diff --git a/master/.buildinfo b/master/.buildinfo index 39c5a4d85..bf4f24e49 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 443d73cf3f0199ddca07149b53107ef0 +config: 38a995659cde249662f03dec4e3ca21f tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 3de710937..f91c1d978 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 32701e3e2..45a166720 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index c7dcdd540..587776962 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 6ed870434..046d9295f 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index e193bb761..10414dcda 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index d67e2c6d5..590479f35 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 8e0a11cb2..32050d2c6 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 185b21013..e415cb2ca 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 573099565..daf73d967 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index c2334cbd2..e286598e9 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 2164efdb3..475634fd4 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 32fd1fb71..0c455e061 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index baa99d1c2..4df1f219a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 82f96c20f..61164649e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 03e3f0325..58d644252 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index b127f65d0..7133ac9e2 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index f9924d227..27cb9c58f 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 7d9803908..e1d72cb75 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 125e75a2f..4a71ffbcd 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 92e1a5f61..2b26b1f7d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 3a9a28779..144d21b0a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 5206f728e..9ab17d8fd 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 5c7866a74..501fe952f 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 0d668866a..bcfc0dc7d 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 8cc6e1aed..91c40d121 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index b332edf46..6409f76d2 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 7a1fbb526..569dcce93 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index ec79cfa8e..a70b4b830 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index a86020f51..a8880f495 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index e1888741c..0cad942ab 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index eac90bd81..49ee47070 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index cac81ad99..398252227 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 7e4e7f2c0..4d817322e 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 60a69cc74..382fa7cb9 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index 58249ccba..51c1b12f5 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 0083d25a9..bd80c8de3 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index c178862be..046e29c4a 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 957e07751..4777d1990 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 45573b15f..47122703b 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index cb9206e14..6b2a51353 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index d3c008b70..075dd1655 100644 Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 2f507ba41..99a941ce6 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 9bdbf87fc..9e8f7346d 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 18f484ce2..753056293 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 4b994336a..ddece9fee 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index f60187618..08a34c5e7 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 25ca36f79..9432a779c 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 9e9f8cdb4..95a8a5c86 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 8cf451c61..c21e3d30b 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 28f4c23cb..aa1409468 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 58c8a7f2a..dfedceef7 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 3b084c2c0..42efa02da 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 3bcbc6537..6461db31f 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index d72be54f9..2b3505b19 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 82d5126e3..6b3030cfc 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index cbd8b5d05..7289ee18f 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 187da650c..39241a048 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 098328e6a..313ceb4ea 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 410895b18..8d07dec5e 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index aa5bce26a..ac438e2f4 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 94db37fe5..dacaf33ab 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 23637613a..3e3f5faad 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index ca26658b7..3ca2c0d83 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 7f5a90b75..eb2fa90db 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index d26796909..e4c7435da 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index f0ed423d4..547cc0e16 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index b4a7d287f..b26eb079d 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index c8db8ede1..8aef6f925 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb index ab53988fd..5c6af1146 100644 --- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:24:29.344896Z", - "iopub.status.busy": "2023-09-20T19:24:29.344622Z", - "iopub.status.idle": "2023-09-20T19:24:33.597063Z", - "shell.execute_reply": "2023-09-20T19:24:33.596296Z" + "iopub.execute_input": "2023-10-05T22:59:00.557092Z", + "iopub.status.busy": "2023-10-05T22:59:00.556806Z", + "iopub.status.idle": "2023-10-05T22:59:04.782042Z", + "shell.execute_reply": "2023-10-05T22:59:04.781348Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@6d45971cf83ccc85ac31d2591c54ce6b52a27281\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@ffbddc3a9e4600852d7a9efeace6fb2b916f585e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:24:33.601135Z", - "iopub.status.busy": "2023-09-20T19:24:33.600482Z", - "iopub.status.idle": "2023-09-20T19:24:33.605210Z", - "shell.execute_reply": "2023-09-20T19:24:33.604515Z" + "iopub.execute_input": "2023-10-05T22:59:04.786730Z", + "iopub.status.busy": "2023-10-05T22:59:04.785912Z", + "iopub.status.idle": "2023-10-05T22:59:04.791597Z", + "shell.execute_reply": "2023-10-05T22:59:04.790956Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:24:33.608121Z", - "iopub.status.busy": "2023-09-20T19:24:33.607883Z", - "iopub.status.idle": "2023-09-20T19:24:33.613616Z", - "shell.execute_reply": "2023-09-20T19:24:33.612951Z" + "iopub.execute_input": "2023-10-05T22:59:04.794652Z", + "iopub.status.busy": "2023-10-05T22:59:04.794276Z", + "iopub.status.idle": "2023-10-05T22:59:04.800199Z", + "shell.execute_reply": "2023-10-05T22:59:04.799541Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-09-20T19:24:33.616654Z", - "iopub.status.busy": "2023-09-20T19:24:33.616416Z", - "iopub.status.idle": "2023-09-20T19:24:35.552294Z", - "shell.execute_reply": "2023-09-20T19:24:35.551031Z" + "iopub.execute_input": "2023-10-05T22:59:04.803294Z", + "iopub.status.busy": "2023-10-05T22:59:04.802844Z", + "iopub.status.idle": "2023-10-05T22:59:06.728432Z", + "shell.execute_reply": "2023-10-05T22:59:06.727188Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-09-20T19:24:35.556622Z", - "iopub.status.busy": "2023-09-20T19:24:35.556072Z", - "iopub.status.idle": "2023-09-20T19:24:35.573125Z", - "shell.execute_reply": "2023-09-20T19:24:35.572553Z" + "iopub.execute_input": "2023-10-05T22:59:06.732599Z", + "iopub.status.busy": "2023-10-05T22:59:06.732074Z", + "iopub.status.idle": "2023-10-05T22:59:06.751663Z", + "shell.execute_reply": "2023-10-05T22:59:06.751081Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:24:35.611995Z", - "iopub.status.busy": "2023-09-20T19:24:35.611244Z", - "iopub.status.idle": "2023-09-20T19:24:35.618384Z", - "shell.execute_reply": "2023-09-20T19:24:35.617657Z" + "iopub.execute_input": "2023-10-05T22:59:06.789003Z", + "iopub.status.busy": "2023-10-05T22:59:06.788011Z", + "iopub.status.idle": "2023-10-05T22:59:06.795883Z", + "shell.execute_reply": "2023-10-05T22:59:06.795240Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-09-20T19:24:35.621676Z", - "iopub.status.busy": "2023-09-20T19:24:35.621070Z", - "iopub.status.idle": "2023-09-20T19:24:36.603569Z", - "shell.execute_reply": "2023-09-20T19:24:36.602835Z" + "iopub.execute_input": "2023-10-05T22:59:06.799013Z", + "iopub.status.busy": "2023-10-05T22:59:06.798553Z", + "iopub.status.idle": "2023-10-05T22:59:07.764876Z", + "shell.execute_reply": "2023-10-05T22:59:07.764089Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:24:36.607058Z", - "iopub.status.busy": "2023-09-20T19:24:36.606544Z", - "iopub.status.idle": "2023-09-20T19:24:38.375240Z", - "shell.execute_reply": "2023-09-20T19:24:38.374490Z" + "iopub.execute_input": "2023-10-05T22:59:07.768337Z", + "iopub.status.busy": "2023-10-05T22:59:07.767895Z", + "iopub.status.idle": "2023-10-05T22:59:09.101354Z", + "shell.execute_reply": "2023-10-05T22:59:09.100558Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2023-09-20T19:24:38.378769Z", - "iopub.status.busy": "2023-09-20T19:24:38.378360Z", - "iopub.status.idle": "2023-09-20T19:24:38.419660Z", - "shell.execute_reply": "2023-09-20T19:24:38.418987Z" + "iopub.execute_input": "2023-10-05T22:59:09.104882Z", + "iopub.status.busy": "2023-10-05T22:59:09.104482Z", + "iopub.status.idle": "2023-10-05T22:59:09.142847Z", + "shell.execute_reply": "2023-10-05T22:59:09.142101Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:24:38.422731Z", - "iopub.status.busy": "2023-09-20T19:24:38.422323Z", - "iopub.status.idle": "2023-09-20T19:24:38.426370Z", - "shell.execute_reply": "2023-09-20T19:24:38.425670Z" + "iopub.execute_input": "2023-10-05T22:59:09.146078Z", + "iopub.status.busy": "2023-10-05T22:59:09.145635Z", + "iopub.status.idle": "2023-10-05T22:59:09.149515Z", + "shell.execute_reply": "2023-10-05T22:59:09.148818Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:24:38.429617Z", - "iopub.status.busy": "2023-09-20T19:24:38.429060Z", - "iopub.status.idle": "2023-09-20T19:24:51.604896Z", - "shell.execute_reply": "2023-09-20T19:24:51.604151Z" + "iopub.execute_input": "2023-10-05T22:59:09.152662Z", + "iopub.status.busy": "2023-10-05T22:59:09.152289Z", + "iopub.status.idle": "2023-10-05T22:59:22.508549Z", + "shell.execute_reply": "2023-10-05T22:59:22.507836Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-09-20T19:24:51.608579Z", - "iopub.status.busy": "2023-09-20T19:24:51.607952Z", - "iopub.status.idle": "2023-09-20T19:24:51.614849Z", - "shell.execute_reply": "2023-09-20T19:24:51.614229Z" + "iopub.execute_input": "2023-10-05T22:59:22.513446Z", + "iopub.status.busy": "2023-10-05T22:59:22.511973Z", + "iopub.status.idle": "2023-10-05T22:59:22.518677Z", + "shell.execute_reply": "2023-10-05T22:59:22.517943Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:24:51.617818Z", - "iopub.status.busy": "2023-09-20T19:24:51.617441Z", - "iopub.status.idle": "2023-09-20T19:24:57.604745Z", - "shell.execute_reply": "2023-09-20T19:24:57.604080Z" + "iopub.execute_input": "2023-10-05T22:59:22.522232Z", + "iopub.status.busy": "2023-10-05T22:59:22.521967Z", + "iopub.status.idle": "2023-10-05T22:59:28.732287Z", + "shell.execute_reply": "2023-10-05T22:59:28.731580Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-09-20T19:24:57.608218Z", - "iopub.status.busy": "2023-09-20T19:24:57.607705Z", - "iopub.status.idle": "2023-09-20T19:24:57.615432Z", - "shell.execute_reply": "2023-09-20T19:24:57.614859Z" + "iopub.execute_input": "2023-10-05T22:59:28.737104Z", + "iopub.status.busy": "2023-10-05T22:59:28.735903Z", + "iopub.status.idle": "2023-10-05T22:59:28.741719Z", + "shell.execute_reply": "2023-10-05T22:59:28.741159Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:24:57.619092Z", - "iopub.status.busy": "2023-09-20T19:24:57.618673Z", - "iopub.status.idle": "2023-09-20T19:24:57.724383Z", - "shell.execute_reply": "2023-09-20T19:24:57.723370Z" + "iopub.execute_input": "2023-10-05T22:59:28.744765Z", + "iopub.status.busy": "2023-10-05T22:59:28.744379Z", + "iopub.status.idle": "2023-10-05T22:59:28.867576Z", + "shell.execute_reply": "2023-10-05T22:59:28.866767Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:24:57.728000Z", - "iopub.status.busy": "2023-09-20T19:24:57.727454Z", - "iopub.status.idle": "2023-09-20T19:24:57.740657Z", - "shell.execute_reply": "2023-09-20T19:24:57.739853Z" + "iopub.execute_input": "2023-10-05T22:59:28.871759Z", + "iopub.status.busy": "2023-10-05T22:59:28.871311Z", + "iopub.status.idle": "2023-10-05T22:59:28.884884Z", + "shell.execute_reply": "2023-10-05T22:59:28.884233Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:24:57.743696Z", - "iopub.status.busy": "2023-09-20T19:24:57.743313Z", - "iopub.status.idle": "2023-09-20T19:24:57.755001Z", - "shell.execute_reply": "2023-09-20T19:24:57.754367Z" + "iopub.execute_input": "2023-10-05T22:59:28.887871Z", + "iopub.status.busy": "2023-10-05T22:59:28.887420Z", + "iopub.status.idle": "2023-10-05T22:59:28.899067Z", + "shell.execute_reply": "2023-10-05T22:59:28.898423Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:24:57.757922Z", - "iopub.status.busy": "2023-09-20T19:24:57.757544Z", - "iopub.status.idle": "2023-09-20T19:24:57.763189Z", - "shell.execute_reply": "2023-09-20T19:24:57.762471Z" + "iopub.execute_input": "2023-10-05T22:59:28.902184Z", + "iopub.status.busy": "2023-10-05T22:59:28.901628Z", + "iopub.status.idle": "2023-10-05T22:59:28.908717Z", + "shell.execute_reply": "2023-10-05T22:59:28.908077Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2023-09-20T19:24:57.766642Z", - "iopub.status.busy": "2023-09-20T19:24:57.766267Z", - "iopub.status.idle": "2023-09-20T19:24:57.774097Z", - "shell.execute_reply": "2023-09-20T19:24:57.773395Z" + "iopub.execute_input": "2023-10-05T22:59:28.911382Z", + "iopub.status.busy": "2023-10-05T22:59:28.911158Z", + "iopub.status.idle": "2023-10-05T22:59:28.918095Z", + "shell.execute_reply": "2023-10-05T22:59:28.917386Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-09-20T19:24:57.777120Z", - "iopub.status.busy": "2023-09-20T19:24:57.776749Z", - "iopub.status.idle": "2023-09-20T19:24:57.933121Z", - "shell.execute_reply": "2023-09-20T19:24:57.932374Z" + "iopub.execute_input": "2023-10-05T22:59:28.921813Z", + "iopub.status.busy": "2023-10-05T22:59:28.921440Z", + "iopub.status.idle": "2023-10-05T22:59:29.079536Z", + "shell.execute_reply": "2023-10-05T22:59:29.078801Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-09-20T19:24:57.936751Z", - "iopub.status.busy": "2023-09-20T19:24:57.936273Z", - "iopub.status.idle": "2023-09-20T19:24:58.078303Z", - "shell.execute_reply": "2023-09-20T19:24:58.077483Z" + "iopub.execute_input": "2023-10-05T22:59:29.083148Z", + "iopub.status.busy": "2023-10-05T22:59:29.082673Z", + "iopub.status.idle": "2023-10-05T22:59:29.231617Z", + "shell.execute_reply": "2023-10-05T22:59:29.230898Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-09-20T19:24:58.081619Z", - "iopub.status.busy": "2023-09-20T19:24:58.081107Z", - "iopub.status.idle": "2023-09-20T19:24:58.229325Z", - "shell.execute_reply": "2023-09-20T19:24:58.228552Z" + "iopub.execute_input": "2023-10-05T22:59:29.235102Z", + "iopub.status.busy": "2023-10-05T22:59:29.234625Z", + "iopub.status.idle": "2023-10-05T22:59:29.380702Z", + "shell.execute_reply": "2023-10-05T22:59:29.379894Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:24:58.232599Z", - "iopub.status.busy": "2023-09-20T19:24:58.232182Z", - "iopub.status.idle": "2023-09-20T19:24:58.376896Z", - "shell.execute_reply": "2023-09-20T19:24:58.376102Z" + "iopub.execute_input": "2023-10-05T22:59:29.383989Z", + "iopub.status.busy": "2023-10-05T22:59:29.383560Z", + "iopub.status.idle": "2023-10-05T22:59:29.529392Z", + "shell.execute_reply": "2023-10-05T22:59:29.528710Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:24:58.381454Z", - "iopub.status.busy": "2023-09-20T19:24:58.381027Z", - "iopub.status.idle": "2023-09-20T19:24:58.386136Z", - "shell.execute_reply": "2023-09-20T19:24:58.385409Z" + "iopub.execute_input": "2023-10-05T22:59:29.532811Z", + "iopub.status.busy": "2023-10-05T22:59:29.532531Z", + "iopub.status.idle": "2023-10-05T22:59:29.538350Z", + "shell.execute_reply": "2023-10-05T22:59:29.537684Z" }, "nbsphinx": "hidden" }, @@ -1377,7 +1377,111 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03226232120a4bcd9217dff57f358126": { + "05ff263a927946a88e3033501b673db5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0ae8748a49c049ddaa2150cbb8812a2d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0c8078a907d04a4fae8bbd7160913767": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1392,7 +1496,23 @@ "description_width": "" } }, - "057cdaec109a433db38885160a0d1e32": { + "0dc2486e122a465abd72d084db0bf882": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "102a7ffdcb8340ac9df3382df0c81cf8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1444,74 +1564,74 @@ "width": null } }, - "05c8fee2ee2a4ddf8d55ef8f59419226": { + "14d7c6cfb9984d6691954b255679b19d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_af79b741793b443d87f72ae7c1844c19", - "IPY_MODEL_c14fc6002a754c02bf014a75b46fa885", - "IPY_MODEL_1c758b22369c4a0a84f22185757e4b2f" - ], - "layout": "IPY_MODEL_3f15ffdbe359473c83420cc8fe4a9ff7" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "0a08ccdf6e3d4ac68149942a228ee268": { + "17d7a2b7ef804ee0abea6e300bd49084": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8832561a8399495ab3ec3d494cd86611", - "placeholder": "", - "style": "IPY_MODEL_d59d817b63864655bc0e57f02bc00043", - "value": "Downloading: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "0e0a19e3c7ff46bd8075fd9c68db440d": { + "1b983e3f962f42fc9521283d821bb1c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1ba4591cb5bd4279ba54c88c1949cd52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_52ae714ceae141c1a568a8d43b0dca98", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d389ac58412b4692993f4f0c948f090d", - "value": 15856877.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_246d35527285457cadebb45b596399e3", + "IPY_MODEL_f4bf90cd9e7041a6b3cc61d1690df405", + "IPY_MODEL_52381de40696446390b3d64dc0781fdd" + ], + "layout": "IPY_MODEL_f8249a8edd04403ca61c7523d911f1b2" } }, - "125a3407addf466c8bc6e247b7064e00": { + "2210e86987c54d8f8ac7902f0baf8f1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1526,14 +1646,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b1a577fea2b048baa6209fe393426513", - "IPY_MODEL_29c78785c8d14f44a53545535925673e", - "IPY_MODEL_c048cb9814fa4b5784334a9971ca3b58" + "IPY_MODEL_d13b54b1fe484f579a55bd7eedb11b92", + "IPY_MODEL_2f8f6476b1b64c9ea110e2911ec15417", + "IPY_MODEL_6f6b878124c345dfb10dc5c72480c67f" ], - "layout": "IPY_MODEL_f1f729ce8d634967b8db4c12b00e2bb5" + "layout": "IPY_MODEL_894f810a32614d8090c335ad953f7ea2" } }, - "1c758b22369c4a0a84f22185757e4b2f": { + "246d35527285457cadebb45b596399e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1548,13 +1668,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_97d06064014b434bb1322a856271dc22", + "layout": "IPY_MODEL_3ba2a33211c148c6ae616a7252629917", "placeholder": "", - "style": "IPY_MODEL_03226232120a4bcd9217dff57f358126", - "value": " 16.9M/16.9M [00:00<00:00, 68.4MB/s]" + "style": "IPY_MODEL_935d8aa45a9e43cd86725185d065c888", + "value": "Downloading: 100%" } }, - "1f72aa20805b42d8b6b6a87e3cbd047b": { + "2f8f6476b1b64c9ea110e2911ec15417": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1570,15 +1690,55 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_541d41731be94378bdceffbacffd29ea", - "max": 2041.0, + "layout": "IPY_MODEL_d2f073bb19b6433c9eeaf91311a5ecfa", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_21b25430513141ffaba0f04172d23852", - "value": 2041.0 + "style": "IPY_MODEL_a43ed1673ba341e7b97c91b457be8170", + "value": 16887676.0 + } + }, + "32e3e796e405474c94338043a75b92a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c5852ec1c10d41ee8f075669de63c2b9", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3595824e56ce4035968e7c26f0e517f9", + "value": 3201.0 } }, - "201dd89a9e874c3495152c52ad04e9e8": { + "3595824e56ce4035968e7c26f0e517f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3ba2a33211c148c6ae616a7252629917": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1630,47 +1790,7 @@ "width": null } }, - "21b25430513141ffaba0f04172d23852": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "29c78785c8d14f44a53545535925673e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b80a9e24b990479d926842a06898f9f0", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7d0469233a6c4ae0bc4dd84c404389de", - "value": 3201.0 - } - }, - "320cf52588344bcf9eec01a2aa753d0a": { + "3ceca526f01b44a490e6d75df6770d99": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1722,7 +1842,7 @@ "width": null } }, - "332ca54373f8455ab2879a45a6bf7e53": { + "478f5121e9fd430ca7ce2680ceeca9e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1737,34 +1857,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_057cdaec109a433db38885160a0d1e32", + "layout": "IPY_MODEL_05ff263a927946a88e3033501b673db5", "placeholder": "", - "style": "IPY_MODEL_4c83497bdc254ffda2fe4820a67c22b4", - "value": " 129k/129k [00:00<00:00, 5.07MB/s]" - } - }, - "36aecf7d46364de0809e82e47111434a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_49d5c697728148939f03900df4622a1c", - "placeholder": "", - "style": "IPY_MODEL_fddf24d2169743f7b04ea508f9898e48", - "value": " 15.9M/15.9M [00:00<00:00, 66.5MB/s]" + "style": "IPY_MODEL_6dd8c844e5e64b80b9d45c64365fe0f6", + "value": "Downloading: 100%" } }, - "3c24c3a86e7449b19fb3dfa85a5fee6c": { + "4dc2878a5b82415186329610857fe73f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1780,67 +1879,73 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8a75fce921a7446da17cb5062039931f", - "max": 128619.0, + "layout": "IPY_MODEL_a80ef8f4494642c58809a90410af2b52", + "max": 15856877.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_822bf31d8c2545be87958b08375a2752", - "value": 128619.0 + "style": "IPY_MODEL_d27c81fdba214ad1ad075c745f85c2f8", + "value": 15856877.0 } }, - "3f15ffdbe359473c83420cc8fe4a9ff7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "52381de40696446390b3d64dc0781fdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_63184d7852e14142a91e14601dbd83da", + "placeholder": "", + "style": "IPY_MODEL_55e124b4ffac4e92a3a04b6563aafde5", + "value": " 2.04k/2.04k [00:00<00:00, 238kB/s]" + } + }, + "54932eddfc79440aae2b26d49cbf5ce3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_478f5121e9fd430ca7ce2680ceeca9e5", + "IPY_MODEL_4dc2878a5b82415186329610857fe73f", + "IPY_MODEL_5954c70b4f704e229187236883b5967b" + ], + "layout": "IPY_MODEL_f7d04e1acc4f413bb1bdc9171719ae97" + } + }, + "55e124b4ffac4e92a3a04b6563aafde5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "49d5c697728148939f03900df4622a1c": { + "58863f72ced04878a5ed9d1f09d2f699": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1892,22 +1997,28 @@ "width": null } }, - "4c83497bdc254ffda2fe4820a67c22b4": { + "5954c70b4f704e229187236883b5967b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3ceca526f01b44a490e6d75df6770d99", + "placeholder": "", + "style": "IPY_MODEL_1b983e3f962f42fc9521283d821bb1c6", + "value": " 15.9M/15.9M [00:00<00:00, 65.6MB/s]" } }, - "52ae714ceae141c1a568a8d43b0dca98": { + "5cfb43f4e84640578716a83a84f1acbc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1959,7 +2070,7 @@ "width": null } }, - "541d41731be94378bdceffbacffd29ea": { + "63184d7852e14142a91e14601dbd83da": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2011,7 +2122,7 @@ "width": null } }, - "5756e2838dcf49ab8c8120c096e7c76d": { + "6dd8c844e5e64b80b9d45c64365fe0f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2026,22 +2137,28 @@ "description_width": "" } }, - "5842ea10ce0e43599a266551219b133d": { + "6f6b878124c345dfb10dc5c72480c67f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5cfb43f4e84640578716a83a84f1acbc", + "placeholder": "", + "style": "IPY_MODEL_d73554c18acb489a85a171a300c386ab", + "value": " 16.9M/16.9M [00:00<00:00, 75.0MB/s]" } }, - "62c44c68578f4bb485809723f5f0a00f": { + "7399e116192949999d84b103421fea4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2056,7 +2173,29 @@ "description_width": "" } }, - "632545d1e28b489ca4e0f224a620f44c": { + "79b99c2300ae497880712bd9543bc675": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9f401fcc98ec48c3b4a7f2f3c50758ea", + "IPY_MODEL_afbe92ccb0f344e495034a4c99218473", + "IPY_MODEL_807f2ffb8e044e75b5ccb9eea8e6776e" + ], + "layout": "IPY_MODEL_58863f72ced04878a5ed9d1f09d2f699" + } + }, + "807f2ffb8e044e75b5ccb9eea8e6776e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2071,13 +2210,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bb440e2aa99842d1820b8dd2cc4ba3ca", + "layout": "IPY_MODEL_855bca7ee00544e7955cbcab2dc961e9", "placeholder": "", - "style": "IPY_MODEL_c71974a86f574dde9d9040566e60579f", - "value": " 2.04k/2.04k [00:00<00:00, 239kB/s]" + "style": "IPY_MODEL_17d7a2b7ef804ee0abea6e300bd49084", + "value": " 129k/129k [00:00<00:00, 6.53MB/s]" } }, - "7becceb2dfff4e489e37d7d2b1f520a5": { + "855bca7ee00544e7955cbcab2dc961e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2129,23 +2268,7 @@ "width": null } }, - "7d0469233a6c4ae0bc4dd84c404389de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "81bef6bf15b04707a0d9c7c6ec18c1af": { + "87f030c37bea4beda2cbfb2f7b98a15d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2197,23 +2320,7 @@ "width": null } }, - "822bf31d8c2545be87958b08375a2752": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8832561a8399495ab3ec3d494cd86611": { + "894f810a32614d8090c335ad953f7ea2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2265,59 +2372,96 @@ "width": null } }, - "8981e13adee34ecc83b8fee7c18f5785": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "895747dd87ee4c0ca92e204218a6d5b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_87f030c37bea4beda2cbfb2f7b98a15d", + "placeholder": "", + "style": "IPY_MODEL_0c8078a907d04a4fae8bbd7160913767", + "value": " 3.20k/3.20k [00:00<00:00, 439kB/s]" + } + }, + "9149bd9a365e470d8f28f127b663681f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "935d8aa45a9e43cd86725185d065c888": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9f401fcc98ec48c3b4a7f2f3c50758ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e93a48a3364c459f9bf20730f4fc12d5", + "placeholder": "", + "style": "IPY_MODEL_7399e116192949999d84b103421fea4a", + "value": "Downloading: 100%" + } + }, + "a43ed1673ba341e7b97c91b457be8170": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8a75fce921a7446da17cb5062039931f": { + "a80ef8f4494642c58809a90410af2b52": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2369,7 +2513,53 @@ "width": null } }, - "97d06064014b434bb1322a856271dc22": { + "afbe92ccb0f344e495034a4c99218473": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ae8748a49c049ddaa2150cbb8812a2d", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9149bd9a365e470d8f28f127b663681f", + "value": 128619.0 + } + }, + "b453657abb274fbc9a0235835823192c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ea47b1d291194fdbb316f24d581d0550", + "IPY_MODEL_32e3e796e405474c94338043a75b92a7", + "IPY_MODEL_895747dd87ee4c0ca92e204218a6d5b8" + ], + "layout": "IPY_MODEL_f0e6ba480f6f4857bbff8b41598ac67b" + } + }, + "c5852ec1c10d41ee8f075669de63c2b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2421,28 +2611,7 @@ "width": null } }, - "a2045cbbfb8e4da1bd25b78700b36832": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7becceb2dfff4e489e37d7d2b1f520a5", - "placeholder": "", - "style": "IPY_MODEL_5756e2838dcf49ab8c8120c096e7c76d", - "value": "Downloading: 100%" - } - }, - "a840126e29dc447cac787a0eca27b59e": { + "cc7985db01e94954938b4e33a6cbc3f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2494,22 +2663,7 @@ "width": null } }, - "aa30d7f7d30b4a05bdd04d04a8443cb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "af79b741793b443d87f72ae7c1844c19": { + "d13b54b1fe484f579a55bd7eedb11b92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2524,34 +2678,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ee82002b8aa24af9bfda1001473f8073", + "layout": "IPY_MODEL_cc7985db01e94954938b4e33a6cbc3f0", "placeholder": "", - "style": "IPY_MODEL_5842ea10ce0e43599a266551219b133d", + "style": "IPY_MODEL_fb2da88d0c6648cba20f803d21e1c17c", "value": "Downloading: 100%" } }, - "b1a577fea2b048baa6209fe393426513": { + "d27c81fdba214ad1ad075c745f85c2f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d1a40cb5fea74eaa933f7a217229b153", - "placeholder": "", - "style": "IPY_MODEL_62c44c68578f4bb485809723f5f0a00f", - "value": "Downloading: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b80a9e24b990479d926842a06898f9f0": { + "d2f073bb19b6433c9eeaf91311a5ecfa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2603,29 +2752,22 @@ "width": null } }, - "b89c3a53e20f460a9ea410991c2ade5d": { + "d73554c18acb489a85a171a300c386ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_deac8f95af2c45cfacdddbe64ebf6b36", - "IPY_MODEL_0e0a19e3c7ff46bd8075fd9c68db440d", - "IPY_MODEL_36aecf7d46364de0809e82e47111434a" - ], - "layout": "IPY_MODEL_81bef6bf15b04707a0d9c7c6ec18c1af" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "b9a2549b37854ddca15331c61c25d37a": { + "e93a48a3364c459f9bf20730f4fc12d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2677,7 +2819,28 @@ "width": null } }, - "bb440e2aa99842d1820b8dd2cc4ba3ca": { + "ea47b1d291194fdbb316f24d581d0550": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f4952697df2f4a16bcbedadac2e9e283", + "placeholder": "", + "style": "IPY_MODEL_14d7c6cfb9984d6691954b255679b19d", + "value": "Downloading: 100%" + } + }, + "f0e6ba480f6f4857bbff8b41598ac67b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2729,104 +2892,7 @@ "width": null } }, - "bf5c1324c1204f108163e2296d870497": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c048cb9814fa4b5784334a9971ca3b58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_201dd89a9e874c3495152c52ad04e9e8", - "placeholder": "", - "style": "IPY_MODEL_bf5c1324c1204f108163e2296d870497", - "value": " 3.20k/3.20k [00:00<00:00, 427kB/s]" - } - }, - "c14fc6002a754c02bf014a75b46fa885": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a840126e29dc447cac787a0eca27b59e", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f45bd45ee79b41f29d10b3b00e9b68e7", - "value": 16887676.0 - } - }, - "c5da458ae6e04948a78a94f9c8d8c65c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0a08ccdf6e3d4ac68149942a228ee268", - "IPY_MODEL_1f72aa20805b42d8b6b6a87e3cbd047b", - "IPY_MODEL_632545d1e28b489ca4e0f224a620f44c" - ], - "layout": "IPY_MODEL_320cf52588344bcf9eec01a2aa753d0a" - } - }, - "c71974a86f574dde9d9040566e60579f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d1a40cb5fea74eaa933f7a217229b153": { + "f4952697df2f4a16bcbedadac2e9e283": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2878,81 +2944,31 @@ "width": null } }, - "d389ac58412b4692993f4f0c948f090d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d59d817b63864655bc0e57f02bc00043": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "deac8f95af2c45cfacdddbe64ebf6b36": { + "f4bf90cd9e7041a6b3cc61d1690df405": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b9a2549b37854ddca15331c61c25d37a", - "placeholder": "", - "style": "IPY_MODEL_aa30d7f7d30b4a05bdd04d04a8443cb6", - "value": "Downloading: 100%" - } - }, - "e7bb53ef98a44961beb1c95388775cdf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a2045cbbfb8e4da1bd25b78700b36832", - "IPY_MODEL_3c24c3a86e7449b19fb3dfa85a5fee6c", - "IPY_MODEL_332ca54373f8455ab2879a45a6bf7e53" - ], - "layout": "IPY_MODEL_8981e13adee34ecc83b8fee7c18f5785" + "layout": "IPY_MODEL_102a7ffdcb8340ac9df3382df0c81cf8", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0dc2486e122a465abd72d084db0bf882", + "value": 2041.0 } }, - "ee82002b8aa24af9bfda1001473f8073": { + "f7d04e1acc4f413bb1bdc9171719ae97": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3004,7 +3020,7 @@ "width": null } }, - "f1f729ce8d634967b8db4c12b00e2bb5": { + "f8249a8edd04403ca61c7523d911f1b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3056,23 +3072,7 @@ "width": null } }, - "f45bd45ee79b41f29d10b3b00e9b68e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fddf24d2169743f7b04ea508f9898e48": { + "fb2da88d0c6648cba20f803d21e1c17c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 19545782c..2915fcef9 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:03.513526Z", - "iopub.status.busy": "2023-09-20T19:25:03.513055Z", - "iopub.status.idle": "2023-09-20T19:25:04.808935Z", - "shell.execute_reply": "2023-09-20T19:25:04.808175Z" + "iopub.execute_input": "2023-10-05T22:59:34.794501Z", + "iopub.status.busy": "2023-10-05T22:59:34.794260Z", + "iopub.status.idle": "2023-10-05T22:59:36.088151Z", + "shell.execute_reply": "2023-10-05T22:59:36.087414Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@6d45971cf83ccc85ac31d2591c54ce6b52a27281\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@ffbddc3a9e4600852d7a9efeace6fb2b916f585e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:04.812709Z", - "iopub.status.busy": "2023-09-20T19:25:04.812162Z", - "iopub.status.idle": "2023-09-20T19:25:04.817210Z", - "shell.execute_reply": "2023-09-20T19:25:04.816522Z" + "iopub.execute_input": "2023-10-05T22:59:36.092609Z", + "iopub.status.busy": "2023-10-05T22:59:36.092074Z", + "iopub.status.idle": "2023-10-05T22:59:36.097125Z", + "shell.execute_reply": "2023-10-05T22:59:36.096504Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:04.820293Z", - "iopub.status.busy": "2023-09-20T19:25:04.820058Z", - "iopub.status.idle": "2023-09-20T19:25:04.832706Z", - "shell.execute_reply": "2023-09-20T19:25:04.832040Z" + "iopub.execute_input": "2023-10-05T22:59:36.100168Z", + "iopub.status.busy": "2023-10-05T22:59:36.099936Z", + "iopub.status.idle": "2023-10-05T22:59:36.112070Z", + "shell.execute_reply": "2023-10-05T22:59:36.111472Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:04.836011Z", - "iopub.status.busy": "2023-09-20T19:25:04.835518Z", - "iopub.status.idle": "2023-09-20T19:25:04.842900Z", - "shell.execute_reply": "2023-09-20T19:25:04.842283Z" + "iopub.execute_input": "2023-10-05T22:59:36.115080Z", + "iopub.status.busy": "2023-10-05T22:59:36.114735Z", + "iopub.status.idle": "2023-10-05T22:59:36.120777Z", + "shell.execute_reply": "2023-10-05T22:59:36.120184Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:04.846368Z", - "iopub.status.busy": "2023-09-20T19:25:04.845938Z", - "iopub.status.idle": "2023-09-20T19:25:05.217231Z", - "shell.execute_reply": "2023-09-20T19:25:05.216476Z" + "iopub.execute_input": "2023-10-05T22:59:36.123918Z", + "iopub.status.busy": "2023-10-05T22:59:36.123340Z", + "iopub.status.idle": "2023-10-05T22:59:36.483325Z", + "shell.execute_reply": "2023-10-05T22:59:36.482555Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:05.221116Z", - "iopub.status.busy": "2023-09-20T19:25:05.220848Z", - "iopub.status.idle": "2023-09-20T19:25:05.635404Z", - "shell.execute_reply": "2023-09-20T19:25:05.634649Z" + "iopub.execute_input": "2023-10-05T22:59:36.487060Z", + "iopub.status.busy": "2023-10-05T22:59:36.486571Z", + "iopub.status.idle": "2023-10-05T22:59:36.886296Z", + "shell.execute_reply": "2023-10-05T22:59:36.885532Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:05.638532Z", - "iopub.status.busy": "2023-09-20T19:25:05.638271Z", - "iopub.status.idle": "2023-09-20T19:25:05.667575Z", - "shell.execute_reply": "2023-09-20T19:25:05.666845Z" + "iopub.execute_input": "2023-10-05T22:59:36.890005Z", + "iopub.status.busy": "2023-10-05T22:59:36.889749Z", + "iopub.status.idle": "2023-10-05T22:59:36.918753Z", + "shell.execute_reply": "2023-10-05T22:59:36.918015Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:05.671217Z", - "iopub.status.busy": "2023-09-20T19:25:05.670792Z", - "iopub.status.idle": "2023-09-20T19:25:05.686741Z", - "shell.execute_reply": "2023-09-20T19:25:05.686046Z" + "iopub.execute_input": "2023-10-05T22:59:36.922483Z", + "iopub.status.busy": "2023-10-05T22:59:36.921995Z", + "iopub.status.idle": "2023-10-05T22:59:36.937464Z", + "shell.execute_reply": "2023-10-05T22:59:36.936848Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:05.690210Z", - "iopub.status.busy": "2023-09-20T19:25:05.689712Z", - "iopub.status.idle": "2023-09-20T19:25:07.377280Z", - "shell.execute_reply": "2023-09-20T19:25:07.376386Z" + "iopub.execute_input": "2023-10-05T22:59:36.940585Z", + "iopub.status.busy": "2023-10-05T22:59:36.940207Z", + "iopub.status.idle": "2023-10-05T22:59:38.605285Z", + "shell.execute_reply": "2023-10-05T22:59:38.604427Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:07.381248Z", - "iopub.status.busy": "2023-09-20T19:25:07.380451Z", - "iopub.status.idle": "2023-09-20T19:25:07.413150Z", - "shell.execute_reply": "2023-09-20T19:25:07.412387Z" + "iopub.execute_input": "2023-10-05T22:59:38.609547Z", + "iopub.status.busy": "2023-10-05T22:59:38.608788Z", + "iopub.status.idle": "2023-10-05T22:59:38.640950Z", + "shell.execute_reply": "2023-10-05T22:59:38.640125Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:07.416637Z", - "iopub.status.busy": "2023-09-20T19:25:07.416183Z", - "iopub.status.idle": "2023-09-20T19:25:07.441621Z", - "shell.execute_reply": "2023-09-20T19:25:07.440478Z" + "iopub.execute_input": "2023-10-05T22:59:38.643999Z", + "iopub.status.busy": "2023-10-05T22:59:38.643750Z", + "iopub.status.idle": "2023-10-05T22:59:38.669894Z", + "shell.execute_reply": "2023-10-05T22:59:38.669187Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:219: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:219: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:249: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:07.445081Z", - "iopub.status.busy": "2023-09-20T19:25:07.444377Z", - "iopub.status.idle": "2023-09-20T19:25:07.463778Z", - "shell.execute_reply": "2023-09-20T19:25:07.462971Z" + "iopub.execute_input": "2023-10-05T22:59:38.673421Z", + "iopub.status.busy": "2023-10-05T22:59:38.672881Z", + "iopub.status.idle": "2023-10-05T22:59:38.691531Z", + "shell.execute_reply": "2023-10-05T22:59:38.690819Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:07.467103Z", - "iopub.status.busy": "2023-09-20T19:25:07.466548Z", - "iopub.status.idle": "2023-09-20T19:25:07.496367Z", - "shell.execute_reply": "2023-09-20T19:25:07.495782Z" + "iopub.execute_input": "2023-10-05T22:59:38.695013Z", + "iopub.status.busy": "2023-10-05T22:59:38.694580Z", + "iopub.status.idle": "2023-10-05T22:59:38.725382Z", + "shell.execute_reply": "2023-10-05T22:59:38.724807Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "528731aba49742ff82fdda6154c69ecd", + "model_id": "ea336886252c404b9725155c96bfaeca", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:07.499175Z", - "iopub.status.busy": "2023-09-20T19:25:07.498791Z", - "iopub.status.idle": "2023-09-20T19:25:07.517390Z", - "shell.execute_reply": "2023-09-20T19:25:07.516782Z" + "iopub.execute_input": "2023-10-05T22:59:38.728444Z", + "iopub.status.busy": "2023-10-05T22:59:38.727974Z", + "iopub.status.idle": "2023-10-05T22:59:38.746010Z", + "shell.execute_reply": "2023-10-05T22:59:38.745433Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:07.520520Z", - "iopub.status.busy": "2023-09-20T19:25:07.520017Z", - "iopub.status.idle": "2023-09-20T19:25:07.527768Z", - "shell.execute_reply": "2023-09-20T19:25:07.527165Z" + "iopub.execute_input": "2023-10-05T22:59:38.749287Z", + "iopub.status.busy": "2023-10-05T22:59:38.748893Z", + "iopub.status.idle": "2023-10-05T22:59:38.756081Z", + "shell.execute_reply": "2023-10-05T22:59:38.755519Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:07.530761Z", - "iopub.status.busy": "2023-09-20T19:25:07.530305Z", - "iopub.status.idle": "2023-09-20T19:25:07.552735Z", - "shell.execute_reply": "2023-09-20T19:25:07.552156Z" + "iopub.execute_input": "2023-10-05T22:59:38.758909Z", + "iopub.status.busy": "2023-10-05T22:59:38.758529Z", + "iopub.status.idle": "2023-10-05T22:59:38.781098Z", + "shell.execute_reply": "2023-10-05T22:59:38.780287Z" } }, "outputs": [ @@ -1430,59 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1caf133d154f45618804251b8056b8fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1fc99d459e5d496cb71f76b5bc25abb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "312dcfb0e9a44e1d851072ca52deafa9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ec23422d6bb24952bd2a30f9e869c978", - "placeholder": "", - "style": "IPY_MODEL_aee82103143b4ffc8cf2afcac6245865", - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "3c07b02dd6914391a90405c3efe8b568": { + "1240037feea14383a1d6fe6fecd29046": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1534,29 +1482,49 @@ "width": null } }, - "528731aba49742ff82fdda6154c69ecd": { + "1330262982e64ebc9bdf4d8119e6d242": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_312dcfb0e9a44e1d851072ca52deafa9", - "IPY_MODEL_f6fb6769d7a746df9d05f6802e1f366b", - "IPY_MODEL_ac77eee9dbe14e1f94433b46ff8cd77c" - ], - "layout": "IPY_MODEL_7570bd2bbeaf4dd4bde58b730e213fd0" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1240037feea14383a1d6fe6fecd29046", + "placeholder": "", + "style": "IPY_MODEL_e3af991a7b234592a7f0eca7a53ff659", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "48a3b46355d04ee49503afc846e322b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_baeda133813f447aa9602253c6840ff6", + "placeholder": "", + "style": "IPY_MODEL_ad728bb3564f435aaff76add0b1e8ce2", + "value": " 132/132 [00:00<00:00, 8652.78 examples/s]" } }, - "7570bd2bbeaf4dd4bde58b730e213fd0": { + "6437f4f53ff74b46b3d42e719ae516d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1604,47 +1572,27 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "ac77eee9dbe14e1f94433b46ff8cd77c": { + "649cb746d3674d9f81d09cba4f2b6fd7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d58a4eb5fc174ab68038d84b5bd56d58", - "placeholder": "", - "style": "IPY_MODEL_1fc99d459e5d496cb71f76b5bc25abb6", - "value": " 132/132 [00:00<00:00, 8649.81 examples/s]" - } - }, - "aee82103143b4ffc8cf2afcac6245865": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "d58a4eb5fc174ab68038d84b5bd56d58": { + "83f607ec8ead4213ab7fa7581b949627": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1692,11 +1640,26 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "ec23422d6bb24952bd2a30f9e869c978": { + "ad728bb3564f435aaff76add0b1e8ce2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "baeda133813f447aa9602253c6840ff6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1748,7 +1711,44 @@ "width": null } }, - "f6fb6769d7a746df9d05f6802e1f366b": { + "e3af991a7b234592a7f0eca7a53ff659": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ea336886252c404b9725155c96bfaeca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1330262982e64ebc9bdf4d8119e6d242", + "IPY_MODEL_f92ab95d3e334306a92ad21602f76df6", + "IPY_MODEL_48a3b46355d04ee49503afc846e322b4" + ], + "layout": "IPY_MODEL_83f607ec8ead4213ab7fa7581b949627" + } + }, + "f92ab95d3e334306a92ad21602f76df6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1764,11 +1764,11 @@ "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3c07b02dd6914391a90405c3efe8b568", + "layout": "IPY_MODEL_6437f4f53ff74b46b3d42e719ae516d7", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1caf133d154f45618804251b8056b8fa", + "style": "IPY_MODEL_649cb746d3674d9f81d09cba4f2b6fd7", "value": 132.0 } } diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 506efb64b..e6d2880f6 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:13.213624Z", - "iopub.status.busy": "2023-09-20T19:25:13.213380Z", - "iopub.status.idle": "2023-09-20T19:25:14.534406Z", - "shell.execute_reply": "2023-09-20T19:25:14.533643Z" + "iopub.execute_input": "2023-10-05T22:59:44.203012Z", + "iopub.status.busy": "2023-10-05T22:59:44.202768Z", + "iopub.status.idle": "2023-10-05T22:59:45.490912Z", + "shell.execute_reply": "2023-10-05T22:59:45.490130Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@6d45971cf83ccc85ac31d2591c54ce6b52a27281\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@ffbddc3a9e4600852d7a9efeace6fb2b916f585e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:14.538587Z", - "iopub.status.busy": "2023-09-20T19:25:14.538178Z", - "iopub.status.idle": "2023-09-20T19:25:14.542935Z", - "shell.execute_reply": "2023-09-20T19:25:14.542309Z" + "iopub.execute_input": "2023-10-05T22:59:45.495282Z", + "iopub.status.busy": "2023-10-05T22:59:45.494724Z", + "iopub.status.idle": "2023-10-05T22:59:45.499475Z", + "shell.execute_reply": "2023-10-05T22:59:45.498865Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:14.546251Z", - "iopub.status.busy": "2023-09-20T19:25:14.546008Z", - "iopub.status.idle": "2023-09-20T19:25:14.558732Z", - "shell.execute_reply": "2023-09-20T19:25:14.558076Z" + "iopub.execute_input": "2023-10-05T22:59:45.502848Z", + "iopub.status.busy": "2023-10-05T22:59:45.502608Z", + "iopub.status.idle": "2023-10-05T22:59:45.515757Z", + "shell.execute_reply": "2023-10-05T22:59:45.515096Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:14.561747Z", - "iopub.status.busy": "2023-09-20T19:25:14.561171Z", - "iopub.status.idle": "2023-09-20T19:25:14.567933Z", - "shell.execute_reply": "2023-09-20T19:25:14.567308Z" + "iopub.execute_input": "2023-10-05T22:59:45.519079Z", + "iopub.status.busy": "2023-10-05T22:59:45.518531Z", + "iopub.status.idle": "2023-10-05T22:59:45.524145Z", + "shell.execute_reply": "2023-10-05T22:59:45.523526Z" } }, "outputs": [], @@ -443,10 +443,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:14.571259Z", - "iopub.status.busy": "2023-09-20T19:25:14.571019Z", - "iopub.status.idle": "2023-09-20T19:25:14.936614Z", - "shell.execute_reply": "2023-09-20T19:25:14.935857Z" + "iopub.execute_input": "2023-10-05T22:59:45.527789Z", + "iopub.status.busy": "2023-10-05T22:59:45.527345Z", + "iopub.status.idle": "2023-10-05T22:59:45.894215Z", + "shell.execute_reply": "2023-10-05T22:59:45.893460Z" }, "nbsphinx": "hidden" }, @@ -515,10 +515,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:14.940436Z", - "iopub.status.busy": "2023-09-20T19:25:14.940001Z", - "iopub.status.idle": "2023-09-20T19:25:15.357268Z", - "shell.execute_reply": "2023-09-20T19:25:15.356469Z" + "iopub.execute_input": "2023-10-05T22:59:45.898440Z", + "iopub.status.busy": "2023-10-05T22:59:45.897834Z", + "iopub.status.idle": "2023-10-05T22:59:46.303559Z", + "shell.execute_reply": "2023-10-05T22:59:46.302838Z" } }, "outputs": [ @@ -554,10 +554,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:15.360962Z", - "iopub.status.busy": "2023-09-20T19:25:15.360369Z", - "iopub.status.idle": "2023-09-20T19:25:15.363901Z", - "shell.execute_reply": "2023-09-20T19:25:15.363174Z" + "iopub.execute_input": "2023-10-05T22:59:46.307114Z", + "iopub.status.busy": "2023-10-05T22:59:46.306708Z", + "iopub.status.idle": "2023-10-05T22:59:46.310026Z", + "shell.execute_reply": "2023-10-05T22:59:46.309336Z" } }, "outputs": [], @@ -596,10 +596,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:15.367602Z", - "iopub.status.busy": "2023-09-20T19:25:15.367220Z", - "iopub.status.idle": "2023-09-20T19:25:15.397784Z", - "shell.execute_reply": "2023-09-20T19:25:15.396981Z" + "iopub.execute_input": "2023-10-05T22:59:46.313551Z", + "iopub.status.busy": "2023-10-05T22:59:46.312914Z", + "iopub.status.idle": "2023-10-05T22:59:46.341636Z", + "shell.execute_reply": "2023-10-05T22:59:46.340951Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:15.402585Z", - "iopub.status.busy": "2023-09-20T19:25:15.402317Z", - "iopub.status.idle": "2023-09-20T19:25:17.124235Z", - "shell.execute_reply": "2023-09-20T19:25:17.123333Z" + "iopub.execute_input": "2023-10-05T22:59:46.345211Z", + "iopub.status.busy": "2023-10-05T22:59:46.344718Z", + "iopub.status.idle": "2023-10-05T22:59:48.021413Z", + "shell.execute_reply": "2023-10-05T22:59:48.020552Z" } }, "outputs": [ @@ -677,10 +677,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:17.129649Z", - "iopub.status.busy": "2023-09-20T19:25:17.127994Z", - "iopub.status.idle": "2023-09-20T19:25:17.151514Z", - "shell.execute_reply": "2023-09-20T19:25:17.150719Z" + "iopub.execute_input": "2023-10-05T22:59:48.025399Z", + "iopub.status.busy": "2023-10-05T22:59:48.024720Z", + "iopub.status.idle": "2023-10-05T22:59:48.048671Z", + "shell.execute_reply": "2023-10-05T22:59:48.047995Z" } }, "outputs": [ @@ -814,10 +814,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:17.155684Z", - "iopub.status.busy": "2023-09-20T19:25:17.155166Z", - "iopub.status.idle": "2023-09-20T19:25:17.165309Z", - "shell.execute_reply": "2023-09-20T19:25:17.164555Z" + "iopub.execute_input": "2023-10-05T22:59:48.051921Z", + "iopub.status.busy": "2023-10-05T22:59:48.051440Z", + "iopub.status.idle": "2023-10-05T22:59:48.060774Z", + "shell.execute_reply": "2023-10-05T22:59:48.060099Z" } }, "outputs": [ @@ -907,10 +907,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:17.168471Z", - "iopub.status.busy": "2023-09-20T19:25:17.168191Z", - "iopub.status.idle": "2023-09-20T19:25:17.177655Z", - "shell.execute_reply": "2023-09-20T19:25:17.177020Z" + "iopub.execute_input": "2023-10-05T22:59:48.063757Z", + "iopub.status.busy": "2023-10-05T22:59:48.063291Z", + "iopub.status.idle": "2023-10-05T22:59:48.072957Z", + "shell.execute_reply": "2023-10-05T22:59:48.072334Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:17.180842Z", - "iopub.status.busy": "2023-09-20T19:25:17.180482Z", - "iopub.status.idle": "2023-09-20T19:25:17.192640Z", - "shell.execute_reply": "2023-09-20T19:25:17.192003Z" + "iopub.execute_input": "2023-10-05T22:59:48.076232Z", + "iopub.status.busy": "2023-10-05T22:59:48.075866Z", + "iopub.status.idle": "2023-10-05T22:59:48.087674Z", + "shell.execute_reply": "2023-10-05T22:59:48.086986Z" } }, "outputs": [ @@ -1122,10 +1122,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:17.195948Z", - "iopub.status.busy": "2023-09-20T19:25:17.195516Z", - "iopub.status.idle": "2023-09-20T19:25:17.206564Z", - "shell.execute_reply": "2023-09-20T19:25:17.205976Z" + "iopub.execute_input": "2023-10-05T22:59:48.091384Z", + "iopub.status.busy": "2023-10-05T22:59:48.090863Z", + "iopub.status.idle": "2023-10-05T22:59:48.104345Z", + "shell.execute_reply": "2023-10-05T22:59:48.103712Z" } }, "outputs": [ @@ -1241,10 +1241,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:17.209499Z", - "iopub.status.busy": "2023-09-20T19:25:17.209272Z", - "iopub.status.idle": "2023-09-20T19:25:17.220173Z", - "shell.execute_reply": "2023-09-20T19:25:17.219537Z" + "iopub.execute_input": "2023-10-05T22:59:48.107085Z", + "iopub.status.busy": "2023-10-05T22:59:48.106859Z", + "iopub.status.idle": "2023-10-05T22:59:48.126162Z", + "shell.execute_reply": "2023-10-05T22:59:48.125588Z" }, "scrolled": true }, @@ -1357,10 +1357,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:17.223333Z", - "iopub.status.busy": "2023-09-20T19:25:17.222728Z", - "iopub.status.idle": "2023-09-20T19:25:17.236220Z", - "shell.execute_reply": "2023-09-20T19:25:17.235588Z" + "iopub.execute_input": "2023-10-05T22:59:48.129179Z", + "iopub.status.busy": "2023-10-05T22:59:48.128860Z", + "iopub.status.idle": "2023-10-05T22:59:48.143176Z", + "shell.execute_reply": "2023-10-05T22:59:48.142562Z" } }, "outputs": [ diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index d3dd71262..b66ad6c19 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:22.401276Z", - "iopub.status.busy": "2023-09-20T19:25:22.400866Z", - "iopub.status.idle": "2023-09-20T19:25:23.628744Z", - "shell.execute_reply": "2023-09-20T19:25:23.627988Z" + "iopub.execute_input": "2023-10-05T22:59:53.182656Z", + "iopub.status.busy": "2023-10-05T22:59:53.182240Z", + "iopub.status.idle": "2023-10-05T22:59:54.390707Z", + "shell.execute_reply": "2023-10-05T22:59:54.389935Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@6d45971cf83ccc85ac31d2591c54ce6b52a27281\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@ffbddc3a9e4600852d7a9efeace6fb2b916f585e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:23.633206Z", - "iopub.status.busy": "2023-09-20T19:25:23.632546Z", - "iopub.status.idle": "2023-09-20T19:25:23.697623Z", - "shell.execute_reply": "2023-09-20T19:25:23.696895Z" + "iopub.execute_input": "2023-10-05T22:59:54.395164Z", + "iopub.status.busy": "2023-10-05T22:59:54.394531Z", + "iopub.status.idle": "2023-10-05T22:59:54.454338Z", + "shell.execute_reply": "2023-10-05T22:59:54.453597Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:23.701417Z", - "iopub.status.busy": "2023-09-20T19:25:23.701001Z", - "iopub.status.idle": "2023-09-20T19:25:24.124285Z", - "shell.execute_reply": "2023-09-20T19:25:24.123318Z" + "iopub.execute_input": "2023-10-05T22:59:54.458063Z", + "iopub.status.busy": "2023-10-05T22:59:54.457587Z", + "iopub.status.idle": "2023-10-05T22:59:54.603193Z", + "shell.execute_reply": "2023-10-05T22:59:54.602490Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:24.127667Z", - "iopub.status.busy": "2023-09-20T19:25:24.127277Z", - "iopub.status.idle": "2023-09-20T19:25:24.131653Z", - "shell.execute_reply": "2023-09-20T19:25:24.130997Z" + "iopub.execute_input": "2023-10-05T22:59:54.606652Z", + "iopub.status.busy": "2023-10-05T22:59:54.606245Z", + "iopub.status.idle": "2023-10-05T22:59:54.611624Z", + "shell.execute_reply": "2023-10-05T22:59:54.611002Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:24.134866Z", - "iopub.status.busy": "2023-09-20T19:25:24.134501Z", - "iopub.status.idle": "2023-09-20T19:25:24.144157Z", - "shell.execute_reply": "2023-09-20T19:25:24.143474Z" + "iopub.execute_input": "2023-10-05T22:59:54.614844Z", + "iopub.status.busy": "2023-10-05T22:59:54.614458Z", + "iopub.status.idle": "2023-10-05T22:59:54.626049Z", + "shell.execute_reply": "2023-10-05T22:59:54.625348Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:24.147655Z", - "iopub.status.busy": "2023-09-20T19:25:24.147103Z", - "iopub.status.idle": "2023-09-20T19:25:24.150282Z", - "shell.execute_reply": "2023-09-20T19:25:24.149601Z" + "iopub.execute_input": "2023-10-05T22:59:54.629501Z", + "iopub.status.busy": "2023-10-05T22:59:54.628948Z", + "iopub.status.idle": "2023-10-05T22:59:54.633117Z", + "shell.execute_reply": "2023-10-05T22:59:54.632498Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:24.153278Z", - "iopub.status.busy": "2023-09-20T19:25:24.152918Z", - "iopub.status.idle": "2023-09-20T19:25:29.492847Z", - "shell.execute_reply": "2023-09-20T19:25:29.492160Z" + "iopub.execute_input": "2023-10-05T22:59:54.635943Z", + "iopub.status.busy": "2023-10-05T22:59:54.635708Z", + "iopub.status.idle": "2023-10-05T23:00:00.099347Z", + "shell.execute_reply": "2023-10-05T23:00:00.098634Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:29.497926Z", - "iopub.status.busy": "2023-09-20T19:25:29.496734Z", - "iopub.status.idle": "2023-09-20T19:25:29.509376Z", - "shell.execute_reply": "2023-09-20T19:25:29.508808Z" + "iopub.execute_input": "2023-10-05T23:00:00.103285Z", + "iopub.status.busy": "2023-10-05T23:00:00.102840Z", + "iopub.status.idle": "2023-10-05T23:00:00.114871Z", + "shell.execute_reply": "2023-10-05T23:00:00.114273Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:29.512448Z", - "iopub.status.busy": "2023-09-20T19:25:29.512060Z", - "iopub.status.idle": "2023-09-20T19:25:31.180038Z", - "shell.execute_reply": "2023-09-20T19:25:31.179141Z" + "iopub.execute_input": "2023-10-05T23:00:00.118084Z", + "iopub.status.busy": "2023-10-05T23:00:00.117671Z", + "iopub.status.idle": "2023-10-05T23:00:01.835666Z", + "shell.execute_reply": "2023-10-05T23:00:01.834737Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:31.184078Z", - "iopub.status.busy": "2023-09-20T19:25:31.183287Z", - "iopub.status.idle": "2023-09-20T19:25:31.204158Z", - "shell.execute_reply": "2023-09-20T19:25:31.203424Z" + "iopub.execute_input": "2023-10-05T23:00:01.839916Z", + "iopub.status.busy": "2023-10-05T23:00:01.839069Z", + "iopub.status.idle": "2023-10-05T23:00:01.859687Z", + "shell.execute_reply": "2023-10-05T23:00:01.858908Z" }, "scrolled": true }, @@ -577,10 +577,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:31.207621Z", - "iopub.status.busy": "2023-09-20T19:25:31.207226Z", - "iopub.status.idle": "2023-09-20T19:25:31.220672Z", - "shell.execute_reply": "2023-09-20T19:25:31.220010Z" + "iopub.execute_input": "2023-10-05T23:00:01.863357Z", + "iopub.status.busy": "2023-10-05T23:00:01.862743Z", + "iopub.status.idle": "2023-10-05T23:00:01.873636Z", + "shell.execute_reply": "2023-10-05T23:00:01.872868Z" } }, "outputs": [ @@ -684,10 +684,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:31.224263Z", - "iopub.status.busy": "2023-09-20T19:25:31.223853Z", - "iopub.status.idle": "2023-09-20T19:25:31.240168Z", - "shell.execute_reply": "2023-09-20T19:25:31.239458Z" + "iopub.execute_input": "2023-10-05T23:00:01.877470Z", + "iopub.status.busy": "2023-10-05T23:00:01.876810Z", + "iopub.status.idle": "2023-10-05T23:00:01.889382Z", + "shell.execute_reply": "2023-10-05T23:00:01.888611Z" } }, "outputs": [ @@ -816,10 +816,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:31.243941Z", - "iopub.status.busy": "2023-09-20T19:25:31.243340Z", - "iopub.status.idle": "2023-09-20T19:25:31.256715Z", - "shell.execute_reply": "2023-09-20T19:25:31.256093Z" + "iopub.execute_input": "2023-10-05T23:00:01.893121Z", + "iopub.status.busy": "2023-10-05T23:00:01.892528Z", + "iopub.status.idle": "2023-10-05T23:00:01.903379Z", + "shell.execute_reply": "2023-10-05T23:00:01.902614Z" } }, "outputs": [ @@ -933,10 +933,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:31.260303Z", - "iopub.status.busy": "2023-09-20T19:25:31.259725Z", - "iopub.status.idle": "2023-09-20T19:25:31.274354Z", - "shell.execute_reply": "2023-09-20T19:25:31.273723Z" + "iopub.execute_input": "2023-10-05T23:00:01.907243Z", + "iopub.status.busy": "2023-10-05T23:00:01.906627Z", + "iopub.status.idle": "2023-10-05T23:00:01.919826Z", + "shell.execute_reply": "2023-10-05T23:00:01.919024Z" } }, "outputs": [ @@ -1047,10 +1047,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:31.277916Z", - "iopub.status.busy": "2023-09-20T19:25:31.277377Z", - "iopub.status.idle": "2023-09-20T19:25:31.287755Z", - "shell.execute_reply": "2023-09-20T19:25:31.287120Z" + "iopub.execute_input": "2023-10-05T23:00:01.923542Z", + "iopub.status.busy": "2023-10-05T23:00:01.923036Z", + "iopub.status.idle": "2023-10-05T23:00:01.931968Z", + "shell.execute_reply": "2023-10-05T23:00:01.931236Z" } }, "outputs": [ @@ -1134,10 +1134,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:31.291167Z", - "iopub.status.busy": "2023-09-20T19:25:31.290797Z", - "iopub.status.idle": "2023-09-20T19:25:31.298722Z", - "shell.execute_reply": "2023-09-20T19:25:31.298143Z" + "iopub.execute_input": "2023-10-05T23:00:01.936163Z", + "iopub.status.busy": "2023-10-05T23:00:01.935679Z", + "iopub.status.idle": "2023-10-05T23:00:01.944286Z", + "shell.execute_reply": "2023-10-05T23:00:01.943545Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:31.302018Z", - "iopub.status.busy": "2023-09-20T19:25:31.301547Z", - "iopub.status.idle": "2023-09-20T19:25:31.311819Z", - "shell.execute_reply": "2023-09-20T19:25:31.311136Z" + "iopub.execute_input": "2023-10-05T23:00:01.948476Z", + "iopub.status.busy": "2023-10-05T23:00:01.947999Z", + "iopub.status.idle": "2023-10-05T23:00:01.957192Z", + "shell.execute_reply": "2023-10-05T23:00:01.956483Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 9be03dd34..2bed6faca 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:36.693305Z", - "iopub.status.busy": "2023-09-20T19:25:36.693048Z", - "iopub.status.idle": "2023-09-20T19:25:39.780102Z", - "shell.execute_reply": "2023-09-20T19:25:39.779208Z" + "iopub.execute_input": "2023-10-05T23:00:07.451119Z", + "iopub.status.busy": "2023-10-05T23:00:07.450619Z", + "iopub.status.idle": "2023-10-05T23:00:10.515332Z", + "shell.execute_reply": "2023-10-05T23:00:10.514632Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "16887f4369534564a02e069ceb15a164", + "model_id": "8ab9ccd2d61f487a98ee98065642ab7a", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@6d45971cf83ccc85ac31d2591c54ce6b52a27281\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@ffbddc3a9e4600852d7a9efeace6fb2b916f585e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:39.784232Z", - "iopub.status.busy": "2023-09-20T19:25:39.783648Z", - "iopub.status.idle": "2023-09-20T19:25:39.787734Z", - "shell.execute_reply": "2023-09-20T19:25:39.787078Z" + "iopub.execute_input": "2023-10-05T23:00:10.520462Z", + "iopub.status.busy": "2023-10-05T23:00:10.519080Z", + "iopub.status.idle": "2023-10-05T23:00:10.524564Z", + "shell.execute_reply": "2023-10-05T23:00:10.523925Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:39.790606Z", - "iopub.status.busy": "2023-09-20T19:25:39.790244Z", - "iopub.status.idle": "2023-09-20T19:25:39.794047Z", - "shell.execute_reply": "2023-09-20T19:25:39.793360Z" + "iopub.execute_input": "2023-10-05T23:00:10.528661Z", + "iopub.status.busy": "2023-10-05T23:00:10.527519Z", + "iopub.status.idle": "2023-10-05T23:00:10.532829Z", + "shell.execute_reply": "2023-10-05T23:00:10.532201Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:39.797031Z", - "iopub.status.busy": "2023-09-20T19:25:39.796669Z", - "iopub.status.idle": "2023-09-20T19:25:39.976950Z", - "shell.execute_reply": "2023-09-20T19:25:39.976229Z" + "iopub.execute_input": "2023-10-05T23:00:10.536123Z", + "iopub.status.busy": "2023-10-05T23:00:10.535675Z", + "iopub.status.idle": "2023-10-05T23:00:10.586986Z", + "shell.execute_reply": "2023-10-05T23:00:10.586226Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:39.980258Z", - "iopub.status.busy": "2023-09-20T19:25:39.979868Z", - "iopub.status.idle": "2023-09-20T19:25:39.986578Z", - "shell.execute_reply": "2023-09-20T19:25:39.985933Z" + "iopub.execute_input": "2023-10-05T23:00:10.590821Z", + "iopub.status.busy": "2023-10-05T23:00:10.590392Z", + "iopub.status.idle": "2023-10-05T23:00:10.597636Z", + "shell.execute_reply": "2023-10-05T23:00:10.596951Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged', 'getting_spare_card', 'visa_or_mastercard', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'cancel_transfer', 'card_about_to_expire', 'supported_cards_and_currencies'}\n" + "Classes: {'getting_spare_card', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'supported_cards_and_currencies', 'change_pin', 'cancel_transfer', 'card_payment_fee_charged'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:39.989642Z", - "iopub.status.busy": "2023-09-20T19:25:39.989190Z", - "iopub.status.idle": "2023-09-20T19:25:39.993400Z", - "shell.execute_reply": "2023-09-20T19:25:39.992700Z" + "iopub.execute_input": "2023-10-05T23:00:10.600814Z", + "iopub.status.busy": "2023-10-05T23:00:10.600415Z", + "iopub.status.idle": "2023-10-05T23:00:10.604790Z", + "shell.execute_reply": "2023-10-05T23:00:10.604082Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:39.997562Z", - "iopub.status.busy": "2023-09-20T19:25:39.996948Z", - "iopub.status.idle": "2023-09-20T19:25:45.099074Z", - "shell.execute_reply": "2023-09-20T19:25:45.098372Z" + "iopub.execute_input": "2023-10-05T23:00:10.607953Z", + "iopub.status.busy": "2023-10-05T23:00:10.607578Z", + "iopub.status.idle": "2023-10-05T23:00:15.103383Z", + "shell.execute_reply": "2023-10-05T23:00:15.102660Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6bb1151c57c84de2a94448f8efe85964", + "model_id": "72b67369666f407380bc25c4d0d3bfb9", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "34eeb34a54354567a8b6b45d869a678d", + "model_id": "a9de53fd4bfd4c58b18fa0b8de08b82b", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "626f69cd6f6a4672a6d8a73328b496fa", + "model_id": "844f6c6b9eec446d84b21b14c60956e8", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "72a7f35452454283b58290c1d18808e7", + "model_id": "4401df1fba5e441b83b80dd23ca4b5ea", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f5178125000c42bca785825165412a3e", + "model_id": "a3600dbacdc34ceaaedfcd099b04b822", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7133407330494b4b9166d219533e0f76", + "model_id": "89e2f54817fa4550bf363ef9bcc0dc96", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "200da2b516a5407d9960f11c3ef8471d", + "model_id": "5477c28ba5f84dfeab902c93a74ed0a2", "version_major": 2, "version_minor": 0 }, @@ -503,7 +503,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense.bias', 'discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense.weight', 'discriminator_predictions.dense_prediction.bias']\n", + "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.weight', 'discriminator_predictions.dense.bias']\n", "- This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" ] @@ -544,10 +544,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:45.103031Z", - "iopub.status.busy": "2023-09-20T19:25:45.102347Z", - "iopub.status.idle": "2023-09-20T19:25:46.356233Z", - "shell.execute_reply": "2023-09-20T19:25:46.355539Z" + "iopub.execute_input": "2023-10-05T23:00:15.107989Z", + "iopub.status.busy": "2023-10-05T23:00:15.107215Z", + "iopub.status.idle": "2023-10-05T23:00:16.362460Z", + "shell.execute_reply": "2023-10-05T23:00:16.361747Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:46.361397Z", - "iopub.status.busy": "2023-09-20T19:25:46.360190Z", - "iopub.status.idle": "2023-09-20T19:25:46.364757Z", - "shell.execute_reply": "2023-09-20T19:25:46.364180Z" + "iopub.execute_input": "2023-10-05T23:00:16.366215Z", + "iopub.status.busy": "2023-10-05T23:00:16.365788Z", + "iopub.status.idle": "2023-10-05T23:00:16.369095Z", + "shell.execute_reply": "2023-10-05T23:00:16.368550Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:46.369208Z", - "iopub.status.busy": "2023-09-20T19:25:46.368007Z", - "iopub.status.idle": "2023-09-20T19:25:48.029139Z", - "shell.execute_reply": "2023-09-20T19:25:48.028195Z" + "iopub.execute_input": "2023-10-05T23:00:16.372120Z", + "iopub.status.busy": "2023-10-05T23:00:16.371744Z", + "iopub.status.idle": "2023-10-05T23:00:18.041680Z", + "shell.execute_reply": "2023-10-05T23:00:18.040784Z" }, "scrolled": true }, @@ -626,7 +626,7 @@ "Finding near_duplicate issues ...\n", "Finding non_iid issues ...\n", "\n", - "Audit complete. 88 issues found in the dataset.\n" + "Audit complete. 84 issues found in the dataset.\n" ] } ], @@ -647,10 +647,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:48.033927Z", - "iopub.status.busy": "2023-09-20T19:25:48.033043Z", - "iopub.status.idle": "2023-09-20T19:25:48.058039Z", - "shell.execute_reply": "2023-09-20T19:25:48.057350Z" + "iopub.execute_input": "2023-10-05T23:00:18.046311Z", + "iopub.status.busy": "2023-10-05T23:00:18.045778Z", + "iopub.status.idle": "2023-10-05T23:00:18.070712Z", + "shell.execute_reply": "2023-10-05T23:00:18.070022Z" }, "scrolled": true }, @@ -662,8 +662,8 @@ "Here is a summary of the different kinds of issues found in the data:\n", "\n", " issue_type num_issues\n", - " label 44\n", - " outlier 39\n", + " label 41\n", + " outlier 38\n", "near_duplicate 4\n", " non_iid 1\n", "\n", @@ -677,16 +677,16 @@ " (e.g. due to annotation error) are flagged as having label issues.\n", " \n", "\n", - "Number of examples with this issue: 44\n", - "Overall dataset quality in terms of this issue: 0.9560\n", + "Number of examples with this issue: 41\n", + "Overall dataset quality in terms of this issue: 0.9580\n", "\n", "Examples representing most severe instances of this issue:\n", " is_label_issue label_score given_label predicted_label\n", "981 True 0.000005 card_about_to_expire card_payment_fee_charged\n", "974 True 0.000150 beneficiary_not_allowed change_pin\n", - "982 True 0.000219 apple_pay_or_google_pay card_about_to_expire\n", - "990 True 0.000326 apple_pay_or_google_pay beneficiary_not_allowed\n", - "971 True 0.000512 beneficiary_not_allowed change_pin\n", + "982 True 0.000220 apple_pay_or_google_pay card_about_to_expire\n", + "971 True 0.000511 beneficiary_not_allowed change_pin\n", + "980 True 0.000948 card_about_to_expire card_payment_fee_charged\n", "\n", "\n", "---------------------- outlier issues ----------------------\n", @@ -696,16 +696,16 @@ " (i.e. potentially out-of-distribution or rare/anomalous instances).\n", " \n", "\n", - "Number of examples with this issue: 39\n", - "Overall dataset quality in terms of this issue: 0.9120\n", + "Number of examples with this issue: 38\n", + "Overall dataset quality in terms of this issue: 0.9122\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", "994 True 0.676322\n", - "999 True 0.686193\n", - "989 True 0.711223\n", - "433 True 0.711974\n", - "990 True 0.713793\n", + "999 True 0.693868\n", + "81 True 0.697240\n", + "433 True 0.700874\n", + "989 True 0.713590\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -719,7 +719,7 @@ " \n", "\n", "Number of examples with this issue: 4\n", - "Overall dataset quality in terms of this issue: 0.0657\n", + "Overall dataset quality in terms of this issue: 0.0656\n", "\n", "Examples representing most severe instances of this issue:\n", " is_near_duplicate_issue near_duplicate_score near_duplicate_sets distance_to_nearest_neighbor\n", @@ -775,10 +775,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:48.062618Z", - "iopub.status.busy": "2023-09-20T19:25:48.061328Z", - "iopub.status.idle": "2023-09-20T19:25:48.074421Z", - "shell.execute_reply": "2023-09-20T19:25:48.073784Z" + "iopub.execute_input": "2023-10-05T23:00:18.074434Z", + "iopub.status.busy": "2023-10-05T23:00:18.074166Z", + "iopub.status.idle": "2023-10-05T23:00:18.087002Z", + "shell.execute_reply": "2023-10-05T23:00:18.086431Z" }, "scrolled": true }, @@ -814,35 +814,35 @@ "
File not found.
Press F1 to continue
File not found.
Press F1 to continue
Note
This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
-pipeline.Pipeline
. Otherwise it has no effect.
Pipeline
. Otherwise it has no effect.
Note
This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
-pipeline.Pipeline
. Otherwise it has no effect.
Pipeline
. Otherwise it has no effect.
Note
This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
-pipeline.Pipeline
. Otherwise it has no effect.
Pipeline
. Otherwise it has no effect.
Note
This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
-pipeline.Pipeline
. Otherwise it has no effect.
Pipeline
. Otherwise it has no effect.
Note
This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
-pipeline.Pipeline
. Otherwise it has no effect.
Pipeline
. Otherwise it has no effect.
image (Union
[str
, TypeVar
(Image
)]) – Image object loaded into memory or full path to the image file. If path is provided, image is loaded into memory.
image (Union
[str
, ndarray
, TypeVar
(Image
)]) – Image object loaded into memory or full path to the image file. If path is provided, image is loaded into memory.
label (Optional
[Dict
[str
, Any
]]) –
The given label for a single image in the format {'bboxes': np.ndarray((L,4)), 'labels': np.ndarray((L,))}
where
L
is the number of bounding boxes for the i
-th image and bboxes[j]
is in the format [x1,y1,x2,y2]
with given label labels[j]
.
Note: Here, [x1,y1]
corresponds to the coordinates of the bottom-left corner of the bounding box, while [x2,y2]
corresponds to the coordinates of the top-right corner of the bounding box. The last column, pred_prob, represents the predicted probability that the bounding box contains an object of the class k.
Note
This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
-pipeline.Pipeline
. Otherwise it has no effect.
Pipeline
. Otherwise it has no effect.
Note
This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
-pipeline.Pipeline
. Otherwise it has no effect.
Pipeline
. Otherwise it has no effect.
-/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:219: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.
+/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:219: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.
warnings.warn(
/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:249: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.
warnings.warn(
@@ -1431,7 +1431,7 @@ Functionality 3: Save and load Datalab objects
This dataset has 10 classes.
-Classes: {'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged', 'getting_spare_card', 'visa_or_mastercard', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'cancel_transfer', 'card_about_to_expire', 'supported_cards_and_currencies'}
+Classes: {'getting_spare_card', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'supported_cards_and_currencies', 'change_pin', 'cancel_transfer', 'card_payment_fee_charged'}
Let’s view the i-th example in the dataset:
@@ -984,43 +984,43 @@
-cleanlab found 44 potential label errors in the dataset.
+cleanlab found 41 potential label errors in the dataset.
Here are indices of the top 5 most likely errors:
- [981 974 982 990 971]
+ [981 974 982 971 980]
Let’s review some of the most likely label errors.
@@ -1365,18 +1365,18 @@As demonstrated above, cleanlab can automatically shortlist the most likely issues in your dataset to help you better curate your dataset for subsequent modeling. With this shortlist, you can decide whether to fix these label issues or remove nonsensical or duplicated examples from your dataset to obtain a higher-quality dataset for training your next ML model. cleanlab’s issue detection can be run with outputs from any type of model you initially trained.
diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 9be03dd34..2bed6faca 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:36.693305Z", - "iopub.status.busy": "2023-09-20T19:25:36.693048Z", - "iopub.status.idle": "2023-09-20T19:25:39.780102Z", - "shell.execute_reply": "2023-09-20T19:25:39.779208Z" + "iopub.execute_input": "2023-10-05T23:00:07.451119Z", + "iopub.status.busy": "2023-10-05T23:00:07.450619Z", + "iopub.status.idle": "2023-10-05T23:00:10.515332Z", + "shell.execute_reply": "2023-10-05T23:00:10.514632Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "16887f4369534564a02e069ceb15a164", + "model_id": "8ab9ccd2d61f487a98ee98065642ab7a", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@6d45971cf83ccc85ac31d2591c54ce6b52a27281\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@ffbddc3a9e4600852d7a9efeace6fb2b916f585e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:39.784232Z", - "iopub.status.busy": "2023-09-20T19:25:39.783648Z", - "iopub.status.idle": "2023-09-20T19:25:39.787734Z", - "shell.execute_reply": "2023-09-20T19:25:39.787078Z" + "iopub.execute_input": "2023-10-05T23:00:10.520462Z", + "iopub.status.busy": "2023-10-05T23:00:10.519080Z", + "iopub.status.idle": "2023-10-05T23:00:10.524564Z", + "shell.execute_reply": "2023-10-05T23:00:10.523925Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:39.790606Z", - "iopub.status.busy": "2023-09-20T19:25:39.790244Z", - "iopub.status.idle": "2023-09-20T19:25:39.794047Z", - "shell.execute_reply": "2023-09-20T19:25:39.793360Z" + "iopub.execute_input": "2023-10-05T23:00:10.528661Z", + "iopub.status.busy": "2023-10-05T23:00:10.527519Z", + "iopub.status.idle": "2023-10-05T23:00:10.532829Z", + "shell.execute_reply": "2023-10-05T23:00:10.532201Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:39.797031Z", - "iopub.status.busy": "2023-09-20T19:25:39.796669Z", - "iopub.status.idle": "2023-09-20T19:25:39.976950Z", - "shell.execute_reply": "2023-09-20T19:25:39.976229Z" + "iopub.execute_input": "2023-10-05T23:00:10.536123Z", + "iopub.status.busy": "2023-10-05T23:00:10.535675Z", + "iopub.status.idle": "2023-10-05T23:00:10.586986Z", + "shell.execute_reply": "2023-10-05T23:00:10.586226Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:39.980258Z", - "iopub.status.busy": "2023-09-20T19:25:39.979868Z", - "iopub.status.idle": "2023-09-20T19:25:39.986578Z", - "shell.execute_reply": "2023-09-20T19:25:39.985933Z" + "iopub.execute_input": "2023-10-05T23:00:10.590821Z", + "iopub.status.busy": "2023-10-05T23:00:10.590392Z", + "iopub.status.idle": "2023-10-05T23:00:10.597636Z", + "shell.execute_reply": "2023-10-05T23:00:10.596951Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged', 'getting_spare_card', 'visa_or_mastercard', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'cancel_transfer', 'card_about_to_expire', 'supported_cards_and_currencies'}\n" + "Classes: {'getting_spare_card', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'supported_cards_and_currencies', 'change_pin', 'cancel_transfer', 'card_payment_fee_charged'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:39.989642Z", - "iopub.status.busy": "2023-09-20T19:25:39.989190Z", - "iopub.status.idle": "2023-09-20T19:25:39.993400Z", - "shell.execute_reply": "2023-09-20T19:25:39.992700Z" + "iopub.execute_input": "2023-10-05T23:00:10.600814Z", + "iopub.status.busy": "2023-10-05T23:00:10.600415Z", + "iopub.status.idle": "2023-10-05T23:00:10.604790Z", + "shell.execute_reply": "2023-10-05T23:00:10.604082Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:39.997562Z", - "iopub.status.busy": "2023-09-20T19:25:39.996948Z", - "iopub.status.idle": "2023-09-20T19:25:45.099074Z", - "shell.execute_reply": "2023-09-20T19:25:45.098372Z" + "iopub.execute_input": "2023-10-05T23:00:10.607953Z", + "iopub.status.busy": "2023-10-05T23:00:10.607578Z", + "iopub.status.idle": "2023-10-05T23:00:15.103383Z", + "shell.execute_reply": "2023-10-05T23:00:15.102660Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6bb1151c57c84de2a94448f8efe85964", + "model_id": "72b67369666f407380bc25c4d0d3bfb9", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "34eeb34a54354567a8b6b45d869a678d", + "model_id": "a9de53fd4bfd4c58b18fa0b8de08b82b", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "626f69cd6f6a4672a6d8a73328b496fa", + "model_id": "844f6c6b9eec446d84b21b14c60956e8", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "72a7f35452454283b58290c1d18808e7", + "model_id": "4401df1fba5e441b83b80dd23ca4b5ea", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f5178125000c42bca785825165412a3e", + "model_id": "a3600dbacdc34ceaaedfcd099b04b822", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7133407330494b4b9166d219533e0f76", + "model_id": "89e2f54817fa4550bf363ef9bcc0dc96", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "200da2b516a5407d9960f11c3ef8471d", + "model_id": "5477c28ba5f84dfeab902c93a74ed0a2", "version_major": 2, "version_minor": 0 }, @@ -503,7 +503,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense.bias', 'discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense.weight', 'discriminator_predictions.dense_prediction.bias']\n", + "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.weight', 'discriminator_predictions.dense.bias']\n", "- This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" ] @@ -544,10 +544,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:45.103031Z", - "iopub.status.busy": "2023-09-20T19:25:45.102347Z", - "iopub.status.idle": "2023-09-20T19:25:46.356233Z", - "shell.execute_reply": "2023-09-20T19:25:46.355539Z" + "iopub.execute_input": "2023-10-05T23:00:15.107989Z", + "iopub.status.busy": "2023-10-05T23:00:15.107215Z", + "iopub.status.idle": "2023-10-05T23:00:16.362460Z", + "shell.execute_reply": "2023-10-05T23:00:16.361747Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:46.361397Z", - "iopub.status.busy": "2023-09-20T19:25:46.360190Z", - "iopub.status.idle": "2023-09-20T19:25:46.364757Z", - "shell.execute_reply": "2023-09-20T19:25:46.364180Z" + "iopub.execute_input": "2023-10-05T23:00:16.366215Z", + "iopub.status.busy": "2023-10-05T23:00:16.365788Z", + "iopub.status.idle": "2023-10-05T23:00:16.369095Z", + "shell.execute_reply": "2023-10-05T23:00:16.368550Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:46.369208Z", - "iopub.status.busy": "2023-09-20T19:25:46.368007Z", - "iopub.status.idle": "2023-09-20T19:25:48.029139Z", - "shell.execute_reply": "2023-09-20T19:25:48.028195Z" + "iopub.execute_input": "2023-10-05T23:00:16.372120Z", + "iopub.status.busy": "2023-10-05T23:00:16.371744Z", + "iopub.status.idle": "2023-10-05T23:00:18.041680Z", + "shell.execute_reply": "2023-10-05T23:00:18.040784Z" }, "scrolled": true }, @@ -626,7 +626,7 @@ "Finding near_duplicate issues ...\n", "Finding non_iid issues ...\n", "\n", - "Audit complete. 88 issues found in the dataset.\n" + "Audit complete. 84 issues found in the dataset.\n" ] } ], @@ -647,10 +647,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:48.033927Z", - "iopub.status.busy": "2023-09-20T19:25:48.033043Z", - "iopub.status.idle": "2023-09-20T19:25:48.058039Z", - "shell.execute_reply": "2023-09-20T19:25:48.057350Z" + "iopub.execute_input": "2023-10-05T23:00:18.046311Z", + "iopub.status.busy": "2023-10-05T23:00:18.045778Z", + "iopub.status.idle": "2023-10-05T23:00:18.070712Z", + "shell.execute_reply": "2023-10-05T23:00:18.070022Z" }, "scrolled": true }, @@ -662,8 +662,8 @@ "Here is a summary of the different kinds of issues found in the data:\n", "\n", " issue_type num_issues\n", - " label 44\n", - " outlier 39\n", + " label 41\n", + " outlier 38\n", "near_duplicate 4\n", " non_iid 1\n", "\n", @@ -677,16 +677,16 @@ " (e.g. due to annotation error) are flagged as having label issues.\n", " \n", "\n", - "Number of examples with this issue: 44\n", - "Overall dataset quality in terms of this issue: 0.9560\n", + "Number of examples with this issue: 41\n", + "Overall dataset quality in terms of this issue: 0.9580\n", "\n", "Examples representing most severe instances of this issue:\n", " is_label_issue label_score given_label predicted_label\n", "981 True 0.000005 card_about_to_expire card_payment_fee_charged\n", "974 True 0.000150 beneficiary_not_allowed change_pin\n", - "982 True 0.000219 apple_pay_or_google_pay card_about_to_expire\n", - "990 True 0.000326 apple_pay_or_google_pay beneficiary_not_allowed\n", - "971 True 0.000512 beneficiary_not_allowed change_pin\n", + "982 True 0.000220 apple_pay_or_google_pay card_about_to_expire\n", + "971 True 0.000511 beneficiary_not_allowed change_pin\n", + "980 True 0.000948 card_about_to_expire card_payment_fee_charged\n", "\n", "\n", "---------------------- outlier issues ----------------------\n", @@ -696,16 +696,16 @@ " (i.e. potentially out-of-distribution or rare/anomalous instances).\n", " \n", "\n", - "Number of examples with this issue: 39\n", - "Overall dataset quality in terms of this issue: 0.9120\n", + "Number of examples with this issue: 38\n", + "Overall dataset quality in terms of this issue: 0.9122\n", "\n", "Examples representing most severe instances of this issue:\n", " is_outlier_issue outlier_score\n", "994 True 0.676322\n", - "999 True 0.686193\n", - "989 True 0.711223\n", - "433 True 0.711974\n", - "990 True 0.713793\n", + "999 True 0.693868\n", + "81 True 0.697240\n", + "433 True 0.700874\n", + "989 True 0.713590\n", "\n", "\n", "------------------ near_duplicate issues -------------------\n", @@ -719,7 +719,7 @@ " \n", "\n", "Number of examples with this issue: 4\n", - "Overall dataset quality in terms of this issue: 0.0657\n", + "Overall dataset quality in terms of this issue: 0.0656\n", "\n", "Examples representing most severe instances of this issue:\n", " is_near_duplicate_issue near_duplicate_score near_duplicate_sets distance_to_nearest_neighbor\n", @@ -775,10 +775,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:25:48.062618Z", - "iopub.status.busy": "2023-09-20T19:25:48.061328Z", - "iopub.status.idle": "2023-09-20T19:25:48.074421Z", - "shell.execute_reply": "2023-09-20T19:25:48.073784Z" + "iopub.execute_input": "2023-10-05T23:00:18.074434Z", + "iopub.status.busy": "2023-10-05T23:00:18.074166Z", + "iopub.status.idle": "2023-10-05T23:00:18.087002Z", + "shell.execute_reply": "2023-10-05T23:00:18.086431Z" }, "scrolled": true }, @@ -814,35 +814,35 @@ "File not found.
Press F1 to continue
File not found.
Press F1 to continue
If your question is not addressed anywhere, please open a new Github issue. Our developers may also provide personalized assistance in our Slack Community.
diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index d445d8add..dbe65fc70 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:27.441956Z", - "iopub.status.busy": "2023-09-20T19:26:27.441702Z", - "iopub.status.idle": "2023-09-20T19:26:28.660047Z", - "shell.execute_reply": "2023-09-20T19:26:28.659271Z" + "iopub.execute_input": "2023-10-05T23:00:45.202077Z", + "iopub.status.busy": "2023-10-05T23:00:45.201827Z", + "iopub.status.idle": "2023-10-05T23:00:46.415204Z", + "shell.execute_reply": "2023-10-05T23:00:46.414435Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:28.663829Z", - "iopub.status.busy": "2023-09-20T19:26:28.663259Z", - "iopub.status.idle": "2023-09-20T19:26:28.668696Z", - "shell.execute_reply": "2023-09-20T19:26:28.668082Z" + "iopub.execute_input": "2023-10-05T23:00:46.419198Z", + "iopub.status.busy": "2023-10-05T23:00:46.418636Z", + "iopub.status.idle": "2023-10-05T23:00:46.423655Z", + "shell.execute_reply": "2023-10-05T23:00:46.422986Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:28.671625Z", - "iopub.status.busy": "2023-09-20T19:26:28.671381Z", - "iopub.status.idle": "2023-09-20T19:26:31.303892Z", - "shell.execute_reply": "2023-09-20T19:26:31.302751Z" + "iopub.execute_input": "2023-10-05T23:00:46.426626Z", + "iopub.status.busy": "2023-10-05T23:00:46.426250Z", + "iopub.status.idle": "2023-10-05T23:00:49.050376Z", + "shell.execute_reply": "2023-10-05T23:00:49.049182Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:31.308786Z", - "iopub.status.busy": "2023-09-20T19:26:31.307550Z", - "iopub.status.idle": "2023-09-20T19:26:31.350887Z", - "shell.execute_reply": "2023-09-20T19:26:31.349950Z" + "iopub.execute_input": "2023-10-05T23:00:49.055153Z", + "iopub.status.busy": "2023-10-05T23:00:49.054166Z", + "iopub.status.idle": "2023-10-05T23:00:49.101241Z", + "shell.execute_reply": "2023-10-05T23:00:49.100295Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:31.355186Z", - "iopub.status.busy": "2023-09-20T19:26:31.354730Z", - "iopub.status.idle": "2023-09-20T19:26:31.404668Z", - "shell.execute_reply": "2023-09-20T19:26:31.403735Z" + "iopub.execute_input": "2023-10-05T23:00:49.105477Z", + "iopub.status.busy": "2023-10-05T23:00:49.104815Z", + "iopub.status.idle": "2023-10-05T23:00:49.144119Z", + "shell.execute_reply": "2023-10-05T23:00:49.143157Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:31.409004Z", - "iopub.status.busy": "2023-09-20T19:26:31.408486Z", - "iopub.status.idle": "2023-09-20T19:26:31.413389Z", - "shell.execute_reply": "2023-09-20T19:26:31.412780Z" + "iopub.execute_input": "2023-10-05T23:00:49.148408Z", + "iopub.status.busy": "2023-10-05T23:00:49.147816Z", + "iopub.status.idle": "2023-10-05T23:00:49.153093Z", + "shell.execute_reply": "2023-10-05T23:00:49.152438Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:31.416412Z", - "iopub.status.busy": "2023-09-20T19:26:31.415974Z", - "iopub.status.idle": "2023-09-20T19:26:31.419211Z", - "shell.execute_reply": "2023-09-20T19:26:31.418517Z" + "iopub.execute_input": "2023-10-05T23:00:49.156835Z", + "iopub.status.busy": "2023-10-05T23:00:49.156194Z", + "iopub.status.idle": "2023-10-05T23:00:49.159636Z", + "shell.execute_reply": "2023-10-05T23:00:49.158957Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:31.422266Z", - "iopub.status.busy": "2023-09-20T19:26:31.421902Z", - "iopub.status.idle": "2023-09-20T19:26:31.456613Z", - "shell.execute_reply": "2023-09-20T19:26:31.456023Z" + "iopub.execute_input": "2023-10-05T23:00:49.162848Z", + "iopub.status.busy": "2023-10-05T23:00:49.162467Z", + "iopub.status.idle": "2023-10-05T23:00:49.199257Z", + "shell.execute_reply": "2023-10-05T23:00:49.198675Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3ed65ddc206c4d7d80d357a8bccb114f", + "model_id": "c063f49cf89e4608b127fd29676b6c61", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "97fdd4f6cb274f7bac22898b9b4ba144", + "model_id": "b9f866c8a7b14789b12e7fa60cbaceda", "version_major": 2, "version_minor": 0 }, @@ -375,10 +375,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:31.463238Z", - "iopub.status.busy": "2023-09-20T19:26:31.462824Z", - "iopub.status.idle": "2023-09-20T19:26:31.470662Z", - "shell.execute_reply": "2023-09-20T19:26:31.470090Z" + "iopub.execute_input": "2023-10-05T23:00:49.204346Z", + "iopub.status.busy": "2023-10-05T23:00:49.203901Z", + "iopub.status.idle": "2023-10-05T23:00:49.211313Z", + "shell.execute_reply": "2023-10-05T23:00:49.210728Z" }, "nbsphinx": "hidden" }, @@ -409,10 +409,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:31.473698Z", - "iopub.status.busy": "2023-09-20T19:26:31.473040Z", - "iopub.status.idle": "2023-09-20T19:26:31.477251Z", - "shell.execute_reply": "2023-09-20T19:26:31.476698Z" + "iopub.execute_input": "2023-10-05T23:00:49.214246Z", + "iopub.status.busy": "2023-10-05T23:00:49.213799Z", + "iopub.status.idle": "2023-10-05T23:00:49.217772Z", + "shell.execute_reply": "2023-10-05T23:00:49.217213Z" }, "nbsphinx": "hidden" }, @@ -435,10 +435,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:31.480207Z", - "iopub.status.busy": "2023-09-20T19:26:31.479781Z", - "iopub.status.idle": "2023-09-20T19:26:31.487821Z", - "shell.execute_reply": "2023-09-20T19:26:31.487236Z" + "iopub.execute_input": "2023-10-05T23:00:49.220692Z", + "iopub.status.busy": "2023-10-05T23:00:49.220262Z", + "iopub.status.idle": "2023-10-05T23:00:49.228349Z", + "shell.execute_reply": "2023-10-05T23:00:49.227787Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:31.490639Z", - "iopub.status.busy": "2023-09-20T19:26:31.490028Z", - "iopub.status.idle": "2023-09-20T19:26:31.530252Z", - "shell.execute_reply": "2023-09-20T19:26:31.529278Z" + "iopub.execute_input": "2023-10-05T23:00:49.231421Z", + "iopub.status.busy": "2023-10-05T23:00:49.230987Z", + "iopub.status.idle": "2023-10-05T23:00:49.269155Z", + "shell.execute_reply": "2023-10-05T23:00:49.268033Z" } }, "outputs": [], @@ -508,10 +508,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:31.534634Z", - "iopub.status.busy": "2023-09-20T19:26:31.534109Z", - "iopub.status.idle": "2023-09-20T19:26:31.578361Z", - "shell.execute_reply": "2023-09-20T19:26:31.577429Z" + "iopub.execute_input": "2023-10-05T23:00:49.272970Z", + "iopub.status.busy": "2023-10-05T23:00:49.272519Z", + "iopub.status.idle": "2023-10-05T23:00:49.316146Z", + "shell.execute_reply": "2023-10-05T23:00:49.315057Z" }, "nbsphinx": "hidden" }, @@ -590,10 +590,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:31.583044Z", - "iopub.status.busy": "2023-09-20T19:26:31.582522Z", - "iopub.status.idle": "2023-09-20T19:26:31.737047Z", - "shell.execute_reply": "2023-09-20T19:26:31.736166Z" + "iopub.execute_input": "2023-10-05T23:00:49.320096Z", + "iopub.status.busy": "2023-10-05T23:00:49.319597Z", + "iopub.status.idle": "2023-10-05T23:00:49.475443Z", + "shell.execute_reply": "2023-10-05T23:00:49.474569Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:31.741103Z", - "iopub.status.busy": "2023-09-20T19:26:31.740544Z", - "iopub.status.idle": "2023-09-20T19:26:35.216121Z", - "shell.execute_reply": "2023-09-20T19:26:35.215326Z" + "iopub.execute_input": "2023-10-05T23:00:49.479520Z", + "iopub.status.busy": "2023-10-05T23:00:49.478940Z", + "iopub.status.idle": "2023-10-05T23:00:52.905421Z", + "shell.execute_reply": "2023-10-05T23:00:52.904586Z" } }, "outputs": [ @@ -749,10 +749,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:35.219969Z", - "iopub.status.busy": "2023-09-20T19:26:35.219349Z", - "iopub.status.idle": "2023-09-20T19:26:35.299505Z", - "shell.execute_reply": "2023-09-20T19:26:35.298833Z" + "iopub.execute_input": "2023-10-05T23:00:52.909699Z", + "iopub.status.busy": "2023-10-05T23:00:52.909025Z", + "iopub.status.idle": "2023-10-05T23:00:52.991860Z", + "shell.execute_reply": "2023-10-05T23:00:52.991039Z" } }, "outputs": [ @@ -862,7 +862,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01d7ff74ade04a93a699417e21f22c57": { + "0bf85654824a40fbac593b0cd8791af2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -914,22 +914,94 @@ "width": null } }, - "0bb7d6eb276e4f7e85c33b71293608ef": { + "17f5a39c507f44cc94268781c42dee37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ff294eac99b04f8686017c512721abde", + "placeholder": "", + "style": "IPY_MODEL_99cd2679fa09446895e855b1e2c1c26f", + "value": "number of examples processed for estimating thresholds: " } }, - "1653aa99aec34012997c8dfe5c031b42": { + "48a5652fb7e34b88ab0dbf00f959b88b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b4ad5fa5c6cf426bb600c0b9e68c9f9d", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e1bd35230fae42b296ada57aece027ef", + "value": 50.0 + } + }, + "677189b84af642e9a7c55354d04d502e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d171a782ee0b4f1fb40bc2b4e94168ac", + "placeholder": "", + "style": "IPY_MODEL_d4b110308c944aaf852e0c58674ecf76", + "value": " 10000/? [00:00<00:00, 921663.00it/s]" + } + }, + "84b1fef17cfa47fc88e88be7985f61f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0bf85654824a40fbac593b0cd8791af2", + "placeholder": "", + "style": "IPY_MODEL_a046214f839342ea9d791b1f05b14c10", + "value": "number of examples processed for checking labels: " + } + }, + "87ff75ca663b4acaa437419e2596e593": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -981,29 +1053,7 @@ "width": null } }, - "3ed65ddc206c4d7d80d357a8bccb114f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cc1ab1a183ac49c292335e88ee96251b", - "IPY_MODEL_e5557ddbe57744ca9f614147a877977b", - "IPY_MODEL_59ae830b13864220a1f1120876c639d5" - ], - "layout": "IPY_MODEL_7be8201265314e8097588e72c998f351" - } - }, - "4373817ff44748f8af48cb82313e1dec": { + "8aa987a50e334949b4614a9034aedc34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1018,28 +1068,22 @@ "description_width": "" } }, - "59ae830b13864220a1f1120876c639d5": { + "99cd2679fa09446895e855b1e2c1c26f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6acc6197924240119f012d570fa72756", - "placeholder": "", - "style": "IPY_MODEL_0bb7d6eb276e4f7e85c33b71293608ef", - "value": " 10000/? [00:00<00:00, 722296.58it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "6acc6197924240119f012d570fa72756": { + "9dc3554c75414f33adc12d824eddb651": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1091,28 +1135,22 @@ "width": null } }, - "790129de792c4ab584f4ccef0abed7e2": { + "a046214f839342ea9d791b1f05b14c10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_01d7ff74ade04a93a699417e21f22c57", - "placeholder": "", - "style": "IPY_MODEL_b361c79f9e1e4c6aa222047e54156248", - "value": "number of examples processed for checking labels: " + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "7be8201265314e8097588e72c998f351": { + "ae4611a628964677b3862a78f3c055d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1164,7 +1202,7 @@ "width": null } }, - "8a2f0886ece940fd8361e76e93156274": { + "b4ad5fa5c6cf426bb600c0b9e68c9f9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1216,7 +1254,7 @@ "width": null } }, - "97fdd4f6cb274f7bac22898b9b4ba144": { + "b9f866c8a7b14789b12e7fa60cbaceda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1231,74 +1269,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_790129de792c4ab584f4ccef0abed7e2", - "IPY_MODEL_a941d7b37ac344c4badacd8d0c199e48", - "IPY_MODEL_b8e88231c6984285b00eeb31684926d7" + "IPY_MODEL_84b1fef17cfa47fc88e88be7985f61f4", + "IPY_MODEL_48a5652fb7e34b88ab0dbf00f959b88b", + "IPY_MODEL_677189b84af642e9a7c55354d04d502e" ], - "layout": "IPY_MODEL_bffe0076ad48478c86098ca63fd29bb4" + "layout": "IPY_MODEL_ae4611a628964677b3862a78f3c055d6" } }, - "a941d7b37ac344c4badacd8d0c199e48": { + "bd8a2ff3cc204f308f2a2a356f68e532": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1653aa99aec34012997c8dfe5c031b42", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fed85d0704974af8bc1077c39ab5b247", - "value": 50.0 - } - }, - "b361c79f9e1e4c6aa222047e54156248": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "layout": "IPY_MODEL_f04d2a84456f40e69029e1fda382f243", + "placeholder": "", + "style": "IPY_MODEL_8aa987a50e334949b4614a9034aedc34", + "value": " 10000/? [00:00<00:00, 664654.78it/s]" } }, - "b8e88231c6984285b00eeb31684926d7": { + "c063f49cf89e4608b127fd29676b6c61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_de5f74e9d95f46e697692ff132ccb573", - "placeholder": "", - "style": "IPY_MODEL_4373817ff44748f8af48cb82313e1dec", - "value": " 10000/? [00:00<00:00, 1008149.22it/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_17f5a39c507f44cc94268781c42dee37", + "IPY_MODEL_e7144d9f5cf644388932721ea0a88a39", + "IPY_MODEL_bd8a2ff3cc204f308f2a2a356f68e532" + ], + "layout": "IPY_MODEL_9dc3554c75414f33adc12d824eddb651" } }, - "bffe0076ad48478c86098ca63fd29bb4": { + "d171a782ee0b4f1fb40bc2b4e94168ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1350,43 +1371,78 @@ "width": null } }, - "cc1ab1a183ac49c292335e88ee96251b": { + "d4b110308c944aaf852e0c58674ecf76": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8a2f0886ece940fd8361e76e93156274", - "placeholder": "", - "style": "IPY_MODEL_d9678efba82942db9ed0602845b73739", - "value": "number of examples processed for estimating thresholds: " + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "d9678efba82942db9ed0602845b73739": { + "e1bd35230fae42b296ada57aece027ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "de499357cc3a4e6c96e9b255910e526d": { + "e3deed6b8ee94f8bb453be3b9bd8df88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e7144d9f5cf644388932721ea0a88a39": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_87ff75ca663b4acaa437419e2596e593", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e3deed6b8ee94f8bb453be3b9bd8df88", + "value": 50.0 + } + }, + "f04d2a84456f40e69029e1fda382f243": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1438,7 +1494,7 @@ "width": null } }, - "de5f74e9d95f46e697692ff132ccb573": { + "ff294eac99b04f8686017c512721abde": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1489,62 +1545,6 @@ "visibility": null, "width": null } - }, - "df27c958d2114c258da0efefb5ed7f34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e5557ddbe57744ca9f614147a877977b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_de499357cc3a4e6c96e9b255910e526d", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_df27c958d2114c258da0efefb5ed7f34", - "value": 50.0 - } - }, - "fed85d0704974af8bc1077c39ab5b247": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/tutorials/image.html b/master/tutorials/image.html index 78d44e354..65ae9bb29 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -873,19 +873,19 @@Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.
Training on fold: 1 ... -epoch: 1 loss: 0.483 test acc: 86.775 time_taken: 5.933 -epoch: 2 loss: 0.329 test acc: 88.215 time_taken: 5.563 +epoch: 1 loss: 0.483 test acc: 86.775 time_taken: 6.014 +epoch: 2 loss: 0.329 test acc: 88.215 time_taken: 5.651 Computing feature embeddings ...
-100%|██████████| 40/40 [00:00<00:00, 46.00it/s]
+100%|██████████| 40/40 [00:00<00:00, 47.35it/s]
-100%|██████████| 40/40 [00:00<00:00, 45.21it/s]
+100%|██████████| 40/40 [00:00<00:00, 48.32it/s]
-epoch: 1 loss: 0.492 test acc: 87.095 time_taken: 6.003
-epoch: 2 loss: 0.329 test acc: 88.415 time_taken: 5.636
+epoch: 1 loss: 0.492 test acc: 87.095 time_taken: 5.905
+epoch: 2 loss: 0.329 test acc: 88.415 time_taken: 5.539
Computing feature embeddings ...
-100%|██████████| 40/40 [00:00<00:00, 47.02it/s]
+100%|██████████| 40/40 [00:00<00:00, 46.00it/s]
-100%|██████████| 40/40 [00:00<00:00, 43.19it/s]
+100%|██████████| 40/40 [00:00<00:00, 45.53it/s]
Training on fold: 3 ... -
-
-
-epoch: 1 loss: 0.476 test acc: 86.415 time_taken: 5.965
-epoch: 2 loss: 0.327 test acc: 86.755 time_taken: 5.722
+epoch: 1 loss: 0.476 test acc: 86.415 time_taken: 6.174
+epoch: 2 loss: 0.327 test acc: 86.755 time_taken: 5.619
Computing feature embeddings ...
-100%|██████████| 40/40 [00:00<00:00, 44.83it/s]
+100%|██████████| 40/40 [00:00<00:00, 48.05it/s]
-100%|██████████| 40/40 [00:00<00:00, 48.60it/s]
+100%|██████████| 40/40 [00:00<00:00, 46.82it/s]
Here we can see a lot of low information images belong to the Sandal class.
diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index 2ce79cc8d..59ea86d61 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:40.644561Z", - "iopub.status.busy": "2023-09-20T19:26:40.643953Z", - "iopub.status.idle": "2023-09-20T19:26:43.382475Z", - "shell.execute_reply": "2023-09-20T19:26:43.381687Z" + "iopub.execute_input": "2023-10-05T23:00:58.636509Z", + "iopub.status.busy": "2023-10-05T23:00:58.636236Z", + "iopub.status.idle": "2023-10-05T23:01:01.342783Z", + "shell.execute_reply": "2023-10-05T23:01:01.342002Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:43.386195Z", - "iopub.status.busy": "2023-09-20T19:26:43.385608Z", - "iopub.status.idle": "2023-09-20T19:26:43.390483Z", - "shell.execute_reply": "2023-09-20T19:26:43.389411Z" + "iopub.execute_input": "2023-10-05T23:01:01.347187Z", + "iopub.status.busy": "2023-10-05T23:01:01.346608Z", + "iopub.status.idle": "2023-10-05T23:01:01.351492Z", + "shell.execute_reply": "2023-10-05T23:01:01.350818Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:26:43.393622Z", - "iopub.status.busy": "2023-09-20T19:26:43.393099Z", - "iopub.status.idle": "2023-09-20T19:27:00.813424Z", - "shell.execute_reply": "2023-09-20T19:27:00.812808Z" + "iopub.execute_input": "2023-10-05T23:01:01.354744Z", + "iopub.status.busy": "2023-10-05T23:01:01.354191Z", + "iopub.status.idle": "2023-10-05T23:01:16.625447Z", + "shell.execute_reply": "2023-10-05T23:01:16.624693Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "241c71de85324389903dfcaf86a61bf6", + "model_id": "653d0c643f21417cb69a809fa60f2fb5", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b6cf920b5294975b63d11de297e20b5", + "model_id": "e53c8dbdb187409bb2de5722af70a661", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7eb0f49f8cdb46f191f8ba89a7010f65", + "model_id": "a05c212538204b65a1ec2307a5ef59fb", "version_major": 2, "version_minor": 0 }, @@ -211,7 +211,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0c1a8b90547545cbb3088aa374a16bc6", + "model_id": "d1e4c96805964d498d62c7a66e520c53", "version_major": 2, "version_minor": 0 }, @@ -225,7 +225,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c5616aac65f140e599a7d377cc09577d", + "model_id": "c3e42eb07a874e8da3fb45bd2f68a2a0", "version_major": 2, "version_minor": 0 }, @@ -239,7 +239,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f81597391bf949439d109c374befb0d5", + "model_id": "69afa7050f3d4703999adaba9403aa95", "version_major": 2, "version_minor": 0 }, @@ -253,7 +253,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9524d2a477aa45788f36a168bdb47c3e", + "model_id": "93c7598944784e1d962ab6b088dc70e3", "version_major": 2, "version_minor": 0 }, @@ -267,7 +267,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7dad591845114863bbd287a812f623ad", + "model_id": "c959735567f344ebbcaec3547ad6146d", "version_major": 2, "version_minor": 0 }, @@ -281,7 +281,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a97e2d16508b4c1c96a221bc30754810", + "model_id": "473c942b07234f37b1e3359c7c67018e", "version_major": 2, "version_minor": 0 }, @@ -295,7 +295,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "be78f9f3c32748078cfde9882b18308d", + "model_id": "4d64bad1470c4060b2c8dc71870eb4eb", "version_major": 2, "version_minor": 0 }, @@ -309,7 +309,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d022852e52d144d0a725e4b173f44b22", + "model_id": "4546109d62044d42a3e0b67854d5a437", "version_major": 2, "version_minor": 0 }, @@ -358,10 +358,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:27:00.816379Z", - "iopub.status.busy": "2023-09-20T19:27:00.815975Z", - "iopub.status.idle": "2023-09-20T19:27:00.820369Z", - "shell.execute_reply": "2023-09-20T19:27:00.819798Z" + "iopub.execute_input": "2023-10-05T23:01:16.629158Z", + "iopub.status.busy": "2023-10-05T23:01:16.628508Z", + "iopub.status.idle": "2023-10-05T23:01:16.635596Z", + "shell.execute_reply": "2023-10-05T23:01:16.634702Z" } }, "outputs": [ @@ -386,17 +386,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:27:00.823146Z", - "iopub.status.busy": "2023-09-20T19:27:00.822691Z", - "iopub.status.idle": "2023-09-20T19:27:19.024924Z", - "shell.execute_reply": "2023-09-20T19:27:19.024136Z" + "iopub.execute_input": "2023-10-05T23:01:16.639179Z", + "iopub.status.busy": "2023-10-05T23:01:16.638565Z", + "iopub.status.idle": "2023-10-05T23:01:34.765033Z", + "shell.execute_reply": "2023-10-05T23:01:34.764247Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "73cc3bda36764c37b32d467535a1a860", + "model_id": "195a4de425144296831e6427561f4cfd", "version_major": 2, "version_minor": 0 }, @@ -434,10 +434,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:27:19.028689Z", - "iopub.status.busy": "2023-09-20T19:27:19.028186Z", - "iopub.status.idle": "2023-09-20T19:27:48.927631Z", - "shell.execute_reply": "2023-09-20T19:27:48.926829Z" + "iopub.execute_input": "2023-10-05T23:01:34.769454Z", + "iopub.status.busy": "2023-10-05T23:01:34.768930Z", + "iopub.status.idle": "2023-10-05T23:02:04.918230Z", + "shell.execute_reply": "2023-10-05T23:02:04.917426Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:27:48.931368Z", - "iopub.status.busy": "2023-09-20T19:27:48.931097Z", - "iopub.status.idle": "2023-09-20T19:27:48.936889Z", - "shell.execute_reply": "2023-09-20T19:27:48.936343Z" + "iopub.execute_input": "2023-10-05T23:02:04.922262Z", + "iopub.status.busy": "2023-10-05T23:02:04.921641Z", + "iopub.status.idle": "2023-10-05T23:02:04.928943Z", + "shell.execute_reply": "2023-10-05T23:02:04.928323Z" } }, "outputs": [], @@ -511,10 +511,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:27:48.939691Z", - "iopub.status.busy": "2023-09-20T19:27:48.939318Z", - "iopub.status.idle": "2023-09-20T19:27:48.943714Z", - "shell.execute_reply": "2023-09-20T19:27:48.943103Z" + "iopub.execute_input": "2023-10-05T23:02:04.932210Z", + "iopub.status.busy": "2023-10-05T23:02:04.931605Z", + "iopub.status.idle": "2023-10-05T23:02:04.936472Z", + "shell.execute_reply": "2023-10-05T23:02:04.935876Z" }, "nbsphinx": "hidden" }, @@ -651,10 +651,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:27:48.946624Z", - "iopub.status.busy": "2023-09-20T19:27:48.946255Z", - "iopub.status.idle": "2023-09-20T19:27:48.957651Z", - "shell.execute_reply": "2023-09-20T19:27:48.957101Z" + "iopub.execute_input": "2023-10-05T23:02:04.939429Z", + "iopub.status.busy": "2023-10-05T23:02:04.939195Z", + "iopub.status.idle": "2023-10-05T23:02:04.950913Z", + "shell.execute_reply": "2023-10-05T23:02:04.950230Z" }, "nbsphinx": "hidden" }, @@ -779,10 +779,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:27:48.960643Z", - "iopub.status.busy": "2023-09-20T19:27:48.960270Z", - "iopub.status.idle": "2023-09-20T19:27:48.998496Z", - "shell.execute_reply": "2023-09-20T19:27:48.997300Z" + "iopub.execute_input": "2023-10-05T23:02:04.953724Z", + "iopub.status.busy": "2023-10-05T23:02:04.953488Z", + "iopub.status.idle": "2023-10-05T23:02:04.992662Z", + "shell.execute_reply": "2023-10-05T23:02:04.991388Z" } }, "outputs": [], @@ -819,10 +819,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:27:49.002094Z", - "iopub.status.busy": "2023-09-20T19:27:49.001708Z", - "iopub.status.idle": "2023-09-20T19:28:29.135803Z", - "shell.execute_reply": "2023-09-20T19:28:29.134752Z" + "iopub.execute_input": "2023-10-05T23:02:04.995910Z", + "iopub.status.busy": "2023-10-05T23:02:04.995305Z", + "iopub.status.idle": "2023-10-05T23:02:45.072549Z", + "shell.execute_reply": "2023-10-05T23:02:45.071684Z" } }, "outputs": [ @@ -838,14 +838,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.775 time_taken: 5.933\n" + "epoch: 1 loss: 0.483 test acc: 86.775 time_taken: 6.014\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.215 time_taken: 5.563\n", + "epoch: 2 loss: 0.329 test acc: 88.215 time_taken: 5.651\n", "Computing feature embeddings ...\n" ] }, @@ -862,7 +862,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.19it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.92it/s]" ] }, { @@ -870,7 +870,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 31.52it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 31.13it/s]" ] }, { @@ -878,7 +878,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 12/40 [00:00<00:00, 41.23it/s]" + " 30%|███ | 12/40 [00:00<00:00, 41.27it/s]" ] }, { @@ -886,7 +886,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 45.15it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 46.33it/s]" ] }, { @@ -894,7 +894,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 47.82it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 48.53it/s]" ] }, { @@ -902,7 +902,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 30/40 [00:00<00:00, 49.83it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 50.24it/s]" ] }, { @@ -910,7 +910,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 48.08it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 51.32it/s]" ] }, { @@ -918,7 +918,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 46.00it/s]" + "100%|██████████| 40/40 [00:00<00:00, 47.35it/s]" ] }, { @@ -948,7 +948,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.23it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.24it/s]" ] }, { @@ -956,7 +956,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 28.95it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 33.88it/s]" ] }, { @@ -964,7 +964,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 12/40 [00:00<00:00, 38.79it/s]" + " 32%|███▎ | 13/40 [00:00<00:00, 42.41it/s]" ] }, { @@ -972,7 +972,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 43.40it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 46.62it/s]" ] }, { @@ -980,7 +980,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 45.82it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 49.54it/s]" ] }, { @@ -988,7 +988,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 30/40 [00:00<00:00, 48.08it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 51.61it/s]" ] }, { @@ -996,7 +996,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 36/40 [00:00<00:00, 49.78it/s]" + " 95%|█████████▌| 38/40 [00:00<00:00, 55.09it/s]" ] }, { @@ -1004,7 +1004,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 45.21it/s]" + "100%|██████████| 40/40 [00:00<00:00, 48.32it/s]" ] }, { @@ -1026,14 +1026,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.095 time_taken: 6.003\n" + "epoch: 1 loss: 0.492 test acc: 87.095 time_taken: 5.905\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.415 time_taken: 5.636\n", + "epoch: 2 loss: 0.329 test acc: 88.415 time_taken: 5.539\n", "Computing feature embeddings ...\n" ] }, @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.71it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.08it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 31.86it/s]" + " 12%|█▎ | 5/40 [00:00<00:01, 25.32it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 12/40 [00:00<00:00, 41.78it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 38.01it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 45.57it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 43.60it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 48.03it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 46.64it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 30/40 [00:00<00:00, 49.17it/s]" + " 72%|███████▎ | 29/40 [00:00<00:00, 49.12it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 36/40 [00:00<00:00, 50.60it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 50.10it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 47.02it/s]" + "100%|██████████| 40/40 [00:00<00:00, 46.00it/s]" ] }, { @@ -1136,7 +1136,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:05, 7.52it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.44it/s]" ] }, { @@ -1144,7 +1144,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 29.16it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 34.04it/s]" ] }, { @@ -1152,7 +1152,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 32.89it/s]" + " 30%|███ | 12/40 [00:00<00:00, 40.39it/s]" ] }, { @@ -1160,7 +1160,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 39.20it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 40.93it/s]" ] }, { @@ -1168,7 +1168,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 20/40 [00:00<00:00, 42.57it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 45.59it/s]" ] }, { @@ -1176,7 +1176,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 44.55it/s]" + " 72%|███████▎ | 29/40 [00:00<00:00, 47.56it/s]" ] }, { @@ -1184,7 +1184,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 47.55it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 47.93it/s]" ] }, { @@ -1192,15 +1192,14 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 49.55it/s]" + "100%|██████████| 40/40 [00:00<00:00, 45.53it/s]" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\r", - "100%|██████████| 40/40 [00:00<00:00, 43.19it/s]" + "\n" ] }, { @@ -1211,25 +1210,18 @@ "Training on fold: 3 ...\n" ] }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.415 time_taken: 5.965\n" + "epoch: 1 loss: 0.476 test acc: 86.415 time_taken: 6.174\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.327 test acc: 86.755 time_taken: 5.722\n", + "epoch: 2 loss: 0.327 test acc: 86.755 time_taken: 5.619\n", "Computing feature embeddings ...\n" ] }, @@ -1246,15 +1238,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.87it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 15%|█▌ | 6/40 [00:00<00:01, 30.45it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.21it/s]" ] }, { @@ -1262,7 +1246,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 12/40 [00:00<00:00, 40.18it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 30.74it/s]" ] }, { @@ -1270,7 +1254,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 45.54it/s]" + " 30%|███ | 12/40 [00:00<00:00, 41.72it/s]" ] }, { @@ -1278,7 +1262,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▊ | 23/40 [00:00<00:00, 46.46it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 46.85it/s]" ] }, { @@ -1286,7 +1270,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 28/40 [00:00<00:00, 47.52it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 49.64it/s]" ] }, { @@ -1294,7 +1278,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 48.90it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 51.16it/s]" ] }, { @@ -1302,7 +1286,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 51.75it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 52.27it/s]" ] }, { @@ -1310,7 +1294,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 44.83it/s]" + "100%|██████████| 40/40 [00:00<00:00, 48.05it/s]" ] }, { @@ -1340,7 +1324,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.59it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.97it/s]" ] }, { @@ -1348,7 +1332,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 7/40 [00:00<00:00, 35.49it/s]" + " 15%|█▌ | 6/40 [00:00<00:01, 33.16it/s]" ] }, { @@ -1356,7 +1340,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▎ | 13/40 [00:00<00:00, 43.46it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 35.92it/s]" ] }, { @@ -1364,7 +1348,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 19/40 [00:00<00:00, 47.61it/s]" + " 40%|████ | 16/40 [00:00<00:00, 43.19it/s]" ] }, { @@ -1372,7 +1356,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 50.07it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 46.32it/s]" ] }, { @@ -1380,7 +1364,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 50.45it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 47.91it/s]" ] }, { @@ -1388,7 +1372,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 53.25it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 50.16it/s]" ] }, { @@ -1396,7 +1380,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 48.60it/s]" + "100%|██████████| 40/40 [00:00<00:00, 46.82it/s]" ] }, { @@ -1473,10 +1457,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:28:29.139242Z", - "iopub.status.busy": "2023-09-20T19:28:29.138708Z", - "iopub.status.idle": "2023-09-20T19:28:29.159154Z", - "shell.execute_reply": "2023-09-20T19:28:29.158477Z" + "iopub.execute_input": "2023-10-05T23:02:45.076097Z", + "iopub.status.busy": "2023-10-05T23:02:45.075804Z", + "iopub.status.idle": "2023-10-05T23:02:45.094429Z", + "shell.execute_reply": "2023-10-05T23:02:45.093723Z" } }, "outputs": [], @@ -1501,10 +1485,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:28:29.162613Z", - "iopub.status.busy": "2023-09-20T19:28:29.162121Z", - "iopub.status.idle": "2023-09-20T19:28:29.840503Z", - "shell.execute_reply": "2023-09-20T19:28:29.839710Z" + "iopub.execute_input": "2023-10-05T23:02:45.097943Z", + "iopub.status.busy": "2023-10-05T23:02:45.097350Z", + "iopub.status.idle": "2023-10-05T23:02:45.766213Z", + "shell.execute_reply": "2023-10-05T23:02:45.765429Z" } }, "outputs": [], @@ -1524,10 +1508,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:28:29.844004Z", - "iopub.status.busy": "2023-09-20T19:28:29.843721Z", - "iopub.status.idle": "2023-09-20T19:32:17.401065Z", - "shell.execute_reply": "2023-09-20T19:32:17.399523Z" + "iopub.execute_input": "2023-10-05T23:02:45.770555Z", + "iopub.status.busy": "2023-10-05T23:02:45.769986Z", + "iopub.status.idle": "2023-10-05T23:06:33.582971Z", + "shell.execute_reply": "2023-10-05T23:06:33.581977Z" } }, "outputs": [ @@ -1564,7 +1548,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dbe713b28b8c4a1ea4ad232546d9a4c1", + "model_id": "d8661e07f9294c0cb4d3ec7e16b40099", "version_major": 2, "version_minor": 0 }, @@ -1603,10 +1587,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:32:17.405628Z", - "iopub.status.busy": "2023-09-20T19:32:17.404505Z", - "iopub.status.idle": "2023-09-20T19:32:17.954826Z", - "shell.execute_reply": "2023-09-20T19:32:17.954113Z" + "iopub.execute_input": "2023-10-05T23:06:33.587507Z", + "iopub.status.busy": "2023-10-05T23:06:33.586268Z", + "iopub.status.idle": "2023-10-05T23:06:34.149099Z", + "shell.execute_reply": "2023-10-05T23:06:34.148380Z" } }, "outputs": [ @@ -1778,10 +1762,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:32:17.958253Z", - "iopub.status.busy": "2023-09-20T19:32:17.957935Z", - "iopub.status.idle": "2023-09-20T19:32:18.015467Z", - "shell.execute_reply": "2023-09-20T19:32:18.014817Z" + "iopub.execute_input": "2023-10-05T23:06:34.152464Z", + "iopub.status.busy": "2023-10-05T23:06:34.152150Z", + "iopub.status.idle": "2023-10-05T23:06:34.209637Z", + "shell.execute_reply": "2023-10-05T23:06:34.208987Z" } }, "outputs": [ @@ -1885,10 +1869,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:32:18.018922Z", - "iopub.status.busy": "2023-09-20T19:32:18.018495Z", - "iopub.status.idle": "2023-09-20T19:32:18.030281Z", - "shell.execute_reply": "2023-09-20T19:32:18.029534Z" + "iopub.execute_input": "2023-10-05T23:06:34.212819Z", + "iopub.status.busy": "2023-10-05T23:06:34.212392Z", + "iopub.status.idle": "2023-10-05T23:06:34.223403Z", + "shell.execute_reply": "2023-10-05T23:06:34.222712Z" } }, "outputs": [ @@ -2018,10 +2002,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:32:18.033419Z", - "iopub.status.busy": "2023-09-20T19:32:18.033016Z", - "iopub.status.idle": "2023-09-20T19:32:18.039026Z", - "shell.execute_reply": "2023-09-20T19:32:18.038336Z" + "iopub.execute_input": "2023-10-05T23:06:34.226638Z", + "iopub.status.busy": "2023-10-05T23:06:34.226077Z", + "iopub.status.idle": "2023-10-05T23:06:34.231958Z", + "shell.execute_reply": "2023-10-05T23:06:34.231270Z" }, "nbsphinx": "hidden" }, @@ -2067,10 +2051,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:32:18.042121Z", - "iopub.status.busy": "2023-09-20T19:32:18.041671Z", - "iopub.status.idle": "2023-09-20T19:32:18.871218Z", - "shell.execute_reply": "2023-09-20T19:32:18.870568Z" + "iopub.execute_input": "2023-10-05T23:06:34.235231Z", + "iopub.status.busy": "2023-10-05T23:06:34.234610Z", + "iopub.status.idle": "2023-10-05T23:06:35.099484Z", + "shell.execute_reply": "2023-10-05T23:06:35.098835Z" } }, "outputs": [ @@ -2105,10 +2089,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:32:18.874994Z", - "iopub.status.busy": "2023-09-20T19:32:18.874361Z", - "iopub.status.idle": "2023-09-20T19:32:18.885475Z", - "shell.execute_reply": "2023-09-20T19:32:18.884736Z" + "iopub.execute_input": "2023-10-05T23:06:35.102596Z", + "iopub.status.busy": "2023-10-05T23:06:35.102334Z", + "iopub.status.idle": "2023-10-05T23:06:35.112795Z", + "shell.execute_reply": "2023-10-05T23:06:35.112241Z" } }, "outputs": [ @@ -2275,10 +2259,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:32:18.888991Z", - "iopub.status.busy": "2023-09-20T19:32:18.888575Z", - "iopub.status.idle": "2023-09-20T19:32:18.898524Z", - "shell.execute_reply": "2023-09-20T19:32:18.897822Z" + "iopub.execute_input": "2023-10-05T23:06:35.115841Z", + "iopub.status.busy": "2023-10-05T23:06:35.115378Z", + "iopub.status.idle": "2023-10-05T23:06:35.124943Z", + "shell.execute_reply": "2023-10-05T23:06:35.124252Z" }, "nbsphinx": "hidden" }, @@ -2354,10 +2338,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:32:18.901548Z", - "iopub.status.busy": "2023-09-20T19:32:18.901160Z", - "iopub.status.idle": "2023-09-20T19:32:19.477521Z", - "shell.execute_reply": "2023-09-20T19:32:19.476589Z" + "iopub.execute_input": "2023-10-05T23:06:35.128050Z", + "iopub.status.busy": "2023-10-05T23:06:35.127598Z", + "iopub.status.idle": "2023-10-05T23:06:35.695781Z", + "shell.execute_reply": "2023-10-05T23:06:35.695001Z" } }, "outputs": [ @@ -2394,10 +2378,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:32:19.480520Z", - "iopub.status.busy": "2023-09-20T19:32:19.480251Z", - "iopub.status.idle": "2023-09-20T19:32:19.503519Z", - "shell.execute_reply": "2023-09-20T19:32:19.502706Z" + "iopub.execute_input": "2023-10-05T23:06:35.699207Z", + "iopub.status.busy": "2023-10-05T23:06:35.698786Z", + "iopub.status.idle": "2023-10-05T23:06:35.720720Z", + "shell.execute_reply": "2023-10-05T23:06:35.719983Z" } }, "outputs": [ @@ -2554,10 +2538,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:32:19.507212Z", - "iopub.status.busy": "2023-09-20T19:32:19.506635Z", - "iopub.status.idle": "2023-09-20T19:32:19.513970Z", - "shell.execute_reply": "2023-09-20T19:32:19.513283Z" + "iopub.execute_input": "2023-10-05T23:06:35.724276Z", + "iopub.status.busy": "2023-10-05T23:06:35.723612Z", + "iopub.status.idle": "2023-10-05T23:06:35.731044Z", + "shell.execute_reply": "2023-10-05T23:06:35.730361Z" }, "nbsphinx": "hidden" }, @@ -2602,10 +2586,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:32:19.517131Z", - "iopub.status.busy": "2023-09-20T19:32:19.516588Z", - "iopub.status.idle": "2023-09-20T19:32:19.980181Z", - "shell.execute_reply": "2023-09-20T19:32:19.979540Z" + "iopub.execute_input": "2023-10-05T23:06:35.734139Z", + "iopub.status.busy": "2023-10-05T23:06:35.733681Z", + "iopub.status.idle": "2023-10-05T23:06:36.199233Z", + "shell.execute_reply": "2023-10-05T23:06:36.198595Z" } }, "outputs": [ @@ -2680,10 +2664,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:32:19.983551Z", - "iopub.status.busy": "2023-09-20T19:32:19.982793Z", - "iopub.status.idle": "2023-09-20T19:32:19.993659Z", - "shell.execute_reply": "2023-09-20T19:32:19.993106Z" + "iopub.execute_input": "2023-10-05T23:06:36.202599Z", + "iopub.status.busy": "2023-10-05T23:06:36.201884Z", + "iopub.status.idle": "2023-10-05T23:06:36.215771Z", + "shell.execute_reply": "2023-10-05T23:06:36.215190Z" } }, "outputs": [ @@ -2708,47 +2692,47 @@ " \n", "
-100%|██████████| 4997436/4997436 [00:38<00:00, 129556.42it/s]
+100%|██████████| 4997436/4997436 [00:37<00:00, 132045.17it/s]
Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True
or False
mask as find_label_issues()
.
This dataset has 10 classes.
-Classes: {'card_about_to_expire', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'getting_spare_card', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'cancel_transfer'}
+Classes: {'card_about_to_expire', 'beneficiary_not_allowed', 'cancel_transfer', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'getting_spare_card', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'change_pin'}
Let’s print the first example in the train set.
@@ -1028,7 +1028,7 @@
No sentence-transformers model found with name /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator. Creating a new one with MEAN pooling.
-Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.weight', 'discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense.bias']
+Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense.weight', 'discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.bias']
- This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
-cleanlab found 45 potential label errors in the dataset.
+cleanlab found 43 potential label errors in the dataset.
Here are indices of the top 10 most likely errors:
- [646 390 628 121 702 599 863 456 337 735]
+ [646 390 628 121 702 863 456 135 337 735]
Let’s review some of the most likely label errors. To help us inspect these datapoints, we define a method to print any example from the dataset, together with its given (original) label and the suggested alternative label from cleanlab.
@@ -1253,7 +1253,7 @@
-Test accuracy of cleanlab's model: 0.89
+Test accuracy of cleanlab's model: 0.9
We can see that the test set accuracy slightly improved as a result of the data cleaning. Note that this will not always be the case, especially when we are evaluating on test data that are themselves noisy. The best practice is to run cleanlab to identify potential label issues and then manually review them, before blindly trusting any accuracy metrics. In particular, the most effort should be made to ensure high-quality test data, which is supposed to reflect the expected performance of our diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index 2dc2eccd1..55b19c67c 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:38:30.931470Z", - "iopub.status.busy": "2023-09-20T19:38:30.931199Z", - "iopub.status.idle": "2023-09-20T19:38:33.877966Z", - "shell.execute_reply": "2023-09-20T19:38:33.877176Z" + "iopub.execute_input": "2023-10-05T23:12:58.423777Z", + "iopub.status.busy": "2023-10-05T23:12:58.423526Z", + "iopub.status.idle": "2023-10-05T23:13:01.316253Z", + "shell.execute_reply": "2023-10-05T23:13:01.315485Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@6d45971cf83ccc85ac31d2591c54ce6b52a27281\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@ffbddc3a9e4600852d7a9efeace6fb2b916f585e\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:38:33.882171Z", - "iopub.status.busy": "2023-09-20T19:38:33.881474Z", - "iopub.status.idle": "2023-09-20T19:38:33.887162Z", - "shell.execute_reply": "2023-09-20T19:38:33.886501Z" + "iopub.execute_input": "2023-10-05T23:13:01.320211Z", + "iopub.status.busy": "2023-10-05T23:13:01.319609Z", + "iopub.status.idle": "2023-10-05T23:13:01.325250Z", + "shell.execute_reply": "2023-10-05T23:13:01.324632Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:38:33.890451Z", - "iopub.status.busy": "2023-09-20T19:38:33.889815Z", - "iopub.status.idle": "2023-09-20T19:38:33.893808Z", - "shell.execute_reply": "2023-09-20T19:38:33.893119Z" + "iopub.execute_input": "2023-10-05T23:13:01.328110Z", + "iopub.status.busy": "2023-10-05T23:13:01.327870Z", + "iopub.status.idle": "2023-10-05T23:13:01.331486Z", + "shell.execute_reply": "2023-10-05T23:13:01.330773Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:38:33.896687Z", - "iopub.status.busy": "2023-09-20T19:38:33.896308Z", - "iopub.status.idle": "2023-09-20T19:38:34.126723Z", - "shell.execute_reply": "2023-09-20T19:38:34.125872Z" + "iopub.execute_input": "2023-10-05T23:13:01.334508Z", + "iopub.status.busy": "2023-10-05T23:13:01.334269Z", + "iopub.status.idle": "2023-10-05T23:13:01.388250Z", + "shell.execute_reply": "2023-10-05T23:13:01.387434Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:38:34.130629Z", - "iopub.status.busy": "2023-09-20T19:38:34.130186Z", - "iopub.status.idle": "2023-09-20T19:38:34.134999Z", - "shell.execute_reply": "2023-09-20T19:38:34.134265Z" + "iopub.execute_input": "2023-10-05T23:13:01.391898Z", + "iopub.status.busy": "2023-10-05T23:13:01.391649Z", + "iopub.status.idle": "2023-10-05T23:13:01.395952Z", + "shell.execute_reply": "2023-10-05T23:13:01.395256Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:38:34.138175Z", - "iopub.status.busy": "2023-09-20T19:38:34.137776Z", - "iopub.status.idle": "2023-09-20T19:38:34.143440Z", - "shell.execute_reply": "2023-09-20T19:38:34.142803Z" + "iopub.execute_input": "2023-10-05T23:13:01.398965Z", + "iopub.status.busy": "2023-10-05T23:13:01.398590Z", + "iopub.status.idle": "2023-10-05T23:13:01.402800Z", + "shell.execute_reply": "2023-10-05T23:13:01.402234Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'getting_spare_card', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'cancel_transfer'}\n" + "Classes: {'card_about_to_expire', 'beneficiary_not_allowed', 'cancel_transfer', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'getting_spare_card', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'change_pin'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:38:34.146758Z", - "iopub.status.busy": "2023-09-20T19:38:34.146299Z", - "iopub.status.idle": "2023-09-20T19:38:34.150577Z", - "shell.execute_reply": "2023-09-20T19:38:34.149852Z" + "iopub.execute_input": "2023-10-05T23:13:01.405843Z", + "iopub.status.busy": "2023-10-05T23:13:01.405470Z", + "iopub.status.idle": "2023-10-05T23:13:01.409423Z", + "shell.execute_reply": "2023-10-05T23:13:01.408725Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:38:34.154463Z", - "iopub.status.busy": "2023-09-20T19:38:34.154066Z", - "iopub.status.idle": "2023-09-20T19:38:34.160049Z", - "shell.execute_reply": "2023-09-20T19:38:34.159284Z" + "iopub.execute_input": "2023-10-05T23:13:01.413419Z", + "iopub.status.busy": "2023-10-05T23:13:01.413048Z", + "iopub.status.idle": "2023-10-05T23:13:01.418531Z", + "shell.execute_reply": "2023-10-05T23:13:01.417808Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:38:34.163443Z", - "iopub.status.busy": "2023-09-20T19:38:34.162968Z", - "iopub.status.idle": "2023-09-20T19:38:38.128960Z", - "shell.execute_reply": "2023-09-20T19:38:38.128241Z" + "iopub.execute_input": "2023-10-05T23:13:01.421585Z", + "iopub.status.busy": "2023-10-05T23:13:01.421212Z", + "iopub.status.idle": "2023-10-05T23:13:05.454552Z", + "shell.execute_reply": "2023-10-05T23:13:05.453774Z" } }, "outputs": [ @@ -470,7 +470,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.weight', 'discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense.bias']\n", + "Some weights of the model checkpoint at /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator were not used when initializing ElectraModel: ['discriminator_predictions.dense.weight', 'discriminator_predictions.dense_prediction.weight', 'discriminator_predictions.dense_prediction.bias', 'discriminator_predictions.dense.bias']\n", "- This IS expected if you are initializing ElectraModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing ElectraModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" ] @@ -511,10 +511,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:38:38.133507Z", - "iopub.status.busy": "2023-09-20T19:38:38.132746Z", - "iopub.status.idle": "2023-09-20T19:38:38.136130Z", - "shell.execute_reply": "2023-09-20T19:38:38.135549Z" + "iopub.execute_input": "2023-10-05T23:13:05.458970Z", + "iopub.status.busy": "2023-10-05T23:13:05.458502Z", + "iopub.status.idle": "2023-10-05T23:13:05.462235Z", + "shell.execute_reply": "2023-10-05T23:13:05.461491Z" } }, "outputs": [], @@ -536,10 +536,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:38:38.139091Z", - "iopub.status.busy": "2023-09-20T19:38:38.138500Z", - "iopub.status.idle": "2023-09-20T19:38:38.141886Z", - "shell.execute_reply": "2023-09-20T19:38:38.141219Z" + "iopub.execute_input": "2023-10-05T23:13:05.466232Z", + "iopub.status.busy": "2023-10-05T23:13:05.464970Z", + "iopub.status.idle": "2023-10-05T23:13:05.469106Z", + "shell.execute_reply": "2023-10-05T23:13:05.468396Z" } }, "outputs": [], @@ -554,10 +554,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:38:38.144849Z", - "iopub.status.busy": "2023-09-20T19:38:38.144300Z", - "iopub.status.idle": "2023-09-20T19:38:40.924759Z", - "shell.execute_reply": "2023-09-20T19:38:40.923607Z" + "iopub.execute_input": "2023-10-05T23:13:05.472016Z", + "iopub.status.busy": "2023-10-05T23:13:05.471625Z", + "iopub.status.idle": "2023-10-05T23:13:08.209678Z", + "shell.execute_reply": "2023-10-05T23:13:08.208601Z" }, "scrolled": true }, @@ -580,10 +580,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-09-20T19:38:40.929875Z", - "iopub.status.busy": "2023-09-20T19:38:40.928663Z", - "iopub.status.idle": "2023-09-20T19:38:40.942186Z", - "shell.execute_reply": "2023-09-20T19:38:40.941491Z" + "iopub.execute_input": "2023-10-05T23:13:08.214727Z", + "iopub.status.busy": "2023-10-05T23:13:08.213508Z", + "iopub.status.idle": "2023-10-05T23:13:08.227719Z", + "shell.execute_reply": "2023-10-05T23:13:08.227021Z" } }, "outputs": [ @@ -618,35 +618,35 @@ "
---2023-09-20 19:38:47-- https://data.deepai.org/conll2003.zip
-Resolving data.deepai.org (data.deepai.org)... 185.93.1.247, 2400:52e0:1a00::718:1
-Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... connected.
+--2023-10-05 23:13:13-- https://data.deepai.org/conll2003.zip
+Resolving data.deepai.org (data.deepai.org)... 169.150.236.99, 2400:52e0:1a00::845:1
+Connecting to data.deepai.org (data.deepai.org)|169.150.236.99|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 982975 (960K) [application/zip]
Saving to: ‘conll2003.zip’
-conll2003.zip 100%[===================>] 959.94K 3.10MB/s in 0.3s
+conll2003.zip 100%[===================>] 959.94K 6.07MB/s in 0.2s
-2023-09-20 19:38:47 (3.10 MB/s) - ‘conll2003.zip’ saved [982975/982975]
+2023-10-05 23:13:14 (6.07 MB/s) - ‘conll2003.zip’ saved [982975/982975]
mkdir: cannot create directory ‘data’: File exists
Archive: conll2003.zip
@@ -873,16 +873,16 @@ 1. Install required dependencies and download data