|██▌ | 1266262/4997817 [00:07<00:21, 173714.06it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1281008/4997817 [00:07<00:21, 170704.98it/s]" + " 26%|██▌ | 1283634/4997817 [00:07<00:21, 173379.44it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1298079/4997817 [00:07<00:21, 170500.85it/s]" + " 26%|██▌ | 1300973/4997817 [00:07<00:21, 173158.20it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1315214/4997817 [00:07<00:21, 170750.49it/s]" + " 26%|██▋ | 1318289/4997817 [00:07<00:21, 172363.34it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1332308/4997817 [00:07<00:21, 170803.96it/s]" + " 27%|██▋ | 1335527/4997817 [00:07<00:21, 171954.17it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1349517/4997817 [00:07<00:21, 171186.09it/s]" + " 27%|██▋ | 1352723/4997817 [00:07<00:21, 171370.72it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1366636/4997817 [00:07<00:21, 166974.62it/s]" + " 27%|██▋ | 1369861/4997817 [00:07<00:21, 170869.18it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1383357/4997817 [00:08<00:21, 165352.54it/s]" + " 28%|██▊ | 1387142/4997817 [00:08<00:21, 171443.77it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1400601/4997817 [00:08<00:21, 167432.22it/s]" + " 28%|██▊ | 1404406/4997817 [00:08<00:20, 171796.08it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1417755/4997817 [00:08<00:21, 168644.72it/s]" + " 28%|██▊ | 1421587/4997817 [00:08<00:20, 171442.86it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1434981/4997817 [00:08<00:20, 169716.13it/s]" + " 29%|██▉ | 1438732/4997817 [00:08<00:20, 171120.78it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1452216/4997817 [00:08<00:20, 170497.47it/s]" + " 29%|██▉ | 1456010/4997817 [00:08<00:20, 171612.75it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1469393/4997817 [00:08<00:20, 170873.77it/s]" + " 29%|██▉ | 1473172/4997817 [00:08<00:20, 171568.34it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1486659/4997817 [00:08<00:20, 171405.04it/s]" + " 30%|██▉ | 1490330/4997817 [00:08<00:20, 171562.94it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1503878/4997817 [00:08<00:20, 171636.21it/s]" + " 30%|███ | 1507626/4997817 [00:08<00:20, 171978.28it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1521101/4997817 [00:08<00:20, 171810.78it/s]" + " 31%|███ | 1524858/4997817 [00:08<00:20, 172079.01it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1538285/4997817 [00:08<00:20, 171554.86it/s]" + " 31%|███ | 1542067/4997817 [00:08<00:20, 171862.73it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1555442/4997817 [00:09<00:20, 171482.32it/s]" + " 31%|███ | 1559254/4997817 [00:09<00:20, 171254.72it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1572592/4997817 [00:09<00:19, 171358.69it/s]" + " 32%|███▏ | 1576380/4997817 [00:09<00:20, 171010.62it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1589729/4997817 [00:09<00:19, 171312.10it/s]" + " 32%|███▏ | 1593482/4997817 [00:09<00:19, 170789.72it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1606861/4997817 [00:09<00:19, 171261.67it/s]" + " 32%|███▏ | 1610562/4997817 [00:09<00:19, 170689.53it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1623988/4997817 [00:09<00:19, 170981.92it/s]" + " 33%|███▎ | 1627726/4997817 [00:09<00:19, 170970.89it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1641087/4997817 [00:09<00:19, 170445.03it/s]" + " 33%|███▎ | 1644824/4997817 [00:09<00:19, 170676.74it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1658133/4997817 [00:09<00:19, 170120.99it/s]" + " 33%|███▎ | 1661892/4997817 [00:09<00:19, 169213.92it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1675146/4997817 [00:09<00:19, 170047.88it/s]" + " 34%|███▎ | 1678929/4997817 [00:09<00:19, 169555.43it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1692384/4997817 [00:09<00:19, 170742.41it/s]" + " 34%|███▍ | 1696085/4997817 [00:09<00:19, 170150.16it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1709536/4997817 [00:09<00:19, 170970.11it/s]" + " 34%|███▍ | 1713243/4997817 [00:09<00:19, 170573.37it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1726634/4997817 [00:10<00:19, 167250.12it/s]" + " 35%|███▍ | 1730335/4997817 [00:10<00:19, 170675.30it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1743827/4997817 [00:10<00:19, 168626.61it/s]" + " 35%|███▍ | 1747404/4997817 [00:10<00:19, 170542.54it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1761126/4997817 [00:10<00:19, 169916.59it/s]" + " 35%|███▌ | 1764459/4997817 [00:10<00:19, 170051.22it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1778432/4997817 [00:10<00:18, 170847.39it/s]" + " 36%|███▌ | 1781479/4997817 [00:10<00:18, 170090.90it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1795743/4997817 [00:10<00:18, 171517.21it/s]" + " 36%|███▌ | 1798489/4997817 [00:10<00:18, 169783.89it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1813098/4997817 [00:10<00:18, 172119.98it/s]" + " 36%|███▋ | 1815547/4997817 [00:10<00:18, 170019.28it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1830442/4997817 [00:10<00:18, 172511.96it/s]" + " 37%|███▋ | 1832660/4997817 [00:10<00:18, 170348.94it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1847697/4997817 [00:10<00:18, 172177.79it/s]" + " 37%|███▋ | 1849696/4997817 [00:10<00:18, 169577.77it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1864918/4997817 [00:10<00:18, 171675.77it/s]" + " 37%|███▋ | 1866737/4997817 [00:10<00:18, 169825.23it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1882375/4997817 [00:10<00:18, 172536.76it/s]" + " 38%|███▊ | 1884232/4997817 [00:10<00:18, 171353.52it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1899650/4997817 [00:11<00:17, 172598.14it/s]" + " 38%|███▊ | 1901620/4997817 [00:11<00:17, 172106.00it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1916965/4997817 [00:11<00:17, 172759.47it/s]" + " 38%|███▊ | 1918993/4997817 [00:11<00:17, 172590.80it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1934403/4997817 [00:11<00:17, 173239.67it/s]" + " 39%|███▊ | 1936537/4997817 [00:11<00:17, 173440.88it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1951857/4997817 [00:11<00:17, 173625.82it/s]" + " 39%|███▉ | 1953974/4997817 [00:11<00:17, 173715.86it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1969233/4997817 [00:11<00:17, 173662.00it/s]" + " 39%|███▉ | 1971386/4997817 [00:11<00:17, 173833.48it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1986600/4997817 [00:11<00:17, 173510.89it/s]" + " 40%|███▉ | 1988770/4997817 [00:11<00:17, 173488.17it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2003989/4997817 [00:11<00:17, 173620.71it/s]" + " 40%|████ | 2006120/4997817 [00:11<00:17, 172896.45it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2021352/4997817 [00:11<00:17, 172889.28it/s]" + " 40%|████ | 2023518/4997817 [00:11<00:17, 173217.07it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2038726/4997817 [00:11<00:17, 173140.08it/s]" + " 41%|████ | 2040841/4997817 [00:11<00:17, 173166.13it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2056041/4997817 [00:11<00:16, 173049.75it/s]" + " 41%|████ | 2058158/4997817 [00:11<00:16, 173111.49it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2073347/4997817 [00:12<00:16, 172756.93it/s]" + " 42%|████▏ | 2075553/4997817 [00:12<00:16, 173357.85it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2090709/4997817 [00:12<00:16, 173011.88it/s]" + " 42%|████▏ | 2092890/4997817 [00:12<00:16, 173175.09it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2108068/4997817 [00:12<00:16, 173181.70it/s]" + " 42%|████▏ | 2110208/4997817 [00:12<00:16, 173030.80it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2125387/4997817 [00:12<00:16, 172719.24it/s]" + " 43%|████▎ | 2127526/4997817 [00:12<00:16, 173071.09it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2142660/4997817 [00:12<00:16, 172428.08it/s]" + " 43%|████▎ | 2144834/4997817 [00:12<00:16, 172965.44it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2159948/4997817 [00:12<00:16, 172559.96it/s]" + " 43%|████▎ | 2162131/4997817 [00:12<00:16, 172767.29it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2177205/4997817 [00:12<00:16, 172309.45it/s]" + " 44%|████▎ | 2179408/4997817 [00:12<00:16, 172627.63it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2194525/4997817 [00:12<00:16, 172572.65it/s]" + " 44%|████▍ | 2196671/4997817 [00:12<00:16, 172009.65it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2211921/4997817 [00:12<00:16, 172984.81it/s]" + " 44%|████▍ | 2213873/4997817 [00:12<00:16, 171856.53it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2229384/4997817 [00:12<00:15, 173474.18it/s]" + " 45%|████▍ | 2231266/4997817 [00:12<00:16, 172472.78it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2246736/4997817 [00:13<00:15, 173484.62it/s]" + " 45%|████▍ | 2248661/4997817 [00:13<00:15, 172911.28it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2264085/4997817 [00:13<00:15, 173437.68it/s]" + " 45%|████▌ | 2265953/4997817 [00:13<00:15, 172668.94it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2281429/4997817 [00:13<00:15, 173352.81it/s]" + " 46%|████▌ | 2283239/4997817 [00:13<00:15, 172721.87it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2298765/4997817 [00:13<00:15, 173188.91it/s]" + " 46%|████▌ | 2300512/4997817 [00:13<00:15, 169663.96it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2316084/4997817 [00:13<00:15, 172913.95it/s]" + " 46%|████▋ | 2317491/4997817 [00:13<00:16, 166427.04it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2333554/4997817 [00:13<00:15, 173444.79it/s]" + " 47%|████▋ | 2334740/4997817 [00:13<00:15, 168201.30it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2351018/4997817 [00:13<00:15, 173801.16it/s]" + " 47%|████▋ | 2352108/4997817 [00:13<00:15, 169816.85it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2368666/4997817 [00:13<00:15, 174599.08it/s]" + " 47%|████▋ | 2369227/4997817 [00:13<00:15, 170221.73it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2386153/4997817 [00:13<00:14, 174676.73it/s]" + " 48%|████▊ | 2386573/4997817 [00:13<00:15, 171180.84it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2403645/4997817 [00:13<00:14, 174745.85it/s]" + " 48%|████▊ | 2403941/4997817 [00:13<00:15, 171923.46it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2421181/4997817 [00:14<00:14, 174925.70it/s]" + " 48%|████▊ | 2421140/4997817 [00:14<00:14, 171864.05it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2438674/4997817 [00:14<00:14, 174394.81it/s]" + " 49%|████▉ | 2438350/4997817 [00:14<00:14, 171930.74it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2456114/4997817 [00:14<00:14, 174173.81it/s]" + " 49%|████▉ | 2455727/4997817 [00:14<00:14, 172477.67it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2473532/4997817 [00:14<00:14, 174114.97it/s]" + " 49%|████▉ | 2473150/4997817 [00:14<00:14, 172998.15it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2490944/4997817 [00:14<00:14, 173861.74it/s]" + " 50%|████▉ | 2490452/4997817 [00:14<00:14, 172643.71it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2508369/4997817 [00:14<00:14, 173973.76it/s]" + " 50%|█████ | 2507718/4997817 [00:14<00:14, 172543.35it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2525845/4997817 [00:14<00:14, 174206.42it/s]" + " 51%|█████ | 2524974/4997817 [00:14<00:14, 172176.23it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2543266/4997817 [00:14<00:14, 174161.75it/s]" + " 51%|█████ | 2542193/4997817 [00:14<00:14, 171800.08it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2560683/4997817 [00:14<00:14, 174022.77it/s]" + " 51%|█████ | 2559374/4997817 [00:14<00:14, 171579.93it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2578111/4997817 [00:14<00:13, 174097.16it/s]" + " 52%|█████▏ | 2576661/4997817 [00:14<00:14, 171963.10it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2595521/4997817 [00:15<00:13, 173869.07it/s]" + " 52%|█████▏ | 2593942/4997817 [00:15<00:13, 172210.22it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2612909/4997817 [00:15<00:13, 173294.82it/s]" + " 52%|█████▏ | 2611219/4997817 [00:15<00:13, 172376.44it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2630242/4997817 [00:15<00:13, 173299.46it/s]" + " 53%|█████▎ | 2628457/4997817 [00:15<00:13, 171486.91it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2647637/4997817 [00:15<00:13, 173488.50it/s]" + " 53%|█████▎ | 2645642/4997817 [00:15<00:13, 171591.61it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2664987/4997817 [00:15<00:13, 173398.27it/s]" + " 53%|█████▎ | 2662803/4997817 [00:15<00:14, 164162.66it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2682372/4997817 [00:15<00:13, 173528.92it/s]" + " 54%|█████▎ | 2679891/4997817 [00:15<00:13, 166106.58it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2699726/4997817 [00:15<00:13, 173257.12it/s]" + " 54%|█████▍ | 2697075/4997817 [00:15<00:13, 167781.34it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2717059/4997817 [00:15<00:13, 173274.78it/s]" + " 54%|█████▍ | 2714306/4997817 [00:15<00:13, 169115.53it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2734428/4997817 [00:15<00:13, 173396.38it/s]" + " 55%|█████▍ | 2731781/4997817 [00:15<00:13, 170784.44it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2751845/4997817 [00:15<00:12, 173625.32it/s]" + " 55%|█████▌ | 2749160/4997817 [00:15<00:13, 171675.54it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2769208/4997817 [00:16<00:12, 173567.59it/s]" + " 55%|█████▌ | 2766389/4997817 [00:16<00:12, 171854.59it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2786565/4997817 [00:16<00:12, 173300.07it/s]" + " 56%|█████▌ | 2783587/4997817 [00:16<00:12, 171876.44it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2803896/4997817 [00:16<00:12, 173040.50it/s]" + " 56%|█████▌ | 2800902/4997817 [00:16<00:12, 172253.77it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2821321/4997817 [00:16<00:12, 173399.89it/s]" + " 56%|█████▋ | 2818324/4997817 [00:16<00:12, 172839.53it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2838662/4997817 [00:16<00:12, 172859.42it/s]" + " 57%|█████▋ | 2835735/4997817 [00:16<00:12, 173216.09it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2855949/4997817 [00:16<00:12, 172569.83it/s]" + " 57%|█████▋ | 2853182/4997817 [00:16<00:12, 173589.82it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2873207/4997817 [00:16<00:12, 172224.29it/s]" + " 57%|█████▋ | 2870746/4997817 [00:16<00:12, 174201.24it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2890430/4997817 [00:16<00:12, 172181.39it/s]" + " 58%|█████▊ | 2888168/4997817 [00:16<00:12, 173871.31it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2907649/4997817 [00:16<00:12, 171902.40it/s]" + " 58%|█████▊ | 2905557/4997817 [00:16<00:12, 173528.41it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2924840/4997817 [00:16<00:12, 171671.79it/s]" + " 58%|█████▊ | 2922948/4997817 [00:16<00:11, 173640.16it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2942008/4997817 [00:17<00:11, 171384.08it/s]" + " 59%|█████▉ | 2940313/4997817 [00:17<00:11, 173147.70it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2959147/4997817 [00:17<00:11, 170767.52it/s]" + " 59%|█████▉ | 2957629/4997817 [00:17<00:11, 172809.18it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2976284/4997817 [00:17<00:11, 170944.14it/s]" + " 60%|█████▉ | 2974912/4997817 [00:17<00:11, 172811.02it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2993383/4997817 [00:17<00:11, 170955.10it/s]" + " 60%|█████▉ | 2992194/4997817 [00:17<00:11, 172710.63it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3010479/4997817 [00:17<00:11, 170751.69it/s]" + " 60%|██████ | 3009466/4997817 [00:17<00:12, 165245.66it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3027555/4997817 [00:17<00:11, 169701.03it/s]" + " 61%|██████ | 3026801/4997817 [00:17<00:11, 167597.44it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3044709/4997817 [00:17<00:11, 170245.53it/s]" + " 61%|██████ | 3044003/4997817 [00:17<00:11, 168890.74it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3061914/4997817 [00:17<00:11, 170780.70it/s]" + " 61%|██████▏ | 3061475/4997817 [00:17<00:11, 170609.80it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3079054/4997817 [00:17<00:11, 170963.30it/s]" + " 62%|██████▏ | 3078986/4997817 [00:17<00:11, 171941.00it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3096212/4997817 [00:17<00:11, 171145.64it/s]" + " 62%|██████▏ | 3096272/4997817 [00:17<00:11, 172211.14it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3113415/4997817 [00:18<00:10, 171405.70it/s]" + " 62%|██████▏ | 3113510/4997817 [00:18<00:10, 171974.97it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3130557/4997817 [00:18<00:11, 163730.19it/s]" + " 63%|██████▎ | 3130805/4997817 [00:18<00:10, 172262.36it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3147711/4997817 [00:18<00:11, 165993.75it/s]" + " 63%|██████▎ | 3148251/4997817 [00:18<00:10, 172917.49it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3164858/4997817 [00:18<00:10, 167595.36it/s]" + " 63%|██████▎ | 3165695/4997817 [00:18<00:10, 173369.56it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3182091/4997817 [00:18<00:10, 168989.18it/s]" + " 64%|██████▎ | 3183236/4997817 [00:18<00:10, 173976.18it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3199280/4997817 [00:18<00:10, 169848.21it/s]" + " 64%|██████▍ | 3200637/4997817 [00:18<00:10, 166819.94it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3216488/4997817 [00:18<00:10, 170509.03it/s]" + " 64%|██████▍ | 3217766/4997817 [00:18<00:10, 168117.07it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3233615/4997817 [00:18<00:10, 170733.77it/s]" + " 65%|██████▍ | 3235051/4997817 [00:18<00:10, 169502.67it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3250701/4997817 [00:18<00:10, 170719.85it/s]" + " 65%|██████▌ | 3252168/4997817 [00:18<00:10, 169989.67it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3267782/4997817 [00:18<00:10, 170590.66it/s]" + " 65%|██████▌ | 3269267/4997817 [00:19<00:10, 170282.67it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3284892/4997817 [00:19<00:10, 170740.17it/s]" + " 66%|██████▌ | 3286504/4997817 [00:19<00:10, 170900.26it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3301991/4997817 [00:19<00:09, 170812.71it/s]" + " 66%|██████▌ | 3303692/4997817 [00:19<00:09, 171187.09it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3319326/4997817 [00:19<00:09, 171568.86it/s]" + " 66%|██████▋ | 3320858/4997817 [00:19<00:09, 171324.83it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3336579/4997817 [00:19<00:09, 171854.27it/s]" + " 67%|██████▋ | 3338125/4997817 [00:19<00:09, 171723.21it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3353840/4997817 [00:19<00:09, 172075.47it/s]" + " 67%|██████▋ | 3355304/4997817 [00:19<00:09, 171741.05it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3371135/4997817 [00:19<00:09, 172332.57it/s]" + " 67%|██████▋ | 3372561/4997817 [00:19<00:09, 171984.92it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3388521/4997817 [00:19<00:09, 172784.75it/s]" + " 68%|██████▊ | 3389762/4997817 [00:19<00:09, 171430.20it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3405882/4997817 [00:19<00:09, 173027.35it/s]" + " 68%|██████▊ | 3406908/4997817 [00:19<00:09, 171426.45it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3423271/4997817 [00:19<00:09, 173281.06it/s]" + " 69%|██████▊ | 3424053/4997817 [00:19<00:09, 170738.92it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3440656/4997817 [00:19<00:08, 173448.16it/s]" + " 69%|██████▉ | 3441129/4997817 [00:20<00:09, 170439.63it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3458002/4997817 [00:20<00:08, 173131.70it/s]" + " 69%|██████▉ | 3458175/4997817 [00:20<00:09, 169950.59it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3475316/4997817 [00:20<00:08, 173016.71it/s]" + " 70%|██████▉ | 3475171/4997817 [00:20<00:08, 169692.12it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3492618/4997817 [00:20<00:09, 165765.34it/s]" + " 70%|██████▉ | 3492236/4997817 [00:20<00:08, 169974.94it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3509821/4997817 [00:20<00:08, 167583.58it/s]" + " 70%|███████ | 3509235/4997817 [00:20<00:08, 169582.81it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3527050/4997817 [00:20<00:08, 168961.35it/s]" + " 71%|███████ | 3526194/4997817 [00:20<00:08, 169482.85it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3544520/4997817 [00:20<00:08, 170652.18it/s]" + " 71%|███████ | 3543143/4997817 [00:20<00:08, 166798.94it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3561999/4997817 [00:20<00:08, 171875.08it/s]" + " 71%|███████ | 3560313/4997817 [00:20<00:08, 168245.53it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3579426/4997817 [00:20<00:08, 172585.21it/s]" + " 72%|███████▏ | 3577540/4997817 [00:20<00:08, 169439.42it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3596925/4997817 [00:20<00:08, 173300.62it/s]" + " 72%|███████▏ | 3594553/4997817 [00:20<00:08, 169641.05it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3614455/4997817 [00:21<00:07, 173894.52it/s]" + " 72%|███████▏ | 3611768/4997817 [00:21<00:08, 170386.65it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3632081/4997817 [00:21<00:07, 174596.73it/s]" + " 73%|███████▎ | 3628884/4997817 [00:21<00:08, 170615.63it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3649547/4997817 [00:21<00:07, 174498.75it/s]" + " 73%|███████▎ | 3646088/4997817 [00:21<00:07, 171040.30it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3667092/4997817 [00:21<00:07, 174781.42it/s]" + " 73%|███████▎ | 3663264/4997817 [00:21<00:07, 171253.22it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3684574/4997817 [00:21<00:07, 174323.55it/s]" + " 74%|███████▎ | 3680485/4997817 [00:21<00:07, 171536.54it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3702009/4997817 [00:21<00:07, 174312.24it/s]" + " 74%|███████▍ | 3697640/4997817 [00:21<00:07, 171259.85it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3719522/4997817 [00:21<00:07, 174553.76it/s]" + " 74%|███████▍ | 3714767/4997817 [00:21<00:07, 170289.24it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3736979/4997817 [00:21<00:07, 174483.40it/s]" + " 75%|███████▍ | 3732116/4997817 [00:21<00:07, 171240.88it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3754510/4997817 [00:21<00:07, 174726.49it/s]" + " 75%|███████▌ | 3749326/4997817 [00:21<00:07, 171495.52it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3772090/4997817 [00:21<00:07, 175044.92it/s]" + " 75%|███████▌ | 3766621/4997817 [00:21<00:07, 171929.08it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3789595/4997817 [00:22<00:06, 174949.83it/s]" + " 76%|███████▌ | 3783902/4997817 [00:22<00:07, 172191.33it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3807095/4997817 [00:22<00:06, 174961.17it/s]" + " 76%|███████▌ | 3801122/4997817 [00:22<00:06, 172005.61it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3824592/4997817 [00:22<00:06, 174435.55it/s]" + " 76%|███████▋ | 3818365/4997817 [00:22<00:06, 172128.59it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3842037/4997817 [00:22<00:06, 166864.23it/s]" + " 77%|███████▋ | 3835579/4997817 [00:22<00:06, 171914.67it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3859405/4997817 [00:22<00:06, 168839.77it/s]" + " 77%|███████▋ | 3852833/4997817 [00:22<00:06, 172099.05it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3876822/4997817 [00:22<00:06, 170399.10it/s]" + " 77%|███████▋ | 3870059/4997817 [00:22<00:06, 172144.74it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3894424/4997817 [00:22<00:06, 172056.34it/s]" + " 78%|███████▊ | 3887319/4997817 [00:22<00:06, 172276.57it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3911949/4997817 [00:22<00:06, 172999.62it/s]" + " 78%|███████▊ | 3904615/4997817 [00:22<00:06, 172476.96it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3929356/4997817 [00:22<00:06, 173315.74it/s]" + " 78%|███████▊ | 3922007/4997817 [00:22<00:06, 172904.17it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3946836/4997817 [00:22<00:06, 173753.24it/s]" + " 79%|███████▉ | 3939387/4997817 [00:22<00:06, 173170.77it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3964224/4997817 [00:23<00:05, 173621.71it/s]" + " 79%|███████▉ | 3956846/4997817 [00:23<00:05, 173593.75it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3981595/4997817 [00:23<00:05, 173277.02it/s]" + " 80%|███████▉ | 3974368/4997817 [00:23<00:05, 174078.35it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 3998970/4997817 [00:23<00:05, 173415.32it/s]" + " 80%|███████▉ | 3991776/4997817 [00:23<00:05, 173588.28it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4016316/4997817 [00:23<00:05, 172667.73it/s]" + " 80%|████████ | 4009136/4997817 [00:23<00:05, 173547.37it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4033587/4997817 [00:23<00:05, 172523.73it/s]" + " 81%|████████ | 4026541/4997817 [00:23<00:05, 173693.13it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4050842/4997817 [00:23<00:05, 172384.77it/s]" + " 81%|████████ | 4043911/4997817 [00:23<00:05, 173453.72it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4068083/4997817 [00:23<00:05, 171361.88it/s]" + " 81%|████████▏ | 4061350/4997817 [00:23<00:05, 173730.80it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4085389/4997817 [00:23<00:05, 171865.91it/s]" + " 82%|████████▏ | 4078781/4997817 [00:23<00:05, 173898.92it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4102681/4997817 [00:23<00:05, 172176.42it/s]" + " 82%|████████▏ | 4096172/4997817 [00:23<00:05, 173753.67it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4120022/4997817 [00:23<00:05, 172542.13it/s]" + " 82%|████████▏ | 4113549/4997817 [00:23<00:05, 173755.01it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4137278/4997817 [00:24<00:04, 172439.36it/s]" + " 83%|████████▎ | 4130971/4997817 [00:24<00:04, 173892.07it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4154574/4997817 [00:24<00:04, 172592.57it/s]" + " 83%|████████▎ | 4148398/4997817 [00:24<00:04, 174002.57it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4171871/4997817 [00:24<00:04, 172702.85it/s]" + " 83%|████████▎ | 4165799/4997817 [00:24<00:04, 174000.74it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4189189/4997817 [00:24<00:04, 172841.82it/s]" + " 84%|████████▎ | 4183281/4997817 [00:24<00:04, 174242.88it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4206509/4997817 [00:24<00:04, 172945.78it/s]" + " 84%|████████▍ | 4200706/4997817 [00:24<00:04, 174106.00it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4223872/4997817 [00:24<00:04, 173149.38it/s]" + " 84%|████████▍ | 4218117/4997817 [00:24<00:04, 173940.78it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4241236/4997817 [00:24<00:04, 173293.34it/s]" + " 85%|████████▍ | 4235512/4997817 [00:24<00:04, 173443.00it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4258566/4997817 [00:24<00:04, 172867.69it/s]" + " 85%|████████▌ | 4252857/4997817 [00:24<00:04, 170649.20it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4275854/4997817 [00:24<00:04, 172857.11it/s]" + " 85%|████████▌ | 4270099/4997817 [00:24<00:04, 171171.60it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4293140/4997817 [00:24<00:04, 172477.24it/s]" + " 86%|████████▌ | 4287535/4997817 [00:24<00:04, 172116.89it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4310389/4997817 [00:25<00:03, 172149.13it/s]" + " 86%|████████▌ | 4304753/4997817 [00:25<00:04, 171652.64it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4327605/4997817 [00:25<00:03, 172139.17it/s]" + " 86%|████████▋ | 4321923/4997817 [00:25<00:03, 171133.83it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4344830/4997817 [00:25<00:03, 172169.08it/s]" + " 87%|████████▋ | 4339088/4997817 [00:25<00:03, 171280.50it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4362076/4997817 [00:25<00:03, 172251.35it/s]" + " 87%|████████▋ | 4356310/4997817 [00:25<00:03, 171556.65it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4379302/4997817 [00:25<00:03, 171900.04it/s]" + " 88%|████████▊ | 4373468/4997817 [00:25<00:03, 171134.15it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4396523/4997817 [00:25<00:03, 171990.54it/s]" + " 88%|████████▊ | 4390583/4997817 [00:25<00:03, 170421.14it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4413723/4997817 [00:25<00:03, 171969.84it/s]" + " 88%|████████▊ | 4407627/4997817 [00:25<00:03, 170280.06it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4430938/4997817 [00:25<00:03, 172020.80it/s]" + " 89%|████████▊ | 4424754/4997817 [00:25<00:03, 170570.84it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4448169/4997817 [00:25<00:03, 172104.71it/s]" + " 89%|████████▉ | 4441812/4997817 [00:25<00:03, 170547.12it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4465473/4997817 [00:25<00:03, 172382.22it/s]" + " 89%|████████▉ | 4459092/4997817 [00:25<00:03, 171217.73it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4482712/4997817 [00:26<00:02, 172378.44it/s]" + " 90%|████████▉ | 4476226/4997817 [00:26<00:03, 171253.18it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4499970/4997817 [00:26<00:02, 172434.62it/s]" + " 90%|████████▉ | 4493352/4997817 [00:26<00:02, 170524.58it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4517217/4997817 [00:26<00:02, 172442.45it/s]" + " 90%|█████████ | 4510483/4997817 [00:26<00:02, 170755.34it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4534462/4997817 [00:26<00:02, 172125.34it/s]" + " 91%|█████████ | 4527595/4997817 [00:26<00:02, 170861.32it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4551698/4997817 [00:26<00:02, 172191.75it/s]" + " 91%|█████████ | 4544870/4997817 [00:26<00:02, 171424.08it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4568918/4997817 [00:26<00:02, 172049.70it/s]" + " 91%|█████████▏| 4562041/4997817 [00:26<00:02, 171505.13it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4586146/4997817 [00:26<00:02, 172115.18it/s]" + " 92%|█████████▏| 4579192/4997817 [00:26<00:02, 171383.07it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4603359/4997817 [00:26<00:02, 172117.83it/s]" + " 92%|█████████▏| 4596361/4997817 [00:26<00:02, 171473.01it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4620571/4997817 [00:26<00:02, 172059.99it/s]" + " 92%|█████████▏| 4613605/4997817 [00:26<00:02, 171760.21it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4637778/4997817 [00:26<00:02, 171793.76it/s]" + " 93%|█████████▎| 4630782/4997817 [00:26<00:02, 171355.67it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4654966/4997817 [00:27<00:01, 171816.57it/s]" + " 93%|█████████▎| 4647918/4997817 [00:27<00:02, 170602.77it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4672149/4997817 [00:27<00:01, 171816.10it/s]" + " 93%|█████████▎| 4664980/4997817 [00:27<00:01, 170578.45it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4689331/4997817 [00:27<00:01, 171560.20it/s]" + " 94%|█████████▎| 4682039/4997817 [00:27<00:01, 170360.79it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4706520/4997817 [00:27<00:01, 171657.19it/s]" + " 94%|█████████▍| 4699140/4997817 [00:27<00:01, 170549.75it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4723686/4997817 [00:27<00:01, 167919.96it/s]" + " 94%|█████████▍| 4716353/4997817 [00:27<00:01, 171017.18it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4740781/4997817 [00:27<00:01, 168811.86it/s]" + " 95%|█████████▍| 4733542/4997817 [00:27<00:01, 171276.33it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4757868/4997817 [00:27<00:01, 169418.38it/s]" + " 95%|█████████▌| 4750670/4997817 [00:27<00:01, 170340.40it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4774923/4997817 [00:27<00:01, 169750.75it/s]" + " 95%|█████████▌| 4767706/4997817 [00:27<00:01, 163127.11it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4791930/4997817 [00:27<00:01, 169843.37it/s]" + " 96%|█████████▌| 4785073/4997817 [00:27<00:01, 166182.71it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4809039/4997817 [00:27<00:01, 170212.17it/s]" + " 96%|█████████▌| 4802335/4997817 [00:27<00:01, 168064.55it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4826135/4997817 [00:28<00:01, 170433.15it/s]" + " 96%|█████████▋| 4819387/4997817 [00:28<00:01, 168784.98it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4843326/4997817 [00:28<00:00, 170871.60it/s]" + " 97%|█████████▋| 4836515/4997817 [00:28<00:00, 169520.47it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4860458/4997817 [00:28<00:00, 171002.81it/s]" + " 97%|█████████▋| 4853724/4997817 [00:28<00:00, 170280.81it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4877647/4997817 [00:28<00:00, 171266.30it/s]" + " 97%|█████████▋| 4871150/4997817 [00:28<00:00, 171463.19it/s]" ] }, { @@ -2802,7 +2802,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4894775/4997817 [00:28<00:00, 170862.07it/s]" + " 98%|█████████▊| 4888309/4997817 [00:28<00:00, 171188.95it/s]" ] }, { @@ -2810,7 +2810,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4911923/4997817 [00:28<00:00, 171043.44it/s]" + " 98%|█████████▊| 4905437/4997817 [00:28<00:00, 170805.34it/s]" ] }, { @@ -2818,7 +2818,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4929176/4997817 [00:28<00:00, 171486.81it/s]" + " 98%|█████████▊| 4922524/4997817 [00:28<00:00, 170649.37it/s]" ] }, { @@ -2826,7 +2826,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4946356/4997817 [00:28<00:00, 171577.53it/s]" + " 99%|█████████▉| 4939729/4997817 [00:28<00:00, 171065.77it/s]" ] }, { @@ -2834,7 +2834,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4963515/4997817 [00:28<00:00, 171205.67it/s]" + " 99%|█████████▉| 4956839/4997817 [00:28<00:00, 164371.72it/s]" ] }, { @@ -2842,7 +2842,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4980923/4997817 [00:28<00:00, 172063.53it/s]" + "100%|█████████▉| 4973835/4997817 [00:28<00:00, 165997.03it/s]" ] }, { @@ -2850,14 +2850,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:29<00:00, 172102.99it/s]" + "100%|█████████▉| 4991073/4997817 [00:29<00:00, 167868.43it/s]" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\n" + "\r", + "100%|██████████| 4997817/4997817 [00:29<00:00, 171653.36it/s]" ] }, { @@ -2886,6 +2887,13 @@ "Class 'traffic sign' is potentially mislabeled as class for 'building' 5011 pixels in the dataset\n" ] }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, { "data": { "text/html": [ @@ -3089,10 +3097,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:45.987247Z", - "iopub.status.busy": "2024-01-10T15:09:45.986790Z", - "iopub.status.idle": "2024-01-10T15:09:53.045750Z", - "shell.execute_reply": "2024-01-10T15:09:53.045106Z" + "iopub.execute_input": "2024-01-12T22:31:31.839399Z", + "iopub.status.busy": "2024-01-12T22:31:31.839015Z", + "iopub.status.idle": "2024-01-12T22:31:38.993020Z", + "shell.execute_reply": "2024-01-12T22:31:38.992371Z" } }, "outputs": [], @@ -3106,10 +3114,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:53.048843Z", - "iopub.status.busy": "2024-01-10T15:09:53.048334Z", - "iopub.status.idle": "2024-01-10T15:09:56.152244Z", - "shell.execute_reply": "2024-01-10T15:09:56.151592Z" + "iopub.execute_input": "2024-01-12T22:31:38.995992Z", + "iopub.status.busy": "2024-01-12T22:31:38.995562Z", + "iopub.status.idle": "2024-01-12T22:31:42.127775Z", + "shell.execute_reply": "2024-01-12T22:31:42.127121Z" } }, "outputs": [ @@ -3178,17 +3186,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:56.155042Z", - "iopub.status.busy": "2024-01-10T15:09:56.154624Z", - "iopub.status.idle": "2024-01-10T15:09:57.461482Z", - "shell.execute_reply": "2024-01-10T15:09:57.460863Z" + "iopub.execute_input": "2024-01-12T22:31:42.130539Z", + "iopub.status.busy": "2024-01-12T22:31:42.130105Z", + "iopub.status.idle": "2024-01-12T22:31:43.447000Z", + "shell.execute_reply": "2024-01-12T22:31:43.446326Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "10262fae8e7241aaa83534e155136cc8", + "model_id": "144b86e8024a4f8aaf8ba767aa7d31bb", "version_major": 2, "version_minor": 0 }, @@ -3218,10 +3226,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:57.464475Z", - "iopub.status.busy": "2024-01-10T15:09:57.464040Z", - "iopub.status.idle": "2024-01-10T15:09:57.681100Z", - "shell.execute_reply": "2024-01-10T15:09:57.680532Z" + "iopub.execute_input": "2024-01-12T22:31:43.449996Z", + "iopub.status.busy": "2024-01-12T22:31:43.449630Z", + "iopub.status.idle": "2024-01-12T22:31:43.666744Z", + "shell.execute_reply": "2024-01-12T22:31:43.666004Z" } }, "outputs": [], @@ -3235,10 +3243,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:09:57.684107Z", - "iopub.status.busy": "2024-01-10T15:09:57.683636Z", - "iopub.status.idle": "2024-01-10T15:10:02.403620Z", - "shell.execute_reply": "2024-01-10T15:10:02.403082Z" + "iopub.execute_input": "2024-01-12T22:31:43.669578Z", + "iopub.status.busy": "2024-01-12T22:31:43.669360Z", + "iopub.status.idle": "2024-01-12T22:31:48.406278Z", + "shell.execute_reply": "2024-01-12T22:31:48.405576Z" } }, "outputs": [ @@ -3311,10 +3319,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:02.406244Z", - "iopub.status.busy": "2024-01-10T15:10:02.405893Z", - "iopub.status.idle": "2024-01-10T15:10:02.462753Z", - "shell.execute_reply": "2024-01-10T15:10:02.462023Z" + "iopub.execute_input": "2024-01-12T22:31:48.408942Z", + "iopub.status.busy": "2024-01-12T22:31:48.408472Z", + "iopub.status.idle": "2024-01-12T22:31:48.465646Z", + "shell.execute_reply": "2024-01-12T22:31:48.464945Z" }, "nbsphinx": "hidden" }, @@ -3358,59 +3366,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0cabd023fdf0459dade56fdbdab8a722": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "043d4ebd410247d3905ea63d2b44b11d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f200285f93f44e796901c1d15fe97a0", + "placeholder": "​", + "style": "IPY_MODEL_0446738058a94468b9333c4e7cd813bb", + "value": "number of examples processed for checking labels: 100%" + } + }, + "0446738058a94468b9333c4e7cd813bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "10262fae8e7241aaa83534e155136cc8": { + "144b86e8024a4f8aaf8ba767aa7d31bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3425,87 +3417,100 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_20604eb91f914901b8cd049fe40aed0c", - "IPY_MODEL_a4ad64cf3b8e42cbbd156ea3ad023cf0", - "IPY_MODEL_c021c3820ba740b698720b87aaae46aa" + "IPY_MODEL_a2f821925cfc4be69ac2b8572f5c3cbd", + "IPY_MODEL_1f270dd1aaf34b9ca81bcd90f7863097", + "IPY_MODEL_ab36431ece774a4da2d582101cd80e72" ], - "layout": "IPY_MODEL_7884f1c305fa4100a3bb6774296775e3" + "layout": "IPY_MODEL_d5e96f2faedd4e4bb85343a3b37ec13b" } }, - "20604eb91f914901b8cd049fe40aed0c": { + "1f270dd1aaf34b9ca81bcd90f7863097": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0cabd023fdf0459dade56fdbdab8a722", - "placeholder": "​", - "style": "IPY_MODEL_a398413dd01349efb0e6af391f0dd506", - "value": "images processed using softmin: 100%" + "layout": "IPY_MODEL_da12bbddb62044408f73473e520879f8", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6d71db28b3924000b459303be3f854fe", + "value": 30.0 } }, - "327d4e33d6c34e26aa9b7dc644a5a780": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "24e1cccf99014e9691effff931a51ace": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_368b604cdb6f4085b9abd73ffd1a45bc", + "IPY_MODEL_ca92df195fee43ed9998d70c83dbd0c9", + "IPY_MODEL_4a55bbc2769e4dc18e208d291fd5c942" + ], + "layout": "IPY_MODEL_6918345b4e494c38ba558c064f628664" + } + }, + "33073e468a604a24a68f9541225f7124": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_440468c39f1843edb328131f83dd3ba9", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_35c48d7b09fc4cc5bbb1530c969e77f3", + "value": 30.0 + } + }, + "35c48d7b09fc4cc5bbb1530c969e77f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3b176614773d47b69402c245a311bef1": { + "368b604cdb6f4085b9abd73ffd1a45bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3520,13 +3525,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5ba9455423fc49b9afd09dd55a76d451", + "layout": "IPY_MODEL_6ed5013c50894cd89b91261bbeec4d16", "placeholder": "​", - "style": "IPY_MODEL_ea9c235a65204d95915e6252ce4849a9", - "value": " 30/30 [00:00<00:00, 405.15it/s]" + "style": "IPY_MODEL_5ef179f330424686a58df23ba2223516", + "value": "number of examples processed for estimating thresholds: 100%" } }, - "41785dfc20e04971b132df33fa7c9385": { + "3cdb6a5dcb90477185e9eb315326e0f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3578,7 +3583,7 @@ "width": null } }, - "59d122979e00418d9d2b44a0649e9c99": { + "440468c39f1843edb328131f83dd3ba9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3630,7 +3635,7 @@ "width": null } }, - "5b31e79b52f449bbb8406036a81145c5": { + "4a55bbc2769e4dc18e208d291fd5c942": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3645,37 +3650,43 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_327d4e33d6c34e26aa9b7dc644a5a780", + "layout": "IPY_MODEL_c1dc95af3caa41ee83d931451be13669", "placeholder": "​", - "style": "IPY_MODEL_e9ce6ea46e8e4c9fabad8b42c3aeb9f3", - "value": " 30/30 [00:36<00:00, 1.25s/it]" + "style": "IPY_MODEL_f0d5c92857de46d3b3b21c22a182dd91", + "value": " 30/30 [00:00<00:00, 406.95it/s]" } }, - "5b945b8979b1403c81a800af34b66e03": { + "5ef179f330424686a58df23ba2223516": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d4f8b63ff55f44d0806b2c2907aefec4", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c6113d8dbfe84dd9b62fdc3abc1bb77f", - "value": 30.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "684fe6cf6638487ea077b635c95edc83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "5ba9455423fc49b9afd09dd55a76d451": { + "6918345b4e494c38ba558c064f628664": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3727,7 +3738,23 @@ "width": null } }, - "7884f1c305fa4100a3bb6774296775e3": { + "6d71db28b3924000b459303be3f854fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6ed5013c50894cd89b91261bbeec4d16": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3779,28 +3806,7 @@ "width": null } }, - "79d27e5270204d64987b0e80dd9182ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a63ee572a83d4d56897761721e4b9463", - "placeholder": "​", - "style": "IPY_MODEL_da1005f0226e4c098b0ba80da39e5dde", - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "7a602a978fd545f79286c9665c899a5f": { + "8b216df6a82549028cf380b5c944f427": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3852,7 +3858,7 @@ "width": null } }, - "7c23cb9954844791b103ca64e83fc5b3": { + "8f200285f93f44e796901c1d15fe97a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3904,7 +3910,7 @@ "width": null } }, - "85e8dd09ec894b74b87290c37be9fa4d": { + "97a05aaa1cea4629a5f6e404503fe1fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3920,92 +3926,159 @@ "description_width": "" } }, - "8745eabd766a4561977991454dbae104": { + "a2f821925cfc4be69ac2b8572f5c3cbd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c74ae2a09f8546d09f15d8ba1826b0c1", + "placeholder": "​", + "style": "IPY_MODEL_a62476500ac941f18293589ffaf31a1a", + "value": "images processed using softmin: 100%" } }, - "9eaf86d2100845cf89b90fbec4d83ff0": { + "a62476500ac941f18293589ffaf31a1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "9f5aabf00d6c4045899a995a8dbacb97": { + "ab36431ece774a4da2d582101cd80e72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ca0d8508e61b4e5b9edfe0d6c3735dfa", + "placeholder": "​", + "style": "IPY_MODEL_684fe6cf6638487ea077b635c95edc83", + "value": " 30/30 [00:01<00:00, 23.38it/s]" + } + }, + "af9471211efa4b2ebdf22397c84c02a4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a398413dd01349efb0e6af391f0dd506": { + "b21bee2487dc4cc9ba714bb85dfd5796": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_af9471211efa4b2ebdf22397c84c02a4", + "placeholder": "​", + "style": "IPY_MODEL_e3d16be8f12c4866b2b540f90f059eb1", + "value": " 30/30 [00:36<00:00, 1.27s/it]" } }, - "a4ad64cf3b8e42cbbd156ea3ad023cf0": { + "b2844702aa05437896745da9ce2f19f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7a602a978fd545f79286c9665c899a5f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_85e8dd09ec894b74b87290c37be9fa4d", - "value": 30.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_043d4ebd410247d3905ea63d2b44b11d", + "IPY_MODEL_33073e468a604a24a68f9541225f7124", + "IPY_MODEL_b21bee2487dc4cc9ba714bb85dfd5796" + ], + "layout": "IPY_MODEL_3cdb6a5dcb90477185e9eb315326e0f0" } }, - "a63ee572a83d4d56897761721e4b9463": { + "c1dc95af3caa41ee83d931451be13669": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4057,7 +4130,7 @@ "width": null } }, - "b9a8cc73eed24f51a6f043294d33fa58": { + "c74ae2a09f8546d09f15d8ba1826b0c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4109,49 +4182,59 @@ "width": null } }, - "c021c3820ba740b698720b87aaae46aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d805351f37ea4bda8b93d3028d6b823b", - "placeholder": "​", - "style": "IPY_MODEL_8745eabd766a4561977991454dbae104", - "value": " 30/30 [00:01<00:00, 23.52it/s]" - } - }, - "c1b440b00f9f47e78b555fe6d71caf22": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "ca0d8508e61b4e5b9edfe0d6c3735dfa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7c23cb9954844791b103ca64e83fc5b3", - "placeholder": "​", - "style": "IPY_MODEL_9f5aabf00d6c4045899a995a8dbacb97", - "value": "number of examples processed for checking labels: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c369934d7c86476eb48d4583e720e228": { + "ca92df195fee43ed9998d70c83dbd0c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4167,31 +4250,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_59d122979e00418d9d2b44a0649e9c99", + "layout": "IPY_MODEL_8b216df6a82549028cf380b5c944f427", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9eaf86d2100845cf89b90fbec4d83ff0", + "style": "IPY_MODEL_97a05aaa1cea4629a5f6e404503fe1fb", "value": 30.0 } }, - "c6113d8dbfe84dd9b62fdc3abc1bb77f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d4f8b63ff55f44d0806b2c2907aefec4": { + "d5e96f2faedd4e4bb85343a3b37ec13b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4243,7 +4310,7 @@ "width": null } }, - "d805351f37ea4bda8b93d3028d6b823b": { + "da12bbddb62044408f73473e520879f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4295,7 +4362,7 @@ "width": null } }, - "da1005f0226e4c098b0ba80da39e5dde": { + "e3d16be8f12c4866b2b540f90f059eb1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4310,7 +4377,7 @@ "description_width": "" } }, - "e9ce6ea46e8e4c9fabad8b42c3aeb9f3": { + "f0d5c92857de46d3b3b21c22a182dd91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4324,65 +4391,6 @@ "_view_name": "StyleView", "description_width": "" } - }, - "ea68cf0375d04b00803fe43e815130fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c1b440b00f9f47e78b555fe6d71caf22", - "IPY_MODEL_c369934d7c86476eb48d4583e720e228", - "IPY_MODEL_5b31e79b52f449bbb8406036a81145c5" - ], - "layout": "IPY_MODEL_41785dfc20e04971b132df33fa7c9385" - } - }, - "ea9c235a65204d95915e6252ce4849a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f6f7d2e0db9b4e23bd565eeb1ebe8323": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_79d27e5270204d64987b0e80dd9182ed", - "IPY_MODEL_5b945b8979b1403c81a800af34b66e03", - "IPY_MODEL_3b176614773d47b69402c245a311bef1" - ], - "layout": "IPY_MODEL_b9a8cc73eed24f51a6f043294d33fa58" - } } }, "version_major": 2, diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index cc587dc77..204929795 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:06.731555Z", - "iopub.status.busy": "2024-01-10T15:10:06.731098Z", - "iopub.status.idle": "2024-01-10T15:10:07.811523Z", - "shell.execute_reply": "2024-01-10T15:10:07.810902Z" + "iopub.execute_input": "2024-01-12T22:31:52.849291Z", + "iopub.status.busy": "2024-01-12T22:31:52.848757Z", + "iopub.status.idle": "2024-01-12T22:31:53.954870Z", + "shell.execute_reply": "2024-01-12T22:31:53.954210Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:07.814997Z", - "iopub.status.busy": "2024-01-10T15:10:07.814188Z", - "iopub.status.idle": "2024-01-10T15:10:07.833169Z", - "shell.execute_reply": "2024-01-10T15:10:07.832624Z" + "iopub.execute_input": "2024-01-12T22:31:53.957967Z", + "iopub.status.busy": "2024-01-12T22:31:53.957423Z", + "iopub.status.idle": "2024-01-12T22:31:53.975358Z", + "shell.execute_reply": "2024-01-12T22:31:53.974686Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:07.836050Z", - "iopub.status.busy": "2024-01-10T15:10:07.835668Z", - "iopub.status.idle": "2024-01-10T15:10:07.885520Z", - "shell.execute_reply": "2024-01-10T15:10:07.884971Z" + "iopub.execute_input": "2024-01-12T22:31:53.978200Z", + "iopub.status.busy": "2024-01-12T22:31:53.977803Z", + "iopub.status.idle": "2024-01-12T22:31:54.119053Z", + "shell.execute_reply": "2024-01-12T22:31:54.118406Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:07.888062Z", - "iopub.status.busy": "2024-01-10T15:10:07.887689Z", - "iopub.status.idle": "2024-01-10T15:10:07.891398Z", - "shell.execute_reply": "2024-01-10T15:10:07.890891Z" + "iopub.execute_input": "2024-01-12T22:31:54.121569Z", + "iopub.status.busy": "2024-01-12T22:31:54.121242Z", + "iopub.status.idle": "2024-01-12T22:31:54.125213Z", + "shell.execute_reply": "2024-01-12T22:31:54.124580Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:07.893720Z", - "iopub.status.busy": "2024-01-10T15:10:07.893356Z", - "iopub.status.idle": "2024-01-10T15:10:07.902385Z", - "shell.execute_reply": "2024-01-10T15:10:07.901725Z" + "iopub.execute_input": "2024-01-12T22:31:54.127676Z", + "iopub.status.busy": "2024-01-12T22:31:54.127223Z", + "iopub.status.idle": "2024-01-12T22:31:54.136065Z", + "shell.execute_reply": "2024-01-12T22:31:54.135566Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:07.904892Z", - "iopub.status.busy": "2024-01-10T15:10:07.904653Z", - "iopub.status.idle": "2024-01-10T15:10:07.907458Z", - "shell.execute_reply": "2024-01-10T15:10:07.906901Z" + "iopub.execute_input": "2024-01-12T22:31:54.138515Z", + "iopub.status.busy": "2024-01-12T22:31:54.138121Z", + "iopub.status.idle": "2024-01-12T22:31:54.140970Z", + "shell.execute_reply": "2024-01-12T22:31:54.140426Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:07.909680Z", - "iopub.status.busy": "2024-01-10T15:10:07.909473Z", - "iopub.status.idle": "2024-01-10T15:10:08.495611Z", - "shell.execute_reply": "2024-01-10T15:10:08.494992Z" + "iopub.execute_input": "2024-01-12T22:31:54.143137Z", + "iopub.status.busy": "2024-01-12T22:31:54.142933Z", + "iopub.status.idle": "2024-01-12T22:31:54.730894Z", + "shell.execute_reply": "2024-01-12T22:31:54.730154Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:08.498344Z", - "iopub.status.busy": "2024-01-10T15:10:08.498125Z", - "iopub.status.idle": "2024-01-10T15:10:09.775405Z", - "shell.execute_reply": "2024-01-10T15:10:09.774608Z" + "iopub.execute_input": "2024-01-12T22:31:54.734006Z", + "iopub.status.busy": "2024-01-12T22:31:54.733737Z", + "iopub.status.idle": "2024-01-12T22:31:55.999256Z", + "shell.execute_reply": "2024-01-12T22:31:55.998481Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:09.778762Z", - "iopub.status.busy": "2024-01-10T15:10:09.778133Z", - "iopub.status.idle": "2024-01-10T15:10:09.788828Z", - "shell.execute_reply": "2024-01-10T15:10:09.788286Z" + "iopub.execute_input": "2024-01-12T22:31:56.002167Z", + "iopub.status.busy": "2024-01-12T22:31:56.001588Z", + "iopub.status.idle": "2024-01-12T22:31:56.012440Z", + "shell.execute_reply": "2024-01-12T22:31:56.011902Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:09.791421Z", - "iopub.status.busy": "2024-01-10T15:10:09.791212Z", - "iopub.status.idle": "2024-01-10T15:10:09.795823Z", - "shell.execute_reply": "2024-01-10T15:10:09.795276Z" + "iopub.execute_input": "2024-01-12T22:31:56.015023Z", + "iopub.status.busy": "2024-01-12T22:31:56.014653Z", + "iopub.status.idle": "2024-01-12T22:31:56.018958Z", + "shell.execute_reply": "2024-01-12T22:31:56.018414Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:09.798077Z", - "iopub.status.busy": "2024-01-10T15:10:09.797879Z", - "iopub.status.idle": "2024-01-10T15:10:09.805698Z", - "shell.execute_reply": "2024-01-10T15:10:09.805152Z" + "iopub.execute_input": "2024-01-12T22:31:56.021391Z", + "iopub.status.busy": "2024-01-12T22:31:56.020989Z", + "iopub.status.idle": "2024-01-12T22:31:56.028908Z", + "shell.execute_reply": "2024-01-12T22:31:56.028396Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:09.808315Z", - "iopub.status.busy": "2024-01-10T15:10:09.807943Z", - "iopub.status.idle": "2024-01-10T15:10:09.933595Z", - "shell.execute_reply": "2024-01-10T15:10:09.932999Z" + "iopub.execute_input": "2024-01-12T22:31:56.031325Z", + "iopub.status.busy": "2024-01-12T22:31:56.030950Z", + "iopub.status.idle": "2024-01-12T22:31:56.155935Z", + "shell.execute_reply": "2024-01-12T22:31:56.155243Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:09.936259Z", - "iopub.status.busy": "2024-01-10T15:10:09.935880Z", - "iopub.status.idle": "2024-01-10T15:10:09.938920Z", - "shell.execute_reply": "2024-01-10T15:10:09.938378Z" + "iopub.execute_input": "2024-01-12T22:31:56.158640Z", + "iopub.status.busy": "2024-01-12T22:31:56.158164Z", + "iopub.status.idle": "2024-01-12T22:31:56.161380Z", + "shell.execute_reply": "2024-01-12T22:31:56.160726Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:09.941355Z", - "iopub.status.busy": "2024-01-10T15:10:09.940977Z", - "iopub.status.idle": "2024-01-10T15:10:11.374923Z", - "shell.execute_reply": "2024-01-10T15:10:11.374140Z" + "iopub.execute_input": "2024-01-12T22:31:56.164019Z", + "iopub.status.busy": "2024-01-12T22:31:56.163561Z", + "iopub.status.idle": "2024-01-12T22:31:57.621299Z", + "shell.execute_reply": "2024-01-12T22:31:57.620437Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:11.377786Z", - "iopub.status.busy": "2024-01-10T15:10:11.377568Z", - "iopub.status.idle": "2024-01-10T15:10:11.391936Z", - "shell.execute_reply": "2024-01-10T15:10:11.391279Z" + "iopub.execute_input": "2024-01-12T22:31:57.624850Z", + "iopub.status.busy": "2024-01-12T22:31:57.624278Z", + "iopub.status.idle": "2024-01-12T22:31:57.639623Z", + "shell.execute_reply": "2024-01-12T22:31:57.638963Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:11.394770Z", - "iopub.status.busy": "2024-01-10T15:10:11.394348Z", - "iopub.status.idle": "2024-01-10T15:10:11.437897Z", - "shell.execute_reply": "2024-01-10T15:10:11.437359Z" + "iopub.execute_input": "2024-01-12T22:31:57.642345Z", + "iopub.status.busy": "2024-01-12T22:31:57.641825Z", + "iopub.status.idle": "2024-01-12T22:31:57.733258Z", + "shell.execute_reply": "2024-01-12T22:31:57.732556Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index 5b33e1b53..2c54378bc 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -969,7 +969,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}
+Classes: {'cancel_transfer', 'visa_or_mastercard', 'lost_or_stolen_phone', 'change_pin', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'card_about_to_expire', 'getting_spare_card'}
 

Let’s print the first example in the train set.

diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index 806779347..02a6fb457 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:16.790552Z", - "iopub.status.busy": "2024-01-10T15:10:16.790082Z", - "iopub.status.idle": "2024-01-10T15:10:18.889335Z", - "shell.execute_reply": "2024-01-10T15:10:18.888712Z" + "iopub.execute_input": "2024-01-12T22:32:03.125938Z", + "iopub.status.busy": "2024-01-12T22:32:03.125476Z", + "iopub.status.idle": "2024-01-12T22:32:05.262019Z", + "shell.execute_reply": "2024-01-12T22:32:05.261300Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.892121Z", - "iopub.status.busy": "2024-01-10T15:10:18.891795Z", - "iopub.status.idle": "2024-01-10T15:10:18.895297Z", - "shell.execute_reply": "2024-01-10T15:10:18.894789Z" + "iopub.execute_input": "2024-01-12T22:32:05.265357Z", + "iopub.status.busy": "2024-01-12T22:32:05.264833Z", + "iopub.status.idle": "2024-01-12T22:32:05.268390Z", + "shell.execute_reply": "2024-01-12T22:32:05.267853Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.897631Z", - "iopub.status.busy": "2024-01-10T15:10:18.897294Z", - "iopub.status.idle": "2024-01-10T15:10:18.900472Z", - "shell.execute_reply": "2024-01-10T15:10:18.899942Z" + "iopub.execute_input": "2024-01-12T22:32:05.270734Z", + "iopub.status.busy": "2024-01-12T22:32:05.270322Z", + "iopub.status.idle": "2024-01-12T22:32:05.273625Z", + "shell.execute_reply": "2024-01-12T22:32:05.273112Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.902850Z", - "iopub.status.busy": "2024-01-10T15:10:18.902503Z", - "iopub.status.idle": "2024-01-10T15:10:18.950825Z", - "shell.execute_reply": "2024-01-10T15:10:18.950198Z" + "iopub.execute_input": "2024-01-12T22:32:05.275972Z", + "iopub.status.busy": "2024-01-12T22:32:05.275605Z", + "iopub.status.idle": "2024-01-12T22:32:05.380038Z", + "shell.execute_reply": "2024-01-12T22:32:05.379416Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.953409Z", - "iopub.status.busy": "2024-01-10T15:10:18.953034Z", - "iopub.status.idle": "2024-01-10T15:10:18.956975Z", - "shell.execute_reply": "2024-01-10T15:10:18.956461Z" + "iopub.execute_input": "2024-01-12T22:32:05.382624Z", + "iopub.status.busy": "2024-01-12T22:32:05.382228Z", + "iopub.status.idle": "2024-01-12T22:32:05.386071Z", + "shell.execute_reply": "2024-01-12T22:32:05.385554Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.959537Z", - "iopub.status.busy": "2024-01-10T15:10:18.959163Z", - "iopub.status.idle": "2024-01-10T15:10:18.962874Z", - "shell.execute_reply": "2024-01-10T15:10:18.962229Z" + "iopub.execute_input": "2024-01-12T22:32:05.388461Z", + "iopub.status.busy": "2024-01-12T22:32:05.388166Z", + "iopub.status.idle": "2024-01-12T22:32:05.391790Z", + "shell.execute_reply": "2024-01-12T22:32:05.391199Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}\n" + "Classes: {'cancel_transfer', 'visa_or_mastercard', 'lost_or_stolen_phone', 'change_pin', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'card_about_to_expire', 'getting_spare_card'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.965276Z", - "iopub.status.busy": "2024-01-10T15:10:18.964930Z", - "iopub.status.idle": "2024-01-10T15:10:18.968315Z", - "shell.execute_reply": "2024-01-10T15:10:18.967709Z" + "iopub.execute_input": "2024-01-12T22:32:05.394218Z", + "iopub.status.busy": "2024-01-12T22:32:05.393853Z", + "iopub.status.idle": "2024-01-12T22:32:05.397331Z", + "shell.execute_reply": "2024-01-12T22:32:05.396710Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.970723Z", - "iopub.status.busy": "2024-01-10T15:10:18.970346Z", - "iopub.status.idle": "2024-01-10T15:10:18.973815Z", - "shell.execute_reply": "2024-01-10T15:10:18.973276Z" + "iopub.execute_input": "2024-01-12T22:32:05.399833Z", + "iopub.status.busy": "2024-01-12T22:32:05.399463Z", + "iopub.status.idle": "2024-01-12T22:32:05.402993Z", + "shell.execute_reply": "2024-01-12T22:32:05.402454Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:18.976281Z", - "iopub.status.busy": "2024-01-10T15:10:18.975813Z", - "iopub.status.idle": "2024-01-10T15:10:27.589830Z", - "shell.execute_reply": "2024-01-10T15:10:27.589082Z" + "iopub.execute_input": "2024-01-12T22:32:05.405436Z", + "iopub.status.busy": "2024-01-12T22:32:05.405066Z", + "iopub.status.idle": "2024-01-12T22:32:14.483571Z", + "shell.execute_reply": "2024-01-12T22:32:14.482917Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:27.593536Z", - "iopub.status.busy": "2024-01-10T15:10:27.592977Z", - "iopub.status.idle": "2024-01-10T15:10:27.596244Z", - "shell.execute_reply": "2024-01-10T15:10:27.595606Z" + "iopub.execute_input": "2024-01-12T22:32:14.486956Z", + "iopub.status.busy": "2024-01-12T22:32:14.486492Z", + "iopub.status.idle": "2024-01-12T22:32:14.489845Z", + "shell.execute_reply": "2024-01-12T22:32:14.489310Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:27.598714Z", - "iopub.status.busy": "2024-01-10T15:10:27.598260Z", - "iopub.status.idle": "2024-01-10T15:10:27.601298Z", - "shell.execute_reply": "2024-01-10T15:10:27.600678Z" + "iopub.execute_input": "2024-01-12T22:32:14.492198Z", + "iopub.status.busy": "2024-01-12T22:32:14.491991Z", + "iopub.status.idle": "2024-01-12T22:32:14.494825Z", + "shell.execute_reply": "2024-01-12T22:32:14.494298Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:27.603699Z", - "iopub.status.busy": "2024-01-10T15:10:27.603332Z", - "iopub.status.idle": "2024-01-10T15:10:29.839909Z", - "shell.execute_reply": "2024-01-10T15:10:29.839076Z" + "iopub.execute_input": "2024-01-12T22:32:14.497079Z", + "iopub.status.busy": "2024-01-12T22:32:14.496705Z", + "iopub.status.idle": "2024-01-12T22:32:16.752632Z", + "shell.execute_reply": "2024-01-12T22:32:16.751900Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:29.843986Z", - "iopub.status.busy": "2024-01-10T15:10:29.842887Z", - "iopub.status.idle": "2024-01-10T15:10:29.851253Z", - "shell.execute_reply": "2024-01-10T15:10:29.850730Z" + "iopub.execute_input": "2024-01-12T22:32:16.756365Z", + "iopub.status.busy": "2024-01-12T22:32:16.755617Z", + "iopub.status.idle": "2024-01-12T22:32:16.763658Z", + "shell.execute_reply": "2024-01-12T22:32:16.763133Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:29.853752Z", - "iopub.status.busy": "2024-01-10T15:10:29.853315Z", - "iopub.status.idle": "2024-01-10T15:10:29.857532Z", - "shell.execute_reply": "2024-01-10T15:10:29.856980Z" + "iopub.execute_input": "2024-01-12T22:32:16.766021Z", + "iopub.status.busy": "2024-01-12T22:32:16.765676Z", + "iopub.status.idle": "2024-01-12T22:32:16.770004Z", + "shell.execute_reply": "2024-01-12T22:32:16.769501Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:29.859922Z", - "iopub.status.busy": "2024-01-10T15:10:29.859552Z", - "iopub.status.idle": "2024-01-10T15:10:29.862975Z", - "shell.execute_reply": "2024-01-10T15:10:29.862318Z" + "iopub.execute_input": "2024-01-12T22:32:16.772493Z", + "iopub.status.busy": "2024-01-12T22:32:16.772030Z", + "iopub.status.idle": "2024-01-12T22:32:16.775785Z", + "shell.execute_reply": "2024-01-12T22:32:16.775152Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:29.865590Z", - "iopub.status.busy": "2024-01-10T15:10:29.865060Z", - "iopub.status.idle": "2024-01-10T15:10:29.868486Z", - "shell.execute_reply": "2024-01-10T15:10:29.867944Z" + "iopub.execute_input": "2024-01-12T22:32:16.778273Z", + "iopub.status.busy": "2024-01-12T22:32:16.777760Z", + "iopub.status.idle": "2024-01-12T22:32:16.781400Z", + "shell.execute_reply": "2024-01-12T22:32:16.780771Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:29.870591Z", - "iopub.status.busy": "2024-01-10T15:10:29.870397Z", - "iopub.status.idle": "2024-01-10T15:10:29.877780Z", - "shell.execute_reply": "2024-01-10T15:10:29.877252Z" + "iopub.execute_input": "2024-01-12T22:32:16.783785Z", + "iopub.status.busy": "2024-01-12T22:32:16.783292Z", + "iopub.status.idle": "2024-01-12T22:32:16.790506Z", + "shell.execute_reply": "2024-01-12T22:32:16.789871Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:29.880219Z", - "iopub.status.busy": "2024-01-10T15:10:29.880022Z", - "iopub.status.idle": "2024-01-10T15:10:30.144805Z", - "shell.execute_reply": "2024-01-10T15:10:30.144168Z" + "iopub.execute_input": "2024-01-12T22:32:16.793116Z", + "iopub.status.busy": "2024-01-12T22:32:16.792748Z", + "iopub.status.idle": "2024-01-12T22:32:17.035850Z", + "shell.execute_reply": "2024-01-12T22:32:17.035140Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:30.148970Z", - "iopub.status.busy": "2024-01-10T15:10:30.147638Z", - "iopub.status.idle": "2024-01-10T15:10:30.428192Z", - "shell.execute_reply": "2024-01-10T15:10:30.427509Z" + "iopub.execute_input": "2024-01-12T22:32:17.038958Z", + "iopub.status.busy": "2024-01-12T22:32:17.038492Z", + "iopub.status.idle": "2024-01-12T22:32:17.341386Z", + "shell.execute_reply": "2024-01-12T22:32:17.340621Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:10:30.432036Z", - "iopub.status.busy": "2024-01-10T15:10:30.431584Z", - "iopub.status.idle": "2024-01-10T15:10:30.437238Z", - "shell.execute_reply": "2024-01-10T15:10:30.436640Z" + "iopub.execute_input": "2024-01-12T22:32:17.345641Z", + "iopub.status.busy": "2024-01-12T22:32:17.344506Z", + "iopub.status.idle": "2024-01-12T22:32:17.350149Z", + "shell.execute_reply": "2024-01-12T22:32:17.349555Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index d972dab39..3ef3b716d 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -862,7 +862,7 @@

1. Install required dependencies and download data
---2024-01-10 15:10:36--  https://data.deepai.org/conll2003.zip
+--2024-01-12 22:32:22--  https://data.deepai.org/conll2003.zip
 Resolving data.deepai.org (data.deepai.org)...
 
@@ -871,16 +871,8 @@

1. Install required dependencies and download data
-185.93.1.247, 2400:52e0:1a00::1069:1
-Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443...
-
- -
-
-
-
-
-connected.
+143.244.50.89, 2400:52e0:1a01::984:1
+Connecting to data.deepai.org (data.deepai.org)|143.244.50.89|:443... connected.
 HTTP request sent, awaiting response...
 
@@ -910,25 +902,25 @@

1. Install required dependencies and download data
-

conll2003.zip 100%[===================&gt;] 959.94K 6.19MB/s in 0.2s

+

conll2003.zip 100%[===================&gt;] 959.94K 5.37MB/s in 0.2s

-

2024-01-10 15:10:36 (6.19 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-01-12 22:32:22 (5.37 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists </pre>

-

conll2003.zip 100%[===================>] 959.94K 6.19MB/s in 0.2s

+

conll2003.zip 100%[===================>] 959.94K 5.37MB/s in 0.2s

-

2024-01-10 15:10:36 (6.19 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-01-12 22:32:22 (5.37 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists end{sphinxVerbatim}

-

conll2003.zip 100%[===================>] 959.94K 6.19MB/s in 0.2s

+

conll2003.zip 100%[===================>] 959.94K 5.37MB/s in 0.2s

-

2024-01-10 15:10:36 (6.19 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-01-12 22:32:22 (5.37 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists

+
+
+
+
+
+connected.
 
@@ -982,29 +981,83 @@

1. Install required dependencies and download data

pred_probs.npz 0%[ ] 0 –.-KB/s

+
+
+
+
+
+
+
+
pred_probs.npz 0%[ ] 117.32K 555KB/s
+

</pre>

+
+
+
pred_probs.npz 0%[ ] 117.32K 555KB/s
+

end{sphinxVerbatim}

+
+
+
+

pred_probs.npz 0%[ ] 117.32K 555KB/s

+
+
+
+
+
+
+
+
pred_probs.npz 6%[&gt; ] 1.06M 2.51MB/s
+

</pre>

+
+
+
pred_probs.npz 6%[> ] 1.06M 2.51MB/s
+

end{sphinxVerbatim}

+
+
+
+

pred_probs.npz 6%[> ] 1.06M 2.51MB/s

+
+
+
+
+
+
+
+
pred_probs.npz 44%[=======&gt; ] 7.24M 11.4MB/s
+

</pre>

+
+
+
pred_probs.npz 44%[=======> ] 7.24M 11.4MB/s
+

end{sphinxVerbatim}

+
+
+
+

pred_probs.npz 44%[=======> ] 7.24M 11.4MB/s

-

pred_probs.npz 100%[===================&gt;] 16.26M –.-KB/s in 0.1s

+

pred_probs.npz 98%[==================&gt; ] 15.98M 18.9MB/s +pred_probs.npz 100%[===================&gt;] 16.26M 19.1MB/s in 0.8s

-

2024-01-10 15:10:37 (115 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-01-12 22:32:23 (19.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

</pre>

-

pred_probs.npz 100%[===================>] 16.26M –.-KB/s in 0.1s

+

pred_probs.npz 98%[==================> ] 15.98M 18.9MB/s +pred_probs.npz 100%[===================>] 16.26M 19.1MB/s in 0.8s

-

2024-01-10 15:10:37 (115 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-01-12 22:32:23 (19.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

end{sphinxVerbatim}

-

pred_probs.npz 100%[===================>] 16.26M –.-KB/s in 0.1s

+

pred_probs.npz 98%[==================> ] 15.98M 18.9MB/s +pred_probs.npz 100%[===================>] 16.26M 19.1MB/s in 0.8s

-

2024-01-10 15:10:37 (115 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-01-12 22:32:23 (19.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

[3]:
diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb
index c750e759e..b21cd34ba 100644
--- a/master/tutorials/token_classification.ipynb
+++ b/master/tutorials/token_classification.ipynb
@@ -75,10 +75,10 @@
    "id": "ae8a08e0",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:35.984210Z",
-     "iopub.status.busy": "2024-01-10T15:10:35.984011Z",
-     "iopub.status.idle": "2024-01-10T15:10:37.320142Z",
-     "shell.execute_reply": "2024-01-10T15:10:37.319429Z"
+     "iopub.execute_input": "2024-01-12T22:32:21.984835Z",
+     "iopub.status.busy": "2024-01-12T22:32:21.984375Z",
+     "iopub.status.idle": "2024-01-12T22:32:24.053745Z",
+     "shell.execute_reply": "2024-01-12T22:32:24.052952Z"
     }
    },
    "outputs": [
@@ -86,7 +86,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "--2024-01-10 15:10:36--  https://data.deepai.org/conll2003.zip\r\n",
+      "--2024-01-12 22:32:22--  https://data.deepai.org/conll2003.zip\r\n",
       "Resolving data.deepai.org (data.deepai.org)... "
      ]
     },
@@ -94,15 +94,8 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "185.93.1.247, 2400:52e0:1a00::1069:1\r\n",
-      "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "connected.\r\n",
+      "143.244.50.89, 2400:52e0:1a01::984:1\r\n",
+      "Connecting to data.deepai.org (data.deepai.org)|143.244.50.89|:443... connected.\r\n",
       "HTTP request sent, awaiting response... "
      ]
     },
@@ -123,9 +116,9 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "conll2003.zip       100%[===================>] 959.94K  6.19MB/s    in 0.2s    \r\n",
+      "conll2003.zip       100%[===================>] 959.94K  5.37MB/s    in 0.2s    \r\n",
       "\r\n",
-      "2024-01-10 15:10:36 (6.19 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
+      "2024-01-12 22:32:22 (5.37 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
       "\r\n",
       "mkdir: cannot create directory ‘data’: File exists\r\n"
      ]
@@ -137,24 +130,30 @@
       "Archive:  conll2003.zip\r\n",
       "  inflating: data/metadata           \r\n",
       "  inflating: data/test.txt           \r\n",
-      "  inflating: data/train.txt          "
+      "  inflating: data/train.txt          \r\n",
+      "  inflating: data/valid.txt          \r\n"
      ]
     },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "\r\n",
-      "  inflating: data/valid.txt          \r\n"
+      "--2024-01-12 22:32:22--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
+      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.72.220, 3.5.16.189, 52.216.217.249, ...\r\n",
+      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.72.220|:443... "
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "connected.\r\n"
      ]
     },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "--2024-01-10 15:10:36--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
-      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.241.84, 3.5.25.164, 3.5.25.202, ...\r\n",
-      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.241.84|:443... connected.\r\n",
       "HTTP request sent, awaiting response... "
      ]
     },
@@ -175,9 +174,34 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "pred_probs.npz      100%[===================>]  16.26M  --.-KB/s    in 0.1s    \r\n",
+      "pred_probs.npz        0%[                    ] 117.32K   555KB/s               "
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\r",
+      "pred_probs.npz        6%[>                   ]   1.06M  2.51MB/s               "
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\r",
+      "pred_probs.npz       44%[=======>            ]   7.24M  11.4MB/s               "
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\r",
+      "pred_probs.npz       98%[==================> ]  15.98M  18.9MB/s               \r",
+      "pred_probs.npz      100%[===================>]  16.26M  19.1MB/s    in 0.8s    \r\n",
       "\r\n",
-      "2024-01-10 15:10:37 (115 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
+      "2024-01-12 22:32:23 (19.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
       "\r\n"
      ]
     }
@@ -194,10 +218,10 @@
    "id": "439b0305",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:37.323300Z",
-     "iopub.status.busy": "2024-01-10T15:10:37.322818Z",
-     "iopub.status.idle": "2024-01-10T15:10:38.382549Z",
-     "shell.execute_reply": "2024-01-10T15:10:38.381846Z"
+     "iopub.execute_input": "2024-01-12T22:32:24.056757Z",
+     "iopub.status.busy": "2024-01-12T22:32:24.056541Z",
+     "iopub.status.idle": "2024-01-12T22:32:25.105146Z",
+     "shell.execute_reply": "2024-01-12T22:32:25.104432Z"
     },
     "nbsphinx": "hidden"
    },
@@ -208,7 +232,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@1bd16eec41b1a712e296dbfdb1081980b6e1ab7b\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
@@ -234,10 +258,10 @@
    "id": "a1349304",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:38.385611Z",
-     "iopub.status.busy": "2024-01-10T15:10:38.385072Z",
-     "iopub.status.idle": "2024-01-10T15:10:38.388744Z",
-     "shell.execute_reply": "2024-01-10T15:10:38.388204Z"
+     "iopub.execute_input": "2024-01-12T22:32:25.108187Z",
+     "iopub.status.busy": "2024-01-12T22:32:25.107828Z",
+     "iopub.status.idle": "2024-01-12T22:32:25.111576Z",
+     "shell.execute_reply": "2024-01-12T22:32:25.110971Z"
     }
    },
    "outputs": [],
@@ -287,10 +311,10 @@
    "id": "ab9d59a0",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:38.391232Z",
-     "iopub.status.busy": "2024-01-10T15:10:38.390763Z",
-     "iopub.status.idle": "2024-01-10T15:10:38.394013Z",
-     "shell.execute_reply": "2024-01-10T15:10:38.393407Z"
+     "iopub.execute_input": "2024-01-12T22:32:25.114230Z",
+     "iopub.status.busy": "2024-01-12T22:32:25.113733Z",
+     "iopub.status.idle": "2024-01-12T22:32:25.117018Z",
+     "shell.execute_reply": "2024-01-12T22:32:25.116418Z"
     },
     "nbsphinx": "hidden"
    },
@@ -308,10 +332,10 @@
    "id": "519cb80c",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:38.396403Z",
-     "iopub.status.busy": "2024-01-10T15:10:38.395914Z",
-     "iopub.status.idle": "2024-01-10T15:10:46.275104Z",
-     "shell.execute_reply": "2024-01-10T15:10:46.274509Z"
+     "iopub.execute_input": "2024-01-12T22:32:25.119239Z",
+     "iopub.status.busy": "2024-01-12T22:32:25.118903Z",
+     "iopub.status.idle": "2024-01-12T22:32:33.162345Z",
+     "shell.execute_reply": "2024-01-12T22:32:33.161708Z"
     }
    },
    "outputs": [],
@@ -385,10 +409,10 @@
    "id": "202f1526",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:46.278341Z",
-     "iopub.status.busy": "2024-01-10T15:10:46.277773Z",
-     "iopub.status.idle": "2024-01-10T15:10:46.283971Z",
-     "shell.execute_reply": "2024-01-10T15:10:46.283371Z"
+     "iopub.execute_input": "2024-01-12T22:32:33.165403Z",
+     "iopub.status.busy": "2024-01-12T22:32:33.165000Z",
+     "iopub.status.idle": "2024-01-12T22:32:33.171134Z",
+     "shell.execute_reply": "2024-01-12T22:32:33.170505Z"
     },
     "nbsphinx": "hidden"
    },
@@ -428,10 +452,10 @@
    "id": "a4381f03",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:46.286389Z",
-     "iopub.status.busy": "2024-01-10T15:10:46.286016Z",
-     "iopub.status.idle": "2024-01-10T15:10:46.716858Z",
-     "shell.execute_reply": "2024-01-10T15:10:46.716253Z"
+     "iopub.execute_input": "2024-01-12T22:32:33.173650Z",
+     "iopub.status.busy": "2024-01-12T22:32:33.173290Z",
+     "iopub.status.idle": "2024-01-12T22:32:33.607193Z",
+     "shell.execute_reply": "2024-01-12T22:32:33.606441Z"
     }
    },
    "outputs": [],
@@ -468,10 +492,10 @@
    "id": "7842e4a3",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:46.719903Z",
-     "iopub.status.busy": "2024-01-10T15:10:46.719490Z",
-     "iopub.status.idle": "2024-01-10T15:10:46.725601Z",
-     "shell.execute_reply": "2024-01-10T15:10:46.724970Z"
+     "iopub.execute_input": "2024-01-12T22:32:33.610036Z",
+     "iopub.status.busy": "2024-01-12T22:32:33.609802Z",
+     "iopub.status.idle": "2024-01-12T22:32:33.616543Z",
+     "shell.execute_reply": "2024-01-12T22:32:33.616018Z"
     }
    },
    "outputs": [
@@ -543,10 +567,10 @@
    "id": "2c2ad9ad",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:46.728384Z",
-     "iopub.status.busy": "2024-01-10T15:10:46.727907Z",
-     "iopub.status.idle": "2024-01-10T15:10:48.714011Z",
-     "shell.execute_reply": "2024-01-10T15:10:48.713188Z"
+     "iopub.execute_input": "2024-01-12T22:32:33.618855Z",
+     "iopub.status.busy": "2024-01-12T22:32:33.618518Z",
+     "iopub.status.idle": "2024-01-12T22:32:35.612472Z",
+     "shell.execute_reply": "2024-01-12T22:32:35.611516Z"
     }
    },
    "outputs": [],
@@ -568,10 +592,10 @@
    "id": "95dc7268",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:48.717702Z",
-     "iopub.status.busy": "2024-01-10T15:10:48.716931Z",
-     "iopub.status.idle": "2024-01-10T15:10:48.724053Z",
-     "shell.execute_reply": "2024-01-10T15:10:48.723390Z"
+     "iopub.execute_input": "2024-01-12T22:32:35.616361Z",
+     "iopub.status.busy": "2024-01-12T22:32:35.615480Z",
+     "iopub.status.idle": "2024-01-12T22:32:35.623046Z",
+     "shell.execute_reply": "2024-01-12T22:32:35.622356Z"
     }
    },
    "outputs": [
@@ -607,10 +631,10 @@
    "id": "e13de188",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:48.726479Z",
-     "iopub.status.busy": "2024-01-10T15:10:48.726260Z",
-     "iopub.status.idle": "2024-01-10T15:10:48.744195Z",
-     "shell.execute_reply": "2024-01-10T15:10:48.743625Z"
+     "iopub.execute_input": "2024-01-12T22:32:35.625516Z",
+     "iopub.status.busy": "2024-01-12T22:32:35.625160Z",
+     "iopub.status.idle": "2024-01-12T22:32:35.650112Z",
+     "shell.execute_reply": "2024-01-12T22:32:35.649451Z"
     }
    },
    "outputs": [
@@ -788,10 +812,10 @@
    "id": "e4a006bd",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:48.746569Z",
-     "iopub.status.busy": "2024-01-10T15:10:48.746363Z",
-     "iopub.status.idle": "2024-01-10T15:10:48.779493Z",
-     "shell.execute_reply": "2024-01-10T15:10:48.778801Z"
+     "iopub.execute_input": "2024-01-12T22:32:35.652717Z",
+     "iopub.status.busy": "2024-01-12T22:32:35.652265Z",
+     "iopub.status.idle": "2024-01-12T22:32:35.688213Z",
+     "shell.execute_reply": "2024-01-12T22:32:35.687549Z"
     }
    },
    "outputs": [
@@ -893,10 +917,10 @@
    "id": "c8f4e163",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:48.782066Z",
-     "iopub.status.busy": "2024-01-10T15:10:48.781813Z",
-     "iopub.status.idle": "2024-01-10T15:10:48.790722Z",
-     "shell.execute_reply": "2024-01-10T15:10:48.790178Z"
+     "iopub.execute_input": "2024-01-12T22:32:35.691019Z",
+     "iopub.status.busy": "2024-01-12T22:32:35.690516Z",
+     "iopub.status.idle": "2024-01-12T22:32:35.701492Z",
+     "shell.execute_reply": "2024-01-12T22:32:35.700875Z"
     }
    },
    "outputs": [
@@ -970,10 +994,10 @@
    "id": "db0b5179",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:48.793202Z",
-     "iopub.status.busy": "2024-01-10T15:10:48.792863Z",
-     "iopub.status.idle": "2024-01-10T15:10:50.628648Z",
-     "shell.execute_reply": "2024-01-10T15:10:50.628005Z"
+     "iopub.execute_input": "2024-01-12T22:32:35.703937Z",
+     "iopub.status.busy": "2024-01-12T22:32:35.703589Z",
+     "iopub.status.idle": "2024-01-12T22:32:37.625067Z",
+     "shell.execute_reply": "2024-01-12T22:32:37.624355Z"
     }
    },
    "outputs": [
@@ -1145,10 +1169,10 @@
    "id": "a18795eb",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T15:10:50.631396Z",
-     "iopub.status.busy": "2024-01-10T15:10:50.630923Z",
-     "iopub.status.idle": "2024-01-10T15:10:50.635324Z",
-     "shell.execute_reply": "2024-01-10T15:10:50.634741Z"
+     "iopub.execute_input": "2024-01-12T22:32:37.627694Z",
+     "iopub.status.busy": "2024-01-12T22:32:37.627341Z",
+     "iopub.status.idle": "2024-01-12T22:32:37.631680Z",
+     "shell.execute_reply": "2024-01-12T22:32:37.631069Z"
     },
     "nbsphinx": "hidden"
    },
diff --git a/versioning.js b/versioning.js
index 29cc0a268..2ca2c6fa8 100644
--- a/versioning.js
+++ b/versioning.js
@@ -1,4 +1,4 @@
 var Version = {
   version_number: "v2.5.0",
-  commit_hash: "b2de6bbefb660b6545cc1ec5020d5b910c25ad73",
+  commit_hash: "1bd16eec41b1a712e296dbfdb1081980b6e1ab7b",
 };
\ No newline at end of file